
Oracle® Application Server TopLink
Application Developer’s Guide

10g (9.0.4)

Part No. B10313-01

September 2003

Oracle Application Server TopLink Application Developer’s Guide, 10g (9.0.4)

Part No. B10313-01

Copyright © 2000, 2003 Oracle Corporation. All rights reserved.

Contributing Authors: Jacques-Antoine Dubé, Rick Sapir, Peter Purich, Ellen Siegal (Editor)

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... xxix

Preface.. xxxi

Intended Audience ... xxxii
Documentation Accessibility .. xxxii
Organization.. xxxiii
Related Documentation .. xxxiv
Conventions... xxxv

1 Understanding OracleAS TopLink

Advantages of OracleAS TopLink ... 1-2
OracleAS TopLink Problem Space... 1-2
OracleAS TopLink Solution .. 1-3

Other OracleAS TopLink Advantages ... 1-3
OracleAS TopLink Components .. 1-3

OracleAS TopLink Development Components ... 1-4
OracleAS TopLink Mapping Workbench ... 1-5

Oracle Application Server TopLink Sessions Editor.. 1-6
Oracle Application Server TopLink Foundation Library ... 1-7

Sessions ... 1-8
Data Access... 1-8
Caching ... 1-8
Queries .. 1-8
Transactions ... 1-9

iv

OracleAS TopLink Metadata... 1-10
Sessions.xml File .. 1-10
Project .. 1-11
Descriptor ... 1-11
Mappings .. 1-11

Application Development With OracleAS TopLink.. 1-12
Mapping ... 1-13
Session Management.. 1-13
Querying .. 1-14
Transactions... 1-14
Packaging and Deployment .. 1-15
Monitoring and Performance Tuning.. 1-15

OracleAS TopLink Architectures Overview .. 1-15
Three-Tier... 1-16
EJB Session Bean Facade.. 1-16
EJB Entity Beans with CMP... 1-16
EJB Entity Beans with BMP ... 1-17
Two-Tier... 1-17

General Terms and Concepts .. 1-17

2 OracleAS TopLink Architectures

How to Use This Chapter .. 2-2
Architectural Concepts... 2-2

Persistent Entity Types... 2-2
Java Objects... 2-2
EJB Entity Beans... 2-2

Multi-Tier Enterprise Applications .. 2-3
Client Tier ... 2-3
Presentation Tier.. 2-4
Application Tier ... 2-4
Persistence Tier .. 2-4

Session Components .. 2-4
Session Manager .. 2-4
Server Session... 2-4
Client Session ... 2-5

v

Project.. 2-5
Database Session.. 2-5
Database Login .. 2-5
Unit of Work .. 2-5

Five Key Architectures... 2-6
Entity Bean Versus Non-Entity Bean Architectures .. 2-6
Three-Tier .. 2-6
EJB Session Bean Facade.. 2-7
EJB Entity Beans Using CMP .. 2-8
EJB Entity Beans Using BMP... 2-9
Two-Tier... 2-9

Architecture Details.. 2-10
Selecting an Architecture... 2-10

About Non-Relational Datasources .. 2-11
Three-Tier Architecture ... 2-11

Example Implementations ... 2-12
Advantages and Disadvantages.. 2-12
A Variation Using Remote Sessions ... 2-12
Technical Challenges .. 2-12

EJB Session Bean Facade Architecture... 2-13
Example Implementation ... 2-13
Advantages and Disadvantages.. 2-14
Understanding Session Beans.. 2-14
Technical Challenges .. 2-15
Unit of Work Merge .. 2-15

EJB Entity Beans with CMP Architecture ... 2-15
Example Implementation ... 2-16
Advantages and Disadvantages.. 2-16
Technical Challenges .. 2-16

EJB Entity Beans with BMP Architecture.. 2-17
Example Implementations ... 2-17
Advantages and Disadvantages.. 2-17
Technical Challenges .. 2-18

Two-Tier Architecture ... 2-18
Example Implementations ... 2-18

vi

Advantages and Disadvantages.. 2-18
Technical Challenges... 2-19

3 Mapping

Introduction to Mapping Concepts ... 3-2
Persistent Entities.. 3-3
Metadata Model .. 3-3
OracleAS TopLink Mapping Workbench ... 3-4

Deployment XML Generation ... 3-4
Project Class Generation... 3-4
OracleAS TopLink Mapping Types .. 3-4
Inheritance .. 3-5

Objects and the Database... 3-5
Primary Keys.. 3-6
Sequencing.. 3-6
Foreign Keys and Object Relationships.. 3-6

Indirection.. 3-6
Serialization ... 3-6
General Terms and Concepts .. 3-7

Primitive Versus Complex Data.. 3-7
Java Objects... 3-7

Basic Mappings ... 3-7
Direct Mappings ... 3-8

Direct-to-Field Mappings ... 3-9
Type Conversion Mappings... 3-12
Object Type Mappings.. 3-13

Relationship Mappings .. 3-14
Relationships and Entity Beans ... 3-14
One-to-One Mappings .. 3-17
Aggregate Object Mappings .. 3-19
One-to-Many Mappings ... 3-21
Aggregate Collections... 3-22
Direct Collection Mappings ... 3-25
Many-to-Many Mappings .. 3-26

Indirection.. 3-27

vii

Valueholder Indirection ... 3-28
Proxy Indirection... 3-29
Transparent Indirection.. 3-32
Choosing Your Indirection Type... 3-32
Indirection and EJBs.. 3-33

Serialization ... 3-34
Serialization and Indirection ... 3-34
Merging Clones on Deserialization .. 3-36
Limitations on Merge.. 3-36

Primary Keys... 3-37
Primary Keys and EJB Entity Beans ... 3-37

Sequencing... 3-37
Sequencing and Database Tables .. 3-38
Sequencing and Preallocation Size ... 3-39
Table Sequencing... 3-39
Oracle Native Sequencing .. 3-41
Native Sequencing with Other Databases ... 3-43
Sequencing with CMP Entity Beans ... 3-44
Sequencing with Stored Procedures ... 3-45

Foreign Keys.. 3-46
Multiple Table Mappings .. 3-46
Mapping and Enterprise JavaBeans... 3-47

EJBs and the OracleAS TopLink Mapping Workbench... 3-47
Inheritance ... 3-47

Understanding Object Inheritance ... 3-48
Representing Inheritance in the Database .. 3-49
Class Types .. 3-51

Root Class ... 3-51
Branch Class ... 3-52
Leaf Class.. 3-52

Class Indicators... 3-52
Class Indicator Field ... 3-52
Class Indicators and Mappings... 3-52

Class Extraction Methods.. 3-53
Entity Bean Inheritance Restrictions.. 3-55

viii

Mapping EJB Entity Beans .. 3-55
Terminology and Definitions.. 3-56
Overview of Bean-Managed Persistence... 3-57

BMP Support with EJB 2.0.. 3-58
Overview of Container-Managed Persistence.. 3-59

Understanding CMP ... 3-59
OracleAS TopLink and CMP Entity Beans .. 3-59
Java Objects and Entity Beans.. 3-60

Maintaining Bidirectional Relationships... 3-61
One-to-Many Relationship... 3-62

Managing Dependent Objects Under EJB 1.1 ... 3-62
Serializing Java Objects Between Client and Server... 3-63

Managing Dependent Objects Under EJB 2.0 ... 3-65
Managing Collections of EJBObjects Under EJB 1.1 .. 3-66

Descriptor Validation ... 3-67
Advanced Mappings .. 3-68

Transformation Mappings... 3-68
Implementing Transformation Mappings in Java .. 3-68

Serialized Object Mappings... 3-71
Variable One-to-One Mappings ... 3-72
Object Relational Mappings .. 3-73

Array Mappings... 3-73
Object Array Mappings .. 3-75
Structure Mappings... 3-75
Reference Mappings.. 3-77
Nested Table Mappings.. 3-78

Direct Map Mappings .. 3-80
Customizing the Project .. 3-81

Customizing OracleAS TopLink Descriptors with Amendment Methods........................ 3-82
Using After Load Methods.. 3-82
Descriptor Events.. 3-83

Receiving Descriptor Events .. 3-83
Supported Events .. 3-86

Descriptor Copy Policy .. 3-87
Descriptor Query Manager ... 3-88

ix

Replacing Descriptor Queries.. 3-88
Instantiation Policy... 3-88

Overriding the Instantiation Policy Using Java Code.. 3-88
Setting the Wrapper Policy Using Java Code... 3-89
Creating EJB Projects and OracleAS TopLink Descriptors in Java 3-89

Writing Mappings in Code ... 3-93
Implementing Object-Relational Descriptors in Java .. 3-93
Implementing Primary Keys in Java.. 3-94
Implementing Inheritance in Java.. 3-95

Queries for Inherited Superclasses and Multiple Tables... 3-95
Customizing Inheritance .. 3-96

Implementing Indirection in Java .. 3-100
Implementing Interfaces in Java... 3-101
Setting the Copy Policy in Java... 3-101
Implementing Multiple Tables in Java .. 3-102

Primary Keys Match ... 3-102
Primary Keys are Named Differently... 3-103
Tables Related by Foreign Key Relationships... 3-104
Non Standard Table Relationships ... 3-105

Implementing Sequence Numbers in Java.. 3-107
Implementing Locking in Java ... 3-107

Java Implementation of Optimistic Locking ... 3-108

4 Sessions

Introduction to Session Concepts.. 4-2
sessions.xml File ... 4-2
Session Types .. 4-2

Server Session .. 4-2
Client Session ... 4-2
Remote Session .. 4-3
Database Session.. 4-3
Session Broker.. 4-3

Session Manager ... 4-3
Connection Pool.. 4-4
Caching .. 4-4

x

Profiling.. 4-4
Session Architectures ... 4-4

Server Session.. 4-5
Client Session .. 4-6
Database Session ... 4-6
Remote Session.. 4-6
Session Broker ... 4-7

Configuring Sessions with the sessions.xml File ... 4-8
Navigating the sessions.xml File .. 4-9
XML Header .. 4-10
toplink-configuration Element.. 4-10
session Element ... 4-10

session-type Element... 4-12
login Element ... 4-13
event-listener-class Element... 4-21
profiler-class Element ... 4-22
external-transaction-controller-class Element ... 4-22
exception-handler-class Element... 4-23
connection-pool Element .. 4-23
enable-logging Element .. 4-25

session-broker Element .. 4-26
JTA Configuration .. 4-27

Registering Descriptors ... 4-28
Caching Objects .. 4-28
Session Manager ... 4-29

Retrieving a Session from a Session Manager .. 4-29
Loading a Session with an Alternative Class Loader... 4-30
Loading an Alternative Session Configuration File ... 4-31

Storing Sessions in the Session Manager Instance ... 4-32
Destroying Sessions in the Session Manager Instance .. 4-33

Session Querying .. 4-33
Simple Query API... 4-34

Using Expressions in Session Queries .. 4-34
Custom SQL Queries... 4-35

Query Objects .. 4-36

xi

Predefined Queries... 4-36
Session Types... 4-36

Server Session and Client Session .. 4-37
Three-Tier Architecture Overview ... 4-37
EJBs and Server Session.. 4-38
General Concepts for the OracleAS TopLink Three-Tier Design................................. 4-38
Reference... 4-46
Customizing Server Session and Database Login .. 4-46
Working with Login.. 4-47
Registering Event Listeners for EJB 1.1 .. 4-47

Database Session... 4-48
Creating a Database Session .. 4-48
Connecting to the Database ... 4-49
Logging Out of the Database ... 4-49
Using Manual Transaction Control .. 4-49
Creating Database Sessions: Examples .. 4-50
Reference... 4-52

Session Broker ... 4-53
Multiple Sessions... 4-53
Configuring the Session Broker in Code.. 4-53
Committing a Transaction with a Session Broker .. 4-55
Using the Session Broker in a Three-tier Architecture... 4-55
Limitations.. 4-57
Advanced Use.. 4-57
Reference... 4-57

Remote Session ... 4-58
Architectural Overview.. 4-59
Securing Remote Session Access... 4-61
Queries .. 4-61
Refreshing... 4-61
Indirection .. 4-62
Cursored Streams .. 4-62
Unit of Work .. 4-62
Creating a Remote Connection Using RMIConnection ... 4-62

Sessions and the Cache.. 4-64

xii

Session Utilities... 4-64
Logging SQL and Messages .. 4-64

Logging Chained Exceptions ... 4-65
Logging and the Oracle Enterprise Manager .. 4-65

Using the Profiler .. 4-66
Using the Integrity Checker .. 4-66
Using Exception Handlers... 4-67

Customizing Session Events... 4-67
Session Event Listeners .. 4-68
Session Event Manager .. 4-69
Implementing Events Using Java ... 4-70

OracleAS TopLink Support for Java Data Objects (JDO) ... 4-70
Understanding the JDO API ... 4-71
JDO Implementation .. 4-71

JDOPersistenceManagerFactory.. 4-72
JDOPersistenceManager ... 4-74
JDOQuery ... 4-78
JDOTransaction.. 4-85

Running the OracleAS TopLink JDO Example .. 4-86

5 Data Access

Introduction to Data Access Concepts .. 5-2
JDBC Connections... 5-2

Individual JDBC Connections.. 5-2
JDBC Connection Pools .. 5-2

JTA .. 5-3
Data Conversion ... 5-3

Database Platforms ... 5-3
JDBC-SQL and Native SQL ... 5-4
Custom Platforms ... 5-5

JDBC Connection Pools ... 5-6
Default Connection Pools .. 5-6
External Connection Pools .. 5-6
JDBC Datasources ... 5-7

Container-Managed Persistence and Datasources ... 5-7

xiii

JTA .. 5-8
Database Login Information... 5-8

Creating a Login Object ... 5-8
Specifying Driver Information.. 5-9

Using the Sun Microsystems JDBC-ODBC Bridge ... 5-9
Using a Different Driver... 5-10

Setting Login Parameters .. 5-10
User Information ... 5-10
Database Information ... 5-10
Additional JDBC Properties... 5-11

Database Login Advanced Features .. 5-11
Setting Sequencing at Login .. 5-11
Setting Direct Connect Drivers.. 5-13
Using JDBC 2.0 Datasources .. 5-13
Using Custom Database Connections .. 5-13

OracleAS TopLink Conversion Manager ... 5-14
Creating Custom Types with the Conversion Manager ... 5-14
Conversion Manager Class Loader.. 5-15
Resolving Class Loader Exceptions ... 5-15

Performance ... 5-16
Data Optimization .. 5-16
Batch Writing .. 5-17
Binding and Parameterized SQL.. 5-17
Prepared Statement Caching .. 5-18

Prepared Statement Caching for a Query.. 5-18
Prepared Statement Caching for a Session .. 5-19

Table Qualifier .. 5-19
Locking Policy ... 5-20

Using Optimistic Locking.. 5-20
Advantages and Disadvantages of Optimistic Locking .. 5-21
Advanced Optimistic Locking Policies .. 5-21

Optimistic Read Locking ... 5-22
Pessimistic Locking .. 5-24

Pessimistic Locking and the Cache... 5-26
Pessimistic Locking and Database Transactions... 5-26

xiv

WAIT and NO_WAIT Options.. 5-26
Advantages of Pessimistic Locking .. 5-28
Reference... 5-28

Two Different Locking Policies... 5-28
Field Locking Policies ... 5-29
Version Locking Policies .. 5-29

Using the OracleAS TopLink SDK .. 5-30
Step One: Define an Accessor ... 5-31

Data Store Connection .. 5-31
Call Execution .. 5-32
Transaction Processing ... 5-32

Step Two: Create the Application Calls... 5-32
Input Database Row.. 5-33
Read Object Call... 5-34
Read All Call .. 5-34
Insert Call.. 5-34
Update Call... 5-34
Delete Call... 5-35
Does Exist Call ... 5-35
Custom Call .. 5-35
FieldTranslator... 5-36
SDKDataStoreException... 5-37

Step Three: Build Descriptors and Mappings... 5-37
SDK Descriptor .. 5-37
Standard Mappings... 5-40
SDK Mappings ... 5-44

Step Four: Deploy the Application Using Sessions ... 5-54
SDK Platform and Sequencing .. 5-54
SDK Login... 5-55
OracleAS TopLink Project .. 5-55
Session ... 5-56
Unsupported Features .. 5-56

OracleAS TopLink XML Support .. 5-56
Getting Started .. 5-57
Customizations ... 5-59

xv

Implementation Details ... 5-59
XML File Accessor .. 5-60

XML Accessor Implementation... 5-60
Directory Creation... 5-61

XML Call .. 5-62
XMLTranslator Implementations... 5-62

Object-Level Calls.. 5-62
Data Calls.. 5-64

XML Descriptor .. 5-65
XML Platform.. 5-66
XML File Login ... 5-66
XML Schema Manager... 5-67
XML Accessor ... 5-67
XML Translator... 5-68

Default XML Translator ... 5-68
XML Zip File Extension ... 5-69

Using the Zip File Extension.. 5-69
Configure Direct File Access With Zip File Extension... 5-69
Implementation Details .. 5-70

6 Queries

Introduction to Query Concepts .. 6-3
Query Types .. 6-3

Object Queries.. 6-3
Summary Queries.. 6-3
Data Queries... 6-4
Object Write Queries... 6-4

Query Components .. 6-5
OracleAS TopLink Expressions... 6-5
Query by Example... 6-5
Stored Procedures ... 6-5
EJB QL ... 6-5
Custom SQL ... 6-6

Query Configuration Options... 6-6
Query Execution Options... 6-6

xvi

Query and the Cache... 6-7
Performance.. 6-8
Unit of Work... 6-8

Query Development Options.. 6-9
Building Queries with the OracleAS TopLink Mapping Workbench 6-9
Building Queries in Java... 6-9

Using Predefined Queries ... 6-10
Using Named Queries... 6-10
Using Redirect Queries ... 6-11

Building EJB Finders .. 6-11
Query Keys .. 6-11

Query Building Basics ... 6-12
Expressions .. 6-12

Accessing Methods in Expressions ... 6-12
Expression Components... 6-13
Creating Expressions with the Expression Builder .. 6-17
Using Multiple Expressions ... 6-18
Parameterized Expressions and Finders .. 6-19
Platform and User-Defined Functions.. 6-22
Data Queries... 6-23
Query Keys ... 6-24
Reference... 6-26

Custom SQL... 6-27
SQL Queries.. 6-27
SQL Data Queries .. 6-28

Stored Procedure Calls... 6-29
Output Parameters .. 6-29
Cursor Output Parameters ... 6-30
Output Parameter Event... 6-30
Reference... 6-31

EJB QL .. 6-31
Using EJB QL with OracleAS TopLink... 6-32
ReadAllQuery .. 6-32
Session ... 6-33
EJB QL Limitations .. 6-33

xvii

Query by Example.. 6-34
Defining a Sample Instance.. 6-34
Defining a Query by Example Policy ... 6-35
Combining Query by Example with Expressions .. 6-36
Reference... 6-36

Executing Queries ... 6-37
Session Queries ... 6-37

Reading Objects from the Database.. 6-38
Writing Objects to the Database.. 6-39

Query Objects.. 6-41
Query Object Components... 6-41
Creating a Query Object ... 6-42
Read Query Object Examples .. 6-43
Specialized Query Object Options .. 6-44
Query Optimization.. 6-46

Predefined Queries... 6-48
Named Queries.. 6-48
Named Finders .. 6-50
Redirect Queries .. 6-52
EJBs and Redirect Finders .. 6-53

Queries Defined with the OracleAS TopLink Mapping Workbench.................................. 6-56
Query Managers ... 6-56

Customize the Default Query Methods ... 6-57
Define Additional Join Expressions.. 6-58
Customize the Existence Check... 6-59

Query Results .. 6-60
Objects .. 6-60
Collections ... 6-60
Java Streams .. 6-60
Report Query Results... 6-61

Queries and the Cache ... 6-61
Cache Usage .. 6-61

Cache and the Database ... 6-61
In-Memory Query Cache Usage.. 6-62
Cache and the Primary Key ... 6-64

xviii

Disabling the Identity Map Cache Update During a Read Query 6-65
Refresh.. 6-66

Object Refresh .. 6-66
Cascading Object Refresh... 6-66
Refreshing the Identity Map Cache During a Read Query ... 6-66

Caching Query Results .. 6-67
Query Objects and Write Operations.. 6-67

Write Query Overview .. 6-68
Non-Cascading Write Queries.. 6-68
Disabling the Identity Map Cache During a Write Query.. 6-69
Using Query Objects to Customize the Default Database Operations 6-70

Query Object Performance Options.. 6-70
Batch Reading.. 6-70

Guidelines for Implementing Batch Reading .. 6-71
Join Reading... 6-72
ReportQuery .. 6-73
Partial Attribute Reading... 6-76
Cache Results In Query Objects.. 6-76

Oracle Extension Support.. 6-76
Oracle Hints and the OracleAS TopLink Query Framework... 6-77
Hierarchical Queries... 6-78

Advanced Querying ... 6-79
Creating Additional Query Keys.. 6-79

Implementing Query Keys in Java ... 6-80
Querying on Interfaces... 6-81
Querying on an Inheritance Hierarchy.. 6-81
Cursors and Streams .. 6-81

Cursors and Java Iterators.. 6-82
Java Streams ... 6-83
Optimizing Streams... 6-84

Querying Across Variable One-to-One Mappings .. 6-85
EJB Finders ... 6-85

Defining Finders in OracleAS TopLink... 6-86
ejb-jar.xml Finder Options... 6-86

entity tag ... 6-87

xix

Call Finders.. 6-88
Creating Call Finders .. 6-88
Executing a Call Finder .. 6-88

Expression Finders ... 6-89
EJB QL Finders .. 6-89

ReadAll Query and EJB QL.. 6-91
EJB QL Session Queries .. 6-91

SQL Finders ... 6-92
Dynamic Finders... 6-92
ReadAll Finders .. 6-94

Creating READALL Finders.. 6-94
Choosing the Best Finder Type for Your Query .. 6-94

Using the OracleAS TopLink Expression Framework... 6-94
Using Redirect Finders ... 6-95
Using SQL... 6-95

ejbSelect.. 6-95
Advanced Finder Options... 6-96

Caching Options .. 6-97
Disable Cache for Returned Finder Results... 6-98
Refreshing Finder Results .. 6-98
Managing Large Result Sets with Cursored Streams... 6-99

Exception Handling.. 6-101

7 Transactions

Introduction to Transaction Concepts... 7-2
Database Transactions ... 7-2
OracleAS TopLink Unit of Work Transactions .. 7-3

Transaction Context .. 7-3
Transaction Demarcation ... 7-3
Transaction Isolation... 7-4

Understanding the Unit of Work ... 7-5
Unit of Work Benefits... 7-5
Unit of Work Life Cycle ... 7-6
Clones and the Unit of Work .. 7-7
Nested and Parallel Units of Work .. 7-8

xx

Nested Unit of Work ... 7-8
Parallel Unit of Work .. 7-8

Reading and Querying Objects with the Unit of Work... 7-9
Reading Objects with the Unit of Work ... 7-9
Querying Objects with the Unit of Work ... 7-9

Commit and Rollback... 7-9
Commit.. 7-9
Rollback... 7-10

Primary Keys ... 7-10
Example Object Model and Schema... 7-11

Unit of Work Basics .. 7-12
Acquiring a Unit of Work.. 7-13
Creating an Object .. 7-13
Modifying an Object... 7-14
Associations: New Target to Existing Source Object... 7-15

Associating without Reference to the Cache Object ... 7-15
Associating with Reference to the Cache Object... 7-16

Associations: New Source to Existing Target Object... 7-18
Associations: Existing Source to Existing Target Object ... 7-19
Deleting Objects .. 7-20

Using privateOwnedRelationship .. 7-21
Explicitly Deleting from the Database.. 7-22
Understanding the Order in which Objects are Deleted ... 7-23

Advanced Unit of Work ... 7-23
Troubleshooting a Unit of Work... 7-24

Avoiding the Use of Post-commit Clones.. 7-24
Determining Whether or not an Object is the Cache Object ... 7-25
Dumping the Contents of a Unit of Work.. 7-26
Handling Exceptions... 7-27

Creating and Registering an Object in One Step.. 7-28
Using registerNewObject... 7-28

Registering a New Object with registerNewObject.. 7-28
Associating New Objects with One Another... 7-29

Using registerAllObjects .. 7-31
Using Registration and Existence Checking ... 7-32

xxi

Check Database.. 7-32
Assume Existence.. 7-32
Assume Non-existence ... 7-33

Working with Aggregates ... 7-33
Unregistering Working Clones... 7-33
Declaring Read-Only Classes.. 7-33

Setting Read-Only Classes for a Single Unit of Work.. 7-34
Setting Read-Only Classes for All Units of Work... 7-34
Read-Only Descriptors ... 7-34

Using Conforming Queries and Descriptors.. 7-35
Using Conforming Queries.. 7-35
Conforming Query Alternatives ... 7-36
Using Conforming Descriptors ... 7-37

Merging Changes in Working Copy Clones... 7-37
Resuming a Unit of Work After Commit .. 7-39
Reverting a Unit of Work .. 7-40
Using a Nested or Parallel Unit of Work .. 7-40

Parallel Unit of Work .. 7-40
Nested Unit of Work... 7-40

Using a Unit of Work with Custom SQL .. 7-41
Validating a Unit of Work ... 7-41

Validating the Unit of Work Before Commit .. 7-41
Controlling the Order of Deletes .. 7-42

Using the Unit of Work setShouldPerformDeletesFirst Method 7-42
Using the Descriptor addConstraintDependencies Method... 7-42
Using deleteAllObjects without addConstraintDependencies..................................... 7-42
Using deleteAllObjects with addConstraintDependencies... 7-43

Improving Unit of Work Performance .. 7-43
J2EE Integration .. 7-44

External Connection Pooling .. 7-44
When to Use External Connection Pools ... 7-44
Configuring an External Connection Pool in sessions.xml ... 7-45
Configuring an External Connection Pool in Java.. 7-45

External Transaction Controllers.. 7-45
Configuring an External Transaction Controller in sessions.xml 7-46

xxii

Configuring an External Transaction Controller in Java ... 7-47
Acquiring a Unit of Work in a JTA Environment ... 7-47
Using a Unit of Work When an External Transaction Exists .. 7-48
Using a Unit of Work When No External Transaction Exists 7-49

8 Cache

Introduction to Cache Concepts ... 8-2
Cache Architecture ... 8-2

Session Cache ... 8-2
Unit of Work Cache... 8-3
Stale Data .. 8-3

Cache Locking ... 8-3
Distributed Cache Synchronization ... 8-3

Cluster ... 8-4
Discovery .. 8-4
Message Transport .. 8-4
Name Service.. 8-4
Propagation Modes ... 8-4

Cache Locking and Isolation .. 8-5
Configuring the Cache ... 8-5

Distributed Cache Synchronization .. 8-6
Configuring Cache Synchronization in the sessions.xml File .. 8-7

Clustering Service.. 8-8
Discovery .. 8-8
Name Service.. 8-9
Using the Java Message Service .. 8-10
Synchronous and Asynchronous Propagation.. 8-12
Error Handling... 8-13

Explicit Query Refreshes ... 8-13
Refresh Policy... 8-13
EJB Finders and Refresh Policy ... 8-14

Remote Command Manager ... 8-14
RCM Implementation Requirements ... 8-15
RCM Structure... 8-15

Transmitting Commands From OracleAS TopLink with RCM.................................... 8-17

xxiii

Using Commands on a Non-OracleAS TopLink Application 8-17
RCM Channels .. 8-17
Configuring the RCM .. 8-18

Configuring the RCM for OracleAS TopLink Applications ... 8-18
Configuring RCM for Non-OracleAS TopLink Applications....................................... 8-20

Error Handling.. 8-22
Guidelines for Using RCM.. 8-22
Custom Remote Commands ... 8-23

9 Packaging for Deployment

Introduction to Packaging and Deployment Concepts ... 9-2
OracleAS TopLink Approach to Deployment.. 9-2

OracleAS TopLink in an Enterprise Application.. 9-2
Road to Deployment ... 9-2

XML Versus Java Source Deployment .. 9-3
Creating OracleAS TopLink Deployment Files .. 9-3

XML Deployment Files .. 9-3
Project.xml File... 9-4
Sessions.xml File.. 9-5
Configuring the toplink-ejb-jar.xml File with the IBM WebSphere Server 4.0 9-5
Configuring the toplink-ejb-jar.xml File with the BEA WebLogic Server 9-6

Using Java Source Deployment Files... 9-9
XML Files for Java Deployment .. 9-10

Configuring Additional Files for CMP Deployment... 9-10
 Configuring the ejb-jar.xml File ... 9-10
Configuring the [J2EE-Container]-ejb-jar.xml .. 9-11

Packaging an OracleAS TopLink Application .. 9-13
Java Applications.. 9-14

Packaging the Java Application .. 9-14
Deploying the Application to a Client ... 9-14

Java Server Pages and Servlets Applications ... 9-14
Packaging Applications with JSPs and Servlets ... 9-14
Deploying the Application to a Client ... 9-16

Session Bean Applications... 9-16
Packaging Applications with Session Beans ... 9-16

xxiv

Deploying the Application to a Client.. 9-18
Container-Managed Persistence Applications ... 9-18

General Deployment ... 9-19
Deploying the Application to BEA WebLogic Server .. 9-20
Deploying the Application to IBM WebSphere 4.x Server .. 9-21

Bean-Managed Persistence Applications .. 9-22
Deploying the Application... 9-23

Hot Deployment of EJBs ... 9-23

10 Tuning for Performance

Introduction to Tuning Concepts ... 10-2
OracleAS TopLink as Part of a Larger Application ... 10-2
An Effective Tuning Approach... 10-2

Profiling Performance .. 10-3
Using the Profiler in the Web Client .. 10-4
Using the Profiler in Java... 10-4

Browsing the Profiler Results .. 10-5
General Tuning Tips... 10-5
Basic Performance Optimization ... 10-8
OracleAS TopLink Reading Optimization Features .. 10-8

Reading Case 1: Displaying Names in a List .. 10-9
Partial Object Reading .. 10-10
ReportQuery... 10-11

Reading Case 2: Batch Reading Objects... 10-12
Reading Case 3: Using Complex Custom SQL Queries .. 10-14
Reading Case 4: Using View Objects ... 10-15

OracleAS TopLink Writing Optimization Features ... 10-16
Writing Case 1: Batch Writes... 10-17

Cursors and Batch Writes... 10-18
Sequence Number Preallocation ... 10-19
Batch Writing ... 10-19
Parameterized SQL.. 10-19
Multiprocessing ... 10-20

Schema Optimization... 10-21
Schema Case 1: Aggregation of Two Tables into One... 10-21

xxv

Schema Case 2: Splitting One Table into Many ... 10-22
Schema Case 3: Collapsed Hierarchy .. 10-24
Schema Case 4: Choosing One Out of Many.. 10-25

A Application Development Tools

OracleAS TopLink — Web Client.. A-2
Configuring the Web Client .. A-3

Building the Web Client EAR File .. A-4
Configuring the Application Server ... A-4

Connecting to OracleAS TopLink Sessions .. A-6
Searching for Objects.. A-8
Creating and Editing Objects .. A-11
Performing SQL Queries ... A-12
Using the Performance Profiler .. A-13
Setting Web Client Preferences... A-14

Configuring OracleAS TopLink for Oracle JDeveloper.. A-15
Deploy Tool for WebSphere Server... A-17

Using the Deploy Tool with WebSphere Studio Application Developer (WSAD)........... A-18
Troubleshooting... A-19

Schema Manager ... A-19
Using the Schema Manager to Create Tables ... A-20

Creating a Table Definition.. A-20
Adding Fields to a Table Definition ... A-20
Defining Sybase and Microsoft SQL Server Native Sequencing A-21
Creating Tables on the Database... A-21
Creating the Sequence Table.. A-21

Managing Java and Database Type Conversions .. A-22
Session Management Services ... A-22

Runtime Services .. A-23
Development Services.. A-23
Using Session Management Services... A-23

Stored Procedure Generator ... A-24
Generating Stored Procedures.. A-24

Sequencing and Stored Procedures .. A-24
Attaching the Stored Procedures to the Descriptors ... A-25

xxvi

B Configuring OracleAS TopLink for J2EE Containers

Software Requirements ... B-2
Non-CMP Configuration ... B-2

Oracle Application Server Containers for J2EE Support .. B-3
IBM WebSphere Application Server 4.0 .. B-4

Configuring IBM WebSphere Module Visibility Setting ... B-4
IBM WebSphere Application Server 5.0 .. B-5
BEA WebLogic Application Server (6.1, 7.0 or 8.1).. B-6

Using a Security Manager with BEA WebLogic Server... B-6
OracleAS TopLink CMP Configuration ... B-7

IBM WebSphere Application Server 4.0 .. B-7
BEA WebLogic Application Server (6.1, 7.0 and 8.1)... B-7

OracleAS TopLink in a BEA WebLogic Cluster .. B-8
Collocation ... B-8

Static Partitioning .. B-9
Pinning .. B-9

Cache Synchronization and the Cluster .. B-10
Configuring Cache Synchronization .. B-10

C Error Codes and Messages

OracleAS TopLink Exceptions.. C-2
Runtime Exceptions .. C-2
Development Exceptions.. C-2
Format of Exceptions .. C-3
Exception Error Code Numbers .. C-3

Exception Error Codes and Descriptions.. C-4
Descriptor Exception .. C-4

Error Codes 1 – 176.. C-5
Builder Exceptions... C-38

Error Codes 1001 – 1042... C-39
Concurrency Exception... C-47

Error Codes 2001 – 2006... C-48
Conversion Exception ... C-49

Error Codes 3001 – 3007... C-49
Database Exception ... C-50

xxvii

Error Codes 4002 – 4018 ... C-51
Optimistic Lock Exception .. C-54

Error Codes 5001 – 5008 ... C-54
Query Exception ... C-56

Error Codes 6001 – 6098 ... C-56
Validation Exception.. C-72

Error Codes 7001 – 7104 ... C-72
EJB QL Exception.. C-87

Error Codes 8001 – 8010 ... C-87
Session Loader Exception.. C-88

Error Codes 9000 - 9009 .. C-89
EJB Exception Factory .. C-91

Error Codes 10001 - 10048 .. C-91
Communication Exception.. C-97

Error Codes 12000 - 12004 .. C-97
XML Data Store Exception .. C-98

Error Codes 13000 - 13020 .. C-98
Deployment Exception ... C-103

Error Codes 14001 - 14027 ... C-103
Synchronization Exception... C-105

Error Codes 15001 - 15025 ... C-106
JDO Exception.. C-107

Error Codes 16001 - 16006 ... C-108
SDK Data Store Exception.. C-109

Error Codes 17001 - 17006 ... C-109
JMS Processing Exception .. C-111

Error Codes 18001 - 18002 ... C-111
SDK Descriptor Exception.. C-111

Error Codes 19001 - 19003 ... C-112
SDK Query Exception ... C-112

Error Codes 20001 - 20004 ... C-113
Discovery Exception.. C-113

Error Codes 22001 - 22004 ... C-114
Remote Command Manager Exception ... C-114

Error Codes 22101 - 22105 ... C-115

xxviii

XML Conversion Exception ... C-116
Error Code 25001 .. C-116

EJB JAR XML Exception ... C-116
Error Codes 72000 - 72023 ... C-117

Entity Deployment .. C-117
Generating Deployment JARs.. C-118

Common BEA WebLogic Deployment Exceptions ... C-118
Common IBM WebSphere Server Exceptions ... C-122

Problems at Runtime.. C-126
Common OracleAS TopLink for IBM WebSphere Deploy Tool Exceptions C-126

Common BEA WebLogic 6.1 Exceptions ... C-126
Common BEA WebLogic 7.0 Exceptions ... C-130
Common BEA WebLogic 8.1 Exceptions ... C-132

Index

xxix

Send Us Your Comments

Oracle Application Server TopLink Application Developer’s Guide, 10g (9.0.4)

Part No. B10313-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xxx

xxxi

Preface

This document provides the information required to build high performance
applications. It also introduces the concepts with which you should be familiar to
get the most out of Oracle Application Server TopLink.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

xxxii

Intended Audience
The Oracle Application Server TopLink Application Developer’s Guide is intended for
application developers creating Oracle Application Server TopLink applications.

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and your own
particular Java development environment.

The document also assumes that you are familiar with your particular operating
system (such as Windows, UNIX, or other). The general operation of any operating
system is described in the user documentation for that system, and is not repeated
in this manual.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

xxxiii

Organization
This document contains:

Chapter 1, "Understanding OracleAS TopLink"
This chapter contains general information on OracleAS TopLink. It discusses the
OracleAS TopLink application space, development process, components, and the
OracleAS TopLink metamodel.

Chapter 2, "OracleAS TopLink Architectures"
This chapter illustrates the five basic OracleAS TopLink architectures in use in
projects all over the world.

Chapter 3, "Mapping"
This chapter contains information on creating mappings for your application. It
includes discussions on the mapping features and functions you will use to build
your project.

Chapter 4, "Sessions"
This chapter contains information on configuring and running sessions. It includes
a discussion of the various types of session available in OracleAS TopLink, and the
mechanisms and features OracleAS TopLink offers to customize and optimize your
application at the session level.

Chapter 5, "Data Access"
This chapter describes how to access the data for your application. It includes
discussions on database platforms and drivers, performance issues, and the
OracleAS TopLink Software Development Kit (SDK).

Chapter 6, "Queries"
This chapter contains information on building and executing queries in an OracleAS
TopLink application.

Chapter 7, "Transactions"
This chapter contains information on OracleAS TopLink transactions. It introduces
the concepts of transactions and the OracleAS TopLink Unit of Work.

xxxiv

Chapter 8, "Cache"
This chapter contains information on the OracleAS TopLink cache, including
discussions on cache isolation, cache synchronization, and other caching issues. It
also introduces the concepts associated with running OracleAS TopLink in a
clustered environment.

Chapter 9, "Packaging for Deployment"
This chapter contains information on packaging and deploying your OracleAS
TopLink application.

Chapter 10, "Tuning for Performance"
This chapter contains information on optimizing your application for maximum
efficiency and throughput.

Appendix A, "Application Development Tools"
This appendix contains information on the various tools included with OracleAS
TopLink that help you get the most out of your application.

Appendix B, "Configuring OracleAS TopLink for J2EE Containers"
This appendix contains information on configuring OracleAS TopLink for use with
J2EE containers.

Appendix C, "Error Codes and Messages"
This appendix contains information on exceptions and error codes you might
encounter when building or running an OracleAS TopLink application.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Application Server TopLink Release Notes

■ Oracle Application Server 10g Release Notes

■ Oracle Application Server TopLink Getting Started Guide

■ Oracle Application Server TopLink API Reference

■ Oracle Application Server TopLink Mapping Workbench User’s Guide

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com

xxxv

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xxxvi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xxxvii

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xxxviii

Understanding OracleAS TopLink 1-1

1
Understanding OracleAS TopLink

Oracle Application Server TopLink is an advanced object-to-relational persistence
framework, suitable for a wide range of Java 2 Enterprise Edition (J2EE) and Java
application architectures. OracleAS TopLink development tools and runtime
capabilities reduce development and maintenance efforts, and increase enterprise
application functionality. Use OracleAS TopLink to build high performance
applications that store persistent data in a relational database.

This chapter introduces OracleAS TopLink and includes discussions on the
following topics:

■ Advantages of OracleAS TopLink

■ OracleAS TopLink Components

■ Application Development With OracleAS TopLink

■ OracleAS TopLink Architectures Overview

■ General Terms and Concepts

The remainder of this document provides the necessary details required to build
J2EE applications with OracleAS TopLink.

Advantages of OracleAS TopLink

1-2 Oracle Application Server TopLink Application Developer’s Guide

Advantages of OracleAS TopLink
Enterprise applications rely on Java-to-database integration to implement objects
and logic. OracleAS TopLink enables developers to efficiently develop and refine
enterprise applications. To fully understand OracleAS TopLink, you must
understand the problems that enterprise application developers face and how
OracleAS TopLink resolves them.

OracleAS TopLink Problem Space
Java-to-database integration is a widely underestimated problem in enterprise Java
applications. This complex problem involves more than reading from and writing
to a database. The database world includes elements such as tables, rows, columns,
and primary and foreign keys; the Java and J2EE world contains entity classes
(regular Java classes or Enterprise JavaBeans (EJB) entity beans), business rules,
complex relationships, and inheritance. Bridging these two fundamentally different
technologies is a challenging and resource-intensive problem.

The process of translating object-oriented data into relational data is referred to as
object-relational (O-R) mapping. To enable an O-R solution, developers must resolve
the following O-R bridging issues:

■ Fundamentally different technologies

■ Different skill sets

■ Different staff and ownership for each of the technologies

■ Different modeling and design principles

Application developers need a product that enables them to integrate Java
applications and relational databases, without compromising ideal application
design or database integrity. In addition, Java developers need the ability to store
(or persist) and retrieve business domain objects using a relational database as a
repository.

The OracleAS TopLink solution is a persistence framework that manages O-R
mapping in a seamless manner and enables developers to rapidly build applications
that combine the best aspects of object technology and relational databases.

OracleAS TopLink Components

Understanding OracleAS TopLink 1-3

OracleAS TopLink Solution
OracleAS TopLink provides a mature and powerful solution that addresses the
disparity between Java objects and relational databases. OracleAS TopLink enables
developers to:

■ Persist Java objects in virtually any relational database supported by a JDBC 2.0
compliant driver.

■ Map any object model to any relational schema, using the OracleAS TopLink
Mapping Workbench graphical mapping tool.

■ Use OracleAS TopLink successfully, even if they are unfamiliar with SQL or
JDBC, because OracleAS TopLink provides a clean, object-oriented view of
relational databases.

Other OracleAS TopLink Advantages
In addition to providing industry leading O-R mapping capabilities, OracleAS
TopLink provides flexibility, increases performance and maximizes the
productivity of your applications. OracleAS TopLink provides the following
features:

■ Advanced object caching that improves performance by minimizing database
access.

■ Rich query support that provides easy access to sophisticated, dynamic query
languages and tools such as query by example, Java expression-based queries,
EJB QL, and SQL.

■ A transactional framework that enables developers to easily create and modify
mapped objects. This framework integrates the complexities of a shared
memory space and caches, and provides scalability that supports multiple
server instances (clustering). Although the mechanisms involved are complex,
OracleAS TopLink makes it easy to leverage this functionality by simplifying
the task of writing transactional code that complies with database referential
integrity and optimal access patterns.

OracleAS TopLink Components
At its core, OracleAS TopLink is a runtime engine that provides Java or J2EE
applications with access to persistent entities stored in a relational database. In
addition to runtime capabilities, the Oracle Application Server TopLink Foundation
Library includes the OracleAS TopLink Application Programming Interface (API).
This API enables applications to access OracleAS TopLink runtime features, as well

OracleAS TopLink Components

1-4 Oracle Application Server TopLink Application Developer’s Guide

as development tools that simplify application development. The tools capture
mapping and runtime configuration information in metadata files that OracleAS
TopLink passes to the runtime.

Figure 1–1 OracleAS TopLink Components in the Development Cycle

OracleAS TopLink Development Components
OracleAS TopLink application development comprises three elements: the
development environment, the OracleAS TopLink runtime, and the metadata that
ties them together.

Development
To create an OracleAS TopLink application, map the object and relational models
using the OracleAS TopLink Mapping Workbench, and capture the resulting
mappings and additional runtime configurations in the OracleAS TopLink project
file (the project.xml file). Then build a session configuration file (the
sessions.xml file) in the OracleAS TopLink Sessions Editor. These files together
represent your entire OracleAS TopLink project.

Datasource

Persistent Entities

Development

OracleAS TopLink Mapping Workbench
OracleAS TopLink Sessions Editor

Runtime

OracleAS TopLink
Foundation Library

OracleAS TopLink Metadata

Project (XML/Java)

Sessions (XML)

OracleAS TopLink Foundation Library

OracleAS TopLink Components

Understanding OracleAS TopLink 1-5

During development, developers leverage the OracleAS TopLink API to define
query and transaction logic. When developers use EJB entity beans, there is
generally little or no direct use of the OracleAS TopLink API.

Runtime
The OracleAS TopLink Foundation Library provides the OracleAS TopLink
runtime component. Access the runtime component either directly through the
OracleAS TopLink API, or indirectly through a J2EE container when using EJB
entity beans. The runtime engine is not a separate or external process; instead, it is
embedded within the application. Application calls invoke OracleAS TopLink to
provide persistence behavior. This function allows for transactional and thread-safe
access to shared database connections and cached objects.

Metadata
OracleAS TopLink metadata is the bridge between the development of an
application and its deployed runtime. Capture the metadata using the OracleAS
TopLink Mapping Workbench and OracleAS TopLink Sessions Editor, and pass the
metadata to the runtime using deployment project.xml and sessions.xml
files. It is also possible to hand-code these files using Java and the OracleAS
TopLink API, but this approach is more labor-intensive.

The metadata, encapsulated in the project.xml file and the sessions.xml file,
allows developers to pass configuration information into the runtime environment.
The runtime uses the information in conjunction with the persistent entities (Java
objects or EJB entity beans), and the code written with the OracleAS TopLink API,
to complete the application.

OracleAS TopLink Mapping Workbench
The OracleAS TopLink Mapping Workbench is a graphical development tool that
enables developers to map between the object and relational models, and configure
many of the OracleAS TopLink Foundation Library features. The OracleAS TopLink
Mapping Workbench creates an OracleAS TopLink project, the primary object in the
OracleAS TopLink metamodel. Export the project as a single deployment XML file
(the project.xml file), which OracleAS TopLink uses in conjunction with the
OracleAS TopLink runtime to provide the application-specific persistence
capabilities.

OracleAS TopLink Components

1-6 Oracle Application Server TopLink Application Developer’s Guide

Figure 1–2 The OracleAS TopLink Mapping Workbench in an OracleAS TopLink
Environment

The OracleAS TopLink Mapping Workbench can import compiled entity classes
(Java objects or EJB entity beans), as well as relational schema through a JDBC
driver that the developer configures. Because OracleAS TopLink imports the object
and relational models for mapping, developers can develop the two models
relatively independently from the O-R mapping phase of a project development.

Oracle Application Server TopLink Sessions Editor
Most OracleAS TopLink applications include a session configuration file, the
sessions.xml file, to simplify the application deployment process. The OracleAS
TopLink Sessions Editor provides a graphical environment to configure the
sessions.xml file.

Use the sessions.xml file to configure one or more sessions for the OracleAS
TopLink project, and associate the sessions with the project. This approach allows
developers to specify individual configurations for each session and to add or
modify:

■ Database (JDBC) login information different from the login information used
during development (for example: external datasources for the host application
server's connection pools)

Source Dev
- IDE
- Modeling

OracleAS TopLink
Mapping Workbench

OracleAS TopLink
Project (XML)

Java Source Java Classes

Data Source

C
re

at
e

-
G

en
er

at
e

Export

Im
po

rt
 -

 R
ef

re
sh

Im
po

rt
 -

 R
ef

re
sh

OracleAS TopLink Components

Understanding OracleAS TopLink 1-7

■ JTA/JTS transaction usage

■ Cache synchronization

■ Session broker (enables client applications to view multiple databases and
projects as a single OracleAS TopLink session)

Oracle Application Server TopLink Foundation Library
The Oracle Application Server TopLink Foundation Library includes a Java library
that forms the runtime component of the product. It provides support and the API
for the components that make up an OracleAS TopLink application. The API
enables developers to interact with OracleAS TopLink to retrieve and modify their
application persistent entities.

Figure 1–3 OracleAS TopLink Application Components

Note: Although this chapter describes how these components fit
into J2EE architectures, note that OracleAS TopLink also supports
non-J2EE solutions. Chapter 2, "OracleAS TopLink Architectures"
describes theses solutions in more detail.

Application Server

Client
Application

JSP,
Servlet,
Struts,
etc.

Entities

App
Logic

Java
Objects

EJB Entity
Beans

Datasource

OracleAS TopLink

CMP/BMP

J2EE Container

JTA
JDBC
Connection
Pool

Mappings

Query

Transaction

Cache

D
ata A

ccess

S
ession

JD
B

C

OracleAS TopLink Components

1-8 Oracle Application Server TopLink Application Developer’s Guide

Sessions
A session is the primary interface between the client application and OracleAS
TopLink, and represents the connection to the underlying relational database.
OracleAS TopLink offers several different session types, each optimized for
different design requirements and architectures. The session manager configures
and manages the session as a singleton within the application.

The most commonly-used session is the server session, a singleton session that
clients access on the server through a client session. The server session provides a
shared cache and shared JDBC connection resources. OracleAS TopLink supports
sessions for two-tier architectures, distributed applications, and multiple databases.

Data Access
The OracleAS TopLink data access component provides access to JDBC connections
through connection pooling, provided either by OracleAS TopLink or a host
application server. This component manages the SQL generation required by the
various query operations and reconciles any differences between JDBC drivers and
SQL dialects. OracleAS TopLink offers many performance tuning options that
optimize its data access capabilities.

Caching
OracleAS TopLink supplies an object level cache that guarantees object identity and
enhances performance. Developers can configure the OracleAS TopLink cache and
maximize application efficiency by reducing the number of times the application
accesses the database. In a clustered environment, developers can configure
OracleAS TopLink to synchronize changes with other instances of the deployed
application.

Queries
The OracleAS TopLink query framework provides developers with the flexibility
necessary to manage the complex persistence requirements of enterprise
applications. The key features of this query framework include:

■ A rich set of query types to allow object retrieval, summary results, and raw
data retrieval

■ The ability to specify search criteria using OracleAS TopLink Expressions (for
object model based queries), EJB QL, SQL, stored procedures, or query by
example

OracleAS TopLink Components

Understanding OracleAS TopLink 1-9

■ Configuration options that enable developers to specify how the query is
executed, and to customize many of its performance optimizing features

Developers can define OracleAS TopLink queries using the OracleAS TopLink
Mapping Workbench, in Java code using the OracleAS TopLink API, or, in the case
of EJB entity beans, through EJB Finders.

Transactions
OracleAS TopLink provides the ability to write transactional code isolated from the
underlying database and schema. OracleAS TopLink achieves this functionality
through the Unit of Work.

The Unit of Work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the Unit of Work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other
OracleAS TopLink caches. The Unit of Work manages these issues by calculating a
minimal change set, ordering the database calls to comply with referential integrity
rules and deadlock avoidance, and merging changed objects into the shared cache.
In a clustered environment, the Unit of Work also synchronizes changes with the
other servers in the cluster.

If an application uses EJB entity beans, developers do not access the Unit of Work
API directly, but they still benefit from its features: the integration between the
OracleAS TopLink runtime and the J2EE container leverages the Unit of Work
automatically.

JTA/JTS Integration By default, OracleAS TopLink allows the application to create
transaction boundaries for all object-level changes. OracleAS TopLink explicitly
manages the database transaction, and if it encounters problems, safely rolls back
both the database changes and the object-level changes.

In the case of a J2EE application, developers can configure OracleAS TopLink to
synchronize with the JTA/JTS subsystem of the host application server. This feature
allows an application to use container-managed transactions, rather than the default
user-managed transactions.

Note that this functionality is not limited to EJB architectures. Developers can
configure any OracleAS TopLink architecture to use container-managed
transactions.

OracleAS TopLink Components

1-10 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink Metadata
The OracleAS TopLink approach to persistence is based on metadata that defines
the class structure (objects) and relational schema, along with other configuration
information used by OracleAS TopLink at runtime. Developers can use the
OracleAS TopLink Mapping Workbench to define this metadata, and the OracleAS
TopLink runtime component uses the metadata to provide the necessary
persistence capabilities, using Java's reflective and introspective capabilities.

The OracleAS TopLink application metadata model is based around the OracleAS
TopLink project. The project includes descriptors, mappings, and various policies
that customize the runtime capabilities.

Figure 1–4 OracleAS TopLink Metadata

Sessions.xml File
Use the sessions.xml file to configure sessions for the project. Developers can
build and edit these files with the OracleAS TopLink Sessions Editor. The session
manager uses the sessions.xml configuration file during application
initialization.

1

1

Deployment Project

Project

Descriptor

Class javaClass

<<Abstract>>
Database Mapping

String attributeName

*

*

*

Session
Configuration
(sessions.xml)

OracleAS TopLink Components

Understanding OracleAS TopLink 1-11

Project
The OracleAS TopLink deployment project is the primary container for the
metadata. A project generally represents an application and contains the mapping
information for all persistent classes and their relationships. Each session (excluding
the session broker) in the deployed application references a single project. Although
developers can build a project by coding it using the OracleAS TopLink API, we
recommend that developers create and manage the project in the OracleAS TopLink
Mapping Workbench, and use the OracleAS TopLink Mapping Workbench to
generate either an XML or Java source version of the project for use at runtime.

Descriptor
A descriptor represents the association between a persistent Java class and a
relational table(s). The descriptor contains configuration information for the class
level within a project, as well as a set of mappings for each of its persistent
attributes. Many of the more advanced configuration options are set at the
descriptor level. The OracleAS TopLink Mapping Workbench supports most of
these options, but there are a few that developers must set using the OracleAS
TopLink API.

Mappings
Mappings describe how the attributes of a mapped class are associated with
columns in the database. OracleAS TopLink provides a sophisticated set of flexible
and customizable mappings that allow for complex mapping scenarios between the
object and relational models.

There are two types of mappings: direct mappings, and relationship mappings.

Direct Mappings Direct mappings relate an attribute or attributes to a column or
columns in the relational schema. OracleAS TopLink provides several direct
mappings that allow for conversions between the types from the database and the
object model's attribute types. Here are the direct mappings and their function:

■ Direct-to-field mappings map a Java attribute directly to a value database column.

■ Type Conversion mappings explicitly map a database type to a Java type.

■ Object type mappings match a fixed number of database values to Java objects.

■ Serialized object mappings store large data objects, such as multimedia files and
BLOBs, in the database.

Application Development With OracleAS TopLink

1-12 Oracle Application Server TopLink Application Developer’s Guide

■ Transformation mappings offer specialized translations between how a value is
represented in Java and in the database, such as when developers map multiple
fields into a single attribute.

Relationship Mappings OracleAS TopLink offers sophisticated relationship mapping,
which enables developers to represent object relationships based on the database
table columns and foreign keys. Here are the relationship mappings and their
function:

■ One-to-one mappings represent simple pointer references between two Java
objects. The references use any of foreign keys, target foreign keys, or variable
classes to define the pointer.

■ Aggregate object mappings represent the relationship between a given object and
a target object. The objects have a strict one-to-one relationship between the
objects, and all the attributes of the second object are retrievable from the same
table as the owning object.

■ Aggregate collection mappings represent the relationship between a single-source
object and a collection of target objects. Unlike one-to-many mappings, in which
there must be a one-to-one back reference mapping from the target objects to
the source object, there is no back reference required for the aggregate collection
mappings, because the foreign key relationship is resolved by the aggregation
(object & collection).

■ One-to-many mappings represent the relationship between a single-source object
and a collection of target objects.

■ Many-to-many mappings represent the relationships between a collection of
source objects and a collection of target objects. They require an intermediate
table for managing the associations between the source and target records.

■ Object-relational mappings are mappings that leverage databases that support
object-relational entity storage within tables.

Application Development With OracleAS TopLink
Using OracleAS TopLink to build an application does not affect the choice of
development tools or the creative process. However, OracleAS TopLink does
influence how developers approach development. This section highlights some of
the key areas in which using OracleAS TopLink affects application development.
These areas exist, regardless of whether developers are building an application to
support Java objects, EJB entity beans, or both.

Application Development With OracleAS TopLink

Understanding OracleAS TopLink 1-13

Mapping
OracleAS TopLink maps the application’s persistent entities to the database, using
the descriptors and mappings developers build with the OracleAS TopLink
Mapping Workbench. The OracleAS TopLink Mapping Workbench supports
several approaches to project development, including:

■ Importing classes and tables for mapping

■ Importing classes and generating tables and mappings

■ Importing tables and generating classes and mappings

■ Creating both class and table definitions with mapping creation and model
generation

The OracleAS TopLink Mapping Workbench supports all these options; however,
the most common solution is to develop the persistent entities using a development
tool, such as an integrated development environment (IDE) or modeling tool, and to
develop the relational model through appropriate relational design tools.
Developers then use the OracleAS TopLink Mapping Workbench to construct
mappings that relate these two models.

The OracleAS TopLink Mapping Workbench does offer some facilities for
generating persistent entities or the relational model components for an application;
however, these utilities are intended only to assist in rapid initial development
strategies, rather than complete round-trip application development.

For more information about mapping, see Chapter 3, "Mapping" and the Oracle
Application Server TopLink Mapping Workbench User’s Guide.

Session Management
Sessions are the primary interface between the application and OracleAS TopLink
persistence capabilities. When developing an OracleAS TopLink application,
developers must ensure that they properly initialize and manage the sessions.

When using EJB entity beans with container-managed persistence (CMP) or
bean-managed persistence (BMP), the client code that modifies the entity beans
does not access the OracleAS TopLink session directly. Instead, changes occur
transparently, through integration with the container or through EJB callbacks.

Well-designed applications that employ Java objects as persistent entities use the
session manager provided in the OracleAS TopLink API. This class initializes and
manages the singleton session. Developers configure the session manager in the

Application Development With OracleAS TopLink

1-14 Oracle Application Server TopLink Application Developer’s Guide

sessions.xml file, which allows for easy configuration and customization of the
deployed application.

For more information about session management, see Chapter 4, "Sessions".

Querying
OracleAS TopLink provides several object and data query types, and offers flexible
options for query selection criteria, including:

■ OracleAS TopLink expressions

■ EJB QL

■ SQL

■ Stored procedures

■ Query by example

With these options, developers can build any type of query. We recommend that
developers use predefined queries to define application queries. Predefined queries
are held in the project metadata and referenced by name. This simplifies application
development and encapsulates the queries to reduce maintenance costs.

The OracleAS TopLink Mapping Workbench provides the simplest way to define
queries. Developers can also build queries in code, using the OracleAS TopLink
API.

If the application includes EJB entity beans, developers can code finders completely
using EJB QL, which enables the application to comply with the J2EE specification.
Alternatively, developers can use any of the other OracleAS TopLink query options.
All querying options are available, regardless of the architecture or persistent entity
type.

For more information about querying, see Chapter 6, "Queries".

Transactions
In an OracleAS TopLink application, the Unit of Work ensures that OracleAS
TopLink transactions comply with the transactional requirements of the
application.

The Unit of Work is one of the most sophisticated and powerful components of the
OracleAS TopLink Foundation Library. Although developers that use CMP or BMP
entity beans do not use the OracleAS TopLink API to apply transactional changes to
their persistent entities, the Unit of Work is used behind the scenes. Understanding

OracleAS TopLink Architectures Overview

Understanding OracleAS TopLink 1-15

how the Unit of Work behaves, and developing simple coding patterns to use it, are
the keys to building efficient, maintainable applications.

For more information about transaction, see Chapter 7, "Transactions".

Packaging and Deployment
Application packaging (for deployment in the host Java or J2EE environment)
influences OracleAS TopLink use and configuration. For example, developers
package a J2EE enterprise application in an Enterprise Archive (EAR) file. Within
the EAR file, there are several ways to package persistent entities within Web
Application (WAR) and Java libraries (JAR). How developers configure OracleAS
TopLink depends, in part, on how they package the application and how they use
the host application server class loader.

For more information about packaging and deployment, see Chapter 9, "Packaging
for Deployment".

Monitoring and Performance Tuning
OracleAS TopLink enables developers to monitor functionality and performance
throughout application development, testing, and quality assurance cycles.
OracleAS TopLink offers many textual logging, as well as the API required to
implement custom logging strategies. Developers can use these features to ensure
that the application behaves and performs as they expect.

OracleAS TopLink includes a performance profiler feature, available through the
OracleAS TopLink Foundation Library API. This runtime feature tracks query
execution time, which developers can use for performance analysis. This tool
provides the information necessary to identify bottlenecks that hinder application
performance.

OracleAS TopLink also offers a rich set of performance enhancement features.
Understanding how to configure these features can have a strong influence on
application performance, especially in the later phases of application development.

For more information about monitoring and performance tuning, see Chapter 10,
"Tuning for Performance".

OracleAS TopLink Architectures Overview
OracleAS TopLink is designed to work in both Java and J2EE applications. Since it
was first introduced, the flexibility OracleAS TopLink provides has led to its use in

OracleAS TopLink Architectures Overview

1-16 Oracle Application Server TopLink Application Developer’s Guide

many architectural styles. This section introduces the five most common
architectures associated with OracleAS TopLink. Although this section describes
the architectures in relation to J2EE, OracleAS TopLink continues to fully support
non-J2EE and Java applications as well.

For more information about OracleAS TopLink’s flexible architecture support, see
Chapter 2, "OracleAS TopLink Architectures".

Three-Tier
The three-tier (or J2EE Web) application is one of the most common OracleAS
TopLink architectures. This architecture is characterized by a server-hosted
environment in which the business logic, persistent entities, and the OracleAS
TopLink Foundation Library all exist in a single Java virtual machine (JVM).

The most common example of this architecture is a simple three-tier application in
which the client browser accesses the application through servlets, Java Server
Pages (JSPs) and HTML. The presentation layer communicates with OracleAS
TopLink through other Java classes in the same JVM, to provide the necessary
persistence logic. This architecture supports multiple servers in a clustered
environment, but there is no separation across JVMs from the presentation layer
and the code that invokes the persistence logic against the persistent entities using
OracleAS TopLink.

EJB Session Bean Facade
A popular variation on the three-tier application involves wrapping the business
logic, including the OracleAS TopLink access, in EJB session beans. This
architecture provides a scalable deployment and includes integration with
transaction services from the host application server. Communication from the
presentation layer occurs through calls to the EJB session beans. This architecture
separates the application into different tiers for the deployment.

The session bean architecture can persist either Java objects or EJB entity beans.

EJB Entity Beans with CMP
OracleAS TopLink provides CMP support for applications that require the use of
EJB entity beans. This support is available on the leading application servers.
OracleAS TopLink CMP support provides the developer with an EJB 1.1 and 2.1
CMP solution transparent to the application code, but still offers all the OracleAS
TopLink runtime benefits.

General Terms and Concepts

Understanding OracleAS TopLink 1-17

Applications can access OracleAS TopLink-enabled EJB entity beans using CMP
directly from the client, or from within a session bean layer. OracleAS TopLink also
offers the ability to use regular Java objects in relationships with EJB entity beans.

EJB Entity Beans with BMP
Another option for using EJB entity beans is to leverage OracleAS TopLink BMP in
the application. This architecture enables developers to access the persistent data
through the EJB API, but is platform independent.

The BMP approach is portable—that is, after a developer creates an application, you
can move it from one application server platform to another.

Two-Tier
A two-tier (or client-server) application is one in which the OracleAS TopLink
application accesses the database directly. Although less common than the others
architectures discussed here, OracleAS TopLink supports this architecture for
smaller or embedded data processing applications.

General Terms and Concepts
In addition to the OracleAS TopLink specific concepts, familiarity with several
industry standard concepts helps you understand and implement OracleAS
TopLink applications more effectively.

J2SE
The Java 2 Platform, Standard Edition (J2SE) is the core Java technology platform. It
provides software compilers, tools, runtimes, and APIs for writing, deploying, and
running applets and applications in Java.

J2EE
The Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing
and deploying enterprise applications. J2EE includes a set of services, APIs, and
protocols for developing multi-tiered Web-based applications.

J2EE Containers
A J2EE container is a runtime environment for EJBs that includes such basic
functions as security, life cycle management, transaction management, and

General Terms and Concepts

1-18 Oracle Application Server TopLink Application Developer’s Guide

deployment services. J2EE containers are usually provided by a J2EE server, such as
Oracle Application Server Containers for J2EE.

Java Transaction API Support
The Java Transaction API (JTA) specifies the interfaces between a transaction
manager, a resource manager, an application server, and transactional applications
involved in a distributed transaction system.

Java Data Objects
Java Data Objects (JDO) represent a standard Java model for persistence that
enables programmers to create code in Java that transparently accesses the
underlying data store without using database-specific code. OracleAS TopLink
provides support for most of the JDO specification, but, because OracleAS TopLink
is a persistence framework, developers may find it easier and more effective to
build your applications using OracleAS TopLink functionality rather than JDO.

OracleAS TopLink Architectures 2-1

2
OracleAS TopLink Architectures

This chapter presents an overview of five common enterprise architectures. Each
architecture leverages Oracle Application Server TopLink to manage object
persistence. The descriptions in this chapter include common usages for each of the
architectures, as well as discussions about the technical challenges each architecture
presents. Where appropriate, the sections refer to related technical information later
in this document.

OracleAS TopLink supports any enterprise architecture that makes use of Java. This
chapter focuses on OracleAS TopLink’s flexible architecture support, which
includes:

■ Java application servers and J2EE containers

■ Java-supporting databases, such as Oracle9i Database Server and IBM DB2 UDB

■ Java-compatible browsers, such as Netscape and Internet Explorer

■ Server Java platforms, such as AS/400, OS/390, and UNIX

OracleAS TopLink offers you the flexibility you need to choose your database,
architecture, mapping strategy, application server and object-relational modeling.
This chapter includes sections on:

■ How to Use This Chapter

■ Architectural Concepts

■ Five Key Architectures

■ Architecture Details

How to Use This Chapter

2-2 Oracle Application Server TopLink Application Developer’s Guide

How to Use This Chapter
This chapter introduces common architectural designs that leverage OracleAS
TopLink. This chapter is not intended to give you all the technical information
required to build these architectures, but instead introduces the designs and helps
you decide which architecture best suits your needs. Other chapters in this
document offer details on how to implement the architectures introduced in this
chapter, including:

■ A typical example illustrating the use of the architecture

■ A discussion of some of the technical challenges associated with the
architecture

■ References to other sections in this document that discuss these challenges in
detail, and offer the necessary technical information to resolve them

Architectural Concepts
This section introduces concepts that help you evaluate the architectures presented
in this chapter.

Persistent Entity Types
The architectures in this chapter fall into two categories, depending on whether you
use Java objects or EJB entity beans to manage the persistent data.

Java Objects
OracleAS TopLink enables developers to use simple Java objects as the persistent
mapped entities in your application. To manage them, developers use the OracleAS
TopLink API or optionally, the Java Data Objects (JDO) API.

EJB Entity Beans
Enterprise JavaBean (EJB) technology is a component-based architecture that
enables developers to develop distributed, object-oriented applications in Java.
OracleAS TopLink offers support for EJB entity beans through both bean-managed
persistence (BMP) and container-managed persistence (CMP).

Regardless of how you manage persistence, EJB applications require you to
integrate the OracleAS TopLink framework with the hosting application server. This
integration enables developers to leverage the connection pooling and transaction

Architectural Concepts

OracleAS TopLink Architectures 2-3

management offered through the application server’s Java Transaction Architecture
(JTA) support.

EJB Specification EJBs, developed by Sun Microsystems and its partners, represent a
standard in enterprise computing. EJB is not a product, but rather a specification. It
provides a framework for developers who create distributed business applications,
and vendors who design application servers.

EJB is an important specification because of the widespread support it enjoys from
enterprise software vendors.

For more information about EJBs, see the following Web sites:

http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/white/index.html

Multi-Tier Enterprise Applications
An enterprise application integrates multiple heterogeneous systems, such as
database servers, legacy applications, and mainframe applications. An enterprise
application may also be required to support a diverse range of clients, including:

■ Remote Method Invocation (RMI)

■ Hypertext Markup Language (HTML)

■ Extensible Markup Language (XML)

■ Common Object Request Broker Architecture (CORBA)

■ Distributed Component Object Model (DCOM)

The multi-tier approach enables developers to build complex enterprise
applications that integrate with other systems in the application server tier. Many
different types of enterprise architectures use the multi-tier approach.

Java and J2EE applications generally include several tiers, or layers. These layers
can include the client tier, the presentation tier, the application tier, and the
persistence tier.

Client Tier
An application client tier provides users with access to application functions. Its
primary tasks are to present information from the application and to accept user
input. For example, Web applications commonly present a browser as the client tier,

Architectural Concepts

2-4 Oracle Application Server TopLink Application Developer’s Guide

but may also provide a Java (Swing) interface, a wireless device, or another
application.

Presentation Tier
The presentation tier provides information interchange for the application. This tier
is often a Java Server Pages (JSP) or servlet front end, an RMI or CORBA interface,
or a Web Service.

Application Tier
The application tier holds the application business logic. Users access this tier either
directly from the presentation layer using Java calls or through remote interfaces,
such as RMI, CORBA, and EJB.

The application interacts with OracleAS TopLink at the application tier to provide
application behavior. The user can query for and manipulate persistent entities
through this tier.

Persistence Tier
The persistence tier provides access to the underlying datasource, after a relational
database. In an OracleAS TopLink-enabled application, OracleAS TopLink provides
most of the functionality for this tier. The application developer adds queries,
mappings, and persistent entities to complete and enable the tier.

Session Components
The architectures presented in this chapter leverage the different OracleAS TopLink
sessions and session components.

For more information about the session components, see Chapter 4, "Sessions".

Session Manager
The session manager is a singleton mechanism that manages the sessions within a
given Java virtual machine (JVM). In most systems, the session manager retrieves
the sessions from the sessions.xml file. This file contains the information
required to instantiate sessions and their related mappings.

Server Session
The server session manages the persistence for a single OracleAS TopLink project,
cached objects, query execution and maintaining shared JDBC resources. The
session manager manages the server session.

Architectural Concepts

OracleAS TopLink Architectures 2-5

The server session requires a client session to enable client access.

Client Session
The client session handles client interaction with the server. The server session
manages the client session.

Project
The project contains mapping information for the persistence system. OracleAS
TopLink stores the project in either a deployment XML format or a generated class.
The OracleAS TopLink Mapping Workbench generates the project file in either of
these formats.

Database Session
The database session is a singleton session used in a two-tier application instead of
the Client-Server model used in the three-tier architectures. The main difference is
that the database session manages a single JDBC connection (used for both reading
and writing). This approach also assumes that there is only a single client involved
and the cache is therefore not shared.

Database Login
The project contains default database login information, including a user name and
password. You can also override this information by including alternative login
information for a session, either in the sessions.xml file or in custom code.

Unit of Work
The Unit of Work, OracleAS TopLink’s native transaction mechanism, provides
several advantages over a standard database transaction. It is the most efficient
mechanism to apply changes to the object model in all OracleAS TopLink usage
patterns.

For more information about the Unit of Work, see Chapter 7, "Transactions".

Five Key Architectures

2-6 Oracle Application Server TopLink Application Developer’s Guide

Five Key Architectures
This section summarizes the five basic OracleAS TopLink architectures. These
patterns are not mutually exclusive; instead, they are extensions of each other, based
on the same core technology. This section introduces:

■ Three-Tier

■ EJB Session Bean Facade

■ EJB Entity Beans Using CMP

■ EJB Entity Beans Using BMP

■ Two-Tier Architecture

Entity Bean Versus Non-Entity Bean Architectures
Two of the architectures presented in this chapter (EJB Entity Beans Using BMP,
and EJB Entity Beans Using CMP) use EJB entity beans. EJB entity bean
architectures are slightly different from the other architectures, because the EJB
entity bean interfaces hide OracleAS TopLink functionality completely from the
client application developer.

You can use entity beans in almost any J2EE application. From an OracleAS TopLink
perspective, how the application uses the entity beans is not important; what is
important to OracleAS TopLink is how each entity bean is mapped and
implemented.

Three-Tier
The three-tier application is a common architecture in which OracleAS TopLink
resides within a Java server (either a J2EE server or a custom server). In this
architecture, the server session provides clients with shared access to JDBC
connections and a shared object cache. Because it resides on a single JVM, this
architecture is simple and easily scalable. The OracleAS TopLink persistent entities
in this architecture are generally Java objects.

This architecture often supports Web-based applications in which the client
application is a Web client, a Java client, or a server component.

Five Key Architectures

OracleAS TopLink Architectures 2-7

Figure 2–1 Three-Tier Architecture

Not all three-tier applications are Web-based; however, the three-tier application is
ideally suited to distributed Web applications. In addition, although it is also
common to use EJBs in a Web application, this OracleAS TopLink architecture does
not do so.

For more information, see "Three-Tier Architecture" on page 2-11.

EJB Session Bean Facade
This architecture is an extension of the three-tier pattern, with the addition of EJB
Session Beans wrapping the access to the application tier. The EJB Session Beans
provide public API access to application operations, enabling you to separate the
presentation tier from the application tier. The architecture also enables you to
leverage the EJB session beans within a J2EE container.

This type of architecture generally includes JTA integration, and serialization of
data to the client.

O
racleA

S
 TopLink

A
pplication

P
resentation

Application
Server Database

Client Applications

HTTP, JMS,
RMI/CORBA

JDBC

Five Key Architectures

2-8 Oracle Application Server TopLink Application Developer’s Guide

Figure 2–2 Three-Tier Architecture Using Session Beans and Java Objects

For more information, see "EJB Session Bean Facade Architecture" on page 2-13.

EJB Entity Beans Using CMP
OracleAS TopLink enables developers to leverage EJB entity beans within a J2EE
application, using OracleAS TopLink CMP support. This support, which enables
OracleAS TopLink to participate in container-managed transactions, requires a tight
integration between the J2EE container and the persistence manager.

This architecture is an extension of the three-tier architecture, in which a J2EE
container manages OracleAS TopLink mapping, querying, and other calls
automatically.

Figure 2–3 Three-Tier Container-Managed Persistence Architecture

For more information, see "EJB Entity Beans with CMP Architecture" on page 2-15.

O
racleA

S
 TopLink

A
pplication

P
resentation

Application
Server Database

Client Applications

HTTP, JMS,
RMI/CORBA

JDBCEJB
(RMI)

Database

Client Applications

O
ra

cl
eA

S
 T

op
Li

nk

CMP Container

Entity Bean

Five Key Architectures

OracleAS TopLink Architectures 2-9

EJB Entity Beans Using BMP
OracleAS TopLink BMP support enables developers to use EJB Entity beans on all
application servers that comply with J2EE. This architecture is an extension of the
three-tier architecture, in which the persistent data is bean-managed within an
entity bean. The client code accesses the data through the entity bean interface.

The BMP architecture enables developers to leverage a J2EE application server. The
resulting application is portable—not tied to a particular J2EE application server.
However, the BMP architecture is not common because:

■ It offers functionality similar to a CMP solution, but BMP is not as transparent
or efficient as CMP.

■ OracleAS TopLink-only Java Object applications offer the same degree of
independence from the application server.

■ The developer must create the persistence mechanisms in the bean code.

Figure 2–4 Three-Tier Bean-Managed Persistence Architecture

For more information, see "EJB Entity Beans with BMP Architecture" on page 2-17.

Two-Tier
A two-tier application generally includes a Java client that connects directly to the
database through OracleAS TopLink. The two-tier architecture is most common in
complex user interfaces with limited deployment. The database session provides
OracleAS TopLink support for two-tier applications.

For more information, see "Database Session" on page 4-48.

Database

Client Applications

O
ra

cl
eA

S
 T

op
Li

nk

J2EE Container

Entity Bean

Architecture Details

2-10 Oracle Application Server TopLink Application Developer’s Guide

Figure 2–5 Two-Tier Architecture

Although the two-tier architecture is the simplest OracleAS TopLink application
pattern, it is also the most restrictive, because each client application requires its
own session. As a result, two-tier applications do not scale as easily as other
architectures.

For more information, see "Two-Tier Architecture" on page 2-18.

Architecture Details
This section offers a more in-depth look at the five architectures and provides
information to help you choose the right design for your application. It includes
sections that describe:

■ Selecting an Architecture

■ Three-Tier Architecture

■ EJB Session Bean Facade Architecture

■ EJB Entity Beans with CMP Architecture

■ EJB Entity Beans with BMP Architecture

■ Two-Tier Architecture

Selecting an Architecture
Table 2–1 lists common application feature requirements and indicates which
architectures support each feature. Use this information to choose the most
appropriate architecture for your application.

Database

Client Applications

JDBC

Architecture Details

OracleAS TopLink Architectures 2-11

About Non-Relational Datasources
The examples and discussions in this guide focus primarily on managing persistent
entities on relational databases; however, OracleAS TopLink also offers access to
non-relational data through the OracleAS TopLink Software Development Kit
(SDK). For example, the OracleAS TopLink installation includes the ability to persist
objects to and from XML data stream or file representation.

For more information about OracleAS TopLink with non-relational information, see
"OracleAS TopLink XML Support" on page 5-56.

Three-Tier Architecture
The three-tier Web application architecture generally includes the connection of a
server-side Java application to the database through a JDBC connection. In this
common pattern, OracleAS TopLink resides within a Java server (a J2EE server or a
custom server), with several possible server integration points. The application can
support Web clients such as servlets, Java clients, and generic clients, using XML or
CORBA.

Table 2–1 Feature Support in the Five OracleAS TopLink Architectures

Feature

Three-tier
Web
Application

EJB Session
Bean Facade

EJB Entity
Bean with
CMP

EJB Entity
Bean with
BMP

Client-Server
Two-Tier

Persistent Entity: Java Objects X X X X X

Persistent Entity: EJB Entity Beans X X X

JSP/Servlet Presentation layer X X X X

J2EE Compliance X X X X

JTA/JTS Transaction Management X X X X

Scaling to multiple J2EE Application Server
(clustering)

X X X X

Hosting Web Server and Application Server
on Separate JVMs

X X X X X

Java 2 Standard Edition (J2SE) Application X X

Note: Application requires access to multiple datasources and therefore
requires the JTA/JTS capabilities of the host application server to
support two-phase commit.

Architecture Details

2-12 Oracle Application Server TopLink Application Developer’s Guide

Example Implementations
■ A Model View Controller (MVC) Model 2 architectural design pattern that runs

in a J2EE container with servlets and JSPs that uses OracleAS TopLink to access
data, without EJBs.

■ A Swing or AWT client that connects to a server-side Java application through
RMI, without an application server or container.

Advantages and Disadvantages
The three-tier Web application architecture offers the following advantages:

■ High performance, lightweight persistent objects

■ High degree of flexibility in deployment platform and configuration

The disadvantage of this architecture is that it is a less standard approach than EJBs.

A Variation Using Remote Sessions
OracleAS TopLink includes a session type called RemoteSession. The remote
session offers the full session API and contains a cache of its own, but exists on the
client machine rather than the OracleAS TopLink server. Communications can be
configured to use RMI or RMI-IIOP.

Remote session operations require a corresponding client session on the server.

Although this is an excellent option for developers who wish to simplify their
access from the client tier to the server tier, it is less scalable than using a client
session and does not easily allow changes to server-side behavior.

Technical Challenges
If you build the three-tier application with a stateless client, this architecture
presents several technical challenges, the following sections discuss.

Managing Transactions in a Stateless Environment A common design practice is to
delimit client requests within a single Unit of Work. In a stateless environment, this
may affect how you design the presentation layer. For example, if a client requires
multiple pages to collect information for a transaction, the presentation layer must
retain the information from page to page until the application accumulates the full
set of changes or requests. At that point, the presentation layer invokes the
Unit of Work to modify the database.

Architecture Details

OracleAS TopLink Architectures 2-13

Optimistic Locking in a Stateless Environment In a stateless environment, take extra care
to avoid processing out-of-date (stale) data. A common strategy for avoiding stale
data is to implement optimistic locking and store the optimistic lock values in the
object.

This solution requires careful implementation if the stateless application serializes
the objects or sends the contents of the object to the client in an alternative format. If
this is the case, transport the optimistic lock values to the client in the HTTP
contents of an edit page. Developers must then use the returned values in any Write
transaction to ensure that the data did not change while the client was performing
its work.

For more information about locking, see "Locking Policy" on page 5-20.

EJB Session Bean Facade Architecture
A common extension to the three-tier architecture is to combine session beans and
OracleAS TopLink-managed persistent Java objects. The resulting application
includes session beans and Java objects on an OracleAS TopLink three-tier
architecture.

The three-tier architecture creates a server session and shares it between the session
beans in the application. When a session bean needs to access an OracleAS TopLink
session, the bean obtains a client session from the shared server session.

Here are the key features in this solution:

■ Session beans delimit transactions; developers must configure OracleAS
TopLink to work with a JTA system and its associated connection pool.

■ Accessing the persistent objects on the client side causes them to be serialized;
ensure that when they re-emerge on the server-side, they properly merge into
the cache to maintain identity.

Example Implementation
An example of the EJB session bean facade architecture implementation is a Model
View Controller (MVC) Model 2 architectural design pattern that runs in a J2EE
container with servlets and JSPs that uses the OracleAS TopLink-enabled session
bean to access data, without EJBs.

Architecture Details

2-14 Oracle Application Server TopLink Application Developer’s Guide

Advantages and Disadvantages
The EJB session bean facade architecture is a popular and an effective compromise
between the performance of persistent Java objects and the benefits of EJBs for
standardized client development and server scalability. It offers several advantages:

■ Less overhead than an EJB entity bean application: OracleAS TopLink shares access
to the project, descriptor, and login information across the beans in the
application.

■ Future compatibility with other servers: This design isolates login and EJB
server-specific information from the beans, which enables you to migrate the
application from one application server to another without major recoding or
rebuilding.

■ Shared read cache: This design offers increased efficiency by providing a shared
cache for reading objects.

The key disadvantage of this model is the need to transport the persistent model to
the client. If the model involves complex object graphs in conjunction with
indirection, this can present many of challenges with relationships, inheritance, and
indirection.

For more information about managing relationships, inheritance, and indirection,
see Chapter 3, "Mapping".

Understanding Session Beans
Session beans model a process, operation, or service and as such, are not persistent
entities. However, session beans can use persistence mechanisms to perform the
services they model.

Under the session bean model, a client application invokes methods on a session
bean that, in turn, performs operations on OracleAS TopLink-enabled Java objects.
Session beans execute all OracleAS TopLink-related operations on behalf of the
client.

The EJB specification describes session beans as either stateless or stateful.

■ Stateful beans maintain a conversational state with a client; that is, they retain
information between method calls issued by a particular client. This enables the
client to use multiple method calls to manipulate persistent objects.

■ Stateless beans do not retain data between method calls. When the client
interacts with stateless session beans, it must complete any object
manipulations within a single method-call.

Architecture Details

OracleAS TopLink Architectures 2-15

Technical Challenges
An application can use both stateful and stateless session beans with an OracleAS
TopLink client session or database session. When you use session beans with an
OracleAS TopLink session, the type of bean used affects how it interacts with the
session.

Stateless Session Beans and the OracleAS TopLink Session Stateless beans store no
information between method calls from the client. As a result, re-establish the
bean’s connection to the session for each client method call. Each method call
through OracleAS TopLink obtains a session, makes the appropriate calls, and
releases the reference to the session.

Stateful Session Beans and the OracleAS TopLink Session Your EJB Server configuration
includes settings that affect the way it manages beans—settings designed to
increase performance, limit memory footprint, or set a maximum number of beans.
When you use stateful beans, the server may deactivate an OracleAS
TopLink-enabled stateful session bean out of the JVM memory space between calls
to satisfy one of these settings. The server then reactivates the bean when required
and brings it back into memory.

This behavior is important, because an OracleAS TopLink session instance does not
survive passivation. To maintain the session between method calls, release it during
the passivation process and re-obtain it when you reactivate the bean.

Unit of Work Merge
You can use a Unit of Work to enable your client application to modify objects on
the database. The Unit of Work merge functions employ mappings to copy the
values from the serialized object into the Unit of Work and to calculate changes.

For more information, see "Merging Changes in Working Copy Clones" on
page 7-37.

EJB Entity Beans with CMP Architecture
OracleAS TopLink CMP support enables you to leverage a J2EE container to
automate mapping, querying, and other OracleAS TopLink calls. In doing so,
developers combine the standard interfaces and power of CMP and a container,
with OracleAS TopLink flexibility, performance and productivity. OracleAS TopLink
integrates with the EJB container in this architecture, to become the container’s
persistence manager.

Architecture Details

2-16 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink components are transparent to the developer in CMP
architectures. The developer interacts with CMP entity beans, and the container
uses OracleAS TopLink internally.

Example Implementation
An example of the EJB entity beans with CMP implementation is a Model View
Controller (MVC) Model 2 architectural design pattern that runs in a J2EE
container, with servlets and JSPs that access either session beans or OracleAS
TopLink-enhanced EJB 2.0-compliant CMP entity beans.

Advantages and Disadvantages
This three-tier application offers the following advantages:

■ It allows for CMP beans with OracleAS TopLink features such as caching and
mapping support. This enables the bean designer to leverage OracleAS
TopLink’s complex mapping functionality, such as storing bean data across
more than one table, composite primary keys, and data conversion.

■ The CMP Architecture presents a standard method to access data, which
enables developers to create standardized reusable business objects.

■ CMP is well-suited to create coarse-grained objects, which OracleAS TopLink
relates to dependent lightweight regular Java objects.

■ OracleAS TopLink provides for lazy initialization of referenced objects and
beans.

■ OracleAS TopLink provides functionality for transactional copies of beans,
allowing concurrent access by several clients, rather than relying on individual
serialization.

■ OracleAS TopLink provides advanced query capabilities, as well as dynamic
querying.

■ OracleAS TopLink maintains bean and object identity.

The disadvantage of this architecture is that pure CMP entity bean architectures can
impose a high overhead cost. This is especially true when a data model has a large
number of fine-grained classes with complex relationships.

Technical Challenges
The key technical challenge in this architecture lies in integrating components into a
cohesive system. For example, this architecture requires a specific OracleAS

Architecture Details

OracleAS TopLink Architectures 2-17

TopLink integration with the application server or J2EE container. Other issues
include:

■ External JDBC Pools: By default, OracleAS TopLink manages its own connection
pools. Developers can also configure OracleAS TopLink to use connection
pooling offered by the host application server. This is useful for shared
connection pools and is required for JTA/JTS integration.

■ JTA/JTS Integration: JTA and JTS are standard Java components that enable
sessions to participate in distributed transactions. Developers must configure
OracleAS TopLink to use JTA/JTS to leverage session beans in the architecture.

■ Cache Synchronization: You may choose to use multiple servers to scale your
application. In that case, you may require OracleAS TopLink cache
synchronization.

EJB Entity Beans with BMP Architecture
OracleAS TopLink BMP support enables you to combine the standard interfaces of
BMP entity beans with OracleAS TopLink flexibility, performance, and productivity.
OracleAS TopLink provides a base class for BMP entity beans, and the base class
implements the required methods for the EJB specification. This greatly simplifies
the work of the developer when implementing BMP entity beans.

Example Implementations
An example of the EJB entity beans with BMP implementation is a Model View
Controller (MVC) Model 2 architectural design pattern that runs in a J2EE
container, with servlets and JSPs that access session beans and OracleAS
TopLink-enhanced EJB 2.0-compliant BMP entity beans.

Advantages and Disadvantages
Using BMP with an OracleAS TopLink three-tier architecture offers the following
advantages:

■ It simplifies the BMP method calls. These can be inherited from an abstract bean
class, rather than being generated.

■ OracleAS TopLink makes BMP easier to implement.

■ It enables developers to implement database-independent code in the bean
methods.

Architecture Details

2-18 Oracle Application Server TopLink Application Developer’s Guide

■ The architecture supports features such as complex relationships, caching,
object level and dynamic queries, and the Unit of Work.

Technical Challenges
The key technical challenge in this architecture lies in integrating components into a
cohesive system. For example, this architecture requires a specific OracleAS
TopLink integration with the application server or J2EE container. Other issues
include:

■ External JDBC Pools: By default, OracleAS TopLink manages its own connection
pools. Developers can also configure OracleAS TopLink to use connection
pooling offered by the host application server. This is useful for shared
connection pools and is required for JTA/JTS integration.

■ JTA/JTS Integration: JTA and JTS are standard Java components that enable
sessions to participate in distributed transactions. Developers must configure
OracleAS TopLink to use JTA/JTS to leverage session beans in the architecture.

■ Cache Synchronization: You may choose to use multiple servers to scale your
application. In that case, you may require OracleAS TopLink cache
synchronization.

Two-Tier Architecture
Two-tier applications are often implemented as user interfaces that directly access
the database. They can also be noninterface processing engines. In either case, the
two-tier model is not as common as the three-tier model.

These are key elements of an efficient two-tier (client-server) architecture with
OracleAS TopLink:

■ Minimal dedicated connections from the client to the database

■ An isolated object cache

Example Implementations
An example of a two-tier architecture implementation is a Java User Interface
(Swing/AWT) and batch data processing.

Advantages and Disadvantages
The advantage of the two-tier design is its simplicity. The OracleAS TopLink
database session that builds the two-tiered architecture provides all the OracleAS

Architecture Details

OracleAS TopLink Architectures 2-19

TopLink features in a single session type. This makes the two-tier architecture
simple to build and use.

The most important limitation of the two-tired architecture is that it is not scalable,
because each client requires its own database session.

Technical Challenges
The current trend towards multi-tiered Web applications makes the two-tier
architecture less common in-production systems, but no less viable. However,
because there is no shared cache in a two-tier system, you risk encountering stale
data if you run multiple instances of the application. This risk increases as the
number of individual database sessions increase.

To minimize this problem, OracleAS TopLink offers support for several data locking
strategies. These include pessimistic locking and several variations of optimistic
locking.

For more information, see "Locking Policy" on page 5-20.

Architecture Details

2-20 Oracle Application Server TopLink Application Developer’s Guide

Mapping 3-1

3
Mapping

Mapping enables you to relate objects in your application to data in a database. This
chapter describes how you can build mappings for Oracle Application Server
TopLink-based applications. It includes descriptions of:

■ Introduction to Mapping Concepts

■ Basic Mappings

■ Inheritance

■ Mapping EJB Entity Beans

■ Descriptor Validation

■ Advanced Mappings

■ Customizing the Project

■ Writing Mappings in Code

For more information about mappings, see also the Oracle Application Server TopLink
Mapping Workbench User’s Guide.

Introduction to Mapping Concepts

3-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Mapping Concepts
In an OracleAS TopLink application, you persist objects by storing, or mapping,
information about them in a relational database. A mapping has three components:

■ The object being mapped

■ The descriptor, or object-to-database table translator

■ The database table or tables in which you stored the object

Although OracleAS TopLink supports more complex mappings, most OracleAS
TopLink classes map to a single database table that defines the type of information
available in the class. Each object instantiated from a given class maps to a single
row comprising the object’s attributes, plus an identifier (the primary key) that
uniquely identifies the object.

Figure 3–1 How Classes and Objects Map to a Database Table

Figure 3–1 illustrates the simplest case in which:

■ Table_X in the database represents Class_X.

■ Object_X1 and Object_X2 are instances of Class_X.

■ Individual rows in Table_X represent Object_X1 and Object_X2, as well as any
other instances of Class_X.

Class_X
ID
Attribute_A
Attribute_B
Attribute_C

Object_X1

ID=X01
Attribute_A=A1

Attribute_B=B1

Attribute_C=C1
Object_X2

ID=X02
Attribute_A=A2

Attribute_B=B2

Attribute_C=C2

Object_X1 maps to this row

Object_
X 2

 m
aps

to th
is

row

Database Table_X
ID
X01
X02
Xn

A
A1

A2

An

B
B1

B2

Bn

C
C1

C2

Cn

Class_X maps to Table_X

Introduction to Mapping Concepts

Mapping 3-3

OracleAS TopLink provides you with the tools to build these mappings, from the
simple mappings illustrated in Figure 3–1, to complex mappings. OracleAS
TopLink addresses the most difficult challenge for mapping—transforming a class
or object into database table or row.

The following section describes the basic concepts that you must understand before
moving on to the more in-depth information in this chapter, and introduces some of
the more complex issues that are part of mapping.

Persistent Entities
Persistent entities are entities that survive, or persist, beyond the scope of a given
transaction. A key feature of OracleAS TopLink is its ability to persist objects and
entities in an application by mapping them to a database.

Metadata Model
OracleAS TopLink implements a metadata model, in which OracleAS TopLink uses
metadata to define how objects and classes map to tables or rows, as well how
tables and rows map to objects and classes. OracleAS TopLink uses the metadata,
contained in the descriptor, to generate SQL statements that create, read, modify, and
delete objects.

The OracleAS TopLink metadata model has three levels of information:

■ Mappings describe how individual object attributes relate to the fields in a
database row. Mappings relate object attributes to the database at the row level,
and can involve a complex transformation, or a direct entry.

For more information, see Primitive Versus Complex Data on page 3-7.

■ Descriptors describe how a class relates to a database table. Class attributes map
to database columns. Descriptors relate object classes to the database at the
table level.

■ Projects are collections of descriptors that make up an OracleAS TopLink
application. Projects relate groups of object classes to the database at the schema
level.

The metadata model describes the simplest case. There are more complex cases in
which objects map to partial or multiple rows, and classes map to multiple tables,
which are described later in this chapter. For the purposes of introducing mapping,
this simple case forms the basis for understanding how mapping works.

Introduction to Mapping Concepts

3-4 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink interaction with both object models and databases is unintrusive:
OracleAS TopLink adapts to the object model and database schema, rather than
requiring developers to design their object model or database schema to suit
OracleAS TopLink.

OracleAS TopLink Mapping Workbench
The OracleAS TopLink Mapping Workbench is a graphical tool that gives you
access to most OracleAS TopLink features. Although the OracleAS TopLink
Mapping Workbench does not support the complete OracleAS TopLink feature set,
it does support the basic functions required for mapping your application, as well
as most of the advanced features.

The graphical nature of the OracleAS TopLink Mapping Workbench makes it easy
to create models and mappings. As such, Oracle recommends that you build as
much of your project in the OracleAS TopLink Mapping Workbench as possible.

An important feature of the OracleAS TopLink Mapping Workbench is its ability to
generate deployment files from your project, either as deployment XML files or Java
source code.

For more information about generating deployment files, see "Exporting Project
Information" in the Oracle Application Server TopLink Mapping Workbench User’s
Guide.

Deployment XML Generation
The OracleAS TopLink Mapping Workbench can generate XML files from your
project. OracleAS TopLink reads these files at runtime to configure your application.
Deployment XML files reduce development time by eliminating the need to
regenerate and recompile Java code each time the project changes.

Project Class Generation
The OracleAS TopLink Mapping Workbench can generate Java source files for your
project that you compile and run for your application. Often, this generated code
deploys faster than XML files, but is less flexible and more difficult to troubleshoot.

OracleAS TopLink Mapping Types
OracleAS TopLink offers several types of mapping, each optimized for different
types of information.

Introduction to Mapping Concepts

Mapping 3-5

Direct Mappings Direct mappings define how a persistent object refers to objects and
attributes that do not have OracleAS TopLink descriptors, such as the JDK classes,
primitive types, and other nonpersistent classes. Direct mappings map primitive
data types to database data types on a one-to-one basis.

For more information about direct mappings, see "Direct Mappings" on page 3-8.

Relationship Mappings Relationship mappings describe how you manage
relationships on the database. OracleAS TopLink uses several different mechanisms
to represents relationships in the database, the most common of which is foreign
keys. The OracleAS TopLink descriptors include details on the storage and retrieval
mechanisms used for the relationship.

For more information about relationship mappings, see "Relationship Mappings" on
page 3-14.

Inheritance
In object modeling, when one class (the superclass) shares its attributes with
another class (the subclass), the subclass is said to inherit those attributes from the
superclass or table. Similarly, in the database world, when one table shares
information with a subordinate table in the database, the subordinate table inherits
information from the main table. Although these two types of inheritance are
similar, mapping them properly can be difficult.

OracleAS TopLink supports both object and database inheritance, and enables you
to easily map object inheritance to database tables. OracleAS TopLink treats both
types of inheritance interchangeably, provided that you map the inheritance in the
class descriptors for the superclass and subclass.

For more information about inheritance, see "Inheritance" on page 3-47.

Objects and the Database
OracleAS TopLink stores objects in database tables. In most cases, a single row in a
database table represents a single object in your OracleAS TopLink application.
Several OracleAS TopLink concepts follow from this arrangement, including:

■ Primary Keys

■ Sequencing

■ Foreign Keys and Object Relationships

Introduction to Mapping Concepts

3-6 Oracle Application Server TopLink Application Developer’s Guide

Primary Keys
A primary key is a column or a combination of columns, in a database table that
contains a unique identifier for every record in the table. Persistent objects require a
primary key. If a table uses a combination of columns to create a unique identifier,
this combination of fields is collectively called a composite primary key. In either
case, a primary key uniquely identifies each row.

Sequencing
Sequencing is a mechanism to populate the primary key attribute of new objects
and entity beans before inserting them into the database.

For more information, see "Sequencing" on page 3-37.

Foreign Keys and Object Relationships
Objects stored in one database table (the source objects) can share a relationship with
objects in other tables (the target objects). To define these relationships, your tables
must include data that identifies which target objects are related to the source object
in the relationship.

The target table primary key in the relationship becomes a foreign key in the source
table and identifies which objects in the target table are related to the objects in the
source table.

For more information, see "Foreign Keys" on page 3-46.

Indirection
The standard object reading behavior in Java is that when you read an object, you
also read all its related objects, which can be unnecessarily time consuming. The
OracleAS TopLink indirection feature enables you to defer reading related objects
until they are required. This is also known as lazy reading, lazy loading, and
just-in-time reading.

For more information, see "Indirection" on page 3-27.

Serialization
In OracleAS TopLink, serialization is the act of writing out (marshalling) an object
from its home OracleAS TopLink Java virtual machine (JVM) to another JVM.

For more information, see "Serialization" on page 3-34.

Basic Mappings

Mapping 3-7

General Terms and Concepts
This section outlines some of the more common general concepts you will
encounter when dealing with mappings.

Primitive Versus Complex Data
OracleAS TopLink treats certain classes as primitive data types for mapping
purposes. These include Strings and Integers. Primitive data types correspond
directly to representations in the database fields in which they are stored.

Because of this direct correspondence, there is no need to describe how to map the
primitive data. As a result, OracleAS TopLink does not require mapping descriptors
for primitive data types.

Object attributes represent complex data. OracleAS TopLink requires class
descriptors to define how the attributes and relationships of instances of a particular
class are stored and retrieved. Descriptors specify where and how attributes are
stored in database tables.

Java Objects
Java objects represent the components or business logic of your application. As the
basic building blocks in an OracleAS TopLink application, objects can include data,
methods, relationships, and inheritance hierarchies.

Basic Mappings
The OracleAS TopLink Mapping Workbench enables you to set properties and
configure the mappings and OracleAS TopLink descriptors for any given project in
a graphical environment. To create mappings, use either the OracleAS TopLink
Mapping Workbench or the Java code-based API. However, Oracle recommends the
OracleAS TopLink Mapping Workbench whenever possible.

Mappings for each class are stored in the class descriptor. OracleAS TopLink uses
the descriptor to instantiate objects from the database and to store new or modified
objects on the database. The descriptor describes how to store to or retrieve from the
database a given class. Object instantiation uses this information to build and store
the instantiated objects.

The relationship among the database, the objects and classes, and the descriptor
makes up the OracleAS TopLink metadata model.

Basic Mappings

3-8 Oracle Application Server TopLink Application Developer’s Guide

Figure 3–2 The OracleAS TopLink Metadata Model

For more information about the OracleAS TopLink Mapping Workbench, see the
Oracle Application Server TopLink Mapping Workbench User’s Guide.

This section presents several topics and techniques to optimize your mapping
strategy, including:

■ Direct Mappings

■ Relationship Mappings

■ Indirection

■ Primary Keys

■ Sequencing

■ Foreign Keys

■ Multiple Table Mappings

■ Mapping and Enterprise JavaBeans

Direct Mappings
Use direct mapping to map primitive object attributes, or nonpersistent regular
objects, such as the JDK classes. For example, use a direct-to-field mapping to store
a String attribute in a VARCHAR field.

You can map entity bean attributes using direct mappings without any special
considerations.

Class_X
ID
Attribute_A
Attribute_B
Attribute_C

Object_X1

ID=X01
Attribute_A=A1

Attribute_B=B1

Attribute_C=C1

Object_X2

ID=X02
Attribute_A=A2

Attribute_B=B2

Attribute_C=C2

Database Table_X
ID
X01
X02
Xn

A
A1

A2

An

B
B1

B2

Bn

C
C1

C2

Cn

OracleAS TopLink
Descriptor

Basic Mappings

Mapping 3-9

All direct mappings include optional setGetMethodName() and
setSetMethodName() messages. These messages allow OracleAS TopLink to access
the attribute through user-defined methods, rather than directly through the
attribute.

Direct-to-Field Mappings
The direct-to-field mappings are instances of the DirectToFieldMapping class
and require the following elements:

■ The attribute being mapped, set by sending the setAttributeName() message

■ The field to store the value of the attribute, set by sending the setFieldName()
message

The Descriptor class provides the addDirectMapping() method that creates a
new DirectToFieldMapping, sets the attribute and field name parameters, and
registers the mapping with the descriptor.

You create a direct-to-field mapping in one of two ways:

■ map one attribute to one field

■ map more than one attribute to one field (to create different views of the same
field)

Mapping an Attribute
Example 3–1 and Example 3–2 illustrate common ways of mapping one attribute to
one field.

Example 3–1 Creating a Direct-to-Field Mapping in Java and Registering It with the
Descriptor

// Create a new mapping and register it with the descriptor.
DirectToFieldMapping mapping = new DirectToFieldMapping();
mapping.setAttributeName("city");
mapping.setFieldName("CITY");
descriptor.addMapping(mapping);

Note: When you work with EJBs, do not map the entity context
attribute (type javax.ejb.EntityContext).

Basic Mappings

3-10 Oracle Application Server TopLink Application Developer’s Guide

Example 3–2 Creating a Mapping that Uses Method Access

This mapping example assumes that the persistent class has getCity() and
setCity() methods defined.

// Create a new mapping and register it with the descriptor.
DirectToFieldMapping mapping = new DirectToFieldMapping();
mapping.setAttributeName("city");
mapping.setFieldName("CITY");
mapping.setGetMethodName("getCity");
mapping.setSetMethodName("setCity");
descriptor.addMapping(mapping);

Example 3–3 Using the Two Overloaded Versions of the Descriptor’s
addDirectMapping() Method

// Alternate method which does the same thing.
descriptor1.addDirectMapping("city", "CITY");
descriptor2.addDirectMapping("city", "getCity", "setCity", "CITY");

Mapping Multiple Attributes to the Same Field
You must pay special attention when you map more than one attribute to the same
field where some mappings are read-only and some are not. By default, with
DatabaseLogin.setShouldOptimizeDataConversion(true) — OracleAS
TopLink uses the data type of the attribute of the last writable mapping for all
subsequent read-only mappings. In this context, "last" is relative to the order in
which the attributes are declared in the mapped class.

This behavior can lead to a loss of precision.

Consider the following hypothetical example: you want to map the class that
appears in Example 3–4 to create two different views of the same, underlying
database field. You want attribute view1 to represent the database field as an
integer and attribute view2 to represent the same database field as a double.
Finally, you want attribute view1 to be writable and attribute view2 to be
read-only.

Example 3–4 ClassToMap Definition

public class ClassToMap
{
private String name;
private long id;
private int view1;
private double view2; // READONLY

Basic Mappings

Mapping 3-11

...
}

Furthermore, your database administrator decides that both attributes will be
mapped to a single database column, NUM_VIEW of table CLASSTOMAP, declared
NUMBER(20,7) — that is, with a non-zero sub field size which allows storage of
both integer values and floating point values with up to 7 digits of precision.

The corresponding project.xml database mapping elements appear in
Example 3–5: the first maps attribute view1 to table CLASSTOMAP field NUM_
VIEW as writable and the second maps attribute view2 to the same field as
read-only.

Example 3–5 project.xml Database Mapping Elements

<database-mapping>
<attribute-name>view1</attribute-name>
<read-only>false</read-only>
<field-name>CLASSTOMAP.NUM_VIEW</field-name>
<type>oracle.toplink.mappings.DirectToFieldMapping</type>
</database-mapping>

<database-mapping>
<attribute-name>view2</attribute-name>
<read-only>true</read-only>
<field-name>CLASSTOMAP.NUM_VIEW</field-name>
<type>oracle.toplink.mappings.DirectToFieldMapping</type>
</database-mapping>

If the database is loaded with a record with CLASSTOMAP.NUM_VIEW value 3.141,
you need to use readAllObjects() to get this instance of ClassToMap as shown
in Example 3–6.

Example 3–6 Reading Objects of Type ClassToMap

Session sess = SessionManager.getManager().getSession("test");
Vector v = sess.readAllObjects(ClassToMap.class)

In the returned instance, the value of view1 will be 3 and the value of view2 will
be 3.0 instead of 3.141. This loss of precision is the result of OracleAS TopLink's
method of applying the data type of the last writable mapping which in this
example is integer.

Basic Mappings

3-12 Oracle Application Server TopLink Application Developer’s Guide

In this case, you can choose from either of the following options:

■ Disable data conversion optimization with
DatabaseLogin.setShouldOptimizeDataConversion(false).

■ Map the attribute with the highest precision as writable.

To change your design so that the view1 is read-only and view2 is writable,
proceed as follows:

<database-mapping>
<attribute-name>view1</attribute-name>
<read-only>true</read-only>
<field-name>CLASSTOMAP.NUM_VIEW</field-name>
<type>oracle.toplink.mappings.DirectToFieldMapping</type>
</database-mapping>

<database-mapping>
<attribute-name>view2</attribute-name>
<read-only>false</read-only>
<field-name>CLASSTOMAP.NUM_VIEW</field-name>
<type>oracle.toplink.mappings.DirectToFieldMapping</type>
</database-mapping>

For more information about the available methods for DirectToFieldMapping,
see the Oracle Application Server TopLink API Reference.

Type Conversion Mappings
Type conversion mappings and instances of the TypeConversionMapping class
and require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field to store the value of the attribute, set by the setFieldName()
message

■ The Java type stored in the attribute, set by sending the
setAttributeClassification() message

■ The database type to be written, set by sending the
setFieldClassification() message

Basic Mappings

Mapping 3-13

Example 3–7 Creating a Type Conversion Mapping and Registering It with the
Descriptor

// Create a new mapping and register it with the descriptor.
TypeConversionMapping typeConversion = new TypeConversionMapping();
typeConversion.setFieldName("J_DAY");
typeConversion.setAttributeName("joiningDate");
typeConversion.setFieldClassification(java.sql.Date.class);
typeConversion.setAttributeClassification(java.util.Date.class);
descriptor.addMapping(typeConversion);

For more information about the available methods for TypeConversionMapping,
see the Oracle Application Server TopLink API Reference.

Object Type Mappings
Object type mappings are instances of the ObjectTypeMapping class and require
the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field to store the value of the attribute, set by setFieldName() message

■ A set of values and their conversions, added by sending the
addConversionValue() message

The following methods are useful in a legacy environment or when you want to
change the values of the fields:

■ addToAttributeOnlyConversionValue(Object fieldValue, Object
attributeValue): This is a one-way mapping from the field to the attribute.
Use this mapping if multiple database values map to the same object value.
When written to the database, the value entered by
addConversionValue(Object fieldValue, Object attributeValue) is
used, and the original values in the database change.

■ setDefaultAttributeValue Object defaultAttributeValue):
Substitutes the default value for any unmapped value retrieved from database.
When writing to the database, the value entered by
addConversionValue(Object fieldValue, Object attributeValue) is
used, and the original values in the database change.

Basic Mappings

3-14 Oracle Application Server TopLink Application Developer’s Guide

Example 3–8 Creating an Object Type Mapping and Registering It with the Descriptor

// Create a new mapping and register it with the descriptor.
ObjectTypeMapping typeMapping = new ObjectTypeMapping();
typeMapping.setAttributeName("gender");
typeMapping.setFieldName("GENDER");
typeMapping.addConversionValue("M", "Male");
typeMapping.addConversionValue("F", "Female");
typeMapping.setNullValue("F");
descriptor.addMapping(typeMapping);

For more information about the available methods for ObjectTypeMapping, see
the Oracle Application Server TopLink API Reference.

Relationship Mappings
Relationship mappings define how persistent objects reference other persistent
objects. OracleAS TopLink supports several relationship mapping types, as
described in this section.

Relationships and Entity Beans
Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping type is selected based on the
cardinality of the relationship (for example: a one-to-one or one-to-many). Entity
beans can have relationships to regular Java objects, other entity beans, or both.

Mappings Between Entity Beans A bean that has a relationship to another bean acts as
a client of that bean—it does not access the actual bean directly but acts through the
remote (EJB 1.1) or local (EJB 2.0) interface of the bean. For example, if an
OrderBean is related to a CustomerBean, it has an instance variable of type
Customer (the Local or Remote interface of the CustomerBean) and accesses only
those methods defined on the Customer interface.

Note: Although beans must refer to each other through their remote
(EJB 1.1) or local (EJB 2.0) interface, all OracleAS TopLink descriptors and
projects refer to the bean class. For example, if you map beans and define
relationships between them, you need load only the bean classes into the
OracleAS TopLink Mapping Workbench—not the Remote, Local, or
Home interfaces. When you define a relationship mapping in both the
OracleAS TopLink Mapping Workbench and code API, the reference
class is always the bean class.

Basic Mappings

Mapping 3-15

Most OracleAS TopLink relationship mapping functionality is available regardless
of the EJB specification supported by your J2EE container or application server.
However, there are some differences between OracleAS TopLink support for EJB 1.1
and EJB 2.0.

Relationship Mappings Under EJB 1.1 The EJB 1.1 specification does not specify how
entity beans store an object reference to another entity bean; as a result, if you are
using an EJB 1.1-compliant container, this normally prevents you from mapping
relationships between entity beans. However, OracleAS TopLink includes support
for relationships that exceeds what is available in the EJB 1.1 specification, and
allows the creation of inter-bean relationships.

Relationship Mappings Under EJB 2.0 The EJB 2.0 specification defines methods for
relating beans to one another. OracleAS TopLink support for the EJB 2.0
specification includes the following concepts:

■ The persistence layer manages bean relationships, and the relationships do not
require any internal use of finder methods.

■ You can define one-to-one, one-to-many, and many-to-many relationships
between beans.

■ You can use dependent objects (regular Java objects) to model fine-grained
objects that are associated with a particular entity.

The EJB 2.0 specification also imposes many restrictions on CMP relationships,
some of which are not enforced by OracleAS TopLink. Therefore, although
OracleAS TopLink offers more flexibility in developing applications, if the
application must be fully EJB 2.0-compliant, be careful about which features you
include in your application.

Some of the EJB 2.0 restrictions that OracleAS TopLink does not enforce include:

■ CMP beans must be abstract and have only virtual fields.

■ Collections of entities used in relationship mappings must not be implemented
by the bean developer, and must never be exposed directly to the client.

■ Beans referenced by other beans must be related through Local interfaces.

■ The EJB 2.0 specification does not support method access (such as get and set
methods) for mappings.

The EJB 2.0 specification describes additional restrictions to the mapping and
runtime behavior of EJB 2.0 CMP beans.

Basic Mappings

3-16 Oracle Application Server TopLink Application Developer’s Guide

For more information about the Enterprise JavaBeans and the EJB 2.0 specification,
see

http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/white/index.html

In addition, although EJB 2.0 support for indirection is limited, OracleAS TopLink
does enable you to implement OracleAS TopLink valueholder indirection for
one-to-one relationships, and transparent indirection for one-to-many and
many-to-many relationships.

For more information, see "Indirection" on page 3-27.

Importing EJB 2.0 Relationship Metadata in the OracleAS TopLink Mapping Workbench The
OracleAS TopLink Mapping Workbench can obtain relationship metadata from the
ejb-jar.xml file.

For more information on how to update OracleAS TopLink relationships in the
OracleAS TopLink Mapping Workbench from the ejb-jar.xml deployment
descriptor, see “Working with project properties” in the Oracle Application Server
TopLink Mapping Workbench User’s Guide.

Mappings Between Entity Beans and Java Objects Entity beans represent independent
business objects. Objects that depend on the entity bean are often implemented as
Java classes, and included as part of the entity bean on which they depend. The
following relationship mappings may exist between an entity bean and regular Java
objects:

■ One-to-one, privately owned mappings (bean is source, Java object is target)

■ One-to-many, privately owned mappings (bean is source, Java objects are
target)

■ Aggregate mappings (bean is source, Java object is target)

■ Direct collection mappings (bean is source, Java object is target and is a base
data type, such as String or Date)

Basic Mappings

Mapping 3-17

One-to-One Mappings
One-to-one mappings represent simple pointer references between two objects.
One-to-one mappings for relationships between entity beans, or between an entity
bean and a regular Java object, where the entity bean is the source and the regular
Java object is the target of the relationship.

One-to-one mappings are instances of the OneToOneMapping() class and require
the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The reference class, set by sending the setReferenceClass() message

■ The foreign key information, normally specified by sending the
setForeignKeyFieldName() message and passing the foreign key field from
the source table that references the primary key of the target table

Bidirectional Relationships If the mapping has a bidirectional relationship in which
the two classes in the relationship reference each other with one-to-one mappings,
then set up the foreign key information as follows:

■ One mapping must send the setForeignKeyFieldName() message.

■ The other must send the setTargetForeignKeyFieldName() message.

It is also possible to set up composite foreign key information by sending the
addForeignKeyFieldName() and addTargetForeignKeyFieldName() messages.
Because OracleAS TopLink enables indirection by default, the attribute must be a
ValueHolderInterface.

Notes:

■ Relationships from entity beans to regular Java objects must be
dependent.

■ If you expose dependent objects to the client, these objects must
be serializable.

Note: If the target primary key is composite, send the
addForeignKeyFieldName() message for each of the foreign fields
and target primary key fields that make up the relationship.

Basic Mappings

3-18 Oracle Application Server TopLink Application Developer’s Guide

Example 3–9 Creating a Simple One-to-One Mapping and Registering It with the
Descriptor

// Create a new mapping and register it with the descriptor.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("address");
oneToOneMapping.setReferenceClass(Address.class);
oneToOneMapping.setForeignKeyFieldName("ADDRESS_ID");
descriptor.addMapping(oneToOneMapping);

Example 3–10 Implementing a Bidirectional Mapping Between Two Classes that
Reference Each Other

The foreign key is stored in the Policy’s table referencing the composite primary key
of the Carrier.

// In the Policy class, which will hold the foreign key, create the mapping that
references the Carrier class.
OneToOneMapping carrierMapping = new OneToOneMapping();
carrierMapping.setAttributeName("carrier");
carrierMapping.setReferenceClass(Carrier.class);
carrierMapping.addForeignKeyFieldName("INSURED_ID", "CARRIER_ID");
carrierMapping.addForeignKeyFieldName("INSURED_TYPE", "TYPE");
descriptor.addMapping(carrierMapping);. . .
// In the Carrier class, create the mapping that references the Policy class.
OneToOneMapping policyMapping = new OneToOneMapping();
policyMapping.setAttributeName("masterPolicy");
policyMapping.setReferenceClass(Policy.class);
policyMapping.addTargetForeignKeyFieldName("INSURED_ID", "CARRIER_ID");
policyMapping.addTargetForeignKeyFieldName("INSURED_TYPE", "TYPE");
descriptor.addMapping(policyMapping);

For more information about the available methods for OneToOneMapping, see the
Oracle Application Server TopLink API Reference.

For more information about one-to-one mappings, see the Oracle Application Server
TopLink Mapping Workbench User’s Guide.

Caution: When your application does not use a cache, enable
indirection for at least one object in a bidirectional relationship. In rare
cases, disabling indirection on both objects in the bidirectional
relationship can lead to infinite loops.

Basic Mappings

Mapping 3-19

One-to-One Mappings and EJBs To maintain EJB compliance, the object attribute that
points to the target of the relationship must be the remote (EJB 1.1) or local (EJB 2.0)
interface type—not the bean class.

OracleAS TopLink provides variations on one-to-one mappings that allow you to
define complex relationships when the target of the relationship is a dependent Java
object. For example, variable one-to-one mappings enable you to specify variable target
objects in the relationship. These variations are not available for entity beans, but
are valid for dependent Java objects.

For more information, see the "Variable One-to-One Mappings" on page 3-72.

Aggregate Object Mappings
Two objects are related by aggregation if there is a strict one-to-one relationship
between the objects, and if all the attributes of the second object can be retrieved
from the same table(s) as the owning object. So if the target (or child) object exists,
then the source (or parent) object must also exist. The child object cannot exist
without its parent.

Aggregate object mappings are instances of the AggregateObjectMapping class.
This mapping relates to an attribute in each of the parent classes. Aggregate object
mappings require the following information:

■ The attribute mapped, set by sending the setAttributeName() message

■ The target (child) class, set by sending the setReferenceClass() message

Aggregate object mappings also require the following modifications to the target
class descriptor:

■ Send the descriptorIsAggregate() message to the descriptor to indicate
that all information must come from the row(s) of its parent object’s r

■ Include no table or primary key information for the target class

By default, the mapping allows null references to its target class, so it does not
create an instance of the target object. To prevent a parent from having a null
reference, send the dontAllowNull() message, which results in an instance of the
child with its attributes set to null.

Example 3–11 Creating an Aggregate Object Mapping for the Employee Source Class
and Registering It with the Descriptor

// Create a new mapping and register it with the source descriptor.
AggregateObjectMapping aggregateMapping = new AggregateObjectMapping();
aggregateMapping.setAttributeName("employPeriod");

Basic Mappings

3-20 Oracle Application Server TopLink Application Developer’s Guide

aggregateMapping.setReferenceClass(Period.class);
descriptor.addMapping(aggregateMapping);

Example 3–12 Creating the Descriptor of the Period Aggregate Target Class

The aggregate target descriptor does not need a mapping to its parent, nor does it
need any table or primary key information.

// Create a descriptor for the aggregate class. The table name and primary key
are not specified in the aggregate descriptor.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Period.class);
descriptor.descriptorIsAggregate();

// Define the attribute mappings or relationship mappings.
descriptor.addDirectMapping("startDate", "START_DATE");
descriptor.addDirectMapping("endDate", "END_DATE");
return descriptor;

Example 3–13 Creating an Aggregate Object Mapping for the Project, Which is
Another Source Class that Contains a Period

The field names must be translated in the Project descriptor. No changes need to be
made to the Period class descriptor to implement this second parent.

// Create a new mapping and register it with the parent descriptor.
AggregateObjectMapping aggregateMapping = new AggregateObjectMapping();
aggregateMapping.setAttributeName("projectPeriod");
aggregateMapping.setReferenceClass(Period.class);
aggregateMapping.addFieldNameTranslation("S_DATE", "START_DATE");
aggregateMapping.addFieldNameTranslation("E_DATE", "END_DATE");
descriptor.addMapping(aggregateMapping);

For more information about the available methods for
AggregateObjectMapping, see the Oracle Application Server TopLink API
Reference.

Aggregate Object Mappings and EJBs You can use aggregate mappings with entity
beans when the source of the mapping is an entity bean and the target is a regular
Java object. An entity bean cannot be the target of an aggregate object mapping.

Note: Aggregate objects are privately owned and must not be shared or
referenced by other objects.

Basic Mappings

Mapping 3-21

For more information about aggregate object mappings, see the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

One-to-Many Mappings
One-to-many mappings represent the relationship between a single source object
and a collection of target objects.

For more information about one-to-many mappings, see the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

One-to-many mappings are instances of the OneToManyMapping class and require
the following elements:

■ The attribute being mapped, set by sending the setAttributeName() message

■ The reference class, set by sending the setReferenceClass() message

■ The foreign key information, which you specify by sending the
setTargetForeignKeyFieldName() message and passing a field in the target
object’s associated table that refers to the primary key in the owning object’s
table

■ A one-to-one mapping in the target class back to the source class.

For more information, see "One-to-One Mappings" on page 3-17.

Example 3–14 Creating a Simple One-to-Many Mapping and Registering It with the
Descriptor

// In the Employee class, create the mapping that references the Phone class.
oneToManyMapping = new OneToManyMapping();
oneToManyMapping.setAttributeName("phoneNumbers");
oneToManyMapping.setReferenceClass(PhoneNumber.class);
oneToManyMapping.setTargetForeignKeyFieldName("EMPID");
descriptor.addMapping(oneToManyMapping);

Note: If the target primary key is composite, send the
addTargetForeignKeyFieldName() message for each of the fields that
make up the key.

Note: Because indirection is enabled by default for a one-to-many
mapping, the attribute must implement ValueHolderInterface.

Basic Mappings

3-22 Oracle Application Server TopLink Application Developer’s Guide

. . .
// In the Phone class, which will hold the foreign key, create the mapping that
references the Employee class.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("owner");
oneToOneMapping.setReferenceClass(Employee.class);
oneToOneMapping.setForeignKeyFieldName("EMPID");
descriptor.addMapping(oneToOneMapping);

In addition to the API Example 3–14 illustrates, other common API for use to
implement indirection in aggregate collection include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ useTransparentCollection(): if you use transparent indirection, this
element places a special collection in the source object's attribute

■ dontUseIndirection(): implements no indirection

For more information about the available methods for OneToManyMapping, see the
Oracle Application Server TopLink API Reference.

One-to-Many Mappings and EJBs Use one-to-many mappings for relationships
between entity beans or between an entity bean and a collection of privately owned
regular Java objects. When you create one-to-many mappings, also create a
one-to-one mapping from the target objects back to the source. The object attribute
that contains a pointer to the bean must be the remote (EJB 1.1) or local (EJB 2.0)
interface type—not the bean class.

OracleAS TopLink automatically maintains back-pointers when you create or
update bidirectional relationships between beans.

For more information, see "Maintaining Bidirectional Relationships" on page 3-61.

Aggregate Collections
Aggregate collection mappings represent the aggregate relationship between a
single-source object and a collection of target objects. Unlike the OracleAS TopLink
one-to-many mappings, there is no back reference required for the aggregate
collection mappings because the foreign key relationship is resolved by the
aggregation.

Aggregate collection mappings require a target table for the target objects.

To implement an aggregate collection mapping:

Basic Mappings

Mapping 3-23

■ The descriptor of the target class must declare itself as an aggregate collection
object. Unlike the aggregate object mapping, in which the target descriptor does
not have a specific table to associate with, there must be a target table for the
target object.

■ The descriptor of the source class must add an aggregate collection mapping
that specifies the target class.

When to Use Aggregate Collections Although similar in behavior to one-to-many
mappings, an aggregate collection is not a replacement for one-to-many mappings.
Use aggregate collections when the target collections are reasonable in size and a
one-to-one mapping from the target to the source proves difficult.

Because one-to-many relationships offer better performance and are more robust
and scalable, consider using a one-to-many relationship rather than an aggregate
collection. In addition, aggregate collections are privately owned by the source of
the relationship and must not be shared or referenced by other objects.

Aggregate Collections and Inheritance Aggregate collection descriptors can make use of
inheritance, but you must declare the subclasses as aggregate collections as well.
The subclasses can have their own mapped tables, or share the table with their
parent class.

In a Java vector, the owner references its parts; in a relational database, the parts
reference their owners. Relational databases use this implementation to make
querying more efficient.

Java Implementation Aggregate collection mappings are instances of the
AggregateCollectionMapping class and require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The reference class, set by sending the setReferenceClass() message

■ The foreign key information, specified by sending the
addTargetForeignKeyFieldName() message and passing the field name of
the target foreign key and the source of the primary key in the source table

Basic Mappings

3-24 Oracle Application Server TopLink Application Developer’s Guide

Example 3–15 Creating a Simple Aggregate Collection Mapping and Registering It
with the Descriptor

// In the PolicyHolder class, create the mapping that references the Phone class
AggregateCollectionMapping phonesMapping = new AggregateCollectionMapping();
phonesMapping.setAttributeName("phones");
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");
phonesMapping.setReferenceClass("Phone.class");
phonesMapping.dontUseIndirection();
phonesMapping.privateOwnedRelationship;
phonesMapping.addTargetForeignKeyFieldName("INS_PHONE.HOLDER_SSN","HOLDER.SSN");
descriptor.addMapping(phonesMapping);

In addition to the API Example 3–15 illustrates, other common API for use to
implement indirection in aggregate collection mappings include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ useTransparentCollection(): if you use transparent indirection, this
element places a special collection in the source object's attribute

■ dontUseIndirection(): implements no indirection

For more information about the available methods for
AggregateCollectionMapping, see the Oracle Application Server TopLink API
Reference.

Aggregate Collection Mappings and EJBs You can use aggregate collection mappings
with entity beans if the source of the relationship is an entity bean or Java object,
and the mapping targets are regular Java objects. Entity beans cannot be the target
of an aggregate object mapping.

Notes:

■ If the source primary key is composite, send the
addTargetForeignKeyFieldName() message to each of the fields
that make up the key.

■ Because indirection is enabled by default for an aggregate collection
mapping, the attribute must implement ValueHolderInterface.

Basic Mappings

Mapping 3-25

Direct Collection Mappings
Direct collection mappings store collections of Java objects that are not OracleAS
TopLink-enabled. Direct collections usually store Java types, such as strings.

Direct collection mappings are instances of the DirectCollectionMapping class
and require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The database table that holds the values to be stored in the collection, set by
sending the setReferenceTableName() message

■ The field in the reference table from which the values are read and placed into
the collection; this is called the direct field and is set by sending the
setDirectFieldName() message

■ The foreign key information, which you specify by sending the
setReferenceKeyFieldName() message and passing the name of the field
that is a foreign reference to the primary key of the source object

Example 3–16 Creating a Simple Direct Collection Mapping

DirectCollectionMapping directCollectionMapping = new DirectCollectionMapping();
directCollectionMapping.setAttributeName ("responsibilitiesList");
directCollectionMapping.setReferenceTableName ("RESPONS");
directCollectionMapping.setDirectFieldName("DESCRIP");
directCollectionMapping.setReferenceKeyFieldName ("EMP_ID");
directCollectionMapping.useCollectionClass (Vector.class); // the default
descriptor.addMapping(directCollectionMapping);

In addition to the API Example 3–16 illustrates, other common API for use with
direct collection mappings include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ useTransparentCollection(): if you use transparent indirection, this
element places a special collection in the source object's attribute

■ dontUseIndirection(): implements no indirection

Note: If the target primary key is composite, send the
addReferenceKeyFieldName() message for each of the fields that
make up the key.

Basic Mappings

3-26 Oracle Application Server TopLink Application Developer’s Guide

For more information about the available methods for
DirectCollectionMapping, see the Oracle Application Server TopLink API
Reference.

Many-to-Many Mappings
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. This requires an intermediate table that
manages the associations between the source and target records.

Many-to-many mappings are instances of the ManyToManyMapping class and
requires the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The reference class, set by sending the setReferenceClass() message

■ The relation table, set by sending the setRelationTableName() message

■ The foreign key information (for non composite target primary keys), which
you specify by sending the setSourceRelationKeyFieldName() and
setTargetRelationKeyFieldName() messages

■ The foreign key information if the source or target primary keys are composite,
which you specify by sending the addSourceRelationKeyFieldName() or
addTargetRelationKeyFieldName() messages

Example 3–17 Code that Creates a Simple Many-to-Many Mapping

// In the Employee class, create the mapping that references the Project class.
ManyToManyMapping manyToManyMapping = new ManyToManyMapping();
manyToManyMapping.setAttributeName("projects");
manyToManyMapping.setReferenceClass(Project.class);
manyToManyMapping.setRelationTableName("PROJ_EMP");
manyToManyMapping.setSourceRelationKeyFieldName ("EMPID");
manyToManyMapping.setTargetRelationKeyFieldName ("PROJID");
descriptor.addMapping(manyToManyMapping);

In addition to the API Example 3–17 illustrates, other common API for use with
many-to-many mappings include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ useTransparentCollection(): if you use transparent indirection, this
element places a special collection in the source object's attribute

Basic Mappings

Mapping 3-27

■ dontUseIndirection(): implements no indirection

For more information about the available methods for ManyToManyMapping, see
the Oracle Application Server TopLink API Reference.

Many-to-Many Mappings and EJBs When you use CMP, many-to-many mappings are
valid only between entity beans, and cannot be privately owned. The only
exception is when a many-to-many mapping is used to implement a logical
one-to-many mapping with a relation table.

OracleAS TopLink automatically maintains back-pointers when you create or
update bidirectional relationships.

For more information, see "Maintaining Bidirectional Relationships" on page 3-61.

For more information about ManyToManyMapping, see the Oracle Application Server
TopLink Mapping Workbench User’s Guide.

Indirection
By default, when an OracleAS TopLink application reads an object, it also reads all
its related objects. For example, given an object, CAR, with related objects, TIRES
and RADIO, reading the CAR object forces reading of the TIRES and RADIO objects
at the same time. This method is inefficient if the reason for reading in the CAR
object has nothing to do with the related objects (for example: when you read CAR
to check one of its attributes, such as COLOR).

OracleAS TopLink indirection gives you the ability to replace the related objects
(TIRES and RADIO, in this example) with an indirection object. An indirection
object is a placeholder that represents related objects, but prevents them from being
read until they are actually required. If you never need the related objects, they are
never read from the database.

OracleAS TopLink supports three main types of indirection:

■ Valueholder indirection: places a special OracleAS TopLink object with an
interface between the pair of related objects.

■ Proxy indirection: uses a dynamically constructed object with the same interface
as the class of the object referenced in the relationship.

■ Transparent indirection: a special OracleAS TopLink collection that prevents
instantiation of the objects it contains until they are called. The collections
conform to Vector, Hashtable, or Collection interfaces.

Basic Mappings

3-28 Oracle Application Server TopLink Application Developer’s Guide

Indirection represents an effective way to improve the efficiency of your application
and we recommend it be implemented wherever it is supported by your application
and its usage patterns.

For more information about implementing indirection in code, see "Implementing
Indirection in Java" on page 3-100.

Valueholder Indirection
Valueholder indirection is a native OracleAS TopLink feature that implements the
OracleAS TopLink ValueHolderInterface on your objects to achieve indirection.
A valueholder represents an instance of a related class and stores the information
necessary to retrieve the object it represents from the database. If the application
does not access the valueholder, the replaced object is never read from the database.

If you use method access, the get and set methods specified for the mapping must
access an instance of ValueHolderInterface, rather than the object that the
valueholder is referencing. To obtain the object represented by the valueholder, use
the getValue() and setValue() methods of the ValueHolderInterface
class. You can hide the getValue and setValue methods of the
ValueHolderInterface inside get and set methods.

You can change the attribute types in the class editor, but if you do, also change the
attribute types in your Java code, as well as their accessor methods.

If the instance variable returns a vector instead of an object, define the valueholder
in the constructor as follows:

addresses = new ValueHolder(new Vector());

The application uses the getAddress() and setAddress() methods to access the
Address object. When you use indirection, OracleAS TopLink uses the
getAddressHolder() and setAddressHolder() methods to save instances to and
retrieve instances from the database.

Example 3–18 Implementing the Employee Class Using Indirection with Method
Access for a One-to-One Mapping to Address

This example modifies the class definition so that the address attribute of
Employee is a ValueHolderInterface, rather than an Address, and supplies the
appropriate get and set methods.

// Initialize ValueHolders in Employee Constructor
public Employee() {
address = new ValueHolder();
}

Basic Mappings

Mapping 3-29

protected ValueHolderInterface address;

// ’Get’ and ‘Set’ accessor methods registered with the mapping and used by
OracleAS TopLink.
public ValueHolderInterface getAddressHolder() {
return address;
}
public void setAddressHolder(ValueHolderInterface holder) {
address = holder;
}

// ‘Get’ and ‘Set’ accessor methods used by the application to access the
attribute.
public Address getAddress() {
return (Address) address.getValue();
}
public void setAddress(Address theAddress) {
address.setValue(theAddress);
}

Proxy Indirection
Proxy indirection enables you to use dynamic proxy objects as stand-ins for a
defined interface. You can configure all the following mapping types to use proxy
indirection, which gives you the benefits of indirection without the need to include
OracleAS TopLink classes in your domain model:

■ One-to-one mapping

■ Variable one-to-one mapping

■ Reference mapping

■ Transformation mapping

Note that all these mapping types map one-to-one relationships.

The useProxyIndirection()method indicates that OracleAS TopLink must use
proxy indirection for the current mapping. When you read the source object from
the database, OracleAS TopLink creates a proxy for the target object and uses it in
place of the target object. When you call any method other than toString() on the
proxy, OracleAS TopLink reads the target object from the database.

Proxy indirection is not directly supported in the OracleAS TopLink Mapping
Workbench. To implement proxy indirection, use the useProxyIndirection
method in an amendment method.

Basic Mappings

3-30 Oracle Application Server TopLink Application Developer’s Guide

Proxy indirection does not use the OracleAS TopLink ValueholderInterface,
and nor are target objects typed as ValueHolderInterface. Instead, to
implement proxy indirection, make changes to both the object model and the
descriptor mapping for the source object.

To use proxy indirection, your domain model must satisfy the following criteria:

■ The target class of the one-to-one relationship must implement a defined public
interface.

■ The one-to-one attribute on the source class must be of the interface type
defined in the target class.

■ If you employ method accessing, the get() and set() methods must use the
interface.

In the descriptor, invoke the useProxyIndirection method in the source object
descriptor that defines mapping between the source and target objects.

Example 3–19 Implementing Proxy Indirection on the Source Descriptor

The Employee class has an attribute, ADDRESS, of type Address. The Address
attribute is mapped using a one-to-one mapping from Employee (source) to
Address (target) and uses proxy indirection. The code includes the steps for
building this relationship.

//Step 1. Define an interface "IAddress" for "Address"
public interface IAddress {

public String getCity();
public void setCity(String aCity);

}

// Step 2. Implement this interface on the "Address" class
public class Address implements IAddress {

String city;
public String getCity() { return city;}
public void setCity(String aCity){city = aCity;}

public Address() {
...

}

}

Basic Mappings

Mapping 3-31

//Step 3. Declare the attribute "address" as interface "IAddress" on the
Employee.

public class Employee {
public BigInteger id;
public String firstName;
public String lastName;
public IAddress address;

//4. Configure the Set and get methods "getAddress()", "setAddress()" to use
interface IAddress"

// get and set methods for instance variables
public IAddress getAddress() {return this.address;}
public void setAddress (IAddress newAddress)
{this.address=newAddress;}

public Employee() {
...
}

}

//5. The mapping between Employee and Address must invoke the
useProxyIndirection() api. Also, the target class, which implements the
interface must be passed to the setReferenceClass() method as the argument.

//Define the 1:1 mapping, and specify that ProxyIndirection should be used
OnetoOnemapping addressMapping = new OneToOneMapping();
addressMapping.setAttributeName("address");
addressMapping.setReferenceClass(Address.class);
addressMapping.setForeignKeyFieldName("ADDRESS_ID");
addressMapping.setSetMethodName("setAddress");
addressMapping.setGetMethodName("getAddress");
addressMapping.useProxyIndirection();
descriptor.addMapping(addressMapping);

Proxy Indirection Restrictions You cannot register the target of a proxy indirection
implementation with a Unit of Work. Instead, first register the source object with
the Unit of Work. This enables you to retrieve a target object clone with a
get...() call against the source objects clone.

Basic Mappings

3-32 Oracle Application Server TopLink Application Developer’s Guide

For example:

UnitOfWork uow = session.acquireUnitOfWork();
Employee emp = (Employee)session.readObject(Employee.class);

// Register the source object
Employee empClone = (Employee)uow.registerObject(emp);

// All of source object's relationships are cloned when source object is cloned
Address addressClone = empClone.getAddress();
addressClone.setCity("Toronto");

For more information about clones and the Unit of Work, see "Understanding the
Unit of Work" on page 7-5.

Transparent Indirection
Transparent indirection enables you to declare any relationship attribute of a
persistent class that holds a collection of related objects as a
java.util.Collection, java.util.Map, java.util.Vector, or
java.util.Hashtable. OracleAS TopLink uses an indirection object that
implements the appropriate interface, and performs just-in-time reading of the
related objects.

When using transparent indirection, you do not have to declare the attributes as
ValueHolderInterface.

You can specify transparent indirection from the OracleAS TopLink Mapping
Workbench. Newly created collection mappings use transparent indirection by
default if their attribute is not a ValueHolderInterface.

Do not include OracleAS TopLink classes in the domain class for transparent
indirection.

Choosing Your Indirection Type
Although there are no universal rules for the use of indirection, the following
guidelines illustrate when indirection is beneficial, and helps you choose the
appropriate type of indirection.

Choosing No Indirection Because it delays database reads until they are required,
indirection produces an increase in performance. However, if you have a
relationship between objects that are always called together, the benefit does not
apply. For example, if you have a pair of objects that are always called together to
populate a Web page, there is no benefit to delay the reading of the target of the

Basic Mappings

Mapping 3-33

relationship, because it will be called at the same time as the source object every
time. If you have objects that you always call together, do not implement
indirection.

Choosing Valueholder Indirection Use valueholder indirection if at least one of the
following conditions exists:

■ Your application can tolerate the addition of OracleAS TopLink classes to your
model.

■ The relationship to which you are applying indirection involves EJB 2.0 entity
beans.

Choosing Proxy Indirection Use proxy indirection if you are not applying indirection
with EJB entity beans as targets.

Choosing Transparent Indirection When you create one-to-many or many-to-many
relationships in the OracleAS TopLink Mapping Workbench, OracleAS TopLink
automatically implements transparent indirection. This provides the best possible
performance for large relationship graphs and must not be disabled.

Indirection and EJBs
OracleAS TopLink offers mechanisms to implement indirection for relationships
between EJBs. As with regular Java objects, these mechanisms include:

■ The use of indirection objects

■ Transparent indirection

■ Proxy indirection

The Oracle Application Server TopLink Mapping Workbench User’s Guide describes these
indirection mechanisms.

Consider the following guidelines when you use indirection with EJBs, particularly
when you migrate objects between client and server:

■ Uninstantiated valueholders (indirection objects) do not survive serialization. If
you send a valueholder from the server to the client, it will no longer function
unless it has been previously triggered.

■ You can use valueholders in bean-to-bean relationships and bean-to-object
relationships, but avoid them in relationships in which the source is likely to be
serialized to the client.

Basic Mappings

3-34 Oracle Application Server TopLink Application Developer’s Guide

■ Do not serialize collections that use untriggered transparent indirection to the
client application. These collections do not function if they are serialized.

■ Proxy indirection is unavailable for relationships whose target is an entity bean.
The proxies used for this kind of indirection interfere with the RMI stubs and
skeletons generated for the entity. If proxies exist, instantiate them before
serializing to the client.

■ Use valueholders for bean-to-bean relationships and for bean-to-object
relationships. You can also use transparent indirection for collections that are
not exposed to the client application.

EJB 2.0 and Indirection When both the source and target are entity beans, the
indirection policies for container-managed relationship fields under the EJB 2.0
specification must be one of the following:

■ Transparent indirection for one-to-many or many-to-many relationships

■ Valueholder indirection for one-to-one relationships

Because subclasses are code-generated, all indirection is hidden from the user.

Serialization
OracleAS TopLink supports Java serialization, which enables you to write objects
out to one JVM and read objects back from the other JVM. Preparing the objects for
transport is known as marshalling; receiving objects back is known as unmarshalling.
In an OracleAS TopLink application, serialization occurs between a JVM with
OracleAS TopLink and a non-OracleAS TopLink JVM. If you serialize to another
JVM with OracleAS TopLink, consider using a remote session instead.

For more information, see "Remote Session" on page 4-58.

Serialization and Indirection
A common cause of problems with serialization is the use of indirection in
serialized objects. Indirection valueholders rely on the OracleAS TopLink session for
context (mapping information, JDBC connectivity, and so on); however, because the
OracleAS TopLink session is stored in the object in a transient variable, it does not
survive serialization, leaving the serialized valueholders with no context and no
way to resolve the links to the data they represent. As a result, when you marshall
the object for serialization, the values held by valueholders are replaced with a null
value. If the application on the receiving JVM invokes the valueholder, the result is
a null pointer exception.

Basic Mappings

Mapping 3-35

Note that no null pointer exception is thrown during the serialization process, nor
does OracleAS TopLink prevent you from serializing an untriggered valueholder.
This enables you to serialize objects and retain the efficiency advantages of
indirection if you know that the receiving JVM does not use the valueholders.

Triggering Valueholders During Marshalling A common way to avoid null pointer
exceptions in the receiving JVM is to selectively trigger valueholders before
serializing them.

Java serialization supports a callback mechanism that enables you to execute a
special type of method on an object before serializing it. Specifically, if a
writeObject method exists on the object Java serialization executes the method.

For example:

protected void writeObject(ObjectOutputStream out) throws IOException

This mechanism presents an opportunity to selectively trigger valueholders. You
can:

■ Add triggering methods directly on the object.

■ Build helper classes to trigger valueholders, and use a method on the
serializable object to call the helper classes.

Helper classes are the most flexible way to trigger valueholders, because you can
use a single helper class for several objects. When deciding how to trigger
valueholders, we recommend the following methods:

■ Trigger no Valueholders: This method requires no extra work; however, it
assumes that the application that receives the serializable object does not call
any valueholders, including those in the serialized object.

■ Trigger a set of Valueholders specific to the purpose of the receiving application: This
method requires the OracleAS TopLink developer to know exactly what the
receiving application does with the serialized object and to manually trigger all
required valueholders.

■ Trigger a set of Valueholders to make the serialized object generically useful: For
example, you can choose to trigger all valueholders in the object itself, but none
in the related objects. This method does not require that the OracleAS TopLink
developer know what the receiving application does with the serialized objects,
but imposes a predictable limit on the receiving application.

■ Trigger all Valueholders, traversing all relationships to the leaf class: This method
makes the object completely fail-safe to the receiving application, but imposes

Basic Mappings

3-36 Oracle Application Server TopLink Application Developer’s Guide

the potentially resource-intensive overhead associated with triggering all
objects in the relationship hierarchy on the OracleAS TopLink application.

Merging Clones on Deserialization
Unmarshalling a serialized object always occurs in the context of a Unit of Work
when you integrate changes made outside of the JVM with the affected objects in
the OracleAS TopLink application. Several options are available for the merge:

■ Merge only the direct attributes of the object being read: Use the
shallowMergeClone(java.lang.Object rmiClone) method to capture
changes in the deserialized object only. Use this option when you know that
changes to the object do not extend to related objects.

■ Merge the deserialized object and its privately owned parts: Use the
mergeClone(java.lang.Object rmiClone) method to capture changes
in the deserialized object and any of its privately owned objects.

■ Merge the deserialized object and all referenced objects: Use the
mergeCloneWithReferences(java.lang.Object rmiClone) method to
capture changes to the deserialized object, its privately owned objects, and all
its referenced objects. Note that the referenced objects include only those objects
with a direct relationship to the deserialized object.

■ Merge the entire relationship graph of the deserialized object: Use the
deepMergeClone(java.lang.Object rmiClone) method to capture all
changes to the deserialized object’s relationship graph. This method causes
OracleAS TopLink to traverse all relationships from the deserialized object to its
leaf objects and merge any changes it finds.

Limitations on Merge
To maintain data integrity, OracleAS TopLink imposes a restriction on merging back
serialized objects. If the outside JVM adds objects to the structure passed to it, and
then passes back the new objects, OracleAS TopLink merges those objects into the
model if one of the following conditions is met:

■ The new objects do not exist in the OracleAS TopLink model.

■ The new objects exist in the OracleAS TopLink model and are registered with
the Unit of Work.

Basic Mappings

Mapping 3-37

Primary Keys
A primary key is a column (or combination of columns) that contains a unique
identifier for every record in the table. OracleAS TopLink requires that every table
that stores persistent objects has a primary key. The following concepts and
techniques apply to primary keys:

■ If a table uses a combination of columns to create a primary key (a composite
primary key), declare all the necessary fields as primary keys.

■ Sequencing is the most common method to implement a primary key.

■ Descriptors must always provide mappings for a primary key. These mappings
can be direct, transformation, or one-to-one.

■ You do not have to define a primary key constraint in the database, but you
must ensure that the fields you specify for the primary key are unique.

Under most circumstances, you set primary key information in the OracleAS
TopLink Mapping Workbench for persistent Java objects and EJB entity beans.
Alternatively, set the primary key manually in Java code.

For more information, see "Implementing Primary Keys in Java" on page 3-94.

Primary Keys and EJB Entity Beans
A primary key is a mechanism by which OracleAS TopLink and other applications
identify persistent objects and entity beans. EJB entity beans use primary keys in
much the same way as regular Java objects, and as with Java objects, you usually set
primary keys for entity beans in the OracleAS TopLink Mapping Workbench.

EJB entity beans support both simple primary keys, which are composed of
information from a single field in the bean, and composite primary keys, which are
composed of information from one or more fields and are stored in a custom class.

Sequencing
When you create tables that do not include a unique key suitable for use as a
primary key, use sequencing to assign an identifier to each record. In most cases,
you configure sequencing through the OracleAS TopLink Mapping Workbench.

For more information, see "Working with Sequencing" in the Oracle Application
Server TopLink Mapping Workbench User’s Guide. For more information about
implementing sequencing in Java code, see "Implementing Sequence Numbers in
Java" on page 3-107.

Basic Mappings

3-38 Oracle Application Server TopLink Application Developer’s Guide

This section describes how to assign primary keys to objects that use sequencing,
and includes discussions on:

■ Sequencing and Database Tables

■ Sequencing and Preallocation Size

■ Table Sequencing

■ Oracle Native Sequencing

■ Native Sequencing with Other Databases

■ Sequencing with CMP Entity Beans

Sequencing and Database Tables
OracleAS TopLink offers three ways to implement sequencing. Although each
method is unique, the three techniques have some commonality.

You store persistent objects for your application in database tables that represent
the class of instantiated object. Each row of the table represents an instantiated
object from that class, and one column in that table holds the primary key for each
object. Sequencing populates the primary key row in the table.

When you configure sequencing, specify two settings for these tables, regardless of
the type of sequencing you plan to use:

■ The name of the table that stores the primary key for the class

■ The name of the column in the table that stores the primary key for each object
(the sequencing column)

Figure 3–3 Sequencing Elements in a Class Table

In addition to these two elements, table sequencing requires you to specify a SEQ_
NAME (a name to identify the class in a special sequencing table name) for each

VEHICLE_POOL

VEH_ID COLOR MAKE MODEL YEAR

1 red Chev Malibu 2000

2 white Ford Focus 2001

3 white Hyundai Accent 2000

4 yellow Dodge 3500 Tow Truck 1998

5 blue Pontiac Bonneville 2003

6 green BMW 325i 2002

Table Name

Sequencing
Column

Basic Mappings

Mapping 3-39

sequenced object. You configure these elements in the OracleAS TopLink Mapping
Workbench.

Sequencing and Preallocation Size
To improve sequencing efficiency, OracleAS TopLink allows you to preallocate
sequence numbers. Preallocation enables OracleAS TopLink to build a pool of
available sequence numbers that are assigned to new objects as they are created and
inserted into the database. OracleAS TopLink assigns numbers from the pool until
the pool is exhausted.

The preallocation size specifies the size of the pool of available numbers.
Preallocation improves sequencing efficiency by substantially reducing the number
of database accesses required by sequencing. By default, OracleAS TopLink sets
preallocation size to 50. You can specify preallocation size either in the OracleAS
TopLink Mapping Workbench or as part of the session login.

For more information about setting sequencing parameters at session login, see
"Setting Sequencing at Login" on page 5-11.

Preallocation is available in table sequencing and is required for Oracle native
sequencing.

Table Sequencing
Table sequencing involves creating and maintaining an extra database table that
includes sequencing information for sequenced objects in the project. OracleAS
TopLink maintains this table to track sequence numbers.

Sequencing information appears in this table for any class that uses sequencing. The
default table is called SEQUENCE and contains two columns:

■ SEQ_NAME, which specifies the class type to which the selected row refers

■ SEQ_COUNT, which specifies the highest sequence number currently allocated
for the object represented in the selected row

Basic Mappings

3-40 Oracle Application Server TopLink Application Developer’s Guide

Figure 3–4 OracleAS TopLink SEQUENCE Table

The rows of the SEQUENCE table represent every class that participates in
sequencing. When you configure sequencing in the OracleAS TopLink Mapping
Workbench, you specify the SEQ_NAME for the class. OracleAS TopLink adds a row
with that name to the SEQUENCE table and initializes the SEQ_COUNT column to the
value 1.

You can create the SEQUENCE table on the database in one of two ways:

■ Use the OracleAS TopLink Mapping Workbench to create the table, in the same
way as you do any other table.

For more information about specifying tables in the OracleAS TopLink
Mapping Workbench, see "Working with Database Tables in the Navigator
Pane" in the Oracle Application Server TopLink Mapping Workbench User’s Guide.

■ Use the OracleAS TopLink table creator to create and update the table manually.

For more information, see "Creating the Sequence Table" on page A-21.

Using the SEQ_COUNT Column OracleAS TopLink includes an internal mechanism
that manages table sequencing. This mechanism maintains a pool (a vector or array)
of preallocated values for each sequenced class. When OracleAS TopLink exhausts
this pool of values, it acquires a new pool of values, as follows:

1. OracleAS TopLink accesses the database, requesting that the SEQ_COUNT for the
given class (identified by the SEQ_NAME) be incremented by the preallocation
size and the result returned.

For example, consider the SEQUENCE table in Figure 3–4. If you create a new
purchase order and OracleAS TopLink has exhausted its pool of sequence
numbers, then OracleAS TopLink executes SQL to increment SEQ_COUNT for
SEQ_PURCH_ORDER by the preallocation size (in this case, the OracleAS
TopLink default of 50). The database increments SEQ_COUNT for SEQ_PURCH_
ORDER to 1600 and returns this number to OracleAS TopLink.

SEQUENCE

SEQ_NAME

SEQ_V_POOL 350

800

1550

2400

SEQ_MACHINERY
SEQ_PURCH_ORDER
SEQ_WORK_ORDER

SEQ_COUNT

Basic Mappings

Mapping 3-41

2. OracleAS TopLink calculates a maximum and minimum value for the new
sequence number pool and creates the vector of values.

3. OracleAS TopLink populates the object sequence attribute with the first number
in the array and writes the object to the class table.

As you add new objects to the class table, OracleAS TopLink continues to assign
values from the pool until it exhausts the pool. When the pool is exhausted,
OracleAS TopLink again requests new values from the table.

Default Versus Custom Tables In most cases, you implement table sequencing using
the default table parameters. However, you may want to leverage the Custom Table
option if:

■ You want to use an existing sequence table for sequencing.

■ You do not want to use the default naming convention for the table and its
columns.

Oracle Native Sequencing
OracleAS TopLink support for native sequencing with Oracle databases is similar to
table sequencing, except that OracleAS TopLink does not maintain a table in the
database. Instead, the Oracle database contains a SEQUENCE object that stores the
current maximum number and preallocation size for sequenced objects.

Understanding the Oracle SEQUENCE Object The Oracle SEQUENCE object implements a
strategy that closely resembles OracleAS TopLink sequencing: it implements an
INCREMENT construct that parallels the OracleAS TopLink preallocation size, and a
sequence.nextval construct that parallels the SEQ_COUNT field in the OracleAS
TopLink SEQUENCE table in table sequencing. This implementation enables
OracleAS TopLink to use the Oracle SEQUENCE object as if it were an OracleAS
TopLink SEQUENCE table, but eliminates the need for OracleAS TopLink to create
and maintain the table.

As with table sequencing, OracleAS TopLink creates a pool of available numbers by
requesting that the Oracle SEQUENCE object increment the sequence.nextval
and return the result. Oracle adds the value, INCREMENT, to the
sequence.nextval, and OracleAS TopLink uses the result to build the
sequencing pool.

The key difference between this process and the process involved in table
sequencing is that OracleAS TopLink is unaware of the INCREMENT construct on the
SEQUENCE object. OracleAS TopLink sequencing and the Oracle SEQUENCE object

Basic Mappings

3-42 Oracle Application Server TopLink Application Developer’s Guide

operate in isolation. To avoid sequencing errors in the application, set the OracleAS
TopLink preallocation size and the Oracle SEQUENCE object INCREMENT to the
same value.

Using SEQUENCE Objects Your Database Administrator (DBA) must create a
SEQUENCE object on the database for every sequencing series your application
requires. If every class in your application requires its own sequence, the DBA
creates a SEQUENCE object for every class; if you design several classes to share a
sequence, the DBA need only create one SEQUENCE object for those classes.

For example, consider the case of a sporting goods manufacturer that manufactures
three styles of tennis racquet. The data for these styles of racquet are stored in the
database as follows:

■ Each style of racquet has its own class table.

■ Each manufactured racquet is an object, represented by a line in the class table.

■ The system assigns serial numbers to the racquets, that use sequencing.

Figure 3–5 Example of Database Tables—Racquet Information

ATTACK

SERIAL COLOR

212 red

213 red

214 black

VOLLEY

SERIAL COLOR

528 white

529 silver

530 blue

PRO-X

SERIAL COLOR

885 white

886 silver

887 blue

Racquet Styles
(represented by tables)

SERIAL fields generated
by SEQUENCE object

Basic Mappings

Mapping 3-43

The manufacturer can:

■ Use separate sequencing for each racquet style. The DBA builds three separate
SEQUENCE objects, perhaps called ATTACK_SEQ, VOLLEY_SEQ, and PROX_SEQ.
Each different racquet line has its own serial number series, and there may be
duplication of serial numbers between the lines (for example: all three styles
may include a racquet with serial number 1234).

■ Use a single sequencing series for all rackets. The DBA builds a single SEQUENCE
object (perhaps called RACQUET_SEQ). The manufacturer assigns serial
numbers to racquets as they are produced, without regard for the style of
racquet.

Native Sequencing with Other Databases
Several databases support a type of native sequencing in which the database
management system (DBMS) generates the sequence numbers. When you create a
class table for a class that uses sequencing, include a specified primary key column,
and set the column type as follows:

■ For Sybase and Microsoft SQL Server databases, set the primary key field to the
type IDENTITY.

■ For IBM Informix databases, set the primary key field to the type SERIAL.

When you insert a new object into the table, OracleAS TopLink populates the object
before insertion into the table, but does not include the sequence number. As the
database inserts the object into its table, the database automatically populates the
primary key field, with a value equal to the primary key of the previous object, plus
1.

At this point, and before the transaction closes, OracleAS TopLink reads back the
primary key for the new object so that the object has an identity in the OracleAS
TopLink cache.

Note: If the manufacturer chooses this second option, he might
also choose to combine the three tables into a single table to
improve database efficiency.

Note: OracleAS TopLink does not support native sequencing in
IBM DB2 databases.

Basic Mappings

3-44 Oracle Application Server TopLink Application Developer’s Guide

Sequencing with CMP Entity Beans
To implement sequencing for CMP entity beans, use a sequencing strategy that
implements preallocation, such as table sequencing or Oracle native sequencing.
Preallocation ensures that the bean primary key is available at ejbPostCreate()
time. If use native sequencing as offered in Sybase, Microsoft SQL Server, or
Informix databases, be aware that:

■ Native sequencing does not strictly conform to any EJB specification, because it
does not initialize the primary key for a created object until you commit the
transaction that creates the object. EJB specifications expect that the primary key
is available at ejbPostCreate() time.

■ OracleAS TopLink CMP integration for IBM WebSphere does not support
native sequencing other than Oracle native sequencing.

■ BEA WebLogic supports native sequencing; however, this type of native
sequencing does not assign or return a primary key for a created object until
you commit the transaction in which the object is created. Because of this, if you
use native sequencing, commit a transaction immediately after calling the
ejbCreate method to avoid problems with object identity in the OracleAS
TopLink cache and the container.

OracleAS TopLink CMP Integration with IBM WebSphere The OracleAS TopLink CMP
integration with IBM WebSphere does not automatically provide the primary key
after calling the ejbCreate method. If you deploy to a WebSphere server,
explicitly set the primary key in the ejbCreate method. Example 3–20 illustrates
this call in a WebSphere integration.

Example 3–20 Setting Primary Key in IBM WebSphere

public Integer ejbCreate() throws CreateException {
oracle.toplink.ejb.cmp.was.SessionLookupHelper.getHelper().getSession(this)

.getActiveUnitofWork().assignSequenceNumber(this);
return null

}

OracleAS TopLink CMP Integration with BEA WebLogic In the OracleAS TopLink CMP
integration with BEA WebLogic, OracleAS TopLink automatically sets the primary
key field on the bean. You do not pass the key value as a parameter to the
create() method, nor set them in the create() method.

Basic Mappings

Mapping 3-45

Example 3–21 Setting Primary Key in BEA WebLogic

public Integer ejbCreate() throws CreateException {
return null;

}

The additional line of code looks up the correct session and uses it to assign a
sequence number to the bean.

For more information about how to configure sequencing, see the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Sequencing with Stored Procedures
If you have stored procedures that perform sequencing for your application, use an
amendment method to direct sequencing queries to use the stored procedures.

Example 3–22 Calling a Stored Procedure for Sequencing

DataModifyQuery seqUpdateQuery = new DataModifyQuery();
StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("UPDATE_SEQ");
seqUpdateQuery.addArgument("SEQ_NAME"};
seqUpdateQuery.setCall(call)
project.getLogin().setUpdateSequenceQuery(seqUpdateQuery));

Example 3–22 illustrates specifying a stored procedure for sequence updates. The
name of the stored procedure must match the name specified in the
setProcedureName call (in this case, UPDATE_SEQ). The
seqUpdateQuery.addArgument contains one argument, the sequence name.

Example 3–23 illustrates the use of a stored procedure for sequence selects.

Example 3–23 Using a Stored Procedure for Sequence Selects

ValueReadQuery seqReadQuery = new ValueReadQuery();
StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("SELECT_SEQ");
seqReadQuery.addArgument("SEQ_NAME"};
seqReadQuery.setCall(call)
project.getLogin().setSelectSequenceNumberQuery (seqReadQuery));

The name of the stored procedure must match the name specified in the
setProcedureName call (in this case, SELECT_SEQ). The
seqUpdateQuery.addArgument contains one argument, the sequence name.

Basic Mappings

3-46 Oracle Application Server TopLink Application Developer’s Guide

Foreign Keys
A foreign key is a combination of columns that reference a unique key, usually the
primary key, in another table. As with a primary key, a foreign key can be any
number of fields, all of which are treated as a unit. A foreign key and the parent key
it references must have the same number and types of fields.

OracleAS TopLink enables you to specify two types of foreign keys:

■ Foreign key: key added to the table associated with the mapping’s own
descriptor.

■ Target foreign key: key that references the target object’s table back to the key
from the mapping descriptor’s table. The key in the mapping descriptor table is
a foreign key in the target table that the target table uses to reference the
mapping descriptor’s table.

Relationship mappings use foreign keys to search the database for the information
it requires to instantiate the target object or objects. For example, if every Employee
has an attribute, address, that contains an instance of Address (which has its own
descriptor and table), then the one-to-one mapping for the address attribute
specifies foreign key information to find an address for a particular Employee.

Multiple Table Mappings
OracleAS TopLink enables you to store the information for a single class in multiple
tables. This feature offers you the flexibility to create the objects for your application
without imposing any new design requirements on your database schema.

For example, you can create a class called EMPLOYEE that contains not just personal
information about the employees, but also business information, such as salary. If
your database schema stores salaries in a separate table from basic employee
information, OracleAS TopLink multiple table mappings support enables you to
create the class you require. Use multiple tables when either of the following is true:

■ You have a subclass with a superclass mapped to one table and the subclass has
additional attributes that are also mapped to a second table.

■ A class is not involved in inheritance and its data is spread out across multiple
tables.

You can associate information for the class using primary keys or foreign keys.

For more information about mapping a class to multiple tables, see "Working with
Multiple Tables" in the Oracle Application Server TopLink Mapping Workbench User’s
Guide.

Inheritance

Mapping 3-47

For more information about implementing multiple table mappings in code, see
"Implementing Multiple Tables in Java" on page 3-102.

Mapping and Enterprise JavaBeans
To enable container-managed persistent (CMP) storage of entity beans in an
Enterprise JavaBean (EJB) application, map the attributes on the bean
implementation class. The implementation class is the class specified in the
ejb-class element for the specified bean in the ejb-jar.xml deployment
descriptor file. Do not map the Home or Remote interface classes, or the primary
key classes.

EJBs and the OracleAS TopLink Mapping Workbench
If you use the OracleAS TopLink Mapping Workbench to build projects with entity
beans, you can load the bean classes themselves into the OracleAS TopLink
Mapping Workbench. You do not need to load the Remote, Local, Home, and
localHome interfaces, or the primary key class, nor must you use these classes to
define mappings.

To avoid errors when you load the beans, ensure that classes referenced by the
entity beans are on the project class path used by the OracleAS TopLink Mapping
Workbench project. The Remote, Local, Home, and localHome interfaces must
also be on the class path, because they may be used during EJB validation.

Inheritance
Inheritance enables you to share attributes between objects such that a subclass
inherits attributes from its parent class. OracleAS TopLink provides several
methods to preserve inheritance relationships, and enables you to override
mappings that are specified in a superclass, or to map attributes that are not
mapped in the superclass. Subclasses must include the same database field (or
fields) as the parent class for their primary key (although the primary key can have
different names in these two tables). As a result, when you are mapping
relationships to a subclass stored in a separate table, the subclass table must include
the parent table primary key, even if the subclass primary key differs from the
parent primary key.

This section describes OracleAS TopLink inheritance, and introduces several topics
and techniques to leverage inheritance in your own applications, including:

■ Understanding Object Inheritance

Inheritance

3-48 Oracle Application Server TopLink Application Developer’s Guide

■ Representing Inheritance in the Database

■ Class Types

■ Class Indicators

■ Class Extraction Methods

■ Entity Bean Inheritance Restrictions

For more information about implementing inheritance in code, see "Implementing
Inheritance in Java" on page 3-95.

Understanding Object Inheritance
Consider a simple database used by a courier company. It contains registration
information for three types of vehicles: trucks, cars, and bicycles. For each vehicle
type, your application requires the following information:

■ VID (Vehicle Identification)

■ LastMaint (mileage since last maintenance)

■ LoadCap (load capacity)

If these are all the attributes shared by all vehicles in the application, then these
attributes must all appear in the super class, Vehicle. You can then build subclasses
for each of the vehicle types that reflects their differences. For example, the Truck
class might have an attribute indicating whether the local department of
transportation considers it to be a commercial vehicle (NumAxles), the Car class
might require a NumPass (number of passengers) attribute, and the Bicycle class, by
virtue of its more limited range, may require a Location attribute. Through
inheritance, each vehicle automatically inherits the basic vehicle information, but by
being separate subclasses, also have unique characteristics.

Inheritance

Mapping 3-49

Figure 3–6 Inheritance in a Courier Application

Representing Inheritance in the Database
You can represent inheritance in the database in one of two ways:

■ Multiple tables that represent the parent class and each child class.

■ A single table that comprises the parent and all child classes.

VEHICLE

VID
LastMaint
LoadCap

BICYCLE

VID
LastMaint
LoadCap
Location

CAR

VID
LastMaint
LoadCap
NumPass

TRUCK

VID
LastMaint
LoadCap
NumAxles

Inheritance

3-50 Oracle Application Server TopLink Application Developer’s Guide

Figure 3–7 Inheritance in the Database in Individual Tables

If your database already represents the objects in the inheritance hierarchy this way,
you can map the objects and relationships without modifying the tables. However,
it is most efficient to represent all classes from a given inheritance hierarchy in a
single table, because it substantially reduces the number of table reads and
eliminates joins when querying on objects in the hierarchy.

Figure 3–8 Inheritance in the Database in a Single Table

To consolidate tables in the database this way, determine the class type of the
objects represented by the rows in the table. There are two ways to determine class
type:

■ If you can add columns to the database table, add a class indicator column that
represents the vehicle class type (Truck, Car, or Bicycle).

VEHICLE Table
VID LastMaint LoadCap

1 2002 850
2 2000 30
3 2001 920
4 1998 1700
5 2003 35
6 2001 2250

TRUCK Table

VID LastMaint LoadCap NumPass
4 1998 1700 5
6 2001 2250 3

CAR Table
VID LastMaint LoadCap NumPass

1 2002 850 5
3 2001 920 7

BICYCLE Table

VID LastMaint LoadCap NumPass
2 2000 30 1
5 2003 35 1

VEHICLE Table
VID LastMaint LoadCap Class NumPass

1 2002 850 C 5
2 2000 30 B 1
3 2001 920 C 7
4 1998 1700 T 5
5 2003 35 B 1
6 2001 2250 T 3

Inheritance

Mapping 3-51

For more information about class indicators, see "Class Indicators" on page 3-52.

■ If you cannot modify the table, build a class extraction method that executes an
appropriate login to determine the class type.

For more information about class extraction methods, see "Class Extraction
Methods" on page 3-53.

Class Types
The OracleAS TopLink inheritance hierarchy includes three types of classes:

■ Root Class

■ Branch Class

■ Leaf Class

Figure 3–9 Inheritance Hierarchy Class Types

Root Class
The root class stores information for all instantiable classes in its subclass hierarchy.
By default, queries performed on the root class return instances of the root class and
its instantiable subclasses. However, you can also configure the root class to return
only instances of itself, without instances of its subclasses when queried. All class
types beneath the root class inherit from the root class.

Root Class

Branch Class Branch Class

Leaf Class Leaf Class Leaf Class Leaf Class Leaf Class

Inheritance

3-52 Oracle Application Server TopLink Application Developer’s Guide

Branch Class
Branch classes have a persistent superclass and subclasses. By default, queries
performed on the branch class return instances of the branch class and any of its
subclasses. As with the root class, you can configure the branch class to return only
instances of itself without instances of its subclasses when queried. All classes
below the branch class inherit attributes from the branch class, including any
attributes the branch class inherits from classes above it in the hierarchy.

Leaf Class
Leaf classes have a persistent superclass in the hierarchy, but do not have
subclasses. Queries performed on the leaf class return only instances of the leaf
class.

Class Indicators
A class indicator is a mechanism for determining the class or type of an object. For
example, a Person table might include an indication of whether the person
represented by the table row is an Employee or a Manager. Use the class indicator
to select the appropriate subclass to be instantiated from a set of available
subclasses.

Class Indicator Field
A class indicator field is a number or string stored in a database table that indicates
the class or type of an object. OracleAS TopLink uses this information to determine
the correct type of object to instantiate when building an object from that data in the
row. For example, an EMPLOYEE table might contain a field, the value of which
indicates whether the employee is permanent or contract, and determines whether
OracleAS TopLink instantiates a PermanentEmployee object or a
ContractEmployee object.

You can use strings or numbers as values in the class indicator field in the database.
The root class descriptor must specify how the value in the class indicator field
translates into the class to be instantiated.

Class Indicators and Mappings
Class indicator fields do not have an associated direct mapping unless it is set to
read-only. Mappings defined for the write-lock or class indicator field must be
read-only, unless the write-lock is configured not to be stored in the cache and the
class indicator is part of the primary key.

Inheritance

Mapping 3-53

For more information about transformation mappings, see "Transformation
Mappings" on page 3-68.

Class Extraction Methods
Class extraction enables you to determine the correct class type to instantiate from a
table that includes several classes. Unlike a class indicator, however, a class
extraction method does not rely on a single column in the table to determine class
type. Instead, you can apply logic to the information in several fields to determine
class type.

This method is useful when you use a legacy database with a new application.
Table 3–1 illustrates a sample use of the a class extraction method.

The inheritance hierarchy is designed such that Employee is the root class, and
Director is a branch class that inherits from Employee. All employees, other than
directors, are represented as instances of Employee, but directors must be
represented by an instance of the Director class. Because values other than 2 can
appear in the JOB_TYPE field, you cannot use OracleAS TopLink's class indicator
mechanism for mapping this data.

To resolve this, add a class extraction method to the root class, Employee. The
method executes custom logic to determine the correct class to instantiate. The
method is static, returns a Class object, and takes DatabaseRow as a single
parameter.

Example 3–24 Simple Class Extraction Method

// Return the Director class for TYPE values of 2,
// Employee class for any other value

public static Class getClassFromRow(DatabaseRow row) {
if (row.get("JOB_TYPE").equals(new Integer(2)) {

return Director.class;

Table 3–1 Sample use of the a Class Extraction Method

ID NAME JOB_TYPE JOB_TITLE

732 Bob Jones 1 Manager

733 Sarah Smith 3 Technical Writer

734 Ben Ng 2 Director

735 Sally Johnson 3 Programmer

Inheritance

3-54 Oracle Application Server TopLink Application Developer’s Guide

}
else { return Employee.class;
}

}

This simple case enables you to determine whether the selected person is of the
Director class or the Employee class. You can also implement complex logic that
combines information from several columns in the table to infer class type. For
example, consider a table that represents vehicles in a municipal vehicle pool. In
addition to other information, Table 3–2 illustrates, the database includes data that
indicates gross vehicle weight and number of axles.

Although there is no direct indication of vehicle type in the data, you can build
logic into a class extraction method to infer the vehicle type. This is made easier if
you are familiar with the available types in the database. In this example, you can
use a class extraction method to implement the following logic:

■ If NumberOfAxles is greater than 2, then return the class HeavyTruck.

■ If NumberOfAxles is 2 or less and GrossVehicleWeight is greater than
1000, then return the class type PassengerVehicle.

■ In all other cases, return the class Motorcycle.

Example 3–25 Complex Class Extraction Method

public static Class getClassFromRow(DatabaseRow row) {
if (row.get("NumberOfAxles").intValue()>2){

return HeavyTruck.class;
}
else {

if (row.get("GrossVehicleWeight").intValue()>1000) {
return PassengerVehicle.class;

Table 3–2 Gross Vehicle Weight and Number of Axles Example

Gross Vehicle Weight Number Of Axles

2650 3

800 2

2730 2

2400 2

3580 4

Mapping EJB Entity Beans

Mapping 3-55

}
else { return Motorcycle.class;
}

}
}

In addition to implementing logic to determine object class, you can also use class
extraction methods to execute other methods unrelated to class determination. This
is an unusual use for class extraction methods but, provided that the method
ultimately returns a class type, it is possible.

To implement the class extraction method in the OracleAS TopLink Mapping
Workbench, open the inheritance settings for the root descriptor in the subclass
hierarchy (EMPLOYEE in this case), and select the class extraction method in the Use
Class Extraction Method box.

Entity Bean Inheritance Restrictions
The following restrictions apply to entity beans when using inheritance:

■ The Home interfaces cannot inherit. The findByPrimaryKey method must be
overloaded to have the correct return type, but this is not allowed. As a result,
inheritance is not applicable to the Home interfaces.

■ The primary key of the subclass must be the same as that of the parent class.

The Application Server EJB 1.1 and 2.0 CMP Advanced Examples illustrate
inheritance. For more information, see the OracleAS TopLink Examples at
<ORACLE_HOME>\toplink\doc\examples.htm.

Mapping EJB Entity Beans
EJB Entity beans represent a business entity. Entity beans can be shared by many
users and are long-lived, able to survive a server failure. Essentially, entity beans are
persistent data objects (objects with durable state that exist from one moment in
time to the next).

Note: Because the existing EJB specifications offer no
implementation guidelines for inheritance, exercise caution when
implementing inheritance, especially if EJB compliance is an issue
for your application.

Mapping EJB Entity Beans

3-56 Oracle Application Server TopLink Application Developer’s Guide

This section describes entity bean development, as well as the following mapping
topics and techniques:

■ Terminology and Definitions

■ Overview of Bean-Managed Persistence

■ Overview of Container-Managed Persistence

■ Maintaining Bidirectional Relationships

■ Managing Dependent Objects Under EJB 1.1

■ Managing Dependent Objects Under EJB 2.0

■ Managing Collections of EJBObjects Under EJB 1.1

Terminology and Definitions

Enterprise JavaBeans
An EJB implements a business task or a business entity. EJBs are server-side domain
objects that fit into a component-based architecture for building enterprise
applications using the Java language. EJBs are Java objects that the developer can
install in an EJB server to make them distributed, transactional, and secure.
OracleAS TopLink supports three kinds of EJBs under the EJB 2.0 specification:
session beans, entity beans, and message-driven beans. Note that EJB 1.1 does not
support message-driven beans.

EJB Server and Container
An EJB bean resides in an EJB container that in turn resides in an EJB server.
Although the EJB 2.0 specification does not define the container-server relationship,
the accepted paradigm is that the server provides the bean with access to various
services (transactions, security, and so on), and the container provides the execution
context for the bean by managing its life cycle.

Deployment Descriptors
Deployment descriptors supply additional information that is required to install an
EJB within its server. The deployment descriptors are of a set of XML files that
provide the security, transaction, relationship, and persistence information for the
bean.

Mapping EJB Entity Beans

Mapping 3-57

Session Beans
Session beans represent a business operation, task, or process. Although the use of a
session bean may involve database access, the beans are not in themselves
persistent because they do not directly represent a database entry. Session beans do
not always retain conversational state; they can be stateful and retain client
information between calls. They can be stateless and retain information only within
a single method call.

You can use OracleAS TopLink to make the regular Java objects that are accessed by
a session bean persistent, or to access OracleAS TopLink persistent entity beans.
Session beans may also act as wrappers to other legacy applications.

Entity Beans
Entity beans represent a persistent data object that exists from one access to the
next. Accomplish persistence by storing the object in a relational database, object
database, or some other storage facility.

Two schemes exist for making entity beans persistent: bean-managed persistence
(BMP) and container-managed persistence (CMP). BMP requires the bean developer
to hand-code the methods that perform the persistence work. CMP uses
information supplied by the developer to handle all aspects of persistence.

Message-Driven Beans
Message-driven beans process asynchronous Java Message Service (JMS) messages.
A bean method is transactionally-invoked by a JMS message sent to the objects
registered against the given topic. From a client perspective, a message-driven bean
is simply a JMS consumer with no conversational state and no Home or Remote
interfaces.

Overview of Bean-Managed Persistence
OracleAS TopLink provides a class oracle.toplink.ejb.bmp.BMPEntityBase.
This class provides developers with a starting point when developing beans. The
BMPEntityBase class provides implementation for all EJB specification required
methods except ejbPassivate() which is excluded because of special
requirements. By subclassing the BMPEntityBase, developers have an OracleAS
TopLink-enabled entity bean.

To use the BMPEntityBase, create the sessions.xml file. For information about
the sessions.xml file, see "Session Manager" on page 4-29. In addition, add an
oracle.toplink.ejb.bmp.BMPWrapperPolicy to each descriptor that represents

Mapping EJB Entity Beans

3-58 Oracle Application Server TopLink Application Developer’s Guide

an Entity Bean. This BMPWrapperPolicy provides OracleAS TopLink with the
information to create Remote objects for entity beans and to extract the data out of a
Remote object. After this is performed, the user must create the Home and Remote
interfaces, create deployment descriptors, and deploy the beans.

If a more customized approach is required, OracleAS TopLink provides a hook into
its functionality through the oracle.toplink.ejb.bmp.BMPDataStore class. Use
this class to translate EJB-required functionality into simple calls.

The BMPDataStore provides implementations of LOAD and STORE, multiple
finders, and REMOVE functionality. The BMPDataStore, requires a sessions.xml
file and the session manager. A single instance of BMPDataStore must exist for each
bean type deployed within a session. When creating a BMPDataStore, pass in the
session name of the session that the BMPDataStore must use to persist the beans
and the class of the Bean type being persisted. Store the BMPDataStore in a global
location so that each instance of a Bean type uses the correct Store.

If you use a customized implementation, the full functionality of the server session
and the UnitOfWork is available.

BMP Support with EJB 2.0
To use BMP support with EJB 2.0, the Home interface must inherit from the
oracle.toplink.ejb.EJB20Home. To make calls to the
oracle.toplink.ejb.bmp.BMPEntityBase, the FindAll() method must call
the EJB 2.0 version of the methods. These methods are prefixed with ejb20.

For example, in the EJB 2.0 version, the findAll() method appears as
ejb20FindAll.

Using Local beans
To use local beans, use the oracle.toplink.ejb.EJB20LocalHome setting
instead of the default oracle.toplink.ejb.EJB20Home.

Instead of the oracle.toplink.ejb.BMPWrapperPolicy setting, use the
oracle.toplink.ejb.bmp.BMPLocalWrapperPolicy setting.

To accommodate both local and remote configurations, ensure the following:

■ For a bean that has a single interface, use the corresponding wrapper policy
(local or remote) for the descriptor.

■ Beans can only participate in relationships as either Local or Remote
interfaces, not both.

Mapping EJB Entity Beans

Mapping 3-59

Overview of Container-Managed Persistence
OracleAS TopLink CMP is an extension of the OracleAS TopLink persistence
framework. OracleAS TopLink CMP support provides container-managed
persistence for EJBs deployed in a J2EE container.

OracleAS TopLink CMP support enables complex mappings from entity beans to
relational database tables and enables you to model bean-to-bean and
bean-to-regular Java object relationships. OracleAS TopLink provides a rich set of
querying options and allows query definition at the bean-level rather than the
database level. OracleAS TopLink CMP supports the specification as defined by Sun
Microsystems.

Understanding CMP
This section introduces the concepts required to use CMP facilities. It highlights the
features that are specific to OracleAS TopLink CMP, and explains any differences in
the use of other core features.

OracleAS TopLink and CMP Entity Beans
The common mechanism for developers to make beans persistent is to map beans to
a relational database. The EJB specification describes the CMP entity bean as a type
of bean for which the designer does not have to include calls to any particular
persistence mechanism in the bean itself. The EJB Server and its tools use
meta-information in the deployment descriptor to describe how the bean is to be
persisted to a database. This is commonly referred to as automatic persistence.

EJB 2.0 Support OracleAS TopLink provides support for EJB 2.0 entity beans. Here
are some specific features of EJB 2.0 that OracleAS TopLink supports:

■ Local interfaces and local relationships

■ Generation of concrete bean subclasses

■ EJB QL

■ Automatic management of bidirectional relationships

■ Initializing a project from the ejb-jar.xml file

■ Finders

■ Home methods

■ ejbSelect

Mapping EJB Entity Beans

3-60 Oracle Application Server TopLink Application Developer’s Guide

Java Objects and Entity Beans
Table 3–3 illustrates the components that Java objects contain:

Table 3–4 illustrates the components that entity beans contain:

Table 3–3 Java Object Components

Component Function

Attributes Stores primitive data such as integers, as well as simple Java
types such as String and Date.

Relationships Stores references to other OracleAS TopLink-enabled classes.
An OracleAS TopLink-enabled class (also known as a persistent
class) has a descriptor and can be stored in the database.

Methods Stores paths of execution that can be invoked in a Java
environment. Methods are not stored in the database.

Table 3–4 Entity Bean Components

Component Function

Bean instance An instance of an entity bean class supplied by the bean
developer. It is a regular Java object whose class implements
the javax.ejb.EntityBean interface. The bean instance has
persistent state. The client application must never access the
bean instance directly.

EJBObject An instance of a generated class that implements the Remote
interface defined by the bean developer. This instance wraps
the bean and provides client interaction with the bean. The
EJBObject does not have persistent state.

EJBHome An instance of a class that implements the Home interface
supplied by the bean developer. This instance, accessible from
JNDI, provides all create and finder methods for the EJB. The
EJBHome does not have persistent state.

EJBLocalObject
(EJB 2.0 only)

An instance of a generated class that implements the Local
interface defined by the bean developer. The key difference
between an EJBLocalObject and an EJBObject is that the
EJBLocalObject is accessed only from within the same
server on which the beans are deployed. The
EJBLocalObject does not have persistent state.

Mapping EJB Entity Beans

Mapping 3-61

For more information about the Enterprise JavaBeans and the EJB specification, see

http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/white/index.html

Maintaining Bidirectional Relationships
When one-to-one or many-to-many mappings are bidirectional, maintain the
back-pointers as the relationships change. When the relationship is between two
entity beans (in EJB 2.0), OracleAS TopLink automatically maintains the
relationship. However, when the relationship is between an entity bean and a Java
object, or when the application is built to the EJB 1.1 specification, the relationship
must be maintained manually. To set the back-pointer under the EJB 1.1
specification, do one of the following:

■ The entity bean can maintain the back-pointer when the relationship is
established or modified.

■ The client can explicitly set the back-pointer.

If you set back-pointers within the entity bean, the client is freed of this
responsibility. This has the advantage of encapsulating the mapping maintenance
implementation in the bean.

EJBLocalHome
(EJB 2.0 only)

An instance of a class that implements the localHome
interface supplied by the bean developer. This instance,
accessible from JNDI, provides all create and finder
methods for the EJB. The key difference between an
EJBLocalHome and an EJBHome is that access to the
EJBLocalHome is only available from within the same server
on which the beans are deployed, even when using JNDI. The
EJBLocalHome does not have persistent state.

EJB Primary Key An instance of the primary key class provided by the bean
developer. The primary key is a serializable object whose fields
match the primary key fields in the bean instance. Although
the EJB primary key shares some data with the bean instance, it
does not have persistent state. If the key consists of a single
field, the bean does not have to have a separate primary key
class under the EJB 1.1 or later specifications.

Table 3–4 Entity Bean Components (Cont.)

Component Function

Mapping EJB Entity Beans

3-62 Oracle Application Server TopLink Application Developer’s Guide

One-to-Many Relationship
In a one-to-many mapping, a source bean might have several dependent target
objects. For example, an EmployeeBean might have several dependent
phoneNumbers. When a new dependent object (a phoneNumber, in this example) is
added to an employee record, the phoneNumber's back-pointer to its owner (the
employee) must also be set.

Example 3–26 Setting the Back-Pointer in the Entity Bean

Maintaining a one-to-many relationship in the entity bean involves getting the local
object reference from the context of the EmployeeBean, and then updating the
back-pointer. The following code illustrates this technique:

// obtain owner and phoneNumber
owner = empHome.findByPrimaryKey(ownerId);
phoneNumber = new PhoneNumber("cell", "613", "5551212");
// add phoneNumber to the phoneNumbers of the owner
owner.addPhoneNumber(phoneNumber);

The Employee's addPhoneNumber() method maintains the relationship, as
follows:

public void addPhoneNumber(PhoneNumber newPhoneNumber) {
//get, then set the back pointer to the owner
Employee owner = (Employee)this.getEntityContext().getEJBLocalObject();
newPhoneNumber.setOwner(owner);
//add new phone
getPhoneNumbers().add(newPhoneNumber);

}

Managing Dependent Objects Under EJB 1.1
The EJB 1.1 specification recommends that you model entity beans so that all
dependent objects are regular Java objects and not other entity beans. If you expose
a dependent or privately owned object to the client application, it must be
serializable (that is, it implements the java.io.Serializable interface) so that
it can be sent over to the client and back to the server.

Note: Under the EJB 1.1 specification, you must manually update all
back-pointers.

Mapping EJB Entity Beans

Mapping 3-63

Serializing Java Objects Between Client and Server
Because entity beans are remote objects, they are referenced remotely in a
pass-by-reference fashion. When an entity bean is returned to the client, a remote
reference to the bean is returned.

Unlike entity beans, regular Java objects are not remote objects. As a result, when
regular Java objects are referenced remotely, they are passed by value (rather than
by reference) and serialized (copied) from the remote machine on which they
originally resided.

Merging Changes to Regular Java Objects One of the effects of serializing regular Java
objects between servers and clients is a loss of object identity, due to the copying
semantics inherent in serialization. When you serialize a dependent object from the
server to the client and then back, two objects with the same primary key but
different object identities exist in the server cache. These objects must be merged to
avoid exceptions.

If relationships exist between entity beans and Java objects, and these objects are
serialized back and forth between the client and server, either:

■ Use the OracleAS TopLink SessionAccessor utility class to perform the
merge for you.

■ Merge the objects yourself by adding merge methods on your regular Java
objects and within your set methods.

Using Session Accessor to Merge Dependent Objects Use the class
oracle.toplink.ejb.WebLogic.SessionAccessor to perform merges for you
within the set methods (on your bean class) that take regular Java objects as their
arguments.

Two static methods are defined on the SessionAccessor that allow you to do the
register and merge operation:

registerOrMergeObject() This method requires two arguments: the object to
merge and the EntityContext for the bean.

Example 3–27 Using the registerOrMergeObject() Method

public void setAddress(Address address) {
this.address = (Address)SessionAccessor

.registerOrMergeObject(address,this.ctx);
}

Mapping EJB Entity Beans

3-64 Oracle Application Server TopLink Application Developer’s Guide

The registerOrMergeAttribute() method requires three arguments: the Java
object to be merged, the name of the attribute, and the EntityContext for the
bean:

public void setAddress(Address address) {
this.address = (Address) SessionAccessor.registerOrMergeAttribute

(address, “address”, this.ctx);
}

To use the registerOrMergeAttribute() call for collection mappings, pass the
entire collection as the attribute object.

For example:

public void setPhones(Vector phones) {
this.phones = (Vector)SessionAccessor.registerOrMergeAttribute(phones,

"phones", this.ctx);
//... additional logic to set back-pointers on the phones

}

The registerOrMergeObject() method is not as simple to use for setters of
collection mappings. It requires that you iterate through the collection and invoke
the registerOrMergeObject() for each element in the collection. You must also
create a new collection, set in the entity bean, to hold the return values of the call.

Merging code may be required in methods that add elements to a collection.

For example:

/* The old version of this phone number is removed from the collection. It is
assumed that equals() returns true for phones with the same primary key value.
If this is not true, you must iterated through the phones to see if a phone with
the same primary key already exists in the collection. */
public void addPhoneNumber(PhoneNumber phone) {
phone.setOwner((Employee)this.ctx.getEJBObject());
//add to collection
//merge new phone
PhoneNumber serverSidePhone =
(PhoneNumber)SessionAccessor.registerOrMergeObject(phone,this.ctx);
//set back pointer
getPhoneNumbers().addElement(serverSidePhone);
}}

Mapping EJB Entity Beans

Mapping 3-65

Merging Dependent Objects without Session Accessor There are several ways to merge
objects manually. For example, you can use a set() method as follows:

public void setAddress(Address address) {
if(this.address == null){

this.address = address;
} else{

this.address.merge(address);
}

}

You must merge objects when they are added to a collection on the entity bean,
unless the objects cannot be added more than once to a collection in which case,
merging is not necessary.

Merging a collection requires more work. Determine if a copy of each object already
exists in the collection, and if so, merge the two copies. If not, you need only add
the new object to the collection.

Managing Dependent Objects Under EJB 2.0
Unlike EJBs, OracleAS TopLink dependent persistent objects can be sent back and
forth between a client and the server. When objects are serialized, the risk exists the
objects can cause the cache to lose the identity of the objects or attempt to cache
duplicate identical objects. To avoid potential problems, use the bean set methods
when adding dependent objects to relationship collections. This enables OracleAS
TopLink to handle merging of objects in the cache.

Example 3–28 Adding a Dependent Object

addPhoneNumber(PhoneNumber phone) {
Collection phones = this.getPhoneNumbers();
Vector newCollection = new Vector();
newCollection.addAll(phones);
newCollection.add(phone);
this.setPhones(newCollection);

}

Note: This example requires merging code only if there is a risk that a
Phone with the same primary key can be added twice. If the elements in
a collection cannot be added more than once, then merging code is not
required.

Mapping EJB Entity Beans

3-66 Oracle Application Server TopLink Application Developer’s Guide

Managing Collections of EJBObjects Under EJB 1.1
Collections generally use the equals() method to compare objects. However, in
the case of a Java object that contains a collection of entities, the EJBObjects do not
respond as expected to the equals() method. If you manage a collection of entities
under EJB 1.1, we recommend the use of the isIdentical() method to avoid
problems.

In addition, the standard collection methods, such as remove() or contains(),
frequently return unexpected results and so must be avoided.

Several options are available when dealing with collections of EJBObjects. One
option is to create a helper class to assist with collection-type operations.
Example 3–29 illustrates the use of a helper in the EJBCollectionHelper
distribution.

Example 3–29 Using a Helper Class to Manage a Collection of EJBObjects

public void removeOwner(Employee previousOwner){
EJBCollectionHelper.remove(previousOwner, getOwners());
}

Example 3–30 illustrates the implementation of remove() and indexOf() in
EJBCollectionHelper.

Example 3–30 Using remove() and indexOf() in the EJBCollectionHelper

public static boolean remove(javax.ejb.EJBObject ejbObject, Vector vector) {
int index = -1;
index = indexOf(ejbObject, vector);
// indexOf returns -1 if the element is not found.
if(index == -1){

return false;
}
try{

vector.removeElementAt(index);
} catch(ArrayIndexOutOfBoundsException badIndex){

return false;
}

Note: This issue does not arise in the case of an entity contains a
collection of entities, because the EJB 2.0 container collection used
handles equality appropriately.

Descriptor Validation

Mapping 3-67

return true;
}
public static int indexOf(javax.ejb.EJBObject ejbObject, Vector vector) {

Enumeration elements = vector.elements();
boolean found = false;
int index = 0;
javax.ejb.EJBObject current = null;
while(elements.hasMoreElements()){

try{
current = (javax.ejb.EJBObject)
elements.nextElement();
if(ejbObject.isIdentical(current)){
found = true;
break;
}

}catch(ClassCastException wrongTypeOfElement){
. . .

}catch (java.rmi.RemoteException otherError){
. . .

}
index++; //increment index counter

}
if(found){

return index;
} else{

return -1;
}

}

You can create a special Collection class that uses isIdentical() instead of
equals() for its comparison operations. To use isIdentical(), properly define
the equals() method for the primary key class.

Descriptor Validation
You can validate descriptors in two ways:

■ Run the project in a test environment and watch for and interpret any
exceptions that occur.

For more information about descriptor exceptions, see "Descriptor Exception"
on page C-4.

■ Run the OracleAS TopLink Integrity Checker.

Advanced Mappings

3-68 Oracle Application Server TopLink Application Developer’s Guide

For more information about the Integrity Checker, see "Using the Integrity
Checker" on page 4-66.

Advanced Mappings
Several complex mappings are available in OracleAS TopLink. This section
discusses the following mapping types:

■ Transformation Mappings

■ Serialized Object Mappings

■ Variable One-to-One Mappings

■ Object Relational Mappings

■ Direct Map Mappings

Transformation Mappings
Transformation mappings enable you to create specialized translations between
how a value is represented in Java and in the database. Use transformation
mappings only when mapping multiple fields into a single attribute.
Transformation mapping is often appropriate when you use values from multiple
fields to create an object.

After you create the required transformation method, use the OracleAS TopLink
Mapping Workbench to implement transformation mappings.

For more information, see "Working with Transformation Mappings" in Oracle
Application Server TopLink Mapping Workbench User’s Guide.

Implementing Transformation Mappings in Java
Transformation mappings are instances of the TransformationMapping class and
require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message; not
required for write-only mappings

Note: Because of the complexity of transformation mappings, it is often
easier to perform the transformation with get and set methods of a
direct-to-field mapping.

Advanced Mappings

Mapping 3-69

■ The method to be invoked that sets the value of the attribute from information
in the database row; set by sending the setAttributeTransformation()
message that expects one or two parameters: a DatabaseRow and optionally a
Session

■ A set of methods associated to fields in the database, where the value for each
field is the result of invoking the associated method; associations are made by
sending the addFieldTransformation() message, passing along the
database field name and the method name

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user-defined methods, rather than directly.

Example 3–31 Creating a Transformation Mapping and Registering It with the
Descriptor

This example provides custom support for two fields. You can use this approach to
map any number of fields.

// Create a new mapping and register it with the descriptor.
TransformationMapping transformation1 = new TransformationMapping();
transformation1.setAttributeName ("dateAndTimeOfBirth");
transformation1.setAttributeTransformation ("buildDateAndTime");
transformation1.addFieldTransformation("B_DAY", "getDateOfBirth");
transformation1.addFieldTransformation("B_TIME", "getTimeOfBirth");
descriptor.addMapping(transformation1);
// Define attribute transformation method to read from the database row
public java.util.Date buildDateAndTime(DatabaseRow row) {

java.sql.Date sqlDateOfBirth = (java.sql.Date)row.get("B_DAY");
java.sql.Time timeOfBirth = (java.sql.Time)row.get("B_TIME");
java.util.Date utilDateOfBirth = new java.util.Date(

sqlDateOfBirth.getYear(),
sqlDateOfBirth.getMonth(),
sqlDateOfBirth.getDate(),
timeOfBirth.getHours(),
timeOfBirth.getMinutes(),
timeOfBirth.getSeconds());

return utilDateOfBirth;
}

// Define a field transformation method to write to the database
public java.sql.Time getTimeOfBirth()
{

return new java.sql.Time this.dateAndTimeOfBirth.getHours(),
this. dateAndTimeOfBirth.getMinutes(),

Advanced Mappings

3-70 Oracle Application Server TopLink Application Developer’s Guide

this.dateAndTimeOfBirth.getSeconds());
}

// Define a field transformation method to write to the database
public java.sql.Date getDateOfBirth()
{

return new java.sql.DateOfBirth this.dateAndTimeOfBirth.getYear(),
this.dateAndTimeOfBirth.getMonth(), this.dateAndTimeOfBirth.getDate());

}

Example 3–32 Creating a Transformation Mapping Using Indirection

// Create a new mapping and register it with the descriptor.
TransformationMapping transformation2 = new
transformation2.setAttributeName("designation");
transformation2.setGetMethodName ("getDesignationHolder");
transformation2.setSetMethodName ("setDesignationHolder");
transformation2.setAttributeTransformation ("getRankFromRow");
transformation2.addFieldTransformation("RANK", "getRankFromObject");
transformation2.useIndirection();
descriptor.addMapping(transformation2);

//Define an attribute transformation method to read from database row.
public String getRankFromRow()
{

Integer value = new Integer(((Number)row.get("RANK)).intValue());
String rank = null;
if (value.intValue() == 1) {

rank = "Executive";
}
if (value.intValue() == 2) {

rank = "Non-Executive";
}
return rank;

}
//Define a field transformation method to write to the database.
public Integer getRankFromObject()
{

Integer rank = null;

if (getDesignation().equals("Executive")) rank = new Integer(1);
if (getDesignation().equals("Non-Executive")) rank = new Integer(2);
return rank;

}

Advanced Mappings

Mapping 3-71

//Provide accessor methods for the indirection.
private ValueHolderInterface designation;
public ValueHolderInterface getDesignationHolder()
{

return designation;
}
public void setDesignationHolder(ValueHolderInterface value)
{

designation = value;
}

For more information about the available methods for TransformationMapping,
see the Oracle Application Server TopLink API Reference.

Serialized Object Mappings
Serialized object mappings are used to store large data objects, such as multimedia
files and BLOBs, in the database. Serialization transforms these large objects as a
stream of bits.

Serialized object mappings are instances of the SerializedObjectMapping class
and require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field that stores the value of the attribute, set by the setFieldName()
message

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user-defined methods, rather than directly. You do not
have to define accessors when you use Java 2.

Example 3–33 Creating a Serialized Object Mapping and Registering It with the
Descriptor

// Create a new mapping and register it with the descriptor.
SerializedObjectMapping serializedMapping = new SerializedObjectMapping();
serializedMapping.setAttributeName("jobDescription");
serializedMapping.setFieldName("JOB_DESC");
descriptor.addMapping(serializedMapping);

For more information about the available methods for
SerializedObjectMapping, see the Oracle Application Server TopLink API
Reference.

Advanced Mappings

3-72 Oracle Application Server TopLink Application Developer’s Guide

Variable One-to-One Mappings
Variable one-to-one mappings are instances of the VariableOneToOneMapping()
class and require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The reference class, set by sending the setReferenceClass() message

■ The foreign key and target query key information, normally specified by
sending the setForeignQueryKeyName() message and passing the source
foreign key field name and the target abstract query key name on the interface
descriptor

If the mapping uses a class indicator field:

■ Specify a type indicator field.

■ Specify the class indicator values on the mapping so that mapping can
determine the class of object to create.

Example 3–34 Defining a Variable One-to-One Mapping Using a Class Indicator Field

VariableOneToOneMapping variableOneToOneMapping = new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");
variableOneToOneMapping.setReferenceClass (Contact.class);
variableOneToOneMapping.setForeignQueryKeyName ("C_ID", "id");
variableOneToOneMapping.setTypeFieldName("TYPE");
variableOneToOneMapping.addClassIndicator(Email.class, "Email");
variableOneToOneMapping.addClassIndicator(Phone.class, "Phone");
variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

Note: If the target implementor descriptors’ primary keys are
composite, send the addForeignQueryKeyName() message for each of
the foreign key fields, and target query keys that make up the
relationship.

Note: Because Indirection is enabled by default, this requires the
attribute be a ValueHolderInterface.

Advanced Mappings

Mapping 3-73

Example 3–35 Defining a Variable One-to-One Mapping Using a Primary Key

VariableOneToOneMapping variableOneToOneMapping = new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");
variableOneToOneMapping.setReferenceClass (Contact.class);
variableOneToOneMapping.setForeignQueryKeyName ("C_ID", "id");
variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

For more information about the available methods for
VariableOneToOneMapping, see the Oracle Application Server TopLink API
Reference.

Object Relational Mappings
Relational mappings defines the reference between persistent objects. Object
relational mappings enable you to persist an object model into an object-relational
data model. The OracleAS TopLink Mapping Workbench does not directly support
these mappings—you must define them in code through amendment methods.

OracleAS TopLink supports the following object-relational mappings:

■ Array

■ Object array

■ Structure

■ Reference

■ Nested table

Array Mappings
In an object-relational data-model, structures can contain arrays (collections of other
data types). These arrays can contain primitive data types or collections of other
structures. OracleAS TopLink stores the arrays with their parent structure in the
same table.

All elements in the array must be the same data type. The number of elements in an
array controls the size of the array. An Oracle database allows arrays of variable
sizes (called Varrays).

Oracle8i or higher offers two collection types:

■ Varray – Used to represent a collection of primitive data or aggregate
structures.

Advanced Mappings

3-74 Oracle Application Server TopLink Application Developer’s Guide

■ Nested table – Similar to varrays except they store information in a separate
table from the parent structure’s table

OracleAS TopLink supports arrays of primitive data through the ArrayMapping
class. This is similar to DirectCollectionMapping—it represents a collection of
primitives in Java. However, the ArrayMapping class does not require an
additional table to store the values in the collection.

OracleAS TopLink supports arrays of aggregate structures through the
ObjectArrayMapping class.

OracleAS TopLink supports nested tables through the NestedTableMapping class.

Implementing Array Mappings in Java Array mappings are instances of the
ArrayMapping class and require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field mapped, set by sending the setFieldName() message

■ The name of the array, set by sending the setStructureName() message

Example 3–36 Creating an Array Mapping for the Employee Source Class and
Registering It with the Descriptor

// Create a new mapping and register it with the source descriptor.
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setAttributeName("responsibilities");
arrayMapping.setStructureName("Responsibilities_t");
arrayMapping.setFieldName("RESPONSIBILITIES");
descriptor.addMapping(arrayMapping);

In addition to the API Example 3–36 illustrates, other common API for use with
implement array mapping include:

■ setReferenceClass(Class referenceClass): to set the parent class

■ setGetMethodName(String name) and setSetMethodName(String
name): to provide method access

For more information about the available methods for ArrayMapping, see the
Oracle Application Server TopLink API Reference.

Advanced Mappings

Mapping 3-75

Object Array Mappings
In an object-relational data-model, object arrays allow for an array of object types or
structures to be embedded into a single column in a database table or an object
table.

OracleAS TopLink supports object array mappings to define a collection-aggregated
relationship in which the target objects share the same row as the source object.

Implementing Object Array Mappings in Java Object array mappings are instances of the
ObjectArrayMapping class. You must associate this mapping to an attribute in the
parent class. Object array mappings require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field mapped, set by sending the setFieldName() message

■ The name of the array, set by sending the setStructureName() message

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user defined methods, rather than directly.

Example 3–37 Creating an Object Array Mapping for the Insurance Source Class and
Registering It with the Descriptor

// Create a new mapping and register it with the source descriptor.
ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
phonesMapping.setAttributeName("phones");
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");
phonesMapping.setStructureName("PHONELIST_TYPE");
phonesMapping.setReferenceClass(Phone.class);
phonesMapping.setFieldName("PHONES");
descriptor.addMapping(phonesMapping);

For more information about the available methods for ObjectArrayMapping, see
the Oracle Application Server TopLink API Reference.

Structure Mappings
In an object-relational data-model, structures are user defined data types or
object-types. This is similar to a Java class—it defines attributes or fields in which
each attribute is either:

■ A primitive data type

■ Another structure

Advanced Mappings

3-76 Oracle Application Server TopLink Application Developer’s Guide

■ Reference to another structure

OracleAS TopLink maps each structure to a Java class defined in your object model
and defines a descriptor for each class. A StructureMapping maps nested
structures, similar to an AggregateObjectMapping. However, the structure
mapping supports null values and shared aggregates without requiring additional
settings (because of the object-relational support of the database).

Implementing Structure Mappings in Java Structure mappings are instances of the
StructureMapping class. You must associate this mapping to an attribute in each
of the parent classes. Structure mappings require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field mapped, set by sending the setFieldName() message

■ The target (child) class, set by sending the setReferenceClass() message

Use the optional setGetMethodName() and setSetMethodName() messageto
access the attribute through user-defined methods, rather than directly.

Make the following changes to the target (child) class descriptor:

■ Send the descriptorIsAggregate() message to indicate it is not a root level

■ Remove table or primary key information

Example 3–38 Creating a Structure Mapping for the Employee Source Class and
Registering It with the Descriptor

// Create a new mapping and register it with the source descriptor.
StructureMapping structureMapping = new StructureMapping();
structureMapping.setAttributeName("address");
structureMapping.setReferenceClass(Address.class);
structureMapping.setFieldName("address");
descriptor.addMapping(structureMapping);

Example 3–39 Creating the Descriptor of the Address Aggregate Target Class

The aggregate target descriptor does not need a mapping to its parent, or any table
or primary key information.

// Create a descriptor for the aggregate class. The table name and primary key
are not specified in the aggregate descriptor.
ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor ();
descriptor.setJavaClass(Address.class);
descriptor.setStructureName("ADDRESS_T");
descriptor.descriptorIsAggregate();

Advanced Mappings

Mapping 3-77

// Define the field ordering
descriptor.addFieldOrdering("STREET");
descriptor.addFieldOrdering("CITY");
...

// Define the attribute mappings or relationship mappings.
...

In addition to the API Example 3–39 illustrates, other common API for use with
structure mapping include:

■ readWrite()

■ readOnly()

■ setIsReadOnly(boolean readOnly)

For more information about the available methods for StructureMapping, see the
Oracle Application Server TopLink API Reference.

Reference Mappings
In an object-relational data-model, structures reference each other through refs—not
through foreign keys (as in a traditional data model). Refs are based on the target
structure’s ObjectID.

OracleAS TopLink supports refs through the ReferenceMapping. They represent
an object reference in Java, similar to a OneToOneMapping. However, the reference
mapping does not require foreign key information.

Implementing Reference Mappings in Java Reference mappings are instances of the
ReferenceMapping class. You must associate this mapping to an attribute in the
source class. Reference mappings require the following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The field mapped, set by sending the setFieldName() message

■ The target class, set by sending the setReferenceClass () message

Use the optional setGetMethodName() and setSetMethodName() messages to
access the attribute through user-defined methods, rather than directly.

Advanced Mappings

3-78 Oracle Application Server TopLink Application Developer’s Guide

Example 3–40 Creating a Reference Mapping for the Employee Source Class and
Registering It with the Descriptor

// Create a new mapping and register it with the source descriptor.
ReferenceMapping referenceMapping = new ReferenceMapping();
referenceMapping.setAttributeName("manager");
referenceMapping.setReferenceClass(Employee.class);
referenceMapping.setFieldName("MANAGER");
descriptor.addMapping(refrenceMapping);

In addition to the API Example 3–40 illustrates, other common API for use with
reference mappings include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ dontUseIndirection()

■ readWrite()

■ readOnly()

■ setIsReadOnly(boolean readOnly)

For more information about the available methods for ReferenceMapping, see the
Oracle Application Server TopLink API Reference.

Nested Table Mappings
Nested table types model an unordered set of elements. These elements may be
built-in or user-defined types. You can view a nested table as a single-column table
or, if the nested table is an object type, as a multi-column table (with a column for
each attribute of the object type).

Nested tables represent a one-to-many or many-to-many relationship of references
to another independent structure. They support querying and joining better than
Varrays that are inlined to the parent table.

OracleAS TopLink supports nested table through the NestedTableMapping. They
represent a collection of object references in Java, similar to a OneToManyMapping or
ManyToManyMapping. However, the nested table mapping does not require foreign
key information (such as a one-to-many mapping) or the relational table (such as a
many-to-many mapping).

Implementing Nested Table Mappings in Java Nested table mappings are instances of the
NestedTableMapping class. This mapping is associated to an attribute in the
parent class. Nested table mapping require the following elements:

Advanced Mappings

Mapping 3-79

■ The attribute mapped, set by sending the setAttributeName() message

■ The field mapped, set by sending the setFieldName() message

■ The name of the array structure, set by sending the setStructureName()
message

Use the optional setGetMethodName() and setSetMethodName() messages to
allow OracleAS TopLink to access the attribute through user-defined methods,
rather than directly.

Example 3–41 Creating a Nested Table Mapping for the Insurance Source Class and
Registering It with the Descriptor

// Create a new mapping and register it with the source descriptor.
NestedTableMapping policiesMapping = new NestedTableMapping();
policiesMapping.setAttributeName("policies");
policiesMapping.setGetMethodName("getPolicies");
policiesMapping.setSetMethodName("setPolicies");
policiesMapping.setReferenceClass(Policy.class);
policiesMapping.dontUseIndirection();
policiesMapping.setStructureName("POLICIES_TYPE");
policiesMapping.setFieldName("POLICIES");
policiesMapping.privateOwnedRelationship();
policiesMapping.setSelectionSQLString("select p.* from policyHolders ph,
table(ph.policies) t, policies p where ph.ssn=#SSN and ref(p) = value(t)");

descriptor.addMapping(policiesMapping);

In addition to the API Example 3–41 illustrates, other common API for use with
nested table mappings include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ dontUseIndirection()

■ setUsesIndirection(boolean usesIndirection)

■ independentRelationship()

■ privateOwnedRelationship()

■ setIsPrivateOwned(Boolean isPrivateOwned)

For more information about the available methods for NestedTableMapping, see
the Oracle Application Server TopLink API Reference.

Advanced Mappings

3-80 Oracle Application Server TopLink Application Developer’s Guide

Direct Map Mappings
Direct map mappings store instances that implement java.util.Map. Unlike
one-to-many or many-to-many mappings, the keys and values of the map in this
type of mapping are Java objects that do not have descriptors. The object type
stored in the key and the value of direct map are Java primitive wrapper types such
as String objects.

Support for primitive data types such as int is not provided because Java maps
only hold objects.

Direct map mappings are instances of the DirectMapMapping class and require the
following elements:

■ The attribute mapped, set by sending the setAttributeName() message

■ The database table that holds the keys and values to be stored in the map, set by
sending the setReferenceTableName() message

■ The field in the reference table from which the keys are read and placed into the
map; this is called the direct key field and is set by sending the
setDirectKeyFieldName() message

■ The foreign key information, which you specify by sending the
setReferenceKeyFieldName() message and passing the name of the field
that is a foreign reference to the primary key of the source object

■ The field in the reference table from which the values are read and placed into
the map; this is called the direct field and is set by sending the
setDirectFieldName() message

■ The Java type of key in map from which the keys are converted from keys that
are read from the database placed into the map; this is set by sending the
setKeyClass() message

■ The Java type of value in map from which the values are converted from values
that are read from the database placed into the map; this is set by sending the
setValueClass() message

Note: If the target primary key is composite, send the
addReferenceKeyFieldName() message for each of the fields that
make up the key.

Customizing the Project

Mapping 3-81

Example 3–42 Creating a Simple Direct Map Mapping

DirectMapMapping directMapMapping = new DirectMapMapping();
directMapMapping.setAttributeName("cities");
directMapMapping.setReferenceTableName("CITY_TEMP");
directMapMapping.setReferenceKeyFieldName("RECORD_ID");
directMapMapping.setDirectKeyFieldName("CITY");
directMapMapping.setDirectFieldName("TEMPERATURE");
directMapMapping.setKeyClass(String.class);
directMapMapping.setValueClass(Integer.class);

descriptor.addMapping(directMapMapping);

In addition to the API Example 3–42 illustrates, other common API for use with
direct map mappings include:

■ useBasicIndirection(): implements OracleAS TopLink valueholder
indirection

■ useTransparentCollection(): if you use transparent indirection, this
element places a special collection in the source object's attribute

■ dontUseIndirection(): implements no indirection

For more information about the available methods for DirectMapMapping, see the
Oracle Application Server TopLink API Reference.

Customizing the Project
OracleAS TopLink projects, descriptors, and mapping are normally created using
the OracleAS TopLink Mapping Workbench. The output of the OracleAS TopLink
Mapping Workbench is an XML file that contains the mapping information required
to store persistent objects in the database.

The OracleAS TopLink Mapping Workbench does not offer access to all the
customization available to the OracleAS TopLink descriptors that make up the
project. In these situations, to customize the mapping information, you can specify
an amendment method to be run at deployment time. Each OracleAS TopLink
descriptor can have an amendment method.

This section describes some of the available customization topics and techniques,
including:

■ Customizing OracleAS TopLink Descriptors with Amendment Methods

■ Using After Load Methods

Customizing the Project

3-82 Oracle Application Server TopLink Application Developer’s Guide

■ Descriptor Events

■ Descriptor Copy Policy

■ Descriptor Query Manager

■ Instantiation Policy

■ Setting the Wrapper Policy Using Java Code

■ Creating EJB Projects and OracleAS TopLink Descriptors in Java

Customizing OracleAS TopLink Descriptors with Amendment Methods
Amendment methods are static methods that run at deployment time and enable
you to implement descriptor customization code. You can modify the OracleAS
TopLink descriptor of any persistent class with an amendment method when you
first instantiate the descriptor. For container-managed persistence, this happens
when the entity beans are deployed into the EJB server.

For more information about amendment methods, see the Oracle Application Server
TopLink Mapping Workbench User’s Guide.

Using After Load Methods
Some OracleAS TopLink features cannot be configured from the OracleAS TopLink
Mapping Workbench. To use these features, amend the descriptor after it is loaded
as part of the project. After load methods are a type of amendment method that
enables you to modify descriptors in code after you create the project object (either
from an XML project or a project class).

To access descriptors from the project object or the session object (after the session
object is created from the project), write a Java method that takes the name of the
descriptor as a single parameter. You can then send messages to the descriptor or
any of its specific mappings to configure advanced features. Make all descriptor
changes before the session logs in. Any descriptor change made after login is
ignored.

For more information, see "Amending Descriptors After Loading in Oracle
Application Server TopLink Mapping Workbench User’s Guide.

Use any of the following APIs to implement after load methods:

■ project.getDescriptors();

■ session.getDescriptors();

Customizing the Project

Mapping 3-83

■ session.getDescriptor(Class domainClass);

For more information about these APIs, see the Oracle Application Server TopLink API
Reference.

Descriptor Events
The descriptor event manager enables you to create events that trigger other events
in your application. You use the Event Manager to invoke specific events when
OracleAS TopLink reads, updates, deletes, or inserts objects on the database.

Descriptor events enable you to:

■ Synchronize persistent objects with other systems, services, and frameworks.

■ Maintain non persistent attributes of which OracleAS TopLink is not aware.

■ Notify other objects in the application when the persistent state of an object
changes.

■ Implement complex mappings or optimizations not directly supported by
OracleAS TopLink mappings.

You specify descriptor events in the OracleAS TopLink Mapping Workbench.

For more information, see "Specifying Events" in the Oracle Application Server
TopLink Mapping Workbench User’s Guide.

Receiving Descriptor Events
Applications receive descriptor events in several ways:

Implement the Descriptor Event Listener Interface Register objects that implement the
DescriptorEventListener interface with the descriptor event manager. The
descriptor event manager then notifies the object when any event occurs for that
descriptor.

Subclass the Descriptor Event Adapter Class Use the DescriptorEventAdapter class if
your application does not require all the methods defined in the
DescriptorEventListener interface. The DescriptorEventAdapter implements
the DescriptorEventListener interface and defines an empty method for each
method in the interface. To use the adapter, subclass it and then register your new
object with the descriptor event manager.

Customizing the Project

3-84 Oracle Application Server TopLink Application Developer’s Guide

Register an Event Method with a Descriptor Register a public method as an event
method. The descriptor then calls the event method when a database operation
occurs. The event method must:

■ Be public so that OracleAS TopLink can call it

■ Return void

■ Take a DescriptorEvent as a parameter

Registering Descriptor Event Listeners If you want an object other than the domain
object to handle these events, register it as a listener with the descriptor event
manager. If you want a LockManager to receive events for all Employees, then
modify your descriptor amendment to register the LockManager as the listener.

Any object you register as a listener must implement the
DescriptorEventListener interface. The amendment method appears in
Example 3–43.

Example 3–43 Registering a Descriptor Event Listeners

public static void addToDescriptor(Descriptor descriptor)
{

descriptor.getEventManager().addListener(LockManager.activeManager());
}

Customizing the Project

Mapping 3-85

Reference Table 3–5 summarizes the most common public methods for
DescriptorEventManager. For more information about the available methods for
DescriptorEventManager, see the Oracle Application Server TopLink API Reference.

Table 3–5 Elements for the Descriptor Event Manager

Element Default Method Name

Events selectors
(Defaults specified in
listener interface
implementation)

All events take
DescriptorEvent:

postBuild
postRefresh
preWrite
postWrite
preDelete
postDelete
preInsert
postInsert
preUpdate
postUpdate
aboutToInsert
aboutToUpdate
postClone
postMerge

All events take
(String methodName):

setPostBuildSelector
setPostRefreshSelector
setPreWriteSelector
setPostWriteSelector
setPreDeleteSelector
setPostDeleteSelector
setPreInsertSelector
setPostInsertSelector
setPreUpdateSelector
setPostUpdateSelector
setAboutToInsertSelector
setAboutToUpdateSelector
setPostCloneSelector
setPostMergeSelector

Listener registration
Descriptor-Event
reference (available
methods on
Descriptor-Event)

Source object if it
implements the listener
interface only;
aboutToInsert/
Update, / Build only;
postMerge / Clone /
write events within a Unit
of Work

addListener
(DescriptorEventListener
listener)
getSource()
getSession()
getQuery()
getDescriptor()
getRow()
getOriginalObject()

Customizing the Project

3-86 Oracle Application Server TopLink Application Developer’s Guide

Supported Events
The DescriptorEventManager supports several methods, including those in
Table 3–6.

Table 3–6 Supported Events

Triggering Method
Type Supported Events Description

Post-X Method Post-Build Occurs after an object is built from the
database.

Post-X Method Post-Clone Occurs after an object has been cloned into a
Unit of Work.

Post-X Method Post-Merge Occurs after an object has been merged from
a Unit of Work.

Post-X Method Post-Refresh Occurs after an object is refreshed from the
database.

Updating Method Pre-Update Occurs before an object is updated in the
database. This may be called in a Unit of
Work even if the object has no changes and
does not require an update.

Updating Method About-to-Update Occurs when an object’s row is updated in
the database. This method is called only if
the object has changes in the Unit of Work.

Updating Method Post-Update Occurs after an object is updated in the
database. This may be called in a Unit of
Work even if the object has no changes and
does not require an update.

Inserting Method Pre-Insert Occurs before an object is inserted in the
database.

Inserting Method About-to-Insert Occurs when an object’s row is inserted in
the database.

Inserting Method Post-Insert Occurs after an object is inserted into the
database.

Writing Method Pre-Write Occurs before an object is inserted or
updated into the database. This occurs
before Pre-Insert/Update.

Writing Method Post-Write Occurs after an object is inserted or updated
into the database. This occurs after
Pre-Insert/Update.

Customizing the Project

Mapping 3-87

Descriptor Copy Policy
The OracleAS TopLink Unit of Work feature uses copies of object (clones) rather than
the original objects to perform its tasks. You can construct clones as follows:

■ The Unit of Work calls the object default constructor to create a copy. This is the
default method to create a clone.

■ You specify a method on the object, and the Unit of Work calls this method to
generate the clone. For example, add the following method to the descriptor:

descriptor.createCopyPolicy("clone");

When the Unit of Work requires a clone of this object, it calls the clone()
method to create the copy.

■ You specify the method by adding the following code to the descriptor:

useCloneCopyPolicy(String)

The String in this method is the name of another method that clones the
object.

The most common way to use any policy other than the default (using the object
default constructor) is to create an amendment method and specify it in the
OracleAS TopLink Mapping Workbench when you configure the class.

For more information about amendment methods, see "Customizing OracleAS
TopLink Descriptors with Amendment Methods" on page 3-82.

For more information about implementing descriptor copy policy in code, see
"Setting the Copy Policy in Java" on page 3-101.

Deleting Method Pre-Delete Occurs before an object is deleted from
the database.

Deleting Method Post-Delete Occurs after an object is deleted from the
database.

Table 3–6 Supported Events (Cont.)

Triggering Method
Type Supported Events Description

Customizing the Project

3-88 Oracle Application Server TopLink Application Developer’s Guide

Descriptor Query Manager
You can add queries to a descriptor (named queries) for execution later in the
application. For example, you can add the following code to a descriptor:

ReadObjectQuery aQuery = new ReadObjectQuery(Employee.class);
descriptor.getQueryManager().addQuery("readAnEmployee", aQuery);

You can accomplish this with an amendment method.

For more information about amendment methods, see "Customizing OracleAS
TopLink Descriptors with Amendment Methods" on page 3-82.

Replacing Descriptor Queries
You can replace all queries in an OracleAS TopLink descriptor with user defined
queries. Doing this enables you to change query behavior or to substitute stored
procedures for the queries.

Example 3–44 Substituting a Stored Procedure for a Query

This example illustrates how to force the read object descriptor call to use a stored
procedure.

ReadObjectQuery query = new ReadObjectQuery();
StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_RDM_EMP");
query.setCall(call);
descriptor.getQueryManager().setReadObjectQuery
(query);

Instantiation Policy

Overriding the Instantiation Policy Using Java Code
The Descriptor class provides the following methods to specify how objects get
instantiated:

■ useDefaultConstructorInstantiationPolicy(): Instructs OracleAS
TopLink to use the default constructor to create new instances of objects built
from the database. This method can be private, protected, or default/package.

■ useFactoryInstantiationPolicy(Object, String): Instructs
OracleAS TopLink to send the message specified by the String parameter to an
object factory specified by the Object parameter to create objects from the

Customizing the Project

Mapping 3-89

database. The object factory method can be public, private, protected, or
default/package and requires no arguments.

■ useMethodInstantiationPolicy(String): Instructs OracleAS TopLink
to send the message contained in the string parameter to create objects that are
populated with data from the database. This method can be a public, static
method on the descriptor class, or it can be private, protected, or
default/package. It must return a new instance of the class.

■ useFactoryInstantiationPolicy(Class factoryClass, String
methodName): Instructs OracleAS TopLink to send the message contained in
the String parameter to an instance of the specified factoryClass. This
method must be return a new instance of the descriptor class. To instantiate the
factory, OracleAS TopLink invokes the default constructor of the specified
factoryClass. Both the factoryClass default constructor and the method
invoked on the factory can be private, protected, or default/package.

■ useFactoryInstantiationPolicy(Class factoryClass, String
methodName, String factoryMethodName): Instructs OracleAS TopLink
to send the message contained in the first String parameter, methodName, to an
instance of the specified factoryClass. This method must return a new
instance of the descriptor class. To instantiate the factory, OracleAS TopLink
invokes the second String, methodName on the specified factoryClass. This
method must be a static method on the factoryClass and must return an
instance of the factoryClass. The factory class static factory method and the
method invoked on the factory can be private, protected, or default/package.

Setting the Wrapper Policy Using Java Code
The Descriptor class provides methods used in conjunction with the wrapper
policy:

■ setWrapperPolicy(oracle.toplink.descriptors.WrapperPolicy): can
be invoked to provide a wrapper policy for the descriptor

■ getWrapperPolicy(): returns the wrapper policy for a descriptor

Creating EJB Projects and OracleAS TopLink Descriptors in Java
Create mappings and OracleAS TopLink descriptors to access features that are not
available in the OracleAS TopLink Mapping Workbench.

Customizing the Project

3-90 Oracle Application Server TopLink Application Developer’s Guide

To define a project using Java code:

1. Implement a project class that extends the
oracle.toplink.sessions.Project class.

2. Compile the project class.

3. Edit the toplink-ejb-jar.xml deployment descriptor so that the value for the
project-class element is the fully-qualified Project class name.

For more information about creating project classes, see the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Example 3–45 illustrates how you can specify OracleAS TopLink projects in code.

Note: Use the OracleAS TopLink Mapping Workbench to create a Java
Project class from an existing project. This provides a starting point for a
custom project class. For more information, see the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

You can also use the OracleAS TopLink Mapping Workbench Export
Project to Java Source... menu command to create a starting point for
coding the project class manually.

Customizing the Project

Mapping 3-91

Example 3–45 Specifying an OracleAS TopLink Project in Code

/**
* The class EmployeeProject is an example of an OracleAS TopLink project defined
in Java code. The individual parts of the project - the Login and the
descriptors, are built inside of methods that are called by the constructor.
Note that EmployeeProject extends the class oracle.toplink.sessions.Project.
*/
public class EmployeeProject extends oracle.toplink.sessions.Project{

/**
* Supply a zero argument constructor that initializes all aspects of the
project. Make sure that the login and all the descriptors are initialized and
added to the project.
*/
public EmployeeProject(){
applyPROJECT();
applyLOGIN();
buildAddressDescriptor();
buildEmployeeDescriptor();
// other methods to build all descriptors for the project
/**
* Project-level properties, such as the name of the project, should be specified
here.
*/
protected void applyPROJECT(){
setName("Employee");
}
protected void applyLOGIN()
{

oracle.toplink.sessions.DatabaseLogin login =
new oracle.toplink.sessions.DatabaseLogin();

// use platform appropriate for underlying database
login.setPlatformClassName("oracle.toplink.internal.databaseaccess.

OraclePlatform");

// if no sequencing is used, setLogin() will suffice
setLoginAndApplySequenceProperties(login);

}

/**
* Descriptors are built by defining table info, setting properties (caching,
etc.) and by adding mappings to the descriptor.
*/

Customizing the Project

3-92 Oracle Application Server TopLink Application Developer’s Guide

protected void buildEmployeeDescriptor() {
oracle.toplink.publicinterface.Descriptor descriptor =

new oracle.toplink.publicinterface.Descriptor();
}

// SECTION: DESCRIPTOR
// specify the class to be made persistent
descriptor.setJavaClass(examples.ejb.cmp11.advanced.EmployeeBean.class);

// specify the tables to be used and primary key
Vector tables = new Vector();
tables.addElement("EJB_EMPLOYEE");
descriptor.setTableNames(tables);
descriptor.addPrimaryKeyFieldName("EJB_EMPLOYEE.EMP_ID");

// SECTION: PROPERTIES
descriptor.setIdentityMapClass(
oracle.toplink.internal.identitymaps. FullIdentityMap.class);
descriptor.setExistenceChecking("Check cache");
descriptor.setIdentityMapSize(100);

// SECTION: COPY POLICY
descriptor.createCopyPolicy("constructor");

// SECTION: INSTANTIATION POLICY
descriptor.createInstantiationPolicy("constructor");

// SECTION: DIRECTTOFIELDMAPPING
oracle.toplink.mappings.DirectToFieldMapping firstNameMapping =
new oracle.toplink.mappings .DirectToFieldMapping();

firstNameMapping.setAttributeName("firstName");
firstNameMapping.setIsReadOnly(false);
firstNameMapping.setFieldName("EJB_EMPLOYEE.F_NAME");
descriptor.addMapping(firstNameMapping);

// … Additional mappings are added to the descriptor using the addMapping()
method.
},}

To deploy the OracleAS TopLink project, specify the project class name in the
project-class element in the toplink-ejb-jar.xml file for your entity beans.

For example:

<session>
<name>EmployeeDemo</name>

Writing Mappings in Code

Mapping 3-93

<project-class>oracle.toplink.demos.ejb.cmp.wls.employee.EmployeeProject
</project-class>
<login>

<connection-pool>ejbPool</connection-pool>
</login>

</session>

Writing Mappings in Code
In most cases, the OracleAS TopLink Mapping Workbench is the preferred tool to
create OracleAS TopLink elements however, OracleAS TopLink also supports
building components of your application in Java code. You can code components
ranging in size from small elements to complete projects. This section illustrates the
techniques required for building several of these components, and includes
discussions on:

■ Implementing Object-Relational Descriptors in Java

■ Implementing Primary Keys in Java

■ Implementing Inheritance in Java

■ Implementing Indirection in Java

■ Implementing Interfaces in Java

■ Setting the Copy Policy in Java

■ Implementing Multiple Tables in Java

■ Implementing Sequence Numbers in Java

■ Implementing Locking in Java

Implementing Object-Relational Descriptors in Java
Use the ObjectRelationalDescriptor class to define object-relational
descriptors. This descriptor subclass contains the following additional properties:

■ Structure name: Name of the object-type structure representing the class

■ Field ordering: Field index of the object-type (required because object-type can be
returned through JDBC as indexed arrays)

Writing Mappings in Code

3-94 Oracle Application Server TopLink Application Developer’s Guide

The OracleAS TopLink Remote (RMI) Example illustrates an object-relational data
model and descriptors. For more information, see the OracleAS TopLink Examples
at <ORACLE_HOME>\toplink\doc\examples.htm.

Example 3–46 Creating an Object-Relational Descriptor

import oracle.toplink.objectrelational.*;
ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor()
descriptor.setJavaClass(Employee.class);
descriptor.setTableName("EMPLOYEES");
descriptor.setStructureName("EMPLOYEE_T");
descriptor.setPrimaryKeyFieldName("OBJECT_ID");

descriptor.addFieldOrdering("OBJECT_ID");
descriptor.addFieldOrdering("F_NAME");
descriptor.addFieldOrdering("L_NAME");
descriptor.addFieldOrdering("ADDRESS");
descriptor.addFieldOrdering("MANAGER");
descriptor.addDirectMapping("id", "OBJECT_ID");
descriptor.addDirectMapping("firstName", "F_NAME");
descriptor.addDirectMapping("lastName", "L_NAME");
//Refer to the mappings section for examples of object relational mappings.
...

Implementing Primary Keys in Java
If a single field constitutes the primary key, send the setPrimaryKeyFieldName()
message to the descriptor. For a composite primary key, send the
addPrimaryKeyFieldName() message for each field that makes up the primary
key.

Alternatively, use the setPrimaryKeyFieldNames() message that sends a
Vector of the fields used as the primary key.

Example 3–47 Setting a Single-Field Primary Key in Java

// Define a new descriptor and set the primary key.
descriptor.setPrimaryKeyFieldName("ADDRESS_ID");

Example 3–48 Setting a Composite Primary Key in Java

// Define a new descriptor and set the primary key.
descriptor1.addPrimaryKeyFieldName("PHONE_NUMBER");
descriptor1.addPrimaryKeyFieldName("AREA_CODE");

Writing Mappings in Code

Mapping 3-95

Implementing Inheritance in Java
Although you can implement inheritance hierarchy in Java, under most
circumstances, we recommend you use the OracleAS TopLink Mapping Workbench.

To implement an inheritance hierarchy completely in Java, modify the descriptors
for the superclass and its subclasses. The inheritance implementation for a
descriptor is encapsulated in an InheritancePolicy object, which is accessed by
sending getInheritancePolicy() to the descriptor:

■ Unless you use a class extraction method, send the
setClassIndicatorFieldName() message to the InheritancePolicy of the
root class. The parameter is a string that indicates the table column that holds
the subclass type information.

■ In the root class, define the values written to the database indicate the class
type. Do this by:

■ Sending the addClassIndicator() message for each of the instantiable
subclasses in the hierarchy. This message requires two parameters—the
indicator value and the subclass it represents.

■ Sending the useClassNameAsIndicator() message. This stores the full
name of the class in the class indicator field.

■ Send the setParentClass() message to the descriptor for each subclass.

■ Configure a root or branch class to return only instances of itself, by calling the
dontReadSubclassesOnQueries() method.

Queries for Inherited Superclasses and Multiple Tables
If a superclass is configured to read subclasses and its subclasses define additional
tables, build multiple queries to obtain all the rows for all the subclasses. For best
performance in this situation, create a view against which to execute the query
using the setReadAllSubclassesViewName() method. The view must
internally perform an outer join or union on all the subclass tables and return a
single result set with all the data.

Note: Descriptors that inherit table names from a parent are not
sent the setTableName() and addTableName() messages for
the tables they inherit. Only the root class defines the primary key.

Writing Mappings in Code

3-96 Oracle Application Server TopLink Application Developer’s Guide

Customizing Inheritance
Occasionally, using the default OracleAS TopLink inheritance mechanism is not
possible. For these cases, you can customize the inheritance mechanism. Instead of
using a class indicator field and mapping, use a class extraction method. This
method takes the object’s row and returns the class to be used for that row. The
setClassExtractionMethodName() method is used to accomplish this.

Queries for inherited classes usually also require filtering of the table rows. By
default, OracleAS TopLink generates this from the class indicator information. If
you provide the class extraction method, specify the filtering expressions. These can
be set for concrete classes through setOnlyInstancesExpression() and for
branch classes through setWithAllSubclassesExpression().

Figure 3–10 illustrates an example of an inheritance hierarchy. The
Vehicle-Bicycle branch demonstrates how you can store all subclass information
in one table. The FueledVehicle-Car branch demonstrates how you can store
subclass information in two tables.

Writing Mappings in Code

Mapping 3-97

Figure 3–10 Inheritance Hierarchy

The Car and Bicycle classes are leaf classes. Queries performed on them return
instances of Car and Bicycle respectively.

FueledVehicle is a branch class. By default, branch classes are configured to read
instances and subclass instances. Queries for FueledVehicle return instances of
FueledVehicle and instances of Car.

NonFueledVehicle is a branch class and is configured to read subclasses. Because
it does not have a class indicator defined in the root, it cannot be written to the
database. Queries performed on NonFueledVehicle return instances of its
subclasses.

Vehicle is a root class, which is configured to read instances of itself and instances
of its subclass by default. Queries performed on the Vehicle class return instances
of any of the concrete classes in the hierarchy.

Vehicle

number id
integer passengerCapacity

Unfueled Vehicle

Bicycle

string description

Vehicle

string description

ID Fuel_Type Fuel_Cap
Gasoline
Diesel
Gasoline

249
250
251

10
15
25

ID Description
Toyota Hatchback
Chrysler 2-door Coupe
Pontiac 4-door Sedan

249
250
263

ID Veh_Type Pass_Cap
Car
Fueled
Bicycle

249
250
251

4
5
1

VEHICLE Table

FUELED_VEHICLE Table

CAR table

Java Inheritance Hierarchy
Relational Database Inheritance Hierarchy

Fueled Vehicle

integer fuelCapacity
string fuelType

Root

Branch

Leaf

ID Description
CCM
Giant
Norco

BICYCLE table

249
250
263

Writing Mappings in Code

3-98 Oracle Application Server TopLink Application Developer’s Guide

Example 3–49 Implementing Descriptors for the Classes in the Inheritance Hierarchy

// Vehicle is a root class. Because it is the root class, it must add the class
indicators for its subclasses.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Vehicle.class);
descriptor.setTableName("VEHICLE");
descriptor.setPrimaryKeyFieldName("ID");

// Class indicators must be supplied for each of the subclasses in the hierarchy
that can have instances.
InheritancePolicy policy = descriptor.getInheritancePolicy();
policy.setClassIndicatorFieldName("TYPE");
policy.addClassIndicator(FueledVehicle.class, "Fueled");
policy.addClassIndicator(Car.class, "Car");
policy.addClassIndicator(Bicycle.class, "Bicycle");

descriptor.addDirectMapping("id", "ID");
descriptor.addDirectMapping("passengerCapacity", "CAP");

return descriptor;
}

// FueledVehicle descriptor; it is a branch class and a subclass of Vehicle.
Queries made on this class will return instances of itself and instances of its
subclasses.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(FueledVehicle.class);
descriptor.addTableName("FUEL_VEH");
descriptor.getInheritancePolicy().setParentClass(Vehicle.class);
descriptor.addDirectMapping("fuelCapacity", "FUEL_CAP");
descriptor.addDirectMapping("fuelType", "FUEL_TYPE");
return descriptor;
}

// Car descriptor; it is a leaf class and subclass of FueledVehicle.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Car.class);
descriptor.addTableName("CAR");
descriptor.getInheritancePolicy().setParentClass(FueledVehicle.class);

Writing Mappings in Code

Mapping 3-99

// Next define the attribute mappings.
descriptor.addDirectMapping("description", "DESCRIP");
descriptor.addDirectMapping("fuelType", "FUEL_VEH.FUEL_TYPE");
return descriptor;
}

// NonFueledVehicle descriptor; it is a branch class and a subclass of Vehicle.
Queries made on this class will return instances of its subclasses.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(NonFueledVehicle.class);
descriptor.getInheritancePolicy().setParentClass(Vehicle.class);
return descriptor;
}

// Bicycle descriptor; it is a leaf class and subclass of NonFueledVehicle.
public static Descriptor descriptor()
{
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Bicycle.class);
descriptor.getInheritancePolicy().setParentClass(NonFueledVehicle.class);
descriptor.addDirectMapping("description", "BICY_DES");
return descriptor;
}

// FueledVehicle class; If a class extraction method is used, the following
needs to be added to specify that only the branch class itself needs to be
returned. This example is just specifying the class indicator field, which can
also be specified in the OracleAS TopLink Mapping Workbench in the Descriptor
Advanced Properties dialog.
public void addToDescriptor(Descriptor descriptor)
{
ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(builder.getField
("VEHICLE.TYPE").equal("F"));

}

Writing Mappings in Code

3-100 Oracle Application Server TopLink Application Developer’s Guide

Reference Table 3–7 summarizes the most common public methods for
InheritancePolicy. For more information about the available methods for
InheritancePolicy, see the Oracle Application Server TopLink API Reference.

Implementing Indirection in Java
To create indirection objects in code, the application must replace the relationship
reference with a ValueHolderInterface. It must also call the useIndirection()
method of the mapping if the mapping does not use indirection by default.
Likewise, call the dontUseIndirection() method to disable indirection.
ValueHolderInterface is defined in the oracle.toplink.indirection.

Example 3–50 A Mapping that Does Not Use Indirection

// Define the One-to-One mapping. Note that One-to-One mappings have indirection
enabled by default, so the "dontUseIndirection()" method must be called if
indirection is not used.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("address");
oneToOneMapping.setReferenceClass(Address.class);
oneToOneMapping.setForeignKeyFieldName("ADDRESS_ID");
oneToOneMapping.dontUseIndirection();
oneToOneMapping.setSetMethodName("setAddress");
oneToOneMapping.setGetMethodName("getAddress");
descriptor.addMapping(oneToOneMapping);

The following code illustrates a mapping using indirection.

// Define the One-to-One mapping. One-to-One mappings have indirection enabled
by default, so the "useIndirection()" method is unnecessary if indirection is
used.
OneToOneMapping oneToOneMapping = new OneToOneMapping();
oneToOneMapping.setAttributeName("address");
oneToOneMapping.setReferenceClass(Address.class);
oneToOneMapping.setForeignKeyFieldName("ADDRESS_ID");
oneToOneMapping.setSetMethodName("setAddressHolder");
oneToOneMapping.setGetMethodName("getAddressHolder");

Table 3–7 Elements for the Inheritance Policy

Element Default Method Name

Class indicators use indicator
mapping

setClassIndicatorFieldName(String fieldName)

Parent classes not applicable setParentClass(Class parentClass)

Writing Mappings in Code

Mapping 3-101

descriptor.addMapping(oneToOneMapping);

Implementing Interfaces in Java
Descriptors can own their parent interfaces. They can set multiple interfaces if they
have implemented multiple interfaces. The query keys are defined in a normal way
except that they must define the abstract query key from the interface descriptor in
their descriptors. An abstract query key on the interface descriptor enables it to
write expression queries on the interface.

Example 3–51 Using an Abstract Query Key on the Interface Descriptor

ExpressionBuilder contact = new ExpressionBuilder();
session.readObject(Contact.class, contact.get("id").equal(2));

Setting the Copy Policy in Java
The Descriptor class provides three methods that determine how an object is
cloned:

■ useInstantiationCopyPolicy(): the default method; OracleAS TopLink
creates a new instance of the object using the technique indicated by the
descriptor's instantiation policy. The default behavior is to use the default
constructor. The new instance is then populated by using the descriptor's
mappings to copy attributes from the original object.

■ useCloneCopyPolicy(): OracleAS TopLink calls the clone() method of the
object; ensure that the clone method is written correctly and returns a logical
shallow clone of the object

■ useCloneCopyPolicy(String): this method is called by passing in a string
that contains the name of a method that clones the object; ensure that the
method specified returns a logical shallow clone of the object

Note: Descriptor.useInstantiationCopyPolicy() replaces
Descriptor.useConstructorCopyPolicy() available in previous
versions of OracleAS TopLink. The old method is still supported, but it
has been deprecated.

Writing Mappings in Code

3-102 Oracle Application Server TopLink Application Developer’s Guide

Implementing Multiple Tables in Java
To define a multiple table descriptor, call the addTableName() method for each
table the descriptor maps to. If the descriptor inherits its primary table and is
defining only a single additional one, then the descriptor is mapped normally to
this table.

Primary Keys Match
Normally, the primary key is defined only for the primary table of the descriptor.
The primary table is the first table specified through addTableName(). The primary
key is not defined for the additional tables and is required to be the same as in the
primary table. If the additional table’s key is different, refer to the next example.

By default, all the fields in a mapping are presumed to be part of the primary table.
If a mapping’s field is for one of the additional tables, it must be fully qualified with
the field’s table name.

Example 3–52 Implementing a Multiple Table Descriptor In Which the Primary Keys
Match

//Define a new descriptor that uses three tables.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
descriptor.addTableName("PERSONNEL"); // Primary table
descriptor.addTableName("EMPLOYMENT");
descriptor.addTableName("USERS");

descriptor.addPrimaryKeyFieldName("PER_NUMBER");
descriptor.addPrimaryKeyFieldName("DEP_NUMBER");

descriptor.addDirectMapping("id", "PER_NUMBER");
descriptor.addDirectMapping("firstName", "F_NAME");
descriptor.addDirectMapping("lastName", "L_NAME");

OneToOneMapping department = new OneToOneMapping();
department.setAttributeName("department");
department.setReferenceClass(Department.class);
department.setForeignKeyFieldName("DEP_NUMBER");
descriptor.addMapping(department);
// Mapping the primary key fields in the additional tables is not required
descriptor.addDirectMapping("salary", "EMPLOYMENT.SALARY");

AggregateObjectMapping period = new AggregateObjectMapping();
period.setAttributeName(period);

Writing Mappings in Code

Mapping 3-103

period.setReferenceClass(EmployementPeriod.class);
period.addFieldNameTranslation("EMPLOYMENT.S_DATE", "S_DATE");
period.addFieldNameTranslation("EMPLOYMENT.E_DATE", "E_DATE");
descriptor.addMapping(period);

descriptor.addDirectMapping("userName", "USERS.NAME");
descriptor.addDirectMapping("password", "USERS.PASSWORD");

Primary Keys are Named Differently
If the additional table’s primary key is named differently, then call the descriptor
method addMultipleTablePrimaryKeyName(), which provides:

■ The field of the primary key from the primary table

■ The additional table name

■ The field in the additional table that the primary key maps to

Example 3–53 Implementing a Multiple Table Descriptor In Which the Additional
Table Primary Keys are Named Differently

//Define a new descriptor that uses three tables.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
descriptor.addTableName("PERSONNEL");
// Primary table
descriptor.addTableName("EMPLOYMENT");
descriptor.addTableName("USERS");

descriptor.addPrimaryKeyFieldName("PER_NUMBER");
descriptor.addPrimaryKeyFieldName("DEP_NUMBER");

descriptor.addMultipleTablePrimaryKeyName("PERSONEL.PER_NUMBER",
"USERS.PERSONEL_NO");

descriptor.addMultipleTablePrimaryKeyName("PERSONEL.DEP_NUMBER",
"USERS.DEPARTMENT_NO");

// Assumed EMPLOYMENT uses same primary key
descriptor.addDirectMapping(id, PER_NUMBER);

OneToOneMapping department = new OneToOneMapping();
department.setAttributeName("department");
department.setReferenceClass(Department.class);
department.setForeignKeyFieldName("DEP_NUMBER");
descriptor.addMapping(department);

Writing Mappings in Code

3-104 Oracle Application Server TopLink Application Developer’s Guide

// Primary key does not have to be mapped for additional tables.
...

Tables Related by Foreign Key Relationships
For OracleAS TopLink to support read, insert, update, and delete operations on an
object mapped to multiple tables:

■ Specify the foreign key information on the descriptor.

■ Specify the foreign keys and primary keys in the object.

The API is addMultipleTableForeignKeyFieldName(). This method builds the
join expression and adjusts the table insertion order to respect the foreign key
constraints.

Example 3–54 illustrates the setup of a descriptor for an object mapped to multiple
tables in which the tables are related by a foreign key relationship from the primary
table to the secondary table. The addMultipleTableForeignKeyFieldName()
method is used to specify the direction of the foreign key relationship.

If the foreign key is in the secondary table and refers to the primary table, then the
order of the arguments to addMultipleTableForeignKeyFieldName() is
reversed.

Example 3–54 Implementing Multiple Tables In Which a Foreign Key from the Primary
Table to the Secondary Table is Used to Join the Tables

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
Vector vector = new Vector();
vector.addElement("EMPLOYEE");
vector.addElement(ADDRESS");
descriptor.setTableNames(vector);
descriptor.addPrimaryKeyFieldName("EMPLOYEE.EMP_ID");
// Map the foreign key field of the employee table and the primary key of the
address table.
descriptor.addDirectMapping("addressID", "EMPLOYEE.ADDR_ID");

// Setup the join from the address table to the country employee table to the

Note: To allow read, insert, update, and delete operation to be
performed on the Employee object, map the foreign key field in the
primary table and the primary key in the secondary table.

Writing Mappings in Code

Mapping 3-105

address table by specifying the FK info to the descriptor. Set the foreign key
info from the address table to the country table.
descriptor.addMultipleTableForeignKeyFieldName("EMPLOYEE.ADDR_ID",
"ADDRESS.ADDR_ID");

Non Standard Table Relationships
Occasionally the join condition can be nonstandard. In this case, the descriptor’s
query manager can be used to provide a custom multiple table join expression. The
getQueryManager() method is called on the descriptor to obtain its query
manager, and the setMultipleTableJoinExpression() method is used to
customize the join expression.

Simply specifying the join expression allows OracleAS TopLink to perform read
operations for the object. Insert operations can also be supported if the table
insertion order is specified and the primary key of the additional tables is mapped
manually.

The insertion order is required to conform to foreign key constraints when inserting
to the multiple tables. Specify the insert order using the descriptor method
setMultipleTableInsertOrder().

Example 3–55 illustrates the use of the setMultipleTableJoinExpression() and
setMultipleTableInsertOrder() methods. In addition, it illustrates the use of a
custom join expression without specifying the table insert order.

Example 3–55 Implementing Multiple Tables In Which You Specify a Join Expression
and the Table Insert Order

Using this method allows only read and insert operations to be performed on
Employee objects. Note that the primary key of the secondary table, and the foreign
key of the primary table must be mapped and maintained by the application for
insert operations to work.

Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
Vector vector = new Vector();
vector.addElement("EMPLOYEE");

Note: Using these methods does not support update or delete
operations because of the lack of primary key information for the
secondary table(s). If update and delete operations are required, perform
them with custom SQL, or explicitly specify the foreign key information
as explained in the previous section.

Writing Mappings in Code

3-106 Oracle Application Server TopLink Application Developer’s Guide

vector.addElement(ADDRESS");
descriptor.setTableNames(vector);

// Specify the primary key information for each table.
descriptor.addPrimaryKeyFieldName("EMPLOYEE.EMP_ID");

// Map the foreign key field of the employee table and the primary key of the
address table.
descriptor.addDirectMapping("employee_addressID", "EMPLOYEE.ADDR_ID");
descriptor.addDirectMapping("address_addressID", "ADDRESS.ADDR_ID");
// Setup the join from the employee table to the address table using a custom
join expression and specifying the table insert order.
ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getQueryManager().setMultipleTableJoinExpression(builder.getField
("EMPLOYEE.ADDR_ID").equal(builder.getField("ADDRESS.ADDR_ID")));

Vector tables = new Vector(2);
tables.addElement(new DatabaseTable("ADDRESS"));
tables.addElement(new DatabaseTable("EMPLOYEE"));
descriptor.setMultipleTableInsertOrder(tables);
...

Example 3–56 Mapping a Multiple Table Descriptor In Which a Custom Join
Expression is Required

In this example, only read operations are supported.

//Define a new descriptor that uses three tables.
Descriptor descriptor = new Descriptor();
descriptor.setJavaClass(Employee.class);
descriptor.addTableName("PERSONNEL");
// Primary table
descriptor.addTableName("EMPLOYMENT");
descriptor.addPrimaryKeyFieldName("PER_NO");
descriptor.addPrimaryKeyFieldName("DEP_NO");

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getQueryManager().setMultipleTableJoinExpression((builder.getField
("PERSONEL.EMP_NO").equal(builder.getField("EMPLOYMENT.EMP_NO")));

descriptor.addDirectMapping("personelNumber", "PER_NO");

OneToOneMapping department = new OneToOneMapping();
department.setAttributeName("department");
department.setReferenceClass(Department.class);
department.setForeignKeyFieldName("DEP_NO");
descriptor.addMapping(department);
// The primary key field on the EMPLOYMENT does not have to be mapped.

Writing Mappings in Code

Mapping 3-107

...

Implementing Sequence Numbers in Java
To implement sequence numbers using Java code, send the
setSequenceNumberFieldName() message to the descriptor to register the name of
the database field that holds the sequence number. The
setSequenceNumberName() method also holds the name of the sequence. This
name can be one of the entries in the SEQ_NAME column or the name of the sequence
object (if you are using Oracle native sequencing).

Implementing Locking in Java
Use the API to set optimistic locking completely in code. All the API is on the
descriptor:

■ useVersionLocking(String): sets this descriptor to use version locking and
increments the value in the specified field name for update or delete

■ useChangedFieldsLocking(): tells this descriptor to compare only modified
fields for an update or delete

■ useTimestampLocking(String): sets this descriptor to use timestamp locking
and writes the current server time in the field every update or delete

■ useAllFieldsLocking(): tells this descriptor to compare every field for an
update or delete

■ useSelectedFieldsLocking(Vector): tells this descriptor to compare the
field names specified in this vector of Strings for an update or delete

Example 3–57 Implementing Optimistic Locking Using the Version Field of Employee
Table as the Version Number of the Optimistic Lock

// Set the field that control optimistic locking. No mappings are set for fields
which are version fields for optimistic locking.

Notes:

■ The sequence field must be in the first (primary) table if multiple
tables are used.

■ If you use Sybase, Microsoft SQL Server, or IBM Informix native
sequencing, this implementation has no direct meaning but must still
be set for compatibility reasons.

Writing Mappings in Code

3-108 Oracle Application Server TopLink Application Developer’s Guide

descriptor.useVersionLocking("VERSION");

The code in Example 3–57 stores the optimistic locking value in the identity map. If
the value must be stored in a nonread only mapping, then the code can be:

descriptor.useVersionLocking("VERSION", false);

The false indicates that the lock value is not stored in the cache, but is stored in the
object.

Java Implementation of Optimistic Locking
Use the API to set optimistic locking in code. All the API is on the descriptor:

■ useVersionLocking(String): sets this descriptor to use version locking and
increments the value in the specified field name for every update or delete

■ useTimestampLocking(String): sets this descriptor to use timestamp locking
and writes the current server time in the specified field name for every update
or delete

■ useChangedFieldsLocking(): tells this descriptor to compare only modified
fields for an update or delete

■ useAllFieldsLocking(): tells this descriptor to compare every field for an
update or delete

■ useSelectedFieldsLocking(Vector): tells this descriptor to compare the
field names specified in this vector of Strings for an update or delete

Example 3–58 illustrates how to implement optimistic locking using the VERSION
field of EMPLOYEE table as the version number of the optimistic lock.

Example 3–58 Implementing Optimistic Locking Example

descriptor.useVersionLocking("VERSION");

The code in Example 3–58 stores the optimistic locking value in the identity map. If
the value must be stored in a nonread only mapping, then the code appears as
follows:

descriptor.useVersionLocking("VERSION", false);

The false indicates that the lock value is not stored in the cache, but is stored in the
object.

Sessions 4-1

4
Sessions

Sessions are a key component of the Oracle Application Server TopLink
application—they provide OracleAS TopLink with access to the database. Sessions
enable you to execute queries, and they return persistent objects and other results
for client applications. This chapter introduces OracleAS TopLink sessions, and
describes:

■ Introduction to Session Concepts

■ Session Architectures

■ Configuring Sessions with the sessions.xml File

■ Session Manager

■ Session Querying

■ Session Types

■ Sessions and the Cache

■ Session Utilities

■ Customizing Session Events

■ OracleAS TopLink Support for Java Data Objects (JDO)

Introduction to Session Concepts

4-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Session Concepts
A session represents the connection between an application and the relational
database that stores its persistent objects. OracleAS TopLink provides different
session classes, each optimized for different design requirements and data access
strategies. OracleAS TopLink session types range from a simple database session
that gives one user one connection to the database, to the session broker that
provides access to several databases for multiple clients.

To understand the OracleAS TopLink session, you must be familiar with several
session concepts.

sessions.xml File
In most cases, the developer pre configures sessions for the application in a session
configuration file. This file, known as the sessions.xml file, is an Extensible
Markup Language (XML) file that contains all sessions that are associated with the
application. The sessions.xml file can contain any number of sessions and
session types.

Session Types
Several session types each provide a particular set of functionality to the
application.

Server Session
A server session is the most common OracleAS TopLink session type, because it
supports the three-tier architectures that are common to enterprise applications.
Server sessions manage the server side of client-server communications. They work
together with the client session to provide complete client-server communication.

The server session provides shared resources to a multithreaded environment,
including a shared cache and connection pools. The server session also provides
transaction isolation.

For more information about the server session, see "Server Session and Client
Session" on page 4-37.

Client Session
A client session is a client-side communications mechanism that works together
with the server session to provide the client-server connection. Each client session
serves one client.

Introduction to Session Concepts

Sessions 4-3

For more information about the client session, see "Server Session and Client
Session" on page 4-37.

Remote Session
A remote session offers database access to clients that do not reside on the OracleAS
TopLink Java virtual machine (JVM). The remote session connects to a client
session, which, in turn, connects to the server session.

For more information, see "Remote Session" on page 4-58.

Database Session
A database session is a unique session type because it provides both client and
server communications. It is a relatively simple session type that supports only a
single client and a single database connection. The database session is not scalable;
however, if you have an application with a single client that requires only one
database connection, the database session is usually your best choice.

For more information, see "Database Session" on page 4-48.

Session Broker
The OracleAS TopLink session broker is a mechanism that enables client
applications to communicate with multiple databases. A session broker makes
multiple database access transparent to the client.

For more information, see "Session Broker" on page 4-53.

Session Manager
When a client application requires a session, it requests the session from the
OracleAS TopLink session manager. The two main functions of the session manager
are to instantiate OracleAS TopLink sessions for the server, and to hold the sessions
for the life of the application. The session manager instantiates database sessions,
server sessions, or session brokers based on the configuration information in the
sessions.xml file.

The session manager instantiates sessions as follows:

1. The client application request a session by name.

2. The session manager looks up the session name in the sessions.xml file. If
the session name exists, the session manager instantiates the specified session;
otherwise, it raises an exception.

Session Architectures

4-4 Oracle Application Server TopLink Application Developer’s Guide

3. After instantiation, the session remains viable until you shut down the
application.

Connection Pool
A connection pool is a collection of reusable database connections. OracleAS
TopLink manages these connections for the application, provides connections to
processes as needed, and returns connections to the pool when the process is
complete. When it is returned to the pool, the connection is available for other
processes.

A properly configured connection pool significantly improves performance.

For more information about configuring connection pools, see "Working with
Connection Pools" in the Oracle Application Server TopLink Mapping Workbench User’s
Guide.

Caching
OracleAS TopLink sessions provide an object cache. This cache, known as the session
cache, retains information about objects that are read from or written to the database,
and is a key element for improving the performance of an OracleAS TopLink
application.

Profiling
OracleAS TopLink profiling enables you to identify performance bottlenecks in
your application. When enabled, the profiler logs a summary of the performance
statistics for every query that the application executes.

Session Architectures
A session in an OracleAS TopLink application includes a query mechanism that
interacts with the database, and an object construction mechanism that builds
objects from the data that is stored in the database. The data interaction and object
construction components both reside on a JVM. A client application uses these
mechanisms to query the database and retrieve objects.

Session Architectures

Sessions 4-5

Figure 4–1 Simple OracleAS TopLink Session Architecture

Server Session
A server session provides a connection with the database, and makes the extracted
data available to one or more client session (either client session or remote sessions).
A server session usually appears as part of an OracleAS TopLink three-tier
architecture. It uses a JDBC connection pool configured to provide a query
mechanism to clients. Client applications communicate with the server session
through a client session.

Figure 4–2 Typical OracleAS TopLink Server Session with Client Session Architecture

For more information about the server session, see "Server Session and Client
Session" on page 4-37.

Client
Application

Database

Query
Mechanism

Java Object
Builder

OracleAS TopLink JVM

Database

Server
Session

Client
Session

Client
Session

OracleAS TopLink JVM

Session Architectures

4-6 Oracle Application Server TopLink Application Developer’s Guide

Client Session
A client session communicates with the server session on behalf of the client
application (see Figure 4–2). A server session creates client sessions on request, and
the client sessions share an object cache.

Together, the client session and server session provide a three-tier architecture that
you can scale easily, by adding more client sessions. Because of this scaleability, we
recommend you use the three-tier architecture to build your OracleAS TopLink
applications.

For more information about the client session, see "Server Session and Client
Session" on page 4-37.

Database Session
A database session provides a client application with a single JDBC database
connection, for simple, standalone applications in which a single connection
services all database requests for one user.

Figure 4–3 OracleAS TopLink Database Session Architecture

For more information about the database session, see "Database Session" on
page 4-48.

Remote Session
A remote session is a client-side session that resides on the client rather than the
OracleAS TopLink JVM. The remote session does not replace the client session;
rather, a remote session requires a client session to communicate with the server
session. A remote session can also communicate directly with a database session.

Database

Database
Session

OracleAS TopLink JVM

Session Architectures

Sessions 4-7

Figure 4–4 Typical OracleAS TopLink Server Session with Remote Session
Architecture

The remote session provides a full OracleAS TopLink session, complete with a
session cache, on the client system. OracleAS TopLink manages the remote session
cache and enables client applications to execute operations on the OracleAS
TopLink JVM.

For more information about the remote session, see "Remote Session" on page 4-58.

Session Broker
The OracleAS TopLink session broker enables client applications to view several
databases through a single session. If you store objects in your application on
multiple databases, the session broker, which provides seamless communication for
client applications, enables the client to view multiple databases as if they are a
single database.

The session broker connects to the databases through either a database session or a
server session.

Database Remote
Session

Remote
Session

Server
Session

Client
Session

Client
Session

OracleAS TopLink JVM

Configuring Sessions with the sessions.xml File

4-8 Oracle Application Server TopLink Application Developer’s Guide

Figure 4–5 OracleAS TopLink Session Broker with Server Session Architecture

For more information about the session broker, see "Session Broker" on page 4-53.

Configuring Sessions with the sessions.xml File
OracleAS TopLink provides two ways to preconfigure your sessions: you can export
and compile Java source code from the OracleAS TopLink Mapping Workbench, or
use the OracleAS TopLink Sessions Editor to build a session configuration file, the
sessions.xml file. For the following reasons, we recommend you use the
sessions.xml file to deploy an OracleAS TopLink application:

■ It is easy to create and maintain in the OracleAS TopLink Sessions Editor.

■ It is easy to troubleshoot.

■ It provides access to most session configuration options.

■ It offers excellent flexibility, including the ability to modify deployed
applications.

This section describes the sessions.xml file and illustrates the options that are
available when you build the file. This section discusses editing the file manually,
but the simplest way to build the sessions.xml file is to use the OracleAS
TopLink Sessions Editor in the OracleAS TopLink Mapping Workbench.

This section explains how to configure the sessions.xml file, and includes
discussions on:

■ Navigating the sessions.xml File

■ XML Header

■ toplink-configuration Element

Mutliple Databases

Session
Broker

Database
Session

Database
Session

Database
Session

OracleAS TopLink JVM

Configuring Sessions with the sessions.xml File

Sessions 4-9

■ session Element

■ session-broker Element

■ JTA Configuration

For more information about creating configuration files in the OracleAS TopLink
Mapping Workbench, see "Understanding the OracleAS TopLink Sessions Editor" in
the Oracle Application Server TopLink Mapping Workbench User’s Guide.

Navigating the sessions.xml File
The sessions.xml file’s Document Type Definition (DTD) defines the file
structure. If you use the OracleAS TopLink Sessions Editor, you need not concern
yourself with that structure. However, if you do create or edit the file, you must
understand its structure.

The main structure of the sessions.xml file is the toplink-configuration
element. This element includes all session configuration options. Within the
toplink-configuration element, you configure sessions and session brokers.
The session broker contains only sessions defined in the sessions.xml file; the
bulk of session configuration occurs within the session element.

Example 4–1 offers a navigational view of the sessions.xml file, illustrating the
file’s structure:

Example 4–1 Navigating the sessions.xml File

<toplink-configuration>
<session>
<name>
<project-class> or <project-xml>
<session-type>
<login>

[Login Options including Sequencing and Cache Sysnchronization]
<uses-external-connection-pool>
<uses-external-transaction-controller>

</login>
<event-listener-class>
<profiler-class>
<data-source>
<external-transaction-controller-class>
<exception-handler-class>
<connection-pool>

[Connection Pool Options]

Configuring Sessions with the sessions.xml File

4-10 Oracle Application Server TopLink Application Developer’s Guide

</connection-pool>
<enable-logging>

[Logging Options]
</enable-logging>>

</session>
</toplink-configuration>

XML Header
The sessions.xml file begins with a header section that describes the file, and
specifies the location of the DTD for file validation.

If you use third-party parsers with the sessions.xml file, be aware that some
parsers require a fully qualified path to the DTD in the XML header. If you are
using one of these parsers, include the full path to the DTD in the system identifier,
as follows:

<!DOCTYPE toplink-configuration PUBLIC "-//Oracle Corp.//DTD TopLink Sessions
9.0.4//EN" "file://<ORACLE_HOME>/toplink/config/dtds/sessions_9_0_4.dtd">

toplink-configuration Element
The toplink-configuration element is the root XML element for the
sessions.xml file. It encapsulates the rest of the session configuration
information.

Example 4–2 The toplink-configuration Element

<toplink-configuration>
...
//Session configuration information
...

</toplink-configuration>

session Element
The session element contains configuration information for an OracleAS TopLink
session. It includes several tags that specify the options for the session. The
sessions.xml file normally contains at least one session element, and can
include several elements if the application requires it.

The session element supports the configuration tags listed in Table 4–1.

Configuring Sessions with the sessions.xml File

Sessions 4-11

Example 4–3 Using a Project Class Element

<toplink-configuration>
<session>

<name>mysession</name>
<project-class>com.mycompany.MyProject</project-class>
...

</session>
</toplink-configuration>

Example 4–4 Using the project.xml File

<toplink-configuration>
<session>

<name>mysession</name>
<project-xml>C:/myproject/myproject.xml</project-xml>
...

</session>
</toplink-configuration>

Table 4–1 Tags Within the Session Element

Tag Description

name Specifies the name of the session. Assign a unique name to
each session in the sessions.xml file to enable the session
manager to retrieve it correctly.

The name tag is mandatory.

project-class Specifies the name of the class that contains the OracleAS
TopLink project metadata. Use this tag (and not the
project-xml tag) to deploy a project that uses exported and
compiled Java code.

Specify the fully qualified Java class name, but do not include
the .class or .java extension.

project-xml Specifies the name of the XML file that contains the OracleAS
TopLink project metadata. Use this tag (and not the
project-class tag) to deploy your project that uses an
exported XML file.

Specify the fully qualified file name, including the .xml
extension.

Configuring Sessions with the sessions.xml File

4-12 Oracle Application Server TopLink Application Developer’s Guide

In addition to the preceding tags, the session element includes several tags that
contain session configuration information:

■ session-type Element

■ login Element

■ event-listener-class Element

■ cache-synchronization-manager Element

■ profiler-class Element

■ external-transaction-controller-class Element

■ exception-handler-class Element

■ connection-pool Element

■ enable-logging Element

session-type Element
The session-type element appears inside of a session element and specifies
the session type with the tags listed in Table 4–2.

Table 4–2 Tags Within the Session-Type Element

Tag Description

session-type Specifies the type of OracleAS TopLink session the
SessionManager will instantiate. Valid options include
server-session and database-session.

The session-type tag is mandatory.

server-session In the session-type element, indicates that the
SessionManager instantiates and returns the named session
as a ServerSession (Server).

database-session In the session-type element, indicates that the
SessionManager instantiates and returns the named session
as a DatabaseSession.

Configuring Sessions with the sessions.xml File

Sessions 4-13

Example 4–5 Defining a Server Session

<session>
<name>myServerSession</name>
<project-class>com.mycompany.MyProject</project-class>
<session-type>

<server-session/>
</session-type>
...

</session>

Example 4–6 Defining a Database Session

<session>
<name>myDatabaseSession</name>
<project-class>com.mycompany.MyProject</project-class>
<session-type>

<database-session/>
</session-type>
...

</session>

login Element
The login element tags listed in Table 4–3 are optional for the session. If you do
not include the login element in the sessions.xml file, set a default login in the
OracleAS TopLink Mapping Workbench.

Table 4–3 Basic Configuration Tags Within the Login Element

Tag Description

license-path Specifies the license path for pre-TopLink 4.6 licensing. Because
OracleAS TopLink no longer requires this tag, OracleAS
TopLink does not process this element. If you are using the
sessions.xml file from an OracleAS TopLink version that
required a licence file, this tag will not prevent the
sessions.xml file from running under the current version of
OracleAS TopLink, but you should consider rebuilding your
sessions.xml file.

Note: If you are using a sessions.xml file from an older
version of OracleAS TopLink, you can delete this tag.

Configuring Sessions with the sessions.xml File

4-14 Oracle Application Server TopLink Application Developer’s Guide

Example 4–7 Basic Configuration Using JDBC

<session>
<name>myServerSession</name>
<project-class>com.mycompany.MyProject</project-class>
<session-type>
<server-session/>

</session-type>
<login>
<license-path>C:/myproject/license/</license-path>
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class>

driver-class Specifies the JDBC driver class to use to log in to the database.

The driver-class tag is optional and is not required when
you implement the data-source tag.

connection-url Specifies the JDBC connection URL for the database.

This tag is optional. Do not use the connection-url tag if
you implement the data-source tag.

data-source Specifies the datasource name if you are using a JNDI
datasource.

This tag is optional. Do not use the data-source tag if you
implement the connection-url and driver-class tag.

platform-class Specifies the OracleAS TopLink platform class for the session.
This tag is optional.

For more information about platform classes, see "SDK
Platform and Sequencing" on page 5-54.

user-name The user name to log in to the database.

The user-name tag is optional and is not required if you use a
datasource.

password The password to log in to the database.

The password tag is optional and is not required if you use a
datasource.

encrypted-password The password of the user name used to log into the database.

The <encrypted-password> tag.

encryption-class-
name

When you use an encrypted password, select the specific
encryption class.

The <encryption-class-name> tag.

Table 4–3 Basic Configuration Tags Within the Login Element (Cont.)

Tag Description

Configuring Sessions with the sessions.xml File

Sessions 4-15

<connection-url>jdbc:oracle:thin@dbserver:1521:dbname</connection-url>
<platform-class>oracle.toplink.internal.databaseaccess.OraclePlatform</platform-class>
<user-name>scott</user-name>
<password>tiger</password>

</login>
...
</session>

Example 4–8 Basic Configuration Using a Datasource

<session>
<name>myServerSession</name>
<project-class>com.mycompany.MyProject</project-class>
<session-type>
<server-session/>

</session-type>
<login>
<data-source>jdbc/MyApplicationDS</data-source>
<platform-class>oracle.toplink.internal.databaseaccess.OraclePlatform</platform-class>

</login>
...
</session>

Optional Login Tags The login element offers several optional tags that enable you
to customize your session login.

Optional tags the login element offers include:

■ encryption-class-name: Specifies the name of the custom class used to
encrypt and decrypt the password. The encryption-class-name must be
fully qualified and the class must be on the class path.

■ encrypted-password: Specifies the encrypted password.

Other optional login tags accept TRUE or FALSE as valid values. Table 4–4
describes these tags.

Configuring Sessions with the sessions.xml File

4-16 Oracle Application Server TopLink Application Developer’s Guide

Table 4–4 Optional Tags Within the Login Element

Tag Description

should-bind-all-parameters Enables parameter binding for all parameters. Use
parameter binding with statement caching.

The default value is FALSE.

For more information about Parameter Binding, see
"Binding and Parameterized SQL" on page 5-17.

should-cache-all-statements Enables statement caching. The default value is FALSE.

Statement caching requires you to set the
should-bind-all-parameters tag to TRUE.

uses-byte-array-binding Specifies whether OracleAS TopLink uses binding for byte
arrays. The default value is FALSE.

uses-string-binding Specifies whether OracleAS TopLink uses binding for
String objects. The default value is FALSE.

uses-streams-for-binding Specifies whether OracleAS TopLink uses streams for
binding byte array parameters. The default value is
FALSE.

should-force-field-names-to-uppercase Specifies whether OracleAS TopLink converts field names
to uppercase when generating SQL. The default value is
FALSE.

should-optimize-data-conversion Specifies whether the session should optimize driver-level
data conversion. The default value is TRUE.

should-trim-strings Specifies whether OracleAS TopLink removes any trailing
white spaces from the end of strings. The default value is
TRUE.

uses-batch-writing Specifies whether the session uses batch writing to write to
the database. The default value is FALSE.

uses-jdbc20-batch-writing Specifies whether the session’s database connection(s)
uses JDBC 2.0 batch writing or OracleAS TopLink batch
writing. The default value is TRUE.

If you enable this option, enable the
uses-batch-writing option as well.

uses-external-connection-pool Specifies whether the session uses external connection
pooling. The default value is FALSE.

uses-native-sql Specifies whether the session uses database-specific SQL
grammar. The default value is FALSE.

Configuring Sessions with the sessions.xml File

Sessions 4-17

Sequencing Elements You can configure sequencing as part of the session login,
although it is not a requirement. If you do not configure sequencing in the
sessions.xml file, then the application uses the configuration that is specified in
the OracleAS TopLink Mapping Workbench project.

Configure sequencing in the sessions.xml file when you want to use custom
sequencing for a given session.

Table 4–5 lists the elements you use to configure sequencing in the sessions.xml
file. All these elements are optional.

uses-external-transaction-controller Specifies whether the session uses an external transaction
controller. The default value is FALSE.

non-jts-connection-url Specifies the URL for sequencing connection pooling.
Used in conjunction with the non-jts-datasource tag
when you set the uses-sequence-connection-pool
tag to TRUE.

non-jts-datasource Specifies the non-JTS datasource for the sequencing
connection pool. Used in conjunction with the
non-jts-connection-url tag when you set the
uses-sequence-connection-pool tag to TRUE.

uses-sequence-connection-pool Specifies whether the session creates and uses a separate
connection pool for sequencing. The default value is
FALSE. If you set this element to TRUE, you must also
configure the non-jts-connection-url and
non-jts-datasource tags.

Table 4–4 Optional Tags Within the Login Element (Cont.)

Tag Description

Configuring Sessions with the sessions.xml File

4-18 Oracle Application Server TopLink Application Developer’s Guide

For more information, see "Sequencing" on page 3-37.

Example 4–9 Configuring Native Sequencing

<session>
<login>

...
<uses-native-sequencing>true</uses-native-sequencing>
<sequence-preallocation-size>50</sequence-preallocation-size>

</login>
...
</session>

Example 4–10 Configuring Table-Based Sequencing

<session>
...

<login>
<uses-native-sequencing>false</uses-native-sequencing>
<sequence-table>SEQUENCE</sequence-table>

Table 4–5 Optional Sequencing Configuration Tags Within Login

Tag Description

uses-native-sequencing Specifies whether the session uses native sequencing. This tag accepts
TRUE or FALSE as values. The default is FALSE.

Note that not all database platforms support native sequencing.

sequence-preallocation-size Specifies the sequence preallocation size. If you use native sequencing,
this value must match the sequence preallocation size set on your
database.

The default value is 50.

sequence-table For table sequencing, specifies the name of the sequencing table.

The default name is SEQUENCE.

sequence-name-field For table sequencing, specifies the column in the sequencing table that
contains the names of the sequenced objects.

The default name is SEQ_NAME.

sequence-counter-field For table sequencing, specifies the column in the sequence table that
stores the current sequence count for each sequenced object.

The default name is SEQ_COUNT.

Configuring Sessions with the sessions.xml File

Sessions 4-19

<sequence-name-field>SEQ_NAME</sequence-name-field>
<sequence-counter-field>SEQ_COUNT</sequence-counter-field>

</login>
...
</session>

cache-synchronization-manager Element You configure cache synchronization as part of
the login. Use the cache-synchronization-manager element and the tags
listed in Table 4–6 to configure cache-synchronization for your application.

Table 4–6 Cache Synchronization Manager Configuration Tags

Tag Description

clustering-service Specifies the class name of the clustering service.

This tag is required for cache synchronization.

multicast-port Specifies the port for listening for connection messages
over IP multicast. Ensure that all servers in your OracleAS
TopLink cache synchronization group use the same
multicast port.

This tag is required only if you also use the
multicast-group-address element. The default value
is 6018.

multicast-group-address Specifies the IP address for sending connection messages
over IP multicast. Ensure that all servers in your OracleAS
TopLink cache synchronization group use the same
multicast address.

This tag is required only if you also use the
multicast-port element. The default value is
226.18.6.18.

packet-time-to-live Specifies the number of network hops that cache
synchronization discovery packets traverse.

This optional tag defaults to 2.

is-asynchronous Specifies whether cache synchronization is performed
asynchronously (TRUE) or synchronously (FALSE).

This optional tag defaults to TRUE.

should-remove-connection-on-error Specifies whether OracleAS TopLink removes a remote
connection if a communications exception occurs with a
remote server.

This optional tag defaults to FALSE.

Configuring Sessions with the sessions.xml File

4-20 Oracle Application Server TopLink Application Developer’s Guide

Example 4–11 Using the Cache Synchronization Manager

<session>
...
<login>
<cache-synchronization-manager>
<clustering-service>oracle.toplink.remote.rmi.RMIClusteringService</clustering-servi

ce>
<multicast-port>6020</multicast-port>

jndi-user-name Specifies the user name to use for binding the Cache
Synchronization Manager into JNDI. Use this tag to
support JNDI in non application server applications.

This optional tag requires the jndi-password tag.

jndi-password Specifies the password to use for binding the cache
synchronization manager into JNDI. Use this tag to
support JNDI in non application server applications.

This optional tag requires the jndi-user-name tag.

jms-topic-connection-factory-name Specifies the topic connection factory name for JMS cache
synchronization. This tag is required only when you use
JMS cache synchronization.

jms-topic-name Specifies the topic name for JMS cache synchronization.
This tag is required only when you use JMS cache
synchronization.

naming-service-initial-context-factor
y-name

Specifies the initial context factory for accessing JNDI. Use
this tag only if OracleAS TopLink encounters difficulties
connecting to JNDI or JMS.

naming-service-url Specifies the URL of the naming service that supports
cache synchronization.

The value for this element depends on how you
implement cache synchronization:

■ For JNDI clustering services, this is the scheme, host
IP address, and port of the JNDI service.

■ For the RMI clustering service, this is the host IP
address and port of the RMI registry.

This optional tag may resolve problems that occur when
you implement cache synchronization inside an
application server with a JNDI clustering service. If you do
not encounter any problems, do not use this tag.

Table 4–6 Cache Synchronization Manager Configuration Tags (Cont.)

Tag Description

Configuring Sessions with the sessions.xml File

Sessions 4-21

<multicast-group-address>226.18.6.18</multicast-group-address>
<is-asynchronous>true</is-asynchronous>
<should-remove-connection-on-error>true</should-remove-connection-on-error>
<naming-service-url>localhost:1099</naming-service-url>

</cache-synchronization-manager>
</login>

...
</session>

event-listener-class Element
If your applications need to know when session events take place, use event
listeners to register for event notification. Event listeners can be configured in the
sessions.xml file.

The event-listener-class tag enables you to configure listener classes that
either implement the oracle.toplink.sessions.SessionEventListener
interface, or extend the oracle.toplink.sessions.SessionEventAdapter
class. Configure multiple event listener classes by including multiple
event-listener-class tags and specifying the implementing class name for
each tag.

OracleAS TopLink automatically registers event listeners in the sessions.xml file
with the session event manager.

For more information, see "Customizing Session Events" on page 4-67.

Example 4–12 Setting the Event Listener Class in Code

package examples;
import oracle.toplink.sessions.*;
public class MyEventListener extends SessionEventAdapter {

public void preLogin(SessionEvent event) {
Session session = event.getSession();
/* custom code goes here */

}
}

Example 4–13 Setting the Event Listener Class in the sessions.xml File

<session>
...
<event-listener-class>examples.MyEventListener</event-listener-class>
...

Configuring Sessions with the sessions.xml File

4-22 Oracle Application Server TopLink Application Developer’s Guide

</session>

OracleAS TopLink registers the examples.MyEventListener class with the
session event manager for the session. OracleAS TopLink invokes the
MyEventListener class preLogin method when the preLogin event occurs on
the session.

profiler-class Element
OracleAS TopLink provides a profiler to optimize your application and identify
performance bottlenecks. To implement the performance profiler, use the
profiler-class tag to include the performance profiler in your session.

Example 4–14 Implementing the Performance Profiler in the sessions.xml File

<session>
...
<profiler-class>oracle.toplink.tools.profiler.PerformanceProfiler</profiler-class>
...

</session>

The profiler-class tag supports any class that implements the
oracle.toplink.sessions.SessionProfiler interface. Because of this, you
can build your own profiler and add it to your session—provided that your profiler
implements the oracle.toplink.sessions.SessionProfiler interface.

external-transaction-controller-class Element
If your system includes external transactions (under JTA, for example), specify an
OracleAS TopLink external transaction controller using the
external-transaction-controller-class tag.

To use an external transaction controller, specify the following in the session login:

■ The external transaction controller

■ A datasource on the session

■ An external connection pool

Note: You can implement only one profiler a session.

Configuring Sessions with the sessions.xml File

Sessions 4-23

Example 4–15 Configuring the External Transaction Controller

<session>
...
<login>

...
<uses-external-transaction-controller>true</uses-external-transaction-controller>
<data-source>jdbc/MyApplicationDS</data-source>
<uses-external-connection-pool>true</uses-external-connection-pool>
...

</login>
<external-transaction-controller-class>oracle.toplink.jts.oracle9i.Oracle9iJTSExternal

TransactionController</external-transaction-controller-class>
...

</session>

exception-handler-class Element
The exception-handler-class tag specifies a class that handles exceptions for
the session. This tag accepts any class that implements the
oracle.toplink.exceptions.ExceptionHandler.

Example 4–16 Configuring the Exception Handler in Code

package examples;
import oracle.toplink.exceptions.*;
public class MyExceptionHandler implements ExceptionHandler {

public Object handleException(RuntimeException exception) {
/*custom code goes here */

}
}

Example 4–17 Configuring the Exception Handler in the sessions.xml File

<session>
...
<exception-handler-class>examples.MyExceptionHandler</exception-handler-class>
...

</session>

connection-pool Element
You can explicitly configure a single connection pool or multiple connection pools
for your OracleAS TopLink application with the connection-pool element in the

Configuring Sessions with the sessions.xml File

4-24 Oracle Application Server TopLink Application Developer’s Guide

sessions.xml file. If you do not configure a connection pool for a session, then
the session uses the default connection pool that you defined for the project.

Define a login for each connection-pool that you define manually. Table 4–7
lists the elements you use to configure the connection-pool element in the
sessions.xml file.

For more information about configuring the connection pool for the project, see
"Working with Connection Pools" in the Oracle Application Server TopLink Mapping
Workbench User’s Guide.

For more information about configuring a login, see "login Element" on page 4-13.

Example 4–18 Configuring the Connection Pool Element

<session>
...

<connection-pool>
<is-read-connection-pool>true</is-read-connection-pool>
<name>additionalReadPool</name>
<max-connections>20</max-connections>
<min-connections>10</min-connections>
<login>
...

Table 4–7 Connection Pool Element Tags

Tag Description

is-read-connection-pool Specifies whether the connection pool contains read connections (true) -
(non-transactional) or for write connections (false) - (transactional).

The is-read-connection-pool tag is mandatory, and accepts TRUE
or FALSE as values.

name Specifies the name of the connection pool. If the name is the same as
another existing OracleAS TopLink connection pool (such as the default
OracleAS TopLink read pool), the existing connection pool is replaced
with the new one.

The name tag is mandatory.

max-connections Specifies the maximum number of database connections that the
connection pool can use.

This tag is optional and accepts integer values. The default is 10.

min-connections Specifies the minimum number of database connections that the
connection pool should use at startup.

This tag optional and accepts integer values. The default is 5.

Configuring Sessions with the sessions.xml File

Sessions 4-25

</login>
</connection-pool>

...
</session>

enable-logging Element
OracleAS TopLink does not automatically enable logging for a session unless you
explicitly request it. To enable logging in a session, include the enable-logging
element as part of your session definition in the sessions.xml file and set it to
TRUE.

After you enable logging, you can customize the logging behavior on the session by
including one or more logging options in the sessions.xml file. The available
logging options appear in Table 4–8, and accept TRUE or FALSE as arguments.

Example 4–19 Configuring Logging and Logging Options

<session>
...
<enable-logging>true</enable-logging>
<logging-options>

<log-debug>false</log-debug>
<log-exceptions>true</log-exceptions>
<log-exception-stacktrace>true</log-exception-stacktrace>
<print-session>true</print-session>
<print-thread>false</print-thread>
<print-connection>true</print-connection>
<print-date>true</print-date>

Table 4–8 Logging Option Tags

Tag Description

log-debug Specifies whether the session logs debug information in addition to
standard log entries.

log-exceptions Specifies whether the session logs uncaught exception messages.

log-exception-stacktrace Specifies whether the session logs exception stack traces.

print-session Specifies whether the session logs session identifiers.

print-thread Specifies whether the session logs thread identifiers.

print-connection Specifies whether the session logs connection identifiers.

print-date Specifies whether the session logs the date and time of each log entry.

Configuring Sessions with the sessions.xml File

4-26 Oracle Application Server TopLink Application Developer’s Guide

</logging-options>
...

</session>

session-broker Element
The session broker enables client applications to view several databases through a
single session. The session-broker element enables you to configure a session
broker in the sessions.xml file, as follows:

1. Configure the session broker sessions in the sessions.xml file. These sessions
are the database sessions or server sessions that the session broker uses to
communicate with the databases.

2. Add the session broker to the sessions.xml file using the session-broker
element.

3. Populate the session-broker element with a name and the sessions that you
configured in Step 1.

Example 4–20 Configuring a Session Broker in the sessions.xml File

/* Configure the sessions for the SessionBroker */
<session>

<name>EmployeeSession</name>
...

</session>
<session>

<name>ProjectSession</name>
...

</session>
/* Configure the SessionBroker */
<session-broker>
/* Name the SessionBroker */

<name>EmployeeAndProjectBroker</name>
/* Specify the sessions contained in the SessionBroker */

<session-name>EmployeeSession</session-name>
<session-name>ProjectSession</session-name>

</session-broker>
...

Configuring Sessions with the sessions.xml File

Sessions 4-27

JTA Configuration
OracleAS TopLink J2EE integration includes support for JTA external connection
pools and external transaction controllers. To enable a JTA external transaction
controller, set the login to use an external transaction controller, and configure the
following in your sessions.xml file:

■ A JTA DataSource (in the login element)

■ An external connection pool (in the login element)

■ An external transaction controller (in the session element)

For more information about the OracleAS TopLink JTA integration, see "J2EE
Integration" on page 7-44.

Example 4–21 Configuring for JTA in the sessions.xml File

<session>
...
<login>

...
<uses-external-transaction-controller>true</uses-external-transaction-controller>
<data-source>jdbc/MyApplicationDS</data-source>
<uses-external-connection-pool>true</uses-external-connection-pool>
...

</login>
<external-transaction-controller-class>oracle.toplink.jts.oracle9i.Oracle9iJTSExternal

TransactionController</external-transaction-controller-class>
...

</session>

Example 4–22 Configuring for JTA in Code

DatabaseLogin login = null;
project = null;

/*note that useExternalConnectionPooling and useExternalTransactionController
must be set before Session is created */
project = new SomeProject();
login = project.getLogin();
login.useExternalConnectionPooling();
login.useExternalTransactionController();

/* usually, other login configuration such as user, password, JDBC URL comes
from the project but these can also be set here
session = new Session(project);

Registering Descriptors

4-28 Oracle Application Server TopLink Application Developer’s Guide

/* other session configuration, as necessary: logging, ETC
session.SetExternalTransactionController(new
SomeJTSExternalTransactionController());
session.login();

Registering Descriptors
How you add descriptors depends on how you created them. You can create project
descriptors in the OracleAS TopLink Mapping Workbench and export them to a
single descriptor file, set the sessions.xml file to reference the descriptor file. As
a result, OracleAS TopLink can load the descriptors into the session automatically.
A project class can also be specified in the sessions.xml file. For all other options,
use the add descriptors method to register the descriptors, as Table 4–9,
"addDescriptors Options" illustrates.

Registering Descriptors after Login You can register descriptors after the session logs
in. Doing this enables you to load self-contained sub-systems after the session
connects. Descriptors that are registered this way are independent of descriptors
that are already registered.

■ To change a descriptor and redeploy it with a minimum of down time, you can
also re-register descriptors that are loaded in the session. You must also
re-register all related descriptors at the same time, because changes to one
descriptor may affect the initialization of other descriptors.

Caching Objects
Database sessions include an identity map that maintains object identity, and acts as
a cache. When the session reads objects from the database, it instantiates them and
stores them in the identity map. When the application subsequently queries for the

Table 4–9 addDescriptors Options

Format Description

addDescriptors(Project) Enables you to manually add additional descriptor to the
session in the form of a project.

addDescriptors(Vector) Enables you to add a vector of individual descriptor files to
the session in the form of a project.

addDescriptor(Descriptor) Enables you to add individual descriptors to the session.

Session Manager

Sessions 4-29

same object, OracleAS TopLink returns the object in the cache rather than read the
object from the database again.

You can force OracleAS TopLink to flush all objects from the cache. To do so, first
ensure that none of the objects are in use within the database session. Then call the
initializeIdentityMaps() method.

To improve performance, you can customize the identity map. For more
information about using the identity map and caching, see the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Session Manager
The OracleAS TopLink session manager enables developers to build a series of
sessions that are maintained under a single entity. The session manager is a static
utility class that loads OracleAS TopLink sessions from the sessions.xml file,
caches the sessions by name in memory, and provides a single access point for
OracleAS TopLink sessions.

The session manager supports the following session types:

■ ServerSession (see "Server Session and Client Session" on page 4-37)

■ DatabaseSession (see "Database Session" on page 4-48)

■ SessionBroker (see "Session Broker" on page 4-53)

The session manager has two main functions: it creates instances of these sessions
and it ensures that only a single instance of each named session exists for any
instance of a session manager.

Instantiate the session manager as follows:

SessionManager.getManager()

This section describes techniques for working with the session manager and
includes discussions of the following topics:

■ Retrieving a Session from a Session Manager

■ Storing Sessions in the Session Manager Instance

Retrieving a Session from a Session Manager
OracleAS TopLink maintains only one instance of the session manager class. The
singleton session manager maintains all the named OracleAS TopLink sessions at

Session Manager

4-30 Oracle Application Server TopLink Application Developer’s Guide

runtime. When an application requests a session by name, the session manager
retrieves the specified session from the configuration file.

To access the session manager instance, invoke the static getManager() method
on the oracle.toplink.tools.sessionmanagement.SessionManager
class. You can then use the session manager instance to load OracleAS TopLink
sessions.

Example 4–23 Loading a Session Manager Instance

import oracle.toplink.tools.sessionmanagement.SessionManager;
SessionManager sessionManager = SessionManager.getManager();

OracleAS TopLink uses a class loader to load the session manager. The session
manager, in turn, uses that same class loader to load named sessions that are not
already initialized in the session manager cache.

Example 4–24 Loading a Named Session from Session Manager Using Defaults

/* This example loads a named session (mysession) defined in the sessions.xml
file. */
SessionManager manager = SessionManager.getManager();
Server server = (Server) manager.getSession("myserversession");

Loading a Session with an Alternative Class Loader
You can use an alternative class loader to load sessions. This is common when your
OracleAS TopLink application integrates with a J2EE container. If the session is not
already in the session manager's in-memory cache of sessions, the session manager
creates the session and logs in.

Example 4–25 Loading a Session Using an Alternative Class Loader

/* This example uses the specified ClassLoader to load a session (mysession)
defined in the sessions.xml file. */
ClassLoader classLoader = YourApplicationClass.getClassLoader();
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession("mysession", // session nameclassLoader);

Note: To fully leverage the methods associated with the session
type that is being instantiated, cast the session that is returned from
the getSession() method. This type must match the session type
that is defined in the sessions.xml file for the named session.

Session Manager

Sessions 4-31

// classloader

Loading an Alternative Session Configuration File
You can use the XML Loader to load any XML configuration file on the application
class path. This enables you to use files other than the standard sessions.xml file
to load sessions.

You can use the XML loader to load different sessions, and even different class
loaders, from configuration files. The XMLLoader class defines two constructors:

■ The zero-argument constructor loads the default sessions.xml file.

■ The single argument constructor includes a parameter (a String) that specifies
an alternative configuration file.

Example 4–26 Loading an Alternative Configuration File

/* XMLLoader loads the toplink-sessions.xml file */
XMLLoader xmlLoader = new XMLLoader("toplink-sessions.xml");
ClassLoader classLoader = YourApplicationClass.getClassLoader();
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

xmlLoader, // XML Loader
"mysession", // session name
classLoader); // classloader

Reusing the Configuration File If your application maintains the XML loader instance,
then OracleAS TopLink reads sessions from the configuration file with the first
getsession (), but does not reparse the file with each subsequent getsession
() calls. If OracleAS TopLink uses a different XML loader to call a session, or if you
invoke the API to refresh the configuration file, then OracleAS TopLink reparses the
configuration file, but sessions already in the session manager do not change.

Opening Sessions without Logging In The XML loader enables you to call a session
using getSession(), without invoking the login() method. This enables you to
prepare a session for use and leave login to the application.

Example 4–27 Open Session with No Login

SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLLoader(), // XML Loader (sessions.xml file)

Session Manager

4-32 Oracle Application Server TopLink Application Developer’s Guide

"mysession", // session name
YourApplicationClass.getClassLoader(), // classloader
false, // log in session
false); // refresh session

Reparsing the Session Configuration File The XML loader can force OracleAS TopLink
to reparse the session configuration file for sessions that do not exist in its
in-memory cache. This function is useful when you want to add a session to an
in-production sessions.xml file that already exists in the session manager cache.
When the session manager attempts to load a session that is not in its in-memory
cache, it reparses the XML file.

Example 4–28 Forcing a Reparse of the sessions.xml File

//In this example, the XML loader loads the sessions.xml file from the class
path.
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLLoader(), // XML Loader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // classloader
true, // log in session
true); // refresh session

Storing Sessions in the Session Manager Instance
You can manually create a session in your application, rather than loading a
preconfigured session from the session configuration file. Use the
SessionManager class as a singleton to store the manually created session. Use
the getSession() API with the single String [session name] argument on
session manager to load the session.

Example 4–29 Storing Sessions Manually in the Session Manager

// create and log in session programmatically
Session theSession = project.createDatabaseSession();
theSession.login();
// store the session in the SessionManager instance

Note: The getSession() API is not necessary if you are loading
sessions from a session configuration file.

Session Querying

Sessions 4-33

SessionManager manager = SessionManager.getManager();
manager.addSession("mysession", theSession);
// retrieve the session
Session session = SessionManager.getManager().getSession("mysession");

Destroying Sessions in the Session Manager Instance
The Session Manager provides two utility methods for destroying stored sessions.

Example 4–30 Destroying Sessions in the Session Manager

// create and log in session programmatically
Session theSession = project.createDatabaseSession();
theSession.login();
// store the session in the SessionManager instance
SessionManager manager = SessionManager.getManager();
manager.addSession(“mysession”, theSession);
…
// destroying the session
// this will throw a validation exception if the session name
// is not found
manager.destroySession(“mySession”);

OR

// if multiple sessions have been stored and all need to be
// destroyed, then use the destroyAllSessions API
manager.destroyAllSessions();

Session Querying
The Session class and its subclasses provide query methods that enable you to run
queries against the object model rather than the relational model. You can invoke
query methods using any of the following:

■ Simple Query API

■ Query Objects

■ Predefined Queries

This section introduces query methods.

For more in-depth information, see "Session Queries" on page 6-37.

Session Querying

4-34 Oracle Application Server TopLink Application Developer’s Guide

Simple Query API
The Session class offers the following methods to access the database:

■ The readObject() method uses a primary key to search for a single object in
the database or the session cache. Specify the class of the queried object.

For example:

session.readObject(MyDomainObject.class);

This example returns the first instance of MyDomainObject found in the table
that contains the MyDomainObject class. If the query does not find an object
that matches the criteria, it returns null. For more complex readObject()
queries, augment the query with an OracleAS TopLink Expression.

For more information, see "Using Expressions in Session Queries" on page 4-34.

■ The readAllObjects() method retrieves a Vector of objects from the
database. Specify the class of the queried object.

For example:

session.readAllObjects(MyDomainObject.class)

If the query does not find any objects that match the criteria, it returns an empty
vector. For more complex readAllObjects() queries, augment the query
with an OracleAS TopLink Expression.

For more information, see "Using Expressions in Session Queries" on page 4-34.

The readAllObjects() method does not order the objects, but instead returns
objects in the order in which they are found.

Using Expressions in Session Queries
To form more complex queries, include expressions in session query methods.
Expression support makes up two public classes:

■ The Expression class enables you to build either simple or complex logic into the
expression, You can also combine multiple expressions in a query method.

■ The ExpressionBuilder class is the factory that constructs new expressions.

To combine expressions with query methods, use the Expression Builder to create
an expression and set the expressions as the selection criterion for the query.

Session Querying

Sessions 4-35

Example 4–31 The readObject() Method Using an Expression

Employee employee = (Employee) session.readObject(Employee.class, new
ExpressionBuilder().get("lastName").equal("Smith"));

Example 4–32 The readAllObjects() Method Using an Expression

Vector employees = session.readAllObjects(Employee.class,new
ExpressionBuilder.get("salary").greaterThan(10000));

For more information about the OracleAS TopLink Expression Builder, see
"Expressions" on page 6-12.

Custom SQL Queries
You can execute custom SQL queries and stored procedure calls from within an
OracleAS TopLink application. This is useful when you call stored procedures on
the database and to access raw data. Use custom SQL strings and stored procedure
calls in either of the following ways:

■ Use the executeSelectingCall() and executeNonSelectingCall()
session methods to execute SQL queries directly on the database.

For example:

Vector rows = session.executeSelectingCall(new SQLCall("SELECT USER, SYSDATE
FROM DUAL"));

■ Call the executeQuery() method on the DatabaseSession. The following
code example uses SQL to read all employee IDs:

DirectReadQuery query = new DirectReadQuery();
query.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
Vector ids = (Vector) session.executeQuery(query);

Session Methods and the Unit of Work If you call a session method to execute native
SQL or invoke a stored procedure within a Unit of Work, then the Unit of Work is
aware that you called a session method. However, it does not know about any
changes the SQL or stored procedure makes to the database outside of the Unit of
Work context, and so cannot roll back those changes if the commit call fails. Avoid
using session methods inside a Unit of Work.

Session Types

4-36 Oracle Application Server TopLink Application Developer’s Guide

Query Objects
A query object is an OracleAS TopLink querying mechanism that offers full
database querying access. Query objects support search criteria specified in several
ways, including OracleAS TopLink expressions.

Use query objects to perform complex querying. An application creates query
objects by instantiating the object and defining its querying criteria with either
Expression objects or SQL strings.

You can:

■ Execute the query objects directly, by calling the executeQuery() method on
the DatabaseSession.

■ Define new querying routines and add the routines to the session. Because you
name these queries when you add them to the session, you can call them by
name.

■ Change the default querying behavior for read or write operations. An
application can customize how the session’s queries operate by supplying
query objects to the descriptor’s query manager.

■ Change the default querying behavior for complex relationship mappings such
as selection queries.

For more information about creating and using query objects, see "Query Objects"
on page 6-41.

Predefined Queries
Predefined queries are queries you store in either the sessions.xml file or the
OracleAS TopLink descriptor. Because they are part of the session or descriptor,
OracleAS TopLink stores predefined queries in memory after you initially invoke
them. Use predefined queries to maintain frequently-called queries.

For more information about predefined queries, see "Predefined Queries" on
page 6-48.

Session Types
OracleAS TopLink provides several session types that enable you to tailor the
session to your application needs. This section describes the following OracleAS
TopLink session types:

■ Server Session and Client Session

Session Types

Sessions 4-37

■ Database Session

■ Session Broker

■ Remote Session

Server Session and Client Session
The server session and client session architecture is known collectively as a three-tier
architecture. In this type of architecture, the server session provides session
management for the clients, and the client session acts as an dedicated database
session for each client or request.

Although they are two separate session types, use the client sessions and server
sessions together. You define the server session in the sessions.xml file. After
you instantiate the server session, you acquire client sessions from it. Each client
session can have only one associated server session, but a server session can
support any number of client sessions.

Three-Tier Architecture Overview
In an OracleAS TopLink three-tier architecture, client sessions and server sessions
both reside on the server. Client applications access the OracleAS TopLink
application through a client session, and the client session communicates with the
database using the server session.

Session Types

4-38 Oracle Application Server TopLink Application Developer’s Guide

Figure 4–6 Server Session and Client Session Usage

EJBs and Server Session
The Enterprise JavaBean (EJB) container manages interaction with the database and
OracleAS TopLink. The server session manages all aspects of persistence, such as
caching, reading and writing, but does so behind the scenes.

General Concepts for the OracleAS TopLink Three-Tier Design
Although the server session and the client session are two different session types,
you can treat them as a single unit in most cases, because they are both required to
provide three-tier functionality to the application. The server session provides the
client session to client applications, and also supplies the bulk of the session
functionality. This section discusses some of the advantages and general concepts
associated with the OracleAS TopLink three-tier design.

Shared Resources The three-tier design enables multiple clients to share persistent
resources. The server session provides its client sessions with a shared live object
cache, read and write connection pooling, and parameterized named queries. Client
sessions also share descriptor metadata.

Clients

Client
Session

Client
Session

Client
Session

Server

Client
Session

Server
Session

Communications Mechanism

Session Types

Sessions 4-39

You can use client sessions and server sessions in any application server
architecture that allows for shared memory and supports multiple clients. These
architectures can include HTML, Servlet, JSP, RMI, CORBA, DCOM, and EJB.

To support a shared object cache, client sessions must:

■ Implement any changes to the database with the OracleAS TopLink Unit of
Work.

■ Share a common database login for reading (you can implement separate logins
for writing).

For more information, see "Sessions and the Cache" on page 4-64.

Providing Read Access To read objects from the database the client must first acquire
a client session from the server session. Acquiring a client session gives the client
access to the session cache and the database through the server session.

Example 4–33 Acquiring a Client Session

ClientSession myClientSession = myServerSession.acquireClientSession();

After the client acquires a client session, it can send read requests to the server. The
server session responds to these requests as follows:

■ If the object or data is in the session cache, then the server session returns the
information back to the client.

■ If the object or data is not in the cache, then the server session reads the
information from the database and stores the object in the session cache. The
objects are then available for retrieval from the cache.

Because a server session processes each client request in a separate thread, this
enables multiple clients to access the database connection pool concurrently.

Figure 4–7 illustrates how multiple clients read from the database using the server
session.

Session Types

4-40 Oracle Application Server TopLink Application Developer’s Guide

Figure 4–7 Multiple Client Sessions Reading the Database Using the Server Session

To read objects from the database using a Client Session:
1. Start the application server.

2. Create a ServerSession object and call login().

3. Call acquireClientSession() to acquire a ClientSession from the
ServerSession.

4. Execute read operations on the ClientSession object.

Providing Write Access Because the client session disables all database modification
methods, a client session cannot create, change, or delete objects directly. Instead,
the client must obtain a Unit of Work from the client session to perform database
modification methods.

Note: Do not use the ServerSession object directly to read
objects from the database.

Clients

Client
Session

Client
Session

Server

Client
Session

Server Session

Shared Cache Connection Pool

Database

Session Types

Sessions 4-41

To write to the database, the client acquires a client session from the server session
and then acquires a UnitOfWork within that client session. The Unit of Work acts as
an exclusive transactional object space, and also ensures that any changes that are
committed to the database also occur in the session cache.

To write to the database using a Unit of Work:
1. Start the application server.

2. Create a ServerSession object and call login().

3. Call acquireClientSession() to acquire a ClientSession from the
ServerSession.

4. Acquire a UnitOfWork object from the ClientSession object.

For more information about the Unit of Work, see Chapter 7, "Transactions" on
page 7-1.

5. Perform the required updates, and then commit the UnitOfWork.

Caution: Although client sessions are thread-safe, do not use them to
write across multiple threads. Multi-thread writes from the same client
session can result in errors and a loss of data.

Session Types

4-42 Oracle Application Server TopLink Application Developer’s Guide

Figure 4–8 Writing with Client Sessions and Server Sessions

Parallel Units of Work The Unit of Work ensures that the client edits objects in a
separate object transaction space. This feature enables clients to perform object
transactions in parallel. When transactions commit, the Unit of Work makes any
required changes in the database and then merges the changes into the shared
OracleAS TopLink session cache. The modified objects are then available to all other
users.

For more information about the Unit of Work, see to Chapter 7, "Transactions".

Security and User Privileges You can define several different server sessions in your
application to support users with different data access rights. For example, your
application may serve a group called "Managers," who has access rights to salary
information, and a group called "Employees," who do not. Because each session you
define in the sessions.xml file has its own login information, you can create
multiple sessions, each with its own login credentials, to meet the needs of both of
these groups.

Concurrency The server session supports concurrent clients by providing each client
with a dedicated thread of execution. Dedicated threads enable clients to operate

Client Reading

Client
Session

Server

Database

Client Writing

Client
Session

Connection
Pool

Server Session
Shared
CacheExclusive

Connection

Unit of Work
Edited
Objects

If database write
is successful

Session Types

Sessions 4-43

asynchronously—that is, client processes execute as they are called and do not wait
for other client processes to complete.

OracleAS TopLink safeguards thread safety with a concurrency manager. The
concurrency manager ensures that no two threads interfere with each other when
performing operations such as creating new objects, executing a transaction on the
database, or accessing valueholders.

Not all JDBC drivers support concurrency. Those that do not may require a thread
to have exclusive access to a JDBC connection when reading. Configure the server
session to use exclusive read connection pooling in these cases.

Connection Pooling When you instantiate the server session, it creates a pool of
database connections. It then manages the connection pool based on your session
configuration, and shares the connections among its client sessions. The server
session provides connections to client sessions on an as-needed basis. When the
client session releases the connection, the server session recovers the connection and
makes it available to other client processes. Reusing connections reduces the
number of connections required by the application and allows a server session to
support a larger number of clients.

By default, the OracleAS TopLink write connection pool maintains a minimum of
five connections and a maximum of ten. You can change these settings as follows:

■ To change the settings for the entire project, adjust these settings in the OracleAS
TopLink Mapping Workbench.

For more information, see "Working with Connection Pools" in the Oracle
Application Server TopLink Mapping Workbench User’s Guide.

■ To change the settings for a particular server session, adjust these settings in the
sessions.xml file. You can make these changes using the OracleAS TopLink
Sessions Editor, or add the following lines to the session element in the file
manually:

 <session>
...

<connection-pool>
...
<max-connections>20</max-connections>
<min-connections>10</min-connections>
...

</connection-pool>
...
</session>

Session Types

4-44 Oracle Application Server TopLink Application Developer’s Guide

The server session also supports multiple write connection pools and non-pooled
connections. If your application server or JDBC driver also supports write
connection pooling, you can configure the server session to use this feature. Set
these options at the session level, modify the session element in the
sessions.xml file.

For more information, see "Configuring Sessions with the sessions.xml File" on
page 4-8.

Read Connections Although a single connection supports multiple threads reading
asynchronously, some JDBC drivers perform better with multiple read connections.
OracleAS TopLink enables you to allocate multiple read connections, and balances
the load across the connections using a least-busy algorithm.

Server Session Connection Options The server session maintains a pool of read
connections and a pool of write connections for its client sessions. You can
customize the following options either in the sessions.xml file or in Java code:

■ Create a new connection pool and add it to the pools the server session

addConnectionPool(String poolName, JDBCLogin login, int
minNumberOfConnections, int maxNumberOfConnections)

■ In Java code, configure the read connection pool:

useReadConnectionPool(int minNumberOfConnections, int
maxNumberOfConnections)

■ In Java code, configure the read connection pool to allow only a single thread to
access each connection:

useExclusiveReadConnectionPool(int minNumberOfConnections, int
maxNumberOfConnections)

■ In Java code, set the maximum number of nonpooled connections:

setMaxNumberOfNonPooledConnections(int maxNumber)

Tip: To maintain compatibility with JDBC drivers that do not
support many connections, the default number of connections is
small. If your JDBC driver supports it, use a larger number of
connections for reading and writing.

Session Types

Sessions 4-45

Client Session Connection Options The three ways to get connections from within a
client session object correspond to three arguments you can pass with the
acquireClientSession() method on the server session are:

■ Pass no argument (the zero argument). The acquired ClientSession uses the
default connection pool.

■ Pass a poolName as an argument. The acquired ClientSession uses a
connection from the specified pool.

■ Pass a DatabaseLogin object as an argument. The acquired ClientSession
uses a specified DatabaseLogin object to obtain a connection.

By default, the server session does not allocate database connections for these client
session until a Unit of Work commits to the database (a lazy database connection).

If you need to establish database connection immediately, configure the
ConnectionPolicy object to specify a connection option more suited to your
needs, and pass the ConnectionPolicy object as an argument.

Connection Policy The ConnectionPolicy class provides the following methods to
configure a client connection:

■ setPoolName(String poolName): Creates a connection from the named
connection pool. You can also use the ConnectionPolicy(String poolName)
method.

■ setLogin(DatabaseLogin login): Sets up a connection by logging directly
into the database. You can also use the ConnectionPolicy(DatabaseLogin
login) method from the connection policy constructor.

■ useLazyConnection(): Specifies whether the application uses a lazy
connection (a connection that OracleAS TopLink instantiates only when
required).

■ setLazyConnection(boolean isLazy): Specifies a lazy connection.

■ dontUseLazyConnection(): Creates an active connection.

If you request a database connection when none is available, the method waits for
the next available connection, rather than time out or return an error.

Session Types

4-46 Oracle Application Server TopLink Application Developer’s Guide

Reference
Table 4–10 and Table 4–11 summarize the most common public methods for
ClientSession and ServerSession. For more information about the available
methods for ClientSession and ServerSession, see the Oracle Application
Server TopLink API Reference.

Customizing Server Session and Database Login
You can use a session amendment class to configure the server session and database
login in ways not available through the deployment descriptor file. For example,
you can:

■ Specify special settings for the JDBC driver. For example, if you are working
with an incompatible database driver, you can implement parameter binding, to
enable a different data conversion routine.

■ Access regular OracleAS TopLink features, such as database connections or
caching, directly.

■ Define custom finder queries on one or more OracleAS TopLink descriptors
(under EJB 1.1).

Table 4–10 Elements for Client Session

Element Method Name

Executing a query
object

executeQuery(DatabaseQuery query, Vector parameters)

Reading from the
database

readAllObjects(Class domainClass, Expression expression)
readObject(Class domainClass, Expression expression)

Release release()

Unit of Work acquireUnitOfWork()

Table 4–11 Elements for Server Session

Element Method Name

Acquire
ClientSessions

acquireClientSession()

Logging (Logging is not
turned on, by default)

logMessages()

Login / logout login()
logout()

Session Types

Sessions 4-47

■ Enable native SQL support if your JDBC bridge does not support the JDBC
standard SQL syntax.

■ Enable binding and parameterized SQL, to specify whether values are inlined
directly into the generated SQL or are parameterized.

■ Enable batch writing, forcing the application to send groups of insert, update,
and delete statements to the database in a single batch.

■ Optimize data conversion.

Working with Login
Databases generally require a valid user name and password to login successfully.
OracleAS TopLink applications maintain this information in the DatabaseLogin
class. All sessions must have a valid DatabaseLogin instance before logging in to
the database.

For more information about the DatabaseLogin, see "Database Session" on
page 4-48.

Registering Event Listeners for EJB 1.1
To customize an EJB 1.1 application, register a session listener class that extends
oracle.toplink.sessions.SessionEventAdaptor. Configure the listener to
listen for various session events, such as pre_login and post_commit_unit_of_
work. To register the OracleAS TopLink session, define the event_listener_class
tag in the toplink-ejb-jar.xml file, as follows:

<session>
<event_listener_class>
oracle.toplink.ejb.cmp.demos.sessionlistener
</event_listener_class>

</session>

Specify the fully-qualified name of the class that you want to use for this purpose in
the customization-class element of the toplink-ejb-jar.xml deployment
descriptor.

Example 4–34 illustrates the project portion of the toplink-ejb-jar.xml
deployment descriptor that specifies a customization class.

Session Types

4-48 Oracle Application Server TopLink Application Developer’s Guide

Example 4–34 Customization Class in the toplink-ejb-jar.xml File

<session>
<name>EmployeeDemo</name>
<project-class>
oracle.toplink.demos.ejb.cmp.wls.employee.EmployeeProject.class
</project-class>
<login>

<connection-pool>ejbPool</connection-pool>
</login>
<customization-class>
oracle.toplink.demos.ejb.cmp.wls.employee.EmployeeCustomizer
</customization-class>

</session>

Database Session
A database session is the simplest session OracleAS TopLink offers. The database
session offers functionality for a single user and a single database connection.

A database session contains and manages the following information:

■ An instance of Project and DatabaseLogin, which stores database login and
configuration information

■ The JDBC connection and the database access

■ The descriptors for each of the application persistent classes

■ Identity maps that maintain object identity and act as a cache

Creating a Database Session
An application opens a database session by creating an instance of the
DatabaseSession class, and initializing the project with the appropriate database
login parameters. After initialization, the session:

■ Registers the OracleAS TopLink descriptors (see "Registering Descriptors" on
page 4-28)

Note: Use server sessions and client sessions for three-tier applications;
applications that are built using database sessions may be difficult to
migrate to a scalable architecture in the future.

Session Types

Sessions 4-49

■ Connects to the database

■ Establishes the session cache

Connecting to the Database
After you register the descriptors, use the DatabaseSession class to connect to the
database, using the login() method. If the login parameters in the DatabaseLogin
class are incorrect, or if the connection cannot be established, OracleAS TopLink
throws a DatabaseException.

After a connection is established, the application can use the session to access the
database. To test the connection, invoke the isConnected() method. If the
connection is functions, that method returns TRUE.

To interact with the database, the application use the session querying methods or
executes query objects. The interactions between the application and the database
are collectively known as the query framework. For more information about
querying, see Chapter 6, "Queries" on page 6-1.

Although session query methods work well with database sessions, concurrency
issues make the database session unsuited for three-tier applications.

Logging Out of the Database
To log out the session, use the logout() method. To disconnect the session from the
relational database and flush the session’s identity maps, call the logout() method.

Because logging in to the database can be time consuming, log out only when all
database interactions are complete.

Applications that log out from the database do not have to reregister their
descriptors if they log back in to the database.

Using Manual Transaction Control
 Certain versions of Sybase JConnect prevent the execution of stored procedures
with JDBC auto-commit. If you use OracleAS TopLink with a version of JConnect
that causes this problem, use the
handleTransactionsManuallyForSybaseJConnect() method to handle the
transactions manually.

To add transaction processing to a set of database operations:
1. At the start of the transaction set, call beginTransaction().

Session Types

4-50 Oracle Application Server TopLink Application Developer’s Guide

2. Specify a try-catch block that calls rollbackTransaction() if a database
exception is thrown.

3. At the end of the transaction set, call commitTransaction().

Example 4–35 A Typical Manual Transaction

/** Update a group of employee records*/
void writeEmployees(Vector employees, Session session)
{

Employee employee;
Enumeration employeeEnumeration = employees.elements();
try {

session.beginTransaction();
while (employeeEnumeration.hasMoreElements())
{

employee=(Employee) employeeEnumeration.nextElement();
session.writeObject(employee);

}
session.commitTransaction();

} catch (DatabaseException exception) {
// If a database exception has been thrown, roll back the transaction.

session.rollbackTransaction();
}

}

Creating Database Sessions: Examples

Example 4–36 Creating a Session from a OracleAS TopLink Mapping Workbench
Project

import oracle.toplink.tools.workbench.*;
import oracle.toplink.sessions.*

// Create the project object
Project project = XMLProjectReader.read("C:\TopLink\example.xml");
DatabaseLogin loginInfo = project.getLogin();
loginInfo.setUserName("scott");
loginInfo.setPassword("tiger");

Note: The Unit of Work is already transaction bound and does not
require these calls.

Session Types

Sessions 4-51

//Create a new instance of the session and login
DatabaseSession session = project.createDatabaseSession();
try {

session.login();
} catch (DatabaseException exception) {
throw new RuntimeException("Database error occurred at login: " +
exception.getMessage());
System.out.println("Login failed");
}

/* Do any database interaction using the query framework, transactions or units
of work */
...

// Log out when database interaction is over
session.logout();
Creating and using a session from coded descriptors
import oracle.toplink.sessions.*;

//Create the project object.
DatabaseLogin loginInfo = new DatabaseLogin();
loginInfo.useJDBCODBCBridge();
loginInfo.useSQLServer();
loginInfo.setDataSourceName("MS SQL Server");
loginInfo.setUserName("scott");
loginInfo.setPassword("tiger");
Project project = new Project(loginInfo);

//Create a new instance of the session, register the descriptors, and login
DatabaseSession session = project.createDatabaseSession();
session.addDescriptors(this.buildAllDescriptors());
try {

session.login();
} catch (DatabaseException exception) {

throw new RuntimeException("Database error occurred at login: " +
exeption.getMessage());
System.out.println("Login failed");
}

//Do any database interaction using the query framework, transactions or units
of work
...
//Log out when database interaction is over
session.logout();
}

Session Types

4-52 Oracle Application Server TopLink Application Developer’s Guide

Reference
Table 4–12 summarizes the most common public methods for the
DatabaseSession class. For more information about the available methods for the
DatabaseSession class, see the Oracle Application Server TopLink API Reference.

Table 4–12 Elements for Database Session

Description Method Name

Construction methods Project.createDatabaseSession()

log in to the database
(Defaults to the user
name and password
from project login)

login()

Log out of the database logout()

Executing predefined
queries

executeQuery(String queryName)

Executing a query
object

executeQuery(DatabaseQuery query)

Reading from the
database

readAllObjects(Class domainClass, Expression expression)
readObject(Class domainClass, Expression expression)

SQL logging (logging is
off by default)

logMessages()

Debugging printIdentityMaps()

Transactions beginTransaction()
commitTransaction()
rollbackTransaction()

Exception handlers
(throws exceptions by
default)

setExceptionHandler(ExceptionHandler handler)

JTA/JTS (Defaults to
use JDBC transactions)

setExternalTransactionController(ExternalTransactionCont
roller controller)

Unit of Work acquireUnitOfWork()

Writing to the database deleteObject(Object domainObject)
writeObject(Object domainObject)

Session Types

Sessions 4-53

Session Broker
OracleAS TopLink provides the session broker to enable multiple database access.
Use the session broker to access objects that are stored on multiple databases. The
session broker:

■ Provides transparent multiple database access through a single OracleAS
TopLink session

■ Enables objects to reference objects on other databases

■ Transparently manages new object storage in a multiple databases environment

■ Manages single Unit of Work and transaction across multiple databases

■ Supports two-phase commit when integrated with a compliant JTA driver;
otherwise, uses a two stage algorithm

Multiple Sessions
The session broker is a powerful tool that enables you to use data that is split across
multiple databases for a given application. An alternative to the session broker is to
use multiple sessions to work with multiple databases:

■ If the data on each database is unrelated to data on the other databases, and
relationships do not cross database boundaries, then you can create a separate
session for each database. For example, you might have individual databases
and associated sessions dedicated to each cost center.

This arrangement requires that you to manage each session manually and
ensure that the class descriptors for your project reside in the correct session.

■ You can use additional sessions to house a regular batch job. In this case, you
can create two or more sessions on the same database. In addition to the main
session that supports client queries, you create other sessions that support batch
inserts at low-traffic times in your system. This enables you to maintain the
client cache.

Configuring the Session Broker in Code
After the session broker is set up and logged in, it functions like a session, making
multiple database access transparent. Because a session broker is more complex
than a regular database session, it is requires more work to create and configure.

Configuring the Session Broker in the Sessions.xml file To configure the session broker in
the sessions.xml file, configure sessions for use in the session broker, and then

Session Types

4-54 Oracle Application Server TopLink Application Developer’s Guide

reference the sessions from within the session-broker element. When the
session manager instantiates the session broker, it also instantiates the referenced
sessions.

For more information, see "session-broker Element" on page 4-26.

Configuring Session Broker in Java Code Because the session broker references other
sessions, configure these sessions before instantiating the session broker. Add all
required descriptors to the session, but do not initialize the descriptors, or log the
sessions in. The session broker manages these issues when you instantiate it.

After you configure a session, use the registerSession(String name, Session
session) method to register it with a SessionBroker.

Example 4–37 Adding Sessions to a Session Broker

This code prepares and adds two sessions to a session broker.

Project p1 = ProjectReader.read(("C:\Test\Test1.project"));
Project p2 = ProjectReader.read(("C:\Test\Test2.project"));

/* modify the user name and password if they are not correct in the
.project file */
p1.getLogin().setUserName("User1");
p1.getLogin().setPassword("password1");
p2.getLogin().setUserName("User2");
p2.getLogin().setPassword("password2");
DatabaseSession session1 = p1.createDatabaseSession();
DatabaseSession session2 = p2.createDatabaseSession();

SessionBroker broker = new SessionBroker();
broker.registerSession("broker1", session1);
broker.registerSession("broker2", session2);

broker.login();

When you call the login() method on the session broker, session broker logs in all
contained sessions and initializes the descriptors in the sessions. After login, the
session broker appears and functions as a regular session. OracleAS TopLink
handles the multiple database access transparently.

Example 4–38 Writing to the Database

UnitOfWork uow = broker.acquireUnitOfWork();
Test test = (Test) broker.readObject(Test.class);

Session Types

Sessions 4-55

Test testClone = uow.registerObject(test);
. . .
//change and manipulate the clone and any of its references
. . .
uow.commit();

//log out when finished
broker.logout();

Committing a Transaction with a Session Broker
If you use a session broker, incorporate a JTA external transaction controller
wherever possible. The external transaction controller provides a two-phase commit,
which passes the SQL statements that are required to commit the transaction to the
JTA driver. The JTA driver handles the entire commit process.

JTA guarantees that the transaction commits or rolls back completely, even if the
transaction involves more than one database. If the commit to any one database
fails, then all database transactions roll back. The two-phase commit is the safest
method available to commit a transaction to the database.

Two-phase commit support requires integration with a compliant JTA driver.

For more information about the JTA drivers, see "JTA" on page 5-8.

Committing a Session without a JTA Driver: Two-stage Commits If there is no JTA driver
available, then the session broker provides a two-stage commit algorithm. A
two-stage commit differs from a two-phase commit in that it only guarantees data
integrity up to the point of the final commit of the transaction. If the SQL executes
successfully on all databases, but the commit then fails on one database, only the
database that experiences the commit failure rolls back.

Although unlikely, this scenario is possible. As a result, if your system does not
include a JTA driver and you use a two-stage commit, build a mechanism into your
application to deal with this type of potential problem.

Using the Session Broker in a Three-tier Architecture
The session broker operates in a seamless manner in a tree-tier environment. To use
session broker in a three-tier application, configure server sessions for the session
broker.

Session Types

4-56 Oracle Application Server TopLink Application Developer’s Guide

Although you can configure your session broker in code as illustrated in
Example 4–39, we recommend you use the OracleAS TopLink Sessions Editor to
specify a session broker in the sessions.xml file.

For more information, see the Oracle Application Server TopLink Mapping Workbench
User’s Guide.

Example 4–39 Configuring a Session Broker in a Three-Tier Architecture in Java
Code

Project p1 = ProjectReader.read(("C:\Test\Test1.project"))

Project p2 =
ProjectReader.read(("C:\Test\Test2.project"));

/* Create Sessions for the SessionBroker */
Server sSession1 = p1.createServerSession();
Server sSession2 = p2.createServerSession();

/* Create the SessionBroker and assign the sessions to it */
SessionBroker broker = new SessionBroker();
broker.registerSession("broker1", sSession1);
broker.registerSession("broker2", sSession2);
broker.login();

Clients with a Three-Tier Session Broker When a three-tier session broker application
uses server sessions to communicate with the database, clients require a client
session to write to the database. Similarly, when you implement a session broker,
the client requires a client session broker to write to the database.

A client session broker is a collection of client sessions, one from each server session
associated with the session broker. When a client acquires a client session broker,
the session broker collects one client session from each associated server session,
and wraps the client sessions so that they appear as a single client session to the
client application.

To request a client session broker, the client calls the
acquireClientSessionBroker() method.

Example 4–40 Sample Client Request Code

Session clientBroker = broker.acquireClientSessionBroker();

Session Types

Sessions 4-57

Limitations
Using the session broker is not the same as linking databases at the database level. If
your database allows linking, use that functionality to provide multiple database
access.

The session broker has the following limitations:

■ You cannot split multiple table descriptors across databases.

■ Each class must reside on only one database.

■ You cannot use joins through expressions across databases.

■ Many-to-many join tables and direct collection tables must reside on the same
database as the source object.

Advanced Use
Many-to-many join tables and direct collection tables must be on the same database
as the source object, because reading these tables requires a join that spans both
databases. To get around this problem, use the setSessionName(String
sessionName) method on ManyToManyMapping and DirectCollectionMapping.
This method indicates that the join table or direct collection table is on the same
database as the target table.

Descriptor desc = session1.getDescriptor(Employee.class);
((ManyToManyMapping)desc.getObjectBuilder().getMappingForAttributeName("projects
")).setSessionName("broker2");

DatabaseQuery offers a similar method that supports non object queries.

Reference
Table 4–13 summarizes the most common public methods for SessionBroker.
For more information about the available methods for SessionBroker, see the
Oracle Application Server TopLink API Reference.

Note: The "Advanced Use" section describes a work-around for
this limitation. It uses an amendment to the descriptor.

Table 4–13 Elements for the Session Broker

Element Method Name

Writing objects acquireUnitOfWork()

Session Types

4-58 Oracle Application Server TopLink Application Developer’s Guide

Remote Session
A remote session is a session that resides on the client. It communicates with a client
session on the server, and the client session communicates with the server session
on its behalf. Remote sessions handle object identity, proxies, and the
communication between the client and server layer.

Figure 4–9 Remote Session Model for a Three-tier Application

The remote session can also interact with a database session rather than a client
session. The user sets this up on the server side.

Acquiring
ClientSessions

acquireClientSessionBroker()

Database connection login()
logout()

Table 4–13 Elements for the Session Broker (Cont.)

Element Method Name

Remote Clients

Client
Session

Client
Session

Server

Client
Session

Server Session

Shared Cache Connection Pool
Database

Session Types

Sessions 4-59

When choosing between a client session and a database session, you should be
aware that the database session is not suited to a distributed environment, because
the database session enables only one user to interact with the database. However, if
the remote session interacts with a client session, then multiple remote sessions can
share a single database connection. The remote session also benefits from
connection pooling.

Figure 4–10 Remote Session and a Database or a Client Session

Architectural Overview
The remote session model consists of the following layers (also see Figure 4–11):

■ The application layer—a client side application talking to remote session

■ The transport layer—a communication layer, RMI or RMI-IIOP

■ The server layer—OracleAS TopLink session communicating with a database

The request from the client application to the server travels down through the
layers of a distributed system. A client that makes a request to the server session
uses the remote session as a conduit to the server session. The client references the
remote session, and the remote session forwards a request to the server session
through the transport layer.

At runtime, the remote session builds its knowledge base by reading descriptors
and mappings from the server side as they are needed. These descriptors and
mappings are lightweight because not all information is passed on to the remote
session. The information needed to traverse an object tree and to extract primary
keys from the given object is passed with the mappings and descriptors.

Relational
Database

Server Application

Server
Session

Client
Session

Client
Session

Remote
Session
Controller

Remote
Session
Controller

write connection

read

read

write connection

Session Types

4-60 Oracle Application Server TopLink Application Developer’s Guide

Figure 4–11 An Architectural Overview of the Remote Session

Application layer The application layer includes the application and the remote
session. The remote session is a subclass of the session and maintains all the public
protocols of the session, giving the appearance of working with the local database
session.

The remote session maintains its own identity map and a hash table of all the
descriptors read from the server. If the remote session can handle a request by itself,
the request is not passed to the server. For example, a request for an object that is in
the Remote session cache is processed by the remote session. However, if the object
is not in the remote session cache, the request passes to the server session.

Transport Layer The transport layer is responsible for carrying the semantics of the
invocation. It is a layer that hides all the protocol dependencies from the application
and server layer.

The transport layer includes a remote connection that is an abstract entity through
which all requests to the server are forwarded. Each remote session maintains a
single remote connection that marshals and unmarshals all requests and responses
on the client side.

The remote session supports communications over RMI and CORBA. It includes
deployment classes and stubs for RMI, BEA WebLogic RMI, VisiBroker, OrbixWeb,
BEA WebLogic EJB, and Oracle 10i EJB.

RMI Connection

Remote Session Remote
Session
Dispatcher

Remote
Session
Controller

Session

Session Types

Sessions 4-61

Server Layer The server layer includes a remote session controller dispatcher and a
session. The remote session controller dispatcher marshals and unmarshals all
responses and requests from the server side. This is a client side component.

The remote session controller dispatcher is an interface between the session and
transport layers. It hides the specifics of the transport layer from the session.

Securing Remote Session Access
The remote session represents a potential security risk because it requires you to
register a remote session controller dispatcher as a service that anyone can access.
This can expose the entire database.

To reduce this threat, run a server manager as a service to hold the remote controller
session dispatcher. All the clients must then communicate through the server
manager, which implements the security model for accessing the remote session
controller dispatcher.

On the client side, the user requests the remote session controller dispatcher. The
manager returns a remote session controller dispatcher only if the user has access
rights according to the security model built into the server manager.

To access the system, the remote session controller dispatcher on the client side
creates a remote connection, and acquires remote session from the remote
connection. The API for the remote session is the same as for the session, and there
is no user-visible difference between working on a session or a remote session.

Queries
Read queries are publicly available on the client side, but queries that modify
objects must be performed using the Unit of Work.

Refreshing
Calling refresh methods on the remote session causes database reads, and may also
cause cache updates if the data being refreshed is modified in the database. This can
lead to poor performance.

To improve performance, configure refresh methods to run against the server
session cache, by configuring the descriptor to always remotely refresh the objects
in the cache on all queries. This technique ensures that all queries against the
remote session refresh the objects from the server session cache, without the
database access.

Session Types

4-62 Oracle Application Server TopLink Application Developer’s Guide

Cache hits on remote sessions still occur on read object queries based on the
primary keys. If you want to avoid this, disable the remote session cache hits on
read object queries based on the primary key.

Example 4–41 Refreshing on the Server Session Cache

// Get the PolicyHolder descriptor
Descriptor holderDescriptor = remoteSession.getDescriptor(PolicyHolder.class);

// Set refresh on the ServerSession cache
holderDescriptor.alwaysRefreshCachedOnRemote();

// Disable remote cache hits, ensure all queries go to the ServerSession cache
holderDescriptor.disableCacheHitsOnRemote();

Indirection
The remote session supports indirection objects. An indirection object is a
valueholder that can be invoked remotely on the client side. When invoked, the
valueholder first checks to see if the requested object exists on the remote session. If
not, then the associated valueholder on the server is instantiated to get the value
that is then passed back to the client. Remote valueholders are used automatically;
the application’s code does not change.

Cursored Streams
Remote session supports cursored streams, but not scrollable cursors.

For more information about enabling cursored streams, see "Java Streams" on
page 6-60.

Unit of Work
Use a Unit of Work acquired from the remote session to modify objects on the
database. A Unit of Work acquired from the remote session offers the user the same
functionality as a Unit of Work acquired from the client session or the database
session.

Creating a Remote Connection Using RMIConnection
Example 4–42 and Example 4–43 demonstrate how to create a remote OracleAS
TopLink session on a client that communicates with a remote session controller on a
server that uses RMI. After creating the connection, the client application uses the
remote session as it does with any other OracleAS TopLink session.

Session Types

Sessions 4-63

These examples assume that a class called RMIServerManager exists on the server.
It is not an OracleAS TopLink-enabled class. This class has a method that
instantiates and returns an RMIRemoteSessionController (an OracleAS TopLink
server side interface).

Example 4–42 Client Acquiring RMIRemoteSessionController from Server

The client-side code gets a reference to the RMIServerManager and uses this code
to get the RMIRemoteSessionController running on the server. The reference to
the session controller is then used to create the RMIConnection from which it
acquires a remote session.

RMIServerManager serverManager = null;
// Set the client security manager
try {

System.setSecurityManager(new RMISecurityManager());
} catch(Exception exception) {
System.out.println("Security violation " + exception.toString());

}
// Get the remote factory object from the Registry
try {

serverManager = (RMIServerManager) Naming.lookup("SERVER-MANAGER");
} catch (Exception exception) {
System.out.println("Lookup failed " + exception.toString());

}
// Start RMIRemoteSession on the server and create an RMIConnection
RMIConnection rmiConnection = null;
try {

rmiConnection = new
RMIConnection(serverManager.createRemoteSessionController());
} catch (RemoteException exception) {
System.out.println("Error in invocation " + exception.toString());

}
// Create a remote session which we can then use as a normal OracleAS TopLink
Session
Session session = rmiConnection.createRemoteSession();

Example 4–43 Server Creating RMIRemoteSessionController for Client

The RMIServerManager uses this code to create and return an instance of an
RMIRemoteSessionController to the client. The controller sits between the
remote client and the local OracleAS TopLink session.

RMIRemoteSessionController controller = null;

Sessions and the Cache

4-64 Oracle Application Server TopLink Application Developer’s Guide

try {
/* Create instance of RMIRemoteSessionControllerDispatcher which implements
RMIRemoteSessionController. The constructor takes an OracleAS TopLink
session as a parameter */
controller = new RMIRemoteSessionControllerDispatcher (localTopLinkSession);

}
catch (RemoteException exception) {

System.out.println("Error in invocation " + exception.toString());
}
return controller;

Sessions and the Cache
OracleAS TopLink automatically caches any data that is returned when a client
reads an object. The cache resides with the session, which enables any associated
client sessions to share the cache. This cache plays an important role in the
performance of your application.

To define how the cache manages objects, specify a strategy for cache management
in the OracleAS TopLink Mapping Workbench.

For more information, see "Working with Identity Maps" in the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Session Utilities
The OracleAS TopLink session provides several utilities to test and troubleshoot
your application. This section introduces these tools and describes techniques for
using them:

■ Logging SQL and Messages

■ Using the Profiler

■ Using the Integrity Checker

■ Using Exception Handlers

Logging SQL and Messages
OracleAS TopLink accesses the database using SQL strings that it generates
internally. This feature enables applications to use the session methods or query
objects without having to perform their own SQL translation.

Session Utilities

Sessions 4-65

If, for debugging purposes, you want to review a record of the SQL that is sent to
the database, sessions provide these methods to log generated SQL to a writer.
OracleAS TopLink disables SQL and message logging by default. To enable it, use
the logMessages() method on the session. The default writer is a stream writer to
System.out, but you can configure the log destination using the setLog() method
on the session.

The session logs:

■ Debug print statements

■ Exceptions/error messages sent to system out

■ Any other output sent to the system log

Logging Chained Exceptions
The logging chained exception facility enables you to log causality when one
exception causes another as part of the standard stack back-trace. If you build your
applications with JDK 1.4, causal chains appear automatically in your logs.

Logging and the Oracle Enterprise Manager
You can view OracleAS TopLink logs with all the other Oracle Application Server
10g log files using the Oracle Enterprise Manager.

For more information, see "Managing Diagnostic Log Files" in the Oracle Application
Server 10g Administrator’s Guide.

If you install OracleAS TopLink in the same Oracle Home directory as Oracle
Application Server, OracleAS TopLink logs appear automatically with the other
Oracle Application Server component log files in the Oracle Enterprise Manager. If
you install OracleAS TopLink in a different Oracle Home directory, use the
following procedure:

1. Locate the toplink.xml file in the <ORACLE_HOME>\toplink\config\
directory.

2. Ensure that the log path tag reflects the location of your OracleAS TopLink
log file, and is properly configured.

For example:

- <log path="toplink/config/toplink.log"
componentId="TOPLINK" encoding="utf-8">

Session Utilities

4-66 Oracle Application Server TopLink Application Developer’s Guide

3. Copy the toplink.xml file to the following directory:

<ORACLE_HOME>\diagnostics\config\registration\

Using the Profiler
The OracleAS TopLink Profiler is a high-level logging service. Instead of logging
SQL statements, the Profiler logs a summary of each query you execute. The
summary includes a performance breakdown of the query that enables you to
identify performance bottlenecks. The Profiler also provides a report summarizing
the query performance for an entire session.

Access Profiler reports and profiles through the Profile tab in the OracleAS TopLink
Web Client, or create your own application or applet to view the Profiler logs.

For more information about the Web Client, see "OracleAS TopLink — Web Client"
on page A-2.

Using the Integrity Checker
When you connect a session or add descriptors to a session after connection,
OracleAS TopLink initializes and validates the descriptor information. The integrity
checker allows you to customize the validation process. The integrity checker offers
the following configuration options:

Catch All Exceptions This option specifies whether or not the integrity checker
catches all exceptions in the session. The settings for this option are
catchExceptions (the default setting), and dontcatchExceptions.

Catch Instantiation Policy Exceptions This option catches only errors that are associated
with instantiation policy, and:

■ Throws the first error that it encounters, including the error’s stack trace.

■ Validates the state of the database schema to ensure that it matches the
information in the descriptors.

■ Disables the instance creation check.

Example 4–44 Using the Integrity Checker

session.getIntegrityChecker().checkDatabase();
session.getIntegrityChecker().catchExceptions();
session.getIntegrityChecker().dontCheckInstantiationPolicy();

Customizing Session Events

Sessions 4-67

session.login();

Using Exception Handlers
Exception handlers process database exceptions, generally to process connection
timeouts or database failures. To use exception handlers, register an implementor of
the ExceptionHandler interface with the session. If a database exception occurs
during the execution of a query, the exception passes to the exception handler. The
exception handler then either handles the exception, retries the query, or throws an
unchecked exception.

For more information about exceptions, see Appendix C, "Error Codes and
Messages".

Example 4–45 Implementing an Exception Handler

session.setExceptionHandler(newExceptionHandler(){
public Object handleException(RuntimeException exception) {

if ((exception instanceof DatabaseException) &&
(exception.getMessage().equals("connection reset by peer."))) {
DatabaseException dbex = (DatabaseException) exception;
dbex.getAccessor().reestablishConnection
(dbex.getSession());
return dbex.getSession().executeQuery(dbex.getQuery());

}
throw exception;

}
});

Customizing Session Events
Sessions, such as database sessions, Unit of Work, client sessions, server sessions,
and remote sessions raise session events for most session operations. Session events
help you debug or coordinate the actions of multiple sessions.

This section illustrates how you customize session events, and discusses:

■ Session Event Listeners

■ Session Event Manager

Note: Unhandled exceptions must be re-thrown by the handler
code.

Customizing Session Events

4-68 Oracle Application Server TopLink Application Developer’s Guide

■ Implementing Events Using Java

Session Event Listeners
One approach to customizing session events is to create session event listeners that
detect and respond to session events. To register objects as listeners for session
events, implement the SessionEventListener interface and register it with the
SessionEventManager using addListener().

Table 4–14 Session Event Manager Events

Event Description

PreExecuteQuery Raised before the execution of every query on the session

PostExecuteQuery Raised after the execution of every query on the session

PreBeginTransaction Raised before a database transaction starts

PostBeginTransaction Raised after a database transaction starts

PreCommitTransaction Raised before a database transaction commits

PostCommitTransaction Raised after a database transaction commits

PreRollbackTransaction Raised before a database transaction rolls back

PostRollbackTransaction Raised after a database transaction rolls back

PreLogin Raised before the Session initializes and acquires connections

PostLogin Raised after the Session initializes and acquires connections

Table 4–15 Unit of Work Events

Event Description

PostAcquireUnitOfWork Raised after a UnitOfWork is acquired

PreCommitUnitOfWork Raised before a UnitOfWork commits

PrepareUnitOfWork Raised after the a UnitOfWork flushes its SQL, but before it
commits its transaction

PostCommitUnitOfWork Raised after a UnitOfWork commits

PreReleaseUnitOfWork Raised on a UnitOfWork before it releases

PostReleaseUnitOfWork Raised on a UnitOfWork after it releases

PostResumeUnitOfWork Raised on a UnitOfWork after it resumes

Customizing Session Events

Sessions 4-69

Session Event Manager
The session event manager handles information about session events. Applications
register listeners with the session event manager to receive session event data.

Example 4–46 Registering a Listener

public void addSessionEventListener(SessionEventListener listener)
{

// Register specified listener to receive events from mySession
mySession.getEventManager().addListener(listener);

}

Example 4–47 Using the Session Event Adapter to Listen for Specific Session Events

...
SessionEventAdapter myAdapter = new SessionEventAdapter() {

// Listen for PostCommitUnitOfWork events
public void postCommitUnitOfWork(SessionEvent event) {
// Call my handler routine

Table 4–16 Server Session and Client Session Events (Three-Tier Applications)

Event Description

PostAcquireClientSession Raised after a ClientSession is acquired

PreReleaseClientSession Raised before releasing a ClientSession

PostReleaseClientSession Raised after releasing a ClientSession

PostConnect Raised after connecting to the database

PostAcquireConnection Raised after acquiring a connection

PreReleaseConnection Raised before releasing a connection

Table 4–17 Database Access Events

Event Description

OutputParametersDetected Raised after a stored procedure call with output parameters
executes. This event enables you to retrieve a result set and
output parameters from a single stored procedure.

MoreRowsDetected Raised when a ReadObjectQuery detects more than one row
returned from the database. This event can indicate a
possible error condition in your application.

OracleAS TopLink Support for Java Data Objects (JDO)

4-70 Oracle Application Server TopLink Application Developer’s Guide

unitOfWorkCommitted();
}

};
mySession.getEventManager().addListener(myAdapter);
...

Implementing Events Using Java
You can implement custom events and event handlers in Java code. The code in
Example 4–48 checks for lock conflicts when the application builds an instance of
Employee from information in the database.

Example 4–48 Implementing an Event in Code

/*In the employee class, declare the event method which will be invoked when the
event occurs */
public void postBuild(DescriptorEvent event) {

// Uses object row to integrate with some application level locking service.
if ((event.getRow().get("LOCKED")).equals("T")) {

LockManager.checkLockConflict(this);
}

}

OracleAS TopLink Support for Java Data Objects (JDO)
Java Data Objects (JDO) is an API for transparent database access. The JDO
architecture is a standard API for data, both in local storage systems and enterprise
information systems. It unifies access to heterogeneous systems, such as mainframe
transaction processing, and database systems. JDO enables programmers to create
Java code that accesses the underlying data store transparently and does not require
database-specific code.

OracleAS TopLink provides basic JDO support based on the JDO specification.
OracleAS TopLink support includes much of the JDO API, but does not require you
to enhance or modify the class to leverage JDO.

This section includes information on:

■ Understanding the JDO API

■ JDO Implementation

■ Running the OracleAS TopLink JDO Example

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-71

Understanding the JDO API
The JDO API includes four main interfaces:

■ The PersistenceManagerFactory is a factory that generates
PersistenceManagers. It has a configuration and login API.

■ The PersistenceManager is the main point of contact from the application. It
provides an API for accessing the transaction, queries, and object life cycle API
(makePersistent, makeTransactional, deletePersistent).

■ The Transaction defines a basic begin, commit, rollback API.

■ The Query defines the API to configure the query (filter, ordering, parameters,
and variables) and to execute the query.

Figure 4–12 Understanding the JDO API

JDO Implementation
OracleAS TopLink implements the PersistenceManagerFactory,
PersistenceManager, and Transaction interfaces, and extends the query
functionality to include the complete OracleAS TopLink query framework.

PersistenceManagerFactory

PersistenceManager

Query Extent

Transaction

OracleAS TopLink Support for Java Data Objects (JDO)

4-72 Oracle Application Server TopLink Application Developer’s Guide

JDOPersistenceManagerFactory
To create a JDOPersistenceManagerFactory, call the constructor and include a
session name string, or an OracleAS TopLink session or project. If you construct the
factory from a project, then OracleAS TopLink creates a new database session and
attaches it to the PersistenceManager every time you obtain the
PersistenceManager with the getPersistenceManager method.

The PersistenceManager is not multi-threaded. In a multi-threaded application,
assign each thread its own PersistenceManager. In addition, construct the
JDOPersistenceManagerFactory from a server session, rather than a database
session or project. Doing this enables you to use the lightweight client session and
more scalable connection pooling.

Creating a JDOPersistenceManagerFactory Example 4–49 illustrates how to create a
factory from an OracleAS TopLink session named jdoSession. A session manager
manages a singleton instance of the OracleAS TopLink server session or database
session.

For more information, see "Session Manager" on page 4-29.

Example 4–49 Creating a JDOPersistenceManagerFactory

JDOPersistenceManagerFactory factory= new
JDOPersistenceManagerFactory("jdoSession");
/*Create a persistence manager factory from an instance of OracleAS TopLink
ServerSession or DatabaseSession that is managed by the user */
ServerSession session = (ServerSession) project.createServerSession();
JDOPersistenceManagerFactory factory= new JDOPersistenceManagerFactory(session);
/* Create a persistence manager factory with ties to a DatabaseSession that is
created from OracleAS TopLink project */
JDOPersistenceManagerFactory factory= new JDOPersistenceManagerFactory(new
EmployeeProject());

Obtaining PersistenceManager To create new PersistenceManagers, call the
getPersistentManager method. If you construct the factory from a Project
instance, use the getPersistentManager(String userid, String password)
method to configure the userid and password.

Reference Table 4–18 summarizes the most common public methods for
PersistenceManagerFactory. For more information about the available methods
for PersistenceManagerFactory, see the Oracle Application Server TopLink API
Reference.

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-73

Table 4–18 Elements for Persistence Manager Factory

Method Name Description

JDOPersistenceManagerFactory() persistence Constructs a factory from a session
manager session

JDOPersistenceManagerFactory(String sessionName) Constructs a factory from the named
session

JDOPersistenceManagerFactory(Session session) Constructs a factory from a user
session

JDOPersistenceManagerFactory(Project project) Constructs a factory from a project

getIgnoreCache()setIgnoreCache

(boolean ignoreCache)

Query mode that specifies whether
cached instances are considered when
evaluating the filter expression.

The default is set to FALSE.

getNontransactionalRead()setNontransactionalRead

(boolean nontransactionalRead)

Transaction mode that allows you to
read instances outside a transaction.

The default is set to FALSE.

getConnectionUserName()

setConnectionUserName(String userName)

getConnectionPassword()

setConnectionPassword(String password)

getConnectionURL()

setConnectionURL(String URL)

getConnectionDriverName()

setConnectionDriverName(String driverName)

Available settings if the factory is
constructed from an OracleAS TopLink
project.

Derives the default user name,
password, URL, driver from project
login.

getPersistenceManager()

getPersistenceManager(String userid, String
password)

Accesses PersistenceManager, and
sets the user ID and password if the
factory is constructed from an
OracleAS TopLink project (uses default
values in the absence of a project).

Derives the default user ID, password
from session login, or project login.

getProperties() Nonconfigurable properties

supportedOptions() Collection of supported option String

OracleAS TopLink Support for Java Data Objects (JDO)

4-74 Oracle Application Server TopLink Application Developer’s Guide

JDOPersistenceManager
The JDOPersistenceManager class is the factory for the Query interface and
contains methods to access transactions, and manage the persistent life cycle
instances.

Inserting JDO objects To make new JDO objects persistent, use the
makePersistent() or makePersistentAll() method. If you do not manually
begin the transaction, then OracleAS TopLink begins and commits the transaction
when you invoke either makePersistent() or makePersistentAll(). If the
object is already persisted, then calling these methods has no effect.

Example 4–50 Persist a New Employee Named Bob Smith

Server serverSession = new EmployeeProject().createServerSession();
PersistenceManagerFactory factory = new
JDOPersistenceManagerFactory(serverSession);
PersistenceManager manager = factory.getPersistenceManager();
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");
manager.makePersistent(employee);

Updating JDO Objects To modify JDO objects within a transaction context, begin and
commit a transactional object manually. A transactional object is an object that is
subject to the transaction boundary. Use one of the following methods to obtain
transactional objects:

■ Using getObjectById()

■ Executing a transactional-read query

■ Using the OracleAS TopLink extended API getTransactionalObject()

OracleAS TopLink executes the transactional-read query when the
nontransactionalRead flag of the current transaction is false. To obtain the
current transaction from the PersistenceManager, call currentTransaction().

Example 4–51 Update an Employee

This example illustrates how to add a new phone number to an employee object,
modify the address, and increase the salary by 10 percent.

Transaction transaction = manager.currentTransaction();
if(!transaction.isActive()) {

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-75

transaction.begin();
}
// Get the transactional instance of the employee
Object id = manager.getTransactionalObjectId(employee);
Employee transactionalEmployee = manager.getObjectById(id, false);
transactionalEmployee.getAddress().setCity("Ottawa");
transactionalEmployee.setSalary((int) (employee.getSalary() * 1.1));
transactionalEmployee.addPhoneNumber(new PhoneNumber("fax", "613", "3213452"));

transaction.commit();

Deleting Persistent Objects To delete JDO objects, use either deletePersistent() or
deletePersistentAll(). The objects need not be transactional. If you do not
manually begin the transaction, then OracleAS TopLink begins and commits the
transaction when you invoke either deletePersistent () or
deletePersistentAll ().

Deleting objects using deletePersistent() or deletePersistentAll() is
similar to deleting objects using a Unit of Work. When you delete an object, you also
automatically delete its privately owned parts, because they cannot exist without
their owner. At commit time, OracleAS TopLink generates SQL to delete the objects,
taking database constraints into account.

When you delete an object, set references to the deleted object to null or remove
them from the collection, and modify references to the object using its transactional
instance. This ensures that the object model reflects the change.

Example 4–52 Deleting a Team Leader from a Project

Transaction transaction = manager.currentTransaction();
if(!transaction.isActive()) {
transaction.begin();
}
Object id = manager.getTransactionalObjectId(projectNumber);
Project transactionalProject = (Project) manager.getObjectById(id);
Employee transactionalEmployee = transactionalProject.getTeamLeader();
// Remove team leader from the project
transactionalProject.setTeamLeader(null);
// Remove owner that is the team leader from phone numbers
for(Enumeration enum = transactionalEmployee.getPhoneNumbers().elements();
enum.hasMoreElements();) {

((PhoneNumber) enum.nextElement()).setOwner(null);
}
manager.deletePersistent(transactionalEmployee);

OracleAS TopLink Support for Java Data Objects (JDO)

4-76 Oracle Application Server TopLink Application Developer’s Guide

transaction.commit();

Example 4–53 Deleting a Phone Number

Transaction transaction = manager.currentTransaction();
if(!transaction.isActive()) {
transaction.begin();
}
Object id = manager.getTransactionalObjectId(phoneNumber);
PhoneNumber transactionalPhoneNumber = (PhoneNumber) manager.getObjectById(id);
transactionalPhoneNumber.getOwner().getPhoneNumbers().remove(transactionalPhoneN
umber);
manager.deletePersistent(phoneNumber);
transaction.commit();

Obtaining Query OracleAS TopLink does not support the JDO Query language, but
includes support within JDO for the more advanced OracleAS TopLink query
framework.

For more information about the OracleAS TopLink query framework, see
Chapter 6, "Queries".

A key difference is that the JDO query language requires returned results to be a
collection of candidate JDO instances (either a java.util.Collection, or an
Extent). Conversely, the return type in OracleAS TopLink depends on the type of
query. For example, if you use a ReadAllQuery, the result is a Vector.

The following APIs support for the query factory:

■ Standard API:

newQuery();
newQuery(Class persistentClass);

■ OracleAS TopLink extended API:

newQuery(Class persistentClass, Expression expressionFilter);

You create a ReadAllQuery with the query instance by default.

Note: If you obtain Query from a different newQuery() API, this can
result in a JDOUserException, or the creation of the query from the
supported API.

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-77

Reference Table 4–19 and Table 4–20 summarize the most common public methods
for the Query API and OracleAS TopLink extended API. For more information
about the available methods for the Query API and OracleAS TopLink extended
API, see the Oracle Application Server TopLink API Reference.

Table 4–19 Elements for Query API

Method Name Description

close() Releases resource to allow garbage
collection

currentTransaction() Specifies current transaction

deletePersistent

(Object object)deletePersistentAll

(Collection objects)deletePersistentAll

(java.lang.Object[] objects)

Deletes objects

evict(Object object)evictAll()evictAll

(Collection objects)evictAll(Object[] objects)

Marks objects as no longer needed in
the cache

getExtent(Class queryClass, boolean readSubclasses) Specifies extent

getIgnoreCache()setIgnoreCache(boolean ignoreCache) Sets cache mode for queries.

The default is set to ignore cache from
the persistence manager factory.

getObjectById

(Object object, boolean validate)

getTransactionalObjectId(Object object)

Obtains transactional state of object

isClosed() Closes the PersistenceManager
instance

makePersistent(Object object)

makePersistentAll

(Collection objects)makePersistentAll

(Object[] objects)

Inserts persistent objects

OracleAS TopLink Support for Java Data Objects (JDO)

4-78 Oracle Application Server TopLink Application Developer’s Guide

JDOQuery
The JDOQuery class implements the JDOQuery interface. It defines the API to
configure the query (filter, ordering, parameters, and variables) and to execute the
query. OracleAS TopLink extends the query functionality to include the full
OracleAS TopLink query framework.

For more information about the OracleAS TopLink query framework, see
Chapter 6, "Queries".

Users can customize the query to use advanced features, such as batch reading,
stored procedure calls, partial object reading, and query by example. OracleAS
TopLink does not support the JDO query language, but users can employ either
SQL or EJB QL in the JDOQuery interface.

Each JDOQuery instance is associated with an OracleAS TopLink query. To obtain a
JDOQuery from the PersistenceManager, call a supported newQuery method.
OracleAS TopLink creates a new ReadAllQuery and associates it with the query.

makeTransactional

(Object object)makeTransactionalAll

(Collection objects)makeTransactionalAll

(Object[] objects)

Registers objects to Unit of Work,
making them subject to transactional
boundaries

newQuery()newQuery(Class queryClass) Creates new query factory

refresh(Object object)refreshAll()refreshAll

(Collection objects)refreshAll(Object[] objects)

Refreshes objects

Table 4–20 Elements for OracleAS TopLink Extended API

Method Name Description

getTransactionalObject(Object object) Obtains transactional
object

newQuery(Class queryClass, Expression
expression)

Creates query factory

readAllObjects(Class domainClass)readAllObjects

(Class domainClass)readObject

(Class domainClass, Expression expression)

Reads objects

Table 4–19 Elements for Query API (Cont.)

Method Name Description

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-79

Call asReadObjectQuery(), asReadAllQuery(), or asReportQuery to set the
JDO Query OracleAS TopLink query to a specific type.

Customizing the Query Using the OracleAS TopLink Query Framework The OracleAS
TopLink query framework provides most of its functionality as a public API. To
create a customized OracleAS TopLink query and associate it with the JDO Query,
call the setQuery() method to build complex functionality into your queries.

Customized OracleAS TopLink queries give you the complete functionality of the
OracleAS TopLink query framework. For example, use a DirectReadQuery with
custom SQL to read the ID column of the employee.

Example 4–54 Use a ReadAllQuery to Read All Employees Who Live in New York

Expression expression = new
ExpressionBuilder().get("address").get("city").equal("New York");
Query query = manager.newQuery(Employee.class, expression);
Vector employees = (Vector) query.execute();

Example 4–55 Use a ReadObjectQuery to Read the Employee Named Bob Smith

Expression exp1 = new ExpressionBuilder().get("firstName").equal("Bob");
Expression exp2 = new ExpressionBuilder().get("lastName").equal("Smith ");
JDOQuery jdoQuery = (JDOQuery) manager.newQuery(Employee.class);
jdoQuery.asReadObjectQuery();
jdoQuery.setFilter(exp1.and(exp2));
Employee employee = (Employee) jdoQuery.execute();

Example 4–56 Use a ReportQuery to Report Employee's Salary

JDOQuery jdoQuery = (JDOQuery) manager.newQuery(Employee.class);
jdoQuery.asReportQuery();
jdoQuery.addCount();
jdoQuery.addMinimum("min_salary",jdoQuery.getExpressionBuilder().get("salary"));
jdoQuery.addMaximum("max_salary",jdoQuery.getExpressionBuilder().get("salary"));
jdoQuery.addAverage("average_salary",jdoQuery.getExpressionBuilder().get("salary"));
// Return a vector of one DatabaseRow that contains reported info
Vector reportQueryResults = (Vector) jdoQuery.execute();

Note: OracleAS TopLink extended APIs support a specific OracleAS
TopLink query type. To avoid exceptions, match the API to the correct
query type. See Table 4–21 for correct usage.

OracleAS TopLink Support for Java Data Objects (JDO)

4-80 Oracle Application Server TopLink Application Developer’s Guide

Example 4–57 Use a Customized DirectReadQuery to Read Employee 's id column

DirectReadQuery TopLinkQuery = new DirectReadQuery();
topLinkQuery.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
JDOQuery jdoQuery = (JDOQuery) manager.newQuery();
jdoQuery.setQuery(topLinkQuery);
// Return a Vector of DatabaseRows that contain ids
Vector ids = (Vector)jdoQuery.execute(query);

Reference Table 4–21 and Table 4–22 summarize the most common public methods
for the JDO Query API and OracleAS TopLink extended API. For more information
about the available methods for the JDO Query API and OracleAS TopLink
extended API, see the Oracle Application Server TopLink API Reference.

Table 4–21 Elements for JDO Query API

Method Name Description

close(Object queryResult) Closes cursor result

declareParameters(String parameters) Declares query parameters

execute()execute(Object arg1)execute

(Object arg1, Object arg2)execute

(Object arg1, Object arg2, Object
arg3)executeWithArray

(java.lang.Object[] arg1)executeWithMap(Map arg1)

Executes query

getIgnoreCache()setIgnoreCache(boolean ignoreCache) Sets cache mode for query result

getPersistenceManager() PersistenceManager

setClass(Class queryClass) ReadObjectQuery,
ReadAllQuery, ReportQuery

setOrdering(String ordering) ReadAllQuery

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-81

Table 4–22 Elements for OracleAS TopLink Extended JDO API

Method Name Description

asReadAllQuery()asReadObjectQuery()

asReportQuery()

Converts the query

getQuery()setQuery(DatabaseQuery newQuery) Accesses the OracleAS TopLink query.

The default is set to ReadAllQuery.

acquireLocks()

acquireLocksWithoutWaiting()

addJoinedAttribute(String attributeName)

addJoinedAttribute(Expression attributeExpression)

addPartialAttribute(String attributeName)

addPartialAttribute(Expression attributeExpression)

checkCacheOnly()

dontAcquireLocks()

dontRefreshIdentityMapResult()

dontRefreshRemoteIdentityMapResult()

getExampleObject()

getExpressionBuilder()

setQueryByExampleFilter(Object exampleObject)

setQueryByExamplePolicy(QueryByExamplePolicy
newPolicy)

setShouldRefreshIdentityMapResult(boolean
shouldRefreshIdentityMapResult)

shouldRefreshIdentityMapResult()

ReadObjectQuery,
ReadAllQuery, ReportQuery

checkCacheByExactPrimaryKey()

checkCacheByPrimaryKey()

checkCacheThenDatabase()

conformResultsInUnitOfWork()

getReadObjectQuery()

ReadObjectQuery

OracleAS TopLink Support for Java Data Objects (JDO)

4-82 Oracle Application Server TopLink Application Developer’s Guide

addAscendingOrdering(String queryKeyName)

addDescendingOrdering(String queryKeyName)

addOrdering(Expression orderingExpression)

addBatchReadAttribute(String attributeName)

addBatchReadAttribute(Expression

attributeExpression)

addStandardDeviation(String itemName)

addStandardDeviation(String itemName,Expression
attributeExpression)

addSum(String itemName)

addSum(String itemName, Expression
attributeExpression)

addVariance(String itemName)

addVariance(String itemName, Expression

attributeExpression)

getReadAllQuery()

useCollectionClass(Class concreteClass)

useCursoredStream()

useCursoredStream(int initialReadSize, int pageSize)

useCursoredStream(int initialReadSize, int pageSize,
ValueReadQuery sizeQuery)

useDistinct()useMapClass(Class concreteClass, String
methodName)

useScrollableCursor()

useScrollableCursor(int pageSize)

ReadAllQuery

Table 4–22 Elements for OracleAS TopLink Extended JDO API (Cont.)

Method Name Description

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-83

addAttribute(String itemName)

addAttribute(String itemName, Expression

attributeExpression)

addAverage(String itemName)

addAverage(String itemName, Expression

attributeExpression)

ddCount()

addCount(String itemName)

addCount(String itemName, Expression

attributeExpression)

addGrouping(String attributeName)

addGrouping(Expression expression)

addItem(String itemName, Expression

attributeExpression)

addMaximum(String itemName)

addMaximum(String itemName, Expression

attributeExpression)

addMinimum(String itemName)

addMinimum(String itemName, Expression

attributeExpression)

getReportQuery()

Query arguments

Table 4–22 Elements for OracleAS TopLink Extended JDO API (Cont.)

Method Name Description

OracleAS TopLink Support for Java Data Objects (JDO)

4-84 Oracle Application Server TopLink Application Developer’s Guide

addArgument(String argumentName)

bindAllParameters()

cacheStatement()

cascadeAllParts()

cascadePrivateParts()

dontBindAllParameters()

dontCacheStatement()

dontCascadeParts()

dontCheckCache()

dontMaintainCache()

dontUseDistinct()

getQueryTimeout()getReferenceClass()

getSelectionCriteria()

refreshIdentityMapResult()

setCall(Call call)

setEJBQLString(String ejbqlString)

setFilter(Expression selectionCriteria)

setQueryTimeout(int queryTimeout)

setSQLString(String sqlString)

setShouldBindAllParameters(boolean

shouldBindAllParameters)

setShouldCacheStatement(boolean

shouldCacheStatement)

setShouldMaintainCache(boolean

shouldMaintainCache)

shouldBindAllParameters()

shouldCacheStatement()

shouldCascadeAllParts()

shouldCascadeParts()

shouldCascadePrivateParts()

shouldMaintainCache()

DatabaseQuery

Table 4–22 Elements for OracleAS TopLink Extended JDO API (Cont.)

Method Name Description

OracleAS TopLink Support for Java Data Objects (JDO)

Sessions 4-85

JDOTransaction
The JDOTransaction class implements the JDOTransaction interface. It defines
the basic begin, commit, and rollback APIs, and synchronization callbacks within
the Unit of Work. It supports the optional nontransactional read JDO feature.

Read Modes Set the read mode of a JDO transaction by calling the
setNontransactionalRead() method.

Here are the available read modes:

■ Nontransactional Read: Nontransactional reads provide data from the database,
but do not attempt to update the database with changes at commit time. This
transaction mode is the PersistenceManagerFactory default.
Nontransactional reads support nested Units of Work.

When you execute queries in nontransactional read mode, their results are not
subject to the transactional boundary. To update objects from the query results,
modify objects in their transactional instances.

To enable nontransactional read mode, set setNontransactionalRead() to
true.

■ Transactional Read: Transactional reads provide data from the database and write
any changes to the database at commit time. When you use transactional read,
OracleAS TopLink uses the same Unit of Work for all data store interaction
(begin, commit, rollback). Because this can cause the cache to grow large over
time, use this mode only with short-lived PersistenceManager instances. Doing
this allows garbage collection on the Unit of Work.

When you execute queries in transactional read mode, the results are
transactional instances, subject to the transactional boundary. You can update
objects from the result of a query that is executed in transactional mode.

Because you use the same Unit of Work in this mode, the transaction is always
active. You must release it when you change the read mode from transactional
read to nontransactional read.

Note: To avoid exceptions, do not change the read mode while the
transaction is active.

OracleAS TopLink Support for Java Data Objects (JDO)

4-86 Oracle Application Server TopLink Application Developer’s Guide

To enable transactional read mode, set the setNontransactionalRead() flag to
false.

Synchronization You can register a Synchronization listener with the transaction. The
transaction notifies the listener when the transaction is complete. Doing this returns
the beforeCompletion and afterCompletion methods when the precommit and
post-commit events of the Unit of Work trigger.

Running the OracleAS TopLink JDO Example
OracleAS TopLink includes an example application that illustrates some of the JDO
functionality. You can locate the example in <ORACLE_
HOME>\toplink\examples\foundation\jdo.

Caution: Before you call the OracleAS TopLink extended API
release() method, commit all changes to avoid losing the transaction.

Data Access 5-1

5
Data Access

Managing and protecting data are key components of good application design.
Oracle Application Server TopLink enables you to build your application around
your choice of datasource and connection, and to customize data access functions to
improve performance and security.

This chapter explores the ways you can configure OracleAS TopLink data access,
and includes discussions on:

■ Introduction to Data Access Concepts

■ Database Platforms

■ JDBC Connection Pools

■ Database Login Information

■ OracleAS TopLink Conversion Manager

■ Performance

■ Table Qualifier

■ Locking Policy

■ Using the OracleAS TopLink SDK

■ OracleAS TopLink XML Support

Introduction to Data Access Concepts

5-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Data Access Concepts
In OracleAS TopLink applications, data access offers the functionality and features
that enable you to manipulate data on a database and mapping a data source with
the OracleAS TopLink Software Development Kit (SDK).

This section introduces some of the key concepts associated with OracleAS TopLink
data access features.

JDBC Connections
Java Database Connectivity (JDBC) is an application programming interface (API)
that gives Java applications access to a database. OracleAS TopLink applications
rely on JDBC connections to read objects from, and write objects to, the database.

OracleAS TopLink applications use either individual JDBC connections or a JDBC
connection pool, depending on the application architecture.

Individual JDBC Connections
An individual JDBC connection gives a single user access to the database for a
single session. For example, a two-tier OracleAS TopLink architecture generally
connects to the database using a database session and a single JDBC connection.
OracleAS TopLink invokes the JDBC connection as part of the login for the database
session in the sessions.xml file.

For more information about sessions, see Chapter 4, "Sessions".

JDBC Connection Pools
A JDBC connection pool is a collection of JDBC connections managed as a group.
Most three-tier multiuser applications use connection pools.

JDBC connection pools enable you to configure connections for several users using
less than a one-to-one ratio of connections to users, because the connections in the
pool are reusable. For example, a two-tier application requires one JDBC connection
for its one user. A three-tier application, conversely, can support several thousand
users with a connection pool of only a few connections, depending on the
application. The connection pool assigns connections to clients, retrieves the
connections when clients complete their tasks, and reuses them for future database
requests. The connection pool also queues database requests when requests
outnumber the available connections.

OracleAS TopLink supports two types of connection pools: the default OracleAS
TopLink internal connection pool and external connection pools.

Database Platforms

Data Access 5-3

Internal Pools Because of the multiuser nature of a server session, OracleAS TopLink
establishes a connection pool for all server sessions by default. The pool includes
several database connections that can be configured, and OracleAS TopLink
manages the pool automatically.

External Pools OracleAS TopLink supports external connection pools. Applications
that include an application server usually use an external connection pool, managed
by a Java Transaction Architecture (JTA) device.

JTA
The JTA is a specification that enables your application to participate in a
distributed transaction system. The system provides transaction management and
connection pooling and enables your application to interact with multiple databases
transparently.

OracleAS TopLink applications that use an application server often use JTA to
manage database transactions.

Data Conversion
OracleAS TopLink applications store object attributes on a database. To enable this
functionality, OracleAS TopLink must convert object attributes, which are Java types
such as STRING and INTEGER, to database types, such as VARCHAR and NUMERIC.
The OracleAS TopLink conversion manager manages these conversions and enables
you to build custom conversion classes.

Database Platforms
OracleAS TopLink communicates with databases using Structured Query Language
(SQL). Because each database platform uses its own variation on the basic SQL
language, OracleAS TopLink must adjust the SQL it uses to communicate with the
database to ensure that the application runs smoothly.

This section describes OracleAS TopLink support for:

■ JDBC-SQL and Native SQL

■ Custom Platforms

Database Platforms

5-4 Oracle Application Server TopLink Application Developer’s Guide

JDBC-SQL and Native SQL
By default, OracleAS TopLink accesses the database using JDBC-SQL and
automatically performs the conversions between Java types and database types.
OracleAS TopLink provides the conversions listed in Table 5–1 automatically.

OracleAS TopLink provides the required customization by enabling you to specify
your database platform. OracleAS TopLink provides specific support for the
following platforms:

■ Oracle databases

■ IBM DB2

■ IBM DBase

Table 5–1 JDBC-SQL Conversion Types

Class Oracle Type DB2 Type dBase Type Sybase Type
Microsoft
Access Type

java.lang.Boolean NUMBER SMALLINT NUMBER BIT default 0 SHORT

java.lang.Byte NUMBER SMALLINT NUMBER SMALLINT SHORT

java.lang.Byte[] LONG RAW BLOB BINARY IMAGE LONGBINARY

java.lang.Integer NUMBER INTEGER NUMBER INTEGER LONG

java.lang.Long NUMBER INTEGER NUMBER NUMERIC DOUBLE

java.lang.Float NUMBER FLOAT NUMBER FLOAT(16) DOUBLE

java.lang.Double NUMBER FLOAT NUMBER FLOAT(32) DOUBLE

java.lang.Short NUMBER SMALLINT NUMBER SMALLINT SHORT

java.lang.String VARCHAR2 VARCHAR CHAR VARCHAR TEXT

java.lang.Character CHAR CHAR CHAR CHAR TEXT

java.lang.Character[] LONG CLOB MEMO TEXT LONGTEXT

java.math.BigDecimal NUMBER DECIMAL NUMBER NUMERIC DOUBLE

java.math.BigInteger NUMBER DECIMAL NUMBER NUMERIC DOUBLE

java.sql.Date DATE DATE DATE DATETIME DATETIME

java.sql.Time DATE TIME CHAR DATETIME DATETIME

java.sql.Timestamp DATE TIMESTAMP CHAR DATETIME DATETIME

Database Platforms

Data Access 5-5

■ IBM Cloudscape

■ IBM Informix

■ Microsoft Access

■ Microsoft SQL Server

■ Sybase SQL Server

■ JDBC

■ PointBase databases

Specify your database platform in the login element of the sessions.xml file or
the login section of your Java project configuration file (project.java). If you set
your database platform in the OracleAS TopLink Mapping Workbench, then the
OracleAS TopLink Mapping Workbench and the OracleAS TopLink Sessions Editor
manage the database platform configuration for you automatically.

Example 5–1 Specifying an Oracle Database Platform in the sessions.xml File

For clarity, the code that sets the platform class is bold in this example.

<session>
...
<login>
...
<platform-class>oracle.toplink.internal.databaseaccess.OraclePlatform</platform-class>
...

</login>
...
</session>

Example 5–2 Specifying an Oracle Database Platform in Java

project.getLogin().useOracle();

Custom Platforms
You can specify a custom database platform for your OracleAS TopLink application.
Custom platform support enables you to use a database when OracleAS TopLink
has no predefined platform.

To enable custom database platform support, create a new platform class that
extends one of the existing platform classes, and call the class at runtime by

JDBC Connection Pools

5-6 Oracle Application Server TopLink Application Developer’s Guide

referencing it in the session configuration file (the sessions.xml file), as
Example 5–1 illustrates.

JDBC Connection Pools
A JDBC connection pool is a collection of reusable database connections that service
a single application. This section introduces the following topics and techniques for
working with JDBC connection pools:

■ Default Connection Pools

■ External Connection Pools

■ JDBC Datasources

■ JTA

Default Connection Pools
OracleAS TopLink provides a default internal connection pool for sessions that use
a server session for database access. The default settings are appropriate for most
applications; however, you can modify the connection pool attributes in the
sessions.xml file to tailor the pool to your needs. You can specify:

■ The type of connection in the connection pool (read or write)

■ The name of the connection pool

■ The maximum number of database connections available in the connection pool

■ The minimum number of database connections available in the connection pool

For complete information on specifying the internal connection pool in the
sessions.xml file, see "connection-pool Element" on page 4-23.

External Connection Pools
With OracleAS TopLink you can use an external connection pool rather than the
default internal pool, enabling you to leverage external transaction management
systems such as JTA. This is common in applications that incorporate an application
server.

To use an external connection pool, enable and specify it as follows:

■ If your application uses EJB entity beans, modify the toplink-ejb-jar.xml
file, using the elements described in Table 9–1, "login Elements" on page 9-8.

JDBC Connection Pools

Data Access 5-7

■ If your application does not leverage EJB entity beans, configure the external
connection pool in the sessions.xml file using the elements described in
"connection-pool Element" on page 4-23.

JDBC Datasources
OracleAS TopLink uses a datasource to access your database information—your
application does not need to be aware or maintain the connection information.
OracleAS TopLink can access the database through a connection pool or a
datasource. OracleAS TopLink JTA integration often uses a datasource.

You can configure a datasource as follows:

■ If your application uses EJB entity beans, modify the toplink-ejb-jar.xml
file, using the elements described in Table 9–1, "login Elements" on page 9-8.

■ If your application does not leverage EJB entity beans, configure the datasource
in the sessions.xml file login element, using the optional data-source
element described in Table 4–3, "Basic Configuration Tags Within the Login
Element" on page 4-13.

For more information about defined connection pools and datasources with EJB
entity beans, see "Configuring the toplink-ejb-jar.xml File with the BEA WebLogic
Server" on page 9-6.

Container-Managed Persistence and Datasources
OracleAS TopLink CMP applications can leverage datasources rather than
connection pools. To use a datasource, configure Java Transaction Service (JTS)
support. JTS is the specification that supports JTA.

To use a datasource, configure both a JTS and a non-JTS datasource in the
toplink-ejb-jar.xml file. To configure the required sources, specify them in the
datasource and non-jts-data-source tags in the login element. These tags
correspond to JTS and non-JTS datasources respectively.

The values for these datasource tags correspond directly to the names of the
datasources as defined in your J2EE container or application server. Following is an
example of a partial toplink-ejb-jar.xml file listing, using datasources:

...
<datasource>myJtsDataSource</datasource>
<non-jts-data-source>myNonJtsDataSource</non-jts-data-source>
...

Database Login Information

5-8 Oracle Application Server TopLink Application Developer’s Guide

For more information, see "Configuring the toplink-ejb-jar.xml File with the BEA
WebLogic Server" on page 9-6.

JTA
You can integrate your OracleAS TopLink application with a transaction service that
complies with JTA, thereby enabling sessions to:

■ Participate in distributed transactions

■ Leverage existing connection pools

■ Access several databases managed by the JTA system transparently

JTA is a Java 2 Enterprise Edition (J2EE) component.

For more information about leveraging JTA in your application, see "J2EE
Integration" on page 7-44.

Database Login Information
Java applications that access a database log in to the database through a JDBC
driver. Database logins generally require a valid user name and password.
OracleAS TopLink applications store this login information in the DatabaseLogin
class. All sessions must have a valid DatabaseLogin instance before logging in to
the database.

This section describes:

■ Creating a Login Object

■ Specifying Driver Information

■ Setting Login Parameters

■ Database Login Advanced Features

Creating a Login Object
Your project configuration file (project.xml or project.java) must include a
login object to enable database access. The most basic login mechanism creates an
instance of DatabaseLogin through its default constructor, as follows:

Databaselogin login = new Databaselogin();
...

Database Login Information

Data Access 5-9

If you create the project in the OracleAS TopLink Mapping Workbench, OracleAS
TopLink creates the login object for you automatically and enables you to access the
login from your project instance. This ensures that the session uses login
information set in the OracleAS TopLink Mapping Workbench (for example:
sequencing information) and also prevents you from inadvertently overwriting the
login information already included in the project.

You can also access the login in Java code, using the getLogin() instance
method to return the project’s login. This method returns an instance of
DatabaseLogin, which you can either use directly or augment with additional
information before logging in.

Specifying Driver Information
The DatabaseLogin class includes helper methods that set the driver class, driver
Uniform Resource Locator (URL) prefix, and database information for common
drivers. When you use helper methods, use the setDatabaseURL() method to set
the database instance for the JDBC driver URL.

These helper methods also specify any additional settings required for that driver,
such as binding byte arrays or using native SQL.

For example:

project.getLogin().useOracleThinJDBCDriver();
project.getLogin().setDatabaseURL("dbserver:1521:orcl");

Using the Sun Microsystems JDBC-ODBC Bridge
To use the Sun Microsystems JDBC-ODBC bridge, specify the ODBC datasource
name by calling the setDataSourceName().

Example 5–3 Using the Sun Microsystems JDBC-ODBC Bridge

project.getLogin().useJDBCODBCBridge();
project.getLogin().useOracle();
project.getLogin().setDataSourceName("Oracle");

In Example 5–3, OracleAS TopLink splits the URL into the driver and database
calls. You can also use the setConnectionString() function to specify the URL in
a single line of code.

Database Login Information

5-10 Oracle Application Server TopLink Application Developer’s Guide

Using a Different Driver
If you require a driver other than the Sun Microsystems JDBC-ODBC bridge,
specify a different connection mechanism by calling the setDriverClass() and
setConnectionString() methods.

For more information about the correct driver settings to use with these methods,
see the driver documentation.

Example 5–4 Using an Alternative Driver

project.getLogin().setDriverClass(oracle.jdbc.driver.OracleDriver.class);
project.getLogin().setConnectionString("jdbc:oracle:thin:@dbserver:1521:orcl");

Setting Login Parameters
You can set several session properties as part of the login, including user
information, database information, and JDBC driver information.

User Information
If a database requires user and password information, call the setUserName() and
setPassword() methods after you specify the driver. Specify user and password
information when you use the login object from a OracleAS TopLink Mapping
Workbench project.

Example 5–5 Using setUserName() and setPassword()

project.getLogin().setUserName("userid");
project.getLogin().setPassword("password");

Database Information
You can specify properties such as the database name and the server name using
the setServerName() and setDatabaseName() methods. The ODBC datasource
Administrator for most JDBC-ODBC bridges usually sets these properties, but some
drivers do require you to specify them explicitly.

Note that, because the database and server name properties are part of the database
URL, most JDBC drivers do not require you to specify them explicitly and may fail
if you do specify them.

Database Login Information

Data Access 5-11

Additional JDBC Properties
If your JDBC driver requires additional properties, use the setProperty() method
to send these properties. Use caution when specifying properties, because, although
some drivers require additional information, other drivers can fail if you specify
properties that are not required. If you use the setProperty() method and the
connection always fails, ensure that the specified properties are correct, complete,
and required.

Database Login Advanced Features
You can set the following options within your code, rather than through the
OracleAS TopLink Mapping Workbench:

■ Setting Sequencing at Login

■ Setting Direct Connect Drivers

■ Using JDBC 2.0 Datasources

■ Using Custom Database Connections

There are several options you can set at login rather than through more
conventional methods, such as through the OracleAS TopLink Mapping
Workbench.

Setting Sequencing at Login
For most projects, you set sequencing in the OracleAS TopLink Mapping
Workbench project. To configure sequencing in Java code, you can use any of the
following methods:

■ setSequenceCounterFieldName()

■ setSequenceNameFieldName()

■ setSequencePreallocationSize()

■ setSequenceTableName()

■ useNativeSequencing()

Note: Do not set the login password directly using the setProperty()
method, because OracleAS TopLink encrypts and decrypts the password.
Use the setPassword() method instead.

Database Login Information

5-12 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink supports native sequencing on Oracle databases, IBM Informix,
Microsoft SQL Server, and Sybase SQL Server. Using native sequencing requires
that you specify the database platform. Call the useNativeSequencing() method
to configure your application to use native sequencing rather than a sequence table.

When you implement native sequencing, consider the following:

■ The sequence preallocation size defaults to 1. If you use Sybase, Microsoft SQL
Server or IBM Informix native sequencing, you cannot use preallocation and
you cannot change the size.

■ When using native sequencing with Oracle, specify the name of the sequence
object (the object that generates the sequence numbers) for each descriptor. The
sequence preallocation size must also match the increment on the sequence
object.

Example 5–6 Configuring Oracle Native Sequencing in Java Code

project.getLogin().useOracle();
project.getLogin().useNativeSequencing();
project.getLogin().setSequencePreallocationSize(1);

For more information, see "Sequencing" on page 3-37.

Notes:

■ Ensure you match the increment of the Oracle sequence and not the
cache. The cache refers to the sequences cached on the database
server; the increment refers to the number of sequences that can be
cached on the database client.

■ When you use sequencing or native sequencing, specify the sequence
information in each descriptor that makes use of a generated ID.

■ Use preallocation and native sequencing for Oracle databases.

Note: Using the Project class to create a DatabaseLogin instance
automatically uses the sequencing information specified in the OracleAS
TopLink Mapping Workbench.

Database Login Information

Data Access 5-13

Setting Direct Connect Drivers
By default, OracleAS TopLink loads a JDBC driver and connects to a database as
follows:

■ To load and initialize the class, OracleAS TopLink calls
java.lang.Class.forName().

■ To obtain a connection, OracleAS TopLink calls
java.sql.DriverManager.getConnection().

Some drivers do not allow you to use the java.sql.DriverManager to connect to
a database. To load these drivers, configure OracleAS TopLink to instantiate the
drivers directly, by invoking the DirectDriverConnect() method.

Example 5–7 Using useDirectDriverConnect()

project.getLogin().useDirectDriverConnect("com.direct.connectionDriver",
"jdbc:far:", "server");

Using JDBC 2.0 Datasources
The JDBC 2.0 specification recommends using a Java Naming and Directory
Interface (JNDI) naming service to acquire a connection to a database. To use this
feature, configure an instance of oracle.toplink.jndi.JNDIConnector and pass
it to the project login object using the setConnector() method.

Example 5–8 Using JNDI

import oracle.toplink.sessions.*;
import oracle.toplink.jndi.*;

javax.naming.Context context = new javax.naming.InitialContext();
Connector connector = new JNDIConnector(context, "customerDB");
project.getLogin().setConnector(connector);

Using Custom Database Connections
OracleAS TopLink allows you to develop your own class to obtain a connection to a
database. The class must implement the oracle.toplink.sessions.Connector
interface. This requires the class to implement the following methods:

■ java.sql.Connection connect(java.util.Properties properties):
Receives a dictionary of properties (including the user name and password) and
must return a valid connection to the database.

■ void toString(PrintWriter writer): Prints out any helpful information
on the OracleAS TopLink log.

OracleAS TopLink Conversion Manager

5-14 Oracle Application Server TopLink Application Developer’s Guide

Implement the custom class, instantiate it, and then pass it to the project login
object, using the setConnector() method.

Example 5–9 Using the oracle.toplink.sessions.Connector Interface

import oracle.toplink.sessions.*;
Connector connector = new MyConnector();
project.getLogin().setConnector(connector);

OracleAS TopLink Conversion Manager
OracleAS TopLink uses a class known as the ConversionManager to convert
database types to Java types. This class, found in the
oracle.toplink.internal.helper package, is the central location for type
conversion and provides developers with a mechanism for using custom types in
OracleAS TopLink.

This section describes:

■ Creating Custom Types with the Conversion Manager

■ Conversion Manager Class Loader

■ Resolving Class Loader Exceptions

Creating Custom Types with the Conversion Manager
Use the conversion manager to create and use custom types in OracleAS TopLink.

To use custom types in OracleAS TopLink:
1. Use one of the following methods to create a subclass of the

ConversionManager:

■ Overload the public Object convertObject(Object sourceObject,
Class javaClass) method to call the conversion method you provide in
the subclass for the custom type.

■ Delegate the conversion to the superclass.

2. Implement the protected ClassX convertObjectToClassX(Object
sourceObject) throws ConversionException conversion method to
convert incoming objects to the required class.

OracleAS TopLink Conversion Manager

Data Access 5-15

3. Assign the class to OracleAS TopLink in either of two ways:

■ Assign a custom conversion manager to the OracleAS TopLink session
using the (getSession().getPlatform().setConversionManager
(ConversionManager)) platform.

■ Set the conversion manager singleton by calling the
setDefaultManager(ConversionManager) static method on the
conversion manager. This setting causes all OracleAS TopLink sessions
created in the Java virtual machine (JVM) to use the custom conversion
manager. See the ConversionManager class in the Oracle Application
Server TopLink API Reference for examples.

Conversion Manager Class Loader
OracleAS TopLink provides a class loader within the conversion manager which
enables the conversion manager to load classes from both a OracleAS TopLink
Mapping Workbench project and the class library. The conversion manager uses the
System class loader by default.

Resolving Class Loader Exceptions
In some cases, such as when OracleAS TopLink is deployed within an application
server, you may want to use other class loaders for the deployed classes. Doing this
can cause a ClassNotFound exception. To resolve this problem, use one of the
following methods:

■ Call the public void
setShouldUseClassLoaderFromCurrentThread(boolean
useCurrentThread) method on the default conversion manager before
logging in any sessions. This method resolves the problem for most application
servers and ensures that OracleAS TopLink uses the correct class loader.

■ Set the default class loader to be the one that the application uses. For example,
if you use the session manager, pass the class loader into the getSession() call
to set the required class loader on the conversion manager.

■ Call public static void setDefaultLoader(ClassLoader
classLoader) on the conversion manager before any sessions are logged in,
and pass in the class loader that contains the deployed classes.

Performance

5-16 Oracle Application Server TopLink Application Developer’s Guide

Performance
You can use several techniques to improve data access performance for your
application. This section discusses some of the more common approaches,
including:

■ Data Optimization

■ Batch Writing

■ Binding and Parameterized SQL

■ Prepared Statement Caching

Data Optimization
By default, OracleAS TopLink optimizes data access by accessing the data from
JDBC in the format the application requires. For example, OracleAS TopLink
retrieves longs from JDBC instead of having the driver return a BigDecimal that
OracleAS TopLink would then have to convert into a long.

OracleAS TopLink also retrieves dates as strings and converts directly to the date or
Calendar type used by the application. Some older drivers do not convert data
correctly. For example, earlier BEA WebLogic JDBC drivers cannot convert dates to
strings in the correct format. If you use one of these drivers, disable data
optimization.

Example 5–10 Disabling Data Optimization in Code

session.getLogin().dontOptimizeDataConversion() ;

Example 5–11 Disabling Data Optimization in the sessions.xml File

<login>
...
<should_optimize_data_conversion>false</should-optimize-data-conversion>

</login>

Note: The problems mentioned here may have been fixed in more
recent versions of the drivers. See your vendor documentation for
relevant updates.

Performance

Data Access 5-17

Batch Writing
Batch writing can improve database performance by sending groups of INSERT,
UPDATE, and DELETE statements to the database in a single transaction, rather than
individually. OracleAS TopLink supports batch writing for selected databases and
for JDBC 2.0 batch-compliant drivers.

To enable JDBC 2.0 batch writing, invoke the useBatchWriting() method on the
login.

If you use a JDBC driver that does not support batch writing directly, you can still
take advantage of batch writing, because OracleAS TopLink provides its own batch
writing functionality. To enable OracleAS TopLink batch writing support, run the
code in Example 5–12.

Example 5–12 Batch Writing

project.getLogin().useBatchWriting();
project.getLogin().dontUseJDBCBatchWriting();

For more information about batch writing, see Chapter 10, "Tuning for
Performance" on page 10-1.

Binding and Parameterized SQL
By default, OracleAS TopLink prints data inlined into its generated SQL and does
not use parameterized SQL. However, you can implement parameterized SQL to:

■ Alleviate the limit imposed by some drivers on the size of the data to be
printed.

■ Cache prepared statements to improve performance.

OracleAS TopLink does not implement parameterized SQL because many JDBC
drivers do not fully support parameter binding, and have size or type limits.

For more information about binding and binding size limits, see your database
documentation.

If your driver supports parameter binding and also imposes a limit on the size of
the printable results, use parameter binding to accommodate large binary data in
one of the following ways:

■ Call the useByteArrayBinding() method. This is a common method to
accommodate large binary data.

Performance

5-18 Oracle Application Server TopLink Application Developer’s Guide

■ If you use a JDBC driver that is more efficient at reading large binary data
through streams, call the useStreamsForBinding() method.

■ Configure binding for large string data with the useStringBinding() method.

Example 5–13 Using Parameter Binding with Large Binary Data

project.getLogin().useByteArrayBinding();

project.getLogin().useStreamsForBinding();
project.getLogin().useStringBinding(50);
project.getLogin().bindAllParameters();
project.getLogin().cacheAllStatements();
project.getLogin().setStatementCacheSize(50);

Prepared Statement Caching
OracleAS TopLink enables you to cache JDBC prepared statements to improve
query performance. Prepared statements improve database performance by
reducing the number of times the database SQL engine parses and prepares a SQL
call for a frequently called query.

To enable prepared statement caching, cache the statement and bind its parameters.
You can do this at the query level or at the session level.

Prepared Statement Caching for a Query
To cache the prepared statement for an individual query, configure statement
caching in the query definition before execution the query. You can do this either in
Java code, or as part of the SQL for a named query in the OracleAS TopLink
Mapping Workbench.

Example 5–14 Caching a Prepared Statement in Code for an Individual Query

// Add a query.
ExpressionBuilder builder = new ExpressionBuilder();
ReadAllQuery query = new ReadAllQuery(PhoneNumber.class, builder);

Expression exp = builder.get("id").equal(builder.getParameter("ID"));
query.setSelectionCriteria(exp.and(builder.get("areaCode").equal("613")));

query.addArgument("ID");

/* The following options force OracleAS TopLink to cache the prepared statement

Table Qualifier

Data Access 5-19

and bind any arguments required by the query */
query.cacheStatement();
query.bindAllParameters();

descriptor.getQueryManager().addQuery("localNumbers", query);

Prepared Statement Caching for a Session
To cache all prepared statements for a session, edit the sessions.xml file in the
OracleAS TopLink Sessions Editor, adding login options to bind all parameters and
cache statements.

Example 5–15 Caching Prepared Statements in the sessions.xml File

<session>
...
<login>

...
<should-bind-all-parameters>true</should-bind-all-parameters>
<should-cache-all-statements>true</should-cache-all-statements>

</login>
....

</session>

Table Qualifier
A table qualifier affects the data in a table to which a user has access. You can use
table qualifiers to manage data access in databases that support them, such as
Oracle and IBM DB2. You can also use table qualifiers to fully-qualify the table
names of tables that have a different creator.

OracleAS TopLink enables you to add a table qualifier to all table references in a
given session. Use the setTableQualifier() method on your session login object
to prepend a string to all tables accessed by the session.

Example 5–16 Adding a Table Qualifier

session.getLogin().setTableQualifier([QUALIFIER_STRING])

Locking Policy

5-20 Oracle Application Server TopLink Application Developer’s Guide

Locking Policy
A locking policy is an important component of any multi-user OracleAS TopLink
application. When users share objects in an application, a locking policy ensures
that two or more users do not attempt to modify the same object or its underlying
data simultaneously.

OracleAS TopLink works with relational databases to provide support for several
types of locking policy, including:

Optimistic Lock All users have read access to the object. When a user attempts to
write a change, the application checks to ensure the object has not changed since the
last read. OracleAS TopLink provides this locking policy.

Optimistic Read Lock As with optimistic lock, the optimistic read lock ensures that
the object has not changed before writing a change. However, the optimistic read
lock also forces a read of any related tables that contribute information to the object.
OracleAS TopLink offers this locking policy.

Pessimistic Locking When a user accesses an object to update it, the database locks
the object until the update is completed. No other user can read or update the object
until the first user releases the lock. The database offers this locking type.

No Locking The application does not verify that data is current.

Using Optimistic Locking
Optimistic locking, also known as write locking, allows unlimited read access to a
given object, but allows a client to modify the object only if the object has not
changed since the client last read it.

Optimistic locking checks an object’s version at transaction commit time against the
version read during the transaction. This check ensures that no other client
modified the data after it was read by the current transaction. If this check detects
stale data, the check raises an OptimisticLockException, and the commit fails.

Note: Most OracleAS TopLink applications use either optimistic
locking or optimistic read locking, because they are the safest and most
efficient of these locking strategies.

Locking Policy

Data Access 5-21

Set optimistic locking on the descriptor using one of two locking policies:

■ Version locking policies enforce optimistic locking using a version field (or write
lock field). OracleAS TopLink updates this field each time it modifies a record.
Add a version field to the table for this purpose.

■ Field locking policies enforce optimistic locking by preventing other processes
from writing to the field until the current transaction commits. Field locking
does not require additional fields in the table, but you must commit changes to
the database using a Unit of Work to implement this type of policy.

For more information about locking policies, see "Two Different Locking Policies"
on page 5-28.

Advantages and Disadvantages of Optimistic Locking
Here are the advantages of optimistic locking:

■ It prevents users and applications from editing stale data.

■ It notifies users of any locking violation immediately, when updating the object.

■ It does not require you to lock up the database resource.

■ It prevents database deadlocks.

However, optimistic locking cannot prevent applications from selecting and
attempting to modify the same data. When two different processes modify data, the
first one to commit the changes succeeds while the other process fails and receives
an OptimisticLockException.

Advanced Optimistic Locking Policies
All OracleAS TopLink optimistic locking policies implement the
OptimisticLockingPolicy interface. This interface includes several of methods
that you can implement to customize the optimistic locking policy.

For more information about these methods, see the Oracle Application Server TopLink
API Reference.

Note: Using optimistic locking by itself does not protect against having
different copies of the same object existing in multiple nodes. For more
information, see “Optimistic Locking” in the Oracle Application Server
TopLink Mapping Workbench User’s Guide.

Locking Policy

5-22 Oracle Application Server TopLink Application Developer’s Guide

Optimistic Read Locking
Optimistic read lock is an advanced type of optimistic lock that enables you to force
lock checking on objects that are not modified by the current transaction. Optimistic
read lock also offers the option to increment the unchanged object version or leave
the version unchanged.

For example, consider a transaction that updates a mortgage rate by multiplying the
central bank prime rate by 1.25. The transaction executes an optimistic read lock on
the central prime rate at commit time to ensure that the prime rate has not changed
since the transaction began. Note that in this example, the transaction does not
increment the version of the unchanged object (the central prime rate).

Example 5–17 Optimistic Read Lock with No Version Increment

try {
UnitOfWork uow = session.acquireUnitOfWork();
MortgageRate cloneMortgageRate = (MortgageRate)

uow.registerObject(mortgageRate);
CentralPrimeRate cloneCentralPrimeRate = (CentralPrimeRate)

uow.registerObject(CentralPrimeRate);
/* Change the Mortgage Rate */
cloneMortgageRate.setRate(cloneCentralPrimeRate.getRate() * 1.25);
/* Optimistic read lock check on Central prime rate with no version update*/
uow.forceUpdateToVersionField(cloneCentralPrimeRate, false);
uow.commit();

}(OptimisticLockException exception) {
/* Refresh the out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}

Consider another example, in which an invoice thread calculates an invoice for a
customer. If another thread (the service thread) adds a service to the same customer
or modifies the current service, it must inform the invoice thread, which adds the
changes to the invoice. This feature is available for objects that implement a version
of field locking policy or timestamp locking policy. When you update an object that
implements a version locking policy, the version value is incremented or set to the
current timestamp.

For more information about field locking policies, see "Field Locking Policies" on
page 5-29.

Locking Policy

Data Access 5-23

Example 5–18 Optimistic Read Lock with Version Increment

/* The following code represents the service thread. Notice that the thread
forces a version update. */
try {

UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer uow.registerObject(customer);
Service cloneService = (Service uow.registerObject(service);
/* Add a service to customer */
cloneService.setCustomer(cloneCustomer);
cloneCustomer.getServices().add(cloneService);
/* Modify the customer version to inform other application that

the customer has changed */
uow.forceUpdateToVersionField(cloneCustomer, true);
uow.commit();

}
catch {

(OptimisticLockException exception) {
/* Refresh out-of-date object */
session.refreshObject(exception.getObject());
/* Retry… */

}

/* The following code represents the invoice thread, and calculates a bill for
the customer. Notice that it does not force an update to the version */

try {
UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer) uow.registerObject(customer);
Invoice cloneInvoice = (Invoice) uow.registerObject(new Invoice());
cloneInvoice.setCustomer(cloneCustomer);
/* Calculate services' charge */
int total = 0;
for(Enumeration enum = cloneCustomer.getServices().elements();
enum.hasMoreElements();) {
total += ((Service) enum.nextElement()).getCost();
}
cloneInvoice.setTotal(total);
/* Force optimistic lock checking on the customer to guarantee a valid

calculation */
uow.forceUpdateToVersionField(cloneCustomer, false);
uow.commit();

}
catch {

(OptimisticLockException exception) {

Locking Policy

5-24 Oracle Application Server TopLink Application Developer’s Guide

/* Refresh the customer and its privately owned parts */
session.refreshObject(cloneCustomer);
/* If the customer's services are not private owned then use a
ReadObjectQuery to refresh all parts */
ReadObjectQuery query = new ReadObjectQuery(customer);
/* Refresh the cache with the query's result and cascade refreshing

to all parts including customer's services */
query.refreshIdentityMapResult();
query.cascadeAllParts();
/* Refresh from the database */
query.dontCheckCache();
session.executeQuery(query);
/* Retry… */

}

When is an Object Considered Changed? The Unit of Work considers an object changed
when you modify its direct-to-field or aggregate object mapping attribute. Adding,
removing, or modifying objects related to the source object does not render the
source object changed for the purposes of the Unit of Work.

Pessimistic Locking
Pessimistic locking locks objects when the transaction accesses them, before commit
time, ensuring that only one client is editing the object at any given time.

Pessimistic locking detects locking violations at object read time. The OracleAS
TopLink implementation of pessimistic locking uses database row-level locks, such
that attempts to read a locked row either fail or are blocked until the row is
unlocked, depending on the database.

Example 5–19 Pessimistic Locking with ReadObjectQuery

import oracle.toplink.sessions.*;
import oracle.toplink.queryframework.*;

...
UnitOfWork uow = session.acquireUnitOfWork();

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.acquireLocks();
Employee employee = (Employee) uow.executeQuery(query);

// Make changes to object
...

Locking Policy

Data Access 5-25

uow.commit();
...

Example 5–20 Pessimistic Locking with ReadAllQuery

import oracle.toplink.sessions.*;
import oracle.toplink.queryframework.*;

...
UnitOfWork uow = session.acquireUnitOfWork();
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new ExpressionBuilder().get("salary").greaterThan(25000));
query.acquireLocks();
/* NOTE: the objects are registered when they are obtained by using Unit of Work. OracleAS
TopLink will update all the changes to registered objects when Unit of Work commit */
Vector employees = (Vector) uow.executeQuery(query);

// Make changes to objects
...
uow.commit();

...

Example 5–21 Pessimistic Locking with a Session Using ReadAllQuery

import oracle.toplink.sessions.*;
import oracle.toplink.sessions.queryframework.*;
...
// It must begin a transaction or the lock request will throw an exception
session.beginTransaction();
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new ExpressionBuilder().get("salary").greaterThan(25000));
query.acquireLocks();
// or acquireLocksWithoutWaiting()
query.refreshIdentityMapResult();
Vector employees = (Vector) session.executeQuery(query);
// Make changes to objects
...
// Update objects to reflect changes
for (Enumeration enum = employees.elements();

employees.hasMoreElements(); {
session.updateObject(enum.nextElement());

}
session.commitTransaction();
...

Locking Policy

5-26 Oracle Application Server TopLink Application Developer’s Guide

Pessimistic Locking and the Cache
When you acquire a pessimistic lock on an object, you refresh the object in the
session cache. This is different from an optimistic lock, which refreshes objects in
the cache only after a successful commit. Because of this, and because it prevents
other processes from reading locked objects, a pessimistic lock is not as efficient as
an optimistic lock.

Pessimistic Locking and Database Transactions
Because pessimistic locks exist for the duration of the current transaction, the
associated database transaction remains open from the point of the first lock request
until the transaction commits. When the transaction commits or rolls back, the
database releases the locks.

The Unit of Work starts a database transaction automatically when it attempts to
read the first object in its operations. If you are not using the Unit of Work,
manually begin a transaction on the session.

WAIT and NO_WAIT Options
OracleAS TopLink offers two methods of locking, WAIT and NO_WAIT. These
options determine how the transaction responds when it encounters a locked row. If
you select the:

■ The WAIT option, then the transaction waits until the database releases the lock
on the object. It then obtains a lock on the object and continues.

■ The NO_WAIT option, then OracleAS TopLink throws an exception when the
transaction encounters a locked row.

Example 5–22 Pessimistic Locking with Wait for Lock

This example illustrates a pessimistic lock with the WAIT mode in the context of a
Unit of Work.

import oracle.toplink.sessions.*;

Note: OracleAS TopLink uses database row-level locking to implement
pessimistic locking. Although this is the standard way of implementing
pessimistic locking in the database, not all databases support row-level
locking functionality. Consult your database documentation to see if
your database supports row-level locking and the SELECT ... FOR
UPDATE [NO WAIT] API.

Locking Policy

Data Access 5-27

import oracle.toplink.queryframework.*;
...
UnitOfWork uow = session.acquireUnitOfWork();
Employee employee = (Employee) uow.readObject(Employee.class);

/* Note: This will cause the Unit of Work to begin a transaction. In a
three-Tier model this will also cause the ClientSession to acquire its write
connection from the ServerSession's pool */
uow.refreshAndLockObject(employee, ObjectLevelReadQuery.LOCK);
// Make changes to object
...
uow.commit();
...

Example 5–23 Pessimistic Locking with No Wait for Lock

This example illustrates a pessimistic lock with the No_Wait mode in the context of
a Unit of Work.

import oracle.toplink.sessions.*;
import oracle.toplink.queryframework.*;
import oracle.toplink.exceptions.*;
...
UnitOfWork uow = session.acquireUnitOfWork();
Employee employee = (Employee) uow.readObject(Employee.class);

try {
employee = (Employee)

uow.refreshAndLockObject(employee,ObjectLevelReadQuery.LOCK_NOWAIT);
}
catch (DatabaseException dbe) {

// Some databases throw an exception instead of returning nothing.
employee = null;

}
if (employee == null) {

// Lock cannot be obtained
uow.release();
throw new Exception("Locking error.");

} else {
// Make changes to object
...
uow.commit();

}
...

Locking Policy

5-28 Oracle Application Server TopLink Application Developer’s Guide

Advantages of Pessimistic Locking
The following are the advantages of pessimistic locking:

■ Pessimistic locking can prevent users and applications from editing data that is
being or has been changed.

■ Processes know immediately when a locking violation occurs, rather than after
the transaction is complete.

Disadvantages of Pessimistic Locking

The following are the disadvantages of pessimistic locking:

■ It is not fully supported by all databases.

■ It consumes extra database resources.

■ It requires OracleAS TopLink to maintain an open transaction and database lock
for the duration of the transaction, which can lead to database deadlocks.

■ It decreases the concurrency of connection pooling when using the server
session, which affects the overall scalability of your application.

Reference
Table 5–2 summarizes the most common public methods for Pessimistic
Locking. The Default column describes default settings of the descriptor element.
For more information about the available methods for Pessimistic Locking, see
the Oracle Application Server TopLink API Reference.

Two Different Locking Policies
A locking policy describes how you manage record locking on the database and
track changed objects. OracleAS TopLink offers two different strategies for
managing locking: field locking and timestamp locking.

Table 5–2 Elements for Pessimistic Locking

Element Default Method Name

Lock mode
(for ObjectLevelRead
Query)

No lock acquireLocks()
acquireLocksWithoutWaiting()

Refresh and lock
(for Session)

not applicable refreshAndLockObject(Object object, short
lockMode)

Locking Policy

Data Access 5-29

Field Locking Policies
Field locking policies compare the current values of certain mapped fields with
previous values. OracleAS TopLink support for field locking policies does not
require any additional fields in the database. Field locking policy support includes:

■ AllFieldsLockingPolicy

■ ChangedFieldsLockingPolicy

■ SelectedFieldsLockingPolicy

These policies require you to use a Unit of Work for database updates. Each policy
handles its field comparisons in a specific way defined by the policy:

■ When you update or delete an object under AllFieldsLockingPolicy, the
Unit of Work checks all table fields that are part of the SQL where clause. If any
values have changed since the object was read, the update or delete fails. This
comparison is only on a per table basis. If you perform an update on an object
mapped to multiple tables (including multiple table inheritance), only the
changed table(s) appear in the where clause.

■ When you update an object under ChangedFieldsLockingPolicy, the Unit of
Work checks only the modified fields. This allows multiple clients to modify
different parts of the same row without failure. Using this policy, a delete
compares only on the primary key.

■ When you update or delete an object under SelectedFieldsLockingPolicy,
the Unit of Work compares a list of selected fields in the update statement.

When an update fails due to an optimistic locking violation, OracleAS TopLink
raises an OptimisticLockException. Under most circumstances, the application
handles this exception by refreshing the object and reapplying changes.

Version Locking Policies
OracleAS TopLink supports version locking policies through the
VersionLockingPolicy interface and the TimestampLockingPolicy interface.
Each of these policies requires an additional field in the database to operate:

■ For VersionLockingPolicy, add a numeric field to the database.

■ For TimestampLockingPolicy, add a timestamp field to the database.

OracleAS TopLink records the version as it reads an object from a table. When the
client attempts to write the object, OracleAS TopLink compares the object version
with the version in the table record. If the versions match, OracleAS TopLink writes
the updated object to the table and updates the version of both the table record and

Using the OracleAS TopLink SDK

5-30 Oracle Application Server TopLink Application Developer’s Guide

the object. If the versions are different, the write fails and OracleAS TopLink raises
an error.

These two version locking policies have different ways of writing the version fields
back to the database:

■ VersionLockingPolicy increments the value in the version field by one.

■ TimestampLockingPolicy inserts a new timestamp into the row. The
timestamp is configurable to get the time from the server or the local machine.

For either policy, you write the value of the write lock field in either the identity
map or in a writable mapping within the object.

If you store the value in the identity map, you do not require an attribute mapping
for the version field. However, if the application does map the field, the mappings
must be read-only to allow OracleAS TopLink to control writing the fields.

Timestamp Versus Version Locking Policies When choosing a locking policy, consider
the following:

■ If you need absolute certainty for versioning, and especially if your database
does not offer fine time granularity, implement the VersionLockingPolicy.
This policy uses integers for field locking and guarantees that you recognize
changes.

■ If your database time offers a fine granularity, or if you need to know when an
object was last updated, implement the TimestampLockingPolicy.

Using the OracleAS TopLink SDK
The OracleAS TopLink Software Development Kit (SDK) enables you to extend
OracleAS TopLink to access objects stored on nonrelational data stores. To take
advantage of the SDK, develop several classes that enable OracleAS TopLink to
access your particular data store. You can take advantage of several OracleAS
TopLink mappings and use several OracleAS TopLink customization features not
used by applications that work with relational databases.

In OracleAS TopLink applications that address a relational database, a query works
as follows:

1. The client application builds a query.

2. OracleAS TopLink converts the query search criteria into key-value pairs,
formatted as a database row.

Using the OracleAS TopLink SDK

Data Access 5-31

3. OracleAS TopLink uses the key-value pairs to build a call to the relational
database.

In Step 3, OracleAS TopLink uses an internal mechanism to generate the calls, based
on your chosen data repository. The SDK enables you replace the internal
mechanism with one of your own design. This enables you to develop custom calls
that address non-relational datasources.

There are four major steps to using the SDK:

■ Define an accessor that holds a connection to your data store.

■ Create the application calls that read data from and write data to your data
store. These calls interact with your data store through the accessor and convert
the data to and from OracleAS TopLink DatabaseRows.

■ Build descriptors and mappings that map your object model to the
DatabaseRows.

■ Deploy the application using sessions.

Step One: Define an Accessor
OracleAS TopLink uses an accessor to maintain a connection to your data store. To
define an accessor, create a subclass of SDKAccessor. The SDKAccessor is an
implementation of the Accessor interface, which offers a minimal
implementation, including:

■ The protocol required by the Accessor interface

■ Message logging

■ Non-JTS transaction support

■ Call execution

If you do not define your own accessor, the SDK creates an instance of
oracle.toplink.sdk.SDKAccessor and uses it during execution.

Data Store Connection
When logging in, an OracleAS TopLink session uses your accessor to establish a
connection to your data store by calling the connect(DatabaseLogin, Session)
method.

The DatabaseLogin passed in holds several settings, including the user ID and
password set by your application. As with regular database logins, you can store

Using the OracleAS TopLink SDK

5-32 Oracle Application Server TopLink Application Developer’s Guide

several user-defined properties in the DatabaseLogin that configure its connection.
The API for this is:

void setProperty(String Object Value)

OracleAS TopLink occasionally queries the status of your accessor's connection to
your data store by calling the isConnected() method. This method returns true if
the accessor still has a connection. You can set your accessor to verify the viability
of the connection. This verification is optional if you know your data store will not
drop the connection.

If your accessor's connection times out or disconnects, your application can attempt
to reconnect by calling the reestablishConnection(Session) method. Your
application (rather than OracleAS TopLink) calls this method, which enables you to
control when the application attempts to reconnect.

When logging out, an OracleAS TopLink session uses your accessor to disconnect
from your data store by calling the disconnect(Session) method.

Call Execution
During execution of your application, the OracleAS TopLink session holds your
accessor and uses it whenever you execute a call with the executeCall(Call,
DatabaseRow, Session) method.

Transaction Processing
If you execute calls together within the context of a transaction, OracleAS TopLink
indicates to your accessor that your connection must begin a transaction by calling
the beginTransaction(Session) method. If any Exceptions occur during the
execution of the calls contained within the transaction, OracleAS TopLink rolls back
the transaction by calling rollbackTransaction(Session). If all the calls execute
successfully, OracleAS TopLink commits the transaction by calling
commitTransaction(Session).

Step Two: Create the Application Calls
OracleAS TopLink calls are the hooks OracleAS TopLink uses to call out to your
code for reading and writing your nonrelational data. To write a call for the SDK,
subclass oracle.toplink.sdk.AbstractSDKCall and implement the
execute(DatabaseRow, Accessor) method.

The code for calls is specific to your particular data store. To see an example
implementation of these calls, review the code for the XML calls in the package

Using the OracleAS TopLink SDK

Data Access 5-33

oracle.toplink.xml. "OracleAS TopLink XML Support" on page 5-56 also
discusses these calls.

A minimum implementation requires the following calls for every persistent Class
stored in a nonrelational data store:

■ Read Object Call

■ Read All Call

■ Insert Call

■ Update Call

■ Delete Call

■ Does Exist Call

Depending on the capabilities of your data store, you may need to implement the
following custom calls:

■ Named Session Call

■ Named Descriptor Call

If you use OracleAS TopLink relationship mappings, implement the appropriate
calls to read the reference object(s) for each mapping.

You can divide any individual call into multiple calls, and combine the resulting
calls into a single query.

Input Database Row
Calls include the key-value pairs that define the query. OracleAS TopLink formats
this information into an input database row that implements the java.util.map
interface. The input database row can also hold nested database rows or nested
direct values. This allows OracleAS TopLink to manipulate non-normalized,
hierarchical data.

SDK Field Value Use oracle.toplink.sdk.SDKFieldValue to manipulate
nested database rows and direct values. Within the OracleAS TopLinkSDK, any
field in a database row can have a value that is an instance of SDK field value. An
SDK field value can hold one or more nested database rows or direct values.

An SDK field value can also include a data type name indicating the type of
elements held in the nested collection. The data store requirements for nested data
elements determine whether the data type name is required.

Using the OracleAS TopLink SDK

5-34 Oracle Application Server TopLink Application Developer’s Guide

Nested database rows can also themselves contain nested database rows, and there
is no limit to the nesting.

Table 5–3 lists several examples in this chapter that illustrate the use of SDK field
value.

Read Object Call
A read object call reads the data required to build a single object for a specified
primary key. OracleAS TopLink passes the search criteria to the ReadObject call as
an input database row. The call returns a single database row for the specified
object.

Read All Call
A read all call reads the data required to build a collection of all objects (instances)
for a particular class. OracleAS TopLink passes an empty database row to the
ReadAll call. The call returns a collection of all the database rows for the selected
class.

Insert Call
An insert call inserts a newly created object on the appropriate data store. OracleAS
TopLink passes values for all mapped fields for the inserted object as an input
database row. The call returns a count of the number of rows inserted, generally
one.

Update Call
An update call writes the data for a modified object to the appropriate data store.
OracleAS TopLink passes the primary keys and values for all the mapped fields for

Table 5–3 SDK Field Value Examples

Example of an SDK Field Value to Reference

Read a single nested row Example 5–33 on page 5-46

Write a single nested row Example 5–34 on page 5-46

Read nested direct values Example 5–37 on page 5-48

Write nested direct values Example 5–38 on page 5-48

Read nested rows Example 5–43 on page 5-53

Write nested rows Example 5–44 on page 5-48

Using the OracleAS TopLink SDK

Data Access 5-35

the updated objects as an input database row. The call returns a count of the
number of rows updated, generally one.

Delete Call
A delete call deletes the data from the data store based on primary key. OracleAS
TopLink provides primary keys for the delete call as an input database row. The call
returns a count of the number of rows deleted, generally one.

Does Exist Call
A does exist call checks for the existence of data for a specified primary key. This
enables OracleAS TopLink to determine an insert or update call, depending on the
result. OracleAS TopLink provides primary keys for the does exist call as an input
database row. The call returns a null if the object does not exist on the data store,
and a database row if the object does exist.

Custom Call
You can write a custom call to support other capabilities provided by your data
store. Your custom calls can leverage parameter binding. Store custom calls as
named queries in the OracleAS TopLink database session or in any OracleAS
TopLink descriptor. Pass values to the calls as an input database row. The call
returns whatever is appropriate for the containing query. Table 5–4 lists the query
types and return values for Custom Calls.

Table 5–4 Query Types and Return Values for Custom Calls

Query Return value

DataModifyQuery Row count

DeleteAllQuery Row count

DeleteObjectQuery Row count

InsertObjectQuery Row count

UpdateObjectQuery Row count

DataReadQuery Vector of database rows

DirectReadQuery Vector of database rows

ValueReadQuery Vector of database rows

ReadAllQuery Vector of database rows

ReadObjectQuery Database row

Using the OracleAS TopLink SDK

5-36 Oracle Application Server TopLink Application Developer’s Guide

FieldTranslator
If the names of fields expected by your OracleAS TopLink descriptors and database
mappings differ from those generated by your data store (for example: when
dealing with aggregate objects), you can resolve the mismatch by:

■ Subclassing the oracle.toplink.sdk.AbstractSDKCall. This enables you to
use the SDKFieldTranslator class.

■ Building the SDKFieldTranslators into your own calls.

■ Creating your own mechanism for translating field names between OracleAS
TopLink and your data store on a per-call basis.

Field Translator Interface The oracle.toplink.sdk.FieldTranslator interface
defines a simple read and write protocol for translating the field names in a
database row. The default implementation of the
oracle.toplink.sdk.DefaultFieldTranslator interface performs no
translations.

oracle.toplink.sdk.SimpleyFieldTranslator The
oracle.toplink.sdk.SimpleFieldTranslator provides a mechanism for
translating field names in a database row, either before the row is written to the
data store or after the row is read from the data store. SimpleFieldTranslator
also allows for wrapping another FieldTranslator, and for processing the read
and write translations through the wrapped FieldTranslator. A
SimpleFieldTranslator also translates the field names of any nested database
rows contained in SDK field values.

Example 5–24 Building a SimpleFieldTranslator

/* Add translations for the first and last name field names. F_NAME on the data
store will be converted to FIRST_NAME for OracleAS TopLink, and vice versa.
Likewise for L_NAME and LAST_NAME. */
AbstractSDKCall call = new EmployeeCall();
SimpleFieldTranslator translator = new SimpleFieldTranslator();
translator.addReadTranslation("F_NAME", "FIRST_NAME");
translator.addReadTranslation("L_NAME", "LAST_NAME");
call.setFieldTranslator(translator);

AbstractSDKCall offers methods that enable you to perform the same operation,
without building your own translator.

AbstractSDKCall call = new EmployeeCall();
call.addReadTranslation("F_NAME", "FIRST_NAME");

Using the OracleAS TopLink SDK

Data Access 5-37

call.addReadTranslation("L_NAME", "LAST_NAME");

If your calls are all subclasses of AbstractSDKCall, use the method in
SDKDescriptor that sets the same field translations for all the calls in the
DescriptorQueryManager, as follows:

descriptor.addReadTranslation("F_NAME", "FIRST_NAME");
descriptor.addReadTranslation("L_NAME", "LAST_NAME");

SDKDataStoreException
If your call encounters a problem while accessing your data store, it raises an
oracle.toplink.sdk.SDKDataStoreException. This exception can hold an error
code, a session, an internal exception, a database query, and an accessor. An
exception handler can use this state to recover from the thrown exception or to
provide useful information to the user or developer about the cause of the
exception.

Step Three: Build Descriptors and Mappings
You can use your developed calls to define the descriptors and mappings. OracleAS
TopLink can use these descriptors and mappings to read and write your objects
rather than the normal OracleAS TopLink descriptors. Use a subclass of the
descriptor, oracle.toplink.sdk.SDKDescriptor. This class provides support for
mappings supplied by the SDK. The SDK supports most of the typical OracleAS
TopLink mappings, as well as the mappings that provide access to non-normalized
data.

SDK Descriptor
The SDK supports most of the properties of the standard descriptor, including:

■ Basic Properties

■ Descriptor Query Manager

■ Sequence Numbers

■ Inheritance

For more information about other properties, see "Other Supported Properties" on
page 5-39 and "Unsupported properties" on page 5-39.

Using the OracleAS TopLink SDK

5-38 Oracle Application Server TopLink Application Developer’s Guide

Basic Properties The code required to build a basic SDKDescriptor is almost
identical to that used to build a normal descriptor.

Example 5–25 A Basic SDK Descriptor

SDKDescriptor descriptor = new SDKDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setTableName("employee");
descriptor.setPrimaryKeyFieldName("id");

The Java class is required. The table name is usually required. How you store the
data and translate the calls determines whether you allow multiple table names.
OracleAS TopLink also requires the primary key field name, which OracleAS
TopLink uses to maintain object identity.

Descriptor Query Manager The major difference between building an SDKDescriptor
and building a standard descriptor is that you define all the custom queries for the
descriptor's query manager.

Example 5–26 Building a Database Query for the Descriptor's Query Manager

ReadObjectQuery query = new ReadObjectQuery();
query.setCall(new EmployeeReadCall());
descriptor.getQueryManager().setReadObjectQuery(query);

SDKDescriptor has several convenience methods that simplify setting all these
calls.

descriptor.setReadObjectCall(new EmployeeReadCall());
descriptor.setReadAllCall(new EmployeeReadAllCall());

descriptor.setInsertCall(new EmployeeInsertCall());
descriptor.setUpdateCall(new EmployeeUpdateCall());
descriptor.setDeleteCall(new EmployeeDeleteCall());

descriptor.setDoesExistCall(new EmployeeDoesExistCall());

You can also create custom calls to an SDKDescriptor that enable you to set query
criteria at runtime.

Example 5–27 A Dynamic Query

// "LastName" is an argument for the call
descriptor.addReadAllCall("readByLastName", new EmployeesByLastNameCall(), "LastName");
// "Location" is an argument for the call

Using the OracleAS TopLink SDK

Data Access 5-39

descriptor.addReadObjectCall("readByLocation", new EmployeeByLocationCall(), "Location");

Your application invokes custom calls at runtime and provides a parameter value
through a database row. The call communicates with your data store and returns a
database row with the appropriate data to build an instance of the returned object.

Sequence Numbers If your data store provides support for sequencing, you can
configure your descriptor to use sequence numbers.

Example 5–28 Using Sequencing

descriptor.setSequenceNumberName("employee");
descriptor.setSequenceNumberFieldName("id");

To use sequencing, define several custom queries that query and update the
sequence numbers.

For more information, see the Oracle Application Server TopLink API Reference.

Inheritance The SDKDescriptor supports OracleAS TopLink inheritance settings. If
you define a single table in the root class descriptor, but do not define any
additional tables in the subclass descriptors, calls build database rows for a single
table, leaving out the fields that are not required for the particular subclass
descriptor.

For more information, see "Inheritance" on page 3-47.

Other Supported Properties The SDKDescriptor supports most other descriptor
properties without any special consideration, including:

■ Interfaces

■ Copy Policy

■ Instantiation Policy

■ Wrapper Policy

■ Identity Maps

■ Descriptor Events

Unsupported properties The OracleAS TopLink SDK does not support the following
descriptor properties:

■ Query Keys

Using the OracleAS TopLink SDK

5-40 Oracle Application Server TopLink Application Developer’s Guide

■ Optimistic Locking

Standard Mappings
The OracleAS TopLink SDK provides support for many of the database mappings
in the base OracleAS TopLink class library, as well as hierarchical data mechanisms.

Direct Mappings The OracleAS TopLink SDK supports all the base OracleAS TopLink
direct mappings:

■ Direct-to-field mappings

■ Type conversion mappings

■ Object type mappings

■ Serialized object mappings

■ Transformation mappings

The only mapping that requires special consideration is the
SerializedObjectMapping. Read calls that support descriptors with this type of
mapping must return the data for the SerializedObjectMapping either as a
byte array (byte[]) or as a hexadecimal string representation of a byte array.
OracleAS TopLink passes the data for the SerializedObjectMapping to any
Write call as a byte array (byte[]).

Relationship mappings The OracleAS TopLink SDK provides support for several of
the base OracleAS TopLink relationship mappings. In addition, alternative
mappings provide any functionality lost by unsupported mappings in the SDK.

Private relationships The OracleAS TopLink SDK offers full support for private
relationships. When you write an object to the data store, OracleAS TopLink also
writes its private objects. Likewise, when you remove an object, OracleAS TopLink
also removes its private objects.

Because OracleAS TopLink invokes the appropriate calls to write and delete private
objects, your calls do not need to be aware of private relationships. OracleAS
TopLink acquires the appropriate call for a particular private object from the object's
DescriptorQueryManager.

Indirection The OracleAS TopLink SDK provides full support for OracleAS TopLink
indirection, including valueholder indirection, proxy indirection and transparent
indirection.

For more information, see "Indirection" on page 3-27.

Using the OracleAS TopLink SDK

Data Access 5-41

Because OracleAS TopLink invokes calls to read in reference objects when required,
your calls do not need to be aware of indirection. OracleAS TopLink acquires the
appropriate call for indirect relationships from the custom selection query from the
relationship's mapping.

Container Policy The OracleAS TopLink SDK supports OracleAS TopLink container
policies. A container policy allows you to specify the concrete class OracleAS
TopLink uses to store query results.

Calls do not need to be aware of the container policy. For ease of development,
specify your calls to use a java.util.Vector to return collections of database
rows. OracleAS TopLink converts any vector of database rows into the appropriate
collection (or map) of business objects. OracleAS TopLink determines the
appropriate concrete container class by getting the container policy from the
appropriate database query or database mapping.

Aggregate Object Mapping Although the limitations of the aggregate object mapping
prevent the OracleAS TopLink SDK from supporting it, the SDK does provide
nearly equivalent behavior. See "SDK Aggregate Object Mapping" on page 5-44.

One-To-One Mapping The OracleAS TopLink SDK supports one-to-one mapping.
Provide the mapping with a custom selection query as follows:

ReadObjectQuery query = new ReadObjectQuery();
query.setCall(new ReadAddressForEmployeeCall());
mapping.setCustomSelectionQuery(query);

The Read call used for the custom selection query must be aware of whether the
mapping uses either a source foreign key or a target foreign key. It must also know
which fields hold the primary or foreign key values. Because the mapping contains
this information, construct the call with the mapping as a parameter, as follows:

query.setCall(new ReadAddressForEmployeeCall(mapping));

Variable-One-To-One Mapping The OracleAS TopLink SDK supports variable
one-to-one mapping. As with the one-to-one mapping, you must provide the
mapping with a custom selection query.

Direct Collection Mapping The OracleAS TopLink SDK supports direct collection
mapping. Use a direct collection mapping if your data store requires that you
perform an additional query to fetch the direct values related to a given object. If

Using the OracleAS TopLink SDK

5-42 Oracle Application Server TopLink Application Developer’s Guide

your data store includes the direct values in a hierarchical fashion within the
database row for a given object, use SDK direct collection mapping.

For more information about SDK direct collection mapping, see "SDK Direct
Collection Mapping" on page 5-47.

Provide the direct collection mapping with several custom queries. Because the
objects contained in a direct collection do not have a descriptor, provide the
mapping with the queries that OracleAS TopLink uses to insert and delete the
reference objects.

Example 5–29 Mappings and Custom Selection Queries for Direct Collection Mapping

DirectReadQuery readQuery = new DirectReadQuery();
readQuery.setCall(new ReadResponsibilitiesForEmployeeCall());
mapping.setCustomSelectionQuery(readQuery);

DataModifyQuery insertQuery = new DataModifyQuery();
insertQuery.setCall(new InsertResponsibilityForEmployeeCall());
mapping.setCustomInsertQuery(insertQuery);

DataModifyQuery deleteAllQuery = new DataModifyQuery();
deleteAllQuery.setCall(new DeleteResponsibilitiesForEmployeeCall());
mapping.setCustomDeleteAllQuery(deleteAllQuery);

The mapping does not need a custom update query because, if any of the reference
objects change, OracleAS TopLink deletes and reinserts them.

The Read and Delete calls for this mapping must know which fields hold the
primary key values. Because the mapping contains this information, construct the
call with the mapping as a parameter, as follows:

readQuery.setCall(new ReadResponsibilitiesForEmployeeCall(mapping));
deleteAllQuery.setCall(new DeleteResponsibilitiesForEmployeeCall(mapping));

One-To-Many Mapping The OracleAS TopLink SDK supports one-to-many mapping.
Use a one-to-many mapping if the reference objects have foreign keys to the source
object (target foreign keys). However, if the foreign keys are forward-pointing
(source foreign keys) and are included in a hierarchical fashion in the database row
for a given object, use SDK aggregate object mapping instead.

For more information about SDK aggregate object mapping, see "SDK Aggregate
Object Mapping" on page 5-44.

Using the OracleAS TopLink SDK

Data Access 5-43

Example 5–30 Mappings and Custom Selection Queries for One-To-Many Mapping

ReadAllQuery readQuery = new ReadAllQuery();
readQuery.setCall(new ReadManagedEmployeesForEmployeeCall());
mapping.setCustomSelectionQuery(readQuery);

You can also provide the mapping with a custom DeleteAll query. If this query is
present, OracleAS TopLink uses it to delete all components in the relationship with
a single query. Without this query, OracleAS TopLink deletes components
individually.

Example 5–31 Defining a Delete All Query

DeleteAllQuery deleteAllQuery = new DeleteAllQuery();
deleteAllQuery.setCall(new DeleteManagedEmployeesForEmployeeCall());
mapping.setCustomDeleteAllQuery(deleteAllQuery);

The Read and Delete calls for this mapping must know which fields hold the
primary key values. Because the mapping contains this information, construct the
call with the mapping as a parameter, as follows:

readQuery.setCall(new ReadManagedEmployeesForEmployeeCall(mapping));
deleteAllQuery.setCall(new DeleteManagedEmployeesForEmployeeCall(mapping));

Aggregate Collection Mapping The OracleAS TopLink SDK supports aggregate
collection mapping. Aggregate collection mapping is similar to the one-to-many
mapping but does not require a back reference mapping from each of the target
objects to the source object.

As with the one-to-many mapping, supply the mapping with a custom selection
query. You can also include a DeleteAll query.

Many-To-Many Mapping Because the many-to-many mapping depends on the
relational implementation of many-to-many relationships, the OracleAS TopLink
SDK does not support it.

Structure Mapping Because structure mapping depends on the object-relational data
model, the OracleAS TopLink SDK does not support it. However, the SDK
aggregate object mapping provides nearly identical functionality.

For more information, see "SDK Aggregate Object Mapping" on page 5-44.

Using the OracleAS TopLink SDK

5-44 Oracle Application Server TopLink Application Developer’s Guide

Reference Mapping Because the reference mapping depends on the object-relational
data model, the OracleAS TopLink SDK does not support it. However, OneToOne
mapping provides nearly identical functionality.

For more information, see "One-To-One Mapping" on page 5-41).

Array Mapping Because the array mapping depends on the object-relational data
model, the OracleAS TopLink SDK does not support it. However, SDK direct
collection mapping provides nearly identical functionality.

For more information, see "SDK Direct Collection Mapping" on page 5-47.

Object Array Mapping Because the object array mapping depends on the
object-relational data model, the OracleAS TopLink SDK does not support it.
However, SDK direct collection mapping provides nearly identical functionality. For
more information, see "SDK Direct Collection Mapping" on page 5-47.

Nested Table Mapping Because the nested table mapping depends on the
object-relational data model, the OracleAS TopLink SDK does not support it.
However, SDK object collection mapping provides nearly identical functionality.

For more information, see "SDK Object Collection Mapping" on page 5-51.

SDK Mappings
The OracleAS TopLink SDK provides four new mappings that support
non-normalized, hierarchical data:

■ SDK Aggregate Object Mapping

■ SDK Direct Collection Mapping

■ SDK Aggregate Collection Mapping

■ SDK Object Collection Mapping

SDK Aggregate Object Mapping The SDK aggregate object mapping is similar to the
standard aggregate object mapping, but differs as follows:

■ All fields that the reference (aggregate) descriptor uses to build the aggregate
object appear in a single, nested database row, not in the base database row. The
base database row has a single field mapped to the aggregate object attribute
that contains an SDK field value. This SDK field value holds the nested
database row, and this nested database row contains all the fields needed by the
reference descriptor to build an instance of the aggregate object.

Using the OracleAS TopLink SDK

Data Access 5-45

■ There is no need for field name translations. If necessary, the appropriate call
can translate the field names when it converts data from the data store's native
format to an OracleAS TopLink database row (and vice versa), as described in
"FieldTranslator" on page 5-36.

■ There is no need for the isNullAllowed flag. Because the fields used to build
the aggregate object appear in a single field in the base database row, there is no
need to specify how to handle null field values. If the attribute is null, then the
field value in the base database row is also null. If the attribute contains an
instance of the aggregate object with all null attributes, then the field value in
the base database row is an SDK field value with a single, nested database row
whose field values are all null.

The code to build an SDK aggregate object mapping is similar to that for the
aggregate object mapping. Specify an attribute name, a reference class, and a field
name.

Example 5–32 Building an SDK Aggregate Object Mapping

SDKAggregateObjectMapping mapping = new SDKAggregateObjectMapping();
mapping.setAttributeName("period");
mapping.setReferenceClass(EmploymentPeriod.class);
mapping.setFieldName("period");
descriptor.addMapping(mapping);

Because the data used to build the aggregate object appears nested within the base
database row, a separate query is not necessary to fetch the data for the aggregate
object. Table 5–5 illustrates an example of the values contained in a typical database
row with data for an aggregate object.

Table 5–5 Field Names and Mappings for SDK Aggregate Object Mapping

Field Name Field Value

employee.id 1

employee.firstName "Grace"

employee.lastName "Hopper"

Using the OracleAS TopLink SDK

5-46 Oracle Application Server TopLink Application Developer’s Guide

In the Example 5–33, an SDK aggregate object mapping maps the attribute period
to the field employee.period and specifies the reference class as
EmploymentPeriod. The value in the field, employee.period, is an SDK field
value with a single, nested database row. The EmploymentPeriod descriptor uses
this nested row to build the aggregate object.

The names of the fields in the nested database row must match those expected by
the EmploymentPeriod descriptor.

Example 5–33 Reading for an SDK Aggregate Object Mapping

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue) row.get("employee.period");
DatabaseRow nestedRow = (DatabaseRow) value.getElements().firstElement();
String startDate = (String) nestedRow.get("employmentPeriod.startDate");
String endDate = (String) nestedRow.get("employmentPeriod.endDate");

Example 5–34 Write Call that Supports SDK Aggregate Object Mapping

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));
row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

DatabaseRow nestedRow = new DatabaseRow();
nestedRow.put("employmentPeriod.startDate", "1943-01-01");
nestedRow.put("employmentPeriod.endDate", "1992-01-01");
Vector elements = new Vector();

employee.period SDKFieldValue
elements=[

DatabaseRow(employmentPeriod.startDate="1943-01
-01"

employmentPeriod.endDate="1992-01-01"
)
]
elementDataTypeName="employmentPeriod"

isDirectCollection=false

Table 5–5 Field Names and Mappings for SDK Aggregate Object Mapping (Cont.)

Field Name Field Value

Using the OracleAS TopLink SDK

Data Access 5-47

elements.addElement(nestedRow);

SDKFieldValue value = SDKFieldValue.forDatabaseRows(elements,"employmentPeriod");
row.put("employee.period", value);

SDK Direct Collection Mapping The SDK direct collection mapping is similar to the
standard direct collection mapping because it represents a collection of objects that
are not OracleAS TopLink-enabled (they are not associated with any OracleAS
TopLink descriptors).

The SDK direct collection mapping differs from a direct collection mapping because
the data representing the collection of objects appears nested within the base
database row. As a result, a separate query to the data store is not necessary to read
the data.

To build an SDK direct collection mapping, specify the attribute and the field
names. Alternatively, if your data store requires you to indicate the data type name
of each element in the direct collection, include the data type name instead.

Example 5–35 Building an SDK Direct Collection Mapping

SDKDirectCollectionMapping mapping = new SDKDirectCollectionMapping();
mapping.setAttributeName("responsibilitiesList");
mapping.setFieldName("responsibilities");
mapping.setElementDataTypeName("responsibility");
descriptor.addMapping(mapping);

The SDK direct collection mapping container policy enables you to specify the
concrete implementation of the Collection interface that holds the direct
collection, as follows:

mapping.useCollectionClass(Stack.class);

The SDK direct collection mapping also allows you to specify the class of objects in
the direct collection or the database row. If possible, OracleAS TopLink converts the
objects contained by the direct collection before setting the attribute in the object or
passing the collection to your call.

Example 5–36 Specifying Object Types for an SDK Direct Collection Mapping

mapping.setAttributeElementClass(Class.class);
mapping.setFieldElementClass(String.class);

Using the OracleAS TopLink SDK

5-48 Oracle Application Server TopLink Application Developer’s Guide

Because the data used to build the aggregate object appears nested within the base
database row, a separate query is not necessary to fetch the data for the SDK direct
collection mapping.

Table 5–6 illustrates examples of the values that appear in a typical database row
with data for a direct collection.

In Example 5–37, an SDK direct collection mapping maps the attribute
responsibilitiesList to the field employee.responsibilities. The value in
the field employee.responsibilities is an SDK field value that contains a
collection of strings that make up the direct collection.

Example 5–37 Reading for an SDK Direct Collection Mapping

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));
row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

Vector responsibilities = new Vector();
responsibilities.addElement("find bugs");
responsibilities.addElement("develop compilers");
SDKFieldValue value = SDKFieldValue.forDirectValues(responsibilities, "responsibility");
row.put("employee.responsibilities", value);

Example 5–38 Write Call that Supports an SDK Direct Collection Mapping

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");

Table 5–6 Field Names and Values for SDK Aggregate Object Mapping

Field Name Field Value

employee.id 1

employee.firstName "Grace"

employee.lastName "Hopper"

employee. responsibilities SDKFieldValue
 elements=[
 "find bugs"
 "develop compilers"
]
 elementDataTypeName="responsibility"
 isDirectCollection=true

Using the OracleAS TopLink SDK

Data Access 5-49

String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue) row.get("employee.responsibilities");
Vector responsibilities = value.getElements();

SDK Aggregate Collection Mapping The SDK aggregate collection mapping maps
attributes that are collections of aggregate objects constructed from data contained
in the base database row.

The data that the reference (aggregate) descriptor uses to build the aggregate
collection appears in a collection of nested database rows, not in the base database
row. The base database row has a single field mapped to the aggregate collection
attribute that contains an SDK field value. This SDK field value holds the nested
database rows, and the nested database rows each contain all the fields the
reference descriptor requires to build a single element in the aggregate collection.

To build an SDK aggregate collection mapping, specify an attribute name, a
reference class, and a field name.

Example 5–39 Building an SDK Aggregate Collection Mapping

SDKAggregateCollectionMapping mapping = new SDKAggregateCollectionMapping();
mapping.setAttributeName("phoneNumbers");
mapping.setReferenceClass(PhoneNumber.class);
mapping.setFieldName("phoneNumbers");
descriptor.addMapping(mapping);

The SDK aggregate collection mapping container policy enables you to specify the
concrete implementation of the Collection interface that holds the direct
collection.

mapping.useCollectionClass(Stack.class);

Because the data used to build the aggregate collection is already nested within the
base database row, it does not require a separate query to fetch the data.

Table 5–7 illustrates examples of the values that appear in a typical database row
with data for an aggregate collection.

Table 5–7 Field names and values for SDK Aggregate Collection Mapping

Field Name Field Value

employee.id 1

employee.firstName “Grace”

Using the OracleAS TopLink SDK

5-50 Oracle Application Server TopLink Application Developer’s Guide

In Example 5–40, an SDK aggregate collection mapping maps the attribute
phoneNumbers to the field employee.phoneNumbers and specifies the reference
class as phoneNumber. The value in the field employee.phoneNumbers is an SDK
field value with a collection of nested database rows. The PhoneNumber descriptor
uses these nested rows to build the elements of the aggregate collection. The names
of the fields in the nested database rows must match those expected by the
PhoneNumber descriptor.

Example 5–40 Reading for an SDK Aggregate Collection Mapping

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue) row.get("employee.phoneNumbers");
Enumeration enum = value.getElements().elements();
while (enum.hasMoreElements()) {DatabaseRow nestedRow = (DatabaseRow) enum.nextElement();
String areaCode = (String) nestedRow.get("phone.areaCode");
String number = (String) nestedRow.get("phone.number");
String type = (String) nestedRow.get("phone.type");
...
}

employee.lastName “Hopper”

employee. phoneNumbers SDKFieldValue
elements=[
DatabaseRow(
phone.areaCode="888"
phone.number="555-1212"
phone.type="work"
)
DatabaseRow(
phone.areaCode="800"
phone.number="555-1212"
phone.type="home"
)aggregate collection mapping
]
elementDataTypeName="phone"
isDirectCollection=false

Table 5–7 Field names and values for SDK Aggregate Collection Mapping (Cont.)

Field Name Field Value

Using the OracleAS TopLink SDK

Data Access 5-51

Example 5–41 Write Call that Supports an SDK Aggregate Collection Mapping

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));

row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

Vector elements = new Vector();

DatabaseRow nestedRow1 = new DatabaseRow();
nestedRow1.put("phone.areaCode", "888");
nestedRow1.put("phone.number", "555-1212");
nestedRow1.put("phone.type", "work");
elements.addElement(nestedRow1);

Database nestedRow2 = new DatabaseRow();
nestedRow2.put("phone.areaCode", "800");
nestedRow2.put("phone.number", "555-1212");
nestedRow2.put("phone.type", "home");
elements.addElement(nestedRow2);

SDKFieldValue value = SDKFieldValue.forDatabaseRows(elements, "phone");
row.put("employee.phoneNumbers", value);

SDK Object Collection Mapping The SDK object collection mapping is similar to the
standard one-to-many mapping—because both map a collection of target objects
that use foreign keys to point to their primary keys. However, the foreign keys in
SDK object collection mapping appear in the base database row that references the
target objects' primary keys. This makes the foreign keys in an SDK object collection
mapping forward-pointing, whereas the foreign keys in a one-to-many mapping are
back-pointing.

All foreign keys appear in a collection of nested database rows, not in the base
database row. The base database row includes a single field, mapped to the object
collection attribute containing an SDK field value. This SDK field value holds the
nested database rows, and these nested database rows each contain the fields
required to build a foreign key to an element object's primary key.

The code to build an SDK object collection mapping is similar to that for the
one-to-many mapping. Specify an attribute name, a reference class, a field name,
and the source foreign and target key relationships.

Using the OracleAS TopLink SDK

5-52 Oracle Application Server TopLink Application Developer’s Guide

If your data store requires you to indicate the data type name of each element in the
collection of foreign keys, include the data type name. Alternatively, you can
provide this information with your call. Build a custom selection query to read the
reference objects contained in the collection.

Example 5–42 Building an SDK Object Collection Mapping

SDKObjectCollectionMapping mapping = new SDKObjectCollectionMapping();
mapping.setAttributeName("projects");
mapping.setReferenceClass(Project.class);
mapping.setFieldName("projects");
mapping.setSourceForeignKeyFieldName("projectId");
mapping.setReferenceDataTypeName("project");
descriptor.addMapping(mapping);

The SDK object collection mapping container policy allows you to specify the
concrete implementation of the Collection interface that holds the collection of
objects.

mapping.useCollectionClass(Stack.class);

Table 5–8 demonstrates an example of the values contained in a typical database
row with data for a collection of foreign keys.

Table 5–8 Field Names and Values for SDK Object Collection Mapping

Field Name Field Value

employee.id 1

employee.firstName “Grace”

employee.lastName “Hopper”

employee.projects SDKFieldValue
elements=[

DatabaseRow(
project.projectId=42

)
DatabaseRow(

project.projectId=17
)

]
elementDataTypeName="project"
isDirectCollection=false

Using the OracleAS TopLink SDK

Data Access 5-53

Example 5–43 illustrates an SDK object collection mapping that maps the attribute
projects to the field employee.projects and specifies the reference class as
Project. The value in the field employee.projects is an SDK field value with a
collection of nested database rows.

Nested rows contain foreign keys that the mapping's custom selection query uses to
read in the elements of the object collection. The field names in the nested database
rows must match those expected by the custom selection query's call.

Example 5–43 Reading for an SDK Object Collection Mapping

DatabaseRow row = new DatabaseRow();
row.put("employee.id", new Integer(1));
row.put("employee.firstName", "Grace");
row.put("employee.lastName", "Hopper");

Vector elements = new Vector();

DatabaseRow nestedRow1 = new DatabaseRow();
nestedRow1.put("project.projectId", new Integer(42));
elements.addElement(nestedRow1);

DatabaseRow nestedRow2 = new DatabaseRow();
nestedRow2.put("project.projectId", new Integer(17));
elements.addElement(nestedRow2);

SDKFieldValue value = SDKFieldValue.forDatabaseRows(elements, "project");
row.put("employee.projects", value);

Example 5–44 Write Call that Supports an SDK Object Collection Mapping

Integer id = (Integer) row.get("employee.id");
String firstName = (String) row.get("employee.firstName");
String lastName = (String) row.get("employee.lastName");

SDKFieldValue value = (SDKFieldValue row.get("employee.projects");
Enumeration enum = value.getElements().elements();
while (enum.hasMoreElements(DatabaseRow nestedRow = (DatabaseRow)enum.nextElement();
Object projectId = nestedRow.get("project.projectId");
// do stuff with the foreign key
}

Using the OracleAS TopLink SDK

5-54 Oracle Application Server TopLink Application Developer’s Guide

Step Four: Deploy the Application Using Sessions
After you develop your accessor and calls, and map your object model to your data
store, you can configure and log in to a database session, following these steps:

■ If necessary, build an instance of your custom platform.

■ If necessary, build an instance of SDK login, with this custom platform.

■ Build an OracleAS TopLink project with this SDK login, populating it with your
descriptors.

■ Acquire a session from this OracleAS TopLink project and log in.

For more information about acquiring a session, see "Session Manager" on
page 4-29.

SDK Platform and Sequencing
OracleAS TopLink uses the platform classes to isolate the database platform-specific
implementations of two major activities:

■ SQL generation

■ Sequence number generation

Because the OracleAS TopLink SDK is generally unconcerned with SQL generation,
you usually build a custom platform only if your data store provides a mechanism
for generating sequence numbers. In this case, create your subclass, and override
the appropriate methods for building the calls that read and update sequence
numbers.

If you use sequence numbers and want OracleAS TopLink to manage them for you,
create a subclass of oracle.toplink.sdk.SDKPlatform.

Use the buildSelectSequenceCall() method to build and call the sequence
number Read call. OracleAS TopLink invokes this call to read the value of a specific
sequence number. The database row in the call contains the
sequenceNameFieldName (as set in the SDK login), and the field value is the name
of the sequence number returned by the call.

The buildUpdateSequenceCall() method builds the sequence number Update
call. OracleAS TopLink invokes this call to update the value of a specific sequence
number. The database row in the call contains two fields:

■ The first field name is the sequenceNameFieldName (as set in the SDK login);
the field value is the name of the sequence number updated by the call.

Using the OracleAS TopLink SDK

Data Access 5-55

■ The second field name is the sequenceCounterFieldName (as set in the SDK
login); the field value is the new value for the sequence number identified by
the first field.

SDK Login
If you build a custom SDK platform, use it to construct and configure your SDK
login.

SDKLogin login = new SDKLogin(new EmployeePlatform());

If you do not require a custom platform, use the default constructor for SDK login.

SDKLogin login = new SDKLogin();

If you use a custom accessor to maintain a connection to your data store, configure
the login to use it. Doing this enables OracleAS TopLink to construct a new instance
of your accessor when the application requires a connection to the data store. If you
do not use a custom accessor, you do not need to set this property. In that case, the
login uses the SDKAccessor class by default.

login.setAccessorClass(EmployeeAccessor.class);

You can then configure the values of the standard login properties.

login.setUserName("user");
login.setPassword("password");

login.setSequenceTableName("sequence");
login.setSequenceNameFieldName("name");
login.setSequenceCounterFieldName("count");

You can store non-OracleAS TopLink properties, in the login. Your custom accessor
uses these properties when it connects to the data store.

login.setProperty("foo", aFoo);
Foo anotherFoo = (Foo) login.getProperty("foo");

OracleAS TopLink Project
Build your OracleAS TopLink project by creating an instance of
oracle.toplink.sessions.Project, and passing it your login. You can then add
your descriptors to the project.

OracleAS TopLink XML Support

5-56 Oracle Application Server TopLink Application Developer’s Guide

Example 5–45 Instantiating the Project and Adding Descriptors

Project project = new Project(login);
project.addDescriptor(buildEmployeeDescriptor());
project.addDescriptor(buildAddressDescriptor());
project.addDescriptor(buildProjectDescriptor());
// etc.

Session
After you build your OracleAS TopLink project, obtain a database session (or server
session) and log in.

Example 5–46 Obtaining a Session and Login

DatabaseSession session = project.createDatabaseSession();
session.login();

When you finish with the session, log out.

session.logout();

Unsupported Features
The OracleAS TopLink SDK does not offer support for the following regular
OracleAS TopLink features:

■ Expressions

■ Pessimistic locking

■ Cursored streams and scrollable cursors

OracleAS TopLink XML Support
OracleAS TopLink enables you to read and modify objects in XML files.
Object-to-XML (O-X) mapping enables your application to deal exclusively with
objects, rather than managing the intricacies of XML parsing and deconstruction.
You can use OracleAS TopLink XML support to exchange data with other
applications (for example: legacy applications or business partner applications).

This section describes:

■ Getting Started

OracleAS TopLink XML Support

Data Access 5-57

■ Customizations

■ Implementation Details

■ XML File Accessor

■ XML Call

■ XMLTranslator Implementations

■ XML Descriptor

■ XML Platform

■ XML File Login

■ XML Schema Manager

■ XML Accessor

■ XML Translator

■ XML Zip File Extension

The OracleAS TopLink implementation of XML support uses a file and directory
paradigm to store information, as follows:

■ OracleAS TopLink creates and uses a base directory, which is analogous to a
relational database that contains a collection of related tables.

■ Subdirectories are analogous to the table name in the relational model.

■ Filenames are analogous to row within a table in the relational model.

Getting Started
The default XML extension is similar to a regular OracleAS TopLink project. Use the
following steps to develop your application:

1. Configure your login using an XMLFileLogin.

XMLFileLogin login = new XMLFileLogin();
login.setBaseDirectoryName("C:\Employee Database");

// set up the sequences
login.setSequenceRootElementName("sequence");
login.setSequenceNameElementName("name");
login.setSequenceCounterElementName("count");

// create the directories if they don't already exist

OracleAS TopLink XML Support

5-58 Oracle Application Server TopLink Application Developer’s Guide

login.createDirectoriesAsNeeded();

2. Build your project.

Project project = new Project(login);
project.addDescriptor(buildEmployeeDescriptor());
project.addDescriptor(buildAddressDescriptor());
project.addDescriptor(buildProjectDescriptor());
// etc.

3. Build your descriptors using XMLDescriptors.

XMLDescriptor descriptor = new XMLDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setRootElementName("employee");
descriptor.setPrimaryKeyElementName("id");
descriptor.setSequenceNumberName("employee");
descriptor.setSequenceNumberElementName("id");
// etc.

4. Build your mappings. For the XML extension, OneToOneMappings and
SDKObjectCollectionMappings require custom selection queries as
follows:

// 1:1 mapping
OneToOneMapping addressMapping = new OneToOneMapping();
addressMapping.setAttributeName("address");
addressMapping.setReferenceClass(Address.class);
addressMapping.privateOwnedRelationship();
addressMapping.setForeignKeyFieldName("addressId");
// build the custom selection query
ReadObjectQuery addressQuery = new ReadObjectQuery();
addressQuery.setCall(new XMLReadCall(addressMapping));
addressMapping.setCustomSelectionQuery(addressQuery);
descriptor.addMapping(addressMapping);
// 1:n mapping

SDKObjectCollectionMapping projectsMapping = new
SDKObjectCollectionMapping();

projectsMapping.setAttributeName("projects");
projectsMapping.setReferenceClass(Project.class);
projectsMapping.setFieldName("projects");
projectsMapping.setSourceForeignKeyFieldName("projectId");
projectsMapping.setReferenceDataTypeName("project");
// use convenience method to build the custom selection query
projectsMapping.setSelectionCall(new XMLReadAllCall(projectsMapping));

OracleAS TopLink XML Support

Data Access 5-59

descriptor.addMapping(projectsMapping);

5. Build your database session and log in.

DatabaseSession session = project.createDatabaseSession();session.login();

6. Configure sequencing, if necessary.

(new XMLSchemaManager(session)).createSequences();

7. Run your application normally.

For example:

Vector employees = session.readAllObjects(Employee.class);
Employee employee = (Employee) employees.firstElement();
UnitOfWork uow = session.acquireUnitOfWork();
Employee employeeClone = uow.registerObject(employee);
employeeClone.setSalary(employeeClone.getSalary() + 50);
uow.commit();

8. Log out when your session is complete.

session.logout();

Customizations
You can customize the OracleAS TopLink XML extension in two key ways, by
modifying:

■ Where and how you store the XML documents, by developing your own
implementation of the XMLAccessor interface

■ How XML documents translate into database rows, and the converse, by
developing your own implementation of the XMLTranslator interface

Implementation Details
The package oracle.toplink.xml contains the classes that implement OracleAS
TopLink support for O-X mapping. These classes represent a simple example of
how to use the OracleAS TopLink SDK as "Using the OracleAS TopLink SDK" on
page 5-30 describes.

The XML package defines its own set of interfaces, in addition to the SDK
interfaces. You can use these interfaces to alter how you map your objects to XML

OracleAS TopLink XML Support

5-60 Oracle Application Server TopLink Application Developer’s Guide

documents, without re-implementing the entire SDK suite of interfaces and
subclasses.

The XML extension includes the following implementations of the SDK interfaces
and subclasses:

■ XML File Accessor

■ XML Call

■ XML Descriptor

■ XML Platform

■ XML File Login

■ XML Schema Manager

The XML extension also defines its own set of interfaces into which you can plug
your own implementation classes, as follows:

■ XML Accessor

■ XML Translator

■ XML Zip File Extension

These interfaces enable you to easily alter the way your objects map to XML
documents.

XML File Accessor
The XMLFileAccessor is a subclass of the SDKAccessor that defines how the
application stores XML documents in a native file system. As a subclass of SDK
accessor, the XML file accessor does not have to implement any of the accessor
protocol, although it does implement the connect(DatabaseLogin, Session)
method.

The XML file accessor uses the standard SDK method of call execution and does not
support transaction processing. This limitation is typical of native file systems.

XML Accessor Implementation
In addition to the Accessor interface, the XML file accessor implements the
XMLAccessor interface. The XMLAccessor interface defines the protocol
necessary to fetch streams of data for reading and writing XML documents. The
XML file accessor implements this protocol by wrapping files in streams that can be
used by the XML calls to read or write XML documents.

OracleAS TopLink XML Support

Data Access 5-61

The XMLAccessor methods defined to fetch a stream (either a java.io.Reader or
java.ioWriter) generally require three parameters:

■ A root element name

■ A database row

■ A vector of DatabaseFields (the ordered primary key element names)

The XML file accessor resolves the values of these three parameters to a File. It
wraps the file in a stream (either a java.io.FileReader or a
java.io.FileWriter) and returns it to the XML call for processing.

The XML file accessor calculates the file name as follows:

■ The configuration of the XML file login determines the base directory. The base
directory is analogous to a relational database that contains a collection of
related tables. If you do not specify a base directory name, then OracleAS
TopLink uses the current working directory (for example: C:\EmployeeDB).

■ The subdirectory has the same name as the XML root element name. The root
element name is analogous to the table name in the relational model, meaning
that all XML documents in the same directory have the same root element name
(for example: C:\EmployeeDB\employee).

■ The vector of DatabaseFields and the database row determine the file name
root. The filename is analogous to a row within a table in the relational model.
The vector indicates which fields in the database row make up the primary key.
The values in these fields (which must all be strings) are concatenated together
in the order in which they are listed in the vector. This composite string forms
the root of the file name (for example: C:\EmployeeDB\employee\1234).

■ The configuration of the XML file login determines the file name extension. The
extension is optional. For example, you can assign an extension to associate the
file with other applications. If you do not specify a file name extension, it
defaults to .xml (for example: C:\EmployeeDB\employee\1234.xml).

Directory Creation
You can configure the XML file accessor to create directories automatically when
required. To enable this, include the createsDirectoriesAsNeeded call, set to
TRUE, in the XML file login.

The createsDirectoriesAsNeeded call causes the accessor to create directories as
required, including the base directory. If you set this call to FALSE, the accessor

OracleAS TopLink XML Support

5-62 Oracle Application Server TopLink Application Developer’s Guide

throws an XML data store exception if it encounters a request for an XML document
that resolves to a nonexistent directory.

The default for this setting is FALSE. Set it to TRUE to enable directory creation.

XML Call
The XML call and its subclasses are the layer between the OracleAS TopLink
database queries call interface and the XML document accessing protocol provided
by an XML accessor.

XML calls include two properties:

XML Stream Policy The XMLStreamPolicy is an interface that defines a protocol to
fetch streams of data for reading and writing XML documents. XML calls use the
implementation from the XML accessor stream policy. This implementation
delegates every request for a stream to the XML accessor.

This policy enables you to override the default behavior on a per-call basis. For
example, you can name a specific file in a call, rather than relying on the XML file
accessor to resolve the required file name. XML file stream policy provides this
behavior. To access it use the methods XMLCall.setFile(File) and
XMLCall.setFileName(String).

XML Translator XMLCalls use the XMLTranslator object to translate data between
an XML document and an OracleAS TopLink database row. This pluggable interface
enables you to modify the behavior of the XML calls. The XML calls default
implementation of XML translator is DefaultXMLtranslator.

XMLTranslator Implementations
Several subclasses of XML call provide concrete implementations of call and SDK
call. These classes differ in their implementations of the
Call.execute(DatabaseRow, Accessor) method.

XML translator implementations offer object calls and data calls.

Object-Level Calls
Object-level calls enable you to call for objects from the datasource. All object calls
other than Read calls require an association with a database query. OracleAS
TopLink provides this automatically when you build a database query and
configure it to use a custom call.

OracleAS TopLink XML Support

Data Access 5-63

Read calls are an exception, because they are associated with a relationship
mapping do not require an associated database query.

The following subclasses enable you to manipulate objects:

■ XML Read Call

■ XML Read All Call

■ XML Insert Call

■ XML Update Call

■ XML Delete Call

■ XML Does Exist Call

XML Read Call If an XMLReadCall includes a reference to a one-to-one mapping,
it extracts the foreign key for the mapping's relationship from the database row
passed in to the execute(DatabaseRow, Accessor) method. If there is no
mapping, the XML read call extracts the primary key for the query's associated
descriptor from the database row.

In either case, XML read call then uses the resulting key to find the appropriate
XML document.

XML Read All Call If the XMLReadAllCall includes a reference to an SDK object
collection mapping, it extracts the foreign keys for the mapping's relationship from
the database row passed in to the execute(DatabaseRow, Accessor) method. It
then uses the foreign keys to find the appropriate XML documents.

If no mapping is present, the XML read all call determines the root element name
for the query's associated descriptor and returns all the DatasebaseRows for that
root element name.

XML Insert Call An XMLInsertCall takes the database row passed in to the
execute(DatabaseRow, Accessor) method and uses the primary key to find the
appropriate XML document stream. It then takes the modify row from the
associated ModifyQuery, converts it to an XML document, and writes it out.

If the XML document exists, XML insert call raises an XML data store exception.

XML Update Call An XMLUpdateCall takes the database row passed in to the
execute(DatabaseRow, Accessor) method and uses the primary key to find the
appropriate XML document stream. It then takes the modify row from the
associated ModifyQuery, converts it to an XML document, and writes it out.

OracleAS TopLink XML Support

5-64 Oracle Application Server TopLink Application Developer’s Guide

If the XML document does not exist, XML update call raises an XML data store
exception.

XML Delete Call An XMLDeleteCall takes the database row passed in to the
execute (DatabaseRow, Accessor) method and uses the primary key to find
the appropriate XML document stream. It then deletes this stream.

If the XML document exists, the call returns a row count of one. If not, the call
returns a row count of zero.

XML Does Exist Call An XML does exist call takes the database row passed in to
the execute(DatabaseRow, Accessor) method and uses the primary key to find
the appropriate XML document stream. If the document exists, OracleAS TopLink
converts it to a database row to verify the object's existence. If the object does not
exist, OracleAS TopLink returns a null.

Data Calls
Data calls enable you to retrieve data, rather than objects, from the datasource.
Because XML data calls are not associated with a database query, they require a
root element name and a set of ordered primary key element names. Pass these
settings, along with the appropriate database row, to the XML stream policy at
runtime. OracleAS TopLink uses this information to determine the appropriate
XML document stream.

Example 5–47 A Typical Data Call

XMLDataReadCall call = new XMLDataReadCall();
call.setRootElementName("employee");
call.setPrimaryKeyElementName("id");

The following subclasses provide data call functionality:

■ XML Data Read Call

■ XML Data Insert Call

■ XML Data Update Call

■ XML Data Delete Call

XML Data Read Call An XML data read call takes the database row passed in to
the execute (DatabaseRow, Accessor) method and uses the primary key to
find the appropriate XML document stream, and converts the stream to a database

OracleAS TopLink XML Support

Data Access 5-65

row. OracleAS TopLink returns the database row in a vector to ensure a consistent
result object.

If the XML data read call does not include a primary key element, it performs a
simple read-all for all the XML documents, with the specified root element name.
XML data read call converts these and returns them as a vector of database rows.

You can further configure XML data read calls to specify the fields to return and
their types.

Example 5–48 An XML Data Read Call

XMLDataReadCall call = new XMLDataReadCall();
call.setRootElementName("employee");
call.setPrimaryKeyElementName("id");
call.setResultElementName("salary");
call.setResultElementType(java.math.BigDecimal.class);

XML Data Insert Call An XML data insert call takes the database row passed in to
the execute(DatabaseRow, Accessor) method and uses the primary key to find
the appropriate XML document stream. It then converts that row to an XML
document, and writes it out.

If the XML document already exists, XML data insert call raises an XML data store
exception.

XML Data Update Call An XML data update call takes the database row passed in
to the execute(DatabaseRow, Accessor) method and uses the primary key to
find the appropriate XML document stream. It then converts that row to an XML
document and writes it out.

If the XML document does not already exist, XML data update call raises an XML
data store exception.

XML Data Delete Call An XML data delete call takes the database row passed in to
the execute(DatabaseRow, Accessor) method and uses the primary key to find
the appropriate XML document stream. It then deletes this stream.

If the XML document already exists, the call returns a row count of one. If not, the
call returns a row count of zero.

XML Descriptor
An XMLDescriptor is a subclass of the SDKDescriptor that:

OracleAS TopLink XML Support

5-66 Oracle Application Server TopLink Application Developer’s Guide

■ Automatically initializes its query manager with a set of default database
queries, configured to use the appropriate XML calls. If you use OracleAS
TopLink's default support for XML documents, no further modification of these
calls is required.

■ Adds methods named in accordance with XML concepts rather than relational
concepts. The setRootElementName(String) method replaces the
setTableName(String) method, setPrimaryKeyElementName(String)
replaces setPrimaryKeyFieldName(String), and so on.

XML Platform
XML platform is a subclass of SDK platform that implements the methods required
to support sequence numbers: buildSelectSequenceCall() and
buildUpdateSequenceCall(). These methods build and return the XML data
calls that allow OracleAS TopLink to use sequence numbers maintained in XML
documents.

To set the root element name for these XML documents, and the names of the
elements used to hold the sequence name and sequence counter, specify these
elements through the XML file login.

XML File Login
XML file login is a subclass of SDK login that allows you to configure the XML file
accessor and XML platform. Use the XML file login to configure the following
settings:

■ The base directory name for the XML files. This is the directory under which
you store the root element name subdirectories.

For more information about file name resolution, see "XML File Accessor" on
page 5-60. The default is the current working directory.

login.setBaseDirectoryName("C:\Employee Database");

■ The file name extension for the XML files. The default is .xml.

login.setFileExtension(".xml");

■ Whether directories for the XML files should be created as needed. The default
is False.

login.setCreatesDirectoriesAsNeeded(true);

OracleAS TopLink XML Support

Data Access 5-67

■ Sequence number settings.

login.setSequenceRootElementName("sequence");
login.setSequenceNameElementName("name");
login.setSequenceCounterElementName("count");

XML Schema Manager
XML schema manager is a subclass of SDK schema manager. It provides support
for building the XML-based sequences required by your OracleAS TopLink
database session. After you build your OracleAS TopLink project, use it to create a
database session. Then you can log in and create the required sequences with the
XML schema manager.

Example 5–49 Using XML Schema Manager for Sequencing

DatabaseSession session = project.createDatabaseSession();
session.login();
SchemaManager manager = new XMLSchemaManager(session);
manager.createSequences();

XML Accessor
XMLAccessor is an interface that extends the
oracle.toplink.internal.databaseaccess.Accessor interface. It is the
default interface that XML calls use to access streams for a given XML document.

To store XML documents in a non-native file system, provide a custom
implementation of this interface. For example, to access your XML documents with
a messaging service such the Java Message Service (JMS), you can develop an
implementation of XML accessor that translates the method calls into JMS calls.

If you build a custom accessor, configure an XML login to use it.

Example 5–50 Using a Custom Accessor with XML Login

XMLLogin login = new XMLLogin();
login.setAccessorClass(XMLJMSAccessor.class);
login.setUserName("user");
login.setPassword("password");
// etc.

OracleAS TopLink XML Support

5-68 Oracle Application Server TopLink Application Developer’s Guide

XML Translator
XML calls use the XMLTranslator interface to manipulate XML documents stored
in a non-native file system. Each XML call has its own XML translator. The default
XML translator is an instance of DefaultXMLTranslator, but you can replace the
DefaultXMLTranslator with your own custom implementation.

XML translator defines the following protocol:

■ The read(java.io.Reader) method takes a Reader that streams over an
XML document, converts that document into a database row, and returns that
database row.

■ The write(java.io.Writer, DatabaseRow) method takes a database row,
converts it into an XML document, and writes that document out on the
Writer.

Default XML Translator
As the default XML translator for XML calls, DefaultXMLTranslator performs
translations between database rows and XML documents. To enable translations
with the default XML translator:

■ All fields in a database row must have the same table name or default XML
translator raises an XMLDataStoreException. The table name is the root
element name of the XML document.

<?xml version="1.0"?>
<employee>
<!-- field values will go here -->
</employee>

■ Each field in the database row maps to an XML element. The field name is the
element name, and the field value is the element content.

<?xml version="1.0"?>
<employee>

<id>1</id>
<firstName>Grace</firstName>
<lastName>Hopper</lastName>

</employee>

■ Any field in the database row with a value of null maps to an empty XML
element with an attribute named null whose value is TRUE.

<managedEmployees null="true"/>

OracleAS TopLink XML Support

Data Access 5-69

■ If the value of a field in the database row is an SDK field value, default XML
translator converts the elements of the SDK field value into nested XML
elements. If the elements of the SDK field value are also database rows, default
XML translator translates these recursively, using the same set of translations.

The DefaultXMLTranslator delegates the translation to two other classes:

■ The DatabaseRowToXMLTranslator builds an XML document from a
database row and writes it onto a stream.

■ The XMLToDatabaseRowTranslator reads the XML document from a
stream and builds a database row.

XML Zip File Extension
The XML zip file extension is an enhancement to the XML implementation of the
SDK. This extension adds the flexibility of maintaining the XML data store in
archive files rather than in the directory/file structure of the standard XML data
store. The format is similar to the standard XML data store; however, archive files
replace directories in representing tables. The archive contains XML documents that
map back to a database row in the same manner as if you stored them in a
directory.

Using the Zip File Extension
To use the XML Zip file extension, configure your XML login to use the XML zip
file accessor.

XMLLogin login = new XMLLogin();
login.setAccessorClass(XMLZipFileAccessor.class);

Configure Direct File Access With Zip File Extension
To access an XML document within an archive file, the call must know both the
archive file location and the name of the XML document entry within the archive.
Therefore, the setFileName() message sent to an XML call must include both the
archive file and the XML document entry name, as follows:

XMLReadCall call = new XMLReadCall();
call.setFileName("C:/Employee DataStore/employee.zip", "1.xml");

OracleAS TopLink XML Support

5-70 Oracle Application Server TopLink Application Developer’s Guide

Implementation Details
Zip file support requires the following two packages, stored in the package
oracle.toplink.xml.zip:

■ The XML zip file accessor extends the XML file accessor. It offers the same
functionality as the XML file accessor, but supports an XML zip file stream
policy rather than the XML file stream policy

■ The XML zip file stream policy manages the XML archive files, and returns
streams for reading and writing from individual archive entries. It does not
provide additional functionality over its XML counterpart, the XML file stream
policy, other than managing the added complication of getting read and write
streams from an archive file.

Queries 6-1

6
Queries

Queries are a key element to any Oracle Application Server TopLink application,
because they enable OracleAS TopLink to manage persistent data on the database.
The query framework that OracleAS TopLink provides gives you the flexibility you
need to manage the complex persistence requirements of enterprise applications.

The OracleAS TopLink query framework offers the following key features:

■ A rich set of query types that enable you to query for objects, object summaries,
and data

■ Flexible search criteria, including support for query by example, stored
procedures, OracleAS TopLink expressions, Structured Query Language (SQL)
and Enterprise JavaBean Query Language (EJB QL)

■ Configuration options that enable you to customize query execution, and
optimize query performance

To define OracleAS TopLink queries, use the OracleAS TopLink Mapping
Workbench, the OracleAS TopLink API, or in the case of entity beans, EJB Finders.

This chapter introduces OracleAS TopLink queries, and includes discussions on:

■ Introduction to Query Concepts

■ Query Building Basics

■ Executing Queries

■ Query Results

■ Queries and the Cache

■ Query Objects and Write Operations

■ Query Object Performance Options

6-2 Oracle Application Server TopLink Application Developer’s Guide

■ Oracle Extension Support

■ Advanced Querying

■ EJB Finders

■ Exception Handling

Introduction to Query Concepts

Queries 6-3

Introduction to Query Concepts
Queries are the cornerstone of OracleAS TopLink applications. Queries enable you
to retrieve information or objects from the database, modify or delete those objects,
and create new objects on the database.

The following concepts are key to understanding OracleAS TopLink queries:

■ Query Types

■ Query Components

■ Query Configuration Options

■ Query Development Options

Query Types
The type of query you build determines the type of result set the query returns. You
can build:

■ Object queries that return an object or objects

■ Summary queries that return partial information about an object or objects

■ Data queries that return raw data

■ Object write queries that modify the objects in the database

Object Queries
Object queries, the most common query type in an OracleAS TopLink application,
enable you to search a database for persistent objects. OracleAS TopLink offers two
object query mechanisms: a readObject query that searches the database for a
single object that matches the search criteria, and a readAll query that searches for
all matching objects.

Object queries search for objects rather than data. For example, a query to find all
employees over the age of 40 searches for objects—the employees.

Summary Queries
Summary queries enable you to search for partial information about objects that
match your search criteria. There are two types of summary queries:

■ Report queries return data from the database tables that represents a portion of
the available information. To build a report query, you specify the search
criteria and the information you require about the objects in the result set.

Introduction to Query Concepts

6-4 Oracle Application Server TopLink Application Developer’s Guide

Report queries search for information about objects rather than the objects
themselves. For example, you can create a report query to discover the average
age of all employees in your company. The report query is not interested in the
specific objects (the employees), but rather, summary information about them
(their average age).

For more information, see "ReportQuery" on page 6-73.

■ Partial object queries retrieve partially populated objects from the database
rather than complete objects. You do not cache partial objects, nor can you
modify them.

Applications frequently use partial object queries to compile a list for further
selection. For example, a query to find the names and addresses of all
employees over the age of 40 returns a list of data (the names and addresses)
that partially represents objects (the employees). A common next step is to
present this list so the user can select the required object or objects from the list.

For more information, see "Partial Object Reading" on page 6-47.

Data Queries
Data queries enable you to query data fields directly from the database tables rather
than objects. Data queries represent a common approach to working with
unmapped data, such as foreign keys and object version fields.

Object Write Queries
Object write queries enable you to modify data and objects directly on the database.
You can use write queries to insert and update objects on the database. Write
queries are useful when you manage simple, nonbusiness object data that have no
relationships, such as user preferences.

For more information about write queries, see "Query Objects and Write
Operations" on page 6-67.

To avoid concurrency issues when you write more complex data to the database,
use the Unit of Work.

For more information, see "Unit of Work Basics" on page 7-12.

Introduction to Query Concepts

Queries 6-5

Query Components
Query components are the mechanisms with which you build your query. These
components include:

■ Advanced query mechanisms, such as query by example, OracleAS TopLink
expressions, and database stored procedures

■ Query languages and syntaxes, such as SQL and EJB QL

OracleAS TopLink Expressions
The OracleAS TopLink expression framework is a querying syntax. Expressions
enable you to specify search criteria in a query, based on the object model. They
provide support for standard boolean operators, such as AND, OR, and NOT and
support many database functions and operators.

You can create expressions in the OracleAS TopLink Mapping Workbench or in the
OracleAS TopLink API.

For more information, see "Expressions" on page 6-12.

Query by Example
Limited in complexity, query by example is an intuitive way to express a query. To
specify a query by example, provide sample instances of the persistent objects to
query, and specify the fields and values that define the query. You can use any
valid constructor to create an example object.

For more information, see "Query by Example" on page 6-34.

Stored Procedures
A stored procedure is a function, such as Procedural Language/Structured Query
Language (PLSQL) statement or Java code, written on the database. Stored
procedures enable you to execute logic and access data on the database server.

For more information, see "Stored Procedure Calls" on page 6-29.

EJB QL
EJB QL presents queries from an object model perspective, enabling users to declare
queries using the attributes of each abstract entity bean in the object model. EJB QL
includes path expressions that enable navigation over relationships defined for
entity beans and dependent objects.

Introduction to Query Concepts

6-6 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink enables you to use EJB QL to define both queries that return Java
objects and finders that return EJBs.

For more information, see "EJB QL" on page 6-31.

Custom SQL
SQL is a standard query language enables you to request information from a
database. The use of a native query language such as SQL is complex, but it offers
advantages unavailable with other querying options.

For more information, see "Custom SQL" on page 6-27.

Query Configuration Options
OracleAS TopLink queries offer several configuration options to customize query
execution, cache usage, and performance.

Query Execution Options
The following query execution options enable you to optimize the way you collect
and present query results.

Ordering You can specify an order for the results of a query.

For more information, see "Ordering for Read All Queries" on page 6-44.

Collection Types By default, a query that returns a collection of objects presents the
objects in a vector. You can specify that the collection be returned in any collection
class that implements the Collection or Map interface (for example: HashMap).

For more information, see "Collection Classes" on page 6-46.

Maximum Rows You can set a maximum row size on any read query to limit the size
of the result set. Use this to manage queries that can return an excessive number of
objects.

For more information, see "Maximum Rows Returned" on page 6-47.

Timeouts You can set the maximum amount of time that OracleAS TopLink waits for
results from a query. This forces a hung or lengthy query to abort after the specified
time has elapsed.

For more information, see "Query Timeout" on page 6-47.

Introduction to Query Concepts

Queries 6-7

Query and the Cache
When you execute a query, OracleAS TopLink retrieves the information from either
the database or the OracleAS TopLink session cache. You can configure the way
queries use the OracleAS TopLink cache to optimize performance.

Refresh Refresh the cache to update all objects in the cache with information from
the database. This ensures that all objects in the cache are current.

For more information, see "Refresh" on page 6-66.

In-Memory Querying An in-memory query is a query that is run against the shared
session cache. Careful configuration of in-memory querying improves performance,
but not all queries benefit from in-memory querying. For example, queries for
individual objects based on primary keys generally see performance gains from
in-memory querying; queries based on non-primary keys are less likely to benefit.

By default, queries that look for a single object based on primary keys attempt to
retrieve the required object from the cache first and then search the database if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

For more information, see "In-Memory Query Cache Usage" on page 6-62.

Caching Results By default, OracleAS TopLink stores query results in the session
cache enabling OracleAS TopLink to execute the query repeatedly, without
accessing the database. This is useful when you execute queries that run against
static data.

In that it does not know how many objects it is looking. by default a read all query
always goes to the database. However if the object already exists in the cache, time
is saved by not having to build a new object from the row.

For more information, see "Caching Query Results" on page 6-67.

Holding Results in the Query You can configure a query to maintain an internal cache
of the objects returned by the query. This internal cache is disabled by default.

For more information, see "Cache Results In Query Objects" on page 6-76.

Introduction to Query Concepts

6-8 Oracle Application Server TopLink Application Developer’s Guide

Performance
OracleAS TopLink offers several query options to improve performance, including
the following:

■ Binding and Parameterized SQL: Enables you to create and store queries that are
complete except for one or more search parameters. To enhance query
performance, invoke the query, and bind parameters to the query. This can
improve query performance.

For more information about binding and parameterized SQL, see "Binding and
Parameterized SQL" on page 5-17.

■ Batch and Join Reading: To optimize database reads, OracleAS TopLink supports
both batch and join reading. When you use these techniques, you dramatically
decrease the number of times you access the database during a read operation,
especially when your result set contains a large number of objects.

For more information about batch and join reading, see "Query Object
Performance Options" on page 6-70.

■ Partial Object Reading: Partial object queries enable you to retrieve partially
populated objects from the database rather than complete objects.

For more information about partial object reading, see "Partial Object Reading"
on page 6-47.

■ Java Streams: Enable you to retrieve data from the database in cursored Java
streams. A cursored stream allows you to view a collection in manageable
increments rather than as a complete collection. This is useful when you have a
large result set.

For more information about Java streams, see "Java Streams" on page 6-60.

■ Scrollable Cursors: Retrieves the result set from a query on a row-by-row basis.
This is useful when you want to operate on the rows individually.

For more information about scrollable cursors, see "Cursors and Streams" on
page 6-81.

Unit of Work
Queries that write to the database are often executed within a Unit of Work. You
can also execute read queries within a Unit of Work, although reading the database

Introduction to Query Concepts

Queries 6-9

this way is not common. There are two key configuration options available when
you query within the Unit of Work:

■ Registering Results: When you execute a read query within a Unit of Work, the
Unit of Work registers the objects in the result set and returns clones to the Unit
of Work cache. If you do not need to modify any of the returned objects,
consider executing your query through a regular session.

For more information about read queries within the Unit of Work, see "Reading
and Querying Objects with the Unit of Work" on page 7-9.

■ Conform Results to Unit of Work: The OracleAS TopLink conforming feature
enables you to query against your relative logical or transaction view of the
database. By default queries are executed on the database. If you have
uncommitted changes, this can pose a problem in a Unit of Work. Uncommitted
changes not yet written to the database cannot influence which result set gets
returned.

For more information, see "Conforming Results (UnitOfWork)" on page 6-64.

Query Development Options
There are two ways to build OracleAS TopLink queries: you can use the OracleAS
TopLink Mapping Workbench, or you can build them in code using the OracleAS
TopLink API.

Building Queries with the OracleAS TopLink Mapping Workbench
The OracleAS TopLink Mapping Workbench Query tab supports OracleAS TopLink
expressions, EJB QL queries and finders, and custom SQL queries and finders.

For more information, see "Specifying Named Queries and Finders" in the Oracle
Application Server TopLink Mapping Workbench User’s Guide.

Building Queries in Java
As with the OracleAS TopLink Mapping Workbench, the OracleAS TopLink query
API supports OracleAS TopLink expressions, EJB QL queries and finders, and
custom SQL queries and finders. However, if you require more options than are
offered by these selection criteria types, you can create queries using the OracleAS
TopLink query API to leverage OracleAS TopLink support for query by example
and stored procedures.

For more information about the OracleAS TopLink query API, see the Oracle
Application Server TopLink API Reference.

Introduction to Query Concepts

6-10 Oracle Application Server TopLink Application Developer’s Guide

Using Predefined Queries
An effective way to implement queries is to build predefined queries that you store
as part of the project descriptor file. OracleAS TopLink loads the queries into the
application at runtime.

OracleAS TopLink supports the following predefined queries:

■ Named Queries are defined in the session and called by name from the session.
You can create named queries with the OracleAS TopLink Mapping Workbench
or in Java code.

■ Redirect Queries allow you to define the query implementation in code as a static
method. When you invoke the query, the call redirects to the specified static
method. The query can include any arbitrary parameters (or none at all),
packaged into a vector and passed to the redirect method.

For more information, see "Predefined Queries" on page 6-48.

Using Named Queries
Named queries are complete, self-contained queries stored in the project descriptor
file. Using named queries improves your application performance because it
reduces the resources required to run a query.

Building Named Queries with the OracleAS TopLink Mapping Workbench You can create
queries in the OracleAS TopLink Mapping Workbench using the OracleAS TopLink
Mapping Workbench Query tab. The queries you build in the Query tab become
part of the OracleAS TopLink project: OracleAS TopLink exports them
automatically when you create deployment files from the project.

For more information, see "Specifying Named Queries and Finders" in the Oracle
Application Server TopLink Mapping Workbench User’s Guide.

Building Named Queries in Java The OracleAS TopLink query API enables you to build
queries outside of the OracleAS TopLink Mapping Workbench. However, unlike
queries built in the OracleAS TopLink Mapping Workbench, OracleAS TopLink
does not include these queries automatically in your OracleAS TopLink application.
Instead, add them to the application manually, using after load methods to amend
the project descriptor.

For more information about after load methods, see "Customizing OracleAS
TopLink Descriptors with Amendment Methods" on page 3-82.

Introduction to Query Concepts

Queries 6-11

Using Redirect Queries
Although most OracleAS TopLink queries search for objects directly, a redirect
query generally invokes a method that exists on another class and waits for the
results of the remote query. Redirect queries enable you to build and use complex
operations, including operations that might not otherwise be possible within the
query framework.

For more information, see "Redirect Queries" on page 6-52.

Building EJB Finders
An EJB finder is a query as defined by the EJB specification. It returns EJBs,
collections, and enumerations. The difference between a finder and a query is that
queries return Java objects, but finders return EJBs. The OracleAS TopLink query
framework enables you to create and execute complex finders that retrieve entity
beans.

Finders contain finder methods that define search criteria. The work involved in
creating these methods depends on whether you are building container-managed
persistence (CMP) bean finders or bean managed persistence (BMP) bean finders:

■ CMP finders require the developer to define the finder API method signature
on the bean Home interface. The CMP provider generates the actual code
mechanisms for the finder from the API definition.

■ BMP finders require the developer to provide the code required to execute the
finder methods.

In either case, you define finders in the Home interface of the bean.

For more information, see "EJB Finders" on page 6-85.

Query Keys
A query key is an alias that OracleAS TopLink expressions use to relate to the
descriptors and mappings for a given class. The query key is generally the name of
an attribute of the class.

For example, consider a database table that includes a column called F_NAME that
represents the attribute firstName in the class. Both represent the concept of an
object’s first name. OracleAS TopLink expressions use a query key to relate the two
when you query on the database using the firstName as a selection criteria.

By default, OracleAS TopLink builds a query key in a descriptor for each attribute
you map and automatically creates query keys for all mapped attributes of a class.

Query Building Basics

6-12 Oracle Application Server TopLink Application Developer’s Guide

The default name of the query key is the same as the name of the mapping.You can
add additional query keys for nonmapped or duplicate purpose fields, either in
Java code or using the OracleAS TopLink Mapping Workbench.

For more information, see "Working with Query Keys" in the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Query Building Basics
OracleAS TopLink supports several options for creating queries, including:

■ Expressions

■ Custom SQL

■ Stored Procedure Calls

■ EJB QL

■ Query by Example

Expressions
OracleAS TopLink expressions enable you to specify query search criteria based on
the object model. OracleAS TopLink translates the resulting query into SQL and
converts the results of the query into objects. OracleAS TopLink provides two
public classes to support expression:

■ The Expression class represents an expression, which can be anything from a
simple constant to a complex clause with boolean logic. The developer can
manipulate, group, and integrate expressions in several ways.

■ The ExpressionBuilder class is the factory for constructing new expressions.

Accessing Methods in Expressions
The OracleAS TopLink expression framework provides methods through the
following classes:

■ The Expression class provides most general functions, such as
toUpperCase.

■ The ExpressionMath class supplies mathematical methods.

Query Building Basics

Queries 6-13

The following code examples illustrate the two classes. Example 6–1 uses the
Expression class, while Example 6–2 uses the ExpressionMath class.

Example 6–1 Using the Expression Class

expressionBuilder.get("lastName").equal("Smith");

Example 6–2 Using the ExpressionMath Class

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),
emp.get("spouse").get("salary")).greaterThan(10000)

This division of functionality enables OracleAS TopLink expressions to provide
similar mathematical functionality to the Java class, java.lang.Math, but keeps
both the Expression and ExpressionMath classes from becoming unnecessarily
complex.

Expression Components
A simple expression normally consists of three parts:

■ The attribute, which represents a mapped attribute or query key of the
persistent class

■ The operator, which is an expression method that implements boolean logic,
such as GreaterThan, Equal, or Like

■ The constant or comparison, which refers to the value used to select the object

In the following code fragment:

expressionBuilder.get("lastName").equal("Smith");

■ The attribute is lastName.

■ The operator is equal().

■ The constant is the string “Smith”.

The expressionBuilder substitutes for the object or objects to be read from the
database. In this example, expressionBuilder represents employees.

Expressions Compared to SQL Expressions offer the following advantages over SQL
when you access a database:

■ Expressions are easier to maintain because the database is abstracted.

Query Building Basics

6-14 Oracle Application Server TopLink Application Developer’s Guide

■ Changes to descriptors or database tables do not affect the querying structures
in the application.

■ Expressions enhance readability by standardizing the Query interface so that it
looks similar to traditional Java calling conventions. For example, the Java code
required to get the street name from the Address object of the Employee class
looks like this:

emp.getAddress().getStreet().equals("Meadowlands");

The expression to get the same information is similar:

emp.get("address").get("street").equal("Meadowlands");

■ Expressions allow read queries to transparently query between two classes that
share a relationship. If these classes are stored in multiple tables in the database,
OracleAS TopLink automatically generates the appropriate join statements to
return information from both tables.

■ Expressions simplify complex operations. For example, the following Java code
retrieves all Employees that live on "Meadowlands" whose salary is greater
than 10,000:

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp = emp.get("address").get("street").equal("Meadowlands");
Vector employees = session.readAllObjects(Employee.class,
exp.and(emp.get("salary").greaterThan(10000)));

OracleAS TopLink automatically generates the appropriate SQL from that code:

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_
ID, t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_
TIME,t0.SALARY FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET =
'Meadowlands')AND (t0.SALARY > 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

Boolean Logic Expressions use standard boolean operators, such as AND, OR, and
NOT and you can combine multiple expressions to form more complex expressions.
For example, the following code fragment queries for projects managed by a
selected person, with a budget greater than or equal to 1,000,000.

ExpressionBuilder project = new ExpressionBuilder();
Expression hasRightLeader, bigBudget, complex;
Employee selectedEmp = someWindow.getSelectedEmployee();
hasRightLeader = project.get("teamLeader").equal(selectedEmp);
bigBudget = project.get("budget").greaterThanEqual(1000000);

Query Building Basics

Queries 6-15

complex = hasRightLeader.and(bigBudget);
Vector projects = session.readAllObjects(Project.class, complex);

Database Functions OracleAS TopLink supports the following database functions and
operators:

■ like()

■ notLike()

■ toUpperCase()

■ toLowerCase()

■ toDate()

■ rightPad()

Database functions allow you to define more flexible queries. For example, the
following code fragment matches several last names, including “SMART”, “Smith”,
and “Smothers”:

emp.get("lastName").toUpperCase().like("SM%")

You access most functions through methods such as toUpperCase on the
Expression class.

Mathematical Functions Mathematical functions are available through the
ExpressionMath class. Mathematical function support in expressions is similar to
the support provided by the Java class java.lang.Math.

For example:

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),emp.get("spouse")
.get("salary")).greaterThan(10000)

Platform and User Defined Functions You can use expressions to implement database
functions that OracleAS TopLink does not support directly. For simple functions,
use the getFunction() operation, which the argument is the name of a function.
For example, consider the following expression, which calls a function called
VacationCredit on the database:

emp.get("lastName").getFunction("VacationCredit").greaterThan(42)

Query Building Basics

6-16 Oracle Application Server TopLink Application Developer’s Guide

This expression produces the following SQL:

SELECT . . . WHERE VacationCredit(EMP.LASTNAME) > 42

You can also create more complex functions and add them to OracleAS TopLink.
See "Platform and User-Defined Functions" on page 6-22.

Expressions for One-to-One and Aggregate Object Relationships Expressions can include
an attribute that has a one-to-one relationship with another persistent class. A
one-to-one relation translates naturally into a SQL join that returns a single row.

For example, the following code fragment accesses fields from an employee’s
address:

emp.get("address").get("country").like("S%")

This example corresponds to joining the EMPLOYEE table to the ADDRESS table,
based on the address foreign key, and checking for the country name. You can
nest these relationships infinitely, so it is possible to ask for complex information as
follows:

project.get("teamLeader").get("manager").get("manager").get("address").get("street")

Expressions for Complex Relationships You can query against complex relationships,
such as one-to-many, many-to-many, direct collection, and aggregate collection
relationships. Expressions for these types of relationships are more complex to
build, because the relationships do not map directly to joins that yield a single row
per object.

To query across a one-to-many or many-to-many relationship, use the anyOf
operation. As its name suggests, this operation supports queries that return all
items on the “many” side of the relationship that satisfy the query criteria. For
example, consider the following code fragment:

emp.anyOf("managedEmployees").get("salary").lessThan(10000);

This code returns employees who manage at least one employee (through a
one-to-many relationship) with a salary below $10,000. You can query across a
many-to-many relationship using a similar strategy:

emp.anyOf("projects").equal(someProject)

Query Building Basics

Queries 6-17

OracleAS TopLink translates these queries to SQL, and SQL joins the relevant tables
using a DISTINCT clause to remove duplicates.

For example:

SELECT DISTINCT . . . FROM EMP t1, EMP t2 WHERE
t2.MANAGER_ID = t1.EMP_ID AND t2.SALARY < 10000

Creating Expressions with the Expression Builder
To create Expression objects, use the get() method or its related methods on an
Expression or ExpressionBuilder. The ExpressionBuilder acts as a stand-in
for the objects you query. To construct a query, send messages to the
ExpressionBuilder that correspond to the attributes of the objects. We
recommend that you name ExpressionBuilder objects according to the type of
objects against which you do a query.

Example 6–3 A Simple Expression Builder Expression

This example uses the query key lastName to reference the field name L_NAME.

Expression expression = new ExpressionBuilder().get("lastName").equal("Young");

Example 6–4 An Expression Using the and() Method

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp1, exp2;
exp1 = emp.get("firstName").equal("Ken");
exp2 = emp.get("lastName").equal("Young");
return exp1.and(exp2);

Example 6–5 An Expression Using the notLike() Method

Expression expression = new ExpressionBuilder().get("lastName").notLike("%ung");

Note: An instance of ExpressionBuilder is specific to a particular
query. Do not attempt to build another query using an existing builder,
because it still contains information related to the first query.

Query Building Basics

6-18 Oracle Application Server TopLink Application Developer’s Guide

Using Multiple Expressions
Expressions support subqueries (SQL subselects) and parallel selects. To create a
subquery, use a single expression builder. With parallel selects, use multiple
expression builders when you define a single query. This enables you to specify
joins for unrelated objects at the object level.

Subselects and Subqueries Some queries compare the results of other, contained
queries (or subqueries). SQL supports this comparison through subselects.
OracleAS TopLink expressions provide subqueries to support subselects.

Subqueries enable you to define sophisticated expressions that query on aggregated
values (counts, min, max) and unrelated objects (exists, in, comparisons). To
obtain a subquery, pass an instance of a report query to any expression comparison
operation, or use the subQuery operation on expression builder. The subquery is
not required to have the same reference class as the parent query, and it must use its
own expression builder.

You can nest subqueries, or use them in parallel. Subqueries can also make use of
custom SQL.

For expression comparison operations that accept a single value (equal,
greaterThan, lessThan), the subquery result must return a single value. For
expression comparison operations that accept a set of values (in, exists), the
subquery result must return a set of values.

Example 6–6 A Subquery Expression Using a Comparison and Count Operation

This example searches for all employees with more than 5 managed employees.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder managedEmp = new ExpressionBuilder();
ReportQuery subQuery =new ReportQuery(Employee.class, managedEmp);
subQuery.addCount();
subQuery.setSelectionCriteria(managedEmp.get("manager") .equal(emp));
Expression exp = emp.subQuery(subQuery).greaterThan(5);

Example 6–7 A Subquery Expression Using a Comparison and Max Operation

This example searches for the employee with the highest salary in the city of
Ottawa.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder ottawaEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, ottawaEmp);

Query Building Basics

Queries 6-19

subQuery.addMax("salary");
subQuery.setSelectionCriteria(ottawaEmp.get("address").get("city").equal("Ottawa"));
Expression exp =
emp.get("salary").equal(subQuery).and(emp.get("address").get("city").equal("Ottawa"));

Example 6–8 A Subquery Expression Using a Not Exists Operation

This example searches for all employees that have no projects.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder proj = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Project.class, proj);
subQuery.addAttribute("id");
subQuery.setSelectionCriteria(proj.equal(emp.anyOf("projects"));
Expression exp = emp.notExists(subQuery);

Parallel Expressions Parallel expressions enable you to compare unrelated objects.
Parallel expressions require multiple expression builders, but do not require the use
of report queries. Each expression must have its own expression builder, and you
must use the constructor for expression builder that takes a class as an argument.
The class does not have to be the same for the parallel expressions, and you can
create multiple parallel expressions in a single query.

Only one of the expression builders is considered the primary expression builder
for the query. This primary builder makes use of the zero argument expression
constructor, and OracleAS TopLink obtains its class from the query.

Example 6–9 A Parallel Expression on Two Independent Employees

This example queries all employees with the same last name as another employee of
different gender, and accounts for the possibility that returned results can be a
spouse.

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder spouse = new ExpressionBuilder(Employee.class);
Expression exp = emp.get("lastName").equal(spouse.get("lastName"))
.and(emp.get("gender").notEqual(spouse.get("gender"));

Parameterized Expressions and Finders
A relationship mapping differs from a regular query because it retrieves data for
many different objects. To enable you to specify these queries, supply arguments

Query Building Basics

6-20 Oracle Application Server TopLink Application Developer’s Guide

when you execute the query. Use the getParameter() and getField() methods
to acquire values for the arguments.

A parameterized expression executes searches and comparisons based on variables
instead of constants. This approach enables you to build expressions that retrieve
context-sensitive information. This technique is useful when you:

■ Customize mappings

■ Create reusable queries

■ Define EJB finders

Parameterized expressions require that the relationship mapping know how to
retrieve an object or collection of objects based on its current context. For example, a
one-to-one mapping from Employee to Address must query the database for an
address based on foreign key information from the Employee table. Each mapping
contains a query that OracleAS TopLink constructs automatically based on the
information provided in the mapping. To specify expressions yourself, use the
mapping customization mechanisms. For more information about the mapping
customization mechanisms, see the Oracle Application Server TopLink Mapping
Workbench User’s Guide.

Expression getParameter() The getParameter() method returns an expression that
becomes a parameter in the query. This method enables you to create a query that
employs user input as the search criteria. The parameter must be either the fully
qualified name of the field from a descriptor’s row, or a generic name for the
argument.

Parameters you construct this way are global to the current query, so you can send
this message to any expression object.

Example 6–10 Using Expression getParameter() and getField()

ExpressionBuilder address = new ExpressionBuilder();
Expression exp = address.getField
("ADDRESS.EMP_ID").equal(address.getParameter("EMPLOYEE.EMP_ID"));

exp = exp.and(address.getField("ADDRESS.TYPE").equal(null));

Expression getField() The getField() method returns an expression that represents
a database field with the given name. Use the Expression getField() method
to construct the selection criteria for a mapping. The argument is the fully qualified
name of the required field. Because fields are not global to the current query, you

Query Building Basics

Queries 6-21

must send this method to an expression that represents the table from which this
field is derived. See also "Data Queries" on page 6-23.

Example 6–11 The Use of a Parameterized Expression in a Mapping

This example obtains a simple one-to-many mapping from class PolicyHolder to
Policy using a nondefault selection criteria. The SSN field of the POLICY table is a
foreign key to the SSN field of the HOLDER table.

OneToManyMapping mapping = new OneToManyMapping();
mapping.setAttributeName("policies");
mapping.setGetMethodName("getPolicies");
mapping.setSetMethodName("setPolicies");
mapping.setReferenceClass(Policy.class);

// Build a custom expression here rather than using the defaults
ExpressionBuilder policy = new ExpressionBuilder();
mapping.setSelectionCriteria(policy.getField("POLICY.SSN")).equal(policy.
getParameter("HOLDER.SSN")));

Example 6–12 A Parameterized Expression in a Custom Query

This example uses an employee’s first name to demonstrate how to use a custom
query to find the employee.

ExpressionBuilder emp = new ExpressionBuilder();
Expression firstNameExpression;
firstNameExpression = emp.get("firstName").equal(emp.getParameter("firstName"));
ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(firstNameExpression);
query.addArgument("firstName");
Vector v = new Vector();
v.addElement("Sarah");
Employee e = (Employee) session.executeQuery(query, v);

Example 6–13 Nested Parameterized Expressions

This example demonstrates how to use a custom query to find all employees that
live in the same city as a given employee.

ExpressionBuilder emp = new ExpressionBuilder();
Expression addressExpression;
addressExpression =

Query Building Basics

6-22 Oracle Application Server TopLink Application Developer’s Guide

emp.get("address").get("city").equal(emp.getParameter("employee").get("address")
.get("city"));
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setName("findByCity");
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(addressExpression);
query.addArgument("employee");
Vector v = new Vector();
v.addElement(employee);
Employee e = (Employee) session.executeQuery(query, v);

Platform and User-Defined Functions
Different databases sometimes implement the same functions in different ways. For
example, an argument that specifies that data returns in ascending order might be
ASC or ASCENDING. To manage differences, OracleAS TopLink recognizes functions
and other operators that vary according to the relational database.

Although most platform-specific operators exist in OracleAS TopLink, use the
ExpressionOperator class to add your own.

An ExpressionOperator has a selector and a vector of strings:

■ The selector is the identifier (id) by which users refer to the function.

■ The strings are the constant strings used in printing the function. When printed,
the strings alternate with the function arguments.

You can also specify whether the operator is prefix or postfix. In a prefix operator,
the first constant string prints before the first argument; in a postfix, it prints
afterwards.

Example 6–14 Creating a New Expression Operator—The toUpperCase Operator

ExpressionOperator toUpper = new ExpressionOperator();
toUpper.setSelector();
Vector v = new Vector();
v.addElement("UPPER(");
v.addElement(")");
toUpper.printAs(v);
toUpper.bePrefix();
toUpper.setNodeClass(FunctionExpression.class);

// To add this operator for all database
ExpressionOperator.addOperator(toUpper);

Query Building Basics

Queries 6-23

// To add to a specific platform
DatabasePlatform platform = session.getLogin().getPlatform();
platform.addOperator(toUpper);

Example 6–15 Accessing a User-Defined Function

This example illustrates the getFunction() method, called with a vector of
arguments.

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
expression functionExpression = new
ExpressionBuilder().get("firstName").getFunction(ExpressionOperator.toUpper).
equal("BOB");

query.setSelectionCriteria(functionExpression);
session.executeQuery(query);

Data Queries
You can use expressions to retrieve data rather than objects. This is a common
approach when you work with unmapped information in the database, such as
foreign keys and version fields.

Expressions that query for objects generally refer to object attributes, which may in
turn refer to other objects. Data expressions refer to tables and their fields. You can
combine data expressions and object expressions within a single query. OracleAS
TopLink provides two main operators for expressions that query for data:
getField(), and getTable().

getField() The getField() operator enables you to retrieve data from either an
unmapped table or an unmapped field from an object. In either case, the field must
be part of a table represented by that object’s class; otherwise, OracleAS TopLink
raises an exception when you execute the query.

You can also use the getField() operator to retrieve the foreign key information
for an object.

Example 6–16 Using getField Against an Object

builder.getField("[FIELD_NAME]").greaterThan("[ARGUMENT]");

Query Building Basics

6-24 Oracle Application Server TopLink Application Developer’s Guide

getTable() The getTable() operator returns an expression that represents an
unmapped table in the database. This expression provides a context from which to
retrieve an unmapped field when you use the getField() operator.

Example 6–17 Using getTable() and getField() Together

builder.getTable("[TABLE_NAME]").getField("[FIELD_NAME]").equal("[ARGUMENT]");

A common use for the getTable() and getField() operators is to retrieve
information from a link table (or reference table) that supports a many-to-many
relationship. Example 6–18 reads a many-to-many relationship that uses a link table
and also checks an additional field in the link table. This code combines an object
query with a data query, using the employee’s manager as the basis for the data
query. It also features parameterization for the project ID.

Example 6–18 Using a Data Query Against a Link Table

ExpressionBuilder emp = new ExpressionBuilder();
Expression manager = emp.get("manager");
Expression linkTable = manager.getTable("PROJ_EMP");
Expression empToLink = emp.getField("EMPLOYEE
.EMP_ID").equal(linkTable.getField("PROJ_EMP.EMP_ID");

Expression projToLink = linkTable.getField("PROJ_EMP
.PROJ_ID").equal(emp.getParameter("PROJECT.PROJ_ID"));

Expression extra = linkTable.getField("PROJ_EMP.TYPE").equal("W");
query.setSelectionCriteria((empToLink.and(projToLink)).and(extra));

Query Keys
A query key is an alias for a field name. Instead of referring to a field using a
DBMS-specific field name such as F_NAME, query keys allow OracleAS TopLink
expressions to refer to the field using class attribute names such as firstName.
This offers the following advantages:

■ Query keys enhance code readability when you define OracleAS TopLink
expressions.

■ Query keys increase portability by making code independent of the database
schema. If you rename a field, you can redefine the query key without changing
any code that references it.

■ Unlike interface descriptors that only define common query keys shared by
their implementors, aliased fields can have different names in each of the
implementor tables.

Query Building Basics

Queries 6-25

For more information about query keys with the OracleAS TopLink Mapping
Workbench, see "Working with Query Keys," in the Oracle Application Server TopLink
Mapping Workbench User’s Guide.

Automatically-Generated Query Keys OracleAS TopLink defines direct query keys for
all direct mappings and has a special query key type for each mapping. You can use
query keys to access fields that do not have direct mappings associated with them,
such as the version field used for optimistic locking or the type field used for
inheritance.

Example 6–19 Automatically-Generated Query Key in the OracleAS TopLink
Expression Framework

Vector employees = session.readAllObjects(Employee.class,
new ExpressionBuilder().get("firstName").equal("Bob"));

Relationship Query Keys OracleAS TopLink supports and defines query keys for
relationship mappings. You can use query keys to join across a relationship.
One-to-one query keys define a joining relationship. To access query keys for
relationship mappings, use the get() method in expressions.

Example 6–20 One-to-One Query Key

The following code example illustrates how to use a one-to-one query key within
the OracleAS TopLink expression framework.

ExpressionBuilder employee = new ExpressionBuilder();
Vector employees = session.readAllObjects(Employee.class,
employee.get("address").get("city").equal("Ottawa"));

To access one-to-many and many-to-many query keys that define a distinct join
across a collection relationship, use the anyOf() method in expressions.

If no mapping exists for the relationship, you can also define relationship query
keys manually. Relationship query keys are not supported directly by the OracleAS
TopLink Mapping Workbench. To define a relationship query key, specify and write
an amendment method, and use the addQueryKey() message to register the query
keys.

Example 6–21 Defining One-to-One Query Key Example

The following code defines a one-to-one query key.

/* Static amendment method in Address class, addresses do not know their owners

Query Building Basics

6-26 Oracle Application Server TopLink Application Developer’s Guide

in the object-model, however you can still query on their owner if a
user-defined query key is defined */
public static void addToDescriptor(Descriptor descriptor)
{
OneToOneQueryKey ownerQueryKey = new OneToOneQueryKey();
ownerQueryKey.setName("owner");
ownerQueryKey.setReferenceClass(Employee.class);
ExpressionBuilder builder = new ExpressionBuilder();
ownerQueryKey.setJoinCriteria(builder.getField("EMPLOYEE.ADDRESS_
ID").equal(builder.getParameter("ADDRESS.ADDRESS_ID")));
descriptor.addQueryKey(ownerQueryKey);
}

Reference
Table 6–1 and Table 6–2 summarize the most common public methods for
ExpressionBuilder and Expression. For more information about the available
methods for ExpressionBuilder and Expression, see the Oracle Application
Server TopLink API Reference.

Table 6–1 Elements for Expression Builder

Element Method Name

Constructors ExpressionBuilder()
ExpressionBuilder(Class aClass)

Expression creation
methods

get(String queryKeyName)
getAllowingNull(String queryKeyName)
anyOf(String queryKeyName)
anyOfAllowingNone(String queryKeyName)
getField(String fieldName)
in(ReportQuery subQuery)

Table 6–2 Elements for Expression

Element Method Name

Constructors Never use the Expression constructors. Always use an
ExpressionBuilder to create a new expression.

Query Building Basics

Queries 6-27

Custom SQL
The expression framework enables you to define complex queries at the object level.
If your application requires a more complex query, use SQL or stored procedure
calls to create custom database operations.

For more information about stored procedure calls, see "Stored Procedure Calls" on
page 6-29.

SQL Queries
You can provide a SQL string to any query instead of an expression, but the SQL
string must return all data required to build an instance of the queried class. The
SQL string can be a complex SQL query or a stored procedure call.

You can invoke SQL queries through the session read methods or through a read
query instance.

Expression operators equal(Object object)
notEqual(Object object)
greaterThan(Object object)
lessThan(Object object)
isNull()
notNull()

Logical operators and(Expression theExpression)
not()
or(Expression theExpression)

Key word searching equalsIgnoreCase(String theValue)
likeIgnoreCase(String theValue)

Aggregate functions
(for use with report
query)

minimum()
maximum()

Relationship operators anyOf(String queryKeyName)
anyOfAllowingNone(String queryKeyName)
get(String queryKeyName)
getAllowingNull(String queryKeyName)
getField(String fieldName)

Table 6–2 Elements for Expression (Cont.)

Element Method Name

Query Building Basics

6-28 Oracle Application Server TopLink Application Developer’s Guide

Example 6–22 A Session Read Object Call Query With Custom SQL

Employee employee = (Employee) session.readObjectCall(Employee.class), new
SQLCall("SELECT * FROM EMPLOYEE WHERE EMP_ID = 44");

Example 6–23 A Session Method with Custom SQL

This example queries user and time information.

Vector rows = session.executeSelectingCall(new SQLCall("SELECT USER, SYSDATE FROM DUAL"));

SQL Data Queries
OracleAS TopLink offers the following data-level queries to read or modify data
(but not objects) in the database:

■ DataReadQuery: for reading rows of data

■ DirectReadQuery: for reading a single column of data

■ ValueReadQuery: for reading a single value of data

■ DataModifyQuery: for modifying data

Example 6–24 A Direct Read Query with SQL

This example uses SQL to read all employee IDs.

DirectReadQuery query = new DirectReadQuery();
query.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
Vector ids = (Vector) session.executeQuery(query);

Example 6–25 A Data Modify Query with SQL

This example uses SQL to switch the database.

DataModifyQuery query = new DataModifyQuery();
query.setSQLString("USE SALESDATABASE");
session.executeQuery(query);

Query Building Basics

Queries 6-29

Stored Procedure Calls
You can provide a StoredProcedureCall object to any query instead of an
expression or SQL string, but the procedure must return all data required to build
an instance of the class you query.

Example 6–26 A Read All Query With a Stored Procedure

ReadAllQuery readAllQuery = new ReadAllQuery();
call = new StoredProcedureCall();
call.setProcedureName("Read_All_Employees");
call.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
readAllQuery.setCall(call);
Vector employees = (Vector) session.executeQuery(readAllQuery);

Output Parameters
The StoredProcedureCall object allows you to use output parameters. Output
parameters enable the stored procedure to return additional information. You can
use output parameters to define a readObjectQuery if they return the fields
required to build the object.

Example 6–27 Stored Procedure Call with an Output Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("CHECK_VALID_POSTAL_CODE");
call.addNamedArgument("POSTAL_CODE");
call.addNamedOutputArgument("IS_VALID");
ValueReadQuery query = new ValueReadQuery();
query.setCall(call);
query.addArgument("POSTAL_CODE");
Vector parameters = new Vector();
parameters.addElement("L5J1H5");
Number isValid = (Number) session.executeQuery(query,parameters);

Note: Not all databases support the use of output parameters to
return data. However, because these databases generally support
returning result sets from stored procedures, they do not require
output parameters.

Query Building Basics

6-30 Oracle Application Server TopLink Application Developer’s Guide

Cursor Output Parameters
Oracle databases use output parameters rather than result sets to return data from
stored procedures. Cursored output parameters enable you to retrieve the result set
in a cursored stream rather than as a single result set. When you use the Oracle
JDBC drivers, configure a StoredProcedureCall object to pass a cursor to
OracleAS TopLink as a normal result set.

Example 6–28 Stored Procedure with a Cursored Output Parameter

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_ALL_EMPLOYEES");
call.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setCall(call);
Vector employees = (Vector) Session.executequery(Query);

For more information about cursored streams, see "Java Streams" on page 6-60.

Output Parameter Event
OracleAS TopLink manages output parameter events for databases that support
them. For example, if a stored procedure returns an error code that indicates that
the application wants to check for an error condition, OracleAS TopLink raises the
session event OutputParametersDetected to allow the application to process the
output parameters.

Example 6–29 Stored Procedure with Reset Set and Output Parameter Error Code

StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_EMPLOYEE");
call.addNamedArgument("EMP_ID");
call.addNamedOutputArgument("ERROR_CODE");
ReadObjectQuery query = new ReadObjectQuery();
query.setCall(call);
query.addArgument("EMP_ID");
ErrorCodeListener listener = new ErrorCodeListener();
session.getEventManager().addListener(listener);
Vector args = new Vector();
args.addElement(new Integer(44));
Employee employee = (Employee) session.executeQuery(query, args);

Query Building Basics

Queries 6-31

Reference
Table 6–3 summarizes the most common public methods for the
StoredProcedureCall. For more information about the available methods for the
StoredProcedureCall, see the Oracle Application Server TopLink API Reference.

EJB QL
EJB QL is a query language that is similar to SQL, but differs because it presents
queries from an object model perspective and includes path expressions that enable
navigation over the relationships defined for entity beans and dependent objects.
Although EJB QL is usually associated with Enterprise JavaBeans (EJBs), OracleAS

Table 6–3 Elements for Stored Procedure Call

Element Method Name

Selection specification setProcedureName(String name)

Input parameters addNamedArgument(String name)
addNamedArgument(String dbName, String javaName)
addNamedArgumentValue(String dbName, Object value)
addUnnamedArgument(String javaName)
addUnnamedArgumentValue(Object value)

Input/Output
parameters

addNamedInOutputArgument(String name)
addNamedInOutputArgument(String dbName, String javaName,
String javaName, Class type)
addNamedInOutputArgumentValue(String dbName, Object
value, String javaName, Class type)
public void addUnnamedInOutputArgument(String
inArgumentFieldName, String
outArgumentFieldName, Class type)
public void addUnnamedInOutputArgumentValue(Object
inArgumentValue, String outArgumentFieldName, Class
type)

Output parameters addNamedOutputArgument(String name)
addNamedOutputArgument(String dbName, String javaName)
addNamedOutputArgument(String dbName, String javaName,
Class javaType)
addUnnamedOutputArgument(String javaName)
public void addunnamedOutputArgument(String
argumentFieldName, Class type)

Cursor output
parameters

useNamedCursorOutputAsResultSet(String argumentName)
useUnnamedCursorOutputAsResultSet()

Query Building Basics

6-32 Oracle Application Server TopLink Application Developer’s Guide

TopLink enables you to use EJB QL with regular Java objects as well. In OracleAS
TopLink, EJB QL enables users to declare queries, using the attributes of each
abstract entity bean in the object model. This offers the following advantages:

■ You do not need to know the database structure (tables, fields).

■ You can use relationships in a query to provide navigation from attribute to
attribute.

■ You can construct queries using the attributes of the entity beans instead of
using database tables and fields.

■ EJB QL queries are portable because they are database-independent.

■ You can use SELECT to specify the query reference class (the class or entity
bean you are querying against).

Using EJB QL with OracleAS TopLink
OracleAS TopLink support for EJB QL enables you to:

■ Add EJB QL queries to descriptors in the OracleAS TopLink Mapping
Workbench.

■ Build and use EJB QL dynamically at runtime, using a ReadQuery or the
OracleAS TopLink session.

For more information about EJB QL queries with the OracleAS TopLink Mapping
Workbench, see the Oracle Application Server TopLink Mapping Workbench User’s
Guide.

ReadAllQuery
The basic API for a ReadAll query with EJB QL is as follows:

setEJBQLString("...")

Provide either a SELECT clause or a reference class, and execute the query
normally.

Example 6–30 A Simple ReadAllQuery Using EJB QL

ReadAllQuery theQuery = new ReadAllQuery();
theQuery.setReferenceClass(EmployeeBean.class);
theQuery.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp");
…
Vector returnedObjects = (Vector)aSession.executeQuery(theQuery);

Query Building Basics

Queries 6-33

Example 6–31 A Simple ReadAllQuery Using EJB QL and Passing Arguments

This example defines the query similarly to Example 6–30, but creates, fills, and
passes a vector of arguments to the executeQuery method.

// First define the query
ReadAllQuery theQuery = new ReadAllQuery();
theQuery.setReferenceClass(EmployeeBean.class);
theQuery.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp WHERE
emp.firstName = ?1");
...
// Next define the Arguments
Vector theArguments = new Vector();
theArguments.add("Bob");
...
// Finally execute the query passing in the arguments
Vector returnedObjects = (Vector)aSession.executeQuery(theQuery, theArguments);

Session
You can execute EJB QL directly against the session. This returns a vector of the
objects specified by the reference class. The basic API is:

aSession.readAllObjects(<ReferenceClass>, <EJBQLCall>)
/* <ReferenceClass> is the return class type and <EJBQLCall> is the EJBQL string
to be executed */
// Call ReadAllObjects on a session.
Vector theObjects = (Vector)aSession.readAllObjects(EmployeeBean.class, new
EJBQLCall("SELECT OBJECT (emp) from EmployeeBean emp");

EJB QL Limitations
OracleAS TopLink supports all the EJB QL specification with the following
exceptions:

■ arithmetic functions

■ LOCATE

■ ESCAPE

■ IS [NOT] EMPTY

■ [NOT] MEMBER [OF]

Query Building Basics

6-34 Oracle Application Server TopLink Application Developer’s Guide

Query by Example
Query by example enables you to specify queries when you provide sample
instances of the persistent objects to be queried.

To define a query by example, provide a ReadObjectQuery or a ReadAllQuery
with a sample persistent object instance and an optional query by example policy.
The sample instance contains the data to query, and the query by example policy
contains optional configuration settings, such as the operators to use and the
attributes to consider or ignore.

Defining a Sample Instance
Query by example enables you to query on any attribute that uses a direct mapping
or a one-to-one relationship (including those with nesting). It does not support
other relationship mapping types.

By default, OracleAS TopLink ignores attributes in the sample instance that contain
zero (0), empty strings, and FALSE. To modify the list of values, see "Defining a
Query by Example Policy" on page 6-35. You can use any valid constructor to create
a sample instance or example object. Set only the attributes on which you base the
query; set all other attributes to null.

Query by example uses the AND operator to tie the attribute comparisons together.

Example 6–32 Using Query by Example

This example queries the employee Bob Smith.

ReadObjectQuery query = new ReadObjectQuery();
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");
query.setExampleObject(employee);

Employee result = (Employee) session.executeQuery(query);

Example 6–33 Using Query by Example

This example queries across the employee’s address.

ReadAllQuery query = new ReadAllQuery();

Note: Query by example is not available for EJB 2.0 beans.

Query Building Basics

Queries 6-35

Employee employee = new Employee();
Address address = new Address();
address.setCity("Ottawa");
employee.setAddress(address);
query.setExampleObject(employee);

Vector results = (Vector) session.executeQuery(query);

Defining a Query by Example Policy
OracleAS TopLink support for query by example includes a query by example
policy. You can edit the policy to modify query by example default behavior. You
can modify the policy to:

■ Use LIKE or other operations to compare attributes. By default, query by
example allows only EQUALS.

■ Modify the set of values query by example ignores (the IGNORE set). The
default ignored values are zero (0), empty strings, and FALSE.

■ Force query by example to consider attribute values, even if the value is in the
IGNORE set.

■ Use isNull or notNull for attribute values.

To specify a query by example policy, include an instance of
QueryByExamplePolicy with the query.

Example 6–34 Query by Example Policy Using Like

This example uses like for Strings and includes only objects whose salary is
greater than zero.

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("B%");
employee.setLastName("S%");
employee.setSalary(0);
query.setExampleObject(employee);
/* Query by example policy section adds like and greaterThan */
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "like");
policy.addSpecialOperation(Integer.class, "greaterThan");
policy.alwaysIncludeAttribute(Employee.class, "salary");
query.setQueryByExamplePolicy(policy);
Vector results = (Vector) session.executeQuery(query);

Query Building Basics

6-36 Oracle Application Server TopLink Application Developer’s Guide

Example 6–35 Query by Example Policy Using Key Words

This example uses key words for Strings and ignores -1.

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("bob joe fred");
employee.setLastName("smith mc mac");
employee.setSalary(-1);
query.setExampleObject(employee);
/* Query by example policy section */
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "containsAnyKeyWords");
policy.excludeValue(-1);
query.setQueryByExamplePolicy(policy);
Vector results = (Vector) session.executeQuery(query);

Combining Query by Example with Expressions
To create more complex query by example queries, combine query by example with
OracleAS TopLink expressions.

Example 6–36 Combining Query by Example with Expressions

ReadAllQuery query = new ReadAllQuery();
Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");
query.setExampleObject(employee);
/* This section specifies the expression */
ExpressionBuilder builder = new ExpressionBuilder();
query.setSelectionCriteria(builder.get("salary").between(100000,200000);
Vector results = (Vector) session.executeQuery(query);

Reference
Table 6–4 summarizes the most common public methods for QueryByExample.
For more information about the available methods, see the Oracle Application Server
TopLink API Reference.

Executing Queries

Queries 6-37

Executing Queries
OracleAS TopLink provides several options to execute queries, including:

■ Session Queries

■ Query Objects

■ Predefined Queries

■ Queries Defined with the OracleAS TopLink Mapping Workbench

■ Query Managers

Session Queries
The Session class and its subclasses (including DatabaseSession and
UnitOfWork) provide methods to read, create, modify, and delete objects stored in
a database. These methods, known as query methods, enable you to create queries
against the object model. Session queries are easy to use and are flexible enough to
perform most database operations.

The DatabaseSession class provides direct support to read and modify the
database by offering read, write, insert, update, and delete operations.

The UnitOfWork class also provides methods to modify data. The Unit of Work is a
safer approach to data modification than the DatabaseSession methods, because
it isolates changes until they are complete. Whenever possible, use the Unit of Work
to write or update rather than the write, insert, update, and delete methods
available in the database session.

For more information, see "Unit of Work Basics" on page 7-12.

Table 6–4 Elements for Query By Example Policy

Element Method Name

Special operations addSpecialOperation(Class theClass, String operation)

Forced inclusion alwaysIncludeAttribute(java.lang.Class exampleClass,
java.lang.String attributeName)

includeAllValues()

Attribute exclusion excludeValue(Object value)
excludeDefaultPrimitiveValues()

Null equality setShouldUseEqualityForNulls(boolean flag)

Executing Queries

6-38 Oracle Application Server TopLink Application Developer’s Guide

Reading Objects from the Database
The session provides the following methods to access the database:

■ The readObject() method reads a single object from the database. Use this
method with a primary key when looking for a specific object.

■ The readAllObjects() method reads multiple objects from the database. Use
this method to return a group of objects that match the selection criteria.

■ The refreshObject() method refreshes objects in the cache with data from
the database.

Read Operation The readObject() method retrieves a single object from the
database. The application must specify the class of object to read. If no object
matches the criteria is found, null is returned.

For example, the basic read operation is:

session.readObject(MyDomainObject.class);

This example returns the first instance of MyDomainObject found in the table used
for MyDomainObject. OracleAS TopLink provides the Expression class to specify
querying parameters for a specific object.

When you search for a single, specific object using a primary key, the
readObject() method is more efficient than the readAllObjects() method
because readObject() can find an instance in the cache without accessing
database. Because a readAllObjects() operation does not know how many
objects match the criteria, it always searches the database to find matching objects,
even if it finds matching objects in the cache.

Example 6–37 readObject() Using an Expression

import oracle.toplink.sessions.*;
import oracle.toplink.expressions.*;

/* Use an expression to read in the Employee whose last name is Smith. Create an
expression using the Expression Builder and use it as the selection criterion of
the search */
Employee employee = (Employee) session.readObject(Employee.class, new
ExpressionBuilder().get("lastName").equal("Smith"));

Executing Queries

Queries 6-39

Read All Operation The readAllObjects() method retrieves a Vector of objects
from the database and does not order the returned objects. If the query does not
find any matching objects, it returns an empty Vector.

Specify the class for the query. You can also include an expression to define more
complex search criteria, as illustrated in Example 6–38.

Example 6–38 readAllObjects() Using an Expression

// Returns a Vector of employees whose employee salary > 10000
Vector employees = session.readAllObjects(Employee.class,new
ExpressionBuilder.get("salary").greaterThan(10000));

Refresh Operation The refreshObject() method causes OracleAS TopLink to
update the object in memory with data from the database. This operation refreshes
any privately owned objects as well.

Writing Objects to the Database
The Unit of Work provides the safest mechanism for writing objects in most
OracleAS TopLink applications. However, when you can safely write directly to the
database (for example: in a single-user or a two-tier application), session methods
are the most efficient database writing tool. Database session provides the following
methods to write to a database:

■ writeObject()

■ writeAllObjects()

■ insertObject()

■ updateObject()

■ deleteObject()

Writing a Single Object to the Database When you invoke the writeObject() method,
the method performs a does-exist check to determine whether an object exists. If the
object exists, writeObject() updates the object; if it does not exist,
writeObject() inserts a new object.

Note: A privately owned object is one that cannot exist without its
parent, or source object.

Executing Queries

6-40 Oracle Application Server TopLink Application Developer’s Guide

The writeObject() method writes privately owned objects in the correct order to
maintain referential integrity.

Call the writeObject() method when you cannot verify that an object exists on
the database.

Example 6–39 Writing a Single Object Using writeObject()

//Create an instance of employee and write it to the database
Employee susan = new Employee();
susan.setName("Susan");
...
//Initialize the susan object with all other instance variables
session.writeObject(susan);

Writing All Objects to the Database You can call the writeAllObjects() method to
write multiple objects to the database. The writeAllObjects() method performs
the same does-exist check as the writeObject() method and then performs the
appropriate insert or update operations.

Example 6–40 Writing Several Objects Using writeAllObjects()

// Read a Vector of all the current employees in the database.
Vector employees = (Vector) session.readAllObjects(Employee.class);
...//Modify any employee data as necessary
//Create a new employee and add it to the list of employees
Employee susan = new Employee();
...
//Initialize the new instance of employee
employees.add(susan);
/* Write all employees to the database. The new instance of susan which is not
currently in the database will be inserted. All the other employees which are
currently stored in the database will be updated */
session.writeAllObjects(employees);

Adding New Objects to the Database The insertObject() method creates a new
object on the database, but does not perform the does-exist check before it attempts
the insert operation. The insertObject() method is more efficient than the
writeObject() method if you are certain that the object does not yet exist on the
database. If the object does exist, the database throws an exception when you
execute the insertObject() call.

Executing Queries

Queries 6-41

Modifying Existing Objects in the Database The updateObject() method updates
existing objects in the database, but does not perform the does-exist check before it
attempts the update operation. The updateObject() is more efficient than the
writeObject()method if you are certain that the object does exist in the database.
If the object does not exist, the database throws an exception when you execute the
updateObject() call.

Deleting Objects in the Database To delete an OracleAS TopLink object from the
database, read the object from the database and then call the deleteObject()
method. This method deletes both the specified object and any privately owned
data.

Query Objects
Query objects are the standard devices OracleAS TopLink uses to interact with the
database. They support database commands such as create, read, update, and
delete, and accept search criteria specified in several ways, including OracleAS
TopLink expressions.

OracleAS TopLink provides you with direct access to query objects, which support
more complex queries than the session query API. You can build custom query
objects to improve application performance or to support complex queries. Use the
custom query object classes you create with the session or a descriptor’s query
manager to:

■ Create new query operations.

■ Create named queries registered with the session.

■ Customize the session’s default database operations, such as readObject()
and writeObject().

The OracleAS TopLink Mapping Workbench provides graphical tools to create
query objects. Although this section discusses query objects in the context of Java
code, we recommend that you create query objects in the OracleAS TopLink
Mapping Workbench.

Query Object Components
OracleAS TopLink uses query objects to store information about a database query. A
complete query object stores information about:

■ The query type, specified by the query object class

■ The class that the query accesses (the reference class)

Executing Queries

6-42 Oracle Application Server TopLink Application Developer’s Guide

■ The query execution, which can be through SQL, a database call or an OracleAS
TopLink expression

Creating a Query Object
The following steps illustrate how to create a query object in Java code.

Step 1 Specify the query type to initialize the query object.
To execute a query, select one of the following query object classes:

■ ReadAllQuery: reads a collection of objects

■ ReadObjectQuery: reads a single object

■ ReportQuery: reads information about objects

■ DeleteObjectQuery: removes an object from the database

■ InsertObjectQuery: inserts new objects into the database

■ UpdateObjectQuery: updates existing objects

■ WriteObjectQuery: writes an object to the database, either with an insert (for
new objects) or an update (for existing objects)

To execute SQL expressions, use the following query object classes:

■ ValueReadQuery: returns a single data value

■ DirectReadQuery: returns a collection of column values; can be used for direct
collection queries

■ DataReadQuery: executes a SQL SELECT, returns a collection of database row
(map) objects

■ DataModifyQuery: executes a non-selecting SQL string

Step 2 Set the reference class.
The reference class specifies the class against which the query runs. Use the
setReferenceClass() call to select a searchable class.

Step 3 For read queries, configure the query for execution.
To specify how a query executes, call one of the following the methods:

■ setSelectionCriteria(): passes an expression to the query object

■ setSQLString(): passes a SQL string

Executing Queries

Queries 6-43

■ setCall(): passes a database call

This setting is optional. If you do not specify read criteria, a ReadAllQuery returns
every object of the reference class in the database, and a ReadObjectQuery
returns the first object it encounters.

Step 4 Add query arguments.
You can pass arguments to the query object by calling addArgument() in addition
to the executeQuery() method. Arguments describe the objects for the query to
return.

Step 5 Register the query object with the session.
After initialization, use the addQuery() method to register the query object with
the session. Name the query when you register it. The session then manages the
query for you. This enables you to call the query by name.

Registering the query object with the session is optional. If you do not register the
query object, specify the entire query every time you execute it, or manage it
manually outside of the session.

Step 6 Execute the query.
To execute the query, use the executeQuery() call to call the object by name. As
required, provide values for any defined arguments.

Read Query Object Examples
Although query objects support writing to a database, reading is their most
common use. This section provides several examples that illustrate the use of query
objects for reading the database.

Example 6–41 illustrates a simple read query. It uses an OracleAS TopLink
expression, but does not use its own arguments for the query. Instead, it relies on
the search parameters the expression provides. This example builds the expression
within its code, but does not register the query with the session.

Example 6–41 A Simple ReadAllQuery

// This example returns a Vector of employees whose employee ID is > 100.

// Initialize the query object by specifying the query type
ReadAllQuery query = new ReadAllQuery();

//Set the reference class for the query.

Executing Queries

6-44 Oracle Application Server TopLink Application Developer’s Guide

query.setReferenceClass(Employee.class);

/* Configure the query execution. Because this example uses an expression, it
uses the setSelectionCriteria call */
query.setSelectionCriteria(new ExpressionBuilder.get("id").greaterThan(100));

// Execute the query
Vector employees = (Vector) session.executeQuery(query);

Example 6–42 illustrates a complex readObject query that uses all available
configuration options.

Example 6–42 A Named Read Query with Two Arguments

// Define two expressions that map to the first and last name of the employee.
ExpressionBuilder emp = new ExpressionBuilder();
Expression firstNameExpression =
emp.get("firstName").equal(emp.getParameter("firstName"));
Expression lastNameExpression = emp.get("lastName").equal(emp.getParameter("lastName"));

//Initialize the query object by specifying the query type
ReadObjectQuery query = new ReadObjectQuery();
//Set the reference class for the query.
query.setReferenceClass(Employee.class);
/* Configure the query execution. Because this example uses an expression, it uses the
setSelectionCriteria call */
query.setSelectionCriteria(firstNameExpression.and(lastNameExpression));
//Specify the required arguments for the query.
query.addArgument("firstName");
query.addArgument("lastName");

// Add the query to the session.
session.addQuery("getEmployeeWithName", query);

/* Execute the query by referencing its name and providing values for the specified
arguments */
Employee employee = (Employee) session.executeQuery("getEmployeeWithName","Bob","Smith");

Specialized Query Object Options
In addition to the query object configuration options discussed in "Creating a Query
Object" on page 6-42, several more specialized options are available for customizing
query objects

Ordering for Read All Queries Ordering is a common option for query objects. To order
the collection of objects returned from a ReadAllQuery, use the addOrdering(),

Executing Queries

Queries 6-45

addAscendingOrdering(), or addDescendingOrdering() methods. You can
apply order based on attribute names or query keys and expressions.

Example 6–43 A Query with Simple Ordering

// Retrieves objects ordered by lastName then firstName in Ascending Order
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.addAscendingOrdering ("lastName");
query.addAscendingOrdering ("firstName");
Vector employees = (Vector) session.executeQuery(query);

Example 6–44 A Query with Complex Ordering

/* Retrieves objects ordered by Street Address, descending case-insensitive
order of Cities, and manager’s Last Name */
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
ExpressionBuilder emp = new ExpressionBuilder();
query.addOrdering (emp.getAllowingNull("address").get("street"));
query.addOrdering
(emp.getAllowingNull("address").get("city").toUpperCase().descending());
query.addOrdering(emp.getAllowingNull("manager").get("lastName"));
Vector employees = (Vector) session.executeQuery(query);

Note the use of getAllowingNull, which creates an outer join for the address and
manager relationships. This ensures that employees without an address or manager
still appear in the list.

For more information, see "Join Reading" on page 6-72.

Parameterized SQL in Query Objects To enable the parameterized SQL on individual
queries, use the bindAllParameters() and cacheStatement() methods. This
causes OracleAS TopLink to use a prepared statement, binding all SQL parameters
and caching the prepared statement. When you re-execute this query, you avoid the
SQL preparation, which improves performance.

For more information, see Chapter 10, "Tuning for Performance" on page 10-1.

Note: Do not use OracleAS TopLink's internal statement caching
with an external connection pool.

Executing Queries

6-46 Oracle Application Server TopLink Application Developer’s Guide

Example 6–45 A Simple Read Query Object with Parameterized SQL

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setShouldBindAllParameters(true);
query.setShouldCacheStatement(true);

Collection Classes By default, a ReadAllQuery returns its result objects in a vector.
You can configure the query to return the results in any collection class that
implements the Collection or Map interface.

Example 6–46 Specifying the Collection Class for a Collection

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCollectionClass(LinkedList.class);
LinkedList employees = (LinkedList) getSession().executeQuery(query);

Example 6–47 Specifying the Collection Class for a Map

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useMapClass(HashMap.class, "getFirstName");
HashMap employees = (HashMap) getSession().executeQuery(query);

For more information about interfaces, see "Working with Interfaces" in the Oracle
Application Server TopLink Mapping Workbench User’s Guide.

Using Cursoring for a ReadAllQuery The ReadAllQuery class includes methods for
cursored stream and scrollable cursor support. If you expect the result set to be
large, streams and cursors enable you to handle the result sets more efficiently.

For more information, see "Cursors and Streams" on page 6-81.

Query Optimization
OracleAS TopLink supports both joins and batch reads to optimize database reads.
When your query reads a large number of objects, these techniques dramatically
decrease the number of times you need to access the database during a read
operation. Use the addJoinedAttribute() and addBatchReadAttribute()
methods to configure query optimization.

For more information, see "Query Object Performance Options" on page 6-70, and
Chapter 10, "Tuning for Performance" on page 10-1.

Other options to optimize queries include the setMaxRows() method and partial
object reading.

Executing Queries

Queries 6-47

Maximum Rows Returned You can limit a query to a specified maximum number of
rows. Use this feature to avoid queries that can return an excessive number of
objects.

To specify a maximum number of rows, use the setMaxRows method, and pass an
integer that represents the maximum number of rows for the query.

Example 6–48 Setting the Maximum Returned Object Size

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setMaxRows(5);
Vector employees = (Vector) session.executeQuery(query);

The setMaxRows method limits the number of rows the query returns, but does
not enable you to acquire more records after the initial result set. If you want to
browse the result set in fixed increments, use either cursors or cursored streams.

For more information, see "Java Streams" on page 6-60.

Partial Object Reading OracleAS TopLink enables you to query for partial objects. For
example, you can create a read query that returns a subset of an object's attributes,
rather than the entire object. This option improves read performance when the full
object is not required. For example, use partial object reading to create a list of
objects from which the client chooses the required object.

When you use partial object reading, be aware that:

■ You cannot cache or edit partial objects.

■ OracleAS TopLink does not automatically include primary key information in a
partially populated object. If you need primary key information (for example: if
you want to re-query or edit the object) specify it as one of the required
attributes.

Use the addPartialAttribute() method to configure partial object reading.

For more information, see "Query Object Performance Options" on page 6-70, and
Chapter 10, "Tuning for Performance".

Query Timeout You can implement a timeout for query objects. This enables you to
automatically abort a hung or lengthy query after the specified time elapses.
OracleAS TopLink throws a DatabaseException after the timeout.

Executing Queries

6-48 Oracle Application Server TopLink Application Developer’s Guide

To specify a timeout, implement the setQueryTimeout() call and pass the
timeout interval as an integer representing the number of seconds before timeout
occurs.

Example 6–49 Timeout on Query Objects

// Create the appropriate query and set timeout limits
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setQueryTimeout(2);
try{

Vector employees = (Vector)session.executeQuery(query);
} catch (DatabaseException ex) {

// timeout occurs
}

Predefined Queries
Predefined queries enable you to create efficient, reusable queries. OracleAS
TopLink creates predefined queries and registers them with a session or descriptor
when the application starts. You can then retrieve the queries by name and execute
them.

The most common way to create a predefined query is to register the query to a
descriptor by specifying an amendment method with the OracleAS TopLink
Mapping Workbench for an after load event.

Predefined queries improve the performance of frequently called queries because
when you create a query, it is saved and reused as required. Each time you use a
query, you create three or more objects that OracleAS TopLink uses to build the SQL
statement. If you use predefined queries, OracleAS TopLink creates these objects
only once, at binding time. OracleAS TopLink stores the queries as SQL statements
in the descriptor and makes them available for the duration of the session.

In addition to performance improvements, predefined queries add structure to a
querying framework and give you more options for reading query structure from
alternative sources, such as XML.

Named Queries
Named queries improve application performance, because they reduce the
resources required to run a query.

Executing Queries

Queries 6-49

The readAllObjects(Class c, Expression e) creates a ReadAllQuery,
which builds the other objects it needs to perform its task. After the you execute the
readEmployeesMatchingLastName method, the query, expression,
expressionBuilder, and any other related objects become garbage. Each time
you call this method, OracleAS TopLink creates these related objects again, uses
them once, and then discards them.

The use of named queries eliminates this behavior. To configure named queries, use
a descriptor amendment method. This creates named queries when you open a
database session.

Example 6–50 Named Query in the Descriptor File

public class MyTopLinkManager {
// some code that manages sessions, login, etc…
…
// This method is called by front end when needing to query on last names
 public Vector readEmployeesMatchingLastName(String theName) {
 ExpressionBuilder eBuilder = new ExpressionBuilder();
 Expression exp = eBuilder.get("lastName").like(theName+"%");
 return session.readAllObjects(Employee.class, exp);
 }
}

Use and Reuse OracleAS TopLink stores named queries by name on a per descriptor
basis. When the application needs a query, it calls the named query and passes the
required arguments. Because OracleAS TopLink builds the query when it opens the
database session, the query is immediately available. In addition, the query is
named and bound to a descriptor, so it is reusable.

The first time you execute a named query, OracleAS TopLink calculates the core
SQL based on your database platform and schema. OracleAS TopLink caches this
information and reuses it if you reuse the query.

Centralized Query Management OracleAS TopLink creates and registers named queries
in a centralized location, usually your descriptor amendment method. Storing all
queries in one location facilitates the reuse of queries and simplifies query
maintenance.

When Not To Use Named Queries Rarely used queries may be more efficient when built
on an as-needed basis. If you seldom use a given query, it may not be worthwhile to
build and store that query when you invoke a session.

Executing Queries

6-50 Oracle Application Server TopLink Application Developer’s Guide

Named Finders
A named finder is an OracleAS TopLink query registered with an EJB container
under a specific name. When using named finders, the find method on the Home
interface must correspond to the name of an OracleAS TopLink query registered
with the container. To implement and register the query with the container, use an
OracleAS TopLink descriptor amendment method or session amendment class.

Example 6–51 A Named Finder

/* The named finder in this example uses an OracleAS TopLink query named
findCustomersInCity */
public Enumeration findCustomersInCity(String City)throws FinderException,
RemoteException;

Before you build and implement the findCustomersInCity finder shown in
Example 6–51, define the corresponding named query, and register it with the
project descriptor. To build the named query, employ:

■ OracleAS TopLink Mapping Workbench Using EJB QL, SQL, or Expressions

■ Java Code Using the OracleAS TopLink Expression Framework

■ OracleAS TopLink Expression Framework

■ Generic Named Finder

OracleAS TopLink Mapping Workbench Using EJB QL, SQL, or Expressions Use EJB QL,
SQL, or the OracleAS TopLink expression framework in the OracleAS TopLink
Mapping Workbench to:

■ Define the query in the OracleAS TopLink Mapping Workbench. Specify the
query in the bean descriptor's Queries tab.

■ Add the query to the descriptor in a user-defined method.

Java Code Using the OracleAS TopLink Expression Framework Use the OracleAS TopLink
expression framework to add the query employing a user defined method. Define
these methods in one of the following ways:

■ Use the OracleAS TopLink Mapping Workbench to specify a descriptor
amendment method on the bean descriptor (see Example 6–52).

■ Add a preLogin method to a session event listener class. Specify the session
event listener classes using the event-listener-class element in the
toplink-ejb-jar.xml descriptor (see Example 6–53).

Executing Queries

Queries 6-51

Example 6–52 Define an Amendment Method

/* This example defines the findCustomersInCity query in the amendment method
of the descriptor */
public static void amendment(Descriptor descriptor) {
// create a query...

descriptor.getQueryManager().addQuery("findCustomersInCity", query);

Example 6–53 Define a Pre-Login Event

/* This example defines the findCustomersInCity query in the preLogin method
of a session event listener class and specifies the session event listener class
in the toplink-ejb-jar.xml deployment descriptor */
public void preLogin(SessionEvent event) {
// create a query...
event.getSession().getDescriptor(Customer.class).getQueryManager().addQuery("fin
dCustomersInCity", query);
}

OracleAS TopLink Expression Framework To use the OracleAS TopLink expression
framework, define the finder in the OracleAS TopLink Mapping Workbench to
specify the finder as a query object. Set the reference class to the name of the bean
against which you run the query.

For more information, see "Query Objects" on page 6-41.

If you build your finder in code, use the builder.getParameter() call to retrieve
the arguments defined in the query. Use the arguments for comparison, combining
them with various predicates and operators, such as equal(), like(), and
anyOf().

Example 6–54 Using the OracleAS TopLink Expression Framework and Java Code

public static void addCustomerFinders(Descriptor descriptor) {
/* This code supports the query, Enumeration findCustomersInCity(String aCity)
Since this finder returns an Enumeration, it requires a ReadAllQuery. The finder
is a "NAMED" finder that is registered with the QueryManager */
//1 Define the query.
ReadAllQuery query = new ReadAllQuery();
query.setName("findCustomersInCity");
query.addArgument("aCity");
query.setReferenceClass(CustomerBean.class);
//2 Use an expression

Executing Queries

6-52 Oracle Application Server TopLink Application Developer’s Guide

ExpressionBuilder builder = new ExpressionBuilder();
query.setSelectionCriteria
builder.get("city").like(builder.getParameter("aCity"));
/*3 You can set options on the query, such as query.refreshIdentityMapResult();
*/
//4 Register the query with the querymanager.
descriptor.getQueryManager().addQuery("findCustomersInCity",query);
}

Generic Named Finder You can use a named query without the need to provide the
matching implementation on the Home interface. To do this, use the Generic Named
finder provided by OracleAS TopLink. This finder takes the name of the named
query and a vector of arguments as parameters.

Example 6–55 The Generic Named Finder

public Enumeration findAllByNamedQuery(String queryName, Vector arguments)
throws RemoteException, FinderException;

For more information about finders, see "EJB Finders" on page 6-85.

Redirect Queries
To perform complex operations, you can combine query redirectors with the
OracleAS TopLink query framework. To create a redirector, implement the
oracle.toplink.queryframework.QueryRedirector interface. The query
mechanism executes the Object invokeQuery(DatabaseQuery query,
DatabaseRow arguments, Session session) method and waits for the results.

OracleAS TopLink provides one pre-implemented redirector, the
MethodBasedQueryRedirector method. To use this redirector, create a static
invoke method on a class, and use the setMethodName(String) call to specify
the method to invoke.

Example 6–56 Redirect Query

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setName("findEmployeeByAnEmployee");
query.addArgument("employee");

MethodBaseQueryRedirector redirector = new
MethodBaseQueryRedirector(QueryRedirectorTest.class,
"findEmployeeByAnEmployee");
query.setRedirector(redirector);

Executing Queries

Queries 6-53

Descriptor descriptor = getSession().getDescriptor(query.getReferenceClass());
descriptor.getQueryManager().addQuery(query.getName(), query);

Vector arguments = new Vector();
arguments.addElement(employee);
objectFromDatabase = getSession().executeQuery(query,arguments);

public class QueryRedirectorTest{
public static Object findEmployeeByAnEmployee(DatabaseQuery query,
oracle.toplink.publicinterface.DatabaseRow arguments,
oracle.toplink.sessions.Session session) {

((ReadObjectQuery) query).setSelectionObject(arguments.get("employee"));
return session.executeQuery(query);

}
}

EJBs and Redirect Finders
Redirect finders enable you to specify a finder in which the implementation is
defined as a static method on an arbitrary helper class. When you invoke the finder,
it redirects the call to the specified static method.

The finder can have any arbitrary parameters. If the finder includes parameters,
OracleAS TopLink packages them into a vector and passes them to the redirect
method.

Advantages Because you define the redirect finder implementation independently
from the bean that invokes it, you can build the redirect finder to accept any type
and number of parameters. This enables you to create a generic redirect finder that
accepts several different parameters and return types, depending on input
parameters.

A common strategy for using redirect finders is to create a generic finder that:

■ Includes logic to perform several of tasks

■ Reads the first passed parameter to identify the type of finder requested and
select the appropriate logic

The redirect method contains the logic required to extract the relevant data from the
parameters and uses it to construct an OracleAS TopLink query.

Disadvantages Redirect finders are complex and can be difficult to configure. They
also require an extra helper method to define the query.

Executing Queries

6-54 Oracle Application Server TopLink Application Developer’s Guide

To create a redirect finder:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Declare the finder on the Home interface, the localHome interface, or both, as
required.

3. Create an amendment method.

For more information, see "Customizing OracleAS TopLink Descriptors with
Amendment Methods" on page 3-82.

4. Start the OracleAS TopLink Mapping Workbench.

5. Choose Advanced Properties > After Load from the menu for the bean.

6. Specify the class and name of the static method to enable the amendment
method for the descriptor.

The amendment method then adds a query to the descriptor's query manager, as
follows:

ReadAllQuery query = new ReadAllQuery();
query.setRedirector(new MethodBaseQueryRedirector (examples.ejb.cmp20.advanced.
FinderDefinitionHelper.class,"findAllEmployeesByStreetName"));

descriptor.getQueryManager().addQuery ("findAllEmployeesByStreetName", query);

The redirect method must return either a single entity bean (object) or a vector.
Here are the possible method signatures:

public static Object redirectedQuery2(oracle.toplink.sessions.Sessions, Vector args)

and

public static Vector redirectedQuery4(oracle.toplink.sessions.Sessions, Vector args)

When you implement the query method, ensure that the method returns the correct
type. For methods that return more than one bean, set the return type to
java.util.Vector. OracleAS TopLink converts this result to
java.util.Enumeration (or Collection) if required.

At runtime, the client invokes the finder from the entity bean home and packages
the arguments into the args vector in order of appearance from the finder method

Note: The redirect method also interprets an OracleAS TopLink session
as a parameter. For more information about an OracleAS TopLink
session, see Chapter 4, "Sessions".

Executing Queries

Queries 6-55

signature. The client passes the vector to the redirect finder, which uses them to
execute an OracleAS TopLink expression.

Example 6–57 A Simple Redirect Query Implementation

public class RedirectorTest {
private Session session;
private Project project;
public static void main(String args[]) {

RedirectorTest test = new RedirectorTest();

test.login();

try {
// Create the arguments to be used in the query

Vector arguments = new Vector(1);
arguments.add("Smith");

// Run the query
Object o = test.getSession()
.executeQuery(test.redirectorExample(), arguments);
o.toString();

}
catch (Exception e) {

System.out.println("Exception caught -> " + e);
e.printStackTrace();

}
}

public ReadAllQuery redirectorExample() {

// Create a redirector
MethodBasedQueryRedirector redirector = new MethodBasedQueryRedirector();

// Set the class containgin the public static method
redirector.setMethodClass(RedirectorTest.class);

// Set the name of the method to be run
redirector.setMethodName("findEmployeeByLastName");

// Create a query and add the redirector created above
ReadAllQuery readAllQuery = new ReadAllQuery(Employee.class);
readAllQuery.setRedirector(redirector);
readAllQuery.addArgument("lastName");

Executing Queries

6-56 Oracle Application Server TopLink Application Developer’s Guide

return readAllQuery;
}
//Call the static method
public static Object findEmployeeByLastName(oracle.toplink.sessions

.Session
session, Vector arguments) {

// Create a query
ReadAllQuery raq = new ReadAllQuery();
raq.setReferenceClass(Employee.class);
raq.addArgument("lastName");

// Create the selection criteria
ExpressionBuilder employee = new ExpressionBuilder();
Expression whereClause =
employee.get("lastName").equal(arguments.firstElement());

// Set the selection criteria
raq.setSelectionCriteria(whereClause);

return (Vector)session.executeQuery(raq, arguments);
}

[...]
}

Queries Defined with the OracleAS TopLink Mapping Workbench
You can define several types of queries with the OracleAS TopLink Mapping
Workbench, including custom SQL queries and named queries (which you can
build using OracleAS TopLink expressions, EJB QL, or SQL).

For more information about the features and options available to create queries
with the OracleAS TopLink Mapping Workbench, see "Understanding Descriptors,"
in the Oracle Application Server TopLink Mapping Workbench User’s Guide.

Query Managers
A query manager is a descriptor-owned object that controls descriptor access to the
database. The query manager generates its own SQL to access the database in a
transparent manner.

You can modify the query manager to do the following:

■ Customize the Default Query Methods

Executing Queries

Queries 6-57

■ Define Additional Join Expressions

■ Customize the Existence Check

Customize the Default Query Methods
Query managers generate SQL for five database actions:

■ Insert

■ Update

■ Delete

■ Read

■ Read all

The OracleAS TopLink session class provides default query objects to perform
these database functions. However, you can also use the query manager to provide
custom query objects or SQL strings to perform these functions.

For example, to replace the OracleAS TopLink readObject function with a stored
procedure call, specify the replacement code in the OracleAS TopLink Mapping
Workbench. If you use a Sybase database, the stored procedure call to read an object
looks like this:

EXEC PROC Read_Employee(@EMP_ID = 4653)

To implement this replacement code, add the following string to read the object:

EXEC PROC Read_Employee(@EMP_ID = #EMP_ID)

In the deployed project, the query manager substitutes the code you specified for
the readObject call in any queries that include this call.

For more information about customizing default query methods in the OracleAS
TopLink Mapping Workbench, see "Custom SQL Queries" in the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Customize the Default Query Methods in Java Code To customize the query manager
database access methods in Java code, use the getQueryManager() method to

Executing Queries

6-58 Oracle Application Server TopLink Application Developer’s Guide

invoke the query manager. To change the default database access queries, use an
amendment method listed in Table 6–5.

Define Additional Join Expressions
You can set the query manager to automatically append an expression to every
query it performs on a class. For example, you can add an expression that filters the
database for the valid instances of a given class.

Table 6–5 Query Manager Methods for Database Access

To Change the Default Use This Query Manager Method

Delete call using a query setDeleteQuery (DeleteObjectQuery query)

Delete call using SQL setDeleteSQLString (String sqlString)

Insert call using a query setInsertQuery (InsertObjectQuery query)

Insert call using SQL setInsertSQLString (String sqlString)

ReadAll call using a query setReadAllQuery (ReadAllQuery query)

ReadAll call using SQL setReadAllSQLString (String sqlString)

ReadObject call using a query setReadObjectQuery (ReadObjectQuery query)

ReadObject call using SQL setReadObjectSQLString (String sqlString)

Update call using a query setUpdateQuery (UpdateObjectQuery query)

Update call using SQL setUpdateSQLString (String sqlString)

Note: When you customize the update function for an application
that uses optimistic locking, the custom update string must not
write the object if the row version field has changed since the initial
object was read. In addition, it must increment the version field if it
writes the object successfully.

For example:

update Employee set F_NAME = #F_NAME, VERSION = VERSION + 1
where (EMP_ID = #EMP_ID) AND (VERSION = #VERSION)

The update string must also maintain the row count of the
database.

Executing Queries

Queries 6-59

Use this to:

■ Filter logically deleted objects.

■ Enable two independent classes to share a single table without inheritance.

■ Filter historical versions of objects.

The query manager provides the setAdditionalJoinExpression() and the
setMultipleTableJoinExpression() methods for this purpose.

Example 6–58 Registering a Query that Includes a Join Expression

/* The join expression in this example filters invalid instances of employee
from the query */
public static void addToDescriptor(Descriptor descriptor)
{

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getQueryManager().setAdditionalJoinExpression((builder.getField("EMP.STATUS
").notEqual("DELETED")).and(builder.getField("EMP.STATUS").notEqual("HISTORICAL")));

}

Customize the Existence Check
When OracleAS TopLink writes an object to the database, OracleAS TopLink runs
an existence check to determine whether to perform an insert or an update.

The query manager enables you to substitute custom logic for the existence check.

For more information on how to implement a custom existence check, see
"Specifying Identity Mapping" in the Oracle Application Server TopLink Mapping
Workbench User’s Guide.

Use the following DescriptorQueryManager methods to modify the default
existence checking:

checkCacheForDoesExist()
assumeExistenceForDoesExist()
assumeNonExistenceForDoesExist()
checkDatabaseForDoesExist()
setDoesExistQuery(DoesExistQuery)
setDoesExistSQLString(String)

Query Results

6-60 Oracle Application Server TopLink Application Developer’s Guide

Query Results
Queries can return different types of data, including:

■ Objects

■ Collections

■ Java Streams

■ Report Query Results

Queries can also return EJBs in systems that use EJB finders.

For more information, see "EJB Finders" on page 6-85.

Objects
OracleAS TopLink queries generally return Java objects as their result set. OracleAS
TopLink queries can return

■ Entire objects, with data and methods intact

■ Partial objects (see "Partial Attribute Reading" on page 6-76)

■ Vectors of objects

■ Collections of objects (see "Collections" on page 6-60)

Collections
A collection is a group of Java objects related by a collection class that implements a
Collection or Map interface. By default, ReadAll queries return results in a
vector, but you can acquire the results in any collection class that implements the
Collection or Map interface.

For more information on implementing Collection or Map interfaces, see the
Oracle Application Server TopLink Mapping Workbench User’s Guide.

Java Streams
A stream is a view of a collection, which can be a file, a device, or a Vector. A
stream provides access to the collection, one element at a time in sequence. This
makes it possible to implement stream classes in which the stream does not contain
all the objects of a collection at the same time.

When a query is likely to generate a large result set, you can implement streams to
improve performance.

Queries and the Cache

Queries 6-61

For more information about streams, including advanced usage, see "Cursors and
Streams" on page 6-81.

Report Query Results
Report query provides developers with a way to access information or data from a
set of objects and their related objects. Report query supports database reporting
functions and features. Although the report query returns data (not objects), it does
enable you to query the returned data and specify it at the object level.

For more information, see "ReportQuery" on page 6-73.

Queries and the Cache
OracleAS TopLink caches objects written to and read from the database to maintain
object identity. The sequence in which a query checks the cache and database affects
query performance. By default, primary key queries check the cache before
accessing the database, and all queries check the cache before rebuilding an object
from its row.

This section illustrates ways to manipulate the query-cache relationship, including:

■ Cache Usage

■ Disabling the Identity Map Cache Update During a Read Query

■ Refresh

■ Caching Query Results

Cache Usage
OracleAS TopLink maintains a client-side cache to reduce the number of reads
required from the database.

Cache and the Database
The cache in an OracleAS TopLink application holds objects that have already been
read from or written to the database. Use of the cache in an OracleAS TopLink

Note: You can override the default behavior in the caching policy
configuration information in the OracleAS TopLink descriptor. For
more information, see "Explicit Query Refreshes" on page 8-13.

Queries and the Cache

6-62 Oracle Application Server TopLink Application Developer’s Guide

application reduces the number of accesses to the database. Because accessing the
database is a time-intensive and resource-intensive act, an effective caching strategy
is important to the efficiency of your application.

For more information about configuring and using the cache, see Chapter 8,
"Cache".

In-Memory Query Cache Usage
In-memory querying enables you to perform queries on the cache rather than the
database. In-memory querying supports the following relationships:

■ One-to-one

■ One-to-many

■ Many-to-many

■ Aggregate collection

■ Direct collection

You can configure in-memory query cache usage at the query level for both
readObject and readAll queries. OracleAS TopLink supports the following
in-memory query features:

■ checkCacheByPrimaryKey(): The default setting; if a read object query
contains an expression that compares at least the primary key, you can obtain a
cache hit if you process the expression against the objects in memory.

■ checkCacheByExactPrimaryKey(): If a read object query contains an
expression where the primary key is the only comparison, you can obtain a
cache hit if you process the expression against the object in memory.

■ checkCacheThenDatabase(): You can configure any read object query to
check the cache completely before you resort to accessing the database.

■ checkCacheOnly(): You can configure any read all query to check only the
cache and return the result from the cache without accessing the database.

■ conformResultsInUnitOfWork(): You can configure any read object or read
all query within the context of a Unit of Work to conform the results with the

Note: By default, the relationships themselves must be in memory for
in-memory traversal to work. Ensure that you trigger all valueholders
to enable in-memory querying to work across relationships.

Queries and the Cache

Queries 6-63

changes to the object made within that Unit of Work. This includes new objects,
deleted objects and changed objects.

Table 6–6 identifies the in-memory queries options OracleAS TopLink supports.

Handling Exceptions Resulting from In-Memory Queries In-memory queries fail for
several reasons, the most common of which are:

■ The query expression is too complex to execute in memory.

■ There are untriggered valueholders in which indirection is used. All object
models that use indirection must first trigger valueholders before they conform
on the relevant objects.

OracleAS TopLink provides a mechanism to handle indirection exceptions. To
specify how the application must handle these exceptions, use
InMemoryQueryIndirectionPolicy class:

■ Should throw indirection exception: The default setting; it is the only
setting that throws indirection exceptions.

Table 6–6 In-Memory Queries OracleAS TopLink Supports

Type Query OracleAS TopLink Supports

Comparators equal(..)
notEqual(..)
like(..) (with JDK 1.4 only)
lessThan(..)
lessThanOrEqual(..)
greaterThan(..)
greaterThanOrEqual(..)
between(...)
notBetween(...)
isNull()
notNull()
in(...)

Logical operators or(..)
and(..)

Joining get(..)
getAllowingNull(..)
anyOf(..)
anyOfAllowingNone(..)

Queries and the Cache

6-64 Oracle Application Server TopLink Application Developer’s Guide

■ Should trigger indirection: Triggers all valueholders to eliminate the
problem.

■ Should ignore exception return conformed: Returns conforming if
an untriggered valueholder are encountered.

■ Should ignore exception return not conformed: Returns not
conforming if an untriggered valueholder is encountered.

Conforming Results (UnitOfWork) You can conform query results in the Unit of Work
across one-to-many, as well as a combination of one-to-one and one-to-many
relationships. The following is an example of a query across two levels of
relationships, one-to-many and one-to-one.

Expression exp =
bldr.anyOf("managedEmployees").get("address").get("city").equal("Perth");

Exceptions thrown by the conform feature are masked by default. However,
OracleAS TopLink includes an API that allows exceptions to be thrown rather than
masked. The API is: uow.setShouldThrowConformExceptions(ARGUMENT).

ARGUMENT is an integer with one of the following values:

■ Do not throw conform exceptions (default)

■ Throw all conform exceptions

For more information, see "Validating a Unit of Work" on page 7-41.

Cache and the Primary Key
When a query searches for a single object by primary key, OracleAS TopLink
extracts the primary key from the query and attempts to return the object from the
cache without accessing the database. If the object is not in the cache, the query

Note: When you build new applications, consider throwing all conform
exceptions. This provides more detailed feedback for unsuccessful
in-memory queries.

Note: When relationships in an in-memory query use indirection,
trigger all valueholders to ensure that the objects are available in the
cache.

Queries and the Cache

Queries 6-65

executes against the database, builds the resulting object(s), and places it in the
identity map.

If the query is based on a non-primary key selection criteria or is a readAll query,
the query executes against the database (unless you have selected the
checkCacheOnly() option). The query matches primary keys from the result set
to objects in the cache and returns the cached objects, if any, in the result set.

If an object is not in the cache, OracleAS TopLink builds the object. If the query is a
refreshing query, OracleAS TopLink updates the contents of any objects with the
results from the query. Use Object identity (==) if you properly configure and use an
identity map.

Clients can refresh objects when they want to ensure that they have the latest data
at a particular time.

Disabling the Identity Map Cache Update During a Read Query
To disable the identity map cache update, which is normally performed by a read
query, call the dontMaintainCache() method. This improves the query
performance when you read objects that are not needed later by the application.

Example 6–59 Disabling the Identity Map Cache Update

This example demonstrates how code reads Employee objects from the database
and writes the information to a flat file.

// Reads objects from the employee table and writes them to an employee file.
void writeEmployeeTableToFile(String filename, Session session)
{

Vector employeeObjects;
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder.get("id").greaterThan(100));
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
// Write all the employee data to a file.
Employee.writeToFile(filename, employees);

}

Queries and the Cache

6-66 Oracle Application Server TopLink Application Developer’s Guide

Refresh
You can refresh objects in the cache to ensure that they are current with the
database while preserving object identity.

Object Refresh
To refresh objects in the cache with the data in the database, call the
session.refreshObject() method or the
readObjectQuery.setShouldRefreshIdentityMapResult(true) method.

Cascading Object Refresh
You can control the depth at which a refresh updates objects and their related
objects. There are three options:

■ CascadePrivateParts: Default refresh behavior. Refreshes the local level object
and objects that are referenced in privately owned, nonindirect, relationships.

■ CascadeNone: Refreshes only the first level of the object, but does not refresh
related objects.

■ CascadeAll: Refreshes the entire object tree, stopping when it either reaches the
leaf objects or when it encounters untriggered indirection in the tree.

Refreshing the Identity Map Cache During a Read Query
Include the refreshIdentityMapResult() method in a query to force an identity
map refresh with the results of the query.

Example 6–60 Refreshing the Result of a Query in the Identity Map Cache During a
Read Query

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new
ExpressionBuilder().get("lastName").equal("Smith"));
query.refreshIdentityMapResult();
Employee employee = (Employee) session.executeQuery(query);

The refreshIdentityMapResult() method refreshes the object’s attributes, but
not the attributes of its privately owned parts. However, under most circumstances,
refresh an object’s privately owned parts and other related objects to ensure
consistency with the database.

Query Objects and Write Operations

Queries 6-67

To refresh privately owned or related parts, use the following methods:

■ cascadePrivateParts(): refreshes all privately owned objects

■ cascadeAllParts(): refreshes all related objects

Example 6–61 Using the cascadePrivateParts Method

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.refreshIdentityMapResult();
query.cascadePrivateParts();
Vector employees = (Vector) session.executeQuery(query);

Caching Query Results
When an application executes a query, you can store the results of that query in the
cache. This is useful for frequently executed queries that run against static data.
Caching the results also ensures that the query returns the same results for a given
period of time (for example: within the scope of a particular transaction) and then
refreshes the data later if required.

Query Objects and Write Operations
Although OracleAS TopLink applications most often perform database write
operations through a Unit of Work, you can also write to the database with query
objects. This section describes some of the more common strategies for using write
queries and includes discussions on:

■ Write Query Overview

■ Non-Cascading Write Queries

■ Disabling the Identity Map Cache During a Write Query

■ Using Query Objects to Customize the Default Database Operations

Note: If the object is in the session cache, you can also use the
refreshObject() method to refresh an object and its privately owned
parts.

Query Objects and Write Operations

6-68 Oracle Application Server TopLink Application Developer’s Guide

Write Query Overview
To execute a write query, use a WriteObjectQuery instance instead of using the
writeObject() method of the session. Likewise, substitute DeleteObjectQuery,
UpdateObjectQuery and InsertObjectQuery objects for their respective
Session methods.

Example 6–62 Using a WriteObjectQuery Object

WriteObjectQuery writeQuery = new WriteObjectQuery();
writeQuery.setObject(domainObject);
session.executeQuery(writeQuery);

Example 6–63 Using Other Write Query Objects with Similar Syntax

InsertObjectQuery insertQuery= new InsertObjectQuery();
insertQuery.setObject(domainObject);
session.executeQuery(insertQuery);

/* When you use UpdateObjectQuery without a Unit of Work, UpdateObjectQuery
writes all direct attributes to the database */
UpdateObjectQuery updateQuery= new UpdateObjectQuery();
updateQuery.setObject(domainObject2);
session.executeQuery(updateQuery);

DeleteObjectQuery deleteQuery = new DeleteObjectQuery();
deleteQuery.setObject(domainObject2);
session.executeQuery(deleteQuery);

Non-Cascading Write Queries
When you execute a write query, it writes both the object and its privately owned
parts to the database by default. To build write queries that do not update privately
owned parts, include the dontCascadeParts() method in your query definition.

Use this method to:

■ Increase performance when you know that only the object’s direct attributes
have changed.

■ Resolve referential integrity dependencies when you write large groups of new,
independent objects.

Query Objects and Write Operations

Queries 6-69

Example 6–64 Performing a Non-Cascading Write Query

// theEmployee is an existing employee read from the database.
Employee.setFirstName("Bob");
UpdateObjectQuery query = new UpdateObjectQuery();
query.setObject(Employee);
query.dontCascadeParts();
session.executeQuery(query);

Disabling the Identity Map Cache During a Write Query
When you write objects to the database, OracleAS TopLink copies them to the
session cache by default. To disable this behavior within a query, call the
dontMaintainCache() method within the query. This improves query
performance when you insert objects into the database, but must only be used on
objects that will not be required later by the application.

Example 6–65 Disabling the Identity Map Cache During a Write Query

This code reads all the objects from a flat file and writes new copies of the objects
into a table.

// Reads objects from an employee file and writes them to the employee table.
void createEmployeeTable(String filename, Session session)
{
 Iterator iterator;
 Employee employee;
 // Read the employee data file.
 List employees = Employee.parseFromFile(filename);
 Iterator iterator = employees.iterator();
 while (iterator.hasNext()) {
 Employee employee = (Employee) iterator.next();
 InsertObjectQuery query = new InsertObjectQuery();
 query.setObject(employee);
 query.dontMaintainCache();
 session.executeQuery(query);
}

Note: Because the Unit of Work resolves referential integrity
internally, this method is not required if you use the Unit of Work
to write to the database.

Query Object Performance Options

6-70 Oracle Application Server TopLink Application Developer’s Guide

Using Query Objects to Customize the Default Database Operations
OracleAS TopLink provides default querying behavior for each of the read and
write operations that is sufficient for most applications. In addition, applications
can define their own custom queries where required:

■ If the custom query is specific to a persistent class, register it with the descriptor
of that class.

For more information, see "Query Managers" on page 6-56.

■ If the custom query is global for the project rather than specific to a particular
class, register it with the session. Execute registered queries by calling one of
the executeQuery() methods of DatabaseSession or UnitOfWork.

Query Object Performance Options
Several optimizations are available that improve the performance of your queries,
including:

■ Batch Reading

■ Join Reading

■ ReportQuery

■ Partial Attribute Reading

■ Cache Results In Query Objects

For more information about improving the performance of your application and
information on how to optimize queries, see Chapter 10, "Tuning for Performance".

Batch Reading
Batch reading propagates query selection criteria through an object's relationship
attribute mappings. You can also nest batch reads down through complex object
graphs. This significantly reduces the number of required SQL select statements
and improves database access efficiency.

For example, in reading n employees and their related projects, OracleAS TopLink
may require n + 1 selects. All employees are read at once, but the projects of each

Caution: Disable the identity map only when object identity is
unimportant in subsequent operations.

Query Object Performance Options

Queries 6-71

are read individually. With batch reading all related projects can also be read with
one select by using the original selection criteria, for a total of only 2 selects.

To implement batch reading, use one of the following methods:

■ To add the batch read attribute to a query, use the
query.addBatchReadAttribute(Expression anExpression) API.

For example:

…
ReadAllQuery raq = new ReadAllQuery(Trade.class);
ExpressionBuilder tradeBuilder = raq.getBuilder();
…
Expression batchReadProduct = tradeBuilder.get("product");
readAllQuery.addBatchReadAttribute(batchReadProduct);
Expression batchReadPricingDetails = batchReadProduct.get("pricingDetails");
readAllQuery.addBatchReadAttribute(batchReadPricingDetails);
…

■ Add batch reading at the mapping level for a descriptor. Use either the
OracleAS TopLink Mapping Workbench or a descriptor amendment method to
add the setUsesBatchReading() API on the descriptor's relationship
mappings.

For example:

public static void amendTradeDescriptor(Descriptor theDescriptor) {
OneToOneMapping productOneToOneMapping =

theDescriptor.getMappingForAttributeName("product");
productOneToOneMapping.setUsesBatchReading(true);

}

You can combine batch reading and indirection to provide controlled reading of
object attributes. For example, if you have one-to-one backpointer relationship
attributes, you can defer backpointer instantiation until the end of the query, when
all parent and owning objects are instantiated. This prevents unnecessary database
access and optimizes OracleAS TopLink cache use.

Guidelines for Implementing Batch Reading
Consider the following guidelines when you implement batch reading:

■ Use batch reading for processes that read in objects and all their related objects.

■ Do not enable batch reading for both sides of a bidirectional relationship.

Query Object Performance Options

6-72 Oracle Application Server TopLink Application Developer’s Guide

■ Avoid nested batch reads, because they result in multiple joins on the database
that can slow query execution.

For more information, see "Reading Case 2: Batch Reading Objects" on page 10-12.

Join Reading
When OracleAS TopLink queries, it can use joins to check values from other objects
or other tables that represent parts of the same object. Although this works well
under most circumstances, it can cause problems when you query against a
one-to-one relationship in which one side of the relationship is not present.

For example, Employee objects may have an Address object, but if the Address is
unknown, it is null at the object level and has a null foreign key at the database
level. When you attempt a read that traverses the relationship, missing objects cause
the query to return unexpected results. Consider the expression:

(emp.get("firstName").equal("Steve")).or(emp.get("address"). get("city").equal("Ottawa"))

In this case, employees with no address do not appear in the result set, regardless of
their first name. Although not obvious at the object level, this behavior is
fundamental to the nature of relational databases.

Outer joins rectify this problem in the databases that support them. In this example,
the use of an outer join provides the expected result: all employees named Steve
appear in the result set, even if their address is unknown.

To implement an outer join, use getAllowingNull() rather than get(), and
anyOfAllowingNone() rather than anyOf().

For example:

(emp.get("firstName").equal("Steve")).or
(emp.getAllowingNull ("address").get("city").equal("Ottawa"))

Support and syntax for outer joins vary widely between databases and database
drivers. OracleAS TopLink supports outer joins for Oracle databases, IBM DB2, SQL
Anywhere, Microsoft Access, Microsoft SQL Server, Sybase SQL Server, and the
JDBC outer join syntax. Of these, only Oracle supports the outer join semantics in
or clauses.

You can also use outer joins with ordering.

For more information, see "Ordering for Read All Queries" on page 6-44.

Query Object Performance Options

Queries 6-73

Join reading enables you to read data from a one-to-one mapping in conjunction
with data from the original query. Join reading is available only for one-to-one
mappings. To implement join reading, use either of the following methods:

■ To add the joined attribute to the query at the query level, use the
Query.addJoinedAttribute(Expression anExpression) API.

For example:

…
ReadAllQuery raq = new ReadAllQuery(Trade.class);
ExpressionBuilder tradeBuilder = raq.getBuilder();
…
Expression portfolio = tradeBuilder.get("portfolio");
readAllQuery.addJoinedAttribute(portfolio);
…

■ Use the OracleAS TopLink Mapping Workbench or a descriptor amendment
method to invoke the setUsesJoining() API on the OneToOneMapping
class, as follows:

public static void amendTradeDescriptor(Descriptor theDescriptor) {
OneToOneMapping portfolioOneToOneMapping =

theDescriptor.getMappingForAttributeName("portfolio");
portfolioOneToOneMapping.setUsesJoining(true);

}

For more information about joins as a performance tool, see Chapter 10, "Tuning for
Performance".

ReportQuery
Report query enables you to retrieve data from a set of objects and their related
objects. Report query supports database reporting functions and features. Although
the report query returns data rather than objects, it still enables you to query and
specify the data at the object level.

The ReportQuery API returns a collection of ReportQueryResult objects, similar
in structure and behavior to a DatabaseRow or a Map.

Report query allows you to:

■ Specify a subset of the object's attributes and its related object's attributes,
which allows you to query for lightweight information.

Query Object Performance Options

6-74 Oracle Application Server TopLink Application Developer’s Guide

■ Build complex object-level expressions for the selection criteria and ordering
criteria.

■ Use database aggregation functions, such as SUM, MIN, MAX, AVG, and COUNT.

■ Use expressions to group data.

■ Request primary key attributes with each ReportQueryResult. This makes it
easy to request the real object from a lightweight result.

Example 6–66 Querying Reporting Information on Employees

This example reports the total and average salaries for Canadian employees
grouped by their city.

ExpressionBuilder emp = new ExpressionBuilder();
ReportQuery query = new ReportQuery(emp);
query.setReferenceClass(Employee.class);
query.addMaximum("max-salary", emp.get("salary"));
query.addAverage("average-salary", emp.get("salary"));
query.addAttribute("city", emp.get("address").get("city"));

query.setSelectionCriteria(emp.get("address").get("country").equal("Canada"));
query.addOrdering(emp.get("address").get("city"));
query.addGrouping(emp.get("address").get("city"));
Vector reports = (Vector) session.executeQuery(query);

Table 6–7 summarizes the most common public methods for ReportQuery. For
more information about the available methods for the ReportQuery, see the Oracle
Application Server TopLink API Reference.

Note: OracleAS TopLink report queries do not support multiple
references to the same attribute in a single result set.

Query Object Performance Options

Queries 6-75

Table 6–7 Elements for Report Query

Element Default Method Name

Adding items to
select

Nothing
selected

addAttribute(String itemName)
addAttribute(String itemName, Expression
attributeExpression)
addAverage(String itemName)
addAverage(String itemName, Expression
attributeExpression)
addMaximum(String itemName)
addMaximum(String itemName, Expression
attributeExpression)
addMinimum(String itemName)
addMinimum(String itemName, Expression
attributeExpression)
addSum(String itemName)
addSum(String itemName, Expression
attributeExpression)
addStandardDeviation(String itemName)
addStandardDeviation(String itemName, Expression
attributeExpression)
addVariance(String itemName)
addVariance(String itemName, Expression
attributeExpression)
addCount()
addCount(String itemName)
addCount(String itemName, Expression
attributeExpression)
addItem(String itemName, Expression
attributeExpression)
addFunctionItem(String itemName, Expression
attributeExpression, String functionName)

Group by Not grouped addGrouping(String attributeName)
addGrouping(Expression expression)

Retrieving primary
keys

Not retrieved retrievePrimaryKeys()
dontRetrievePrimaryKeys()
setShouldRetrievePrimaryKeys(boolean
shouldRetrievePrimaryKeys)

Note: Because ReportQuery inherits from ReadAllQuery, it also
supports most ReadAllQuery properties.

Oracle Extension Support

6-76 Oracle Application Server TopLink Application Developer’s Guide

Partial Attribute Reading
You can query for parts of objects rather than complete objects. For example, you
can build a read query that returns a subset of an object's attributes rather than the
entire object. This improves database read performance when you do not require
the complete object.

To configure partial object reading, use the addPartialAttribute() method. For
more information, see "Partial Object Reading" on page 10-10.

Consider the following when you use partial object reading:

■ You cannot edit or cache partial objects.

■ OracleAS TopLink does not automatically include primary key information in a
partial object. If you need primary key information (for example: if you want to
re-query or edit the object) specify it as a required attribute.

Cache Results In Query Objects
Query objects maintain an internal cache of the objects previously returned by the
query. This improves query performance and ensures that the query always returns
the same objects.

The internal cache is disabled by default. To enable it, use the
cacheQueryResults() method in the query.

Example 6–67 Using the Internal Query Object Cache

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Employee.class);
query.cacheQueryResults();

// The query object reads from the database the first time you invoke it.
Employee employee = (Employee) session.executeQuery(query);

/* On this second call to execute the query, the query object does not read from
the database, but reads from the query object’s internal cache instead */
Employee employee = (Employee) session.executeQuery(query);

Oracle Extension Support
OracleAS TopLink supports the following Oracle enterprise enhancements for
Oracle databases:

■ Oracle Hints and the OracleAS TopLink Query Framework

Oracle Extension Support

Queries 6-77

■ Hierarchical Queries

Oracle Hints and the OracleAS TopLink Query Framework
Oracle Hints is an Oracle database feature through which a developer makes
decisions usually reserved for the optimizer. Developers use hints to specify things
such as join order for a join statement, or the optimization approach of a SQL call.

The OracleAS TopLink query framework supports Oracle Hints with the following
API:

addHintString("/*[hints or comments]*/");

OracleAS TopLink adds the hint to the SQL string as a comment immediately
following a SELECT, UPDATE, INSERT, or DELETE statement.

To add hints to a read query:

1. Create a ReadObjectQuery or a ReadAllQuery

2. Set the selection criteria.

3. Add hints as needed.

For example, the following code uses the FULL hint (which explicitly chooses a full
table scan for the specified table):

// This line sets up the query
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setSelectionCritera(new ExpressionBuilder().get("id").equal(new Integer(1));
// This line adds the hint
query.addHintString("/*+ FULL */");

This code generates the following SQL:

SELECT /*+ FULL */ FROM EMPLOYEE WHERE ID=1

To add hints to WRITE, INSERT, UPDATE, and DELETE, create custom queries for
these operations in the OracleAS TopLink query framework, then specify hints as
required.

For more information about the available hints, see the Oracle database
documentation.

Oracle Extension Support

6-78 Oracle Application Server TopLink Application Developer’s Guide

Hierarchical Queries
Hierarchical Queries is an Oracle database mechanism that enables you to select
database rows based on hierarchical order. For example, you can design a query
that reads the row of a given employee, followed by the rows of people the
employee manages, followed by their managed employees, and so on.

To create a hierarchical query, use the setHierarchicalQueryClause()
method. This method takes three parameters, as follows:

setHierarchicalQueryClause(StartWith, ConnectBy, OrderSibling)

This expression requires all three parameters, as follows:

StartWith Parameter The StartWith parameter in the expression specifies the first
object in the hierarchy. This parameter mirrors the Oracle database START WITH
clause.

To include a StartWith parameter, build an expression to specify the appropriate
object, and pass it as a parameter in the setHierarchicalQueryClause()
method. If you do not specify the root object for the hierarchy, set this value to
NULL.

ConnectBy Parameter The ConnectBy parameter specifies the relationship that
creates the hierarchy. This parameter mirrors the Oracle database CONNECT BY
clause.

Build an expression to specify the ConnectBy parameter, and pass it as a
parameter in the setHierarchicalQueryClause() method. Because this
parameter defines the nature of the hierarchy, it is required for the
setHierarchicalQueryClause() implementation.

OrderSibling Parameter The OrderSibling parameter in the expression specifies the
order in which the query returns sibling objects in the hierarchy. This parameter
mirrors the Oracle database ORDER SIBLINGS clause.

To include an OrderSibling parameter, define a vector, and to include the order
criteria, use the addElement() call. Pass the vector as the third parameter in the
setHierarchicalQueryClause() method. If you do not specify an order, set
this value to NULL.

Example 6–68 Hierarchical Query

ReadAllQuery raq = new ReadAllQuery(Employee.class);
// Specify a START WITH expression

Advanced Querying

Queries 6-79

Expression startExpr = expressionBuilder.get("id").equal(new Integer(1));
// Specifies a CONNECT BY expression
Expression connectBy = expressionBuilder.get("managedEmployees");
//Specifies an ORDER SIBLINGS BY vector
Vector order = new Vector();
order.addElement(expressionBuilder.get("lastName"));
order.addElement(expressionBuilder.get("firstName"));
raq.setHierarchicalQueryClause(startExpr, connectBy, order);
Vector employees = uow.executeQuery(raq);

This code generates the following SQL:

SELECT * FROM EMPLOYEE START WITH ID=1 CONNECT BY PRIOR ID=MANAGER_ID ORDER
SIBLINGS BY LAST_NAME, FIRST_NAME

Advanced Querying
OracleAS TopLink offers several advanced mechanisms and techniques that
enhance your queries. This section describes the following:

■ Creating Additional Query Keys

■ Querying on Interfaces

■ Querying on an Inheritance Hierarchy

■ Cursors and Streams

■ Querying Across Variable One-to-One Mappings

Creating Additional Query Keys
A query key is an alias for a field name. Instead of referring to a field using a
DBMS-specific field name such as F_NAME, query keys allow OracleAS TopLink
expressions to refer to the field using Java attribute names, such as firstName.

For more information about Query Keys, see "Query Keys" on page 6-24.

You can implement query keys either with the OracleAS TopLink Mapping
Workbench or in Java.

For more information about implementing query keys with the OracleAS TopLink
Mapping Workbench, see "Working with Query Keys" in the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Advanced Querying

6-80 Oracle Application Server TopLink Application Developer’s Guide

Implementing Query Keys in Java
To add and register query keys with a descriptor, implement the following
methods:

■ addQueryKey(): method of the Descriptor class for regular query keys

■ addDirectQueryKey(): method for one-to-one query keys that specifies the
name of the query key and the name of the table field

■ addAbstractQueryKey(): method for abstract query keys

Example 6–69 Implementing a One-to-One Query Key

// Add a query key for the foreign key field using the direct method
descriptor.addDirectQueryKey("managerId", "MANAGER_ID");

// The same query key can also be added through the add method
DirectQueryKey directQueryKey = new DirectQueryKey();
directQueryKey.setName("managerId");
directQueryKey.setFieldName("MANAGER_ID");
descriptor.addQueryKey(directQueryKey);

/* Add a one-to-one query key for the large project that the employee is a
leader of (this assumes only one project) */
OneToOneQueryKey projectQueryKey = new OneToOneQueryKey();
projectQueryKey.setName("managedLargeProject");
projectQueryKey.setReferenceClass(LargeProject.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectQueryKey.setJoinCriteria(builder.getField("PROJECT.LEADER_
ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectQueryKey);

Example 6–70 Implementing a One-to-Many Query Key

/* Implements keys for the projects where the employee manages multiple projects
*/
OneToManyQueryKey projectsQueryKey = new OneToManyQueryKey();
projectsQueryKey.setName("managedProjects");
projectsQueryKey.setReferenceClass(Project.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectsQueryKey.setJoinCriteria(builder.getField("PROJECT.LEADER_
ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectsQueryKey);
// Next define the mappings.
...

Advanced Querying

Queries 6-81

Example 6–71 Implementing a Many-to-Many Query Key

ManyToManyQueryKey key = new ManyToManyQueryKey();
key.setName("myAs");
key.setReferenceClass(A.class);
ExpressionBuilder builder = new ExpressionBuilder();
Expression exp = builder.getField("AB_JOIN.B_
ID").equal(builder.getParameter("B.ID"));
Expression exp1 = builder.getField("AB_JOIN.A_
ID").equal(builder.getField("A.ID"));
key.setJoinCriteria(exp.and(exp1));
descriptor.addQueryKey(key);

Querying on Interfaces
When you define descriptors for an interface to enable querying, OracleAS TopLink
supports querying on an interface, as follows:

■ If there is only a single implementor of the interface, the query returns an
instance of the concrete class.

■ If there are multiple implementors of the interfaces, the query returns instances
of all implementing classes.

Querying on an Inheritance Hierarchy
When you query on a class that is part of an inheritance hierarchy, the session
checks the descriptor to determine the type of the class:

■ If you configure the descriptor to read subclasses (the default configuration),
the query returns instances of the class and its subclasses.

■ If you configure the descriptor to not read subclasses, the query returns only
instances of the queried class, but no instances of the subclasses.

■ If neither of these conditions apply, the class is a leaf class and does not have
any subclasses. The query returns instances of the queried class.

Cursors and Streams
Cursors and streams are related mechanisms that enable you to work with large
result sets efficiently.

Advanced Querying

6-82 Oracle Application Server TopLink Application Developer’s Guide

Cursors and Java Iterators
The OracleAS TopLink scrollable cursor enables you to scroll through a result set
from the database without reading the whole result set in a single database read.
The ScrollableCursor class implements the Java ListIterator interface to
allow for direct and relative access within the stream. Scrollable cursors also enable
you to scroll forward and backward through the stream.

Traversing Data with Scrollable Cursors Several methods enable you to navigate data
with a scrollable cursor:

■ relative(int i): advances the row number in relation to the current row by
one row

■ absolute(int i): places the cursor at an absolute row position, 1 being the
first row

Several strategies are available for traversing data with cursors. For example, to
start at the end of the data set and work toward the first record:

1. Call the afterLast() method to place the cursor after the last row in the result
set.

2. Use the hasPrevious() method to determine whether there is a record above
the current record. This method returns FALSE when you reach the final record
in the data set.

3. If the hasPrevious() method returns TRUE, call the previous() method to
move the cursor to the row above the current row and read that object.

These are common methods for data traversal, but they are not the only available
methods. For more information about the available methods, see the Oracle
Application Server TopLink API Reference.

To use the ScrollableCursor object, the JDBC driver must be compatible with
JDBC 2.0 specifications.

Example 6–72 Traversing with a Scrollable Cursor

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useScrollableCursor();
ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);

while (cursor.hasNext()) {
System.out.println(cursor.next().toString());

}

Advanced Querying

Queries 6-83

cursor.close();

Java Streams
Java streams enable you to retrieve query results as individual records or groups of
records, which can result in a performance increase. You can use streams to build
efficient OracleAS TopLink queries, especially when the queries are likely to
generate large result sets.

Cursored Stream Support Cursored streams combine the iterative ability of the
ScrollableCursor interface with OracleAS TopLink support for streams. The
result is the ability to read back a query result set from the database in manageable
subsets, and to scroll through the result set stream.

The useCursoredStream() method of the ReadAllQuery class provides cursored
stream support.

Example 6–73 Cursored Streams

CursoredStream stream;
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useCursoredStream();
stream = (CursoredStream) session.executeQuery(query);

The query returns an instance of CursoredStream rather than a Vector, which can
be a more efficient approach. For example, consider the following two code
examples. Example 6–74 returns a Vector that contains all employee objects. If
ACME has 10,000 employees, the Vector contains references to 10,000 Employee
objects.

Example 6–74 Using a Vector

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
Enumeration employeeEnumeration;

Vector employees = (Vector) session.executeQuery(query);
employeeEnumeration = employee.elements();

while (employeeEnumeration.hasMoreElements())
{
Employee employee = (Employee) employeeEnumeration.nextElement();

Advanced Querying

6-84 Oracle Application Server TopLink Application Developer’s Guide

employee.doSomeWork();
}

Example returns a CursoredStream instance rather than a Vector. The
CursoredStream collection appears to contain all 10,000 objects, but initially
contains a reference only to the first 10 Employee objects. It retrieves the remaining
objects in the collection as they are needed. In many cases, the application never
needs to read all the objects.

The following approach results in a significant performance increase:

ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useCursoredStream();

CursoredStream stream = (CursoredStream) session.executeQuery(query);
while (! stream.atEnd())
{

Employee employee = (Employee) stream.read();
employee.doSomeWork();
stream.releasePrevious();

}
stream.close();

Optimizing Streams
To optimize CursoredStream performance, provide a threshold and page size to the
useCursoredStream(Threshold, PageSize) method, as follows:

■ The threshold specifies the number of objects to read into the stream initially.
The default threshold is 10.

■ The page size specifies the number of objects to read into the stream after the
initial group of objects. This occurs after the threshold number of objects is read.
Although larger page sizes result in faster overall performance, they introduce
delays into the application when OracleAS TopLink loads each page. The
default page size is 5.

Note: The releasePrevious() message is optional. This releases
any previously read objects and frees system memory. Even though
released objects are removed from the cursored stream storage,
they remain in the identity map.

EJB Finders

Queries 6-85

When you execute a batch-type operation, use the dontMaintainCache() option
with a cursored stream. A batch operation performs simple operations on large
numbers of objects and then discards the objects. Cursored streams create the
required objects only as needed, and the dontMaintainCache() option ensures
that these transient objects are not cached.

Querying Across Variable One-to-One Mappings
OracleAS TopLink does not provide a method to directly query against variable
one-to-one mappings. To query against this type of mapping, combine OracleAS
TopLink DirectQueryKeys and OracleAS TopLink ReportQueries to create
query selection criteria for classes that implement the interface, as follows:

1. Create two DirectQueryKeys to query for the possible implementors of the
interface.

■ The first DirectQueryKey is for the class indicator field for the variable
one-to-one mapping.

■ The second DirectQueryKey is for the foreign key to the class or table
that implements the interface.

2. Create a subSelect statement for each concrete class that implements the
interface included in the query selection criteria.

3. Implement a ReportQuery.

Example 6–75 Creating DirectQueryKeys

/*The DirectQueryKeys as generated in the OracleAS TopLink project java source
code from the OracleAS TopLink Mapping Workbench */
…
descriptor.addDirectQueryKey("locationTypeCode","DEALLOCATION.DEALLOCATIONOBJECTTYPE");
descriptor.addDirectQueryKey("locationTypeId","DEALLOCATION.DEALLOCATIONOBJECTID");

EJB Finders
The OracleAS TopLink query framework enables you to construct finders, which are
queries that retrieve entity beans. This section describes OracleAS TopLink support
for finders, and includes discussions on the following topics and techniques:

■ Defining Finders in OracleAS TopLink

■ ejb-jar.xml Finder Options

EJB Finders

6-86 Oracle Application Server TopLink Application Developer’s Guide

■ Call Finders

■ Expression Finders

■ EJB QL Finders

■ SQL Finders

■ Dynamic Finders

■ ReadAll Finders

■ Choosing the Best Finder Type for Your Query

■ ejbSelect

■ Advanced Finder Options

Defining Finders in OracleAS TopLink
To define a finder method for an entity bean that uses the OracleAS TopLink query
framework, follow these steps:

1. Declare the finder in the ejb-jar.xml file.

2. Define the finder method.

■ For EJB 1.1 beans, define the method on the entity bean's remote interface.

■ For EJB 2.0 beans, define the method on the entity bean's remoteHome or
localHome interface.

3. Use the OracleAS TopLink Mapping Workbench to change any options on
finders.

4. If required, create an implementation for the query. Some query options require
a query definition in code on a helper class, but most common queries do not.

When you use OracleAS TopLink CMP, define finder methods on the bean’s Home
interface, not in the entity bean itself. OracleAS TopLink CMP provides this
functionality and offers several strategies to create and customize finders. The EJB
container and OracleAS TopLink automatically generate the implementation.

ejb-jar.xml Finder Options
The ejb-jar.xml file contains a project’s EJB entity bean information, including
definitions for any finders used for the beans. To create and maintain the
ejb-jar.xml file, use either a text editor or the OracleAS TopLink Sessions Editor.

EJB Finders

Queries 6-87

entity tag
The entity tag encapsulates a definition for an EJB entity bean. Each bean has its
own entity tag that contains several other tags that define bean functionality,
including bean finders.

Example 6–76 illustrates the structure of a typical finder defined within the
ejb-jar.xml file.

Example 6–76 A Simple Finder Within the ejb-jar.xml File

<entity>...
<query>

<query-method>
<method-name>findLargeAccounts</method-name>

<method-params>
<method-param>double</method-param>

</method-params>
</query-method>

<ejb-ql><![CDATA[SELECT OBJECT(account) FROM AccountBean account WHERE
account.balance > ?1]]></ejb-ql>

</query>
...
</entity>

query Section The entity tag contains zero or more query elements. Each query tag
corresponds to a finder method defined on the bean's home or local Home interface.

Here are the elements defined in the query section of the ejb-jar.xml file:

■ description (optional): Provides a description of the finder.

■ query-method: Specifies the method for a finder or ejbSelect query.

■ method-name: Specifies the name of a finder or select method in the entity
bean implementation class.

■ method-params: Contains a list of the fully-qualified Java type names of the
method parameters.

Note: You can share a single query between both Home interfaces,
as follows:

■ Define the same finder (same name, return type, and
parameters) on both Home interfaces.

■ Include a single query element in the ejb-jar.xml file.

EJB Finders

6-88 Oracle Application Server TopLink Application Developer’s Guide

■ method-param: Contains the fully-qualified Java type name of a method
parameter.

■ result-type-mapping (optional): Specifies how to map an abstract schema
type returned by a query for an ejbSelect method. You can map the type to
an EJBLocalObject or EJBObject type. Valid values are Local or Remote

■ ejb-ql: Used for all EJB QL finders. It contains the EJB QL query string that
defines the finder or ejbSelect query. Leave this element empty for
non-EJB QL finders.

Call Finders
Call finders enable you to create queries dynamically and generate the queries at
runtime rather than deployment time. Call finders pass an OracleAS TopLink
SQLCall or StoredProcedureCall as a parameter and return an Enumeration.

Creating Call Finders
OracleAS TopLink provides the implementation for Call finders. To use this feature
in a bean, add the following finder definition to the Home interface of your bean.

public Enumeration findAll(Call call) throws RemoteException, FinderException;

Executing a Call Finder
When you execute a Call finder, OracleAS TopLink creates the call on the client
using the OracleAS TopLink interface oracle.toplink.queryframework.Call.
This call has three implementors: EJBQLCall, SQLCall and
StoredProcedureCall.

Example 6–77 Executing a Call Finder (Select Statement)

{
SQLCall call = new SQLCall();
call.setSQLString("SELECT * FROM EMPLOYEE");
Enumeration employees = getEmployeeHome().findAll(call);

}

Example 6–78 Executing a Call Finder (Stored Procedure)

{
StoredProcedureCall call = new StoredProcedureCall();
call.setProcedureName("READ_ALL_EMPLOYEES");

EJB Finders

Queries 6-89

Enumeration employees = getEmployeeHome().findAll(call);
}

Expression Finders
To define finder query logic, use OracleAS TopLink expressions. Expression finders
support dynamic queries that you generate at runtime rather than deployment time.
To use an expression finder, pass the expression as a parameter to a finder that
returns an Enumeration.

Example 6–79 Executing an Expression Finder

{
Expression expression = new
ExpressionBuilder().get("firstName").like("J%");
Enumeration employees =
getEmployeeHome().findAll(expression);

}

EJB QL Finders
EJB QL is the standard query language defined in the EJB 2.0 specification.
OracleAS TopLink supports EJB QL for both EJB 1.1 and EJB 2.0 beans. EJB QL
finders enable you to specify an EJB QL string as the implementation of the query.

EJB QL offers several advantages:

■ It is the EJB 2.0 standard for queries.

■ You can use it to construct most queries.

■ You can implement dependent object queries with EJB QL.

The disadvantage of EJB QL is that it is difficult to use when you construct complex
queries.

To create an EJB QL finder under EJB 1.1:
1. Declare the finder on the remote interface.

2. Start the OracleAS TopLink Mapping Workbench.

3. Go to the Queries > Finders > Named Queries tab for the bean.

EJB Finders

6-90 Oracle Application Server TopLink Application Developer’s Guide

4. Add a finder and give it a name that matches the method name you declared in
Step 1.

5. Set the required parameters.

6. Set Query Format to EJB QL, and enter the EJB QL query in the Query String
field.

To create an EJB QL finder under EJB 2.0:
1. Declare the finder on either the localHome or the remoteHome interface.

2. Start the OracleAS TopLink Mapping Workbench.

3. Re-import the ejb-jar.xml file to synchronize the project to the file.

The OracleAS TopLink Mapping Workbench synchronizes changes between the
project and the ejb-jar.xml file.

The following is an example of a simple EJB QL query that requires one parameter.
In this example, the question mark (“?”) in?1 specifies a parameter.

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

To create an EJB QL finder for a CMP bean:
1. Declare the finder in the ejb-jar.xml file, and enter the EJB QL string in the

ejb-ql tag.

2. Declare the finder on the Home interface, the localHome interface, or both, as
required.

3. Start the OracleAS TopLink Mapping Workbench.

4. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

5. Go to the Queries > Finders > Named Queries tab for the bean.

6. Add a finder, and give it the same name as the finder you declared on your
bean's home. Then add any required parameters.

7. Select and configure the finder.

The following is an example of a simple EJB QL query that requires one parameter.
In this example, the question mark (“?”) in?1 specifies a parameter.

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

EJB Finders

Queries 6-91

ReadAll Query and EJB QL
To execute a query normally, you supply either a reference class or a SELECT clause.

The basic API for a ReadAll query with EJB QL is:

ReadAllQuery setEJBQLString("...")

Example 6–80 ReadAllQuery Using EJB QL

ReadAllQuery theQuery = new ReadAllQuery();
theQuery.setReferenceClass(EmployeeBean.class);
theQuery.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp");
…
Vector returnedObjects = (Vector)aSession.executeQuery(theQuery);

Example 6–81 ReadAllQuery Using EJB QL and Passing Arguments

This code creates, populates, and passes a vector of arguments into the
executeQuery method

// First define the query
ReadAllQuery theQuery = new ReadAllQuery();
theQuery.setReferenceClass(EmployeeBean.class);
theQuery.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp WHERE
emp.firstName = ?1");
theQuery.addArgument("1");
...
// Next define the Arguments
Vector theArguments = new Vector();
theArguments.add("Bob");
...
// Finally execute the query passing in the arguments
Vector returnedObjects = (Vector)aSession.executeQuery(theQuery, theArguments);

EJB QL Session Queries
When you execute EJB QL directly against the session, it returns a vector of the
objects specified by the reference class. The basic API is as follows:

aSession.readAllObjects(<ReferenceClass>, <EJBQLCall>)

Example 6–82 EJB QL Session Query

/* <EJBQLCall> is the EJBQL string to be executed and <ReferenceClass> is the
return class type */

EJB Finders

6-92 Oracle Application Server TopLink Application Developer’s Guide

// Call ReadAllObjects on a session.
Vector theObjects = (Vector)aSession.readAllObjects(EmployeeBean.class, new
EJBQLCall("SELECT OBJECT (emp) from EmployeeBean emp));

SQL Finders
You can use custom SQL code to specify finder logic. SQL enables you to
implement logic that might not be possible to express with OracleAS TopLink
expressions or EJB QL.

To create a SQL finder:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Start the OracleAS TopLink Mapping Workbench.

3. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

4. Go the Queries > Named Queries tab for the bean.

5. Select the finder, check the SQL radio button, and enter the SQL string.

6. Configure the finder.

The following is an example of a simple SQL finder that requires one parameter. In
this example, the hash character, '#', is used to bind the argument projectName
within the SQL string.

SELECT * FROM EJB_PROJECT WHERE (PROJ_NAME = #projectName)

Dynamic Finders
OracleAS TopLink provides several predefined finders you can use to execute
dynamic queries, in which the logic is determined by the user at runtime. The
OracleAS TopLink runtime reserves the names for these finders; they cannot be
reused for other finders.

The predefined finders are:

EJBObject findOneByEJBQL(String ejbql, Vector args)
Collection findManyByEJBQL(String ejbql, Vector args)
EJBObject findOneBySQL(String sql, Vector args)
Collection findManyBySQL(String sql, Vector args)
EJBObject findOneByQuery(DatabaseQuery query, Vector args)

EJB Finders

Queries 6-93

Collection findManyByQuery(DatabaseQuery query, Vector args)

You can also use each of these finders without a vector of arguments. For example,
EJBObject findOneByEJBQL(String ejbql) is a valid dynamic finder, but you
must replace the return type of EJBObject with your bean’s component interface.

To create a dynamic finder:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Declare the finder on the Home interface, the localHome interface, or both, as
required.

3. Start the OracleAS TopLink Mapping Workbench.

4. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

5. Go to the Queries > Named Queries tab for the bean.

6. Select and configure the finder.

Using findAll In addition to the preceding dynamic finder, OracleAS TopLink
provides a default findAll query that returns all the beans of a given type. As with
other dynamic finders, the OracleAS TopLink runtime reserves the name findAll.

For more information about defining and configuring the finder, see "To create a
dynamic finder:" on page 6-93.

Using findByPrimaryKey OracleAS TopLink creates the findByPrimaryKey finder to a
bean class when the class initializes. You can configure the findByPrimaryKey
finder with the various OracleAS TopLink query options.

Note: With EJB 2.0, if the finder is located on a local home, replace
EJBObject with EJBLocalObject in finders that contain findOneby.

Notes: If the advanced query options in "Advanced Finder Options" on
page 6-96 are not required, you need only complete steps 1 and 2.

Do not configure any query options for the findOneByQuery and
findManyByQuery dynamic finders, because the client creates the query
at runtime and passes it as a parameter to the finder. Set any required
system options on that query.

EJB Finders

6-94 Oracle Application Server TopLink Application Developer’s Guide

Because the EJB 2.0 specification requires the container to implement the
findByPrimaryKey call on each bean Home interface, do not delete this finder from
a bean.

ReadAll Finders
ReadAll finders enable you to create dynamic queries that you generate at runtime
rather than deployment time. To use a ReadAll finder, pass an OracleAS TopLink
ReadAllQuery as a parameter to a finder that returns an Enumeration.

Creating READALL Finders
OracleAS TopLink provides an implementation for ReadAll finders. To use this
feature in a bean, add the following finder definition to the Home interface of your
bean.

public Enumeration findAll(ReadAllQuery query) throws RemoteException,
FinderException;

To execute a ReadAll finder, create the query on the client.

Example 6–83 A ReadAll Finder

{
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addJoinedAttribute("address");
Enumeration employees = getEmployeeHome().findAll(query);

}

Choosing the Best Finder Type for Your Query
To optimize performance, choose the finder type that best suits your needs.

Using the OracleAS TopLink Expression Framework
Using OracleAS TopLink expressions offers the following advantages:

■ Version controlled standardized queries to Java code

■ Ability to simplify most complex operations

■ A more complete set of querying features than is available through EJB QL

Because expressions enable you to specify finder search criteria based on the object
model, they are frequently the best choice for constructing your finders.

EJB Finders

Queries 6-95

For more information about implementing finders using OracleAS TopLink
expressions, see "Expression Finders" on page 6-89.

Using Redirect Finders
Redirect finders enable you to implement a finder that is defined on an arbitrary
helper class as a static method. When you invoke the finder, OracleAS TopLink
redirects the call to the specified static method.

Redirect queries are complex and require an extra helper method to define the
query. However, because they support complex logic, they are often the best choice
when you need to implement logic unrelated to the bean on which the redirect
method is called.

Using SQL
Using SQL to define a finder offers the following advantages:

■ SQL enables you to implement logic that cannot be expressed when you use
EJB QL or the OracleAS TopLink expression framework.

■ It allows for the use of a stored procedure instead of OracleAS TopLink
generated SQL.

■ There may be cases in which custom SQL will improve performance.

SQL finders also have the following disadvantages:

■ Writing complex custom SQL statements requires a significant maintenance
effort if the database tables change.

■ The hard coded SQL limits portability to other databases.

■ No validation is performed on the SQL String. Errors in the SQL will not be
detected until runtime.

■ The use of SQL for a function other than SELECT may result in unpredictable
errors.

ejbSelect
The ejbSelect method is a query method intended for internal use within an entity
bean instance. Specified on the abstract bean itself, the ejbSelect method is not
directly exposed to the client in the home or component interface. Defined as
abstract, each bean can include zero or more such methods.

EJB Finders

6-96 Oracle Application Server TopLink Application Developer’s Guide

Select methods have the following characteristics:

■ The method name must have ejbSelect as its prefix.

■ It must be declared as public.

■ It must be declared as abstract.

■ The throws clause must specify the javax.ejb.FinderException,
although it may also specify application-specific exceptions as well.

■ Under EJB 2.0, the result-type-mapping tag in the ejb-jar.xml file
determines the return type for ejbSelects. Set the flag to Remote to return
EJBObjects; set it to Local, to return EJBLocalObjects.

The format for an ejbSelect method definition looks like this:

public abstract type ejbSelect<METHOD>(...);

The ejbSelect query return type is not restricted to the entity bean type on which
the ejbSelect is invoked. Instead, it can return any type corresponding to a
container-managed relationship or container-managed field.

Although the select method is not based on the identity of the entity bean instance
on which it is invoked, it can use the primary key of an entity bean as an argument.
This creates a query that is logically scoped to a particular entity bean instance.

To create an ejbSelect:
1. Declare the ejbSelect in the ejb-jar.xml file, enter the EJB QL string in the

ejb-ql tag, and specify the return type in the result-type-mapping tag (if
required).

2. Declare the ejbSelect on the abstract bean class.

3. Start the OracleAS TopLink Mapping Workbench.

4. Specify the ejb-jar.xml file location, and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

5. Go the Queries > Named Queries tab for the bean.

6. Select and configure the ejbSelect query.

Advanced Finder Options
The default finder configuration is appropriate for most applications. However,
finders also allow for several advanced configuration options.

EJB Finders

Queries 6-97

Caching Options
You can apply various configurations to the underlying query to achieve the correct
caching behavior for the application. There are several ways to control the caching
options for queries. For most queries, you can set caching options with the
OracleAS TopLink Mapping Workbench. For more information, see “Caching
objects” in the Oracle Application Server TopLink Mapping Workbench User’s Guide.

You can set the caching options on a per-finder basis. Table 6–8 lists the valid
values.

For more information about the OracleAS TopLink queries as well as the OracleAS
TopLink Unit of Work and how it integrates with JTS, see Chapter 7, "Transactions".

Table 6–8 Finder Caching Options

This Setting . . . Causes Finders to . . .

When the Search
Involves a Finder
That . . .

ConformResultsInUnitOfWork
(default)

Check the Unit of Work cache
before querying the session
cache or the database. The
finder's results always
conform to uncommitted new
objects, deleted objects, and
changed objects.

Returns either a single
bean or a collection

DoNotCheckCache Query the database,
bypassing the OracleAS
TopLink internal caches.

Returns either a single
bean or a collection

CheckCacheByExactPrimaryKey Check the session cache for
the object.

Contains only a primary
key, and returns a single
bean

CheckCacheByPrimaryKey Check the session cache for
the object.

Contains a primary key
(and may contain other
search parameters), and
returns a single bean

CheckCacheThenDatabase Search the session cache
before accessing the database

Returns a single bean

CheckCacheOnly Search against the session
cache, but not the database.

Returns either a single
bean or a collection

EJB Finders

6-98 Oracle Application Server TopLink Application Developer’s Guide

Disable Cache for Returned Finder Results
By default, OracleAS TopLink adds all returned objects to the session cache.
However, if you know the set of returned objects is very large, and you want to
avoid the expense of storing these objects, you can disable this behavior. To
override the default configuration, implement the dontMaintainCache() call on
the query, or disable returned object caching for the query in the OracleAS TopLink
Mapping Workbench.

For more information about disabling caching for returned finder results, see the
Oracle Application Server TopLink Mapping Workbench User’s Guide.

Refreshing Finder Results
A finder may return information from the database for an object whose primary key
is already in the cache. When set to true, the Refresh Cache option (in the OracleAS
TopLink Mapping Workbench) causes the query to refresh the object's nonprimary
key attributes with the returned information. This occurs on findByPrimaryKey
finders as well as all expression and SQL finders for the bean.

If you build a query in Java code, you can set this option by including the
refreshIdentityMapResult() method. This method automatically cascades
changes to privately owned parts of the beans. If you require different behavior,
configure the query using a dynamic finder instead.

If your application includes an OptimisticLock field, use the refresh cache option
in conjunction with the onlyRefreshCacheIfNewerVersion() option. This
ensures that the application refreshes objects in the cache only if the version of the
object in the database is newer than the version in the cache.

For finders that have no refresh cache setting, the
onlyRefreshCacheIfNewerVersion() method has no effect.

Note: To apply caching options to finders with manually created
(findOneByQuery, findManyByQuery) queries, use the OracleAS
TopLink API.

Caution: When you invoke this option from within a transaction, the
refresh overwrites object attributes, including any that have not yet
been written to the database.

EJB Finders

Queries 6-99

Managing Large Result Sets with Cursored Streams
Large result sets can be resource intensive to collect and process. To give the client
more control over the returned results, configure OracleAS TopLink finders to use
cursors. This combines OracleAS TopLink's CursoredStream with the ability of the
database to cursor data, and breaks up the result set into smaller, more manageable
pieces.

The behavior of a finder including a cursored stream differs from other finder as
follows:

■ Only the elements requested by the client are sent to the client.

■ Nothing is cached on the client in the CursoredEnumerator.

■ If you use the transactional attribute REQUIRED for your entity bean, wrap all
reads in a UserTransaction begin() and commit() to ensure that reads
beyond the first page of the cursor have a transaction in which to work.

Building the Query You can configure any finder that returns a
java.util.Enumeration (under EJB 1.1) or a java.util.Collection (under EJB
2.0) to use a cursor. When you create the query for the finder, add the
useCursoredStream() option to enable cursoring.

Example 6–84 Cursored Stream in a Finder

ReadAllQuery raq = new ReadAllQuery();
ExpressionBuilder bldr = new ExpressionBuilder();
raq.setReferenceClass(ProjectBean.class);
raq.useCursoredStream();
raq.addArgument("projectName");
raq.setSelectionCriteria(bldr.get("name").
like(bldr.getParameter("projectName")));
descriptor.getQueryManager().addQuery ("findByNameCursored", query);

Executing the Finder from the Client in EJB 1.1 OracleAS TopLink offers additional
elements for traversing finder results. These elements include:

■ hasMoreElements(): Returns a boolean indicating whether there are any
more elements in the result set.

■ nextElement(): Returns the next available element.

EJB Finders

6-100 Oracle Application Server TopLink Application Developer’s Guide

■ nextElements(int count): Retrieves a Vector of at most count elements
from the available results, depending on how many elements remain in the
result set.

■ close(): Closes the cursor on the server. The client must send this message, or
the database connection does not close.

Example 6–85 illustrates client-code executing a cursored finder.

Example 6–85 Cursored Finder Under EJB 1.1

import oracle.toplink.ejb.cmpwls11. CursoredEnumerator;
//... other imports as necessary
getTransaction().begin();
CursoredEnumerator cursoredEnumerator = (CursoredEnumerator)getProjectHome()
.findByNameCursored("proj%");

Vector projects = new Vector();
for (int index = 0; index < 50; i++) {
Project project = (Project)cursoredEnumerator.nextElement();
projects.addElement(project);
}
// Rest all at once ...
Vector projects2 = cursoredEnumerator.nextElements(50);
cursoredEnumerator.close();
getTransaction().commit();

Executing the Finder from the Client in EJB 2.0 As with EJB 1.1, OracleAS TopLink offers
additional elements for traversing finder results under EJB 2.0. These elements
include:

■ isEmpty(): As with java.util.Collection, isEmpty() returns a boolean
indicating whether the Collection is empty.

■ size(): As with java.util.Collection, size() returns an integer
indicating the number of elements in the Collection.

■ iterator(): As with java.util.Collection, iterator() returns a
java.util.Iterator for enumerating the elements in the Collection.

OracleAS TopLink also offers an extended protocol for
oracle.toplink.ejb.cmp.wls.CursoredIterator (based on
java.util.Iterator):

■ close(): Closes the cursor on the server. The client must send this message to
close the database connection.

Exception Handling

Queries 6-101

■ hasNext(): Returns a boolean indicating whether any more elements are in
the result set.

■ next(): Returns the next available element.

■ next(int count): Retrieves a Vector of at most count elements from the
available results, depending on how many elements remain in the result set.

Example 6–86 illustrates client code executing a cursored finder.

Example 6–86 Cursored Finder Under EJB 2.0

//import both CursoredCollection and CursoredIterator
import oracle.toplink.ejb.cmp.wls.*;
//... other imports as necessary
getTransaction().begin();
CursoredIterator cursoredIterator = (CursoredIterator)
getProjectHome().findByNameCursored("proj%").iterator();
Vector projects = new Vector();
for (int index = 0; index < 50; i++) {
Project project = (Project)cursoredIterator.next();
projects.addElement(project);
}
// Rest all at once ...
Vector projects2 = cursoredIterator.next(50);
cursoredIterator.close();
getTransaction().commit();

Exception Handling
Most exceptions in queries are database exceptions, resulting from a failure in the
database operation. Write operations can also throw an
OptimisticLockException on a write, update, or delete operation in applications
that use optimistic locking. To catch these exceptions, execute all database
operations within a try-catch block.

{
try {

Vector employees = session.readAllObjects(Employee.class);
}

catch (DatabaseException exception) {
// Handle exception
}

}

Exception Handling

6-102 Oracle Application Server TopLink Application Developer’s Guide

For more information about exceptions in a OracleAS TopLink application, see
Appendix C, "Error Codes and Messages".

Transactions 7-1

7
Transactions

A database transaction is a set of operations (create, read, update, or delete) that
either succeed or fail as a single operation. The database discards, or rolls back,
unsuccessful transactions, leaving the database in its original state.

In OracleAS TopLink, transactions are encapsulated by the Unit of Work object.
Using the Unit of Work, you can transactionally modify objects directly or by way
of a Java 2 Enterprise Edition (J2EE) external transaction controller such as the Java
Transaction API (JTA).

This chapter explains how to use the OracleAS TopLink Unit of Work, including:

■ Introduction to Transaction Concepts

■ Understanding the Unit of Work

■ Unit of Work Basics

■ Advanced Unit of Work

■ J2EE Integration

Introduction to Transaction Concepts

7-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Transaction Concepts
This section describes generic database transaction concepts and how they apply to
the OracleAS TopLink Unit of Work.

Database Transactions
Transactions execute in their own context, or logical space, isolated from other
transactions and database operations.

The transaction context is demarcated; that is, it has a defined structure that includes:

■ A begin point, where the operations within the transaction begin. At this point,
the transaction begins to execute its operations.

■ A commit point, where the operations are complete and the transaction attempts
to formalize changes on the database.

The degree to which concurrent (parallel) transactions on the same data are allowed
to interact is determined by the level of transaction isolation configured. ANSI/SQL
defines four levels of database transaction isolation as shown in Table 7–1. Each
offers a trade-off between performance and resistance from the following unwanted
behaviors:

■ dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

■ non-repeatable read: a transaction re-reads data and finds it has been modified
by some other transaction that committed after the initial read.

■ phantom read: a transaction re-executes a query and the returned data has
changed due to some other transaction that committed after the initial read.

As a transaction is committed, the database maintains a log of all changes to the
data. If all operations in the transaction succeed, the database allows the changes; if
any part of the transaction fails, the database uses the log to roll back the changes.

Table 7–1 Transaction Isolation Levels

Transaction Isolation Level Dirty Read Non-repeatable Read Phantom Read

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializeable No No No

Introduction to Transaction Concepts

Transactions 7-3

OracleAS TopLink Unit of Work Transactions
In OracleAS TopLink, transactions are encapsulated by the Unit of Work object.
Like any transaction, a Unit of Work transaction provides:

■ Transaction Context

■ Transaction Demarcation

■ Transaction Isolation

Transaction Context
Unit of Work operations occur within a Unit of Work context, isolated from the
database until commit time. The Unit of Work executes changes on copies, or clones,
of objects in its own internal cache, and if successful, applies changes to objects in
the database and the session cache.

Transaction Demarcation
If your application is a stand-alone OracleAS TopLink application, your application
demarcates transactions using the Unit of Work.

If your application includes a J2EE container that provides container-managed
transactions, you can configure OracleAS TopLink to integrate with the container’s
transaction demarcation. The Unit of Work supports:

■ JTA Transaction Demarcation

■ CMP Transaction Demarcation

JTA Transaction Demarcation J2EE containers use JTA to manage transactions in the
application. If your application includes a J2EE container, the Unit of Work executes
as part of an external JTA transaction. The Unit of Work still manages its own
internal operations, but relies on the external transaction to commit changes to the
database. The Unit of Work waits for the external transaction to commit
successfully before writing changes back to the session cache.

Note that because the transaction happens outside of the Unit of Work context and
is controlled by the JTA, errors can be more difficult to diagnose and fix.

For more information, see "J2EE Integration" on page 7-44.

Introduction to Transaction Concepts

7-4 Oracle Application Server TopLink Application Developer’s Guide

CMP Transaction Demarcation Entity beans that use container-managed persistence
can participate in either client-demarcated or container-demarcated transactions. They
can demarcate transactions with the javax.transaction.UserTransaction
interface. OracleAS TopLink automatically wraps invocations on entity beans in
container transactions based on the transaction attributes in the EJB deployment
descriptor. For more information about transactions with EJBs, see the EJB
specification and your J2EE container documentation.

In transactions involving EJBs, OracleAS TopLink waits until the transaction begins
its two-stage commit process before updating the database. This allows for:

■ SQL optimizations that ensure only changed data is written to the data store

■ Proper ordering of updates to allow for database constraints

Transaction Isolation
OracleAS TopLink DatabaseLogin API allows you to set the transaction isolation
level used when you open a connection to a database:

databaseLogin.setTransactionIsolation(DatabaseLogin.TRANSACTION_SERIALIZABLE);

However, the Unit of Work does not participate in database transaction isolation.
Because the Unit of Work may execute queries outside the database transaction, the
database has no control over the data and its visibility outside the transaction.

To maintain transaction isolation, each Unit of Work instance operates on its own
copy (clone) of affected objects (see "Clones and the Unit of Work" on page 7-7).
Multiple reads to the same object return the same clone and the clone's state is from
when it was first accessed (registered).

Optimistic locking, optimistic read locking, or pessimistic locking can be used to
ensure concurrency (see "Locking Policy" on page 5-20).

The Unit of Work method ShouldAlwaysConformResultsInUnitOfWork
allows querying to be done on object changes within a Unit of Work (see "Using
Conforming Queries and Descriptors" on page 7-35).

Changes are committed to the database only when the Unit of Work commit
method is called (either directly or by way of an external transaction controller.)

Understanding the Unit of Work

Transactions 7-5

Understanding the Unit of Work
This section describes:

■ Unit of Work Benefits

■ Unit of Work Life Cycle

■ Clones and the Unit of Work

■ Nested and Parallel Units of Work

■ Reading and Querying Objects with the Unit of Work

■ Commit and Rollback

■ Primary Keys

■ Example Object Model and Schema

Unit of Work Benefits
The OracleAS TopLink Unit of Work simplifies transactions and improves
transactional performance. It is the preferred method of writing to a database in
OracleAS TopLink because it:

■ sends a minimal amount of SQL to the database during the commit by updating
only the exact changes down to the field level

■ reduces database traffic by isolating transaction operations in their own
memory space

■ optimizes cache synchronization, in applications that use multiple caches, by
passing change sets (rather than objects) between caches

■ isolates object modifications in their own transaction space to allow parallel
transactions on the same objects

■ ensures referential integrity and minimizes deadlocks by automatically
maintaining SQL ordering

■ orders database inserts, updates, and deletes to maintain referential integrity
for mapped objects

■ resolves bidirectional references automatically

■ frees the application from tracking or recording its changes

■ simplifies persistence with persistence by reachability (see "Associations: New
Source to Existing Target Object" on page 7-18)

Understanding the Unit of Work

7-6 Oracle Application Server TopLink Application Developer’s Guide

Unit of Work Life Cycle
The Unit of Work is used as follows:

1. Client application acquires a Unit of Work from a session object.

2. Client application queries OracleAS TopLink to obtain the cache objects it
wants to modify and then registers the cache objects with the Unit of Work.

3. When the first object is registered, the Unit of Work starts its transaction.

As each object is registered, the Unit of Work accesses the object from the
Session cache or database and creates a backup clone and working clone (see
"Clones and the Unit of Work" on page 7-7).

The Unit of Work returns the working clone to the client application.

4. Client application modifies the working clones.

5. Client application (or external transaction controller) commits the transaction
(see "Commit and Rollback" on page 7-9).

Figure 7–1 The Life Cycle of a Unit of Work

Example 7–1 shows the life cycle in code.

Merge

Unit of Work

Edited
Clones

Registered
persistent
objects

Insert/update

Commit

Understanding the Unit of Work

Transactions 7-7

Example 7–1 Unit of Work Life Cycle

// The application reads a set of objects from the database.
Vector employees = session.readAllObjects(Employee.class);

// The application specifies an employee to edit.
. . .
Employee employee = (Employee) employees.elementAt(index);

try {
// Acquire a Unit of Work from the session.
UnitOfWork uow = session.acquireUnitOfWork();
// Register the object that is to be changed. Unit of Work returns a clone
// of the object and makes a backup copy of the original employee
Employee employeeClone = (Employee)uow.registerObject(employee);
// We make changes to the employee clone by adding a new phoneNumber.
// If a new object is referred to by a clone, it does not have to be
// registered. Unit of Work determines it is a new object at commit time.
PhoneNumber newPhoneNumber = new PhoneNumber("cell","212","765-9002");
employeeClone.addPhoneNumber(newPhoneNumber);
// We commit the transaction: Unit of Work compares the employeeClone with
// the backup copy of the employee, begins a transaction, and updates the
// database with the changes. If successful, the transaction is committed
// and the changes in employeeClone are merged into employee. If there is an
// error updating the database, the transaction is rolled back and the
// changes are not merged into the original employee object.
uow.commit();

} catch (DatabaseException ex) {
// If the commit fails, the database is not changed. The Unit of Work should
// be thrown away and application-specific action taken.

}
// After the commit, the Unit of Work is no longer valid. Do not use further.

Clones and the Unit of Work
The Unit of Work maintains two copies of the original objects registered with it:

■ working clones

■ backup clones

After you change the working clones and the transaction is committed, the Unit of
Work compares the working copy clones to the backup copy clones, and writes any
changes to the database. The Unit of Work uses clones to allow parallel Units of
Work (see "Nested and Parallel Units of Work" on page 7-8) to exist, a requirement
in multi-user three-tier applications.

Understanding the Unit of Work

7-8 Oracle Application Server TopLink Application Developer’s Guide

The OracleAS TopLink cloning process is efficient in that it clones only the mapped
attributes of registered objects, and stops at indirection objects unless you trigger
the indirection. For more information, see "Indirection" on page 3-27.

You can customize the cloning process using the descriptor’s copy policy. For more
information, see "Descriptor Copy Policy" on page 3-87.

Never use a clone after committing the Unit of Work that the clone is from (even if
the transaction fails and rolls-back). A clone is a working copy used during a
transaction and as soon as the transaction is committed (successful or not), the clone
must not be used. Accessing an uninstantiated clone value holder after a Unit of
Work commit will raise an exception. The only time you can use a clone after a
successful commit is when you use the advanced API described in "Resuming a
Unit of Work After Commit" on page 7-39.

Nested and Parallel Units of Work
You can use OracleAS TopLink to create a:

■ Nested Unit of Work

■ Parallel Unit of Work

For information and examples on using nested and parallel Units of Work, see
"Using a Nested or Parallel Unit of Work" on page 7-40.

Nested Unit of Work
You can nest a Unit of Work (the child) within another Unit of Work (the parent). A
nested Unit of Work does not commit changes to the database. Instead, it passes its
changes to the parent Unit of Work, and the parent attempts to commit the changes
at commit time. Nesting Units of Work enables you to break a large transaction into
smaller isolated transactions, and ensures that:

■ Changes from each nested Unit of Work commit or fail as a group.

■ Failure of a nested Unit of Work does not affect the commit or rollback of other
operations in the parent Unit of Work.

■ Changes are presented to the database as a single transaction.

Parallel Unit of Work
You can modify the same objects in multiple Unit of Work instances in parallel
because the Unit of Work manipulates copies of objects. OracleAS TopLink resolves
any concurrency issues when the Units of Work commit.

Understanding the Unit of Work

Transactions 7-9

Reading and Querying Objects with the Unit of Work
A Unit of Work is a Session, and as such, offers the same set of database access
methods as a regular session.

When called from a Unit of Work, these methods access the objects in the Unit of
Work, register the selected objects automatically, and return clones.

Although this makes it unnecessary for you to call the registerObject and
registerAllObjects methods, be aware of the restrictions on registering objects
described in "Creating an Object" on page 7-13 and "Associations: New Source to
Existing Target Object" on page 7-18.

Reading Objects with the Unit of Work
As with regular sessions, you use the readObject and readAllObjects methods
to read objects from the database.

Querying Objects with the Unit of Work
You can execute queries in a Unit of Work with the executeQuery method.

Commit and Rollback
When a Unit of Work transaction is committed, it either succeeds or fails and rolls
back. A commit can be initiated by your application or a J2EE container.

Commit
At commit time, the Unit of Work compares the working clones and backup clones
to calculate the change set (that is, to determine the minimum changes required).
Changes include updates to or deletion of existing objects, and the creation of new
objects. The Unit of Work then begins a database transaction, and attempts to write
the changes to the database. If all changes commit successfully on the database, the
Unit of Work merges the changed objects into the session cache. If any of the
changes fail on the database, the Unit of Work rolls back any changes on the
database, and does not merge changes into the session cache.

Note: Because a Unit of Work manages changes to existing objects
and the creation of new objects, modifying queries such as
InsertObjectQuery or UpdateObjectQuery are not necessary
and therefore are not supported by the Unit of Work.

Understanding the Unit of Work

7-10 Oracle Application Server TopLink Application Developer’s Guide

The Unit of Work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems
during commit, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Commit and JTA When your application uses JTA, the Unit of Work commit behaves
differently than in a non-JTA application. In most cases, the Unit of Work attaches
itself to an external transaction. If no transaction exists, the Unit of Work creates a
transaction. This distinction affects commit behavior as follows:

■ If the Unit of Work attaches to an existing transaction, the Unit of Work ignores the
commit call. The transaction commits the Unit of Work when the entire
external transaction is complete.

■ If the Unit of Work starts the external transaction, the transaction treats the Unit of
Work commit call as a request to commit the external transaction. The external
transaction then calls its own commit code on the database.

In either case, only the external transaction can call commit on the database because
it owns the database connection.

For more information, see "J2EE Integration" on page 7-44.

Rollback
A Unit of Work commit must succeed or fail as a unit. Failure in writing changes to
the database causes the Unit of Work to roll back the database to its previous state.
Nothing changes in the database, and the Unit of Work does not merge changes
into the session cache.

Rollback and JTA In a JTA environment, the Unit of Work does not own the database
connection. In this case, the Unit of Work sends the rollback call to the external
transaction rather than the database, and the external transaction treats the rollback
call as a request to roll the transaction back.

For more information, see "J2EE Integration" on page 7-44.

Primary Keys
You cannot modify the primary key attribute of an object in a Unit of Work. This is
an unsupported operation and doing so will result in unexpected behaviour
(exceptions and/or database corruption).

To replace one instance of an object with unique constraints with another, see
"Using the Unit of Work setShouldPerformDeletesFirst Method" on page 7-42.

Understanding the Unit of Work

Transactions 7-11

Example Object Model and Schema
Throughout this chapter, the following object model and schema is used in the
examples provided. The example object model appears in Figure 7–2 and the
example entity-relationship (data model) diagram appears in Figure 7–3.

Figure 7–2 Example Object Model

Pet

int id
String name
String type

PetOwner

int id
String name
String phoneNumber

VetVisit

int id
String symptoms
String notes

petOwner

vetVisitspet

Unit of Work Basics

7-12 Oracle Application Server TopLink Application Developer’s Guide

Figure 7–3 Example Data Model

Unit of Work Basics
This section explores the essential Unit of Work API calls most commonly used
throughout the development cycle:

■ Acquiring a Unit of Work

■ Creating an Object

■ Modifying an Object

■ Associations: New Target to Existing Source Object

■ Associations: New Source to Existing Target Object

■ Associations: Existing Source to Existing Target Object

■ Deleting Objects

For more information about the available methods for the UnitOfWork, see
"Advanced Unit of Work" on page 7-23 and the Oracle Application Server TopLink API
Reference.

314 * ID
abc o PHN_NUMBER
abc o NAME

PETOWNER

314 * ID
abc o NOTES
abc o SYMPTOMS
314 o PET_ID (FK)

VETVISIT

314 * ID
abc o TYPE
314 o PET_OWN_ID (FK)
abc o NAME

PET

PET_PETOWNER_FK

V
E

T
V

IS
IT

_P
E

T
_F

K

Unit of Work Basics

Transactions 7-13

Acquiring a Unit of Work
This example shows how to acquire a Unit of Work from a client session object.

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader()
);

Session session = (Session) server.acquireClientSession();
UnitOfWork uow = session.acquireUnitOfWork();

You can acquire a Unit of Work from any session type. Note that you do not need to
create a new session and login before every transaction.

The Unit of Work is valid until the commit or release method is called. After a
commit or release, a Unit of Work is not valid even if the transaction fails and is
rolled back.

A Unit of Work remains valid after the commitAndResume method is called as
described in "Resuming a Unit of Work After Commit" on page 7-39.

When using a Unit of Work with JTA, you can also use the advanced API
getActiveUnitOfWork method as described in "J2EE Integration" on page 7-44.

Creating an Object
When you create new objects in the Unit of Work, use the registerObject method
to ensure that the Unit of Work writes the objects to the database at commit time.

The Unit of Work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems
during commit, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Example 7–2 and Example 7–3 show how to create and persist a simple object
(without relationships) using the clone returned by the Unit of Work
registerObject method.

Example 7–2 Creating an Object: Preferred Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

Unit of Work Basics

7-14 Oracle Application Server TopLink Application Developer’s Guide

uow.commit();

Example 7–3 shows a common alternative:

Example 7–3 Creating an Object: Alternative Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
pet.setId(100);
pet.setName("Fluffy");
pet.setType("Cat");
uow.registerObject(pet);

uow.commit();

Both approaches produce the following SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (100, 'Fluffy', 'Cat', NULL)

Example 7–2 is preferred: it gets you into the pattern of working with clones and
provides the most flexibility for future code changes. Working with combinations of
new objects and clones can lead to confusion and unwanted results.

Modifying an Object
In Example 7–4, a Pet is read prior to a Unit of Work: the variable pet is the cache
copy for that Pet. Inside of the Unit of Work, we must register the cache copy to get
a working copy. We then modify the working copy and commit the Unit of Work.

Example 7–4 Modifying an Object

// Read in any pet.
Pet pet = (Pet)session.readObject(Pet.class);
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet) uow.registerObject(pet);
petClone.setName("Furry");

uow.commit();

In Example 7–5, we take advantage of the fact that you can query through a Unit of
Work and get back clones, saving the registration step. However, the drawback is
that we do not have a handle to the cache copy.

If we wanted to do something with the updated Pet after commit, we would have
to query the session to get it (remember that after a Unit of Work is committed, its
clones are invalid and must not be used).

Unit of Work Basics

Transactions 7-15

Example 7–5 Modifying an Object: Skipping the Registration Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet) uow.readObject(Pet.class);
petClone.setName("Furry");

uow.commit();

Both approaches produce the following SQL:

UPDATE PET SET NAME = 'Furry' WHERE (ID = 100)

Take care when querying through a Unit of Work. All objects read in the query are
registered in the Unit of Work and therefore will be checked for changes at commit
time. Rather than do a ReadAllQuery through a Unit of Work, it is better for
performance to design your application to do the ReadAllQuery through a session
and then only register in a Unit of Work the objects that need to be changed.

Associations: New Target to Existing Source Object
There are two ways to associate a new target object with an existing source object
with 1-many and 1-1 relationships:

■ Associating without Reference to the Cache Object

■ Associating with Reference to the Cache Object

Deciding which approach to use depends on whether or not your code requires a
reference to the cache copy of the new object after the Unit of Work is committed
and on how adaptable to change you want your code to be.

Associating without Reference to the Cache Object
Example 7–6 shows the first way of associating a new target with an existing source.

Example 7–6 Associating without Reference to the Cache Object

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);

PetOwner petOwner = new PetOwner();
petOwner.setId(400);
petOwner.setName("Donald Smith");
petOwner.setPhoneNumber("555-1212");

VetVisit vetVisit = new VetVisit();
vetVisit.setId(500);

Unit of Work Basics

7-16 Oracle Application Server TopLink Application Developer’s Guide

vetVisit.setNotes("Pet was shedding a lot.");
vetVisit.setSymptoms("Pet in good health.");
vetVisit.setPet(petClone);

petClone.setPetOwner(petOwner);
petClone.getVetVisits().addElement(vetVisit);

uow.commit();

This executes the proper SQL:

INSERT INTO PETOWNER (ID, NAME, PHN_NBR) VALUES (400, 'Donald Smith',
'555-1212')
UPDATE PET SET PET_OWN_ID = 400 WHERE (ID = 100)
INSERT INTO VETVISIT (ID, NOTES, SYMPTOMS, PET_ID) VALUES (500, 'Pet was
shedding a lot.', 'Pet in good health.', 100)

When associating new objects to existing objects, the Unit of Work treats the new
object as if it was a clone. That is, after the commit:

petOwner != session.readObject(petOwner)

For a more detailed discussion of this fact, see "Using registerNewObject" on
page 7-28).

Therefore, after the Unit of Work commit, the variables vetVisit and petOwner
no longer point to their respective cache objects: they point at working copy clones.

If you need the cache object after the Unit of Work commit, you must query for it or
create the association with a reference to the cache object (as described in
"Associating with Reference to the Cache Object" on page 7-16).

Associating with Reference to the Cache Object
Example 7–7 shows how to associate a new target with an existing source with
reference to the cache object.

Example 7–7 Associating with Reference to the Cache Object

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);

PetOwner petOwner = new PetOwner();
PetOwner petOwnerClone = (PetOwner)uow.registerObject(petOwner);
petOwnerClone.setId(400);
petOwnerClone.setName("Donald Smith");
petOwnerClone.setPhoneNumber("555-1212");

Unit of Work Basics

Transactions 7-17

VetVisit vetVisit = new VetVisit();
VetVisit vetVisitClone = (VetVisit)uow.registerObject(vetVisit);
vetVisitClone.setId(500);
vetVisitClone.setNotes("Pet was shedding a lot.");
vetVisitClone.setSymptoms("Pet in good health.");
vetVisitClone.setPet(petClone);

petClone.setPetOwner(petOwnerClone);
petClone.getVetVisits().addElement(vetVisitClone);

uow.commit();

Now, after the Unit of Work commit:

petOwner == session.readObject(petOwner)

This means that we have a handle to the cache copy after the commit, rather than a
clone.

Example 7–8 shows another way to add a new object in a Unit of Work when a
bidirectional relationship exists.

Example 7–8 Resolving Issues When Adding New Objects

// Get an employee read from the parent session of the Unit of Work.
Employee manager = (Employee)session.readObject(Employee.class);

// Acquire a Unit of Work.
UnitOfWork uow = session.acquireUnitOfWork();

// Register the manager to get its clone
Employee managerClone = (Employee)uow.registerObject(manager);

// Create a new employee
Employee newEmployee = new Employee();
newEmployee.setFirstName("Spike");
newEmployee.setLastName("Robertson");

/* INCORRECT: Do not associate the new employee with the original manager. This
will cause a QueryException when OracleAS TopLink detects this error during
commit. */
//newEmployee.setManager(manager);

/* CORRECT: Associate the new object with the clone. Note that in this example,
the setManager method is maintaining the bidirectional managedEmployees

Unit of Work Basics

7-18 Oracle Application Server TopLink Application Developer’s Guide

relationship and adding the new employee to its managedEmployees. At commit
time, the Unit of Work will detect that this is a new object and will take the
appropriate action. */
newEmployee.setManager(managerClone);

/* INCORRECT: Do not register the newEmployee: this will create two copies and
cause a QueryException when OracleAS TopLink detects this error during commit.*/
//uow.registerObject(newEmployee);

/* CORRECT:
In the above setManager call, if the managerClone’s managedEmployees was not
maintained by the setManager method, then you should call registerObject before
the new employee is related to the manager. If in doubt, you could use the
registerNewObject method to ensure that the newEmployee is registered in the
Unit of Work. The registerNewObject method registers the object, but does not
make a clone. */
uow.registerNewObject(newEmployee);

// Commit the Unit of Work
uow.commit();

Associations: New Source to Existing Target Object
This section describes how to associate a new source object with an existing target
object with 1-many and 1-1 relationships.

OracleAS TopLink follows all relationships of all registered objects (deeply) in a
Unit of Work to calculate what is new and what has changed. This is known as
persistence by reachablity. In "Associations: New Target to Existing Source Object" on
page 7-15, we saw that when you associate a new target with an existing source,
you can choose to register the object or not. If you do not register the new object, it
is still reachable from the source object (which is a clone, hence it is registered).
However, when you need to associate a new source object with an existing target,
you must register the new object. If you do not register the new object, then it is not
reachable in the Unit of Work and OracleAS TopLink will not write it to the
database.

For example, imagine we want to create a new Pet and associate it with an existing
PetOwner. The code shown in Example 7–9 will accomplish this:

Example 7–9 Associating a New Source to an Existing Target Object

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner existingPetOwnerClone =

(PetOwner)uow.readObject(PetOwner.class);

Unit of Work Basics

Transactions 7-19

Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
newPetClone.setId(900);
newPetClone.setType("Lizzard");
newPetClone.setName("Larry");
newPetClone.setPetOwner(existingPetOwnerClone);

uow.commit();

This generates the proper SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (900, 'Larry', 'Lizzard',
400)

In this situation, you should register the new object and work with the working
copy of the new object. If you associate the new object with the PetOwner clone
without registering, it will not be written to the database. If you are in a situation
where you want to associate the PetOwner clone with the new Pet object, use the
advanced API registerNewObject as described in "Using registerNewObject" on
page 7-28.

If you fail to register the clone and accidentally associate the cache version of the
existing object with the new object, then OracleAS TopLink will generate an error
which states that you have associated the cache version of an object ("from a parent
session") with a clone from this Unit of Work. You must work with working copies
in units of work.

Associations: Existing Source to Existing Target Object
This section explains how to associate an existing source object with an existing
target object with 1-many and 1-1 relationships.

As shown in Example 7–10, associating existing objects with each other in a Unit of
Work is as simple as associating objects in Java. Just remember to only work with
working copies of the objects.

Example 7–10 Associating an Existing Source to Existing Target Object

// Associate all VetVisits in the database to a Pet from the database
UnitOfWork uow = session.acquireUnitOfWork();

Pet existingPetClone = (Pet)uow.readObject(Pet.class);
Vector allVetVisitClones;
allVetVisitClones = (Vector)uow.readAllObjects(VetVisit.class);
Enumeration enum = allVetVisitClones.elements();
while(enum.hasMoreElements()) {

Unit of Work Basics

7-20 Oracle Application Server TopLink Application Developer’s Guide

VetVisit vetVisitClone =(VetVisit)enum.nextElement();
existingPetClone.getVetVisits().addElement(vetVisitClone);
vetVisitClone.setPet(existingPetClone);

};
uow.commit();

The most common error when associating existing objects is failing to work with the
working copies. If you accidentally associate a cache version of an object with a
working copy you will get an error at commit time indicating that you associated an
object from a parent session (the cache version) with a clone from this Unit of Work.

Example 7–11 shows another example of associating an existing source to an
existing target object.

Example 7–11 Associating Existing Objects

// Get an employee read from the parent session of the Unit of Work.
Employee employee = (Employee)session.readObject(Employee.class)

// Acquire a Unit of Work.
UnitOfWork uow = session.acquireUnitOfWork();
Project project = (Project) uow.readObject(Project.class);

/* When associating an existing object (read from the session) with a clone, we
must make sure we register the existing object and assign its clone into a Unit
of Work. */

/* INCORRECT: Cannot associate an existing object with a Unit of Work clone. A
QueryException will be thrown. */
//project.setTeamLeader(employee);

/* CORRECT: Instead register the existing object then associate the clone. */
Employee employeeClone = (Employee)uow.registerObject(employee);
project.setTeamLeader(employeeClone);
uow.commit();

Deleting Objects
To delete objects in a Unit of Work, use the deleteObject or deleteAllObjects
method. When you delete an object that is not already registered in the Unit of
Work, the Unit of Work registers the object automatically.

When you delete an object, OracleAS TopLink deletes the object’s privately owned
parts, because those parts cannot exist without the owning object. At commit time,

Unit of Work Basics

Transactions 7-21

the Unit of Work generates SQL to delete the objects, taking database constraints
into account.

When you delete an object, you must take your object model into account. You may
need to set references to the deleted object to null (for an example, see "Using
privateOwnedRelationship" on page 7-21).

This section explains how to delete objects with a Unit of Work, including:

■ Using privateOwnedRelationship

■ Explicitly Deleting from the Database

■ Understanding the Order in which Objects are Deleted

Using privateOwnedRelationship
Relational databases do not have garbage collection like a Java Virtual Machine
(JVM) does. To delete an object in Java you just de-reference the object. To delete a
row in a relational database you must explicitly delete it. Rather than tediously
manage when to delete data in the relational database, use the mapping attribute
privateOwnedRelationship to make OracleAS TopLink manage the garbage
collection in the relational database for you.

As shown in Example 7–12, when you create a mapping using Java, use its
privateOwnedRelationship method to tell OracleAS TopLink that the
referenced object is privately owned: that is, the referenced object cannot exist
without the parent object.

Example 7–12 Specifying a Mapping as Privately Owned

OneToOneMapping petOwnerMapping = new OneToOneMapping();
petOwnerMapping.setAttributeName("petOwner");
petOwnerMapping.setReferenceClass(com.top.uowprimer.model.PetOwner.class);
petOwnerMapping.privateOwnedRelationship();
petOwnerMapping.addForeignKeyFieldName("PET.PET_OWN_ID", "PETOWNER.ID");
descriptor.addMapping(petOwnerMapping);

When you create a mapping using the Mapping Workbench, you can select the
Private Owned check box under the General tab.

When you tell OracleAS TopLink that a relationship is private owned, you are
telling it two things:

■ if the source of a private owned relationship is deleted, then delete the target.

■ if you de-reference a target from a source, then delete the target.

Unit of Work Basics

7-22 Oracle Application Server TopLink Application Developer’s Guide

Do not configure private owned relationships to objects that might be shared. An
object should not be the target in more than one relationship if it is the target in a
private owned relationship.

The exception to this rule is the case when you have a many-to-many relationship in
which a relation object is mapped to a relation table and is referenced through a
one-to-many relationship by both the source and target. In this case, if the
one-to-many mapping is configured as privately owned, then when you delete the
source, all the association objects will be deleted.

Consider the example shown in Example 7–13.

Example 7–13 Private Owned Relationships

// If the Pet-PetOwner relationship is privateOwned
// then the PetOwner will be deleted at uow.commit()
// otherwise, just the foreign key from PET to PETOWNER will
// be set to null. The same is true for VetVisit.
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet)uow.readObject(Pet.class);
petClone.setPetOwner(null);
VetVisit vvClone =

(VetVisit)petClone.getVetVisits().firstElement();
vvClone.setPet(null);
petClone.getVetVisits().removeElement(vvClone);

uow.commit();

If the relationships from Pet to PetOwner and from Pet to VetVisit are not
private owned, this code produces the following SQL:

UPDATE PET SET PET_OWN_ID = NULL WHERE (ID = 150)
UPDATE VETVISIT SET PET_ID = NULL WHERE (ID = 350)

If the relationships are private owned, this code produces the following SQL:

UPDATE PET SET PET_OWN_ID = NULL WHERE (ID = 150)
UPDATE VETVISIT SET PET_ID = NULL WHERE (ID = 350)
DELETE FROM VETVISIT WHERE (ID = 350)
DELETE FROM PETOWNER WHERE (ID = 250)

Explicitly Deleting from the Database
If there are cases where you have objects that will not be garbage collected through
private owned relationships (especially root objects in your object model) then you
can explicitly tell OracleAS TopLink to delete the row representing the object using
the deleteObject API. For example:

Advanced Unit of Work

Transactions 7-23

Example 7–14 Explicitly Deleting

UnitOfWork uow = session.acquireUnitOfWork();
pet petClone = (Pet)uow.readObject(Pet.class);
uow.deleteObject(petClone);

uow.commit();

The above code generates the following SQL:

DELETE FROM PET WHERE (ID = 100)

Understanding the Order in which Objects are Deleted
The Unit of Work does not track changes or the order of operations. It is intended to
isolate you from having to modify your objects in the order the database requires.

By default, at commit time, the Unit of Work orders all inserts and updates using
the constraints defined by your schema. After all inserts and updates are done, the
Unit of Work will issue the necessary delete operations.

Constraints are inferred from one-to-one and one-to-many mappings. If you have
no such mappings, you can add additional constraint knowledge to OracleAS
TopLink as described in "Controlling the Order of Deletes" on page 7-42.

Advanced Unit of Work
This section explores more advanced Unit of Work API calls and techniques most
commonly used later in the development cycle, including:

■ Troubleshooting a Unit of Work

■ Creating and Registering an Object in One Step

■ Using registerNewObject

■ Using registerAllObjects

■ Using Registration and Existence Checking

■ Working with Aggregates

■ Unregistering Working Clones

■ Declaring Read-Only Classes

■ Using Conforming Queries and Descriptors

■ Merging Changes in Working Copy Clones

Advanced Unit of Work

7-24 Oracle Application Server TopLink Application Developer’s Guide

■ Resuming a Unit of Work After Commit

■ Reverting a Unit of Work

■ Using a Nested or Parallel Unit of Work

■ Using a Unit of Work with Custom SQL

■ Validating a Unit of Work

■ Controlling the Order of Deletes

■ Improving Unit of Work Performance

For more information about integrating the Unit of Work with J2EE and external
transaction controllers, see "J2EE Integration" on page 7-44.

For more information about the available methods for the UnitOfWork, see the
Oracle Application Server TopLink API Reference.

Troubleshooting a Unit of Work
This section examines common Unit of Work problems and debugging techniques,
including:

■ Avoiding the Use of Post-commit Clones

■ Determining Whether or not an Object is the Cache Object

■ Dumping the Contents of a Unit of Work

■ Handling Exceptions

Avoiding the Use of Post-commit Clones
A common Unit of Work error is holding on to clones after commit. Typically the
clones are stored in a static variable and the developer incorrectly thinks that this
object is the cache copy. This leads to problems when another Unit of Work makes
changes to the object and what the developer thinks is the cache copy is not
updated (because a Unit of Work only updates the cache copy, not old clones).

Consider the error in Example 7–15. In this example we get a handle to the cache
copy of a Pet and store it in the static CACHE_PET. We get a handle to a working
copy and store it in the static CLONE_PET. In a future Unit of Work, the Pet is
changed.

Developers who incorrectly store global references to clones from units of work
often expect them to be updated when the cache object is changed in a future Unit
of Work. Only the cache copy is updated.

Advanced Unit of Work

Transactions 7-25

Example 7–15 Incorrect Use of Handle to Clone

//Read a Pet from the database, store in static
CACHE_PET = (Pet)session.readObject(Pet.class);

//Put a clone in a static. This is a bad idea and is a common error
UnitOfWork uow = session.acquireUnitOfWork();

CLONE_PET = (Pet)uow.readObject(Pet.class);
CLONE_PET.setName("Hairy");

uow.commit();
//Later, the pet is changed again
UnitOfWork anotherUow = session.acquireUnitOfWork();

Pet petClone = (Pet)anotherUow.registerObject(CACHE_PET);
petClone.setName("Fuzzy");

anotherUow.commit();

// If you incorrectly stored the clone in a static and thought it should be
// updated when it's later changed, you would be wrong: only the cache copy is
// updated; NOT OLD CLONES.
System.out.println("CACHE_PET is" + CACHE_PET);
System.out.println("CLONE_PET is" + CLONE_PET);

The two System.out calls produce the following output:

CACHE_PET isPet type Cat named Fuzzy id:100
CLONE_PET isPet type Cat named Hairy id:100

Determining Whether or not an Object is the Cache Object
In "Modifying an Object" on page 7-14, we noted that it is possible to read any
particular instance of a class by executing:

session.readObject(Class);

There is also a readObject method that takes an object as an argument: this
method is equivalent to doing a ReadObjectQuery on the primary key of the
object passed in. For example, the following:

session.readObject(pet);

Is equivalent to the following:

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Pet.class);
ExpressionBuilder builder = new ExpressionBuilder();
Expression exp = builder.get("id").equal(pet.getId());
query.setSelectionCriteria(exp);

Advanced Unit of Work

7-26 Oracle Application Server TopLink Application Developer’s Guide

session.executeQuery(query);

Also note that primary key based queries, by default, will return what is in the
cache without going to the database.

Given this, we have a very quick and simple method for accessing the cache copy of
an object as shown in Example 7–16.

Example 7–16 Testing if an Object is the Cache Object

//Here is a test to see if an object is the cache copy
boolean cached = CACHE_PET == session.readObject(CACHE_PET);
boolean cloned = CLONE_PET == session.readObject(CLONE_PET);
System.out.println("Is CACHE_PET the Cache copy of the object: " + cached);
System.out.println("Is CLONE_PET the Cache copy of the object: " + cloned);

This code produces the following output:

Is CACHE_PET the Cache copy of the object: true
Is CLONE_PET the Cache copy of the object: false

Dumping the Contents of a Unit of Work
The Unit of Work has several debugging methods to help you analyze performance
or track down problems with your code. The most useful is
printRegisteredObjects which prints all the information about objects known
in the Unit of Work. Use this method to see how many objects are registered and to
make sure objects you are working on are registered.

To use this method, you must have log messages enabled for the session that the
Unit of Work is from. Session log messages are disabled by default. To enable log
messages, use the session logMessages method. To disable log messages, use the
session dontLogMessages method as shown in Example 7–17.

Example 7–17 Dumping the Contents of a Unit of Work

session.logMessages(); // enable log messages
UnitOfWork uow = session.acquireUnitOfWork();

Pet petClone = (Pet)uow.readObject(Pet.class);
petClone.setName("Mop Top");

Pet pet2 = new Pet();
pet2.setId(200);
pet2.setName("Sparky");
pet2.setType("Dog");
uow.registerObject(pet2);

Advanced Unit of Work

Transactions 7-27

uow.printRegisteredObjects();
uow.commit();
session.dontLogMessages(); // disable log messages

This example produces the following output:

UnitOfWork identity hashcode: 32373
Deleted Objects:

All Registered Clones:
Key: [100] Identity Hash Code:13901 Object: Pet type Cat named Mop Top

id:100
Key: [200] Identity Hash Code:16010 Object: Pet type Dog named Sparky

id:200

New Objects:
Key: [200] Identity Hash Code:16010 Object: Pet type Dog named Sparky

id:200

Handling Exceptions
OracleAS TopLink exceptions are instances of RuntimeException, which means
that methods that throw them do not have to be placed in a try-catch statement.

However, the Unit of Work commit method is one that should be called within a
try-catch statement to deal with problems that may arise.

Example 7–18 shows one way to handle Unit of Work exceptions:

Example 7–18 Handling Unit of Work Commit Exceptions

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.registerObject(newPet);
petClone.setName("Assume this name is too long for a database constraint");
// Assume that the name argument violates a length constraint on the database.
// This will cause a DatabaseException on commit.
try {

uow.commit();
} catch (TopLinkException tle) {

System.out.println("There was an exception: " + tle);
}

This code produces the following output:

There was an exception: EXCEPTION [ORACLEAS TOPLINK-6004]:

Advanced Unit of Work

7-28 Oracle Application Server TopLink Application Developer’s Guide

oracle.toplink.exceptions.DatabaseException

Catching exceptions at commit time is mandatory if you are using optimistic
locking because the exception raised is the indication that there was an optimistic
locking problem. Optimistic locking allows all users to access a given object, even if
it is currently in use in a transaction or Unit of Work. When the Unit of Work
attempts to change the object, the database checks to ensure that the object has not
changed since it was initially read by the Unit of Work. If the object has changed,
the database raises an exception, and the Unit of Work rolls back the transaction.

For more information, see "Locking Policy" on page 5-20.

Creating and Registering an Object in One Step
Example shows how to use the Unit of Work newInstance method to create a new
Pet object, register it with the Unit of Work, and return a clone, all in one step. If
you are using a factory pattern to create your objects (and specified this in the
builder), the newInstance method will use the appropriate factory.

Example 7–19 Creating and Registering an Object in One Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.newInstance(Pet.class);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.commit();

Using registerNewObject
This example examines how to use the registerNewObject method, including:

■ Registering a New Object with registerNewObject

■ Associating New Objects with One Another

Registering a New Object with registerNewObject
The registerNewObject method registers a new object as if it was a clone. At
commit time, the Unit of Work creates another instance of the object to be the cache
version of that object.

Advanced Unit of Work

Transactions 7-29

Use registerNewObject in situations where:

■ You do not need a handle to the cache version of the object after the commit
and you do not want to work with clones of new objects.

■ You must pass a clone into the constructor of a new object and then need to
register the new object.

Example 7–20 shows how to register a new object with the registerNewObject
method:

Example 7–20 Registering a New Object with the registerNewObject Method

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner existingPetOwnerClone =

PetOwner)uow.readObject(PetOwner.class);

Pet newPet = new Pet();
newPet.setId(900);
newPet.setType("Lizzard");
newPet.setName("Larry");
newPet.setPetOwner(existingPetOwnerClone);

uow.registerNewObject(newPet);
uow.commit();

By using registerNewObject, the variable newPet should not be used after the
Unit of Work is committed. The new object is the clone and if you need the cache
version of the object, you need to query for it. If you needed a handle to the cache
version of the Pet after the Unit of Work has committed, then you should use the
first approach described in "Associations: New Source to Existing Target Object" on
page 7-18. In that example, the variable newPet is the cache version after the Unit
of Work is committed.

Associating New Objects with One Another
At commit time, OracleAS TopLink can determine if an object is new or not. In
"Associations: New Target to Existing Source Object" on page 7-15, we saw that if a
new object is reachable from a clone, you do not need to register it. OracleAS
TopLink effectively does a registerNewObject to all new objects it can reach
from registered objects.

Advanced Unit of Work

7-30 Oracle Application Server TopLink Application Developer’s Guide

When working with new objects, remember the following rules:

■ Only reachable or registered objects will be persisted.

■ New objects or objects that have been registered with registerNewObject
are considered to be working copies in the Unit of Work.

■ If you call registerObject with a new object, the result is the clone and the
argument is considered the cache version.

Example 7–21 shows how to associate new objects with the registerNewObject
method:

Example 7–21 Associating New Objects with the registerNewObject Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet newPet = new Pet();
newPet.setId(150);
newPet.setType("Horse");
newPet.setName("Ed");

PetOwner newPetOwner = new PetOwner();
newPetOwner.setId(250);
newPetOwner.setName("George");
newPetOwner.setPhoneNumber("555-9999");

VetVisit newVetVisit = new VetVisit();
newVetVisit.setId(350);
newVetVisit.setNotes("Talks a lot");
newVetVisit.setSymptoms("Sore throat");

newPet.getVetVisits().addElement(newVetVisit);
newVetVisit.setPet(newPet);
newPet.setPetOwner(newPetOwner);

uow.registerNewObject(newPet);
uow.commit();

However, after the Unit of Work, the variables newPet, newPetOwner, and
newVetVisit should not be used since they were technically copies from the Unit
of Work.

If we needed a handle to the cache version of these business objects we could query
for them or we could have done the Unit of Work as shown in Example 7–22.

Advanced Unit of Work

Transactions 7-31

Example 7–22 Associating New Objects with the newObjectMethod and Retaining a
Handle to the Cache Objects

UnitOfWork uow = session.acquireUnitOfWork();
Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
newPetClone.setId(150);
newPetClone.setType("Horse");
newPetClone.setName("Ed");

PetOwner newPetOwner = new PetOwner();
PetOwner newPetOwnerClone =

(PetOwner)uow.registerObject(newPetOwner);
newPetOwnerClone.setId(250);
newPetOwnerClone.setName("George");
newPetOwnerClone.setPhoneNumber("555-9999");

VetVisit newVetVisit = new VetVisit();
VetVisit newVetVisitClone =

(VetVisit)uow.registerObject(newVetVisit);
newVetVisitClone.setId(350);
newVetVisitClone.setNotes("Talks a lot");
newVetVisitClone.setSymptoms("Sore throat");

newPetClone.getVetVisits().addElement(newVetVisitClone);
newVetVisitClone.setPet(newPetClone);
newPetClone.setPetOwner(newPetOwnerClone);

uow.commit();

Using registerAllObjects
The registerAllObjects method takes a Collection of objects as an
argument and returns a Collection of clones. This allows you to register many
objects at once as shown in Example 7–23:

Example 7–23 Using registerAllObjects

UnitOfWork uow = session.acquireUnitOfWork();
Collection toRegister = new Vector(2);
VetVisit vv1 = new VetVisit();
vv1.setId(70);
vv1.setNotes("May have flu");
vv1.setSymptoms("High temperature");
toRegister.add(vv1);

Advanced Unit of Work

7-32 Oracle Application Server TopLink Application Developer’s Guide

VetVisit vv2 = new VetVisit();
vv2.setId(71);
vv2.setNotes("May have flu");
vv2.setSymptoms("Sick to stomach");
toRegister.add(vv2);

uow.registerAllObjects(toRegister);
uow.commit();

Using Registration and Existence Checking
When OracleAS TopLink writes an object to the database, OracleAS TopLink runs
an existence check to determine whether to perform an insert or an update. You can
specify the default existence checking policy for a project as a whole or on a
per-descriptor basis. By default, OracleAS TopLink uses the check cache existence
checking policy. If you use any existence checking policy other than check cache,
then you can use the way you register your objects to your advantage to reduce the
time it takes OracleAS TopLink to register an object.

This section explains how to use one of the following existence checking policies to
accelerate object registration:

■ Check Database

■ Assume Existence

■ Assume Non-existence

Check Database
If your existence checking policy is check database then OracleAS TopLink will
check the database for existence for all objects registered in a Unit of Work.
However, if you know that an object is new or existing, rather than use the basic
registerObject method, you can use registerNewObject or
registerExistingObject to bypass the existence check. OracleAS TopLink will
not check the database for existence on objects that you have registered with these
methods. It will automatically do an insert if registerNewObject is called or an
update if registerExistingObject is called.

Assume Existence
If your existence checking policy is assume existence then all objects registered in a
Unit of Work are assumed to exist and OracleAS TopLink will always do an update
to the database on all registered objects, even new objects that you registered with
registerObject. However, if you use the registerNewObject method on the

Advanced Unit of Work

Transactions 7-33

new object, OracleAS TopLink knows to do an insert in the database even though
the existence checking policy says assume existence.

Assume Non-existence
If your existence checking policy is assume non-existence then all objects registered
in a Unit of Work are assumed to be new and OracleAS TopLink will always do an
insert to the database, even on objects read from the database. However, if you use
the registerExistingObject method on existing objects, OracleAS TopLink
knows to do an update to the database.

Working with Aggregates
Aggregate mapped objects should never be registered in an OracleAS TopLink Unit
of Work (in fact, you will get an exception if you try). Aggregate cloning and
registration is automatic based on the owner of the aggregate object. In other words,
if you register the owner of an aggregate, the aggregate is automatically cloned.
When you get a working copy of an aggregate owner, its aggregate is also a
working copy.

The bottom line of working with aggregates is you should always use an aggregate
within the context of its owner:

■ If you get an aggregate from a working copy owner, then the aggregate is a
working copy.

■ If you get an aggregate from a cache version owner then the aggregate is the
cache version.

Unregistering Working Clones
The Unit of Work unregisterObject method allows you to unregister a
previously registered object from a Unit of Work. An unregistered object will be
ignored in the Unit of Work and any uncommitted changes made to the object up to
that point will be discarded.

In general, this method is rarely used. It can be useful if you create a new object, but
then decide to delete it in the same Unit of Work (which is also not recommended).

Declaring Read-Only Classes
You can declare a class as read-only within the context of a Unit of Work. Clones
are neither created nor merged for such classes, thus improving performance. Such
classes are ineligible for changes in the Unit of Work.

Advanced Unit of Work

7-34 Oracle Application Server TopLink Application Developer’s Guide

When a Unit of Work registers an object, it traverses and registers the entire object
tree. If the Unit of Work encounters a read-only class, it does not traverse that
branch of the tree and does not register objects referenced by the read-only class, so
those classes are ineligible for changes in the Unit of Work.

Setting Read-Only Classes for a Single Unit of Work
For example, suppose class A owns a class B and class C extends class B. You
acquire a Unit of Work in which you know only instances of A will change: you
know that no class B's will be changed. Before registering an instance of B, use:

myUnitofWork.addReadOnlyClass(B.class);

Then you can proceed with your transaction: registering A objects, modifying their
working copies, and committing the Unit of Work.

At commit time, the Unit of Work will not have to compare backup copy clones
with the working copy clones for instances of class B (even if instances were
registered explicitly or implicitly). This can improve Unit of Work performance if
the object tree is very large.

Note that if you register an instance of class C, the Unit of Work does not create or
merge clones for this object; any changes made to your C are not be persisted
because C extends B and B was identified as read-only.

To identify multiple classes as read only, add them to a Vector and use:

myUnitOfWork.addReadOnlyClasses(myVectorOfClasses);

Note that a nested Unit of Work inherits the set of read-only classes from the parent
Unit of Work. For more information on using a nested Unit of Work, see "Using a
Nested or Parallel Unit of Work" on page 7-40.

Setting Read-Only Classes for All Units of Work
To establish a default set of read-only classes for all Units of Work, use the project
method setDefaultReadOnlyClasses(Vector). After you call this method, all
new Units of Work include the Vector of read-only classes.

Read-Only Descriptors
When you declare a class as read-only, the read-only flag extends to its descriptors.
You can flag a descriptor as read-only at development time, using either Java code
or the OracleAS TopLink Mapping Workbench. This option improves performance
by excluding the read-only descriptors from Unit of Work registration and editing.

Advanced Unit of Work

Transactions 7-35

To flag descriptors as read-only in Java code, call the setReadOnly method on the
descriptor as follows:

descriptor.setReadOnly();

To flag a descriptor as read-only in the OracleAS TopLink Mapping Workbench,
select the Read Only check box for a specific descriptor.

For more information, see "Working with Descriptors," in the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

Using Conforming Queries and Descriptors
This section explains how to include new, changed, or deleted objects in queries
within a Unit of Work prior to commit, including:

■ Using Conforming Queries

■ Conforming Query Alternatives

■ Using Conforming Descriptors

Using Conforming Queries
Because queries are executed on the database, querying though a Unit of Work will
not, by default, include new, uncommitted, objects in a Unit of Work. The Unit of
Work will not spend time executing your query against new, uncommitted, objects
in the Unit of Work unless you explicitly tell it to.

Assume that a single Pet of type Cat already exists on the database. Examine the
code shown in Example 7–24.

Example 7–24 Using Conforming Queries

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet2 = new Pet();
Pet petClone = (Pet)uow.registerObject(pet2);
petClone.setId(200);
petClone.setType("Cat");
petClone.setName("Mouser");

ReadAllQuery readAllCats = new ReadAllQuery();
readAllCats.setReferenceClass(Pet.class);
ExpressionBuilder builder = new ExpressionBuilder();
Expression catExp = builder.get("type").equal("Cat");
readAllCats.setSelectionCriteria(catExp);

Advanced Unit of Work

7-36 Oracle Application Server TopLink Application Developer’s Guide

Vector allCats = (Vector)uow.executeQuery(readAllCats);

System.out.println("All 'Cats' read through UOW are: " + allCats);
uow.commit();

This produces the following output:

All 'Cats' read through UOW are: [Pet type Cat named Fluffy id:100]

If you tell the query readAllCats to include new objects:

readAllCats.conformResultsInUnitOfWork();

The output would be:

All 'Cats' read through UOW are: [Pet type Cat named Fluffy id:100, Pet type Cat
named Mouser id:200]

Bear in mind that conforming will impact performance. Before you use conforming,
make sure that it is actually necessary. For example, consider the alternative
described in "Conforming Query Alternatives" on page 7-36.

Conforming Query Alternatives
Sometimes, you need to provide other code modules with access to new objects
created in a Unit of Work. Conforming can be used to provide this access. However,
the following alternative is significantly more efficient.

Somewhere a Unit of Work is acquired from a Session and is passed to multiple
modules for portions of the requisite processing:

UnitOfWork uow = session.acquireUnitOfWork();
In the module that creates the new employee:

Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
uow.setProperty("NEW PET", newPet);

In other modules where newPet needs to be accessed for further modification, it can
simply be extracted from the Unit of Work's properties:

Pet newPet = (Pet) uow.getProperty("NEW PET");
newPet.setType("Dog");

Conforming queries are ideal if you are not sure if an object has been created yet or
the criteria is dynamic.

Advanced Unit of Work

Transactions 7-37

However, for situations where the quantity of objects is finite and well known, this
simple and more efficient solution is a very practical alternative.

Using Conforming Descriptors
OracleAS TopLink’s support for conforming queries in the Unit of Work can be
specified in the descriptors.

You can flag a descriptor directly to always conform results in the Unit of Work so
that all queries performed on this descriptor conform its results in the Unit of Work
by default. You can specify this either within code or from the OracleAS TopLink
Mapping Workbench.

You can flag descriptors to always conform in the Unit of Work by calling the
method on the descriptor as follows:

descriptor.setShouldAlwaysConformResultsInUnitOfWork(true);

To set this flag in the OracleAS TopLink Mapping Workbench, select the Conform
Results in Unit Of Work check box for a descriptor.

Merging Changes in Working Copy Clones
In a three-tier application, the client and server exchange objects using a
serialization mechanism such as RMI or CORBA.

When the client changes an object and returns it to the server, you cannot register
this serialized object into a Unit of Work directly.

On the server, you must register the original object in a Unit of Work and then use
the Unit of Work methods listed in Table 7–2 to merge serialized object changes into
the working copy clone. Each method takes the serialized object as an argument.

Table 7–2 Unit of Work Merge Methods

Method Purpose Used When

mergeClone Merges the serialized
object and all its
privately owned parts
(excluding references
from it to independent
objects) into the
working copy clone.

The client edits the object
but not its relationships,
or marks its independent
relationships as transient.

Advanced Unit of Work

7-38 Oracle Application Server TopLink Application Developer’s Guide

Note that if your three-tier client is sufficiently complex, consider using the
TopLink remote session (see "Remote Session" on page 4-58). It automatically
handles merging and allows you to use a Unit of Work on the client.

You can merge clones with both existing and new objects. Because they do not
appear in the cache and may not have a primary key, you can merge new objects
only once within a Unit of Work. If you need to merge a new object more than once,
call the Unit of Work setShouldNewObjectsBeCached method, and ensure that
the object has a valid primary key; you can then register the object.

Example 7–25 shows one way to update the original object with the changes
contained in the corresponding serialized object (rmiClone) received from a client.

Example 7–25 Merging a Serialized Object

update(Object original, Object rmiClone)
{
 original = uow.registerObject(original);

mergeCloneWithReferences Merges the serialized
object and all its
privately owned parts
(including references
from it to independent
objects) into the
working copy clone.

The client edits the object
and the targets of its
relationships and has not
marked any attributes as
transient.

shallowMergeClone Merges only serialized
object changes to
attributes mapped with
direct mappings into
the working copy clone.

The client only edits the
object's direct attributes or
has marked all of the
object's relationships as
transient.

deepMergeClone Merges the serialized
object and everything
connected to it (the
entire object tree where
the serialized object is
the root) into the
working copy clone.

Use with caution: if two
different copies of an
object are in the same
traversal, it will merge
one set of changes over
the other. You should not
have any transient
attributes in any of your
related objects.

Table 7–2 Unit of Work Merge Methods

Method Purpose Used When

Advanced Unit of Work

Transactions 7-39

 uow.mergeCloneWithRefereneces(rmiClone);
 uow.commit();
}

Resuming a Unit of Work After Commit
At commit time, a Unit of Work and its contents expire: you must not use the Unit
of Work nor its clones even if the transaction failed and rolled back.

However, OracleAS TopLink offers API that enables you to continue working with
a Unit of Work and its clones:

■ commitAndResume: commits the Unit of Work, but does not invalidate it or its
clones

■ commitAndResumeOnFailure: commits the Unit of Work. If the commit
succeeds, the Unit of Work expires. However, if the commit fails, this method
does not invalidate the Unit of Work or its clones. This method enables the user
to modify the registered objects in a failed Unit of Work and retry the commit.

Example 7–26 shows how to use the commitAndResume method:

Example 7–26 Using the commitAndResume Method

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner petOwnerClone =

(PetOwner)uow.readObject(PetOwner.class);
petOwnerClone.setName("Mrs. Newowner");
uow.commitAndResume();
petOwnerClone.setPhoneNumber("KL5-7721");

uow.commit();

The commitAndResume call produces the SQL:

UPDATE PETOWNER SET NAME = 'Mrs. Newowner' WHERE (ID = 400)

And then the commit call produces the SQL:

UPDATE PETOWNER SET PHN_NBR = 'KL5-7721' WHERE (ID = 400)

Advanced Unit of Work

7-40 Oracle Application Server TopLink Application Developer’s Guide

Reverting a Unit of Work
Under certain circumstances, you may want to abandon some or all changes to
clones in a Unit of Work, but not abandon the Unit of Work itself. The following
options exist for reverting all or part of the Unit of Work:

■ revertObject: abandons changes to a specific working copy clone in the
Unit of Work

■ revertAndResume: uses the backup copy clones to restore all clones to their
original states, deregister any new objects, and reinstate any deleted objects

Using a Nested or Parallel Unit of Work
You can use a Unit of Work within another Unit of Work (nesting) or you can use
two or more Units of Work with the same objects in parallel.

Parallel Unit of Work
To start multiple Units of Work that operate in parallel, call the
acquireUnitOfWork method multiple times on the session. The Units of Work
operate independently of one another and maintain their own cache.

Nested Unit of Work
To nest Units of Work, call the acquireUnitOfWork method on the parent Unit of
Work. This creates a child Unit of Work with its own cache. If a child Unit of Work
commits, it updates the parent Unit of Work rather than the database. If the parent
does not commit, the changes made to the child are not written to the database.

OracleAS TopLink does not update the database or the cache until the outermost
Unit of Work is committed. You must commit or release the child Unit of Work
before you can commit its parent.

Working copies from one Unit of Work are not valid in another Units of Work: not
even between an inner and outer Unit of Work. You must register objects at all
levels of a Unit of Work where they are used.

Example 7–27 shows how to use nested Units of Work:

Example 7–27 Using Nested Units of Work

UnitOfWork outerUOW = session.acquireUnitOfWork();
Pet outerPetClone = (Pet)outerUOW.readObject(Pet.class);

UnitOfWork innerUOWa = outerUOW.acquireUnitOfWork();

Advanced Unit of Work

Transactions 7-41

Pet innerPetCloneA =
(Pet)innerUOWa.registerObject(outerPetClone);

innerPetCloneA.setName("Muffy");
innerUOWa.commit();

UnitOfWork innerUOWb = outerUOW.acquireUnitOfWork();
Pet innerPetCloneB =

(Pet)innerUOWb.registerObject(outerPetClone);
innerPetCloneB.setName("Duffy");

innerUOWb.commit();
outerUOW.commit();

Using a Unit of Work with Custom SQL
You can add custom SQL to a Unit of Work at any time by calling the Unit of Work
executeNonSelectingCall method as shown in Example 7–28.

Example 7–28 Using the executeNonSelectingCall Method

uow.executeNonSelectingCall(new SQLCall(mySqlString));

Validating a Unit of Work
The Unit of Work validates object references at commit time. If an object registered
in a Unit of Work references other unregistered objects, this violates object
transaction isolation, and causes OracleAS TopLink validation to raise an exception.

Although referencing unregistered objects from a registered object can corrupt the
session cache, there are applications in which you want to disable validation.
OracleAS TopLink offers API to toggle validation, as follows:

■ dontPerformValidation: disables validation

■ performFullValidation: enables validation

Validating the Unit of Work Before Commit
If the Unit of Work detects an error when merging changes into the session cache, it
throws a QueryException. Although this exception specifies the invalid object and
the reason it is invalid, it may still be difficult to determine the cause of the
problem.

In this case, you can use the validateObjectSpace method to test registered
objects and provide the full stack of traversed objects. This may help you more
easily find the problem. You can call this method at any time on a Unit of Work.

Advanced Unit of Work

7-42 Oracle Application Server TopLink Application Developer’s Guide

Controlling the Order of Deletes
"Deleting Objects" on page 7-20 explained that OracleAS TopLink always properly
orders the SQL based on the mappings and foreign keys in your object model and
schema. You can control the order of deletes by:

■ Using the Unit of Work setShouldPerformDeletesFirst Method

■ Using the Descriptor addConstraintDependencies Method

Using the Unit of Work setShouldPerformDeletesFirst Method
It is possible to tell the Unit of Work to issue deletes before inserts and updates by
calling the Unit of Work setShouldPerformDeletesFirst method.

By default, OracleAS TopLink does inserts and updates first to ensure that
referential integrity is maintained.

If you are replacing an object with unique constraints by deleting it and inserting a
replacement, if the insert occurs before the delete, you may raise a constraint
violation. In this case, you may need to call setShouldPerformDeletesFirst
so that the delete is performed before the insert.

Using the Descriptor addConstraintDependencies Method
The constraints used by OracleAS TopLink to determine delete order are inferred
from one-to-one and one-to-many mappings. If you do not have such mappings,
you can add constraint knowledge to OracleAS TopLink using the descriptor
addConstraintDependencies(Class) method.

For example, suppose you have a composition of objects: A contains B
(one-to-many, privately owned) and B has a one-to-one, non-private relationship
with C. You want to delete A (and in doing so the included B's) but before deleting
the B's, for some of them (not all) you want to delete the associated object C.

There are two possible solutions:

■ Using deleteAllObjects without addConstraintDependencies

■ Using deleteAllObjects with addConstraintDependencies

Using deleteAllObjects without addConstraintDependencies
In the first option, we do not use privately-owned on the one-to-many (A to B)
relationship. When deleting an A, we make sure to delete all of it's B's as well as any
C instances. For example:

uow.deleteObject(existingA);

Advanced Unit of Work

Transactions 7-43

uow.deleteAllObjects(existingA.getBs());
// delete one of the C's
uow.deleteObject(((B) existingA.getBs().get(1)).getC());

This option produces the following SQL:

DELETE FROM B WHERE (ID = 2)
DELETE FROM B WHERE (ID = 1)
DELETE FROM A WHERE (ID = 1)
DELETE FROM C WHERE (ID = 1)

Using deleteAllObjects with addConstraintDependencies
In the second option, we keep the one-to-many (A to B) relationship privately
owned and add a constraint dependency from A to C. For example:

session.getDescriptor(A.class).addConstraintDependencies(C.class);

Now the delete code would be:

uow.deleteObject(existingA);
uow.deleteAllObjects(existingA.getBs());
// delete one of the C's
uow.deleteObject(((B) existingA.getBs().get(1)).getC());

This option produces the following SQL:

DELETE FROM B WHERE (A = 1)
DELETE FROM A WHERE (ID = 1)
DELETE FROM C WHERE (ID = 1)

In both cases, the B is deleted before A and C. The main difference is that the second
option will generate fewer SQL statements as it knows that it is deleting the entire
set of B's related from A.

Improving Unit of Work Performance
For best performance when using a Unit of Work, consider the following tips:

■ Register objects with a Unit of Work only if objects are eligible for change. If
you register objects that will not change, the Unit of Work needlessly clones and
processes those objects.

■ Avoid the cost of existence checking when you are registering a new or existing
object (see "Using Registration and Existence Checking" on page 7-32).

J2EE Integration

7-44 Oracle Application Server TopLink Application Developer’s Guide

■ Avoid the cost of change set calculation on a class you know will not change by
telling the Unit of Work that the class is read-only (see "Declaring Read-Only
Classes" on page 7-33).

■ Avoid the cost of change set calculation on an object read by a ReadAllQuery in
a Unit of Work that you do not intend to change by unregistering the object (see
"Unregistering Working Clones" on page 7-33).

■ Before using conforming queries, be sure that it is necessary. For alternatives,
see "Using Conforming Queries and Descriptors" on page 7-35.

J2EE Integration
OracleAS TopLink J2EE integration provides support for external datasources and
external transaction controllers. Together, these features provide support for JTA.
This enables you to incorporate external container support into your application,
and to use JTA transactions.

This section describes:

■ External Connection Pooling

■ External Transaction Controllers

External Connection Pooling
For most non-J2EE applications OracleAS TopLink provides an internal connection
or pool of connections. However, most J2EE applications use external connection
pooling offered by the J2EE Container JTA DataSource. For J2EE applications
OracleAS TopLink integrates with the J2EE Container connection pooling.

When to Use External Connection Pools
External connection pools enable your OracleAS TopLink application to:

■ Integrate into a J2EE-enabled system.

■ Integrate with JTA transactions (JTA transactions require a JTA enabled
DataSource).

■ Leverage a shared connection pool in which multiple applications use the same
DataSource.

■ Use a DataSource configured and managed directly on the server.

J2EE Integration

Transactions 7-45

■ Leverage a datasource that is accessible only through the DataSource
interface.

Configure OracleAS TopLink to use the built-in JTA integration support to take
advantage of these benefits. Without JTA, external connection pools generally offer
benefits only if transactions in an OracleAS TopLink application are independent of
each other and any other transactions in the system. In that case, the complexities of
an OracleAS TopLink connection or connection pool are unnecessary.

Configuring an External Connection Pool in sessions.xml
To configure the use of an external connection pool in the sessions.xml file:

1. Configure the DataSource on the server.

2. Add the following elements to the login tag in the sessions.xml file to
specify a DataSource and the use of an external connection pool:

<data-source>jdbc/MyApplicationDS</data-source>
<uses-external-connection-pool>true</uses-external-connection-pool>

Configuring an External Connection Pool in Java
To configure the use of an external connection pool in Java:

1. Configure the DataSource on the server.

2. Configure the Login to specify a DataSource and the use of an external
connection pool:

login.setConnector(
new JNDIConnector(new InitialContext(), "jdbc/MyApplicationDS")

);
login.setUsesExternalConnectionPooling(true);

External Transaction Controllers
A transaction controller is an OracleAS TopLink class that synchronizes the session
cache with the data on the database. The transaction controller manages messages
and callbacks from the J2EE transaction. On commit, the transaction controller
executes the Unit of Work SQL on the database, and merges changed objects into
the OracleAS TopLink session cache. Because JTA transaction controllers require a
JTA-enabled DataSource, configure an external transaction controller and enable
OracleAS TopLink external connection pool support.

J2EE Integration

7-46 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink provides transaction controllers for container-specific support,
as well as a generic controllers that can be used for other specification-conforming
servers.

Table 7–3 lists the custom external transaction controllers OracleAS TopLink
provides.

Configuring an External Transaction Controller in sessions.xml
To configure the use of an external transaction controller in the sessions.xml file:

1. Configure a JTA-enabled DataSource on the server.

For more information, see the J2EE container documentation.

2. Add the following elements to the login tag in the sessions.xml file to
specify a DataSource, the use of an external transaction controller, and the use
of an external connection pool:

<data-source>jdbc/MyApplicationDS</data-source>
<uses-external-transaction-controller>

true
</uses-external-transaction-controller>
<uses-external-connection-pool>true</uses-external-connection-pool>

3. Specify an external transaction controller class in the sessions.xml file.

For example:

<external-transaction-controller-class>
oracle.toplink.jts.oracle9i.Oracle9iJTSExternalTransactionController

</external-transaction-controller-class>

Table 7–3 OracleAS TopLink Custom External Transaction Controllers

Application Server or J2EE
Container OracleAS TopLink External Transaction Controller

Oracle Application Server
Containers for J2EE

oracle.toplink.jts.oracle9i.Oracle9iJTSExternalTransactionController

IBM WebSphere 3.5 oracle.toplink.jts.was.WebSphereJTSExternalTransactionController

IBM WebSphere 4.0 oracle.toplink.jts.was.JTSExternalTransactionController_4_0

IBM WebSphere 5.0 oracle.toplink.jts.was.JTSExternalTransactionController_5_0

BEA WebLogic oracle.toplink.jts.wls.WebLogicJTSExternalTransactionControlle r

Other JTA Container oracle.toplink.jts.JTSExternalTransactionController

J2EE Integration

Transactions 7-47

Configuring an External Transaction Controller in Java
To configure the use of an external transaction controller in Java:

1. Configure a JTA-enabled DataSource on the server.

For more information, see the J2EE container documentation.

2. Configure the Login to specify a DataSource, the use of an external
transaction controller, and the use of an external connection pool:

login.setConnector(
new JNDIConnector(new InitialContext(), "jdbc/MyApplicationDS")

);
login.setUsesExternalTransactionController(true);
login.setUsesExternalConnectionPooling(true);

3. Configure the session to use a particular instance of
ExternalTransactionController:

serverSession.setExternalTransactionController(
new Oracle9iJTSExternalTransactionController()

);

Acquiring a Unit of Work in a JTA Environment
You use a Unit of Work to write to a database even in a JTA environment. To ensure
that only one Unit of Work is associated with a given transaction, use the
getActiveUnitOfWork method to acquire a Unit of Work as shown in
Example 7–29.

The getActiveUnitOfWork method searches for an existing external transaction:

■ If there is an active external transaction and a Unit of Work is already
associated with it, return this Unit of Work.

■ If there is an active external transaction with no associated Unit of Work, then
acquire a new Unit of Work, associate it with the transaction and return it.

■ If there is no active external transaction in progress, return null.

Note: Although there are other ways to write to a database through a
JTA external controller, using getActiveUnitOfWork method is the
safest approach to database updates under JTA.

J2EE Integration

7-48 Oracle Application Server TopLink Application Developer’s Guide

If a non-null Unit of Work is returned, use it exactly as you would in a non-JTA
environment: the only exception is that you do not call the commit method (see
"Using a Unit of Work When an External Transaction Exists" on page 7-48).

If a null Unit of Work is returned, start an external transaction either explicitly
through the UserTransaction interface, or by acquiring a new Unit of Work
using the acquireUnitOfWork method on the client session (see "Using a Unit of
Work When No External Transaction Exists" on page 7-49).

Example 7–29 Using a Unit of Work in a JTA Transaction

boolean shouldCommit = false;
// Read in any pet.
Pet pet = (Pet)clientSession.readObject(Pet.class);
UnitOfWork uow = clientSession.getActiveUnitOfWork();

if (uow == null) {
uow = clientSession.acquireUnitOfWork(); // Start external transaction
shouldCommit = true;

}
Pet petClone = (Pet) uow.registerObject(pet);
petClone.setName("Furry");
if (shouldCommit) {

uow.commit(); // Ask external transaction controller to commit
}

Using a Unit of Work When an External Transaction Exists
When getActiveUnitOfWork returns a non-null Unit of Work, you are
associated with an existing external transaction. Use the Unit of Work as usual.

As the external transaction was not started by the Unit of Work, issuing a commit
on it will not cause the JTA transaction to be committed. The Unit of Work will
defer to the application or container that began the transaction. When the external
transaction does get committed by the container, OracleAS TopLink receives
sychronization callbacks at key points during the commit.

The Unit of Work sends the required SQL to the database when it receives the
beforeCompletion call back.

The Unit of Work uses the boolean argument received from the afterCompletion
call back to determine if the commit was successful (true) or not (false).

If the commit was successful, the Unit of Work merges changes to the session cache.
If the commit was unsuccessful, the Unit of Work discards the changes.

J2EE Integration

Transactions 7-49

Figure 7–4 Unit of Work When an External Transaction Exists

Using a Unit of Work When No External Transaction Exists
When getActiveUnitOfWork returns a null Unit of Work, there is no existing
external transaction. You must start a new external transaction.

Do this either by starting an external transaction explicitly using the
UserTransaction interface, or by acquiring a new Unit of Work using the
acquireUnitOfWork method on the server session.

Use the Unit of Work as usual.

Once the modifications to registered objects are complete, you must commit the
transaction either explicitly through the UserTransaction interface or by calling
the Unit of Work commit method.

The transaction synchronization callbacks are then invoked on OracleAS TopLink
and the database updates and cache merge occurs based upon those callbacks.

J2EE Integration

7-50 Oracle Application Server TopLink Application Developer’s Guide

Figure 7–5 Unit of Work When No External Transaction Exists

Cache 8-1

8
Cache

A cache is a repository that stores recently used objects for an application. Holding
objects in the cache helps you minimize database access, and improves application
performance.

Oracle Application Server TopLink uses two object caches: the session cache
maintains objects retrieved from and written to the database; and the Unit of Work
cache holds objects while they participate in transactions. These caches maintain
objects based on class and primary key values.

This chapter explores cache use, and discusses the following topics:

■ Introduction to Cache Concepts

■ Cache Locking and Isolation

■ Configuring the Cache

■ Distributed Cache Synchronization

■ Remote Command Manager

Introduction to Cache Concepts

8-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Cache Concepts
The cache is a key OracleAS TopLink component. You use the cache to improve
application performance and manage user access to the database. This section
introduces concepts that help you optimize the way your application uses its
caches.

Cache Architecture
The session cache and the Unit of Work cache work together with the database
connection to manage objects in an OracleAS TopLink application. The object life
cycle relies on these three mechanisms.

Figure 8–1 Object Life Cycle and the OracleAS TopLink Caches

Session Cache
The session cache is a shared cache that services clients attached to a given database
session. When you read data from or write data to the database, OracleAS TopLink
saves a copy in the session cache and provides that data to all other processes in the
session.

Database

Session Cache

Unit of Work
Cache

Commit or
Merge Transaction

Register Objects

With Unit of Work

OracleAS TopLink Session

Rea
d

fro
m

Dat
ab

as
e

W
rite to

Database

Introduction to Cache Concepts

Cache 8-3

OracleAS TopLink adds objects to the cache from:

■ The database, when OracleAS TopLink executes a database read

■ The Unit of Work cache, when a Unit of Work successfully commits a
transaction

You can configure queries to search the cache for existing data.If the data exist in
the cache, rather than perform a database read, OracleAS TopLink returns the
cached data.

For more information about query cache usage, see "In-Memory Query Cache
Usage" on page 6-62.

Unit of Work Cache
The Unit of Work cache services operations within the Unit of Work. It maintains
and isolates objects, and writes changed or new objects to the session cache after the
Unit of Work commits changes to the database.

Stale Data
Stale data is an artifact of caching in which an object is not the most recent version.
To avoid stale data, implement an appropriate cache locking strategy.

Cache Locking
Cache locking regulates when processes read or write an object. Depending on how
you configure it, cache locking determines whether a process can read or write an
object that is in use with another process. Cache locking also enables you to manage
stale data issues.

Distributed Cache Synchronization
When you deploy your OracleAS TopLink application in a cluster, the cluster
generally includes several caches. Because each cache services a different
application, this raises the possibility that changes from one application may not
appear in the other applications in the cluster.

Distributed cache synchronization reduces the occurrence of stale data across the
caches in the system. When an object changes in one cache, distributed cache
synchronization enables you to update the other caches in the cluster to replace
stale data.

Introduction to Cache Concepts

8-4 Oracle Application Server TopLink Application Developer’s Guide

For more information about distributed cache synchronization, see "Distributed
Cache Synchronization" on page 8-6.

Cluster
An OracleAS TopLink cluster is a collection of servers that:

■ Are connected by a local area network (LAN).

■ Use OracleAS TopLink to provide the cooperation infrastructure between the
servers.

Discovery
Discovery occurs when servers in a cluster learn of other servers in the cluster.
Discovery uses a multicast protocol to monitor sessions as they join and leave the
OracleAS TopLink cluster.

Message Transport
A message transport is the messaging protocol servers in a cluster use to send and
receive messages. OracleAS TopLink uses a transport protocol to exchange object
updates between cooperating sessions.

Name Service
A name service enables you to search for objects on remote caches. OracleAS
TopLink cache synchronization uses a name service when it looks up connections to
other sessions in the OracleAS TopLink cluster.

If you use RMI as a transport, the RMI Registry provides lookup capabilities. In
most other cases, the Java Naming and Directory Interface (JNDI) provides lookup
functionality.

Propagation Modes
The propagation mode determines when a client regains control after it propagates
object changes. OracleAS TopLink supports synchronous and asynchronous
propagation modes.

Synchronous Update Mode When you propagate updates synchronously, OracleAS
TopLink prevents the committing client from performing other tasks until the
remote merge process is complete.

Cache Locking and Isolation

Cache 8-5

Asynchronous Update Mode In asynchronous mode, OracleAS TopLink creates
separate threads to propagate changes to remote servers. OracleAS TopLink returns
control to the client immediately after the local commit, whether or not the changes
merge successfully on the remote servers. This offers superior performance for
applications that are somewhat tolerant of stale data.

Cache Locking and Isolation
By default, OracleAS TopLink optimizes concurrency to minimize cache locking
during reads or writes. Use the default OracleAS TopLink isolation level unless you
have a very specific reason to change it.

Use the following application programming interface (API) on Databaselogin to
change the OracleAS TopLink isolation level:

login.setCacheTransactionIsolation(int cacheTransactionIsolation)

The available settings for cacheTransactionIsolation are:

■ ConcurrentReadWrite: the default; it allows concurrent object read and write

■ SynchronizedWrite: allows only a single Unit of Work to merge into the cache
at once

■ SynchronizedReadOnWrite: does not allow reading or other Unit of Work
merge while a Unit of Work is merging

Configuring the Cache
A well-managed cache makes your application more efficient. There are very few
cases in which you turn the cache off entirely, as the cache reduces database access,
and is an important part of managing object identity.

To make the most of your cache strategy and to minimize your application’s
exposure to stale data, we recommend the following:

Configure the cache on a per-class basis If other applications can modify the
data used by a particular class, use a weaker style of cache for the class. For
example, the SoftCacheWeakIdentityMap or WeakIdentityMap minimizes
the length of time the cache maintains a de-referenced object.

For more information about configuring cache usage on a per-class basis, see
"Working with Identity Maps" in the Oracle Application Server TopLink Mapping
Workbench User’s Guide.

Distributed Cache Synchronization

8-6 Oracle Application Server TopLink Application Developer’s Guide

Force a cache refresh when required on a per-query basis Any query can include
a flag that forces a cache refresh to the database.

For more information about configuring cache refresh on a per-query basis, see
"Refresh" on page 6-66.

Distributed Cache Synchronization
The need to maintain up-to-date data for all applications is a key design challenge
for building a distributed application environment. The difficulty of this increases
as the number of servers within an environment increases. OracleAS TopLink
provides a distributed cache synchronization feature that ensures data in
applications remains current.

Cache synchronization in no way eliminates the need for an effective locking policy.
However, it does reduce the number of optimistic lock exceptions encountered in a
distributed architecture, and decreases the number of failed or repeated
transactions in an application.

OracleAS TopLink provides cache synchronization at the session level. This ensures
that object updates associated with a given session propagate to the caches on all
other servers in the cluster.

This section describes:

■ Configuring Cache Synchronization in the sessions.xml File

■ Explicit Query Refreshes

Note: If your application reaches a low system memory condition
frequently enough or if your platform's JVM treats weak and soft
references the same, the objects in the sub-cache may be garbage
collected so often that you will not benefit from the performance
improvement provided by the sub-cache. If this is the case, Oracle
recommends that you use the HardCacheWeakIdentityMap. It is
identical to the SoftCacheWeakIdentityMap except that it uses
hard references in the sub-cache. This guarantees that your
application will benefit from the performance improvement
provided by the sub-cache.

Distributed Cache Synchronization

Cache 8-7

Configuring Cache Synchronization in the sessions.xml File
Because each application server approaches caching differently, you must configure
cache synchronization to work effectively within the distributed system.

For more information about choosing cache configuration options, see the
application server or J2EE container documentation.

To enable and configure cache synchronization in the sessions.xml file, specify
the cache-synchronization-manager element, and configure the required
sub-elements.

Example 8–1 illustrates how to configure cache synchronization in the
sessions.xml file for a session that:

■ Runs in Oracle Application Server Containers for J2EE

■ Uses the default discovery settings

■ Uses JNDI to look up the remote objects

■ Distributes the changes using RMI

Example 8–1 Configuring Cache Synchronization in the sessions.xml File

<cache-synchronization-manager>
<clustering-service>

oracle.toplink.remote.rmi.RMIJNDIClusteringService
</clustering-service>
<jndi-user-name>userName</jndi-user-name>
<jndi-password>password</jndi-password>
<naming-service-initial-context-factory-name>

oracle.com.evermind.server.rmi.RMIInitialContextFactory
</naming-service-initial-context-factory-name>
<naming-service-url>ormi://hostname:23791/appName</naming-service-url>

</cache-synchronization-manager>

The configuration in Example 8–1 includes the name, password, context factory
class, and URL. Oracle Application Server Containers for J2EE requires all four
sub-elements to enable name lookup on remote hosts. Other servers require
different values for the context factory and URL.

For Oracle Application Server Containers for J2EE, the URL element includes the
ormi:// protocol, the local host name and RMI server port, and the name of the
application in which the OracleAS TopLink session is deployed.

Distributed Cache Synchronization

8-8 Oracle Application Server TopLink Application Developer’s Guide

Clustering Service
The clustering-service element specifies the name service and transport
combination used to communicate changes. Choose the combination that works
best with your application. Your choices are:

■ oracle.toplink.remote.rmi.RMIJNDIClusteringService: uses JNDI
to look up remote sessions, and RMI point-to-point connections to propagate
changes between sessions.

■ oracle.toplink.remote.rmi.RMIClusteringService: uses
RMIRegistry to look up sessions, and RMI point-to-point connections to
propagate changes between sessions.

■ oracle.toplink.remote.ejb.EJBJNDIClusteringService: uses JNDI
to look up session beans that propagate changes between sessions.

■ oracle.toplink.remote.corba.CORBAJNDIClusteringService: uses
JNDI to look up sessions, and CORBA point-to-point connections to propagate
changes between sessions.

■ oracle.toplink.remote.corba.JMSClusteringService: uses JNDI to
look up Java Message Service (JMS) topics that propagate changes between
sessions.

Example 8–2 Configuring a Clustering Service in the sessions.xml File

<cache-synchronization-manager>
<clustering-service>

oracle.toplink.remote.rmi.RMIJNDIClusteringService
</clustering-service>
...

</cache-synchronization-manager>

Discovery
Discovery occurs when servers in a cluster learn of other servers in the cluster and
uses a multicast protocol to monitor sessions as they join and leave the OracleAS
TopLink cluster. If you are running OracleAS TopLink with other Oracle
Application Server 10g components, ensure the port you select does not conflict
with other components. If OracleAS TopLink’s default discovery configuration
conflicts with settings for other services on the same host, you can override the
discovery settings.

Distributed Cache Synchronization

Cache 8-9

You can configure discovery to use specific optional multicast socket options,
including:

■ multicast-port: overrides the default multicast port used for discovery
(default is 6018)

■ multicast-group-address: overrides the default multicast group used for
discovery (default is 226.18.6.18)

■ packet-time-to-live: overrides the default time-to-live (TTL) setting for
discovery multicast socket (default is 2)

Example 8–3 Configuring Discovery in the sessions.xml File

<cache-synchronization-manager>
<clustering-service> … </clustering-service>
<multicast-port>6020</multicast-port>
<multicast-group-address>228.1.2.3</multicast-group-address>
<packet-time-to-live>3</packet-time-to-live>
...

</cache-synchronization-manager>

Name Service
A name service enables you to search for objects on remote caches. JNDI provides
the name service for most applications, and offers the following optional elements
to customize JNDI support in your application:

■ jndi-user-name: user name value assigned to Context.SECURITY_
PRINCIPAL property when looking up names in JNDI

■ jndi-password: password value assigned to Context.SECURITY_
CREDENTIALS property when looking up names in JNDI

■ naming-service-initial-context-factory-name: the class used when
creating initial context instances to use for looking up in JNDI

■ naming-service-url - the URL to use when looking up through the naming
service (value assigned to Context.PROVIDER_URL property in JNDI)

Not all servers require all four optional elements.

Note: When you select JMS as the transport mechanism in the
clustering-service element, OracleAS TopLink ignores the
discovery setting.

Distributed Cache Synchronization

8-10 Oracle Application Server TopLink Application Developer’s Guide

Example 8–4 Configuring JNDI Name Service in the sessions.xml File for WLS

<cache-synchronization-manager>
<clustering-service> … </clustering-service>
<naming-service-initial-context-factory-name>

weblogic.jndi.WLInitialContextFactory
</naming-service-initial-context-factory-name>
<naming-service-url>t3://hostName:7001</naming-service-url>

</cache-synchronization-manager>

Using the Java Message Service
The JMS API is a protocol for communication that provides asynchronous
communication between components in a distributed computing environment.
Because OracleAS TopLink integrates with the JMS publish/subscribe mechanism,
use JMS to improve the scalability of your cache synchronization.

For more information about the JMS API, see the JMS specification at

http://java.sun.com/products/jms

Preparing to use JMS You must configure a JMS service in the environment before
OracleAS TopLink can leverage the service. To enable the service:

1. Configure a JMS connection factory and note the name. OracleAS TopLink uses
the factory name to look-up the factory.

2. Configure a JMS topic and note the name. OracleAS TopLink uses the topic
name to look-up the topic.

3. Configure the OracleAS TopLink sessions.xml file to use the factory and
topic names.

4. Start the JMS service.

For more information on how to complete steps 1, 2, and 4, see the JMS service
provider documentation.

For more information on how to complete step 3, see "Configuring JMS in
sessions.xml" on page 8-11.

Example 8–5 illustrates a jms.xml configuration file for Oracle Application Server
Containers for J2EE. Note that the host and port of the topic connection factory is
the host and port of the JMS server hosting the topic, and not the host or port of the
local JMS server.

Distributed Cache Synchronization

Cache 8-11

Example 8–5 Example of the Oracle Application Server Containers for J2EE jms.xml
File

<jms-server port="9128">
<topic name="MyCacheSyncTopic" location="jms/MyCacheSyncTopic"/>
<topic-connection-factory

host="micky"
port="9127"
name="Cache Sync Topic Factory"
location="jms/MyTopicFactory"
password="password"
username="admin"/>

<log>
<file path="../log/jms.log"/>

</log>
</jms-server>

Configuring JMS in sessions.xml To configure JMS in the sessions.xml file, use the
following optional elements:

■ jms-topic-connection-factory-name: the JNDI name to use when
looking up the connection factory for the JMS topic

■ jms-topic-name: the JNDI name to use when looking up the JMS topic.

Example 8–6 JMS Entries in the sessions.xml File

<cache-synchronization-manager>
<clustering-service>

oracle.toplink.remote.jms.JMSClusteringService
</clustering-service>
<jms-topic-connection-factory-name>

jms/MyTopicFactory
</jms-topic-connection-factory-name>
<jms-topic-name>jms/MyCacheSyncTopic</jms-topic-name>
...

</cache-synchronization-manager>

Note that JMS neither requires nor makes use of discovery.

Note: These elements are exclusive to JMS use only. Do not apply these
elements when you when use a service other than JMS.

Distributed Cache Synchronization

8-12 Oracle Application Server TopLink Application Developer’s Guide

Configuring JMS for Oracle Application Server Containers for J2EE When you use JMS in
Oracle Application Server Containers for J2EE, set the naming service URL to the
hostname of the JMS server hosting the topic. Example 8–7 illustrates this for an
OracleAS TopLink session running in Oracle Application Server Containers for
J2EE using JMS.

Example 8–7 Configuring OracleAS TopLink with JMS for Oracle Application Server
Containers for J2EE

<cache-synchronization-manager>
<clustering-service>

oracle.toplink.remote.jms.JMSClusteringService
</clustering-service>
<jndi-user-name>admin</jndi-user-name>
<jndi-password>password</jndi-password>
<jms-topic-connection-factory-name>

jms/MyTopicFactory
</jms-topic-connection-factory-name>
<jms-topic-name>jms/MyCacheSyncTopic</jms-topic-name>
<naming-service-initial-context-factory-name>

oracle.com.evermind.server.rmi.RMIInitialContextFactory
</naming-service-initial-context-factory-name>
<naming-service-url>ormi://micky</naming-service-url>

</cache-synchronization-manager>

Synchronous and Asynchronous Propagation
The Cache Synchronization Manager enables you to specify the propagation mode
for your OracleAS TopLink application:

■ If you send changes synchronously, the current transaction does not commit
until OracleAS TopLink sends changes successfully to the other sessions in the
system.

■ If you send changes asynchronously, the transaction commits without waiting
for OracleAS TopLink to propagate changes.

The optional is-asynchronous element controls the propagation mode,
regardless of the transport used. By default, propagation occurs asynchronously.

Example 8–8 Configuring Propagation Mode

<cache-synchronization-manager>
<clustering-service>...</clustering-service>
<is-asynchronous>false</is-asynchronous>

Distributed Cache Synchronization

Cache 8-13

...
</cache-synchronization-manager>

Error Handling
You can define error handlers to respond to raised exceptions. The
should-remove-connection-on-error element (an optional sub-element of
cache-synchronization-manager) specifies whether a connection to another
session is discarded if an error occurs while sending an update. By default,
OracleAS TopLink discards connections when errors occur.

Example 8–9 Configuring Error Handling

<cache-synchronization-manager>
<clustering-service>...</clustering-service>
<should-remove-connection-on-error>false</should-remove-connection-on-error>
...

</cache-synchronization-manager>

Explicit Query Refreshes
Some distributed systems require only a small number of objects to be consistent
across the servers in the system. Conversely, other systems require that several
specific objects must always be guaranteed to be up-to-date, regardless of the cost.
If you build such a system, you can explicitly refresh selected objects from the
database at appropriate intervals without incurring the full cost of distributed cache
synchronization.

To implement this type of strategy:

1. Configure a set of queries that refresh the required objects.

2. Establish an appropriate refresh policy.

3. Invoke the queries as required to refresh the objects.

Refresh Policy
When you execute a query, if the required objects are in the cache, OracleAS
TopLink returns the cached objects without checking the database for a more recent
version. This reduces the number of objects that OracleAS TopLink must build from
database results, and is optimal for non-clustered environments. However, this may
not always be the best strategy for a clustered environment.

Remote Command Manager

8-14 Oracle Application Server TopLink Application Developer’s Guide

To override this behavior, set a refresh policy that specifies that the objects from the
database always take precedence over objects in the cache. This updates the cached
objects with the data from the database.

You can implement this type of refresh policy on each OracleAS TopLink descriptor,
or just on certain queries, depending upon the nature of the application.

For more information about setting the refresh policy for a descriptor, see "Setting
Descriptor Information," in the Oracle Application Server TopLink Mapping Workbench
User’s Guide.

For more information about setting the refresh policy for a query, see "Refresh" on
page 6-66.

EJB Finders and Refresh Policy
When you invoke a findByPrimaryKey finder, if the object exists in the cache,
OracleAS TopLink returns that copy. This is the default behavior, regardless of the
refresh policy. To force a database query, you can configure the query to refresh by
setting refreshIdentityMapResult() on it.

For more information about caching options, see "Caching Options" on page 6-97.

Remote Command Manager
The Remote Command Manager (RCM) enables OracleAS TopLink to send
synchronization messages across the network to non-OracleAS TopLink
applications. This feature is separate from the standard cache synchronization
feature.

When you build a distributed system that includes both OracleAS TopLink and
non-OracleAS TopLink applications, use the RCM in place of regular cache
synchronization. Do not use RCM and regular OracleAS TopLink cache
synchronization concurrently.

This section discusses the RCM, and offers information on:

■ RCM Implementation Requirements

■ RCM Structure

■ RCM Channels

Note: Refreshing does not prevent phantom reads from occurring. See
"Refreshing Finder Results" on page 6-98.

Remote Command Manager

Cache 8-15

■ Configuring the RCM

■ Error Handling

■ Guidelines for Using RCM

■ Custom Remote Commands

RCM Implementation Requirements
To enable RCM in a distributed system, enable RCM for all OracleAS TopLink
sessions in the system. In addition, non-OracleAS TopLink applications must meet
the following criteria to participate in cache synchronization through the RCM:

■ The application must be a Java application or include a Java component.

■ It must have access to a local JNDI service that supports remote access.

■ The toplink.jar must be included in the application class path.

■ You must configure the RCM in Java code for the application, and include the
appropriate converter and processor components.

RCM Structure
The RCM is both modular and pluggable. Figure 8–2 illustrates the components of
the RCM.

Remote Command Manager

8-16 Oracle Application Server TopLink Application Developer’s Guide

Figure 8–2 Remote Command Manager Components

RCM components include:

CommandManager The CommandManager is the central point of control for the
system.

DiscoveryManager The DiscoveryManager dynamically maintains the membership
of the OracleAS TopLink cluster.

TransportManager The TransportManager manages the transport level of the
message exchange.

CommandProcessor The CommandProcessor interface sits between the RCM and
the application. It is the main integration point for non-OracleAS TopLink
applications.

CommandConverter An implementation of the CommandConverter translates
commands between OracleAS TopLink and non-OracleAS TopLink applications.
Regular OracleAS TopLink sessions do not require a CommandConverter
implementation, because they do not require conversion.

DiscoveryManager

CommandManager
TransportManager

Name
Service

OracleAS TopLink Cluster

CommandConverter

CommandProcessor

Connection
Information

Propagate
to Cluster

Propagate
Command

Convert to
Application
Format

Convert to
OracleAS TopLink
Format Process

Command

Received
From Cluster

Remote Command Manager

Cache 8-17

Transmitting Commands From OracleAS TopLink with RCM
The process of initiating and transmitting commands from an OracleAS TopLink
application is as follows:

1. Invoke the getCommandManager() accessor on the session to obtain a
CommandManager interface.

2. Invoke the CommandManager.propagateCommand(command) method to
initiate commands from the OracleAS TopLink session. Pass the command to be
remotely executed as the command argument.

3. The TransportManager transmits the command to other members of the
cluster.

4. If the receiving application is:

■ An OracleAS TopLink application, the OracleAS TopLink session executes
the command.

■ A non-OracleAS TopLink application (or an application that does not use an
OracleAS TopLink session), the application must provide implementation
classes for the CommandProcessor and CommandConverter interfaces.

Using Commands on a Non-OracleAS TopLink Application
To send remote commands to the cluster, non-OracleAS TopLink applications
invoke the CommandManager.propagateCommand(command) method. The
application must provide a CommandConverter interface to convert the
application-specific command format to an OracleAS TopLink Command object.

Likewise, when a non-OracleAS TopLink application receives an OracleAS TopLink
command, it must implement a converter to translate the command for the
CommandManager. To execute the command, a non-OracleAS TopLink application
invokes the processCommand(command) method.

RCM Channels
The RCM passes remote commands along virtual channels. The RCM assigns each
subscribing service a channel on which to send and receive commands, and all
services assigned to a particular channel send (or publish) commands to that
channel. Services also act as subscribers to their assigned channel, receiving all the
commands published to that channel by other services.

Remote Command Manager

8-18 Oracle Application Server TopLink Application Developer’s Guide

You can assign any number of channels in the system without performance penalty,
but any given service may only publish and subscribe to a single channel. You
cannot reassign channels dynamically, or while discovery is active.

If you do not set a channel name, RCM assigns a default channel when you add
services to the cluster. For example, if you do not set a channel name for any service
instance you add to the system, all services subscribe to the same, default channel.

Configuring the RCM
Use the RCM API to configure the RCM. For OracleAS TopLink applications, create
the cluster as part of the session initialization (for example: use a session PreLogin
event when the session is initialized from the sessions.xml file). Note that
neither the OracleAS TopLink Sessions Editor nor the sessions.xml file directly
support RCM configuration.

The logical OracleAS TopLink cluster includes any number of OracleAS TopLink
session-based applications, and non-OracleAS TopLink applications. Bind
non-OracleAS TopLink applications in with OracleAS TopLink code to enable them
to access the OracleAS TopLink commands.

Configuring the RCM for OracleAS TopLink Applications
To configure applications that use OracleAS TopLink sessions for RCM:

1. Create a Remote Command Manager implementation instance for the
CommandManager interface. Pass the session as the CommandProcessor
argument.

For example:

CommandManager rcm = new RemoteCommandManager(session);

2. To enable change set propagation between sessions, set the propagating option
to true:

session.setShouldPropagateChanges(true);

3. Set the URL that other RCM servers use to look up JNDI names in this Java
virtual machine (JVM). For example, for Oracle Application Server Containers
for J2EE, the URL can appear as follows:

rcm.setUrl(“ormi://myHostname:23791/myDeployedApplication”);

For a WebLogic Server, the URL can appear as follows:

Remote Command Manager

Cache 8-19

rcm.setUrl(“t3://myHostname:7001”);

4. If you use Oracle Application Server Containers for J2EE, set a valid user and
password. This enables the RCM services to look up remote names in JNDI. The
user and password combination must be valid on all servers that participate in
RCM.

For example:

rcm.getTransportManager().setUserName("admin");
rcm.getTransportManager().setPassword("password");

5. If you are using WebLogic Server, leave the remote context properties empty.

For example:

rcm.getTransportManager().setRemoteContextProperties(
new java.util.Hashtable());

6. (Optional) Set the DiscoveryManager parameters to custom multicast socket
settings for your environment.

For example:

rcm.getDiscoveryManager().setMulticastGroupAddress(“226.1.2.3”);
rcm.getDiscoveryManager().setMulticastPort(3122);

7. (Optional) Set the logical channel to assign a channel for the service.

For example:

rcm.setChannel("MyChannel");

8. (Optional) Set other RCM properties to customize the application.

For example:

rcm.setShouldPropagateAsynchronously(false);
rcm.setShouldRemoveConnectionOnError(true);

Example 8–10 Enabling RCM on Oracle Application Server Containers for J2EE

CommandManager rcm = new RemoteCommandManager(session);
rcm.setUrl(“ormi://ferengi:23791/orderEntryApp”);
rcm.getTransportManager().setUserName("admin");
rcm.getTransportManager().setPassword("password");
session.setShouldPropagateChanges(true);

Remote Command Manager

8-20 Oracle Application Server TopLink Application Developer’s Guide

Example 8–11 Enabling RCM on the BEA WebLogic Server

CommandManager rcm = new RemoteCommandManager(session);
rcm.setUrl(“t3://ferengi:7001”);
rcm.getTransportManager().setRemoteContextProperties(

new java.util.Hashtable());
session.setShouldPropagateChanges(true);

Configuring RCM for Non-OracleAS TopLink Applications
To configure RCM on applications that do not use the OracleAS TopLink sessions:

1. Create an application class to implement the CommandProcessor interface.

For example:

CommandProcessor processor = new ApplicationCommandProcessor();

1. Create a Remote Command Manager implementation instance for the
CommandManager interface. Pass the session as the CommandProcessor
argument:

CommandManager rcm = new RemoteCommandManager(processor);

2. Create an application class to implement the CommandConverter interface
and set an instance of the implementation class on the CommandManager.

For example:

CommandConverter converter = new ApplicationCommandConverter();
rcm.setCommandConverter(converter);

3. If you are using WebLogic Server, leave the remote context properties empty.

For example:

rcm.getTransportManager().setRemoteContextProperties(
new java.util.Hashtable());

4. (Optional) Set the DiscoveryManager parameters to custom multicast socket
settings for your environment.

For example:

rcm.getDiscoveryManager().setMulticastGroupAddress(“226.1.2.3”);
rcm.getDiscoveryManager().setMulticastPort(3122);

Remote Command Manager

Cache 8-21

5. (Optional) Set the logical channel to assign a channel for the service.

For example:

rcm.setChannel("MyChannel");

6. (Optional) Set other RCM properties to customize the application.

For example:

rcm.setShouldPropagateAsynchronously(false);
rcm.setShouldRemoveConnectionOnError(true);

7. Start the RCM service:

rcm.initialize();

Example 8–12 Enabling RCM for a Non-OracleAS TopLink Application Using JNDI on
Oracle Application Server Containers for J2EE

CommandManager rcm = new RemoteCommandManager(
new ApplicationCommandProcessor());

rcm.setCommandConverter(
new ApplicationCommandConverter());

rcm.setUrl(“ormi://ferengi:23791/orderEntryApp”);
rcm.getTransportManager().setUserName("admin");
rcm.getTransportManager().setPassword("password");
rcm.initialize();

Example 8–13 Enabling RCM for a Non-OracleAS TopLink Application Using JNDI on
WebLogic Server

CommandManager rcm = new RemoteCommandManager(
new ApplicationCommandProcessor());

rcm.setCommandConverter(
new ApplicationCommandConverter());

rcm.setUrl(“t3://ferengi:7001”);
rcm.getTransportManager().setRemoteContextProperties(

new java.util.Hashtable());
rcm.initialize();

Remote Command Manager

8-22 Oracle Application Server TopLink Application Developer’s Guide

Error Handling
Propagated commands often execute on multiple subscribing services. The
subscribing services only return results to the publishing server if the command
fails. The propagation mode affects error handling when a subscribing node reports
a failure:

■ In synchronous mode, the first remote command execution that fails raises a
RemoteCommandException on the publishing service. The publishing service
stops command propagation.

■ In asynchronous mode, every server that fails raises a
RemoteCommandException on the publishing service. Because the threads
are asynchronous to the publishing server’s thread, the exceptions are not
raised within the context of the calling thread.

You can choose to catch and handle exceptions explicitly. The CommandProcessor
interface includes the handleException() method for this purpose. Implement
this method to catch exceptions thrown from a remote command service. For
OracleAS TopLink applications, you can specify an exception handler on the session
to handle the exception.

Raised exceptions are either:

■ CommunicationException: thrown when a transport-level communications
error occurs

■ RemoteCommandException: thrown when any other problem occurs.

Guidelines for Using RCM
When you use RCM, consider the following:

■ When you run Oracle Application Server Containers for J2EE, include the
-userThreads command line option when you start the server. This enables
the DiscoveryManager to initialize as a separate thread.

■ When you deploy a single archive (for example: an EAR file) to multiple
servers, implement one of the following on the host-specific Java code that
configures the URL:

■ Use the java.net.InetAddress methods.

■ Define a system property on the command line to pass in the hostname or
URL used by the RCM service.

Remote Command Manager

Cache 8-23

■ No transaction context is associated with remote command execution. The
CommandProcessor interface must initiate its own transactions, and provide
clean-up functionality in the case of failure.

■ OracleAS TopLink applications must hook a server session as the
CommandProcessor interface to an RCM. Do not use other types of sessions.

Custom Remote Commands
To create additional custom commands, extend the
oracle.toplink.remotecommand.Command class, and implement the
executeWithSession(Session) method. If the CommandProcessor interface
is an OracleAS TopLink session, this method executes when the service executes.

You can pass instances of these commands to the propagateCommand() method,
and publish them for execution on the remote services.

Remote Command Manager

8-24 Oracle Application Server TopLink Application Developer’s Guide

Packaging for Deployment 9-1

9
Packaging for Deployment

With your Oracle Application Server TopLink application built, you are ready to
package and deploy the project to your enterprise. This chapter discusses:

■ Introduction to Packaging and Deployment Concepts

■ Creating OracleAS TopLink Deployment Files

■ Packaging an OracleAS TopLink Application

■ Hot Deployment of EJBs

This chapter discusses packaging and deployment from an OracleAS TopLink
perspective. However, if you deploy your application to a J2EE container, you must
configure elements of your application to enable OracleAS TopLink container
support.

For more information, see also Appendix B, "Configuring OracleAS TopLink for
J2EE Containers".

Introduction to Packaging and Deployment Concepts

9-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Packaging and Deployment Concepts
This chapter introduces a basic approach to packaging that offers consistency across
your projects, and the flexibility to work with projects of all kinds.

OracleAS TopLink Approach to Deployment
The OracleAS TopLink approach to deployment involves packaging application
files into a single file, such as a Java archive (JAR) file, or an enterprise archive
(EAR) file. This approach enables you to create clean and self-contained
deployments that do not require significant file management.

After you create these files, you deploy the project.

OracleAS TopLink in an Enterprise Application
As an integral part of the enterprise application, OracleAS TopLink provides
persistence and object-to-relational mapping functions. In most cases, the client
does not interact with OracleAS TopLink directly; instead, clients access a client
application that passes requests to OracleAS TopLink. As a result, there are two
important steps to OracleAS TopLink deployment: make the packaged OracleAS
TopLink application available; and add code to the client application to invoke
OracleAS TopLink.

Road to Deployment
The goal of deployment is to provide the project to the client applications. Before
you attempt to deploy an OracleAS TopLink application, complete the following:

1. Build the project elements, including beans, classes, and datasources.

2. Define the application mappings in the OracleAS TopLink Mapping
Workbench.

3. Build the application deployment files. Use the OracleAS TopLink Mapping
Workbench and the OracleAS TopLink Sessions Editor to create the files.

4. Package and deploy the application.

5. Add code to the client application to enable it to access the OracleAS TopLink
application.

Creating OracleAS TopLink Deployment Files

Packaging for Deployment 9-3

XML Versus Java Source Deployment
You can deploy the application mappings that you define in the OracleAS TopLink
Mapping Workbench with your application as an XML file or as a compiled Java
class. The OracleAS TopLink Mapping Workbench supports exporting for both of
these formats.

The more traditional approach to deployment is to export Java source files from the
OracleAS TopLink Mapping Workbench. It requires you to recompile the resulting
Java files.

XML deployment files offer better flexibility both before and after deployment, and
are easier to troubleshoot if a problem occurs. Because of this, in most cases, you
should deploy your project using XML files rather than Java source files.

Creating OracleAS TopLink Deployment Files
The OracleAS TopLink Mapping Workbench provides the ability to create
deployment files from a OracleAS TopLink Mapping Workbench project. After you
build a project, you have two options to create the deployment files:

■ Create XML deployment files that require no compiling. This approach gives
you a very flexible configuration that enables you to make changes safely and
easily. XML deployment files do not require third-party applications or
compilers to deploy successfully.

■ Create Java source files, which you compile and deploy outside of the OracleAS
TopLink Mapping Workbench.

XML deployment is the preferred method of deployment, because XML files are
easier to deploy and troubleshoot than compiled Java files.

This section discusses:

■ XML Deployment Files

■ Using Java Source Deployment Files

■ Configuring Additional Files for CMP Deployment

XML Deployment Files
To deploy an OracleAS TopLink application, create a project file, in addition to one or
more supporting files, as follows:

Creating OracleAS TopLink Deployment Files

9-4 Oracle Application Server TopLink Application Developer’s Guide

■ If you deploy a non-EJB application, you require a session configuration file,
known as the sessions.xml file.

■ If you deploy EJBs to a J2EE container, you require the following entity bean
deployment descriptors:

■ An ejb-jar.xml file that specifies standard EJB deployment properties

■ A J2EE container file that contains the properties specific to the J2EE
container you use to deploy the application

■ A toplink-ejb-jar.xml that contains properties specific to OracleAS
TopLink

Related beans share the same ejb-jar.xml file, J2EE container-specific file, and
toplink-ejb-jar.xml file.

For more information, see "Container-Managed Persistence Applications" on
page 9-18.

Project.xml File
The project.xml file is the core of your application. It contains the mappings and
descriptors you define in the OracleAS TopLink Mapping Workbench, and also
includes any named queries or finders associated with your project.

Because you must synchronize the project.xml file with the classes and database
associated with your application, we recommend you not modify this file manually.
The OracleAS TopLink Mapping Workbench ensures proper synchronization, and is
the best way to make changes to the project. Simply modify the project in the
OracleAS TopLink Mapping Workbench and redeploy the file project.xml file.

To redeploy a project.xml file, shut down and restart your OracleAS TopLink
application.

In addition to generating the deployment XML from the OracleAS TopLink
Mapping Workbench, you can use either of the following methods and use the
DeploymentXMLGenerator API:

Note: Because the sessions.xml file includes the name of the
project file, you can save the project file with a name other than
project.xml; however, for clarity, this discussion assumes that
the file has not been renamed.

Creating OracleAS TopLink Deployment Files

Packaging for Deployment 9-5

■ From an application, instantiate the DeploymentXMLGenerator and your
java source. Call the following method:

generate (<MW_Project.mwp>, <output file.xml>)

■ From a command line, use:

java -classpath toplink.jar;toplinkmw.jar;xmlparserv2.jar;ejb.jar;.
oracle.toplink.workbench.external.api.DeploymentXMLGenerator <MW_
Project.mwp> <output file.xml>

Sessions.xml File
The sessions.xml file provides a simple and flexible way to configure, modify,
and troubleshoot the application database sessions. Because of these attributes, the
sessions.xml file is the preferred way to configure an OracleAS TopLink session.

The OracleAS TopLink Sessions Editor is a graphical tool to build and edit the
sessions.xml file, but you can also use a text editor.

For more information about the OracleAS TopLink Sessions Editor, see
"Understanding the OracleAS TopLink Sessions Editor" in the Oracle Application
Server TopLink Mapping Workbench User’s Guide.

For more information, see "Configuring Sessions with the sessions.xml File" on
page 4-8.

Configuring the toplink-ejb-jar.xml File with the IBM WebSphere Server 4.0
The toplink-ejb-jar.xml file specifies all OracleAS TopLink-related information
for an EJB entity bean deployment to a J2EE container. It includes several elements
you use to configure the application.

The OracleAS TopLink deployment descriptor is included in the EJB JAR in the
same META-INF directory as the ejb-jar.xml.

session The session element contains settings for the entire project. The
toplink-ejb-jar.xml file must include a session section, which includes the
following XML elements:

Note: Before you use either method, ensure your the class path
includes he <ORACLE_HOME>\toplink\config directory.

Creating OracleAS TopLink Deployment Files

9-6 Oracle Application Server TopLink Application Developer’s Guide

■ name: A session name (unique among all deployed JARs) that is used as a key
for the deployed OracleAS TopLink project (or the JAR that contains the
project).

■ project-xml: Specifies the name of the XML file that contains the OracleAS
TopLink project metadata. Specify the fully qualified file name, including the
.xml extension.

■ The project deployment XML file can be stored either in the deployable JAR file
at the root directory or on the file system.

■ session-type: The session type must always be set to server-session.

■ platform-class: The platform class controls the format of the SQL generated
and other database specific behavior.

■ uses-external-connection-pool and
uses-external-transaction-controller: For OracleAS TopLink to
participate in WebSphere JTS transactions set both of these to TRUE.

■ external-transaction-controller-class: This is the OracleAS
TopLink server-specific JTS controller class required when using external
transaction control. For WebSphere 4.0, use
oracle.toplink.jts.was.JTSExternalTransactionController_4_0.

■ enable-logging: When set to TRUE, OracleAS TopLink prints logging
information for several of its operations. This is very useful for debugging.

■ logging-options: Options for different levels of OracleAS TopLink logging.

For more information about the toplink-was-ejb-jar_904.dtd, see
<ORACLE_HOME>\toplink\config\dtds.

Configuring the toplink-ejb-jar.xml File with the BEA WebLogic Server
The toplink-ejb-jar.xml file specifies all OracleAS TopLink-related information
for an EJB entity bean deployment to a J2EE container. It includes several elements
you use to configure the application.

Note: If you wish, use a project-class element rather than a
project-xml tag. With the project-class element, specify the
fully-qualified name of the OracleAS TopLink project class. Include this
class in the deployable JAR file. You can generate the project class either
with the OracleAS TopLink Mapping Workbench or write it manually.

Creating OracleAS TopLink Deployment Files

Packaging for Deployment 9-7

The OracleAS TopLink deployment descriptor is included in the EJB JAR in the
same META-INF directory as the ejb-jar.xml.

session The session element contains settings for the entire project. The
toplink-ejb-jar.xml file must include a session section, which may include the
following XML elements:

■ name: Specifies the name of the session. Assign a unique session name to all
projects deployed in a given server. This tag is mandatory.

■ project-class: Specifies the name of the class that contains the OracleAS
TopLink project metadata. Specify the fully qualified Java class name, but do
not include the .class or .java extension.

Use this tag (and not the project-xml tag) if you deploy your projects using
exported and compiled Java code.

■ project-xml: Specifies the name of the XML file that contains the OracleAS
TopLink project metadata. Specify the fully qualified file name, including the
.xml extension.

Use this tag (and not the project-class tag) if you deploy your project using
an exported XML file.

■ login: Specifies the login parameters for the session. This element includes the
sub elements listed in Table 9–1.

Creating OracleAS TopLink Deployment Files

9-8 Oracle Application Server TopLink Application Developer’s Guide

■ cache-synchronization (optional): This element indicates that changes
made to one OracleAS TopLink cache in a cluster are automatically propagated
to all other server caches. You can also include the optional sub elements listed
in Table 9–2.

Table 9–1 login Elements

Element Description

connection-pool Identifies a JDBC pool for the current OracleAS TopLink project. The name
of the pool must correspond to a JDBC connection pool specified in the
WebLogic administration console.

Specify a connection-pool or a datasource and non-jts-datasource to
deploy entity beans.

datasource Identifies JTA datasource for the current project. Use datasource in
conjunction with non-jts-datasource. This provides an alternative to using
a connection-pool.

Use datasource to map to a JTA datasource, and non-jts-datasource to
map to a non-JTS datasource.

For more information about datasources, see "J2EE Integration" on page 7-44
and the J2EE container documentation.

non-jts-datasource Identifies the read only datasource for the current project. Use
non-jts-datasource in conjunction with datasource. This provides an
alternative to using a connection-pool.

For more information about datasources, see "J2EE Integration" on page 7-44
and the J2EE container documentation.

should-bind-all-parameters
(optional)

Indicates whether all queries use parameter binding. Valid values are TRUE or
FALSE. Default is FALSE.

uses-byte-array-binding
(optional)

Indicates whether byte arrays are bound. Valid values are TRUE or FALSE.
Default is FALSE.

uses-string-binding (optional) Indicates whether strings are bound. Valid values are TRUE or FALSE. Default
is FALSE.

Creating OracleAS TopLink Deployment Files

Packaging for Deployment 9-9

■ use-remote-relationships (optional): OracleAS TopLink enables you to
define relationships between beans in terms of their remote interfaces. This is
especially useful when you port EJB 1.1 applications to EJB 2.0. When you
enable this option, OracleAS TopLink defines all relationships in the JAR using
remote interfaces. Valid values are TRUE or FALSE. Default is FALSE.

■ customization-class (optional): specifies the fully qualified name of a
DeploymentCustomization class.

Using Java Source Deployment Files
Although XML deployment is the preferred deployment method, you can also
deploy your OracleAS TopLink project as Java source files. To deploy a project as
Java source files, create your project, and export the Java source files from the
OracleAS TopLink Mapping Workbench. After you generate the files, compile them
with an integrated development environment (IDE). This more traditional
deployment method results in OracleAS TopLink applications with the following
characteristics:

■ They generally load more quickly than an XML-deployed project the first time
they are loaded. They do not offer performance benefits after load time.

■ Modifying session characteristics is a multi-step process that involves
modifying the project in the OracleAS TopLink Mapping Workbench,
recompiling the source files in an IDE, and redeploying the project.

Table 9–2 Optional cache-synchronization Elements

Element Description

is-asynchronous Specifies whether synchronization should NOT wait until all sessions have
been synchronized before returning. Valid values are TRUE or FALSE. Default
is TRUE.

should-remove-connection-on-
error

Specifies whether a synchronization connection is removed from the session if
a communication error occurs. Valid values are TRUE or FALSE. Default is
TRUE.

Note: If you enable this option, your application is no longer strictly
EJB 2.0 compliant, and your container may require some custom
configuration. For example, when you deploy, run the weblogic.ejbc
tool with the -nocompliance flag set.

Creating OracleAS TopLink Deployment Files

9-10 Oracle Application Server TopLink Application Developer’s Guide

In addition to generating the Java Source from the OracleAS TopLink Mapping
Workbench, you can use either of the following methods and use the
JavaSourceGenerator API:

■ From an application, instantiate the JavaSourceGenerator and your java
source. Call the method:

generate (<MW_Project.mwp>, <output file.xml>)

■ From a command line, use:

java -classpath toplink.jar;toplinkmw.jar;xmlparserv2.jar;ejb.jar;.
oracle.toplink.workbench.external.api.JavaSourceGenerator <MW_Project.mwp>
<output file.xml>

XML Files for Java Deployment
As with an XML deployment, a Java source deployment requires the
sessions.xml file (for non-EJB applications) or EJB deployment descriptor files
(for EJB projects). Build these files the same way you do for an XML deployment,
and deploy it with your project.

For more information, see "Sessions.xml File" on page 9-5, and "Configuring the
toplink-ejb-jar.xml File with the BEA WebLogic Server" on page 9-5.

Configuring Additional Files for CMP Deployment
If you deploy your application to a J2EE container that implements
Container-managed Persistence (CMP), you may have to configure additional files
to support the deployment. This section discusses:

■ Configuring the ejb-jar.xml File

■ Configuring the [J2EE-Container]-ejb-jar.xml

 Configuring the ejb-jar.xml File
There is one ejb-jar.xml file for every JAR, although you can specify multiple
beans in a single ejb-jar.xml file. The EJB specification you use determines the
contents of this file.

Note: Before you use either method, ensure your the class path
includes he <ORACLE_HOME>\toplink\config directory.

Creating OracleAS TopLink Deployment Files

Packaging for Deployment 9-11

Most IDEs provide facilities to create the ejb-jar.xml file. For more information
about generating this file, see your IDE documentation.

If you build an EJB 2.0 application, the OracleAS TopLink Mapping Workbench can
build the ejb-jar.xml file for you. Because the OracleAS TopLink Mapping
Workbench can both read and write the ejb-jar.xml, you can either drive
changes in the ejb-jar.xml file using the OracleAS TopLink Mapping Workbench:

■ When you change the file manually outside of the OracleAS TopLink Mapping
Workbench, re import the ejb-jar.xml file into the OracleAS TopLink
Mapping Workbench project to refresh the project.

■ When you change the OracleAS TopLink Mapping Workbench project,
OracleAS TopLink Mapping Workbench updates the ejb-jar.xml file
automatically when you save the project.

For more information about managing the ejb-jar.xml file in the OracleAS
TopLink Mapping Workbench, see the Oracle Application Server TopLink Mapping
Workbench User’s Guide.

Configuring the [J2EE-Container]-ejb-jar.xml
The contents of the [J2EE-Container]-ejb-jar.xml file depends on the
container to which you deploy your beans. To create this file, use the tools that
accompany your container.

In most cases, the [J2EE-Container]-ejb-jar.xml file integrates with
OracleAS TopLink without revision. However, when you deploy to a WebLogic
Server container, modify the weblogic-ejb-jar.xml. The topics in this section
explore the required modifications.

Configuring the [J2EE-Container]-ejb-jar.xml File for BEA WebLogic To deploy to a BEA
WebLogic Server, modify the webLogic-ejb-jar.xml file. Within that file, each
bean must have a persistence-descriptor entry with subentries, as follows:

■ Configure the persistence-descriptor entry with subentries that indicate
OracleAS TopLink is available and should be used:

■ If you deploy to WebLogic 6.1 (Service Pack 4), include a
persistence-type element and a persistence-use element. Both
elements require a type-identifier and a type-version tag.
Table 9–3 lists the options for the type-identifier tag, and Table 9–4
lists the options for the type-version tag.

Creating OracleAS TopLink Deployment Files

9-12 Oracle Application Server TopLink Application Developer’s Guide

■ If you deploy to WebLogic 7.0 or 8.1, include a persistence-use element
with a type-identifier and a type-version tag. Table 9–3 lists the
options for the type-identifier tag, and Table 9–4 lists the options for
the type-version tag.

■ If you use WebLogic 6.1, add the element type-storage to the
persistence-type element, and set it to META-INF\toplink-ejb-jar.xml.

■ If you use WebLogic 7.0 or 8.1, add the element type-storage to the
persistence-use element, and set it to META-INF\toplink-ejb-jar.xml.

■ Set the enable-call-by-reference element to TRUE to enable Call by
Reference:

<weblogic-enterprise-bean>
<ejb-name>AccountBean</ejb-name>
...

<enable-call-by-reference>True</enable-call-by-reference>
...

</weblogic-enterprise-bean>

Unsupported weblogic-ejb-jar.xml File Tags The weblogic-ejb-jar.xml file includes
several tags that OracleAS TopLink either does not support or does not require:

Table 9–3 WebLogic type-identifier Settings

EJB Version XML Elements

1.1 <type-identifier>TopLink_CMP_1_1</type-identifier>

2.0 <type-identifier>TopLink_CMP_2_0</type-identifier>

Table 9–4 WebLogic type-version Settings

WebLogic Version XML Elements

6.1 <type-version>4.0</type-version>

7.0 <type-version>4.5</type-version>

8.1 <type-version>9.0.4</type-version>

Note: Although deprecated, the type-version setting of version 3.5
also functions correctly with WebLogic 6.1 (Service Pack 4) under EJB 1.1.

Packaging an OracleAS TopLink Application

Packaging for Deployment 9-13

■ concurrency-strategy: This tag specifies how WebLogic manages
concurrent users for a given bean. Because OracleAS TopLink manages
concurrent access internally, it does not require this element.

For more information about OracleAS TopLink concurrency strategy, see
"Locking Policy" on page 5-20.

■ db-is-shared: Because OracleAS TopLink does not make any assumptions about
the exclusivity of database access, OracleAS TopLink does not require this tag.
OracleAS TopLink addresses multi-user access issues through various locking
and refreshing policies.

■ delay-updates-until-end-of-tx: OracleAS TopLink always delays updates until the
end of a transaction, and does not require this tag.

■ finders-load-bean: OracleAS TopLink always loads the bean upon execution of
the finder, and does not require this tag.

■ pool: OracleAS TopLink does not use a pooling strategy for entity beans. This
avoids object-identity problems that can occur due to pooling.

■ lifecycle: This element manages beans that follow a pooling strategy. Because
OracleAS TopLink does not use a pooling strategy, OracleAS TopLink ignores
this tag.

■ is-modified-method-name: OracleAS TopLink does not require a bean
developer-defined method to detect changes in object state.

■ isolation-level: Because isolation level settings for the cache or database
transactions are specified in the OracleAS TopLink project, OracleAS TopLink
ignores this tag.

■ cache: Because you define OracleAS TopLink cache properties in the OracleAS
TopLink Mapping Workbench, this tag is necessary.

Packaging an OracleAS TopLink Application
The OracleAS TopLink approach to deployment involves packaging application
files into a single file, such as a JAR file, or an EAR file. Each of the deployment
strategies discussed in this section use this approach. The nature of the application
also influences the approach you take to deploying the project. This section
illustrates deployment strategies for:

■ Java Applications

■ Java Server Pages and Servlets Applications

Packaging an OracleAS TopLink Application

9-14 Oracle Application Server TopLink Application Developer’s Guide

■ Session Bean Applications

■ Container-Managed Persistence Applications

■ Bean-Managed Persistence Applications

Java Applications
The OracleAS TopLink application does not use a J2EE container for deployment.
Instead, it relies on OracleAS TopLink mechanisms to provide functionality and
persistence. The key elements of this type of application are the lack of a J2EE
container and the fact that you deploy the application by placing the application
JAR on the class path.

Packaging the Java Application
You deploy Java applications simply by placing them on the class path. To follow
the standard OracleAS TopLink approach of encapsulating applications in an
archive, deploy the application in a JAR file, as follows:

1. Place the sessions.xml and project.xml files in the root of the JAR.

2. Include all mapped classes and any required helper classes in the JAR.

3. Place the completed JAR on the class path.

Deploying the Application to a Client
Build the JAR and place it on the class path. Include the following Java code in your
client application to access the OracleAS TopLink application from a client:

Session mysession = SessionManager.getManager().getSession("[SESSION-NAME]");

Java Server Pages and Servlets Applications
Many designers build OracleAS TopLink applications that use Java server pages
(JSPs) and Java servlets. This type of design generally supports Web-based
applications.

Packaging Applications with JSPs and Servlets
When you build an application to deploy to the Web, package the application
components in separate archives based on function. You can then assemble the
separate archive files in a single deployment archive file.

Packaging an OracleAS TopLink Application

Packaging for Deployment 9-15

The final deployment archive is an EAR file. If your client application includes
application XML files, store those files in the \meta-inf\ directory of the EAR. In
addition, the EAR contains the following archive files:

A Domain JAR File The domain JAR contains the OracleAS TopLink files and domain
objects required by the application, including:

■ sessions.xml

■ project.xml (or the compiled project.class file if you are not using XML
files for deployment)

■ The mapped classes required by the application, in a fully-resolved directory
structure

When you create the JAR file, the JAR building utility automatically creates a
directory structure within the JAR. Ensure that the sessions.xml file and the
project.xml file (or project.class file) appear at the root of the JAR file. Also
ensure that the class directory structure starts at the root of the JAR.

A Web Archive (WAR) File The WAR file contains the Web application files, including:

■ JSPs and Servlets that provide the dynamic content for the client application

■ Static HTML content for the client application

■ Additional client application resources, such as images

To complete the WAR file, modify the manifest.mf file (located in the
\meta-inf directory) to include a reference to the domain JAR file. The standard
manifest is generally empty except for the header and two carriage returns.

Example 9–1 illustrates how to add a class path attribute.

Example 9–1 Modified manifest.mf File

Manifest-Version: 1.0
Created-By: 1.3.1 (Sun Microsystems Inc.)
// Add the following line
Class-Path: [Domain-Archive-Name].jar
// Two carriage returns to complete the file
[CR]
[CR]

Packaging an OracleAS TopLink Application

9-16 Oracle Application Server TopLink Application Developer’s Guide

Deploying the Application to a Client
After you build the WAR and JAR files, build them into an EAR file for deployment.
To deploy the EAR to your JSP servlet server, copy the EAR to a well-known
directory. You may also need to use server-specific deployment tools. For more
information, see the server documentation.

Include the following Java code in your client application to access the OracleAS
TopLink application from a client:

Session s = SessionManager.getManager().getSession("[SESSION-NAME]",[classloader]);

In most cases, [classloader] represents the class loader from the current thread
context, specified as follows:

Thread.current().getContextClassLoader()

However, if your J2EE container does not support using this class loader, you can
substitute the class loader from the current class, as follows:

this.getClass().getLoader()

Session Bean Applications
Session beans generally model a process, operation, or service and as such are not
persistent. You can build OracleAS TopLink applications that wrap interaction with
OracleAS TopLink in session beans. Session beans execute all OracleAS
TopLink-related operations on behalf of the client.

This type of design leverages JTS and externally managed transactions, but does not
incur the overhead associated with CMP applications. Session bean applications
also scale and deploy easily.

Packaging Applications with Session Beans
When you build an application to deploy to the Web, package the application
components in separate archives based on function. You can then assemble the
separate archive files in a single deployment archive file.

Note: Oracle Application Server Containers for J2EE supports the
use of the class loader from the current thread.

Packaging an OracleAS TopLink Application

Packaging for Deployment 9-17

The final deployment archive is an EAR file. If your client application includes
application XML files, store those files in the \meta-inf\ directory of the EAR. In
addition, the EAR contains the following archive files

A Domain JAR File The domain JAR contains the OracleAS TopLink files and domain
objects required by the application, including:

■ sessions.xml file

■ project.xml file (or the compiled project.class file if you are not using
XML files for deployment)

■ mapped classes required by the application, in a fully-resolved directory
structure

When you create the JAR file, the JAR building utility automatically creates a
directory structure within the JAR. Ensure that the sessions.xml file and the
project.xml file (or project.class file) appear at the root of the JAR file. Also
ensure that the class directory structure starts at the root of the JAR.

An EJB JAR File The EJB JAR file specifically services the session beans in the
application. It includes:

■ The session bean home and remote for all session beans in the application

■ Bean implementation code for all session beans in the application

■ Any helper classes, such as amendment classes, required by the application

■ Vendor-specific elements for the session beans

■ The ejb-jar.xml file, stored in the \meta-inf\ directory of the JAR

In addition, modify the manifest.MF file, found in the \meta-inf\ directory, to
include a reference to the domain JAR. The standard manifest is generally empty
except for the header and two carriage returns.

Example 9–1 on page 9-15 illustrates how to add a class path attribute.

A WAR File The WAR file contains the Web application files, including:

■ JSPs and Servlets that provide the dynamic content for the client application

■ Static HTML content for the client application

■ Additional client application resources, such as images

Packaging an OracleAS TopLink Application

9-18 Oracle Application Server TopLink Application Developer’s Guide

In addition, modify the manifest.MF file, found in the \meta-inf\ directory, to
include a reference to the domain JAR. The standard manifest is generally empty
except for the header and two carriage returns.

Example 9–1 on page 9-15 illustrates how to add a class path attribute.

Deploying the Application to a Client
After you build the WAR and JAR files, build them into an EAR file for deployment.
To deploy the EAR to your J2EE server, copy the EAR to a well-known directory.
You may also need to use server-specific deployment tools. For more information,
see the server documentation.

Include the following Java code in your client application to access the OracleAS
TopLink application from a client:

Sessions = SessionManager.getManager().getSession("[SESSION-NAME]",[classloader]);

In most cases, [classloader] represents the class loader from the current thread
context, specified as follows:

Thread.current().getContextClassLoader()

However, if your J2EE container does not support using this class loader, you can
substitute the class loader from the current class, as follows:

this.getClass().getLoader()

Container-Managed Persistence Applications
Many applications leverage the persistence mechanisms a J2EE container offers.
OracleAS TopLink provides full support for this type of application.

The final deployment archive is an EAR file. If your client application includes
application XML files, store those files in the \meta-inf\ directory of the EAR. In
addition, the EAR contains the following archive files:

An EJB JAR file The EJB JAR file specifically services the EJB entity beans in the
application. It includes:

Note: Oracle Application Server Containers for J2EE supports the
use of the class loader from the current thread.

Packaging an OracleAS TopLink Application

Packaging for Deployment 9-19

■ The home and remote, and all implementation code for all mapped beans in the
application

■ All mapped non-EJB classes from the OracleAS TopLink Mapping Workbench
project

■ The home and remote, and all implementation code for any session beans
included in the application

■ Helper classes that contain OracleAS TopLink amendment methods, and any
other classes the application requires

Store the following XML files in the \meta-inf\ directory:

■ ejb-jar.xml file

■ [VENDOR-SPECIFIC]-ejb-jar.xml file

■ toplink-ejb-jar.xml file

■ project.xml file

A WAR File The WAR file contains the Web application files, including:

■ JSPs and Servlets that provide the dynamic content for the client application

■ Static HTML content for the client application

■ Additional client application resources, such as images

General Deployment
After you build the WAR and JAR files, build them into an EAR file for deployment.
To deploy the EAR to your J2EE server, copy the EAR to a well-known directory.
You may also need to use server-specific deployment tools. For more information,
see the server documentation.

Note: If you do not use XML files for deployment, you do not
have a project.xml file to include in the \meta-inf\ directory.
Instead, include the compiled project.class file in the
appropriate directory structure in the EJB JAR.

Packaging an OracleAS TopLink Application

9-20 Oracle Application Server TopLink Application Developer’s Guide

Deploying the Application to BEA WebLogic Server
OracleAS TopLink CMP support includes integration for BEA WebLogic Server. To
enable OracleAS TopLink CMP for WebLogic entity beans, use the WebLogic EJB
Compiler (ejbc) to compile the EJB JAR, as follows:

■ Run ejbc from the command line. Include the EJB JAR file as a command line
argument. ejbc creates an EJB JAR that contains the original classes as well as
all required generated classes and files.

When you run ejbc:

■ It performs a partial EJB conformance check on the beans and their associated
interfaces.

■ It builds the internal BEA WebLogic classes that manage security and
transactions, as well as the RMI stubs and skeletons that enable client access to
the beans.

■ OracleAS TopLink builds concrete bean subclasses and EJB finder method
implementations.

For more information about running ejbc, see the BEA WebLogic documentation.

Troubleshooting ejbc When you start ejbc, it processes the data in a series of stages. If
errors occur while running ejbc, attempt to determine which stage causes the
problem. Common problems include:

■ Bean classes that do not conform with the EJB specification

■ Classes missing from the class path (all domain classes, required OracleAS
TopLink classes, and all required BEA WebLogic classes must be on the class
path)

■ Java compiler (javac) problems, often caused by using an incorrect version of
the JDK

■ A failure when generating the RMI stubs and skeletons (a failure of rmic)

Packaging an OracleAS TopLink Application

Packaging for Deployment 9-21

Deploying the Application to IBM WebSphere 4.x Server
OracleAS TopLink CMP support includes an integration for IBM WebSphere 4.x
Server. Use the following procedure to deploy your application to WebSphere:

1. Use the OracleAS TopLink Deploy Tool for WebSphere to compile the EJB JAR
file.

For more information, see "Deploy Tool for WebSphere Server" on page A-17.

2. Start the WebSphere Administration Server.

3. Start the Administrator’s Console and deploy the compiled JAR.

For more information about deploying the JAR, see the IBM WebSphere
documentation.

It is not necessary to deploy the EJB JAR in WSAD, because deployment is carried
out using the Deploy Tool (see "Deploy Tool for WebSphere Server" on page A-17).

Starting the Entity Bean You can start the bean in either the WebSphere Application
Server or in WSAD.

To start the bean in IBM WebSphere Application Server:
1. Select the application that contains the entity beans.

2. Right click and choose Start.

Tip: Use a command script (for example: a batch or ant script) to run
ejbc. This enables you to pre-configure all the required variables for the
command line and helps to prevent typing errors. Sample build scripts
are available with the OracleAS TopLink Application Server Examples
for BEA WebLogic.

For more information, see the OracleAS TopLink Examples at <ORACLE_
HOME>\toplink\doc\examples.htm.

Note: When you deploy an application that contains an entity bean, set
up a datasource and associate it with the bean. For more information
about how to create and associate datasources, see the IBM WebSphere
documentation.

Packaging an OracleAS TopLink Application

9-22 Oracle Application Server TopLink Application Developer’s Guide

A message dialog appears if the bean starts successfully. If an error occurs,
consult Appendix C, "Error Codes and Messages" for troubleshooting
information.

To start the bean in WSAD:
1. In WSAD, right click the EJB project and choose Run on Server.

2. To view the status of the process, open the Console tab of the Server view.

Bean-Managed Persistence Applications
OracleAS TopLink enables developers to leverage bean-managed persistence in
their OracleAS TopLink applications. The OracleAS TopLink base class for the BMP
entity beans implements the methods required for the EJB specification.

For more information about OracleAS TopLink BMP support, see "Overview of
Bean-Managed Persistence" on page 3-57.

The final deployment archive is an EAR file. If your client application includes
application XML files, store those files in the \meta-inf\ directory of the EAR. In
addition, the EAR contains the following archive files

An EJB JAR file The EJB JAR file specifically services the EJB entity beans in the
application. It includes:

■ The home and remote, and all implementation code for all mapped beans in the
application

■ All mapped non-EJB classes from the OracleAS TopLink Mapping Workbench
project

■ The home and remote, and all implementation code for any session beans
included in the application

■ Helper classes that contain OracleAS TopLink amendment methods, and any
other classes the application requires

Store the following XML files as follows:

■ the ejb-jar.xml file in the \meta-inf\ directory

■ the sessions.xml and the project.xml files in the root directory

Hot Deployment of EJBs

Packaging for Deployment 9-23

A WAR File The WAR file contains the Web application files, including:

■ JSPs and Servlets that provide the dynamic content for the client application

■ Static HTML content for the client application

■ Additional client application resources, such as images

Deploying the Application
After you build the WAR and JAR files, build them into an EAR file for deployment.
To deploy the EAR to your J2EE server, copy the EAR to a well-known directory.
You may also need to use server-specific deployment tools. For more information,
see the server documentation.

Hot Deployment of EJBs
Many J2EE containers support hot deployment, a feature that enables you to deploy
EJBs on a running server. Hot deployment allows you to:

■ Deploy newly-developed EJBs to a running production system

■ Remove (undeploy) deployed EJBs from a running server

■ Modify (redeploy) the behavior of deployed EJBs by updating the bean class
definition

When you take advantage of hot deployment, consider the following:

■ You must deploy all related beans (all beans that share a common OracleAS
TopLink project) within the same EJB JAR file. Because OracleAS TopLink views
deployment on a project level, deploy all the project beans (rather than just a
portion of them) to maintain consistency across the project.

■ When you redeploy a bean, you automatically reset its OracleAS TopLink
project. This flushes all object caches and rolls back any active object
transactions associated with the project.

Note: If you do not use XML files for deployment, you do not
have a project.xml file to include in the \meta-inf\ directory.
Instead, include the compiled project.class file in the
appropriate directory structure in the EJB JAR.

Hot Deployment of EJBs

9-24 Oracle Application Server TopLink Application Developer’s Guide

The client receives deployment exceptions when attempting to access undeployed
or re-deployed bean instances. The client application must catch and handle the
exceptions.

For more information about hot deployment, see the J2EE container documentation.

Tuning for Performance 10-1

10
Tuning for Performance

Oracle Application Server TopLink applications are generally quite complex, and
offer many opportunities for optimization. When you take an iterative approach to
tuning, and you design your applications for peak efficiency, the result is an
OracleAS TopLink application that is fast, smooth, and robust.

This chapter illustrates different methods to improve application performance. It
discusses:

■ Introduction to Tuning Concepts

■ Profiling Performance

■ General Tuning Tips

■ Basic Performance Optimization

■ OracleAS TopLink Reading Optimization Features

■ OracleAS TopLink Writing Optimization Features

■ Schema Optimization

Introduction to Tuning Concepts

10-2 Oracle Application Server TopLink Application Developer’s Guide

Introduction to Tuning Concepts
The most important concept associated with tuning your OracleAS TopLink
application is the idea of an iterative approach. The most effective way to tune your
application is to:

■ Use a profiling tool, such as the OracleAS TopLink Performance Profiler, to
measure the application’s performance.

■ Modify application components.

■ Measure performance again.

To identify the changes that improve your application performance, modify only
one or two components at a time. You should also tune your application in a
non-production environment before you deploy the application.

OracleAS TopLink as Part of a Larger Application
An OracleAS TopLink application is part of a larger application infrastructure that
can include Web servers, external cache managers, external transactions controllers,
and so on. To tune the OracleAS TopLink application most effectively, consider how
the application interacts with the larger infrastructure, and include those
considerations in performance testing.

An Effective Tuning Approach
To optimize performance, first check to see if a standard OracleAS TopLink feature
addresses the problem you are trying to solve. The OracleAS TopLink
documentation discusses the most common optimizations in the context of features
they support. For example, "Query Object Performance Options" on page 6-70 offers
information on how to improve query performance.

After you implement the basic optimizations, consider the more complex
optimizations provided in this chapter, which include:

■ General Tuning Tips

■ Basic Performance Optimization

■ OracleAS TopLink Reading Optimization Features

■ OracleAS TopLink Writing Optimization Features

■ Schema Optimization

Profiling Performance

Tuning for Performance 10-3

Profiling Performance
The most important challenge to performance tuning is knowing what to optimize.
To improve your application’s performance, identify the areas of your application
that do not operate at peak efficiency. The OracleAS TopLink Performance Profiler
helps you identify performance problems.

The OracleAS TopLink Performance Profiler logs a summary of the performance
statistics for every query you execute. The Profiler also logs a summary of all
queries executed in a given session.

The Profiler logs the following information:

■ Query class

■ Domain class

■ Total time, total execution time of the query (in milliseconds)

■ Local time, the amount of time spent on the user’s workstation (in milliseconds)

■ Number of objects, the total number of objects affected

■ Number of objects handled per second

■ Logging, the amount of time spent printing logging messages (in milliseconds)

■ SQL prepare, the amount of time spent preparing the SQL (in milliseconds)

■ SQL execute, the amount of time spent executing the SQL (in milliseconds)

■ Row fetch, the amount of time spent fetching rows from the database (in
milliseconds)

■ Cache, the amount of time spent searching or updating the object cache (in
milliseconds)

■ Object build, the amount of time spent building the domain object (in
milliseconds)

■ Query prepare, the amount of time spent to prepare the query prior to
execution (in milliseconds)

■ SQL generation, the amount of time spent to generate the SQL before it is sent
to the database (in milliseconds)

Profiling Performance

10-4 Oracle Application Server TopLink Application Developer’s Guide

Using the Profiler in the Web Client
The OracleAS TopLink Web Client also includes a graphical Performance Profiler.

For more information, see "Using the Performance Profiler" on page A-13.

Using the Profiler in Java
The Performance Profiler is an instance of the PerformanceProfiler class, found
in oracle.toplink.tools.profiler. To access the Profiler, call the session’s
getProfiler() method.

To enable the Profiler, invoke the setProfiler(new PerformanceProfiler())
method on the session. To end a profiling session, invoke the clearProfiler()
method. The Profiler supports the following public API:

■ logProfile(): enables the profiler

■ dontLogProfile(): disables the profile

■ logProfileSummaryByQuery(): organizes the profiler log as query
summaries. This is the default profiler behavior.

■ logProfileSummaryByClass(): organizes the profiler log as class summaries.
This is an alternative to the default behavior implemented by
logProfileSummaryByQuery().

Example 10–1 Executing a Read Query with the Profiler

session.setProfiler(new PerformanceProfiler());
Vector employees = session.readAllObjects(Employee.class);

Example 10–2 Implementing the Performance Profiler in the sessions.xml File

<session>
...
<profiler-class>oracle.toplink.tools.profiler.PerformanceProfiler</profiler-class>
...

</session>

Example 10–3 Performance Profiler Output

Begin Profile of{
ReadAllQuery(oracle.toplink.demos.employee.domain.Employee)Profile(ReadAllQuery,
of obj=12, time=1399,sql execute=217, prepare=495, row fetch=390,
time/obj=116,obj/sec=8) */

General Tuning Tips

Tuning for Performance 10-5

} End Profile

The second line of the profile contains the following information about a query:

■ ReadAllQuery(oracle.toplink.demos.employee.domain.Employee):
specific query profiled, and its arguments.

■ Profile(ReadAllQuery: start of the profile and the type of query.

■ # of obj=12: number of objects involved in the query.

■ time=1399: total execution time of the query (in milliseconds).

■ sql execute=217: total time spent preparing the SQL.

■ prepare=495: total time spent preparing the SQL.

■ row fetch=390: total time spent fetching rows from the database.

■ time/obj=116: number of milliseconds spent on each object.

■ obj/sec=8) */: number of objects handled per second.

Browsing the Profiler Results
To view profiler results, use the graphical Profile Browser. From your application
code, launch the browser, located in the
oracle.toplink.tools.sessionconsole package.

Example 10–4 Launching the Profile Browser

ProfileBrowser.browseProfiler(session.getProfiler());

General Tuning Tips
To substantially improve your application efficiency and throughput, Table 10–1
lists several tuning areas and offers tips to obtain the best performance from your
OracleAS TopLink application.

General Tuning Tips

10-6 Oracle Application Server TopLink Application Developer’s Guide

Table 10–1 Tips for Building Efficient OracleAS TopLink Applications

Area Recommendations Related Information

General Do not override OracleAS TopLink
default behavior unless your application
absolutely requires it. Because OracleAS
TopLink default behavior is set for
optimum results with the most common
applications, the default is usually the
most efficient choice for any given option.
This is especially important for query or
cache behavior.

Mapping Use indirection whenever possible,
especially in cases where a class is
normally used without its related objects.

See "Indirection" on page 3-6

Descriptors Do not use checkCacheThenDatabase
on descriptors unless required by the
application. Query default behavior offers
better performance.

See "Cache Usage" on
page 6-61

See "Advanced Finder
Options" on page 6-96

Use conformResults on queries only
when required. This avoids unnecessary
resource overhead.

See "Validating a Unit of
Work" on page 7-41

See "Cache Usage" on
page 6-61

See "Advanced Finder
Options" on page 6-96

Queries If possible, use named queries in your
application. Named queries help you
avoid duplication, are easy to maintain
and reuse, and easily add complex query
behavior to the application.

See "Predefined Queries" on
page 6-48

Use parameterized SQL to improve write
performance. Parameterized SQL
improves performance by reusing the
same prepared statement for multiple
executions. This reduces overhead.

See "Binding and
Parameterized SQL" on
page 5-17

See "Parameterized SQL" on
page 10-19

Sessions Do not pool client sessions. Pooling
sessions offers no performance gains.

See "Client Session" on
page 4-6

With JTA transactions, use
getActiveSession() to access the
active session for the current external
transaction.

See "J2EE Integration" on
page 7-44

General Tuning Tips

Tuning for Performance 10-7

Use the OracleAS TopLink client session
instead of remote session. client session is
appropriate for most multi-user J2EE
application server environments.

See "Client Session" on
page 4-6

See "J2EE Integration" on
page 7-44

Unit of Work When you read objects, use the Unit of
Work only when the objects returned
from a query will be modified.

See "Transactions" on page 7-1

Cache Tune the OracleAS TopLink cache for
each class to help eliminate the need for
distributed cache synchronization.
Always tune these settings before
implementing cache synchronization.

See "Setting Class
Information" in the Oracle
Application Server TopLink
Mapping Workbench User’s
Guide

Use Weak Cache for particularly volatile
objects.

See "Working with Identity
Maps" in the Oracle
Application Server TopLink
Mapping Workbench User’s
Guide

Cache
Synchronization

Do not use distributed cache
synchronization unless it is required by
your application. Distributed cache
synchronization offers performance
benefits only in clustered environments in
which several servers in the cluster
regularly request and update the same
objects.

See "Distributed Cache
Synchronization" on page 8-6

Use Java Message Service (JMS) for cache
synchronization rather than Remote
Method Invocation (RMI). JMS is more
robust, easier to configure, and runs
asynchronously.

If you require synchronous cache
synchronization, use RMI.

See "Distributed Cache
Synchronization" on page 8-6

Code Use the OracleAS TopLink Mapping
Workbench rather than hand-coding. The
OracleAS TopLink Mapping Workbench
is easy to use, and implements many
OracleAS TopLink features for you
automatically.

Table 10–1 Tips for Building Efficient OracleAS TopLink Applications (Cont.)

Area Recommendations Related Information

Basic Performance Optimization

10-8 Oracle Application Server TopLink Application Developer’s Guide

Basic Performance Optimization
Performance considerations are present at every step of the development cycle.
Although this implies an awareness of performance issues in your design and
implementation, it does not mean that you should expect to achieve the best
possible performance in your first pass.

For example, if an optimization complicates the design, leave it until the final
development phase. You should still plan for these optimizations from your first
iteration, to make them easier to integrate later.

OracleAS TopLink provides a diverse set of features to optimize performance. You
enable or disable most features in the descriptors or database session, making any
resulting performance gains global.

OracleAS TopLink Reading Optimization Features
You can optimize certain read and write operations in an OracleAS TopLink
application. To optimize reading, you can tune:

■ The amount of data read from the database

■ The way OracleAS TopLink queries data on the database

OracleAS TopLink provides the read optimization features listed in Table 10–2.

Use instance or static variables to cache
the results of resource intensive
computations.

If you use RMI or CORBA, avoid fine
grain remote message sends.

Table 10–2 Read Optimization Features

Feature Function Performance Technique

Unit of Work Tracks object changes within
the Unit of Work.

To minimize the amount of tracking
required register only those objects
that will change.

Object indirection Uses valueholders as a
stand-in for domain objects.

Valueholders can provide a major
performance benefit, because they
minimize database reads.

Table 10–1 Tips for Building Efficient OracleAS TopLink Applications (Cont.)

Area Recommendations Related Information

OracleAS TopLink Reading Optimization Features

Tuning for Performance 10-9

Reading Case 1: Displaying Names in a List
An application may ask the user to choose an element from a list. Because the list
displays only a subset of the information contained in the objects, it is not necessary
to query for all information for objects from the database.

Soft cache weak
identity map

Offers client-side caching for
objects read from database,
and drops objects from the
cache when memory
becomes low.

Reduces database calls and improves
memory performance.

Weak identity map Offers client-side caching for
objects.

Reduces database access and
maintains a cache of all referenced
objects.

Full identity map Offers client side caching for
objects.

Avoids database calls for objects that
have already been read.

Limit the cache size. A large cache can
impact system performance.

Cache identity map Offers a fixed size client side
cache.

Leverages a moderate caching
strategy, and controls the impact on
memory.

No identity map Disables cache lookup. Useful if you prefer database access
over cached objects.

Batch reading and
joining

Reduces database access by
batching many queries into a
single query that reads more
data.

Dramatically reduces the number of
database accesses required to perform
a READ query.

Partial object
reading

Allows reading of a subset
of a result set of the object's
attributes.

Reduces the amount of data read from
the database at any one time. Reducing
connection time for each read
improves performance.

Report query Similar to partial object
reading, but returns only the
data instead of the objects.

Supports complex reporting functions
such as aggregation and group-by
functions. Also enables you to
compute complex results on the
database, instead of reading the objects
into the application and computing the
results locally.

Table 10–2 Read Optimization Features (Cont.)

Feature Function Performance Technique

OracleAS TopLink Reading Optimization Features

10-10 Oracle Application Server TopLink Application Developer’s Guide

Partial object reading and report query are two OracleAS TopLink features that
optimize these types of operations. They enable you to query only the information
required to display the list. The user can then select an object from the list.

Partial Object Reading
Partial object reading is a query designed to extract only the required information
from a selected record in a database, rather than all the information the record
contains. Because partial object reading does not fully populate objects, you can
neither cache nor edit partially-read objects. Also note that the primary key is
required to re-query the object (so it can be edited, for example). OracleAS TopLink
does not automatically include the primary key information in a partially populated
object. If you want to edit the object, specify the primary key as a required partial
attribute.

In Example 10–5, the query builds complete employee objects, even though the list
displays only employee last names. With no optimization, the query reads
employee data.

Example 10–5 No Optimization

/* Read all the employees from the database, ask the user to choose one and
return it. This must read in all the information for all the employees.*/
List list;

// Fetch data from database and add to list box.
Vector employees = (Vector) session.readAllObjects(Employee.class);
list.addAll(employees);

// Display list box.
....

// Get selected employee from list.
Employee selectedEmployee = (Employee) list.getSelectedItem();

return selectedEmployee;

Example 10–6 demonstrates the use of partial object reading. It reads only the last
name and primary key for the employees. This reduces the amount of data read
from the database.

Example 10–6 Optimization Through Partial Object Reading

/* Read all the employees from the database, ask the user to choose one and

OracleAS TopLink Reading Optimization Features

Tuning for Performance 10-11

return it. This uses partial object reading to read just the last name of the
employees. Note that OracleAS TopLink does not automatically include the primary
key of the object. If this is needed to select the object for a query, it must
be specified as a partial attribute so that it can be included. In this way, the
object can easily be read for editing. */
List list;
// Fetch data from database and add to list box.
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addPartialAttribute("lastName");
/* OracleAS TopLink does not automatically include the primary key of the
object. If this is needed to select the object for a query, it must be specified
as a partial attribute so that it can be included.*/
query.addPartialAttribute("id");
// The next line avoids a query exception
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
list.addAll(employees);

// Display list box.
....
// Get selected employee from list.
Employee selectedEmployee =
(Employee)session.readObject(list.getSelectedItem());
return selectedEmployee;

ReportQuery
Report query enables you to retrieve data from a set of objects and their related
objects. Report query supports database reporting functions and features.

For more information, see "ReportQuery" on page 6-73.

Example 10–7 demonstrates the use of report query to read only the last name of the
employees. This reduces the amount of data read from the database compared to
the code in Example 10–5, and avoids instantiating employee instances.

Example 10–7 Optimization Through Report Query

/* Read all the employees from the database, ask the user to choose one and
return it. This uses the report query to read just the last name of the
employees. It then uses the primary key stored in the report query result to
read the real object.*/
List list;
// Fetch data from database and add to list box.
ExpressionBuilder builder = new ExpressionBuilder();

OracleAS TopLink Reading Optimization Features

10-12 Oracle Application Server TopLink Application Developer’s Guide

ReportQuery query = new ReportQuery (Employee.class, builder);
query.addAttribute("lastName");
query.retrievePrimaryKeys();
Vector reportRows = (Vector) session.executeQuery(query);
list.addAll(reportRows);

// Display list box.
....

// Get selected employee from list.
ReportQueryResult result = (ReportQueryResult) list.getSelectedItem();
Employee selectedEmployee = (Employee)

result.readobject(Employee.Class,session);

Although the differences between the unoptimized example (Example 10–5) and the
report query optimization in Example 10–7 appear to be minor, report queries offer
a substantial performance improvement.

Reading Case 2: Batch Reading Objects
The way your application reads data from the database affects performance. For
example, reading a collection of rows from the database is significantly faster than
reading each row individually.

A common performance challenge is to read a collection of objects that have a
one-to-one reference to another object. This normally requires one read operation to
read in the source rows, and one call for each target row in the one-to-one
relationship.

To reduce the number of reads required, use join and batch reading. Example 10–8
illustrates the unoptimized code required to retrieve a collection of objects with a
one-to-one reference to another object. Example 10–9 and Example 10–10 illustrate
the use of joins and batch reading to improve efficiency.

Example 10–8 No Optimization

/*Read all the employees, and collect their address’ cities. This takes N + 1
queries if not optimized. */

// Read all the employees from the database. This requires 1 SQL call.
Vector employees = session.readAllObjects(Employee.class,new

ExpressionBuilder().get("lastName").equal("Smith"));

//SQL: Select * from Employee where l_name = ‘Smith’

OracleAS TopLink Reading Optimization Features

Tuning for Performance 10-13

// Iterate over employees and get their addresses.
// This requires N SQL calls.
Enumeration enum = employees.elements();
Vector cities = new Vector();
while(enum.hasMoreElements()) Employee employee = (Employee) enum.nextElement();

cities.addElement(employee.getAddress().getCity());

//SQL: Select * from Address where address_id = 123, etc }

Example 10–9 Optimization Through Joining

/* Read all the employees, and collect their address’ cities. Although the code
is almost identical because joining optimization is used it only takes 1 query.
*/

// Read all the employees from the database, using joining. This requires 1 SQL
call.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.setSelectionCriteria(new

ExpressionBuilder().get("lastName").equal("Smith"));
query.addJoinedAttribute("address");
Vector employees = session.executeQuery(query);

// SQL: Select E.*, A.* from Employee E, Address A where E.l_name = ‘Smith’ and
E.address_id = A.address_id Iterate over employees and get their addresses. The
previous SQL already read all the addresses so no SQL is required.
Enumeration enum = employees.elements();
Vector cities = new Vector();
while (enum.hasMoreElements()) {
Employee employee = (Employee) enum.nextElement();

cities.addElement(employee.getAddress().getCity());

Example 10–10 Optimization Through Batch Reading

/* Read all the employees, and collect their address’ cities. Although the code
is almost identical because batch reading optimization is used it only takes 2
queries. */

// Read all the employees from the database, using batch reading. This requires
1 SQL call, note that only the employees are read.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);

OracleAS TopLink Reading Optimization Features

10-14 Oracle Application Server TopLink Application Developer’s Guide

query.setSelectionCriteria(new
ExpressionBuilder().get("lastName").equal("Smith"));

query.addBatchReadAttribute("address");
Vector employees = (Vector)session.executeQuery(query);

// SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// The first address accessed will cause all the addresses to be read in a
single SQL call.
Enumeration enum = employees.elements();
Vector cities = new Vector();
while (enum.hasMoreElements()) {

Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());
// SQL: Select distinct A.* from Employee E, Address A

where E.l_name = ‘Smith’ and E.address_id = A.address_i
}

Because the two-phase approach to the query (Example 10–9 and Example 10–10)
accesses the database only twice, it is significantly faster than the approach
illustrated in Example 10–8.

Joins offer a significant performance increase under most circumstances. Batch
reading offers further performance advantage in that it allows for delayed loading
through valueholders, and has much better performance where the target objects
are shared.

For example, if employees in Example 10–8, Example 10–9, and Example 10–10 live
at the same address, batch reading reads much less data than joining, because batch
reading uses a SQL DISTINCT call to filter duplicate data. Batch reading is also
available for one-to-many relationships, but joining is available only for one-to-one
relationships.

Reading Case 3: Using Complex Custom SQL Queries
OracleAS TopLink provides a high-level query mechanism. However, if your
application requires a complex query, a direct SQL call may be the best solution.

For more information about executing SQL calls, see "Custom SQL" on page 6-27.

OracleAS TopLink Reading Optimization Features

Tuning for Performance 10-15

Reading Case 4: Using View Objects
Some application operations require information from several objects rather than
from just one. This can be difficult to implement, and resource intensive.
Example 10–11 illustrates unoptimized code that reads information from several
objects.

Example 10–11 No Optimization

/* Gather the information to report on an employee and return the summary of the
information. In this situation a hashtable is used to hold the report
information. Notice that this reads a lot of objects from the database, but uses
very little of the information contained in the objects. This may take 5 queries
and read in a large number of objects.*/

public Hashtable reportOnEmployee(String employeeName)
{
Vector projects, associations;
Hashtable report = new Hashtable();
// Retrieve employee from database.
Employee employee = session.readObject(Employee.class, new

ExpressionBuilder.get("lastName").equal(employeeName));
// Get all the projects affiliated with the employee.
projects = session.readAllObjects(Project.class, "SELECT P.* FROM PROJECT P,

EMPLOYEE E WHERE P.MEMBER_ID = E.EMP_ID AND E.L_NAME = " + employeeName);
// Get all the associations affiliated with the employee.
associations = session.readAllObjects(Association.class, "SELECT A.*
FROM ASSOC A, EMPLOYEE E WHERE A.MEMBER_ID = E.EMP_ID AND E.L_NAME =
" + employeeName);

}
report.put("firstName", employee.getFirstName());
report.put("lastName", employee.getLastName());
report.put("manager", employee.getManager());
report.put("city", employee.getAddress().getCity());
report.put("projects", projects);
report.put("associations", associations);
return report;

}

To improve application performance in these situations, define a new read-only
object to encapsulate this information, and map it to a view on the database. To set
the object to be read-only, use the addDefaultReadOnlyClass() API in the
oracle.toplink.sessions.Project class.

OracleAS TopLink Writing Optimization Features

10-16 Oracle Application Server TopLink Application Developer’s Guide

Example 10–12 Optimization Through View Object

CREATE VIEW NAMED EMPLOYEE_VIEW AS (SELECT F_NAME = E.F_NAME, L_NAME = E.L_
NAME,EMP_ID = E.EMP_ID, MANAGER_NAME = E.NAME, CITY = A.CITY, NAME = E.NAME
FROM EMPLOYEE E, EMPLOYEE M, ADDRESS A
WHERE E.MANAGER_ID = M.EMP_ID
AND E.ADDRESS_ID = A.ADDRESS_ID)

Define a descriptor for the EmployeeReport class:

■ Define the descriptor normally, but specify tableName as EMPLOYEE_VIEW.

■ Map only the attributes required for the report. In the case of
numberOfProjects and associations, use a transformation mapping to retrieve
the required data.

You can now query the report from the database like any other OracleAS
TopLink-enabled object.

Example 10–13 View the Report from Example 10–12

/* Return the report for the employee.*/
public EmployeeReport reportOnEmployee(String employeeName)
{

EmployeeReport report;
report = (EmployeeReport) session.readObject(EmployeeReport.class,

new ExpressionBuilder.get("lastName").equal(employeeName));
return report;}

OracleAS TopLink Writing Optimization Features
Table 10–3 lists OracleAS TopLink’s write optimization features.

Table 10–3 Write Optimization Features

Feature Effect on Performance

Unit of Work Improves performance by updating only the changed fields and
objects.

Minimizes the amount of tracking required (which can be expensive)
by registering only those objects that will change.

Note: The Unit of Work supports marking classes as read-only. This
avoids tracking of objects that do not change.

OracleAS TopLink Writing Optimization Features

Tuning for Performance 10-17

Writing Case 1: Batch Writes
The most common write performance problem occurs when a batch job inserts a
large volume of data into the database. For example, consider a batch job that loads
a large amount of data from one database, and then migrates the data into another.
The objects involved:

■ Are simple individual objects with no relationships

■ Use generated sequence numbers as their primary key

■ Have an address that also uses a sequence number

The batch job loads 10,000 employees from the first database and inserts them into
the target database. With no optimization, the batch job reads all the records from
the source database, acquires a Unit of Work from the target database, registers all
objects, and commits the Unit of Work.

Example 10–14 No Optimization

/* Read all the employees, acquire a Unit of Work and register them. */

// Read all the employees from the database. This requires 1 SQL call, but will
be very memory intensive as 10,000 objects will be read.
Vector employees = sourceSession.readAllObjects(Employee.class);

//SQL: Select * from Employee

// Acquire a Unit of Work and register the employees.
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);

Parameterized
SQL

Improves performance for frequently executed SQL statements.

Batch writing Allows you to group all insert, update, and delete commands from a
transaction into a single database call. This dramatically reduces the
number of calls to the database.

Sequence number
preallocation

Dramatically improves insert performance.

Does exist
alternatives

The does exist call on write object can be avoided in certain situations by
checking the cache for does exist, or assuming the existence of the object.

Table 10–3 Write Optimization Features (Cont.)

Feature Effect on Performance

OracleAS TopLink Writing Optimization Features

10-18 Oracle Application Server TopLink Application Developer’s Guide

uow.commit();

//SQL: Begin transaction
//SQL: Update Sequence set count = count + 1 where name = 'EMP'
//SQL: Select count from Sequence
//SQL: ... repeat this 10,000 times + 10,000 times for the addresses ...
//SQL: Commit transaction
//SQL: Begin transaction
//SQL: Insert into Address (...) values (...)
//SQL: ... repeat this 10,000 times
//SQL: Insert into Employee (...) values (...)
//SQL: ... repeat this 10,000 times
//SQL: Commit transaction}

This batch job performs poorly, because it requires 60,000 SQL executions. It also
reads huge amounts of data into memory, which can raise memory performance
issues. OracleAS TopLink offers several optimization features to improve the
performance of this batch job.

To improve this operation:

1. Leverage OracleAS TopLink batch reads and cursor support.

2. Implement sequence number preallocation.

3. Use batch writing to write to the database.

If your database does not support batch writing, use parameterized SQL to
implement the write query.

4. Implement multiprocessing.

Cursors and Batch Writes
To optimize the query in Example 10–14, use a cursored stream to read the
employees from the source database. You can also employ a cache identity map
rather than a full identity map in both the source and target databases.

To address the potential for memory problems, use the releasePrevious()
method after each read to stream the cursor in groups of 100. Register each batch of
100 employees in a new Unit of Work and commit them.

Although this does not reduce the amount of executed SQL, it does address
potential out-of-memory issues. When your system runs out of memory, the result
is performance degradation that increases over time, and excessive disk activity
caused by memory swapping on disk.

OracleAS TopLink Writing Optimization Features

Tuning for Performance 10-19

Sequence Number Preallocation
SQL select calls are more resource-intensive than SQL modify calls, so you can
realize large performance gains by reducing the number of select calls you issue.
The code in Example 10–14 uses the select calls to acquire sequence numbers. You
can substantially improve performance if you use sequence number preallocation.

In OracleAS TopLink, you can configure the sequence preallocation size on the login
object (the default size is 50). Example 10–14 uses a preallocation size of 1 to
demonstrate this point. If you stream the data in batches of 100 as suggested in
"Cursors and Batch Writes", set the sequence preallocation size to 100. Because
employees and addresses in the example both use sequence numbering, you further
improve performance by letting them share the same sequence. If you set the
preallocation size to 200, this reduces the number of SQL execution from 60,000 to
20,200.

Batch Writing
Batch writing enables you to combine a group of SQL statements into a single
statement and send it to the database as a single database execution. This feature
reduces the communication time between the application and the server, and
substantially improves performance.

You can enable batch writing on the login object with the useBatchWriting()
method. If you add batch writing to Example 10–14, you execute each batch of 100
employees as a single SQL execution. This reduces the number of SQL execution
from 20,200 to 300.

Parameterized SQL
OracleAS TopLink supports parameterized SQL and prepared statement caching.
Using parameterized SQL improves write performance, because it avoids the
prepare cost of a SQL execution.

You cannot use batch writing and parameterized SQL together, because batch
writing does not use individual statements. Because the performance benefits of
batch writing are much greater than those of parameterized SQL, use batch writing
if it is supported by your database.

Parameterized SQL avoids the prepare component of SQL execution, but does not
reduce the number of executions. Because of this, it normally offers only moderate
performance gains. However, if your database does not support batch writing,
parameterized SQL improves performance. If you add parameterized SQL in
Example 10–14, you must still execute 20,200 SQL executions, but parameterized
SQL reduces the number of SQL PREPAREs to 4.

OracleAS TopLink Writing Optimization Features

10-20 Oracle Application Server TopLink Application Developer’s Guide

Multiprocessing
You can use multiple processes or multiple machines to split the batch job into
several smaller jobs. In this example, splitting the batch job across threads enables
you to synchronize reads from the cursored stream, and use parallel Units of Work
on a single machine.

This leads to a performance increase, even if the machine has only a single
processor, because it takes advantage of the wait times inherent in SQL execution.
While one thread waits for a response from the server, another thread uses the
waiting cycles to process its own database operation.

Example 10–15 illustrates the optimized code for this example. Note that it does not
illustrate multiprocessing.

Example 10–15 Fully Optimized

/* Read each batch of employees, acquire a Unit of Work and register them. */
targetSession.getLogin().useBatchWriting();
targetSession.getLogin().setSequencePreallocationSize(200);

// Read all the employees from the database, into a stream. This requires 1 SQL
call, but none of the rows will be fetched.
ReadAllQuery query = new ReadAllQuery();
query.setReferenceClass(Employee.class);
query.useCursoredStream();
CursoredStream stream;
stream = (CursoredStream) sourceSession.executeQuery(query);
//SQL: Select * from Employee. Process each batch
while (! stream.atEnd()) {

Vector employees = stream.read(100);
// Acquire a Unit of Work to register the employees
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

}
//SQL: Begin transaction
//SQL: Update Sequence set count = count + 200 where name = 'SEQ'
//SQL: Select count from Sequence where name = 'SEQ'
//SQL: Commit transaction
//SQL: Begin transaction
//BEGIN BATCH SQL: Insert into Address (...) values (...)
//... repeat this 100 times
//Insert into Employee (...) values (...)
//... repeat this 100 times
//END BATCH SQL:

Schema Optimization

Tuning for Performance 10-21

//SQL: Commit transactionJava optimization

Schema Optimization
Optimization is an important consideration when you design your database schema
and object model. Most performance issues occur when the object model or
database schema is too complex, which can make the database slow and difficult to
query. This is most likely to happen if you derive your database schema directly
from a complex object model.

To optimize performance, we recommend you design the object model and
database schema together however, ensure there is no direct one-to-one correlation
between the two.

Schema Case 1: Aggregation of Two Tables into One
A common schema optimization technique is to aggregate two tables into a single
table. This improves read and write performance by requiring only one database
operation instead of two.

Table 10–4 and Table 10–5 illustrate the table aggregation technique.

The nature of this application dictates that developers always look up employees
and addresses together. As a result, querying a member based on address
information requires a database join, and reading a member and its address
requires two read statements. Writing a member requires two write statements.
This adds unnecessary complexity to the system, and results in poor performance.

A better solution is to combine the MEMBER and ADDRESS tables into a single
table, and change the one-to-one relationship to an aggregate relationship. This

Table 10–4 Original Schema

Elements Details

Title ACME Member Location Tracking System

Classes Member, Address

Tables MEMBER, ADDRESS

Relationships Source, Instance Variable, Mapping, Target, Member, address,
one-to-one, Address

Schema Optimization

10-22 Oracle Application Server TopLink Application Developer’s Guide

enables you to read all information with a single operation, and doubles the speed
of updates and inserts, because they must modify only a single row in one table.

Schema Case 2: Splitting One Table into Many
To improve overall performance of the system, split large tables into two or more
smaller tables. This significantly reduces the amount of data traffic required to
query the database.

For example, the system illustrated in Table 10–6 assigns employees to projects
within an organization. The most common operation reads a set of employees and
projects, assigns employees to projects, and update the employees. The employee’s
address or job classification is also occasionally used to determine the project on
which the employee is placed.

Table 10–5 Optimized Schema

Elements Details

Classes Member, Address

Tables MEMBER

Relationships Source, Instance Variable, Mapping, Target, Member, address,
aggregate, Address

Table 10–6 Original Schema

Elements Details
Instance
Variable Mapping Target

Title ACME Employee
Workflow System

Classes Employee,
Address,
PhoneNumber,
EmailAddress,
JobClassification,
Project

Tables EMPLOYEE,
PROJECT,
PROJ_EMP

Relationships Employee address aggregate Address

Employee phoneNumber aggregate EmailAddress

Employee emailAddress aggregate EmailAddress

Schema Optimization

Tuning for Performance 10-23

When you read a large volume of employees from the database, you must also read
their aggregate parts. Because of this, the system suffers from general read
performance issues. To resolve this, break the EMPLOYEE table into the
EMPLOYEE, ADDRESS, PHONE, EMAIL, and JOB tables, as illustrated in
Table 10–7.

Because you normally read only the employee information, splitting the table
reduces the amount of data transferred from the database to the client. This
improves your read performance by reducing the amount of data traffic by 25%.

Employee job aggregate JobClassification

Employee projects many-to-many Project

Table 10–7 Optimized Schema

Elements Details
Instance
Variable Mapping Target

Title ACME Employee
Workflow System

Classes Employee,
Address,
PhoneNumber,
EmailAddress,
JobClassification,
Project

Tables EMPLOYEE,
ADDRESS,
PHONE, EMAIL,
JOB, PROJECT,
PROJ_EMP

Relationships Employee address one-to-one Address

Employee phoneNumber one-to-one EmailAddress

Employee emailAddress one-to-one EmailAddress

Employee job one-to-one JobClassification

Employee projects many-to-many Project

Table 10–6 Original Schema (Cont.)

Elements Details
Instance
Variable Mapping Target

Schema Optimization

10-24 Oracle Application Server TopLink Application Developer’s Guide

Schema Case 3: Collapsed Hierarchy
A common mistake when you transform an object oriented design into a relational
model, is to build a large hierarchy of tables on the database. This makes querying
difficult, because queries against this type of design can require a large number of
joins. It is usually a good idea to collapse some of the levels in your inheritance
hierarchy into a single table.

Table 10–8 represents a system that assigns clients to a company’s sales
representatives. The managers also track the sales representatives that report to
them.

The system suffers from complexity issues that hinder system development and
performance. Nearly all queries against the database require large, resource
intensive joins. If you collapse the three-level table hierarchy into a single table, as
illustrated in Table 10–9, you substantially reduce system complexity. You eliminate
joins from the system, and simplify queries.

Table 10–8 Original Schema

Elements Details

Title ACME Sales Force System

Classes Tables

Person PERSON

Employee PERSON, EMPLOYEE

SalesRep PERSON, EMPLOYEE, REP

Staff PERSON, EMPLOYEE, STAFF

Client PERSON, CLIENT

Contact PERSON, CONTACT

Table 10–9 Optimized Schema

Elements Details

Classes Tables

Person none

Employee EMPLOYEE

SalesRep EMPLOYEE

Schema Optimization

Tuning for Performance 10-25

Schema Case 4: Choosing One Out of Many
In a one-to-many relationship, a single source object has a collection of other objects.
In some cases, the source object frequently requires one particular object in the
collection, but requires the other objects only infrequently. You can reduce the size
of the returned result set in this type of case by adding an instance variable for the
frequently required object. This enables you to access the object without
instantiating the other objects in the collection.

Table 10–10 represents a system by which an international shipping company tracks
the location of packages in transit. When a package moves from one location to
another, the system creates a new a location entry for the package in the database.
The most common query against any given package is for its current location.

A package in this system can accumulate several location values in its LOCATION
collection as it travels to its destination. Reading all locations from the database is
resource intensive, especially when the only location of interest is the current
location.

To resolve this type of problem, add a specific instance variable that represents the
current location. You then add a one-to-one mapping for the instance variable, and
use the instance variable to query for the current location. As illustrated in

Staff EMPLOYEE

Client CLIENT

Contact CLIENT

Table 10–10 Original Schema

Elements Details
Instance
Variable Mapping Target

Title ACME Shipping
Package Location
Tracking System

Classes Package, Location

Tables PACKAGE,
LOCATION

Relationships Package locations one-to-many Location

Table 10–9 Optimized Schema (Cont.)

Elements Details

Schema Optimization

10-26 Oracle Application Server TopLink Application Developer’s Guide

Table 10–11, because you can now query for the current location without reading all
locations associated with the package, this dramatically improves the performance
of the system.

Table 10–11 Optimized Schema

Elements Details
Instance
Variable Mapping Target

Classes Package, Location

Tables PACKAGE,
LOCATION

Relationships Package locations one-to-many Location

Package currentLocation one-to-one Location

Application Development Tools A-1

A
Application Development Tools

Oracle Application Server TopLink includes several tools that help you build and
deploy an OracleAS TopLink application. This chapter introduces these tools and
includes discussions on:

■ OracleAS TopLink — Web Client

■ Configuring OracleAS TopLink for Oracle JDeveloper

■ Deploy Tool for WebSphere Server

■ Schema Manager

■ Session Management Services

■ Stored Procedure Generator

OracleAS TopLink — Web Client

A-2 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink — Web Client
The OracleAS TopLink Web Client provides a Web-based interface that allows you
to work with any OracleAS TopLink server session (see "Session Management
Services" on page A-22) that is deployed on Oracle Application Server Containers
for J2EE, IBM WebSphere 5.0, and BEA WebLogic 6.1, 7.0 or 8.1 application servers.

Figure A–1 Web Client Home

The Web Client leverages Java objects, database and OracleAS TopLink metadata to
automatically create a browser based user interface to display and allow the
manipulation of persistent objects obtained through server sessions. In addition, the
Web Client offers utilities to profile the performance of your server session, as well
as interactively execute SQL on the database connected to your server session.

The Web Client can access the following types of server sessions:

■ Server sessions that any OracleAS TopLink application on the same application
server have loaded into the session manager

■ Server sessions that are created by the Web Client by supplying a
sessions.xml file

Before you access server sessions, all the XML files and classes used by the server
session must be accessible to the Web Client. This includes:

■ the sessions.xml file

■ the project.xml file (or the class files specified in the sessions.xml file)

■ All the persistent classes mapped in the project

OracleAS TopLink — Web Client

Application Development Tools A-3

■ All the required drivers

Configuring the Web Client
Before you build the Web Client, edit the following properties in the <ORACLE_
HOME>\toplink\config\toplinkwc\build.properties file:

If your OracleAS TopLink project uses a datasource, add the datasource information
to the <ORACLE_HOME>\config\toplinkwc\web.xml file, as follows:

<resource-ref>
<description>DataSource</description>
<res-ref-name>jdbc/DataSourceName</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>SERVLET</res-auth>

</resource-ref>

In addition to the standard OracleAS TopLink .jar files, add the following to your
application server class path:

<ORACLE_HOME>\jlib\uix2.jar
<ORACLE_HOME>\jlib\share.jar

Property Description

deployment.dir Directory into which the EAR file is copied after you build the Web
Client.

Normally, this is your application server deployment directory.

domain.jar.path The full path to your .jar file, when you deploy your own domain
classes with the Web Client (see "Steps to Bundle a Single OracleAS
TopLink Session with the Web Client:" on page A-4).

To deploy the Web Client without any domain classes, leave this
property blank.

use.weblogic When you deploy to WebLogic, set to true.

defaultwebapp.dir The location of the DefaultWebApp directory on the WebLogic server
to which you are deploying.

When running on WebLogic, the Web Client needs to extract resources
here so that they are available to the web application.

OracleAS TopLink — Web Client

A-4 Oracle Application Server TopLink Application Developer’s Guide

Building the Web Client EAR File
Use the Web Client in either of the following ways to build and deploy the Web
Client .ear file:

■ To connect OracleAS TopLink server sessions already loaded into the session
manager

■ To bundle a single OracleAS TopLink session with the OracleAS TopLink Web
Client

Steps to Connect OracleAS TopLink Server Sessions Already Loaded into the
Session Manager:
1. In the <ORACLE_

HOME>\toplink\config\toplinkwc\build.properties file, leave the
domain.jar.path setting blank.

2. Run the assembleWebClient script located in the <ORACLE_
HOME>\toplink\bin directory.

The system assembles and deploys toplinkwc.ear file, as specified in the
build.properties file.

For more information, see "Configuring the Web Client" on page A-3.

Steps to Bundle a Single OracleAS TopLink Session with the Web Client:
1. Package your domain classes, OracleAS TopLink project.xml file, the

sessions.xml file and any other necessary artifacts into a .jar file (called
the domain jar).

2. Specify the path to your domain.jar file in the Web Client
build.properties file (as specified in "Configuring the Web Client" on
page A-3).

3. Run the assembleWebClient script located in the <ORACLE_
HOME>\toplink\bin directory.

The system assembles and deploys toplinkwc.ear as specified in the
build.properties file.

For more information, see "Configuring the Web Client" on page A-3.

Configuring the Application Server
Before using the OracleAS TopLink Web Client, configure your application server.

OracleAS TopLink — Web Client

Application Development Tools A-5

To use the OracleAS TopLink Web Client with Oracle Application Server
Containers for J2EE:
1. Copy the toplinkwc.ear file to the <ORACLE_

HOME>\toplink\examples\oc4j\904\server\applications directory.

2. Add the following line to the server.xml file located in the <ORACLE_
HOME>\toplink\examples\oc4j\904\server\config directory:

<application name="toplinkwc" path="../applications/toplinkwc.ear"
auto-start="true" />

3. Add the following line to the http-web-site.xml file located in the
<ORACLE_HOME>\toplink\examples\oc4j\904\server\config
directory:

<web-app application="toplinkwc" name="toplinkwc" root="/toplinkwc" />

4. To start the server, run the startServer script located in the <ORACLE_
HOME>\toplink\examples\oc4j\904\server directory.

This step deploys all the OracleAS TopLink Examples, including the OracleAS
TopLink Web Client.

5. To start the OracleAS TopLink Web Client, load
http://localhost:8888/toplinkwc into a Web browser.

To use the Web Client with IBM WebSphere:
1. Copy the toplinkwc.ear file into the <WEBSPHERE_INSTALL_

DIR>\installableApps directory.

2. Use the WebSphere Administration Console to install the .ear file and start the
Web module.

For more information about the WebSphere Administration Console, see the
IBM WebSphere documentation.

3. To start the OracleAS TopLink Web Client, load
http://localhost:9080/toplinkwc into a Web browser.

To use the Web Client with BEA WebLogic:
In the following steps, the wlsXX refers to your version of BEA WebLogic. Use 61
for BEA WebLogic version 6.1, 70 for BEA WebLogic version 7.0. or 81 for BEA
WebLogic version 8.1.

OracleAS TopLink — Web Client

A-6 Oracle Application Server TopLink Application Developer’s Guide

1. Copy the toplinkwc.ear file into the <ORACLE_
HOME>\toplink\examples\weblogic\wlsXX\server\config\TopLink
_Domain\applications directory.

2. To start the server, run the startWebLogic script located in the <ORACLE_
HOME>\toplink\examples\weblogic\wlsXX\server\config\TopLink
_Domain\ directory.

This step deploys all the OracleAS TopLink Examples, including the OracleAS
TopLink Web Client.

3. To start the OracleAS TopLink Web Client, load
http://localhost:7001/toplinkwc into a Web browser.

Connecting to OracleAS TopLink Sessions
Use the Web Client Home tab to display and access the available OracleAS TopLink
sessions.

To Connect to an OracleAS TopLink Session:
1. Click the Home tab. The Web Client displays the available (registered)

OracleAS TopLink sessions and their status.

Click Refresh to refresh the session list.

Figure A–2 Web Client Home

OracleAS TopLink — Web Client

Application Development Tools A-7

2. Choose one of the following options:

■ To connect to a session, select the session and click the Connect button. The
session Status changes to .

To select a session, click the appropriate radio button under the Select
column.

■ To disconnect from a session, select the session and click the Disconnect
button. The session Status changes to .

■ To clear a session cache, select the session and click the Clear Cache button.

■ To work with a specific session, click the session name. If the session is not
already connected, the Web Client connects to the session.

OracleAS TopLink — Web Client

A-8 Oracle Application Server TopLink Application Developer’s Guide

Searching for Objects
Use the Search tab to display objects within a specific descriptor.

Figure A–3 Web Client Search

To Search for an Object:
1. Click the Search tab.

2. Choose a Descriptor from the Descriptor list.

3. Choose one of the following search options:

■ To search for an object using its primary key, enter the primary key
information in the Find by Primary Key area and click Go.

■ To find all available objects, click Go in the Find All area.

OracleAS TopLink — Web Client

Application Development Tools A-9

■ To find all objects in the OracleAS TopLink cache, click Go in the Find All
(Check Cache Only) area.

■ To search for objects using a named query, enter the named query
information in the Named Queries area and click Go.

The Web Client displays all the objects that match the search criteria.

Figure A–4 Web Client Search Results

Figure A–4 identifies the following user-interface elements:

1. List of available descriptors

2. Search results

Note: The Named Queries area appears only for objects with
defined named queries.

OracleAS TopLink — Web Client

A-10 Oracle Application Server TopLink Application Developer’s Guide

3. Select object column

4. Note for privately owned classes

4. Choose one of the following options to delete or view an object:

■ Click Delete to delete an object.

■ Click View for the object to display. The Web Client displays the object’s
data.

Figure A–5 Web Client View Object

5. Select further options for the viewed object:

■ Click Previous Object to display the previous record.

■ Click Next Object to display the next record.

■ Click Cached Object List to display all elements of the current type that
exist in the OracleAS TopLink cache.

■ Click Edit Object to change or edit the record.

For more information about creating and editing objects, see "Creating and
Editing Objects" on page A-11.

Note: You cannot delete objects for privately owned classes.
Instead, edit its master class.

OracleAS TopLink — Web Client

Application Development Tools A-11

Creating and Editing Objects
Use the Create tab to create a new object. The information you enter on this tab is
validated by the database—not the OracleAS TopLink Web Client.

To Create an Object:
1. Choose the Descriptor of the object to create.

2. Click the Create tab.

Figure A–6 Web Client Create

3. Enter the necessary information and click Create.

OracleAS TopLink — Web Client

A-12 Oracle Application Server TopLink Application Developer’s Guide

Performing SQL Queries
Use the DB Access tab to enter specific SQL queries to execute on the database.

To Perform a SQL Query:
1. Click the DB Access tab. If the DB Access tab is not visible, use the Web Client

Preferences to enable the tab.

For more information about setting Web Client preferences, see "Setting Web
Client Preferences" on page A-14.

Figure A–7 Web Client DB Access

2. Enter the SQL query.

3. Specify whether the Web Client limits the number of rows returned from the
query.

Note: You cannot create objects for privately owned classes.
Instead, edit its master class.

Note: The Web Client does not validate the SQL query.

OracleAS TopLink — Web Client

Application Development Tools A-13

4. Choose the type of query:

■ Execute Select: results return the number of matches as well as the actual
records.

■ Execute Non-Selecting: results return only the number of rows affected by
the SQL statement.

The Web Client displays the SQL results.

Figure A–8 Web Client DB Access Results

Using the Performance Profiler
Use the Profiler tab to specify the OracleAS TopLink Performance Profiler settings
that appear in Figure A–9 and to display performance information.

For more information about the OracleAS TopLink Performance Profiler settings,
see "Profiling Performance" on page 10-3.

To Use the Performance Profiler:
1. Click the Profiler tab. If the Profiler tab is not visible, use the Web Client

Preferences to enable the tab.

For more information about setting Web Client preferences, see "Setting Web
Client Preferences" on page A-14.

OracleAS TopLink — Web Client

A-14 Oracle Application Server TopLink Application Developer’s Guide

Figure A–9 Web Client Profiler

2. Specify the profiler settings by selecting:

■ Enable Server Session Performance Profiling check box

■ Fully Qualify Class Name check box

3. After you specify the profiler settings, the Profiler tab displays performance
information for OracleAS TopLink queries that the Web Client executes.

Setting Web Client Preferences
Use the Web Client Preferences to specify which advanced properties are available.

To Specify Web Client Preferences:
1. Click the Preferences link (at the bottom of each Web Client page). The

Preferences tab appears.

Configuring OracleAS TopLink for Oracle JDeveloper

Application Development Tools A-15

Figure A–10 Web Client Preferences

2. Specify the advanced properties for this session by selecting:

■ DB Access check box

■ Profiler check box

3. Click Done.

Configuring OracleAS TopLink for Oracle JDeveloper
This section contains information on how to configure OracleAS TopLink for Oracle
JDeveloper.

Oracle JDeveloper is a J2EE development environment with end-to-end support to
develop, debug, and deploy e-business applications and Web Services.

When you use OracleAS TopLink with Oracle JDeveloper, use the following
procedures to add the OracleAS TopLink JAR files to your JDeveloper projects:

Creating an OracleAS TopLink JDeveloper Library:
1. Select a JDeveloper project in the System Navigator pane.

2. Choose Project > Project Settings.

The Project Settings pane appears.

3. Choose Configurations > Development > Libraries.

A list of predefined and user-defined libraries appears.

Configuring OracleAS TopLink for Oracle JDeveloper

A-16 Oracle Application Server TopLink Application Developer’s Guide

Figure A–11 List of Available Libraries

4. Click New to create a new library that will contain the OracleAS TopLink .jar
files.

The New Library dialog box appears.

5. Enter a name for the new Library—for example, OracleAS TopLink.

Ensure that the default choice for Libraries remains as User Libraries.

Deploy Tool for WebSphere Server

Application Development Tools A-17

Figure A–12 Creating a New Library

6. To edit the Class Path and add the OracleAS TopLink .jar files, click the Edit
button.

Add the following to the beginning of your Class Path:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\toplinkjlib\antlr.jar
<ORACLE_HOME>\lib\xmlparserv2.jar

7. Click OK. On the Project Settings pane click OK.

Use an existing User-Defined OracleAS TopLink Library:
After a user library is created, it can be re-referenced by any other project. Revisit
the Libraries window of the Project Settings, and add the OracleAS TopLink Library
to any project with which you want to use OracleAS TopLink.

Deploy Tool for WebSphere Server
OracleAS TopLink integration for IBM WebSphere Server includes a deployment
tool that helps you deploy your projects to WebSphere. The Deploy Tool for
WebSphere is a graphical tool that makes project deployment to WebSphere easier
to configure and execute. The deploy tool also includes a command-line option that
enables you to deploy your project while bypassing the graphical interface element
of the tool.

Deploy Tool for WebSphere Server

A-18 Oracle Application Server TopLink Application Developer’s Guide

Figure A–13 The Deploy Tool set up for use with WSAD

To Deploy a JAR:
1. Enable the Copy generated source to directory option to save a copy of the

generated code in the specified directory. This is a quick and efficient way to
copy the files into a WSAD project working directory.

2. Enable the Turn on tracing option if you want to see the details of the process.

3. Click the Deploy EJB Jar button.

Using the Deploy Tool with WebSphere Studio Application Developer (WSAD)
The Deploy tool is compatible with the WebSphere Studio Application Developer
(WSAD).

To Deploy from the Deploy Tool to WSAD:
1. Select the EJB Project in WSAD and choose to generate Deploy and RMIC

Code.

Schema Manager

Application Development Tools A-19

2. Export the EJB Project to an EJB JAR, making sure that the OracleAS TopLink
project and toplink-ejb-jar.xml files are included in the EJB JAR.

3. Start the OracleAS TopLink - Deploy Tool. To start the server, execute the
wasDeployTool.cmd/sh script in the <ORACLE_HOME>\toplink\bin
directory.

4. Choose the EJB project working directory so that OracleAS TopLink overrides
the WSAD deploy code with the OracleAS TopLink deploy code.

5. If the source is copied to a directory other than the WSAD EJB Project directory,
manually copy the source files to the WSAD EJB Project under the ejbModule
directory of the project.

6. Enter appropriate directories in the fields of the Deploy Tool.

7. Choose Deploy EJB JAR to create the deployed EJB JAR.

8. Choose Rebuild all from the Project menu to compile the deploy code to
incorporate CMP.

Troubleshooting
The most common error you might encounter when you use the deploy tool is the
NoClassDefFoundError exception. To resolve this error condition, add the
required resources to the Classpath. The Turn on tracing option also helps to
debug errors during deployment code generation.

When an obscure error appears during the generating stub phase, copy the Java
command and run it at the command prompt. This gives a more detailed error
message.

Schema Manager
The Schema Manager creates and modifies tables in a database from a Java
application. As a a Java code batch facility, the Schema Manager can also create
sequence numbers on an existing database and generate stored procedures.

Use the Schema Manager to re-create a production database in a nonproduction
environment. Doing this enables you to build models of your existing databases,
and modify and test them during development.

Schema Manager

A-20 Oracle Application Server TopLink Application Developer’s Guide

Using the Schema Manager to Create Tables
The Schema Manager table creation mechanism uses Java types rather than
database types, it is database-independent. However, this mechanism does not
account for database specific optimizations, it is best-suited for development
purposes rather than production.

The OracleAS TopLink TableDefinition class enables you to create new database
table schemas in a generic format. At runtime, OracleAS TopLink determines the
database type, and uses the generic schemas to create the appropriate fields for that
database.

Creating a Table Definition
The TableDefinition class includes all the information required to create a new
table, including the names and properties of a table and all its fields.

The TableDefinition class has the following methods:

setName()
addField()
addPrimaryKeyField()
addIdentityField()
addForeignKeyConstraint()

All table definitions must call the setName() method to set the name of the table
that is described by the TableDefinition.

Adding Fields to a Table Definition
Use the addField() method to add fields to the TableDefinition. To add the
primary key field to the table, use the addPrimaryKeyField() method rather than
the addField() method.

To maintain compatibility among different databases, the type parameter requires
a Java class rather than a database field type. OracleAS TopLink translates the Java
class to the appropriate database field type at runtime. For example, the String
class translates to the CHAR type for dBase databases. However, if you are
connecting to Sybase, the String class translates to VARCHAR.

The addField() method can also be called with the fieldSize or fieldSubSize
parameters for column types that require size and subsize to be specified.

Some databases require a subsize, but others do not. OracleAS TopLink
automatically provides the required information, as necessary.

Schema Manager

Application Development Tools A-21

Defining Sybase and Microsoft SQL Server Native Sequencing
The addIdentityField() methods have the following definitions:

addIdentityField(String fieldName, Class type)
addIdentityField(String fieldName, Class type, int fieldSize)

These methods enable you to add fields representing a generated sequence number
from Sybase or Microsoft SQL Server native sequencing.

The OracleAS TopLink Two-Tier Example illustrates the table creation mechanism
in the EmployeeTableCreator.java file located in the <ORACLE_
HOME>\toplink\examples\foundation\twotier\src\examples\session
s\twotier\ directory.

Creating Tables on the Database
OracleAS TopLink offers two methods that enable you to pass the initialized
TableDefinition object to the DatabaseSession Schema Manager:

■ The createObject() method creates a new table in the database, according to
the table definition.

SchemaManager schemaManager = new SchemaManager(session);
schemaManager.createObject(Tables.employeeTable());

■ The replaceObject() method destroys and re-creates the schema entity in the
database.

SchemaManager schemaManager = new SchemaManager(session);
schemaManager.replaceObject(Tables.addressTable());

Creating the Sequence Table
If your application requires a sequence table, invoke the createSequences()
method on the Schema Manager:

SchemaManager schemaManager = new SchemaManager(session);
schemaManager.createSequences();

The preceding code:

■ Creates the sequence table as defined in the session DatabaseLogin

■ Creates or inserts sequences for each sequence name for all registered
descriptors in the session

Session Management Services

A-22 Oracle Application Server TopLink Application Developer’s Guide

■ Creates the Oracle sequence object if you use Oracle native sequencing

Managing Java and Database Type Conversions
Table A–1 lists the field types that match a given class for each database that
OracleAS TopLink supports. This list is specific to the Schema Manager and does
not apply to mappings. OracleAS TopLink automatically performs conversions
between any database types within mappings.

Session Management Services
OracleAS TopLink provides statistical reporting and runtime configuration systems
through two public APIs: oracle.toplink.service.RuntimeServices and
oracle.toplink.services.DevelopmentServices.

Table A–1 OracleAS TopLink Classes and Database Field Types

Class Oracle Type DB2 Type dBase Type Sybase Type
Microsoft
Access Type

java.lang.Boolean NUMBER SMALLINT NUMBER BIT default 0 SHORT

java.lang.Byte NUMBER SMALLINT NUMBER SMALLINT SHORT

java.lang.Byte[] LONG RAW BLOB BINARY IMAGE LONGBINARY

java.lang.Integer NUMBER INTEGER NUMBER INTEGER LONG

java.lang.Long NUMBER INTEGER NUMBER NUMERIC DOUBLE

java.lang.Float NUMBER FLOAT NUMBER FLOAT(16) DOUBLE

java.lang.Double NUMBER FLOAT NUMBER FLOAT(32) DOUBLE

java.lang.Short NUMBER SMALLINT NUMBER SMALLINT SHORT

java.lang.String VARCHAR2 VARCHAR CHAR VARCHAR TEXT

java.lang.Character CHAR CHAR CHAR CHAR TEXT

java.lang.Character[] LONG CLOB MEMO TEXT LONGTEXT

java.math.BigDecimal NUMBER DECIMAL NUMBER NUMERIC DOUBLE

java.math.BigInteger NUMBER DECIMAL NUMBER NUMERIC DOUBLE

java.sql.Date DATE DATE DATE DATETIME DATETIME

java.sql.Time DATE TIME CHAR DATETIME DATETIME

java.sql.Timestamp DATE TIMESTAMP CHAR DATETIME DATETIME

Session Management Services

Application Development Tools A-23

Runtime Services
The RuntimeServices API enables you to monitor a running in-production
system. It offers statistical functions and reporting, as well as logging functions.
Typical uses for RuntimeServices include turning logging on or off and
generating real time reports on the number and type of objects in a given cache or
subcache.

For more information, see the RuntimeServices class in the Oracle Application
Server TopLink API Reference.

Development Services
The DevelopmentServices API enables you to make changes to a running
nonproduction application that can destabilize or even crash the application. For
example, use the DevelopmentServices API to change the states of selected
objects and modify and reinitialize identity maps. This feature is useful for stress
and performance testing of preproduction applications and also enables you to
build prototypes quickly and easily.

For more information, see the RuntimeServices class in the Oracle Application
Server TopLink API Reference.

Using Session Management Services
To instantiate a session management service, you pass a session to the constructor.
After instantiating the service, you can attach a graphical interface or other
applications to the object to provide statistical feedback and runtime option
settings.

Example A–1 Accessing Session Management Services

import oracle.toplink.services.RuntimeServices;
import oracle.toplink.publicinterface.Session;
...
...
RuntimeServices service = newRuntimeServices ((session) session);
java.util.List classNames = service.getClassesInSession();

Session Management Services and BEA WebLogic Server
OracleAS TopLink support for BEA WebLogic Server automatically deploys the
session management services to the JMX server. You can retrieve the JMX Mbeans
with the following object names:

Stored Procedure Generator

A-24 Oracle Application Server TopLink Application Developer’s Guide

WebLogicObjectName("TopLink_Domain:Name=Development <Session><Name> Type=Configuration");
WebLogicObjectName("TopLink_Domain:Name=Runtime <Session><Name> Type=Reporting");

Session Name represents the session type and name under which you store the
required session configuration in the toplink-ejb-jar.xml file.

For more information about the WebLogicObjectName API, see

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName
.html

Stored Procedure Generator
You can generate stored procedures based on the dynamic SQL that is associated
with descriptors and mappings. After you generate the stored procedures, attach
them to the mappings and descriptors of the domain object. At that point, access to
the database is accomplished through stored procedures, rather than through SQL.

Generating Stored Procedures
You can generate stored procedures for all descriptors and most relationship
mappings with the exception of many-to-many mappings, which are not supported
by the stored procedure generator and stored procedures for Read operations for
the Oracle platform.

Sequencing and Stored Procedures
You can generate stored procedures for sequence number updates and selects. To
enable these stored procedures in OracleAS TopLink, create an amendment class
that contains a method attaching the stored procedures to each descriptor.

Example A–2 Stored Procedures Generated Directly on the Database

OracleAS TopLink creates an amendment class called com.demo.Tester in the file
C:/temp/Tester.java.

SchemaManager manager = new SchemaManager(session);
manager.outputDDLToDatabase();
manager.generateStoredProceduresAndAmendmentClass("C:/temp/","com.demo.Tester");

Note: Implement this feature only if your database requires access by
stored procedures. Doing this does not enhance performance and has the
same limitations that are associated with stored procedures.

Stored Procedure Generator

Application Development Tools A-25

Example A–3 Generating Stored Procedures to a File

SchemaManager manager = new SchemaManager(session);
manager.outputDDLToFile("C:\Temp\test.sql");
manager.generateStoredProceduresAndAmendmentClass("C:/temp/","com.demo.Tester");

For more information about creating an amendment class, see "Customizing
OracleAS TopLink Descriptors with Amendment Methods" on page 3-82.

Attaching the Stored Procedures to the Descriptors
After you create the stored procedures on the database, and after you create the
amendment file, enable them on the descriptors:

■ Before logging in, call a method on the generated amendment class:

Session session = project.createDatabaseSesssion();
com.demo.Tester.amendDescriptors(project);

For more information about creating an amendment class, see "Customizing
OracleAS TopLink Descriptors with Amendment Methods" on page 3-82.

Stored Procedure Generator

A-26 Oracle Application Server TopLink Application Developer’s Guide

Configuring OracleAS TopLink for J2EE Containers B-1

B
Configuring OracleAS TopLink for J2EE

Containers

This chapter describes how to configure Oracle Application Server TopLink for use
with J2EE containers and application servers. It includes sections on:

■ Software Requirements

■ Non-CMP Configuration

■ OracleAS TopLink CMP Configuration

■ OracleAS TopLink in a BEA WebLogic Cluster

■ For installation information, see "Installing and Configuring OracleAS
TopLink," in the Oracle Application Server TopLink Getting Started Guide.

Software Requirements

B-2 Oracle Application Server TopLink Application Developer’s Guide

Software Requirements
To run an OracleAS TopLink application within a J2EE container, your system must
meet the following software requirements:

■ An application server or J2EE container such as:

■ Oracle Application Server Containers for J2EE

■ IBM WebSphere Application Server 4.0

■ BEA WebLogic Application Server 6.1 (Service Pack 4), 7.0 (Service Pack 2)
or 8.1.

■ A JDBC driver configured to connect with your local database system (for more
information, see your database administrator)

■ A Java development environment, such as:

■ Oracle JDeveloper

■ IBM WebSphere Studio Application Developer (WASD)

■ Sun Java Development Kit (JDK) 1.3.1 or higher

■ Any other Java environment that is compatible with the Sun JDK 1.3.1 or
higher

■ A command-line Java virtual machine (JVM) executable (such as java.exe or
jre.exe)

Non-CMP Configuration
OracleAS TopLink supports several architectures that leverage a J2EE container. To
enable OracleAS TopLink in these architectures configure the following:

Class Path Place the OracleAS TopLink JARs on the application server class path.
Class path configuration is container-specific. For more information, see:

■ Oracle Application Server Containers for J2EE Support on page B-3

■ IBM WebSphere Application Server 4.0 on page B-4

■ IBM WebSphere Application Server 5.0 on page B-5

■ BEA WebLogic Application Server (6.1, 7.0 or 8.1) on page B-6

Non-CMP Configuration

Configuring OracleAS TopLink for J2EE Containers B-3

Datasource OracleAS TopLink applications that run in a J2EE container often use a
J2EE Datasource to access JDBC connections. To leverage a J2EE datasource,
configure a datasource with the server's configuration tools, and specify the name
of the datasource in the sessions.xml file, as follows:

<login>
<datasource>java:comp/env/jdbc/myJTADataSource</datasource>
<uses-external-connection-pool>true</uses-external-connection-pool>
...

</login>

JTA integration The OracleAS TopLink Unit of Work uses the Java Transaction API
(JTA) to participate in global transactions. Configure OracleAS TopLink JTA support
in the sessions.xml file as follows:

<login>
...
<uses-external-transaction-controller>true</uses-external-transaction-controller>

</login>
<external-transaction-controller-class>oracle.toplink.jts.oracle9i.Oracle9iJTSExternal

TransactionController </external-transaction-controller-class>

OracleAS TopLink support for external transaction controllers requires a J2EE
datasource. OracleAS TopLink provides several container-specific external
transaction controllers, as well as a generic controller.

For more information, see "J2EE Integration" on page 7-44.

Oracle Application Server Containers for J2EE Support
To configure OracleAS TopLink support for Oracle Application Server Containers
for J2EE, include the following OracleAS TopLink JARS on the Oracle Application
Server Containers for J2EE class path:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\toplink\jlib\antlr.jar

For example, add the following code to the Oracle Application Server Containers
for J2EE application.xml file:

<library path="/OraHome1/toplink/jlib/toplink.jar" />
<library path="/OraHome1/toplink/jlib/antlr.jar" />

Substitute your <ORACLE_HOME> directory for OraHome1.

Non-CMP Configuration

B-4 Oracle Application Server TopLink Application Developer’s Guide

IBM WebSphere Application Server 4.0
OracleAS TopLink provides support for IBM WebSphere Application Server 4.0. To
configure this support for IBM WebSphere Application Server, copy the following
OracleAS TopLink JARs to the application server class path directory:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\toplink\jlib\antlr.jar
<ORACLE_HOME>\lib\xmlparserv2.jar

Table B–1 lists the default application class path directories for IBM container
components.

Configuring IBM WebSphere Module Visibility Setting
Because of the way the WebSphere defines its class loader isolation mode, OracleAS
TopLink supports only the APPLICATION and MODULE modes for module visibility.

Module Mode A J2EE application (EAR file) can have multiple EJB modules (EJB JAR
files). OracleAS TopLink CMP loads one toplink-ejb-jar.xml per EJB module
(EJB JAR). If you do not set the loader isolation mode to MODULE, an EJB module
can load the incorrect toplink-ejb-jar.xml from another EJB module.

Application Mode OracleAS TopLink supports class loader isolation APPLICATION
mode. However, each application must have only one EJB JAR file.

For more information about the module visibility in IBM WebSphere, see the
IBM WebSphere documentation.

Table B–2 lists the application and module modes OracleAS TopLink supports.

Table B–1 Class Path Directories for IBM Container Components

Container Default Application Class Path

WebSphere Application Server 4.0
(for Windows)

\WebSphere\AppServer\lib\app

WebSphere Studio Application
Developer 4.0 (for Windows)

\Program Files\ibm\Application
Developer\plugins\com.ibm.etools.websphere.runtime\lib
\app

Non-CMP Configuration

Configuring OracleAS TopLink for J2EE Containers B-5

IBM WebSphere Application Server 5.0
To enable OracleAS TopLink support for IBM WebSphere Application Server 5.0,
configure the following four elements for WebSphere at the Enterprise Application
level:

Creating a Shared Library Create a shared library that contains the following Toplink
JARS and associate the shared library with the application:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\toplink\jlib\antlr.jar
<ORACLE_HOME>\lib\xmlparserv2.jar

Classloader Mode Set the application Classloader Mode to PARENT_LAST. Note that
you can also configure the Classloader at the Server level.

For more information, see the IBM WebSphere 5.0 documentation.

Application Classloader Policy Set the Application Classloader Policy on the
application server to Multiple.

For more information, see the IBM WebSphere 5.0 documentation.

A WAS 5.0 JTA Integration Class For applications that require JTA integration, specify
the external transaction controller in the OracleAS TopLink sessions.xml file. To
enable the WebSphere 5.0 external transaction controller, add the following line to
the sessions.xml file:

Table B–2 OracleAS TopLink Support of Server-Installable Applications on Server Versus Module
Visibility Mode

Installable Applications on Server Application Module Compatibility Server

Multiple applications in which each application
can have multiple OracleAS TopLink EJB
modules

No Yes No No

Multiple applications in which each application
has single OracleAS TopLink EJB module

Yes Yes No No

Single application has multiple OracleAS
TopLink EJB modules

No Yes No No

Single application has Single OracleAS TopLink
EJB module

Yes Yes Yes Yes

Non-CMP Configuration

B-6 Oracle Application Server TopLink Application Developer’s Guide

<external-transaction-controller-class>oracle.toplink.jts.was.
JTSExternalTransactionController_5_0</external-transaction-controller-class>

For more information, see "External Transaction Controllers" on page 7-45.

BEA WebLogic Application Server (6.1, 7.0 or 8.1)
OracleAS TopLink provides support for BEA WebLogic Application Server 6.1, 7.0
and 8.1. This support requires manual configuration, and includes a sample domain
and the ability to use a security manager with BEA WebLogic.

To configure OracleAS TopLink support for BEA WebLogic Server, add the
following JAR files to the application server class path:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\lib\xmlparserv2.jar

Using a Security Manager with BEA WebLogic Server
If you use a security manager, specify a security policy file in the
weblogic.policy file (normally located in the BEA WebLogic install directory),
as follows:

-Djava.security.manager
-Djava.security.policy==c:\weblogic\weblogic.policy

The BEA WebLogic installation procedure includes a sample security policy file.
You need to edit the weblogic.policy file to grant permission for OracleAS
TopLink to use reflection.

Example B–1 A Subset of a “Grant” Section from a BEA WebLogic.policy File

This example illustrates only the permissions that OracleAS TopLink requires, but
most weblogic.policy files contain more permissions than are shown in this
example.

grant {
// "enableSubstitution" required to run the WebLogic console
permission java.io.SerializablePermission "enableSubstitution";
// "modifyThreadGroup" required to run the WebLogic Server

Note: When you add the toplink.jar and xmlparserv2.jar
files in the application server class path, ensure they are placed
before the weblogic.jar file.

OracleAS TopLink CMP Configuration

Configuring OracleAS TopLink for J2EE Containers B-7

permission java.lang.RuntimePermission "modifyThreadGroup";
//grant permission for OracleAS TopLink to use reflection

permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

OracleAS TopLink CMP Configuration
OracleAS TopLink provides a CMP integration for:

■ IBM WebSphere Application Server 4.0

■ BEA WebLogic Application Server (6.1, 7.0 and 8.1)

IBM WebSphere Application Server 4.0
To enable the OracleAS TopLink CMP integration for IBM WebSphere 4.0, configure
OracleAS TopLink J2EE support for WebSphere as described in "IBM WebSphere
Application Server 4.0" on page B-4.

BEA WebLogic Application Server (6.1, 7.0 and 8.1)
To enable the OracleAS TopLink CMP integration for BEA WebLogic Server 6.1, 7.0
and 8.1, use the following procedures. These procedures assume you have already
installed OracleAS TopLink.

To configure OracleAS TopLink support for WebLogic:
1. Locate the persistence directory, located above the installation drive and root

directory of your BEA WebLogic Server executable, as follows:

Do one of the following:

■ Use a text editor to open the persistence.install file in the
BEA WebLogic Server persistence directory, and add a new line that
references TopLink_CMP_Descriptor.xml.

Version Persistence Directory (above <WebLogic_INSTALL_DIR>)

6.1 (Service Pack 4) \wlserver6.1\lib\persistence

7.0 (Service Pack 2) \weblogic700\server\lib\persistence

8.1 \weblogic81\server\lib\persistence

OracleAS TopLink in a BEA WebLogic Cluster

B-8 Oracle Application Server TopLink Application Developer’s Guide

■ Replace the WebLogic persistence.install file with the OracleAS
TopLink persistence.install file found in the <ORACLE_
HOME>\toplink\config directory.

2. Add the following JAR files to the application server class path:

<ORACLE_HOME>\toplink\jlib\toplink.jar
<ORACLE_HOME>\lib\xmlparserv2.jar

3. Start the container, and then start the OracleAS TopLink application. Where
supported, use a startup script to start the server. If you write your own startup
script, ensure that the class path includes the files listed in Step 2.

OracleAS TopLink in a BEA WebLogic Cluster
BEA WebLogic includes a clustering service that you can leverage with your
OracleAS TopLink application. To leverage a cluster, make the OracleAS TopLink
runtime JAR available to all servers to which you deploy OracleAS TopLink CMP
beans. This section discusses the following cluster-related issues:

■ Collocation

■ Static Partitioning

■ Pinning

■ Pinning with Session Beans

■ Cache Synchronization and the Cluster

Collocation
Although the BEA WebLogic cluster enables you to build an application across
several servers, related components in the application must still be localized to a
server. When you store several beans on the same server, the beans are said to be
collocated.

Collocation in a BEA WebLogic cluster imposes the following restrictions:

Note: When you add the toplink.jar and xmlparserv2.jar
files in the application server class path, ensure they are placed
before the weblogic.jar file.

OracleAS TopLink in a BEA WebLogic Cluster

Configuring OracleAS TopLink for J2EE Containers B-9

■ When you deploy beans on a single server, you can invoke those beans only on
that server. This localizes the beans on a given server, and provides a
statically-defined means of collocation.

■ You must cluster bean Home interfaces, but not instances. When you instantiate
a bean, you pin it to the server on which it was instantiated.

For more information, see "Pinning" on page B-9.

■ JTA user transactions must execute completely on a single server, and cannot
span servers.

You must collocate all related beans and objects on a single server to support
relationships between beans. To simplify the application, also retrieve source and
target objects on the same server.

Static Partitioning
Static partitioning refers to strategically deploying all related beans on a single
server. A server can contain several groups of related beans, but collocation dictates
that a group of beans cannot span several servers.

Static partitioning eliminates cache inconsistency issues, because the application
loads beans only on the server on which the beans are deployed. BEA provides
limited failover, and bean activity determines how the application load balances
across servers.

Pinning
When you create or instantiate a bean, the bean instance is associated with, or
pinned to, the server on which it is instantiated. To localize transactions to a
particular server, BEA WebLogic Server pins all instantiated beans in a given
transaction to the server on which you run the transaction. If beans are pinned to
other servers, you cannot localize the transaction.

You can pin beans to a given server dynamically, either through user transactions
or through session beans.

Pinning with User Transactions To maintain bean localization, access beans through a
transaction. If you deploy beans on multiple servers, you can initiate the transaction
on any server that holds a bean in the transaction. BEA WebLogic attempts to pin
all accessed beans to that server for the duration of the transaction.

Example B–2 illustrates the use of a user transaction to collocate related beans.

OracleAS TopLink in a BEA WebLogic Cluster

B-10 Oracle Application Server TopLink Application Developer’s Guide

Example B–2 Using a Transaction to Collocate Beans

UserTransaction transaction = lookupUserTransaction()
// Enclose all construction of relationships in the same transaction
transaction.begin();
/* Look up the home interface and the bean even if they have already been looked up
previously */
Employee emp = lookupEmployeeHome().findByPrimaryKey(new EmployeePK(EMP_ID));
Address address = new Address(EMP_ID, “99 Bank”, “Ottawa”, “Ontario”, “Canada”,“K2P 4A1”);
emp.setAddress(address);
Project project = lookupProjectHome().findByPrimaryKey(new ProjectPK(PROJ_ID));
emp.addProject(project);
transaction.commit();

Pinning with Session Beans If you access entity beans through a session bean, the
application instantiates the entity beans on the same server as the session bean. By
moving the application logic from the client to a session bean, you enable all bean
code to run on the same JVM. The client invokes a method in the session bean, and
the session bean executes all required logic on the server on which it resides.

You can use session beans to manage scalability and failover.

Cache Synchronization and the Cluster
Cache synchronization propagates changes from one OracleAS TopLink cache to all
other server caches. This eliminates the need for manual refresh, and provides a
consistent view of cached data across the cluster.

Cache synchronization is a project-level option. If you implement cache
synchronization, OracleAS TopLink propagates changes to all objects in the project.

Configuring Cache Synchronization
To configure cache synchronization in the toplink-ejb-jar.xml deployment
descriptor, implement the following elements and sub-elements:

■ cache-synchronization: Include this tag to enable cache synchronization.
To configure synchronization, use the is-asynchronous and
should-remove-connection-on-error tags.

■ is-asynchronous (optional): Sets the synchronization mode. Set to True to
enable asynchronous propagation, or False to force synchronous updates. The
default value is True.

For more information about synchronous and asynchronous updates, see
"Synchronous and Asynchronous Propagation" on page 8-12.

OracleAS TopLink in a BEA WebLogic Cluster

Configuring OracleAS TopLink for J2EE Containers B-11

■ should-remove-connection-on-error (optional): Enables error handling
at the connection. Set to True to enable this behavior, or False to disable it. The
default value is True.

For more information about this error handling feature, see "Error Handling" on
page 8-13.

Example B–3 Specifying Cache Synchronization in the toplink-ejb-jar.xml File

<toplink-ejb-jar>
<session>

<name>ejb20_AccountDemo</name>
<project-class>oracle.toplink.demos.ejb20.cmp.account.AccountProject</project-class>
<login>

<connection-pool>ejbPool</connection-pool>
</login>
<cache-synchronization>

<is-asynchronous>True</is-asynchronous>
<should-remove-connection-on-error>True</should-remove-connection-on-error>

</cache-synchronization>
</session>

</toplink-ejb-jar>

For more information about the toplink-ejb-jar.xml file, see "Configuring the
toplink-ejb-jar.xml File with the BEA WebLogic Server" on page 9-6.

OracleAS TopLink in a BEA WebLogic Cluster

B-12 Oracle Application Server TopLink Application Developer’s Guide

Error Codes and Messages C-1

C
Error Codes and Messages

This chapter describes the Oracle Application Server TopLink exception classes and
general troubleshooting issues for entity bean configuration and deployment. It
includes sections on:

■ OracleAS TopLink Exceptions

■ Exception Error Codes and Descriptions

■ Entity Deployment

OracleAS TopLink Exceptions

C-2 Oracle Application Server TopLink Application Developer’s Guide

OracleAS TopLink Exceptions
All OracleAS TopLink exceptions are descendants of RuntimeException. The
TopLinkException class is the superclass of all runtime and development type
exceptions.

Runtime Exceptions
Runtime exceptions indicate error conditions at runtime, though not necessarily
fatal errors. Instead, they indicate that runtime conditions are invalid, such as the
loss of database connection. All these exceptions should be handled in a try-catch
block.

The following exceptions can be thrown at runtime:

■ DatabaseException

■ OptimisticLockException

■ CommunicationException

Development Exceptions
Development exceptions indicate that a certain fragment of code is invalid. All
development exceptions do not depend on runtime conditions and must, therefore,
be solved before deploying the application. For example, the
DescriptorException is thrown the first time you initialize an application that
contains an erroneous descriptor or mapping property. Development exceptions are
useful as a debugging tool to find inconsistencies in the descriptor. Because
development exceptions are not normal behavior, they must not be handled in a
try-catch block.

The following exceptions are not dependent on runtime conditions. If one of these
exceptions is thrown, then the application code being tested is invalid and must be
changed. Avoid handling these types of exceptions:

■ DescriptorException

■ BuilderException

■ ConcurrencyException

■ ConversionException

■ QueryException

■ ValidationException

OracleAS TopLink Exceptions

Error Codes and Messages C-3

Format of Exceptions
All exceptions return the name of the exception and a message that describes what
caused the exception. The message that appears reflects the type of exception.

OracleAS TopLink exceptions include the following information:

■ The name of the OracleAS TopLink exception

■ A description of the most probable cause of the error

■ A native error code

Exception Error Code Numbers
OracleAS TopLink does not necessarily use the full range of exception error code
numbers available. Table C–1 indicates the potential range:

Table C–1 Range of OracleAS TopLink Exception Error Codes

Exceptions Error Code Range

Descriptor Exception 1 - 1000

Builder Exception 1001 - 2000

Concurrency Exception 2001 - 3000

Conversion Exception 3001 - 4000

Database Exception 4001 - 5000

Optimistic Lock Exception 5001 - 6000

Query Exception 6001 - 7000

Validation Exception 7001 - 8000

EJB QL Exception 8001 - 8999

Session Loader Exception 9000 - 10000

EJB Exception Factory 10001 - 11000

Cache Synch Communication Exception 11001 - 12000

Communication Exception 12001 - 13000

XML Data Store Exception 13001 - 14000

Deployment Exception 14001 - 15000

Synchronization Exception 15001 - 16000

Exception Error Codes and Descriptions

C-4 Oracle Application Server TopLink Application Developer’s Guide

Exception Error Codes and Descriptions
This section lists the OracleAS TopLink exception error codes, information about the
likely Cause of the problem and a possible corrective Action.

Each error code corresponds to an exception class and includes the following
information:

■ The exception number in the format, EXCEPTION [TOPLINK-XXXX]

■ A description of the problem, taken from the thrown exception

Descriptor Exception
A Descriptor exception is a development exception raised when insufficient
information has been provided to the descriptor. The message that is returned
includes the name of the descriptor or mapping that caused the exception. If a
mapping within the descriptor caused the error, then the name and parameters of
the mapping are part of the returned message.

Internal exception, mapping and descriptor appear only if OracleAS TopLink has
enough information about the source of the problem to provide this information.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

JDO Exception 16001 - 17000

SDK Data Store Exception 17001 - 18000

JMS Processing Exception 18001 - 19000

SDK Descriptor Exception 19001 - 20000

SDK Query Exception 20001 - 21000

Discovery Exception 22000 - 22100

Remote Command Manager Exception 22101 - 22200

XML Conversion Exception 25001 - 26000

EJB JAR XML Exception 72001 - 73000

Table C–1 Range of OracleAS TopLink Exception Error Codes (Cont.)

Exceptions Error Code Range

Exception Error Codes and Descriptions

Error Codes and Messages C-5

INTERNAL EXCEPTION: Message
MAPPING: Database mapping
DESCRIPTOR: Descriptor

Example C–1 Descriptor Exception

EXCEPTION [TOPLINK – 75]: oracle.toplink.exceptions.DescriptorException
EXCEPTION DESCRIPTION: The reference class is not specified.

Error Codes 1 – 176

Error code: 1
ATTRIBUTE_AND_MAPPING_WITH_INDIRECTION_ MISMATCH

Cause: attributeName is not declared as type ValueHolderInterface, but
the mapping uses indirection. The mapping is set to use indirection, but the
related attribute is not defined as type ValueHolderInterface. It is thrown on
foreign reference mappings.

Action: If you want to use indirection on the mapping, change the attribute to
type ValueHolderInterface. Otherwise, change the mapping associated with
the attribute so that it does not use indirection.

Error code: 2
ATTRIBUTE_AND_MAPPING_WITHOUT_INDIRECTION_ MISMATCH

Cause: attributeName is declared as type ValueHolderInterface, but
OracleAS TopLink is unable to use indirection. The attribute is defined to be of
type ValueHolderInterface, but the mapping is not set to use indirection. It
is thrown on foreign reference mappings.

Action: If you do not want to use indirection on the mapping, change the
attribute to not be of type ValueHolderInterface. Otherwise, change the
mapping associated with the attribute to use indirection.

Error code: 6
ATTRIBUTE_NAME_NOT_SPECIFIED

Cause: The attribute name is missing or not specified in the mapping
definition.

Action: Specify the attribute name in the mapping by calling method
setAttributeName(String attribute name).

Exception Error Codes and Descriptions

C-6 Oracle Application Server TopLink Application Developer’s Guide

Error code: 7
ATTRIBUTE_TYPE_NOT_VALID

Cause: When using Java 2, the specified attributeName is not defined as
type vector, or a type that implements Map or Collection. This occurs in
one-to-many mapping, many-to-many mapping, and collection mapping when
mapping is set not to use indirection, and the attribute type is not declared.

Action: Declare the attribute to be of type java.util.Vector.

Error code: 8
CLASS_INDICATOR_FIELD_NOT_FOUND

Cause: The class indicator field is defined, but the descriptor is set to use
inheritance. When using inheritance, a class indicator field or class extraction
method must be set. The class indicator field is used to create the right type of
domain object.

Action: Set either a class indicator field or class extraction method.

Error code: 9
DIRECT_FIELD_NAME_NOT_SET

Cause: The direct field name from the target table is not set in the direct
collection mapping.

Action: Specify the direct field name by calling method
setDirectFieldName(String fieldName).

Error code: 10
FIELD_NAME_NOT_SET_IN_MAPPING

Cause: The field name is not set in the mapping. It is thrown from direct to
field mapping, array mapping, and structure mapping.

Action: Specify the field name by calling method setFieldName(String
fieldName).

Error code: 11
FOREIGN_KEYS_DEFINED_INCORRECTLY

Cause: One-to-one mapping foreign key is defined incorrectly. Multiple foreign
key fields were set for one-to-one mapping by calling method
setForeignKeyFieldName(String fieldName).

Exception Error Codes and Descriptions

Error Codes and Messages C-7

Action: Use method addForeignKeyFieldName(String
sourceForeignKeyName, String targetPrimaryKeyFieldName) to add
multiple foreign key fields.

Error code: 12
IDENTITY_MAP_NOT_SPECIFIED

Cause: The descriptor must use an identity map to use the Check cache does
exist option. The descriptor has been set to not use identity map, but the
existence checking is set to be performed on identity map.

Action: Either use identity map, or set the existence checking to some other
option.

Error code: 13
ILLEGAL_ACCESS_WHILE_GETTING_VALUE_THRU_ INSTANCE_

VARIABLE_ACCESSOR
Cause: OracleAS TopLink is unable to access the attributeName instance
variable in object objectName. The instance variable in the domain object is
not accessible. This exception is thrown when OracleAS TopLink tries to access
the instance variable using Java reflection. The error is a purely Java exception,
and OracleAS TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 14
ILLEGAL_ACCESS_WHILE_CLONING

Cause: OracleAS TopLink is unable to clone the object domainObject because
the clone method methodName is not accessible. The method name specified
using useCloneCopyPolicy(String cloneMethodName) or the clone()
method to create the clone on the domain object, is not accessible by OracleAS
TopLink using Java reflection. The error is a purely Java exception, and
OracleAS TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 15
ILLEGAL_ACCESS_WHILE_CONSTRUCTOR_INSTANTIATION

Cause: The domain class does not define a public default constructor, which
OracleAS TopLink needs to create new instances of the domain class.

Action: Define a public default constructor or use a different instantiation
policy.

Exception Error Codes and Descriptions

C-8 Oracle Application Server TopLink Application Developer’s Guide

Error code: 16
ILLEGAL_ACCESS_WHILE_EVENT_EXECUTION

Cause: The descriptor callback method eventMethodName with
DescriptorEvent as argument is not accessible. This exception is thrown
when OracleAS TopLink tries to access the event method using Java reflection.
The error is a purely Java exception, and OracleAS TopLink wraps only the
reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 17
ILLEGAL_ACCESS_WHILE_GETTING_VALUE_THRU_ METHOD_

ACCESSOR
Cause: Trying to invoke inaccessible methodName on the object objectName.
The underlying get accessor method to access an attribute in the domain object
is not accessible. This exception is thrown when OracleAS TopLink tries to
access an attribute through method using Java reflection. The error is a purely
Java exception, and OracleAS TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 18
ILLEGAL_ACCESS_WHILE_INSTANTIATING_METHOD_ BASED_PROXY

Cause: The method used by the transformation mapping using a valueholder is
illegal. This exception is thrown when OracleAS TopLink tries to access the
method using Java reflection. The problem occurs when the method base
valueholder is instantiated.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 19
ILLEGAL_ACCESS_WHILE_INVOKING_ATTRIBUTE_METHOD

Cause: On transformation mapping, the underlying attribute method that is
used to retrieve values from the database row while reading the transformation
mapped attribute is not accessible.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 20
ILLEGAL_ACCESS_WHILE_INVOKING_FIELD_TO_METHOD

Cause: On transformation mapping, the method methodName that is used to
retrieve value from the object while writing the transformation mapped

Exception Error Codes and Descriptions

Error Codes and Messages C-9

attribute is not accessible. The error is a purely Java exception, and OracleAS
TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 21
ILLEGAL_ACCESS_WHILE_INVOKING_ROW_EXTRACTION_ METHOD

Cause: OracleAS TopLink was unable to extract data row, because the
OracleAS TopLink can not access the row specified in the databaseRow
argument of the method. The method to extract class from row on the domain
object is not accessible. The error is a purely Java exception, and OracleAS
TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 22
ILLEGAL_ACCESS_WHILE_METHOD_INSTANTIATION

Cause: OracleAS TopLink is unable to create a new instance, because the
method methodName that creates instances on the domain class is not
accessible. The error is a purely Java exception, and OracleAS TopLink wraps
only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 23
ILLEGAL_ACCESS_WHILE_OBSOLETE_EVENT_EXECUTION

Cause: The descriptor callback method eventMethodName with Session as
an argument is inaccessible. This exception is thrown when OracleAS TopLink
tries to access the event method using Java reflection. The error is a purely Java
exception, and OracleAS TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 24
ILLEGAL_ACCESS_WHILE_SETTING_VALUE_THRU_ INSTANCE_

VARIABLE_ACCESSOR
Cause: The attributeName instance variable in the object objectName is
not accessible through Java reflection. The error is thrown by Java, and
OracleAS TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-10 Oracle Application Server TopLink Application Developer’s Guide

Error code: 25
ILLEGAL_ACCESS_WHILE_SETTING_VALUE_THRU_ METHOD_

ACCESSOR
Cause: OracleAS TopLink is unable to invoke a method setMethodName on
the object with parameter parameter. The attribute’s set accessor method is
not accessible through Java reflection. The error is thrown by Java and OracleAS
TopLink wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 26
ILLEGAL_ARGUMENT_WHILE_GETTING_VALUE_ THRU_INSTANCE_

VARIABLE_ACCESSOR
Cause: OracleAS TopLink is unable to get a value for an instance variable
attributeName of type typeName from the object. The specified object is not
an instance of the class or interface declaring the underlying field. An object is
accessed to get the value of an instance variable that does not exist.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 27
ILLEGAL_ARGUMENT_WHILE_GETTING_VALUE_THRU_ METHOD_

ACCESSOR
Cause: OracleAS TopLink is unable to invoke method methodName on the
object objectName. The get accessor method declaration on the domain object
differs from the one that is defined. The number of actual and formal
parameters differ, or an unwrapping conversion has failed.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 28
ILLEGAL_ARGUMENT_WHILE_INSTANTIATING_METHOD_ BASED_

PROXY
Cause: The method that used by the method-based proxy uses in a
Transformation mapping is getting illegal arguments when the valueholder is
getting instantiated. This exception is thrown when OracleAS TopLink tries to
access the method using Java reflection.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

Error Codes and Messages C-11

Error code: 29
ILLEGAL_ARGUMENT_WHILE_INVOKING_ATTRIBUTE_ METHOD

Cause: The number of actual and formal parameters differ, or an unwrapping
conversion has failed. On transformation mapping, the method used to retrieve
value from the database row while reading the transformation mapped
attribute is getting an illegal argument.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 30
ILLEGAL_ARGUMENT_WHILE_INVOKING_FIELD_TO_ METHOD

Cause: The number of actual and formal parameters differ for method
methodName, or an unwrapping conversion has failed. On transformation
mapping, the method used to retrieve value from the object while writing the
transformation mapped attribute is getting an illegal argument. The error is a
purely Java exception, and OracleAS TopLink wraps only the reflection
exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 31
ILLEGAL_ARGUMENT_WHILE_OBSOLETE_EVENT_ EXECUTION

Cause: The number of actual and formal parameters for the descriptor callback
method eventMethodName differs, or an unwrapping conversion has failed.
The callback event method is invoked with an illegal argument. This exception
is thrown when OracleAS TopLink tries to invoke the event method using Java
reflection. The error is a purely Java exception, and OracleAS TopLink wraps
only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 32
ILLEGAL_ARGUMENT_WHILE_SETTING_VALUE_THRU_ INSTANCE_

VARIABLE_ACCESSOR
Cause: An illegal value is being assigned to the attribute instance variable.
OracleAS TopLink is unable to set a value for an instance variable
attributeName of type typeName in the object. The specified object is not an
instance of the class or interface that is declaring the underlying field, or an
unwrapping conversion has failed.

OracleAS TopLink assigns value by using Java reflection. Java throws the error
and OracleAS TopLink wraps only the reflection exception.

Exception Error Codes and Descriptions

C-12 Oracle Application Server TopLink Application Developer’s Guide

Action: Inspect the internal exception, and see the Java documentation.

Error code: 33
ILLEGAL_ARGUMENT_WHILE_SETTING_VALUE_THRU _METHOD_

ACCESSOR
Cause: An illegal argument is being passed to the attribute’s set accessor
method. OracleAS TopLink is unable to invoke method setMethodName on
the object. The number of actual and formal parameters differs, or an
unwrapping conversion has failed. Java throws the error and OracleAS TopLink
wraps only the reflection exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 34
INSTANTIATION_WHILE_CONSTRUCTOR_INSTANTIATION

Cause: The class does not define a public default constructor, or the constructor
raised an exception. This error occurs when you invoke the default constructor
for the domain object to create a new instance of the object while building new
domain objects if:

■ The Class represents an abstract class, an interface, an array class, a
primitive type, or void.

■ The instantiation fails for some other reason.

Java throws the error and OracleAS TopLink wraps only the reflection
exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 35
INVALID_DATA_MODIFICATION_EVENT

Cause: Applications should never encounter this exception. This exception
usually occurs at the time of developing OracleAS TopLink, although in cases
where the developer writes new mapping, it is possible to get this exception. In
direct collection mapping and many-to-many mapping, the target table and
relational table are populated at the end of the commit process, and if a data
modification event is sent to any other mapping, then this exception is thrown.

Action: Contact Technical Support.

Exception Error Codes and Descriptions

Error Codes and Messages C-13

Error code: 36
INVALID_DATA_MODIFICATION_EVENT_CODE

Cause: An application should never encounter this exception. This exception
usually occurs at the time of developing OracleAS TopLink, although in cases
where developers write new mappings, it is possible to get this exception. In
direct collection mapping and many-to-many mapping, the target table and
relational table are populated at the end of the commit process, and if a data
modification event is sent to these two mappings with wrong event code, then
this exception is thrown.

Action: Contact Technical Support.

Error code: 37
INVALID_DESCRIPTOR_EVENT_CODE

Cause: An application should never encounter this exception. This exception
usually occurs at the time of developing OracleAS TopLink. The exception
means that the descriptor event manager does not support the event code
passed in the event.

Action: Contact Technical Support.

Error code: 38
INVALID_IDENTITY_MAP

Cause: The identity map constructor failed because an invalid identity map
was specified. The identity map class given in the descriptor cannot be
instantiated. The exception is a Java exception thrown by a Java reflection when
OracleAS TopLink instantiates the identity map class. OracleAS TopLink wraps
only the Java exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 39
JAVA_CLASS_NOT_SPECIFIED

Cause: The descriptor does not define a Java class. The Java class is not
specified in the descriptor.

Action: Specify the Java Class.

Error code: 40
DESCRIPTOR_FOR_INTERFACE_IS_MISSING

Cause: A descriptor for the referenced interface is not added to the session.

Exception Error Codes and Descriptions

C-14 Oracle Application Server TopLink Application Developer’s Guide

Action: Add that descriptor to the session.

Error code: 41
MAPPING_FOR_SEQUENCE_NUMBER_FIELD

Cause: A non-read-only mapping is not defined for the sequence number field.
A mapping is required so that OracleAS TopLink can put and extract values for
the primary key.

Action: Define a mapping.

Error code: 43
MISSING_CLASS_FOR_INDICATOR_FIELD_VALUE

Cause: OracleAS TopLink is missing the class for indicator field value
classFieldValue of type type. There was no class entry found in the
inheritance policy for the indicator field value that was read from the database.
It is likely that the method addClassIndicator(Class class, Object
typeValue) was not called for the field value. The class and typeValue is
stored in the hashtable, and later the class is extracted from the hashtable by
passing typeValue as a key. Because Integer(1) is not equivalent to
Float(1), this exception occurs when the type of typeValue is incorrectly
specified.

Action: Verify the descriptor.

Error code: 44
MISSING_CLASS_INDICATOR_FIELD

Cause: The class indicator field is missing from the database row that was read
from the database. This is performed in the inheritance model where after
reading rows from the database, child domain objects are to be constructed
depending upon the type indicator values.

Action: Verify the printed row for correct spelling.

Error code: 45
MISSING_MAPPING_FOR_FIELD

Cause: OracleAS TopLink is missing mapping for field; a mapping for the
field is not specified.

Action: Define a mapping for the field.

Exception Error Codes and Descriptions

Error Codes and Messages C-15

Error code: 46
NO_MAPPING_FOR_PRIMARY_KEY

Cause: A mapping for the primary key is not specified. There should be one
non-read-only mapping defined for the primary key field.

Action: Define a mapping for the primary key.

Error code: 47
MULTIPLE_TABLE_PRIMARY_KEY_NOT_SPECIFIED

Cause: The multiple table primary key mapping must be specified when a
custom multiple table join is used. If multiple tables are specified in the
descriptor and the join expression is customized, then the primary keys for all
the tables must be specified. If the primary keys are not specified, then the
exception occurs.

Action: Call method addMultipleTablePrimaryKeyFieldName(String
fieldNameInPrimaryTable, String fieldNameInSecondaryTable) on
the descriptor to set the primary keys.

Error code: 48
MULTIPLE_WRITE_MAPPINGS_FOR_FIELD

Cause: Multiple writable mappings for the field fieldName are defined in the
descriptor. Exactly one must be defined writable; the others must be specified
as read-only. When multiple write mappings are defined for the field, OracleAS
TopLink is unable to choose the appropriate mapping for writing the value of
the field in the database row. Therefore, the exception is thrown during the
validation process of descriptors.

The most common cause of this problem occurs when the field has
direct-to-field mapping, as well as one-to-one mapping. In this case, the
one-to-one mapping must either be read-only or a target foreign key reference.

Action: Make one of those mappings read only.

Error code: 49
NO_ATTRIBUTE_TRANSFORMATION_METHOD

Cause: The attribute transformation method name in the transformation
mapping is not specified. This method is invoked internally by OracleAS
TopLink to retrieve value to store in the domain object.

Action: Define a method and set the method name on the mapping by calling
method setAttributeTransformation(String methodName).

Exception Error Codes and Descriptions

C-16 Oracle Application Server TopLink Application Developer’s Guide

Error code: 50
NO_FIELD_NAME_FOR_MAPPING

Cause: No field name is specified in direct-to-field mapping.

Action: Set the field by calling setFieldName(String FieldName).

Error code: 51
NO_FOREIGN_KEYS_ARE_SPECIFIED

Cause: Neither the selection criteria nor the foreign keys were specified on
one-to-one mapping. If the selection criterion is not specified then OracleAS
TopLink tries to build one from the foreign keys specified in the mapping.

Action: Specify the fields.

Error code: 52
NO_REFERENCE_KEY_IS_SPECIFIED

Cause: No query key named: queryKey is found in: descriptor. No
reference key from the target table is specified on direct collection mapping.

Action: Specify the fields by calling method
setReferenceKeyFieldName(String fieldName).

Error code: 53
NO_RELATION_TABLE

Cause: The relation table name is not set in this many-to-many mapping.

Action: Set the relation table name by calling method
setRelationTableName(String tableName).

Error code: 54
NO_SOURCE_RELATION_KEYS_SPECIFIED

Cause: There are no source relation keys specified in this many-to-many
mapping.

Action: Add source relation keys to the mapping.

Error code: 55
NO_SUCH_METHOD_ON_FIND_OBSOLETE_METHOD

Cause: OracleAS TopLink cannot find the descriptor callback method
selector on the domain class. It must take a Session or a DescriptorEvent
as its argument. OracleAS TopLink tries to invoke the method using Java

Exception Error Codes and Descriptions

Error Codes and Messages C-17

reflection. It is a Java exception and OracleAS TopLink is wrapping only the
main exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 56
NO_SUCH_METHOD_ON_INITIALIZING_ ATTRIBUTE_METHOD

Cause: OracleAS TopLink cannot find the method attributeMethodName
with parameters databaseRow or databaseRow, session. OracleAS
TopLink wraps the Java reflection exception that is caused when the method is
being created from the method name. This method is set by calling
setAttributeMethodName(String aMethodName).

Action: Inspect the internal exception, and see the Java documentation.

Error code: 57
NO_SUCH_METHOD_WHILE_CONSTRUCTOR_ INSTANTIATION

Cause: The constructor is inaccessible to OracleAS TopLink. OracleAS TopLink
wraps the Java reflection exception that is caused when it is creating a new
instance of the domain.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 58
NO_SUCH_METHOD_WHILE_CONVERTING_TO_METHOD

Cause: The method methodName is not found with parameters () or Session.
OracleAS TopLink wraps the Java reflection exception that is caused when it is
creating a Method type from the method names in transformation mapping.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 59
NO_SUCH_FIELD_WHILE_INITIALIZING_ATTRIBUTES_ IN_INSTANCE_

VARIABLE_ACCESSOR
Cause: The instance variable attributeName is not defined in the domain
class, or it is not accessible. OracleAS TopLink wraps the Java reflection
exception that is caused when it is creating a Field type from the attribute name.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-18 Oracle Application Server TopLink Application Developer’s Guide

Error code: 60
NO_SUCH_METHOD_WHILE_INITIALIZING_ ATTRIBUTES_IN_METHOD_

ACCESSOR
Cause: The accessor method setMethodName or getMethodName is not
defined for the attribute in the domain class javaClassName, or it is not
accessible. OracleAS TopLink wraps the Java reflection exception that is caused
when it is creating a Method type from the method name.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 61
NO_SUCH_METHOD_WHILE_INITIALIZING_ CLASS_EXTRACTION_

METHOD
Cause: The static class extraction method methodName with databaseRow as
argument does not exist, or is not accessible. A Java reflection exception
wrapped in an OracleAS TopLink exception is thrown when class extraction
method is being created from the method name in the inheritance policy.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 62
NO_SUCH_METHOD_WHILE_INITIALIZING_COPY_POLICY

Cause: The clone method methodName with no arguments does not exist, or is
not accessible. A Java reflection exception wrapped in an OracleAS TopLink
exception is thrown when a method to create clones is being created from the
method name in the copy policy.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 63
NO_SUCH_METHOD_WHILE_INITIALIZING_ INSTANTIATION_POLICY

Cause: The instance creation method methodName with no arguments does
not exist, or is not accessible. A Java reflection exception wrapped in an
OracleAS TopLink exception is thrown when a method to create the new
instance is being created from the method name in the instantiation policy.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

Error Codes and Messages C-19

Error code: 64
NO_TARGET_FOREIGN_KEYS_SPECIFIED

Cause: The foreign keys in the target table are not specified in one-to-many
mappings. These fields are not required if a selection criterion is given in the
mapping, but otherwise they must be specified.

Action: Set target foreign keys or selection criteria.

Error code: 65
NO_TARGET_RELATION_KEYS_SPECIFIED

Cause: There are no target relation keys specified in many-to-many mappings.

Action: Call method addTargetRelationKeyFieldName(String
targetRelationKeyFieldName, String targetPrimaryKeyFieldName) to
set the fields.

Error code: 66
NOT_DESERIALIZABLE

Cause: The object cannot be deserialized from the byte array that is read from
the database. The exception is thrown when the serialized object mapping is
converting the byte array into an object.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 67
NOT_SERIALIZABLE

Cause: The object cannot be serialized into a byte array. The exception is
thrown when a serialized object mapping is converting the object into a byte
array.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 68
NULL_FOR_NON_NULL_AGGREGATE

Cause: The value of aggregate in the source object object is null. Null values
are not allowed for aggregate mappings unless allow null is specified in the
aggregate mapping.

Action: Call method allowNull() on the mapping.

Exception Error Codes and Descriptions

C-20 Oracle Application Server TopLink Application Developer’s Guide

Error code: 69
NULL_POINTER_WHILE_GETTING_VALUE_THRU_ INSTANCE_

VARIABLE_ACCESSOR
Cause: An object is accessed to get the value of an instance variable through
Java reflection. This exception is thrown only on some Java virtual machines
(JVM).

Action: Inspect the internal exception, and see the Java documentation.

Error code: 70
NULL_POINTER_WHILE_GETTING_VALUE_THRU_ METHOD_ACCESSOR

Cause: The get accessor method is invoked to get the value of an attribute
through Java reflection. This exception is thrown only on some Java virtual
machines (JVM).

Action: Inspect the internal exception, and see the Java documentation.

Error code: 71
NULL_POINTER_WHILE_SETTING_VALUE_THRU_ INSTANCE_VARIABLE_

ACCESSOR
Cause: Null Pointer Exception has been thrown while setting the value of the
attributeName instance variable in the object to value. An object is accessed
to set the value of an instance variable through Java reflection. This exception is
thrown only on some Java virtual machines (JVM).

Action: Inspect the internal exception, and see the Java documentation.

Error code: 72
NULL_POINTER_WHILE_SETTING_VALUE_THRU_ METHOD_ACCESSOR

Cause: A Null Pointer Exception has been thrown while setting the value
through setMethodName method in the object with an argument argument.
The set accessor method is invoked to set the value of an attribute through Java
reflection. This exception is thrown only on some Java virtual machines (JVM).

Action: Inspect the internal exception, and see the Java documentation.

Error code: 73
PARENT_DESCRIPTOR_NOT_SPECIFIED

Cause: OracleAS TopLink is unable to find descriptor for the parent class. The
descriptor of a subclass has no parent descriptor.

Exception Error Codes and Descriptions

Error Codes and Messages C-21

Action: The method setParentClass(Class parentClass) on the subclass
descriptor must be called.

Error code: 74
PRIMARY_KEY_FIELDS_NOT_SPECIFIED

Cause: The primary key fields are not set for this descriptor.

Action: Add primary key field names using method
setPrimaryKeyFieldName(String fieldName) or
setPrimaryKeyFieldName(String fieldName).

Error code: 75
REFERENCE_CLASS_NOT_SPECIFIED

Cause: The reference class is not specified in the foreign reference mapping.

Action: Set the reference class by calling method setReferenceClass(Class
aClass).

Error code: 77
REFERENCE_DESCRIPTOR_IS_NOT_AGGREGATE

Cause: The referenced descriptor for className should be set to an aggregate
descriptor. An aggregate mapping should always reference a descriptor that is
aggregate.

Action: Call method descriptorIsAggregate() on the referenced descriptor.

Error code: 78
REFERENCE_KEY_FIELD_NOT_PROPERLY_SPECIFIED

Cause: The table for the reference field must be the reference table. If the
reference field name that is specified in the direct collection mapping is
qualified with the table name, then the table name should match the reference
table name.

Action: Qualify the field with the proper name, or change the reference table
name.

Error code: 79
REFERENCE_TABLE_NOT_SPECIFIED

Cause: The reference table name in the direct collection mapping is not
specified.

Exception Error Codes and Descriptions

C-22 Oracle Application Server TopLink Application Developer’s Guide

Action: Use method setReferenceTableName(String tableName) on the
mapping to set the table name.

Error code: 80
RELATION_KEY_FIELD_NOT_PROPERLY_SPECIFIED

Cause: The table for the relation key field must be the relation table. If the
source and target relation fields name that is specified in the many-to-many
mapping are qualified with the table name, then the table name should match
the relation table name.

Action: Qualify the field with the proper name, or change the relation table
name.

Error code: 81
RETURN_TYPE_IN_GET_ATTRIBUTE_ACCESSOR

Cause: The method attributeMethodName that is specified in the
transformation mapping should have a return type set in the attribute because
this method is used to extract value from the database row.

Action: Verify the method and make appropriate changes.

Error code: 82
SECURITY_ON_FIND_METHOD

Cause: The descriptor callback method selector with DescriptorEvent as
an argument is not accessible. Java throws a security exception when a Method
type is created from the method name using Java reflection. The method is a
descriptor event callback on the domain object that takes DescriptorEvent
as its parameter.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 83
SECURITY_ON_FIND_OBSOLETE_METHOD

Cause: The descriptor callback method selector with session as an
argument is not accessible. Java throws a security exception when a Method
type is created from the method name using Java reflection. The method is a
descriptor event callback on the domain object, which takes class and session as
its parameters.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

Error Codes and Messages C-23

Error code: 84
SECURITY_ON_INITIALIZING_ATTRIBUTE_METHOD

Cause: Access to the method attributeMethodName with parameters
databaseRow or databaseRow, Session has been denied. Java throws a
security exception when a Method type is created from the attribute method
name using Java reflection. The attribute method that is specified in the
transformation mapping is used to extract value from the database row and set
by calling setAttributeTransformation(String methodName).

Action: Inspect the internal exception, and see the Java documentation.

Error code: 85
SECURITY_WHILE_CONVERTING_TO_METHOD

Cause: Method: methodName ACCESS DENIED with <> or session
parameters. Java throws a security exception when a Method type is created
from the method name using Java reflection. These are the methods that extract
the field value from the domain object in the transformation mapping.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 86
SECURITY_WHILE_INITIALIZING_ATTRIBUTES_IN_ INSTANCE_

VARIABLE_ACCESSOR
Cause: Access to the instance variable attributeName in the class
javaClassName is denied. Java throws a security exception when creating a
Field type from the given attribute name using Java reflection.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 87
SECURITY_WHILE_INITIALIZING_ATTRIBUTES_IN_ METHOD_ACCESSOR

Cause: The methods setMethodName and getMethodName in the object
javaClassName are inaccessible. Java throws a security exception when
creating a Method type from the given attribute accessor method name using
Java reflection.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-24 Oracle Application Server TopLink Application Developer’s Guide

Error code: 88
SECURITY_WHILE_INITIALIZING_CLASS_ EXTRACTION_METHOD

Cause: The static class extraction method methodName with DatabaseRow as
an argument is not accessible. Java throws a security exception when creating a
Method type from the given class extraction method name using Java reflection.
The method is used to extract the class from the database row in inheritance
policy.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 89
SECURITY_WHILE_INITIALIZING_COPY_POLICY

Cause: The clone method methodName with no arguments is inaccessible. Java
throws a security exception when creating Method type from the given method
name using Java reflection. This method on copy policy is used to create clones
of the domain object.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 90
SECURITY_WHILE_INITIALIZING_INSTANTIATION_POLICY

Cause: The instance creation method methodName with no arguments is
inaccessible. Java throws a security exception when creating Method type from
the given method name using Java reflection. This method on instantiation
policy is used to create new instances of the domain object.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 91
SEQUENCE_NUMBER_PROPERTY_NOT_SPECIFIED

Cause: Either the sequence field name or the sequence number name is
missing. To use sequence generated IDs both the sequence number name and
field name properties must be set.

Action: To use sequence-generated IDs, set both the sequence number name
and field name properties.

Error code: 92
SIZE_MISMATCH_OF_FOREIGN_KEYS

Cause: The size of the primary keys on the target table does not match the size
of the foreign keys on the source in one-to-one mapping.

Exception Error Codes and Descriptions

Error Codes and Messages C-25

Action: Verify the mapping and the reference descriptor’s primary keys.

Error code: 93
TABLE_NOT_PRESENT

Cause: The table tableName is not present in the descriptor.

Action: Verify the qualified field names that are specified in the mappings and
descriptor so that any fields that are qualified with the table name reference the
correct table.

Error code: 94
TABLE_NOT_SPECIFIED

Cause: No table is specified in the descriptor. The descriptor must have a table
name defined.

Action: Call method addTableName(String tableName) or
setTableName(String tableName) to set the tables on the descriptor.

Error code: 96
TARGET_FOREIGN_KEYS_SIZE_MISMATCH

Cause: The size of the foreign keys on the target table does not match the size
of the source keys on the source table in the one-to-many mapping.

Action: Verify the mapping.

Error code: 97
TARGET_INVOCATION_WHILE_CLONING

Cause: OracleAS TopLink has encountered a problem in cloning the object
domainObject clone method. The methodName triggered an exception. Java
throws this exception when the cloned object is invoked while the object is
being cloned. The clone method is specified on the copy policy that is usually
invoked to create clones in Unit of Work.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 98
TARGET_INVOCATION_WHILE_EVENT_EXECUTION

Cause: A descriptor callback method eventMethodName that includes a
DescriptorEvent as argument. The exception occurs when the descriptor
event method is invoked using Java reflection.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-26 Oracle Application Server TopLink Application Developer’s Guide

Error code: 99
TARGET_INVOCATION_WHILE_GETTING_VALUE_ THRU_METHOD_

ACCESSOR
Cause: The method methodName on the object objectName is throwing an
exception. Java is throwing an exception while getting an attribute value from
the object through a method accessor.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 100
TARGET_INVOCATION_WHILE_INSTANTIATING_ METHOD_BASED_

PROXY
Cause: A method has thrown an exception. Java throws this exception while
instantiating a method based proxy and instantiating transformation mapping.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 101
TARGET_INVOCATION_WHILE_INVOKING_ ATTRIBUTE_METHOD

Cause: The underlying method throws an exception. Java is throwing an
exception while invoking an attribute transformation method on transformation
mapping. The method is invoked to extract value from the database row to set
into the domain object.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 102
TARGET_INVOCATION_WHILE_INVOKING_FIELD_ TO_METHOD

Cause: The method methodName is throwing an exception. Java is throwing
exception while invoking field transformation method on transformation
mapping. The method is invoked to extract value from the domain object to set
into the database row.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 103
TARGET_INVOCATION_WHILE_INVOKING_ROW_ EXTRACTION_

METHOD
Cause: OracleAS TopLink encountered a problem extracting the class type from
row row while invoking a class extraction method.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

Error Codes and Messages C-27

Error code: 104
TARGET_INVOCATION_WHILE_METHOD_INSTANTIATION

Cause: OracleAS TopLink is unable to create a new instance. The creation
method methodName caused an exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 105
TARGET_INVOCATION_WHILE_OBSOLETE_ EVENT_EXECUTION

Cause: The underlying descriptor callback method eventMethodName with
session as argument throws an exception. Java is throwing an exception
while invoking a descriptor event method that takes a session as its parameter.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 106
TARGET_INVOCATION_WHILE_SETTING_VALUE_THRU_ METHOD_

ACESSOR
Cause: The method setMethodName on the object throws an exception. Java is
throwing an exception while invoking a set accessor method on the domain
object to set an attribute value into the domain object.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 108
VALUE_NOT_FOUND_IN_CLASS_INDICATOR_MAPPING

Cause: The indicator value is not found in the class indicator mapping in the
parent descriptor for the class.

Action: Verify the addClassIndicator(Class childClass, Object
typeValue) on the inheritance policy.

Error code: 109
WRITE_LOCK_FIELD_IN_CHILD_DESCRIPTOR

Cause: The child descriptor has a write lock field defined. This is unnecessary,
because it inherits any required locking from the parent descriptor.

Action: Check your child descriptor, and remove the field.

Exception Error Codes and Descriptions

C-28 Oracle Application Server TopLink Application Developer’s Guide

Error code: 110
DESCRIPTOR_IS_MISSING

Cause: The descriptor for the reference class className is missing from the
mapping.

Action: Verify the session to see if the descriptor for the reference class was
added.

Error code: 111
MULTIPLE_TABLE_PRIMARY_KEY_MUST_BE_ FULLY_QUALIFIED

Cause: Multiple table primary key field names are not fully qualified. These
field names are given on the descriptor if it has more than one table.

Action: Specify the field names with the table name.

Error code: 112
ONLY_ONE_TABLE_CAN_BE_ADDED_WITH_THIS_METHOD

Cause: You have tried to enter more than one table through this method.

Action: Use addTableName(String tableName) to add multiple tables to the
descriptor.

Error code: 113
NULL_POINTER_WHILE_CONSTRUCTOR_INSTANTIATION

Cause: The constructor is inaccessible. Java is throwing this exception while
invoking a default constructor to create new instances of the domain object.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 114
NULL_POINTER_WHILE_METHOD_INSTANTIATION

Cause: The new instance methodName creation method is inaccessible. Java is
throwing an exception while calling a method to a build new instance of the
domain object. This method is given by the user to override the default
behavior of creating new instances through a class constructor.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 115
NO_ATTRIBUTE_VALUE_CONVERSION_TO_FIELD_VALUE_PROVIDED

Cause: The field conversion value for the attribute value attributeValue
was not given in the object type mapping.

Exception Error Codes and Descriptions

Error Codes and Messages C-29

Action: Verify the attribute value, and provide a corresponding field value in
the mapping.

Error code: 116
NO_FIELD_VALUE_CONVERSION_TO_ATTRIBUTE_ VALUE_PROVIDED

Cause: The attribute conversion value for the fieldValue was not given in
the object type mapping.

Action: Verify the field value, and provide a corresponding attribute value in
the mapping.

Error code: 118
LOCK_MAPPING_CANNOT_BE_READONLY

Cause: The domain object className cannot have a read only mapping for
the write lock fields when the version value is stored in the object.

Action: Verify the mappings on the write lock fields.

Error code: 119
LOCK_MAPPING_MUST_BE_READONLY

Cause: The domain object className does not have a read only mapping for
the write lock fields when the version value is stored in the cache.

Action: Verify the mappings on write lock fields.

Error code: 120
CHILD_DOES_NOT_DEFINE_ABSTRACT_QUERY_KEY

Cause: The queryKey queryKeyName is defined in the parent descriptor but
not in the child descriptor. The descriptor has not defined the abstract query
key.

Action: Define any implementors of the interface descriptor by the abstract
query key in the interface descriptor.

Error code: 122
SET_EXISTENCE_CHECKING_NOT_UNDERSTOOD

Cause: The interface descriptor parent does not have at least one abstract
query key defined. The string given to the method
setExistenceChecking(String token) is not understood.

Action: Verify that the string passed is one of the following:

Exception Error Codes and Descriptions

C-30 Oracle Application Server TopLink Application Developer’s Guide

■ Check cache

■ Check database

■ Assume existence

■ Assume non-existence

Error code: 125
VALUE_HOLDER_INSTANTIATION_MISMATCH

Cause: The mapping for the attribute mapping.getAttributeName() uses
indirection and must be initialized to a new valueholder.

Action: Ensure that the mapping uses indirection and that the attribute is
initialized to a new valueholder.

Error code: 126
NO_SUB_CLASS_MATCH

Cause: No subclass matches this class theClass when inheritance is in
aggregate relationship mapping.

Action: Verify the subclass and the relationship mapping.

Error code: 127
RETURN_AND_MAPPING_WITH_INDIRECTION_MISMATCH

Cause: The get method return type for the attribute
mapping.getAttributeName() is not declared as type
ValueHolderInterface, but the mapping is using indirection.

Action: Verify that the get method returns a valueholder, or change the
mapping to not use indirection.

Error code: 128
RETURN_AND_MAPPING_WITHOUT_INDIRECTION_ MISMATCH

Cause: The get method return type for the attribute
mapping.getAttributeName() is declared as type ValueHolderInterface,
but the mapping is not using indirection.

Action: Ensure that the mapping is using indirection, or change the return type
from valueholder.

Exception Error Codes and Descriptions

Error Codes and Messages C-31

Error code: 129
PARAMETER_AND_MAPPING_WITH_INDIRECTION_ MISMATCH

Cause: The set method parameter type for the attribute
mapping.getAttributeName() is not declared as type
ValueHolderInterface, but the mapping is using indirection.

Action: Ensure that the set method parameter is declared as a valueholder, or
change the mapping to not use indirection.

Error code: 130
PARAMETER_AND_MAPPING_WITHOUT_INDIRECTION_ MISMATCH

Cause: The set method parameter type for the attribute
mapping.getAttributeName() is declared as type ValueHolderInterface,
but the mapping is not using indirection.

Action: Ensure that the mapping is changed to use indirection, or that the
method parameter is not declared as a valueholder.

Error code: 131
GET_METHOD_RETURN_TYPE_NOT_VALID

Cause: The get method return type for the attribute
mapping.getAttributeName() is not declared as type vector (or a type that
implements Map or Collection if using Java 2).

Action: Declare the get method return type for the attribute as type vector (or a
type that implements Map or Collection if using Java 2).

Error code: 133
SET_METHOD_PARAMETER_TYPE_NOT_VALID

Cause: The set method parameter type for the attribute
mapping.getAttributeName() is not declared as type vector (or a type that
implements Map or Collection, if using Java 2).

Action: Declare the set method parameter type for the attribute as type vector
(or a type that implements Map or Collection, if using Java 2).

Error code: 135
ILLEGAL_TABLE_NAME_IN_MULTIPLE_TABLE_ FOREIGN_KEY

Cause: The table in the multiple table foreign key relationship refers to an
unknown table.

Action: Verify the table name.

Exception Error Codes and Descriptions

C-32 Oracle Application Server TopLink Application Developer’s Guide

Error code: 138
ATTRIBUTE_AND_MAPPING_WITH_TRANSPARENT_ INDIRECTION_

MISMATCH
Cause: The attribute mapping.getAttributeName() is not declared as a
super-type of validTypeName, but the mapping is using transparent
indirection.

Action: Verify the attribute’s type and the mapping setup.

Error code: 139
RETURN_AND_MAPPING_WITH_TRANSPARENT_ INDIRECTION_

MISMATCH
Cause: The get method return type for the attribute
mapping.getAttributeName() is not declared as a super-type of
validTypeName, but the mapping is using transparent indirection.

Action: Verify the attribute’s type and the mapping setup.

Error code: 140
PARAMETER_AND_MAPPING_WITH_TRANSPARENT_ INDIRECTION_

MISMATCH
Cause: The set method parameter type for the attribute
mapping.getAttributeName() is not declared as a super-type of
validTypeName, but the mapping is using transparent indirection.

Action: Verify the attribute’s type and the mapping setup.

Error code: 141
FIELD_IS_NOT_PRESENT_IN_DATABASE

Cause: The field fieldname is not present in the table tableName in the
database.

Action: Verify the field name for the attribute.

Error code: 142
TABLE_IS_NOT_PRESENT_IN_DATABASE

Cause: The descriptor.getTableName() is not present in the database.

Action: Verify the table name for the descriptor.

Exception Error Codes and Descriptions

Error Codes and Messages C-33

Error code: 143
MULTIPLE_TABLE_INSERT_ORDER_MISMATCH

Cause: The multiple table insert order vector specified
aDescriptor.getMultipleTableInsertOrder() has more or fewer
tables than are specified in the descriptor aDescriptor.getTables(). All
the tables must be included in the insert order vector.

Action: Ensure that all table names for the descriptor are present and that there
are no extra tables.

Error code: 144
INVALID_USE_OF_TRANSPARENT_INDIRECTION

Cause: Transparent indirection is being used with a mapping other than
CollectionMappings.

Action: Verify the mapping. It must be a collection mapping.

Error code: 145
MISSING_INDIRECT_CONTAINER_CONSTRUCTOR

Cause: The indirect container class does not implement the constructor.

Action: Implement the constructor for the container.

Error code: 146
COULD_NOT_INSTANTIATE_INDIRECT_CONTAINER_CLASS

Cause: OracleAS TopLink is unable to instantiate the indirect container class
using the constructor.

Action: Validate the constructor for the indirect container class.

Error code: 147
INVALID_CONTAINER_POLICY

Cause: You have used a Container Policy with an incompatible version of the
JDK. This container policy must only be used in JDK 1.3.1 or higher.

Action: Validate the container policy being used.

Error code: 148
INVALID_CONTAINER_POLICY_WITH_TRANSPARENT_ INDIRECTION

Cause: The container policy is incompatible with transparent indirection.

Exception Error Codes and Descriptions

C-34 Oracle Application Server TopLink Application Developer’s Guide

Action: Change the container policy to be compatible with transparent
indirection, or do not use transparent indirection.

Error code: 149
INVALID_USE_OF_NO_INDIRECTION

Cause: No indirection should not receive this message.

Action: Change to use no indirection.

Error code: 150
INDIRECT_CONTAINER_INSTANTIATION_MISMATCH

Cause: The mapping for the attribute mapping.getAttributeName() uses
transparent indirection and must be initialized to an appropriate container.

Action: Initialize the mapping to an appropriate container.

Error code: 151
INVALID_MAPPING_OPERATION

Cause: An invalid mapping operation has been used.

Action: See the documentation for valid mapping operations.

Error code: 152
INVALID_INDIRECTION_POLICY_OPERATION

Cause: An invalid indirection policy operation has been used.

Action: See the documentation for valid indirection policy operations.

Error code: 153
REFERENCE_DESCRIPTOR_IS_NOT_ AGGREGATECOLLECTION

Cause: The reference descriptor for className is not set to an aggregate
collection descriptor.

Action: Set the reference descriptor to an aggregate collection descriptor.

Error code: 154
INVALID_INDIRECTION_CONTAINER_CLASS

Cause: An invalid indirection container class has been used.

Action: Verify the container class.

Exception Error Codes and Descriptions

Error Codes and Messages C-35

Error code: 155
MISSING_FOREIGN_KEY_TRANSLATION

Cause: The mapping does not include a foreign key field linked to the primary
key field.

Action: Link the foreign key to the appropriate primary key.

Error code: 156
STRUCTURE_NAME_NOT_SET_IN_MAPPING

Cause: The structure name is not set.

Action: Set the structure name appropriately.

Error code: 157
NORMAL_DESCRIPTORS_DO_NOT_SUPPORT_ NON_RELATIONAL_

EXTENSIONS
Cause: Normal descriptors do not support non-relational extensions.

Action: Contact Technical Support.

Error code: 158
PARENT_CLASS_IS_SELF

Cause: The descriptor’s parent class has been set to itself.

Action: Contact Technical Support.

Error code: 159
PROXY_INDIRECTION_NOT_AVAILABLE

Cause: An attempt to use proxy indirection has been made, but JDK 1.3.1 or
higher is not being used.

Action: Use JDK 1.3.1 or higher.

Error code: 160
INVALID_ATTRIBUTE_TYPE_FOR_PROXY_INDIRECTION

Cause: The attribute was not specified in the list of interfaces given to use
proxy indirection.

Action: Verify the attribute.

Exception Error Codes and Descriptions

C-36 Oracle Application Server TopLink Application Developer’s Guide

Error code: 161
INVALID_GET_RETURN_TYPE_FOR _PROXY_INDIRECTION

Cause: The return type for the indirection policy is invalid for the indirection
policy.

Action: Ensure that the parameter type of the attribute’s get method is correct
for the indirection policy.

Error code: 162
INVALID_SET_PARAMETER_TYPE_FOR_PROXY_ INDIRECTION

Cause: The parameter for the set method is incorrect for the indirection type.

Action: Ensure that the parameter type of the attribute’s set method is correct
for the indirection policy.

Error code: 163
INCORRECT_COLLECTION_POLICY

Cause: The container policy is invalid for the collection type.

Action: Ensure that the container policy is correct for the collection type.

Error code: 164
INVALID_AMENDMENT_METHOD

Cause: The amendment method that is provided is invalid, not public, or
cannot be found.

Action: Ensure that the amendment method is public, static, returns void, and
has a single argument: Descriptor.

Error code: 165
ERROR_OCCURRED_IN_AMENDMENT_METHOD

Cause: The specified amendment method threw an exception.

Action: Examine the returned exception for further information.

Error code: 166
VARIABLE_ONE_TO_ONE_MAPPING_IS_NOT_DEFINED

Cause: There is no mapping for the attribute.

Action: Validate the mapping and attribute.

Exception Error Codes and Descriptions

Error Codes and Messages C-37

Error code: 168
TARGET_INVOCATION_WHILE_CONSTRUCTOR_ INSTANTIATION

Cause: The constructor is missing.

Action: Create the required constructor.

Error code: 169
TARGET_INVOCATION_WHILE_CONSTRUCTOR_ INSTANTIATION_OF_

FACTORY
Cause: The constructor is missing.

Action: Create the required constructor.

Error code: 170
 ILLEGAL_ACCESS_WHILE_CONSTRUCTOR_ INSTANTIATION_OF_

FACTORY
Cause: Permissions do not allow access to the constructor.

Action: Adjust the Java security permissions to permit access to the
constructor.

Error code: 171
INSTANTIATION_WHILE_CONSTRUCTOR_ INSTANTIATION_OF_

FACTORY
Cause: An instantiation failed inside the associated constructor.

Action: Determine which objects are being instantiated, and verify that all are
instantiated properly.

Error code: 172
NO_SUCH_METHOD_WHILE_CONSTRUCTOR_ INSTANTIATION_OF_

FACTORY
Cause: A message send invoked from inside the constructor is invalid because
the method does not exist.

Action: Correct the message send, ensuring that the message exists.

Error code: 173
NULL_POINTER_WHILE_CONSTRUCTOR_ INSTANTIATION_OF_

FACTORY
Cause: A message was sent from inside a constructor to a null object.

Exception Error Codes and Descriptions

C-38 Oracle Application Server TopLink Application Developer’s Guide

Action: Avoid sending a message to an object that is null.

Error code: 174
ILLEGAL_ACCESS_WHILE_METHOD_ INSTANTIATION_OF_FACTORY

Cause: A message was sent to an object from inside a factory instantiation, and
Java has determined this message to be illegal.

Action: Determine why the message sent is illegal, and replace the message
with the proper legal one.

Error code: 175
TARGET_INVOCATION_WHILE_METHOD_ INSTANTIATION_OF_

FACTORY
Cause: There is an error inside the factory associated with the invocation of a
target.

Action: Determine the faulty target, and replace it with the correct target or
proper message send.

Error code: 176
NULL_POINTER_WHILE_METHOD_ INSTANTIATION_OF_FACTORY

Cause: A message was sent to null inside a factory instantiation.

Action: Avoid sending a message to null.

Builder Exceptions
A Builder exception is a development exception that is raised when the Builder file
format for the descriptor is not in a proper state. If OracleAS TopLink is able to
determine the source and line number of the descriptor file that caused the
exception, the displayed message includes this information. Otherwise, the
information does not appear in the error message.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message
SOURCE: The source to the descriptor file that caused the error.
LINE NUMBER: The line number that caused the exception to be raised. This is the
line number in the descriptor file.

Exception Error Codes and Descriptions

Error Codes and Messages C-39

Example C–2 Builder Exception

EXCEPTION [TOPLINK - 1038]: oracle.toplink.tools.builderreader.BuilderException
EXCEPTION DESCRIPTION: No such section token: ABC

Error Codes 1001 – 1042

Error code: 1001
No such method

Cause: Tokens in the builder-generated files are the subsets of all the tokens a
Project Reader can understand. Each token has a related public method on
OracleAS TopLink. The exception means that the method name is incorrect.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1002
Could not find post load method methodName on class aClass

Cause: The post load method that was defined in the descriptor properties is
not defined on the related domain class.

Action: Define the method on the specified class.

Error code: 1003
Cannot write parameter object of class type

Cause: While creating a project class, the parameter tokens are read from the
file and are converted to actual types before sending them to the methods. An
unknown type causes this exception.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1004
Could not access method method

Cause: Java is throwing an illegal access reflection exception while invoking
the method on the object. OracleAS TopLink wraps only that exception.

Exception Error Codes and Descriptions

C-40 Oracle Application Server TopLink Application Developer’s Guide

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1005
Invoking applyResultMethod raised exception exception

Cause: Java is throwing an invocation reflection exception while invoking the
method on the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1006
Invalid arguments invoking: applyResultMethod with receiver

Cause: Java is throwing an invalid argument reflection exception while
invoking the method on the object. OracleAS TopLink wraps only that
exception.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1007
Could not access applyResultMethod with receiver

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Exception Error Codes and Descriptions

Error Codes and Messages C-41

Error code: 1008
Parameter mismatch method; received size parameters

Cause: The number of parameters for the token read from the project or
descriptor file do not match the number of parameters that a related method
can take.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1009
Accessing methodName on className with parameters

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1010
Could not find section definition section when building section definitions for

target

Cause: An invalid section name was found in the project or descriptor file.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1011
Could not convert object into an accessible Java class

Cause: The parameter read from the file cannot be converted to an appropriate
type.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical

Exception Error Codes and Descriptions

C-42 Oracle Application Server TopLink Application Developer’s Guide

Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1012
File not found

Cause: The project or descriptor file was not found.

Action: Ensure that the path was given correctly in a project reader and also
that the path is correct in the project file.

Error code: 1013
Invalid class/method name format

Cause: The application attempted to use the URL string to read the INI file.

Action: Use another method to read the INI files.

Error code: 1015
Open failed for URL url

Cause: OracleAS TopLink is unable to open the URL.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1016
Could not resolve INIFile location: sourceString using search paths

searchPaths

Cause: The file was not found on the given search paths.

Action: Check your search paths.

Error code: 1017
Invoking method on receiver

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Exception Error Codes and Descriptions

Error Codes and Messages C-43

Error code: 1018
Invoking method on receiver

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: If the project files are not manually edited and corrupted, then this
exception is usually an internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1019
Invalid character value; expecting $* format

Cause: An invalid character format was written to the file.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1020
Unexpected character: {

Cause: An unexpected character was found while reading vector values from
the file.

Action: If the project files are not manually edited and corrupted, then this
exception is usually an internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1021
Unexpected character: }

Cause: An unexpected character was found while reading vector values from
the file.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Exception Error Codes and Descriptions

C-44 Oracle Application Server TopLink Application Developer’s Guide

Error code: 1022
Expecting object, found token nextToken

Cause: An unexpected token was found while reading from the file.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1023
Unexpected word

Cause: An unexpected token was found while reading from the file.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1024
setExistenceChecking token; not understood

Cause: The existence checking string that was specified on the descriptor is not
understood.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1025
Class className not found

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation. If the
project files are not manually edited and corrupted, then this exception is
usually internal to OracleAS TopLink and must be reported to Technical
Support. But if the file was manually edited or corrupted, then generate the files
again.

Error code: 1026
Not enough INI elements. Found count

Cause: The line in an INI file has fewer tokens than expected.

Exception Error Codes and Descriptions

Error Codes and Messages C-45

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1027
Too many INI elements. Found count

Cause: The line in an INI file has more tokens then needed.

Action: If the project files are not manually edited and corrupted, then this
exception is usually internal to OracleAS TopLink and must be reported to
Technical Support. But if the file was manually edited or corrupted, then
generate the files again.

Error code: 1028
Error writing writeString

Cause: OracleAS TopLink is unable to write the string into the file. A common
cause of this error is an incorrectly specified directory.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1029
Illegal access exception

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1030
Invocation target exception

Cause: Java is throwing a reflection exception while invoking the method on
the object. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1031
Attempting to instantiate className with default constructor

Cause: Java is throwing a reflection exception while instantiating the object.
OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-46 Oracle Application Server TopLink Application Developer’s Guide

Error code: 1032
Attempting to instantiate className with default constructor

Cause: Java is throwing a reflection exception while instantiating the object.
OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1033
IO Exception in next token

Cause: Java is throwing a reflection. OracleAS TopLink wraps only that
exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1034
IOException on close

Cause: Java is throwing a reflection. OracleAS TopLink wraps only that
exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1035
Invalid INI(URL) Method: method. Should return a string

Cause: Do not use the URL to read INI files. This feature is untested and
undocumented.

Action: Use another method to read the INI files.

Error code: 1036
Could not cast using castString

Cause: An error occurred during an attempt to cast using the castString.

Action: Validate the castString.

Error code: 1037
A writer or a target file name must be specified

Cause: A writer or a target file name is not specified.

Action: Specify a writer or a target file name.

Exception Error Codes and Descriptions

Error Codes and Messages C-47

Error code: 1039
IOException on open

Cause: Java is throwing a reflection exception. OracleAS TopLink wraps only
that exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 1040
Post Load Method Not Static

Cause: The method specified is not static.

Action: Modify the method to be static.

Error code: 1041
Project Not Found

Cause: No projects were found in the specified directory.

Action: Verify the directory.

Error code: 1042
Multiple Projects With Name

Cause: More than one project with the same name was found.

Action: Verify the project name.

Concurrency Exception
A Concurrency exception is a development exception that is raised when a Java
concurrency violation occurs. Only when the running thread is interrupted, causing
the Java virtual machine (JVM) to throw InterruptedException, is an internal
exception information displayed with the error message.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message

Example C–3 Concurrency Exception

EXCEPTION [TOPLINK – 2004]: oracle.toplink.exceptions.ConcurrencyException
EXCEPTION DESCRIPTION: Signal attempted before wait on concurrency manager.
This normally means that an attempt was made to commit or rollback a transaction

Exception Error Codes and Descriptions

C-48 Oracle Application Server TopLink Application Developer’s Guide

before being started, or rolledback twice.

Error Codes 2001 – 2006

Error code: 2001
WAIT_WAS_INTERRUPTED

Cause: In a multi-threaded environment, one of the waiting threads was
interrupted.

Action: Such exceptions are dependent on the application.

Error code: 2002
WAIT_FAILURE_SERVER

Cause: A request for a connection from the connection pool has been forced to
wait, and that wait has been interrupted.

Action: Such exceptions are dependent on the application.

Error code: 2003
WAIT_FAILURE_CLIENT

Cause: A request for a connection from the connection pool has been forced to
wait, and that wait has been interrupted.

Action: Such exceptions are dependent on the application.

Error code: 2004
SIGNAL_ATTEMPTED_BEFORE_WAIT

Cause: A signal was attempted before a wait on concurrency manager. This
normally means that an attempt was made to commit or rollback a transaction
before it was started, or to rollback a transaction twice.

Action: Verify transactions in the application.

Error code: 2005
WAIT_FAILURE_SEQ_DATABASE_SESSION

Cause: An InterruptedException was thrown while DatabaseSession
sequencing waited for a separate connection to become available.

Action: Examine concurrency issues involving object creation with your
DatabaseSession.

Exception Error Codes and Descriptions

Error Codes and Messages C-49

Error code: 2006
SEQUENCING_MULTITHREAD_THRU_CONNECTION

Cause: Several threads attempted to concurrently obtain sequence objects from
the same DatabaseSession or ClientSession.

Action: Avoid concurrent writing through the same DatabaseSession or
ClientSession.

Conversion Exception
A Conversion exception is a development exception that is raised when a
conversion error occurs by an incompatible type conversion. The message that is
returned indicates which type cast caused the exception.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message

Example C–4 Conversion Exception

EXCEPTION [TOPLINK – 3006]: oracle.toplink.exceptions.ConversionException
EXCEPTION DESCRIPTION: object must be of even length to be converted to a
ByteArray

Error Codes 3001 – 3007

Error code: 3001
COULD_NOT_BE_CONVERTED

Cause: The object object of class objectClass cannot be converted to
javaClass. The object cannot be converted to a given type.

Action: Ensure that the object being converted is of the right type.

Error code: 3003
INCORRECT_DATE_FORMAT

Cause: The date in dateString is in an incorrect format. The expected format
is YYYY-MM-DD.

Action: Verify the date format.

Exception Error Codes and Descriptions

C-50 Oracle Application Server TopLink Application Developer’s Guide

Error code: 3004
INCORRECT_TIME_FORMAT

Cause: The time in timeString is in an incorrect format. The expected format
is HH:MM:SS.

Action: Verify the time format.

Error code: 3005
INCORRECT_TIMESTAMP_FORMAT

Cause: The timestamp timestampString is in an incorrect format. The
expected format is YYYY-MM-DD HH:MM:SS.NNNNNNNNN.

Action: Verify the timestamp format.

Error code: 3006
COULD_NOT_CONVERT_TO_BYTE_ARRAY

Cause: The String object must be of even length to be converted to a ByteArray.
This object cannot be converted to a ByteArray

Action: Verify the object being converted.

Error code: 3007
COULD_NOT_BE_CONVERTED_TO_CLASS

Cause: The object object of class objectClass cannot be converted to
javaClass. The class javaClass is not on the class path.

Action: Ensure that the class javaClass is on the class path.

Database Exception
A Database exception is a runtime exception that is raised when data read from the
database, or the data that is to be written to the database, is incorrect. The exception
may also act as a wrapper for SQLException. If this is the case, the message
contains a reference to the error code and error message. This exception can occur
on any database type operation.

This exception includes internal exception and error code information when the
exception is wrapping a SQLException.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Exception Error Codes and Descriptions

Error Codes and Messages C-51

INTERNAL EXCEPTION: Message
ERROR CODE: Error code

Example C–5 Database Exception

EXCEPTION [TOPLINK – 4002]: oracle.toplink.exceptions.DatabaseExceptions
EXCEPTION DESCRIPTION: java.sql.SQLException: [INTERSOLV][ODBC dBase driver]
Incompatible datatypes in expression: >
INTERNAL EXCEPTION: java.sql.SQLException: [INTERSOLV][ODBC dBase driver]
Incompatible datatypes in expression: >
ERROR CODE: 3924

Error Codes 4002 – 4018

Error code: 4002
SQL_EXCEPTION

Cause: A SQL exception was encountered, thrown by the underlying JDBC
bridge. OracleAS TopLink wraps only that exception.

Action: Inspect the internal exception that was thrown.

Error code: 4003
CONFIGURATION_ERROR_CLASS_NOT_FOUND

Cause: The driver class name was not found.

Action: Verify the class name given in JDBCLogin.

Error code: 4005
DATABASE_ACCESSOR_NOT_CONNECTED

Cause: The session is not connected to the database while attempting to read or
write on the database.

Action: An application may have to login again because the connection to the
database might have been lost.

Error code: 4006
ERROR_READING_BLOB_DATA

Cause: An error occurred reading BLOB data from the database. There are two
possibilities for this exception: either the BLOB data was not read properly from

Exception Error Codes and Descriptions

C-52 Oracle Application Server TopLink Application Developer’s Guide

the result set or OracleAS TopLink cannot process the BLOB data using
ByteArrayOutputStream.

Action: Verify whether the underlying driver supports BLOBs properly. If it
does, then report this problem to Technical Support.

Error code: 4007
COULD_NOT_CONVERT_OBJECT_TYPE

Cause: Cannot convert object type on internal error.java.sql.TYPES =
type. The object from the result set cannot be converted to the that was type
returned from the metadata information.

Action: Verify whether the underlying driver supports the conversion type
properly. If it does, then report this problem to Technical Support.

Error code: 4008
LOGOUT_WHILE_TRANSACTION_IN_PROGRESS

Cause: An attempt has been made to logout while the transaction is still in
progress. You cannot logout while a transaction is in progress.

Action: Wait until the transaction is finished.

Error code: 4009
SEQUENCE_TABLE_INFORMATION_NOT_COMPLETE

Cause: The sequence information given to OracleAS TopLink is not sufficiently
complete to get the set of sequence numbers from the database. This usually
happens on native sequencing on an Oracle database.

Action: Verify the data given, especially the sequence name given in OracleAS
TopLink.

Error code: 4011
ERROR_PREALLOCATING_SEQUENCE_NUMBERS

Cause: An error occurred preallocating sequence numbers on the database; the
sequence table information is not complete.

Action: Ensure the sequence table was properly created on the database.

Exception Error Codes and Descriptions

Error Codes and Messages C-53

Error code: 4014
CANNOT_REGISTER_SYNCHRONIZATIONLISTENER_ FOR_

UNITOFWORK
Cause: OracleAS TopLink cannot register the synchronization listener:
underlying_exception_string. When the OracleAS TopLink session is configured
with an ExternalTransactionController, any Unit of Work requested by a
client must operate within the context of a JTS external global transaction.
When a Unit of Work is created and the external global transaction is not in
existence, or if the system cannot acquire a reference to it, this error is reported.

Action: Verify that a JTS transaction is in progress before acquiring the Unit of
Work.

Error code: 4015
SYNCHRONIZED_UNITOFWORK_DOES_NOT_ SUPPORT_

COMMITANDRESUME
Cause: A synchronized UnitOfWork does not support the commitAndResume
operation. When the OracleAS TopLink session is configured with an
ExternalTransactionController, any Unit of Work requested by a client
must operate within the context of a JTS external global transaction (see Error
code: 4014). The JTS specification does not support the concept of check
pointing a transaction—that is, committing the work performed and then
continuing to work within the same transaction context. JTS does not support
nested transactions, either. As a result, if a client code invokes
commitAndResume() on a synchronized Unit of Work, this error is reported.

Action: None required.

Error code: 4016
CONFIGURATION_ERROR_NEW_INSTANCE_ INSTANTIATION_

EXCEPTION
Cause: A configuration error occurred when OracleAS TopLink attempted to
instantiate Driver: javaClass. toplink cannot instantiate the driver.

Action: Check the driver.

Error code: 4017
CONFIGURATION_ERROR_NEW_INSTANCE_ILLEGAL_ ACCESS_

EXCEPTION
Cause: A configuration error occurred when OracleAS TopLink attempted to
instantiate Driver: javaClass. toplink cannot instantiate the driver.

Exception Error Codes and Descriptions

C-54 Oracle Application Server TopLink Application Developer’s Guide

Action: Check the driver.

Error code: 4018
TRANSACTION_MANAGER_NOT_SET_FOR_JTS_DRIVER

Cause: The transaction manager has not been set for the
JTSSynchronizationListener.

Action: Set a transaction manager for the JTSSynchronizationListener.

Optimistic Lock Exception
An Optimistic Lock exception is a runtime exception that is raised when the row on
the database that matches the desired object is missing or when the value on the
database does not match the registered number. It is used in conjunction with the
optimistic locking feature. This applies only on an update or delete operation.

For more information about optimistic locking, see the Oracle Application Server
TopLink Mapping Workbench User’s Guide. These exceptions should be handled in a
try-catch block.

Format
EXCEPTION [TOPLINK – error code]: Exception Name
EXCEPTION DESCRIPTION: Message

Example C–6 Optimistic Lock Exception

EXCEPTION [TOPLINK – 5003]: oracle.toplink.exceptions.OptimisticLockException
EXCEPTION DESCRIPTION: The object, object.toString() cannot be deleted because
it has changed or been deleted since it was last read.

Error Codes 5001 – 5008

Error code: 5001
NO_VERSION_NUMBER_WHEN_DELETING

Cause: An attempt was made to delete the object object, but it has no version
number in the identity map. This object either was never read or has already
been deleted.

Action: Use SQL logging to determine the reason for the exception. The last
delete shows the object being deleted when the exception was thrown.

Exception Error Codes and Descriptions

Error Codes and Messages C-55

Error code: 5003
OBJECT_CHANGED_SINCE_LAST_READ_WHEN_DELETING

Cause: The object state has changed in the database. The object object cannot
be deleted because it has changed or been deleted since it was last read. This
usually means that the row in the table was changed by some other application.

Action: Refresh the object, which updates it with the new data from the
database.

Error code: 5004
NO_VERSION_NUMBER_WHEN_UPDATING

Cause: An attempt has been made to update the object object but it has no
version number in the identity map. It may not have been read before being
updated or has been deleted.

Action: Use SQL logging to determine the reason for the exception. The last
update shows the object being updated when the exception was thrown.

Error code: 5006
OBJECT_CHANGED_SINCE_LAST_READ_WHEN_UPDATING

Cause: The object state has changed in the database. The object object cannot
be updated because it has changed or been deleted since it was last read. This
usually means that the row in the table was changed by some other application.

Action: Refresh the object, which updates it with the new data from the
database.

Error code: 5007
MUST_HAVE_MAPPING_WHEN_IN_OBJECT

Cause: The object aClass must have a nonread-only mapping corresponding
to the version lock field. The mapping, which is needed when the lock value is
stored in the domain object rather than in a cache, was not defined for the
locking field.

Action: Define a mapping for the field.

Error code: 5008
NEED_TO_MAP_JAVA_SQL_TIMESTAMP

Cause: A write lock value that is stored in a domain object is not an instance of
java.sql.Timestamp.

Exception Error Codes and Descriptions

C-56 Oracle Application Server TopLink Application Developer’s Guide

Action: Change the value of the attribute to be an instance of
java.sql.Timestamp.

Query Exception
A Query exception is a development exception that is raised when insufficient
information has been provided to the query. If possible, the message indicates the
query that caused the exception. A query is optional and is displayed if OracleAS
TopLink is able to determine the query that caused this exception.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message
QUERY:

Example C–7 Query Exception

EXCEPTION [TOPLINK – 6026]: oracle.toplink.exceptions.QueryException
EXCEPTION DESCRIPTION: The query is not defined. When executing a query on the
session, the parameter that takes query is null.

Error Codes 6001 – 6098

Error code: 6001
ADDITIONAL_SIZE_QUERY_NOT_SPECIFIED

Cause: Cursored SQL queries must provide an additional query to retrieve the
size of the result set. Failure to include the additional query causes this
exception.

Action: Specify a size query.

Error code: 6002
AGGREGATE_OBJECT_CANNOT_BE_DELETED

Cause: Aggregated objects cannot be written or deleted independent of their
owners. No identity is maintained on such objects.

Action: Do not try to delete aggregate objects directly.

Exception Error Codes and Descriptions

Error Codes and Messages C-57

Error code: 6003
ARGUMENT_SIZE_MISMATCH_IN_QUERY_AND_ QUERY_DEFINITION

Cause: The number of arguments provided to the query for execution does not
match the number of arguments provided with the query definition.

Action: Check the query and the query execution.

Error code: 6004
BACKUP_CLONE_IS_ORIGINAL_FROM_PARENT

Cause: The object clone of class clone.getClass() with identity hashcode
(System.identityHashCode()) System.identityHashCode(clone) is not
from this Unit of Work space but from the parent session. The object was never
registered in this Unit of Work but read from the parent session and related to
an object registered in the Unit of Work.

Action: Verify that you are correctly registering your objects. If you are still
having problems, use the UnitOfWork.validateObjectSpace() method to
help debug where the error occurred.

Error code: 6005
BACKUP_CLONE_IS_ORIGINAL_FROM_SELF

Cause: The object clone of class clone.getClass() with identity hashcode
(System.identityHashCode()) <System.identityHashCode(clone)> is
the original to a registered new object. Because the Unit of Work clones new
objects that are registered, ensure that an object is registered before it is
reference by another object. If you do not want the new object to be cloned,
used the UnitOfWork.registerNewObject(Object) API.

Action: Verify that you are correctly registering your objects. If you are still
having problems, use the UnitOfWork.validateObjectSpace() method to
help debug where the error occurred.

Error code: 6006
BATCH_READING_NOT_SUPPORTED

Cause: This mapping does not support batch reading. The optimization of
batching the read of all the target rows is not supported for the mapping.

Action: The problem is an OracleAS TopLink development problem, and the
user should never encounter this error code unless the mapping is a new
custom mapping. Contact Technical Support.

Exception Error Codes and Descriptions

C-58 Oracle Application Server TopLink Application Developer’s Guide

Error code: 6007
DESCRIPTOR_IS_MISSING

Cause: The descriptor for reference Class is missing. The descriptor
related to the class or the object is not found in the session.

Action: Verify whether the related descriptor was added to the session, and
whether the query is performed on the right object or class.

Error code: 6008
DESCRIPTOR_IS_MISSING_FOR_NAMED_QUERY

Cause: The descriptor domain Class Name for the query named queryName
is missing. The descriptor where named query is defined is not added to the
session.

Action: Verify whether the related descriptor was added to the session, and
whether query is performed on the right class.

Error code: 6013
INCORRECT_SIZE_QUERY_FOR_CURSOR_STREAM

Cause: The size query given on the queries returning cursor streams is not
correct. The execution of the size query did not return any size.

Action: If the cursor stream query was a custom query, than check the size
query that was specified, or report this problem to Technical Support.

Error code: 6014
INVALID_QUERY

Cause: Objects cannot be written in a Unit of Work using modify queries. They
must be registered.

Action: Objects are registered in the Unit of Work, and during commit, the
Unit of Work performs the required changes to the database.

Error code: 6015
INVALID_QUERY_KEY_IN_EXPRESSION

Cause: The query key key does not exist. Usually this happens because of a
misspelled query key.

Action: Check the query key that was specified in the expression and verify
that a query key was added to the descriptor.

Exception Error Codes and Descriptions

Error Codes and Messages C-59

Error code: 6016
INVALID_QUERY_ON_SERVER_SESSION

Cause: Objects and the database cannot be changed through the server session:
all changes must be performed through a client session's Unit of Work. The
objects cannot be changed on the server session by modifying queries. Objects
are changed in the client sessions that are acquired from this server session.

Action: Use the client session’s Unit of Work to change the object.

Error code: 6020
NO_CONCRETE_CLASS_INDICATED

Cause: No concrete class is indicated for the type in this row. The type
indicator read from the database row has no entry in the type indicator
hashtable or if class extraction method was used, it did not return any concrete
class type. The exception is thrown when subclasses are being read.

Action: Check class extraction method if specified or check the descriptor to
verify all the type indicator values were specified.

Error code: 6021
NO_CURSOR_SUPPORT

Cause: No cursor support is provided for abstract class multiple table
descriptors using expressions.

Action: Consider using custom SQL or multiple queries.

Error code: 6023
OBJECT_TO_INSERT_IS_EMPTY

Cause: There are no fields to be inserted into the table. The fields to insert into
the table, table are empty.

Action: Define at least one mapping for this table.

Error code: 6024
OBJECT_TO_MODIFY_NOT_SPECIFIED

Cause: An object to modify is required for a modify query.

Action: Verify that the query contains an object before executing.

Exception Error Codes and Descriptions

C-60 Oracle Application Server TopLink Application Developer’s Guide

Error code: 6026
QUERY_NOT_DEFINED

Cause: The query is not defined. When executing a query on the session, the
parameter that takes query is null.

Action: Verify whether the query is passed properly.

Error code: 6027
QUERY_SENT_TO_INACTIVE_UNIT_OF_WORK

Cause: The Unit of Work has been released and is now inactive.

Action: The Unit of Work, once released, cannot be reused unless
commitAndResume is called.

Error code: 6028
READ_BEYOND_QUERY

Cause: An attempt has been made to read from the cursor streams beyond its
limits (beyond the end of the stream).

Action: Ensure that the stream is checked for an end of stream condition before
attempting to retrieve more objects.

Error code: 6029
REFERENCE_CLASS_MISSING

Cause: The reference class in the query is not specified. A reference class must
be provided.

Action: Check the query.

Error code: 6030
REFRESH_NOT_POSSIBLE_WITHOUT_CACHE

Cause: Refresh is not possible if caching is not set. The read queries that skip
the cache to read objects cannot be used to refresh the objects. Refreshing is not
possible without identity.

Action: Check the query.

Error code: 6031
SIZE_ONLY_SUPPORTED_ON_EXPRESSION_QUERIES

Cause: OracleAS TopLink did not find a size query. Size is supported only on
expression queries unless a size query is given.

Exception Error Codes and Descriptions

Error Codes and Messages C-61

Action: The cursor streams on a custom query should also define a size query.

Error code: 6032
SQL_STATEMENT_NOT_SET_PROPERLY

Cause: The SQL statement has not been properly set. The user should never
encounter this error code unless queries have been customized.

Action: Contact Technical Support.

Error code: 6034
INVALID_QUERY_ITEM

Cause: OracleAS TopLink is unable to validate a query item expression.

Action: Validate the expression being used.

Error code: 6041
SELECTION_OBJECT_CANNOT_BE_NULL

Cause: The selection object that was passed to a read object or refresh was null.

Action: Check setSelectionObject() on the read query.

Error code: 6042
UNNAMED_QUERY_ON_SESSION_BROKER

Cause: Data read and data modify queries are being executed without the
session name. Only object-level queries can be directly executed by the session
broker, unless the query is named.

Action: Specify the session name.

Error code: 6043
REPORT_RESULT_WITHOUT_PKS

Cause: ReportQuery without primary keys cannot read the objects. The
report query result that was returned is without primary key values. An object
from the result can be created only if primary keys were also read.

Action: See the documentation about retrievePrimaryKeys() on report
query.

Exception Error Codes and Descriptions

C-62 Oracle Application Server TopLink Application Developer’s Guide

Error code: 6044
NULL_PRIMARY_KEY_IN_BUILDING_OBJECT

Cause: The primary key that was read from the row databaseRow during the
execution of the query was detected to be null; primary keys must not contain
null.

Action: Check the query and the table on the database.

Error code: 6045
NO_DESCRIPTOR_FOR_SUBCLASS

Cause: The subclass has no descriptor defined for it.

Action: Ensure the descriptor was added to the session, or check class
extraction method.

Error code: 6046
CANNOT_DELETE_READ_ONLY_OBJECT

Cause: The class you are attempting to delete is a read-only class.

Action: Contact Technical Support.

Error code: 6047
INVALID_OPERATOR

Cause: The operator data used in the expression is not valid.

Action: Check ExpressionOperator class to see a list of all the operators that
are supported.

Error code: 6048
ILLEGAL_USE_OF_GETFIELD

Cause: This is an illegal use of getField data in the expression. This is an
OracleAS TopLink development exception that users should not encounter.

Action: Report this problem to Technical Support.

Error code: 6049
ILLEGAL_USE_OF_GETTABLE

Cause: This is an illegal use of getTable data in the expression. This is an
OracleAS TopLink development exception that users should not encounter.

Action: Report this problem to Technical Support.

Exception Error Codes and Descriptions

Error Codes and Messages C-63

Error code: 6050
REPORT_QUERY_RESULT_SIZE_MISMATCH

Cause: The number of attributes requested does not match the attributes
returned from the database in report query. This can happen as a result of a
custom query on the report query.

Action: Check the custom query to ensure it is specified, or report the problem
to Technical Support.

Error code: 6051
CANNOT_CACHE_PARTIAL_OBJECT

Cause: Partial Objects are never put in the cache. Partial object queries are not
allowed to maintain the cache or to be edited. Set dontMaintainCache().

Action: Call the dontMaintainCache() method before executing the query.

Error code: 6052
OUTER_JOIN_ONLY_VALID_FOR_ONE_TO_ONE

Cause: An outer join (getAllowingNull) is valid only for one-to-one
mappings and cannot be used for the mapping.

Action: Do not attempt to use getAllowingNull for mappings other than
one-to-one.

Error code: 6054
CANNOT_ADD_TO_CONTAINER

Cause: OracleAS TopLink is unable to add anObject to a containerClass
using policy. This is OracleAS TopLink development exception, and the user
should never encounter this problem unless a custom container policy has been
written.

Action: Contact Technical Support.

Error code: 6055
METHOD_INVOCATION_FAILED

Cause: The method invocation of aMethod on the object anObject threw a
Java reflection exception while accessing the method.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-64 Oracle Application Server TopLink Application Developer’s Guide

Error code: 6056
CANNOT_CREATE_CLONE

Cause: Cannot create a clone of anObject using policy. This is an OracleAS
TopLink development exception, and the user should never encounter this
problem unless a custom container policy has been written.

Action: Report this problem to Technical Support.

Error code: 6057
METHOD_NOT_VALID

Cause: The method methodName is not valid to call on object aReceiver.
This is an OracleAS TopLink development exception, and the user should never
encounter this problem unless a custom container policy has been written.

Action: Contact Technical Support.

Error code: 6058
METHOD_DOES_NOT_EXIST_IN_CONTAINER_CLASS

Cause: The method named methodName was not found in class aClass.
Thrown when looking for clone method on the container class. The clone is
needed to create clones of the container in Unit of Work.

Action: Define clone method on the container class.

Error code: 6059
COULD_NOT_INSTANTIATE_CONTAINER_CLASS

Cause: The class aClass cannot be used as the container for the results of a
query since it cannot be instantiated. The exception is a Java exception thrown
when a new interface container policy is being created using Java reflection.
OracleAS TopLink wraps only the Java exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 6060
MAP_KEY_NOT_COMPARABLE

Cause: Cannot use the object anObject of type objectClass as a key into
aContainer which is of type containerClass. The key cannot be compared
with the keys currently in the map. Throws a Java reflection exception while
accessing the method. OracleAS TopLink wraps only the Java exception.

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

Error Codes and Messages C-65

Error code: 6061
CANNOT_ACCESS_METHOD_ON_OBJECT

Cause: Cannot reflectively access the method aMethod for object: anObject
of type anObjectClass. Throws a Java reflection exception while accessing
method. OracleAS TopLink wraps only the Java exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 6062
CALLED_METHOD_THREW_EXCEPTION

Cause: The method aMethod was called reflectively on objectClass and
threw an exception. Throws a Java reflection exception while accessing method.
OracleAS TopLink wraps only the Java exception.

Action: Inspect the internal exception, and see the Java documentation.

Error code: 6063
INVALID_OPERATION

Cause: This is an invalid operation operation on the cursor. The operation is
not supported.

Action: Check the class documentation and look for the corresponding method
to use.

Error code: 6064
CANNOT_REMOVE_FROM_CONTAINER

Cause: Cannot remove anObject of type anObjectClass from
aContainerClass using policy. This is an OracleAS TopLink development
exception and, the user should never encounter this problem unless a custom
container policy has been written.

Action: Contact Technical Support.

Error code: 6065
CANNOT_ADD_ELEMENT

Cause: Cannot add element to the collection container policy (cannot add
anObject of type anObjectClass to a aContainerClass).

Action: Inspect the internal exception, and see the Java documentation.

Exception Error Codes and Descriptions

C-66 Oracle Application Server TopLink Application Developer’s Guide

Error code: 6066
BACKUP_CLONE_DELETED

Cause: Deleted objects cannot have reference after being deleted. The object
clone of class clone.getClass() with identity hashcode
(System.identityHashCode()) System.identityHashCode(clone)
has been deleted, but it still has references.

Action: Ensure that you are correctly registering your objects. If you are still
having problems, use the UnitOfWork.validateObjectSpace() method to
help identify where the error occurred.

Error code: 6068
CANNOT_COMPARE_TABLES_IN_EXPRESSION

Cause: Cannot compare table reference to data in expression.

Action: Check the expression.

Error code: 6069
INVALID_TABLE_FOR_FIELD_IN_EXPRESSION

Cause: Field has invalid table in this context for field data in expression.

Action: Check the expression.

Error code: 6070
INVALID_USE_OF_TO_MANY_QUERY_KEY_IN_EXPRESSION

Cause: This is an invalid use of a query key representing a one-to-many
relationship data in expression.

Action: Use the anyOf operator instead of get.

Error code: 6071
INVALID_USE_OF_ANY_OF_IN_EXPRESSION

Cause: This is an invalid use of anyOf for a query key not representing a
to-many relationship data in expression.

Action: Use the get operator instead of anyOf.

Error code: 6072
CANNOT_QUERY_ACROSS_VARIABLE_ONE_TO_ ONE_MAPPING

Cause: Querying across a variable one-to-one mapping is not supported.

Exception Error Codes and Descriptions

Error Codes and Messages C-67

Action: Change the expression such that the query in not performed across a
variable one-to-one mapping.

Error code: 6073
ILL_FORMED_EXPRESSION

Cause: This is an ill-formed expression in query, attempting to print an object
reference into a SQL statement for queryKey.

Action: Contact Technical Support.

Error code: 6074
CANNOT_CONFORM_EXPRESSION

Cause: This expression cannot determine if the object conforms in memory. Set
the query to check the database.

Action: Change the query such that it does not attempt to conform to the
results of the query.

Error code: 6075
INVALID_OPERATOR_FOR_OBJECT_EXPRESSION

Cause: Object comparisons can only use the equal or notEqual operators,
other comparisons must be performed through query keys or direct attribute
level comparisons.

Action: Ensure the query uses only equal and notEqual if object comparisons
are being used.

Error code: 6076
UNSUPPORTED_MAPPING_FOR_OBJECT_COMPARISON

Cause: Object comparisons can only be used with one-to-one mappings; other
mapping comparisons must be performed through query keys or direct
attribute level comparisons.

Action: Use a query key instead of attempting to compare objects across the
mapping.

Error code: 6077
OBJECT_COMPARISON_CANNOT_BE_PARAMETERIZED

Cause: Object comparisons cannot be used in parameter queries.

Action: Change the query so that it does not attempt to use object when using
parameterized queries.

Exception Error Codes and Descriptions

C-68 Oracle Application Server TopLink Application Developer’s Guide

Error code: 6078
INCORRECT_CLASS_FOR_OBJECT_COMPARISON

Cause: The class of the argument for the object comparison is incorrect.

Action: Ensure the class for the query is correct.

Error code: 6079
CANNOT_COMPARE_TARGET_FOREIGN_KEYS_ TO_NULL

Cause: Object comparison cannot be used for target foreign key relationships.

Action: Query on source primary key.

Error code: 6080
INVALID_DATABASE_CALL

Cause: This is an invalid database call. The call must be an instance of
DatabaseCall: call.

Action: Ensure the call being used is a DatabaseCall.

Error code: 6081
INVALID_DATABASE_ACCESSOR

Cause: Invalid database accessor. The accessor must be an instance of
DatabaseAccessor: accessor.

Action: Ensure the accessor being used is a DatabaseAccessor.

Error code: 6082
METHOD_DOES_NOT_EXIST_ON_EXPRESSION

Cause: The method methodName with argument types argTypes cannot be
invoked on Expression.

Action: Ensure the method being used is a supported method.

Error code: 6083
IN_CANNOT_BE_PARAMETERIZED

Cause: Queries using IN cannot be parameterized.

Action: Disable the query prepare or binding.

Exception Error Codes and Descriptions

Error Codes and Messages C-69

Error code: 6084
REDIRECTION_CLASS_OR_METHOD_NOT_SET

Cause: The redirection query was not configured properly, the class or method
name was not set.

Action: Verify the configuration for the redirection class.

Error code: 6085
REDIRECTION_METHOD_NOT_DEFINED_CORRECTLY

Cause: The redirection query's method is not defined or it defines with the
wrong arguments. It must be public static and have the following arguments:
DatabaseQuery, DatabaseRow, or Session (the interface).

Action: Check the redirection query’s method as above.

Error code: 6086
REDIRECTION_METHOD_ERROR

Cause: The static invoke method provided to
MethodBaseQueryRedirector threw an Exception when invoked.

Action: Check the static invoke method for problems.

Error code: 6087
EXAMPLE_AND_REFERENCE_OBJECT_CLASS_MISMATCH

Cause: There is a class mismatch between the example object and the reference
class specified for this query.

Action: Ensure that the example and reference classes are compatible.

Error code: 6088
NO_ATTRIBUTES_FOR _REPORT_QUERY

Cause: A ReportQuery has been built with no attributes specified.

Action: Specify the attribute for the query.

Error code: 6089
NO_EXPRESSION_BUILDER_CLASS_FOUND

Cause: The expression has not been initialized correctly. Only a single
ExpressionBuilder should be used for a query. For a parallel expressions,
the query class must be provided to the ExpressionBuilder constructor, and
the query’s ExpressionBuilder must always be on the left side of the
expression.

Exception Error Codes and Descriptions

C-70 Oracle Application Server TopLink Application Developer’s Guide

Action: Contact Technical Support.

Error code: 6090
CANNOT_SET_REPORT_QUERY_TO_CHECK_CACHE_ONLY

Cause: The checkCacheOnly method was invoked on a ReportQuery. You
cannot invoke the checkCacheOnly method on a ReportQuery because a
ReportQuery returns data rather than objects and the OracleAS TopLink cache
is built with objects.

Action: Do not use a ReportQuery in this case.

Error code: 6091
TYPE_MISMATCH_BETWEEN_ATTRIBUTE_AND_ CONSTANT_ ON_

EXPRESSION
Cause: The type of the constant used for comparison in the expression does not
match the type of the attribute.

Action: Contact Technical Support.

Error code: 6092
MUST_INSTANTIATE_VALUEHOLDERS

Cause: Uninstantiated valueholders have been detected.

Action: Instantiate the valueholders for the collection you want to query on.

Error code: 6093
MUST_BE_ONE_TO_ONE_OR_ONE_TO_MANY_MAPPING

Cause: The buildSelectionCriteria method was invoked on a mapping
that was neither one-to-one nor one-to-many. Only the one-to-one and
one-to-many mapping exposes this public API to build selection criteria. Using
the buildSelectionCriteria method with other mapping types will not
return correct results.

Action: Only use the buildSelectionCriteria method with one-to-one
and one-to-many mappings.

Error code: 6094
PARAMETER_NAME_MISMATCH

Cause: An unmapped field was used in a parameterized expression.

Action: Map the field or define an alternate expression that does not rely on the
unmapped field.

Exception Error Codes and Descriptions

Error Codes and Messages C-71

Error code: 6095
CLONE_METHOD_REQUIRED

Cause: A delegate class of an IndirectContainer implementation does not
implement Cloneable. If you implement IndirectContainer you must
also implement Cloneable. For example, see
oracle.toplink.indirection.IndirectSet. The clone method must
clone the delegate. For example, the IndirectSet implementation uses
reflection to invoke the clone method because it is not included in the
common interface shared by IndirectSet and its base delegate class,
HashSet.

Action: Ensure that your IndirectContainer implementation or its
delegate class implements Cloneable.

Error code: 6096
CLONE_METHOD_INACCESSIBLE

Cause: A delegate class of an IndirectContainer implementation
implements Cloneable but the IndirectContainer implementation does
not have access to the specified clone method. That is, a
java.lang.IllegalAccessException was thrown when the delegate’s
clone method was invoked.

Action: Ensure that both the delegate clone method and the delegate class are
public. Ensure permission is set for Java reflection in your VM security settings.
See also java.lang.reflect.Method.invoke().

Error code: 6097
CLONE_METHOD_THORW_EXCEPTION

Cause: A delegate class of an IndirectContainer implementation
implements Cloneable and the IndirectContainer implementation has
access to the specified clone method, but the specified clone method throws a
java.lang.reflect.InvocationTargetException when invoked.

Action: Verify the implementation of the delegate’s clone method.

Error code: 6098
UNEXPECTED_INVOCATION

Cause: A proxy object method throws an unexpected exception when invoked
(that is, some exception other than InvocationTargetException and
ValidationException.)

Exception Error Codes and Descriptions

C-72 Oracle Application Server TopLink Application Developer’s Guide

Action: Review the proxy object to see where it is throwing the exception
described in the exception Message. Ensure this exception is no longer thrown.

Validation Exception
A Validation exception is a development exception that is raised when an incorrect
state is detected or an API is used incorrectly.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–8 Validation Exception

EXCEPTION [TOPLINK – 7008]: oracle.toplink.exceptions.ValidationException
EXCEPTION DESCRIPTION: The Java type javaClass is not a valid database type. The
Java type of the field to be written to the database has no corresponding type
on the database.

Error Codes 7001 – 7104

Error code: 7001
LOGIN_BEFORE_ALLOCATING_CLIENT_SESSIONS

Cause: You attempted to allocate client sessions before logging into the server.

Action: Ensure you have called login() on your server session or database
session. This error also appears in multithreaded environments as a result of
concurrency issues. Check that all your threads are synchronized.

Error code: 7002
POOL_NAME_DOES_NOT_EXIST

Cause: The pool name used while acquiring client session from the server
session does not exist.

Action: Verify the pool name given while acquiring client session and all the
existing pools on the server session.

Exception Error Codes and Descriptions

Error Codes and Messages C-73

Error code: 7003
MAX_SIZE_LESS_THAN_MIN_SIZE

Cause: The maximum number of connections in a connection pool should be
more than the minimum number of connections.

Action: Check addConnectionPool(String poolName, JDBCLogin login,
int minNumberOfConnections, int maxNumberOfConnections) on the
server session.

Error code: 7004
POOLS_MUST_BE_CONFIGURED_BEFORE_LOGIN

Cause: Pools must all be added before login on the server session has been
done. Once logged in, you cannot add pools.

Action: Check addConnectionPool(String poolName, JDBCLogin login,
int minNumberOfConnections, int maxNumberOfConnections) on server
session. This method should be called before logging in on the server session.

Error code: 7008
JAVA_TYPE_IS_NOT_A_VALID_DATABASE_TYPE

Cause: The Java type javaClass is not a valid database type. The Java type of
the field to be written to the database has no corresponding type on the
database.

Action: Check table or stored procedure definition.

Error code: 7009
MISSING_DESCRIPTOR

Cause: The descriptor className is not found in the session.

Action: Ensure that the related descriptor to the class was properly registered
with the session.

Error code: 7010
START_INDEX_OUT_OF_RANGE

Cause: This is an OracleAS TopLink development exception and users should
never encounter this problem. It happens when a copy of a vector is created
with a start and end index.

Action: Report this problem to Technical Support.

Exception Error Codes and Descriptions

C-74 Oracle Application Server TopLink Application Developer’s Guide

Error code: 7011
STOP_INDEX_OUT_OF_RANGE

Cause: This is an OracleAS TopLink development exception and users should
never encounter this problem. It happens when a copy of a vector is created
with a start and end index.

Action: Report this problem to Technical Support.

Error code: 7012
FATAL_ERROR_OCCURRED

Cause: This is an OracleAS TopLink development exception and users should
never encounter this problem. It happens when test cases are executed.

Action: Report this problem to Technical Support. This error commonly occurs
if you attempt to commit() an invalid (or previously committed) UnitOfWork.

If ValidationException.cannotCommitUOWAgain() appears in the stack
trace, verify that call commit() on valid UnitOfWork instances.

Error code: 7013
NO_PROPERTIES_FILE_FOUND

Cause: The toplink.properties file cannot be found on the system class
path.

Action: Ensure that there is a toplink.properties file located on the system
class path.

Error code: 7017
CHILD_DESCRIPTORS_DO_NOT_HAVE_IDENTITY_MAP

Cause: An identity map is added to the child descriptor. A child descriptor
shares its parent’s identity map.

Action: Check child descriptor and remove identity map from it.

Error code: 7018
FILE_ERROR

Cause: The user should never encounter this problem. It happens when test
cases are executed.

Action: Contact Technical Support.

Exception Error Codes and Descriptions

Error Codes and Messages C-75

Error code: 7023
INCORRECT_LOGIN_INSTANCE_PROVIDED

Cause: The login instance provided to the login() method is incorrect. A
JDBCLogin must be provided.

Action: Use a JDBCLogin.

Error code: 7024
INVALID_MERGE_POLICY

Cause: This is an OracleAS TopLink development exception and users should
never encounter it.

Action: Contact Technical Support.

Error code: 7025
ONLY_FIELDS_ARE_VALID_KEYS_FOR_ DATABASE_ROWS

Cause: The key on the database row is not either of type String or of type
DatabaseField.

Action: Contact Technical Support.

Error code: 7027
SEQUENCE_SETUP_INCORRECTLY

Cause: The sequence sequenceName is setup incorrectly, increment does not
match pre-allocation size.

Action: Contact Technical Support.

Error code: 7030
CANNOT_SET_READ_POOL_SIZE_AFTER_LOGIN

Cause: OracleAS TopLink is unable to set read pool size after the server session
has already been logged in.

Action: The size should be set before login.

Error code: 7031
CANNOT_ADD_DESCRIPTORS_TO_SESSION_BROKER

Cause: OracleAS TopLink cannot add descriptors to a session broker.

Action: Descriptors are added to the sessions contained in the session broker.

Exception Error Codes and Descriptions

C-76 Oracle Application Server TopLink Application Developer’s Guide

Error code: 7032
NO_SESSION_REGISTERED_FOR_CLASS

Cause: The descriptor related to the domain class domainClass was not
found in any of the sessions registered in the session broker.

Action: Check the sessions.

Error code: 7033
NO_SESSION_REGISTERED_FOR_NAME

Cause: The session with the given name sessionName is not registered in the
session broker.

Action: Check the session broker.

Error code: 7038
LOG_IO_ERROR

Cause: Error while logging message to session's log.

Action: Check the internal exception.

Error code: 7039
CANNOT_REMOVE_FROM_READ_ONLY_CLASSES_ IN_NESTED_UNIT_

OF_WORK
Cause: OracleAS TopLink is unable to remove from the set of read-only classes
in a nested Unit of Work. A nested Unit of Work's set of read-only classes must
be equal to or a superset of its parent's set of read-only classes.

Action: Contact Technical Support.

Error code: 7040
CANNOT_MODIFY_READ_ONLY_CLASSES_SET_ AFTER_USING_UNIT_

OF_WORK
Cause: OracleAS TopLink is unable to change the set of read-only classes in a
Unit of Work after that Unit of Work has been used. Changes to the read-only
set must be made when acquiring the Unit of Work or immediately after.

Action: Contact Technical Support.

Error code: 7042
PLATFORM_CLASS_NOT_FOUND

Cause: The platform class className was not found and a reflection
exception was thrown.

Exception Error Codes and Descriptions

Error Codes and Messages C-77

Action: Check the internal exception.

Error code: 7043
NO_TABLES_TO_CREATE

Cause: A project does not have any tables to create on the database.

Action: Validate the project and tables you are attempting to create.

Error code: 7044
LLEGAL_CONTAINER_CLASS

Cause: The container class specified className cannot be used as the
container because it does not implement the Collection or Map interfaces.

Action: Implement either the Collection or Map interfaces in the container
class.

Error code: 7047
ONTAINER_POLICY_DOES_NOT_USE_KEYS

Cause: Invalid Map class was specified for the container policy. The container
specified (of class aPolicyContainerClass) does not require keys. You tried
to use methodName.

Action: Use map class that implements the Map interface.

Error code: 7048
METHOD_NOT_DECLARED_IN_ITEM_CLASS

Cause: The key method on the map container policy is not defined. The
instance method <methodName> does not exist in the reference class
<className> and therefore cannot be used to create a key in a Map. A map
container policy represents how to handle an indexed collection of objects.
Usually the key is the primary key of the objects stored, so the policy needs to
know the name of the primary key get method, to extract it from each object
using reflection. For instance a user might call
policy.setKeyMethodName("getId");

Action: Check the second parameter of your DatabaseQuery.useMapClass()
call.

Exception Error Codes and Descriptions

C-78 Oracle Application Server TopLink Application Developer’s Guide

Error code: 7051
MISSING_MAPPING

Cause: Missing attribute attributeName for descriptor descriptor called
from source. This is an OracleAS TopLink development exception and a user
should never encounter it.

Action: Contact Technical Support.

Error code: 7052
ILLEGAL_USE_OF_MAP_IN_DIRECTCOLLECTION

Cause: The method useMapClass was called on a
DirectCollectionMapping. It is illegal to call useMapClass() on a
DirectCollectionMapping. OracleAS TopLink cannot instantiate Java
attributes mapped using a DirectCollectionMapping with a Map. The
useMapClass() API is supported for OneToManyMappings and
ManyToManyMappings. The Java 2 Collection interface is supported using
the useCollectionClass() method.

Action: Use the useCollectionClass() API. Do not call useMapClass() on
DirectCollectionMappings.

Error code: 7053
CANNOT_RELEASE_NON_CLIENTSESSION

Cause: OracleAS TopLink is unable to release a session that is not a client
session. Only client sessions can be released.

Action: Modify the code to ensure the client session is not released.

Error code: 7054
CANNOT_ACQUIRE_CLIENTSESSION_FROM_SESSION

Cause: OracleAS TopLink is unable to acquire a session that is not a client
session. Client sessions can only be acquired from server sessions.

Action: Modify the code to ensure acquire is attempted only from server
sessions.

Error code: 7055
OPTIMISTIC_LOCKING_NOT_SUPPORTED

Cause: Optimistic Locking is not supported with stored procedure generation.

Action: Do not use OptimisticLocking with stored procedure generation.

Exception Error Codes and Descriptions

Error Codes and Messages C-79

Error code: 7056
WRONG_OBJECT_REGISTERED

Cause: The wrong object was registered into the Unit of Work. It should be the
object from the parent cache.

Action: Ensure that the object is from the parent cache.

Error code: 7058
INVALID_CONNECTOR

Cause: The connector selected is invalid and must be of type
DefaultConnector.

Action: Ensure that the connector is of type DefaultConnector.

Error code: 7059
INVALID_DATA_SOURCE_NAME

Cause: Invalid datasource name: name.

Action: Verify that the datasource name.

Error code: 7060
CANNOT_ACQUIRE_DATA_SOURCE

Cause: OracleAS TopLink is unable to acquire datasource: name or an error has
occurred in setting up the datasource.

Action: Verify the datasource name. Check the nested SQL exception to
determine the cause of the error. Typical problems include:

■ The connection pool was not configured in your config.xml.

■ The driver is not on the class path.

■ The user or password is incorrect.

■ The database server URL or driver name is not properly specified.

Error code: 7061
JTS_EXCEPTION_RAISED

Cause: An exception occurred within the Java Transaction Service (JTS).

Action: Examine the JTS exception and see the JTS documentation.

Exception Error Codes and Descriptions

C-80 Oracle Application Server TopLink Application Developer’s Guide

Error code: 7062
FIELD_LEVEL_LOCKING_NOTSUPPORTED_ OUTSIDE_A_UNIT_OF_WORK

Cause: FieldLevelLocking is not supported outside a Unit of Work. In order
to use field level locking, a Unit of Work must be used for ALL writes.

Action: Use a Unit of Work for writing.

Error code: 7063
EJB_CONTAINER_EXCEPTION_RAISED

Cause: An exception occurred within the EJB container.

Action: Examine the EJB exception and see the JTS documentation.

Error code: 7064
EJB_PRIMARY_KEY_REFLECTION_EXCEPTION

Cause: An exception occurred in the reflective EJB bean primary key
extraction.

Action: Ensure that your primary key object is defined correctly.

Error code: 7065
EJB_CANNOT_LOAD_REMOTE_CLASS

Cause: The remote class for the bean cannot be loaded or found, for the bean.

Action: Ensure that the correct class loader is set correctly.

Error code: 7066
EJB_MUST_BE_IN_TRANSACTION

Cause: OracleAS TopLink is unable to create or remove beans unless a JTS
transaction is present, bean=bean.

Action: Ensure that the JTS transaction is present.

Error code: 7068
EJB_INVALID_PROJECT_CLASS

Cause: The platform class platformName was not found for the
projectName using default class loader.

Action: Validate the project and platform.

Exception Error Codes and Descriptions

Error Codes and Messages C-81

Error code: 7069
PROJECT_AMENDMENT_EXCEPTION_OCCURED

Cause: An exception occurred while looking up or invoking the project
amendment method, amendmentMethod on the class amendmentClass.

Action: Validate the amendment method and class.

Error code: 7070
EJB_TOPLINK_PROPERTIES_NOT_FOUND

Cause: A toplink.properties resource bundle must be located on the class
path in an OracleAS TopLink directory.

Action: Validate the class path and the location of the OracleAS TopLink
resource bundle.

Error code: 7071
CANT_HAVE_UNBOUND_IN_OUTPUT_ARGUMENTS

Cause: You cannot use input output parameters without using binding.

Action: Use binding on the StoredProcedureCall.

Error code: 7072
EJB_INVALID_PLATFORM_CLASS

Cause: SessionManager failed to load the class identified by the value
associated with properties platform-class or
external-transaction-controller-class during initialization when it
loads the OracleAS TopLink session common properties from the OracleAS
TopLink global properties file (sessions.xml for non-EJB applications or
toplink-ejb-jar.xml for EJB applications).

Action: Ensure that your OracleAS TopLink global properties file is correctly
configured. Pay particular attention to the platform-class and
external-transaction-controller-class properties.

Error code: 7073
ORACLE_OBJECT_TYPE_NOT_DEFINED

Cause: The Oracle object type with type name typeName is not defined.

Action: Ensure that the Oracle object type is defined.

Exception Error Codes and Descriptions

C-82 Oracle Application Server TopLink Application Developer’s Guide

Error code: 7074
ORACLE_OBJECT_TYPE_NAME_NOT_DEFINED

Cause: The Oracle object type typeName is not defined.

Action: Ensure that the Oracle object type is defined.

Error code: 7075
ORACLE_VARRAY_MAXIMIM_SIZE_NOT_DEFINED

Cause: The Oracle VARRAY type typeName maximum size is not defined.

Action: Verify the maximum size for the Oracle VARRAY.

Error code: 7076
DESCRIPTOR_MUST_NOT_BE_INITIALIZED

Cause: When generating the project class the descriptors must not be
initialized.

Action: Ensure that the descriptors are not initialized before generating the
project class.

Error code: 7077
EJB_INVALID_FINDER_ON_HOME

Cause: The Home interface homeClassName.toString() specified during
creation of BMPWrapperPolicy does not contain a correct findByPrimaryKey
method. A findByPrimaryKey method must exist that takes the PrimaryKey
class for this bean.

Action: Ensure that a FindByPrimaryKey method exists and is correct.

Error code: 7078
EJB_NO_SUCH_SESSION_SPECIFIED_IN_PROPERTIES

Cause: The sessionName specified on the deployment descriptor does not
match any session specified in the toplink.properties file.

Action: Contact Technical Support.

Error code: 7079
EJB_DESCRIPTOR_NOT_FOUND_IN_SESSION

Cause: The descriptor was not found in the session.

Action: Check the project being used for this session.

Exception Error Codes and Descriptions

Error Codes and Messages C-83

Error code: 7080
EJB_FINDER_EXCEPTION

Cause: A FinderException was thrown when attempting to load an object
from the class with the primary key.

Action: Contact Technical Support.

Error code: 7081
CANNOT_REGISTER_AGGREGATE_OBJECT_IN_ UNIT_OF_ WORK

Cause: The aggregate object cannot be directly registered in the Unit of Work.
It must be associated with the source (owner) object.

Action: Contact Technical Support.

Error code: 7082
MULTIPLE_PROJECTS_SPECIFIED_IN_PROPERTIES

Cause: The toplink.properties file specified multiple project files for the
server. Only one project file can be specified.

Action: Specify either projectClass, projectFile, or xmlProjectFile.

Error code: 7083
NO_PROJECT_SPECIFIED_IN_PROPERTIES

Cause: The toplink.properties file does not include any information on
the OracleAS TopLink project to use for the server. One project file must be
specified.

Action: Specify either projectClass, projectFile, or xmlProjectFile.

Error code: 7084
INVALID_FILE_TYPE

Cause: The specified file is not a valid type for reading. ProjectReader must
be given the deployed XML project file.

Action: Contact Technical Support.

Error code: 7085
SUB_SESSION_NOT_DEFINED_FOR_BROKER

Cause: Unable to create an instance of the external transaction controller
specified in the properties file.

Action: Contact Technical Support.

Exception Error Codes and Descriptions

C-84 Oracle Application Server TopLink Application Developer’s Guide

Error code 7086:
EJB_INVALID_SESSION_TYPE_CLASS

Cause: The session manager cannot load the class corresponding to the
session’s type class name.

Action: Ensure that the class name of the session's type is fully qualified in the
sessions.xml file or toplink.properties file.

Error code 7087:
EJB_SESSION_TYPE_CLASS_NOT_FOUND

Cause: The session manager cannot load the class corresponding to the
session’s type class name.

Action: Ensure that the class name of the session's type is fully qualified in the
sessions.xml file or toplink.properties file.

Error code 7088:
CANNOT_CREATE_EXTERNAL_TRANSACTION_ CONTROLLER

Cause: The session manager cannot load the class corresponding to the
external transaction controller's class name.

Action: Ensure that the class name of the external transaction controller is valid
and fully qualified in the sessions.xml file or toplink.properties file.

Error code 7089:
SESSION_AMENDMENT_EXCEPTION_OCCURED

Cause: The session manager cannot load the class corresponding to the
amendment class name or it cannot load the method on the amendment class
corresponding to the amendment method name.

Action: Ensure that the class name of the amendment class is fully qualified
and the amendment method exists in the amendment class in the
sessions.xml file or toplink.properties file.

Error code 7091
SET_LISTENER_CLASSES_EXCEPTION

Cause: OracleAS TopLink is unable to create the listener class that implements
SessionEventListener for the internal use of SessionXMLProject.

Action: Contact Technical Support.

Exception Error Codes and Descriptions

Error Codes and Messages C-85

Error code 7092
EXISTING_QUERY_TYPE_CONFLICT

Cause: OracleAS TopLink has detected a conflict between a custom query with
the same name and arguments to a session.

Action: Ensure that no query is added to the session more than once or change
the query name so that the query can be distinguished from others.

Error code 7093
QUERY_ARGUMENT_TYPE_NOT_FOUND

Cause: OracleAS TopLink is unable to create an instance of the query argument
type.

Action: Ensure that the argument type is a fully qualified class name and the
argument class is included in the class path environment.

Error code 7094
ERROR_IN_SESSIONS_XML

Cause: The sessions.xml or toplink.properties files cannot be loaded.

Action: Ensure that the path to either of the files exist on the class path
environment.

Error code 7095
NO_SESSIONS_XML_FOUND

Cause: The sessions.xml or toplink.properties files cannot be loaded.

Action: Ensure that the path to either of the files exist on the class path
environment.

Error code 7096
CANNOT_COMMIT_UOW_AGAIN

Cause: OracleAS TopLink cannot invoke commit() on an inactive Unit of Work
that was committed or released.

Action: Ensure you invoke commit() on a new Unit of Work or invoke
commitAndResume() so that the Unit of Work can be reused. For more
information about the commitAndResume() method, see the Oracle Application
Server TopLink API Reference.

Exception Error Codes and Descriptions

C-86 Oracle Application Server TopLink Application Developer’s Guide

Error code 7097:
OPERATION_NOT_SUPPORTED

Cause: OracleAS TopLink cannot invoke a nonsupport operation on an object.

Action: Do not use the operation indicated in the stack trace.

Error Code: 7099
PROJECT_XML_NOT_FOUND

Cause: The filename specified for the XML-based project is incorrect.

Action: Verify the name and location of the file.

Error Code: 7101
NO_TOPLINK_EJB_JAR_XML_FOUND

Cause: The toplink-ejb-jar.xml file was not found.

Action: Ensure that the file is on your class path.

Error Code: 7102
NULL_CACHE_KEY_FOUND_ON_REMOVAL

Cause: Encountered a null value for a cache key while attempting to remove
an object from the identity map. The most likely cause of this situation is that
the object has already been garbage-collected and therefore does not exist
within the identity map.

Action: Ignore. The Session.removeFromIdentityMap method is
intended to allow garbage collection, which has already been done.

Error Code: 7103
NULL_UNDERLYING_VALUEHOLDER_VALUE

Cause: A null reference was encountered while attempting to invoke a method
on an object that uses proxy indirection.

Action: Please check that this object is not null before invoking its methods.

Error Code: 7104
INVALID_SEQUENCING_LOGIN

Cause: A separate connection(s) for sequencing was requested but sequencing
login uses external transaction controller.

Action: Either provide a sequencing login that does not use an external
transaction controller or do not use separate connection(s) for sequencing.

Exception Error Codes and Descriptions

Error Codes and Messages C-87

EJB QL Exception
An EJB QL exception is a runtime exception raised when the EJB QL string does not
parse properly, or the contents are not resolvable within the context of the OracleAS
TopLink session. The associated message typically includes a reference to the EJB
QL string that caused the problem.

Error Codes 8001 – 8010

Error Code: 8001
recognitionException

Cause: The OracleAS TopLink EJB QL parser does not recognize a clause in the
EJB QL string.

Action: Validate the EJB QL string.

Error Code: 8002
generalParsingException

Cause: OracleAS TopLink has encountered a problem while parsing the EJB QL
string.

Action: Check the internal exception for details on the root cause of this
exception.

Error Code: 8003
classNotFoundException

Cause: The class specified in the EJB QL string was not found.

Action: Ensure that the class is on the appropriate class path.

Error Code: 8004
aliasResolutionException

Cause: OracleAS TopLink was unable to resolve the alias used in the EJB QL
string.

Action: Validate the identifiers used in the EJB QL string.

Error Code: 8005
resolutionClassNotFoundException

Cause: OracleAS TopLink was unable to resolve the class for an alias. This
means that the class specified cannot be found.

Exception Error Codes and Descriptions

C-88 Oracle Application Server TopLink Application Developer’s Guide

Action: Ensure that the class is specified properly and is on the class path.

Error Code: 8006
missingDescriptorException

Cause: The class specified in the query has no OracleAS TopLink descriptor.

Action: Ensure that the class has been mapped and is specified correctly in the
EJB QL string.

Error Code: 8009
expressionNotSupported

Cause: An unsupported expression was used in the EJB QL.

Action: Change the query to use only supported expressions.

Error Code: 8010
generalParsingException

Cause: OracleAS TopLink has encountered a problem while parsing the EJB QL
string.

Action: Check the internal exception for details on the root cause of this
exception.

Session Loader Exception
A Session Loader Exception is a runtime exception thrown if the Session Manager
encounters a problem loading session information from a sessions.xml (for
non-EJB applications) or toplink-ejb-jar.xml (for EJB applications) properties
file.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–9 Session Loader Exception

EXCEPTION [TOPLINK – 9004]: oracle.toplink.exceptions.SessionLoaderException
EXCEPTION DESCRIPTION: The <project-xml> file MyProject was not found on the
classpath, nor on the filesystem.

Exception Error Codes and Descriptions

Error Codes and Messages C-89

Error Codes 9000 - 9009

Error Code: 9000
FINAL_EXCEPTION

Cause: The session loader caught one or more XML parsing exceptions while
loading session information. The specific XML exceptions follow.

Action: Verify your session configuration XML file.

Error Code: 9001
UNKNOWN_TAG

Cause: An unknown tag was encountered in the specified XML node.

Action: Examine the specified XML node in your session configuration XML
file. Ensure that you use only the tags defined for that node in the appropriate
OracleAS TopLink DTD. See <ORACLE_HOME>/toplink/config/dtds.

Error Code: 9002
UNABLE_TO_LOAD_PROJECT_CLASS

Cause: The specified class loader could not load a class with the name given by
the project-name property.

Action: Verify the value of the project-name property and if correct, ensure
that a class with that name is in your classpath.

Error Code: 9003
UNABLE_TO_PROCESS_TAG

Cause: The session loader caught an exception while either parsing the value of
the specified tag or calling the set-method associated with the specified tag.

Action: Verify the value shown for the specified tag.

Error Code: 9004
COULD_NOT_FIND_PROJECT_XML

Cause: The session loader could not find the file identified by the
project-xml tag on either the classpath or the filesystem.

Action: Verify the value of the project-xml tag and if correct, ensure that a
project XML file with that name exists in your classpath or filesystem.

Exception Error Codes and Descriptions

C-90 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 9005
FAILED_TO_LOAD_PROJECT_XML

Cause: The session loader caught an exception while trying to load the file
identified by the project-xml tag either because the file could not be found
or because the file could not be parsed.

Action: Verify the configuration of the project XML file and ensure that a
project XML file with that name specified by the project-xml tag exists in
your classpath or filesystem.

Error Code: 9006
UNABLE_TO_PARSE_XML

Cause: The session loader caught a SAX exception while trying to parse the
XML at the given line and column of the specified XML file.

Action: Verify that the XML is correctly formatted at the given line and
column. Alternatively, ensure the Oracle parser is in your class path and that is
appears before any other XML parser.

Error Code: 9007
NON_PARSE_EXCEPTION

Cause: The session loader caught an exception unrelated to XML parsing (for
example, a premature end-of-file exception) while trying to parse the specified
XML file.

Action: Verify the integrity of the XML file.

Error Code: 9008
UN_EXPECTED_VALUE_OF_TAG

Cause: The value of an XML tag does not correspond to any known OracleAS
TopLink required values.

Action: Please verify the list of values for this tag.

Error Code: 9009
UNKNOWN_ATTRIBUTE_OF_TAG

Cause: Incorrect name value pair when processing transport properties for the
RCM tag.

Action: Please verify that the all properties have both the name and the value
filled in, in the session configuration XML.

Exception Error Codes and Descriptions

Error Codes and Messages C-91

EJB Exception Factory
An EJB Exception Factory Exception is a runtime exception thrown if a
BeanManager specific to a given application server encounters a problem during
any stage of an EJB’s life cycle.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–10 EJB Exception Factory Exception

EXCEPTION [TOPLINK – 10008]: javax.ejb.CreateException
EXCEPTION DESCRIPTION: Cannot find bean.

Error Codes 10001 - 10048

Error Code: 10001
CREATE_EXCEPTION

Cause: The PersistenceManager for the given application server failed to create
an EJB (for example, a problem was encountered during the create, such as a
NullPointerException).

Action: Check the exception contained in the CreateException for additional
information.

Error Code: 10002
REMOVE_EXCEPTION

Cause: The PersistenceManager for the given application server failed to
remove an EJB (for example, a problem was encountered during the remove,
such as a NullPointerException).

Action: Check the exception contained in the RemoveException for additional
information.

Error Code: 10003
EJB_EXCEPTION

Cause: An internal, unexpected Exception was thrown.

Action: See the Exception message provided.

Exception Error Codes and Descriptions

C-92 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 10004
FINDER_EXCEPTION1

Cause: Unexpected exception encountered while executing finder.

Action: See the Exception message provided.

Error Code: 10005
FINDER_EXCEPTION2

Cause: Unexpected exception encountered while executing finder.

Action: See the Exception message provided.

Error Code: 10007
DUPLICATE_KEY_EXCEPTION

Cause: The PersistenceManager for a given application server failed to create
an EJB, because an EJB with the given primary key already exists.

Action: Verify the application logic to ensure the primary key is unique.

Error Code: 10008
OBJECT_NOT_FOUND_EXCEPTION

Cause: A scalar finder (one that returns a single object) was invoked on a home
interface, and returned null.

Action: Verify the application logic to ensure the desired EJB exists.

Error Code: 10009
OBJECT_NOT_FOUND_PKEY_EXCEPTION

Cause: A find using the primary key indicated, returned null.

Action: Verify the application logic to ensure the desired EJB exists.

Error Code: 10010
CANNOT_CREATE_READ_ONLY

Cause: An attempt was made to create an entity marked as read-only using
session().getProject().setDefaultReadOnlyClasses(aVector). You cannot create a
read-only entity.

Action: Read-only entities should be read from the database (not created by the
home interface). Adjust the application to read the required entities beforehand.

Exception Error Codes and Descriptions

Error Codes and Messages C-93

Error Code: 10011
CANNOT_REMOVE_READ_ONLY

Cause: An attempt was made to delete an entity marked as read-only using
session().getProject().setDefaultReadOnlyClasses(aVector). You cannot delete a
read-only entity.

Action: Determine whether the object should be read-only or not. If it should,
do not try to remove it.

Error Code: 10014
ERROR_IN_NON_TX_COMMIT

Cause: The PersistenceManager for a given application server failed to end
a local transaction (made up of a non-synchronized, non-JTA UnitOfWork)
after a remove, create, business method, or home method invocation.

Action: See the Exception message provided.

Error Code: 10021
ERROR_ASSIGNING_SEQUENCES

Cause: The PersistenceManager for a given application server, whose
shouldAssignSequenceNumbers method returns true, failed to assign a
sequence number to an entity.

Action: See the Exception message provided.

Error Code: 10022
LIFECYCLE_REMOTE_EXCEPTION

Cause: A java.rmi.RemoteException was thrown when an entity was
activated, loaded, passivated, or stored.

Action: See the Exception message provided.

Error Code: 10023
SEQUENCE_EXCEPTION

Cause: An exception was thrown while handling a post-insert
DescriptorEvent preventing the specified entity from being assigned a
primary key.

Action: See the Exception message provided.

Exception Error Codes and Descriptions

C-94 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 10024
NO_SUCH_ENTITY_EXCEPTION

Cause: A conforming find, using the same query as a find by primary key,
failed with a javax.ejb.ObjectNotFoundException.

Action: See the Exception message provided.

Error Code: 10025
INTERNAL_ERROR_ACCESSING_CTX

Cause: Internal error.

Action: Please contact support if required.

Error Code: 10026
INTERNAL_ERROR_FINDING_GENSUBCLASS

Cause: Internal error.

Action: Please contact support.

Error Code: 10027
INTERNAL_ERROR_INITIALIZING_CTX

Cause: Internal error.

Action: Please contact support.

Error Code: 10028
INTERNAL_ERROR_INVALID_MAPPING

Cause: The SessionAccessor.registerOrMergeAttribute method,
called from within an EJB setter method, failed to obtain a DatabaseMapping
for the given attribute from the PersistenceManager.

Action: Verify that the given attribute belongs to the EJB class and if it does,
verify that a mapping exists for it.

Error Code: 10029
INTERNAL_ERROR_ACCESSING_PK

Cause: Failed to wrap an EJB for return to the application because the attempt
to extract the primary key from the bean failed.

Action: See the Exception message provided.

Exception Error Codes and Descriptions

Error Codes and Messages C-95

Error Code: 10030
INTERNAL_ERROR_ACCESSING_PKFIELD

Cause: Failed to initialize primary key fields due to
java.lang.NoSuchFieldException.

Action: See the Exception message provided.

Error Code: 10031
INTERNAL_ERROR_PREPARING_BEAN_INVOKE

Cause: One of the following failed with an exception other than
javax.ejb.ObjectNotFoundException: a conforming find using the same
query as a find by primary key; an Oracle Application Server Containers for
J2EE startCall method invocation for a BUISNESS_METHOD operation; or a
WebLogic preInvoke method invocation.

Action: See the Exception message provided

Error Code: 10032
FINDER_NOT_IMPLEMENTED

Cause: Associated finder has no implementation.

Action: Provide an implementation for the finder.

Error Code: 10033
FINDER_FINDBYPK_NULLPK

Cause: A find by primary key was called with a null primary key value.

Action: Ensure the primary key is not null when the finder is invoked

Error Code: 10034
REMOVE_NULLPK_EXCEPTION

Cause: A find by primary key was called with a null primary key value.

Action: Ensure the primary key is not null when the finder is invoked.

Error Code: 10036
ERROR_DURING_CODE_GEN

Cause: The PersistenceManager for a given application server failed to
code-generate a bean subclass.

Action: See the Exception message provided.

Exception Error Codes and Descriptions

C-96 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 10037
ERROR_EXECUTING_EJB_SELECT

Cause: An EJB select failed with an exception other than
javax.ejb.ObjectNotFoundException.

Action: See the Exception message provided.

Error Code: 10038
ERROR_EXECUTING_EJB_HOME

Cause: The invocation of a Home interface method (excluding finders or create
methods) failed.

Action: See the Exception message provided.

Error Code: 10040
NO_ACTIVE_TRANSACTION

Cause: A create or remove EJB failed because the PersistenceManager does not
have a transaction.

Action: Ensure your application has a transaction available. This may be a
configuration problem related to your ejb-jar.xml or an application logic
problem in your client code.

Error Code: 10043
FINDER_RESULTS_ALREADY_WRAPPED

Cause: The results of a finder query could not be wrapped because they were
already wrapped.

Action: If a redirect query is used, be sure to call the
setShouldUseWrapperPolicy(false) method first.

Error Code: 10045
LOCAL_WRAPPER_MISSING

Cause: Error resolving the local interface.

Action: Please double check your local interface configuration.

Error Code: 10046
REMOTE_WRAPPER_MISSING

Cause: Error resolving the remote interface.

Action: Please double check your remote interface configuration.

Exception Error Codes and Descriptions

Error Codes and Messages C-97

Error Code: 10047
CREATE_NULLPK_EXCEPTION

Cause: The PersistenceManager for a given application server failed to create a
bean because the primary key was not defined.

Action: Make sure the primary key is defined properly, either in the
application logic or through the sequence number configuration.

Communication Exception
A Communication Exception is a runtime exception that wraps all RMI, CORBA, or
input and output (I/O) exceptions that occur.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–11 Communication Exception

EXCEPTION [TOPLINK – 12000]: oracle.toplink.exceptions.CommunicationException
EXCEPTION DESCRIPTION: Error Sending connection service to myService.

Error Codes 12000 - 12004

Error Code: 12000
ERROR_SENDING_CONNECTION_SERVICE

Cause: Failed to add a connection to CacheSynchronizationManager or
RemoteCommandManager.

Action: See generated exception for root cause.

Error Code: 12001
UNABLE_TO_CONNECT

Cause: CacheSynronizationManager failed to connect to the specified
service.

Action: See generated exception for root cause.

Exception Error Codes and Descriptions

C-98 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 12003
UNABLE_TO_PROPAGATE_CHANGES

Cause: CacheSynronizationManager failed to propagate changes to the
specified service.

Action: See generated exception for root cause.

Error Code: 12004
ERROR_IN_INVOCATION

Cause: Error invoking a remote call.

Action: See generated exception for root cause.

XML Data Store Exception
An XML Data Store Exception is a runtime exception thrown when using OracleAS
TopLink to persist objects in the form of XML files (rather than using a relational
database.)

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–12 XML Data Store Exception

EXCEPTION [TOPLINK – 13000]: oracle.toplink.xml.XMLDataStoreException
EXCEPTION DESCRIPTION: File not found: C:\data\myTable\row.xml.

Error Codes 13000 - 13020

Error Code: 13000
FILE_NOT_FOUND

Cause: Failed to create a WriteStream for an XML file (an individual file or a
file extracted from a ZIP archive) because the file could not be found in the file
system. This can happen if the XML DataAccessor is trying to update an XML
file and the file does not exist. This indicates an inconsistent state between the
application and what is on disk.

Action: Verify that the specified file exists.

Exception Error Codes and Descriptions

Error Codes and Messages C-99

Error Code: 13001
UNABLE_TO_CLOSE_WRITE_STREAM

Cause: After writing a row to the XML data store, failed to close the
WriteStream used due to a java.io.IOException. This can happen if the
disk is full.

Action: See the generated exception for the root cause. Verify that there is
sufficient disk space available for this operation.

Error Code: 13002
NOT_A_DIRECTORY

Cause: Creating or deleting a file source failed because the File being created
or deleted was not a directory or a file exists with the same name as the
directory indicated.

Action: Verify that OracleAS TopLink has permissions to create the necessary
directories. Verify that there is sufficient disk space available for this operation.

Error Code: 13003
DIRECTORY_COULD_NOT_BE_CREATED

Cause: Checking or creating a file or document source failed because the
File.mkdirs method failed to create the directory named by the specified
abstract pathname, including any necessary but nonexistent parent.

Action: Verify that OracleAS TopLink has permissions to create the necessary
directories. Verify that there is sufficient disk space available for this operation.

Error Code: 13004
DIRECTORY_NOT_FOUND

Cause: Directory does not exist and OracleAS TopLink has not been set to
create directories as needed (createsDirectoriesAsNeeded policy is false.)

Action: Either create the appropriate directory or configure OracleAS TopLink
to create directories as needed (set createsDirectoriesAsNeeded true.)

Error Code: 13005
FILE_ALREADY_EXISTS

Cause: OracleAS TopLink is attempting to create a file and the file already
exists. OracleAS TopLink expects to be able to create a new version of the file
and will not overwrite an existing file. This can happen if the XML

Exception Error Codes and Descriptions

C-100 Oracle Application Server TopLink Application Developer’s Guide

DataAccessor is trying to insert an XML file and the file already exists. This
indicates an inconsistent state between the application and what is on disk.

Action: Change where OracleAS TopLink is writing or remove the existing file.

Error Code: 13006
UNABLE_TO_CREATE_WRITE_STREAM

Cause: Failed to create a WriteStream due to a java.io.IOException.

Action: See the generated exception for the root cause.

Error Code: 13007
INVALID_FIELD_VALUE

Cause: Failed to construct an XML element to represent an object because the
object was an invalid type. For a direct collection, one or more of the elements
had a type that was not null or String. For a nested row, one or more of the
elements had a type that was not DatabaseRow.

Action: See the generated exception for the root cause. Verify the configuration
of the object being persisted to ensure that it can be persisted in an XML data
store.

Error Code: 13008
CLASS_NOT_FOUND

Cause: Failed to load the specified class due to a
java.lang.ClassNotFoundException. This indicates a problem either
with the OracleAS TopLink JAR (it is missing the class
oracle.toplink.xml.xerces.DefaultXMLTranslator) or an
improperly configured custom class loader (see the
DatabaseLogin.setXMLParserJARFileNames method).

Action: See the generated exception for the root cause. Confirm that the
OracleAS TopLink JAR contains
oracle.toplink.xml.xerces.DefaultXMLTranslator. If you are using
a custom class loader, confirm that this class is included in the list of JAR files
passed into DatabaseLogin.setXMLParserJARFileNames method.

Error Code: 13009
SAX_PARSER_ERROR

Cause: Failed to parse the specified XML file due to an
org.xml.sax.SAXParseException.

Exception Error Codes and Descriptions

Error Codes and Messages C-101

Action: See the generated exception for the root cause including the line and
column number at which the SAXParseException was thrown.

Error Code: 13010
GENERAL_EXCEPTION

Cause: An operation failed due to something other than an
org.xml.sax.SAXParseException.

Action: An exception was thrown either when trying to build a parser or to
build a document that caused that action to fail. See the generated exception for
the root cause.

Error Code: 13011
IOEXCEPTION

Cause: A ReadStream or WriteStream could not be created due to a
java.io.IOException.

Action: See the generated exception for the root cause.

Error Code: 13012
UNABLE_TO_CLOSE_READ_STREAM

Cause: After reading a row from the XML data store, failed to close the
ReadStream used due to a java.io.IOException.

Action: See the generated exception for the root cause.

Error Code: 13013
HETEROGENEOUS_CHILD_ELEMENTS

Cause: Composite elements are being stored in a DirectCollectionMapping.
DirectCollectionMappings in the SDK will only work with simple elements.
Simple elements contain only one child of type text in XML.

Action: Ensure elements that are mapped as direct collections only contain
simple elements.

Cause: Child elements of a complex element are not the same type: the type of
each child element must be the same as that of the first child element.

Action: Verify that the XML document is not corrupt. If it is valid, ensure that
it meets SDK requirements as illustrated in Example C–13 and Example C–14.

Cause: Child elements of a complex element do not have the same name.

Exception Error Codes and Descriptions

C-102 Oracle Application Server TopLink Application Developer’s Guide

Action: Verify that the XML document is not corrupt. If it is valid, ensure that
it meets SDK requirements as in Example C–13 and Example C–14.

Example C–13 XML Supported by the SDK

<foo>
<bar> [string or nested elements] </bar>
<bar> [must match the first child: either string or nested elements] </bar>
<bar> [must match the first child: either string or nested elements] </bar>

</foo>

Example C–14 XML Not Supported by the SDK

<foo>
<bar> ... </bar>
<fred> [this element will cause the exception] </fred>
<bar> ... </bar>

</foo>

Error Code: 13017
INSTANTIATION_EXCEPTION

Cause: Failed to instantiate the specified class due to a
java.lang.InstantiationException. This indicates a problem either
with the OracleAS TopLink JAR (it is missing the class
oracle.toplink.xml.xerces.DefaultXMLTranslator) or an
improperly configured custom class loader (see the
DatabaseLogin.setXMLParserJARFileNames method).

Action: See the generated exception for the root cause. Ensure that the
specified class is not an interface or an abstract class. Confirm that the OracleAS
TopLink JAR contains oracle.toplink.xml.xerces.DefaultXMLTranslator. If you
are using a custom class loader, confirm that this class is included in the list of
JAR files passed into DatabaseLogin.setXMLParserJARFileNames method.

Error Code: 13018
INSTANTIATION_ILLEGAL_ACCESS_EXCEPTION

Cause: Failed to instantiate the specified class due to a
java.lang.IllegalAccessException. This indicates a problem either
with the OracleAS TopLink JAR (it is missing the class
oracle.toplink.xml.xerces.DefaultXMLTranslator) or an improperly configured
custom class loader (see the DatabaseLogin.setXMLParserJARFileNames
method).

Exception Error Codes and Descriptions

Error Codes and Messages C-103

Action: See the generated exception for the root cause. Ensure that the
specified class is public. Ensure permission is set for Java reflection in your VM
security settings. Ensure that the specified class is not an interface or an abstract
class. Confirm that the OracleAS TopLink JAR contains
oracle.toplink.xml.xerces.DefaultXMLTranslator. If you are using a custom class
loader, confirm that this class is included in the list of JAR files passed into
DatabaseLogin.setXMLParserJARFileNames method.

Error Code: 13020
ELEMENT_DATA_TYPE_NAME_IS_REQUIRED

Cause: Failed to build XML for a given object because the object’s data type
name is null or zero length.

Action: Ensure that the element datatype name is provided

Deployment Exception
A Deployment Exception is a runtime exception thrown if problems are detected
during deployment of an EJB. During deployment, project, sessions, and ejb-jar
XML files (or their Java Class equivalents) are read and the necessary objects
instantiated and initialized.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–15 Deployment Exception

EXCEPTION [TOPLINK – 14001]: oracle.toplink.ejb.DeploymentException
EXCEPTION DESCRIPTION: No OracleAS TopLink project was specified for this bean.

Error Codes 14001 - 14027

Error Code: 14001
NO_PROJECT_SPECIFIED

Cause: Neither project name nor class could be read from the deployment
descriptor.

Action: Verify your project configuration in your deployment descriptor.
Double check that either project-xml or project-class is specified.

Exception Error Codes and Descriptions

C-104 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 14003
NO_SUCH_PROJECT_IDENTIFIER

Cause: No project exists with the identifier requested.

Action: Verify that the project name matches exactly the project name specified
in your project XML file.

Error Code: 14004
ERROR_CREATING_CUSTOMIZATION

Cause: Could not create an instance of the DeploymentCustomization class.

Action: Verify the implementation of the class implementing the
DeploymentCustomization interface. Start with the constructor, then proceed to
the remainder of the implementation.

Error Code: 14005
ERROR_RUNNING_CUSTOMIZATION

Cause: An exception was thrown when either the
DeploymentCustomization.afterLoginCustomization method or
DeploymentCustomization.beforeLoginCustomization method was
called.

Action: See the generated exception for the root cause. Verify the
implementation of your DeploymentCustomization.

Error Code: 14011
ERROR_CONNECTING_TO_DATA_SOURCE

Cause: The data source could not be located in JNDI, or was not properly
specified.

Action: Verify the datasource attribute of the login element in your sessions
XML file. Ensure that the datasource is present and properly configured.

Error Code: 14016
ERROR_CREATING_PROJECT

Cause: The project XML file name or class was specified, but a general error
occurred creating the project.

Action: See the generated exception for the root cause. Verify your project XML
file.

Exception Error Codes and Descriptions

Error Codes and Messages C-105

Error Code: 14020
ERROR_IN_DEPLOYMENT_DESCRIPTOR

Cause: Error parsing the toplink-ejb-jar.xml.

Action: See the generated exception for the root cause. Verify your
toplink-ejb-jar.xml file.

Error Code: 14023
CANNOT_FIND_GENERATED_SUBCLASS

Cause: An internal, unexpected Exception was thrown.

Action: See the Exception message provided.

Error Code: 14024
CANNOT_READ_TOPLINK_PROJECT

Cause: An internal, unexpected Exception was thrown reading the project.

Action: See the exception message provided.

Error Code: 14026
MUST_USE_TRANSPARENT_INDIRECTION

Cause: Your project contains either a one-to-many or many-to-many
relationship (between EJB2.0 entity beans) which is not using transparent
indirection.

Action: Verify your project is using transparent indirection for all one-to-many
and many-to-many relationships involving EJB2.0 entity beans.

Error Code: 14027
MUST_USE_VALUEHOLDER

Cause: Your project contains a one-to-one relationship (between EJB2.0 entity
beans) which is not using basic indirection.

Action: Verify your project is using basic indirection for all one-to-one
relationships involving EJB2.0 entity beans.

Synchronization Exception
A Synchronization exception is a runtime exception that is raised when a cache
synchronization update by OracleAS TopLink to a distributed session was
unsuccessful. When this occurs, the message contains a reference to the error code
and error message.

Exception Error Codes and Descriptions

C-106 Oracle Application Server TopLink Application Developer’s Guide

Error Codes 15001 - 15025

Error Code: 15001
UNABLE_TO_PROPAGATE_CHANGES

Cause: An error occurred when sending changes to remote system.

Action: See exception generated for cause.

Error Code: 15008
ERROR_DOING_LOCAL_MERGE

Cause: The local shared cache has become corrupt.

Action: Restart the session on this server or initializes.

Error Code: 15010
ERROR_LOOKING_UP_LOCAL_HOST

Cause: An IO exception occurred when attempting to discover local system IP
address.

Action: See generated exception for root cause.

Error Code: 15011
ERROR_BINDING_CONTROLLER

Cause: An IO error occurred when attempting to register remote service.

Action: See generated exception for root cause and resolve.

Error Code: 15012
ERROR_LOOKING_UP_CONTROLLER

Cause: Unable to find remote server's remote service.

Action: See generated exception for root cause. Verify that remote server is
running.

Error Code: 15013
LOOKING_UP_JMS_SERVICE

Cause: Unable to find the specified JMS service.

Action: Ensure that the IP address and port of the JMS service has been
specified correctly in the session configuration and that the service is running.

Exception Error Codes and Descriptions

Error Codes and Messages C-107

Error Code: 15016
ERROR_GETTING_SYNC_SERVICE

Cause: An error occurred when attempting to initialize the Synchronization
Service and specified in the Session configuration.

Action: See generated exception for root cause. Verify that the service has been
properly specified in the session configuration.

Error Code: 15017
ERROR_NOTIFYING_CLUSTER

Cause: An error occurred when attempting to contact other OracleAS TopLink
Sessions.

Action: See generated exception for root cause.

Error Code: 15018
ERROR_JOINING_MULTICAST_GROUP

Cause: An error occurred when attempting to join multicast group for
OracleAS TopLink clustering handshaking phase.

Action: See generated exception for root cause.

Error Code: 15023
ERROR_RECEIVING_ANNOUNCEMENT

Cause: An IO error occurred when attempting to receive a session existence
announcement from a remote OracleAS TopLink Session.

Action: See generated exception for root cause.

Error Code: 15025
FAIL_TO_RESET_CACHE_SYNCH

Cause: API on the Development Services called to reset OracleAS TopLink
Cache Synchronization, including participation in the cluster, failed.

Action: See generated Exception for root cause.

JDO Exception
A JDO Exception is a runtime exception thrown when Java Data Objects are used.

Format
EXCEPTION [TOPLINK – error code]: Exception name

Exception Error Codes and Descriptions

C-108 Oracle Application Server TopLink Application Developer’s Guide

EXCEPTION DESCRIPTION: Message

Example C–16 JDO Exception

EXCEPTION [TOPLINK – 16004]: oracle.toplink.exceptions.JDOException
EXCEPTION DESCRIPTION: Cannot execute transactional read query without an active
transaction.

Error Codes 16001 - 16006

Error Code: 16001
OBJECT_IS_NOT_TRANSACTIONAL

Cause: Failed to delete an object because it was not registered with the
currently active UnitOfWork.

Action: Register the specified object with the UnitOfWork before deleting.

Error Code: 16002
ARGUMENT_OBJECT_IS_NOT_JDO_OBJECTID

Cause: Failed to get an object by id because the ObjectId used was not a
JDOObjectId.

Action: Ensure that you pass a JDOObjectId (not an ObjectId) when using
the JDOPersistenceManager.

Error Code: 16003
OBJECT_FOR_ID_DOES_NOT_EXIST

Cause: Failed to get an object by id: no object with the specified JDOObjectId
was found.

Action: Ensure that your application handles this exception appropriately.

Error Code: 16004
TRANSACTIONAL_READ_WITHOUT_ACTIVE_TRANSACTION

Cause: A query failed because although the JDOPersistenceManager is in a
transactional read, the current transaction is inactive.

Action: Ensure there is an active transaction before doing a transactional read.

Exception Error Codes and Descriptions

Error Codes and Messages C-109

Error Code: 16005
TRANSACTION_IS_ALREADY_ACTIVE

Cause: Failed to begin a JDOTransaction because the transaction is already
active.

Action: Commit or rollback the transaction before trying to begin.

Error Code: 16006
TRANSACTION_IS_NOT_ACTIVE

Cause: Failed to commit or rollback a JDOTransaction because the
transaction is not active.

Action: Ensure that the transaction state is not altered by another application
and is active before commit or rollback.

SDK Data Store Exception
An SDK Data Store Exception is a runtime exception thrown when SDK Classes are
used to customize OracleAS TopLink.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–17 SDK Data Store Exception

EXCEPTION [TOPLINK – 17001]: oracle.toplink.sdk.SDKDataStoreException
EXCEPTION DESCRIPTION: The OracleAS TopLink SDK does not currently support
Cursor.

Error Codes 17001 - 17006

Error Code: 17001
UNSUPPORTED

Cause: A method call failed because it is not currently supported by the SDK.

Action: Avoid using the unsupported method.

Exception Error Codes and Descriptions

C-110 Oracle Application Server TopLink Application Developer’s Guide

Error Code: 17002
INCORRECT_LOGIN_INSTANCE_PROVIDED

Cause: An instance of oracle.toplink.sdk.SDKAccessor was passed the
wrong type of Login (the SDK expects an instance of DatabaseLogin).

Action: Verify that your SDK-based application is being passed the expected
type of Login.

Error Code: 17003
INVALID_CALL

Cause: When the QueryManager owned by an SDKDescriptor is initialized,
an instance of InvalidSDKCall is set for each type of Call that is not
configured. If you invoke an unconfigured Call, this INVALID_CALL error is
logged rather than simply throwing a NullPointerException because the
INVALID_CALL error contains more information.

Action: Avoid using the unconfigured Call or provide a Call
implementation in your SDK-based application.

Error Code: 17004
IE_WHEN_INSTANTIATING_ACCESSOR

Cause: Failed to instantiate the specified class due to a
java.lang.InstantiationException.

Action: Ensure that the specified class is not an interface or an abstract class.

Error Code: 17005
IAE_WHEN_INSTANTIATING_ACCESSOR

Cause: Failed to instantiate the specified class due to a
java.lang.IllegalAccessException.

Action: Ensure that specified class is public. Ensure permission is set for Java
reflection in your VM security settings.

Error Code: 17006
SDK_PLATFORM_DOES_SUPPORT_SEQUENCES

Cause: Unsupported SDKPlatform methods buildSelectSequenceCall
or buildUpdateSequenceCall were called.

Action: Avoid using these methods or subclass SDKPlatform and override
them with your own implementation.

Exception Error Codes and Descriptions

Error Codes and Messages C-111

JMS Processing Exception
A JMS Processing Exception is a runtime exception thrown when processing Java
Messaging Service messages.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–18 JMS Processing Exception

EXCEPTION [TOPLINK – 18001]: oracle.toplink.exceptions.JMSProcessingException
EXCEPTION DESCRIPTION: Error while processing incomming JMS message.

Error Codes 18001 - 18002

Error Code: 18001
DEFAULT

Cause: Failed to process incoming JMS message.

Action: See generated exception for root cause.

Error Code: 18002
NO_TOPIC_SET

Cause: JMSClusteringService failed to start because the Topic created in
the JMS service for the interconnection of sessions is null.

Action: Ensure that the Topic created in the JMS service for the
interconnection of sessions is set in the JMSClusteringService.

SDK Descriptor Exception
An SDK Descriptor Exception is a runtime exception thrown when using SDK
Classes to customize OracleAS TopLink Descriptors.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Exception Error Codes and Descriptions

C-112 Oracle Application Server TopLink Application Developer’s Guide

Example C–19 SDK Descriptor Exception

EXCEPTION [TOPLINK – 19001]: oracle.toplink.sdk.SDKDescriptorException
EXCEPTION DESCRIPTION: The OracleAS TopLink SDK does not currently support query
result ordering.

Error Codes 19001 - 19003

Error Code: 19001
UNSUPPORTED

Cause: A method call failed because it is not currently supported by the SDK.

Action: Avoid using the unsupported method.

Error Code: 19002
CUSTOM_SELECTION_QUERY_REQUIRED

Cause: An SDKObjectCollectionMapping was used without a custom
selection query.

Action: Set custom selection query on the SDKObjectCollectionMapping.

Error Code: 19003
SIZE_MISMATCH_OF_FIELD_TRANSLATIONS

Cause: Mapping field name array and data store field name array are of
different lengths.

Action: The sizes of the field translation arrays must be equal.

SDK Query Exception
An SDK Query Exception is a runtime exception thrown when using SDK Classes
to customize OracleAS TopLink Queries.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–20 SDK Query Exception

EXCEPTION [TOPLINK – 20002]: oracle.toplink.sdk.SDKQueryException
EXCEPTION DESCRIPTION: Invalid SDK mechanism state - only one call is allowed.

Exception Error Codes and Descriptions

Error Codes and Messages C-113

Error Codes 20001 - 20004

Error Code: 20001
INVALID_SDK_CALL

Cause: The passed call is not an instance of SDKCall.

Action: Use an instance of SDKCall.

Error Code: 20003
INVALID_SDK_ACCESSOR

Cause: Accessor set into SDKQuery is not an instance of SDKAccessor.

Action: Set SDKAccessor.

Error Code: 20004
INVALID_ACCESSOR_CLASS

Cause: The SDKLogin.setAccessorClass method was passed a class that
does not implement the interface referred to by
ClassConstants.Accessor_Class.

Action: Ensure that you pass a Class that implements the Accessor interface.

Discovery Exception
A Discovery Exception is a runtime exception thrown when DiscoveryManager is
operating.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–21 Discovery Exception

EXCEPTION [TOPLINK – 22001]: oracle.toplink.exception.DiscoveryException
EXCEPTION DESCRIPTION: Could not join multicast group.

Exception Error Codes and Descriptions

C-114 Oracle Application Server TopLink Application Developer’s Guide

Error Codes 22001 - 22004

Error Code: 22001
ERROR_JOINING_MULTICAST_GROUP

Cause: DiscoveryManager failed to join a multicast group due to a
java.io.IOException: either a MulticastSocket could not be created or
the invocation of the MulticastSocket.joingGroup method failed.

Action: See the generated exception for root cause.

Error Code: 22002
ERROR_SENDING_ANNOUNCEMENT

Cause: DiscoveryManager failed to inform other services that its service has
started up.

Action: Consider increasing the announcement delay: the amount of time in
milliseconds that the service should wait between the time that this remote
service is available and a session announcement is sent out to other discovery
managers. This may be needed to give some systems more time to post their
connections into the naming service. See the
DiscoveryManager.setAnnouncementDelay method.

Error Code: 22004
ERROR_RECEIVING_ANNOUNCEMENT

Cause: DiscoveryManager caught a java.io.IOException while
blocking for announcements from other DiscoveryManagers.

Action: See the generated exception for root cause.

Remote Command Manager Exception
A Remote Command Manager Exception is a runtime exception thrown when the
Remote Command Module is used.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–22 Remote Command Manager Exception

EXCEPTION [TOPLINK – 22104]:

Exception Error Codes and Descriptions

Error Codes and Messages C-115

oracle.toplink.exceptions.RemoteCommandManagerException
EXCEPTION DESCRIPTION: Could not look up hostname.

Error Codes 22101 - 22105

Error Code: 22101
ERROR_OBTAINING_CONTEXT_FOR_JNDI

Cause: Failed to get a JNDI context with the specified properties due to a
javax.naming.NamingException.

Action: See generated exception for root cause. Verify that the properties for
looking up the context is correct.

Error Code: 22102
ERROR_BINDING_CONNECTION

Cause: Failed to post a connection in the local naming service.

Action: See generated exception for root cause.

Error Code: 22103
ERROR_LOOKING_UP_REMOTE_CONNECTION

Cause: Failed to look up a remote connection with the specified name and
URL.

Action: See generated exception for root cause. Verify that remote connection
and URL are correct.

Error Code: 22104
ERROR_GETTING_HOST_NAME

Cause: The java.net.InetAddress.getLocalHost method failed to look
up the specified hostname.

Action: See generated exception for root cause. Verify that the host is on-line
and reachable.

Error Code: 22105
ERROR_PROPAGATING_COMMAND

Cause: Failed to propagate a command to the specified connection.

Exception Error Codes and Descriptions

C-116 Oracle Application Server TopLink Application Developer’s Guide

Action: See generated exception for root cause. Verify that the remote host of
the specified connection is on-line and reachable if the generated exception
included a CommunicationException.

XML Conversion Exception
An XML Conversion Exception is a runtime exception thrown when conversion
between OracleAS TopLink instances and XML failed. This exception is used in
cache synchronization that uses XML change set.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–23 XML Conversion Exception

EXCEPTION [TOPLINK – 25001]: oracle.toplink.exceptions.XMLConversionException
EXCEPTION DESCRIPTION: Cannot create URL for file [\\FILE_SERVER\command.xml].

Error Code 25001

Error Code: 25001
ERROR_CREATE_URL

Cause: Failed to create a URL for the specified file.

Action: Ensure the specified file exists and is accessible.

EJB JAR XML Exception
An EJB JAR XML Exception is a runtime exception thrown at deployment time
when the ejb-jar XML file is read and required concrete EJB Classes code generated.

Format
EXCEPTION [TOPLINK – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example C–24 EJB JAR XML Exception

EXCEPTION [TOPLINK – 72000]: oracle.toplink.exceptions.EJBJarXMLException

Entity Deployment

Error Codes and Messages C-117

EXCEPTION DESCRIPTION: Error reading ejb-jar.xml file.

Error Codes 72000 - 72023

Error Code: 72000
READ_EXCEPTION

Cause: Failed to read an ejb-jar XML file due to a java.io.IOException or
javax.xml.parsers.ParserConfigurationException.

Action: See generated exception for root cause.

Error Code: 72001
INVALID_DOC_TYPE

Cause: Failed to parse the specified file because it did not use the expected
doctype: -//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN

Action: Verify that your ejb-jar XML file uses the correct doc type.

Error Code: 72023
NO_CMR_FIELD_FOR_BEAN_ABSTRACT_SETTER

Cause: Code generation of a one-to-one bean setter method body failed
because: the Descriptor was null, the Descriptor has no
InheritancePolicy, the Descriptor InheritancePolicy has a null
parent class, or no Container Managed Relation field defined.

Action: Verify the configuration of this Deployment Descriptor in your ejb-jar
XML file.

Entity Deployment
This section discusses some of the general troubleshooting issues surrounding
entity bean configuration and deployment. It lists many of the common exceptions
and error messages that you may run across when attempting to deploy and persist
entity beans using OracleAS TopLink.

If you encounter any problems installing OracleAS TopLink, using the OracleAS
TopLink Mapping Workbench, or require more information on any runtime
exceptions that are generated by OracleAS TopLink, consult the appropriate
documentation.

Entity Deployment

C-118 Oracle Application Server TopLink Application Developer’s Guide

Generating Deployment JARs
If you experience trouble generating the JARs for deployment,

■ Ensure that all environment entries (class path, and so on) are configured
properly.

■ Identify which step of the build is failing (copying, compiling, running EJB
compiler, and so on.)

Running the Enterprise JavaBean (EJB) compiler utility involves several processes,
such as compiling, code-generation, EJB compliance verification, compiling RMI
stubs by running rmic, and so on. If an error occurs during the running of the EJB
compiler utility, try to determine which stage may be causing the failure.

For more information about the EJB compiler, see the server documentation.

Common BEA WebLogic Deployment Exceptions
The following are some of the most common errors that are encountered when you
deploy to a BEA WebLogic applications server.

For more information about specific versions, see

■ "Common BEA WebLogic 6.1 Exceptions" on page C-126

■ "Common BEA WebLogic 7.0 Exceptions" on page C-130

■ "Common BEA WebLogic 8.1 Exceptions" on page C-132

Assertion Error
weblogic.utils.AssertionError: ***** ASSERTION FAILED *****[

Could not load class
'oracle.toplink.internal.ejb.cmp.wls.WlsCMPDeployer':
java.lang.ClassNotFoundException:
oracle.toplink.internal.ejb.cmp.wls.WlsCMPDeployer

ERROR: ejbc found errors

Cause: This error occurs if the toplink.jar file is not properly set on your
class path.

Action: Ensure the <ORACLE_HOME>/toplink/jlib/toplink.jar file is
specified on your system class path.

Error Deploying Application
Cause: A DeploymentException has occurred.

Entity Deployment

Error Codes and Messages C-119

Action: Refer to the specific error code. The error code appears in the square
brackets in the exception message, such as [TopLink-8001]). These errors may
be refer to errors in the specification of the project location reading in the
properties file or validation errors due to improper mappings.

Exception 8001 <Error> <J2EE> <Error deploying application
Account:

Unable to deploy EJB: AccountBean from Account.jar:

LOCAL EXCEPTION STACK:

EXCEPTION [TOPLINK-8001] (TopLink (WLS CMP) - X.X.X):
oracle.toplink.ejb.DeploymentException

EXCEPTION DESCRIPTION: No OracleAS TopLink project was
specified for this bean.

at

oracle.toplink.ejb.DeploymentException.noPro
jectSpecified(DeploymentException.java:132) at
oracle.toplink.internal.ejb.cmp.ProjectDeployment.readProject(
ProjectDeployment.java:378)

Cause: This error occurs if the OracleAS TopLink project file is not specified in
the toplink-ejb-jar.xml.

Action: Ensure there is an entry in the toplink-ejb-jar.xml file for either
the project-xml or project-class.

Exception 8016 <Error> <J2EE> <Error deploying application
Account:

Unable to deploy EJB: AccountBean from Account.jar:

LOCAL EXCEPTION STACK:

EXCEPTION [TOPLINK-8016] (TopLink (WLS CMP) - X.X.X):
oracle.toplink.ejb.DeploymentException

EXCEPTION DESCRIPTION: An error occurred while setting up the
project: [java.io.FileNotFoundException: Account.xml]

INTERNAL EXCEPTION: java.io.FileNotFoundException: Account.xml

at

Entity Deployment

C-120 Oracle Application Server TopLink Application Developer’s Guide

oracle.toplink.ejb.DeploymentException.errorCreatingProject(Un
known Source)

Cause: This error can occur if the location of the OracleAS TopLink project file
for the bean is not properly specified.

Action: Check the file name as it is specified in the toplink-ejb-jar.xml file,
and the location of the project file on the file system.

Cannot Startup Connection Pool
<Error> <JDBC> <Cannot startup connection pool "ejbPool"

weblogic.common.ResourceException: Cannot load driver class:
org.hsqldb.jdbcDriver>

...

Cause: An error has occurred in setting up the connection pool.

Action: Check the nested SQL exception to determine the cause of the error.
Typical problems include:

■ The driver is not on the class path.

■ The user or password is incorrect.

■ The database server URL or driver name is not properly specified.

Please consult the BEA WebLogic documentation and your JDBC Driver
documentation for help on the specific error raised by BEA WebLogic.

Error Message weblogic.utils.AssertionError: ***** ASSERTION FAILED
*****[Could not create an instance of class 'null':
java.lang.NullPointerException
at java.lang.Class.forName0(Native Method)

at java.lang.Class.forName(Class.java:120)

at weblogic.ejb20.persistence.PersistenceType.
loadClass(PersistenceType.java:309)

Cause: This problem occurs if using the GA version of BEA WebLogic Server
6.0.

Action: Upgrade to at least WebLogic 6.0 (Service Pack 1).

Entity Deployment

Error Codes and Messages C-121

EJBC Found Errors
ERROR: ejbc found errors

Error from ejbc: Error while loading persistence resource
TopLink_CMP_Descriptor.xml Make sure that the persistence type
is in your class path.

Cause: This error occurs if the toplink.jar file is not properly set on your
class path.

Action: Ensure the <ORACLE_HOME>/toplink/jlib/toplink.jar file is
specified on your system class path.

EJB Deployment Exception
weblogic.ejb20.EJBDeploymentException: Error Deploying CMP EJB:;

nested exception is: weblogic.ejb20.cmp.rdbms.RDBMSException:
An error occurred setting up the project:

EXCEPTION [TOPLINK-13000] (vX.X [TopLink for WebLogic X.X]
JDK1.2): oracle.toplink.xml.XMLDataStoreException

EXCEPTION DESCRIPTION: File not found...

Cause: This error occurs if the location of the OracleAS TopLink project file for
the bean is not properly specified.

Action: Check the file name as it is specified in the toplink-ejb-jar.xml file,
and the location of the OracleAS TopLink project file on the file system.

Deploying EJB Component
Error deploying EJB Component: ...

weblogic.ejb20.EJBDeploymentException: Exception in EJB
Deployment; nested exception is:

Error while deploying bean..., File ... Not Found at
weblogic.ejb20.persistence.PersistenceType.setup
Deployer(PersistenceType.java:273)

Cause: A typical cause of this error is that the toplink-ejb-jar.xml file is
referring to a local DTD file using a file name or location that is incorrect.

Action: Ensure that all XML files refer to valid DTD files and locations.

Entity Deployment

C-122 Oracle Application Server TopLink Application Developer’s Guide

Cannot Startup Connection Pool ejbPool
Cannot startup connection pool "ejbPool"

weblogic.common.ResourceException:

Could not create pool connection. The DBMS driver exception
was:

...

Action: An error has occurred in setting up the connection pool. Check the
nested SQL exception to determine the cause of the error. Typical problems
include:

■ The driver is not on the class path.

■ The user name or password is incorrect.

■ The database server URL or driver name is not properly specified.

Please consult the BEA WebLogic documentation and your JDBC driver
documentation for help on the specific error raised by BEA WebLogic.

Other Errors
Occasionally, changes made to the server’s configuration file (config.xml) do not
appear to be applied when the server is restarted. If this occurs, try removing the
temp directories created by BEA WebLogic. You can find them under the
wlserver6.1 directory, at the same level as the config directory.

Common IBM WebSphere Server Exceptions
When the IBM WebSphere Server is started, it attempts to deploy the JAR files that
are specified for deployment within the application server.

Errors that occur when the server is started are usually configuration problems that
involve class path issues, environment variable configuration, and database login
configuration. Review the IBM WebSphere Server documentation on starting the
server.

This section contains some of the exceptions and errors that can be encountered
when running the IBM WebSphere Server, along with their possible causes and
recommended solutions.

Class Not Found Exceptions
Cause: The class not found is not included on the WebSphere application
extensions class path or in the EJB or WAR module.

Entity Deployment

Error Codes and Messages C-123

Action: Ensure that all required classes are included in the correct location. For
more information about class path locations, see the IBM WebSphere InfoCenter.

Cause: The required OracleAS TopLink JARs have not been copied into the
application extensions class path.

Action: Ensure that toplink.jar and antlr.jar are copied into the
<WebSphere install>\lib\app directory.

oracle.toplink.exceptions.DatabaseException
Cause: An OracleAS TopLink Exception has occurred.

Action: Refer to the specific error code. The error code appears in the square
brackets in the exception message, such as [TopLink-1016]). Errors observed
here may be errors in reading in the properties file, or validation errors due to
improper mappings.

Exception [6066]
oracle.toplink.exceptions.QueryException: The object <Object>
of class <class> with identity hashcode <hashcode> is not from
this Unit of Work object space but the parent session's. The
object was never registered in this Unit of Work, but read
from the parent session and related to an object registered in
the Unit of Work. Ensure that you are correctly registering
your objects. If you are still having problems, you can use
the UnitOfWork.validateObjectSpace() method to help debug
where the error occurred. Please see the manual and FAQ for
more information.

Cause: A bean was created outside of a transaction and then a second bean was
created either in or out of a transaction.

Action: Ensure that all creates are performed within the context of a
transaction.

Cause: The bean was not cleared out during ejbPassivate.

Action: Ensure that the ejbPassivate clears out the bean.

Cause: A bean-to-object relationship is not privately owned.

Action: Ensure that all bean-to-object relationships are privately owned.

Entity Deployment

C-124 Oracle Application Server TopLink Application Developer’s Guide

Exception [7064]
oracle.toplink.exceptions.ValidationException: Exception

occured in reflective EJB bean primary key extraction,
please ensure your primary key object is defined correctly:
key = 301, bean = <beanName>

Cause: An incorrect primary key object is being used with a bean.

Action: Ensure that you are using the correct primary key object for a bean.

Exception [7066]
oracle.toplink.exceptions.ValidationException: Cannot create

or remove beans unless a JTS transaction is present,
bean=<bean>

Cause: An attempt was made to create or remove a been outside of a
transaction.

Action: Ensure that all removing and creating of beans is performed within a
transaction.

Exception [7068]
oracle.toplink.exceptions.ValidationException: The project

class <projectclass> was not found for the <toplink_
session_name> using default class loader.

Cause: The project class that is specified in the toplink.properties file for
the session specified on the toplink_session_name environment variable
cannot be found.

Action: Ensure that the project class given in the exception is on the
WebSphere dependent class path.

Exception [7069]
oracle.toplink.exceptions.ValidationException: An exception

occured looking up or invoking the project amendment
method, <amendmentMethod> on the class <amendmentClass>;

Cause: An amendment method was called, but cannot be found.

Action: Ensure that the required amendment method exists on the class that is
specified.

Entity Deployment

Error Codes and Messages C-125

Exception [7070]
oracle.toplink.exceptions.ValidationException: A

toplink.properties resource bundle must be located on the
class path in an OracleAS TopLink directory.
Cause: The toplink.properties file cannot be found.

Action: Ensure that the location of the toplink.properties file is on the class
path.

Exception [7079]
EXCEPTION DESCRIPTION: The descriptor for [<bean class>] was

not found in the session [<session name>]. Check the
project being used for this session.

Cause: The descriptor that is listed was not found in the session that is
specified on the deployment descriptor.

Action: Ensure that the project that is specified in the toplink-ejb-jar.xml
file is the desired project. Also check that the project includes a descriptor for
the missing bean class.

Exception [7101]
No "meta-inf/toplink-ejb-jar.xml" could be found in your class

path. The CMP session could not be read in from file.

Cause: The toplink-ejb-jar.xml file was not found.

Action: Ensure that the toplink-ejb-jar.xml file is located in the deployed
ejb-jar file under the meta-inf directory.

Exception [9002]
 EXCEPTION [TOPLINK-9002] (TopLink - X.X.X):

oracle.toplink.exceptions.SessionLoaderExceptionEXCEPTION
DESCRIPTION: Unable to load Project class [<project class>].

Cause: The project class that is specified for the session in the
toplink-ejb-jar.xml file cannot be found.

Action: Ensure that the project class has been included in the deployed JAR
with the entity beans.

Entity Deployment

C-126 Oracle Application Server TopLink Application Developer’s Guide

Problems at Runtime
This section lists some of the common exceptions and errors that can occur at
runtime when using the OracleAS TopLink CMP for IBM WebSphere Application
Server.

Exception [6026]
oracle.toplink.exceptions: Query is not defined

Cause: A required named query does not exist.

Action: Implement the named query. The stacktrace of the exception contains
the finder that failed.

Common OracleAS TopLink for IBM WebSphere Deploy Tool Exceptions
This following section lists common exceptions and errors that may occur when
running the OracleAS TopLink for IBM WebSphere Deploy Tool.

Class Not Found Exceptions
Cause: The class that is specified was not found; it is not included on the
deploy tool class path or the system class path.

Action: Ensure that all required classes are included on the correct class path.
For more information about class path setup, see the IBM WebSphere Getting
Started.

Common BEA WebLogic 6.1 Exceptions
Following are a few of the most common errors you may encounter when
deploying JAR files with OracleAS TopLink and BEA WebLogic 6.1.

Development Exceptions

Missing Persistence Type ERROR: Error from ejbc: Persistence type
'TopLink_CMP_2_0' with version 'X.X which is referenced in bean

Note: The Deploy Tool calls external IBM classes to generate
deployed code. Any exceptions that are thrown from these classes
is described on System.out. Check the Tracing button to view the
most detailed information possible.

Entity Deployment

Error Codes and Messages C-127

'Account' is not installed. The installed persistence types
are: (WebLogic_CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0).

ERROR: ejbc found errors

Cause: There is no entry in the persistence.install file for OracleAS
TopLink CMP. This may occur if the OracleAS TopLink installation was
interrupted or a BEA WebLogic Service Pack was applied.

Action: In the <WebLogic InstallDir>/wlserver6.1/lib/persistence
directory, edit the persistence.install file to add a new line TopLink_CMP_
Descriptor.xml, or replace your existing persistence.install file with
the version of the file in the <ORACLE_HOME>/toplink/config directory.

Error Loading Persistence Resource Error while loading persistence
resource TopLink_CMP_Descriptor.xml Make sure that the
persistence type is in your class path.

Cause: The toplink.jar file is not properly set in your class path.

Action: Ensure that the class path includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong BEA WebLogic Version C:\<ORACLE_
HOME>\toplink\examples\weblogic\wls61\
examples\ejb\cmp20\singlebean\Account.java:10: cannot
resolve symbol

symbol : class EJBLocalObject

location: interface examples.ejb.cmp20.singlebean.Account

public interface Account extends EJBLocalObject {

Cause: You are trying to compile your code using BEA WebLogic 6.0.

Action: Compile using BEA WebLogic 6.1.

Deployment and Runtime Exceptions

Missing Persistence Type Persistence type 'TopLink_CMP_2_0' with
version 'X.X which is referenced in bean 'Account' is not
installed. The installed persistence types are: (WebLogic_
CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0).

Cause: There is no entry in the persistence.install file for OracleAS
TopLink CMP. This may occur if the OracleAS TopLink installation was
interrupted, or a BEA WebLogic Service Pack was applied.

Entity Deployment

C-128 Oracle Application Server TopLink Application Developer’s Guide

Action: In the <WebLogic InstallDir>/wlserver6.1/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource <DATE and TIME> <Error> <J2EE> <Error
deploying application ejb20_cmp_order:

Unable to deploy EJB: C:\<ORACLE_
HOME>\toplink\examples\weblogic\wls61\server\config\TopLink_
Domain\applications\wlnotdelete\wlap64280\ejb20_cmp_order.jar
from ejb20_cmp_order.jar:

Error while loading persistence resource TopLink_CMP_
Descriptor.xml Make sure that the persistence type is in your
class path.

at

weblogic.ejb20.persistence.InstalledPersistence.initialize(Ins
talledPersistence.java:214)

at

weblogic.ejb20.persistence.InstalledPersistence.getInstalledTy
pe(InstalledPersistence.java:113)

Cause: The toplink.jar file is not properly set in your class path.

Action: Ensure that the class path includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong Persistence Version DATE and TIME> <Error> <J2EE> <Error deploying
application ejb20_cmp_account:

Unable to deploy EJB: Account from ejb20_cmp_account.jar:

java.lang.AbstractMethodError

at

weblogic.ejb20.deployer.ClientDrivenBeanInfoImpl.deploy(Client
DrivenBeanInfoImpl.java:807)

at

weblogic.ejb20.deployer.Deployer.deployDescriptor(Deployer.jav
a:1234)

Entity Deployment

Error Codes and Messages C-129

at

weblogic.ejb20.deployer.Deployer.deploy(Deployer.java:947)

at

weblogic.j2ee.EJBComponent.deploy(EJBComponent.java:30)

Cause: You may be using a persistence-version meant for BEA WebLogic
7.0.

Action: Use a persistence-version of 4.0.

Cannot Startup Datasource EXCEPTION [TOPLINK-7060] (TopLink (WLS
CMP)-X.X):oracle.toplink.exceptions.ValidationException

EXCEPTION DESCRIPTION: Cannot acquire datasource
[jdbc/ejbNonJTSDataSource].

INTERNAL EXCEPTION: javax.naming.NameNotFoundException: Unable
to resolve jdbc.ejbNonJTSDataSource Resolved: ''
Unresolved:'jdbc' ; remaining name 'ejbNonJTSDataSource'

Cause: An error has occurred in setting up the datasource.

Action: Check the nested SQL exception to determine the cause of the error.
For more information, see "Error code: 7060". For more information on a specific
error raised by WebLogic, see the BEA WebLogic documentation and your
JDBC Driver documentation.

Wrong WebLogic Version <DATE and TIME> <Error> <Management> <Error
parsing XML descriptor for application TopLink_
Domain:Name=ejb20_cmp_account, Type=Application

weblogic.xml.process.ProcessorFactoryException: Could not
locate processor for public id = "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.3//EN"

at

weblogic.xml.process.ProcessorFactory.getProcessor(ProcessorFa
ctory.java:181)

at

weblogic.xml.process.ProcessorFactory.getProcessor(ProcessorFa
ctory.java:164)

Cause: You are trying to compile your code using BEA WebLogic 6.0.

Entity Deployment

C-130 Oracle Application Server TopLink Application Developer’s Guide

Action: Compile using BEA WebLogic 6.1.

Common BEA WebLogic 7.0 Exceptions
Following are a few of the most common errors you may encounter when
deploying JAR files with OracleAS TopLink and BEA WebLogic 7.0.

Development-time Exceptions:

Missing Persistence Type Persistence type 'TopLink_CMP_2_0' with
version 'X.0 which is referenced in bean 'Account' is not
installed. The installed persistence types are: (WebLogic_
CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0), (WebLogic_
CMP_RDBMS, 7.0)

ERROR: ejbc found errors

Cause: There is no entry in the persistence.install file for OracleAS
TopLink CMP. This may occur if the OracleAS TopLink installation was
interrupted, or a BEA WebLogic Service Pack was applied.

Action: In the <WebLogic InstallDir>/weblogic700/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource ERROR: Error from ejbc: Error while
loading persistence resource TopLink_CMP_Descriptor.xml

Make sure that the persistence type is in your class path.

ERROR: ejbc found errors

or

ERROR: at

weblogic.ejb20.persistence.InstalledPersistence.initialize(Ins
talledPersistence.java:214)

at

weblogic.ejb20.persistence.InstalledPersistence.getInstalledTy
pe(InstalledPersistence.java:113)

at

Entity Deployment

Error Codes and Messages C-131

weblogic.ejb20.deployer.MBeanDeploymentInfoImpl.getPersistence
Type(MBeanDeploymentInfoImpl.java:584

Cause: The toplink.jar file is not properly set in your class path.

Action: Ensure that the class path includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong WebLogic Version ERROR: Error processing
'META-INF/weblogic-ejb-jar.xml': The public id, "-//BEA
Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN", specified in
the XML document is invalid. Use one of the following
valid public ids:

"-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN"

"-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN"

ERROR: ejbc found errors

Cause: You are trying to compile your JAR using BEA WebLogic 6.1.

Action: Compile using BEA WebLogic 7.0.

Deployment/runtime Exceptions:

Missing Persistence Type Error from ejbc: Persistence type 'TopLink_
CMP_2_0' with version 'X.0 which is referenced in bean
'Account' is not installed. The installed persistence
types are: (WebLogic_CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS,
5.1.0), (WebLogic_CMP_RDBMS, 7.0).

Persistence type 'TopLink_CMP_2_0' with version 'X.0 which is
referenced in bean 'Account' is not installed. The installed
persistence types are: (WebLogic_CMP_RDBMS, 6.0), (WebLogic_
CMP_RDBMS, 5.1.0), (WebLogic_CMP_RDBMS, 7.0)

Cause: There is no entry in the persistence.install file for OracleAS
TopLink CMP. This may occur if the OracleAS TopLink installation was
interrupted or a BEA WebLogic Service Pack was applied.

Action: In the <WebLogic InstallDir>/weblogic7.0/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Entity Deployment

C-132 Oracle Application Server TopLink Application Developer’s Guide

Error Loading Persistence Resource java.lang.NullPointerException
at

weblogic.ejb20.deployer.EJBDeployer.deactivate(EJBDeployer.jav
a:1513)

at

weblogic.ejb20.deployer.EJBDeployer.undeploy(EJBDeployer.java:
301)

at

weblogic.ejb20.deployer.Deployer.deploy(Deployer.java:875)

at

weblogic.j2ee.EJBComponent.deploy(EJBComponent.java:70)

Cause: The toplink.jar file is not properly set in your class path.

Action: Ensure that the class path includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Cannot Startup Datasource EXCEPTION [TOPLINK-7060] (TopLink (WLS CMP)
- X.X.X): oracle.toplink.exceptions.ValidationException

EXCEPTION DESCRIPTION: Cannot acquire datasource
[jdbc/ejbNonJTSDataSource].

INTERNAL EXCEPTION: javax.naming.NameNotFoundException: Unable
to resolve jdbc.ejbNonJTSDataSource Resolved: ''
Unresolved:'jdbc' ; remaining name 'ejbNonJTSDataSource'

Cause: An error has occurred in setting up the datasource.

Action: Check the nested SQL exception to determine the cause of the error.
For more information, see "Error code: 7060". For more information on a specific
error raised by WebLogic, see the BEA WebLogic documentation and your
JDBC Driver documentation.

Common BEA WebLogic 8.1 Exceptions
Following are a few of the most common errors you may encounter when
deploying JAR files with OracleAS TopLink and BEA WebLogic 8.1.

Entity Deployment

Error Codes and Messages C-133

Development-time Exceptions:

Missing Persistence Type Persistence type 'TopLink_CMP_2_0' with
version 'X.0 which is referenced in bean 'Account' is not
installed. The installed persistence types are: (WebLogic_
CMP_RDBMS, 7.0), (WebLogic_CMP_RDBMS, 6.0), (WebLogic_CMP_
RDBMS, 5.1.0).

ERROR: ejbc couldn’t invoke compiler
Cause: There is no entry in the persistence.install file for OracleAS
TopLink CMP. This may occur if the OracleAS TopLink installation was
interrupted, or a BEA WebLogic Service Pack was applied.

Action: In the <WebLogic InstallDir>/weblogic81/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource Error occurred while loading
persistence resource TopLink_CMP_Descriptor.xml. Make sure
that the persistence type is in your class path.

ERROR: ejbc couldn’t invoke compiler
Cause: The toplink.jar file is not properly set in your class path.

Action: Ensure that the class path includes the <ORACLE_
HOME>/toplink/jlib/toplink.jar file.

Wrong WebLogic Version ERROR: ejbc found errors while processing
the descriptor for std_cmp20-singlebean.jar:

ERROR: ejbc found errors while processing
'META-INF/weblogic-ejb-jar.xml': The public id, "-//BEA
Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN", specified in
the XML document is invalid. Use one of the following
valid public ids:

"-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN"

"-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN"

"-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN"

ERROR: ejbc found errors
Cause: You are trying to compile your using BEA WebLogic 7.0.

Action: Compile using BEA WebLogic 8.1.

Entity Deployment

C-134 Oracle Application Server TopLink Application Developer’s Guide

Deployment/runtime Exceptions:

Missing Persistence Type Error Deployer BEA-149201 Failed to complete
the deployment task with ID 0 for the application _appsdir_
cmp20-singlebean_ear.
weblogic.management.ApplicationException:
Exception:weblogic.management.ApplicationException: prepare
failed for cmp20-singlebean.jar

Module: cmp20-singlebean.jar Error: Exception preparing
module: EJBModule(cmp20-singlebean.jar,status=NEW)

Persistence type 'TopLink_CMP_2_0' with version 'X.0 which is
referenced in bean 'Account' is not installed. The
installed persistence types are: (WebLogic_CMP_RDBMS, 7.0),
(WebLogic_CMP_RDBMS, 6.0), (WebLogic_CMP_RDBMS, 5.1.0)

Cause: There is no entry in the persistence.install file for OracleAS
TopLink CMP. This may occur if the OracleAS TopLink installation was
interrupted or a BEA WebLogic Service Pack was applied.

Action: In the <WebLogic InstallDir>/weblogic81/lib/persistence
directory, edit the persistence.install file to add a new line: TopLink_
CMP_Descriptor.xml. You can also replace your existing
persistence.install file with the version of the file in the <ORACLE_
HOME>/toplink/config directory.

Error Loading Persistence Resource Error Deployer BEA-149201 Failed to
complete the deployment task with ID 2 for the application
_appsdir_cmp20-relationships_ear.

weblogic.management.ApplicationException:
Exception:weblogic.management.ApplicationException: prepare
failed for cmp20-relationships.jar

Module: cmp20-relationships.jar Error: Exception preparing
module: EJBModule(cmp20-relationships.jar,status=NEW)

Unable to deploy EJB: .\TopLink_Demos\stage_appsdir_
cmp20-relationships_ear\cmp20-relationships.jar from
cmp20-relationships.jar:

[EJB:011004]Error occurred while loading persistence resource
TopLink_CMP_Descriptor.xml. Make sure that the persistence
type is in your classpath.

at weblogic.ejb20.persistence.InstalledPersistence.initial-
ize(InstalledPersistence.java:212)

Entity Deployment

Error Codes and Messages C-135

at weblogic.ejb20.persistence.InstalledPersistence.getIn-
stalledType(InstalledPersistence.java:114)

Entity Deployment

C-136 Oracle Application Server TopLink Application Developer’s Guide

Index-1

Index
A
addConversionValue() method, 3-13
addDirectMapping() method, 3-9
addField() method, A-20
addFieldTransformation() method, 3-69
addForeignKeyConstraint() method, A-20
addIdentityField() method, A-20
addPrimaryKeyField() method, A-20
addPrimaryKeyFieldName, 3-94
addTableName method, 3-102
addToAttributeOnlyConversionValue()

method, 3-13
after load methods

using, 3-82
aggregate collection mappings

and EJBs, 3-24
aggregate collections

and inheritance, 3-23
working with, 3-22

aggregate object mapping
example, 3-19
in Java, 3-19

aggregate object mappings, 3-19
and ejbs, 3-20
working with, 3-19

AggregateObjectMapping class, 3-19
AllFieldsLockingPolicy, 5-29
amendment methods, 3-81, 6-50

OracleAS TopLink descriptors,
customizing, 3-82

static, 3-82
application development

deployment, 1-15

mapping, 1-13
overview, 1-12
packaging, 1-15
performance tuning, 1-15
querying, 1-14
session management, 1-13
transactions, 1-14

application development tools, A-1
array mappings

about, 3-73
implementing in Java, 3-74

asynchronous update mode
overview, 8-5

attributes
described, 3-60
in Java objects, 3-60

B
batch reading, 10-9

in query objects, 6-70
batch writing, 5-17, 10-17
BEA WebLogic

configuring OracleAS TopLink for, B-7
modifying persistence descriptor, 9-11
setting class path, B-6, B-8
setting shared library, B-6, B-8
using a security manager, B-6

bean instance
defined, 3-60

beans
entity bean model, 3-55
mapping under EJB1.1, 3-15
mapping under EJB2.0, 3-15

Index-2

session beans, 2-14
stateful beans, 2-14
stateless, 2-14

bidirectional relationship
in one-to-one mappings, 3-17

bidirectional relationships, 3-17
maintaining, one-to-many relationships, 3-62
maintaining, overview, 3-61

binding, 5-17
binding and parameterized SQL

binding string data, 5-17
binding using parameters, 5-17
binding using streams, 5-17
explained, 5-17

BLOB fields in databases, 3-71
boolean logic in expressions, 6-14
branch class, 3-52
bridge

JDBC-ODBC, 5-10
other than Sun JDBC-ODBC, 5-10

Builder Exception, C-38
build.properties, Web Client, A-3

C
cache

architecture, 8-2
configuring, 8-5
disabling during read query, 6-65
internal query object cache, 6-7, 6-76
isolation, 8-5
locking in clustering, 5-20
object cascading refresh, 6-66
object refresh, 6-66
queries, 6-61
refresh, 6-66
refresh, described, 6-7
session cache, 8-2
stale data, overview, 8-3
storing query object results, 6-7, 6-76
storing query results, 6-67
synchronization

in clustering, B-10
Unit of Work, 8-3
usage in queries, 6-61

usage of in-memory queries, 6-62
using identity maps, 4-48

cache identity map, 10-9
cache locking

overview, 8-3
cache locking, in clustering, 5-20
cache synchronization

asynchronous update, 8-5
clusters, 8-4
configuring, 8-7
configuring in the sessions.xml file, 4-19
discovery, 8-4
in clustering, B-10
message transport, 8-4
name service, 8-4
overview, 8-3
synchronous update, 8-4

cache, session
clearing, A-7

caching
overview, 1-8
three-tier, 4-64
using the readObject () method, 6-38

Call Finders
creating, 6-88
executing, 6-88
using, 6-88

cascading write queries
compared to non-cascading, 6-68

ChangedFieldsLockingPolicy, 5-29
class extraction method

described, 3-53
class hierarchy

branch class, 3-52
leaf class, 3-52
root class, 3-51

class indicator
class indicator field, 3-52
described, 3-52

class indicators
and mappings, 3-52

class loader
loading session, 4-30
resolving exceptions, 5-15

class loader in conversion manager, 5-15

Index-3

class path
setting for BEA WebLogic, B-6, B-8
setting for IBM WebSphere, B-4
setting for Oracle Application Server Containers

for J2EE, B-3
class types

defined, 3-51
class, persistent, 3-60
classes

AggregateObjectMapping, 3-19
CursoredStream

optimizing, 6-84
Database Exception, 6-101
Database Session

creating, 4-48
creating tables on database, A-21
described, 4-48
public methods, 4-52
session query operations, 6-37

DatabaseLogin
creating the sequence table, A-21
described, 5-8

DataModifyQuery
described, 6-42

DataReadQuery
described, 6-42

DeleteObjectQuery, 6-68
described, 6-42

DirectCollectionMapping, 3-25
DirectReadQuery

described, 6-42
DirectToFieldMapping, 3-9
ExpressionBuilder, 6-17
InsertObjectQuery, 6-68

and Unit of Work, 7-9
described, 6-42

NestedTableMapping, 3-78
ObjectRelationalDescriptor, 3-93
ObjectTypeMapping, 3-13
OneToManyMapping, 3-21
OneToOneMapping, 3-17
OptimisticLockException, 5-29
Performance Profiler, 10-4
ReadAllQuery

described, 6-42

ReadObjectQuery
described, 6-42

ReportQuery
described, 6-42

SerializedObjectMapping, 3-71
session

logging SQL and messages, 4-65
Table Definition, A-20
TransformationMapping, 3-68
TypeConversionMapping, 3-12
Unit of Work

using to modify databases, 6-37
UpdateObjectQuery, 6-68

described, 6-42
example, 6-68, 6-69

ValueReadQuery
described, 6-42

VariableOneToOneMapping, 3-72
WriteObjectQuery

described, 6-42
Clear button, A-7
clearProfiler() method, 10-4
Client Session

architecture, 4-6
client sessions, 4-38
cluster

overview, 8-4
clustering

cache locking, 5-20
cache synchronization, B-10
explicit query refreshes, 8-13

clusters
configuring, 8-8

collection class, 6-6, 6-46, 6-60
specifying in query objects, 6-46

collections
as query results, 6-60

collocation
described, B-8
in BEA WebLogic Server cluster, B-8
pinning, B-9
static partitioning, B-9

commit
and Java Transaction API, 7-9, 7-10
overview, 7-9

Index-4

common deployment errors, C-118
composite primary key, 3-18
concurrency, 4-42
Concurrency Exception, C-47
configuring, 4-53

development environment, A-15
Oracle JDeveloper, A-15

conform results option
described, 6-9

Connect button, A-7
connection policies, 4-45
connection pooling

described, 4-43
Server Session, 4-44

container configuration file
described, 9-11

container-managed persistence
concepts, 3-59
configuring for BEA WebLogic, B-7
configuring OracleAS TopLink, B-7
software requirements, B-2

container-managed persistent entity beans, 3-59
Conversion Exception, C-49
conversion manager, 5-14

assigning a custom conversion manager to a
session, 5-15

assigning a custom conversion manager to all
subsequent sessions, 5-15

class loader, 5-15
described, 5-14
using, 5-14
using custom types, 5-14

copy policy
implementing, 3-87
implementing in Java, 3-101

CORBA
message optimization, 10-8
OracleAS TopLink transport layer support, 4-60

Create tab (OracleAS TopLink Web Client), A-11
createObject() method, A-21
Creating a redirect finder, 6-54
creating in Java

mappings, 3-89
OracleAS TopLink descriptors, 3-89

cursor output

in stored procedures, 6-30
cursored streams

example, 6-84
optimizing, 6-84
ReadAllQuery methods, 6-46
usage example, 4-62
using, 6-81

cursors, scrollable
traversing, 6-82

custom query objects
creating, 6-70

custom SQL, 4-35
data level queries, 6-28
SQL queries, 6-27
using, 6-27

custom SQL queries
in OracleAS TopLink query framework, 4-35

custom types
assigning to a OracleAS TopLink session, 5-15

custom types, using with conversion
manager, 5-14

customization
DatabaseLogin, 4-46
descriptors and mappings, 3-81
OracleAS TopLink descriptors using amendment

methods, 3-82
Server Session, 4-46

customizing
descriptors using amendment methods, 3-82

D
data access

overview, 1-8
data level queries

in expressions, 6-23
using custom SQL, 6-28

data optimization, 5-16
database

reading from using session, 6-38
writing to using session, 6-39

database access
using stored procedures, A-24

database and Java type conversion tables, A-22
Database Exception, C-50

Index-5

database exceptions, 6-101
database login, 5-8
Database Session

architecture, 4-6
database session

defining in the sessions.xml file, 4-13
database sessions, defined, 4-48
database, logging out, 4-49
DatabaseException class, 6-101
DatabaseLogin class, using to store login

information, 5-8
DatabaseLogin described, 4-47
DatabaseRow, 3-69
DatabaseSession class

creating tables on a database, A-21
described, 4-48
instantiating, 4-48
logging SQL and messages, 4-65
public methods, 4-52
session queries, 6-37

data-level query
example, 6-24, 6-28

DataModifyQuery, 6-42
DataReadQuery, 6-42
Datasource

login in the sessions.xml, 4-15
DataSources, using JDBC2.0, 5-13
DB Access (Web Client), A-12
delete operation, 6-41
DeleteObjectQuery

defined, 6-42
example, 6-68

dependent objects
merging with SessionAccessor, 3-63
merging without SessionAccessor, 3-65

dependent objects, managing under EJB 1.1, 3-62
Deploy Tool

using with WebSphere Studio Application
Developer, A-18

deploy tool for WebSphere, A-17
deployment

as part of the application development
process, 1-15

modifying BEA WebLogic persistence
descriptor, 9-11

XML files, non-application server, 9-3
deployment descriptors

customizing using amendment methods, 3-82
described, 3-56
for entity beans, 9-4

deployment errors, solutions, C-118
Deployment Exception, C-103
deployment JARs, troubleshooting, C-118
deployment overview, entity beans, 9-2
deployment, hot, 9-23
DeploymentXMLGenerator, 9-4
descriptor copy policy

implementing, 3-87
descriptor events

receiving, 3-83
registering with a descriptor, 3-84
supported events, 3-86
using, 3-83

Descriptor Exception, C-54
descriptor exceptions, error codes, C-4
descriptors

described, 3-3
OracleAS TopLink, 1-11
searching with OracleAS TopLink Web

Client, A-8
descriptors (OracleAS TopLink)

creating in Java, 3-89
customizing with amendment methods, 3-82

development components, 1-4
development environment, configuring, A-15
development exceptions, C-1

builder exception, C-38
development services

described, A-23
development tools

profiler
using, 10-3

schema manager
described, A-19

direct collection mappings
example, 3-25
in Java code, 3-25
working with, 3-25

direct connect drivers, 5-13
direct mapping

Index-6

described, 3-5
direct mappings

described, 3-8
direct-to-field, 3-9
objects type, 3-13
type conversion, 3-12
using, 3-8

DirectCollectionMapping class, 3-25
DirectReadQuery, 6-42
direct-to-field mappings, 3-9

in Java code, 3-9
DirectToFieldMapping class, 3-9
Disconnect button, A-7
discovery

configuring, 8-8
overview, 8-4

Discovery Exception, C-113
distributed cache synchronization

overview, 8-3
does exist write object, 10-17
domain.jar.path, Web Client, A-4
drivers, direct connect, 5-13
dynamic finders

creating, 6-93
using, 6-92

E
EJB 1.1

mappings between beans, 3-15
EJB 2.0

mapping restrictions not enforced by OracleAS
TopLink, 3-15

mappings between beans, 3-15
EJB container, described, 3-56
EJB deployment, hot, 9-23
EJB Entity bean deployment

configuring descriptors, 9-10
overview, 9-2

EJB entity beans
relationships under EJB 2.0, 3-15

EJB finders
defining, 6-86
described, 6-11
ejb-jar.xml options, 6-86

using, 6-85
EJB JAR XML Exception, C-116
EJB Primary Key

defined, 3-61
EJB QL

in queries, 6-31
in sessions, 6-33
limitations, 6-33
ReadAllQuery, 6-32
using finders, 6-89
using with OracleAS TopLink, 6-32

EJB redirect finders
using, 6-53

EJB server, described, 3-56
EJB Session Beans, 4-60
EJB specification

inheritance, 3-55
sequencing, 3-44

EJBHome
defined, 3-60

ejb-jar.xml
EJB finder options, 6-86

ejb-jar.xml file
configuring, 9-11
overview, 9-10
synchronization under EJB 2.0, 9-11

EJBLocalHome
defined, 3-61

EJBLocalObject
defined, 3-60

EJBObject
defined, 3-60

EJBSelect
understanding, 6-95
using in a finder, 6-95

encryption, password, 4-14
Enterprise JavaBeans

2.0 support, 3-59
container, 3-56
deployment descriptors, 3-56
described, 3-56
Entity beans, 3-57
message-driven beans, 3-57
server, 3-56
Session Beans, 3-57

Index-7

Entity bean deployment
configuring descriptors, 9-10
overview, 9-2

entity bean inheritance restrictions, 3-55
entity bean model, 3-55
entity beans

bean instance, 3-60
container managed, 3-59
defined, 3-60
deployment overview, 9-2
described, 3-57
EJB Home, 3-60
EJB Object, 3-60
EJB Primary Key, 3-61
EJBLocalHome, 3-61
EJBLocalObject, 3-60
importing 2.0 relationship metadata into the

OracleAS TopLink Mapping
Workbench, 3-16

in the OracleAS TopLink Mapping
Workbench, 3-47

inheritance, 3-55
mappings, 3-15, 3-16
persistent state, 3-60
primary keys, 3-37
relationships between, 3-14
relationships between beans and Java

objects, 3-16
relationships under EJB 1.1, 3-14
sequencing with, 3-44
with OracleAS TopLink Mapping

Workbench, 3-47
entity beans and relationships, 3-14
entity deployment

troubleshooting, C-117
error codes, C-4

10001-10047, C-91
1001-1042, C-39
1-176, C-4, C-5
12000-12004, C-97
13000-13020, C-98
14001-14027, C-103
15001-15024, C-106
16001-16006, C-108
17001-17006, C-109

18001-18002, C-111
19001-19003, C-112
20001-20004, C-113
2001-2004, C-48
22001-22004, C-114
22101-22105, C-115
25001, C-116
3001-3007, C-49
4002-4018, C-51
5001-5008, C-54
6001-6098, C-56
7001-7104, C-72
72000-72023, C-117
8001-8010, C-87
9000-9009, C-89

error codes and descriptions, C-4
event

implementing in Java, 4-70
Event Manager, 3-83, 4-69
events

about, 3-83
events, session, 4-67
examples

cursored streams, 6-83
expression framework, 6-51
multiple tables, 3-106
named finders, 6-50, 6-52
optimistic locking, 3-108
performance optimization, 10-12, 10-15
read query, 10-5
READALL finders, 6-88, 6-89, 6-94
report query, 6-74
scrollable cursors, 6-82
serialized object mapping, 3-71
session broker, 4-54
session event manager, 4-69
SQL queries, 6-27
stored procedure call, 6-29
stored procedures, generating, A-24, A-25
transformation mapping, 3-69
type conversion mapping, 3-13
Unit of Work, 7-7, 7-20
variable one-to-one mapping, 3-72, 3-73
write, write all, 6-40

exception handlers, 4-67

Index-8

exception handling
in queries, 6-101

exceptions
about, C-2
builder exceptions, C-39
chained, 4-65
communication exceptions, C-97
concurrency exceptions, C-48
conversion exceptions, C-49
database, 6-101
database exceptions, C-51
deployment exceptions, C-103
descriptor exceptions, C-4, C-5
development, C-2
discovery exceptions, C-114
EJB exceptions factory, C-91
EJB JAR XML exceptions, C-117
EJB QL exceptions, C-87
java.security.AccessControlException, C-123,

C-124
JDO exceptions, C-108
JMS processing exceptions, C-111
optimistic lock exceptions, C-54
OracleAS TopLink Exception class, C-2
query exceptions, C-56
remote command manager exceptions, C-115
runtime, C-2
SDK data store exceptions, C-109
SDK descriptor exceptions, C-112
SDK query exceptions, C-113
session loader exceptions, C-89
synchronization exceptions, C-106
validation exceptions, C-72
XML conversion exception, C-116
XML data store exceptions, C-98

expression components, 6-13
EXPRESSION finders

using, 6-89
expression framework, 6-51
ExpressionBuilder, 6-17
expressions

components, 6-13
data level queries, 6-23
outer joins, 6-72
parallel expressions, 6-19

platform functions, 6-22
query keys, 6-24
subqueries and subselects, 6-18
user-defined functions, 6-22
using, 6-12
using Boolean logic, 6-14
with query by example, 6-36

F
field locking policies, 3-107, 3-108, 5-21
field types

Oracle, 5-4, A-22
findAll

using, 6-93
findByPrimaryKey

using, 6-93
Finder Libraries, using, 6-86
finders

advanced options, 6-96
caching options, 6-97
choosing, 6-94
disabling cache, 6-98
managing large result sets, 6-99
refreshing results, 6-98

foreign keys, 6-20
addForeignKeyConstraint(), A-20
direct collection mappings, 3-25
one-to-one mappings, 3-17
working with, 3-46

full identity map, 10-9

G
generating deployment JARs,

troubleshooting, C-118
getInheritancePolicy(), 3-95
getWrapperPolicy(), 3-89

H
hierarchical queries

described, 6-78
home interface, inheritance, 3-55
Home tab (Web Client), A-2, A-6

Index-9

hot deployment, described, 9-23

I
IBM Informix

using native sequencing, 5-12
IBM WebSphere

configuring module visibility, B-4
setting class path, B-4

IBM WebSphere Server, troubleshooting, C-122
IBM WebSphere Studio Application Developer

Deploy Tool, A-18
identity map cache

disabling during a write query, 6-69
refresh in read query, 6-66

identity maps, 4-28, 4-48
cache identity map, 10-9
cascading refresh during read query, 6-66
example, 6-66
full identity map, 10-9
refreshing during read query, 6-66
soft cache identity map, 10-9
soft cache weak identity map, 10-9
weak identity map, 10-9

Indirection
ValueHolder indirection, 3-28

indirection, 4-62, 10-8
choosing the correct type, 3-32
described, 3-6, 3-33
EJBs, entity beans, 3-33
implementing in Java, 3-100
in transformation mapping, 3-70

example, 3-70
one-to-many mappings, 3-17
proxy indirection, 3-29
resolving issues with serialization, 3-35
transparent indirection, 3-32
working with, 3-27

Informix
using native sequencing, 5-12

inheritance
creating hierarchy in Java, 3-95
described, 3-5, 3-47
EJBs, entity beans, 3-55
entity bean restrictions, 3-55

home interface, 3-55
implementing in Java, 3-95
leaf classes, 6-81
querying on hierarchy, 6-81
transformed to relational model, 10-24
working with, 3-47

inheritance hierarchies
querying on, 6-81

InheritancePolicy method, 3-100
in-memory queries

described, 6-7
in-memory query, 6-62

check cache using exact primary key, 6-62
check cache using primary key, 6-62
check database if not in cache, 6-62
conform results in Unit of Work, 6-62
using, 6-62

insert operation, 6-39, 6-40
InsertObjectQuery, 6-42
instantiation policy

implementing in Java, 3-88
methods, 3-88
overriding in Java, 3-88

integrity checker, 4-66
interfaces

implementing in Java, 3-101
querying on, 6-81

internal query object cache, 6-7, 6-76
isolation

cache, 8-5
Iterator interface, 6-82

J
J2EE containers

non-CMP configuration, B-2
jars

common deployment errors, C-118
Java and database type conversion tables, A-22
Java database

managing type conversions with Schema
Manager, A-22

Java iterators
described, 6-82

Java objects

Index-10

described, 3-60
merging changes under EJB1.1, 3-63
serializing between client and server under EJB

1.1, 3-63
Java streams

described, 6-83
optimizing, 6-84
support for, 6-83

Java Transaction API
and Unit of Work, 7-3
and Unit of Work commit, 7-9, 7-10
and Unit of Work Rollback, 7-10

Java Transaction Service (JTS), 5-8
java.security.AccessControlException, C-123,

C-124
JavaSourceGenerator, 9-10
JConnect (Sybase), 4-49
JDBC

login in the sessions.xml file, 4-14
JDBC 2.0 DataSources, 5-13
JDBC-ODBC bridge, 5-10
JMS Processing Exception, C-111
join reading

in query objects, 6-72
joining, 10-9
joins, outer, 6-72
JTA

OracleAS TopLink support, 7-46
JTA (Java Transaction API)

OracleAS TopLink integration, 5-8

K
keys

foreign, 3-17, A-20
primary, A-20
primary, composite, 3-18

L
large result sets, managing in finders, 6-99
leaf class, 3-52
leaf classes, 6-81
locking

pessimistic, 5-24

locking policies
implementing in Java, 3-107

logging into the database, 5-8
logging out, 4-49
login class

creating for projects created in OracleAS TopLink
Mapping Workbench, 5-9

creating for projects not created in OracleAS
TopLink Mapping Workbench, 5-8

login parameters
setting in code, 5-10

logs
chained exceptions, 4-65

M
manager, session events, 4-69
manual transactions, 4-49
many-to-many mappings, 3-27

with EJBs, 3-27
working with, 3-26

mapping
aggregate collection mappings and EJBs, 3-24
as part of the application development

process, 1-13
attribute, 3-20
bidirectional relationships, 3-17
described, 3-3
direct, described, 3-5
EJB 2.0 restrictions not enforced by OracleAS

TopLink, 3-15
object type, 3-14
relationship, 3-20
relationship, described, 3-5
serialized object, 3-71
transformation, 3-69
type conversion, 3-13

mappings
aggregate collections, 3-22
aggregate object, 3-19
aggregate object, with EJBs, 3-20
between entity beans, 3-15
between entity beans and Java objects, 3-16
BLOB fields, 3-71
creating, 3-7

Index-11

creating in Java, 3-89
described, 3-7
direct, 3-8
direct collection, 3-25
direct mappings, 3-8
direct-to-field, 3-9
many-to-many, 3-26, 3-27
many-to-many, with EJBs, 3-27
object type, 3-13
one-to-many, 3-21
one-to-many object, with EJBs, 3-22
one-to-one, 3-17
one-to-one with EJBs, 3-19
OracleAS TopLink metadata, 1-11
relationship, 3-14
serialized object, 3-71
type conversion, 3-12

message transport
overview, 8-4

Message-driven beans, described, 3-57
messages, error, C-4
metadata

project.xml file, 1-11
metadata model, described, 3-3
methods

addDirectMapping(), 3-9
addField(), A-20
addForeignKeyConstraint(), A-20
addIdentityField(), A-20
addPrimaryKeyField(), A-20
addTableName, 3-102
addToAttributeOnlyConversionValue(), 3-13
clearProfiler(), 10-4, 10-5
copy policy, 3-101
createObject(), A-21
described, 3-60
in Java objects, 3-60
instantiation, 3-88
replaceObject(), A-21
setDefaultAttributeValue(), 3-13
setName(), A-20
setProfiler(), 10-4, 10-5
wrapper policy, 3-89

Microsoft SQL Server
native sequencing, 5-12

module visibility
in IBM WebSphere, B-4

multiple read connections
overview, 4-44

Multiple Table Mappings
using, 3-46

multiple tables
implementing in Java, 3-102
implementing in Java when primary keys are

named differently, 3-103
implementing in Java when primary keys

match, 3-102
implementing in Java when related by foreign

key, 3-104
implementing in Java, non-standard table

relationships, 3-105
multi-processing, 10-20

N
name service

configuring, 8-9
overview, 8-4

named finders
using, 6-50

named queries
defining, overview, 6-50
using, 6-48

native sequencing, 3-43, 5-12
configuring in the sessions.xml file, 4-18
Microsoft SQL Server, A-21
Oracle, 3-40, 3-41, A-22
Oracle SEQUENCE object, 3-42
Sybase, A-21

nested table mappings
about, 3-78
Java, 3-78

NestedTableMapping class, 3-78
non-cascading write queries

compared to cascading, 6-68
creating using dontCascadeParts ()

method, 6-68
non-standard table relationships

implementing in Java, 3-105

Index-12

O
object array mapping

about, 3-75
object array mappings

implementing in Java, 3-75
object identity, 4-28, 4-48
object indirection, 10-8
object model, 4-33, 6-37, 10-21
object reading, partial, 10-9
object relationships

working with, 3-46
object type mapping

example, 3-14
object type mappings

using, 3-13
object, cache, 5-29
object-relational descriptors

implementing in Java, 3-93
ObjectRelationalDescriptor class, 3-93
objects

as query results, 6-60
cascading refresh in cache, 6-66
creating and editing in Web Client, A-11
query, 6-34
refreshing in cache, 6-66
searching with OracleAS TopLink Web

Client, A-8
ObjectTypeMapping class, 3-13
one-to-many mapping

example, 3-21
Java, 3-21

one-to-many mappings, 3-21
OneToManyMapping class, 3-21
one-to-one mapping

example, 3-18
Java, 3-17

one-to-one mappings
with EJBs, 3-19
working with, 3-17

OneToOneMapping class, 3-17
operators

boolean logic, 6-14
optimistic lock

overview, 5-20

Optimistic Lock Exception, C-54
optimistic locking, 5-21, C-54

database exception, 6-101
field locking policy, 5-29

optimistic read lock
overview, 5-20

OptimisticLockException class, 5-29
optimization

data, 5-16
performance, 10-1
schema, 10-21

Oracle
field types, 5-4, A-22
remote session support, 4-60
using native sequencing, 5-12

Oracle Application Server Containers for J2EE
setting class path, B-3

Oracle extensions
hierarchical queries, 6-78
Oracle Hints, 6-77
support, 6-76

Oracle Hints
described, 6-77

Oracle JDeveloper, configuring with OracleAS
TopLink, A-15

Oracle native sequencing, 3-40, 3-41
SEQUENCE object, 3-42

OracleAS TopLink, 1-4
advantages, 1-3
application development overview, 1-12
problem space, 1-2

OracleAS TopLink container-managed persistence
configuring, B-7
configuring for BEA WebLogic, B-7
software requirements, B-2

OracleAS TopLink deploy tool for IBM
WebSphere, A-17

OracleAS TopLink descriptors
creating in Java, 3-89
customizing with amendment methods, 3-82

OracleAS TopLink Exceptions
development exceptions, C-2
runtime exceptions, C-2

OracleAS TopLink Expression Framework
defining named queries, 6-50

Index-13

described, 6-5
using, 6-51

OracleAS TopLink file
metadata, 1-11

OracleAS TopLink Foundation Library
overview, 1-7

OracleAS TopLink Mapping Workbench
defined queries, 6-56
overview, 1-5
using with entity beans, 3-47

OracleAS TopLink metadata
descriptors, 1-11
mappings, 1-11

OracleAS TopLink sessions
OracleAS TopLink Web Client, A-6

OracleAS TopLink Sessions Editor
overview, 1-6

OracleAS TopLink Web Client
executing SQL, A-12
searching objects, A-8

OracleAS TopLink with containers
software requirements, B-2

OrbixWeb, 4-60
outer joins, 6-72

in expressions, 6-72
output parameter event

in stored procedures, 6-30

P
packaging

as part of the application development
process, 1-15

parameter binding, 5-17
parameterized expressions

example, 6-21
parameterized SQL

described, 5-17
enabling on queries, 6-45
in query objects, 6-45
OracleAS TopLink optimization features, 10-17

partial attribute reading
query objects, 6-76

partial object reading, 10-9
performance optimization

described, 10-1
examples, 10-9
using Performance Profiler, 10-3

Performance Profiler, 10-3
class, 10-4

performance tuning
as part of the application development

process, 1-15
persistence descriptor, 9-11
persistence descriptor, in BEA WebLogic

deployment, 9-11
persistent classes

registering events, 3-84
persistent classes in Java objects, 3-60
persistent entities, described, 3-3
persistent entity beans, 3-59
persistent state, 3-60
pessimistic lock

overview, 5-20
pessimistic locking

described, 5-24
example, 5-26

pinning
overview, B-9
with session beans, B-10
with user transactions, B-9

platform functions, in expressions, 6-22
pooling, connection, 4-43
preallocation, in sequencing, 3-39
predefined queries

described, 6-10
EJBs and finders, 6-53
named finders, 6-50
named queries, 6-48
redirect queries, 6-52
using, 6-48

preferences
Web Client, A-14

Preferences tab (Web Client), A-15
primary key

addPrimaryKeyField(), A-20
composite, 3-18
implementing in Java, 3-94

primary keys
defined, 3-6

Index-14

entity beans, 3-37
Profiler, 4-66
profiler development tool, 10-3
Profiler tab (OracleAS TopLink Web Client), A-14
project

deployment overview, 9-2
projects

described, 3-3
proxy indirection, 3-29

descriptor configuration, 3-30
implementing, 3-30
implementing in Java, 3-29
model configuration, 3-30

Q
queries

advanced options, 6-79
basics, 6-12
cache, 6-61
cascading, 6-68
concepts, 6-3
cursored streams, 6-81
defined in OracleAS TopLink Mapping

Workbench, 6-56
exception handling, 6-101
on inheritance hierarchies, 6-81
on interfaces, 6-81
overview, 1-8
query keys, creating, 6-79
scrollable cursor, 6-81
session queries, 6-37
SQL, 6-27
variable one-to-one mappings, 6-85

queries, named
defining, 6-50
defining under EJB QL, 6-50
defining under OracleAS TopLink framework

defining named queries, 6-50
defining under SQL, 6-50

query
report, 10-9

query basics
custom SQL, 6-27
EJB QL, 6-31

expressions, 6-12
query by example, 6-34
stored procedures, 6-29

query by example, 6-34
combining with expressions, 6-36
described, 6-5
example policy, 6-35
sample instance, 6-34

Query Exception, C-56
query keys

creating, 6-79
implementing in Java, 6-80
in expressions, 6-24

query mechanisms
EJB finders, 6-11
predefined queries, 6-10

query methods, 6-37
query objects

batch reading, 6-70
caching results, 6-7, 6-76
components, 6-41
creating, 6-42
creating, overview, 6-42
cursoring and ReadAll queries, 6-46
DataModifyQuery

described, 6-42
DataReadQuery

described, 6-42
DeleteObjectQuery

described, 6-42
DirectReadQuery

described, 6-42
examples, 6-43, 6-44
executing, 6-41
executing queries in, 6-42
InsertObjectQuery

described, 6-42
join reading, 6-72
ordering for ReadAll queries, 6-44
parameterized SQL, 6-45
partial attribute reading, 6-76
performance, 6-70
query optimization, 6-46
query types, 6-42
read query objects, 6-42

Index-15

ReadAllQuery
described, 6-42

ReadObjectQuery
described, 6-42

relationship to database, 4-49
report query, 6-73, 10-11
ReportQuery

described, 6-42
specifying collection class, 6-46
UpdateObjectQuery

described, 6-42
using in place of session methods, 6-67
ValueReadQuery

described, 6-42
WriteObjectQuery

described, 6-42
query results

caching, 6-67
collections, 6-60
objects, 6-60
reports, 6-61
streams, 6-60
using, 6-60

query timeout example, 6-48
query, report, 6-61, 6-73, 10-11
querying

as part of the application development
process, 1-14

R
read all operation, 4-34, 6-39
read connections

multiple, 4-44
read operation, 4-34, 6-38
read queries

identity map cache refresh, 6-66
read query

cascading refresh of identity maps, 6-66
refreshing identity maps, 6-66

read query example, 10-5
read query objects, described, 6-42
ReadAll finders, 6-94

creating, 6-94
executing, 6-94

using, 6-94
ReadAll queries

cursoring in query objects, 6-46
ordering in query objects, 6-44

readAllObjects()
example, 4-35, 6-39

ReadAllQuery
in EJB QL, 6-32

reading, batch, 10-9
readObject()

example, 4-35, 6-38
redeployment, 9-23
redirect finders

using, 6-53
redirect queries

EJB finders, 6-53
using, 6-52

reference mapping
example, 3-78
in Java, 3-77

ReferenceMapping class, 3-77
refresh cache

described, 6-7
refresh operation, 6-39
relational mappings

about, 3-73
relationship

bidirectional, 3-17
relationship mapping

described, 3-5
EJB 2.0, 3-15
with EJBs, 3-14

relationship mappings
aggregate object, 3-19
described, 3-14
direct collection, 3-25
EJB 1.1, 3-15
EJB 2.0, 3-15
many-to-many, 3-26
one-to-many, 3-21
one-to-one, 3-17
with entity beans, 3-14

relationships
described, 3-60

relationships and entity beans, 3-14

Index-16

Remote Command Manager Exception, C-114
remote connection using RMI

example, 4-62
Remote Session

architecture, 4-6
remote session, 4-58
replaceObject() method, A-21
report query

query objects, 6-73, 10-11
use case, 10-9
using, 6-61, 6-73, 10-11

ReportQuery, 6-42
reports

query results, 6-61
RMI

message optimization, 10-8
remote session support, 4-60

rollback
and Java Transaction API, 7-10
overview, 7-10

root class, 3-51
runtime exceptions, C-1, C-2
run-time issues

maintaining bidirectional relationships, 3-61
runtime problems, troubleshooting, C-126
runtime services

described, A-23

S
Schema Manager

creating tables, A-20
managing Java database type conversions, A-22
overview, A-19

schema manager, A-22
schema manager development tool, A-19
schema, optimization, 10-21
scrollable cursor

traversing, 6-82
using, 6-81
using for ReadAllQuery, 6-46, 6-82

SDK Data Store Exception, C-109
SDK Descriptor Exception, C-111
SDK Query Exception, C-112
Search tab (Web Client), A-8

searching
objects in sessions, A-8

security, 4-14
with BEA WebLogic, B-6

select methods
using, 6-95

SelectedFieldsLockingPolicy, 5-29
SEQ_COUNT column in sequence table, 3-40
sequence numbers

implementing in Java, 3-107
Microsoft SQL Server, A-21
preallocation, 10-19
specifying, 5-11
Sybase, A-21
write optimization features, 10-17

SEQUENCE objects in Oracle native
sequencing, 3-42

sequence table, 5-12
sequencing

configuring in the sessions.xml file, 4-17, 4-18
defined, 3-6
described, 3-37
implementing class tables, 3-38
native, 3-43
native Oracle, 3-40
preallocation, 3-39
SEQ_COUNT, 3-40
table, 3-39
with BEA WebLogic, 3-44
with entity beans, 3-44
with IBM WebSphere, 3-44
with stored procedures, 3-45

serialization
defined, 3-6
limitations, 3-36
resolving indirection issues, 3-35

serialization, described, 3-34
serialized object mappings

about, 3-71
example, 3-71
Java, 3-71

SerializedObjectMapping class, 3-71
server layer, 4-61
Server Session

architecture, 4-5

Index-17

defining in the sessions.xml file, 4-13
described, 4-38
overview of use, 4-37

Server Session connection options, 4-44
session

concepts, 4-2
loading with alternative class loader, 4-30

session bean model, 2-14
session beans

described, 2-14
model, 2-14
remote session support for, 4-60

session beans, described, 3-57
Session Broker

overview, 4-7
session broker, 4-53

adding sessions, 4-54
multiple sessions, 4-53
two-phase commits, 4-55
two-stage commits, 4-55
using, 4-53

session cache
overview, 8-2

session configuration file
loading alternative, 4-31
reparsing, 4-32

session described, 4-38
session event manager, 4-69
session listener class

described, 4-47
session management

as part of the application development
process, 1-13

development services, A-23
runtime services, A-23

Session management services
described, A-22

Session Manager
destroying sessions, 4-33
retrieving a session, 4-29
session location, 4-29
storing sessions, 4-32

session queries, 6-37
executing, 6-37
in OracleAS TopLink query framework, 6-37

reading from database, 6-38
writing to database, 6-39

session query
using EJB QL, 6-33

session, remote, 4-58
SessionAccessor

merging dependent objects under EJB 1.1, 3-63
sessions

adding to session broker, 4-54
architectures, 4-4
caching, 4-4
Client Session, 4-2
Client Session architecture, 4-6
connecting to with OracleAS TopLink Web

Client, A-6
connection pool, 4-4
Database Session, 4-3
Database Session architecture, 4-6
destroying in Session Manager, 4-33
multiple, 4-53
overview, 1-8
profiling, 4-4
Remote Session, 4-3
Remote Session architecture, 4-6
searching, A-8
Server Session, 4-2
Server Session architecture, 4-5
Session Broker, 4-3, 4-7
Session Manager, 4-3
session types, 4-2
sessions.xml, 4-2, 4-8
storing in Session Manager, 4-32

sessions, database, 4-48
sessions, logging out, 4-49
sessions.xml

cache-synchronization-manager element, 4-19
configuring sequence table, 4-18
connection-pool element, 4-23
defining a Database Session, 4-13
defining a Server Session, 4-13
enable-logging element, 4-25
event-listener-class element, 4-21
exception-handler-class element, 4-23
external-transaction-controller-class

element, 4-22

Index-18

loading alternative configuration file, 4-31
login element, 4-13
login using JDBC, 4-14
overview, 4-2, 4-8
profiler-class element, 4-22
reparsing, 4-32
reusing with XMLLoader, 4-31
sequencing elements, 4-17
session element, 4-10
session-type element, 4-12
toplink-configuration element, 4-10
using DataSource, 4-15
XML header, 4-10

setAttributeClassification(), 3-12
setAttributeName(), 3-12, 3-13, 3-68, 3-71
setAttributeTransformation(), 3-69
setDefaultAttributeValue(), 3-13
setFieldClassification(), 3-12
setFieldName(), 3-9, 3-12, 3-13, 3-71
setGetMethodName(), 3-69, 3-71
setName() method, A-20
setPrimaryKeyFieldName, 3-94
setProfiler() method, 10-4, 10-5
setSequenceNumberFieldName, 3-107
setSetMethodName(), 3-69, 3-71
setWrapperPolicy(), 3-89
shared library

setting for BEA WebLogic, B-6, B-8
soft cache weak identity map, 10-9
SQL, 5-4

binding and parameterizing, 5-17
custom, 4-35
parameterized, 10-17
queries, 6-27
using in a finder, 6-95

SQL DISTINCT, 10-14
SQL Exception, C-50
SQL queries, 6-27

described, 6-6
in OracleAS TopLink query framework, 4-35
in OracleAS TopLink Web Client, A-12

SQL Server
native sequencing, 5-12

SQL, parameterized, 6-45
stale data

overview, 8-3
stateful and stateless beans compared, 2-14
stateful beans, 2-14
stateful, stateless Session Beans, 3-57
stateless and stateful beans compared, 2-14
stateless beans, 2-14
static amendment methods, 3-82
Stored Procedure Generator

described, A-24
using, A-24

stored procedures, 6-29
attaching to descriptors, A-25
cursor output parameters, 6-30
described, 6-5
generating, A-24
output parameter event, 6-30
output parameters, 6-29
using, 6-29
using for sequencing, 3-45

streams
as query results, 6-60

streams, cursored, 4-62, 6-84
structure mappings

Java, 3-76
StructureMapping class, 3-76
subqueries

in expressions, 6-18
subselects

in expressions, 6-18
Sybase

JConnect2.x, 4-49
using native sequencing, 5-12

synchronous update mode
overview, 8-4

T
Table Definition

class, A-20
table sequencing, 3-39

configuring in the sessions.xml file, 4-18
tables

creator/qualifier, 5-19
three-tier applications

migrating to scalable architecture, 4-48

Index-19

TimestampLockingPolicy, 5-29
toplink-ejb-jar.xml

BEA WebLogic, 9-6
IBM WebSphere, 9-5

toplinkwc.ear
OracleAS TopLink Web Client, A-4

transactions
as part of the application development

process, 1-14
in OracleAS TopLink, 7-3
overview, 1-9, 7-1

transactions, manual, 4-49
transformation mappings

example, 3-69
indirection, 3-70

TransformationMapping class, 3-68
transparent indirection

working with, 3-32
transport layer, 4-60
troubleshooting, Unit of Work, 7-41
two-phase commits, 4-55
two-phase/two-stage commits, 4-55
two-stage commits, 4-55
type conversion mappings, 3-13

example, 3-13
using, 3-12

type conversions
managing in Java databases, A-22

TypeConversionMapping class, 3-12

U
undeployment, 9-23
Unit of Work, 10-8, 10-16

acquiring, 7-13
and Java Transaction API, 7-3
basics, 7-5
cache, 8-3
class, 6-37
clones, 7-7
commit, 7-9
commit and Java Transaction API, 7-9, 7-10
conform results of in-memory query, 6-62
conform results, described, 6-9
creating objects, 7-13

deleting objects, 7-20
nested, 7-40
overview, 7-3
parallel, 7-40
pre-commit validation, 7-41
queries, 7-9
reading objects, 7-9
read-only classes, 7-33, 7-34
remote sessions, 4-62
resuming after commit, 7-39
resuming on failure after commit, 7-39
reverting, 7-39, 7-40
rollback, 7-10
rollback and Java Transaction API, 7-10
updating methods in, 3-86
validating objects, 7-41
validation, 7-41

update operation, 6-39, 6-41
UpdateObjectQuery, 6-42
useAllFieldsLocking, 3-108
useAllFieldsLocking, 3-107
useChangedFieldsLocking, 3-108
useChangedFieldsLocking, 3-107
useCloneCopyPolicy(), 3-101
useCloneCopyPolicy(String), 3-101
useConstructorCopyPolicy(), 3-101
useDefaultConstructorInstantiationPolicy(), 3-88
useFactoryInstantiationPolicy(), 3-88
useMethodInstantiationPolicy(), 3-88
useProxyIndirection(), 3-29
user-defined functions, in expressions, 6-22
useSelectedFieldsLocking, 3-108
useSelectedFieldsLocking, 3-107
useTimestampLocking, 3-108
useTimestampLocking, 3-107
useVersionLocking, 3-107, 3-108

V
validation, 7-41
Validation Exception, C-72
ValueHolder Indirection

working with, 3-28
valueholders

triggering before serialization, 3-35

Index-20

ValueReadQuery, 6-42
variable one-to-one mapping

querying, 6-85
VariableOneToOneMapping class, 3-72
Varray (Oracle). see array mappings
version fields, 5-21, 5-30
version locking policies, 3-107, 3-108, 5-21
VersionLockingPolicy, 5-29
VisiBroker, 4-60

W
weak identity map, 10-9
weak identity map, soft cache, 10-9
Web Client

configuring, A-3
connecting to session, A-6
creating objects, A-11
described, A-2
editing objects, A-11

WebLogic, 4-60
weblogic-ejb-jar.xml

described, 9-11
modifying for OracleAS TopLink, 9-11
unsupported tags, 9-12

WebSphere Studio Application Developer
Deploy Tool, A-18

web.xml
OracleAS TopLink Web Client, A-3

working with, 3-29
wrapper policy

implementing in Java, 3-89
setting in Java, 3-89

write all operation, 6-40
write query

disabling identity map cache, 6-69
non-cascading, 6-68
overview, 6-68

write query objects, 6-68
WriteObjectQuery, 6-42
writing, batch, 5-17, 10-17

X
XML Conversion Exception, C-116

XML loader
loading alternative session, 4-31

XML parsers
modifying the sessions.xml file, 4-10

XMLLoader
reusing the configuration file, 4-31

	Oracle® Application Server TopLink Application Developer's Guide, 10g (9.0.4)
	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Understanding OracleAS TopLink
	Advantages of OracleAS TopLink
	OracleAS TopLink Problem Space
	OracleAS TopLink Solution
	Other OracleAS TopLink Advantages

	OracleAS TopLink Components
	OracleAS TopLink Development Components
	OracleAS TopLink Mapping Workbench
	Oracle Application Server TopLink Sessions Editor

	Oracle Application Server TopLink Foundation Library
	Sessions
	Data Access
	Caching
	Queries
	Transactions

	OracleAS TopLink Metadata
	Sessions.xml File
	Project
	Descriptor
	Mappings

	Application Development With OracleAS TopLink
	Mapping
	Session Management
	Querying
	Transactions
	Packaging and Deployment
	Monitoring and Performance Tuning

	OracleAS TopLink Architectures Overview
	Three-Tier
	EJB Session Bean Facade
	EJB Entity Beans with CMP
	EJB Entity Beans with BMP
	Two-Tier

	General Terms and Concepts

	2 OracleAS TopLink Architectures
	How to Use This Chapter
	Architectural Concepts
	Persistent Entity Types
	Java Objects
	EJB Entity Beans

	Multi�Tier Enterprise Applications
	Client Tier
	Presentation Tier
	Application Tier
	Persistence Tier

	Session Components
	Session Manager
	Server Session
	Client Session
	Project
	Database Session
	Database Login
	Unit of Work

	Five Key Architectures
	Entity Bean Versus Non-Entity Bean Architectures
	Three-Tier
	EJB Session Bean Facade
	EJB Entity Beans Using CMP
	EJB Entity Beans Using BMP
	Two-Tier

	Architecture Details
	Selecting an Architecture
	About Non-Relational Datasources

	Three-Tier Architecture
	Example Implementations
	Advantages and Disadvantages
	A Variation Using Remote Sessions
	Technical Challenges

	EJB Session Bean Facade Architecture
	Example Implementation
	Advantages and Disadvantages
	Understanding Session Beans
	Technical Challenges
	Unit of Work Merge

	EJB Entity Beans with CMP Architecture
	Example Implementation
	Advantages and Disadvantages
	Technical Challenges

	EJB Entity Beans with BMP Architecture
	Example Implementations
	Advantages and Disadvantages
	Technical Challenges

	Two-Tier Architecture
	Example Implementations
	Advantages and Disadvantages
	Technical Challenges

	3 Mapping
	Introduction to Mapping Concepts
	Persistent Entities
	Metadata Model
	OracleAS TopLink Mapping Workbench
	Deployment XML Generation
	Project Class Generation
	OracleAS TopLink Mapping Types
	Inheritance

	Objects and the Database
	Primary Keys
	Sequencing
	Foreign Keys and Object Relationships

	Indirection
	Serialization
	General Terms and Concepts
	Primitive Versus Complex Data
	Java Objects

	Basic Mappings
	Direct Mappings
	Direct-to-Field Mappings
	Type Conversion Mappings
	Object Type Mappings

	Relationship Mappings
	Relationships and Entity Beans
	One-to-One Mappings
	Aggregate Object Mappings
	One-to-Many Mappings
	Aggregate Collections
	Direct Collection Mappings
	Many-to-Many Mappings

	Indirection
	Valueholder Indirection
	Proxy Indirection
	Transparent Indirection
	Choosing Your Indirection Type
	Indirection and EJBs

	Serialization
	Serialization and Indirection
	Merging Clones on Deserialization
	Limitations on Merge

	Primary Keys
	Primary Keys and EJB Entity Beans

	Sequencing
	Sequencing and Database Tables
	Sequencing and Preallocation Size
	Table Sequencing
	Oracle Native Sequencing
	Native Sequencing with Other Databases
	Sequencing with CMP Entity Beans
	Sequencing with Stored Procedures

	Foreign Keys
	Multiple Table Mappings
	Mapping and Enterprise JavaBeans
	EJBs and the OracleAS TopLink Mapping Workbench

	Inheritance
	Understanding Object Inheritance
	Representing Inheritance in the Database
	Class Types
	Root Class
	Branch Class
	Leaf Class

	Class Indicators
	Class Indicator Field
	Class Indicators and Mappings

	Class Extraction Methods
	Entity Bean Inheritance Restrictions

	Mapping EJB Entity Beans
	Terminology and Definitions
	Overview of Bean-Managed Persistence
	BMP Support with EJB 2.0

	Overview of Container-Managed Persistence
	Understanding CMP
	OracleAS TopLink and CMP Entity Beans
	Java Objects and Entity Beans

	Maintaining Bidirectional Relationships
	One-to-Many Relationship

	Managing Dependent Objects Under EJB 1.1
	Serializing Java Objects Between Client and Server

	Managing Dependent Objects Under EJB 2.0
	Managing Collections of EJBObjects Under EJB 1.1

	Descriptor Validation
	Advanced Mappings
	Transformation Mappings
	Implementing Transformation Mappings in Java

	Serialized Object Mappings
	Variable One-to-One Mappings
	Object Relational Mappings
	Array Mappings
	Object Array Mappings
	Structure Mappings
	Reference Mappings
	Nested Table Mappings

	Direct Map Mappings

	Customizing the Project
	Customizing OracleAS TopLink Descriptors with Amendment Methods
	Using After Load Methods
	Descriptor Events
	Receiving Descriptor Events
	Supported Events

	Descriptor Copy Policy
	Descriptor Query Manager
	Replacing Descriptor Queries

	Instantiation Policy
	Overriding the Instantiation Policy Using Java Code

	Setting the Wrapper Policy Using Java Code
	Creating EJB Projects and OracleAS TopLink Descriptors in Java

	Writing Mappings in Code
	Implementing Object-Relational Descriptors in Java
	Implementing Primary Keys in Java
	Implementing Inheritance in Java
	Queries for Inherited Superclasses and Multiple Tables
	Customizing Inheritance

	Implementing Indirection in Java
	Implementing Interfaces in Java
	Setting the Copy Policy in Java
	Implementing Multiple Tables in Java
	Primary Keys Match
	Primary Keys are Named Differently
	Tables Related by Foreign Key Relationships
	Non Standard Table Relationships

	Implementing Sequence Numbers in Java
	Implementing Locking in Java
	Java Implementation of Optimistic Locking

	4 Sessions
	Introduction to Session Concepts
	sessions.xml File
	Session Types
	Server Session
	Client Session
	Remote Session
	Database Session
	Session Broker

	Session Manager
	Connection Pool
	Caching
	Profiling

	Session Architectures
	Server Session
	Client Session
	Database Session
	Remote Session
	Session Broker

	Configuring Sessions with the sessions.xml File
	Navigating the sessions.xml File
	XML Header
	toplink-configuration Element
	session Element
	session-type Element
	login Element
	event-listener-class Element
	profiler-class Element
	external-transaction-controller-class Element
	exception-handler-class Element
	connection-pool Element
	enable-logging Element

	session-broker Element
	JTA Configuration

	Registering Descriptors
	Caching Objects
	Session Manager
	Retrieving a Session from a Session Manager
	Loading a Session with an Alternative Class Loader
	Loading an Alternative Session Configuration File

	Storing Sessions in the Session Manager Instance
	Destroying Sessions in the Session Manager Instance

	Session Querying
	Simple Query API
	Using Expressions in Session Queries
	Custom SQL Queries

	Query Objects
	Predefined Queries

	Session Types
	Server Session and Client Session
	Three-Tier Architecture Overview
	EJBs and Server Session
	General Concepts for the OracleAS TopLink Three-Tier Design
	Reference
	Customizing Server Session and Database Login
	Working with Login
	Registering Event Listeners for EJB 1.1

	Database Session
	Creating a Database Session
	Connecting to the Database
	Logging Out of the Database
	Using Manual Transaction Control
	Creating Database Sessions: Examples
	Reference

	Session Broker
	Multiple Sessions
	Configuring the Session Broker in Code
	Committing a Transaction with a Session Broker
	Using the Session Broker in a Three-tier Architecture
	Limitations
	Advanced Use
	Reference

	Remote Session
	Architectural Overview
	Securing Remote Session Access
	Queries
	Refreshing
	Indirection
	Cursored Streams
	Unit of Work
	Creating a Remote Connection Using RMIConnection

	Sessions and the Cache
	Session Utilities
	Logging SQL and Messages
	Logging Chained Exceptions
	Logging and the Oracle Enterprise Manager

	Using the Profiler
	Using the Integrity Checker
	Using Exception Handlers

	Customizing Session Events
	Session Event Listeners
	Session Event Manager
	Implementing Events Using Java

	OracleAS TopLink Support for Java Data Objects (JDO)
	Understanding the JDO API
	JDO Implementation
	JDOPersistenceManagerFactory
	JDOPersistenceManager
	JDOQuery
	JDOTransaction

	Running the OracleAS TopLink JDO Example

	5 Data Access
	Introduction to Data Access Concepts
	JDBC Connections
	Individual JDBC Connections
	JDBC Connection Pools

	JTA
	Data Conversion

	Database Platforms
	JDBC-SQL and Native SQL
	Custom Platforms

	JDBC Connection Pools
	Default Connection Pools
	External Connection Pools
	JDBC Datasources
	Container-Managed Persistence and Datasources

	JTA

	Database Login Information
	Creating a Login Object
	Specifying Driver Information
	Using the Sun Microsystems JDBC-ODBC Bridge
	Using a Different Driver

	Setting Login Parameters
	User Information
	Database Information
	Additional JDBC Properties

	Database Login Advanced Features
	Setting Sequencing at Login
	Setting Direct Connect Drivers
	Using JDBC 2.0 Datasources
	Using Custom Database Connections

	OracleAS TopLink Conversion Manager
	Creating Custom Types with the Conversion Manager
	Conversion Manager Class Loader
	Resolving Class Loader Exceptions

	Performance
	Data Optimization
	Batch Writing
	Binding and Parameterized SQL
	Prepared Statement Caching
	Prepared Statement Caching for a Query
	Prepared Statement Caching for a Session

	Table Qualifier
	Locking Policy
	Using Optimistic Locking
	Advantages and Disadvantages of Optimistic Locking
	Advanced Optimistic Locking Policies

	Optimistic Read Locking
	Pessimistic Locking
	Pessimistic Locking and the Cache
	Pessimistic Locking and Database Transactions
	WAIT and NO_WAIT Options
	Advantages of Pessimistic Locking
	Reference

	Two Different Locking Policies
	Field Locking Policies
	Version Locking Policies

	Using the OracleAS TopLink SDK
	Step One: Define an Accessor
	Data Store Connection
	Call Execution
	Transaction Processing

	Step Two: Create the Application Calls
	Input Database Row
	Read Object Call
	Read All Call
	Insert Call
	Update Call
	Delete Call
	Does Exist Call
	Custom Call
	FieldTranslator
	SDKDataStoreException

	Step Three: Build Descriptors and Mappings
	SDK Descriptor
	Standard Mappings
	SDK Mappings

	Step Four: Deploy the Application Using Sessions
	SDK Platform and Sequencing
	SDK Login
	OracleAS TopLink Project
	Session
	Unsupported Features

	OracleAS TopLink XML Support
	Getting Started
	Customizations
	Implementation Details
	XML File Accessor
	XML Accessor Implementation
	Directory Creation

	XML Call
	XMLTranslator Implementations
	Object-Level Calls
	Data Calls

	XML Descriptor
	XML Platform
	XML File Login
	XML Schema Manager
	XML Accessor
	XML Translator
	Default XML Translator

	XML Zip File Extension
	Using the Zip File Extension
	Configure Direct File Access With Zip File Extension
	Implementation Details

	6 Queries
	Introduction to Query Concepts
	Query Types
	Object Queries
	Summary Queries
	Data Queries
	Object Write Queries

	Query Components
	OracleAS TopLink Expressions
	Query by Example
	Stored Procedures
	EJB QL
	Custom SQL

	Query Configuration Options
	Query Execution Options
	Query and the Cache
	Performance
	Unit of Work

	Query Development Options
	Building Queries with the OracleAS TopLink Mapping Workbench
	Building Queries in Java

	Using Predefined Queries
	Using Named Queries
	Using Redirect Queries

	Building EJB Finders
	Query Keys

	Query Building Basics
	Expressions
	Accessing Methods in Expressions
	Expression Components
	Creating Expressions with the Expression Builder
	Using Multiple Expressions
	Parameterized Expressions and Finders
	Platform and User-Defined Functions
	Data Queries
	Query Keys
	Reference

	Custom SQL
	SQL Queries
	SQL Data Queries

	Stored Procedure Calls
	Output Parameters
	Cursor Output Parameters
	Output Parameter Event
	Reference

	EJB�QL
	Using EJB�QL with OracleAS TopLink
	ReadAllQuery
	Session
	EJB�QL Limitations

	Query by Example
	Defining a Sample Instance
	Defining a Query by Example Policy
	Combining Query by Example with Expressions
	Reference

	Executing Queries
	Session Queries
	Reading Objects from the Database
	Writing Objects to the Database

	Query Objects
	Query Object Components
	Creating a Query Object
	Read Query Object Examples
	Specialized Query Object Options
	Query Optimization

	Predefined Queries
	Named Queries
	Named Finders
	Redirect Queries
	EJBs and Redirect Finders

	Queries Defined with the OracleAS TopLink Mapping Workbench
	Query Managers
	Customize the Default Query Methods
	Define Additional Join Expressions
	Customize the Existence Check

	Query Results
	Objects
	Collections
	Java Streams
	Report Query Results

	Queries and the Cache
	Cache Usage
	Cache and the Database
	In-Memory Query Cache Usage
	Cache and the Primary Key

	Disabling the Identity Map Cache Update During a Read Query
	Refresh
	Object Refresh
	Cascading Object Refresh
	Refreshing the Identity Map Cache During a Read Query

	Caching Query Results

	Query Objects and Write Operations
	Write Query Overview
	Non-Cascading Write Queries
	Disabling the Identity Map Cache During a Write Query
	Using Query Objects to Customize the Default Database Operations

	Query Object Performance Options
	Batch Reading
	Guidelines for Implementing Batch Reading

	Join Reading
	ReportQuery
	Partial Attribute Reading
	Cache Results In Query Objects

	Oracle Extension Support
	Oracle Hints and the OracleAS TopLink Query Framework
	Hierarchical Queries

	Advanced Querying
	Creating Additional Query Keys
	Implementing Query Keys in Java

	Querying on Interfaces
	Querying on an Inheritance Hierarchy
	Cursors and Streams
	Cursors and Java Iterators
	Java Streams
	Optimizing Streams

	Querying Across Variable One-to-One Mappings

	EJB Finders
	Defining Finders in OracleAS TopLink
	ejb-jar.xml Finder Options
	entity tag

	Call Finders
	Creating Call Finders
	Executing a Call Finder

	Expression Finders
	EJB�QL Finders
	ReadAll Query and EJB�QL
	EJB�QL Session Queries

	SQL Finders
	Dynamic Finders
	ReadAll Finders
	Creating READALL Finders

	Choosing the Best Finder Type for Your Query
	Using the OracleAS TopLink Expression Framework
	Using Redirect Finders
	Using SQL

	ejbSelect
	Advanced Finder Options
	Caching Options
	Disable Cache for Returned Finder Results
	Refreshing Finder Results
	Managing Large Result Sets with Cursored Streams

	Exception Handling

	7 Transactions
	Introduction to Transaction Concepts
	Database Transactions
	OracleAS TopLink Unit of Work Transactions
	Transaction Context
	Transaction Demarcation
	Transaction Isolation

	Understanding the Unit of Work
	Unit of Work Benefits
	Unit of Work Life Cycle
	Clones and the Unit of Work
	Nested and Parallel Units of Work
	Nested Unit of Work
	Parallel Unit of Work

	Reading and Querying Objects with the Unit of Work
	Reading Objects with the Unit of Work
	Querying Objects with the Unit of Work

	Commit and Rollback
	Commit
	Rollback

	Primary Keys
	Example Object Model and Schema

	Unit of Work Basics
	Acquiring a Unit of Work
	Creating an Object
	Modifying an Object
	Associations: New Target to Existing Source Object
	Associating without Reference to the Cache Object
	Associating with Reference to the Cache Object

	Associations: New Source to Existing Target Object
	Associations: Existing Source to Existing Target Object
	Deleting Objects
	Using privateOwnedRelationship
	Explicitly Deleting from the Database
	Understanding the Order in which Objects are Deleted

	Advanced Unit of Work
	Troubleshooting a Unit of Work
	Avoiding the Use of Post-commit Clones
	Determining Whether or not an Object is the Cache Object
	Dumping the Contents of a Unit of Work
	Handling Exceptions

	Creating and Registering an Object in One Step
	Using registerNewObject
	Registering a New Object with registerNewObject
	Associating New Objects with One Another

	Using registerAllObjects
	Using Registration and Existence Checking
	Check Database
	Assume Existence
	Assume Non-existence

	Working with Aggregates
	Unregistering Working Clones
	Declaring Read-Only Classes
	Setting Read-Only Classes for a Single Unit of Work
	Setting Read-Only Classes for All Units of Work
	Read-Only Descriptors

	Using Conforming Queries and Descriptors
	Using Conforming Queries
	Conforming Query Alternatives
	Using Conforming Descriptors

	Merging Changes in Working Copy Clones
	Resuming a Unit of Work After Commit
	Reverting a Unit of Work
	Using a Nested or Parallel Unit of Work
	Parallel Unit of Work
	Nested Unit of Work

	Using a Unit of Work with Custom SQL
	Validating a Unit of Work
	Validating the Unit of Work Before Commit

	Controlling the Order of Deletes
	Using the Unit of Work setShouldPerformDeletesFirst Method
	Using the Descriptor addConstraintDependencies Method
	Using deleteAllObjects without addConstraintDependencies
	Using deleteAllObjects with addConstraintDependencies

	Improving Unit of Work Performance

	J2EE Integration
	External Connection Pooling
	When to Use External Connection Pools
	Configuring an External Connection Pool in sessions.xml
	Configuring an External Connection Pool in Java

	External Transaction Controllers
	Configuring an External Transaction Controller in sessions.xml
	Configuring an External Transaction Controller in Java
	Acquiring a Unit of Work in a JTA Environment
	Using a Unit of Work When an External Transaction Exists
	Using a Unit of Work When No External Transaction Exists

	8 Cache
	Introduction to Cache Concepts
	Cache Architecture
	Session Cache
	Unit of Work Cache
	Stale Data

	Cache Locking
	Distributed Cache Synchronization
	Cluster
	Discovery
	Message Transport
	Name Service
	Propagation Modes

	Cache Locking and Isolation
	Configuring the Cache

	Distributed Cache Synchronization
	Configuring Cache Synchronization in the sessions.xml File
	Clustering Service
	Discovery
	Name Service
	Using the Java Message Service
	Synchronous and Asynchronous Propagation
	Error Handling

	Explicit Query Refreshes
	Refresh Policy
	EJB Finders and Refresh Policy

	Remote Command Manager
	RCM Implementation Requirements
	RCM Structure
	Transmitting Commands From OracleAS TopLink with RCM
	Using Commands on a Non�OracleAS TopLink Application

	RCM Channels
	Configuring the RCM
	Configuring the RCM for OracleAS TopLink Applications
	Configuring RCM for Non-OracleAS TopLink Applications

	Error Handling
	Guidelines for Using RCM
	Custom Remote Commands

	9 Packaging for Deployment
	Introduction to Packaging and Deployment Concepts
	OracleAS TopLink Approach to Deployment
	OracleAS TopLink in an Enterprise Application
	Road to Deployment

	XML Versus Java Source Deployment

	Creating OracleAS TopLink Deployment Files
	XML Deployment Files
	Project.xml File
	Sessions.xml File
	Configuring the toplink-ejb-jar.xml File with the IBM WebSphere Server 4.0
	Configuring the toplink-ejb-jar.xml File with the BEA WebLogic Server

	Using Java Source Deployment Files
	XML Files for Java Deployment

	Configuring Additional Files for CMP Deployment
	Configuring the ejb-jar.xml File
	Configuring the [J2EE-Container]-ejb-jar.xml

	Packaging an OracleAS TopLink Application
	Java Applications
	Packaging the Java Application
	Deploying the Application to a Client

	Java Server Pages and Servlets Applications
	Packaging Applications with JSPs and Servlets
	Deploying the Application to a Client

	Session Bean Applications
	Packaging Applications with Session Beans
	Deploying the Application to a Client

	Container-Managed Persistence Applications
	General Deployment
	Deploying the Application to BEA WebLogic Server
	Deploying the Application to IBM WebSphere 4.x Server

	Bean-Managed Persistence Applications
	Deploying the Application

	Hot Deployment of EJBs

	10 Tuning for Performance
	Introduction to Tuning Concepts
	OracleAS TopLink as Part of a Larger Application
	An Effective Tuning Approach

	Profiling Performance
	Using the Profiler in the Web Client
	Using the Profiler in Java
	Browsing the Profiler Results

	General Tuning Tips
	Basic Performance Optimization
	OracleAS TopLink Reading Optimization Features
	Reading Case 1: Displaying Names in a List
	Partial Object Reading
	ReportQuery

	Reading Case 2: Batch Reading Objects
	Reading Case 3: Using Complex Custom SQL Queries
	Reading Case 4: Using View Objects

	OracleAS TopLink Writing Optimization Features
	Writing Case 1: Batch Writes
	Cursors and Batch Writes
	Sequence Number Preallocation
	Batch Writing
	Parameterized SQL
	Multiprocessing

	Schema Optimization
	Schema Case 1: Aggregation of Two Tables into One
	Schema Case 2: Splitting One Table into Many
	Schema Case 3: Collapsed Hierarchy
	Schema Case 4: Choosing One Out of Many

	A Application Development Tools
	OracleAS TopLink — Web Client
	Configuring the Web Client
	Building the Web Client EAR File
	Configuring the Application Server

	Connecting to OracleAS TopLink Sessions
	Searching for Objects
	Creating and Editing Objects
	Performing SQL Queries
	Using the Performance Profiler
	Setting Web Client Preferences

	Configuring OracleAS TopLink for Oracle JDeveloper
	Deploy Tool for WebSphere Server
	Using the Deploy Tool with WebSphere Studio Application Developer (WSAD)
	Troubleshooting

	Schema Manager
	Using the Schema Manager to Create Tables
	Creating a Table Definition
	Adding Fields to a Table Definition
	Defining Sybase and Microsoft SQL Server Native Sequencing
	Creating Tables on the Database
	Creating the Sequence Table

	Managing Java and Database Type Conversions

	Session Management Services
	Runtime Services
	Development Services
	Using Session Management Services

	Stored Procedure Generator
	Generating Stored Procedures
	Sequencing and Stored Procedures

	Attaching the Stored Procedures to the Descriptors

	B Configuring OracleAS TopLink for J2EE Containers
	Software Requirements
	Non-CMP Configuration
	Oracle Application Server Containers for J2EE Support
	IBM WebSphere Application Server 4.0
	Configuring IBM WebSphere Module Visibility Setting

	IBM WebSphere Application Server 5.0
	BEA WebLogic Application Server (6.1, 7.0 or 8.1)
	Using a Security Manager with BEA WebLogic Server

	OracleAS TopLink CMP Configuration
	IBM WebSphere Application Server 4.0
	BEA WebLogic Application Server (6.1, 7.0 and 8.1)

	OracleAS TopLink in a BEA WebLogic Cluster
	Collocation
	Static Partitioning
	Pinning

	Cache Synchronization and the Cluster
	Configuring Cache Synchronization

	C Error Codes and Messages
	OracleAS TopLink Exceptions
	Runtime Exceptions
	Development Exceptions
	Format of Exceptions
	Exception Error Code Numbers

	Exception Error Codes and Descriptions
	Descriptor Exception
	Error Codes 1 – 176

	Builder Exceptions
	Error Codes 1001 – 1042

	Concurrency Exception
	Error Codes 2001 – 2006

	Conversion Exception
	Error Codes 3001 – 3007

	Database Exception
	Error Codes 4002 – 4018

	Optimistic Lock Exception
	Error Codes 5001 – 5008

	Query Exception
	Error Codes 6001 – 6098

	Validation Exception
	Error Codes 7001 – 7104

	EJB QL Exception
	Error Codes 8001 – 8010

	Session Loader Exception
	Error Codes 9000 - 9009

	EJB Exception Factory
	Error Codes 10001 - 10048

	Communication Exception
	Error Codes 12000 - 12004

	XML Data Store Exception
	Error Codes 13000 - 13020

	Deployment Exception
	Error Codes 14001 - 14027

	Synchronization Exception
	Error Codes 15001 - 15025

	JDO Exception
	Error Codes 16001 - 16006

	SDK Data Store Exception
	Error Codes 17001 - 17006

	JMS Processing Exception
	Error Codes 18001 - 18002

	SDK Descriptor Exception
	Error Codes 19001 - 19003

	SDK Query Exception
	Error Codes 20001 - 20004

	Discovery Exception
	Error Codes 22001 - 22004

	Remote Command Manager Exception
	Error Codes 22101 - 22105

	XML Conversion Exception
	Error Code 25001

	EJB JAR XML Exception
	Error Codes 72000 - 72023

	Entity Deployment
	Generating Deployment JARs
	Common BEA WebLogic Deployment Exceptions

	Common IBM WebSphere Server Exceptions
	Problems at Runtime
	Common OracleAS TopLink for IBM WebSphere Deploy Tool Exceptions

	Common BEA WebLogic 6.1 Exceptions
	Common BEA WebLogic 7.0 Exceptions
	Common BEA WebLogic 8.1 Exceptions

	Index

