Oracle® Application Server 10g
MapViewer User's Guide

10g (9.0.4)

Part No. B10559-01

September 2003

ORACLE

Oracle Application Server 10g MapViewer User’s Guide, 10g (9.0.4)
Part No. B10559-01

Copyright © 2001, 2003, Oracle Corporation. All rights reserved.
Primary Author: Chuck Murray

Contributors: Dan Abugov, Janet Blowney, Clarke Colombo, Dan Geringer, Albert Godfrind, Frank Lee,
L.J. Qian, Vishal Rao, Jayant Sharma, Ji Yang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, SQL*PIus, and Oracle Store are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send US YOUTr COMMEBNES ...ttt xiii
PIEIACE. ... XV
T (o [1=] Lot ST PP PP XV
Documentation ACCESSIDIIITYooiiiiiiii bbb e e XV
OFGANTZATION ...t bbb bbbt bbb bbb bbbt bbb bbbt nn s XVi
Related DOCUMENTATIONc.ooviviieiiiiiieiee et XVii
(070 a1V 7=] 011 o] o LSOO XViii
New and Changed FEALUIES ...t Xix
JAVA CHENT AP ..ttt b et b e bbb bbb e e bt et e e be b sbe b e XiX
JSP TAQ LIDFAIY ... bbb bbbttt XiX
o AN o] g 0 P]] o Lo SRS XiX
Y/ =T o J I=To =T o To 1] o] o L] o AP OO SRRSOV XX
Query Capabilities with Nonspatial AttribULES ... XX
Basic Support for GeoreferenCed IMaQESocvievviieeiecees e naens XX
JDK 1.4 and AWT Headless MOAE SUPPOIT ...ttt XX
Performance IMPIrOVEIMENTS.oiiii bbb bbbt XX

1 Introduction to MapViewer

1.1 OVEIrVIEW OFf MAPVIBWEN ...ttt 1-1
11.1 BaSiC FIOW OF ACLION ..o 1-2

1.1.2 YN o] AT (o1 10 | =TT 1-3

1.2 Getting Started With MapVIBWETcooiiiiiiii s 1-4
1.3 PrerequUIisite SOTIWATE ..o et eeneas 1-5
1.4 Installing and Deploying MapVIEWEc.ccviiiiieeie it se e 1-5
14.1 Deploying MapViewer in an Oracle Application Server Environment.................. 1-6
14.1.1 1= (101 AN o o] FTor= L (o] o I o= o - PSSR 1-6
1.4.1.2 URL Mappings for Web Modules Page.........ccccccevviiiiiiie v 1-6
1413 SUMIMAIY PAGE......ouiiiiiiiiie ettt ettt bbb 1-6
1.4.1.4 Pages for Completing the Deployment..........cccccvvviieiciece e 1-7
1.4.2 Installing MapViewer with a Standalone Installation of OC4Jc.cccceoevvnee 1-8
1421 Editing the OC4J Configuration Files to Autostart MapViewer 1-8
1.4.2.2] 7 U (1 o 1O 1O N RS 1-10
1.4.2.3 Running SQL Scripts, If NECESSAIYccceiviieiieiieiisese e 1-11
1424 Verifying That the Deployment Was Successful ..., 1-11
1.5 ConfigUIING MAPVIEWENccueieiiieiceeeisess sttt e et e st sresaesnesne s eneeneeneanens 1-12
15.1 Specifying Logging INformationcccceveiiiiiiiccc e 1-18
15.2 Specifying Map File Storage and Life Cycle Informationccccocvviieniinnnns 1-19
1.5.3 Restricting Administrative (Non-Map) REQUESES........ccccvereiereeiecininre e 1-20
154 Specifying a Web Proxy for Background Image URLS.........ccccccoccviviievinninnennnnn, 1-22
155 Specifying Global Map Configuration OptionsS.........cccoeieieiiiiiineie e 1-22
1.5.6 Customizing the Spatial Data Cache ..o 1-24
1.5.7 Defining Permanent Map Data SOUFCES..........ccceveieeieiieeie e et 1-25
1.6 Getting Started USiNG MapVIBWETccociiiiiiiiiie et 1-26
1.6.1 Dynamically Defining MapViewer Data SOUICES.........cccevevevevnivseneseseseesieneenas 1-26
1.6.2 Example JSP File That Uses MapVIEWENccccveivevieiieieieese e e 1-27
1.6.3 Additional JSP EXampPle FIlES ... 1-29

MapViewer Concepts

21 OVEBIVIBW. ...ttt ettt sttt sttt s e st e s e Rt ekt s be et e b e be st st et et et eneenenbeabeaneneas 2-1
2.2 3] 174 LTS 2-2
2.3 TRBIMIES L.ttt bbbt b e bt se et s et ea bbb b 2-3
23.1 Styling Rules in Predefined ThemMES.........ccoviiiiiiie e 2-4
2.3.2 IDBEC TREIMES ...ttt ettt sttt ettt et 2-6
2321 Storing Complex JDBC Themes in the Database............cccccocvveveivieeinseeniesnnenn, 2-7
2.3.3 Thematic MaPPING . ..o e 2-8

2.34 IMAGE THEMES ...ttt esneenes 2-15

234.1 Storing Image Theme Definitions in the Databasec.ccocoeveniiincninn, 2-17
2.4 Y= T 01O 2-18
24.1 MaP SIZE AN SCAIE........ccei e e 2-19
24.2 Y/ F=T o I =T o =1 o Lo RO OSSR URURURTURURPRURN 2-21
2.4.3 Processing 0f Map REQUESTScccviveiviricieeieee st sesiee sttt s sse e neenens 2-24
2.5 MapViewer Metadata VIBWSccce ittt sna s 2-24
25.1 XXX_SDO_IMAPS VIBWS.....oictiiie sttt sttt ettt sba et saee st s ta et st beene e 2-25
2.5.2 XXX_SDO_THEMES VIBWS.....cviiiiiitiiisie s st seeeee e e st st snessensesesnaenessesseses 2-26
253 XXX_SDO_STYLES VIBWSoviiiieiiiiei ettt et et ebe s 2-26

MapViewer Map Requests

3.1 Map ReqUESE EXAMIPIESocuvii et 3-2
3.1.1 SIMPIE MAP REQUEST ... e e 3-3
3.1.2 Map Request with Dynamically Defined Theme ..o, 3-3
3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme 3-3
3.14 Map Request with Center, Base Map, Dynamically Defined Theme, and Other
FRATUIES ..ottt b et b et b bt b e e bt ae e s be e e e sbeesbesbeeeesbeebenreen 34
3.15 Map Request With Image TheMEccccv i 3-6
3.1.6 Map Request for Image of Map Legend ONlYccccoveievieiiciienccee e 3-7
3.1.7 Map Request Using a Pie Chart Theme ... 3-8
3.1.8 Java Program USiNg MapVIBWENccccvviieierenerieieeie e sie s sie st s siense e ensesansenns 3-11
3.1.9 PL/SQL Program UsSiNg MapVIEWETcccceieiiieiiiie e eeste e ste e e snesreaneens 3-14
3.2 MaAP REQUESE DTD ...ttt et b et b e eb ettt ennesbe s 3-16
3.2.1 MAaP_reqUESE EIBMENTcv s 3-18
3.2.2 Map_reqUESt ALIFIDULES. ... e e 3-18
3.23 DOX EIEMIBNT......eiiiie ettt sttt n e e nne s 3-20
3.24 CENET EIBMENT ..ot e e 3-20
3.25 ThemeS EIEBMENT ... e e 3-21
3.2.6 ThEME EIEBMENT ...ttt et ne et nre e 3-21
3.2.7 o Lo Yoo [UT=T oV =1 1= o =] o | TR 3-22
3.2.8 jdbc_image _query EIBMENTcveiiieie et 3-23
3.2.9 QEOFEAtUIE EIBMENT ...t 3-25
3.2.10 1= 1= o I = 1= 0 0 =T o | USRS 3-28
3.3 INformation REQUESE DT Dccciiiiciiiiece sttt et sre e e enae s 3-31

vi

34 Map RESPONSE DTD ...oiiiiiiiiiiiiie sttt st sbe b et sne et 3-33
35 MapViewer EXCEPION DTD ...ttt e 3-33
3.6 (CTeTo] 0 0 [=1 gV B I I (@ 1T) T RSOSSN 3-34

MapViewer JavaBean-Based API

4.1 Usage Model for MapViewer JavaBean-Based APl.........c.ccccooeviivinin s seseseiesneanens 4-1
4.2 Preparing to Use the MapViewer JavaBean-Based API..........c.ccccoccviviiiieiieiiscnecccnn, 4-3
4.3 USING the MapVIBWET BEANccciiiiiiiiiie ettt et sne e 4-4
4.3.1 Creating the MapVieWer BEaANc.ccviviiiinieie e ere e 4-4
4.3.2 Setting Up Parameters of the Current Map Request...........cccocovovvieiieiiievnnicse s, 4-5
4.3.3 Adding Themes or Features to the Current Map Requestccocoveiiieieiinenienn 4-6
4.3.4 Manipulating Themes in the Current Map REqQUESLccccvecvvvrivvinccrisiesccenies 4-7
4.3.5 Sending a Request to the MapVIeWEr SEIVICEcccccveveivevieiiee e 4-9
4.3.6 Extracting Information from the Current Map ReSPONSEccccovrererencniereeenn. 4-10
4.3.7 Using Data Source and Mapping Metadata Methodsccooevvivvieiincicrieneen, 4-11
4.3.8 Querying Nonspatial Attributes in the Current Map Window...........c.ccccccevvene.e. 4-11
4.3.9 Using Optimal Methods for Thick Clients..........ccocoiiiiiiini e 4-13

MapViewer JSP Tag Library

5.1 USING MaPVIEBWET JSP TAUS ...viviieeieieeieiieiesie sttt sttt sttt bbb st e e ne e b 5-2
5.2 MapViewer JSP Tag Reference INformation.........ccccccooeveieiniiic s 5-3
5.2.1 AAAIDBCTREIME ...t bbbttt b st sbe b nnes 5-4
5.2.2 addPredefiNedTREME ... e 5-6
5.2.3 L0 o] 01V =T o 10 SRS 5-7
5.2.4 (o< 1o = o [PP P ST UP PPN 5-7
5.2.5 TAENTITY .ttt b e e bbbt ere e 5-8
5.2.6 IMPOITBASEMAP .. .cvvcvveveeieeeee ettt sttt e e reeneerentesnesnenees 5-10
5.2.7 1L OSSOSO 5-11
5.2.8 MAKELEGENT ...ttt b et b et b ettt ebe e b 5-11
5.2.9 [0] o TSSO U O TP TP TP PRSP 5-12
5.2.10 SEEPAIAIM .. e 5-13
5.3 JSP Example (Several Tags) for MapVIEWEr ..o 5-15

MapViewer Administrative Requests

6.1 MaNagiNg Data SOUICTES.cueieuiiiieeiieie ettt ettt ettt et bbb bt e e ebeeb e bt ebe e 6-1
6.1.1 YANo (o L1 gTo Jr= W B F- L v= NS o 11 | o -SSRSO 6-1
6.1.2 REMOVING @ DAtA SOUICEccuiciiiiiee sttt sra e e 6-4
6.1.3 RedefiniNg @ Data SOUICEciiiiiiiiecic ettt 6-5
6.1.4 LiSting All Data SOUICEScviieiieiiesiere e seet ettt e e re e snesnennes 6-6
6.1.5 Checking the Existence of @ Data SOUICE...........ccoevieiiiii e 6-7
6.2 LIStING Al MBS ...ttt bbbttt ebe s 6-8
6.3 I3] o T I T 0 =TSSP 6-9
6.4 Y T T= o [T T S Y LSRR 6-10
6.4.1 LISTING STYIES ... ettt bt bbbt neane s 6-10
6.4.2 Adding a Style (Not an Image Marker Style)........ccccoovriveieciiiec e 6-11
6.4.3 Adding an Image Marker Style.........ccoiiiiiic i 6-12
6.4.4 Checking If @ StYle EXISTSccociiiieiiiiie et 6-13
6.5 Y F=T g = To [T o = ol o U= SRS SS S SRSR 6-14
6.5.1 Clearing Metadata Cache for a Data SOUICEccccevvvveiiiieece e 6-15
6.5.2 Clearing Spatial Data Cache for a Theme..........ccocooiiiiiiiicic e 6-16

Map Definition Tool

7.1 Overview of the Map Definition TOOI ... 7-2
7.2 (©0] o aT=To1 £ o] [Vo 1= RSP PRPR 7-3
7.3 0] [T @0 (0] gl = Vo - SR 7-5
7.4 STYIES: IMAIKEE PAJE ... ettt e e ettt ebe b b naeas 7-6
7.5 R3] 4 LT I g o = Vo -SSR 7-8
7.6] 0] [T AN =T W =T USRS 7-10
7.7 SEYIES: TEXE PAGE ..ttt bbbt 7-11
7.8 R A4 L ANa A - U (ot To I - o TSP 7-13
7.9 B I = g oISl Vo 1= PSSP 7-14
710 MAPS PAOE ...ttt 7-17

XML Format for Styles, Themes, and Base Maps

Al COlOT SEYIES.....eieee bbbttt A-2
A.2 Y=]] 04 LTSS A-3
A2.1 VECTOr MArKEr SEYIES......c.ooiiie et A-3

Vii

A.2.2 IMAage MArKEr SEYIESovvciie e e

A3 LN STYIES ..ttt b bbb e bbb e b n bbb re b e
A.4 F AN =T B] 14 LSS
A.5 BLICE2 A Y/ L= S SSS
A.6 AAVANCEA SEYIES ...ttt b et bbb bttt e st e et ebesbesae b
A.6.1 2T T =] S Y/ [SRS
A6.1.1 Collection-Based Buckets with Discrete Valuesccccoovovninininenenceee
A.6.1.2 Individual Range-Based BUCKELSccociiiiiiiiiiie e
A.6.1.3 Equal-Ranged BUCKELS.........ccceiveicesece et e
A.6.2 1070] o] g ol a1=T 0 0TI 4V [T
A.6.3 Variable Marker StYIE ... e
A7 Themes: StYIING RUIEScovieccs et e ere s
A8 BASE MBS .. ettt ittt sttt b e nreenareans

B Creating and Registering a Custom Image Renderer

C Using the Flash Mapping Client
C.1 How the Flash Mapping Clent WOIKS.........cccovoiiiiicce e
Cc.2 Embedding the Flash Mapping Client in a Web Pageccccceoeiiiiiiic e
C.3 Creating a Theme with Clickable Styled Features...........ccocvvvvereveeivcivsiene e
CA4 SVG and FIaSh IMAIKEISceoiiiieiiice et
C5 SIMPLIfYING Map GEOMELIIEScviiiiieiieiicetere e ene s

D Connection Pools and Java Object Cache in MapViewer

Index

viii

List of Examples

1-1 Sample MapViewer Configuration File ... 1-13
1-2 Restricting Administrative REQUESTEScoiiiiiiiiiire e e 1-21
2-1 XML Definition of Styling Rules for an Airport Theme ... 2-4
2-2 JDBC Theme in @ Map REQUESTcooiiiiiiiie et 2-6
2-3 Complex Query in a Predefined ThEME ..o 2-7
2-4 XML Definition of Styling Rules for an Earthquakes Themeccccooiiiiicininine 2-8
2-5 Advanced Style Definition for Earthquakes Theme..........ccccccooiiiiiieninceeee, 2-9
2-6 Mapping Population Density Using a Graduated Color Scheme.........c.ccoceceieiinnne 2-10
2-7 Mapping Average Household Income Using a Graduated Color Scheme................. 2-10
2-8 Mapping Average Household Income Using a Color for Each Income Range 2-11
2-9 Advanced Style Definition for Gasoline Stations Themeccccociiiieieniicincnns 2-12
2-10 Styling Rules of Theme Definition for Gasoline Stationscccoceovoiiniiniienene 2-13
2-11 Storing an Image Theme in the Database ... 2-17
2-12 XML Definition Of @ BaSe Mapc.cooiiiiiiiieiiie ettt 2-19
2-13 Legend Included in Map REQUESTcoiiieiiiiie et 2-21
3-1 Simple Map Request ("Hello WOrTA™) ... 3-3
3-2 Simple Map Request with Dynamically Defined Themeccocoiiiiiiniiiiniine 3-3
3-3 Map Request with Base Map, Center, and Additional Predefined Theme................... 3-3
3-4 Map Request with Center, Base Map, Dynamically Defined Theme, Other Features 3-4
3-5 Map Request With Image ThemE ... s 3-6
3-6 Map Request for Image of Map Legend Only.........cocooiiiiiiiiiiineceeee 3-7
3-7 Map Request Using a Pie Chart TheMIE ...t 3-9
3-8 JDBC Theme Using a Pie Chart Style ... 3-11
3-9 Java Program That Interacts With MapVieWer ... 3-11
3-10 PL/SQL Program That Interacts with MapVIieWer ..o 3-14
3-11 MapViewer INformation REQUEST ... 3-32
312 IMAP RESPOMNSEottt ettt ettt e e e b e ekt s b e e bt et e e bt es e e bt e as e ebeembesbe e e e sbeebesbeenbenreen 3-33
5-1 MapViewer Operations USING JSP TaGS . ..cocuiiiiiiriiiicieinese e 5-15
6-1 AdAING @ DAA SOUFCE......cueeiiiieiie ettt bbb e e b bbb e 6-3
6-2 REMOVING @ DALA SOUFICE ...ttt be st bbb e 6-4
B-1 Custom Image Renderer for ECW Image FOrmMatccooieiiiini i B-3
Cc-1 Including the Flash Mapping Client inan HTML File ... C-3
C-2 Creating a Theme with Clickable Styled Features............ocooooinninnc e, C-4
C-3 Creating a Flash Marker StYIEcooi it C-5
C—4 SIMPlifying Map GEOMELIIES.cciiiiiie ettt C-6

List of Figures

1-1 BaSIC FIOW OF ACHION........ciiiiiiiiiiciiie e 1-3
1-2 ATCINITECTUIE ... et r ekt b et r et b et n et n e b e 1-4
1-3 Deploying MapViewer: Wizard INntroduction Page ... 1-6
1-4 Deployed APPHICALIONSc.oiiie e sae e 1-7
1-5 MapViewer EXample JSP DiSPIaycccoiiiiiiiiiiiiccse e e 1-29
2-1 Image Theme and Other Themes Showing Boston Roadways...........ccccceeeeiniencninne. 2-15
2-2 MAP WIth LEGENG ...t bbb bbbt 2-23
3-1 Map Display Using a Pie Chart Theme ... 3-10
3-2 Map with <geoFeature> Element Showing Two Concentric Circles...........ccccocenunee. 3-28
3-3 TWO-COlUMN MaAP LEGENT ...ttt et 3-29
4-1 MapViewer Bean USAge SCENAITOS.ccuiiiirireriiieieieeeesiesie sttt seesee e seee e sse e sneas 4-2
7-1 CONNECTION PAGE ...ttt b e sb b et b bbb e 7-4
7-2 1070] [o] g == To [TN USSRV 7-5
7-3 IMIBEKEE PAJE ...ttt bbbt b e bbb et et e b e e b e b sbenbesbesae e 7-6
7-4 [T L=l = Vo [TSSOSO USRS PRPRURIN 7-8
7-5 AATEA PO ...t b et b b bt e b e e e e 7-10
7—-6 T XL PO ettt bbbt b bbbt e et e e bt e benne e 7-12
7-7 AAVANCEA PAGE ...ttt bbb bbb ettt 7-13
7-8 THREIMES PAGE ...ttt ettt bbb bbbttt be e 7-15
7-9 MBS PO ...ttt ettt bbbtk b e a e be e bt Re e b ae e nee e nbennee 7-17
Cc-1 Display of Theme with Clickable Styled Features...........cocooiiiiniii e C-4

List of Tables

2-1 Style Types and Associated Java ClaSsSeS........ccccoveiviveiiieerie et 2-3
2-2 Table Used with Gasoline Stations ThEME ... 2-14
2-3 XXX_SDO_IMAPS VIBWS ..ottt bbb et nes 2-25
2-4 XXX_SDO_THEMES VIBWS......oiiiiiiiiiiiieeee ettt 2-26
2-5 XXX_SDO_STYLES VIBWS ...ttt bbb st 2-26
5-1 JSP Tags fOr MAPVIBWEocieiieeece ettt et re et seenreens 5-3
5-2 addIDBCTheme Tag Parameters. ... iieiiiieie sttt 5-5
5-3 addPredefinedTheme Tag Parameters.........ccoeiveieiieieie et 5-7
5-4 getParam Tag ParamMeter ... 5-8
5-5 IAentify Tag ParamMeters ...t sre e 5-9
5-6 importBaseMap Tag Parameter.........cccoo e iecie et 5-10
5-7 L T o U= 1 1 (= OSSR 5-11
5-8 makeLegend Tag Parametersccccv i 5-12
5-9 FUN TAQ PAlAMETEIS ...ociiiiie ittt b e bbb e e beesaeesnbe s 5-13
5-10 setParam Tag Parameters. ...t nes 5-14

xi

Xii

Send Us Your Comments

Oracle Application Server 10g MapViewer User’s Guide, 10g (9.0.4)
Part No. B10559-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and enough information to identify the context. You can send comments to us
in the following ways:

Electronic mail: nedc-doc_us@oracle.com

FAX: 603.897.3825 Attn: MapViewer Documentation
Postal service:

Oracle Corporation

MapViewer Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please include your name and contact information.

If you have problems with the software, please contact your local Oracle Support Services.

Xiii

Xiv

Preface

Oracle Application Server 10g MapViewer User’s Guide describes how to install and use
MapViewer, a tool that renders maps showing different kinds of spatial data.

This preface contains these topics:

Audience

Audience

Documentation Accessibility
Organization

Related Documentation

Conventions

This document is intended primarily for programmers who develop applications
that require maps to be drawn. You should understand Oracle database concepts
and the major concepts associated with XML, including DTDs. You should also be
familiar with Oracle Spatial or Oracle Locator concepts, or at least have access to
Oracle Spatial User's Guide and Reference.

This document is not intended for end users of Web sites or client applications.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains

XV

markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://ww. oracl e.com accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

XVi

This guide contains the following elements:

Chapter 1, "Introduction to MapViewer"
Explains what MapViewer is, and how to install and configure it.

Chapter 2, "MapViewer Concepts”
Explains important concepts that you must understand to use MapViewer.

Chapter 3, "MapViewer Map Requests"

Explains how to submit XML requests to MapViewer, and it describes the XML
document type definitions (DTDs) for the requests (input) and responses (output).

Chapter 4, "MapViewer JavaBean-Based API"

Explains how to use the JavaBean-based MapViewer API, which exposes all
capabilities of MapViewer through a single JavaBean.

Chapter 5, "MapViewer JSP Tag Library"

Explains how to submit requests to MapViewer using JavaServer Pages (JSP) tags in
an HTML file.

Chapter 6, "MapViewer Administrative Requests"

Explains how to submit various administrative (non-map) requests, such as to add a
data source, through the MapViewer XML API.

Chapter 7, "Map Definition Tool"

Explains the console (Map Definition Tool) interface to MapViewer, which you can
use to manage mapping metadata (styles, themes, and maps) used by MapViewer.

Appendix A, "XML Format for Styles, Themes, and Base Maps”

Explains the XML format for defining each type of style. (This is intended only for
advanced users of MapViewer.)

Appendix B, "Creating and Registering a Custom Image Renderer"

Explains how to implement and register a custom image renderer for use with an
image theme.

Appendix C, "Using the Flash Mapping Client"

Explains how to use the Macromedia Flash mapping client to allow users of Flash
applications to interact with maps.

Appendix D, "Connection Pools and Java Object Cache in MapViewer"

Describes how MapViewer uses Java Database Connectivity (JDBC) connection
pooling and caching of Java objects to provide efficient performance.

Related Documentation

For more information, see the following documents in the Oracle Database
documentation set:

« Oracle Spatial User’s Guide and Reference
« Oracle9i Database Concepts
Printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e.conl

xvii

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. con menber ship

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.conl docunentation

Conventions

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts of
the statement or command not directly related to the example have been

omitted.
boldface Boldface type indicates a term defined in the text.
italic Italic type is used for book titles, emphasis, and some special terms.

nonospace Monospace type is used for the names of parameters, elements, attributes,
styles, themes, files, and directory paths. It is also used for code examples.

nonospace Monospace italic type is used to represent placeholders as variables.
italic
<> Angle brackets enclose user-supplied names.

[1 Brackets enclose optional clauses from which you can choose one or none.

XViii

New and Changed Features

This section describes major features that are new or changed since the previous
release of MapViewer, which was included in Oracle9iAS Release 2 (9.0.2 and 9.0.3).

Java Client API

A new Java client API provides convenient access to most MapViewer functions
from a Java application, a Java applet, a servlet within a Java2 Enterprise Edition
(J2EE) container different from the J2EE container that contains the MapViewer
service, or JavaServer Pages (JSP) code within the J2EE container that contains the
MapViewer service. For information about the JavaBean-based API, see Chapter 4.

JSP Tag Library

A set of custom JSP tags can be used to develop JSP applications using MapViewer
features. The minimum version requirement for using this JSP tag library is
Oracle9iAS release 9.0.3 or standalone OCA4J release 9.0.3. For information about the
MapViewer JSP tag library, see Chapter 5.

PNG Format Support

Maps can now be rendered into PNG format, which provides a richer
representation media and faster creation time than the GIF format. The f or mat
attribute of the <map_r equest > element accepts the PNG_STREAMand PNG_URL
values, as explained in Section 3.2.2.

Xix

Map Legend Support

Map legends are supported. The content and layout of a legend can be customized.
For information about map legends, see Section 2.4.2.

Query Capabilities with Nonspatial Attributes

A set of methods is provided for querying nonspatial attributes based on locations.
See Section 4.3.8 for details.

Basic Support for Georeferenced Images

You can define image themes that can be rendered along with the normal vector
themes. By default, MapViewer supports JPEG formatted images, but other formats
can be supported through a custom image renderer interface. For information about
image themes, see Section 2.3.4. For information about creating and registering a
custom image renderer, see Appendix B.

JDK 1.4 and AWT Headless Mode Support

MapViewer can now be run in the JDK 1.4 Java virtual machine (JVM). MapViewer
also supports the new headless AWT mechanism in JDK 1.4, which enables
MapViewer to run on Linux or UNIX systems without setting any X11 DI SPLAY
variable. To enable AWT headless mode on Linux or UNIX systems, specify the
following in the command line to start MapViewer:

-Dj ava. awt . headl ess=true

Performance Improvements

XX

The performance of MapViewer has been improved, particularly in querying and
retrieving spatial data.

You may also be able to improve performance further by customizing the spatial
geometry data cache, as explained in Section 1.5.6.

1

Introduction to MapViewer

Oracle Application Server MapViewer (or simply, MapViewer) is a programmable
tool for rendering maps using spatial data managed by Oracle Spatial or Oracle
Locator (also referred to as Locator). MapViewer provides tools that hide the
complexity of spatial data queries and cartographic rendering, while providing
customizable options for more advanced users. These tools can be deployed in a
platform-independent manner and are designed to integrate with map-rendering
applications.

1.1 Overview of MapViewer
MapViewer includes the following main components:

« Arendering engine (Java class library) that provides cartographic rendering
capabilities (map renderer)

« An Extensible Markup Language (XML) API that provides a programmable
interface to MapViewer

The rendering engine connects to the Oracle database through Java Database
Connectivity (JDBC). It also loads the map metadata (such as map definitions,
styling rules, and symbology) from the database, and applies it to the retrieved
spatial data.

The XML API provides high-level application developers with a convenient
interface for submitting a map request to MapViewer and handling the map
response.

In addition to these components, the Map Definition Tool, an unsupported tool
available through the Oracle Technology Network, simplifies the process of creating
and managing map, theme, and symbology metadata in a spatial database. For
information about the Map Definition Tool, see Chapter 7.

Introduction to MapViewer 1-1

Overview of MapViewer

The primary benefit of MapViewer is its integration with Oracle Spatial and Oracle
Locator. The current release of MapViewer supports only two-dimensional vector
geometries. MapViewer is not a full-featured Web map server or spatial application
server.

1.1.1 Basic Flow of Action

With MapViewer, the basic flow of action involves two steps, regardless of whether
or not the client requests a map or some MapViewer administrative action.

For a map request:

1. The client requests a map, passing in the map name, data source, center
location, map size, and, optionally, other data to be plotted on top of a map.

2. The server returns the map image (or a URL for the image) and the minimum
bounding rectangle (MBR) of the map, and the status of the request.

For a MapViewer administrative request:

1. The client requests a MapViewer administrative action, passing in the specific
type of request and appropriate input values.

2. The server returns the status of the request and the requested information.

Figure 1-1 shows the basic flow of action with MapViewer.

1-2 Oracle Application Server 10g MapViewer User’'s Guide

Overview of MapViewer

Figure 1-1 Basic Flow of Action

Mapping Client

Maﬁ' Ra&uest: Maﬁq Response:

- Map Mame - Map Ima

- Dati Source - MB[I; of ti Map
- Center and Size - Status

or or

Administrative Request: Administrative Response:
- Type of Reqguest - Status
= Input Values Map Viewer - Qutput Values

1.1.2 Architecture

Figure 1-2 illustrates the architecture of MapViewer.

Introduction to MapViewer 1-3

Getting Started with MapViewer

Figure 1-2 Architecture

Client Web Browser or Application
_________ P
Middle Tier MapViewer
(Oracle - -
Application (rendering engine)
Server)
_________ P ____.
Database

Spatial or| |Mapping
Locator ||Metadata
e ———

As shown in Figure 1-2;

MapViewer is part of the Oracle Application Server middle tier.
MapViewer includes a rendering engine.

MapViewer can communicate with a client Web browser or application using
the HTTP protocol.

MapViewer performs spatial data access (reading and writing Oracle Spatial
and Oracle Locator data) through JDBC calls to the database.

The database includes Oracle Spatial or Oracle Locator, as well as mapping
metadata.

1.2 Getting Started with MapViewer

To get started using MapViewer, follow these steps:

1.

Either before or after you install and deploy MapViewer, read Chapter 2 to be
sure you understand important terms and concepts.

Ensure that you have the prerequisite software (see Section 1.3).

Install (if necessary) and deploy MapViewer (see Section 1.4).

1-4 Oracle Application Server 10g MapViewer User’'s Guide

Installing and Deploying MapViewer

4. Use MapViewer for some basic tasks, as described in Section 1.6.

5. Optionally, use the Map Definition Tool (described in Chapter 7) to familiarize
yourself with styles, themes, and maps, and the options for each.

1.3 Prerequisite Software

To use MapViewer, you must have the following Java packages and Oracle
products, with the release number listed or a later release:

« Oracle Application Server 10g (9.0.4), or a standalone version of Oracle
Application Server Containers for J2EE (OC4J) release 9.0.2 or later (available
from the Oracle Technology Network at htt p: // ot n. or acl e. com

« Oracle Spatial or Oracle Locator (release 8.1.6 or later)

« Oracle Client (release 8.1.7 or later), if you need to use JDBC Oracle Call
Interface (OCI) features

« JavaJDK (orJRE) 1.2, 1.3, 0or 1.4.

MapViewer also supports the headless AWT mechanism in JDK 1.4, which enables
MapViewer to run on Linux or UNIX systems without setting any X11 DI SPLAY
variable. To enable AWT headless mode on Linux or UNIX systems, specify the
following in the command line to start MapViewer:

-Dj ava. awt . headl ess=true

1.4 Installing and Deploying MapViewer

This section describes how to install (if necessary) and deploy MapViewer to run in
the middle tier. MapViewer runs as an OC4J Web application and receives map
requests from a client.

You can deploy MapViewer either in a full Oracle Application Server environment
or after a standalone installation of OC4J. Choose the procedure that applies to your
needs:

« If you have already installed Oracle Application Server and want to deploy
MapViewer, follow the instructions in Section 1.4.1.

« If you have not installed Oracle Application Server but have installed OC4J and
now want to install and deploy MapViewer, follow the instructions in
Section 1.4.2.

Introduction to MapViewer 1-5

Installing and Deploying MapViewer

1.4.1 Deploying MapViewer in an Oracle Application Server Environment

If you have already successfully installed Oracle Application Server, you can deploy
the MapViewer application using the Oracle Enterprise Manager interface.

Start Oracle Enterprise Manager, navigate to the OC4J instance where you want to

deploy MapViewer, and select Deploy Application to start a wizard that takes you
through the deployment steps. Figure 1-3 shows part of the introductory page for

this wizard.

Figure 1-3 Deploying MapViewer: Wizard Introduction Page

ORACLE i
Enterprise Manager

—

. i T T
S W -
it oduction Select URL Mappings for Wat Resource Refarence
) Application Modules Mappmgs

Deploy Application: Introduction

1.4.1.1 Select Application Page
For J2EE Application, specify the complete path for the mapvi ewer . ear file.

For Application, specify: mapvi ewer

1.4.1.2 URL Mappings for Web Modules Page
For URL Binding, specify: / mapvi ewer

Click Finish to go directly to the Summary page.

1.4.1.3 Summary Page
Review the information on the Summary page. If you need to make any changes, go
back to the appropriate screen. If the information is correct, click Deploy.

Oracle Enterprise Manager deploys mapvi ewer . ear, modifies some XML files,
creates a URL binding in the Oracle HTTP listener, and displays a screen with
information about deployed applications. Figure 1-4 shows part of this page.

1-6 Oracle Application Server 10g MapViewer User’'s Guide

Installing and Deploying MapViewer

Figure 1-4 Deployed Applications

Deployed Applications
Default Application
Mame dafaull
Palh application.xml

Applications

Select an Application and...

Select Name Path
&« BC4USPDema Japplications/BCALUSPDemo. ear
C jazndemos Japplicationsfaindemos. ear
C jocdemo Aapplicationsfjocdema. aar
T mapviswwer Cfapplications/mapwawear. gar

1.4.1.4 Pages for Completing the Deployment

After you click Deploy on the Summary page, you must perform some steps to
associate the sdovi s. j ar file with MapViewer. This section presents these steps.

Note: The sdovi s. j ar file is the core rendering library for
MapViewer. It is not packaged as part of the mapvi ewer . ear file,
because some other Oracle Application Server components require
its functions. Therefore, the sdovi s. j ar file must be accessible
even if MapViewer is never deployed (that is, even if the

mapvi ewer . ear file is never unpacked).

1. Inthe Deployed Applications section of the page shown in Figure 1-4, click the
button (under the Select column) next to mapviewer (under the Name column).

2. Click Edit.

3. Onthe next page, in the Administration section, under Properties, click
General.

Introduction to MapViewer 1-7

Installing and Deploying MapViewer

On the next page, in the Library Paths section, click Add Another Row.

In the box for the added row, type the path for the sdovi s. j ar file, which isin
the $ORACLE_HOVE/ | bs/ | i b directory.

For example: D: \ oracl e\ora_BlI\ I bs\Ii b\sdovis.jar
Click Apply.
Restart the OC4J instance by clicking Restart on the OC4J instance page.

If the release number of the target Oracle database is 9.0.1 or lower, run SQL
scripts to create the MapViewer metadata views and predefined styles (see
Section 1.4.2.3).

Verify that the deployment was successful (see Section 1.4.2.4).

1.4.2 Installing MapViewer with a Standalone Installation of OC4J

To install and deploy MapViewer with a standalone installation of OC4J, you must
have installed OC4J on your system.

Follow these steps to install and deploy MapViewer with a standalone installation
of OC4J:

1.

If you have not already installed Oracle Application Server Wireless, download
the mapvi ewer . ear file to the $ORACLE_HOVE/ | bs directory. If this directory
does not exist, create it.

You can put the mapvi ewer . ear file in another directory; however, the
instructions in this guide assume that the mapvi ewer . ear file is in the
$ORACLE_HOVE/ | bs directory:.

Edit the OC4J configuration files (see Section 1.4.2.1).
Restart OC4J (see Section 1.4.2.2).

If the release number of the target Oracle database is 9.0.1 or lower, run SQL
scripts to create the MapViewer metadata views and predefined styles (see
Section 1.4.2.3).

Verify that the deployment was successful (see Section 1.4.2.4).

1.4.2.1 Editing the OC4J Configuration Files to Autostart MapViewer

To start MapViewer automatically each time OC4J is restarted, edit the OC4J
configuration files, as follows.

1-8 Oracle Application Server 10g MapViewer User’'s Guide

Installing and Deploying MapViewer

Edit $0C4J_HOWE/ confi g/ def aul t -web-si te. xm (or

htt p- web- si t e. xm if you downloaded an OC4J kit from the Oracle
Technology Network), where $0C4J_HQOVE should be $ORACLE

HOVE/ | 2ee/ homre. Add a <web- app> element inside the <web- si t e>
element. For example:

<web- app application="mapvi ewer" name="web" root="/mapvi ewer"
| oad- on-startup="true" />

The following example shows a sample def aul t - web- si t e. xm file after the
modification.

<?xm version="1.0"?>
<! DOCTYPE web-site PUBLIC "Oracle Application Server XML Wb site"
“http://xmns.oracle.confias/dtds/web-site.dtd">

<l-- Change the host name below to your own host name. Local host will -->
<l-- not work with clustering. -->

<l-- Also add cluster-island attribute as bel ow.

<web-site host="Iocal host" port="8888" display-name="Default Oracle
Application Server Java WbSite" cluster-island="1" >

-->

<web-site port="8888" display-nane="Default Oacle Application Server
Containers for J2EE Wb Site">

<I-- Uncomment the following |ine when using clustering -->

<I'-- <frontend host="your_host _name" port="80" /> -->

<I'-- The default web-app for this site, bound to the root -->

<def aul t -web-app application="default" name="def aul t WebApp" />

<l'-- Access Log, where requests are |ogged to -->

<access-1log path="../1og/defaul t-web-access.log" />
<web- app application="mapvi ewer" name="web" root="/mapvi ewer"
| oad- on-startup="true" />
</ web-site>

Modify $0C4J_HOVE/ confi g/ server. xm . Add an <appl i cati on>
element inside the <appl i cat i on- ser ver > element. For example:

<appl i cation name="nmapvi ewer" pat h="$MAPVI EWER EAR PATH' auto-start="true"/>

$MAPVI EMER_EAR_PATH should be the full path of the mapvi ewer . ear file.

The following example shows a sample ser ver . xnl file after the modification.

Introduction to MapViewer 1-9

Installing and Deploying MapViewer

<?xm version="1.0"?>
<! DOCTYPE appl i cation-server PUBLIC "Orion Application Server Config"
“http://xmns.oracle.coniias/dtds/application-server.dtd">

<application-server application-directory="../applications"
depl oynment - di rectory="../applicati on-depl oyment s" >
<rm-config path="./rm.xm" />
<I'-- JMs-server config link, uncoment to activate the JVMS service -->
<jms-config path="./jnms.xm" />
<l og>
<file path="../log/server.log" />
</l og>

<gl obal - appl i cation name="defaul t" path="application.xm" />

<gl obal - web- app- confi g path="gl obal - web-application. xm" />
<l'-- <web-site path="./secure-web-site.xm" /> -->
<web-site path="./defaul t-web-site.xm" />

<application name="mapvi ewer" path="D:\ O acl e\ Ora817\| bs\ mapvi ewer. ear"
auto-start="true" />
</ application-server>

1.4.2.2 Restarting OC4J

If OC4J is already running, you should not need to restart it. Instead, after you save
changes made to the OC4J configuration files, OC4J should automatically restart
and "hot deploy" MapViewer. In this case, you should see messages such as the
following:

Aut 0- unpacki ng D:\ Oracl e\ Ora817\ 1 bs\ mapvi ewer. ear... done.

Aut 0- unpacki ng D\ Oracl e\ Ora817\1 bs\ mapvi ewer\ web. war. .. done.

Install ed mapviewer...

[oracle.spatial . mapserver. core. Mapper Pool , WARN] destroying all mapper

i nstances.

[oracle.spatial.nmapserver.ons, INFQ *** Oracle Spatial MapViewer is
successfully started. ***

[oracle.spatial . mapserver. core. MapRecycl eThread, Tue Cct 23 15:46:07 EDT
2001, #Thread-3, INFQ cleansing ol d maps

If OC4J is not running, start OC4J after saving the changes that you made to the
OC4J configuration files. OC4J should start to deploy MapViewer.

1-10 Oracle Application Server 10g MapViewer User's Guide

Installing and Deploying MapViewer

While it is deploying MapViewer, OC4J extracts the whole MapViewer directory
structure from mapvi ewer . ear into the $ORACLE_HOVE/ | bs/ mapvi ewer
directory.

1.4.2.3 Running SQL Scripts, If Necessary

If all target databases are running Oracle Database release 9.2 or a later release, skip
this step and go to the next section. A target database is a database with Oracle
Spatial or Oracle Locator (release 8.1.6 or later) installed and from which you want
MapViewer to be able to render maps.

For each target database that is running Oracle Database release 9.0.1 or a previous
release, run SQL scripts to create the MapViewer metadata views and predefined
styles. While you are connected to the database as the MDSYS user, you must run
the first of the following SQL scripts, and it is recommended that you run the
second script:

$ORACLE_HOVE/ | bs/ mapvi ewer / admi n/ mapdef i ni ti on. sql
$ORACLE_HOVE/ | bs/ mapvi ewer / admi n/ def aul t st yl es. sql

The second script (def aul t st yl es. sql) inserts some styles and themes and a
base map into the MapViewer metadata views. You can use these styles and themes
in applications, and you can also use them as models when you create your own
MapViewer metadata objects.

1.4.2.4 Verifying That the Deployment Was Successful

To test if the MapViewer servlet has started correctly, point your browser to that
OC4J instance. For example, if MapViewer is installed on a system named
mapser ver. xyzabc. comand the HTTP port is 8888, enter the following URL to
invoke the MapViewer servlet without sending it a request:

http:// mapserver. xyzabc. com 8888/ mapvi ewer/ onser ver

You should use an XML-enabled Web browser, such as Internet Explorer 5.0 or a
later version, to see the XML response.

If the servlet has been started and initialized correctly, it generates a response,
which will probably be a message such as the following:

<?xm version="1.0" encodi ng="UTF-8" ?>

<ons_error>Message: [ons] enpty or null xm map request string. Wd Cct 24
12:22: 03 EDT 2001 Machine Node Name: mapserver Severity: 0 Description: at
oracl e.spatial . mapserver. ons. get XM.Docunent (ons. j ava: 379) at

oracl e.spatial . mapserver. ons. doPost (ons. j ava: 151) at

Introduction to MapViewer 1-11

Configuring MapViewer

oracl e.spatial . mapserver. ons. doGet (ons. java: 119) at

javax.servlet.http. HtpServlet.service(HtpServlet.java: 195) at
javax.servlet.http. HtpServlet.service(HtpServlet.java: 309) at

javax.servlet. http. HtpServlet.service(HtpServlet.java: 336) at

com evernind. server. http. Servl et Request Di spat cher. i nvoke(Servl et Request Di spat che
r.java: 501) at

com everni nd. server. http. Servl et Request Di spat cher. f orwar dl nt er nal (Ser vl et Request
Di spatcher.java: 170) at

com evernind. server. http. H t pRequest Handl er . processRequest (Ht t pRequest Handl er. j a
va: 576) at

com evernind. server. http. H t pRequest Handl er. run(Ht t pRequest Handl er . j ava: 189) at
com evernind. util.ThreadPool Thread. run(Thr eadPool Thread. j ava: 62) </ ons_er r or >

The preceding display indicates that the servlet has been started and initialized
correctly. The apparent errors in the display are normal at this point, because no
request was specified in the URL.

If the servlet has not been started and initialized correctly, there will be no response,
or the message 500 internal server error will be displayed.

1.5 Configuring MapViewer

Note: Most readers should skip this section, because after the
installation MapViewer is configured to run using the default
settings. This section is intended for advanced users who need to
customize the MapViewer configuration.

If the default configuration settings for running MapViewer are not adequate, you
can configure MapViewer by editing the MapViewer configuration file,

mapVi ewer Confi g. xm , which is located in the $ORACLE _

HOVE/ | bs/ mapvi ewer / conf directory. After you modify this file, you must
restart OC4J to have the changes take effect.

The MapViewer configuration file defines the following information in XML format:
« Logging information, defined in the <l oggi ng> element (see Section 1.5.1)

« Map image file information, defined in the <save_i nages_at > element (see
Section 1.5.2)

« Administrative request restrictions, defined in the <i p_noni t or > element (see
Section 1.5.3)

1-12 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

« Web proxy information for accessing external information across a firewall,
defined in the <web_pr oxy> element (see Section 1.5.4)

« Global map "look and feel" configuration, defined in the <gl obal _map_
conf i g>element (see Section 1.5.5)

« Internal spatial data cache settings, defined in the <spati al _dat a_cache>
element (see Section 1.5.6)

« Custom image renderer registration, defined in the <cust om i mage_
r ender er > element (see Appendix B)

« Permanent map data sources, defined in the <map_dat a_sour ce> element
(see Section 1.5.7)

All path names in the mapVi ewer Conf i g. xm file are relative to the directory in
which the file is stored, unless otherwise specified.

Example 1-1 shows a sample mapVi ewer Conf i g. xm file.

Example 1-1 Sample MapViewer Configuration File

<?xm version="1.0" ?>

<I-- This is the configuration file for Oracle Application Server MapViewer. -->

<I-- Note: Al paths are resolved relative to this directory (where this
configuration file is located), unless specified as an absol ute

path nare.
>

<Mapper Conf i g>

<|__ EE RS SRR EEEEEEEEE SRR R R SRR SR EEREEREEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEE] >
<|__ kkkkkhhkkhhkkhkrkhhhhhhkkkx Loggl ng Settl ngs LR RS R R R EEEE SRR >
<|__ kkkkkkkhkhhkhkhkkhkhkhhhhhhhhkhkhhhhhhhhhhhkhhhhhhhkhhkhkrhhhhhddhkhkkhkkhkrhhhkk >

<I'-- Uncomrent the following to nodify |ogging. Possible values are:

log_level ="fatal"|"error"|"warn"|"info"|"debug"|"finest"
default: info) ;

| og_thread_nane = "true" | "false" ;
log_time = "true" | "false" ;
one or nore |og_output elenents.

-->

<I--

<l ogging | og_| evel ="info" |og_thread_name="fal se"
log_tine="true">

<l og_out put nanme="Systemerr" />
<l og_out put nane="../l og/ mapvi ewer.log" />

Introduction to MapViewer 1-13

Configuring MapViewer

</l oggi ng>
-->
<|__ kkkkkkkhkhkhhkhkhkkhkhkhhhhhhhkhkhhhhhhhhhhhhkhhhhhhhhhkhkrhhhhhhdhkhkkhkkhrhhhkk -->
<|__ kkkkkkkkkkhkkkkkkkkhkkkk*k th Inage Settings kkhkkkkkkkkkkhhkkhkkkkkhkhhkk >
<|__ IR RS SR SR EEE RS SR ERERE RS SR EREEREEEEEEREREREEEEEEEEEEEEEEEEEEEEE] >

<I'-- Uncoment the following only if you want generated inmages to
be stored in a different directory, or if you want to custom ze
the life cycle of generated inmage files.

By default, all maps are generated under
$ORACLE_HOWE/ | bs/ mapvi ewer / web/ i mages.

I mages location related attributes:
file_prefix: image file prefix, default value is "omsmap"
url: the url at which inages can be accessed. It nust match the 'path’'
attribute below Its default value is "%IOST_URL% mapvi ewer/i mages"”
path: the corresponding path in the server where the inmages are
saved; default value is "%RACLE_HOVE% | bs/ mapvi ewer / web/ i mages”

Image life cycle related attributes:

life: the life period of generated imges, specified in mnutes.
If not specified or if the value is 0, inmages saved on disk will
never be del eted.

recycle_interval: this attribute specifies how often the recycling
of generated nap inages will be performed. The unit is mnute.
The default interval (when not specified or if the value is 0)
is 8*60, or 8 hours.

-->
<l--
<save_images_at file_prefix="onsmap"
url ="http://systenB. my_corp.com 8888/ napvi ewer/i mages"
pat h="../web/i mges"

/>
>
<|__ R S R R R R RS RS SRR R SRR SRR EE R R R E SRR RS >
<|__ IR R R SRR SRR SRR EE R SRS EE IP anitoring Settings EE R EE SRR SR EEEEEE SRR SR >
<|__ IR R R S R R S R R S R R S R R S R R S R R RS R R R R R R R R RS R R SR R SRR SR RS R SRR SRS SRR SRR SR SRR ST >

<I'-- Uncomrent the following to enable IP filtering for admnistrative

1-14 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

requests.

Not e:

Use <ips> and <ip_range> to specify which IPs (and ranges) are all owed.
W ldcard formsuch as 20.* is also accepted. Use a comma-delinited
list in <ips>.

Use <ips_exclude> and <ip_range_exclude> for IPs and |P ranges
prohi bited from accessing eLocation.

If an IP falls into both "allowed" and "prohibited" categories, it is
prohi bi t ed.

If you put "*" in an <ips> element, then all IPs are allowed, except
those specified in <ips_exclude> and <i p_range_excl ude>.

On the other hand, if you put "*" in an <ips_exclude> el enent, no one
will be able to access MapViewer (regardl ess of whether an IPis in
<i ps> or <ip_range>).

You can have nul tiple <ips> <ip_range> <ips_exclude> and
<i p_range_excl ude> el ements under <ip_ronitor>.

If no <ip_nonitor> elenent is present in the XM. configuration
file, then no IP filtering will be perforned (all allowed).

The way MapViewer determines if an IPis allowed is:

if(IP filtering is not enabled) then allow
if(IPis in exclude-list) then not allow
else if(IPis in allowlist) then allow

el se not allow

-->
<l--
<i p_noni tor>
<ips> 138.1.17.9, 138.1.17.21, 138.3.*, 20.* </ips>
<ip_range> 24.17.1.3 - 24.17.1.20 </ip_range>
<i ps_excl ude> 138.3.29.* </ips_exclude>
<i p_range_excl ude>20. 22. 34.1 - 20. 22. 34. 255</i p_range_excl ude>
</i p_noni t or>
>
<!__ khkkkhkhkkhkhhkkhkhhkkhhhhhhhkhhhhhhhhhhhkhhhkhrhhhhrhhhhhhrhhhkhkhhhkhkhrhkhkdhkxkdk >
<!__ LR R EEE SRR EEEEEEEEEEEESS V\éb PrOXy Settlng IR EEE SRR EEEREEEEEEEEEE RS >
<!__ LR R SRS SRS SRS SRS SRR SRR R R R RS R R RS E RS REE R EERREEEEEEEEEEEEESEEES] >

Introduction to MapViewer

1-15

Configuring MapViewer

<I'-- Uncoment and nodify the following to specify the Wb proxy setting.
This is only needed for passing background i mage URLS to
MapVi ewer in map requests or for setting a logo image URL, if
such URLs cannot be accessed without the proxy.

>
<l--

<web_proxy host ="www proxy. ny_corp.conf port="80" />
-->
<|__ khkkkhkhkkhkhkhkkhkhhkkhhhkhkhhkhkhhhhhhhkhhhhkhhhkrhkhhrhhhkhhhhdhhhkhkhhhkhkhhhkhkhhkkdk >
<|__ khkkkkhkkkkkhkkkkhkhkkhkhkkhkkhkk Gobal th COI’]fIgUI’atIOI’] kkhkkkkkkkkkkkhkkhkkkk >
<|__ LR R SRS SRS SRS SRS SRR SRR R R R R R R RS SRR SRS R EERREEEEEEEEEEEEESEEES] >

<I'-- Uncomrent and nodify the followi ng to specify systemw de paraneters
for generated maps. You can specify your copyright note, map title, and
an imge to be used as a custom|ogo shown on maps. The |ogo inmage nust
be accessible to this MapViewer and in either GF or JPEG format.
Not es:
- To disable a global note or title, specify an enptry string ("") for
the text attribute of <note> and <title> el ements.
- position specifies a relative position on the map where the
logo, note, or title will be displayed. Possible values are
NORTH, EAST, SOUTH, WEST, NORTH EAST, SOUTH EAST,
SOQUTH_VEST, NORTH_WEST, and CENTER
- imge_path specifies a file path or a URL (starts with "http://")
for the inmage.

<rendering> el ement attributes:
- Local geodetic data adjustnent: |f allow_|ocal _adjustnment="true",
MapVi ewer automatically perforns |ocal data
"flattening" with geodetic data if the data window is |ess than
3 deci mal degrees. Specifically, MpViewer perforns a sinple
mat hemati cal transformati on of the coordinates using a tangential
pl ane at the current map request center.
If allow_|ocal _adjustnment="false" (default), no adjustment is
per f or ned.
- Automatically applies a globular map projection (geodetic data only):
If use_globul ar_projection="true", MapViewer will dynamcally
apply a globular projection to geonetries being displayed.
If use_globul ar_projection="fal se" (the default), MapViewer does no map
projection to geodetic geonetries. This option has no effect on
non- geodeti ¢ data.

1-16 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

<l--
<gl obal _map_confi g>
<note text="Copyright 2003, Oracle Corporation”
font="sans serif"
posi tion="SOUTH EAST"/ >
<title text="MpViewer Demp"
font="Serif"
posi ti on="NORTH' />
<l ogo i mage_path="C: \\images\\a.gif"
posi ti on="SOQUTH VEST" />

<rendering all ow_| ocal _adj ust ment="fal se"
use_gl obul ar _proj ection="fal se" />
</ gl obal _nmap_confi g>

-->

<|__ IR R R R R R R R S R R S R R S R R S R R S R R R R R R RS R RS R R SR R SRR SR RS R SRR SRS SRR SRR SR EEEEE] >
<|__ IR SRS E R SRR SRR SR RS Spatial Data Cache Setting RS RS SRS SRS EEEEEEEE >
<|__ RS R S S RS R RS R R S R RS R S R RS R R R R R R RS R R SRR SRR SR RS R RS RS E R SRS REEEEEEEES] >

<I'-- Uncoment and nodify the following to custom ze the spatial data cache
used by MapViewer. The default is 64 MB for in-nenory cache and 512 MB
for disk spooling of spatial data. The di sk cache path is deternined by
MapVi ewer by defaul t.

To disable the cache, set max_cache _size to 0.

max_cache_size: Maxi mum size of in-menory spatial cache of MapViewer.
Size nust be specified in megabytes (MB).

max_di sk_cache_si ze: Maxi mum si ze of disk-based cache for MpViewer.
Size nust be specified in nmegabytes (MB).

di sk_cache_path: Tenporary di sk path where the spool ed objects will be

| ocated. Default is the "../cache" directory.
>

<I--
<spatial _data_cache max_cache_size="64"
max_di sk_cache_si ze="512"
di sk_cache_pat h="../cache"
/>
>

<|__ LRSS R R R EEREEEE SR EEREEEEEEEEREEREREEEEEEEEEEREEEESEEEEEEEEEESESEEEEEEE] >

<|__ kkkkkkkkkhkhhkkhkkkkhkkk CUSIO”]'ane anderers khkkkkkkkkhkhkhhhkkkkkhhkkk >

Introduction to MapViewer 1-17

Configuring MapViewer

<|__ LRSS R SR EEE RS SR EREE RS EREREEREEEEEEREREREEEEEEEEEEEEEEEEEEEEE] >

<I'-- Uncomrent and add as many custominmage renderers as needed here,
each in its own <custom.inmage_renderer> elenent. The "inage_format"
attribute specifies the format of images that are to be custom
rendered using the class with full name specified in "inpl_class".
You are responsible for placing the inplenentation classes in the
MapVi ewer' s cl asspat h.

-->

<l--

<custom.i mage_renderer inage_format="ECW

i npl _cl ass="com ny_cor p. i mage. ECWRenderer" />

-->
<|__ RS RS S RS R RS RS R RS R S R RS RS R R R R RS RS R RS R RS R RS E RS RS R RS E RS REE SRR EEEEEES] >
<|__ EEE R SRR SR EEEEEEEEEES] Predefined Eata Sources LR R E SR EEEEEEEEEEEEES] >
<|__ R R R R R R R R R R R R R S R R R R SR R R R R R R R R R S R R R R R R R R SRR R SRR R R R R R EEE RS >

<l'-- Uncomrent and nodify the following to predefine one or nore data
sour ces.

Note: You nust precede the jdbc_password value with a '!"
(exclamation point), so that when MapViewer starts the next
ting, it will encrypt and replace the clear text password.

>

<l--
<map_dat a_sour ce nane="nvdeno"
j dbc_host ="el ocati on. us. oracl e. cont
jdbc_sid="orcl"
j dbc_port="1521"
j dbc_user="scott"
j dbc_password="!tiger"
j dbc_node="t hi n"
nunber _of _mapper s="3"
/>
>

</ Mapper Confi g>

1.5.1 Specifying Logging Information

Logging information is specified in the <l oggi ng> element.

MapViewer provides a flexible logging mechanism to record runtime information
and events. You can configure the volume, format, and destination of the log
output.

1-18 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

You can specify the following information as attributes or subelements of the
<l oggi ng> element:

« Thel og_I evel attribute controls the levels of information that are recorded in
the log, which in turn affects the log output volume. Set the | og_I evel
attribute value to one of the following, listed from most restrictive logging to
least restrictive logging: FATAL, ERROR, WARN, | NFO, DEBUG, and FI NEST. The
FATAL level outputs the least log information (only fatal events are logged), and
the other levels are progressively more inclusive, with the FI NEST level causing
the most information to be logged. For production work, a level of WARN or
more restrictive (ERROR or FATAL) is recommended; however, for debugging
you may want to set a less restrictive level.

« Thel og_t hread_nane attribute controls whether or not to include the name
of the thread that encountered and logged the event.

« Thel og_ti me attribute controls whether or not the current time is included
when a logging event occurs.

« Thel og_out put subelement identifies output for the logging information. By
default, log records are written to the system error console. You can change this
to the system output console or to one or more files, or some combination. If
you specify more than one device through multiple | og_out put subelements,
the logging records are sent to all devices, using the same logging level and
attributes.

1.5.2 Specifying Map File Storage and Life Cycle Information

Map image file information is specified in the <save_i mages_at > element. By
default, images are stored in the $ORACLE_HOVE/ | bs/ mapvi ewer / web/ i mages
directory. You do not need to modify the <save_i nages_at > element unless you
want to specify a different directory for storing images.

A mapping client can request that MapViewer send back the URL for an image file
instead of the actual map image data, by setting the f or mat attribute of the <map__
r equest > element (described in Section 3.2.2) to G F_URL or PNG_URL. In this
case, MapViewer saves the requested map image as a file on the host system where
MapViewer is running and sends a response containing the URL of the image file
back to the map client.

You can specify the following map image file information as attributes of the
<save_i nages_at > element:

« Thefile_prefix attribute identifies the map image file prefix. A map image
file name will be a fixed file prefix followed by a serial number and the image

Introduction to MapViewer 1-19

Configuring MapViewer

type suffix. For example, if the map image file prefix is onsnap, a possible GIF
map image file could be onsmapl. gi f.

Default value: fi | e_prefi x=onsnap

« Theurl attribute identifies the map image base URL, which points to the
directory under which all map image files are saved on the MapViewer host.
The map image URL sent to the mapping client is the map image base URL plus
the map image file name. For example, if the map image base URL is
http://dev04. abcxyz. com 1521/ mapvi ewer /i nages, the map image
URL for omsmapl. gi f will be
http://dev04. abcxyz. com 1521/ mapvi ewer /i nages/ onmsmapl. gi f.

Default value: ur | =$HOST_URL/ mapvi ewer/ i mages

« The pat h attribute identifies the path of the directory where all map image files
are saved on the MapViewer host system. This directory must be accessible by
HTTP and must match the map image URL. Map image files saved in the
directory specified by the pat h attribute should be accessible from the URL
specified by the ur | attribute.

« Thel i f e attribute specifies the number of minutes that a generated map image
is guaranteed to stay on the file system before the image is deleted. If thel i f e
attribute is specified, ther ecycl e_i nt er val attribute controls how
frequently MapViewer checks for possible files to delete.

Default: MapViewer never deletes the generated map images.

« Therecycl e_interval attribute specifies the number of minutes between
times when MapViewer checks to see if it can delete any image files that have
been on the file system longer than the number of minutes for thel i f e
attribute value.

Default value: 480 (8 hours)

1.5.3 Restricting Administrative (Non-Map) Requests

In addition to map requests, MapViewer accepts administrative (non-map) requests,
such as requests to list all data sources and to add and delete data sources.
(Chapter 6 describes the administrative requests.) By default, all MapViewer users
are permitted to make administrative requests.

However, if you want to restrict the ability to submit administrative requests, you
can edit the MapViewer configuration file to allow administrative requests only
from users with specified IP addresses.

1-20 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

To restrict administrative requests to users at specified IP addresses, add the <i p_
nmoni t or > element to the MapViewer configuration file (or uncomment and modify
an existing element, if one is commented out). Example 1-2 shows a sample <i p_
nmoni t or > element excerpt from a configuration file.

Example 1-2 Restricting Administrative Requests
<Mapper Conf i g>

<i p_noni tor >
<ips> 138.1.17.9, 138.1.17.21, 138.3.*, 20.* </ips>
<ip_range> 24.17.1.3 - 24.17.1.20 </ip_range>
<i ps_excl ude> 138.3.29.* </ips_excl ude>
<i p_range_excl ude>20.22.34.1 - 20.22. 34. 255</i p_range_excl ude>
</ip_nonitor>

</ Mapper Confi g>

In Example 1-2:

« The following IP addresses are explicitly included as able to submit
administrative requests (unless excluded by an <i ps_excl ude> element):
138.1.17.9, 138.1.17.21, all that start with 138.3., all that start with 20., and all in
the range (inclusive) of 24.17.1.3 to 24.17.1.20.

« The following IP addresses are explicitly excluded from submitting
administrative requests: all starting with 138.3.29., and all in the range
(inclusive) of 20.22.34.1 to 20.22.34.255.

« All other IP addresses that are not explicitly included cannot submit
administrative requests.

Syntax notes for the <i p_noni t or > element:

« Use<ips>and <i p_r ange> elements to specify which IP addresses (and
ranges) are allowed. Asterisk wildcards (such as 20. *) are acceptable. Use a
comma-delimited list for addresses.

« Use<ips_exclude>and<ip_range_excl ude> elements to exclude IP
addresses and address ranges from submitting administrative requests. If an
address falls into both the included and excluded category, it is excluded.

« If you specify the asterisk wildcard in an <i ps> element, all associated IP
addresses are included except any specified in <i ps_excl ude>and <i p_
range_excl ude> elements.

Introduction to MapViewer 1-21

Configuring MapViewer

1.5.4 Specifying a Web Proxy for Background Image URLsS

If a map request contains the bgi mage (background image) attribute specifying a
URL for an image, the image might be behind a firewall that MapViewer cannot
directly access. To allow MapViewer to access background images in these cases,
use the <web_pr oxy> element to identify the host name and port number for
proxy access. For example:

<web_proxy host ="www proxy. myconpany. conf port="80" />

1.5.5 Specifying Global Map Configuration Options

You can specify the following global "look and feel" options for the display of each
map generated by MapViewer:

« Title

= Note (such as a copyright statement or a footnote)
« Logo (custom symbol or corporate logo)

« Local geodetic data adjustment

« Splitting geometries along the 180 meridian

To specify any of these options, use the <gl obal _map_conf i g> element. For
example:

<gl obal _map_confi g>

<note text="Copyright (c) 2003, XYZ Corporation"
font="sans serif"
posi tion="SOUTH EAST"/ >

<title text="Mup Courtesy of XYZ Corp."
font="Serif"
posi ti on="NORTH' />

<l ogo image_path="C\\images\\a.gif"
posi ti on="SOQUTH VEST" />

<rendering allow_| ocal _adjustnent="fal se"
use_gl obul ar _proj ection="fal se" />
</ gl obal _map_confi g>

Set the map title through the <t i t | e> element of the <gl obal _map_confi g>
element. You can also set the map title in an individual map request by specifying
theti t | e attribute with the <map_r equest > element; and in this case, the title in
the map request is used instead of the global title in the MapViewer configuration
file. Note the following information about the attributes of the <t i t | e> element:

1-22 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

The t ext attribute specifies the title string.

The f ont attribute specifies a font. The font must exist on the system where
MapViewer is running.

The posi ti on attribute provides a positioning hint to MapViewer when
determining where the map title will be drawn on a map. Possible values are:
NORTH, EAST, SOUTH, VEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST,
NORTH_WEST, and CENTER

Default value: NORTH

Set the map note through the <not e> element of the <gl obal _map_confi g>
element. Note the following information about the attributes of the <not e>
element:

The t ext attribute specifies the note string.

The f ont attribute specifies a font. The font must exist on the system where
MapViewer is running.

The posi ti on attribute provides a positioning hint to MapViewer when
determining where the map note will be drawn on a map. Possible values are:
NORTH, EAST, SOUTH, VEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST,
NORTH_WEST, and CENTER

Default value: SOUTH_EAST

Set the map logo through the <I ogo> element of the <gl obal _map_confi g>
element. The map logo image must be in either JPEG or GIF format. The image can
be stored in a local file system where the MapViewer instance will have access to it,
or it can be obtained from the Web by specifying its URL. To specify a map logo,
uncomment the <map_I| ogo> element in the MapViewer configuration file and edit
its attributes as needed.

Note the following information about the attributes of the <l ogo> element:

The i mage_pat h attribute must specify a valid file path name, or a URL
starting withhttp://.

The posi ti on attribute provides a positioning hint to MapViewer when
determining where the map logo will be drawn on a map. Possible values are:
NORTH, EAST, SOUTH, VEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST,
NORTH_WEST, and CENTER

Default value: SOUTH_WVEST

Introduction to MapViewer 1-23

Configuring MapViewer

If the logo image is obtained through a URL that is outside your firewall, you may
need to set the Web proxy in order for MapViewer to retrieve the logo image. For
information about specifying a Web proxy, see Section 1.5.4.

If you also specify a map legend, be sure that its position is not the same as any
position for a map title, note, or logo. (Map legends are explained in Section 2.4.2
and Section 3.2.10. The default position for a map legend is SOUTH_WEST.)

To have MapViewer automatically project geodetic data to a local non-geodetic
coordinate system before displaying it if the map data window is less than 3
decimal degrees, specify al | ow_| ocal _adj ust nent ="t rue" inthe
<renderi ng> element.

To have MapViewer automatically apply a globular map projection (that is, a map
projection suitable for viewing the world, and specifically the azimuthal equidistant
projection for MapViewer), specify use_gl obul ar _proj ecti on="true" inthe
<r ender i ng> element. This option applies to geodetic data only.

1.5.6 Customizing the Spatial Data Cache

You can customize the memory cache and disk cache that MapViewer uses for
spatial geometry objects by using the <spat i al _dat a_cache> element. For
example:

<spatial _data_cache max_cache_size="64"
max_di sk_cache_si ze="512"
di sk_cache_pat h="/var/t np"
/>

You can specify the following information as attributes of the <spati al _data_
cache> element:

« Themax_cache_si ze attribute specifies the maximum number of megabytes
(MB) of in-memory cache.

Default value: 64

« Themax_di sk_cache_si ze attribute specifies the maximum number of
megabytes (MB) of disk cache.

Default value: 512

« Thedi sk_cache_pat h attribute specifies the temporary disk path where the
spooled cache will be located.

Default value: location specified for the Java environment variable
java.io.tnpdir

1-24 Oracle Application Server 10g MapViewer User's Guide

Configuring MapViewer

The spatial data cache is always enabled by default, even if the element is
commented out in the configuration file. To completely disable the caching of
spatial data, you need to specify the max_cache_si ze attribute value as 0 (zero).

1.5.7 Defining Permanent Map Data Sources

Every map request must have a nane attribute that specifies a map data source,
which is a database user with geospatial data. You can predefine available map data
sources by using the <map_dat a_sour ce> element. For example:

<nmap_dat a_sour ce nane="nvdeno"

/>

j dbc_host =" mapsrus. us. or acl e. cont
jdbc_sid="orcl"

j dbc_port="1521"

j dbc_user="scott"

j dbc_password="!tiger"

j dbc_rode="t hi n"

number _of _mapper s="5"

You can specify the following information as attributes of the <map_dat a_
sour ce> element:

The nane attribute specifies a unique data source name to MapViewer. You
must specify the data source name in all map requests that identify a data
source.

The j dbc_host ,j dbc_si d,j dbc_port,andj dbc_user parameters specify
the database connection information and the database user name.

The j dbc_passwor d attribute specifies the database user's login password. It
must be prefixed with an exclamation point (!) when you specify the password
for the first time. When MapViewer next restarts, it will automatically obfuscate
and replace the clear text password.

The j dbc_node attribute tells MapViewer which JDBC driver to use when
connecting to the database. The default is t hi n (for the "thin" driver). The other
possible value is oci 8, which requires that you also have the Oracle database
client installed on the same host on which MapViewer is running.

The nunber _of _nmapper s attribute identifies the number of map renderers to
be created (that is, the number of requests that MapViewer can process at the
same time) for this data source. Each map renderer typically uses from 5 MB to
30 MB of memory, depending on the volume of spatial data retrieved and
processed during any map generation. Any unprocessed map requests are

Introduction to MapViewer 1-25

Getting Started Using MapViewer

queued and eventually processed. For example, if the value is 3, MapViewer
will be able to process at most three mapping requests concurrently. If a fourth
map request comes while three requests are being processed, it will wait until
MapViewer has finished processing one of the current requests. The maximum
number of mappers for a single data source is 64.

1.6 Getting Started Using MapViewer

To get started using MapViewer quickly, you can load a supplied set of
demonstration data to which styles have been applied. If you have downloaded the
entire MapViewer kit from OTN (ht t p: // ot n. or acl e. con), you have afile
named mvdeno. zi p, which includes an Oracle 8.1.7 export file mvdeno. dnp.
Follow these steps:

1. Import the mvdeno. dnp file into your Oracle database under the supplied user
SCOTT. (Do not import it under any other database user. The demo may fail if
you import the file under a different user). Use the following command (and
include the directory path in the FI LE parameter if mvdeno. dnp is not in the
current directory):

i np SCOTT/ Tl GER FI LE=nvdeno. dnp FULL=Y
2. Runthe SQL script copynet a. sql (included in the mvdeno. zi p file) to set up
the mapping metadata for the user SCOTT.

3. Define a data source for user SCOTT in MapViewer, as explained in
Section 1.6.1.

4. Optionally, use the supplied example JSP file described in Section 1.6.2.

1.6.1 Dynamically Defining MapViewer Data Sources

Before you can use MapViewer to render a map, you must have at least one map
data source defined. A data source can be permanently defined in the

mapVi ewer Confi g. xm file, or it can be dynamically defined using the
MapViewer home page. The rest of this section explains how to define a data source
dynamically.

To define a data source dynamically, follow these steps:

1. After starting MapViewer, go to a MapViewer page for submitting
administrative and other requests by visiting a URL that has the following
format:

http://host name: port/ mapvi ewer

1-26 Oracle Application Server 10g MapViewer User's Guide

Getting Started Using MapViewer

3.
4.

In the preceding format, host nane: port is the host name string and port
number for MapViewer. For example:

http:// mapserver. xyzabc. com 8888/ mapvi ewer

Examine the Add a data source form, which contains the following or similar
text:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >
<add_dat a_source
name="nvdeno"
j dbc_host ="el ocati on. us. oracl e. conf
j dbc_port="1521"
jdbc_sid="orcl"
j dbc_user="scott"
j dbc_password="ti ger"
j dbc_mode="t hi n"
nunber _of _mappers="3" />
</ non_nap_request >

Edit the name and the JDBC-related information to reflect your environment.

Click Submit.

This page contains forms that you can use for a variety of other tasks, such as:

Removing a data source

Redefining a data source

Listing all existing data sources

Listing all maps defined in a data source

Listing all themes defined in a data source

Listing all themes defined in a data source that belong to a specific map
Adding a marker style

Clearing the MapViewer metadata cache for a specific data source

1.6.2 Example JSP File That Uses MapViewer

The directory $ORACLE_HOVE/ | bs/ mapvi ewer / web/ deno contains a simple
JavaServer Pages (JSP) file named mapcl i ent . j sp that demonstrates how to

Introduction to MapViewer 1-27

Getting Started Using MapViewer

interact with MapViewer. The mapcl i ent . j sp file lets you submit map requests,
and it displays the resulting map image. (This file is one of several JSP example
files, as explained in Section 1.6.3.)

To run this example file, go to a URL that has the following format:

http://host nane: port/ mapvi ewer/ dermo/ mapcl i ent.j sp

In the preceding format, host nane: port is the host name string and port number
for MapViewer. For example:

http:// mapserver. xyzabc. com 8888/ mapvi ewer/ deno/ mapclient.jsp

To submit a map request using this page, enter the necessary information in the text
boxes above the Clear and Submit buttons (Title is optional), and click Submit.

A map is displayed reflecting the information you entered, and the
Request/Response/Msg box contains the XML format of the map request and
response. You can perform additional operations on the map display by clicking the
other buttons on the page, such as Zm In and Zm Out for zoom operations.

Figure 1-5 shows this page displaying the result of a map request.

1-28 Oracle Application Server 10g MapViewer User's Guide

Getting Started Using MapViewer

Figure 1-5 MapViewer Example JSP Display

Address I@ http: fispatial, us, oracle, com: 000/ mapviewer/demo/mapclient, jsp

MapViewer JSP Client Demo

MlapViewer TEL: e = A
|http:h‘spatia|.us.oracle.cnm:BDDDImapvie Lake MaE,,\.f""'er Demo,.. Nm’d -
Data Source: Sutte f Plgeer
|mudemn ; ' '1” ;
Title: 505

|Map‘v‘iewer Derno Sonoms

: < Santa Rosa ' .. Amad
Base Map: \ .
|demu_map .\) =" Cala

Marin
Ilap Center X Coord: i v
[1220 Berkeley&
San Franciscu'f?'])
Mfap Center T Coord: : o Modest
I38 5 Stanislaus
a .) & Sunnyvale
Map Size: - T San Jose
Iz 4 \‘f‘ Santa Clara ik
Clear | Subrmit | "._5,"“ cCopyright 2003, Oratle Corpgration
EequestBesponsedsg Zmin | Zm Out Pan W. | Pan M. | Pan 5. | Pan E. |
¥ml regquest=<?:dml version="1.0" standalone="yes" 7> ﬂ
<map_request
ticle="NapViewser Demo'™
basemap="dewo_map"
datasource="mwdemo"
widch="400" hd|

1.6.3 Additional JSP Example Files

The MapViewer home page (that is, the URL with the format
htt p:// host nane: port/ mapvi ewer) contains a Demos link, which leads to JSP
example files that can help you to develop applications that use MapViewer. In

Introduction to MapViewer 1-29

Getting Started Using MapViewer

addition to a link to the mapcl i ent . j sp file (described in Section 1.6.2), there are
links to pages for the following files:

«] View jsp visualizes the results of spatial queries issued against a specified
data source. You can type in up to three separate queries that retrieve geometric
data, and choose different styling for each query result.

« mapinit.|spshows how to use the MapViewer client API to develop a simple
interactive Web mapping application with a feature-identifying capability. That
is, you can select Identify and then click the circle for a city to display data
(from nonspatial columns) about that city.

« tagmap.j sp shows how to use the MapViewer JSP tag library and the client
API together. It also shows how to generate a map legend and place it on the
mapping page.

1-30 Oracle Application Server 10g MapViewer User's Guide

2

MapViewer Concepts

This chapter explains concepts that you should be familiar with before using
MapViewer.

The fundamental concepts are style, theme, base map, mapping metadata, and map.

« Styles define rendering properties for features that are associated with styles.
For example, a text style determines how such a feature is labeled on a map,
while a line style determines the rendition of a linear feature such as a road.

« Atheme is a collection of features (entities with spatial and nonspatial
attributes) that are associated with styles through the use of styling rules.

« A base map consists of one or more themes.

« Mapping metadata consists of a repository of styles, themes, and base maps
stored in a database.

« A map is one of the components that MapViewer creates in response to a map
request. The map can be an image file, the object representation of an image file,
or a URL referring to an image file.

2.1 Overview

When an application uses MapViewer, it applies specific styles (such as colors and
patterns) to specific themes (that is, collections of spatial features, such as cities,
rivers, and highways) to render a map (such as a GIF image for display on a Web
page). For example, the application might display a map in which state parks
appear in green and restaurants are marked by red stars. A map typically has
several themes representing political or physical entities, or both. For example, a
map might show national and state boundaries, cities, mountain ranges, rivers, and
historic sites. When the map is rendered, each theme represents a layer in the
complete image.

MapViewer Concepts 2-1

Styles

2.2 Styles

MapViewer lets you define styles, themes, and base maps, including the rules for
applying one or more styles to each theme. These styles, themes, base maps, and
associated rules are stored in the database in map definition tables under the
MDSYS schema, and they are visible to you through metadata views. All stylesin a
database instance are shared by all users. The mapping metadata (the set of styles,
themes, and base maps) that you can access is determined by the MapViewer
metadata views described in Section 2.5 (for example, USER_SDO_STYLES, USER_
SDO_THEMES, and USER_SDO_MAPS). The set of map definition objects that a
given user can access is sometimes called that user’s mapping profile. You can
manage styles, themes, and base maps with the Map Definition Tool, described in
Chapter 7.

A style is a visual attribute that can be used to represent a spatial feature. The basic
map symbols and labels for representing point, line, and area features are defined
and stored as individual styles. Each style has a unique name and defines one or
more graphical elements in an XML syntax.

Each style is of one of the following types:
« Color: acolor for the fill or the stroke (border), or both.

« Marker: a shape with a specified fill and stroke color, or an image. Markers are
often icons for representing point features, such as airports, ski resorts, and
historical attractions.

When a marker style is specified for a line feature, the rendering engine selects
a suitable point on the line and applies the marker style (for example, a shield
marker for a U.S. interstate highway) to that point.

« Line: aline style (width, color, end style, join style) and optionally a center line,
edges, and hash mark. Lines are often used for linear features such as
highways, rivers, pipelines, and electrical transmission lines.

= Area: acolor or texture, and optionally a stroke color. Areas are often used for
polygonal features such as counties and census tracts.

« Text: a font specification (size and family) and optionally highlighting (bold,
italic) and a foreground color. Text is often used for annotation and labeling
(such as names of cities and rivers).

« Advanced: a composite used primarily for thematic mapping, which is
described in Section 2.3.3. The core advanced style is Bucket St yl e, which
defines the relationship between a set of simple styles and a set of buckets. For

2-2 Oracle Application Server 10g MapViewer User’s Guide

Themes

each feature to be plotted, a designated value from that feature is used to
determine which bucket it falls into, and then the style associated with that
bucket is used to plot the feature.

The AdvancedsSt yl e class is extended by Bucket St yl e, which is in turn
extended by Col or SchenmeSt yl e and Var i abl eMar ker St yl e. (Additional
advanced styles, such as for charts, are planned for a future release.)

Table 2-1 lists the Java class for creating styles of each type.

Table 2-1 Style Types and Associated Java Classes

Style Type Java Class Applicable Geometry Types
Color oracle.sdovis.style.StyleColor (any type)

Marker oracle.sdovis.style.StyleMarker point, line

Line oracle.sdovis.style.StyleLine line

Area oracle.sdovis.style.StyleArea polygon

Text oracle.sdovis.style.StyleText (any type)

Advanced oracle.sdovis.stylex.AdvancedStyle (any type)
and extensions

All styles for a database user are stored in that user’s USER_SDO_STYLES view,
which is described in Section 2.5 and Section 2.5.3.

For more detailed information about the types of styles, including information
about the XML format for defining each type, see Appendix A.

2.3 Themes

A theme is a visual representation of a particular data layer. Each theme (except for
image themes) is associated with a specific spatial geometry layer, that is, with a
column of type MDSYS.SDO_GEOMETRY in a table or view. For example, a theme
named US_St at es might be associated with the STATE_SHAPE spatial geometry
column in a STATES table.

A theme can have its definition, including styling rules, stored permanently in the
database (a predefined theme), or a theme can be dynamically defined with a map
request (a JDBC theme).

All predefined themes for a database user are stored in that user’s USER_SDO _
THEMES view, which is described in Section 2.5 and Section 2.5.2.

MapViewer Concepts 2-3

Themes

2.3.1 Styling Rules in Predefined Themes

Each predefined theme is associated with one or more styling rules. The styling
rules for each predefined theme are expressed using XML, such as in Example 2-1
foran Ai rport theme.

Notes: The following naming conventions are used for "prefixes"
in style names in the examples in this chapter: v. indicates variable
(advanced style), m indicates marker, c. indicates color, | .
indicates line, and t . indicates text.

In the content (character data) of an XML document, &l t ; and
> ; must be used to represent < and >, respectively. Otherwise, <
or >, such as in WHERE CATEGORY > ' B’ , will be interpreted by
the XML parser as part of an XML tag.

Example 2-1 XML Definition of Styling Rules for an Airport Theme

<?xm version="1.0" standal one="yes"?>
<styling_rul es>
<rul e>
<features style="c.black gray">
runway_nunber > 1
</ features>
<l abel col um="name" style="t.airport name">
1
</l abel >
</rul e>
<rul e>
<features style="mairplane">
runway_nunber =1
</features>
</rule>
</styling_rul es>

Each styling rule has a required <f eat ur es> element and an optional <I| abel >
element. The <f eat ur es> element specifies which rows (features) in the table or
view will be selected based on its attribute value, and the style to be used for those
selected features. The <I abel > element specifies whether or not to annotate the
selected feature, and if so, which column in the table or view to use for text labels.

In Example 2-1, there are two styling rules associated with the Ai r port theme:

2-4 Oracle Application Server 10g MapViewer User’s Guide

Themes

« The first rule specifies that only those rows that satisfy the condition r unway _
nunber > 1 (thatis, runway number greater than 1) will be selected, and
these will be rendered using the style named c. bl ack gray. Any valid SQL
WHERE clause conditions can be used as the value of a <f eat ur es> element.
If no value is supplied, no WHERE clause condition is applied. For example,
assume that the definition had been the following (that is, omitting the
runway_nunber > 1 condition):

<?xm version="1.0" standal one="yes"?>
<styling_rul es>
<rul e>
<features style="c.black gray"/>
<l abel col um="name" style="t.airport name">
1
</l abel >
</rule>
</styling_rul es>

In this case, all airport features would be selected and would be rendered using
the color style named c. bl ack gr ay.

The first rule also has a <I abel > element, which specifies that the NAME
column in the table or view will be used to annotate each airport, using the text
stylet . ai rport nane. The value of the <I abel > element, which can be any
SQL expression, is used to determine whether or not a feature will be
annotated. If the value is greater than zero, the feature will be annotated. In this
case, because the value is the constant 1, all features specified by the

<f eat ur es> element will be annotated, using the values in the NAME
column. If the value is less than or equal to zero for a feature, that feature will
not be annotated.

« Thesecond rule, which applies to those airports with only one runway, does not
have a <I abel > element, thus preventing all such airports from being
annotated. In addition, the features that satisfy the second rule will be rendered
using a different style (m ai r pl ane), as specified in its <f eat ur es> element.

If two or more rules are specified, a UNION ALL operation is performed on the
SQL queries for the rules (from first to last) to fetch the qualified features from the
table or view.

If an advanced style is specified in a rule, the SELECT list of the query to fetch
qualified features contains the spatial column, the attribute column or columns, the
name of the feature style, the label information, the WHERE clause, and the feature

MapViewer Concepts 2-5

Themes

guery. Based on the value of the attribute column or columns and the definition of
the specified feature style, each feature is associated with a style.

2.3.2 JDBC Themes

A JDBC theme is a theme that is dynamically defined with a map request. JDBC
themes are not stored permanently in the database, as is done with predefined
themes.

For a JDBC theme, you must specify a valid SQL query that retrieves one or more
geometries from the database. You can also specify a rendering style and labeling
style, to be used if you also selected text values in the query that can be used for
labeling the geometries.

Example 2-2 is a map request that includes a JDBC theme.

Example 2-2 JDBC Theme in a Map Request

<?xm version="1.0" standal one="yes"?>
<map_request title="My MAP" datasource = "nvdenm">

<t henes>
<t heme name="j dbc_t hene_1">
<j dbc_query
dat asour ce="nvdeno"
j dbc_srid="41052"
spatial _col um="geomet ry"
render_style="C. RED'>
SELECT geonetry fromstates where name=" MA
</jdbc_query>
</t heme>
</t henes>

</ map_request >

The full query that MapViewer executes for the JDBC theme in Example 2-2 is:
SELECT geonetry FROM states WHERE name=' MA';

For this request, MapViewer generates a map that contains only the selected
geometry as a result of executing this JDBC theme's query. In a more typical case,
however, the map request will need to use several JDBC themes to plot additional
dynamic data on top of the base map. Furthermore, the map request may have a
query window associated with it; that is, the user may want to see only a portion of
the area included in the whole base map. In this case, the SQL queries in the JDBC

2-6 Oracle Application Server 10g MapViewer User’s Guide

Themes

themes will be subjected to a spatial window query, to eliminate any unwanted
results.

For more information about JDBC themes, see the information about the <j dbc_
guer y> element in Section 3.2.7.

2.3.2.1 Storing Complex JDBC Themes in the Database

Sometimes the SQL query for a JDBC theme is so complex that you may want to
save the query. In such cases, you can define a predefined theme (whose definition
is stored in the database's USER_SDO_THEMES view), and then include the full
SQL query as the content of the <f eat ur es> element in the styling rules for that
theme.

The feature style specified in the <f eat ur es> element is then used to render the
geometries retrieved using the full query. The base table as defined for such a theme
is ignored because the full SQL query already includes a FROM clause. The
geometry column defined in the USER_SDO_THEMES view is still needed, and it
must be the same as the geometry column selected in the user-supplied SQL query.
If you have a <I abel > element for a styling rule, the label style specified is used to
label the geometries, as long as the query selects a column that contains label text.

Example 2-3 is a sample <st yl i ng_r ul es> element of a predefined theme with a
complex SQL query.

Example 2-3 Complex Query in a Predefined Theme

<?xm version="1.0" standal one="yes"?>
<styling_rul es>
<rul e>
<features style="L. POOR ROADS' asis="true">
sel ect sdo_Irs.clip_geom segment (geonetry, start_measure, end_neasure)
geonetry
from (select /*+ no_nerge use_hash(a b) */
a.street_id, name, start_neasure, end_measure, geonetry
from(select /*+ no_nerge */ a.street_id, nanme, geonetry
fromphilly_roads a
where sdo_filter(geonetry, nisys. sdo_geonetry(2002, 41124, nul |,
mdsys. sdo_el eminfo_array(1,2,1),
midsys. sdo_ordinate_array(?,?,?,?)),
" querytype=wi ndow)=' TRUE') a,
philly_road_conditions b
where condition="POOR and a.street_id = b.street_id)
</features>
</rul e>

MapViewer Concepts 2-7

Themes

</styling_rul es>

Even though Example 2-3 is defined as a predefined theme, MapViewer still treats
it as a JDBC theme at runtime when a user requests a map that includes this theme.
As with a normal JDBC theme, MapViewer by default imposes a window filtering
process (if a query window was included in the map request) on top of the SQL
query. To override this default behavior and have the supplied query string
executed without any modification, specify asi s="t rue" in the <f eat ur es>
element, as shown in Example 2-3. (For information about the asi s attribute, see
Section 3.2.7.)

2.3.3 Thematic Mapping

Thematic mapping refers to the drawing of spatial features based on their attribute
values. MapViewer uses thematic mapping to create maps in which colors or
symbols are applied to features to indicate their attributes. For example, a

Count i es theme can be drawn using colors with different hues that map directly
with the population density of each county, or an Ear t hquakes theme can be
plotted with filled circles whose sizes map to the scale or damage of each
earthquake.

To achieve thematic mapping, specify advanced styles in the styling rules associated
with a theme. You must specify attribute columns in the table or view whose values
will be used to determine exactly how a feature will be rendered thematically.
Example 2-4 is the XML definition for an Ear t hquakes theme.

Example 2-4 XML Definition of Styling Rules for an Earthquakes Theme

<?xm version="1.0" standal one="yes"?>
<styling_rules theme_type="nature">
<rul e col um="RI CHTER_SCALE" >
<features style="v.earthquakes">
</features>
</rule>
</styling_rul es>

The theme in Example 2—-4 has only one rule. The <r ul e> element includes an
attribute named col unn that does not appear in the Ai r port theme in

Example 2-1. The col unn attribute specifies one or more columns
(comma-separated) that provide the attribute values needed for thematic mapping.
The style specified for the features element is named v. ear t hquakes, and it is an
advanced style.

2-8 Oracle Application Server 10g MapViewer User’s Guide

Themes

Another part of the definition of the Ear t hquakes theme specifies the table that
contains the data to be rendered. This table must contain a column named
RICHTER_SCALE in addition to a column (of type SDO_GEOMETRY) for the
spatial data. (The table and the column of type SDO_GEOMETRY must be
identified in the BASE_TABLE and GEOMETRY_COLUMN columns, respectively,
of the USER_SDO_THEMES view, which is described in Section 2.5.2.) The
RICHTER_SCALE column must be of type NUMBER. To understand why, look at
the advanced style definition in Example 2-5.

Example 2-5 Advanced Style Definition for Earthquakes Theme

<?xm version="1.0" ?>
<AdvancedStyl e>
<Vari abl eMarker Styl e basemarker="mcircle" startsize="7" increnment="4" >
<Bucket s>
<RangedBucket seq="0" |abel="less than 4" high="4" />
<RangedBucket seq="1" Ilabel="4 - 5" |ow="4" high="5" />
<RangedBucket seq="2" [label="5 - 6" |low="5" high="6" />
<RangedBucket seq="3" label="6 - 7" low="6" high="7" />
<RangedBucket seq="4" [|abel="7 and up" low="7" />
</ Bucket s>
</ Vari abl eMar ker Styl e>
</ AdvancedStyl e>

This style specifies that the marker named m ci r cl e is used to indicate the
location of an earthquake. The size of the marker to be rendered for an earthquake
depends on the numeric value of the RICHTER_SCALE column for that row. In this
example there are five buckets, each covering a predetermined range of values. For
example, if an earthquake is of magnitude 5.7 on the Richter scale, the marker size
will be 15 pixels (7 + 4 + 4), because the value 5.7 falls in the third bucket (5 - 6) and
the starting marker size is 7 pixels (st art si ze="7") with an increment of 4 for
each range (i ncrenment =" 4").

Note: Thel abel attribute value (for example, | abel =" ess
t han 4")is not displayed on the map, but is used only in a label
that is compiled for an advanced style.

The seq attribute value (for example, seq="0") is ignored by
MapViewer, which determines sequence only by the order in which
elements appear in a definition.

MapViewer Concepts 2-9

Themes

Example 2-5 used the <Var i abl eMar ker St yl e> tag. The following examples use
the <Col or ScheneSt yl e> tag in creating thematic maps of census blocks in
California. Example 2-6 illustrates the use of a graduated color scale for a thematic
mapping of population density. Example 2-7 is a thematic mapping of average
household income using a graduated color scale. Example 2-8 is also a thematic
mapping of average household income, but it uses a specific color style for each
income range rather a graduated scale.

Example 2-6 Mapping Population Density Using a Graduated Color Scheme

ca pop density usbg_hhinfo
<?xm version="1.0" standal one="yes"?>
<styling_rules theme_type="political ">
<rul e col um="densitycy">
<features style="v.CA Pop density">
</features>
</rule>
</styling_rul es>

The table named USBG_HHINFO includes columns named DENSITYCY (used in
Example 2-6). The definition of the style (v. CA Pop densi t y) that corresponds to
this population density theme is as follows:

<?xm version="1.0" ?>
<AdvancedStyl e>
<Col or ScheneStyl e basecol or="#ffff00" strokecol or="#00aaaa" >
<Buckets | ow="0.0" high="20000.0" nbuckets="10" />
</ Col or ScheneStyl e>
</ AdvancedSt yl e>

The base color (basecol or) and the stroke color (st r okecol or) are 24-bit RGB
(red-green-blue) values specified using a hexadecimal notation. The base color
value is used for the first bucket. The color value for each subsequent bucket is
obtained by first converting the base color from the RGB to the HSB
(hue-saturation-brightness) model and then reducing the brightness by a fixed
increment for each bucket. Thus, the first bucket is the brightest and the last is the
darkest.

As in Example 2-6, Example 2-7 illustrates the use of a base color and a graduated
color scheme, this time to show household income.

Example 2—7 Mapping Average Household Income Using a Graduated Color Scheme

<?xm version="1.0" standal one="yes"?>
<I-- # ca hh income theme table = ushg hhinfo -->

2-10 Oracle Application Server 10g MapViewer User's Guide

Themes

<styling_rul es>

<rul e col um="avghhi cy">
<features style="v.ca incone">
</features>

</rule>

</styling_rul es>

The table named USBG_HHINFO includes a column named AVGHHICY (used in
Example 2-7 and Example 2-8). The definition of the style (v. ca i ncone) that
corresponds to this average household income theme is as follows:

<?xm version="1.0" ?>
<AdvancedStyl e>
<Col or ScheneStyl e basecol or="#ffff00" strokecol or ="#00aaaa" >
<I-- # income range with a color gradient -->
<Bucket s>
<RangedBucket seq="0" |abel ="less than 10k" hi gh="10000" />
<RangedBucket seq="1" |abel ="10-15k" | ow="10000" hi gh="15000" />
<RangedBucket seq="2" |abel ="15-20k" | ow="15000" hi gh="20000" />
<RangedBucket seq="3" |abel ="20-25k" | ow="20000" hi gh="25000" />
<RangedBucket seq="4" | abel ="25-35k" | ow="25000" hi gh="35000" />
<RangedBucket seq="5" | abel ="35-50k" | ow="35000" hi gh="50000" />
<RangedBucket seq="6" |abel ="50-75k" | ow="50000" high="75000" />
<RangedBucket seq="7" |abel ="75-100k" | ow="75000" hi gh="100000" />
<RangedBucket seq="8" |abel ="100-125k" | ow="100000" hi gh="125000" />
<RangedBucket seq="9" |abel ="125-150k" | ow="125000" hi gh="150000" />
<RangedBucket seq="10" | abel ="150-250k" | ow="150000" hi gh="250000" />
<RangedBucket seq="11" | abel ="250-500k" | ow="250000" hi gh="500000" />
<RangedBucket seq="12" | abel ="500k and up" |ow="500000" />
</ Bucket s>
</ Col or ScheneStyl e>
</ AdvancedStyl e>

For individual range-based buckets, the lower-bound value is inclusive, while the
upper-bound value is exclusive (except for the range that has values greater than
any value in the other ranges; its upper-bound value is inclusive). No range is
allowed to have a range of values that overlaps values in other ranges.

Example 2-8 uses specific color styles for each average household income range.

Example 2-8 Mapping Average Household Income Using a Color for Each Income
Range

<?xm version="1.0" standal one="yes"?>
<I-- # ca hh income theme table = usbg_hhinfo -->

MapViewer Concepts 2-11

Themes

<styling_rul es>
<rul e col um="avghhi cy">
<features style="v.ca incone 2">
</features>
</rule>
</styling_rul es>

The definition of the v. ca i ncone 2 style is as follows:

<?xm version="1.0" ?>
<AdvancedStyl e>
<Bucket Styl e>
<Bucket s>
<I-- # income ranges with specific colors -->
<RangedBucket seq="0" |abel ="l ess than 10k" hi gh="10000" style="c.rb13_1" />
<RangedBucket seq="1" |abel ="10-15k" | ow="10000" hi gh="15000" style="c.rbl13_2"/>
<RangedBucket seq="2" |abel ="15-20k" | ow="15000" hi gh="20000" style="c.rb13_3"/>
<RangedBucket seq="3" |abel ="20-25k" | ow="20000" hi gh="25000" style="c.rbl3 4"/>
<RangedBucket seq="4" |abel ="25-35k" | ow="25000" hi gh="35000" style="c.rbl13_5"/>
<RangedBucket seq="5" |abel ="35-50k" | ow="35000" hi gh="50000" style="c.rbl13_6"/>
<RangedBucket seq="6" |abel ="50-75k" | ow="50000" hi gh="75000" style="c.rbl3_7"/>
<RangedBucket seq="7" |abel ="75-100k" |ow="75000" hi gh="100000" style="c.rb13_8"/>
<RangedBucket seq="8" |abel ="100-125k" | ow="100000" hi gh="125000" style="c.rb13_9"/>
<RangedBucket seq="9" |abel ="125-150k" | ow="125000" hi gh="150000" style="c.rb13_10"/>
<RangedBucket seq="10" | abel ="150-250k" | ow="150000" hi gh="250000" style="c.rb13_11"/>
<RangedBucket seq="11" | abel ="250-350k" | ow="250000" hi gh="350000" style="c.rb13_12"/>
<RangedBucket seq="12" |abel ="350k and up" |ow="350000" style="c.rbl3 13"/>
</ Bucket s>
</ Bucket Styl e>
</ AdvancedStyl e>

xRN AR

Each <RangedBucket > definition has a specified style.

The following examples create an advanced style to identify gasoline stations
operated by different oil companies, and a theme that uses the style. A

<Col | ect i onBucket > tag is used to associate a column value (Shel | ; Esso;
Texaco; BP; any of Avi a, Benzi nex, (8, Tot al ,Wtte Ponp;and all others for a
default category) with a style appropriate for that company’s stations, as shown in
Example 2-9.

Example 2-9 Advanced Style Definition for Gasoline Stations Theme

<?xm version="1.0" ?>
<AdvancedStyl e>
<Bucket Styl e>
<Bucket s>
<Col | ectionBucket seq="0" |abel ="Shell" style="m shell gasstation">

2-12 Oracle Application Server 10g MapViewer User's Guide

Themes

Shel |

</ Col | ecti onBucket >

<Col | ectionBucket seq="1" |abel ="Esso" style="messo gasstation">
Esso

</ Col | ecti onBucket >

<Col | ectionBucket seq="2" |abel ="Texaco" style="mtexaco gasstation">
Texaco

</ Col | ecti onBucket >

<Col | ecti onBucket seq="3" |abel ="BP" style="mbp gasstation">
BP

</ Col | ecti onBucket >

<Col | ectionBucket seq="4" |abel ="Qther" style="mgeneric gasstation">
Avi a, Benzi nex, (8, Total , Wtte Ponp

</ Col | ecti onBucket >

<Col | ectionBucket seq="5" |abel ="DEFAULT" style="mdefault gasstation">
#DEFAULT#

</ Col | ecti onBucket >

</ Bucket s>

</ Bucket Styl e>
</ AdvancedSt yl e>

Notes on Example 2-9:

m esso gasstati on,mtexaco gasstati on, and the other style names
have a space between the words in their names.

The names are not case-sensitive. Therefore, be sure not to use case as a way of
differentiating names. For example, t . St r eet and T. STREET are considered
the same name.

A default collection bucket can be specified by using #DEFAULT# as its value.
This bucket is used for any column values (gas station names) that are not
specified in the other buckets.

A theme (t heme_gasst at i on) is then defined that specifies the column (MERK)
in the table that contains company names. The styling rules of the theme are shown
in Example 2-10.

Example 2-10 Styling Rules of Theme Definition for Gasoline Stations

<?xm version="1.0" standal one="yes"?>
<styling_rul es>

<rul e col um="nerk">
<features style="v.gasstations">
</features>
<l abel col um="merk" style="t.SansSerif red 10">

MapViewer Concepts 2-13

Themes

1
</1abel >
</rule>
</styling_rul es>

This theme depends on a table named NED_GASSTATIONS, which has the
columns shown in Table 2-2 (with column names reflecting the fact that the
developer’s language is Dutch).

Table 2-2 Table Used with Gasoline Stations Theme

Column Data Type

FID NOT NULL NUMBER
1D NUMBER

NAAM VARCHAR2(31)
STRAAT_ VARCHAR2(30)

NR NUMBER

TV VARCHAR2(1)
AAND VARCHAR2(2)
PCODE VARCHARZ2(6)
PLAATS VARCHAR2(10)
GEOM MDSYS.SDO_GEOMETRY
MERK VARCHAR2(40)

In this table, the GEOM column contains spatial geometries, and the MERK column
contains company names (Shel | , Esso, and so on).

The styling rules for the t herre_gasst at i on theme specify that the marker (style
V. gasst at i ons) at a location specified by the content of the GEOM column is
determined by the value of the MERK column for that row. The style

V. gasst at i ons (see Example 2-9) specifies that if the column value is Shel | , use
the stylem shel | gasst ati on; if the column value is ESso, use the style

m esso gasst at i on; and so on, including if the column value is any one of

Avi a, Benzi nex, @B, Total ,and Wtte Ponp, use the stylem generic

gasst ati on; and if the column value is none of the preceding, use the style

m def aul t gasstati on.

2-14 Oracle Application Server 10g MapViewer User's Guide

Themes

2.3.4 Image Themes

An image theme is a special kind of MapViewer theme useful for visualizing

geographically referenced imagery (raster) data, such as from remote sensing and
aerial photography.

You can define an image theme dynamically or permanently (as a predefined
theme) in the database. You can use image themes with vector (non-image) themes
in a map. Figure 2-1 shows a map in which an image theme (showing an aerial

photograph of part of the city of Boston) is overlaid with themes showing several
kinds of roadways in the city.

Figure 2-1 Image Theme and Other Themes Showing Boston Roadways

N

Before you can define an image theme, you must follow these rules in organizing
your image data:

MapViewer Concepts 2-15

Themes

Store image data in its original format (such as JPEG) in a BLOB columnin a
database table.

Add a geometry (SDO_GEOMETRY) column to the same table, and store the
minimum bounding rectangle (MBR) for each image in that column.

Each geometry in the MBR column contains the geographic bounds for an
image, not its size in the pixel space. For example, if an orthophoto image is
2000 by 2000 pixels in size, but covers a ground rectangle starting at the corner
of (936000, 248000) and having a width and height of 8000 meters, the MBR for
the geometry column should be populated with (936000, 248000, 944000,
256000).

Insert an entry for the geometry column in the USER_SDO_GEOM _
METADATA view.

Create a spatial index on the geometry column.

To predefine an image theme, follow the guidelines in Section 2.3.4.1. To define a
dynamic image theme in a map request, follow the guidelines for defining a JDBC
theme, as explained in Section 2.3.2 and Section 3.2.7, but note the following
additional considerations with dynamic image themes:

You must provide the original image resolution information when defining an
image theme.

MapViewer by default automatically scales the image data when generating a
map with an image theme, so that it fits the current query window. To disable
this automatic scaling, specify i nagescal i ng="f al se" in the map request.

For any image theme definition, note the following considerations:

You cannot use the Map Definition Tool to create an image theme. Instead, you
must create an image theme and add it to the MapViewer instance
programmatically, or you must predefine the theme as explained in

Section 2.3.4.1.

MapViewer supports only GIF and JPEG image formats. To enable MapViewer
to visualize data in any other image format, you must implement a custom
image renderer using the or acl e. sdovi s. Cust om mageRender er interface
in Java, and then register your implementation class in the

mapVi ewer Confi g. xnl file (to tell MapViewer which custom image renderer
to use for image data in a specific format). For detailed information about
implementing and registering a custom image renderer, see Appendix B.

2-16 Oracle Application Server 10g MapViewer User's Guide

Themes

For an example of a map request specifying an image theme, including an
explanation of how MapViewer processes the request, see Example 3-5in
Section 3.1.5.

2.3.4.1 Storing Image Theme Definitions in the Database

To permanently store the definition of an image theme, you must insert a row into
the USER_SDO_THEMES view. Example 2-11 stores the definition of an image
theme.

Example 2-11 Storing an Image Theme in the Database

I NSERT | NTO user _sdo_t hemes VALUES (
"I MAGE_LEVEL_2',
"Orthophotos at pyramd |evel 2',
"I MAGES',
"I MAGE_MBR',
'<?xm version="1.0" standal one="yes"?>
<styling_rules thene_type="i mage" image_col um="i nage"
i mage_f ormat ="JPEG' i mage_resol ution="2"
i mage_uni t="M >
<rule >
<features style="C RED'> plevel =2 </features>
</rule>
</styling_rules>);

Example 2-11 creates an image theme named | MAGE_LEVEL 2. The base table
(where all image data and associated MBRs are stored) is named | MAGES, and the
MBRs for the images are stored in the column named | MAGE_MBR. In the
STYLING_RULES column of the USER_SDO_THEMES view, an XML document
with one <st yl i ng_r ul es> element is inserted.

The <styl i ng_r ul es> element for an image theme has the following attributes:

« thene_type mustbei mage in order for this theme to be recognized as an
image theme.

« i mage_col um specifies the column in the base table or view that stores the
actual image data.

« i mage_format isastring identifying the format of the image data. If you
specify A F or JPEG MapViewer can always render the image data. If you
specify any other value, such as ECWyou must have implemented a custom
image renderer and registered it to MapViewer in order for the image to be

MapViewer Concepts 2-17

Maps

rendered properly. For information about implementing a custom image
renderer, see Appendix B.

« i mage_resol ution isan optional attribute that identifies the original image
resolution (number of i mage_uni t units for each pixel).

« i mage_unit is an optional attribute, except it is required if you specify the
i mage_resol uti on attribute. Thei mage_uni t attribute specifies the unit of
the resolution, such as Mfor meter. The value for this attribute must be one of
the values in the SDO_UNIT column of the MDSYS.SDO_DIST_UNITS table. In
Example 2-11, the image resolution is 2 meters per pixel.

2.4 Maps

A map can consist of a combination of elements and attributes, such as the
following:

« Background image

« Title

« Legend

« Query window

« Footnote (such as for a copyright notice)

« Base map

« Themes (in addition to any in the base map)
« JDBC queries

« JDBC image queries

These elements and attributes, when specified in a map request, define the content
and appearance of the generated map. Chapter 3 contains detailed information
about the available elements and attributes for a map request.

A map can have a base map and a stack of themes rendered on top of each other in
a window. A map has an associated coordinate system that all themes in the map
must share. For example, if the map coordinate system is 8307 (for Longitude /
Latitude (WGS 84), the most common system used for GPS devices), all themes in
the map must have geometries defined using that coordinate system.

You can add themes to a map by specifying a base map name or by using the
programming interface to add themes. The order in which the themes are added
determines the order in which they are rendered, with the last specified theme on

2-18 Oracle Application Server 10g MapViewer User's Guide

Maps

top, so be sure you know which themes you want in the background and
foreground.

All base map names and definitions for a database user are stored in that user’s
USER_SDO_MAPS view, which is described in Section 2.5 and Section 2.5.1. The
DEFINITION column in the USER_SDO_MAPS view contains an XML description
of a base map.

Example 2-12 shows a base map definition.

Example 2-12 XML Definition of a Base Map

<?xm version="1.0" ?>

<map_definition>

<t hene name="thene_us_states" m n_scal e="10" nmax_scal e="0" />
<t heme name="thene_us_parks" mn_scal e="5" nmax_scal e="0" />
<t heme nane="thene_us_hi ghways" mn_scale="5" max_scale="0" />
<t heme nanme="thene_us_streets" min_scal e="0.05" nax_scal e="0" />
</ map_definition>

Each theme in a base map can be associated with a visible scale range within which
it is displayed. In Example 2-12, the theme named t hemre_us_street s is not
displayed unless the map request is for a map scale of 0.05 or less and greater than 0
(in this case, a scale showing a great deal of detail). If the mi n_scal e and max_
scal e attributes are not specified, the theme is displayed whenever the base map is
displayed. (For more information about map scale, see Section 2.4.1.)

The display order of themes in a base map is the same as their order in the base map
definition. In Example 2-12, the t henme_us_ st at es theme is rendered first, then

t heme_us_par ks, thent hene_us_hi ghways, and finally (if the map scale is
within all specified ranges) t hene_us_streets.

2.4.1 Map Size and Scale

Map size is the height of the map in units of the map data space. For example, if the
map data is in WGS 84 geographic coordinates, the map center is (-120.5, 36.5), and
the size is 2, then the height of the map is 2 decimal degrees, the lower Y (Latitude)
value is 35.5 degrees, and the upper Y value is 37.5 decimal degrees.

Map scale is expressed as units in the user's data space that are represented by 1
inch on the screen or device. Map scale for MapViewer is actually the denominator
value in a popular method of representing map scale as 1/n, where:

« 1, the numerator, is 1 unit (1 inch for MapViewer) on the displayed map.

MapViewer Concepts 2-19

Maps

« N, the denominator, is the number of units of measurement (for example,
decimal degrees, meters, or miles) represented by 1 unit (1 inch for MapViewer)
on the displayed map.

For example:

« If 1inch on a computer display represents 0.5 decimal degree of user data, the
fraction is 1/0.5. The decimal value of the fraction is 2.0, but the scale value for
MapViewer is 0.5.

« If 1inch on a computer display represents 2 miles of user data, the fraction is
1/2. The decimal value of the fraction is 0.5, but the scale value for MapViewer
is 2.

« If 1inch on a computer display represents 10 miles of user data, the fraction is
1/10. The decimal value of the fraction is 0.1, but the scale value for MapViewer
is 10.

The mi n_scal e and nax_scal e attributes in a <t hermre> element describe the
visible scale range of a theme. These attributes control whether or not a theme is
displayed, depending on the current map scale. The default scale value for m n_
scal e is positive infinity, and the default value for max_scal e is negative infinity
(or in other words, by default display the theme for all map scales, if possible given
the display characteristics).

« M n_scal e is the value to which the display must be zoomed in for the theme
to be displayed. For example, if parks have am n_scal e value of 5 and if the
current map scale value is 5 or less but greater than the max_scal e value,
parks will be included in the display; however, if the display is zoomed out so
that the map scale value is greater than 5, parks will not be included in the
display.

« max_scal e is the value beyond which the display must be zoomed in for the
theme not to be displayed. For example, if counties have a nax_scal e value of
3 and if the current map scale value is 3 or less, counties will not be included in
the display; however, if the display is zoomed out so that the map scale value is
greater than 3, counties will be included in the display.

A highm n_scal e value is associated with less map detail and a smaller scale in
cartographic terms, while a high max_scal e value is associated with greater map
detail and a larger scale in cartographic terms. (Note that the MapViewer meaning
of map scale is different from the popular meaning of cartographic map scale.) The
m n_scal e value for a theme should be larger than the max_scal e value.
Example 2-12 in Section 2.4 includes mi n_scal e and nax_scal e values.

2-20 Oracle Application Server 10g MapViewer User's Guide

Maps

To determine the current map scale for a map returned by MapViewer, first find the
map size, namely the height (vertical span) of the map in terms of the coordinate
system associated with the map data. For example, assume that a map with a height
of 10 (miles, meters, decimal degrees, or whatever unit of measurement is
associated with the data) is requested, and that the map is drawn on a device with a
size of 500 by 350 pixels, where 350 is the height. MapViewer assumes a typical
screen resolution of 72 dpi. Because 72 pixels equals 1 inch, the height of the
returned map is 4.86 inches (350/72 = 4.86). In this example, the size of the map is
10, and therefore the map scale is approximately 2.057 (10/4.86 = 2.057).

2.4.2 Map Legend

A map legend is an inset illustration drawn on top of the map and describing what
various colors, symbols, lines, patterns, and so on represent. You have flexibility in
specifying the content and appearance of the legend. You can:

« Customize the background and border style

« Have one or more columns in the legend

« Add space to separate legend entries

« Indent legend entries

« Use any MapViewer style, including advanced styles

Example 2-13 is an excerpt from a request that includes a legend.

Example 2-13 Legend Included in Map Request

<?xm version="1.0" standal one="yes"?>
<map_r equest
basemap="densi ty_map"
datasource = "nvdeno">
<center size="1.5">

</ center>
<l egend bgstyle="fill:#ffffff;fill-opacity:128; stroke: #ff 0000"
posi ti on="NORTH WEST" >
<col um>
<entry text="Mp Legend" is_title="true" />
<entry style="M STAR' text="center point" />
<entry style="M CITY HALL 3" text="cities" />

<entry is_separator="true" />
<entry styl e="C ROSY BROM STROKE" text="state boundary" />

MapViewer Concepts 2-21

Maps

<entry style="L.PH' text="interstate highway" />
<entry text="County popul ation:" />
<entry style="V.COUNTY_POP_DENSI TY" tab="1" />
</ col um>

</ | egend>

<t henes>

</t henmes>

</ map_request >

Figure 2-2 shows a map with the legend specified in Example 2-13.

2-22 Oracle Application Server 10g MapViewer User's Guide

Maps

Figure 2-2 Map with Legend

Map Legend - “IMapViewer
< center point

o Cities

I:I state boundany

s 1tErStAtE Righway

County population: an Francisco

less than 100k

100k - 150k

150k - 250k
=
=R
1000k - 1250k
1250k - 1500k
| 1500k - 2500k

2500k - 3500k
3500k - S000kK
5000k and up

< Sunnyvale

Notes on Example 2-13 and Figure 2-2:

« This example shows a legend with a single column, although you can create
multiple columns in a legend.

« Each entry in the column definition can identify label text and whether the text
isthe legend title (i s_titl e="true"), astyle name and associated text, or a
separator (i s_separ at or ="t rue") for vertical blank space to be added (after
the cities entry in this example).

For detailed information about adding a legend to a map request, see Section 3.2.10.

MapViewer Concepts 2-23

MapViewer Metadata Views

If you also specify a map title, note, or logo (or any combination), be sure that the
legend and the other features have different positions. (Map titles, notes, and logos
are explained in Section 1.5.5.) The default position for a legend is SOUTH_WEST.

2.4.3 Processing of Map Requests

A map specified in the XML map request includes a data source name, an optional
base map name, and an optional array of theme descriptors for a set of predefined
and dynamic themes. If a base map name is specified, the description of that base
map (that is, the theme names, their display order, and their scale ranges) is
determined by reading the DEFINITION column value associated with that base
map in the ALL_SDO_MAPS view (described in Section 2.5.1). That is, MapViewer
performs the following query from the user-specified data source:

SELECT DEFI NI TI ON FROM ALL_SDO MAPS WHERE NAME=: basemap AND OANER=: user nane;

2.5 MapViewer Metadata Views

The mapping metadata describing base maps, themes, and styles is stored in the
global tables SDO_MAPS_TABLE, SDO_THEMES_TABLE, and SDO_STYLES_
TABLE, which are owned by MDSYS. However, you should never directly update
these tables. Each MapViewer user has the following views available in the schema
associated with that user:

« USER_SDO_MAPS and ALL_SDO_MAPS contain information about base
maps.

« USER_SDO_THEMES and ALL_SDO_THEMES contain information about
themes.

« USER_SDO_STYLES and ALL_SDO_STYLES contain information about styles.

Note: You are encouraged to use the Map Definition Tool
(described in Chapter 7) to manage the mapping metadata. Only
advanced users should consider using SQL statements to update
the MapViewer metadata views.

The USER_SDO_xxx views contain metadata information about mapping elements
(styles, themes, base maps) owned by the user (schema), and the ALL_SDO_xxx
views contain metadata information about mapping elements on which the user has
SELECT permission.

2-24 Oracle Application Server 10g MapViewer User's Guide

MapViewer Metadata Views

The ALL_SDO_xxx views include an OWNER column that identifies the schema of
the owner of the object. The USER_SDO_xxx views do not include an OWNER
column.

All styles defined in the database can be referenced by any user to define that user’s
themes, markers with a text style, or advanced styles. However, themes and base
maps are not shared among users; so, for example, you cannot reference another
user’s themes in a base map that you create.

The following rules apply for accessing the mapping metadata:

« If you need to add, delete, or modify any metadata, you must perform the
operations using the USER_SDO_xxx views. The ALL_SDO_xxx views are
automatically updated to reflect any changes that you make to USER_SDO_xxx
views.

« If you need only read access to the metadata for all styles, you should use the
ALL_SDO_STYLES view. Both the OWNER and NAME columns make up the
primary key; therefore, when you specify a style, be sure to include both the
OWNER and NAME.

The MapViewer metadata views are defined in the following file:
$ORACLE_HOVE/ | bs/ admi n/ mapdefini tion. sql

The following sections describe each set of views.

2.5.1 xxx_SDO_MAPS Views

The USER_SDO_MAPS and ALL_SDO_MAPS views have the columns listed in
Table 2-3.

Table 2-3 xxx_SDO_MAPS Views

Column Name Data Type Description

OWNER VARCHAR?2 Schema that owns the base map (ALL_SDO_MAPS only)
NAME VARCHAR2 Unique name to be associated with the base map
DESCRIPTION VARCHAR2 Optional descriptive text about the base map
DEFINITION CLOB XML definition of the list of themes and their scale value

range information to be associated with the base map

MapViewer Concepts 2-25

MapViewer Metadata Views

2.5.2 xxx_SDO_THEMES Views
The USER_SDO_THEMES and ALL_SDO_THEMES views have the columns listed

in Table 2-4.

Table 2-4 xxx_SDO_THEMES Views

Column Name Data Type Description

OWNER VARCHAR?2 Schema that owns the theme (ALL_SDO_THEMES only)
NAME VARCHAR2 Unique name to be associated with the theme
DESCRIPTION VARCHAR2 Optional descriptive text about the theme
BASE_TABLE VARCHAR2 Table or view containing the spatial geometry column
GEOMETRY_ VARCHAR2 Name of the spatial geometry column (of type
COLUMN MDSYS.SDO_GEOMETRY)

STYLING_ CLOB XML definition of the styling rules to be associated with
RULES the theme

2.5.3 xxx_SDO_STYLES Views

The USER_SDO_STYLES and ALL_SDO_STYLES views have the columns listed in

Table 2-5.

Table 2-5

xxx_SDO_STYLES Views

Column Name Data Type

Description

OWNER VARCHAR2 Schema that owns the style (ALL_SDO_STYLES only)

NAME VARCHAR2 Unique name to be associated with the style

TYPE VARCHAR2 One of the following values: COLOR, MARKER, LINE,
AREA, TEXT, or ADVANCED

DESCRIPTION VARCHAR2 Optional descriptive text about the style

DEFINITION CLOB XML definition of the style

IMAGE BLOB Image content (for example, airport.gif) for marker or area
styles that use image-based symbols (for markers) or
fillers (for areas)

GEOMETRY MDSYS.SDO_ (Reserved for future use)

GEOMETRY

2-26 Oracle Application Server 10g MapViewer User's Guide

3

MapViewer Map Requests

This chapter explains how to submit map requests in XML format to MapViewer,
and it describes the XML document type definitions (DTDs) for the map requests
(input) and responses (output). XML is widely used for transmitting structured
documents using the HTTP protocol. If an HTTP request (GET or POST method) is
used, it is assumed the request has a parameter named xm _r equest whose value
is a string containing the XML document for the request.

(In addition to map requests, the MapViewer XML API can be used for
administrative requests, such as adding new data sources. Administrative requests
are described in Chapter 6.)

As shown in Figure 1-1 in Section 1.1.1, the basic flow of action with MapViewer is
that a client locates a remote MapViewer instance, binds to it, sends a map request,
and processes the map response returned by the MapViewer instance.

A request to the MapViewer servlet has the following format:

http://host nane[: port]/ MapVi ewer - servl et - pat h?xm _request =xm - r equest

In this format:
« hostname is the network path of the server on which MapViewer is running.
« portis the port on which the Web server listens.

« MapViewer-servlet-path is the MapViewer servlet path (for example,
mapvi ewer/ onserver).

« xml-request is the URL-encoded XML request submitted using the HTML GET
or POST method.

The input XML is required for all requests. The output depends on the content of
the request: the response can be either an XML document, or a binary object
containing the (generated image) file requested by the user.

MapViewer Map Requests 3-1

Map Request Examples

In an input request, you must specify a data source, and you can specify one or
more of the following:

« Themes and styles.

« Acenter point or a box for the map display, and options such as highlight, label,
and styles.

« A predefined base map, which can be reused and overlaid with custom data.

« A custom theme with the user data points (or any geometry) retrieved
dynamically and plotted directly from an accessible database.

« Custom features (point, circles, or any geometry) specified in the XML request
string to be plotted. These require that you provide the (dynamic) data in
GeoFeature format, as defined in the DTD. The geometry portion of GeoFeature
adopts the Geometry DTD as specified in Open GIS Consortium Geography
Markup Language Version 1.0 (OGC GML v1.0).

« Thematic mapping.

You can manage the definition of base maps, themes, and styles (individual
symbologies) using the Map Definition Tool, which is described in Chapter 7.

For the current release, MapViewer accepts only a coordinate pair to identify the
location for a map request; it cannot take a postal address as direct input for a map.

This chapter first presents some examples of map requests (see Section 3.1), and
then presents detailed explanations of the following XML DTDs for requests and
other operations:

« Map Request DTD

« Information Request DTD

« Map Response DTD

« MapViewer Exception DTD
« Geometry DTD (OGC)

3.1 Map Request Examples

This section provides examples of map requests. It refers to concepts, elements, and
attributes that are explained in detail in Section 3.2.

3-2 Oracle Application Server 10g MapViewer User’s Guide

Map Request Examples

3.1.1 Simple Map Request

Example 3-1 is a very simple map request. It requests a map consisting of a blank
blue image (from the mvdeno data source) with the string Hello World drawn on top.
(The dat asour ce attribute is required for a map request, even though this specific
map request does not retrieve any map data from the data source.)

Example 3-1 Simple Map Request (“Hello World")

<?xm version="1.0" standal one="yes"?>
<map_request title="Hello Wrld" datasource = "nmvdemo" />

3.1.2 Map Request with Dynamically Defined Theme

Example 3-2 is a simple map request with one dynamically defined theme. It
requests a map of all Oracle Spatial geometries from the COUNTIES table.

Example 3-2 Simple Map Request with Dynamically Defined Theme

<?xm version="1.0" encodi ng="UTF-8" ?>
<map_request datasource="|bs_data">
<t henes>
<thene nane="t1">
<jdbc_query spatial _colum = "GEOM'
dat asource = "l bs_data">
SELECT geom FROM counti es
</jdbc_query>
</t henme>
</thenes >
</ map_request >

3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme

Example 3-3 requests a map with a specified center for the result map, and specifies
a predefined theme (poi _t hene_us_r est aur ant s) to be rendered in addition to
the predefined themes that are part of the base map (basemap="us_base").

Example 3-3 Map Request with Base Map, Center, and Additional Predefined Theme

<?xm version="1.0" encodi ng="UTF-8" ?>
<map_request datasource="|bs_data" title="LBS CUSTOVER MAP"
basemap="us_base" w dt h="500" hei ght ="375"
bgcol or ="#a6cae0" format="G F_URL">
<center size="1">

MapViewer Map Requests 3-3

Map Request Examples

<geoFeat ure typeNanme="mapcenter" |abel ="Mtel 1" text_style="T. MOTEL"
render_styl e="M MOTEL" radi us="300">
<geonetri cProperty>
<Poi nt >
<coor di nat es>- 122. 2615, 37.5266</ coor di nat es>
</ Poi nt >
</ geonet ri cProperty>
</ geoFeat ur e>
</center>
<srs>SDO 8265</ srs>
<t henmes>
<t heme name="poi _theme_us_restaurants" />
</thenes >
</ map_request >

Notes on Example 3-3:

« Because basemap is specified, MapViewer first draws all predefined themes for
that base map before drawing the specified theme (poi _t hene_us_
restaurants).

« The center will be drawn with a marker of the M MOTEL style and the label
Mot el 1 inthe T. MOTEL style.

« Acircle with a radius of 300 meters will be drawn around the center.

3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other
Features

Example 3-4 requests a map with a specified center, a predefined theme named

t heme_| bs_cust omer s, a dynamically defined theme named sal es_by__

r egi on, and all base themes in the base map us_base_r oad, plus two features: a
polygon representing the top sales region, and a point. The requested map will be
stored at the MapViewer host and a URL to that GIF image (f ormat =" A F_URL")
will be returned to the requester.

Example 3-4 Map Request with Center, Base Map, Dynamically Defined Theme, Other
Features

<?xm version="1.0" encodi ng="UTF-8" ?>
<map_request datasource="|Dbs_data2" title="LBS CUSTOVER MAP 2"
wi dt h="400" hei ght ="300" format="G F_URL" basemap="us_base_road">
<center size="1.5">
<geoFeat ure typeNanme="nil">
<geonetri cProperty>

3-4 Oracle Application Server 10g MapViewer User’s Guide

Map Request Examples

<Poi nt >
<coor di nat es>-122. 2615, 37.5266</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ geoFeat ur e>
</center>
<t hemes>
<thene name="theme_| bs_customers" />
<t heme nanme="sal es_by_regi on">
<jdbc_query spatial _colum ="region"
| abel _col um="nanager"
render _styl e="V. SALES COLOR'
| abel _style="T.SMALL TEXT"
j dbc_host ="dat a. ny_cor p. cont
jdbc_sid="orcl"
j dbc_port="1521"
j dbc_user="scott"
j dbc_password="ti ger"
j dbc_mode="t hi n"
> sel ect region, sales, manager from ny_corp_sal es_2001
</jdbc_query>
</t herme>
</t hermres>
<geoFeat ure typeNanme="nil|" | abel =" TopSal esRegi on"
text _styl e="9988" render_styl e="2837" >
<geomnetri cProperty>
<Pol ygon srsName="SDQ 8265" >
<out er Boundar yl s>
<Li near Ri ng>
<coordinates>42.9,71.1 43.2,72.3 39.2,73.0 39.0,
73.1 42.9,71. 1</ coor di nat es>
</ Li near Ri ng>
</ out er Boundar yl s>
</ Pol ygon>
</ geonetri cProperty>
</ geoFeat ur e>
<geoFeat ure render_styl e="1397" text_styl e="9987">
<geomnetri cProperty>
<Poi nt >
<coor di nat es>-122. 5615, 37.3266</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ geoFeat ur e>
</ map_request >

MapViewer Map Requests 3-5

Map Request Examples

In Example 3-4, sal es_by_r egi on is a dynamically defined theme. For
information about dynamically defining a theme, see Section 3.2.6 and Section 3.2.7.

3.1.5 Map Request with Image Theme

Example 3-5 requests a map in which an image theme is to be plotted underneath
all other regular vector data. The image theme is specified in the <j dbc_i nage_
guer y> element as part of the <t herme> element in a map request. (For an
explanation of image themes, see Section 2.3.4.)

Example 3-5 Map Request with Image Theme

<?xm version="1.0" encodi ng="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS Inmage MAP"
basemap="us_roads" format="0G F_STREAM >
<center size="1">
<geoFeature >
<geonetri cProperty>
<Poi nt >
<coor di nat es>-122. 2615, 37.5266</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ geoFeat ur e>
</ center>
<t hemes>
<t heme nane="anl mageThene" >
<jdbc_i mage_query image_f or mat =" ECW
i rage_col urm="1i mage”
i mage_nbr_col um="i ng_extent”
j dbc_srid="33709"
dat a_source="1bs_data">
SELECT inmage, inmg_extent, image_id FROM ny_i mages
</jdbc_i mage_query>
</t henme>
</thenes >
</ map_request >

MapViewer processes the request in Example 3-5 as follows:

1. MapViewer retrieves the image data by executing the user-supplied query
(SELECT i nage, ing_extent, imge_id FROM ny_i mages) in the
current map window context.

2. MapViewer checks its internal list of all registered image renderers to see if one
supports the ECW format (i nage_f or nat =" ECW). Because MapViewer as

3-6 Oracle Application Server 10g MapViewer User’s Guide

Map Request Examples

supplied by Oracle does not support the ECW format, you must implement and
register a custom image renderer that supports the format, as explained in
Appendix B.

3. MapViewer calls the r ender | mages method, and image data retrieved from
the user-supplied query is passed to the method as one of its parameters.

4. MapViewer retrieves and renders any requested vector data on top of the
rendered image.

3.1.6 Map Request for Image of Map Legend Only

Example 3-6 requests a map with just the map legend but without rendering any
spatial data. In this example, the legend explains the symbology used for
identifying cities, state boundaries, interstate highways, and county population
density. (Map legends are explained in Section 3.2.10.)

Example 3-6 Map Request for Image of Map Legend Only

<?xm version="1.0" standal one="yes"?>
<map_r equest

dat asource = "mvdeno”

f or mat =" PNG_URL" >

<l egend bgstyle="fill:#ffffff;stroke: #f f0000" profil e="MeD UM
posi ti on="SCUTH_EAST" >
<col um>
<entry text="Map Legend" is_title="true" />
<entry style="M STAR' text="center point" />
<entry style="M CITY HALL 3" text="cities" />
<entry is_separator="true" />
<entry style="C ROSY BROAN STROKE" text="state boundary" />
<entry style="L.PH' text="interstate hi ghway" />
<entry text="County popul ation:" />
<entry style="V. COUNTY_POP_DENSI TY" tab="1" />
</ col um>
</ | egend>

</ map_request >

Generating just the map legend image, as in Example 3-6, can save processing time
if you display the stored map legend image on a Web page separately from the
actual displayed maps. This avoids the need to generate a legend each time there is
a map request.

MapViewer Map Requests 3-7

Map Request Examples

3.1.7 Map Request Using a Pie Chart Theme

This section shows how to use thematic mapping with a pie chart theme. The result
is a map in which each county contains a pie chart in which the size of each slice
reflects the proportion of the population in a specified household income level
category (low, medium, or high) in the county.

The basic steps are as follows.

1. Create an advanced style that defines the characteristics of the pie charts to be
used. The following example creates an advanced style named V. Pl ECHART1.

I NSERT | NTO user _sdo_styl es VALUES (
"V. Pl ECHART1' , ' ADVANCED , null,
'<?xm version="1.0" ?>
<AdvancedStyl e>
<Pi eChart Styl e pieradius="10">
<PieSlice nane="low' col or="#ff0000" />
<Pi eSlice name="nediunt color="#ffff00" />
<Pi eSlice name="hi gh" col or="#00ff 00" />
</ PieChart Styl e>
</ AdvancedStyl e>', null, null);

When the style defined in the preceding example is applied to a geographic
feature, a pie chart is created with three slices. The pi er adi us attribute
specifies the size of each pie chart in pixels. Each slice (<Pi eSl i ce> element)
has a color defined for it. The nane attribute for each slice is ignored by
MapViewer.

2. Create a new theme that uses the style that you created, as in the following
example:

I NSERT | NTO user _sdo_t henmes VALUES (
" THEME_PI E_CHART', null, 'COUNTIES, 'GEOM,
"<?xm version="1.0" standal one="yes" ?>
<styling_rules >
<rule colum="INC_ LOWINC MED, INC HCH' >
<features style="C. US MAP YELLOW > </features>
<l abel colum="""dumy'"'" style="V.PIECHART1"> 1 </[abel >
</rule>
</styling_rules>);

In the theme definition in the preceding example, the <I abel > element of the
styling rule specifies st yl e="V. Pl ECHART1", to indicate that this pie chart
style (the style created in step 1) is used to label each geometry displayed on the
map.

3-8 Oracle Application Server 10g MapViewer User’s Guide

Map Request Examples

The column attribute (col um= dumy' ' " in this example) is required,
even though it has no effect on the resulting map. The col unm attribute value
can be dummy or any other string, and the value must be enclosed on both
sides by two single quotation marks.

Because the V. Pl ECHART1 style is defined with three slices, the preceding
example must specify the names of three columns from the COUNTIES table,
and these columns must have a numeric data type. The column names are INC_
LOW, INC_MED, and INC_HIGH. These columns will supply the value that
will be used to determine the size of each pie slice.

3. Issue a map request that uses the theme that you created. Example 3-7 requests
a map that uses the THEME_PI E_CHART theme that was created in step 2.

Example 3-7 Map Request Using a Pie Chart Theme

<?xm version="1.0" standal one="yes"?>
<map_request datasource = "mvdenp"
f or mat =" PNG_STREAM' >
<t henes>
<t heme name="THEME PI E_CHART" />
</t hemes>
</ map_request >

Figure 3-1 shows part of a display resulting from the map request in Example 3-7.

MapViewer Map Requests 3-9

Map Request Examples

Figure 3-1 Map Display Using a Pie Chart Theme

JO

@3

> (o

' O

old Income (Red=lof:"Yellow=mgt; Grée =high]N

You can also use the pie chart style in a dynamic (JDBC) theme when issuing a map
request. You must specify the complete SQL query for a JDBC theme in the map
request, because you must identify the attribute columns that are needed by the pie
chart style. Any columns in the SELECT list that are not SDO_GEOMETRY columns
or label columns are considered to be attribute columns that can be used by an
advanced style.

Blockgroup Ho

3-10 Oracle Application Server 10g MapViewer User’'s Guide

Map Request Examples

Example 3-8 is a sample request with a JDBC theme using a pie chart style. The
SQL query (SELECT geom ‘dunmy’, sales, service, training FROM
support _cent ers)isincluded in the theme definition.

Example 3-8 JDBC Theme Using a Pie Chart Style

<?xm version="1.0" standal one="yes"?>
<map_r equest
basemap="CA MAP"
datasource = "nvdenp"
f or mat =" PNG_URL" >

>
<t hemes>
<t heme name="support_center">
<jdbc_query spatial _col um="geont datasource="tilsmenv"
| abel _col um="dumy”,
| abel _styl e="V. Pl ECHART1" >
SELECT geom ‘dummy’, sales, service, training
FROM support_centers
</jdbc_query>
</t heme>
</t henmes>

</ map_request >

3.1.8 Java Program Using MapViewer

Example 3-9 uses the j ava. net package to send an XML request to MapViewer
and to receive the response from MapViewer. (Note, however, most programmers
will find it more convenient to use the JavaBean-based API, described in Chapter 4,
or the JSP tag library, described in Chapter 5.)

Example 3-9 Java Program That Interacts with MapViewer

inport java.net.*;
inport java.io.?*;

/**

* A sanpl e programthat shows how to interact with MapVi ener
*|

public class MapVi ewer Denp

{

private H'tpURLConnection mapVi ewer = nul | ;

/**

MapViewer Map Requests 3-11

Map Request Examples

* |Initializes this demo with the url to the MapVi ewer server.
* The URL is typically http://ny_corp.com 8888/ mapvi ewer/ onserver.

*
/
public MapVi ewer Deno(String mapVi ewer URLSt ri ng)
{
URL url;
try
{
url = new URL(nmapVi ewer URLString);
mapVi ewer = (H t pURLConnection) url.openConnection();
mapVi ewer . set DoQut put (true);
mapVi ewer . set Dol nput (true);
mapVi ewer . set UseCaches(f al se);
}
catch (Exception e)
{
e.printStackTrace(Systemerr);
Systemexit(1);
}
}
/**

* Submits an XML request to MapViewer.
* @aramxnmreq the xm docunment that is a MapViewer request.

*/
public void submtRequest(String xmreq)
{
try
{
mapVi ewer . set Request Met hod(" POST"); //use HTTP POST net hod
Qut put Stream os = mapVi ewer. get Qut put St rean();
/I MapVi ewer expects to find the request as a paraneter
/Inamed "xn _request".
xmreq = "xm _request ="+URLEncoder. encode(xn req);
os.wite(xnreq.getBytes());
os. flush();
o0s. close();
}
catch (Exception e)
{
e.printStackTrace(Systemerr);
Systemexit(1);
}
}

3-12 Oracle Application Server 10g MapViewer User's Guide

Map Request Examples

/**

* Receives an XM. response from MapVi ever.

x|
public String getResponse()
{
Byt eArrayQut put Stream content = new Byt eArrayQut put Strean();
InputStreamis = null;
try
{
is = mapVi ewer. getlnputStrean();
int c;
while ((c =is.read()) !'=-1)
content.wite(c);
is.close();
content.flush();
content.close();
return content.toString();
}
catch (Exception e)
{
e.printStackTrace(Systemerr);
return null;
}
}

/1 Asinple main programthat sends a |ist_data_sources xm
/1 request to MapVi ewer through HTTP POST.
public static void main(String[] args)
{
i f(args.|ength<l)
{
Systemout. println("Usage: java MapViewerDeno <mapviewer url>");
Systemout. println("Exanmpl e: java MapViewerDeno http://ny_
corp. con mapvi ewer/ onserver");
Systemexit(1);
}

Il a sanple xm request for MapVi ewer

String

|istDataSources = "<?xm version=\"1.0\" standal one=\"yes\"?>" +
" <non_nap_request>" +
" <list_data_sources />" +
" </non_map_request>";

MapViewer Map Requests 3-13

Map Request Examples

MapVi ewer Deno tester = nul |l ;

tester = new MapVi ewer Deno(args[0]);
Systemout. println("subnitting request:\n"+listDataSources);
tester. subnit Request (1 i st Dat aSour ces) ;

String response = tester.getResponse();
Systemout. println("response from MapViewer: \n

+ response);

3.1.9 PL/SQL Program Using MapViewer

Example 3-10 is a sample PL/SQL program that sends an XML request to the
MapViewer server. This example works only on Oracle Database release 9.0.1 and
higher.

Example 3-10 PL/SQL Program That Interacts with MapViewer

set serverout on size 1000000;

Author: C arke Col onbo
decl are

| _http_req utl_http.regq;
| _http_resp utl_http.resp;

[_url varchar2(4000):= 'http://my_corp.com 8888/ mapvi ewer/ onserver' ;
| _val ue var char 2(4000) ;

ing_url var char 2(4000) ;

response sys. xnl type;

out put var char 2(255) ;

map_req var char 2(4000) ;

begin
utl _http.set_persistent_conn_support(TRUE);
map_req := '<?xm version="1.0" standal one="yes" ?>
<map_request title="MapViewer Dermonstration"

dat asour ce="nvdeno"
basemap="course_nap"

3-14 Oracle Application Server 10g MapViewer User's Guide

Map Request Examples

wi dt h="500"
hei ght =" 375"
bgcol or="#a6cae0"
antialiasing="fal se"
format="G F_URL">
<center size="5" >
<geoFeat ur e>
<geonetri cProperty>
<Poi nt >
<coor di nat es>- 122. 2615, 37.5266</ coor di nat es>
</ Poi nt>
</ geonet ri cProperty>
</ geoFeat ur e>
</center>
</ map_request>';

| _http_req := utl_http.begin_request(l _url, 'PCST", "HITP/1.0");

- sets up proper HITP headers
utl _http.set_header (|l _http_req, 'Content-Type',
"appl i cation/ x-wwformurlencoded');

utl _http.set_header (| _http_req, 'Content-Length', length('xm _request=" ||
map_req));

utl _http.set_header (| _http_req, 'Host', 'my_corp.com);

utl _http.set_header(l _http_req, 'Port', '8888');

utl _http.wite_text(l_http_req, 'xm _request=" || map_req);
| _http_resp := utl_http.get_response(l_http_req);

utl _http.read_text(l _http_resp, | _value);

response := sys.xnltype.createxm (Il _value);

utl _http.end_response(l _http_resp);

img_url := response.extract('/mp_response/ map_i mage/ map_
content/@rl").getstringval ();

dbns_out put . put _line(img_url);

end;
/

MapViewer Map Requests 3-15

Map Request DTD

3.2 Map Request DTD

The following is the complete DTD for a map request. The main elements and
attributes of the DTD are explained in sections that follow.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- <box> is defined in OGC G\ v1.0 -->
<! ELEMENT map_request ((box | center)?, srs?, |egend?, thenes?, geoFeature*)>
<l ATTLI ST nmap_request
dat asour ce CDATA #REQUI RED

basemap CDATA #| MPLI ED
wi dth CDATA #| MPLI ED
hei ght CDATA #| MPLI ED

antialiasing (TRUE| FALSE) "FALSE'
i mgescaling (TRUE| FALSE) "TRUE"

f or mat (G F| G F_URL| G F_STREAM JAVA | MAGE| PNG_STREAM PNG URL) "G F_URL"
title CDATA #1 MPLI ED

bgcol or (CDATA) "#A6CAFO"

bgi mage CDATA #| MPLI ED

>
<I ELEMENT center (geoFeature)>
<l ATTLI ST center

size CDATA #REQUI RED

<I ELEMENT srs (#PCDATA) >

<! ELEMENT thenes (thenme+) >

<! ELEMENT thene (jdbc_query | jdbc_image_query)? >
<! ATTLI ST thene

nane CDATA #REQUI RED
max_scal e CDATA #| MPLI ED
m n_scal e CDATA #| MPLI ED

| abel _al ways_on (TRUE| FALSE) "FALSE"
>
<! ELEMENT j dbc_query (#PCDATA) >
<I ATTLI ST j dbc_query

asis (TRUE| FALSE) " FALSE"
spatial _col um CDATA #REQUI RED

| abel _col um CDATA #| MPLI ED

| abel _style CDATA #| MPLI ED
render_style CDATA #| MPLI ED

dat asour ce CDATA #! MPLI ED

j dbc_host CDATA #| MPLI ED

j dbc_port CDATA #| MPLI ED
jdbc_sid CDATA #| MPLI ED

3-16 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

>

j dbc_user
j dbc_password
jdbc_srid
j dbc_mode

CDATA #I MPLI ED
CDATA #I MPLI ED
CDATA #| MPLI ED
(thin]oci8) "thin"

<I ELEMENT j dbc_i mage_query (#PCDATA) >
<I ATTLI ST j dbc_i mage_query

>

asi s
i mage_f or mat
i mage_col um

(TRUE| FALSE) "FALSE"
CDATA #REQU RED
CDATA #REQU RED

i mage_nbr_col um CDATA #REQUI RED
i mage_resol uti on CDATA #l MPLI ED

i mage_uni t
dat asour ce

j dbc_host

j dbc_port
jdbc_sid

j dbc_user

j dbc_password
jdbc_srid

j dbc_mode

CDATA #1 MPLI ED
CDATA #1 MPLI ED
CDATA #1 MPLI ED
CDATA #I MPLI ED
CDATA #1 MPLI ED
CDATA #1 MPLI ED
CDATA #1 MPLI ED
CDATA #1 MPLI ED
(thin]oci8) "thin"

<! ELEMENT geoFeature (description?, property*,

geonetri cProperty) >

<l ATTLI ST geoFeature

>

t ypeName

id

| abel
render_style
text_style

| abel _al ways_on

mar ker _si ze
radi us

CDATA #1 NPLI ED
CDATA #I NPLI ED
CDATA #1 NPLI ED
CDATA #I NPLI ED
CDATA #1 NPLI ED
(TRUE| FALSE) "FALSE"
CDATA #1 NPLI ED
CDATA #1 NPLI ED

<I ELEMENT | egend col um+ >
<l ATTLI ST | egend
bgstyl e CDATA #inplied

profile (MED UM SMALL| LARGE) "MEDI UM

>

<! ELEMENT col um entry+ >
< ATTLI ST entry

i s_separator
tab

style

t ext

(true|false) "fal se"
CDATA "0"

CDATA #inplied
CDATA #inplied

MapViewer Map Requests 3-17

Map Request DTD

3.2.1 map_request Element
The <map_r equest > element has the following definition:

<! ELEMENT map_request ((box | center)?, srs?, thenes?, geoFeature*)>

The root element of a map request to MapViewer is always named map_r equest .

<map_r equest > can have a child element that is either <box> (see Section 3.2.3) or
<cent er > (see Section 3.2.4), which specifies the range of the user data to be
plotted on a map. If neither box nor cent er is specified, the result map is drawn
using all data available to MapViewer.

The optional <SRS> child element is ignored by the current version of MapViewer.

The optional <t henmes> element (see Section 3.2.5) specifies predefined or
dynamically defined themes.

The <geoFeat ur e> element (see Section 3.2.9) can be used to specify any number
of individual geometries and their rendering attributes.

MapViewer first draws the themes defined in a base map (if a base map is specified
as an attribute in the root element), then any user-provided themes, and finally any
geoFeat ur e elements.

3.2.2 map_request Attributes

The root element <map_r equest > has a number of attributes, some required and
the others optional. The attributes are defined as follows:

<! ATTLI ST map_request
dat asour ce CDATA #REQUI RED

basemap CDATA #| MPLI ED
wi dth CDATA #| MPLI ED
hei ght CDATA #| MPLI ED

antialiasing (TRUE| FALSE) "FALSE'
i mgescaling (TRUE| FALSE) "TRUE"

f or mat (G F| G F_URL| G F_STREAM JAVA_| MAGE| PNG_STREAM PNG_URL) "d F_URL"
title CDATA #| MPLI ED

bgcol or (CDATA) "#A6CAFQ"

bgi mage CDATA #| MPLI ED

3-18 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

dat asour ce is a required attribute that specifies a data source. A data source
provides information to MapViewer about where to fetch the user data (and the
mapping metadata) that are required to render a map.

basemap is an optional attribute. When it is specified, MapViewer renders all
themes that are specified for this base map. The definition of a base map is stored in
the user’s USER_SDO_MAPS view, as described in Section 2.5.1. Use this attribute if
you will always need a background map on which to plot your own themes and
geometry features.

wi dt h and hei ght are required attributes that together specify the size (in device
units) of the resulting map image. This size is different from the size specified in the
cent er element or box element, which is the range of the window into a user’s
source data.

anti al i asi ng is an optional attribute. When its value is TRUE, MapViewer
renders the map image in an antialiased manner. This usually provides a map with
better graphic quality, but it may take longer for the map to be generated. The
default value is FALSE (for faster map generation). (For backward compatibility,
anti al i ase isasynonym for anti al i asi ng, but you are encouraged to use
anti al i asi ng.)

i mgescal i ng is an optional attribute. When its value is TRUE (the default),
MapViewer attempts to scale the images to fit the current querying window and the
generated map image size. When its value is FALSE, and if an image theme is
included directly or indirectly (such as through a base map), the images from the
image theme are displayed in their original resolution. This attribute has no effect
when no image theme is involved in a map request.

f or mat is an optional attribute that specifies the file format of the returned map
image. The default value is G F_URL, which is a URL to a GIF image stored on the
MapViewer host system. If you specify G F, the generated GIF image data is
embedded in a MapResponse object and returned to the client. If you specify G F_
STREAM the generated image map content is returned directly to the client through
the HTTP MIME type i mage/ gi f . If you specify JAVA | MAGE, a Java 2D

Buf f er edl mage object with a color model of TYPE | NT_RGB is embedded in a
MapResponse object and returned to the client. If you specify PNG_STREAM the
stream of the image in PNG format is returned directly; if you specify PNG_URL, a
URL to a PNG image stored on the MapViewer host system is returned. (The PNG
image format has some advantages over the GIF format, including faster image
encoding and true color support.)

titl e isan optional attribute that specifies the map title to be displayed on the top
of the resulting map image.

MapViewer Map Requests 3-19

Map Request DTD

bgcol or is an optional attribute that specifies the background color in the resulting
map image. The default is water-blue (RGB value #A6CAFO0). It must be specified as
a hexadecimal value.

bgi mage is an optional attribute that specifies the background image (GIF or JPEG
format only) in the resulting map image. The image is retrieved at runtime when a
map request is being processed, and it is rendered before any other map features,
except that any bgcol or value is rendered before the background image.

3.2.3 box Element
The <box> element has the following definition:

<! ELEMENT Box (coordinates) >
<l ATTLI ST Box
| D CDATA #| MPLI ED

srsName CDATA #REQUI RED
>

The <box> element is used to specify the bounding box of a resulting map. It uses a
<coor di nat es> element to specify two coordinate value pairs that identify the
lower-left and upper-right corners of the rectangle. The coordinate values are
interpreted in terms of the user's data. For example, if the user's data is geodetic and
is specified in decimal degrees of longitude and latitude, a <coor di nat es>
specification of - 72. 84, 41.67, -70.88, 42.70 indicates a bounding box
with the lower-left corner at longitude-latitude coordinates (-72.84, 41.67) and the
upper-right corner at coordinates (-70.88, 42.70), which are in the New England
region of the United States. However, if the data is projected with meter as its unit
of measurement, the coordinate values are interpreted in meters.

3.2.4 center Element
The <cent er > element has the following definition:

<I ELEMENT center (geoFeature)>
<l ATTLI ST center

si ze CDATA #REQUI RED
>

The <cent er > element is used to specify the center of a resulting map. It has a
required attribute named si ze, which specifies the vertical span of the map in
terms of the original data unit. For example, if the user’s data is in decimal degrees,
the si ze attribute specifies the number of decimal degrees in latitude. If the user’s
data is projected with meter as its unit, MapViewer interprets the size in meters.

3-20 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

The center itself must embed a <geoFeat ur e> element, which is specified in
Section 3.2.9.

3.2.5 themes Element
The <t herres> element has the following definition:
<! ELEMENT thenes (thenme+) >

The <t hermes> element specifies one or more <t heme> elements (described in
Section 3.2.6). If you have specified a base map (basenap attribute of the map_
request element), any themes that you specify in a <t henmes> element are plotted
after those defined in the base map. If no base map is specified, only the specified
themes are rendered.

Inside this <t henes> element, there must be one or more <t hene> child elements,
which are rendered in the order in which they appear.

3.2.6 theme Element
The <t herme> element has the following definition:

<! ELEMENT thene (jdbc_query | jdbc_i mage_query)? >
<I ATTLI ST there

nane CDATA #REQUI RED
max_scal e CDATA #| MPLI ED
mn_scal e CDATA #1 MPLI ED

| abel _al ways_on (TRUE| FALSE) "FALSE"
>

The <t herre> element lets you specify a predefined or dynamically defined theme.

« For a predefined theme, whose definition is already stored in your USER_SDO _
THEMES view, only the theme name is required.

« For adynamically defined theme, you must provide the information in a
<j dbc_quer y> element (described in Section 3.2.7) or a <j dbc_i mage_
guer y> element (described in Section 3.2.8).

The nane attribute identifies the theme name. For a predefined theme, the name
must match a value in the NAME column of the USER_SDO_THEMES view
(described in Section 2.5.2). For a dynamically defined theme, this is just a
temporary name for referencing the j dbc_quer y-based theme.

MapViewer Map Requests 3-21

Map Request DTD

The max_scal e and nmi n_scal e attributes affect the visibility of this theme. If
max_scal e and mi n_scal e are omitted, the theme is always rendered, regardless
of the map scale. (See Section 2.4.1 for an explanation of max_scal eand m n_
scal e))

| abel _al ways_on is an optional attribute. If it is set to TRUE, MapViewer labels
all features of the theme even if two or more labels will overlap in the display.
(MapViewer always tries to avoid overlapping labels.) If | abel _al ways_on is
FALSE (the default), when it is impossible to avoid overlapping labels, MapViewer
disables the display of one or more labels so that no overlapping occurs. The

| abel _al ways_on attribute can also be specified for a map feature (geoFeat ur e
element, described in Section 3.2.9), thus allowing you to control which features will
have their labels displayed if | abel _al ways_on is FALSE for a theme and if
overlapping labels cannot be avoided.

3.2.7 jdbc_query Element

The <j dbc_quer y> element, which is used to define a theme dynamically, has the
following definition:

<I ELEMENT j dbc_query (#PCDATA) >
<I ATTLI ST j dbc_query

asis (TRUE| FALSE) "FALSE"
spatial _colum CDATA #REQUI RED

| abel _col um CDATA #| MPLI ED

| abel _style CDATA #| MPLI ED
render_style CDATA #| MPLI ED

dat asour ce CDATA #| MPLI ED

j dbc_host CDATA #| MPLI ED

j dbc_port CDATA #| MPLI ED
jdbc_sid CDATA #1 MPLI ED

j dbc_user CDATA #| MPLI ED

j dbc_password CDATA #| MPLI ED
jdbc_srid CDATA #| MPLI ED

j dbc_rode (thin]oci8) "thin"

>

To define a theme dynamically, you must supply a valid SQL query as the content
of the <j dbc_quer y> element. You must specify the spat i al _col urm (column of
type MDSYS.SDO_GEOMETRY) and the JDBC connection information for a
dynamically defined theme (either dat asour ce or the combination of j dbc_host ,
j dbc_port,jdbc_sid,jdbc_user,andjdbc_password).

3-22 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

render _styl eandl abel _styl e are optional attributes. For r ender _styl e,
for point features the default is a red cross rotated 45 degrees, for lines and curves it
is a black line 1 pixel wide, and for polygons it is a black border with a
semitransparent dark gray interior.

j dbc_sri d is an optional attribute that specifies the coordinate system (SDO_SRI D
value) of the data to be rendered.

j dbc_node identifies the Oracle JDBC driver (t hi n or oci 8) to use to connect to
the database.

asi s is an optional attribute. If it is set to TRUE, MapViewer does not attempt to
modify the supplied query string. If asi s is FALSE (the default), MapViewer
embeds the SQL query as a subquery of its spatial filter query. For example, assume
that you want a map centered at (-122, 37) with size 1, and the supplied query is:

SELECT geornetry, sales FROM crm sal es WHERE sal es < 100000;

If asi s is FALSE, the actual query that MapViewer executes is similar to:

SELECT * FROM

(SELECT geonetry, sales FROM crm sal es WHERE sal es < 100000)
WHERE sdo_filter(geonetry, sdo_geometry(... -122.5, 36.5, -123.5, 37.5...)
= TRUE ;

In other words, the original query is further refined by a spatial filter query using
the current map window. However, if asi s is TRUE, MapViewer executes the query
as specified, namely:

SELECT georetry, sales FROM crm sal es WHERE sal es < 100000;

For examples of using the <j dbc_quer y> element to define a theme dynamically,
see Example 3-2 in Section 3.1.2 and Example 3-4 in Section 3.1.4.

3.2.8 jdbc_image query Element

The <j dbc_i mage_quer y> element, which is used to define an image theme
(described in Section 2.3.4), has the following definition:

<! ELEMENT j dbc_i mage_query (#PCDATA) >
<! ATTLI ST j dbc_i mage_query

asis (TRUE] FALSE) "FALSE"
i mage_f or mat CDATA #REQUI RED
i mage_col um CDATA #REQUI RED

i mge_nbr_col um CDATA #REQU RED
i mage_resol uti on CDATA #| MPLI ED

MapViewer Map Requests 3-23

Map Request DTD

i mage_uni t CDATA #1 MPLI ED
dat asour ce CDATA #1 MPLI ED
j dbc_host CDATA #| MPLI ED
j dbc_port CDATA #1 MPLI ED
jdbc_sid CDATA #| MPLI ED
j dbc_user CDATA #1 MPLI ED
j dbc_password CDATA #1 MPLI ED
jdbc_srid CDATA #l MPLI ED
j dbc_rode (thin|oci8) "thin"

>

To define a theme dynamically, you must supply a valid SQL query as the content
of the <j dbc_i mage_quer y> element. You must specify the JDBC connection
information for an image theme (either dat asour ce or the combination of j dbc__
host,j dbc_port,jdbc_sid,jdbc_user,andj dbc_password).

j dbc_sri d is an optional attribute that specifies the coordinate system (SDO_SRI D
value) of the data to be rendered.

j dbc_node identifies the Oracle JDBC driver (t hi n or oci 8) to use to connect to
the database.

asi s is an optional attribute. If it is set to TRUE, MapViewer does not attempt to
modify the supplied query string. If asi s is FALSE (the default), MapViewer
embeds the SQL query as a subquery of its spatial filter query. For example, assume
that you want a map centered at (-122, 37) with size 1, and the supplied query is:

SELECT geonetry, sales FROM crm sal es WHERE sal es < 100000;

If asi s is FALSE, the actual query that MapViewer executes is similar to:

SELECT * FROM

(SELECT geonetry, sales FROM crm sal es WHERE sal es < 100000)
WHERE sdo_filter(geonetry, sdo_geometry(... -122.5, 36.5, -123.5, 37.5...)
=" TRUE ;

In other words, the original query is further refined by a spatial filter query for
current map window. However, if asi s is TRUE, MapViewer executes the query as
specified, namely:

SELECT georetry, sales FROM crm sal es WHERE sal es < 100000;
i mage_f or mat identifies the format (such as GIF or JPEG) of the image data. If the

image format is not supported by MapViewer, you must create and register a
custom image renderer for the format, as explained in Appendix B.

3-24 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

i mage_col um identifies the column of type BLOB where each image is stored.

i mge_nbr _col um identifies the column of type SDO_GEOMETRY where the
footprint (minimum bounding rectangle, or MBR) of each image is stored.

i mage_resol uti on is an optional attribute that identifies the original image
resolution (number of i mage_uni t units for each pixel).

i mage_uni t is an optional attribute, except it is required if you specify the

i mage_resol uti on attribute. Thei mage_uni t attribute specifies the unit of the

resolution, such as Mfor meter. The value for this attribute must be one of the values
in the SDO_UNIT column of the MDSYS.SDO_DIST_UNITS table. In Example 2-11
in Section 2.3.4.1, the image resolution is 2 meters per pixel.

For an example of using the <j dbc_i mage_quer y> element to specify an image
theme, see Example 3-5 in Section 3.1.5.

3.2.9 geoFeature Element
The <geoFeat ur e> element has the following definition:

<! ELEMENT geoFeature (description?, property*,
geonetri cProperty) >
<! ATTLI ST geoFeature

t ypeName CDATA #I MPLI ED
id CDATA #l MPLI ED
render_style CDATA #| MPLI ED
text_style CDATA #1 MPLI ED
| abel CDATA #| MPLI ED

| abel _al ways_on (TRUE| FALSE) "FALSE"
mar ker _si ze CDATA #1 MPLI ED
radi us CDATA #| MPLI ED

>

<geoFeat ur e> elements are used to provide individual geospatial entities to be
rendered on a map. The main part of a <geoFeat ur e> element is the geometry
(<geonet ri cPropert y> element), which must be supplied in compliance with
the OGC GML v1.0 Geometry DTD (described in Section 3.6).

t ypeNane is an optional attribute that is ignored by the current release of
MapViewer.

i d is an optional attribute that is ignored by the current release of MapViewer.

MapViewer Map Requests 3-25

Map Request DTD

render _styl e is an optional attribute. When it is omitted, the geoFeat ur e is not
rendered. If it is supplied, its value must be the name of a style stored in the user’s
USER_SDO_STYLES view.

t ext _styl e is an optional attribute. If it is supplied (and if ther ender _styl e
and | abel attributes are present and valid), it identifies the style to be used in
labeling the geoFeat ur e. If it is not specified, a default text style is used.

| abel isan optional attribute. If it is supplied (and if the r ender _styl e and
| abel attributes are present and valid), it identifies text that is used to label the
geoFeat ure.

| abel _al ways_on is an optional attribute. If it is set to TRUE, MapViewer labels
the features even if two or more labels will overlap in the display of a theme.
(MapViewer always tries to avoid overlapping labels.) If | abel _al ways_on is
FALSE (the default), when it is impossible to avoid overlapping labels, MapViewer
disables the display of one or more labels so that no overlapping occurs. The

| abel _al ways_on attribute can also be specified for a theme (t hene element,
described in Section 3.2.6). Specifying | abel _al ways_on as TRUE for a feature in
the geoFeat ur e element definition gives you control over which features will have
their labels displayed if | abel _al ways_on is FALSE for a theme and if
overlapping labels cannot be avoided.

mar ker _si ze is an optional attribute. If it is supplied with a point geoFeat ur e,
and if r ender _st yl e is a marker-type style, the specified size is used by
MapViewer in rendering this geoFeat ur e. This provides a mechanism to override
the default value specified for a marker style.

radi us is an optional attribute. If it is supplied, it specifies a number or a
comma-delimited list of numbers, with each number representing the radius of a
circle to be drawn centered on this feature. For geodetic data, the unit is meters; for
non-geodetic data, the unit is the unit of measurement associated with the data.

The following example shows a <geoFeat ur e> element specification for a
restaurant at longitude and latitude coordinates (-78.1234, 41.0346). In this case, the
feature will be invisible because the r ender _styl e andt ext _styl e attributes
are not specified.

<geoFeat ure typeName="Custoner" |abel ="Pi zzaHut in Nashua">
<geomnetri cProperty>
<Poi nt srsNane="SDQ 8265" >
<coor di nat es>- 78. 1234, 41. 0346</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ geoFeat ur e>

3-26 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

The following example shows a <geoFeat ur e> element specification for a point of
interest at longitude and latitude coordinates (-122.2615, 37.5266). The feature will
be rendered on the generated map because the r ender _st yl e attribute is
specified. The example specifies some label text (A Pl ace) and a text style for
drawing the label text. It also instructs MapViewer to draw two circles, centered on
this feature, with radii of 1600 and 4800 meters. (In this case, the sr sNane attribute
of the <Poi nt > element must be present, and it must specify an Oracle Spatial
SRID value using the format " SDO. <sri d>". Because SRID value 8265 is
associated with a geodetic coordinate system, the radius values are interpreted as
1600 and 4800 meters.)

<geoFeature render_style="mstar"
r adi us="1600, 4800"
| abel ="A Pl ace"
text _style="T. Name" >
<geonetricProperty >
<Poi nt srsName="SDO 8265" >
<coor di nat es>-122. 2615, 37.5266</ coor di nat es>
</ Poi nt >
</ geonetri cProperty>
</ geoFeat ur e>

Figure 3-2 is a map drawn using the <geoFeat ur e> element in the preceding

example. The feature is labeled with the text A Pl ace, and it is represented by a
red star marker surrounded by two concentric circles.

MapViewer Map Requests 3-27

Map Request DTD

Figure 3-2 Map with <geoFeature> Element Showing Two Concentric Circles

@ Placé

San Matben

3.2.10 legend Element
The <I egend> element has the following definition:

<I ELEMENT | egend col um+ >
<I ATTLI ST | egend

bgstyl e CDATA #inplied

profile (MEDI UM SMALL| LARGE) “MEDI UM

posi tion (SOUTH_WEST| SOUTH_EAST| SCUTH| NORTH|

NORTH_VEST| NORTH_EAST| EAST| WEST| CENTER) " SQUTH_VEST"

>
<! ELEMENT col um entry+ >
< ATTLI ST entry

is_ title (true|fal se) “fal se”
is_separator (true|false) “false”
tab CDATA “0”

style CDATA #inplied

t ext CDATA #inplied

>
<l egend> elements are used to draw a legend (map inset illustration) on top of a

generated map, to make the visual aspects of the map more meaningful to users.
The main part of a <I egend> element is one or more <col unm> elements, each of

3-28 Oracle Application Server 10g MapViewer User's Guide

Map Request DTD

which defines a column in the legend. A one-column legend will have all entries
arranged from top to bottom. A two-column legend will have the two columns side
by side, with the first column on the left, and each column having its own legend
entries. Figure 2-2 in Section 2.4.2 shows a one-column legend. Figure 3-3 shows a
two-column legend.

Figure 3-3 Two-Column Map Legend
MapYiewer Demo Map Legend c?)
destination

< pointofinterest

wwater body

= airpor ———— am eniry

T E A e
primany toll highweay
——+++ railroad

household income:

10k or less
10k - 15k
20k - 26k
25k - 35k
235k - S0k
(| 50k - 75k
(| 7S5k - 100k
(| 100k - 125k

- 250k - 500k
(| SO0k up

first column

== hlajor Interstate

Earthouakes
& Jorless
g4-5

5-6

G-7

Tup

second column

bgst yl e is an optional attribute that specifies the overall background style of the
legend. It uses a string with syntax similar to scalable vector graphics (SVG) to
specify the fill and stroke colors for the bounding box of the legend. If you specify
an opacity (fil | -opaci ty orstroke-opaci ty) value, the fill and stroke colors
can be transparent or partially transparent. The following example specifies a
background that is white and half transparent, and a stroke (for the legend box

boundary) that is red:

bgstyle="fill:#ffffff;fill-opacity:128; stroke: #ff 0000"

MapViewer Map Requests 3-29

Map Request DTD

profi | e is an optional attribute that specifies a relative size of the legend on the
map, using one of the following keywords: SMALL, MEDI UM(the default), or LARGE.

posi ti on is an optional attribute that specifies where the legend should be drawn
on the map. The default is SOUTH_WVEST, which draws the legend in the lower-left
corner of the resulting map.

i s_titleisan optional attribute of the <ent r y> element. When its value is TRUE,
the entry is used as the title for the column, which means that the description text
appears in a more prominent font than regular legend text, and any other style
attribute defined for the entry is ignored. The default is FALSE.

i s_separ at or is an optional attribute of the <ent r y> element. When its value is
TRUE, the entry is used to insert a blank line for vertical spacing in the column. The
default is FALSE.

t ab is an optional attribute of the <ent r y> element. It specifies the number of tab
positions to indent the entry from the left margin of the column. The default is 0
(zero), which means no indentation.

st yl e is an optional attribute of the <ent r y> element. It specifies the name of the
MapViewer style (such as a color or an image) to be depicted as part of the entry.

t ext is an optional attribute of the <ent r y> element. It specifies the description
text (for example, a short explanation of the associated color or image) to be
included in the entry.

The following example shows the <I egend> element specification for the legend in
Figure 2-2 in Section 2.4.2.

<l egend bgstyle="fill:#ffffff;fill-opacity:128; stroke: #ff0000"
posi ti on="NORTH_WEST" >
<col um>
<entry text="Map Legend" is_title="true" />
<entry style="M STAR' text="center point" />
<entry style="M CTY HALL 3" text="cities" />
<entry is_separator="true" />
<entry style="C ROSY BROM STROKE" text="state boundary" />
<entry style="L.PH' text="interstate hi ghway" />
<entry text="County popul ation:" />
<entry style="V. COUNTY_POP_DENSI TY" tab="1" />
</ col um>
</l egend>

In the preceding example:

3-30 Oracle Application Server 10g MapViewer User's Guide

Information Request DTD

« The background color has an opacity value of 128 (fi | | - opaci ty: 128),
which means that the white background will be half transparent.

« The legend boundary box will be red (st r oke: #f f 0000).

« The legend boundary box will be positioned in the upper-left part of the display
(position="NORTH_WEST").

« The legend will be the default size, because the pr of i | e attribute (which has a
default value of MEDI UM is not specified.

« The legend will have a single column, with entries arranged from top to bottom.
« Thefirst entry is the legend title, with the text Map Legend.
« The fourth entry is a separator for adding a blank line.

« The seventh entry is description text (County population:) that users of the
generated map will associate with the next (and last) entry, which specifies an
advanced style. The County population: text entry is helpful because advanced
styles usually have their own descriptive text, and you do not want users to
become confused about which text applies to which parts of the legend.

« The last entry specifies an advanced style (st yl e="V. COUNTY_POP_
DENSI TY"), and it is indented one tab position (t ab="1") so that the colors
and text identifying various population density ranges will be easy for users to
distinguish from the preceding County population: description text.

3.3 Information Request DTD

In addition to issuing map requests (see Section 3.2) and administrative requests
(see Chapter 6), you can issue information requests to MapViewer. An information
request is an XML request string that you can use to execute SQL queries and obtain
the result as an array of strings or an XML document. The SQL query must be a
SELECT statement and must select only primitive SQL types (for example, not LOB
types or user-defined object types).

The following is the DTD for a MapViewer information request.

<! ELEMENT i nf o_request (#PCDATA) >
<I ATTLI ST i nfo_request
dat asour ce CDATA #REQUI RED
f or mat (strict | non-strict) "strict"

MapViewer Map Requests 3-31

Information Request DTD

dat asour ce is a required attribute that specifies the data source for which to get
the information.

f or mat is an optional attribute. If itis st ri ct (the default), all rows are formatted
and returned in an XML document. If f or mat issetto non-stri ct, all rows plus a
column heading list are returned in a comma-delimited text string.

Example 3-11 shows an information request to select the city, 1990 population, and
state abbreviation from the CITIES table, using the connection information in the
mvdeno data source and returning the information as an XML document
(format="strict").

Example 3-11 MapViewer Information Request

<?xm version="1.0" standal one="yes"?>
<info_request datasource="nvdem" format="strict" >

SELECT city, pop90 popul ation, state_ abrv state FROMcities
</info_request>

Example 3-11 returns an XML document that includes the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<RONBET>
<RON nume="1">
<Cl TY>New Yor k</ I TY>
<POPULATI ON>7322564</ POPULATI ON>
<STATE>NY</ STATE>
</ ROW
<ROW nume" 2" >
<Cl TY>Los Angel es</CI TY>
<POPULATI ON>3485398</ POPULATI ON>
<STATE>CA</ STATE>
</ RO
<ROW nume" 3" >
<Cl TY>Chi cago</ CI TY>
<POPULATI ON>2783726</ POPULATI ON>
<STATE>| L</ STATE>
</ RO
<ROW nume"4" >
<Cl TY>Houst on</ CI TY>
<POPULATI ON>1630553</ POPULATI ON>
<STATE>TX</ STATE>
</ RO

3-32 Oracle Application Server 10g MapViewer User's Guide

MapViewer Exception DTD

</ RONBET>

3.4 Map Response DTD

The following is the DTD for the map response resulting from normal processing of
a map request. (Section 3.5 shows the DTD for the response if there was an
exception or unrecoverable error.)

<! ELEMENT map_response (nap_i nmage) >
<! ELEMENT map_i mage (nmap_content, box, WMIException)>
<! ELEMENT map_content EMPTY>
<I ATTLI ST map_content url CDATA #REQU RED>
<! ELEMENT WMTException (#PCDATA)>
<I ATTLI ST WMIException version CDATA "1.0.0"
error_code (SUCCESS| FAI LURE) #REQUI RED
>

The response includes the URL for retrieving the image, as well as any error
information. When a valid map is generated, its minimum bounding box is also
returned.

Example 3-12 shows a map response.

Example 3-12 Map Response

<?xm version="1.0" encodi ng="UTF-8" ?>
<map_r esponse>
<map_i mage>
<map_content url="http://map. oracl e. coni out put/nap029763.gi f" />
<box srsNane="defaul t">
<coor di nat es>- 122. 260443, 37. 531621 - 120. 345, 39. 543</ coor di nat es>
</ box>
<WMTException version="1.0.0" error_code="SUCCESS">
</ WMTExcept i on>
</ map_i mage>
</ map_r esponse>

3.5 MapViewer Exception DTD

The following DTD is used by the output XML when an exception or unrecoverable
error is encountered while processing a map request:

<I ELEMENT oms_error (#PCDATA)>

MapViewer Map Requests 3-33

Geometry DTD (OGC)

The exception or error message is embedded in this element.

3.6 Geometry DTD (OGC)

This section contains the Geometry DTD as defined in the Open GIS Consortium
(OGC) GML v1.0 specification, which is available at the following URL.:

http:// ww. opengi s. or g/ t echno/ specs/ 00- 029/ GML. ht i

The specification has the following copyright information:
Copyright © 2000 OGC All Rights Reserved.

The specification has the following status information:

Thi s docunment is an Opend S® Consortium Recomrendation Paper. It is simlar to a
proposed reconmendation in other organizations. Wile it reflects a public
statement of the official viewof the OGC, it does not have the status of a OGC
Technol ogy Specification. It is anticipated that the position stated in this
docunent will develop in response to changes in the underlying technol ogy.

Al though changes to this document are governed by a conprehensive review
procedure, it is expected that some of these changes may be significant.

The OGC explicitly invites comrents on this document. Please send themto
g . rfc@pengis.org

The following additional legal notice text applies to the specification:

TH'S DOCUMENT | S PROVIDED "AS |S," AND COPYRI GHT HOLDERS MAKE NO REPRESENTATI ONS
CR WARRANTI ES, EXPRESS OR | MPLI ED, INCLUDING BUT NOT LIM TED TO, WARRANTI ES OF
MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE, NON- I NFRI NGEMENT, OR TI TLE
THAT THE CONTENTS OF THE DOCUMENT ARE SU TABLE FOR ANY PURPCSE, NOR THAT THE

| MPLEMENTATI ON OF SUCH CONTENTS WLL NOT I NFRINGE ANY THI RD PARTY PATENTS,
COPYRI GHTS, TRADEMARKS OR OTHER RI GHTS

COPYRI GHT HOLDERS WLL NOT BE LI ABLE FOR ANY DI RECT, | NDI RECT, SPECIAL OR
CONSEQUENT! AL DAMAGES ARl SI NG QUT OF ANY USE OF THE DOCUMENT OR THE PERFCRVANCE
CR | MPLEMENTATI ON OF THE CONTENTS THERECF.

The OGC Geometry DTD is as follows:

<l-- -->
<l-- Geography -->
<I-- Mar kup -->
<l-- Language -->
<l-- -->

3-34 Oracle Application Server 10g MapViewer User's Guide

Geometry DTD (OGC)

<l-- (GML) -->
<I-- -->
<-- GEOMETRY DTD -->
<f-- -->
<I-- Copyright (c) 2000 OCC All Rights Reserved. -->
<l-- >

<I-- the coordinate el ement holds a list of coordinates as parsed character
data. Note that it does not reference a SRS and does not constitute a proper
geonetry class. -->
<l ELEMENT coor di nat es (#PCDATA) >
<I ATTLI ST coor di nat es

deci mal CDATA #1 MPLI ED

cs CDATA #1 MPLI ED

ts CDATA #1 MPLI ED >

<I-- the Box elenent defines an extent using a pair of coordinates and a SRS
nane. -->
<! ELEMENT Box (coordinates) >
<! ATTLI ST Box
ID CDATA #1 MPLI ED
srsName CDATA #REQUI RED >

<l-- >
<lI-- GEOMETRY CLASS Definitions -->
<I-- -->

<I-- a Point is defined by a single coordinate. -->
<! ELEMENT Poi nt (coordinates) >
<! ATTLI ST Poi nt

ID CDATA #1 MPLI ED

srsName CDATA #| MPLI ED >

<I-- a LineString is defined by two or nore coordinates, with |inear
interopl ation between them -->
<! ELEMENT LineString (coordinates) >
<I ATTLI ST LineString
ID CDATA #1 MPLI ED
srsName CDATA #| MPLI ED >

<I-- a Polygon is defined by an outer boundary and zero or nore inner
boundaries. These boundaries are thensel ves defined by LinerRings. -->
<! ELEMENT Pol ygon (outerBoundaryls, innerBoundaryls*) >
<I ATTLI ST Pol ygon

ID CDATA #1 MPLI ED

MapViewer Map Requests 3-35

Geometry DTD (OGC)

srsNane CDATA #| MPLI ED >
<! ELEMENT out er Boundaryl s (LinearRing) >
<l ELEMENT i nner Boundaryls (LinearRing) >
<I-- a lLinearRing is defined by four or nore coordinates, with linear
interpol ation between them The first and |ast coordinates nust be
coi nci dent. -->
<! ELEMENT Li nearRi ng (coordinates) >
<I ATTLI ST LinearRi ng
ID CDATA #1 MPLI ED >

<I-- a MiltiPoint is defined by zero or nore Points, referenced through a
poi nt Menber el ement. -->
<l ELEMENT Ml ti Poi nt (poi nt Menber+) >
<I ATTLI ST Mul ti Poi nt
ID CDATA #1 MPLI ED
srsNane CDATA #| MPLI ED >
<! ELEMENT poi nt Menber (Point) >

<I-- a MiltiLineString is defined by zero or nore LineStrings, referenced
through a lineStringMenber elenent. -->
< ELEMENT MultiLineString (lineStringMenber+) >
<I ATTLI ST Mul tiLineString
ID CDATA #1 MPLI ED
srsNane CDATA #| MPLI ED >
<! ELEMENT I ineStringMenber (LineString) >

<I-- a MiltiPolygon is defined by zero or nore Polygons, referenced through a
pol ygonMenber el ement. -->
<! ELEMENT Ml ti Pol ygon (pol ygonMenber +) >
<I ATTLI ST Ml ti Pol ygon
ID CDATA #l MPLI ED
srsName CDATA #l MPLI ED >
<! ELEMENT pol ygonMenber (Pol ygon) >

<I-- a GeonetryCol I ection is defined by zero or nore geonetries, referenced
through a geometryMenber el enent. A geonetryMenber el ement may be any one of
the geonetry classes. -->
<IENTITY % Geonetryd asses "(

Point | LineString | Polygon |

Mil tiPoint | MiltiLineString | MiltiPolygon |

CeoretryCol | ection)" >

<! ELEMENT GeonetryCol | ection (geonetryMenber+) >
<I ATTLI ST GeonetryCol | ection

3-36 Oracle Application Server 10g MapViewer User's Guide

Geometry DTD (OGC)

ID CDATA #1 MPLI ED
srsName CDATA #l MPLI ED >
<! ELEMENT geonet ryMenber %eonetryd asses; >

<l-- -->
<l-- GEOMETRY PROPERTY Definitions -->
<l-- >

<I-- QW provides an 'endorsed nane to define the extent of a feature. The
extent is defined by a Box el ement, the name of the property is boundedBy. -->
<! ELEMENT boundedBy (Box) >

<I-- the generic geonetryProperty can accept a geonetry of any class. -->
<! ELEMENT geonetryProperty (%onetryd asses;) >

<I-- the pointProperty has three descriptive nanes: center(f, |ocation and
position. -->

<! ELEMENT poi nt Property (Point) >

<I ELEMENT centerOf (Point) >

<! ELEMENT | ocation (Point) >

<! ELEMENT position (Point) >

<I-- the lineStringProperty has two descriptive names: centerlLineX and
edgeOr. -->

< ELEMENT | ineStringProperty (LineString) >

<! ELEMENT cent er Li neCf (LineString)>

<! ELEMENT edgeOf (LineString)>

<!-- the pol ygonProperty has two descriptive nanes: coverage and extentOf. -->
<! ELEMENT pol ygonProperty (Pol ygon) >

<I ELEMENT coverage (Pol ygon) >

<! ELEMENT extent O (Pol ygon)>

<I-- the nultiPointProperty has three descriptive nanes: multiCenter(f,
mul tiLocation and nul tiPosition. -->

<! ELEMENT mul ti Poi nt Property (MiltiPoint) >

< ELEMENT multiCenterOf (MiltiPoint) >

<! ELEMENT mul tiLocation (MltiPoint) >

< ELEMENT mul tiPosition (MltiPoint) >

<I-- the nultiLineStringProperty has two descriptive names: multi CenterLineOt
and nulti EdgeCf. -->

< ELEMENT rmul tiLineStringProperty (MiltiLineString) >

< ELEMENT mul ti CenterLineOf (MiltilLineString) >

<! ELEMENT mul ti EdgeOf (MultiLineString) >

MapViewer Map Requests 3-37

Geometry DTD (OGC)

<I-- the nul tiPol ygonProperty has two descriptive nanes: nulti Coverage and
milti ExtentO&f. -->

<! ELEMENT mul ti Pol ygonProperty (MiltiPolygon) >

<! ELEMENT mul ti Coverage (Milti Pol ygon) >

< ELEMENT mul ti ExtentOf (Ml ti Pol ygon) >

<! ELEMENT geonetryCol | ectionProperty (GeometryCollection) >

<l-- -->
<l-- FEATURE METADATA Definitions -->
<l-- -->

<I-- Feature netadata, included in G\ Geonetry DID for conveni ence; name and
description are two 'standard' string properties defined by GWM. -->

<I ELEMENT nane (#PCDATA) >
<! ELEMENT descri ption (#PCDATA) >

3-38 Oracle Application Server 10g MapViewer User's Guide

A

MapViewer JavaBean-Based API

This chapter describes the JavaBean-based MapViewer API. This APl exposes all
capabilities of MapViewer through a single JavaBean,

oracl e. spati al . mapcl i ent. MapVi ewer. This bean is a lightweight client that
handles all communications with the actual MapViewer service running on the
middle tier on behalf of a user making map requests.

All communications between the bean and the actual MapViewer service follow a
request/response model. Requests are always sent as XML documents to the
service. Depending on the type and nature of a request, the response received by the
bean is either an XML document or some binary data. However, using the
MapViewer bean is easier than manipulating XML documents for forming and
sending MapViewer requests, as well as for extracting information from the
responses.

The bean delegates most of map data processing and rendering to the MapViewer
service. All the bean does is formulate user requests into valid MapViewer XML
requests and send them to a MapViewer service for processing.

4.1 Usage Model for MapViewer JavaBean-Based API

The MapViewer bean can be created and used in either server-side objects such as
JavaServer Pages (JSP) and servlets, or in client-side objects such as Java applets or
standalone Java applications. The bean is a lightweight class that maintains an
active HTTP connection to the MapViewer service and the current map request and
map response objects. In most cases, you will create only one MapViewer bean and
use it for all subsequent tasks; however, you can create more than one bean and use
these beans simultaneously. For example, you may need to create a Web page where
a small overview map displays the whole world and a large map image displays a
more detailed map of the region that is selected on the overview map. In this case, it

MapViewer JavaBean-Based APl 4-1

Usage Model for MapViewer JavaBean-Based API

is probably easier to create two MapViewer beans, one dedicated to the smaller
overview map, and the other to the larger detail map.

Figure 4-1 shows some possible usage scenarios for the MapViewer bean.

Figure 4-1 MapViewer Bean Usage Scenarios

Java Applications J2EE Container

MapWViewear
MapWiewear
Beans

MapViewer Service

Applets
MapViewear
HTTP
Servlet
MapWiewear
Bean

J2EE Container

Ny

The MapViewer bean can communicate, through the HTTP protocol, with the
MapViewer service, in several usage scenarios, the following of which are shown in
Figure 4-1:

« Inalava application
« Inalavaapplet

« Inaservilet within a Java2 Enterprise Edition (J2EE) container different from the
J2EE container that contains the MapViewer service

« InJavaServer Pages (JSP) code within the J2EE container that contains the
MapViewer service

In all usage models, the same JavaBean class is used, and most of its methods apply.
However, some methods work or are useful only in a JSP HTML-based context, and
other methods work or are useful only in an interactive standalone Java application

4-2 Oracle Application Server 10g MapViewer User’s Guide

Preparing to Use the MapViewer JavaBean-Based API

or applet context (thick clients). For example, consider the following methods of the
bean:

« java.aw .| mage get Gener at edMapl mage
« String get Generat edVapl nrageURL

Both methods extract the generated map image information from a response
received from a MapViewer service; however, the first method returns the actual
binary image data thatisaj ava. awt . Buf f er edl mage class, and the second
method returns an HTTP URL string to the generated map image that is stored in
the host running the MapViewer service. Clearly, if your application is a JavaServer
Page, you should use the second method, because otherwise the JSP page will not
know how to handle the Buf f er edl mage. However, if you are programming a
standalone Java application where you have a Java panel or window for displaying
the map, you can use the first method to get the actual image and render it inside
your panel or window, plus any other features that you may have created locally
and want to render on top of the map.

The set of methods that are only applicable in the thick client context, which are
designed to achieve optimal performance for such clients, are described in more
detail in Section 4.3.9.

4.2 Preparing to Use the MapViewer JavaBean-Based API

Before you can use the MapViewer JavaBean, the MapViewer nvcl i ent . j ar
library must be in a directory that is included in the CLASSPATH definition. After
you deploy the mapvi ewer . ear file in OC4J or Oracle Application Server, the
mvcl i ent.jar fileis located in the SMAPVI EMER/ web/ VEEB- | NF/ | i b directory.
($MAPVI EVIER is the base directory that the mapvi ewer . ear file is unpacked into
by OC4J. In a typical OC4J installation, if you placed the mapvi ewer . ear file in
$OC4J_HOVE/ j 2eel/ hone/ appl i cat i ons, the base directory for unpacked
MapViewer is $0C4J_HOVE/ j 2ee/ hone/ appl i cati ons/ mapvi ewer.)

Before you use the MapViewer JavaBean, you should examine the javadoc
documentation and try the JSP demo:

« Javadoc documentation for the MapViewer bean API is available at a URL with
the following format:

http://host: port/mapvi ewer/ mapcl i ent

In this format, host and port indicate where OC4J or Oracle Application Server
listens for incoming requests.

MapViewer JavaBean-Based APl 4-3

Using the MapViewer Bean

A demo supplied with MapViewer shows how to use the bean. After you have
set up the MapViewer demo data set (which can be downloaded from the
Oracle Technology Network) by importing it into a database and running all
necessary scripts, you can try the JSP demo. The URL for the JSP demo has the
following format:

http://host: port/mpvi ewer/ deno/ mapinit.jsp
In this format, host and port indicate where OC4J or Oracle Application Server

listens for incoming requests. This JSP page confirms the MapViewer service
URL and then proceeds to the real demo page, map. j sp.

4.3 Using the MapViewer Bean

To use the MapViewer bean, you must create the bean (see Section 4.3.1), after
which you can invoke methods to do the following kinds of operations:

Set up parameters of the current map request (see Section 4.3.2)

Add themes or features to the current map request (see Section 4.3.3)
Manipulate the themes in the current map request (see Section 4.3.4)
Send a request to the MapViewer service (see Section 4.3.5)

Extract information from the current map response (see Section 4.3.6)

Use data source and mapping metadata methods (see Section 4.3.7)
Query nonspatial attributes in the current map window (see Section 4.3.8)

Use optimal methods for thick clients (see Section 4.3.9)

The sections about methods for kinds of operations provide introductory
information about what the bean can do. For detailed descriptions of each method,
including its parameters and return type, see the javadoc documentation (described
in Section 4.2).

4.3.1 Creating the MapViewer Bean

4-4

The first step in any planned use of the MapViewer bean is to create the bean, as
shown in the following example:

inport oracle.spatial.mpclient. MapVi ever;
MapVi ewer mv = new MapVi ewer (“http://ny_corp. com 8888/ mapvi ewer/ onserver”);

Oracle Application Server 10g MapViewer User’'s Guide

Using the MapViewer Bean

The only parameter to the constructor is a URL to an actual MapViewer service.
Unless you change it to something else using set Ser vi ceURL, the MapViewer
service at this URL will receive all subsequent requests from this bean. When a
MapViewer bean is created, it contains an empty current map request. There are a
few parameters in the current request that are initialized with default values, such
as the width and height of the map image and the background color for maps.
These default values are explained in the XML API element and attribute
descriptions in Chapter 3.

4.3.2 Setting Up Parameters of the Current Map Request

As explained in Chapter 3, a map request can have many parameters that affect the
final look of the generated map image. When you use the MapViewer JavaBean,
such parameters can be set through a group of methods whose names start with set.
Each of these parameters has a corresponding method that starts with get. For
example, set Anti Al i asi ng sets antialiasing on or off, and get Anti Al i asi ng
returns the current antialiasing setting.

The methods for setting parameters of the current map request include the
following:

« setAnti Aliasing(bool ean aa) specifies whether or not the map should
be rendered using the antialiasing technique.

« setBackgroundCol or (j ava. am . Col or bg) sets the background color for
the map to be generated.

« setBackgroundl mageURL(j ava. |l ang. String bgl ngUrl) setsthe URL
for the background image to be rendered in the map.

« setBaseMapNane(j ava. |l ang. String nane) sets the name of the base
map to be rendered before any explicitly added themes.

« setCenter(double cx, double cy) setsthe center point for this map
request. The coordinates must be in the user data space.

« setCenter AndSi ze(doubl e cx, double cy, double size) setsthe
map center and size for the map to be generated. All data must be in the user
data space.

« setDefaultStyl eForCenter(String def Render Styl eNane, String
def Label Styl eNanme, String defLabel, double[] defRadii) sets
the default styling and labeling information for the center (point) of the map.
Each subsequent map generated will have its center point rendered and
optionally labeled with circles of the specified radii.

MapViewer JavaBean-Based APl 4-5

Using the MapViewer Bean

« setDat aSourceNane(java.l ang. Stri ng nane) sets the name of the data
source to be used when loading data for the map.

« setDeviceSize(java. awm . D nensi on dsz) sets the image dimension of
the map to be generated.

« setlmageFormat (i nt f) setsthe image format that MapViewer should use
when generating the map. For JSP pages, you should always set it to PNG_URL
or3 F_URL.

« setMaplLegend(java.lang. String | egendSpec) sets the map legend (in
XML format) to be plotted with current map. The legend must be specified in
the | egendSpec parameter, in the format for the <l egend> element that is
documented in Section 3.2.10.

« setMapTitle(java.lang. String title) setsthe map title for the map to
be generated.

« setServiceURL(java.lang. String url) setsthe MapViewer service
URL.

« setSize(doubl e size) setsthe height (size) in the user data space for the
map to be generated.

« setWbProxy(java.lang. String proxyHost, java.lang.String
proxyPort) setsthe Web proxy to be used when connecting to the MapViewer
service. This is needed only if there is a firewall between the Web service and
this bean.

4.3.3 Adding Themes or Features to the Current Map Request

Besides specifying a base map to be included in a map request, you can add themes
or individual point and linear features, such as a point of interest or a dynamically
generated route, to the current map request. The themes can be predefined themes
whose definitions are stored in the database, or dynamic themes where you supply
the actual query string when you add the theme to the current request.

There are two kinds of dynamic themes: one retrieves geometric data (JDBC theme)
and the other retrieves image data (image theme). For dynamic themes and
features, you must explicitly specify the styles you want to be used when rendering
them. Being able to add dynamic themes and features gives you flexibility in
adapting to application development needs.

The methods for adding themes or features to the current map request have names
that start with add, and they include the following:

4-6 Oracle Application Server 10g MapViewer User’s Guide

Using the MapViewer Bean

« addl mageThene and its variants add an image theme, for which you must
supply the query string for retrieving the image data to be rendered as part of
the map.

« addJDBCTherme and its variants add a JDBC theme, for which you must supply
the query string for retrieving the geometric data.

« addPredefi nedThene and its variants add a predefined theme to the current
map request.

« addThemesFronmBaseMap(j ava.l ang. String basenap) adds all
predefined themes in the specified base map to the current map request. This
has an advantage over set BaseMapNane, in that you can manipulate the
themes for the current map request, as explained in Section 4.3.4.

« addPoi nt Feat ure(doubl e x, double y, java.lang. String
styl eName, java.lang.String |abel, java.lang. String
| abel Styl eName, doubl e[] radi us) adds asingle feature that is a point
to the current map request. This point will be rendered using the supplied
rendering style on the map after all themes have been rendered. You can
optionally supply a labeling text to be drawn alongside your point feature. You
can also supply an array of radii (the units are always in meters), in which case
a series of circles will be drawn centering on the point. The coordinates x and y
must be in the user data space. There is no limit to the number of point features
you can add.

« addLi near Feat ure(doubl e[] coordi nates, java.lang.String
styl eName, java.lang.String |abel, java.lang. String
| abel Styl eName) adds a single linear feature (line string) to the current map
request. You must specify a rendering style, and you can specify the labeling
text and text style for drawing the label. The coordinates must be in the user
data space. There is no limit to the number of linear features you can add.

You can remove all added point and linear features by calling
removeAl | Poi nt Feat ur esand r enoveAl | Li near Feat ur es, respectively.

4.3.4 Manipulating Themes in the Current Map Request

After you add themes using any of the methods that start with add, you can
manipulate them, performing such operations as listing their names, moving them
up or down in rendering order for the current request, and even disabling themes
and enabling themes that had been disabled. However, you cannot manipulate
themes that are implicitly included when you set a base map (using the

MapViewer JavaBean-Based APl 4-7

Using the MapViewer Bean

set BaseMapNane method), because the list of themes in the base map is not
actually included until the MapViewer service processes the request.

The methods for manipulating themes in the current map request include the
following:

hasThenes checks to see if the current map request has any explicitly added
themes. For example, if you have only set the name of the base map in the
current request, but have not added any other theme through one of the
add*Theme methods, this method returns FALSE.

get ThermeNarnes returns an ordered list of names of themes that have been
explicitly added to the current map request.

set TheneEnabl ed(bool ean v, java.lang. String theneNane) setsa
specified theme to be enabled or disabled in the current map request.

enabl eThenes(java.l ang. String[] thenmes) enables all themes whose
names appear in the supplied list.

set Al | ThemesEnabl ed(bool ean v) sets all themes to be enabled or
disabled.

get Enabl edThenes gets a list of all themes that are currently enabled.

get Acti veThene(doubl e current Scal e) gets the name of the active
theme, that is, the top theme on the current display map.

set TheneScal e(j ava. |l ang. String nane, doubl e m nScal e,
doubl e maxScal e) sets the minimum and maximum scale values for
displaying a theme.

del et eThene(j ava. |l ang. Stri ng namne) deletes an explicitly added
theme from the current map request.

get ThermePosi tion(java. |l ang. Stri ng nane) returns the position in the
rendering sequence of an explicitly added theme.

nmoveThenmeDown(i nt i ndex) moves a theme down one position in the list of
themes to be rendered, so that it is rendered later.

moveThenmeUp(i nt i ndex) moves a theme up one position in the list of
themes to be rendered, so that it is rendered sooner.

set Label Al waysOn(j ava. | ang. Stri ng name, Bool ean

| abel al waysOn) controls whether or not MapViewer labels all features in a
theme even if two or more labels will overlap in the display of a theme.
(MapViewer always tries to avoid overlapping labels.) If | abel al waysOn is

4-8 Oracle Application Server 10g MapViewer User’s Guide

Using the MapViewer Bean

TRUE, MapViewer displays the labels for all features even if two or more labels
overlap. If | abel al waysOn is FALSE, when it is impossible to avoid
overlapping labels, MapViewer disables the display of one or more labels so
that no overlapping occurs.

4.3.5 Sending a Request to the MapViewer Service

As an application developer, you typically issue a new map request as a result of
certain user input (such as a mouse click on the currently displayed map) or after
you have modified some aspect of the map request (such as setting a new
background color). In fact, you can issue a map request any time you want, as long
as you do not overwhelm the middle-tier MapViewer service with too many rapid
requests from the MapViewer bean or beans. The MapViewer service tries to
process requests in the order in which they arrive; if you send a second request
before receiving the response from the first one, MapViewer continues to process
the first request completely before starting to process the second request.

Any modifications to the current map request, such as changing to a new
background color or moving a theme down in the rendering sequence, do not take
effect in the map display until you send the map request, at which time the
MapViewer service actually receives the request and processes it.

The methods for sending a map request to the MapViewer service include the
following:

« run sends the current map request to the MapViewer service, and obtains a
map response as sent back by the MapViewer service.

« pan(int x, int y) panstothe specified device point. Each coordinate is in
the screen/display unit, in this case, pixel.

« zoom n(doubl e factor) zooms in on the map without changing the other
map request parameters.

« zoomn(int x, int y, double factor) zoomsin on the specified
device point.

« zoomn(int x1, int yl, int x2, int y2) zoomsin on the specified
device rectangle.

« zoontut (doubl e factor) zooms out on the current map without changing
the other map request parameters.

« zoontut(int x, int y, double factor) zooms outand recenters the
current map.

MapViewer JavaBean-Based APl 4-9

Using the MapViewer Bean

Each of these methods assembles a single XML map request document based on all
properties of the current map request, and then sends it to the MapViewer service.
After the MapViewer bean receives the response from the MapViewer service, the
bean does any the necessary postprocessing and makes the response ready for your
use.

As an alternative to using these methods, you can formulate an XML request string
outside the bean, and then use the sendXM_.Request (j ava. l ang. String req)
method to send the request to the MapViewer service. However, if you use this
method, you are responsible for receiving and unpacking the response using the
get XMLResponse method, and for parsing and interpreting the response string
yourself. The state of the bean remains unchanged, because the methods are only
making use of the bean’s capability to open an HTTP connection to send and
receive documents over the connection.

All methods described in this section throw an exception if any unrecoverable error
occurs during the transmission of the request or response, or in the MapViewer
service during processing. You are responsible for taking care of such exceptions in
any way you consider appropriate, such as by trying the request again or by
reporting the problem directly to the user.

4.3.6 Extracting Information from the Current Map Response

You can extract information, such as the generated map image or the URL for the
image, from the current map response. The methods for extracting information from
the map response include the following:

« get Gener at edMapl mageURL returns the URL to the currently generated map
image in the application server. You must have set the image format to
FORMAT_PNG_URL or FORVAT_d F_URL using the set | mageFor mat method.

« get Gener at edMapl mage returns the actual map image data contained in the
response from the MapViewer service. You must have set the image format to
FORVAT _RAW COVPRESSED using the set | nageFor mat method. The
get Gener at edMapl mage method is primarily used in thick clients, although
you may also use it in a JavaServer Page or a servlet (for example, to save the
image in a format that is not supported by MapViewer).

« get MapMBRreturns the MBR (minimum bounding rectangle) for the currently
generated map, in the user's data space.

« get MapRequest St ri ng returns the last submitted map request in XML
format.

4-10 Oracle Application Server 10g MapViewer User’'s Guide

Using the MapViewer Bean

4.3.7 Using Data Source and Mapping Metadata Methods

The MapViewer bean has methods that you can use to obtain information about the
data source for the MapViewer service to which the bean is connected, and to query
the mapping metadata. The methods for obtaining information about the data
source and the mapping metadata include the following:

« dataSourceExi sts(java.lang. String dsrc) checks if a given data
source exists in (that is, is known to) the MapViewer service.

« addDat aSource(....) adds a data source to the MapViewer service.

« addl mageMar ker FronmJRL(j ava. |l ang. Stri ng gi f URL,
java.l ang. String styl eNane) adds a GIF image as a marker symbol to
the current style cache of the MapViewer service.

4.3.8 Querying Nonspatial Attributes in the Current Map Window

It is often necessary to query nonspatial attributes that are associated with the
spatial features being displayed in the current map image. For example, assume
that you just issued a map request to draw a map of all customer locations within a
certain county or postal code. The next logical step is to find more information
about each customer being displayed in the resulting map image. In the JSP or
HTML environment, because you get only an image back from the MapViewer
service, you will need another round-trip to the service to fetch the nonspatial
information requested by the user. This section describes a set of methods that can
help you do just that. (You can, however, obtain both the nonspatial attribute values
of a certain theme and the resulting map image in a single request when the bean is
used in a standalone Java application or applet environment, as described in
Section 4.3.9.)

A typical situation is that the user clicks on a feature on the displayed map and
wants to find out more (nonspatial attributes) about the feature being "identified.”
This action can be essentially implemented using a query with the desired
nonspatial attributes in its SELECT list, and a spatial filter as its WHERE clause. The
spatial filter is an Oracle Spatial SQL operator that checks if the geometries in a
table column (the column of type SDO_GEOMETRY in the customer table) spatially
interact with a given target geometry (in this case, the user’s mouse-click point).
The spatial filter in the WHERE clause of the query selects and returns only the
nonspatial attributes associated with the geometries that are being clicked on by the
user.

You will need to call an Oracle Spatial operator to perform the filtering; however,
you can use the MapViewer bean-based API to obtain information, and to

MapViewer JavaBean-Based APl 4-11

Using the MapViewer Bean

preassemble the spatial filter string to be appended to the WHERE clause of your
query. Thei dent i f y method simplifies the task even further.

The methods for querying nonspatial attributes in the current map window include
the following:

« getSpatialFilter(java.lang.String spatial Colum, int srid,
bool ean pre9i) returns a spatial filter string that can be used as a WHERE
clause condition in formulating your own queries in the current map window
context. The spatial filter evaluates to TRUE for any geometries that are being
displayed in the entire map window. You can use this method to obtain
information about every spatial feature of a theme that is being displayed.

« getSpatialFilter(java.lang.String spatial Colum, int srid,
doubl e x|, double yl, double xh, double yh, bool ean pre9i)
returns a spatial filter string that can be used as a query condition in
formulating your queries in the given window. This filter evaluates to TRUE for
all geometries that interact with the supplied (xI , yl , xh, yh) data window.
The window is not in device or screen coordinate space, but in the user’s data
space; therefore, you must first call the get User Poi nt method to convert the
user’s mouse-click point to a point in the user data space before using the
get Spati al Fi | t er method.

« getUserPoint(int x, int y) returnsthe user data space point
corresponding to the mouse click.

« getWered auseFor Anyl nteract(java.lang. String
spatial Colum, int srid, double x, doubl e y) returns geometries
that have any interaction with a specified point in the user's data space. This
provides a WHERE clause string that will use a more precise spatial filtering
method than the one provided by the get Spati al Fi | t er method.

« getWered auseFor Anyl nteract(java.lang. String
spatial Colum, int srid, double x|, double yl, double xh,
doubl e yh) returns the WHERE clause that can be used to find geometries
that have any interaction with the specified user space window. It is similar to
the get Spati al Fi | t er method, but uses a more precise version of the Oracle
Spatial filtering method.

« doQuery and variants execute a supplied SQL query and return an array of
strings representing the result set. These are convenient methods to issue your
own query without manually opening a JDBC connection to the database from
the bean.

4-12 Oracle Application Server 10g MapViewer User’'s Guide

Using the MapViewer Bean

« doQueryl nMapW ndowand variants are extensions of doQuer y and its
variants. They automatically subject the user-supplied query to a spatial
filtering process using the current map window.

« identify and variants provide a convenient method for identifying nonspatial
attributes. This is desirable if you do not need more flexibility and control over
how a nonspatial attribute query should be formulated. As with the doQuery
methods, all i dent i f y methods return adoubl e Stri ng array that contains
the result set of the query.

4.3.9 Using Optimal Methods for Thick Clients

When you use the MapViewer bean in a JavaServer Page in an HTML file, a second
round-trip to the MapViewer service is needed to obtain nonspatial attributes of
features being displayed. It is also true that with a JavaServer Page in an HTML file,
even if most themes remain unchanged from one map request to the next (such as
when zooming in to the center of a map), all themes must still be reprocessed each
time the MapViewer service processes the page, which causes the data for each
theme to be retrieved again from the database. (This is mainly due to the stateless
nature of the MapViewer service and the insufficient mechanism provided in the
JSP context for handling user interaction, which must be based on the
request/response model.)

However, when you are working in a thick client environment, such as with J2SE
(Java 2 Platform Standard Edition) applications and applets, you can reduce the
processing and bandwidth overhead when using the bean. This is primarily because
in such environments you have greater control of how content (including the map)
should be displayed, you can better respond to the user’s interaction, and you can
devote more resources to maintaining the states on the client side.

A key optimization available only to the thick client context is live features.
Basically, a live feature is a spatial feature that originates from the MapViewer
service but exists in the thick client. Each live feature contains the actual shape
representing the geometry data, and a set of nonspatial attributes that the user
might be interested in. To obtain live features, a thick client must set its parent
theme to be "clickable.” When a map request is sent to the MapViewer service with a
clickable theme, MapViewer does not attempt to render features for that theme in
the resulting map. Rather, the set of features that would have been drawn as part of
the map is returned to the requesting client as an array of live feature objects. The
rest of the map is still rendered and transmitted as a single image to the client. After
the client has received both the live features and the base image, it must render the
live features on top of the accompanying map image, using one of the methods
described later in this section.

MapViewer JavaBean-Based APl 4-13

Using the MapViewer Bean

One of the benefits of using live features is that the thick client will not need to issue
a request for the clickable theme every time a map request is sent. For example, if
the request is to zoom in to the current map, the client can determine for each live
feature if it should be displayed in the zoomed-in map image. Another, and
probably more significant, advantage is that the nonspatial attributes for all features
displayed in the map are now readily available to the user. For example, as the user
moves the mouse over a range of features on the map, the thick client can
immediately get the corresponding nonspatial attributes and display them in a
pop-up window that follows the mouse trail. No round-trip to the MapViewer
service is needed for this type of action, and the feedback to the user is more
responsive.

The methods that are optimal for thick clients include the following:

« drawli veFeatures(java. awmt . G aphi cs2D g2, java.aw . Col or

stroke, java.awt.Color fill, double pointRadi us, double
st rokeW dt h) draws all live features that are returned to this client from
MapViewer.

« getLiveFeatureAttrs(int x, int y, int tol) getsthe nonspatial
attributes of the feature being clicked on by the user.

« hasLi veFeat ur es checks if there are any live (clickable) features.
« get Nunili veFeat ur es returns the number of live features currently available.

« hi ghli ght Feat ur es and variants highlight all live features that are
intersecting the user-specified rectangle. These methods also let you specify the
style for highlighting features.

« isdickable(java.lang. String thenmeNane) checks if the specified
theme is clickable (that is, if users can click on the theme to get its attributes).

« setdickabl e(boolean v, java.lang. String theneNane) setsthe
theme clickable (so that its features will be available to the client as live features
that users can click on and get attributes of).

To obtain a set of features and keep them live at the thick client, you must first call
set d i ckabl e to set the theme whose features you want to be live. Then, after
you issue the current map request, the bean processes the response from the
MapViewer service, which (if it succeeded) contains both a base map image and an
array of Li veFeat ur e instances. You can then call get Gener at edMapl nage to
get and draw the base image, and use dr awLi veFeat ur es to render the set of live
features on top of the base map. If the user clicks or moves the mouse over a certain
position on the map, you can use the hi ghl i ght Feat ur es method to highlight
the touched features on the map. You can also use the get Li veFeat ureAttrs

4-14 Oracle Application Server 10g MapViewer User’'s Guide

Using the MapViewer Bean

method to obtain the associated nonspatial attributes of the features being
highlighted. You do not have direct access to the Li veFeat ur e instances

themselves.

The behavior of calling the methods described in this section in the context of JSP
pages is not defined.

MapViewer JavaBean-Based APl 4-15

Using the MapViewer Bean

4-16 Oracle Application Server 10g MapViewer User’'s Guide

D

MapViewer JSP Tag Library

This chapter explains how to submit requests to MapViewer using JavaServer Pages
(JSP) tags in an HTML file. Through an XML-like syntax, the JSP tags provide a set
of important (but not complete) MapViewer capabilities, such as setting up a map
request, zooming, and panning, as well as identifying nonspatial attributes of
user-clicked features.

Note: The MapViewer JSP tag library will not work with
Oracle9iAS release 9.0.2 or the standalone OC4J release 9.0.2. The
minimum version required is Oracle9iAS release 9.0.3 or the
standalone OC4J release 9.0.3.

You can develop a location-based application by using any of the following
approaches:

« Using the XML API (see Chapter 3)
« Using the JavaBean-based API (see Chapter 4)

« Using JSP files that contain XML or HTML tags, or both, and that include
custom Oracle-supplied JSP tags (described in this chapter)

Creating JSP files is often easier and more convenient than using the XML or
JavaBean-based API, although the latter two approaches give you greater flexibility
and control over the program logic. However, you can include calls to the Java API
methods within a JavaServer Page, as is done with the call to the get MapTi tl e
method in Example 5-1 in Section 5.3.

All MapViewer JSP tags in the same session scope share access to a single
MapViewer bean.

MapViewer JSP Tag Library 5-1

Using MapViewer JSP Tags

5.1 Using MapViewer JSP Tags

Before you can use MapViewer JSP tags, you must perform one or two steps,
depending on whether or not the Web application that uses the tags will be
deployed in the same OC4J instance that is running MapViewer.

1.

If the Web application will be deployed in the same OC4J instance that is
running MapViewer, skip this step and go to step 2.

If the Web application will be deployed in a separate OC4J instance, you must
copy the mvcli ent. | ar file (located in the $MAPVI EVER/ web/ VEB- | NF/ | i b
directory) and the mvt agl i b. t | d file (located in the

SMVAPVI EVER/ web/ VEEB- | NF directory) to that OC4J instance's application
deployment directory. Then you must define a <t agl i b> element in your
application's web. xmi file, as shown in the following example:

<taglib>
<taglib-uri>
http://xmns.oracl e.com spatial /nvtaglib
</taglib-uri>
<taglib-1ocation>
/WEB- I NF/ nvtaglib.tld
</taglib-location>
</taglib>

Import the tag library (as you must do with any JSP page that uses custom
tags), by using the t agl i b directive at the top of the JSP page and before any
other MapViewer tags. For example:

<U@taglib uri="http://xmns.oracle.com spatial/nmvtaglib"
prefix="m" %

The t agl i b directive has two parameters:

« uri isthe unique name that identifies the MapViewer tag library, and its
value mustbe htt p: // xm ns. oracl e. com spati al / nvtagli b,
because it is so defined in the MapViewer web. xn initialization file.

« prefix identifies the prefix for tags on the page that belong to the
MapViewer tag library. Although you can use any prefix you want as long
as it is unique in the JSP page, nv is the recommended prefix for
MapViewer, and it is used in examples in this guide.

The following example shows the mv prefix used with the set Par amtag:

<nv:setParamtitle="Hello Wrld!'" bgcolor="#ffffff"
wi dt h="500" hei ght ="375" antialiasing="true" />

5-2 Oracle Application Server 10g MapViewer User’s Guide

MapViewer JSP Tag Reference Information

The tags enable you to perform several kinds of MapViewer operations:

« Create the MapViewer bean and place it in the current session: i ni t tag, which
must come before any other MapViewer JSP tags.

« Set parameters for the map display and optionally a base map: set Par amtag.

« Add themes and a legend: addPr edef i nedThene, addJDBCThene,
i mport BaseMap, and nakelLegend tags.

« Getinformation:; get Par am get MapURL, and i dent i fy tags.

« Submit the map request for processing: r un tag.

5.2 MapViewer JSP Tag Reference Information

This section provides detailed information about the Oracle-supplied JSP tags that
you can use to communicate with MapViewer. Table 5-1 lists each tag and briefly
describes the information specified by the tag.

Table 5-1 JSP Tags for MapViewer

Tag Name Explanation

init Creates the MapViewer bean and places it in the current session.
Must come before any other MapViewer JSP tags.

set Par am Specifies one or more parameters for the current map request.

addPr edef i nedThene
addJDBCThene
i npor t BaseMap

makelLegend

get Param

get MapURL

Adds a predefined theme to the current map request.
Adds a dynamically defined theme to the map request.

Adds the predefined themes that are in the specified base map to
the current map request.

Creates a legend (map inset illustration) drawn on top of the
generated map.

Gets the value associated with a specified parameter for the
current map request.

Gets the HTTP URL for the currently available map image, as
generated by the MapViewer service.

MapViewer JSP Tag Library 5-3

MapViewer JSP Tag Reference Information

Table 5-1 (Cont.) JSP Tags for MapViewer

Tag Name Explanation

identify Gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the
map display, and optionally uses a marker style to identify the
point or rectangle.

run Submits the current map request to the MapViewer service for
processing. The processing can be to zoom in or out, to recenter
the map, or perform a combination of these operations.

Except where noted, you can use JSP expressions to set tag attribute values at
runtime, using the following format;

<nv:tag attribute="<% jspExpression %" >

The following sections (in alphabetical order by tag name) provide reference
information for all parameters available for each tag: the parameter name, a
description, and whether or not the parameter is required. If a parameter is

required, it must be included with the tag. If a parameter is not required and you
omit it, a default value is used.

Short examples are provided in the reference sections for JSP tags, and a more
comprehensive example is provided in Section 5.3.

5.2.1 addJDBCTheme

The addJDBCThen® tag adds a dynamically defined theme to the map request. (It
performs the same operation as the <j dbc_quer y> element, which is described in
Section 3.2.7.)

Table 5-2 lists the addJDBCThene tag parameters.

5-4 Oracle Application Server 10g MapViewer User’s Guide

MapViewer JSP Tag Reference Information

Table 5-2 addJDBCTheme Tag Parameters

Parameter
Name Description Required
name Name for the dynamically defined theme. Must be unique Yes
among all themes already added to the associated MapViewer
bean.
m n_scal e The value to which the display must be zoomed in for the No

theme to be displayed, as explained in Section 2.4.1. If mi n_
scal e and max_scal e are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

max_scal e The value beyond which the display must be zoomed in for the No
theme not to be displayed, as explained in Section 2.4.1. If
m n_scal e and max_scal e are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

spatial _ Column of type MDSYS.SDO_GEOMETRY containing Yes
col um geometry objects for the map display.
srid Coordinate system (SDO_SRID value) of the data to be No

rendered. If not specified, a null coordinate system is assumed.

dat asour ce Name of the data source instance that contains information for ves!
connecting to the database.

j dbc_host Host name for connecting to the database. Yes!
j dbc_port Port name for connecting to the database Yes!
jdbc_sid SID for connecting to the database Yes!
j dbc_user User name for connecting to the database Yes!
jdbc_ Password for connecting to the database Yes!
password

j dbc_node The Oracle JDBC driver (t hi n or oci 8) to use to connect to No

the database. The defaultist hi n.

asi s If set to TRUE, MapViewer does not attempt to modify the No
supplied query string. If FALSE (the default), MapViewer
embeds the SQL query as a subquery of its spatial filter query.
(For more information and an example, see Section 3.2.7.)

MapViewer JSP Tag Library 5-5

MapViewer JSP Tag Reference Information

Table 5-2 (Cont.) addJDBCTheme Tag Parameters

Parameter

Name Description Required
render _ Name of the style to be used to render the spatial data No
style retrieved for this theme. For point features the default is a red

cross rotated 45 degrees, for lines and curves it is a black line 1
pixel wide, and for polygons it is a black border with a
semitransparent dark gray interior.

| abel _styl e Name of the text style to be used to draw labeling text on the No
spatial feature for this theme. If you specify | abel _styl e,
you must also specify | abel _col umm. If you do not specify
| abel _styl e, no label is drawn for the spatial feature of this

theme.
| abel _ The column in the SELECT list of the supplied query that No
col um contains the labeling text for each feature (row). If | abel _

st yl e is not specified, any | abel _col umm value is ignored.

1 You must specify either dat asour ce or the combination of j dbc_host , j dbc_port,j dbc_si d,
j dbc_user,andj dbc_password.

The following example creates a new dynamic theme named bi gCi ti es, to be
executed using the mvdeno data source and specifying the LOCATION column as
containing spatial data. Note that the greater-than (>) character in the WHERE
clause is valid here.

<nv: addJDBCThene nane="bigCities" datasource="nvdeno"
spatial _col um="1ocation">
SELECT | ocation, nane FROM cities Where pop90 > 450000
</ mv: addJDBCThene>

5.2.2 addPredefinedTheme

The addPr edef i nedThene tag adds a predefined theme to the current map
request. (It performs the same operation as the <t herme> element, which is
described in Section 3.2.6.) The predefined theme is added at the end of the theme
list maintained in the associated MapViewer bean.

Table 5-3 lists the addPr edef i nedThene tag parameters.

5-6 Oracle Application Server 10g MapViewer User’s Guide

MapViewer JSP Tag Reference Information

Table 5-3 addPredefinedTheme Tag Parameters

Parameter
Name Description Required
name Name of the predefined theme to be added to the current map Yes
request. This theme must exist in the USER_SDO_THEMES
view of the data source used by the associated MapViewer
bean.
m n_scal e The value to which the display must be zoomed in for the No

theme to be displayed, as explained in Section 2.4.1. If mi n_
scal e and max_scal e are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

nmax_scal e The value beyond which the display must be zoomed in for the No
theme not to be displayed, as explained in Section 2.4.1. If
m n_scal e and max_scal e are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

The following example adds the theme named THEME_DEMO_CI Tl ES to the current
Map request:

<nv: addPr edef i nedTheme name="THEME DEMO CI TI ES" />

5.2.3 getMapURL

The get MapURL tag gets the HTTP URL (uniform resource locator) for the currently
available map image, as generated by the MapViewer service. This map image URL
is kept in the associated MapViewer bean, and it does not change until after the r un
tag is used.

The get MapURL tag has no parameters.

The following example displays the currently available map image, using the
get MapURL tag in specifying the source (SRC keyword value) for the image:

<I MG SRC="<nv: get MapURL />" ALI G\="t op" >

5.2.4 getParam

The get Par amtag gets the value associated with a specified parameter for the
current map request.

Table 5-4 lists the get Par amtag parameter.

MapViewer JSP Tag Library 5-7

MapViewer JSP Tag Reference Information

Table 5-4 getParam Tag Parameter

Parameter
Name Description Required
name Name of the parameter whose value is to be retrieved. It must be Yes

one of the valid parameter names for the set Par amtag. The
parameter names are case-sensitive. (This attribute must have a
literal value; it cannot take a JSP expression value.)

The following example displays the value of the t i t | e parameter for the current
map request;

<P> The current map title is: <nv:getParamname="title"/> </ P>

5.2.5 identify

Thei dent i fy tag gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the map display, and it
optionally uses a marker style to identify the point or rectangle. For example, if the
user clicks on the map and you capture the X and Y coordinate values for the mouse
pointer when the click occurs, you can retrieve values of nonspatial columns
associated with spatial geometries that interact with the point. For example, if the
user clicks on a point in Chicago, your application might display the city name,
state abbreviation, and population of Chicago, and it might also display a "“city"
marker on the map near where the click occurred.

The attributes are returned ina St ri ng[] [] array of string arrays, which is
exposed by this tag as a scripting variable.

The list of nonspatial columns to fetch must be provided in the tag body, in a
comma-delimited list, which the MapViewer bean uses to construct a SELECT list
for its queries.

You can optionally associate a highlighting marker with each feature that is
identified by using the style attribute and specifying a marker style. To display a
new map that includes the highlighting markers, use the get MapURL tag.

Table 5-5 lists the i dent i f y tag parameters.

5-8 Oracle Application Server 10g MapViewer User’s Guide

MapViewer JSP Tag Reference Information

Table 5-5 identify Tag Parameters

Parameter
Name Description Required
id Name for the scripting variable through which the returned Yes

nonspatial attribute values will be exposed. The first array
contains the column names. (This attribute must have a literal
value; it cannot take a JSP expression value.)

dat asource Name of the MapViewer data source from which to retrieve the No
nonspatial information.

tabl e Name of the table containing the column identified in Yes
spati al _col um. (This attribute must have a literal value; it
cannot take a JSP expression value.)

spatial _ Column of type MDSYS.SDO_GEOMETRY containing Yes

col um geometry objects to be checked for spatial interaction with the
specified point or rectangle. (This attribute must have a literal
value; it cannot take a JSP expression value.)

srid Coordinate system (SDO_SRID value) of the datain spati al _ No
col um. If not specified, a null coordinate system is assumed.

X The X ordinate value of the point; or the X ordinate value of the Yes
lower-left corner of the rectangle if x2 and y2 are specified.

y The Y ordinate value of the point; or the Y ordinate value of the Yes
lower-left corner of the rectangle if x2 and y2 are specified.

X2 The X ordinate value of the upper-right corner of the rectangle. No

y2 The Y ordinate value of the upper-right corner of the rectangle. No

style Name of the marker style to be used to draw a marker on No

features that interact with the specified point or rectangle. To
display a new map that includes the highlighting markers, use
the get MapURL tag.

The following example creates an HTML table that contains a heading row and one
row for each city that has any spatial interaction with a specified point (presumably,
the city where the user clicked). Each row contains the following nonspatial data:
city name, population, and state abbreviation. The St ri ng[][] array of string
arrays that holds the nonspatial information about the associated city or cities is
exposed through the scripting variable named at t r s. The scriptlet after the tag
loops through the array and outputs the HTML table (which in this case will
contain information about one city).

<nv:identify id="attrs" style="M CYAN PIN'

MapViewer JSP Tag Library 5-9

MapViewer JSP Tag Reference Information

table="cities" spatial _colum="1ocation"
x="100" y="200" >
City, Pop90 Popul ation, State_abrv State
</nv:identify>

<%
if(attrs!=null && attrs.|ength>0)
{
out. print("<CENTER> <TABLE border=\"1\">\n");
for(int i=0; i<attrs.length; i++)
{
i f(i==0) out.print("<TR BGCOLOR=\"#FFFFOO\">");
el se out.print("<TR>\n");
String[] row = attrs[i];
for(int k=0; k<row. |ength; k++)
out. print("<TD>"+row k] +"</ TD>");
out.print("</TR>\n");
}
out. print ("</ TABLE></ CENTER>") ;

}
%

5.2.6 importBaseMap

The i mpor t BaseMap tag adds the predefined themes that are in the specified base
map to the current map request. (This has the same effect as using the set Par am
tag with the basenmap attribute.)

Table 5-6 lists the i npor t BaseMap tag parameter.

Table 5-6 importBaseMap Tag Parameter

Parameter
Name Description Required
nane Name of the base map whose predefined themes are to be Yes

added at the end of the theme list for the current map
request. This base map must exist in the USER_SDO_MAPS
view of the data source used by the associated MapViewer
bean.

The following example adds the predefined themes in the base map named deno_
map at the end of the theme list for the current map request:

<nv:inport BaseMap name="deno_nmap" />

5-10 Oracle Application Server 10g MapViewer User's Guide

MapViewer JSP Tag Reference Information

5.2.7 init

Thei nit tag creates the MapViewer bean and places it in the current session. This
bean is then shared by all other MapViewer JSP tags in the same session. The i ni t
tag must come before any other MapViewer JSP tags.

Table 5-7 lists the i ni t tag parameters.

Table 5-7 init Tag Parameters

Parameter
Name Description Required

ur | The uniform resource locator (URL) of the MapViewer Yes
service. It must be in the form
http://host: port/ mapvi ewer/ onser ver, where host
and port identify the system name and port, respectively, on
which Oracle Application Server or OC4] listens.

dat asour ce Name of the MapViewer data source to be used when Yes
requesting maps and retrieving mapping data. If you have
not already created the data source, you must do so before
using the i ni t tag. (For information about creating a data
source, see Section 1.6.1.)

id Name that can be used to refer to the MapViewer bean Yes
created by this tag. (This attribute must have a literal value; it
cannot take a JSP expression value.)

The following example creates a data source named mvdeno with ani d value of
mvHandl e:

<nv:init url="http://nyconpany.com 8888/ mapvi ewer/ onserver"
dat asour ce="nvdeno" id="nvHandl e" />

5.2.8 makelLegend

The nakelLegend tag accepts a user-supplied XML legend specification and creates
a standalone map legend image. The legend image is generated by the MapViewer
service, and a URL for that image is returned to the associated MapViewer bean.
This tag exposes the URL as a scripting variable.

The body of the tag must contain a <l egend> element. See Section 3.2.10 for
detailed information about the <I egend> element and its attributes.

Table 5-8 lists the makelLegend tag parameters.

MapViewer JSP Tag Library 5-11

MapViewer JSP Tag Reference Information

Table 5-8 makelLegend Tag Parameters

Parameter
Name Description Required
id Name for the scripting variable that can be used to refer to Yes

the URL of the generated legend image. (This attribute must
have a literal value; it cannot take a JSP expression value.)

dat asour ce Name of the MapViewer data source from which to retrieve No
information about styles specified in the legend request.

f or mat Format of the legend image to be created on the server. If No
specified, must be G F_URL (the default) or PNG_URL.

The following example creates a single-column legend with the i d of nyLegend,
and it displays the legend image.

<nv: makelLegend i d="nyLegend">
<l egend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM >
<col um>
<entry text="Legend:" is_title="true" />
<entry style="M STAR' text="center point" />
<entry style="M CITY HALL 3" text="cities" />
<entry is_separator="true" />
<entry style="C ROSY BROM STROKE"' text="state boundary" />
<entry style="L.PH' text="interstate highway" />
<entry text="County popul ation density:" />
<entry style="V.COUNTY_POP_DENSI TY" tab="1" />
</ col um>
</l egend>
</ nv: makeLegend>

<P> Here is the map | egend: <I M5 SRC="<%nyLegend%"> </ P>

529 run

The r un tag submits the current map request to the MapViewer service for
processing. The processing can be to zoom in or out, to recenter the map, or to
perform a combination of these operations.

The r un tag does not output anything to the JSP page. To display the map image
that MapViewer generates as a result of the r un tag, you must use the get MapURL
tag.

Table 5-9 lists the r un tag parameters.

5-12 Oracle Application Server 10g MapViewer User's Guide

MapViewer JSP Tag Reference Information

Table 5-9 run Tag Parameters

Parameter
Name Description Required

action One of the following values to indicate the map navigation action No
to be taken: zoom n (zoom in), zoonout (zoom out), or
recent er (recenter the map).

For zoom n or zoonout , f act or specifies the zoom factor; for all
actions (including no specified action), x and y specify the new
center point; for all actions (including no specified action), x2 and
y 2 specify (with x and y) the rectangular area to which to crop the
resulting image.

If you do not specify an action, the map request is submitted for
processing with no zooming or recentering, and with cropping
only if x,y, x2, and y2 are specified.

X The X ordinate value of the point for recentering the map, or the X No
ordinate value of the lower-left corner of the rectangular area to
which to crop the resulting image if x2 and y2 are specified.

y The Y ordinate value of the point for recentering the map, orthe Y No
ordinate value of the lower-left corner of the rectangular area to
which to crop the resulting image if x2 and y2 are specified.

X2 The X ordinate value of the upper-right corner of the rectangular No
area to which to crop the resulting image.

y2 The Y ordinate value of the upper-right corner of the rectangular No
area to which to crop the resulting image.

factor Zoom factor: a number by which the current map size is No
multiplied (for zoomi n) or divided (for zoonout). The default is
2. This parameter is ignored if act i on is not zoomi n or
zoonout .

The following example requests a zooming in on the map display (with the default
zoom factor of 2), and recentering of the map display at coordinates (100, 250) in the
device space.

<nv:run action="zoonin" x="100" y="250" />

5.2.10 setParam

The set Par amtag specifies one or more parameters for the current map request.
You can set all desired parameters at one time with a single set Par amtag, or you
can set different parameters at different times with multiple set Par amtags. Most
of the parameters have the same names and functions as the attributes of the <map_

MapViewer JSP Tag Library 5-13

MapViewer JSP Tag Reference Information

r equest > root element, which is described in Section 3.2.2. The parameter names
are case-sensitive.

Table 5-10 lists the set Par amtag parameters.

Table 5-10

setParam Tag Parameters

Parameter
Name

Description

Required

anti al i asi ng When its value is TRUE, MapViewer renders the map image

basemap

bgcol or

bgi mage

centerX

centerY

hei ght

in an antialiased manner. This usually provides a map with
better graphic quality, but it may take longer for the map to
be generated. The default value is FALSE (for faster map
generation).

Base map whose predefined themes are to be rendered by
MapViewer. The definition of a base map is stored in the
user’s USER_SDO_MAPS view, as described in Section 2.5.1.
Use this parameter if you will always need a background
map on which to plot your own themes and geometry
features.

The background color in the resulting map image. The
default is water-blue (RGB value #A6CAFO0). It must be
specified as a hexadecimal value.

The background image (GIF or JPEG format only) in the
resulting map image. The image is retrieved at runtime when
a map request is being processed, and it is rendered before
any other map features, except that any bgcol or value is
rendered before the background image.

X ordinate of the map center in the data coordinate space.
Y ordinate of the map center in the data coordinate space.

The height (in device units) of the resulting map image.

i mgescal i ng When its value is TRUE (the default), MapViewer attempts to

size

scale the images to fit the current querying window and the
generated map image size. When its value is FALSE, and if an
image theme is included directly or indirectly (such as
through a base map), the images from the image theme are
displayed in their original resolution. This parameter has no
effect when no image theme is involved in a map request.

Vertical span of the map in the data coordinate space.

5-14 Oracle Application Server 10g MapViewer User's Guide

No

No

No

No

No
No
No

No

JSP Example (Several Tags) for MapViewer

Table 5-10 (Cont.) setParam Tag Parameters

Parameter

Name Description Required

title The map title to be displayed on the top of the resulting map No
image.

wi dt h The width (in device units) of the resulting map image. No

The following example uses two set Par amtags. The first set Par amtag sets the
background color, width, height, and title for the map. The second set Par amtag
sets the center point and vertical span for the map.

<nv: set Par am bgcol or =" #f f 0000" wi dt h="800" hei ght ="600"
title="My Map!" />

<nmv: set Param cent er X="-122. 35" centerY="37.85" size="1.5" />

5.3 JSP Example (Several Tags) for MapViewer

This section presents an example of JSP code to perform several MapViewer
operations.

Example 5-1 initializes a MapViewer bean, sets up map request parameters, issues a
request, and displays the resulting map image. It also obtains the associated
MapViewer bean and places it in a scripting variable (myHandl e), which is then
accessed directly in the statement:

Di splayi ng map: <%nyHandl e. get MapTi tle() % </ B>

Example 5-1 MapViewer Operations Using JSP Tags

<Y%@ page content Type="text/htm" %

<Y%@ page session="true" %

<%@ page inport="oracl e.spatial.napclient.MpViewer" %

<Y@taglib uri="http://xmns.oracle.con spatial/nvtaglib"
prefix="m" %

<HTML>

<BODY>

Initializing client MapViewer bean. Save the bean in the session
using key "nmvHandl e"....<P>

<nv:init url="http://ny_corp.com 8888/ mapvi ewer/ onserver"
dat asour ce="nvdenm" id="mvHandl e" />

MapViewer JSP Tag Library 5-15

JSP Example (Several Tags) for MapViewer

Setting MapVi ewer paraneters...<P>
<nv:setParamtitle="Hello World!" bgcolor="#ffffff" w dth="500" height="375"
antialiasing="true" />

Addi ng thenes froma base map...<P>
<nv:inportBaseMap name="density_map"/>

Setting initial map center and size...<P>
<nv:set Param center X="-122. 0" centerY="37.8" size="1.5" />

Issuing a map request... <P>
<nv:run />
<%

/'l Place the MapViewer bean in a Java variabl e.
MapVi ewer nyHandl e = (MapVi ewer) session.getAttribute("nvHandl e");
%

Di splayi ng map: <%nyHandl e. get MapTi tle() % </ B>
<I MG SRC="<nv: get MapURL />" ALI G\="top" />

</ BODY>

</ HTM.>

5-16 Oracle Application Server 10g MapViewer User's Guide

6

MapViewer Administrative Requests

The main use of MapViewer is for processing various map requests. However,
MapViewer also accepts various administrative (non-map) requests, such as to add
a data source, through its XML API. This section describes the format for each
administrative request and its response.

All administrative requests are embedded in a <non_nap_r equest > element,
while all administrative responses are embedded in a <non_nap_r esponse>
element, unless an exception is thrown by MapViewer, in which case the response is
an <oms_err or > element (described in Section 3.5).

The administrative requests are described in sections according to the kinds of tasks
they perform:

Managing Data Sources
Listing All Maps
Listing Themes
Managing Styles
Managing Cache

6.1 Managing Data Sources

You can add, remove, redefine, and list data sources. (For information about data
sources and how to define them, see Section 1.6.1.)

6.1.1 Adding a Data Source

The <add_dat a_sour ce> element has the following definition:

<! ELEMENT non_nap_request add_data_source>

MapViewer Administrative Requests 6-1

Managing Data Sources

<! ELEMENT add_data_source EMPTY>
<! ATTLI ST add_data_source

nane CDATA #REQUI RED

j dbc_t ns_nane CDATA #1 MPLI ED

j dbc_host CDATA #l MPLI ED

j dbc_port CDATA #l MPLI ED
jdbc_sid CDATA #1 MPLI ED

j dbc_user CDATA #REQUI RED

j dbc_password CDATA #REQUI RED

j dbc_rode (oci8 | thin) #l MPLIED

nunber _of _mappers | NTEGER #REQUI RED
>

The nane attribute identifies the data source name. The name must be unique
among MapViewer data sources. (Data source names are not case-sensitive.)

You must specify either a net service name (TNS name) or all necessary connection
information. That is, you must specify either of the following (but not both):

« jdbc_tns_nane
« jdbc_host,jdbc_port,jdbc_sid,andj dbc_nbde

The j dbc_t ns_name attribute identifies a net service name that is defined in the
t nsnanes. or a file.

The j dbc_host attribute identifies the database host system name.
The j dbc_port attribute identifies the TNS listener port number.
The j dbc_si d attribute identifies the SID for the database.

The j dbc_user attribute identifies the user to connect to (map).

The j dbc_passwor d attribute identifies the password for the user specified with
the j dbc_user attribute.

The j dbc_node attribute identifies the JDBC connection mode: t hi n or oci 8. If
you specify oci 8, you must have Oracle Client installed in the middle tier in which
MapViewer is running. You do not need Oracle Client if t hi n is used for all of your
data sources.

The nunber _of _mapper s attribute identifies the number of map renderers to be
created (that is, the number of requests that MapViewer can process at the same
time) for this data source. Each map renderer typically uses from 5 MB to 30 MB of
memory, depending on the volume of spatial data retrieved and processed during
any map generation. Any unprocessed map requests are queued and eventually
processed. For example, if the value is 3, MapViewer will be able to process at most

6-2 Oracle Application Server 10g MapViewer User’s Guide

Managing Data Sources

three mapping requests concurrently. If a fourth map request comes while three
requests are being processed, it will wait until MapViewer has finished processing
one of the current requests. The maximum number of mappers for a single data
source is 64.

Example 6-1 adds a data source named nvdeno.

Example 6-1 Adding a Data Source

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >
<add_data_source

nane="nvdeno"
j dbc_host ="el ocati on. us. oracl e. conf
j dbc_port="1521"
jdbc_sid="orcl"
jdbc_user="scott"
j dbc_password="ti ger"
j dbc_node="t hi n"
nunber _of _mappers="3" />

</ non_nap_r equest >

The DTD for the response to an add_dat a_sour ce request has the following
format:

<! ELEMENT non_nap_response add_dat a_sour ce>
< ELEMENT add_data source EMPTY>
<! ATTLI ST add_data_source
succeed (true | false) #REQU RED
comrent CDATA #l MPLI ED
>

The comrent attribute appears only if the request did not succeed, in which case
the reason is in the conment attribute. In the following example,

succeed="t rue" indicates that the user request has reached the server and been
processed without any exception being raised regarding its validity. It does not
indicate whether the user's intended action in the request was actually fulfilled by
the MapViewer server. In this example, the appearance of the conment attribute
indicates that the request failed, and the string associated with the corment
attribute gives the reason for the failure ("dat a source al ready exists").

<?xm version="1.0" ?>
<non_nap_r esponse>
<add_dat a_source succeed="true" comment="data source al ready exists" />
</ non_map_r esponse>

MapViewer Administrative Requests 6-3

Managing Data Sources

6.1.2 Removing a Data Source
The <r enove_dat a_sour ce> element has the following definition:

<! ELEMENT non_map_request renove_data_source>
<! ELEMENT renove_data_source EMPTY>
<! ATTLI ST renove_data_source

data_source CDATA #REQUI RED

j dbc_password CDATA #REQUI RED

The dat a_sour ce attribute identifies the name of the data source to be removed.

The j dbc_passwor d attribute identifies the login password for the database user
in the data source.] dbc_passwor d is required for security reasons (to prevent
people from accidentally removing data sources from MapViewer).

Removing a data source only affects the ability of MapViewer to use the
corresponding database schema; nothing in that schema is actually removed.

Example 6-2 removes a data source named nvdeno.

Example 6-2 Removing a Data Source

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<renove_dat a_sour ce data_source="nmvdeno" jdbc_password="tiger" />
</ non_nap_request >

The DTD for the response to ar enove_dat a_sour ce request has the following
format:

<! ELEMENT non_map_r esponse renove_dat a_sour ce>
<! ELEMENT renove_data_source EMPTY>
<I ATTLI ST renove_data_source

succeed (true | false) #REQUI RED
>

For example:

<?xm version="1.0" ?>
<non_nap_r esponse>
<renove_dat a_source succeed="true" />
</ non_nap_r esponse>

6-4 Oracle Application Server 10g MapViewer User’s Guide

Managing Data Sources

6.1.3 Redefining a Data Source

For convenience, MapViewer lets you redefine a data source. Specifically, if a data
source with the same name already exists, it is removed and then added using the
new definition. If no data source with the name exists, a new data source is added.
If an existing data source has the same name, host, port, SID, user name, password,
mode, and number of mappers as specified in the request, the request is ignored.

The <r edef i ne_dat a_sour ce> element has the following definition:

<! ELEMENT non_map_request redefine_data_source>
<! ELEMENT redefine_data source EMPTY>
<! ATTLI ST redefine_data source

nane CDATA #REQUI RED

j dbc_t ns_nane CDATA #l MPLI ED

j dbc_host CDATA #l MPLI ED

j dbc_port CDATA #1 MPLI ED
jdbc_sid CDATA #1 MPLI ED

j dbc_user CDATA #REQUI RED

j dbc_password CDATA #REQUI RED

j dbc_mode (oci8 | thin) # MPLIED

nunber _of _mappers | NTEGER #REQUI RED
>

The required attributes and their explanations are the same as the <add_dat a_
sour ce> element, which is described in Section 6.1.1.

The DTD for the response to ar edef i ne_dat a_sour ce request has the following
format:

<! ELEMENT non_nap_response redefine_data_source>
<! ELEMENT redefine_data source EMPTY>
<I ATTLI ST redefine_data_source
succeed (true | false) #REQUI RED
>

For example:

<?xm version="1.0" ?>
<non_nap_r esponse>
<redefine_data_source succeed="true" />
</ non_map_r esponse>

MapViewer Administrative Requests 6-5

Managing Data Sources

6.1.4 Listing All Data Sources

The <l i st _dat a_sour ces> element lists all data sources known to the currently
running MapViewer. It has the following definition:

<! ELEMENT non_mnap_request |ist_data_sources>
< ELEMENT | ist_data_sources EMPTY>

For example:

<?xm version="1.0" standal one="yes"?>
<non_map_r equest >

<list_data_sources />
</ non_nap_r equest >

The DTD for the response toal i st _dat a_sour ces request has the following
format:

<! ELEMENT non_nap_response nap_data_source_|ist>
<! ELEMENT map_data_source_|list (map_data_source*) >
<! ATTLI ST map_data_source_|ist
succeed (true|fal se) #REQUI RED
>
<l ELEMENT map_data_source EMPTY>
<I ATTLI ST map_data_source

name CDATA #REQUI RED
host CDATA #REQUI RED
sid CDATA #REQUI RED
port CDATA #REQUI RED
user CDATA #REQUI RED
mode CDATA #REQUI RED
numvapper s CDATA #REQUI RED
>

For each data source, all data source information except the password for the
database user is returned.

The following example is a response that includes information about two data
sources.

<?xm version="1.0" ?>
<non_nmap_r esponse>
<map_data_source_| i st succeed="true">
<map_dat a_sour ce name="nvdemp" host="el ocati on. us. oracl e. conf
sid="orcl" port="1521" user="scott" node="thin" nunmMVappers="3" />
<map_dat a_sour ce name="geonedi a" host ="geonedi a. us. or acl e. cont
sid="orcl" port="8160" user="scott" node="oci 8" numMVappers="7" />

6-6 Oracle Application Server 10g MapViewer User’s Guide

Managing Data Sources

</ map_data_source_|ist>
</ non_nap_r esponse>

6.1.5 Checking the Existence of a Data Source

The <dat a_sour ce_exi st s> element lets you find out if a specified data source
exists. It has the following definition:

<! ELEMENT non_nap_request data_source_exi sts>
<I ELEMENT dat a_source_exists EMPTY>
<I ATTLI ST data_source_exi sts
data_source CDATA #REQU RED
>

For example:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<dat a_source_exi sts data_source="nmvdeno"/ >
</ non_nap_r equest >

The DTD for the response to a dat a_sour ce_exi st s request has the following
format:

<! ELEMENT non_nap_response data_source_exi sts>
<! ELEMENT data_source_exists EMPTY>
<I ATTLI ST data_source_exi sts

succeed (true | false) #REQU RED

exists (true | false) #REQU RED

The succeed attribute indicates whether or not the request was processed
successfully.

The exi st s attribute indicates whether or not the data source exists.
For example:

<?xm version="1.0" ?>
<non_nap_r esponse>

<data_source_exi sts succeed="true" exists="true" />
</ non_nap_r esponse>

MapViewer Administrative Requests 6-7

Listing All Maps

6.2 Listing All Maps

The <l i st _nmaps> element lists all base maps in a specified data source. It has the
following definition:

<! ELEMENT non_nap_request |ist_maps>
<l ELEMENT |ist_maps EMPTY>
< ATTLI ST Iist_maps
data_source CDATA #REQU RED
>

The following example lists all base maps in the data source named mvdeno.

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<list_maps data_source="nvdem" />
</ non_nap_r equest >

The DTD for the response to al i st _nmaps request has the following format:

<! ELEMENT non_nap_response nmap_|ist>
< ELEMENT map_list (map*) >
<I ATTLI ST map_|i st

succeed (true | false) #REQU RED
>
<I ATTLI ST map

nane CDATA #REQUI RED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The nane attribute identifies each map.
For example:

<?xm version="1.0" ?>

<non_map_r esponse>

<map_| i st succeed="true">
<map name="DEMO MAP" />
<map name="DENSI TY_MAP" />

</map_list>

</ non_map_r esponse>

6-8 Oracle Application Server 10g MapViewer User’s Guide

Listing Themes

6.3 Listing Themes

The <l i st _predefi ned_t hemes> element lists either all themes defined in a
specified data source or all themes defined in a specified data source for a specified
map.

The DTD for requesting all themes defined in a data source regardless of the map
associated with a theme has the following definition:

<! ELEMENT non_nap_request |ist_predefined_thenes>
<! ELEMENT |ist_predefined_themes EMPTY>
<I ATTLI ST I i st_predefined_t henes

data_source CDATA #REQU RED
>

The following example lists all themes defined in the data source named nvdeno.

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<l'i st_predefined_thenmes data_source="mvdemo" />
</ non_nap_r equest >

The DTD for requesting all themes defined in a data source and associated with a
specific map has the following definition:

<! ELEMENT non_nap_request |ist_predefined_thenes>
< ELEMENT | ist_predefined_thenes EMPTY>
<I ATTLI ST |ist_predefined_thenes
dat a_source CDATA #REQU RED
map CDATA #REQUI RED
>

The following example lists all themes defined in the data source named ti | smenv
and associated with the map named QA_MAP.

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<list_predefined_themes data_source="tilsmenv" nap="QA MAP" />
</ non_nap_r equest >

The DTD for the responsetoal i st _predefi ned_t henmes request has the
following format:

<! ELEMENT non_nap_response predefined_theme_|ist>
<! ELEMENT predefined_thene_list (predefined_theme*) >
<! ATTLI ST predefined_thene_| i st

succeed (true | false) #REQU RED

MapViewer Administrative Requests 6-9

Managing Styles

>
<! ELEMENT predefined_thene EMPTY>
<I ATTLI ST predefined_t hene

nane CDATA #REQUI RED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The nane attribute identifies each theme.
For example:

<?xm version="1.0" ?>

<non_nap_r esponse>

<predefined_theme_|ist succeed="true">
<predefined_t heme name="THEME_DEMO CI TI ES" />
<pr edef i ned_t heme nane="THEME_DEMO BI GCI TI ES" />
<pr edef i ned_t heme nane="THEME_DEMO COUNTI ES" />
<predefined_t heme name="THEME_DEMO COUNTY_POPDENSI TY" />
<predefined_t heme name="THEME_DEMO H GHWAYS' />
<predefined_t heme name="THEME_DEMO STATES' />
<predefined_t heme name="THEME_DEMO STATES LI NE" />

</ predefined_thene_list>

</ non_map_r esponse>

Note that the order of names in the returned list is unpredictable.

6.4 Managing Styles

You can list styles, add a non-image marker style, add an image marker style, or
check if a specified style exists.

6.4.1 Listing Styles

The <l i st _styl es> element lists styles defined for a specified data source. It has
the following definition:

<! ELEMENT non_nap_request |ist_styles>
<l ELEMENT |ist_styles EMPTY>
<IATTLI ST list_styles
data_source CDATA #REQU RED
style_type (COLOR| LI NE| MARKER| AREA| TEXT| ADVANCED) #| MPLI ED

6-10 Oracle Application Server 10g MapViewer User's Guide

Managing Styles

If you specify a value for st yl e_t ype, only styles of that type are listed. The
possible types of styles are COLOR, LI NE, MARKER, AREA, TEXT, and ADVANCED. If
you do not specify st yl e_t ype, all styles of all types are listed.

The following example lists only styles of type COLOR:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<list_styles data_source="nvdeno" style_type="COLOR' />
</ non_nap_request >

The DTD for the responsetoal i st _styl es request has the following format:

<! ELEMENT non_nap_response style_list>
<IELEMENT style_list (style*) >
<I ATTLI ST style_list
succeed (true | false) #REQU RED
>
< ELEMENT style EMPTY>
<I ATTLI ST style
name CDATA #REQUI RED
>

The following example shows the response to a request for styles of type COLOR:

<?xm version="1.0" ?>
<non_nap_r esponse>
<style_list succeed="true">
<styl e name="SCOIT: C. BLACK" />
<styl e name="SCOIT: C. BLACK GRAY" />
<styl e name="SCOIT: C. BLUE" />
<styl e name="SCOIT: C. CRM_ADM N_AREAS' />
<styl e name="SCOIT. C. CRM Al RPORTS" />
</style_list>
</ non_nap_r esponse>

Each style name in the response has the form OANNER: NAME (for example,
SCOTT: C. BLACK), where OANER is the schema user that owns the style.

6.4.2 Adding a Style (Not an Image Marker Style)

The <add st yl e>element adds a style (other than an image marker style) to a
specified data source by supplying the style definition using syntax similar to
scalable vector graphics (SVG). It has a definition in the following general format:

<! ELEMENT non_nap_request add_style>

MapViewer Administrative Requests 6-11

Managing Styles

<! ELEMENT add_styl e svg_definition_of _style>
<I ATTLI ST add_style

name CDATA #REQUI RED
>

The actual content of the svg_defi ni ti on_of _styl e element depends on the
type of style you are adding. See Appendix A for detailed information about style
formats.

Note that styles added in this way will not be available if MapViewer terminates
and is restarted. If you want styles to be persistent, use the Map Definition Tool
(described in Chapter 7) to store styles in the database permanently.

The following example adds a color style:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >
<add_styl e name="nul | 000000" >
<svg width="1in" height="1in" >
<g class="color" style="stroke: #000000; stroke-wi dth: 1" >
<rect width="50" height="50"/>
</g>
</ svg>
</ add_styl e>
</ non_nap_r equest >

The DTD for the response to an add_st yl e request has the following format:

<! ELEMENT non_nap_response add_styl e>
<l ELEMENT add_style EMPTY>
<I ATTLI ST add_styl e

succeed (true | fal se) #REQU RED
>

For example:

<?xm version="1.0" ?>
<non_nap_r esponse>
<add_styl e succeed="true" />
</ non_nap_r esponse>

6.4.3 Adding an Image Marker Style

The <add_i nage_nmmar ker > element adds a marker style that is based on an
external GIF image to a specified data source. It has the following definition:

6-12 Oracle Application Server 10g MapViewer User's Guide

Managing Styles

< ELEMENT non_map_request add_i mage_mar ker >
<! ELEMENT add_i mage_marker EMPTY>
<I ATTLI ST add_i nage_nar ker
i rage_narker CDATA #REQUI RED
url CDATA #REQUI RED
>

The i mage_nmar ker attribute specifies the name to be given to the resulting image
marker style.

The ur | attribute specifies the location of the GIF image that is to be used for the
style.

The following example adds the m t v marker style based on the image at URL
/ mapvi ewer /i mages/tv. gif:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >
<add_i mage_narker i mage_narker="mtv"
url ="/ mapvi ewer/i mages/tv.gif"/>
</ non_nap_r equest >

The DTD for the response to an add_i mage_nar ker request has the following
format:

<! ELEMENT non_nap_response add_i mage_nar ker >
<! ELEMENT add_i mage_marker EMPTY>
<I ATTLI ST add_i mage_nar ker
succeed (true | false) #REQU RED
>

For example:

<?xm version="1.0" ?>

<non_nap_r esponse>

<add_i nage_narker succeed="true" />
</ non_map_r esponse>

6.4.4 Checking If a Style Exists

The <mar ker _st yl e_exi st s> element checks if a specified style (image marker
or other type) exists in a specified data source. It has the following definition:

<! ELEMENT non_nap_request marker_style_exists>
<! ELEMENT marker_style_exists EMPTY>
<I ATTLI ST marker_styl e_exists

MapViewer Administrative Requests 6-13

Managing Cache

mar ker _style CDATA #REQU RED
>

The mar ker _st yl e attribute specifies the name of the style that you want to check.
(It can be any type of style.)

For example:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<marker_style_exists marker_style="mtv"/>
</ non_nap_r equest >

The DTD for the response to a mar ker _st yl e_exi st s request has the following
format:

<! ELEMENT non_nap_response marker_styl e_exi sts>
<! ELEMENT marker_style_exists EMPTY>
<I ATTLI ST marker_style_exists
succeed (true | false) #REQU RED
exists (true | false) #REQU RED
>

For example:

<?xm version="1.0" ?>

<non_map_r esponse>

<mar ker _styl e_exi sts succeed="true" exists="true" />
</ non_map_r esponse>

6.5 Managing Cache
MapViewer uses two types of cache:

« Metadata cache for mapping metadata, such as style, theme, and base map
definitions

« Spatial data cache for theme data (the geometric and image data used in
generating maps)

The use of these caches improves performance by preventing MapViewer from
accessing the database for the cached information; however, the MapViewer
displays might reflect outdated information if that information has changed since it
was placed in the cache.

If you want to use the current information without restarting MapViewer, you can
clear (invalidate) the content of either or both of these caches. If a cache is cleared,

6-14 Oracle Application Server 10g MapViewer User's Guide

Managing Cache

the next MapViewer request will retrieve the necessary information from the
database, and will also store it in the appropriate cache.

6.5.1 Clearing Metadata Cache for a Data Source

As users request maps from a data source, MapViewer caches such mapping
metadata as style, theme, and base map definitions for that data source. This
prevents MapViewer from unnecessarily accessing the database to fetch the
mapping metadata. However, modifications to the mapping metadata do not take
effect until MapViewer is restarted.

If you want to use the changed definitions without restarting MapViewer, you can
request that MapViewer clear (that is, remove from the cache) all cached mapping
metadata for a specified data source. Clearing the metadata cache forces
MapViewer to access the database for the current mapping metadata.

The <cl ear _cache> element clears the MapViewer metadata cache. It has the
following definition:

<! ELEMENT non_nap_request clear_cache>
<! ELEMENT cl ear _cache EMPTY>
<I ATTLI ST cl ear _cache
data_source CDATA #REQUI RED
>

The dat a_sour ce attribute specifies the name of the data source whose metadata
is to be removed from the MapViewer metadata cache.

The following example clears the metadata for the mvdeno data source from the
MapViewer metadata cache:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<cl ear _cache data_source="nvdeno"/ >
</ non_nap_request >

The DTD for the response to a cl ear _cache request has the following format:

<! ELEMENT non_map_response cl ear_cache>
<! ELEMENT cl ear _cache EMPTY>
<l ATTLI ST cl ear _cache

succeed (true | false) #REQU RED
>

For example:

MapViewer Administrative Requests 6-15

Managing Cache

<?xm version="1.0" ?>
<non_nap_r esponse>

<cl ear_cache succeed="true" />
</ non_nap_r esponse>

6.5.2 Clearing Spatial Data Cache for a Theme

MapViewer caches spatial data (geometries or georeferenced images) for a
predefined theme as it loads the data from the database into memory for rendering,
unless it is told not to do so. (MapViewer does not cache dynamic or JDBC themes.)
Thus, if a predefined theme has been frequently accessed, most of its data is
probably in the cache. However, if the spatial data for the theme is modified in the
database, the changes will not be visible on maps, because MapViewer is still using
copies of the data from the cache. To view the modified theme data without having
to restart MapViewer, you must first clear the cached data for that theme.

The <cl ear _t hene_cache> element clears the cached data of a predefined
theme. It has the following definition:

<! ELEMENT non_nap_request cl ear_t heme_cache>
<! ELEMENT cl ear _thene_cache EMPTY>
<I ATTLI ST cl ear _t heme_cache
data_source CDATA #REQUI RED
theme CDATA #REQUI RED
>

The dat a_sour ce attribute specifies the name of the data source. The t hene
attribute specifies the name of the predefined theme in that data source.

The following example clears the cached spatial data for the predefined theme
named STATES in the nvdeno data source:

<?xm version="1.0" standal one="yes"?>
<non_nap_r equest >

<cl ear_thene_cache data_source="nvdemo" thene="STATES" />
</ non_nap_request >

The DTD for the response to a cl ear _t hene_cache request has the following
format:

<! ELEMENT non_nap_response cl ear _t hene_cache>
<! ELEMENT cl ear _thene_cache EMPTY>
<I ATTLI ST cl ear _t henme_cache
succeed (true | false) #REQU RED
>

6-16 Oracle Application Server 10g MapViewer User's Guide

Managing Cache

For example:

<?xm version="1.0" ?>
<non_nap_r esponse>

<cl ear _t heme_cache succeed="true" />
</ non_nap_r esponse>

MapViewer Administrative Requests 6-17

Managing Cache

6-18 Oracle Application Server 10g MapViewer User's Guide

v

Map Definition Tool

This chapter describes the graphical interface to the Oracle Map Definition Tool.
This tool is a standalone application that lets you create and manage mapping
metadata that is stored in the database. This mapping metadata can be used by
applications that use MapViewer to generate customized maps.

Note: The Map Definition Tool is currently an unsupported tool,
and to use it you must download the software from the Oracle
Technology Network (htt p:// otn. oracl e. com.

The information in this chapter reflects the Map Definition Tool
interface at the time this guide was published. The online help for
the Map Definition Tool may contain additional or more recent
information.

To use the Map Definition Tool effectively, you must understand the MapViewer
concepts explained in Chapter 2 and the information about map requests in
Chapter 3.

The Map Definition Tool is shipped as a JAR file (mapdef . j ar). Youcanrunitasa
standalone Java application in a Java Development Kit (JDK) 1.2 or later
environment, as follows (all on a single command line):

%java [-classpath <path>] [-Dhost= <host>] [-Dsid=<sid>] [-Dport=<port>]
[- Duser=<user>] [-Dpassword=<password>] oracle.elLocation.consol e. General Manager

In the preceding command line format:

« <pat h> specifies the path that the Java interpreter uses to find the
mapdef . j ar file and the JDBC cl asses12. zi p file. This overrides the

Map Definition Tool 7-1

Overview of the Map Definition Tool

default value of the CLASSPATH environment variable, if it is set. Files are
separated by colons on UNIX systems and by semicolons on Windows systems.

« <host > specifies the name or IP address of the local computer that hosts the
target database.

« <si d> specifies the database instance identifier.
« <port > specifies the listener port for client connections to the database listener.
« <user > specifies the user name for connecting to the database.

« <passwor d> specifies the password for the specified user for connecting to the
database.

If you include any of the connection options in your command line, their values will
be used as the defaults for the corresponding fields in the connection box on the
Connection page (described in Section 7.2); otherwise, you must specify their values
in the connection box to connect to the database.

The following example (all on a single command line) starts the Map Definition
Tool on a UNIX system. (Note the use of the colon to separate files in the
CLASSPATH specification on UNIX systems.)

% ava -cl asspath
[usr/1bs/lib/mapdef.jar:/private/oracle/ora90/jdbc/lib/classesl2.zip
-Dhost="127.0.0.1" -Dsid="orcl" -Dport="1521" -Duser="scott" -Dpassword="tiger"
oracl e. eLocati on. consol e. Gener al Manager

7.1 Overview of the Map Definition Tool

The Map Definition Tool lets you create, modify, and delete styles, themes, and base
maps. For example, you can enter the design information for a new line style, see a

preview of the style, modify your design if you wish, and then click Insert to insert

your style definition in XML format into the database. The tool uses the information
that you entered to generate the XML document for the style definition.

The styles, themes, and base maps for a user are maintained in that user’s USER _
SDO_STYLES, USER_SDO_THEMES, and USER_SDO_MAPS views, respectively.
These views (described in Section 2.5) are created by MDSYS for you to access your
mapping metadata. You can create your new mapping metadata in these views.
However, the styles that you create in your USER_SDO_STYLES view will be
shared by all other database users.

Whenever possible, you should use the Map Definition Tool instead of directly
modifying MapViewer metadata views to create, modify, and delete information

7-2 Oracle Application Server 10g MapViewer User’s Guide

Connection Page

about styles, themes, and maps. The Map Definition Tool always checks and
maintains the referential integrity between objects. If you perform these operations
by using SQL procedures or SQL*Plus statements, the referential integrity of the
mapping metadata may become corrupted if you are not careful. For example, if
you delete a style using SQL*Plus, a theme may still be referencing the name of that
style.

The tool consists of pages grouped under the following categories:
« Connection: a page for connecting to the database

« Styles: a page for each type of style

« Themes: a page for themes

= Maps: a page for maps

For detailed information about the options on each page, see later sections in this
chapter or click Help on that page when using the Map Definition Tool.

Note: For all Name fields, any entry that you type is automatically converted to and
stored in uppercase. (Names of mapping metadata objects are not case-sensitive.)

7.2 Connection Page

Figure 7-1 shows the Connection page after the user has clicked the Connect To
button.

Map Definition Tool 7-3

Connection Page

Figure 7-1 Connection Page

] =
ORACLE & X]
Flease provide JDBC connection info:
Administration Host: [chelse
Currently Connected to: |rot cannected. . ||:|rcl
Map Metadata
o-Styles Eort: |1521
Color Conhect To | Help User; |su:n’rt
Marker
Line Password: |nn*
firea Map Metadata:
Text
Advanced MapView. |USER_SDO_MAPS |
Themes Theme View: | USER_SDO_THEMES |
Maps

Style View: [ALL_SDO_STYLES -

Ok | Qancel‘

Currently connected to: Contains information about your database connection, or
Not connected if you are not currently connected to an Oracle database.

Connect To: Displays a JDBC database connection dialog box, in which you specify
the Host, SID, Port, User, Password, and mapping metadata views. You can change

your connection at any time; the old connection is disconnected when you click OK
for a new connection.

Map Metadata: For maps and themes, you must use the USER_SDO_MAPS and
USER_SDO_THEMES views, respectively.

For styles, if you select the ALL_SDO_STYLES view, you can see all styles that all
users have created, but you cannot create, modify, or delete any styles. (The Insert, New,
Update, and Delete buttons are disabled.) The ALL_SDO_xxx views are for
read-only access. If you select the USER_SDO_STYLES view, you can see only the
styles that you have created, but you can create, modify, and delete styles.

7-4 Oracle Application Server 10g MapViewer User’s Guide

Styles: Color Page

For example, you might connect using the ALL_SDO_STYLES view to see all
available styles and get design ideas, and then connect again later using the USER _
SDO_STYLES view to create and modify your own styles. However, with either
styles view, you have access to all styles defined on your system when you create or
edit themes.

To exit the Map Definition Tool: Select Close from the application window menu
(upper-left corner), or click the "X" box (upper-right corner).

7.3 Styles: Color Page

Figure 7-2 shows the Color page under the Styles category.

Figure 7-2 Color Page

narme F]I’E\I'IEW Ml |C BLACK
H - B
C.BLACK GRAY Deseription: |black
Administration
CHLUE - Strake Color
Connection
C.COUNTIES |:| Opacity. (7255
Map Metadata L tartl
-Styles CFACILITY
m C.FUNNY COLOR =
Marker 255 8 [Apply
Line C.OCESN WO BOUN...
Area C PARK FOREST Fill Color
Text
Advanced |00 13- I:l Opacity: [y255
Themes CRB13_10 |:| Sample Color
Maps
C.RB13_11 |:|
#000000 255 8 I Apply
C.RB13_12 _l

Name and Preview columns: List currently defined color styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Map Definition Tool 7-5

Styles: Marker Page

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.
Stroke Color (for the border) and Fill Color:

The rectangle button displays the current color in its foreground text. You can
click the rectangle button to display a dialog box to specify a new color by a
swatch, HSB value, or RGB value.

Opacity: A value from 0 (transparent) to 255 (solid, or completely opaque).

Apply: If checked, the color is used; if not checked, the color is not used. For
example, you might specify a fill color, but not use any border (stroke) color.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.4 Styles: Marker Page

Figure 7-3 shows the Marker page under the Styles category.

Figure 7-3 Marker Page

ORACLE

Administration
Connection

Map Metadata

S-Styles

Color
Line

Area

Text
Advanced

name
MAIRFORT

M.CAPITAL

M.CITY HALL

M.CITY HALL 2

M.CITY HALL 3

M.CITY HALL 4

WLCYAN FPIN

WM.EXIT 44

[arei e

> [
0 =
HoBR
@
=

]

7-6 Oracle Application Server 10g MapViewer User’s Guide

Marme M.CIRCLE

Description: |circ|e
Preferred Width: Preferred Height: |_

Marker Type: " Raster Marker ® Yector Mal

Yector Marker

TWE [Rele v Y% gorle Col

Colot:
Fill ; Sample Coly
Radius: Color:

|4n.n

Styles: Marker Page

Name and Preview columns: List currently defined marker styles, with a preview
of each. (The styles listed depend on whether you selected the ALL_SDO_STYLES
or USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.
Description: Optional descriptive text about the style.

Preferred Width: Number of screen pixels for the preferred width of the marker. If
no value is specified, the actual width of the marker is used; no scaling is
performed.

Preferred Height: Number of screen pixels for the preferred height of the marker. If
no value is specified, the actual width of the marker is used; no scaling is
performed.

Marker Type: Raster Marker for an image marker, or Vector Marker for a vector
graphics marker.

Raster Marker (for image graphics):

« Import Image: Displays a dialog box for specifying the file for the image to be
used for the marker.

« Preview: Shows a sample of the style as it would look with the imported image.
However, no changes are made to the style until you click the New, Insert, or
Update button.

Vector Marker (for vector graphics):

= Type: POLYGON (simple polygon only), POLYLINE (line string with one or
more segments), CIRCLE, or RECTANGLE.

« Stroke (border) and Fill colors: The rectangle button displays the current color
in its foreground text. You can click the rectangle button to display a dialog box
to specify a new color by a swatch, HSB value, or RGB value.

« Coordinates or Radius: Coordinates for each vertex of a polygon or polyline, or
for the upper-left corner, width, and height of a rectangle; or the number of
screen pixels for the radius of a circle.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

Map Definition Tool 7-7

Styles: Line Page

7.5 Styles: Line Page

Figure 7-4 shows the Line page under the Styles category.

Figure 7-4 Line Page

narme preview:
Marme: L RAILROAD
(| =J.Yal =4l ||L.OFH ===
LFERRY | e Deseription: |
Administration LLUGHT DUTY Crearall 81.'5"|E
Connection S)
Width: ’1_ Sample Color | Opacity:
— Samp: olor | Y
Map Metadata LMAJOR STREET
o-Styles LMAJOR TOLL ROAD S tle: | RounD Join stle: [Re
Color)
LMGQ_ROAD2 Base Line
Marker
m LPH — Wiidth: ’1_ Sample Color | Dash:
Area)
LFTH Farallel Lines
Text width: |1 Dash
ALROAD dth: |1 ash:
Advanced L.RAILROAD Sample Color
Themes L.RAMP Hashmark on Base Line
Maps
P L&H Lengthilﬁ Sample Color | 5300 |35
LBTATE BOUNDARY | _ ‘
P review:
e
L.8TREET

Name and Preview columns: List currently defined line styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.
Description: Optional descriptive text about the style.
Overall Style:

« Width: Number of screen pixels for the width of the line.

7-8 Oracle Application Server 10g MapViewer User’s Guide

Styles: Line Page

The rectangle button displays the current color in its foreground text. You can
click the rectangle button to display a dialog box to specify a new color by a
swatch, HSB value, or RGB value.

Opacity: A value from 0 (transparent) to 255 (solid, or completely opaque).
End Style: Style to be used at each end of the line: ROUND, BUTT, or SQUARE.

Join Style: Style to be used at each vertex of the line: ROUND, BEVEL, or
MITER.

Base Line: If applied, specifies attributes for the center line of the linear feature (for
example, of a highway or river).

Width: Number of screen pixels for the width of the center line.

The rectangle button displays the current color in its foreground text. You can
click the rectangle button to display a dialog box to specify a new color by a
swatch, HSB value, or RGB value.

Dash: Pattern to be used for drawing a dashed line, using the number of screen
pixels for solid and the number of screen pixels for space (separated by a
comma) for each segment. Example: 5.0,3.0 means a 5-pixel solid line followed
by a 3-pixel space (gap).

Apply: If checked, causes this feature to be applied to the style; if unchecked,
causes the feature not to be applied to the style.

Parallel Lines: If applied, specifies attributes for the edges of the linear feature.
Edges are two parallel lines, each an equal distance from the center line.

Width: Number of screen pixels for the width of each edge.

The rectangle button displays the current color in its foreground text. You can
click the rectangle button to display a dialog box to specify a new color by a
swatch, HSB value, or RGB value.

Dash: Pattern to be used for drawing a dashed line, using the number of screen
pixels for solid and the number of screen pixels for space (separated by a
comma) for each segment. Example: 5.0,3.0 means a 5-pixel solid line followed
by a 3-pixel space (gap).

Apply: If checked, causes this feature to be applied to the style; if unchecked,
causes the feature not to be applied to the style.

Hashmark on Base Line: If applied, specifies attributes for hash marks on each side
of the center line of the linear feature.

Length: Number of screen pixels for the length of each hash mark.

Map Definition Tool 7-9

Styles: Area Page

The rectangle button displays the current color in its foreground text. You can

click the rectangle button to display a dialog box to specify a new color by a
swatch, HSB value, or RGB value.

Gap: Number of screen pixels for the distance between each hash mark.

Apply: If checked, causes this feature to be applied to the style; if unchecked,

causes the feature not to be applied to the style.

Preview: Shows a sample of the style as it would look with the current

specifications. However, no changes are made to the style until you click the New,

Insert, or Update button.

Buttons: New lets you enter information for a new style; Insert inserts a new style

using the specified information; Update updates the style using the specified

information; Delete removes the style; Cancel clears any information that you have

entered for a new style.

7.6 Styles: Area Page

Figure 7-5 shows the Area page under the Styles category.

Figure 7-5 Area Page

ORACLE

Administration
Connection
Map Metadata
&-Styles
Color
Marker
Line
=
Advanced

narme

APATTERM 2

APATTERM 3

[Ireni e

IH]]]IHIH]]]].

7-10 Oracle Application Server 10g MapViewer User's Guide

Mame: A PATTERN 1

Description: |

Strake Calar:
Sample Color
I Apply

Import Image

P review:

Styles: Text Page

Name and Preview columns: List currently defined area styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.
Description: Optional descriptive text about the style.
Stroke Color (for the border) and Fill Color:

« The rectangle button displays the current color in its foreground text. You can
click the rectangle button to display a dialog box to specify a new color by a
swatch, HSB value, or RGB value.

« Apply: If checked, the color is used; if unchecked, the color is not used. For
example, you might specify an image, but not use any border (stroke) color.

Import Image: Displays a dialog box for specifying the file for the image to be used
as a pattern for the area.

Preview: Shows a sample of the style as it would look with the imported image.
However, no changes are made to the style until you click the New, Insert, or
Update button.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.7 Styles: Text Page

Figure 7-6 shows the Text page under the Styles category.

Map Definition Tool 7-11

Styles: Text Page

Figure 7-6 Text Page

ORACLE

Administration
Connection

Map Metadata

£-Styles
Color
Marker
Line
Area

Advanced

hame [review
ARPORT NAME Mame: |TROAD MAME
: Hello Warkd
Description: |ront for Road names
T.CITY MAME Hello World |
TMAPTITLE Hello World Font
T.PARK. MNAME ,
Hedlo Warld [Euld [IEQ'J‘IC
TRED STREET I
=l v Size. |11 |« Eamily | oarif "|
T.ROAD NAME .u-:llu World .
Foreground Colar:
T.SHIELD1 Sample Color
T.SHIELDZ |
Helle World
Preview Sample:
T.STATE MAME Hello Worlc Helle World

Name and Preview columns: List currently defined text styles, with a preview of
each. (The styles listed depend on whether you selected the ALL_SDO_STYLES or
USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.

Description: Optional descriptive text about the style.

Bold: If checked, displays the text in bold.

Italic: If checked, displays the text in italic.

Size: Font size.

Family: Font family. (Currently, only Java native font families are supported.)

Foreground Color: The rectangle button displays the current text foreground color
in its foreground text. You can click the rectangle button to display a dialog box to
specify a new color by a swatch, HSB value, or RGB value.

Preview Sample: Shows a sample of the style as it would look with the current
information. However, no changes are made to the style until you click the New,
Insert, or Update button.

7-12 Oracle Application Server 10g MapViewer User's Guide

Styles: Advanced Page

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.8 Styles: Advanced Page

Figure 7-7 shows the Advanced page under the Styles category. (For a discussion of
thematic mapping using advanced styles, including several examples, see

Section 2.3.3.)

Note: To create and modify advanced styles, you must understand the types of
advanced styles, which are explained in detail (with XML examples) in Section A.6.

Figure 7-7 Advanced Page

ORACLE

Administration
Connection
Map Metadata
&-Styles
Color
Marker
Line
Area
Text
Themes

Maps

name
W.CIRCLE SERIES 1

areview
-

W.RED SERIES

WAWHITE SCHEME

IZI.D - 16 5666

|:| 16 GEE6EGEE
|:| 333332333
SIZI.D - GG BEE
|:| [d=alalalalalala]d
|:| 8333323330

00-200
20.0-400
40.0 - 60.0
&0.0-580.0
20.0- 1000
4000 - 120.0
12000 - 140.0

Mame: |\-".COUNTY_F'OF'_DENSITY

Description: |rainb0w caolar scheme 13
Style: ® BucketstyleRanme T BucketStyleCollectio
O ColorSchemestyle O Wariablearkerstyle

Range: O Equal @ Yariable
Bucket Definition:
Lahel Loy High Style
&It 100k 100,000(SCOTT:C.RB13_1 g

100K- 150K 100,000) 150,000)SCOTT:C.RB13_2
140K- 250K 140,000 250,000)SCOTT:C.RB13_3
240K - 350K 240,000 350,000|SCOTT:C.RB13_4
340K - 400K 340,000 500,000|SCOTT:C.RB13_5
500K- 750K 500,000) 750,000)SCOTT:C.RB13_6
7a0k-1000K 740,000)..00,000|SCOTT:C.RB13_7
1000k-1250k |.00,000..50,000[SCOTT.C.RB13_8
1250k- 14500k |..50,000{..00,000[SCOTT.C.RB13_4
1400k- 2500k |...00,000{...00,000[SCOTT:C.RB13_10
2400k- 3500k |..00,000...00,000|SCOTT:C.RB13_11

3400k- 5000k |...00,000(...00,000[SCOTT.C.RB13_12]
ANk and nn nnn N T RA12 17

=] x| K] 4] »] M

Map Definition Tool 7-13

Themes Page

Name and Preview columns: List currently defined advanced styles, with a preview
of each. (The styles listed depend on whether you selected the ALL_SDO_STYLES
or USER_SDO_STYLES view at connection time.)

Name: Name of the style. Must be unique within a schema.
Description: Optional descriptive text about the style.
Style: Type of style:

« BucketStyleRange: individual range-based buckets (See Section A.6.1 and
Section A.6.1.2.)

« BucketStyleCollection: collection-based buckets with discrete values (See
Section A.6.1 and Section A.6.1.1.)

« ColorSchemeStyle: color scheme style (See Section A.6.2.)
« VariableMarkerStyle: variable marker style (See Section A.6.3.)

Range: Equal if the style contains a series of buckets that contain an equally divided
range of a master range; Variable if the style contains a series of buckets that do not
necessarily contain an equally divided range of a master range. (See

Section A.6.1.3)

Bucket Definition: (Options and content vary depending on Style and Range
settings.)

Icon Buttons: Insert an Empty Row inserts an empty row above the selected row;
Delete a Row removes the selected row; Move to Top moves the selected row to the
first row position; Move Up One Row moves the selected row above the row that is
currently above it; Move Down One Row moves the selected row below the row
that is currently below it; Move to Bottom moves the selected row to the last row
position.

Buttons: New lets you enter information for a new style; Insert inserts a new style
using the specified information; Update updates the style using the specified
information; Delete removes the style; Cancel clears any information that you have
entered for a new style.

7.9 Themes Page

Figure 7-8 shows the Themes page.

7-14 Oracle Application Server 10g MapViewer User's Guide

Themes Page

Figure 7-8 Themes Page

therme name
THEME_CA_HHINFO

THEME_CA_QUAKES
THEME_LIS_AIRFORT
THEME_LUS_COLUNTIES
THEME_LIS_PARKS
THEME_US_ROADT

THEME_LIS_ROADZ
THEME_IUS_STATES_DETAILED

. Name: THEME_US_ROAD1
Description: |
Base Tahle: US_ROADT -

Geometry Colurmn: |GEOMETRY

THEME_US_TEST ~ Theme Type: olitical
Styling Rules:

Aftr Cal Feature Style Feature Query Lahel Cal Lahel Style Lahel Func
MDSYS:L.PH (hame_class = 1"and TOLL. . label mMODSYS:M SHIELDT 1
mMDSYS:.LPTH fname_class ="1"and TOLL... lahel MDEYS:MSHIELDZ |1
MDEYS:L.FH (hame_class in (T,'0% and ... [label MODSYS.TSTREETZ |1
MDSYS:L.PTH (hame_class in {T,'0% and ... label MODSYS.TSTREETZ |1
mDEY5:LPH mame_class in (U485 lahel MDEYS M SHIELDZ |1
MDSYS.L.EH (hame_class in 1x''RVEW

b %a 4 4 » M
[+ ey pdate Celete Help

Theme Name column: Lists the names of currently defined themes.

Name: Name of the theme. Must be unique within a schema.

Description: Optional descriptive text about the theme.

Base Table: Name of the table or view that has the spatial geometry column to be
associated with this theme. You can enter the name, or you can select from a list of
tables. (The list contains all tables with entries in your USER_SDO_GEOM _
METADATA view.)

Map Definition Tool 7-15

Themes Page

Geometry Column:; Name of the geometry column in the table or view to be
associated with the theme. You can enter the name, or you can select from a list of
columns. (The list contains all geometry columns in the selected table or view.)

Theme Type: Optional descriptive text to identify a type for the theme. Examples:
political, demographic, nature.

Styling Rules: A tabular visual representation of the XML styling rules to be used
with the theme. (For more information about theme definition, see Section 2.3,
especially Section 2.3.1, "Styling Rules in Predefined Themes".)

Attr Col: Name of the attribute column (not of type SDO_GEOMETRY) in the table
or view, or a SQL expression that references an attribute column in the table or view
(for example, to specify a label that is a substring of the value in the column), to use
with the bucket ranges or values in the advanced feature style (identified in the
Feature Style column). If this column is empty or contains an asterisk (*), no attribute
column is used with the feature style.

Feature Style: Name of the style to use for the styling rule.

Feature Query: A SQL condition to select rows from the table or view to use the
feature style specified in the same row. You should use XML internal entities to
identify special characters in the query (for example, & t ; instead of <). Examples:

name like '"I-% and length(nane) &t; 6
nanme_cl ass=" U
name_class in (A, 'B, 'C)

Label Col: Name of the label column (not of type SDO_GEOMETRY) in the table or
view, or a SQL expression that references one or more columns (not of type SDO_
GEOMETRY) in the table or view (for example, to specify a label that is a substring
of the value in the column), to use for text labels.

Label Style: Name of the text style to be used for the labels.

Label Func: A SQL expression or a value to determine whether or not the feature
will be identified using the value in the label column. If the specified value or the
value returned by the specified function is less than or equal to zero, the feature will
not be identified. Examples:

0

1

8-1ength(Il abel)

Icon Buttons: Insert an Empty Row inserts an empty row above the selected row;
Delete a Row removes the selected row; Move to Top moves the selected row to the
first row position; Move Up One Row moves the selected row above the row that is
currently above it; Move Down One Row moves the selected row below the row

7-16 Oracle Application Server 10g MapViewer User's Guide

Maps Page

that is currently below it; Move to Bottom moves the selected row to the last row
position.

Buttons: New lets you enter information for a new theme; Insert inserts a new
theme using the specified information; Update updates the theme using the
specified information; Delete removes the theme; Cancel clears any information
that you have entered for a new theme.

7.10 Maps Page

Figure 7-9 shows the Maps page.

Figure 7-9 Maps Page

map narne

1ag Mame: [DEMSITY_MAF

DEMO_MAF

DEMEITY_MAP Description: |
Map Definition:

Theme MHame Min Scale Max Scale
THEWME_DEMO_STATES a0 4
THEWME_DEMO_COUNTY_FPOPDEMSITY 4 1]
THEWME_DEMO_STATES_LINE 4 1]
THEME_DEMO_HIGHWAYS
THEWME_DEMO_CITIES 1.2 1]
THEWME_DEMO_BIGCITIES 20 1.2
=0 -5 I4 4 4 M

Map Name column; Lists the names of currently defined base maps.
Name: Name of the base map. Must be unique within a schema.

Description; Optional descriptive text about the base map.

Map Definition Tool 7-17

Maps Page

Map Definition: A tabular visual representation of the XML definition of the base
map. The order in which the themes are listed determines the order in which they
are rendered, with the last listed theme on top. For more information about base
map definition, see Section 2.4; for information about the minimum and maximum
scale values, see Section 2.4.1.

Theme Name: Name of the theme to use for a layer in the base map.
Min Scale: Minimum value of the scale range for the theme.
Max Scale: Maximum value of the scale range for the theme.

Icon Buttons: Insert an Empty Row inserts an empty row above the selected row;
Delete a Row removes the selected row; Move to Top moves the selected row to the
first row position; Move Up One Row moves the selected row above the row that is
currently above it; Move Down One Row moves the selected row below the row
that is currently below it; Move to Bottom moves the selected row to the last row
position.

Buttons: New lets you enter information for a new base map; Insert inserts a new
base map using the specified information; Update updates the base map using the
specified information; Delete removes the base map; Cancel clears any information
that you have entered for a new base map.

7-18 Oracle Application Server 10g MapViewer User's Guide

A

XML Format for Styles, Themes, and Base
Maps

This appendix describes the XML format for defining style, themes, and base maps
using the MapViewer metadata views described in Section 2.5.

The metadata views for MapViewer styles (USER_SDO_STYLES and related views)
contain a column named DEFINITION. For each style, the DEFINITION column
contains an XML document that defines the style to the rendering engine.

Each style is defined using a syntax that is similar to SVG (scalable vector graphics).
In the MapViewer syntax, each style's XML document must contain a single <g>
element, which must have a cl ass attribute that indicates the type or class of the
style. For example, the following defines a color style with a filling color
component:

<?xm version="1.0" standal one="yes"?>
<svg width="1in" height="1in">
<desc> red </desc>
<g class="color" style="fill:#ff1100" />
</svg>

Note that the MapViewer XML parser looks only for the <g> element in a style
definition; other attributes such as the <desc> element are merely informational
and are ignored.

The metadata views for MapViewer themes (USER_SDO_THEMES and related
views) contain a column named STYLING_RULES. For each theme in these views,
the STYLING_RULES column contains an XML document (a CLOB value) that
defines the styling rules of the theme.

The metadata views for MapViewer base maps (USER_SDO_MAPS and related
views) contain a column named DEFINITION. For each base map in these views,

XML Format for Styles, Themes, and Base Maps A-1

Color Styles

the DEFINITION column contains an XML document (a CLOB value) that defines
the base map.

The following sections describe the XML syntax for each type of mapping metadata.

A.1 Color Styles

A color style has a fill color, a stroke color, or both. When applied to a shape or
geometry, the fill color (if present) is used to fill the interior of the shape, and the
stroke color (if present) is used to draw the boundaries of the shape. Either color can
also have an alpha value, which controls the transparency of that color.

For color styles, the cl ass attribute of the <g> element must be setto " col or .
The <g> element must have a st y| e attribute, which specifies the color
components and their optional alpha value. For example:

« <g class="color" style="fill:#ff0000"> specifies a color style with
only a fill color (whose RGB value is #ff0000).

« <g class="color" style="fill:#ff0000; stroke: bl ue"> specifies a
color style with a fill color and a stroke color (blue).

You can specify a color value using either a hexadecimal string (such as #00ff00) or a
color name from the following list: black, blue, cyan, darkGray, gray, green,
lightGray, magenta, orange, pink, red, white, yellow.

To specify transparency for a color style, you can specify fi | | - opaci ty and
st r oke- opaci t y values from 0 (completely transparent) to 255 (opaque). The
following example specifies a fill component with half transparency:

<g class="color" style="fill:#ff00ff;fill-opacity:128">

The following example specifies both stroke and fill opacity:

<g class="color" style= "stroke:red;stroke-opacity:70;
fill:#ff00aa;fill-opacity:129">

The syntax for the st y| e attribute is a string composed of one or more
namne: val ue pairs delimited by semicolon. (This basic syntax is used in other types
of styles as well.)

For stroke colors, you can define a stroke width. The default stroke width when
drawing a shape boundary is 1 pixel. To change that you add a

st roke-w dt h: val ue pair to the st yl e attribute string. The following example
specifies a stroke width of 3 pixels:

A-2 Oracle Application Server 10g MapViewer User’s Guide

Marker Styles

<g class="col or" style="stroke:red; stroke-w dth:3">

A.2 Marker Styles

A marker style represents a marker to be placed on point features or on label points
of area and linear features. A marker can be either a vector marker or raster image
marker. A marker can also have optional notational text. For a vector marker, the
coordinates of the vector elements must be defined in its XML document. For a
marker based on a raster image, the XML document for the style indicates that the
style is based on an external image.

The marker XML document specifies the preferred display size: the preferred width
and height are defined by the wi dt h: val ue; hei ght : val ue pairsinthestyl e
attribute of the <g> element. The cl ass attribute must be set to " mar ker " . Some
markers must be overlaid with some notational text; for example, a U.S. interstate
highway shield marker, which when rendered, must also have a route number
plotted on top of it. The style for such notational text is a style attribute with one or
more of the following name-value pairs: f ont - f ani | y: val ue,

font-styl e:val ue,font-size: val ue,and f ont - wei ght : val ue.

A.2.1 Vector Marker Styles

A vector marker can be a simple polygon, an optimized rectangle (defined using
two points), a single polyline, or a circle, but not any combination of them. For each
type of vector marker, its <g> element must contain a corresponding subelement
that specifies the geometric information (coordinates for the polygon, optimized
rectangle, or polyline, or radius for the circle):

« A polygon definition uses a <pol ygon> element with a poi nt s attribute that
specifies a list of comma-delimited coordinates. For example:

<g cl ass="marker">
<pol ygon poi nt s="100, 20, 40, 50, 60, 80, 100, 20" />
</ g>

« An optimized rectangle definition uses a <r ect > element with a poi nt s
attribute that specifies a list of comma-delimited coordinates. For example:

<g cl ass="marker">
<rect points="0,0, 120,120" />
</ g>

XML Format for Styles, Themes, and Base Maps A-3

Line Styles

« A polyline definition uses a <pol yl i ne> element with a poi nt s attribute that
specifies a list of comma-delimited coordinates. For example:

<g cl ass="marker">
<pol yl i ne poi nts="100, 20, 40, 50, 60, 80" />
</ g>

« Acircle definition uses a <ci r cl e> element with an r attribute that specifies
the radius of the circle. For example:

<g class="marker">
<circle r="50" />
</ g>

A.2.2 Image Marker Styles

For an image marker, its XML document contains an <i nage> element that
identifies the marker as based on an image. The image must be in GIF format, and is
stored in the IMAGE column in the styles metadata views.

The following example is an XML document for an image marker:

<?xm version="1.0" standal one="yes"?>
<svg>
<desc></ desc>
<g cl ass="nmarker"
style="wi dt h: 20; hei ght: 18; font-fam | y: sansseri f; font -si ze: 9pt ">
<image x="0" y="0" width="9999" hei ght="9999" type="gif" href="dumy.gif"/>
</g>
</ svg>

Note that in the preceding example, it would be acceptable to leave the <image>
element empty (that is, <i nage / >), to create a valid definition with the image to
be specified later.

A.3 Line Styles

A line style is applicable only to a linear feature, such as a road, railway track, or
political boundary. In other words, line styles can be applied only to Oracle Spatial
geometries with an SDO_GTYPE value ending in 2 (line) or 6 (multiline). (For
information about the SDO_GEOMETRY object type and SDO_GTYPE values, see
Oracle Spatial User's Guide and Reference.)

When MapViewer draws a linear feature, a line style tells the rendering engine the
color, dash pattern, and stroke width to use. A line style can have a base line

A-4 Oracle Application Server 10g MapViewer User’s Guide

Area Styles

element which, if defined, coincides with the original linear geometry. It can also
define two edges parallel to the base line. Parallel line elements can have their own
color, dash pattern, and stroke width. If parallel lines are used, they must be located
to each side of the base line, with equal offsets to it.

To draw railroad-like lines, you need to define a third type of line element in a line
style called hashmark. For a hashmark element, the first value in the dash array
indicates the gap between two hash marks, and the second value indicates the
length of the hash mark to either side of the line. The following example defines a
hash mark line with a gap of 8.5 screen units and a length of 3 screen units at each
side of the base line:

<line class="hashmark" style="fill:#003333" dash="8.5,3.0" />

The following example defines a complete line style.

<?xm version="1.0" standal one="yes"?>
<svg width="1in" height="1in">
<g class="line" style="fill:#ffff00;stroke-w dth:5">
<line class="parallel" style="fill:#ff0000;stroke-width:1.0" />
<l'ine class="base" style="fill:black;stroke-width:1.0" dash="10.0,4.0" />
</g>
</ svg>

In the preceding example, cl ass="11i ne" identifies the style as a line style. The
overall fill color (#ffff00) is used to fill any space between the parallel lines and the
base line. The overall line width (5 pixels) limits the maximum width that the style
can occupy (including that of the parallel lines).

The line style in the preceding example has both base line and parallel line
elements. The parallel line element (cl ass="paral | el ") is defined by the first

<l i ne> element, which defines its color and width. (Because the definition does
not provide a dash pattern, the parallel lines or edges will be solid.) The base line
element (cl ass="base") is defined by the second <I i ne> element, which defines
its color, width, and dash pattern.

A4 Area Styles

An area style defines a pattern to be used to fill an area feature. In the current
release, area styles must be image-based. That is, when you apply an area style to a
geometry, the image defining the style is plotted repeatedly until the geometry is
completely filled.

XML Format for Styles, Themes, and Base Maps A-5

Text Styles

The definition of an area style is similar to that of an image marker style, which is
described in Section A.2.2.

The following example defines an area style:

<?xm version="1.0" standal one="yes"?>
<svg wi dth="1i n" hei ght="1i n">
<g class="area" style="stroke: #000000" >
<i mage />
</g>
</ svg>

In the preceding example, cl ass="ar ea" identifies the style as an area style. The
stroke color (styl e="stroke: #000000") is the color used to draw the geometry
boundary. If no stroke color is defined, the geometry has no visible boundary,
although its interior is filled with the pattern image.

As with the image marker style, the image for an area style must be stored in a
separate column (identified in the IMAGE column in the USER_SDO_STYLES and
ALL_SDO_STYLES metadata views, which are described in Section 2.5.3).

A5 Text Styles

A text style defines the font and color to be used in labeling spatial features. The

cl ass attribute must have the value "t ext " . For the font, you can specify its style
(plain, italic, and so on), font family, size, and weight. To specify the foreground
color, youuse thefil | attribute.

The following example defines a text style that displays "Hello World!".

<?xm version="1.0" standal one="yes"?>
<svg wi dth="1in" height="1in">
<g class="text" style="font-style:plain; font-famly:Dial og; font-size:14pt;
font-weight:bold; fill:#0000ff">
Hel o Worl d!
</g>
</ svg>

A.6 Advanced Styles

Advanced styles are structured styles made from simple styles. Advanced styles are
used primarily for thematic mapping. The core advanced style is the bucket style

(Bucket St yl e), and every advanced style is a form of bucket style. A bucket style
is a one-to-one mapping between a set of primitive styles and a set of buckets. Each

A-6 Oracle Application Server 10g MapViewer User’s Guide

Advanced Styles

bucket contains one or more attribute values of features to be plotted. For each
feature, one of its attributes is used to determine which bucket it falls into or is
contained within, and then the style assigned to that bucket is applied to the
feature.

Two special types of bucket styles are also provided: color scheme (described in
Section A.6.2) and variable marker (described in Section A.6.3).

A.6.1 Bucket Style

A bucket style defines a set of buckets, and assigns one primitive style to each
bucket. The content of a bucket can be either of the following:

« A collection of discrete values (for example, a bucket for all counties with a
hurricane risk code of 1 or 2, a bucket for all counties with a hurricane risk code
of 3, and so on).

« A continuous range of values (for example, a bucket for all counties with
average family income less than $30,000, a bucket for all counties with average
family income from $30,000 through $39,999, and so on). In this case, the ranges
of a series of buckets can be individually defined (each defined by an
upper-bound value and lower-bound value) or equally divided among a master
range.

The following code excerpt shows the basic format of a bucket style:

<?xm version="1.0" ?>
<AdvancedStyl e>
<Bucket St yl e>
<Buckets .../>
</ Bucket Styl e>
</ AdvancedSt yl e>

In contrast with the other (primitive) styles, an advanced style always has a root
element identified by the <AdvancedSt yl e> tag.

For bucket styles, a <Bucket St yl e> element is the only child of the
<AdvancedsSt yl e> element. Each <Bucket St yl e> element has one or more
<Bucket s> child elements, whose contents vary depending on the type of buckets.

A.6.1.1 Collection-Based Buckets with Discrete Values

If each bucket of a bucket style contains a collection of discrete values, use a
<Col | ect i onBucket > element to represent each bucket. Each bucket contains one
or more values. The values for each bucket are listed as the content of the

XML Format for Styles, Themes, and Base Maps A-7

Advanced Styles

<Col | ect i onBucket > element, with multiple values delimited by commas. The
following example defines three buckets.

<?xm version="1.0" ?>
<AdvancedStyl e>
<Bucket Styl e>
<Bucket s>
<Col | ecti onBucket seqg="0" |abel ="comercial"
styl e="10015" >conmmer ci al </ Col | ecti onBucket >
<Col | ectionBucket seqg="1" |abel ="residential"
styl e="10031">resi dential, rural </ Col | ecti onBucket >
<Col | ecti onBucket seq="2" |abel="industrial"
styl e="10045">i ndustrial, nmining, agriculture</CollectionBucket>
</ Bucket s>
</ Bucket Styl e>
</ AdvancedSt yl e>

In the preceding example:

= The values for each bucket are one or more strings; however, the values can also
be numbers.

= The name of the style associated with each bucket is given.

« The label attribute for each <Col | ect i onBucket > element (commercial,
residential, or industrial) is used only in a label that is compiled for the advanced
style.

« Theorder of the <Col | ecti onBucket > elements is significant. However, the
values in the seq (sequence) attributes are informational only; MapViewer
determines sequence only by the order in which elements appear in a
definition.

Although not shown in this example, if you want a bucket for all other values (if
any other values are possible), you can create a <Col | ect i onBucket > element
with #DEFAULT# as its attribute value. It should be placed after all other

<Col | ect i onBucket > elements, so that its style will be rendered last.

A.6.1.2 Individual Range-Based Buckets

If each bucket of a bucket style contains a value range that is defined by two values,
use a <RangedBucket > element to represent each bucket. Each bucket contains a
range of values. The following example defines four buckets.

<?xm version="1.0" ?>
<AdvancedStyl e>
<Bucket Styl e>

A-8 Oracle Application Server 10g MapViewer User’s Guide

Advanced Styles

<Bucket s>
<RangedBucket hi gh="10" style="10015"/>
<RangedBucket |ow="10" high="40" style="10024"/>
<RangedBucket |ow="40" high="50" style="10025" />
<RangedBucket |ow="50" style="10029" />

</ Bucket s>

</ Bucket Styl e>
</ AdvancedSt yl e>

Note that for individual range-based buckets, the lower-bound value is inclusive,
while the upper-bound value is exclusive (except for the range that has values
greater than any value in the other ranges; its upper-bound value is inclusive). No
range is allowed to have a range of values that overlaps values in other ranges.

For example, the second bucket in this example (I ow="10" hi gh="40") will
contain any values that are exactly 10, as well as values up to but not including 40
(such as 39 and 39.99). Any values that are exactly 40 will be included in the third
bucket.

As with the <Col | ect i onBucket > element, the style associated with each
<RangedBucket > element is specified as an attribute.

A.6.1.3 Equal-Ranged Buckets

If a bucket style contains a series of buckets that contain an equally divided range of
a master range, you can omit the use of <RangedBucket > elements, and instead
specify in the <Bucket s> element the master upper-bound value and lower-bound
value for the overall range, the number of buckets in which to divide the range, and
a list of style names (with one for each bucket). The following example defines five
buckets (nbucket s=5) of equal range between 0 and 29:

<?xm version="1.0" ?>
<AdvancedStyl e>
<Bucket Styl e>
<Buckets | ow="0" high="29" nbuckets="5"
styl es="10015, 10017, 10019, 10021, 10023"/ >
</ Bucket Styl e>
</ AdvancedStyl e>

In the preceding example:

« If all values are integers, the five buckets hold values in the following ranges:
0-5, 6-11, 12-17, 18-23, and 24-29.

XML Format for Styles, Themes, and Base Maps A-9

Advanced Styles

« The first bucket is associated with the style named 10015, the second bucket is
associated with the style named 10017, and so on.

The number of style names specified must be the same as the value of the
nbucket s attribute. The buckets are arranged in ascending order, and the styles are
assigned in their specified order to each bucket.

A.6.2 Color Scheme Style

A color scheme style automatically generates individual color styles of varying
brightness for each bucket based on a base color. The brightness is equally spaced
between full brightness and total darkness. Usually, the first bucket is assigned the
brightest shade of the base color and the last bucket is assigned the darkest shade.

You can also include a stroke color to be used by the color style for each bucket. The
stroke color is not part of the brightness calculation. So, for example, if a set of
polygonal features is rendered using a color scheme style, the interior of each
polygon is filled with the color (shade of the base color) for each corresponding
bucket, but the boundaries of all polygons are drawn using the same stroke color.

The following example defines a color scheme style with a black stroke color and
four buckets associated with varying shades of the base color of blue.

<?xm version="1.0" ?>
<AdvancedStyl e>
<Col or SchermeSt yl e basecol or="hl ue" strokecol or="bl ack">
<Bucket s>
<RangedBucket |abel ="& t;10" high="10" />
<RangedBucket |abel ="10 - 20" |ow="10" hi gh="20" />
<RangedBucket |abel ="20 - 30" |ow="20" high="30" />
<RangedBucket | abel =">=30" |ow="30" />
</ Bucket s>
</ Col or ScheneStyl e>
</ AdvancedSt yl e>

Note: For the following special characters, use escape sequences
instead:

For <,use: &l t;

For >, use: > ;

For &, use: &anp;

A-10 Oracle Application Server 10g MapViewer User’s Guide

Themes:; Styling Rules

A.6.3 Variable Marker Style

A variable marker style generates a series of marker styles of varying sizes for each
bucket. You specify the number of buckets, the start (smallest) size for the marker,
and the size increment between two consecutive markers.

Variable marker styles are conceptually similar to color scheme styles in that both
base buckets on variations from a common object: with a color scheme style the
brightness of the base color varies, and with a variable marker style the size of the
marker varies.

The following example creates a variable marker style with four buckets, each
associated with different sizes (in increments of 4) of a marker (m ci r cl €). The
marker for the first bucket has a radius of 10 display units, the marker for the
second bucket has a radius of 14 display units, and so on. This example assumes
that the marker named m ci r cl e has already been defined.

<?xm version="1.0" ?>
<AdvancedStyl e>
<Vari abl eMarker Styl e basemarker="mcircle" startsize="10" increnment="4">
<Bucket s>
<RangedBucket |abel ="&t;10" high="10" />
<RangedBucket |abel ="10 - 20" [ow="10" hi gh="20" />
<RangedBucket |abel ="20 - 30" [ow="20" high="30" />
<RangedBucket | abel =">=30" |ow="30" />
</ Bucket s>
</ Vari abl eMar ker Styl e>
</ AdvancedSt yl e>

A.7 Themes: Styling Rules

A theme consists of one or more styling rules. These styling rules are specified in
the STYLING_RULES column of the USER_SDO_THEMES metadata view, using
the following DTD:

< ELEMENT styling_rules (rule+)>
<I ATTLI ST styling_rules

t heme_type CDATA #1 MPLI ED
key_col um CDATA #1 MPLI ED
cachi ng CDATA #1 MPLI ED " NORMAL"
i mage_f or mat CDATA #l MPLI ED

i mage_col um CDATA #1 MPLI ED
i mage_resol uti on CDATA #| MPLI ED
i mage_uni t CDATA #1 MPLI ED

XML Format for Styles, Themes, and Base Maps A-11

Themes: Styling Rules

< ELEMENT rul e (features, |abel?)>
<! ATTLI ST rul e col um CDATA #l MPLI ED>

<I ELEMENT features (#PCDATA?)>
<I ATTLI ST features style CDATA #REQU RED>

<I ELEMVENT | abel (#PCDATA) >
<I ATTLI ST | abel col unm CDATA #REQU RED
style CDATA #REQU RED>

The <styl i ng_r ul es> element contains one or more <r ul e> elements and an
optional t heme_t ype attribute, which is used mainly used for certain kinds of
predefined themes. If the value of the t herre_t ype attribute isi mage, this is an
image theme, and you must also specify the i mage_f or mat and i mage_col umm
attributes, and perhaps also the i nage_r esol uti on andi mage_uni t attributes,
as explained in Section 2.3.4.1. For more information about image themes, see
Section 2.3.4.

The <styl i ng_r ul es>element can have a key_col um attribute. This attribute
is needed only if the theme is defined on a join view (a view created from multiple
tables). In such a case, you must specify a column in the view that will serve as the
key column to uniquely identify the geometries or images in that view. Without this
key column information, MapViewer will not be able to cache geometries or images
in a join view.

The <styl i ng_r ul es> element can have a cachi ng attribute, which specifies the
caching scheme for each predefined theme. The cachi ng attribute can have one of
the following values: NORMAL (the default), NONE, or ALL.

« NORMAL causes MapViewer to try to cache the geometry data that was just
viewed, to avoid repeating the costly unpickling process when it needs to reuse
the geometries. Geometries are always fetched from the database, but they are
not used if unpickled versions are already in the cache.

« NONE means that no geometries from this theme will be cached. This value is
useful when you are frequently editing the data for a theme and you need to
display the data as you make edits.

« ALL causes MapViewer to pin all geometry data of this theme entirely in the
cache before any viewing request. In contrast to the default value of NORMAL, a
value of ALL caches all geometries from the base table the first time the theme is
viewed, and the geometries are not subsequently fetched from the database.

A-12 Oracle Application Server 10g MapViewer User’s Guide

Base Maps

Each <r ul e> element must have a <f eat ur es> element and may have a <l abel >
element.

The optional col umm attribute of a <r ul e> element specifies one or more attribute
columns (in a comma-delimited list) from the base table to be put in the SELECT list
of the query generated by MapViewer. The values from such columns are usually
processed by an advanced style for this theme. The following example shows the
use of the column attribute:

<?xm version="1.0" standal one="yes"?>
<styling_rules >
<rul e col um="TOTPOP" >
<features style="V. COUNTY_POP_DENSI TY"> </features>
</rul e>
</styling_rul es>

In the preceding example, the theme's geometry features will be rendered using an
advanced style named V. COUNTY_POP_DENSI TY. This style will determine the
color for filing a county geometry by looking up numeric values in the column
named TOTPOP in the base table for this theme.

A <l abel > element must have a SQL expression as its element value for
determining whether or not a label will be applied to a feature. The col umm
attribute specifies a SQL expression for text values to label features, and the st yl e
attribute specifies a text style for rendering labels.

See Section 2.3.1 for more information about styling rules and for an example.

A.8 Base Maps

A base map definition consists of one or more themes. The XML definition of a base
map is specified in the DEFINITION column of the USER_SDO_MAPS metadata
view, using the following DTD:

<! ELEMENT map_definition (thene+)>

<! ELEMENT t hene EMPTY>
<I ATTLI ST thene nanme CDATA #REQUI RED
m n_scal e CDATA #I MPLI ED
max_scal e CDATA #I MPLI ED
| abel _al ways_on (TRUE| FALSE) "FALSE" >

XML Format for Styles, Themes, and Base Maps A-13

Base Maps

The <map_defi ni ti on>element contains one or more <t hene> elements.
Themes are rendered on a map on top of each other, in the order in which they are
specified in the definition.

Each <t henme> element must have a <nane> element, and it can have a scale range
(<m n_scal e> and <max_scal e> elements) and a requirement to display labels
even if some labels overlap. Each theme name must be unique. If both the <mi n_
scal e> and the <nax_scal e> elements are specified for a theme, the <m n_
scal e> value must be greater than the <max_scal e> value. The default for the
<m n_scal e>element is positive infinity, and the default for the <max_scal e>
element is negative infinity. If no scale values are specified for a theme, the theme
will always be rendered.

| abel _al ways_on is an optional attribute. If it is set to TRUE, MapViewer labels
all features of the theme even if two or more labels will overlap in the display.
(MapViewer always tries to avoid overlapping labels.) If | abel _al ways_on is
FALSE (the default), when it is impossible to avoid overlapping labels, MapViewer
disables the display of one or more labels so that no overlapping occurs. The

| abel _al ways_on attribute can also be specified for a map feature (geoFeat ur e
element, described in Section 3.2.9), thus allowing you to control which features will
have their labels displayed if | abel _al ways_on is FALSE for a theme and if
overlapping labels cannot be avoided.

See Section 2.4 for more information about defining base maps and for an example.

A-14 Oracle Application Server 10g MapViewer User’s Guide

B

Creating and Registering a Custom Image
Renderer

This appendix explains how to implement and register a custom image renderer for
use with an image theme. (Image themes are described in Section 2.3.4.)

If you want to create a map request specifying an image theme with an image
format that is not supported by MapViewer, you must first implement and register
a custom image renderer for that format. For example, the ECW format in

Example 3-5 in Section 3.1.5 is not supported by MapViewer; therefore, for that
example to work, you must first implement and register an image renderer for ECW
format images.

The interface or acl e. sdovi s. Cust om mageRender er is defined in the package
sdovi s. j ar, which is located in the $ORACLE_HOVE/ | bs/ | i b directory in an
Oracle Application Server environment. If you performed a standalone installation
of OC4J, sdovi s. j ar is unpacked into $SMAPVI EVER/ web/ VEEB- | NF/ | i b. The
following is the source code of this interface.
/**

* An interface for a customimage painter that supports user-defined i mage

* formats. An inplenentation of this interface can be registered with

* MapVi ewer to support a custominage fornmat.

*|

public interface Custom mageRenderer

{
/**
* The method is called by MapViewer to find out the inage format supported
* by this renderer.

* This format string nmust match the one specified in a custominage renderer
* element defined in the MapViewer configuration file (mapViewerConfig.xm).
*/
public String getSupportedFormat() ;

Creating and Registering a Custom Image Renderer B-1

*

Renders the given inmages. MapViewer calls this nethod
to tell the inplenentor the inmages to render, the current map
wi ndow i n user space, and the MBR (in the same user space) for each
i mge.

The inplementation should not retain any reference to the paraneters
per manent|y.
@aram g2 the graphics context to draw the inmges onto.
@aramimages an array of inmage data stored in byte array.
@aramnbrs an array of double[4] arrays containing one MBR for each
image in the imges array.
@ar am dat aW ndow the data space w ndow covered by the current nap.
@ar am devi ceView the device size and of fset.
@aramat the AffineTransform using which you can transforma point
in the user data space to the device coordinate space. You can
ignore this paranmeter if you opt to do the transformation
yoursel f based on the dataWndow and devi ceVi ew i nf ormati on.
@aram scal el mage a flag passed from MapViewer to indicate whether the
i mages shoul d be scaled to fit the current device wi ndow.
If it is set to false, render the inage as-is without
scaling it.

* % * * * * * * * * * * * * * * * * * % * *

*/
public void renderlmages(G aphics2D g2, byte[][] images, double[][] nbrs,
Rect angl e2D dat aW ndow, Rect angl e2D devi ceVi ew,
AffineTransformat, bool ean scal el mage) ;

}

After you implement this interface, you must place your implementation class in a
directory that is part of the MapViewer CLASSPATH definition, such as the

$MAPVI EVER/ web/ VEEB- | NF/ | i b directory. If you use any native libraries to
perform the actual rendering, you must ensure that any other required files (such as
.dl I and. so files) for these libraries are accessible to the Java virtual machine
(JVM) that is running MapViewer.

After you place your custom implementation classes and any required libraries in
the MapViewer CLASSPATH, you must register your class with MapViewer in its
configuration file, mapVi ewer Confi g. xm (described in Section 1.5). Examine,
and edit as appropriate, the following section of the file, which tells MapViewer
which class to load if it encounters a specific image format that it does not already

support.
<|__ khkkkkhkkhkhkhkkhkhhkhkhhhhhhkhkhhhhhhhkhhhhkhhhkrhhhrhkhhkhhhhhhhkhkhhhkhkhhhkhhkkkk >
<!__ khkkkkhkkkkkhkkkkhkhkkkhkhkkkk CUStOI'T]“Tng Renderers kkkkkkkkhkhkkkhkhkkhkhhkkkkhkk >

B-2 Oracle Application Server 10g MapViewer User’s Guide

<!__ khkkkhhkkhkhhkkhkhhkkhhhhkhhhkhhhhkhhhhhhhkhhhkhhhhhrhhhhhhhhhhkhkhhhkhkhrrhkdhkxkdk >

<I'-- Uncomrent and add as many custominmage renderers as needed here,
each in its own <custom.inmge_renderer> elenent. The "inage_fornat"
attribute specifies the format of images that are to be custom
rendered using the class with the full name specified in "inpl_class".
You are responsible for placing the inplenentation classes in the
MapVi ewer cl asspat h.

>

<l--

<custom.i mage_renderer inage_fornmat="ECW

i npl _cl ass="com ny_cor p. i mage. ECWRenderer" />
>

In this example, for any ECW formatted image data loaded through the <j dbc_
i mage_quer y> element of an image theme, MapViewer will load the class
com ny_corp. i mage. ECWARender er to perform the rendering.

Example B-1 is an example implementation of the

oracl e. sdovi s. Cust om mageRender er interface. This example implements a
custom renderer for the ECW image format. Note that this example is for
illustration purpose only, and the code shown is not necessarily optimal or even
correct for all system environments. This implementation uses the ECW Java SDK,
which in turn uses a native C library that comes with it. For MapViewer to be able
to locate the native dynamic library, you may need to use the command-line option
-Dj ava. | i brary. pat h when starting the OC4J instance that contains
MapViewer.

Example B-1 Custom Image Renderer for ECW Image Format

package com my_cor p. i mage;

inport java.io.*,;

inport java.util.Random

inport java.aw.*;

inport java.aw .geom*;

inport java.awt.inage. Buf f eredl mage;

inport oracle. sdovis. Cust onl mageRenderer;
i nport com ermapper.ecw. JNCSFile; // from ECWJava SDK

public class ECWRenderer inpl ements Custonl mageRenderer

{
String tempDir = null;
Random random = nul | ;

Creating and Registering a Custom Image Renderer B-3

publ i c ECWRender er ()

{
tenpDir = System getProperty("java.io.tnpdir");
random = new Randon(System currentTimeM I 1is());

}
public String getSupportedFormat ()
{
return "ECW;
}

public void renderlmages(G aphics2D g2, byte[][] images,
doubl e[][] nbrs,
Rect angl e2D dat aW ndow,
Rect angl e2D devi ceVi ew,
AffineTransform at)

/1 Taking the easy way here; you should try to stitch the inages
/'l together here.
for(int i=0; i<imges.length; i++)
{
String tenpFile = witeECWOoFi | e(i mages[i]);
pai nt ECWFi | e(tenpFile, g2, nbrs[i], dataWndow, deviceView, at);
}
}

private String witeECWoFi|e(byte[] image)
{
long | = Math. abs(random nextLong());
String file = tenpDir + "ecw'+l +". ecw';
try{
Fil eQutput Stream fos = new FileQutput Strean(file);
fos.wite(imge);

fos.close();
return file;
}cat ch(Exception e)
{
Systemerr.printin("cannot wite ecw bytes to temp file: "+file);
return null;
}

}

private void paintECWile(String fileNane, G aphics2D g,
doubl e[] nbr,
Rect angl e2D dat aW ndow,

B-4 Oracle Application Server 10g MapViewer User’s Guide

Rect angl e2D devi ceVi ew,
AffineTransform at)

JNCSFile ecwFile = null;

bool ean bError OnCpen = fal se;
Buf f er edl mage ecw mage = nul | ;
String errorMessage = null;

try {
doubl e dFil eAspect, dW ndowAspect;
doubl e dWor | dTLX, dWorldTLY, dWorl dBRX, dWrl dBRY;
int bandlist[];
int width = (int)deviceView getWdth(),
hei ght = (int)deviceVi ew getHeight();
int line, pRGBArray[] = null;

ecwFil e = new JNCSFil e(fil eNane, false);

/1 Work out the correct aspect for the setView call.
dFi | eAspect = (doubl e)ecwFi | e. wi dt h/ (doubl e) ecwFi | e. hei ght ;
dW ndowAspect = devi ceVi ew. get Wdt h()/ devi ceVi ew. get Hei ght () ;

if (dFileAspect > dW ndowAspect) {

hei ght =(int)((doubl e)wi dth/dFileAspect);
} else {

width = (int)((double)height*dFi| eAspect);
}

/] Create an image of the ecwfile.
ecw mage = new Buf f er edl mage(wi dth, height,

Buf f er edl mage. TYPE_| NT_RGB) ;
pRGBArray = new int[wdth];

/] Set up the view paraneters for the ecwfile.
bandl i st = new int[ecwFile. nunBands];
for (int i=0; i< ecwFile.nunBands; i++) {
bandlist[i] =1;
}
dWor | dTLX = ecwFi | e. ori gi nX;
dWor | dTLY = ecwFil e.originY;
dWr | dBRX = ecwFi | e. ori gi nX +
(doubl e) (ecwFi | e. wi dt h-1) *ecwFi | e. cel | | ncrenent X;
dWor | dBRY = ecwFile.originY +
(doubl e) (ecwFi | e. hei ght - 1) *ecwFi | e. cel | I ncrenent;

Creating and Registering a Custom Image Renderer

B-5

dWor | dTLX = Mat h. max(dWor | dTLX, dat aW ndow. get M nX
dWor | dTLY = Mat h. max(dWr | dTLY, dataW ndow. get M nY
m n(
m n(

dWor | dBRX = Mat h. mi n(dWor | dBRX, dat aW ndow. get MaxX
dWor | dBRY = Mat h. mi n(dWor | dBRY, dat aW ndow. get MaxY

()
0);
()
0

/1 Set the view
ecwri | e. set Vi ew(ecwFi | e. nunBands, bandlist, dWrldTLX,
dWor | dTLY, dWrl dBRX, dWorl dBRY, width, height);

/1 Read the scan lines.
for (line=0; line < height; line+t) {

ecwri | e. readLi neRGBA(pRGBAr r ay) ;

ecw mage. set RGB(0, line, width, 1, pRGBArray, 0, width);
}

} catch(Exception e) {
e.printStackTrace(Systemerr);
bError OnQpen = true;
errorMessage = e.get Message();
g.drawstring(errorMessage, 0, 50);

}

/1 Draw the image (unscaled) to the graphics context.
if (!bErrorOnCpen) {

g.drawl mage(ecw mage, 0, 0, null);
}

B-6 Oracle Application Server 10g MapViewer User’s Guide

C

Using the Flash Mapping Client

This appendix explains how to use MapViewer to display maps within Macromedia
Flash applications.

MapViewer provides limited Flash support through a mapping client that is a
Macromedia Flash SWF file. This Flash mapping client is shipped only as a
demonstration application. Its capabilities are limited and its performance has not
been tuned.

The Flash mapping client can send map requests to MapViewer, load vector map
data from MapViewer, and display map data. The client SWF file is named

fl ashmap. swf . Itis installed in the %vVAPVI EMNER HOVEY% deno directory, where
%VAPVI EVER _HOVE%is the top directory of the unpacked MapViewer files (such as
[oracl e/ | bs/ MapVi ewer). To use this client, you must copy the f | ashmap. swf
file to the following directory:

9VAPVI EVER_HOVEY web

This SWF file can be referred to in Web pages, so that users can interact with maps
in a Web browser.

C.1 How the Flash Mapping Client Works

The Flash mapping client works with MapViewer by sending an XML request and
receiving vector map data (represented by an XML document) from MapViewer.
Most MapViewer style types are supported by the Flash mapping client. You cannot
use image markers with the Flash mapping client, except for SVG and Flash
markers, as explained in Section C.4.

Maps are represented by vectors inside the Flash mapping client. All vector graphic
components are drawn locally by the client. The Flash mapping client has full
control over the map data, which makes rich client-side mapping capabilities

Using the Flash Mapping Client C-1

Embedding the Flash Mapping Client in a Web Page

possible. Mapping operations such as zooming in, zooming out, and panning can be
handled locally without sending new requests to the MapViewer server, if the
necessary map data is already loaded on the client system.

To provide clickable map features, you can associate any styled feature (geometry)
with a hidden information string, which can specify nonspatial columns in the
geometry table. The associated information can be displayed when a user clicks on
or moves the mouse pointer over the styled feature. To associate styled features and
attributes, use the <hi dden_i nf o> element in the styling rules definition of a
theme, as explained in Section C.3.

To display maps without clickable features, you can use your existing base map,
theme, and style definitions, although you may need to modify styles that are used
in relevant themes to use styles based on SVG markers or Flash markers, as
explained in Section C.4.

You can group features into themes, and you can allow users to select which themes
are to be displayed.

C.2 Embedding the Flash Mapping Client in a Web Page

To embed the Flash mapping client in a Web page, insert the following lines in the
source HTML file. Replace the strings in the square bracket pairs with the actual
attribute values, to set the map size, data source, base map, and map center. (These
attributes are described in Section 3.2.2.) Replace [f | ashmap. swf URL] with the
value for %VAPVI EWVER_HOVEY web/ f | ashmap. swf , where %vAPVI EVER _HOVEY%
is the name of the home directory where MapViewer is deployed.

<OBJECT
i d=Fl ashmap
codeBase=ht t p: / / downl oad. macr onedi a. coni pub/ shockwave/ cabs/ Fl ash/ swFl ash. cab#versi on=6, 0,0, 0
hei ght =[hei ght of map in pixels]
wi dth=[width of map in pixels]
cl assi d=cl si d: D27CDB6E- AE6D- 11cf - 96B8- 444553540000>
<PARAM NAME="Movi e" VALUE="fI| ashmap. swf ?" >
<PARAM NAME="Src"
VALUE="[f I ashmap. swf URL] ?serverurl =[MapVi ewer URL] &dat asour ce=[map data
sour ce] &asemap=[base map nane] &enterx=[map center X] ¢ery=[map center Y] &apsi ze=[map
size]">
<PARAM NAME="Qual i ty" VALUE="Hi gh">
<EMBED
src="[fl ashmap. swf URL] ?serverur| =[MapVi ewer URL] &dat asour ce=[nap data sour ce] &asenap=[base
map nane] &ent erx=[map center X] ¢ery=[nmap center Y] &mapsize=[map size]"
qual i ty=hi gh

C-2 Oracle Application Server 10g MapViewer User’'s Guide

Embedding the Flash Mapping Client in a Web Page

HEI GHT =[hei ght of map in pixels]

WDTH =[wi dth of map in pixels]
NAME=" Fl ashmap"

TYPE="appl i cati on/ x- shockwave- Fl ash"

PLUG NSPAGE="ht t p: / / www. macr onedi a. com go/ get Fl ashpl ayer" >
</ EMBED>

</ OBJECT>

Example C-1 shows an excerpt from an HTML file in which the MapViewer Flash
mapping client is included in a table.

Example C-1 Including the Flash Mapping Client in an HTML File

<TABLE cel | Spaci ng=1 cel | Paddi ng=1 wi dt h="500" bor der =1>
<TR>
<TD>
<OBJECT
i d=Fl ashmap
codeBase=htt p: / / downl oad. macr onedi a. coni pub/ shockwave/ cabs/ Fl ash/ swFl ash. cab#ver si on=6, 0, 0,0
hei ght =400
wi dt h=500
cl assi d=cl si d: D27CDBGE- AE6D- 11cf - 96B8- 444553540000>
<PARAM NAME="Mbvi e" VALUE="f| ashmap. swf ?" >
<PARAM NAME="Sr c"
VALUE="ht t p: / / www. xyzcor p. com 8888/ MapVi ewer / f | ashmap. swf ?dat asour ce=nvdeno&basenmap=Fl ash_
denoé¢ er x=-122. 3615¢ er y=37. 82660&mapsi ze=1. 0" >
<PARAM NAME="Qual i ty" VALUE="H gh">
<EMBED
src="http:// www. xyzcor p. com 8888/ MapVi ewer/ f | ashmap. swf ?dat asour ce=nvdenn&basenap=Fl ash_
denoé¢ er x=- 122. 3615¢ ery=37. 82660&mapsi ze=1. 0"
qual i t y=hi gh
W DTH=500
HEl GHT=400
NAME="Fl ashmap"
TYPE="appl i cati on/ x- shockwave- Fl ash"
PLUG NSPAGE="ht t p: / / www. macr onedi a. conml go/ get Fl ashpl ayer" >
</ EMBED>
</ OBJECT>
</ TD>
</ TR>
</ TABLE>

Using the Flash Mapping Client C-3

Creating a Theme with Clickable Styled Features

C.3 Creating a Theme with Clickable Styled Features

You can associate each styled feature (geometry) of a theme with attributes, which
can be dynamically displayed when the user’s mouse cursor moves over the
feature. To do this, include a <hi dden_i nf 0> element in the styling rules of the
theme. The attributes to the <hi dden_i nf 0> element must specify columns in the
same table on which the theme definition is based. You must insert the theme with
clickable styled features in the USER_SDO_THEMES view; you cannot use the Map
Definition Tool to create this theme.

Example C-2 creates a theme that allows users to click on a county in the map to see
the name, area in square miles, and population of the county.

Example C-2 Creating a Theme with Clickable Styled Features

<?xm version="1.0" standal one="yes"?>
<styling_rules >
<hi dden_i nf 0>
<field col um="COUNTY" name="County"/>
<field col um="LANDSQM " name="Land (SQ M)"/>
<field col um="TOTPOP" name="Popul ation"/>
</ hi dden_i nf 0>
<rule >
<features styl e="SCOIT: C. COUNTI ES"> </features>
</rul e>
</styling_rul es>

In Example C-2, the column attribute of the <hi dden_i nf 0> element associates
the COUNTY, LANDSQMI, and TOTPOP columns with the theme, and the name
attribute associates a label with the column value. Figure C-1 shows the display
when the user clicks on San Francisco county.

Figure C-1 Display of Theme with Clickable Styled Features

County: Satn Francisco
Land (30 Mi): 46.6927
FPoplation: 723959

C-4 Oracle Application Server 10g MapViewer User’'s Guide

SVG and Flash Markers

C.4 SVG and Flash Markers

Two types of image-related markers can be used in the Flash mapping client: SVG
markers and Flash markers; otherwise, image markers are not supported with the
Flash mapping client.

SVG markers are defined using a scalable vector graphics (SVG) string. An
example of an SVG marker is M STAR, which is one of the default styles created by
the def aul t st yl es. sql file (see Section 1.4.2.3). The M STAR marker has the
following definition:

<?xm version="1.0" standal one="yes"?>

<svg wi dth="1in" height="1in">

<desc></ desc>

<g class="marker" style="stroke: #000000; fill: #ff0000;w dt h: 15; hei ght: 15" >

<pol ygon poi nts="138.0,123.0, 161.0,198.0, 100.0,152.0, 38.0,198.0, 61.0,123.0,
0.0,76.0, 76.0,76.0, 100.0,0.0, 123.0,76.0, 199.0,76.0" />

</ g>

</ svg>

Flash markers are predefined in the Flash mapping client SWF file. The following
Flash markers are currently supported:

« MARKER ECLI PSE

« MARKER PI'N

« MARKER SCLI DPO NT

« MARKER PO NT

« MARKER SHI ELD1

« MARKER SHI ELD2

To use these Flash markers, you must insert an entry for each one in the USER _
SDO_STYLES view. Example C-3 inserts an entry for a style named M FLASH PI N
based on the MARKER PI N Flash marker.

Example C-3 Creating a Flash Marker Style

I NSERT | NTO
user_sdo_styl es(name, definition, type)
val ues(
"M FLASH PIN ,
' <Fl ash_mar ker name="MARKER PI N' hei ght ="18" wi dt h="14" />',
" FLASH MARKER) ;

Using the Flash Mapping Client C-5

Simplifying Map Geometries

The nare attribute value must be a Flash marker name as defined in the Flash
mapping client SWF file (MARKER _PI N in Example C-3). You can use the hei ght
and wi dt h attributes to specify the size of the marker.

After a style based on a Flash marker is inserted into the USER_SDO_STYLES view,
you can use it in theme definitions.

C.5 Simplifying Map Geometries

Simplifying (sometimes referred to as generalizing) a map geometry refers to
reducing the number of vertices to produce a displayed geometry with less fine
resolution than the original geometry. For example, if users do not need to see the
hundreds or thousands of turns in the course of a river or a highway, you can get
better performance and acceptable displays if the map geometry is simplified to
show only the "major" turns.

You can use the m n_di st attribute in the <st yl i ng_r ul es> element to simplify
map geometries. The mi n_di st attribute specifies the minimum distance (in
pixels) between two adjacent shape points in a polygon or line string geometry. Any
two shape points that are within the m n_di st distance are drawn as a single point
by the Flash map client.

The value of the mi n_di st attribute must be a number greater than or equal to 1. A
small value results in greater map detail, while a large value results in less map
detail but faster performance.

Note: Do not use the mi n_di st attribute with polygon
geometries that share any boundaries. For example, do not use this
attribute with a map of the counties in a state, such as the one
shown in Figure 3-1 in Section 3.1.7.

Example C—4 is the styling rules definition of a theme that simplifies the geometries
by specifying 5 pixels as the minimum distance between adjacent shape points.

Example C-4 Simplifying Map Geometries
<?xm version="1.0" standal one="yes"?>
<styling_rules mn_dist="5">
<rule >
<features style="SCOIT: L. PH'> </features>

C-6 Oracle Application Server 10g MapViewer User’'s Guide

Simplifying Map Geometries

<l abel col um="ROUTEN" styl e="SCOTT: M FLASH SH ELD1"> 1 </| abel >
</rule>
</styling_rul es>

Using the Flash Mapping Client C-7

Simplifying Map Geometries

C-8 Oracle Application Server 10g MapViewer User’'s Guide

D

Connection Pools and Java Object Cache in
MapViewer

This appendix describes how MapViewer uses Oracle JDBC connection pooling and
caching of Java objects to provide efficient performance. The information in this
appendix might help you to configure and use MapViewer for the best possible
performance on your system.

As described in Chapter 2 and Chapter 3, MapViewer creates a cartographic map in
response to a map request based on one or more of the following items specified in
a map request: base map, JDBC themes, predefined themes, and geometry features.
One or more sets of features from an Oracle database are associated with each of
these items (except the inline geometry features), and each JDBC theme can refer to
a distinct database. Fetching each set of features from a database sequentially with
one JDBC connection would be a slow process, and repeatedly fetching a set of
features for the same or different map requests would waste time. To achieve fast
response time for each map request and higher server throughput, MapViewer uses
Oracle JDBC connection pooling, Oracle Object Cache, and Java threads to perform
guery processing on one or more back-end databases.

When MapViewer is started in an OC4J instance, it creates a JDBC connection pool
manager to maintain a set of JDBC connection pools to handle all JDBC themes in
its life span. When a map engine processes a JDBC theme specified in a map
request, it checks with the JDBC connection pool manager for a JDBC connection
pool to the database that the theme refers to. If one already exists, the map engine
gets a JDBC connection from the connection pool to process the JDBC theme. After
the process is complete, the map engine returns the connection to the pool rather
than closing it. If a JDBC connection pool to the database referred to in the JDBC
theme does not exist, the map engine will ask the JDBC connection pool manager to
create one and maintain it in its set of JDBC connection pools. There could be more
than one JDBC connection pool because there could be more than one JDBC theme

Connection Pools and Java Object Cache in MapViewer D-1

in a map request, and those JDBC themes could refer to two or more different
databases. All JDBC connections in a JDBC connection pool share one single
physical JDBC connection to a database server. It is efficient to reuse the JDBC
connection without creating and closing it for each request. After a map engine
finishes processing a map request, it closes all associated JDBC connections. This
prevents connection leaks that could eventually lock MapViewer.

Whenever MapViewer processes an add_dat a_sour ce request, it creates a set of
map engines for the data source according to the number of mappers specified in
the request, and it creates one JDBC connection pool for the map engines to use.
When a map engine processes a map request, it gets a JODBC connection from this
JDBC connection pool to process each predefined theme in the request.

A map engine uses a thread and a different JDBC connection to retrieve features for
each theme specified in a map request, and it synchronizes them to run
concurrently. On an application server system with multiple CPUs, this allows
MapViewer to provide faster response time and higher system throughput.

In addition, MapViewer uses JDBC Object Cache to cache geometry objects
retrieved from the connected databases. MapViewer maintains a set of geometry
objects to a predefined volume in memory and on disk. This avoids the need to
unpickle (unstream) geometry objects in processing the result set of a spatial query.
If a geometry object is in the cache, the cached objects are used directly; otherwise,
the geometry object is unpickled and saved in the cache. The behavior of this object
cache is set by the attribute values used in the spati al _dat a_cache elementin
the mapVi ewer Confi g. xm file. (For more information, see Section 1.5, especially
Section 1.5.6.)

D-2 Oracle Application Server 10g MapViewer User's Guide

A

active theme

getting, 4-8
add_data_source element, 6-1
add_image_marker element, 6-12
add_style element, 6-11
addDataSource method, 4-11
addimageMarkerFromURL method, 4-11
addimageTheme method, 4-7
adding themes to a map, 2-18
addJDBCTheme method, 4-7
addJDBCTheme tag, 5-4
addLinearFeature method, 4-7
addPointFeature method, 4-7
addPredefinedTheme method, 4-7
addPredefinedTheme tag, 5-6
addThemesFromBaseMap method, 4-7
administrative requests

restricting, 1-20

XML API for, 6-1
advanced style, 2-2

pie chart example, 3-8

XML format for defining, A-6
ALL_SDO_MAPS view, 2-24,2-25
ALL_SDO_STYLES view, 2-24,2-26
ALL_SDO_THEMES view, 2-24,2-26
allow_local_adjustment attribute, 1-24
antialiasing

attribute of map request, 3-19

setAntiAliasing method, 4-5

setParam tag parameter, 5-14
API

MapViewer JavaBean, 4-1

Index

MapViewer XML, 3-1
area style, 2-2
XML format for defining, A-5
asis attribute, 3-23
autostarting MapViewer, 1-8
AWT headless mode support, 1-5
azimuthal equidistant projection
used by MapViewer for globular map
projection, 1-24

B

background color
setting, 4-5
background image URL
setting, 4-5
base maps, 2-18
definition (example), 2-19
importing, 5-10
listing for a data source, 6-8
setting name of, 4-5
XML format for defining, A-13
basemap
attribute of map request, 3-19
setParam tag parameter, 5-14
bean
MapViewer API for, 4-1
bgcolor
attribute of map request, 3-20
setParam tag parameter, 5-14
bgimage
attribute of map request, 3-20
setParam tag parameter, 5-14
bounding box

Index-1

specifying for map, 3-20
box element, 3-20
bucket style
XML format for defining, A-7

C

cache

metadata, 6-15

spatial data, 1-24, 6-16
caching attribute

for predefined theme, A-12
center element, 3-20
center point

setting, 4-5
centerX

setParam tag parameter, 5-14
centerY

setParam tag parameter, 5-14
classes12.zip file, 7-1
clear_cache element, 6-15
clear_theme_cache element, 6-16
clickable (live) features, 4-13
color scheme style

XML format for defining, A-10
color style, 2-2

XML format for defining, A-2
configuring MapViewer, 1-12
connection pools

MapViewer performance information, D-1
coordinate system, 2-18
custom image renderer, B-1

D

data sources
adding, 4-11,6-1
checking existence of, 4-11, 6-7
clearing metadata cache, 6-15
defining, 1-26
listing, 6-6
listing base maps in, 6-8
listing themes in, 6-9
permanent, 1-25
redefining, 6-5

Index-2

removing, 6-4

setting name of, 4-6
data_source_exists element, 6-7
dataSourceExists method, 4-11
DBA_SDO_STYLES view, 2-26
defaultstyles.sqgl file, 1-11

SVG marker example in, C-5
default-web-site.xml file, 1-9
deleteTheme method, 4-8
demo

MapViewer JavaBean API, 4-3
deploying MapViewer, 1-5
doQuery method, 4-12
doQuerylInMapWindow method, 4-13
drawLiveFeatures method, 4-14
DTD

exception, 3-33

Geometry (Open GIS Consortium), 3-34

information request, 3-31

map request, 3-16

examples, 3-2

map response, 3-33

dynamically defined theme, 3-21, 3-22

E

enableThemes method, 4-8
example programs using MapViewer
Java, 3-11
PL/SQL, 3-14
exception DTD, 3-33

E
filter (spatial)

getting, 4-12
Flash

mapping client, C-1

markers, C-5

simplifying map geometries, C-6
flashmap.swf file, C-1
format

attribute of map request, 3-19

G

generalizing (simplifying) map geometries
Flash mapping client, C-6
geodetic data
projecting to local non-geodetic coordinate
system, 1-24
geoFeature element, 3-25
Geometry DTD (Open GIS Consortium), 3-34
getActiveTheme method, 4-8
getAntiAliasing method, 4-5
getEnabledThemes method, 4-8
getGeneratedMaplmage method, 4-10
getGeneratedMaplmageURL method, 4-10
getLiveFeatureAttrs method, 4-14
getMapMBR method, 4-10
getMapRequestString method, 4-10
getMapURL tag, 5-7
getNumLiveFeatures method, 4-14
getParam tag, 5-7
getSpatialFilter method, 4-12
getThemeNames method, 4-8
getThemePosition method, 4-8
getUserPoint method, 4-12
getWhereClauseForAnylnteract method, 4-12
getXMLResponse method, 4-10
GIF format, 3-19
GIF_STREAM format, 3-19
GIF_URL format, 3-19
globular map projection, 1-24

H

hasLiveFeatures method, 4-14
hasThemes method, 4-8
headless AWT mode support, 1-5
height
attribute of map request, 3-19
setParam tag parameter, 5-14
highlightFeatures method, 4-14
http-web-site.xml file, 1-9

identify method, 4-13
identify tag, 5-8

image format

setting, 4-6
image marker

adding from URL, 4-11

Flash markers, C-5

SVG markers, C-5
image marker style

adding, 6-12

checking existence of, 6-13

XML format for defining, A-4
image renderer

creating and registering, B-1
image themes, 2-15

adding, 4-7

defining with jdbc_image_query element, 3-23

example, 3-6
imagescaling

attribute of map request, 3-19

setParam tag parameter, 5-14
importBaseMap tag, 5-10
info_request element, 3-31
information request DTD, 3-31
inittag, 5-11
installing MapViewer, 1-5
isClickable method, 4-14

J

Java example of interacting with MapViewer, D-1
Java example program using MapViewer, 3-11
Java object cache

MapViewer performance information, D-1
JAVA_IMAGE format, 3-19
JavaBean-based API for MapViewer, 4-1

demo, 4-3

javadoc, 4-3
javadoc

MapViewer JavaBean API, 4-3
JavaServer Pages

tag library for MapViewer, 5-1
JDBC connection pooling

MapViewer performance information, D-1
JDBC themes, 2-6

adding, 4-7,5-4

using a pie chart style, 3-10

Index-3

jdbc_host attribute, 6-2 M

jdbc_image_query element, 3-23 -
jdbc_mode attribute, 6-2 Macromedia Flash

jdbc_port attribute, 6-2 See Flash
jdbc_query element, 3-22 makeLeg_er)c_i tag, 5-11
jdbe_sid attribute, 6-2 Map Definition Tool, 7-1

map image file information, 1-19
map legend, 2-21

creating, 5-11

example, 2-21

jdbc_tns_name attribute, 6-2
JSP tag library for MapViewer, 5-1

K legend element, 3-28
key_column attribute setting, 4-6
for theme defined on ajoin view, A-12 map logo, 1-22

map note, 1-22
map request DTD, 3-16

L examples, 3-2
label attribute, 2-9 map request string
label_always_on attribute, 3-22 getting, 4-10
labeling of spatial features, 2-5 map requests
legend, 2-21 processing of, 2-24
creating, 5-11 XML API, 3-1
element, 3-28 map response DTD, 3-33
example, 2-21 map size
setting, 4-6 setting, 4-6
legendSpec parameter, 4-6 map title, 1-22
line style, 2-2 setting, 4-6
XML format for defining, A-4 map_data_source element, 1-25
linear features map_request element, 3-18
adding, 4-7 attributes, 3-18
removing, 4-7 mapdefinition.sql file, 1-11, 2-25
list_data_sources element, 6-6 mapdef jar file, 7-1
list_ maps element, 6-8 mappers, number of, 1-25, 6-2
list_predefined_themes element, 6-9 mapping profile, 2-2
list_styles element, 6-10 maps, 2-18
live features, 4-13 creating by adding themes and rendering, 2-18
local geodetic data adjustment explanation of, 2-19
specifying for map, 1-24 listing, 6-8
logging element, 1-18 metadata view, 2-24
logging information, 1-18 scale, 2-19
logo size, 2-19
specifying for map, 1-22 XML format, A-1
longitude/Ilatitude coordinate system, 2-18 MapViewer exception DTD, 3-33

MapViewer information request DTD, 3-31
mapviewer.ear file, 1-6,1-7,1-8
marker style, 2-2

Index-4

adding, 6-12

checking existence of, 6-13

XML format for defining, A-3
marker_style_exists element, 6-13
markers

Flash, C-5

SVG, C-5
max_scale attribute, 2-20
MBR

getting for map, 4-10
metadata cache
clearing, 6-15
metadata views, 2-24
mapdefinition.sql file, 2-25
min_scale attribute, 2-20
minimum bounding rectangle (MBR)
getting for map, 4-10
mouse click
getting point associated with, 4-12
moveThemeDown method, 4-8
moveThemeUp method, 4-8
mvclient.jar file, 5-2
mvtaglib.tld file, 5-2

N

non-map requests
See administrative requests
nonspatial attributes
identifying, 4-13
note
specifying for map, 1-22
number_of _mappers attribute, 1-25, 6-2

O

object cache
MapViewer performance information,
OC4) configuration files, 1-8
OGC (Open GIS Consortium)
Geometry DTD, 3-34
oms_error element, 3-33
Open GIS Consortium
Geometry DTD, 3-34

D-1

P

pan method, 4-9
performance (MapViewer)
connection pools and Java object cache, D-1
permanent data sources
defining, 1-25
pie chart
map request using, 3-8

PL/SQL example program using MapViewer, 3-14

PNG image format support, 3-19
point features
adding, 4-7
removing, 4-7
predefined themes, 2-3, 3-21
adding, 4-7,5-6
listing, 6-9
prerequisite software for using MapViewer, 1-5
projection of geodetic data to local non-geodetic
coordinate system, 1-24
proxy (Web) for MapViewer service
setting, 4-6

R

redefine_data_source element, 6-5
remove_data_source element, 6-4
removeAllLinearFeatures method, 4-7
removeAllPointFeatures method, 4-7
renderer

creating and registering custom image

renderer, B-1

rendering a map, 2-18
request string for map

getting, 4-10
required software for using MapViewer, 1-5
rules

styling, 2-4
run method, 4-9
runtag, 5-12

S

save_images_at element, 1-19
scalable vector graphics (SVG) markers, C-5
scale of map, 2-19

Index-5

setting for theme, 4-8
scaling
of image, 3-19,5-14
sdovis.jar file, 1-7
sendXMLRequest method, 4-10
seq attribute, 2-9
server.xml file, 1-9
setAllThemesEnabled method, 4-8
setAntiAliasing method, 4-5
setBackgroundColor method, 4-5
setBackgroundlmageURL method, 4-5
setBaseMapName method, 4-5
setCenter method, 4-5
setCenterAndSize method, 4-5
setClickable method, 4-14
setDataSourceName method, 4-6
setDefaultStyleForCenter method, 4-5
setDeviceSize method, 4-6
setimageFormat method, 4-6
setLabelAlwaysOn method, 4-8
setMapLegend method, 4-6
setMapTitle method, 4-6
setParam tag, 5-13
setServiceURL method, 4-6
setSize method, 4-6
setThemeEnabled method, 4-8
setThemeScale method, 4-8
setWebProxy method, 4-6
simplifying map geometries
Flash mapping client, C-6
size (map)
setting, 4-6
size of map, 2-19
spatial data cache
clearing, 6-16
customizing, 1-24
spatial filter
getting, 4-12
styles, 2-2
adding, 6-11, 6-12
advanced, 2-2
pie chart example, 3-8
XML format for defining, A-6
area, 2-2
XML format for defining, A-5

Index-6

bucket

XML format for defining, A-7
checking existence of, 6-13
color, 2-2

XML format for defining, A-2
color scheme

XML format for defining, A-10
image marker

XML format for defining, A-4
line, 2-2

XML format for defining, A-4
listing, 6-10
marker, 2-2

XML format for defining, A-3
metadata view, 2-24
text, 2-2

XML format for defining, A-6
variable marker

XML format for defining, A-11
vector marker

XML format for defining, A-3
XML format, A-1

styling rules, 2-4
SVG markers, C-5

T
taglib directive, 5-2
text style, 2-2

XML format for defining, A-6
thematic mapping, 2-8
theme element, 3-21
themes, 2-3
adding to amap, 2-18
checking for, 4-8
clearing spatial data cache, 6-16
deleting, 4-8
disabling, 4-8
dynamically defined, 3-21, 3-22
enabling, 4-8
getting, 4-8
image, 2-15
adding, 4-7
defining with jdbc_image_query
element, 3-23

JDBC, 2-6
listing, 6-9
metadata view, 2-24
moving down, 4-8
moving up, 4-8
predefined, 2-3,3-21
setting labels always on, 3-22, 4-8
styling rules, A-11
XML format, A-1
themes element, 3-21
thick clients
using optimal MapViewer bean methods
for, 4-13
title
attribute of map request, 3-19
setParam tag parameter, 5-15
specifying for map, 1-22

U

use_globular_projection option, 1-24
USER_SDO_MAPS view, 2-24,2-25
USER_SDO_STYLES view, 2-24,2-26
USER_SDO_THEMES view, 2-24,2-26

\Y,

variable marker style

XML format for defining, A-11
vector marker style

XML format for defining, A-3
views

metadata, 2-24

w

Web proxy for MapViewer service
setting, 4-6
WGS 84 coordinate system, 2-18
WHERE clause
getting, 4-12
width
attribute of map request, 3-19
setParam tag parameter, 5-15

XML
API for MapViewer, 3-1
format for maps, A-1
format for styles, A-1
format for themes, A-1

Z

zoomlIn method, 4-9
zoomOut method, 4-9

Index-7

Index-8

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	New and Changed Features
	Java Client API
	JSP Tag Library
	PNG Format Support
	Map Legend Support
	Query Capabilities with Nonspatial Attributes
	Basic Support for Georeferenced Images
	JDK 1.4 and AWT Headless Mode Support
	Performance Improvements

	1 Introduction to MapViewer
	1.1� Overview of MapViewer
	1.1.1� Basic Flow of Action
	1.1.2� Architecture

	1.2� Getting Started with MapViewer
	1.3� Prerequisite Software
	1.4� Installing and Deploying MapViewer
	1.4.1� Deploying MapViewer in an Oracle Application Server Environment
	1.4.1.1� Select Application Page
	1.4.1.2� URL Mappings for Web Modules Page
	1.4.1.3� Summary Page
	1.4.1.4� Pages for Completing the Deployment

	1.4.2� Installing MapViewer with a Standalone Installation of OC4J
	1.4.2.1� Editing the OC4J Configuration Files to Autostart MapViewer
	1.4.2.2� Restarting OC4J
	1.4.2.3� Running SQL Scripts, If Necessary
	1.4.2.4� Verifying That the Deployment Was Successful

	1.5� Configuring MapViewer
	1.5.1� Specifying Logging Information
	1.5.2� Specifying Map File Storage and Life Cycle Information
	1.5.3� Restricting Administrative (Non-Map) Requests
	1.5.4� Specifying a Web Proxy for Background Image URLs
	1.5.5� Specifying Global Map Configuration Options
	1.5.6� Customizing the Spatial Data Cache
	1.5.7� Defining Permanent Map Data Sources

	1.6� Getting Started Using MapViewer
	1.6.1� Dynamically Defining MapViewer Data Sources
	1.6.2� Example JSP File That Uses MapViewer
	1.6.3� Additional JSP Example Files

	2 MapViewer Concepts
	2.1� Overview
	2.2� Styles
	2.3� Themes
	2.3.1� Styling Rules in Predefined Themes
	2.3.2� JDBC Themes
	2.3.2.1� Storing Complex JDBC Themes in the Database

	2.3.3� Thematic Mapping
	2.3.4� Image Themes
	2.3.4.1� Storing Image Theme Definitions in the Database

	2.4� Maps
	2.4.1� Map Size and Scale
	2.4.2� Map Legend
	2.4.3� Processing of Map Requests

	2.5� MapViewer Metadata Views
	2.5.1� xxx_SDO_MAPS Views
	2.5.2� xxx_SDO_THEMES Views
	2.5.3� xxx_SDO_STYLES Views

	3 MapViewer Map Requests
	3.1� Map Request Examples
	3.1.1� Simple Map Request
	3.1.2� Map Request with Dynamically Defined Theme
	3.1.3� Map Request with Base Map, Center, and Additional Predefined Theme
	3.1.4� Map Request with Center, Base Map, Dynamically Defined Theme, and Other Features
	3.1.5� Map Request with Image Theme
	3.1.6� Map Request for Image of Map Legend Only
	3.1.7� Map Request Using a Pie Chart Theme
	3.1.8� Java Program Using MapViewer
	3.1.9� PL/SQL Program Using MapViewer

	3.2� Map Request DTD
	3.2.1� map_request Element
	3.2.2� map_request Attributes
	3.2.3� box Element
	3.2.4� center Element
	3.2.5� themes Element
	3.2.6� theme Element
	3.2.7� jdbc_query Element
	3.2.8� jdbc_image_query Element
	3.2.9� geoFeature Element
	3.2.10� legend Element

	3.3� Information Request DTD
	3.4� Map Response DTD
	3.5� MapViewer Exception DTD
	3.6� Geometry DTD (OGC)

	4 MapViewer JavaBean-Based API
	4.1� Usage Model for MapViewer JavaBean-Based API
	4.2� Preparing to Use the MapViewer JavaBean-Based API
	4.3� Using the MapViewer Bean
	4.3.1� Creating the MapViewer Bean
	4.3.2� Setting Up Parameters of the Current Map Request
	4.3.3� Adding Themes or Features to the Current Map Request
	4.3.4� Manipulating Themes in the Current Map Request
	4.3.5� Sending a Request to the MapViewer Service
	4.3.6� Extracting Information from the Current Map Response
	4.3.7� Using Data Source and Mapping Metadata Methods
	4.3.8� Querying Nonspatial Attributes in the Current Map Window
	4.3.9� Using Optimal Methods for Thick Clients

	5 MapViewer JSP Tag Library
	5.1� Using MapViewer JSP Tags
	5.2� MapViewer JSP Tag Reference Information
	5.2.1� addJDBCTheme
	5.2.2� addPredefinedTheme
	5.2.3� getMapURL
	5.2.4� getParam
	5.2.5� identify
	5.2.6� importBaseMap
	5.2.7� init
	5.2.8� makeLegend
	5.2.9� run
	5.2.10� setParam

	5.3� JSP Example (Several Tags) for MapViewer

	6 MapViewer Administrative Requests
	6.1� Managing Data Sources
	6.1.1� Adding a Data Source
	6.1.2� Removing a Data Source
	6.1.3� Redefining a Data Source
	6.1.4� Listing All Data Sources
	6.1.5� Checking the Existence of a Data Source

	6.2� Listing All Maps
	6.3� Listing Themes
	6.4� Managing Styles
	6.4.1� Listing Styles
	6.4.2� Adding a Style (Not an Image Marker Style)
	6.4.3� Adding an Image Marker Style
	6.4.4� Checking If a Style Exists

	6.5� Managing Cache
	6.5.1� Clearing Metadata Cache for a Data Source
	6.5.2� Clearing Spatial Data Cache for a Theme

	7 Map Definition Tool
	7.1� Overview of the Map Definition Tool
	7.2� Connection Page
	7.3� Styles: Color Page
	7.4� Styles: Marker Page
	7.5� Styles: Line Page
	7.6� Styles: Area Page
	7.7� Styles: Text Page
	7.8� Styles: Advanced Page
	7.9� Themes Page
	7.10� Maps Page

	A XML Format for Styles, Themes, and Base Maps
	A.1� Color Styles
	A.2� Marker Styles
	A.2.1� Vector Marker Styles
	A.2.2� Image Marker Styles

	A.3� Line Styles
	A.4� Area Styles
	A.5� Text Styles
	A.6� Advanced Styles
	A.6.1� Bucket Style
	A.6.1.1� Collection-Based Buckets with Discrete Values
	A.6.1.2� Individual Range-Based Buckets
	A.6.1.3� Equal-Ranged Buckets

	A.6.2� Color Scheme Style
	A.6.3� Variable Marker Style

	A.7� Themes: Styling Rules
	A.8� Base Maps

	B Creating and Registering a Custom Image Renderer
	C Using the Flash Mapping Client
	C.1� How the Flash Mapping Client Works
	C.2� Embedding the Flash Mapping Client in a Web Page
	C.3� Creating a Theme with Clickable Styled Features
	C.4� SVG and Flash Markers
	C.5� Simplifying Map Geometries

	D Connection Pools and Java Object Cache in MapViewer
	Index

