Oracle® Application Server Reports Services
Publishing Reports to the Web

10g (9.0.4)
Part Number B10314-01

November 2003

ORACLE

Oracle Application Server Reports Services Publishing Reports to the Web, 10g (9.0.4)
Part Number B10314-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Frank Rovitto

Contributing Authors: Mick Andrew, Robin J. Fisher, Parineetha Henry, Shaun Lin, Avnish Malik, Rohit
Marwaha, Vinay Pamadi, Rajesh Ramachandran, Sripathy P Rao, Danny Richardson, Jim Safcik, Anil
Sharma, Vishal Sharma, J. Toby Shimizu, Navneet Singh, Jeff Tang, Vanessa Wang, Philipp Weckerle

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Express, OracleMetaLink, Oracle8i, Oracle9i, Oracle Discoverer,
SQL*Plus, SQL*Net, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other
names may be trademarks of their respective owners.

Contents

Send Us YOUr COMMENLES ...t Xxi
PIEIACE. ...ttt Xxiii
J HaRr) g Te (<o NN E s A T<) q Lol IR ORI XXiii
Documentation AccesSibility ... XXiV
1] 5 4D ol 10 1. < SRRSO XXiv
Related DOCUIMEIES.oovveiiieieeeeeie ettt e e eate e et e e e esaeseeaeeesraaeseaeeesennesssnaeessreeesnes XXVi
(@03 4 T£<3 015 (o) 0 - TR NPT XXVii

Partl Preparing Your Environment

1 Understanding the OracleAS Reports Services Architecture

1.1
1.2
1.3
1.4
1.41
1.4.2
1.4.3
1.4.4
1.5

Overview of OracleAS Reports Services...........cooerueioiiciciiiiiccicccccc e 1-1
OracleAS Reports Services COMPONENLScevevieuriiiiiieeieiece e 1-5
OracleAS Reports Services Runtime Process ..o, 1-7
Things to Consider When You Set Up Your System...........ccccooiiiiniiiniiiincee, 1-9
Choosing the Types of Requests You Will Service..........ccoovvviriniiiciinincnieinnes 1-10
Choosing Servlet, JSP, 01 CGlLL........ccccccovniiiiiiiiiiiiii 1-10
Choosing Single- Or Multiple-Machine Configurations.............cccccevviiiininince. 1-11
Choosing Whether to Cluster Multiple Servers............ccooovevviveieininiieiiiicicneeens 1-12
Maintaining High Availability ..., 1-12

Starting and Stopping OracleAS Reports Services

2.1 Starting and Stopping the Reports Server.........c.oooiiiiiicicce 2-1
211 Starting, Stopping, and Restarting Reports Servers from Oracle Enterprise

MANAGETocviiiiiiiii s 2-2
21.2 Starting, Stopping, and Restarting Reports Servers from the Oracle Process

Manager and Notification Server ... 2-3
21.3 Alternative Methods of Starting and Stopping the Reports Server-.................... 2-3
2.2 Verifying that the Oracle HTTP Server Is Running...........cccccccceeeciiniiiinnnincnes 2-8
2.3 Veritying that the Reports Servlet and Server Are Running............c.ccooeveviiriiiinnnnnn 2-8

Configuring OracleAS Reports Services

3.1 OracleAS Reports Services Configuration Files...........coooiiiiiiiiii, 3-2
3.2 Configuring Reports SEIVer ... s 3-3
3.2.1 Reports Server Configuration Elements (rwserverconf.dtd)c.cccoevevevnincncncee 3-4
3.2.2 Dynamic Environment SWitching.........cccooiiiiii 3-37
3.2.3 Connecting to OracleAS Portal...........ccooooiiiiiii 3-43
3.3 Configuring the Reports Serviet...........ccccccviiiiiiiiiiiicreeereceerer s 3-43
3.3.1 Specifying the Location of the Key Map File.........ccccoooiiiiiiiiii 3-44
3.3.2 Reloading the Key Map File........ccccccccviiiiiiiiiiiiniiiiiiiiis 3-45
3.3.3 Hiding Web Command OUEPULcccevvveveiriirrreir e 3-45
3.3.4 Selecting Login Dialog BOXeS........ccouoviuiiiiiiiiiiiicic 3-47
3.3.5 Setting Up Trace Options for the Reports Servlet and JSPs...........ccccccvvvinnininne 3-47
3.3.6 Specifying the character encoding for reports output using rwservlet................ 3-48
3.3.7 Disallowing HTML code specified in the URL from being executed in a

DIOWSET ..ot 3-49
3.3.8 Specifying the pool size for concurrent connections to rwservlet 3-49
3.3.9 Customizing the Appearance of Server Error Messages.........ccccccevuvuververererencnnee 3-50
3.3.10 Specifying an IN-Process SEIVETccoeeuiiirieieiiiieiccc e 3-50
3.3.11 Identifying the Default Reports SEIVer ... 3-51
3.3.12 Pointing to Dynamically Generated Imagesc.cccovuveverrrnnnnnnncrccee 3-51
3.3.13 Setting Expiration for Database and System Authentication Cookies.................. 3-52
3.3.14 Setting an Encryption Key for the Database and System Authentication

COOKIES ...ttt s 3-52
3.3.15 Adding Formatting to Diagnostic/Debugging Output..........cccccoericiiinnnccnns 3-52
3.3.16 Defining the rwservlet Help File..........cccoooviiiniiiiiii, 3-53

3.3.17 Specifying the Use of OracleAS Single Sign-On...........cccccovvivviivnnnnnninnine, 3-53

3.4 Configuring the URL ENgine.........c.cccoooouiiiiiiiiiiic 3-53
3.5 Entering Proxy Information.........c.ccccccceiiiiiiniiiiincrreeree e 3-54
3.6 Configuring Reports Server with the Oracle Process Manager and Notification

Server and Oracle Enterprise Managerc.cccococeueuiiniciiiiiciniesceee e 3-55
3.6.1 OPINILXIN oottt s 3-56
3.7 DISPLAY and Printer Dependencies on UNIX.......c.ccccccciiiiiiiiiniiiicccceeeene 3-61
3.7.1 SCIEENPIINLTcoiviviiiiiiiiictc e 3-62
3.7.2 Advanced Imaging SUPPOTItcccueviiiiiiiiic 3-63
3.8 Setting the default printer for an iN-Process SEIVETcccocucueueuimcucecicieriueeeiceeeeens 3-64

Managing Fonts in Oracle Reports

4.1 USING FONLS ..ot 4-1
411 Fonts in Reports Builder ..o, 4-1
4.1.2 Fonts in Report Output ..., 4-2
4.1.3 Fonts in the User Interfacecccovviiiiiiiiiniicccccccs 4-7
4.2 AdAING FONES ..o 4-8
4.21 Adding Fonts to Reports Builder..........ccooiiii 4-8
422 Adding New Fonts for Report OUtPUL.........cccoeueueirivieiiirirriccrrrccreeeeee e 4-9
4.3 Font Configuration Files...........ccooiiiiiii 4-11
4.3.1 File Searching..........cocouoiiiiiiice s 4-14
4.4 FONt ALIASING ..ottt 4-15
4.41 Specify Aliasing INformation.........ccccoiieieioiiiciiii 4-16
4.4.2 Font Aliasing MechanisSmcccoooiiiiiii 4-18
443 Font Alias File SECtions.........c.cccooiiieiiiiiiiiiiiiicicce e 4-19
4.4.4 Font Aliasing File Verification...........cooooiiieiiiiiiic 4-21
4.5 Troubleshooting FOnt ISSUES..........cccccciiiiiiiiiiiiiiiiiicicie 4-21
4.6 FONE TYPES .t 4-30
4.6.1 Character Sets ..o 4-30
4.6.2 UNICOAE ...ttt 4-31
4.6.3 TYPEL FONLS ... 4-32
4.6.4 TrueType FONts......coooi 4-32
4.6.5 Barcode FONES.....c.ccoouiuiieiiriieiiiiieicete ettt 4-34
4.6.6 CID FONS....oviiieictctcteee e 4-34

5 Printing on UNIX with Oracle Reports

5.1 UNIX Printing OVeTIVIEW ..ottt 5-1
5.1.1 General Printing Mechanismm.........c.ccccceeiiiiiinniinrcrcreee s 5-2
5.1.2 Oracle Reports Printing Mechanism on UNIX and Windows..........ccccocevininnnne. 5-2
5.1.3 Printing SUPPOTt......coiiiiiiiiiii s 5-4
5.2 Setting Up a Printer on UNIX........ccccoooiiiiiiiiiiiiccecne 5-5
5.2.1 Installing a Printer on UNIX........ccoooiiiiiiiiii 5-5
5.2.2 Verifying the Printer Setup for Oracle Reports.........cccooovruiieiiiiiiniiiciie 5-5
5.3 Configuring the Printing Environment...........cccccceviiiinniiiniccirececeeeeeeeeees 5-6
5.3.1 Editing uiprint.txt File ... 5-6
5.3.2 Environment Variables............ccoiiiiiiiiiis 5-9
5.3.3 Print Property Dialog BOXEScccciiiuiiiiiiiiciciicicicecieceieeeeeeeee s 5-9
5.4 Printer-Related Files..........cccooviiiiiiiiiiiic e 5-10
5.4.1 OVerview Of Files........ccccciiiiiiiiiiiiiiiiic s 5-10
54.2 PPD FALES....oiiiiiiiiiiiiiici s 5-10
5.4.3 HPD FIIES ..ot 5-13
5.4.4 Font Metrics Files ... 5-14
545 UIONE.ALL v 5-15
5.4.6 UEPTINEEXE oo 5-16
5.4.7 Editing the Printer-Related Files............cccooooiiiiiii 5-16
5.5 INLS SUPPOTIt ..ottt 5-21
5.5.1 Multibyte Character Set Printingccoooevoeiiiiiiiiiiiicce 5-21
55.2 Overview of IX and PASTAccccoiiiiiiiiiiccne s 5-21
5.6 Debugging OPtioNSc.ccvuiuiiiiririiiiicierceeerrre et 5-22
5.6.1 DEBUG_SLFEINDcocoiiiiiiiiiiiiici s 5-22
5.6.2 TK_DEBUG_POSTSCRIPTccoceuririiiriiriricieiririiieiesieeneisitieie e ssesees 5-24
5.7 Frequently Asked QUESLIONS.......c.ccceuiuiuiiiiiiimiiiiiicicciccecceeeeee e 5-24
5.71 Common Printing Error MeSSagescoceueueviiueieiiiinieieiicieee s 5-25
5.7.2 PCL Printing ISSUEScccuvuiuiiiiiiiiiiiccciccn s 5-28
5.7.3 PostScript Printing ISSUES.........ccccociviviiiiiniiiiiiiiiccc s 5-29
5.7.4 Font-Related Printing ISSUES.........ccccooiiiiiiiiiiiiicic 5-31
5.7.5 Printed Output ISSUESc.cccvviiiviiiiiiiiiiiici 5-32

6 Using PDF in Oracle Reports
6.1 PDF Features Included in Oracle RepOrts.........cccccccuiuiiiiiiiiiiiininiiiiiiiininnncnnsceeaes 6-2

vi

6.1.1 COMPTESSION ..ottt 6-2

6.1.2 Font Related Features ..o 6-3
6.1.3 Precedence of EXeCUtION........ccoviuiviiiiiiiiiiic s 6-13
6.1.4 ACCESSIDILIY ..o 6-14
6.1.5 TaAXONOMY ..ottt 6-15
6.1.6 Enhanced Graph SUPPOTtcccccciiiiiiiiiiiecceereeee e 6-16
6.2 Resolving PDF Font Issues During Cross-Platform Deploymentcccccoeuvuneee. 6-17
6.2.1 Designing and Deploying the Report on the Same Platformccccoccooeeciii 6-17
6.3 Generating a Unicode PDF File.........ccccocoiiiiiiiiiiccccecceeeceeeeeeeeeeeae 6-22
6.3.1 FOnt SUDSETHNG ... 6-22
6.4 Generating a BiDi PDF File.........cccooiiiiiiic 6-23
6.4.1 FOnt SUDSELHNGcvviiiiiiiiiiiiiicccecccce e 6-23
6.5 Generating a Multibyte PDF Fileccooooii e, 6-24
6.5.1 FONt AHASINGcurviiiieei s 6-25
6.6 Generating a Barcode PDF File.........cccccooviiiiiiiniinrnrcee e 6-26
6.6.1 Font EMbeddingccoiiiiiiii 6-26

7 Configuring Destinations for OracleAS Reports Services

7.1 Overview of Output Processing.........coceueviiicieiniiiiciiicce 7-1
7.2 Registering Destination Types with the Server ... 7-4
7.2.1 Setting Up a Destination Section in the Server Configuration File......................... 7-4
7.2.2 Entering Valid Values for a Destination ..o 7-5
7.2.3 Example Destination...........ccooiioioiiiiic s 7-7

8 Configuring and Using the JDBC PDS

8.1 JDBC Configuration File...........cccccooiiiiiiiiiiiiiicccces 8-1
8.1.1 Verifying Pre-installed Driver ENtries ... 8-7
8.1.2 Installing and Configuring Merant DataDirect Drivers..........ccooceiiiiiiiinenas 8-7
8.2 Defining and Running a JDBC QUETYcccccceuiiviriiiiiiiniiiiiiiiricccrsneene 8-15
8.2.1 Sample Connection INformationcccococeiciiieiicieececeeceeeeeeeeeeenas 8-18
8.3 Running a JDBC Report Using OracleAS Reports Services...........cococeueiiricieininnnen, 8-20
8.4 Troubleshooting INformationccccccciiiiiiiniiiiiii e 8-21
8.4.1 EITOT MESSAZES ..ot 8-21
8.4.2 Trace INformation...........ccceiiiiiiiini 8-23
8.5 Adding Your OWn PDS........ccccccciiiiiiiiiiiiiiiiicnscess e 8-27

vii

8.5.1 Registering the PDS...........ccooioiiiii s 8-27

8.5.2 Configuring the jdbcpds.conf File..........coooooioiiiiiiiii 8-28
8.5.3 Installing Your PDS JAR FALESc.ccccuiiiiiiiiiiiiiiiccccceeceeeeeeee s 8-28
8.5.4 Installing the Driver’s JAR Filescccooooiiiiiiiiii 8-29

9 Securing OracleAS Reports Services

10

1

viii

9.1 About OracleAS Reports Services SECUTItYoovirieiiiicieiiiicicic s 9-1
9.1.1 Resources Protected ... 9-1
9.1.2 Authorization and Access Enforcementccocovviviniiiniinii, 9-4
9.1.3 Leveraging Oracle Identity Management Infrastructure ..o, 9-9
9.2 Configuring OracleAS Reports Services SECUritycocooiiicieiiiicicieiciccec 9-11
9.2.1 Configuring OracleAS Reports Services Security Optionscccceeecciicacees 9-11
Configuring and Administering OracleAS Single Sign-On

10,1 PrerequiSites ... 10-2
10.2 Configuring Out-of-the-Box OracleAS Single Sign-On ..o, 10-2
10.3 Administering OracleAS Single Sign-On..........cccooiiiiiiiiii e 10-3
10.3.1 Enabling and Disabling OracleAS Single Sign-On.........ccccccccccvveiivnnnnnneenes 10-4
10.3.2 Enabling and Disabling Reports Server Security.........cccooeeieiiiicciiiiiniciee 10-4
10.3.3 Enabling and Disabling Data Source Securityccccocvvvviiinininnininnnnn 10-5
10.3.4 Connecting to the Oracle Internet Directoryc.cccocceeccccciiccncncccnne 10-17
10.4 Choosing the connecting entity for the Oracle Internet Directoryc.ccccoccuevenees 10-18
10.5 OracleAS Forms Services Security Considerationsccocovieeeiiiceiicccieenes 10-19

Deploying Reports in OracleAS Portal

11.1 Creating Reports Users and Named Groups in OracleAS Portal..............ccccceueueneneee. 11-1
11.1.1 Default Reports-related Groups..........ccccceevierriririinirnnrcrreeeeee s 11-2
11.1.2 Creating Users and GIOUPSccccueuiiurieieiiinieieieiee i 11-4
11.2 Registering Oracle Reports Components in OracleAS Portal............ccccccccurviiiiinnnnnn 11-5
11.2.1 Creating an Availability Calendar ..o 11-5
11.2.2 Registering a Printer ... 11-11
11.2.3 Registering a Reports SErver..........ccoviiiiiiiiiiiiiiccc 11-14
11.2.4 Registering a REPOTt........ccccociiiiiiiiiiiiiiiiiiicc s 11-18
11.2.5 The Manage Portlet ... 11-25

12 Clustering Reports Servers

12.1

12.2

12.2.1
12.2.2
12.2.3
12.2.4
12.2.5

CIUSEEr OVEIVIEW ..ottt 12-1
Setting Up @ CIUSLET ..o 12-2
Renaming a Reports SEIVETccccueviiuciiiiiiic s 12-3
Generating New Public and Private Keys ... 12-5
Entering Public and Private Keys in the Server Configuration File 12-5
Restarting the Reports Server ... 12-6
Submitting a Request t0 @ CIUSteTcccuovoiiiiiiiiic 12-6

Partll Sending Requests to the Server

13 Running Report Requests

13.1
13.1.1
13.1.2
13.1.3
13.2
13.3
13.3.1
13.3.2
13.3.3
13.34
13.3.5
13.3.6
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.5
13.6
13.7
13.8
13.9

The Reports URL SYNtaxccoceiiiiicieiiiccieccie i 13-1
SEIVIRL ...t 13-2
JOP e 13-3
CGl s 13-4
Report Request Methods.........c.ccciiiiiiiiiiiiciccreeeer e 13-5
Deploying Your RepOrts.........cccciiiiirieiiiiiiciccic 13-6
Deploying a Report with a Paper Layout..........cccooooeiiiiiiiiie 13-7
Running a Report with a Paper Layoutccccccoeceiiiiiiiieiccccceecceeenes 13-8
Deploying a JSP report to the Web and to Paper ... 13-8
Running a JSP-Based Web Report from a Browserccccooooeiiincciinnna 13-14
Running a JSP report with a Paper Layoutc.cccccccceeeviiinnniinrcccene, 13-14
Running with the WESMSWIN1252 character set on Solaris..........cccueveirunnnes 13-15
Publishing a Report in OracleAS Portal...........c.cccccooiiiiiiiiiiiiiiiccciceens 13-15
Creating a Provider for Your RepOrts........cccccociiiiiiciieiceceeeeeceeicneneanes 13-16
Creating the Report Definition File ACCeSScccouiririeiiriiiiiiicecce 13-17
Adding the Report Portlet to a Pagec.ccccccoeuiiiiiiiiiiiiiiiiiiiicccccccccas 13-17
Adding the Reports Component as an Item to a Pagecccccevevvvvrrrncicnenence. 13-19
Specifying a Report Request from a Web Browser............cccccovviviviiiviiniiniiiinnns 13-21
Sending a Request to the URL Engine..........ccccooueiiiiiiiiiiiiiiceccccc 13-21
Running Reports through a Web Serviceccccccciiiiiininiiiccrecce, 13-22
Scheduling Reports to Run Automaticallyccoooeieiiiiiiiiiiiii 13-22
Additional Parameters............cccccuiuiuiiiiiiiiiiiiiiicceie e 13-23

14

15

13.10 Reusing Report Output from Cachecccccovviviiiiiiiiii, 13-23

13.10.1 USAZE INOLES. ..ot 13-24
13.11 Using a Key Map File ... 13-24
13.11.1 Enabling Key Mapping.........cc.ccoueueieiiiiiiieiiiicicei e 13-25
13.11.2 Adding Key Mapping Entries to a Key Map Filecccccoooiiiii, 13-25
13.11.3 Using a Key with Everything but JSPs.......cccoviiiccccccces 13-26
13.11.4 Using a Key with a Report Run as a JSP ..o 13-27
Using the Oracle Reports Web Service

141 OVEIVIEW ..ottt ettt 14-1
14.2 Getting Startedcooieuviiiiiiiiiiiic s 14-2
14.2.1 Invoking the rwwebservice Serviet..........oovvvviiirnnnirrereee s 14-2
14.2.2 Viewing the WSDL......ccccooviiiiiiiiiii s 14-3
14.2.3 Oracle Reports Web Service Operations...........c.coeueueiieiicieiiiicieecccecei, 14-6
14.3 Installing and Using the Sample Proxy and Java Client...........cccocecevevnnrnencnincncnnce. 14-11
Creating Advanced Distributions

15,1 Distribution OVeIVIEWccovviiiiiiiiiicccccccccctrctt s 15-1
15.2 Introduction to Distribution XML Files..........ccccccooininiininiiiiicccne, 15-2
15.2.1 The distribution.dtd File..........cccccoiiiiiiiiccces 15-2
15.2.2 Using Variables Within Attributes ... 15-2
15.3 Elements of a Distribution XML Filecccccccoviiiiiiiiicccccenes 15-4
15.3.1 desStiNAtioNSc.cvviiiiiiiiii 15-4
15.3.2 fOTEACH ...t s 15-5
15.3.3 MNALL. s 15-8
15.3.4 DOAY . 15-10
15.3.5 ALEACK .o 15-12
15.3.6 INCIUAE. ..o 15-14
15.3.7 FHLE s 15-16
15.3.8 PIINEET oo s 15-18
15.3.9 AESEYPE oo 15-20
15.3.10 PIOPETILY ottt 15-22
15.4 Distribution XML File EXamples.........cccccooioiiiiiiiiiiiiiicccceeeeeeneeeenenenens 15-23
15.4.1 foreach EXamples........covviiiiiiiiiiiiiic s 15-23
15.4.2 mail EXamples......ccccooiiiiiiiiiiiiiiic s 15-26

16

15.4.3 file EXQIMIPIES ..ottt 15-29

15.4.4 printer EXamples ... 15-30
15.5 Using a Distribution XML File at Runtime.............cccccoooiiiiiiniiiicciccenes 15-33
15.6 Defining Custom/Pluggable Destinations.............ccocevoioimirieiiiiciciiiiccce 15-34
15.7 Limitations with using distribution.............cccooi 15-38
15.7.1 destype=0raclePortal ... 15-38
15.7.2 XML and delimited outputsccceuvveieiiiiiiiiiiiiiiccc s 15-39
Customizing Reports with XML
16.1 Customization OVEIVIEWccceveviiiiiiiiiiiiiiiiiicc s 16-3
16.2 Creating XML Customizations.........ccoovoviiiiiiiiiiiiiiccicisii i 16-4
16.2.1 Required XML Tagsccocoiuiiiniiiiiiiiiicii s 16-4
16.2.2 Changing Styles.........ccceviiiiiiiiiee s 16-5
16.2.3 Changing a Format MaskK..........ccoouoiiiiiiiiiicc 16-5
16.2.4 Adding Formatting EXCEPHIONS......c.ccoeuiuiuiuimiiiiiiiiciicccieeeeeeeeeeeieieere e 16-6
16.2.5 Adding Program Units and Hyperlinks..........ccccooooiiiiii 16-7
16.2.6 Adding a New Query and Using the Result in a New Header Section................ 16-8
16.2.7 Encoding the URLccccociiiiiiiiiiiiiinrceeceereses e 16-9
16.3 Creating XML Data Models.........ccoouoiiiiiiiiiii e 16-10
16.3.1 Creating Multiple Data SOUICEScc.oorueiiiiiiciciicc s 16-10
16.3.2 Linking Between Data Sources...........ccooviiniiiiniiiiiiinnccccces 16-11
16.3.3 Creating Group Hierarchies within Each Data Source..........cccoooveveiiieieininnne 16-12
16.3.4 Creating Cross-product (Matrix) GIoupsccceeerueieieiiicieieicicce e 16-13
16.3.5 Creating Formulas, Summaries, and Placeholders at Any Level........................ 16-14
16.3.6 Creating Parametersccooouoviirieiiiiciec s 16-15
16.4 Using XML Files at RUNtIME. ..o 16-17
16.4.1 Applying an XML Report Definition at Runtime..........c.cccccceeevevinnnnnnnene. 16-17
16.4.2 Running an XML Report Definition by Itself.............cccoooeiiiniiiiiin, 16-22
16.4.3 Performing Batch Modifications............ccccceciiiiiiiiiiniiiiciiiiirccnce, 16-22
16.5 Debugging XML Report Definitionscccccovvvrirrnnininininiiecc e 16-23
16.5.1 XML Parser EIror MeSSagesccceevviieininiiiiiiiciiiiii s 16-23
16.5.2 Tracing OPtioNScueuiiiiiiiiiiiic s 16-24
16.5.3 TWDULLAET .o 16-24
16.5.4 Writing XML to a File for Debuggingccccoceiiiniiniciniiececececn 16-25

xi

17 Using Event-Driven Publishing

17.1 The Event-Driven Publishing APIccccccoviiiiiiiiiiices 17-2
17.1.1 Elements of the APL........ccccooiviiii s 17-2
17.1.2 Creating and Manipulating a Parameter List..........ccccoooeeiiiiiiiiiii 17-2
17.1.3 HOW t0 SUDIMNIL @ JOD .vitiiiieeee ettt sttt 17-4
17.1.4 How to Check for Status.......cooviiiiiiiiiiicccc s 17-5
17.1.5 Using the Servers' Status Record...........cooiiiieiiiiiiic 17-6
17.2 Debugging Applications that Use the Event-Driven Publishing API 17-7
17.3 Invoking a Report From a Database Event ..o 17-8
17.4 Integrating with Oracle Advanced QUeUING............cccoouemeiiiiriiiiiiiiece 17-9
17.4.1 Creating a Queue That Holds Messages of Type SRW_PARAMLIST 17-10
17.4.2 Creating the Enqueuing Procedure ... 17-11
17.4.3 Creating the Dequeuing Procedureooooroioiiiiiniiiiicc, 17-12

Part Il National Language Support and Bidirectional Support

18

Implementing NLS and Bidirectional Support

18.1 INLS ATCHIEECEUTE ...ttt ettt ettt sre e b e s teesaesbeessessaessesseensanseenes 18-2
18.1.1 Language-Independent FUNCHONS............cooeieiiiiiiiic 18-2
18.1.2 Language-Dependent Data..........ccoccueurieiriiiinniniiinrcccrreeee s 18-2
18.2 NLS Environment Variablescceeieieriieiienieierecieeeeeree et seesseeeesaesseessesaessessnens 18-2
18.2.1 NLS_LANG Environment Variable.........cooovoiuiiioiiiiieeeceeeeeee et 18-3
18.2.2 DEVELOPER_NLS _LANG and USER_NLS_LANG Environment Variables.. 18-10
18.3 Specifying a Character Set in a JSP or XML Fileccccoooiiiiiiiiiiice 18-10
18.4 Bidirectional SUPPOTt......ccccoiiiiiiiiiiiiiiiiiiiii e 18-13
T8.5 UNICOAE c.iuieeieeieiieiieiiee ettt sttt ettt ettt e teetesb e s e b e b e s essessessessessessasaasassessessensessessensases 18-14
18.5.1 Unicode SUPPOTt......cceviviiiiiiiiiiiiiciiiccec s 18-14
18.5.2 Unicode FONt SUPPOTt.......ccccciiiiiiiiiiiiiiiiiiiiicncn s 18-15
18.5.3 Enabling Unicode SUPPOTt......ccccccuiuiiiiiiciiiiiiiicieieicccieieeeeeeeeeeeeeeeeeseeeseee s 18-16
18.5.4 Using ALTER SESSION........cccoviiiiiniiiiiiiicssscsssssenssns 18-16
18.6 Translating APPliCatioNScccvuviviiiiiiiiiiiiiiiin e 18-17

Part IV Performance

Xii

19 Managing and Monitoring OracleAS Reports Services

20

19.1
19.2
19.2.1
19.3
19.4
19.4.1
19.5
19.5.1
19.6
19.6.1
19.6.2
19.7
19.8
19.9

Configuring the Reports Server for Oracle Enterprise Manager.............cccccceueuiueuennee 19-2
Navigating to the Reports Server Pagecccccvvrrrvninrnnnnnreccc e 19-2
Navigating to the Reports Server Page in the Application Server Control......... 19-3
Starting, Stopping, and Restarting Reports Servers ..o, 19-5
Viewing and Managing Job Queues..............ccccooiiininiiininiiie 19-6
Viewing and Managing Job Queues in the Application Server Control.............. 19-6
Monitoring Server Performance...........ccocooiieieioiiiciiiicc e 19-15
Oracle Enterprise Manager Application Server Control..........cccccccoccueueuciecnennnes 19-15
Viewing and Changing the Reports Server Configuration Files...........c.cccccoeuenaee. 19-18
Configuring Selected Parameterscooooieueiiiiiieiiiciccc e 19-19
Configuring the server_name.conf File............cccocooiiiinnnnnnnicnree, 19-21
Viewing and Linking to Server Cluster Members............ccocevniiiiiiniinciciicie, 19-22
Viewing Port NUMDers..........c.ooooiiiiii 19-23
Changing Your Middle-Tierccccccciiriiiinrrirrnrreeerr e 19-24

Tuning Oracle Reports

20.1

20.1.1
20.1.2
20.1.3
20.1.4
20.1.5
20.1.6

MethOdOLOZY ...t 20-2
Performance Analysis TOOISc.ccoiiiiiiiiii 20-3
Accessing the Datac.oooceueiiirieiei s 20-11
Formatting the Data.........ccccccciiiiiiiiiiiicccceeee e 20-16
General Layout GUidelines...........cc.ooviuiieiiiiiicieiiccc s 20-20
Calling Oracle Reports from FOrms...........cocooeiieiiiiiiiieiiiccceecee 20-21
Running the RePOTt........cccocuiuiiiiiiiiiiiiicrcccerc e 20-22

Part V Appendices

A

Command Line Options

A1

A1
A12
A1.3
Al1.4
A15

COMMANA OVEIVIEW ...ovvivvieieeieeieiieeieiieiereetese e stesesseteseete e ssessessessessessessessesssssssessessessessens A-1
TWELHENE 1.ttt et et e et e st e e s et et e eseessesseesaesseessenseensenseans A-2
TWIUIL cuvtenereeteeeeteeteeetteeseessseeseeseesssaesseeasseasseesseessaaassesssaesssassseessseassesnsessssesseesssessenssennn A-4
TWDULLAET ..ttt sttt e es bt estesaesaesesseesessassens A-6
TWCOMIVETEET ..eeuvvieiiieeiieeieeniteesteeste et esteesebeesteesste s seesssesabaesssessseesseesssessaessseeseesnsesnsesnseenn A-7
TWSEIVIEE .ottt ettt ettt et et e ettt e beeaeeeseeaseeseessesbeesbebeensenseans A-8

xiii

Xiv

A1.6
A17
A2
A3
A4
A4
A4.2
A43
Ad.4
A4.5
A4.6
A47
A4.8
A4.9
A4.10
A4.11
A4.12
A4.13
A4.14
A4.15
A4.16
A4.17
A4.18
A4.19
A.4.20
A.4.21
A.4.22
A.4.23
A4.24
A.4.25
A.4.26
A4.27
A.4.28
A.4.29
A.4.30

TWCZH e teteteteteietetet ettt A-11
TWSETVET «..voviviiretenieiete sttt esc et s et b st as et a e et beae e b st a et e s st ens s A-15
Command LINe SYNTAXc.c.cueuruririririririrrnrrer e A-15
General Usage INOES...........cuoiiiuiiict s A-15
Command Line Keywords.........c.cooiiiiiicicc s A-16
ACCESSIBLE........oooiiiiiii s A-16
ARRAYSIZE ..ot s A-16
AUTHID ..ot A-17
AUTOCOMMIT ...ttt s A-18
AUTOSTART ..ottt e A-18
BACKGROUND ..ot A-19
BATCH ...t A-20
BCC s A-20
BLANKPAGES........oooiiiiiicic s A-21
BUFFERS. ..ottt A-22
CACHELOB ..ottt e A-23
s A-24
CELLWRAPPER ..ottt s A-24
CMDFILE.......oiiiiiiciicie i A-25
CMDKEY ..ottt A-26
COLLATE ..ot s A-27
CONTENTAREA ..o s A-28
COPIES.......ooiiiiiicieici e A-29
CUSTOMIZE ...ttt A-30
DATEFORMATMASKouiiiiieiieie s A-30
DELAUTH ..ot A-31
DELIMITED_HDRcooviitiiiiiiieiiee s A-32
DELIMITER.oooiiiiiiiiict s A-32
DESFORMAT ...ttt A-34
DESNAME ..ottt s A-36
DEST ... s A-37
DESTINATION ..ottt A-38
DESTYPE ..ot A-39
DISTRIBUTE ..ot A-44
DTYPE ..o s A-45

A.4.31
A.4.32
A.4.33
A.4.34
A.4.35
A.4.36
A.4.37
A.4.38
A.4.39
A.4.40
A.4.41
A.4.42
A.4.43
A.4.44
A.4.45
A.4.46
A.4.47
A.4.48
A.4.49
A.4.50
A.4.51
A.4.52
A.4.53
A.4.54
A.4.55
A.4.56
A.4.57
A.4.58
A.4.59
A.4.60
A.4.61
A.4.62
A.4.63
A.4.64
A.4.65

DUNIT Lt st A-46
ENGINERESPONSETIMEOUTccocooiiiiiiiiiiiiiiiciiciceeeienes A-47
EXPIRATION ..ottt ettt s e ne s A-48
EXPIREDAYS ..ottt st sttt see st see e et sae e sae e sae e saene A-48
EXPRESS_SERVER......coootitiiiietteteteteteteeet ettt sttt ene e A-49
FORMSIZE ..ottt st sttt sae e A-52
FROM ..ottt ettt ettt ettt st sttt ettt sttt ettt en e snenee A-52
GETJOBID ..ottt s sttt et eae b A-53
GETSERVERIINFO ..ottt A-54
HELP .ottt sttt A-54
INSTALL .ottt sttt et e eb e A-55
ITEMTITLE. ..ottt A-55
JOBINAME ...ttt ettt ettt A-56
JOBTYPE ...ttt sttt ettt s n A-57
JVMOPTIONS. ...ttt ettt A-57
KILLJOBID ..ottt see e saesesaese et sae e sae e s e saeseeneseeneneen A-58
LONGCHUNKooiiiiiitteeteteteteeeteteeet sttt e ere e A-59
MIMETYPE ...ttt sttt n e A-60
IMODEE ...ttt ettt sttt ettt ettt n et A-60
MODULE | REPORT ..ottt esteve st stese s e saenens A-61
INONBLOCKSQL ..ottt ere s ae e enes A-62
NOTIFYFAILURE ..ottt ese et esne e nnes A-62
NOTIFYSUCCESS.ooiitiirietineienteteteteteteteeet s s sesr et et ese s sne e A-63
NUMBERFORMATMASK ..ottt sttt eneesnenees A-64
OLAP _CON ..ottt sttt ettt sae ettt et s e es ettt ses e senessenennes A-64
ONFAILURE ...ttt sttt ettt A-65
ONSUCCESS......c.ooiiieiieeieiteret ettt ne e enes A-66
ORIENTATION ..ottt st e ettt st st sae e saeesse e sseseeneseeneneen A-67
OUTPUTEFOLDER.cciiiitiirieenteeteteteteteeete ettt ettt sae s sre e A-67
OUTPUTIMAGEFORMAT ..ottt sttt snee s e enenees A-68
OUTPUTPAGE ...ttt ettt sttt st st sttt sae e sae e A-70
OVERWRITE ..ottt sttt ettt ettt b sae st a e et A-71
P_AVAILABILITY ..ottt ene e ne e nes A-71
P_DESCRIPTIONcctriiirieirietrieiniirereterenteesaesetesesesesaeste et esseseenesessesessensenensene A-72
P_FORMATS ...ttt ettt st sttt ettt st A-73

XV

XVi

A.4.66
A.4.67
A.4.68
A.4.69
A.4.70
A.4.71
A4.72
A4.73
A4.74
A.4.75
A4.76
A4.77
A.4.78
A4.79
A.4.80
A.4.81
A.4.82
A.4.83
A.4.84
A.4.85
A.4.86
A.4.87
A.4.88
A.4.89
A.4.90
A.4.91
A.4.92
A.4.93
A.4.94
A.4.95
A.4.96
A.4.97
A.4.98
A.4.99
A.4.100

P INAME ..ottt sttt s A-73
P OWNER ...ttt sttt s eae A-74
P_PFORMTEMPLATEcciiiiriireeeneenetereeeeeeeeene et ee A-74
P_PRINTERSootttttetriitetetettettstettntetstei ettt b e e se et ae e naene A-75
P_PRIVILEGE ..ottt ettt e A-76
P_SERVERS ...ttt A-76
P_TRIGGER......corttrietriieetrieetttetttetsei ettt ettt ebe et ae e naene A-77
P_TYPES ..ottt s e st A-77
PAGEGROURP ..ottt ettt A-78
PAGESIZE ...ttt ettt A-79
PAGESTREAM ..ottt ettt saee A-80
PARAMEORM ..ottt et et A-81
PARSEQUERY ...coooutriiimiiinieinieietetetetetetet ettt ettt se st sne st st ae e naene A-81
PDEFCOMP ..ottt ettt ettt s s sa ettt s suee A-82
PDEFEMBEDooiiiiiiiiiiiiiicicc et A-83
PRINTJOB.......ooteirieiirietrctrieiretetetetete ettt ettt ne et re st sre s a e e naene A-83
READONLY ...ttt ettt et n et et svee A-84
RECURSIVE_LOAD ...ttt A-85
REPLACEITEMotniiiriiinieirieiettteteteieteitte ettt se st sne st ae e naene A-85
REPLYTO ..ottt sttt st ne s s A-86
REPORT | MODULE......cooviiiineieiintnreieiireereeereereneeesseseeesaesese e seseesesaesenenenes A-87
ROLE .ttt ettt bttt A-87
RUNDEBUG ...ttt sttt ettt s sae v sae e neneen A-88
SAVE_RDE ...ttt et A-89
SCHEDULE ...ttt sttt ettt s e st sa e ee A-89
SERVERttt sttt st st sttt et ettt snee A-90
SHOWAUTH ..ottt et A-91
SHOWENV ...ttt ettt ettt A-92
SHOWIOBID ..ottt ettt st s e e s et evee A-92
SHOWIJOBS ...ttt et A-93
SHOWMARP ...ttt ettt sttt a e A-94
SHOWDMYJOBS ..ottt ettt ettt st sae e et et re e enea A-95
SHUTDOWN ..ottt st sne e e A-95
SITENAME ..ottt st s st A-96
SOURCE ...ttt ettt sttt et st ettt ese b s b e A-97

A.4.101
A.4.102
A.4.103
A.4.104
A.4.105
A.4.106
A.4.107
A.4.108
A.4.109
A.4.110
A4.111
A4.112
A.4.113
A4114
A.4.115
A.4.116
A4117
A.4.118
A.4.119

SQLTRACE ..ottt sttt ettt st st sttt sae e saese A-98
SSOCONN ..ottt ettt et sae b b s b s aene s e enneneeae A-98
STATUSFOLDERccoiiiiiiiiieteeeeeeeeeeereseee sttt A-100
STATUSFORMAT ..ottt ettt ettt s A-101
STATUSPAGE ...ttt sttt A-102
STYPE ...ttt st e A-103
SUBJECT ..ottt ettt s s st s A-103
SUPPRESSLAYOUT ..ottt sttt st sse e se e A-104
TOLERANCE ...ttt s A-105
TRACEFILE ...ttt sttt sttt s A-106
TRACEMODE ..ottt ettt st s st a e ns A-107
TRACEOPTS ...ttt sttt see e A-108
UNINSTALL ..ottt ettt sttt sttt ettt et re s e e eseeneseenene A-109
UPGRADE_PLSQLoouiiiiiiriiriieeieteteteteteeee ettt ene e A-110
URLPARAMETERoooiiiiiiiiceneereeereeeneeeseet ettt ene e ee e A-111
USERID ..ottt ettt sttt s saene A-111
WEBSERVER_DEBUGcociiiiiiiniiiieicteteieeeteeee et A-112
WEBSERVER_DOCROOTcoeirieiriiireirieireeetetereee et aenesaenesees A-113
WEBSERVER _PORTcooiriiiieiicineeneenetntcestcetstee st stesesteseenese e ereseeneeenenees A-114

Reports-Related Environment Variables

B.1
B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6
B.1.7
B.1.8
B.1.9
B.1.10
B.1.11
B.1.12
B.1.13

Environment Variables..........cceoieiiiieiiiieeeieeereetesee ettt ae e esa e sesr e ens B-2
CA_GPREFS ...ttt ettt ettt et et eas et ese e steesaasbeesaesaeessesbeessenseens B-2
CA_UPREFS ...ttt ettt ettt testeste st e s besb e s e bessessesaessesaasensassessens B-2
DELIMITED_LINE_ENDiotiiiiteieeteeeterieetere ettt eee et saeeaessessaesseessesseens B-3
DIOC ..ttt ettt e te et e e be et et eebe et e e te et e ert e beeaeeeteertebeeraesbeerbebeereereens B-3
INTERRUPTcotiteieeteeietteteetteteie et ettt ste st esessestessessessassessessessessessessessssessensens B-4
DEVELOPER_INLS_LANGoooi ettt ettt eseesreesaesseesaessaessesseessesseens B-4
NLS_CALENDAR. ...ttt ettt ettt e ve et ereeaesreebeebseaeereens B-4
INLS_CREDIT ..ottt etest ettt est st ssessessessesse s assessessessessessssessessassensens B-4
NLS_CURRENCQCY ...ooieiieieeiteieet ettt ete e etesteesvestestesseessassaessessesssesssessesssessessesssessenes B-4
NLS_DATE_FORMAT ...ttt ettt et eve ettt ea e veeaesaeeaesbaebeereens B-5
NLS_DATE_LANGUAGEoottiteeeetetetette ettt ess s ssesaesassassessens B-5
INLS_DEBIT ...ttt ettt ste ettt e tesstesseess e saesaessessaesssessesssessensesssensenns B-5
NLS_ISO_CURRENQ Y ...ttt ettt ettt ettt evae e sseeveeseessesseersessesssesseeseens B-5

xvii

xviii

B.1.14
B.1.15
B.1.16
B.1.17
B.1.18
B.1.19
B.1.20
B.1.21
B.1.22
B.1.23
B.1.24
B.1.25
B.1.26
B.1.27
B.1.28
B.1.29
B.1.30
B.1.31
B.1.32
B.1.33
B.1.34
B.1.35
B.1.36
B.1.37
B.1.38
B.1.39
B.1.40
B.1.41
B.1.42
B.1.43
B.1.44
B.1.45
B.1.46
B.1.47
B.1.48

INLS_LANG ..ttt sttt sttt ettt ettt et et e e ebe s e B-5
NLS_LIST_SEPARATOR......cceieieieieinieietresteetestetetee ettt sae e s s neneenes B-6
NLS_MONETARY_CHARACTERS.......coccteiieeeeeeeeeeeeneeesee e B-6
NLS_NUMERIC_CHARACTERS.......ocoiirriirineenieeneeeeeeseeeneeeseeeseeeseene e B-6
INLS_SORT ...ttt sttt ettt ettt sttt ene et saesae v B-7
ORACLE_ABM ..ottt sttt sttt e B-7
ORACLE_HOME.......ccooiiiiiiiniinetnetnte ettt ettt st naeae et saesesaene B-7
ORACLE_HPD ..ottt sttt ene e s s B-8
ORACLE_PATH ..ottt ettt s B-8
ORACLE _PPD ..ottt sttt sttt ettt s e B-9
ORACLE_TEM ..ottt sttt ettt sae b s saenen B-9
ORAINFONAV_DOCPATH ..ottt B-10
PRINTER......ooiiiiittcctece ettt sttt B-10
REMOTE ...ttt ettt et s sttt eve B-11
REPORTS_ADD_HWMARGINcooiiiieiieirrceneteeeeeeereeereee e B-12
REPORTS_ARABIC_NUMERAL.....ccocecrtnitreneeneeninceeesee et seene e B-12
REPORTS_BIDI_ ALGORITHMcoctiiiiiiiiiinieieieietetee et eneas B-13
REPORTS_CGIDIAGBODYTAGS *.....ocoriiiiieiiieeeeeeeeeeeeesee e e B-13
REPORTS_CGIDIAGHEADTAGS *...cccoiiiiiiiiiiiiciicicce s B-14
REPORTS_CGIHELP *.....ooiiiiiiiiiiiieteteteteteteteeeee ettt eveas B-14
REPORTS_CGIMAP * ...ttt B-15
REPORTS_CGINODIAG *...viieiiieiineeiinieienietnrestsretsreesieeereeereseereseesesaesessesessesesaene B-16
REPORTS_CLASSPATH ..ottt ettt sae e neneen B-16
REPORTS_COOKIE_EXPIRE *.....ccoeiiiinieiieirieeneerieeneeereee e ne B-17
REPORTS_DB_AUTH *..oooiriieiieieietieeetseetsreesees et se e seae e saene B-18
REPORTS_DEFAULT_DISPLAY ...ttt seenee B-19
REPORTS_DEFAULT _PIXEL_SIZEc.ccooiiiiiniineeneeeeerereereeeeseee e B-20
REPORTS_ENCRYPTION_KEY ...oiiirieinieinieinetneeneenieeereneereseeseseeseaesesaesenaene B-20
REPORTS_GRAPH_IMAGE_DPl.....cccioiiiiiiiiieieietneeeeeseeeseseeseeteeeeeeeeeeeneas B-21
REPORTS_JVM_OPTIONSc.ooiiieieineneeeeeeeeeeeeieeeesee et ee B-22
REPORTS_INLS_XML_CHARSETSootiiieineineenencenreenieeseeieenne e B-22
REPORTS_NO_DUMMY_PRINTER.......ccccceoiiiiiiiiiincncceeeeeeeee B-23
REPORTS_NO_HTML_SPACE_REPLACEccoceciniiieieeneenereeneeeneeene B-24
REPORTS_OUTPUTIMAGEFORMATcccoooiiiiiiiiiiiiiiiicccs B-25
REPORTS_PATH.....coutititiititetctcteteteeetee ettt ettt sre e sae s see s B-26

B.1.49 REPORTS_RESOURCEccootiiriiieiiieicinicieenteeneeenteieseeve et esae e saesesaeesaenens B-27

B.1.50 REPORTS_SERVER * ...ttt sttt ene s B-27
B.1.51 REPORTS_SPACE_BREAKccooiiriiiiiiieineentetreenreenreeseee et B-28
B.1.52 REPORTS_SSLPORT * ..ottt sttt et seeesaeesaesesaesessesesnenees B-28
B.1.53 REPORTS_SYS_AUTH ...ttt sttt B-29
B.1.54 REPORTS_TAGLIB_URLI.....cocctiiiirieiieiieineeerteereeenteesreee et sneeeneseenenees B-29
B.1.55 REPORTS_TIMP ...ttt sttt sttt sae et en e s B-30
B.1.56 REPORTS_USEREXIT......cciiiriiiiieieiiieieieienieeieeese ettt s enesne e B-30
B.1.57 RN ettt sttt et B-31
B.1.58 TR PRINT Lottt s s B-31
B.1.59 TK_PRINT_STATUS ..ottt sttt B-32
B.1.60 TK_PRINTER ..ottt B-33
B.1.61 TKOIO_ABM .ottt ettt s B-34
B.1.62 TKOIO_HPD .ottt sttt s B-34
B.1.63 TKOO_PPD ..ot B-35
B.1.64 TKOIO_TEM ..ottt et B-35
B.1.65 USERNAME ..ottt st sttt ettt saeen e B-36
B.1.66 USER_NLS_LANG. ..ottt snenes B-36
B.1.67 WIN_REMOTE_SESSIONScotriiimiinetneinieteretereeeieeesesestsesessesessesesneessesessens B-36
B.1.68 XIMMITR ..ottt sttt ettt s ea e B-38

C Batch Registering Reports in OracleAS Portal

C.1 Batch Registering Report Definition Files.........ccccocoevniiiiiiniiiiciccccccns C-1
C.11 Run rwconverter to Generate a SQL SCIipt........ccovvvvviririrnnnnrn e C-1
c.1.2 Run the Script in SQL*PIUScoiimiiiiiiiiiiicicccc C-4
Cc2 Batch Removing Report Packages ... C-5
C.3 PL/SQL Batch Registering FUNCHONc.ccevviviiinirini e C-5
Glossary
Index

Xix

XX

Send Us Your Comments

Oracle Application Server Reports Services Publishing Reports to the Web, 10g (9.0.4)
Part Number B10314-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

= Did you find any errors?

» Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most?

If you find any errors or have suggestions for improvement to this documentation, please send us
your comments via the Oracle Reports discussion group forum:

(http://otn.oracle.com/products/reports/)

If you have problems with the software, contact your local Oracle Support Services representative.

XXi

XXii

Preface

This manual describes the different options available for publishing reports with
OracleAS Reports Services as well as how to configure the OracleAS Reports
Services software for publishing reports.

Note: For the latest updates to this manual, refer to the Oracle
Technology Network,
(http://otn.oracle.com/products/reports/), then click
Getting Started and use the index to navigate to Oracle Application
Server Reports Services Publishing Reports to the Web.

Intended Audience

This manual is intended for anyone who is interested in publishing reports with
OracleAS Reports Services. To configure OracleAS Reports Services, it is useful for
you to have a solid understanding of the following technologies:

= Your operating system

= Java

= Databases

= CORBA

= JSP files

= XML and DTD files

= Web server configuration

» HITP

XXiii

This manual will guide you through configuring components related to these
technologies.

Documentation Accessibility

Structure

XXiv

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

This manual contains the following chapters:

Chapter 1, "Understanding the OracleAS Reports Services Architecture”
Provides an overview of OracleAS Reports Services architecture.

Chapter 2, "Starting and Stopping OracleAS Reports Services"
Tells you how to start and stop OracleAS Reports Services.

Chapter 3, "Configuring OracleAS Reports Services"
Describes how to configure the OracleAS Reports Services.

Chapter 4, "Managing Fonts in Oracle Reports"
Describes how to configure, alias, and troubleshoot fonts in Oracle Reports.

Chapter 5, "Printing on UNIX with Oracle Reports"

Describes how to configure for printing and troubleshoot printing problems on
Unix.

Chapter 6, "Using PDF in Oracle Reports"

Describes the PDF features in Oracle Reports and how to generate PDF output for
multibyte fonts, bidirectional (BiDi) languages, barcode, and Unicode character
sets.

Chapter 7, "Configuring Destinations for OracleAS Reports Services"

Explores how OracleAS Reports Services handles output processing to default and
custom destinations.

Chapter 8, "Configuring and Using the JDBC PDS"

Provides information on configuring the JDBC PDS for use in OracleAS Reports
Services.

Chapter 9, "Securing OracleAS Reports Services"
Provides a conceptual description of OracleAS Reports Services security features.

Chapter 10, "Configuring and Administering OracleAS Single Sign-On"

Describes how to configure and use OracleAS Reports Services with OracleAS
Single Sign-On.

Chapter 11, "Deploying Reports in OracleAS Portal"

Describes how to use OracleAS Portal to deploy your reports developed in
OracleAS Reports Services.

Chapter 12, "Clustering Reports Servers"
Describes how to cluster Reports Servers to enhance performance and reliability.

Chapter 13, "Running Report Requests"

Describes the various methods for running reports, in particular, how to construct a
runtime URL.

XXV

Chapter 14, "Using the Oracle Reports Web Service"
Describes the various operations supported by the Oracle Reports Web service.

Chapter 15, "Creating Advanced Distributions"
Describes how set up advanced distributions through a distribution XML file.

Chapter 16, "Customizing Reports with XML"
Provides information about customizing reports at runtime with XML.

Chapter 17, "Using Event-Driven Publishing"

Describes how to use the event-driven publishing to invoke reports automatically in
response to database triggers.

Chapter 18, "Implementing NLS and Bidirectional Support"
Provides NLS information for OracleAS Reports Services.

Chapter 19, "Managing and Monitoring OracleAS Reports Services"

Describes OracleAS Reports Services integration with Oracle Enterprise Manager
(OEM) and tells you how you can monitor your Reports Servers with OEM.

Chapter 20, "Tuning Oracle Reports"
Provides tips for tuning and performance enhancements.

Appendix A, "Command Line Options"
Provides information about reports-related command line options.

Appendix B, "Reports-Related Environment Variables"
Provides information about Oracle Reports environment variables.

Appendix C, "Batch Registering Reports in OracleAS Portal”
Provides information on registering reports in OracleAS Portal using batch scripts.

Related Documents

For more information on building reports, OracleAS Portal, or OracleAS Reports
Services, refer to the following manuals:

» Oracle Reports Tutorial, B10612_01

XXVi

» Oracle Reports Building Reports, B10602_01

» Getting Started with OracleAS Portal, available on the Oracle Technology
Network (http://portalcenter.oracle.com)

s Getting Started with Oracle Reports, available on the Oracle Technology
Network (http://otn.oracle.com/products/reports/)

Conventions

The following conventions are used in this manual:

Convention Meaning

Vertical ellipses in an example mean that information not directly
related to the example has been omitted.

Horizontal ellipses in statements or commands mean that parts of
the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

variable Monospace italic type indicates variables or user-supplied names.

[1 Brackets enclose optional clauses from which you can choose one or
none.

XXVii

XXVviii

Part |

Preparing Your Environment

Part I contains overview information about the OracleAS Reports Services
environment and provides practical information about preparing that environment
for running reports. This includes starting and stopping OracleAS Reports Services,
configuring Reports-related OracleAS Reports Services components, font related
information in Oracle Reports, configuring destinations for OracleAS Reports
Services, configuring and using the JDBC PDS, setting up OracleAS Reports
Services Security, OracleAS Single Sign-On, deploying reports in OracleAS Portal,
and Reports Server clusters.

Part I includes the following chapters:

s Chapter 1, "Understanding the OracleAS Reports Services Architecture”
» Chapter 2, "Starting and Stopping OracleAS Reports Services"

s Chapter 3, "Configuring OracleAS Reports Services"

s Chapter 4, "Managing Fonts in Oracle Reports"

s Chapter 5, "Printing on UNIX with Oracle Reports"

s Chapter 6, "Using PDF in Oracle Reports"

s Chapter 7, "Configuring Destinations for OracleAS Reports Services"

s Chapter 8, "Configuring and Using the JDBC PDS"

» Chapter 9, "Securing OracleAS Reports Services"

s Chapter 10, "Configuring and Administering OracleAS Single Sign-On"
= Chapter 11, "Deploying Reports in OracleAS Portal"

s Chapter 12, "Clustering Reports Servers"

1

Understanding the OracleAS Reports
Services Architecture

When you're ready to publish your reports, all the Web server and application
server tools you'll need are available in the Oracle Application Server. This chapter
describes the architecture of relevant OracleAS Reports Services components in
combination with its reports publishing component, OracleAS Reports Services. It
also provides an overview of Reports Runtime processing and offers some things to
consider when you set up your server environment.

This chapter includes the following sections:

s Overview of OracleAS Reports Services

» OracleAS Reports Services Components

s OracleAS Reports Services Runtime Process

= Things to Consider When You Set Up Your System
» Maintaining High Availability

1.1 Overview of OracleAS Reports Services

Oracle Application Server is a comprehensive and integrated application server that
runs any Web site, portal, or Internet application. It enables you to make
applications available from Web browsers, mobile devices, and command lines.
OracleAS Reports Services is the reports publishing component of Oracle
Application Server. It is an enterprise reporting service for producing high quality
production reports that dynamically retrieve, format, and distribute any data, in
any format, anywhere. You can use OracleAS Reports Services to publish in both
Web-based and non-Web-based environments.

Understanding the OracleAS Reports Services Architecture 1-1

Overview of OracleAS Reports Services

OracleAS Reports Services provides a scalable, flexible architecture for the
distribution and automated management of report generation engines on the same
server and across multiple servers. Additionally, it caches report output for reuse on
similar requests. It integrates into standard Web environments with JSPs, Java
servlets, and CGI. It enables you to run reports on both local and remote application
servers and to implement a multi-tiered architecture for running your reports.

When used in conjunction with servlet, JSP, or CGI (maintained only for backward
compatibility), OracleAS Reports Services enables you to run reports on any
platform from a Web browser using a standard URL syntax. For servlet
implementations, the in-process server is available for faster response and easier
administration. The in-process server cuts down on the communication expense
between processes and consequently increases response times.

OracleAS Reports Services handles client requests to run reports by entering all
requests into a job queue. When one of the server's engines becomes available, the
next job in the queue is dispatched to run. As the number of jobs in the queue
increases, the server can start more engines until it reaches the maximum limit
specified in your server configuration. Similarly, engines are shut down
automatically after having been idle for a period of time that you specify (see
Chapter 3, "Configuring OracleAS Reports Services").

OracleAS Reports Services keeps track of all jobs submitted to the server, including
jobs that are running, scheduled to run, finished, or failed. The Reports Queue
Manager (Windows), the Reports Queue Viewer (UNIX), the showjobs command
(Web), and the OracleAS Reports Services pages in Oracle Enterprise Manager
(OEM) enable you to view information on when jobs are scheduled, queued,
started, finished, and failed, as well as the job output and the final status of the
report.

With OracleAS Reports Services, job objects are persistent. This means that if the
server is shut down then restarted, all jobs are recovered,' not just scheduled jobs.

When used in a Web environment, the OracleAS Reports Services architecture
consists of four tiers:

Note: The term tier refers to the logical location of the components
that comprise the OracleAS Reports Services architecture. Each of
the tiers, though, could reside on the same machine or different
machines.

! Only synchronous jobs and jobs that are currently running are lost in this case.

1-2 Oracle Application Server Reports Services Publishing Reports to the Web

Overview of OracleAS Reports Services

» The client tier (a Web browser)

s The Web server tier

s The OracleAS Reports Services tier

s The data tier, including databases and all other data sources

When used in a non-Web environment, there are three tiers (a Web server being
unnecessary):

s The client tier (a small, proprietary application on each client machine)
s OracleAS Reports Services tier
s The data tier, including databases and pluggable data sources

The way you set up these tiers can range from having all of them on one machine to
having each of them on a separate machine. Additionally, you can have multiple
Web servers on multiple machines as well as multiple application servers on
multiple machines.

If you choose to have your Web server on multiple machines, the Oracle HTTP
Server provides a load balancing feature to allow sharing of the Web server load
across multiple machines. If you choose to have your application server on multiple
machines, OracleAS Reports Services provides peer-level clustering to allow
sharing of the Reports Server load among multiple machines.

The difference between load balancing and peer clustering is that with load
balancing, one machine manages the traffic across all machines; while with peer
clustering, all machines are aware of the traffic on each machine, and each machine
shares the task of monitoring and responding to requests. The advantage of
peer-level clustering is the elimination of a single point of failure, further
supporting the possibility of a fail-safe environment.

Note: Reports Server clustering is discussed in detail in
Chapter 12, "Clustering Reports Servers".

OracleAS Reports Services provides event-based reporting. This uses database
events to trigger the generation of a report. For example, you can define an event
that signals a change in revenue levels above or below a particular watermark. If the
change occurs in the database (the event), a report is automatically generated. This
feature is discussed in detail in Chapter 17, "Using Event-Driven Publishing".

Understanding the OracleAS Reports Services Architecture 1-3

Overview of OracleAS Reports Services

OracleAS Reports Services includes a distribution module that uses XML to define
unique configurations for the distribution of reports. Call the desired XML file from
the runtime command line or URL to generate one report, and let the server handle
diverse outputs and destinations. Processing time is significantly reduced and
configuration changes can all be handled within the XML file. This feature is
discussed in detail in Chapter 15, "Creating Advanced Distributions".

1-4 Oracle Application Server Reports Services Publishing Reports to the Web

OracleAS Reports Services Components

1.2 OracleAS Reports Services Components

Figure 1-1 OracleAS Reports Services Components

Oracle Databese

Figure 1-1 illustrates the components of a working OracleAS Reports Services
environment. This includes:

1. The Oracle HTTP Server, a Web server provided by Oracle Application Server.
It incorporates an OpenSSL module to provide support for Secure Sockets Layer

Understanding the OracleAS Reports Services Architecture 1-5

OracleAS Reports Services Components

(SSL) and HTTP Secure Sockets Layer (HTTPS). It also provides a servlet engine
to support the running of Java Servlet applications.

2. The module mod_oc4j, used by the Oracle HTTP Server to redirect requests
from servlets and JSPs to Oracle Application Server Containers for J2EE (OC4J).
OC4] provides a complete J2EE environment that includes a JSP translator, a JSP
servlet engine (OJSP), and an Enterprise JavaBeans (EJB) container. It provides a
fast, lightweight, highly scalable, easy-to-use, complete J2EE environment. It is
written entirely in Java and executes on the standard Java Development Kit
(JDK) Virtual Machine (JVM).

3. The Reports Servlet, a component of OracleAS Reports Services that runs
inside the Web server's servlet engine. The Reports Servlet translates and
delivers information between HTTP and Reports Server. It includes:

s The In-Process Server, which reduces the maintenance and administration
of the Reports Server by providing a means for starting the server
automatically, whenever it receives the first request from the client through
the Reports Servlet (rwservlet) or a Reports JSP.

s The Custom Tag Handler, which processes custom Oracle Reports tags
included in a JSP file. In a JSP file, Oracle Reports-related custom tags are
identified by the prefix rw:; other custom tags using other prefixes may
also be present.

4. The Reports CGI, a component of the Web server that translates and delivers
information between either a Web server or a J2EE Container (for example,
OC4]J) and the Reports Server, enabling you to run a report dynamically from
your Web browser .

Note: Reports CGI is maintained only for backward compatibility.

5. The Reports Server, which processes client requests, including ushering them
through its various services, such as authentication and authorization checking,
scheduling, caching, and distribution (including distribution to custom—or
pluggable—output destinations). The Reports Server also spawns runtime
engines for generating requested reports, fetches completed reports from the
Reports Server cache, and notifies the client that the job is ready.

6. The Reports Server Cache, which securely stores completed job outputs.

7. The Reports Engine, which includes components for running SQL-based and
pluggable data source-based reports. It fetches requested data from the data

1-6 Oracle Application Server Reports Services Publishing Reports to the Web

OracleAS Reports Services Runtime Process

source, formats the report, sends the output to cache, and notifies the Reports
Server that the job is complete.

8. The Pluggable Engines, which are custom engines that use Java APIs to pass
jobs to the Reports Server, as well as leverage the server's other features, such as
scheduling, distribution, notification, and caching. OracleAS Reports Services
provides an out-of-the-box pluggable engine called the URL engine. The URL
engine enables you to distribute content from any publicly available URL to
such destinations such as e-mail, OracleAS Portal, and WebDav.

1.3 OracleAS Reports Services Runtime Process

Here is how the various components of OracleAS Reports Services contribute to the
process of running a report:

1. The client requests a report by contacting a server through either a URL (Web)
or a non-Web, Oracle Reports-related command, such as rwclient.

s The URL goes to JSP, rwservlet, or CGI, all associated with the Oracle
HTTP Server. The JSP and rwservlet requests go to mod_oc4j. (For jobs
run as JSPs, mod_oc4j uses OJSP to translate the JSP into a servlet.) The CGI
requests go to a CGI component.

The URL may contain runtime parameters or a keyword that refers to a
runtime parameter configuration section within cgicmd. dat, or it may
contain both, though parameters explicitly named in the URL must not also
be present in the relevant keyword section of cgicmd. dat.

s rwclient goes directly to the Reports Server.

The command line may contain runtime parameters. If you have a lot of
runtime parameters, you can create a batch file or shell script that contains
the rwclient command along with a string of parameters.

2. The rwservlet or the Reports CGI (rwcgi, maintained only for backward
compatibility) component translates and delivers information between either a
Web server or a J2EE Container (for example, OC4J) and the Reports Server:

» Server requests from JSP or using rwservlet can by run by the in-process
Reports Server or as a stand-alone Reports Server process, whichever is
specified in the servlet configuration file, rwservlet.properties
(ORACLE_HOME\reports\conf\). An in-process server requires less
maintenance than a stand-alone server because, unlike the stand-alone
server, it starts automatically in response to requests from the client.

Understanding the OracleAS Reports Services Architecture 1-7

OracleAS Reports Services Runtime Process

Additionally, an in-process server cuts down on the communication
between processes, increasing the potential for faster performance.

Server requests using rwcgi go to the stand-alone server.

3. The Reports Server processes the request:

If the request includes a TOLERANCE argument, then the Reports Server checks
its cache to determine whether it already has output that satisfies the request. If
it finds acceptable output in its cache, then it immediately returns that output

rather than rerunning the report.

If the request is the same as a currently running job, then the request will reuse

Note: For any job request that you send to the Reports Server, you
can include a TOLERANCE argument. TOLERANCE defines the oldest
output that the requester would consider acceptable. For example,
if the requester specified five minutes as the TOLERANCE, the
Reports Server would check its cache for the last duplicate report
output that had been generated within the last five minutes. An
expiration argument defines the point in time when the report
output should be deleted from the cache (for example, expiration
might equal a specific date and time for when the output should
expire). For more information, see Appendix A, "Command Line
Options".

the output from the current job rather than rerunning the report.

If neither of these conditions is met, then the Reports Server processes the
request:

a.

If configured, the Reports Server initiates an authentication and

authorization check through mod_osso, part of the Oracle HTTP Server.

If the report is scheduled, the Reports Server stores the request in the

scheduled job queue, and the report is run according to schedule. If the
report is not scheduled, it is queued in the current job queue for execution

when a Reports Engine becomes available.

1-8 Oracle Application Server Reports Services Publishing Reports to the Web

Things to Consider When You Set Up Your System

Note: When you configure the Reports Server (in server._
name . conf), you can specify the maximum number of the Report
Engines it can use. If the Reports Server is under this maximum,
then it can send the job to an idle engine or start a new engine to
handle the request. Otherwise, the request must wait until one of
the current Oracle Reports Engines completes its current job.

c. Atruntime, the Reports Server spawns a Reports Engine and sends the
request to that engine to be run.

The Reports Engine retrieves and formats the data.
The Reports Engine populates the Reports Server cache.
The Reports Engine notifies the Reports Server that the report is ready.

N o a &

The Reports Server accesses the cache and sends the report to output according
to the runtime parameters specified in either the URL, the command line, or the
keyword section in the cgicmd. dat file (URL requests only).

Another way to create a report is through event-driven publishing. With
event-driven publishing, the client is the database (rather than the end user). Events
are defined through the Event-Driven Publishing APIL The event invokes a database
trigger, an advanced queuing application, or a PL/SQL package that calls the
Event-Driven Publishing API to submit jobs to the Reports Server. Event-Driven
Publishing is discussed in detail in Chapter 17, "Using Event-Driven Publishing".

1.4 Things to Consider When You Set Up Your System

The way you set up OracleAS Reports Services can vary widely depending upon
the requirements of your system. Before you set up OracleAS Reports Services, you
must make some decisions based upon your requirements. By making these
decisions beforehand, you can greatly simplify the set-up process.

The following subsections discuss some of the decisions involved in:
s Choosing the Types of Requests You Will Service

s Choosing Servlet, JSP, or CGI

s Choosing Single- Or Multiple-Machine Configurations

s Choosing Whether to Cluster Multiple Servers

Understanding the OracleAS Reports Services Architecture 1-9

Things to Consider When You Set Up Your System

1.4.1 Choosing the Types of Requests You Will Service

OracleAS Reports Services can be configured to accept both Web and non-Web job
requests.

In the Web case, you can run reports by clicking or typing a URL in a Web browser.
Depending on the URL, the report output is then served back to you in your
browser or sent to a specified destination (for example, a printer). To enable users to
launch reports from a browser, you will use either the Reports Servlet, a JSP, or
Reports CGI components with your Web server. One or the other of these
components must be present on the Web server to enable communications between
it and the OracleAS Reports Services and to enable the processing of report requests
from Web clients.

Note: For more information, refer to the Choosing Servlet, JSP, or
CGI.

In the non-Web case, you can send job requests using the rwclient executable,
installed on each of your user's machines.

From the perspective of configuration, these are the key differences between
enabling Web and non-Web requests:

= Enabling Web requests requires that you choose between the Reports Servlet, a
JSP, or Reports CGI (maintained only for backward compatibility) for the server
side, but eliminates the need to install any client software beyond a standard
Web browser.

= Enabling non-Web requests requires that you install client software on each
machine that will be used to run requests. This introduces the need to
administer client software on each client machine.

The Web case is clearly the most cost effective because it reduces client maintenance
costs. But there might be cases where launching non-Web requests is a necessity.
OracleAS Reports Services supports the implementation of both Web and non-Web
requests in a single deployment environment.

1.4.2 Choosing Servlet, JSP, or CGl

To use OracleAS Reports Services in a Web environment, you must use a servlet,
JSP, or CGI implementation. Our recommendation is that you choose servlet or JSP.
The CGI implementation in OracleAS Reports Services is maintained only for
backward compatibility.

1-10 Oracle Application Server Reports Services Publishing Reports to the Web

Things to Consider When You Set Up Your System

Between servlet and JSP there are additional considerations. A JSP-only
implementation means that you can publish a layout that is optimized for Web
delivery. The servlet enables you to include paper layouts in your report publishing
solution and fully leverage the distribution features of OracleAS Reports Services.

Using the servlet does not imply that you cannot also use JSP files because JSP files
can contain both Web and paper layouts. When you run a report stored in a JSP, you
specify the servlet in the URL and call the JSP with the command line argument:
report=myreport.jsp.

For more information on running reports, see Chapter 13, "Running Report
Requests".

1.4.3 Choosing Single- Or Multiple-Machine Configurations

You can place OracleAS Reports Services on the same machine as your Web server
or on a different machine. Both scenarios have pros and cons.

For example, while it's true that having OracleAS Reports Services and the Web
server on the same machine requires more of the machine's memory and disk space,
it's also true that such an implementation reduces network traffic. This is because
requests traveling between the Web server and the application server do not have to
travel across a network, only incoming requests must do so.

If you are using the in-process server (available only with servlet implementations)
you can further amplify the performance advantages of a single machine. The
in-process server speeds up processing time by allowing for faster and more
efficient communication between OracleAS Reports Services components. We
recommend that you use the in-process server unless you will not use the Reports
Servlet to deploy reports.

On the other hand, if you have a single machine configuration and that machine
fails, everything fails.

While there is a greater amount of network traffic when the Web server and the
application server are on different machines, you also benefit from the increase in
system resources, in the form of additional CPUs, more disk space, and more
available memory. Even in a multiple machine configuration, the in-process server
will aid performance by speeding communication between OracleAS Reports
Services components

Another possibility is placing your Web server and your application server each on
multiple machines. This will require additional configuration, but it allows you to
implement load balancing on the Web server.

Understanding the OracleAS Reports Services Architecture 1-11

Maintaining High Availability

If you will be deploying reports in multiple languages, you'll want to set up
multiple Reports Servers—one or more for each language.

1.4.4 Choosing Whether to Cluster Multiple Servers

A cluster is a virtual grouping of servers into a community for the purpose of
sharing request processing efficiently across members of the cluster. Unlike in
previous versions, clustering in OracleAS Reports Services is peer-level, rather than
master /slave. Peer-level clustering means that all members of the cluster take equal
responsibility for sharing and processing incoming requests. Incoming requests are
sent to the cluster as a whole rather than any one Reports Server in the cluster.
Thus, if one member is shut down, the other members carry on managing the
request load. There is no single-point-of-failure, where one machine's malfunction
brings the whole system down.

Each cluster member machine must be configured in more or less the same way to
allow a report to run on each server member in the same way. This means that
configuration files should have most of the same settings: a distinction can be
drawn between job-related settings and machine-related settings. Job-related
settings must be the same from cluster member to cluster member. Job-related
settings include settings related to security, data sources, and destination types.
Machine-related settings include such attributes as maxEngine, minEngine,
maxIdle, initEngine, and the like—these can be different from member to
member.

Additionally, for cluster members:
= Server-related environment variables should be set to the same values.
= TNS settings should point to the same databases in the same way.

For servers to be members of the same cluster, they must share a cluster name
(appended to each server's server name) and have the same public and private keys.

If your machines require different job-related configuration settings, you will not
benefit from clustering.

If you must set your servers up for different languages, you'll want to set up
multiple clusters: one or more for each language.

1.5 Maintaining High Availability

Oracle Application Server provides a number of high availability features to keep
its middle tier running even when particular servers or components fail. To take

1-12 Oracle Application Server Reports Services Publishing Reports to the Web

Maintaining High Availability

advantage of these high availability features, OracleAS Reports Services takes the
following actions when its infrastructure dependencies fail:

Retrying the OracleAS Portal database connection. If the connection from the
Reports Server to the OracleAS Portal database schema is dropped for some
reason, then the Reports Server tries to re-establish the connection before
generating an error. First, it retrieves the OracleAS Portal connection string from
the repository. With the OracleAS Portal connection string, the Reports Server
can attempt to reconnect. If reconnection is successful, you need not restart the
Reports Server. OracleAS Reports Services also supports cold failover and RAC
on the infrastructure and disaster recovery on the middle tier.

Retrying the Oracle Internet Directory connection. If the Oracle Internet
Directory connection becomes stale for some reason, the Reports Servlet and the
Reports Server try to re-establish the connection before generating errors. If
reconnection is successful, you need not restart the Reports Server.

See Also: For more information about high availability:

» Oracle Application Server 10g High Availability Guide

Understanding the OracleAS Reports Services Architecture 1-13

Maintaining High Availability

1-14 Oracle Application Server Reports Services Publishing Reports to the Web

2

Starting and Stopping OracleAS Reports
Services

This chapter provides information on starting and stopping OracleAS Reports
Services. It includes the following main sections:

s Starting and Stopping the Reports Server
s Verifying that the Oracle HTTP Server Is Running
s Verifying that the Reports Servlet and Server Are Running

Note: The examples in this chapter use ORACLE_HOME to denote
where the Oracle Application Server is installed. This includes
OracleAS Reports Services.

If you plan to run reports on the Web, you must first start the Oracle HTTP Server.
You'll find information on doing this in your Oracle Application Server
documentation. When you follow any of the procedures in this chapter, we assume
you have already started the Oracle HTTP Server.

2.1 Starting and Stopping the Reports Server

The best way to run the Reports Server is through the Oracle Process Manager and
Notification Server (OPMN). OPMN provides a centralized mechanism for
initializing, maintaining, and shutting down your Oracle HTTP Server, Oracle
Application Server Containers for J2EE processes, and OracleAS Reports Services.
For more information about configuring the Reports Server through OPMN, refer to
Chapter 3, "Configuring OracleAS Reports Services".

Starting and Stopping OracleAS Reports Services 2-1

Starting and Stopping the Reports Server

Note: Another advantage of configuring your Reports Server
through OPMN is that OPMN will automatically restart a Reports
Server if it crashes for some reason.

2.1.1 Starting, Stopping, and Restarting Reports Servers from Oracle Enterprise

Manager

When the standalone Reports Server is configured through OPMN, as it is by
default, you can start, stop, and restart it through Oracle Enterprise Manager.

Note: The standalone Reports Server is automatically configured
in OPMN and thus registered with Oracle Enterprise Manager
during installation of Oracle Application Server. If you add any
Reports Servers after installing Oracle Application Server, you
must register the new server(s) manually in the Oracle Enterprise
Manager’s targets.xml file and the Oracle Process Manager and
Notification Server’s opmn . xm1 file. For more information, see
Configuring Reports Server with the Oracle Process Manager and
Notification Server and Oracle Enterprise Manager. The in-process
Reports Server is not configured in OPMN.

To start, stop, or restart a Reports Server:

1.

In the Oracle Enterprise Manager Application Server Control, go to the Targets
> host name > Application Server > Reports Server for the Reports Server you
want to manage.

On the Reports Server's main page:

» Click Start to start the server.

» Click Stop to stop the server.

» Click Restart to restart the server.

These buttons appear on a Reports Server's main page according to the server's
current state:

= When the server is down, the Start and Stop buttons display.
= When the server is up, the Restart and Stop buttons display.

2-2 Oracle Application Server Reports Services Publishing Reports to the Web

Starting and Stopping the Reports Server

2.1.2 Starting, Stopping, and Restarting Reports Servers from the Oracle Process
Manager and Notification Server

You can use the following command lines to start, stop, and restart the Reports
Server if it was configured through the Oracle Process Manager and Notification
Server:

ORACLE_HOME/opmn/bin/opmnct]l startproc ias-component=reports_server_name
ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=reports_server_name
ORACLE_HOME/opmn/bin/opmnct]l restartproc ias-component=reports_server._name

The Reports Server name must match the name in the ias-component idin the
opmn . xml file. For more information about configuring the Reports Server through
the Oracle Process Manager and Notification Server, refer to Chapter 3,
"Configuring OracleAS Reports Services".

2.1.3 Alternative Methods of Starting and Stopping the Reports Server

If you choose not to run your Reports Server through OPMN and maintain it via
Oracle Enterprise Manager, you can use these older methods of running the Reports
Server:

» Installing and Starting the Reports Server as a Service (Windows)

» Starting the In-Process Server (Windows and UNIX)

» Starting the Reports Server from a Command Line (Windows and UNIX)
= Stopping the Reports Server

The following subsections tell you how to set up each of these options.

2.1.3.1 Installing and Starting the Reports Server as a Service (Windows)

By default, the Reports Server is installed as an in-process server, but, if you wish,
you can install the Reports Server as a service on a Windows machine. To do so, at
the command prompt enter:

rwserver -install server_name [batch=yes/no] [autostart=yes/no]
For batch, the default is no. Enter yes if you do not want to be prompted for
confirmation during installation. For autostart, the default is no. Enter yes if

you want the service to start automatically at reboot without requiring a user to
manually start the Reports Server.

Starting and Stopping OracleAS Reports Services 2-3

Starting and Stopping the Reports Server

Add the cluster name to this command if this server will be a member of a cluster.
For example:

rwserver -install server_name.cluster_name [batch=yes/no] [autostart=yes/no]

To learn more about clustering servers together, see Chapter 12, "Clustering Reports
Servers".

Note: To remove the Reports Server service, type the following at
a command prompt: rwserver -uninstall server_name.
Include the cluster name if the server is a member of a cluster, for
example: rwserver -uninstall server_name.cluster_
name.

To start your Reports Server on Windows:

1.

5.

On the machine that hosts the Reports Server, choose Start > Settings > Control
Panel and double-click Services in the Control Panel folder.

In the Services dialog box, choose Oracle ORACLE_HOME Reports
[repserver], where ORACLE_HOME is the home directory of the Reports
Server and repserver is the name of the Reports Server instance.

Click Startup. The Services dialog window displays.

In the Services dialog window, select This Account in the Log On As section,
and select an operating system user name and password. This specifies the user
account under which the server process is run.

Note: If you want to output to PostScript or to a printer, then
ensure the user running the Reports Server service has access to a
default printer. Do this by using a specific, real user who has
printer access when you set up the Log On As section of your
Windows service. Typically, the System Account does not have
access to printers.

For that matter, the user running the Reports Server service must
have access to anything the server may need. For example, the
server may need write access to another drive.

Set the Startup Type of the service to Automatic when the system is started.

2-4 Oracle Application Server Reports Services Publishing Reports to the Web

Starting and Stopping the Reports Server

6. Click OK.
7. Click Start.

A Service Control message box indicates when your Reports Server has started.

2.1.3.2 Starting the In-Process Server (Windows and UNIX)

If you are using the Reports Server as an in-process server (the default
configuration), sending a run report request starts the in-process Reports Server;
however, if you are sending a request via a command line, the servlet must be
invoked first using either the run report URL or the Web command URL. When you
have successfully started the servlet, this also means you have successfully started
the in-process Reports Server.

To directly start the in-process Reports Server from a URL, enter the following from
your Web browser:

http://your_machine name:your_port_num/reports/rwservlet/startserver

2.1.3.3 Starting the Reports Server from a Command Line (Windows and UNIX)

You can also start the Reports Server as a stand-alone server on Windows using the
following command:

rwserver server=server_name

Add the BATCH command line keyword to start up the server without displaying
dialog boxes or messages.

rwserver server=server_name batch=yes

You can run this command on UNIX using the following syntax:

rwserver.sh server=server. name

Or:

rwserver.sh server=server_name batch=yes

You can run this command from any directory as long as the shell script can be
reached in your PATH environment variable.

2.1.3.4 Stopping the Reports Server

This section discusses how to stop the Reports Server on Windows and UNIX.

Starting and Stopping OracleAS Reports Services 2-5

Starting and Stopping the Reports Server

» If the Reports Server is running on Windows as a service, stop it through the
Services control panel.

= If the Reports Server running on Windows through the rwserver executable,
or on UNIX through a shell script, rwserver. sh, click Shutdown in the
Reports Server dialog box.

= Launch Oracle Enterprise Manager, and navigate to the Reports Server you
wish to shut down; click Stop on the selected Reports Server’s home page. For
more information about Reports Server and Oracle Enterprise Manager, see
Chapter 19, "Managing and Monitoring OracleAS Reports Services".

s If the Reports Server is running as an in-process server through the Reports
Servlet, issue the following URL:

http://your_host_name:port_number/reports/rwservlet/stopserver

» If the Reports Server running from a command line on Windows or UNIX, at
the command prompt enter the following command:
For Windows and UNIX (on UNIX use rwserver. sh in lieu of rwserver):

The following command line shuts down the server normally (i.e., finishes
pending jobs and then stops):

rwserver server=gerver shutdown=normal authid=username/password

The following command line shuts down the server immediately (i.e., stops
without finishing pending jobs):

rwserver server=server shutdown=immediate authid=username/password

The following command line shuts down the server without displaying any
related messages:

rwserver server=gerver shutdown=normal authid=username/password batch=yes

The keywords used with the rwserver command are described in
Appendix A, "Command Line Options".

2-6 Oracle Application Server Reports Services Publishing Reports to the Web

Starting and Stopping the Reports Server

Note: authidis the Reports Server’s administration user name
and password. For a secure Reports Server, this user must be a
member of the RW_ADMINISTER privilege group in the Oracle
Internet Directory. For a non-secure Reports Server, this user is
defined in the identifier element. The following bullet contains
more information on how to stop a non-secure Reports Server using
the command line.

When you stop or shut down a non-secure Reports Server from the command
line using either rwserver.sh or rwrqgv. sh, you need to provide a valid
authid, which must match the value set in the identifier element in the
server configuration file. However, the identifier element is set during
Reports configuration while installing Oracle Application Server 10g and
encrypted by the Reports Server. You can reset the identifier element to any
value. Then, you also need to change the corresponding properties in
targets.xml for Oracle Enterprise Manager integration to work. Perform the
following steps:

1.

In the non-secure Reports Server’s configuration file, server._name.conf,
modify the identifier element to specify the username/passwordand
set the encrypted attribute to no. For example:

<identifier confidential="yes" encrypted="no">scott/tiger</identifier>

Stop and restart the Reports Server manually for the changes made to the
server_name.conf file to take effect.

Note: You must restart the Reports Server for any configuration
changes to take effect.

The Reports Server will now encrypt the username/password value of
the identifier element. After the Reports Server reads the changes made
in the server_name. conf file, the following commands should execute
successfully (with scott/tiger asthe username/password):

./rwserver.sh server=server_name shutdown=normal authid=scott/tiger
./rwrqgv.sh server=server_name shutdown=normal authid=scott/tiger

For Oracle Enterprise Manager integration, edit the targets.xml file (in
ORACLE_HOME/sysman/emd/) using any text editor, as follows:

Starting and Stopping OracleAS Reports Services 2-7

Verifying that the Oracle HTTP Server Is Running

* Search for target with TYPE="oracle_repserv" and DISPLAY_
NAME="Reports Server: server_name".

In the entry, set the UserName property and the Password property to
the same user name and password as in the identifier elementin
the server_ name. conf file. Set the ENCRYPTED attribute to FALSE
for these two properties.

* Restart Oracle Enterprise Manager for the changes to take effect.

You should now be able to stop and shut down a non-secure Reports Server
using Oracle Enterprise Manager.

Note: These steps are required only for a non-secure Reports
Server and not for secure Reports Servers..

2.2 Verifying that the Oracle HTTP Server Is Running

You can verify that your Oracle HTTP Server is running from Oracle Enterprise
Manager. For more information, refer to your Oracle Enterprise Manager
documentation.

Alternatively, you can verify that the Oracle HTTP Server is running, in your
browser, by navigating to the following URL:

http://server_name.domain:port_number/

2.3 Verifying that the Reports Servlet and Server Are Running
To verify that the Reports Servlet is running, navigate to the following URL:

http://your_machine name.domain_name:your_ port_number/reports/rwservlet/help

Note that the URL is case sensitive. If this URL executes successfully, you should get
a help page describing the rwservlet command line arguments.

To verify that the Reports Server is running, navigate to the following URL:

http://your_machine name.domain_name:your._port_
number/reports/rwservlet/showjobs?server=server_name

The server=server_name argument is not required if you are using the default
Reports Server name (rep_machine name) or the Reports Server specified in the
servlet configuration file, rwservlet.properties (ORACLE_

2-8 Oracle Application Server Reports Services Publishing Reports to the Web

Verifying that the Reports Servlet and Server Are Running

HOME\reports\conf\). If this URL executes successfully, you should see a listing
of the job queue for the specified Reports Server.

Note: You'll find more information about the servlet configuration
file in Chapter 3, "Configuring OracleAS Reports Services".

Starting and Stopping OracleAS Reports Services 2-9

Verifying that the Reports Servlet and Server Are Running

2-10 Oracle Application Server Reports Services Publishing Reports to the Web

3

Configuring OracleAS Reports Services

When you install Oracle Application Server, OracleAS Reports Services is
configured automatically for you. There will likely be adjustments you wish to
make to customize your environment, but you will not be required to set up the
entire environment, or even most of it.

This chapter is included largely for reference, should you wish to introduce
customizations or have a better understanding of the default configuration. It lists
services-related configuration files and describes in detail the content of most of
them. It includes the following main sections:

» OracleAS Reports Services Configuration Files

= Configuring Reports Server

s Configuring the Reports Servlet

» Setting the default printer for an in-process server
s Configuring the URL Engine

» Entering Proxy Information

» Configuring Reports Server with the Oracle Process Manager and Notification
Server and Oracle Enterprise Manager

= DISPLAY and Printer Dependencies on UNIX

Note: The examples in this chapter use ORACLE_HOME to denote
where the Oracle Application Server (Oracle Application Server) is
installed. Oracle Application Server includes OracleAS Reports
Services.

Configuring OracleAS Reports Services 3-1

OracleAS Reports Services Configuration Files

Another aspect of configuration is the setting of environment variables. These are
set for you automatically during installation. For reference, environment variables
are discussed in Appendix B, "Reports-Related Environment Variables".

3.1 OracleAS Reports Services Configuration Files

This section identifies the various configuration files associated with OracleAS
Reports Services. In most cases, you can leave these files untouched. Because they
control many aspects of your server environment, you could put that environment
at risk if you change a file in some unsupported way. Always keep a back-up of the
current version of any configuration file you plan to change.

The configuration files associated with OracleAS Reports Services relate to the
Reports Server and the Reports Servlet. They are listed and described in Table 3-1:

Note: The paths specified in Table 3-1 are the same for both
Windows and UNIX environments, though they are expressed here
using the Windows backslash convention (\).

Table 3-1 OracleAS Reports Services Configuration Files

Component Configuration File

Reports Server ORACLE_HOME\reports\conf\server name.conf

Use this XML file to define initial values for the Reports Server
Cache, the Reports Engine, and security; to register valid destination
types; to specify the information to be logged; and to set other
server-related values.

This file is automatically created when you start up the server. If you
want to rename your server and wish to keep custom configuration
settings you've entered into this file, you must first rename this file to
the new server name, then rename the server. Otherwise, the server
will create its own new default configuration file.

You'll find more information about this file in the section
Configuring Reports Server.

3-2 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Table 3-1 OracleAS Reports Services Configuration Files

Component Configuration File

Reports Server ORACLE_HOME\reports\dtd\rwserverconf.dtd

This file contains data type definitions for server_name.conf and
rwbuilder.conf elements and attributes. Data type definitions
lists all elements allowed in an associated XML file, the attributes
associated with those elements, and default values for those
attributes.

You'll find more information about this file in Reports Server
Configuration Elements (rwserverconf.dtd).

Reports Server ORACLE_HOME\reports\conf\rwbuilder.conf

Reports Builder Use this XML file to configure the Reports Server that is embedded in

Reports Builder and Reports Runtime. All run requests must go
through Reports Server, meaning that Reports Builder requires a
server to run reports. Reports Builder automatically starts a Reports
Server to handle its requests. When you run a report from the
Builder, this file provides the configuration for the in-process server
instance that is invoked. Like the server_name. conf file, this file
relies on the rwservercont . dtd file for its data type definitions,
though several elements do not apply, including the compatible,
persistFile, and security elements.

Because this file shares most configuration elements found in
server_name.conf, you'll find the information you need for
configuring this file in Configuring Reports Server.

Reports Servlet ORACLE_HOME\reports\conf\rwservlet.properties

Among other things, this file is where you specify the location and
filename of the Reports Servlet key map file (cgicmd.dat) and
specify whether you will use the Reports Servlet's in-process server.

You'll find more information about this file in Configuring the
Reports Servlet.

3.2 Configuring Reports Server

The Reports Server component of OracleAS Reports Services is configurable via the
XML files server_name.conf and rwbuilder. conf, located in the following
directory (on both Windows and UNIX):

ORACLE_HOME\reports\conf\server_name or rwbuilder.conf

Both files are supported by the rwserver. template file, which contains default
server configuration values on both Windows and UNIX.

Configuring OracleAS Reports Services 3-3

Configuring Reports Server

Note: The rwserver.template file is located in the following
directory, ORACLE_HOME\reports\conf\.

The server._name.conf file is the default server configuration file. The
rwbuilder. conf file configures the server instance used in-process by Reports
Builder.

The server._name.conf and rwbuilder.conf files are nearly identical. The only
difference between them is that rwbuilder.conf does not use the compatible,
persistFile, or security configuration elements, described later in this section,
and server_name.conf does.

Both of these files are created automatically, under the following circumstances:

s The server. _name. conf file is created the first time you start Reports Server.
It is based on the rwserver. template file.

s The rwbuilder. conf file is created the first time you run a report through
Reports Builder. It also is based on the rwserver. template file.

= After you rename the server, a new server._name.conf file is created the next
time you start the server. The new configuration file is based on the default
values present in the rwserver. template file. If you wish to retain the
configuration associated with the old server name, you must rename your
server_ name.conf file to the new server name (new_server name.conf),
before starting the renamed server.

» If you delete one of these files, the deleted file is recreated the next time you
start the server. The new file is based on the default values present in the
rwserver . template file.

To explain the syntax and values allowed in these files we'll look at the
rwserverconf .dtd file, located in the following directory (on both Windows and
UNIX):

ORACLE_HOME\reports\dtd\rwserverconf.dtd

3.2.1 Reports Server Configuration Elements (rwserverconf.dtd)

The following example of rwserverconf . dtd illustrates how it is used to
configure various aspects of the Reports Server.

<!l--

Copyright 2003 Oracle Corp.

3-4 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

500 Oracle Parkway, Redwood Shores, CA 94065, U.S.A. All rights reserved.

This is the DTD defining the Reports Server Version 9i Configuration file

(XML) format/syntax.
-=>

<!ELEMENT server (compatible?,
cache?,
engine+,
security*,
destination*,
job+,
notification*,
log?,
jobStatusRepository?,
trace?,
connection?,
queue?,
persistFile?,
identifier?,
environment*,
pluginParam*) >

<!ATTLIST server

version CDATA #IMPLIED>

<!ELEMENT cache (property*)>
<!-- class specifies fully qualified java class name which implements
oracle.reports.cache.Cache interface -->
<!ATTLIST cache
class CDATA "oracle.reports.cache.RWCache">

<!ELEMENT engine (property*)>

<!-- class specifies full qualified java class name which starts engine -->

<!ATTLIST engine
id ID #REQUIRED
class CDATA #REQUIRED
classPath CDATA #IMPLIED
initEngine CDATA "l
maxEngine CDATA LN
minEngine CDATA "0
engLife CDATA "50"
maxIdle CDATA "30"
callbackTimeOut CDATA "60000"
jvmOptions CDATA #IMPLIED

Configuring OracleAS Reports Services

3-5

Configuring Reports Server

engineResponseTimeOut CDATA "0"
defaultEnvId CDATA #IMPLIED>

<!ELEMENT security (property*)>
<!-- class specifies full qualified java class name which implements
oracle.reports.server.Security interface -->
<!ATTLIST security
id ID #REQUIRED
class CDATA #REQUIRED>

<!ELEMENT destination (property*)>
<!-- class specifies full qualified java class name which subclass
oracle.reports.server.Destination abstract class -->
<!ATTLIST destination
destype ID #REQUIRED
class CDATA #REQUIRED>

<!ELEMENT job EMPTY>
<IATTLIST job

jobType CDATA "report"
engineId IDREF #REQUIRED
securityId IDREF #IMPLIED>

<!ELEMENT notification (property*)>
<!ATTLIST notification
id CDATA "mailNotify"
class CDATA #REQUIRED>

<!ELEMENT log EMPTY>
<!ATTLIST log
option (allJobs|succeededJobs | failedJobs [noJob) "noJob">

<!ELEMENT jobStatusRepository (property*)>
<l-- class specifies full qualified java class name which implements
oracle.reports.server.JobRepository interface -->
<!ATTLIST jobStatusRepository
class CDATA "oracle.reports.server.JobRepositoryDB">

<!ELEMENT queue EMPTY>
<!ATTLIST queue
maxQueueSize CDATA "10000">

<!ELEMENT connection (orbClient*, cluster?)>

<!ATTLIST connection
maxConnect CDATA "20"

3-6 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

idleTimeOut CDATA "10">

<!ELEMENT orbClient EMPTY>

<!ATTLIST orbClient
id ID #REQUIRED
publicKeyFile CDATA #REQUIRED>

<!ELEMENT cluster EMPTY>

<!ATTLIST cluster
publicKeyFile CDATA #REQUIRED
privateKeyFile CDATA #REQUIRED>

<!ELEMENT persistFile EMPTY>
<!ATTLIST persistFile
fileName CDATA #IMPLIED>

<!ELEMENT trace EMPTY>
<!ATTLIST trace
traceFile CDATA #IMPLIED

traceOpts (trace_prf|trace_brk|trace_app|trace_pls|trace_sql]|
trace_tms|trace_dst|trace_log|trace_err|trace_inf]|
trace_dbg|trace_wrn|trace_sta|trace_exc|trace_all) "trace_

all"
traceMode (trace_replace|trace_append) "trace_replace"
traceModule (all|server|engine) "all">

<!ELEMENT compatible EMPTY>
<!ATTLIST compatible
version (61) 61>

<!ELEMENT identifier (#PCDATA)>
<!ATTLIST identifier
confidential (yes|no) "yes"
encrypted (yes|no) "no">

<!ELEMENT environment (envVariable*)>
<!ATTLIST environment
id ID #REQUIRED>

<!ELEMENT envVariable EMPTY>

<!ATTLIST envVariable
name CDATA #REQUIRED
value CDATA #IMPLIED>

<!ELEMENT pluginParam (#PCDATA)>

Configuring OracleAS Reports Services

3-7

Configuring Reports Server

<!ATTLIST pluginParam
name D #REQUIRED
type (text|file|url) ‘"text">

<!ELEMENT property EMPTY>
<!ATTLIST property

name CDATA #REQUIRED
value CDATA #REQUIRED
confidential (yes|no) "o
encrypted (yes|no) "no">

The rwserverconf . dtd file provides the following elements for configuring the
Reports Server:

= server
= compatible

= cache

= engine

= security

= destination

= job

= notification

= log

= jobStatusRepository

m trace

= connection

= queue

= persistFile

» identifier

= pluginParam

= environment

Note that these are XML elements, and XML is case sensitive.

Additionally, when you add any of these elements to the server configuration file
(server_name.conf), you will save yourself potential error messages from any

3-8 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

XML editor if you use the order of the elements shown in the rwserverconf.dtd
(ORACLE_HOME\reports\dtd\). The configuration file will work regardless of
the order, but it will not work if you fail to follow the case specified in
rwserverconf.dtd.

These elements along with their related attributes and sub-elements are discussed
in the following subsections.

3.2.1.1 server

Example

<server>
[One or more configuration specifications]
</server>

Required/Optional

ired. i server i
Required. You can have a maximum of one open and close elementina
given configuration file.

Description

The server element opens and closes the content area of the server configuration
file. In terms of the file's hierarchy, all the other elements are subordinate to the
server element.

3.2.1.2 compatible

Example

<compatible version="6i"/>

Required/Optional

Optional. You can have a maximum of one compatible element in your server
configuration file.

Description

The compatible element is available for backward compatibility with Reports 6i
clients (RWCLI60, RWCGI60, RWQMU60.EXE, RWRQM60.EXE, RWRQV60.EXE, 6i
Forms). When compatible is set to 6i, Reports Server will make use of an
executable file, named rwproxy, that listens for requests from a 6i client and
forwards them to a 9i server.

Configuring OracleAS Reports Services 3-9

Configuring Reports Server

Compatible has one attribute: version, described in Table 3-2.

Table 3-2 Attributes of the compatible element

Attribute Valid values Description

version 61 Setting version to 6i enables Reports 6i clients to run
under Oracle Reports. When versionis set to 61,
versions earlier than 6 may also run under Oracle
Reports, but they are not certified to do so and are not
supported by Oracle.

If you use the compatible element, you must also have an entry for Reports
Server in the tnsnames . ora file as you would have had for the 6i version of
Reports Server. The installer configures the tnsnames.ora file for the default
Reports Server, i.e., rep_machine name.

Note: The tnsnames.ora file is located in the following
directory on your Oracle Application Server:

ORACLE_HOME/network/admin

For example:

testsvr.world = (ADDRESS=

(PROTOCOL=tcp)

(HOST=testhost .mydomain.com)

(PORT=1950)

)
You can bypass this requirement by turning compatibility off. To turn compatibility
off, remove the compatible element from the Reports Server configuration file.

Note: If compatibleissetto 61, and you have a TNS entry for
Reports Server in your tnsnames . ora file, you should include the
cluster name if the server is a member of a cluster. If you use a
cluster name, you should exclude the default domain that was
specified in the sglnet . ora file. For example:

myserver.world (standalone server with default domain world)
myserver.clusterl (server part of clusterl)
myserver.clusterl.world (invalid entry)

3-10 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

3.2.1.3 cache

Example
<cache class="oracle.reports.cache.RWCache”>

<property name="cacheSize" value="50"/>

<property name="cacheDir" value="D:\orawin\reports\server\cache"/>
</cache>

Required/Optional

Optional. You can have a maximum of one cache element in your server
configuration file. If no cache element is specified, the default is used
(oracle.reports.cache.RWCache).

Description

The cache element is available for specifying the Java class that defines the server's
cache implementation. You can use the default cache Java class or develop your
own implementation through the OracleAS Reports Services Cache API.

Note: Look for information about the OracleAS Reports Services
APIs on the Oracle Technology Network,
(http://otn.oracle.com).

The cache element has one attribute: class, described in Table 3-3.

Table 3-3 Attributes of the cache element

Attribute Valid values Description
class see the Description ~ Default: oracle.reports.cache.RWCache
column

A fully qualified Java class that implements the
oracle.reports.cache.Cache interface.

You can also enter from zero to multiple properties under the cache element.
Properties are name/value pairs recognized and understood by the implementation
class you register under cache. For example, if you use the default cache Java class
that is provided with OracleAS Reports Services, your configuration entry might
look like this:

<cache class="oracle.reports.cache.RWCache”>
<property name="cacheSize" value="50"/>

Configuring OracleAS Reports Services 3-11

Configuring Reports Server

<property name="cacheDir" value="D:\orawin\reports\server\cache"/>
</cache>

In the preceding example, cacheSize is measured in megabytes, and cacheDir,
which points to the location of the cache, is specified for a Windows platform. On
UNIX, use UNIX standards, for example:

<property name="cacheDir" value="$SORACLE_HOME/reports/server/cache"/>

The default cache Java class also provides the following properties:

s maxCacheFileNumber is the maximum number of files allowed in the cache.
For example:

<property name="maxCacheFileNumber" value="250"/>

» ignoreParameters lists any report parameters you want to be ignored when
Reports Server constructs the cache key. (The cache key is used by Reports
Server to determine if an incoming job request matches existing output in the
cache.)

<property name="ignoreParameters" value="paraml,param2"/>
3.2.1.4 engine

Example
<engine id="rwEng” class="oracle.reports.engine.EngineImpl” initEngine="1"
maxEngine="5" minEngine="1" engLife="50" maxIdle="15" callbackTimeOut="60000">
<property name="sourceDir" value="D:\orawin\reports\myReport"/>
<property name="tempDir” value="D:\orawin\reports\myTemp” />
</engine>

Required/Optional

Required. You must have at least one engine element in your configuration file,
and you can have more than one.

Description

The engine element identifies the fully qualified Java class that starts an engine
and provides a number of attributes that set operational controls on the engine. You
can use the default engine provided with OracleAS Reports Services
(oracle.reports.engine.EngineImpl) or develop your own implementation
through the OracleAS Reports Services Engine API. As an example of a custom

3-12 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

engine, you may have developed an engine to execute an operating system
command should an event occur in your database.

Note: Look for upcoming information about Oracle Reports APIs
on the Oracle Technology Network, (http://otn.oracle.com)

The engine element has several attributes, described in Table 3—4.

Table 3—4 Attributes of the engine element

Attribute Valid values Description

id string A keyword, unique within a given configuration
XML file, that identifies a particular engine
element. This can be a text string or a number, for
example:

id="rwEng"

class see the Default:
Description oracle.reports.engine.EngineImpl

column A fully qualified Java class that implements two

interfaces: oracle.reports.engine.Engine
and
oracle.reports.engine.EngineInterfac
e.

classPath string The directory path to the Java class specified in
the class attribute. To specify the directory, use
the conventions required by the server platform,
for example:

Windows:

classPath="%ORACLE_
HOME%\myEngine.jar"

UNIX:

classPath="$ORACLE_
HOME/myEngine.jar”

initEngine number Default: 1

The number of engines you want Reports Server
to start at initialization.

maxEngine number Default: 1

The maximum number of this type of engine that
can run on the server.

Configuring OracleAS Reports Services 3-13

Configuring Reports Server

Table 3—4 Attributes of the engine element

Attribute

Valid values Description

minEngine

engLife

maxIdle

callbackTimeOut

number

number

number

number

Default: 0

The minimum number of this type of engine that
is maintained by the server.

Default: 50

The number of jobs the engine can run before the
engine is terminated, and, if necessary, a new
engine is started. This feature is available to
thwart memory leaks.

Default: 30

The number of minutes of allowable idle time
before the engine is shut down, provided the
current number of engines is higher than
minEngine.

For example, if minEngine is 0, maxIdle is 30,
and one engine has been running but unused for
30 minutes, that engine will shut down. If, under
the same conditions, minEngine is 1, the active
engine will not shut down, even if it has been idle
for 30 minutes.

Default: 60000

The number of milliseconds of allowable waiting
time between when the server launches an engine
and the engine calls the server back.

If the machine that hosts the server is very fast,
you can reduce this number for faster
performance.

3-14 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Table 3—4 Attributes of the engine element

Attribute

Valid values Description

defaultEnvId

engineResponseTime
Out

jvmOptions

string

number

string

Is an optional attribute. It specifies the default
environment with which Reports Server starts an
engine. The attribute takes an id that is associated
with an environment element in the server
configuration file.

If you specify defaultEnvId, Reports Server
starts an engine with the environment variables
specified in the referenced environment element
plus whatever environment variables that
Reports Server is running under.

If you do not specify defaultEnvId, Reports
Server spawns engines with the environment
settings in force at startup time.

For more information refer to Dynamic
Environment Switching.

Default: null (no timeout)

The maximum amount of time (in minutes) for an
engine to update the status of the job while
running a report in your environment. If it takes
longer than this amount of time to update the job
status for some reason (e.g., due to the engine
hanging or a long blocking SQL query), Reports
Server terminates the job.

The Java Virtual Machine (JVM) options to be
used by Reports Server when it starts an engine
in the JVM. For example, you can use this
attribute to specify the starting heap size and
maximum heap size for the JVM, additional
classpath entries, and so on.

The Reports Engine running in the server
environment ignores the value in the REPORTS_
JVM_OPTIONS environment variable. You need
to add the value of the environment variable to
jvmoptions attribute in order to let the Reports
Engine pick up the JVM options.

Configuring OracleAS Reports Services 3-15

Configuring Reports Server

Table 3—4 Attributes of the engine element

Attribute Valid values Description

keepConnection YES | NO Default: YES

The keepConnection property is used by the
default runtime engine implementation, i.e.,
oracle.reports.engine.EngineImpl

YES The default runtime engine retains the
existing database connection information

NO The default runtime engine discards the
existing database connection information and
reconnects with the userid specified for the job

The keepConnection property does not affect
reports deployed using either rwbuilder or
rwrun.

This property will be migrated if a server.
name . conf file used in previous versions (e.g.,
9.0.2.x) runs in the current environment.

You can also enter from zero to multiple properties under the engine element. The
only requirement is that they be name /value pairs recognized by the Java class that
implements the Reports Engine. For example, if you use the default engine Java
class that is provided with OracleAS Reports Services, your engine configuration
entry might look like this:

<engine id="rwEng” class="oracle.reports.engine.EngineImpl” initEngine="1"
maxEngine="5" minEngine="1" engLife="50" maxIdle="15" callbackTimeOut="60000">
<property name="sourceDir" value="D:\orawin\reports\myReport"/>
<property name="tempDir” value="D:\orawin\reports\myTemp” />
</engine>

In this example, sourceDir and tempDir are set up for a Windows environment
(UNIX would be sourceDir="ORACLE_HOME/reports/myReport” and
tempDir="ORACLE_HOME/reports/myTemp”). The sourceDir property
identifies the default directory you will use for report definition files. It overrides
path information specified in the REPORTS_PATH environment variable.

The tempDir property identifies the name and location of the temporary directory
OracleAS Reports Services will use for its temporary files. If this value is
unspecified for a default engine, OracleAS Reports Services will use the temporary
directory specified in the REPORTS_TMP environment variable. If REPORTS_TMP is
also not specified, OracleAS Reports Services will use your operating system's
default temporary directory.

3-16 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

The classPath attribute is not specified because this configuration uses the
default engine class.

3.2.1.5 security

Example

<security id="rwSec” class="oracle.reports.server.RWSecurity”>
<!--property name="securityUserid" value="portal_db username/portal_
password@portal_db_connection" confidential="yes” encrypted="no"/-->
<property name="oidEntity" value="oidentity name"/>

</security>

Note: In releases prior to 10g (9.0.4), the security element was
specified differently. In 10g (9.0.4) and later releases, the old
property specification, securityUserid, is still provided but
commented out. You only need to use securityUserid if you
want to connect to an OracleAS Portal instance other than the
default instance, which is installed with the Oracle Application
Server infrastructure.

Required/Optional

Optional. If you do not enter a security element in the configuration file, Reports
Server is not secure. You can have from zero to multiple security elements in
your configuration file.

Description

The security element identifies the fully qualified Java class that controls server
access. You can use the default security class provided with OracleAS Reports
Services, which relies on security features available through OracleAS Portal
(included with Oracle Application Server), or develop your own implementation
through the Reports Server Security APL

Note: Look for information about Oracle Reports APIs on the
Oracle Technology Network, (http://otn.oracle.com).

Security attributes are described in Table 3-5.

Configuring OracleAS Reports Services 3-17

Configuring Reports Server

Table 3-5 Attributes of the security element

Attribute Valid values Description

id string A keyword, unique within a given
configuration XML file, that identifies a
particular security element. This can be a text
string or a number, for example:

id="rwSec"

class see the Description Default:
column oracle.reports.server.RWSecurity

A fully qualified Java class that implements
Reports Server Security Java interface
(oracle.reports.server.Security). The
default relies on security features available
through OracleAS Portal (included with Oracle
Application Server).

You also have the option of entering multiple properties under the security
element. The only requirement is that they be name/value pairs recognized by the
Java class that implements Reports Server security. For example, if you use the
default security Java class that is provided with OracleAS Reports Services, your
security configuration entry might look like this:

<security id="rwSec” class="oracle.reports.server.RWSecurity”>
<!--property name="securityUserid" value="portal_db username/portal_
password@portal_db_connection" confidential="yes” encrypted="no"/-->
<property name="oidEntity" value="oidentity_name"/>

</security>

In this example, the o1dEnt ity property illustrates the configuration for 10g (9.0.4)
and later. The value of oidEntity is set by the Installer upon installation. Reports
Server uses this entity to connect to the Oracle Internet Directory. Components of
the Oracle Application Server can all connect to the Oracle Internet Directory, but
each component may have different privileges in the directory. Hence, each
component needs to identify itself via its own entity name to the Oracle Internet
Directory when it connects. The OracleAS Reports Services entity is of the following
format:

reportsApp_hostname_GUID

For example:

reportsApp_testhost.mydomain.com_BBEFDCDAC2343600E0340800020C7BBCC

3-18 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

The commented out property, securityUserid, illustrates the old method of
specifying security. securityUserid provides the connection information to
enable the Reports Server access to OracleAS Portal security features. The property
attributes confidential and encrypted are available for encrypting the
information within the property. Once the confidential="yes" and
encrypted="no" attributes are entered, the property value will be encrypted
automatically by Reports Server after you restart the server. When you next open
the configuration file, the password information will be scrambled, and encrypted
will be set to yes. If you forget the password you entered in the configuration file,
you can delete the property and reenter it with new values, making sure to set
encrypted to no.

Note: For securityUserid database connection strings, both
the thin (testhost .mydomain.com:1521:iasdb) and Oracle
Call Interface (scott/tiger@ordb) JDBC formats are supported.

When setting up security in a clustered environment, each cluster member should
use the same security policy to prevent users from experiencing unexpected
behavior.

3.2.1.6 destination

Example
<destination destype="oraclePortal”
class="oracle.reports.server.DesOraclePortal”>
<property name="portalUserid" value="portal_db_username/portal_
password@portal_db_connection" confidential="yes” encrypted="no"/>
</destination>

Required/Optional

Optional. If you do not enter a destination element in the server configuration
file, the provided destination classes will be used (printer, mail, file, cache, and
OracleAS Portal—which is an exception in that it requires an entry in the server
configuration file so that you may specify the userid and password the server will
use to log in to the portal). You can have from zero to multiple destination
elements in your server configuration file.

Configuring OracleAS Reports Services 3-19

Configuring Reports Server

Description

Use the destination element to register destination types with the server. There
is no need, with the exception of OracleAS Portal, to register provided (default)
destinations, such as printers, e-mail, files, or cache. You must register the
destination types you create through the OracleAS Reports Services Destinations
APIL.

Note: Look for information about Oracle Reports APIs on the
Oracle Technology Network, (http://otn.oracle.com).

Configuring destinations is discussed in detail in Chapter 7,
"Configuring Destinations for OracleAS Reports Services".

Destination attributes are listed and described in Table 3-6.

Table 3—-6 Attributes of the destination element

Attribute Valid values Description

destype string Identifies the destination type, for example:

destype="printer”

class See the Description A fully qualified Java class that is a subclass of
column Reports Server Destination Java class
(oracle.reports.server.Destination).
Allowable values include:

oracle.reports.server.DesMail
oracle.reports.server.DesFile
oracle.reports.server.DesPrinter

oracle.reports.server.DesOraclePort
al

You also have the option of entering multiple properties under the destination
element. The only requirement is that they be name/value pairs recognized by the
Java class that is a subclass of the Reports Server Destination Java class. For
example:

<destination destype="oraclePortal”
class="oracle.reports.server.DesOraclePortal”>
<property name="portalUserid" value="portal_ db_username/portal_
password@portal_db_connection" confidential="yes” encrypted="no"/>
</destination>

3-20 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

In this example, the property provides connect information to enable Reports Server
to access OracleAS Portal. The confidential and encrypted attributes are
included to automatically invoke encryption on the portalUserid value the next
time Reports Server is started.

Note: For portalUserid database connection strings, both the
thin (testhost .mydomain.com:1521:iasdb) and Oracle Call
Interface (scott/tiger@ordb) JDBC formats are supported.

Should your destination implementation require additional information, specify the
information in the pluginParam element.

3.2.1.7 job

Example

<job jobType="report” engineld="rwEng” securityId="rwSec”/>

Required/Optional
Required. You must have at least one job element and can have more than one.

Description

The job element works in collaboration with the engine and security elements.
Use job to identify a job type and specify which engine and which security
implementation should be used with that type of job. For example, you may have
developed an engine to execute an operating system command should an event
occur in your database. Using OracleAS Reports Services's event-driven publishing
API, you identify the event as a specific job type. When the event occurs, the job
type information is sent to Reports Server, which looks up the job type under the
job element in its configuration file, and follows the direction provided in the
element's attributes to the engine (and, if applicable, security implementation)
specified for that type of job.

Attributes of the job element are listed and described in Table 3-7.

Configuring OracleAS Reports Services 3-21

Configuring Reports Server

Table 3-7 Attributes of the job element

Attribute Valid values Description

jobType string Default: report

Describes the type of job to be processed by the
server. You can enter any type of job, as long as
Reports Server has an engine to process it.

engineId ID reference References the ID entered for the engine that will
process this job type. Available IDs are specified
under the engine element in the server
configuration file using the id attribute. The id is
a unique keyword (that you devise) within a given
configuration XML file that identifies a particular
engine.

securityId ID reference References the ID entered for the security
mechanism that will be applied to this job type.
Available IDs are specified under the security
element in the server configuration file.

3.2.1.8 notification

Example

<notification id="tellMe02” class="oracle.reports.server.MailNotify”/>

Required/Optional

Optional. If you do not enter a notification element in the configuration file, the
notification function is disabled. You can have from zero to multiple
notification elements in your configuration file.

Description

Use the notification element to specify a Java class that defines the type of
notification that should be sent when a job succeeds or fails. You can use the default
notification class, which provides for notification via e-mail, or design your own
with the Oracle Reports Notification API.

Note: Look for upcoming information about Oracle Reports APIs
on the Oracle Technology Network, (http://otn.oracle.com).

Attributes of the notification element are listed and described in Table 3-8.

3-22 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Table 3-8 Attributes of the notification element

Attribute Valid values Description

id string Default: mailNotify

A keyword, unique within a given configuration
XML file, that identifies a particular
notification element. This can be a text string
or a number, for example:

id="tellMeO1"

class See the Description ~ Default:
column oracle.reports.server.MailNotify

A fully qualified Java class that implements the
Reports Server Notification Java class
oracle.reports.server.Notification.

If you use the default email notification implementation, use the pluginParam
element to specify the outgoing SMTP mail server to be used to send the mail. Use
the runtime commands notifysuccess and notifyfailure to specify the email
address where notification should be sent (for more information, see
Appendix A, "Command Line Options"). For example, you can include these
commands in your runtime URL:

notifysuccess=recipient's e-mail address¬ifyfailure=recipient's e-mail
address

With the default e-mail implementation, you can specify only one address for each
type of notification. You can specify one or both types of notification. You
can send notification each to the same address or each to a different addresses.

A notification element in the server configuration file might look like this:

<notification id="mailNotify" class="oracle.reports.server.MailNotify>
<property name="succNoteFile" value="succnote.txt"/>
<property name=failNoteFile value="failnote.txt"/>

<notification/>

With the default notification implementation, it’s not necessary to specify a path to
the success or failure text files, provided they’re in the default location: ORACLE_
HOME\reports\templates. Otherwise, enter the directory path along with the
filenames according to the requirements of the platform that hosts the server.

Configuring OracleAS Reports Services 3-23

Configuring Reports Server

3.2.1.9 log

Example
<log option="allJobs”/>

Required/Optional

Optional. You can have a maximum of one 1og element in your server
configuration file.

Description

The 1og element is available for backward compatibility. It invokes the generation
and population of a reports log file. The log file is automatically generated and
stored in the following path (the path is the same for Windows and UNIX):

ORACLE_HOME\reports\server_ name\rwserver.log
The 1log element has one attribute: option, described in Table 3-9.

Table 3-9 Attributes of the log element

Attribute Valid values Description

option allJobs Default: noJob

succeededJobs Describes the type of jobs to be included in the

, log, in addition to default server activities that are
failedJobs
logged. Choose from:
noJob allJobs: all jobs will be logged
succeededJobs: only jobs that ran successfully
will be logged

failedJobs: only jobs that failed will be logged
noJob: no jobs will be logged

3.2.1.10 jobStatusRepository

Example

<jobStatusRepository class="oracle.reports.server.JobRepositoryDB”>
<property name="repositoryConn” value="scott/tiger@orcl” confidential="yes”
encrypted="no"/>

</jobStatusRepository>

3-24 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Required/Optional

Optional. You can have a maximum of one jobStatusRepository elementin
your server configuration file.

Description

The jobStatusRepository element specifies the Java class that implements a job
status repository. It provides an additional means (over the persistFile element)
of storing job status information.

The persistFileis a binary file and, therefore, cannot be used to publish job
status information within your application. The jobStatusRepository provides
a means of including status information in your application by providing additional
ways of storing it.

The default class, oracle.reports.server.JobRepositoryDB, stores
information in a database. Use the Oracle Reports APIs to create your own
implementation of the Reports Server Job Repository interface
(oracle.reports.server.JobRepository) that stores information wherever
you wish.

Note: Look for information about OracleAS Reports Services APlIs
on the Oracle Technology Network, (http://otn.oracle.com).

The jobStatusRepository element has one attribute: class, described in
Table 3-10.

Table 3—10 Attributes of the jobStatusRepository element

Attribute Valid values Description
class see the Description ~ Default:
column oracle.reports.server.JobRepositoryDB

A fully qualified Java class that implements the
Reports Server Job Repository Java class
(oracle.reports.server.JobRepository).

The jobStatusRepository element allows for zero or multiple properties for
passing options into the repository. The only requirement is that the class you
specify in the server configuration file must recognize the name/value pairs you
introduce.

Configuring OracleAS Reports Services 3-25

Configuring Reports Server

The jobStatusRepository element might look like this in your server
configuration file:

<jobStatusRepository class="oracle.reports.server.JobRepositoryDB”>
<property name="repositoryConn” value="scott/tiger@ORCL” confidential="yes”
encrypted="no"/>

</jobStatusRepository>

In this example, the value for the repositoryConn property is the login for access
to the database that stores the repository. The confidential and encrypted
attributes are used to invoke encryption on the login information once Reports
Server is restarted.

Note: For repositoryConn database connection strings, both
the thin (testhost .mydomain.com:1521:1iasdb) and Oracle
Call Interface (scott/tiger@ordb) JDBC formats are supported.

3.2.1.11 trace

Example

<trace traceFile="neptune.trc” traceOpts:”trace_prf|trace_dbg|trace_wrn”
traceMode="trace_append” traceModule="server"/>

Required/Optional

Optional. You can have a maximum of one trace element in your server
configuration file.

Description

Use the trace element to create a file for tracing your report's execution and to
specify the objects and activities you want to trace. The trace element controls
tracing only for the server and the engine.

Note: Tracing for the servlet and JSP are configured in the servlet
configuration file, rwservlet .properties, discussed in
Configuring the Reports Servlet. Tracing for an individual report
can be built into the Reports Runtime command line, discussed in
Appendix A, "Command Line Options".

Trace attributes are listed and described in Table 3-11.

3-26 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Table 3—-11 Attributes of the trace element

Attribute Valid values Description

traceFile * . trc Default: server name.trc

The filename of the trace file. If no path is specified,
the trace file will be in the following directory on
both Windows and UNIX:

ORACLE_HOME/reports/logs/server_name/

traceOpts see Table 3-12 Default: trace_all

This attribute defines the activities that will be traced.
You can have one or more traceOpt values. For
example:

<traceOpts="trace_prf|trace_brk”>

Separate values with a vertical bar (1).Valid values
are listed and described in Table 3-12.

traceMode trace_replace Default: trace_replace

trace_append Defines whether new trace information will either
overwrite the existing trace file (trace_replace),
or be added to the end of the trace, leaving existing
trace information intact (trace_append).

traceModule all By default, tracing tracks both server and engine

events. Tracing engine events can cause performance

problems in some cases. Use traceModule to track

engine only server events (server), only engine events
(engine), or both (all). For example:

server

<trace traceOpts="trace_all"
traceModule="server"/>

If traceModule is not specified, the both server and
engine traces are turned on.

Table 3-12 Valid values for the traceOpts attribute

Value Description

trace_prf Logs server and engine profile
trace_brk Lists debug breakpoints

trace_app Logsinformation on all report objects
trace_pls Logs information on all PL/SQL objects

trace_sgl Logsinformation on all SQL

Configuring OracleAS Reports Services 3-27

Configuring Reports Server

Table 3-12 Valid values for the traceOpts attribute

Value Description

trace_tms Enters a timestamp for each entry in the trace file

trace_dst Lists distribution lists

Use this value to determine which report section was sent to
which destination.

trace_log Duplicates log information in your trace file

If you have specified a 1og element in your server
configuration file, in addition to using the trace element, this
value will cause information that is sent to the log file to also
be sent to the trace file.

trace_err Lists server error messages

trace_inf This is a catch-all option that dumps any information not
covered by the other options into the trace file

trace_dbg Logs debug information
trace_wrn Lists server warning messages

trace_sta Provides server and engine state information, such as initialize,
ready, run, and shut-down

trace_all Logs all possible server and engine information in the trace file

trace_exc Lists all exceptions

When you specify multiple trace elements, separate them with vertical bars. For
example:

traceOpts="trace_prf|trace_dbg|trace_wrn”
3.2.1.12 connection

Example

<connection maxConnect="50" idleTimeOut="20">
<orbClient id="RWClient” publicKeyFile="clientpub.key”/>
<cluster publicKeyFile="$%$0ORACLE_HOME%\reports\server\serverpub.key”
privateKeyFile="%0RACLE_HOME%\reports\server\serverpri.key”/>
</connection>

3-28 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Required/Optional

Optional. If you do not specify a connection element in your server configuration
file, default values will be used (see Table 3-13). You can have a maximum of one
connection element in your server configuration file.

Description

The connection element defines the rules of engagement between the server and
the clients connected to it.

Connection attributes are listed and described in Table 3-13.

Table 3-13 Attributes of the connection element

Attribute Valid values Description

maxConnect Number Default: 20

The maximum number of requests that the server can
service simultaneously. Requests in excess of the
maxConnect value return a Java exception.

idleTimeOut Number Default: 15

Allowable amount of time in minutes the connection
can be idle.

In addition to its attributes, connection has two sub-elements: orbClient and
cluster.

Use orbClient to provide the name of the public key file that the client will use to
connect to Reports Server. Reports Server uses the public key to verify the signature
sent by the client when it tries to connect to Reports Server. Reports Server only
accepts clients whose signature can be verified through this public key. You can
have from zero to multiple orbClient sub-elements in your server configuration
file.

The orbClient element attributes are listed and described in Table 3-14.

Table 3-14 Attributes of the orbClient element

Attribute Valid values Description

id string Default: RWClient

Identifies the Reports Client to be served by the
public and private key.

Configuring OracleAS Reports Services 3-29

Configuring Reports Server

Table 3-14 Attributes of the orbClient element

Attribute Valid values Description

publicKeyFile filename.key Default: clientpub.key

Identifies the public key file that the client will use
to connect to Reports Server. Reports Server uses
the public key to verify the signature sent by the
client when it tries to connect to Reports Server.
Reports Server only accepts clients whose signature
can be verified through this public key. The default

file is stored in the rwrun. jar file.

OracleAS Reports Services provides default client public and private key files,
clientpub.key and clientpri.key. These key files are in place for all
components of OracleAS Reports Services You can regenerate public and private
key files to replace the default key pair. To do this, at the command prompt use the
following command:

Microsoft Windows

rwgenkey.bat path_and client_public_key file name
path_and_client_private_key file name

UNIX

rwgenkey.sh path_and client_public_key file name path_and_client_private_key
file name

If you regenerate these keys, you can specify the public key file locations with the
publicKeyFile attribute, and replace the private key file in ORACLE_
HOME\jlib\zrclient.jar. To do this, you must unjar the file, place the
regenerated private key into it, and rejar the file.

Use the cluster sub-element to specify the public and private key files to be used
for all cluster members. You can have zero or one cluster element in your server
configuration file.

Note: For more information on server clusters, see Chapter 12,
"Clustering Reports Servers".

For servers to be members of the same cluster, they must share the same extended
cluster name and public and private keys. This means that their extended cluster
names (e.g., serverA.clus, serverB.clus—in this case, .clus is the extended

3-30 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

cluster name) should be the same, and the same public and private key files should
be specified in each cluster member's server configuration file (server_
name.conf).

The default server public and private keys are stored in ORACLE_
HOME\reports\jlib\rwrun.jar on both Windows and UNIX. However, there
is no need to jar the newly-generated public and private keys that will be used for
the cluster. Put them anywhere, and specify the absolute path and filename for
them in the server configuration file.

3.2.1.13 queue

Example

<queue maxQueueSize="1000"/>

Required/Optional

Optional. You can have a maximum of one queue element in your server
configuration file. If you have no queue element, the default, 1000, will remain in
effect.

Description
Use the queue element to specify the maximum number of jobs that can be held in
each of the reports queues. OracleAS Reports Services has three queue components:

= aqueue of scheduled jobs

= aqueue of jobs in progress

= aqueue of completed jobs

The queue element provides the allowable value for each of these components.

This element is applicable only to the completed job queue. Thus, if the number of
jobs exceeds the specified maximum value, that completed job queue will
automatically purge its oldest jobs. The scheduled job queue and the in-progress job
queue remain unaffected.

You can also use Reports Queue Manager to manually reduce the number of jobs
held in the queue.

Note: For more information, see the Reports Queue Manager online
help.

Configuring OracleAS Reports Services 3-31

Configuring Reports Server

The queue element has one attribute: maxQueueSize, described in Table 3-15.

Table 3—15 Attributes of the queue element

Attribute Valid values Description

maxQueueSize Number Default: 1000

The maximum number of jobs that can be held in a
given reports job queue.

3.2.1.14 persistFile

Example

<persistFile filename="neptune.dat”/>

Required/Optional

Optional. If you do not specify a file, the server will create one of its own with the
default name server_name.dat. You can have a maximum of one persistFile
element.

Description

The persistFile element identifies the file that records all job status. It is used by
Reports Server to restore the server to the status it held before shutdown.

It is named persistFile because the file remains intact, or persists, even when
the server is brought down and restarted.

The server persistent file is created automatically the first time you start the server
or the first time you start the server after the current server persistent file has been
deleted or renamed. If you want to rename this file but continue using it, enter the
new name in the server configuration file before you actually rename the file, then
restart the server.

The persistFile element has one attribute, £i1eName, described in Table 3-16.

3-32 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Table 3—16 Attributes of the persistFile element

Attribute Valid values Description

fileName string Default: server_name.dat

The name and, optionally, the path of the server
persistent file. You can leave the path off if the file is
kept in its default directory:

ORACLE_HOME\reports\server\
The path is the same for Windows or UNIX.

3.2.1.15 identifier

Example

<identifier confidential="yes"
encrypted="yes">fpoiVNFvnlkjRPortn+sneU88=NnN</identifier>

Required/Optional

Optional. You can have a maximum of one identifier element in your server
configuration file.

Description

The identifier element is automatically written to the configuration file when
you first log in to Reports Queue Manager as an administrator. The first login sets
the Reports Queue Manager's administrator user ID and password. That
information is encrypted and written to the server configuration file, then used for
authentication for all future Queue Manager logins.

If you forget the Queue Manager login or need to change it, delete it and reenter it
in Reports Server configuration file in the following format:

<identifier confidential="yes" encrypted="no">username/password</identifier>
You should immediately start Reports Server after making this change. Doing so

automatically encrypts the user name and password and resets encrypted to yes.
It will look something like this:

<identifier confidential="yes"
encrypted="yes">fpoiVNFvnlkjRPortn+sneU88=NnN</identifier>

Configuring OracleAS Reports Services 3-33

Configuring Reports Server

Note: This user name and password is also used for accessing
rwservlet Web commands, such as getjobid, getserverinfo,
showjobs, and showenv when DIAGNOSTIC=NO in the
rwservlet.properties file. When DIAGNOSTIC=NO, Web
commands are disabled for everyone except those administrators
who have this user name and password.

For more information on Reports Queue Manager, see the Reports Queue Manager
online help. For more information on rwservlet .properties, refer to
Configuring the Reports Servlet.

3.2.1.16 pluginParam

Example

<pluginParam name="mailServer”>smtp0l.mycorp.com</pluginParam>

Required/Optional
Optional. You can have as many pluginParam elements as you require.

Description

The pluginParam element works in cooperation with all pluggable components of
OracleAS Reports Services. This includes the engine, security, cache, destination,
and jobstatusRepository components. Any one of these may need access to a mail
server, an FTP URL, or some other type of plugin parameter. The pluginParam
element provides a means of specifying plugins that can be used by all pluggable
components. This spares you the task of including this information in the class
definition of the pluggable component and allows you to rapidly and easily change
the source of the plugin.

For example, your custom pluggable engine and destination Java classes may both
need access to a proxy server. Instead of hard-coding access to the server in both of
these classes, you can merely call the type of plugin parameter you need, for
example proxy, and point to its location under pluginParam in the server
configuration file.

You can put in any plugin parameter and name it in any way as long as it is a
plugin supported or required by the pluggable component, and the pluggable
component knows its name.

The pluginParam attributes are listed and described in Table 3-17.

3-34 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Table 3—17 Attributes of the pluginParam element

Attribute Valid values Description
name string The name of the plug-in parameter.
type text Default: text
file Describes the type of plugin being specified.
url For text, put in the string that is required to identify

the named plugin parameter, for example, the name of
a mail server. Text means the content of the
pluginParam element is text, so the
getPluginParam() method will return the exact
content specified in the element.

For file, put in the directory path and filename of
the plugin parameter file. Use the standards for
specifying directory paths appropriate to Reports
Server's host machine (either Windows or UNIX).
File means that the content of the pluginParam
element is a filename, and the getPluginParam ()
method will return the content read from the file
specified.

For url, put in the full, absolute URL required by the
plugin parameter, for example, the full URL to an FTP
site. URL means the content of the pluginParam
element is a URL, and the getPluginParam /()
method will return the content read from that URL.
The URL you use must reside on the same side of the
firewall as OracleAS Reports Services.

Note that when you have a default type (text), itis
not necessary to specify it in the pluginParam string.
The example that heads this section doesn't specify a
type because the plugin parameter, a mail server
name, is the default type, text.

3.2.1.17 environment

Example
<environment id="JP">
<envVariable name="NLS_LANG" value="Japanese_Japan.JA16SJIS"/>
<envVariable name="NLS_CURRENCY" value="¥"/>
<envVariable name="DISPLAY" value="MyServer.MyCompany.com:0.0"/>
</environment>

Configuring OracleAS Reports Services 3-35

Configuring Reports Server

Required/Optional
Optional. You can have as many environment elements as you require.

Description

The environment element defines the characteristics (i.e., environment variables)
that you want to use to establish a particular runtime environment. You may
include as many environment elements as you need (e.g., one for each
language/territory you need to support). Inside an environment element, you can
add as many envVariable elements as required.

By referencing the environment element’s id, you invoke its settings. You can
reference an environment element id from:

s The defaultEnvId attribute of the engine element in the Reports Server
configuration file, to apply the corresponding environment settings to that
engine when it starts up. For more information, refer to engine.

s The command line option, ENVID, of your report’s job request, which makes the
environment settings only effective for that particular report job request.

The environment attributes are listed and described in Table 3-18.

Table 3-18 Attributes of the environment element

Attribute Valid values Description

id string The name of the environment.

The environment element has one sub-element, envvariable. Each
envVariable is specified as a name-value pair. They can be either standard
environment variables or user-defined environment variables.

The envVariable element attributes are listed and described in Table 3-19.

Table 3-19 Attributes of the envVariable element

Attribute Valid values Description

name string Is the name of the environment you wish to use
(e.g., NLS_LANG).

value string Is the value you want to assign to the environment
variable identified with the name attribute.

3-36 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

3.2.2 Dynamic Environment Switching

In the past, Reports Server could only serve reports that were compatible with the
environment in place when Reports Server was started. For example, reports had to
be compatible with the value of the NL.S_ LANG parameter at the time Reports Server
was started. This restriction meant that you needed to have one Reports Server
running for each language you wanted to process. The new environment switching
feature eliminates this restriction by enabling one instance of Reports Server to
serve reports with any arbitrary environment settings, including language.

To use this feature, you first need to add an environment element to your Reports
Server configuration file to establish a particular runtime environment. Once you
have an environment element established, you can switch to its settings in either
one of the following ways:

s The defaultEnvId attribute of the engine element in the Reports Server
configuration file applies the specified environment element to the engine when
it starts up. For more information, refer to engine.

s The command line option, ENVID, of your report’s job request, which makes the
environment settings only effective for that particular report job request. Refer
to Examples.

Below is an example of an environment element:

<environment id="JP">
<envVariable name="NLS_LANG" value="Japanese_dJapan.JA16SJIS"/>
<envVariable name="NLS_CURRENCY" value="¥"/>
<envVariable name="DISPLAY" value="MyServer.MyCompany.com:0.0"/>
</environment>

You could invoke this environment element from an engine element as follows:
<engine id="rwEng" initEngine="1" minEngine="0" maxEngine="10" engLife="50"

maxIdle="30" defaultEnvId="JP"/>

The value JP identifies the environment element created previously in the Reports
Server configuration file. The initial engines will be spawned with the environment
settings specified in this environment element. For more information on the
environment element, refer to engine.

3.2.2.1 Examples

The following examples illustrate the usage of the dynamic environment switching
feature:

Configuring OracleAS Reports Services 3-37

Configuring Reports Server

Example 1

Suppose that you need to run reports in Japanese from your Reports Server. An
environment conducive to running reports in Japanese would include:

s NLS_LANG = Japanese_Japan.JAl6SJIS
s The currency unit would be set to Yen (¥), the currency of Japan.
= If Reports Server is running on UNIX, then DISPLAY would also need to be set.

To begin, you would have to add an environment element to your Reports Server
configuration file that looks something like the following:

<environment id="JP">
<envVariable name="NLS_LANG" value="Japanese_Japan.JA16SJIS"/>
<envVariable name="NLS_CURRENCY" value="¥"/>
<envVariable name="DISPLAY" value="MyServer.MyCompany.com:0.0"/>
</environment>

Once the environment element is in place, you could request a report with Japanese
output using the following URL:

http://yourWebServer:port/reports/rwservlet?server=yourreportsserver
&report=Japanese.rdf&userid=username/passwd@db&desformat=htmlcss
&destype=cache&envid=jp

When the URL is submitted to Reports Server, it detects the optional ENVID
parameter and matches the specified id (in this case, JP) to the corresponding id in
its configuration file. If Reports Server already has an engine running with these
characteristics, it will reuse the existing engine to process the job. If not, then it
spawns an engine using the current environment plus the three environment
variables specified in the JP environment element. If spawning a new engine would
cause Reports Server to exceed its maxEngines setting, Reports Server shuts down
an engine before starting a new one. An engine may be shut down even though it
has not exceeded its engLi fe setting.

Once Reports Server has an engine with the correct environment running, the job is
processed by that engine and the output is routed to the specified DESTYPE.

envid is an optional parameter. If you do not pass this parameter with the job,
Reports Server processes the request using an engine started with the
defaultEnvId environment. If defaultEnvId is not specified for the engine
element in your Reports Server configuration file, then the engine will inherit the
settings with which the Reports Server instance was started.

3-38 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

Reports Server may forward the request to another server on the cluster in cases
where it cannot handle the request at that time. Even though the job may be routed
to another server on the cluster, the target server will reuse or spawn an engine with
the required environment to process this job.

Example 2

The following example illustrates how to use this environment switching feature to
run an Arabic report on the same Reports Server that was used to run the Japanese
report in Example 1.

Add another environment element to the Reports Server configuration file as shown
below:

<environment id="AR">

<envVariable name="NLS_LANG" value="Arabic_United Arab Emirates.AR8IS08859P6"/>
<envVariable name="NLS_CALENDAR" value="Arabic Hijrah "/>

</environment>

The Arabic report has to be submitted to Reports Server with the following
command line:

http://yourWebServer:port/reports/rwservlet?server=yourreportsserver
&report=arabic.rdf&userid=username/passwd@db&desformat=htmlcss
&destype=cache&envid=ar

Since the job is submitted with envid=AR, Reports Server finds or starts an engine
with the environment specified by element AR in the Reports Server configuration
file. The job is processed by the new engine and the output is distributed to the
specified destination.

Example 3

The following example illustrates how the environment switching feature could be
used in conjunction with a JSP report, i.e., without the Reports Servlet.

Suppose that you have the following environment elements in the Reports Server
configuration file:

<environment id="UK">
<envVariable name="NLS_LANG" value="AMERICAN_UNITED KINGDOM.WE8ISO8859P1"/>
</environment>

<environment id="US">

<envVariable name="NLS_LANG" value="AMERICAN AMERICA.WE8ISO8859P1"/>
</environment>

Configuring OracleAS Reports Services 3-39

Configuring Reports Server

If your JSP report uses a format mask such as the following, it means the currency,
grouping, and decimal symbols can change according to the environment:

<rw:field id="sal" src="sal" formatMask="1.999G999D999"/>

To run the report using the UK symbols for currency, grouping, and decimal, you
would use the following URL:

http://myserver:port/test/myjsp?userid=scott/tiger@orcl&envid=uk

Note: You could place envid=uk into a key in the cgicmd. dat file.

3.2.2.2 Usage Notes

Although this feature is ideal for handling reports of various languages, its
application can be much broader. You could use it in any situation where a
report requires a particular environment to execute correctly.

Reports Server will start one or more engines per environment id as and when
it gets requests for specific environments. The total number of engines,
however, cannot exceed the maxEngine specified for that engine type. It is
recommended that you set maxEngine to a value greater or equal to the
number of environment elements specified in the Reports Server configuration
file.

defaultEnvId can also be applied to pluggable engines other than rwEng.
Reports Server will spawn the pluggable engine with the specified environment
id.

For engines used by the in-process server, the order of precedence for
environment variables from highest to lowest is as follows:

s reports.sh (UNIX only)

Note: If you have modified your current reports. sh file, you
should save it and, after installing 10g (9.0.4), merge your
modifications into the version of reports. sh installed with the
latest version. The latest reports. sh contains some required
changes.

» Environment element in the Reports Server configuration file

3-40 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server

n In the ORACLE _HOME/j2ee/0C4J_BI_
Forms/config/oc4j.properties file: the oracle. home property
defines the ORACLE_HOME setting and oracle.path defines the PATH
setting.

s In ORACLE HOME/opmn/conf/opmn.xml, the <environment> element
under <oc4j instanceName="0C4J BI_Forms" gid="0C4J_BI__
Forms">

s The system settings and registry (Windows only)

For engines used by the standalone server, the order of precedence for
environment variables from highest to lowest is as follows:

s reports.sh (UNIX only)

Note: If you have modified your current reports. sh file, you
should save it and, after installing 10g (9.0.4), merge your
modifications into the version of reports . sh installed with the
latest version. The latest reports. sh contains some required
changes.

» environment element in the Reports Server configuration file
= The environment set in the console where you start rwserver. sh
» The system settings and registry (Windows only)

If the same environment variable that is set in ENVID is also set in reports.sh
(ORACLE_HOME/bin/), Reports Server obtains the environment variable value
from reports.sh and not from ENVID.

For example, say you want to set the REPORTS_PATH environment variable to a
different engine by using the environment switch feature. However, the
reports. sh file also has the same REPORTS_PATH environment variable set.
Reports Server will now use only REPORTS_PATH set by reports . sh and not
the REPORTS_PATH set in ENVID when you pass any request.

To work around this issue, you must:

1. Open reports. sh and comment the environment variable value. For
example, comment the REPORTS_PATH value set in the reports. sh file.

2. Open the server_name. conf file.

Configuring OracleAS Reports Services 3-41

Configuring Reports Server

3. Copy the environment variable value in the reports. sh file to the
server_name.conf file using the environment id tags. For example:

<environment id="default">
<envVariable name=REPORTS_PATH value="SORACLE_
HOME/reports/templates: SORACLE_
HOME/reports/samples/demo: SORACLE_HOME/reports/integ: SORACLE_
HOME/reports/printers"/>

</environment>

<environment id="testenv">

<envVariable name="REPORTS_PATH"
value="/private/file_path:SORACLE_HOME/reports/templates:SORACLE_
HOME/reports/samples/demo: SORACLE_HOME/reports/integ: SORACLE_HOME/
reports/printers"/>

</environment>

4. Add the defaultEnvId value to the appropriate tag in the server_
name. conf file. For example, add the defaultEnvId value to the
engine tag so that the engine starts with the default REPORTS_PATH.

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1"

maxEngine="1" minEngine="0" engLife="50"
maxIdle="30"callbackTimeOut="60000"

defaultEnvId="default">

5. Now run the report.

= In previous releases of Oracle Reports on Solaris, you were required to add the
following line in the reports. sh file:

NLS_LANG=AMERICAN_AMERICA.WESIS08859P1; export NLS_LANG

This workaround was introduced because OPMN implicitly sets NL.S_LANG to
AMERICAN_AMERICA.WEBMSWIN1252, which is passed to the engine if NLS_
LANG is not set. This caused a problem in Solaris because the encoding doesn't

exist. However, the NL.S_LANG setting in reports. sh breaks the environment
switching feature and will result in any of the following errors:

REP-3000: Internal error starting Oracle Toolkit

or

REP-56048: Engine rwEng-0 crashed

3-42 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Reports Servlet

To work around this issue, you must remove the NLS_LANG entry in
reports.sh.

3.2.3 Connecting to OracleAS Portal

By default, Reports Server can only use portal users to connect to OracleAS Portal.
It cannot use an ordinary userid, such as scott/tiger, unless you first assign
appropriate privileges to its schema.

To assign the appropriate privileges to a schema other than the portal schema, you
need to run the following script from SQL*Plus as an OracleAS Portal user:

ORACLE_HOME/portal/admin/plsql/wor/rwgrant.sqgl

Once the script is loaded, it prompts you to enter the connection string for the new
schema (e.g., repapp/repapp@orcl). The script then assigns the appropriate
privileges to this new schema. You will then be able to specify this connection string
in the Reports Server configuration file to connect to OracleAS Portal.

3.3 Configuring the Reports Servlet

Configure the Reports Servlet with a file named rwservlet.properties, located
in the following path (Windows and UNIX use the same path):

ORACLE_HOME\reports\conf\rwservlet.properties

You may notice that the servlet uses components you may have become familiar
with if you used to employ a CGI implementation.

Use the Reports Servlet configuration file for:

= Specifying the Location of the Key Map File

= Reloading the Key Map File

= Hiding Web Command Output

= Selecting Login Dialog Boxes

» Setting Up Trace Options for the Reports Servlet and JSPs

= Specifying the character encoding for reports output using rwservlet

s Disallowing HTML code specified in the URL from being executed in a browser
= Specifying the pool size for concurrent connections to rwservlet

s Customizing the Appearance of Server Error Messages

Configuring OracleAS Reports Services 3-43

Configuring the Reports Servlet

= Specifying an In-Process Server

= Identifying the Default Reports Server

= Pointing to Dynamically Generated Images

= Setting Expiration for Database and System Authentication Cookies

= Setting an Encryption Key for the Database and System Authentication Cookies
= Adding Formatting to Diagnostic/Debugging Output

s Defining the rwservlet Help File

= Specifying the Use of OracleAS Single Sign-On

The entries in this configuration file are not case sensitive.

For Windows, note that the servlet configuration file uses double backslashes (\\)
in lieu of single backslashes to specify a directory path. The first slash "escapes” the
second, which would otherwise have another meaning in this file. For example, in a
Windows-based Reports Servlet file, the path:

d:\orawin\reports\conf\filename.ext

Becomes:

d:\\orawin\\reports\\conf\\filename.ext

For UNIX, use that platform's standard for specifying directory paths, for example:

orawin/reports/conf/filename.ext

3.3.1 Specifying the Location of the Key Map File

Your report runtime command line may include information you do not want to
expose to your users. Additionally, it may be comprised of a long string of options
that is difficult to remember or makes for an ungainly URL.

You have the option of entering a report's command line options in a key map file
(cgicmd.dat), then limiting the exposed runtime command to the name of the
particular key section in this file that holds the required options.

The key map file is discussed in Chapter 13, "Running Report Requests". Use the
Reports Servlet configuration file to list the location of this file.

For example:

KeyMapFile=d:\\orawin\\reports\\conf\\cgicmd.dat

3-44 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Reports Servlet

This example uses the default filename and location. An entry for the location and
filename of the key map file doesn't appear by default in the servlet configuration
file because the servlet already knows what to look for and where to look for it. If
you use a file with a different name and/or different location, you must include a
KeyMapFile parameter in your servlet configuration file that includes the
directory path and filename.

3.3.2 Reloading the Key Map File

Use the RELOAD_KEYMAP parameter to specify whether the key map file
(cgicmd.dat) should be reloaded each time the servlet receives a request.

For example:

RELOAD_KEYMAP=yes

This is useful if you frequently make changes to the map file and want the process
of loading your changes to be automatic. Runtime performance will be affected
according to how long it takes to reload the file.

Typically, this parameter is set to no in a production environment and yes in a
testing environment.

3.3.3 Hiding Web Command Output

You may want to provide an authentication mechanism for an unsecured Reports
Server so that only an administrator (based on the authid) can run a Web
command, like showenv, showjobs, etc. By setting DIAGNOSTIC=NO in the
rwserver .properties file, you can provide just such an authentication
mechanism. This authentication information is also used for administrative tasks,
for example, stopping the Reports Server from the command line.

Note: Setting DIAGNOSTIC=NO only works for non-secured
Reports Server. For secure Reports Server users, Reports Server
verifies the user’s privileges based on the entries in Oracle Internet
Directory.

To disable Web command display for an unsecured Reports Server
1. Start a Reports Server.

2. Set DIAGNOSTIC=NO in the rwservlet.properties file.

Configuring OracleAS Reports Services 3-45

Configuring the Reports Servlet

3. Access the Reports Server from rwservlet, by using any of the Web
commands, for example, getserverinfo. You must pass an authid here.

For example:

http://yourwebserver:portnum/reports/rwservlet/getserverinfo?server=aks+auth
id=scott/tiger

Note: The Reports Server will save this authid in the following
directory: ORACLE_HOME/reports/conf/server_ name.conf
file under the <identifier> element. The <identifier>
element is set in the Reports Server configuration file by the first
Web command call if it is not defined in the server configuration
file and the values are automatically encrypted when the Reports
Server is started. The format to preset the <identifier> element
in the Reports Server configuration file is:

<identifier confidential="vyes"
encrypted="no">username/password</identifier>

The clear text of username and password will be encrypted by
Reports Server once it starts up, and the encrypted atttribute is
changed to yes to indicate the content is encrypted.

Refer to identifier, for more information on the
<identifier> element.

Now, any access to the reports server for using the Web commands will have to
pass the same authid. If the authid is not passed, then you will get the
following error:

REP-52262: Diagnostic output is disabled.

To modify the administrator username and / or password:
1. Open the Reports Server configuration file, i.e.,.server_name.conft.
2. Modify the <identifier> element:

<identifier encrypted="no"confidential="yes">admin_name/admin_
password</identifier>

3-46 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Reports Servlet

Tip: You can specify the administrator username/password in
the <identifier> element in the rwserver. template file. This
ensures that you can pass the same authid for any Reports Server
that you start up.

3.3.4 Selecting Login Dialog Boxes

The servlet configuration file offers a number of parameters dealing with templates
for userid/password dialog boxes that should open when a user logs in to a
database or runs a secure report. Generally, these parameters point to various
templates to be used for setting up your login screens. You can customize these
templates with your company logo, linked buttons, and /or any other HTML you
care to use.

The DBAUTH and SYSAUTH parameters are for specifying the location and filename
of the HTML templates to be used for individual login screens. By default, the file
names are rwdbauth.htmand rwsysauth.htm, respectively.

For example, the following entry points to the template for the database login
screen:

DBAUTH=rwdbauth.htm

SYSAUTH points to a login screen for a secure report. For example:
SYSAUTH=rwsysauth.htm

It isn't necessary to enter the path to a template when it is stored in the default
template directory:

ORACLE_HOME\reports\templates

3.3.5 Setting Up Trace Options for the Reports Serviet and JSPs

Trace has been added to the OracleAS Reports Services environment to allow the
logging of many different types of runtime information on various OracleAS
Reports Services components.

Configuring OracleAS Reports Services 3-47

Configuring the Reports Servlet

Note: Tracing for Reports Server is configured in the server
configuration file, server_name. conf, discussed in

Section 3.2.1.11. Tracing for an individual report can be built into
the Reports Runtime command line, discussed in Command Line
Options.

If you wish to track and log runtime information on the Reports Servlet and JSPs,
use the TRACEOPTS parameter in the servlet configuration file. You can enter from
zero to multiple trace options. Separate each option with a vertical bar.

For example:

TRACEOPTS=trace_prf |trace_pls|trace_dbg

All available trace options are listed and described in Table 3-12.

Additionally, you can use the TRACEFILE and TRACEMODE parameters.

Use TRACEFILE to specify the filename of the trace file. For example:
TRACEFILE=myrwservlet.trc

The default name is rwservlet. trc. If no path is specified, the trace file will be in
the following directory on both Windows and UNIX:

ORACLE_HOME\reports\logs

Use TRACEMODE to define whether new trace information will either overwrite the
existing trace file (trace_replace), or be added to the end of the trace, leaving
existing trace information intact (trace_append). TRACEMODE replaces or appends
to the tracing information that has accumulated since the startup of the Oracle

Application Server Containers for J2EE container that contains rwservlet. For
example:

TRACEMODE=trace_append

The default for TRACEMODE is trace_replace.

3.3.6 Specifying the character encoding for reports output using rwservlet

From Oracle Reports 10g (9.0.4) onwards, you can specify non-ASCII escaped
characters in the request URL or in the Parameter Form input. You must specify the
character encoding in the rwservlet.properties file before you can apply it.

3-48 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Reports Servlet

This is to ensure that rwservlet uses the required encoding when parsing the
parameter value.

You can set the value of DEFAULTCHARSET in the rwservlet .properties file to
either:

» The NLS characterset (for example, JaA16EUC)

s The IANA charset (for example, EUC-JP)

Example DEFAULTCHARSET=JA16EUC.

3.3.7 Disallowing HTML code specified in the URL from being executed in a browser

Any HTML code included as part of the report request URL might lead to a security
compromise as it causes certain browsers to execute any script or code in the URL.
From Oracle Reports 10g (9.0.4) onwards, HTML code is not allowed as part of the
URL command.

To disallow HTML code as part of the URL command, a new property
ALLOWHTMLTAGS is introduced in the rwservlet.properties file. This property
is set to NO by default, disallowing any HTML code to be entered in the URL when
running a report.

Valid Values:

YES Allows HTML code in the URL

Note: Setting ALLOWHTMLTAGS=YES allows malicious HTML
code to be executed by certain browsers.

NO Disallows any HTML code in the URL
Default: NO

3.3.8 Specifying the pool size for concurrent connections to rwservlet

You may want to define the number of users who can connect and submit job
requests simultaneously to rwservlet. To do so, you must set the value of the
CONNECTION_POOLSIZE property in the rwservlet.properties file.

Default Value 500

Configuring OracleAS Reports Services 3-49

Configuring the Reports Servlet

Minimum Value 0 (not recommended)

Set the value of CONNECTION_POOLSIZE keeping in mind the number of active
users expected to make concurrent job requests. For example, set this value to 250 if
you expect around 100 concurrent active users.

Note: The value set (for example, 100) is the number of active
users simultaneously making job requests and not the number of
users connected to the system without submitting requests.

3.3.9 Customizing the Appearance of Server Error Messages

OracleAS Reports Services provides a template for server error messages. These
messages are generated automatically, according to cause. The template provides
the visual setting within which the error message is displayed.

You may wish to customize the appearance of error messages, for example with
your company logo, or with an icon you plan to associate with errors. You may
wish to add buttons that link your users to a help system, your company home
page, or back to the last browser window. You can do this by providing your own
HTML framework for automatically generated error messages.

The entry in the servlet configuration file is for pointing to the name and location of
your error message template.

By default, the entry is:

ERRORTEMPLATE=rwerror.htm

It isn't necessary to enter the path to the error message template when it is stored in
the default template directory:

ORACLE_HOME\reports\templates

3.3.10 Specifying an In-Process Server

If you choose to run the Reports Server within the same process as the Reports
Servlet, you indicate that with the SERVER_IN_PROCESS parameter. To run the
Reports Server as an in-process server, specify the following in the servlet
configuration file:

SERVER_IN_PROCESS=yes

3-50 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Reports Servlet

Enter no if you do not want the Reports Server to run within the same process as
the Reports Servlet.

Note: The pros and cons of running an in-process server are
explored in Chapter 1, "Understanding the OracleAS Reports
Services Architecture"”.

3.3.11 Identifying the Default Reports Server

The Reports Servlet uses the SERVER parameter to identify the default Reports
Server. If a server name is not specified, for example, in the runtime URL, the
default server specified here is used. Enter the name of your default Reports Server
in the servlet configuration file.

For example:

SERVER=server_name

If the default Reports Server is a member of a server cluster, use the cluster name:
SERVER=server_name.cluster._name

If you use a combination of the server name and cluster name in your URL, requests
sent to the default server will go to this specific machine. If this machine is down,
an error message will be returned and the report will not be run. By specifying just

the cluster name in the URL, requests will be sent to a random cluster member, and
fowarded to another if the target machine doesn't have an idle engine.

If you don’t specify a SERVER parameter in rwservlet.properties, the default
server name is rep_machine name.

3.3.12 Pointing to Dynamically Generated Images

Optionally, you can use the IMAGE_URL parameter to specify where the reports’
dynamically generated images can be accessed.

For example:

IMAGE_URL=http://server_or_web_server_name.domain_name:port/reports/rwservlet
This parameter is in place for JSPs that do not run via the Reports Servlet. It ensures
that dynamically generated images, such as charts, will be viewable only by the

person who runs the report. JSPs, and other report types, that run through the
Reports Servlet have this protection automatically.

Configuring OracleAS Reports Services 3-51

Configuring the Reports Servlet

3.3.13 Setting Expiration for Database and System Authentication Cookies

Use the COOKIEEXPIRE parameter to set the lifetime (in minutes) of the database
and system authentication cookie. For example:

COOKIEEXPIRE=20

The default is 30.

Cookies save encrypted user names and passwords on the client-side when users
first authenticate themselves. When the server receives a cookie from the client, the
server compares the time saved in the cookie with the current system time. If the
time is longer than the number of minutes defined in COOKIEEXPIRE, the server
rejects the cookie and returns to the client the authentication form along with an
error message. Users must re-authenticate to run the report.

3.3.14 Setting an Encryption Key for the Database and System Authentication

Cookies

Use ENCRYPTIONKEY to specify the encryption key to be used to encrypt the user
name and password of the database and system authentication cookies. The
encryption key can be any character string. For example:

ENCRYPTIONKEY=egbdf

3.3.15 Adding Formatting to Diagnostic/Debugging Output

The DIAGBODYTAGS and DIAGHEADTAGS parameters are available for including
additional HTML encoding in the <body> and <head> tags in the output files
associated with diagnostic and debugging output.

DIAGBODYTAGS defines the entire <body> tag; while DIAGHEADTAGS defines tags
to appear between the open and close <head>/</head> tags.

You can use these to include formatting options to make diagnostic and debugging
output easier to read. For example:

DIAGBODYTAGS=<BODY [additional HTML encoding]>

DIAGHEADTAGS=<HEAD> [additional HTML encoding]</HEAD>

3-52 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the URL Engine

3.3.16 Defining the rwservlet Help File

A HELP keyword is available with the rwservlet command for bringing up a
servlet-related help topic. The help file is invoked when you specify the following
URL:

http://your_web_server/your_servlet_path/rwservlet/help

Note: For more about the HELP keyword, see Appendix A,
"Command Line Options".

We provide a default help file for the servlet, ORACLE_
HOME\reports\templates\help.htm, which will be displayed if you leave this
parameter undefined. You may want to supply a help file of your own. To do this,
specify the name and location URL of your servlet help file with the HELPURL
parameter in the servlet configuration file. For example:

HELPURL=http://your_web_server/your_help file_path/helpfile.htm

3.3.17 Specifying the Use of OracleAS Single Sign-On

If you plan to take advantage of OracleAS Reports Services” Single Sign-On
capability, you must ensure the SINGLESIGNON parameter is set to YES in the
servlet configuration file. SINGLESIGNON is set to YES by default upon installation.

For more information, refer to Enabling and Disabling OracleAS Single Sign-On.

3.4 Configuring the URL Engine

Reports Server includes a URL engine that can take the contents of any URL and
distribute them. The URL engine allows you to leverage the powerful scheduling
and distribution capabilities of Reports Server to distribute content from any
publicly available URL to various destinations such as e-mail, OracleAS Portal, and
WebDav. Since Reports Server’s destinations are pluggable, you can also add your
own custom destinations for the URL content.

Furthermore, if you use the URL engine in conjunction with Reports Server’s
event-based APIs, database events can trigger the content distribution. For example,
suppose you have created a JSP report for high fidelity Web publishing of data
stored in a table containing employee expense data. You could then use the URL
engine and the event-based API to e-mail that JSP whenever the expense
application stores new or updated employee expense data in the table.

Configuring OracleAS Reports Services 3-53

Entering Proxy Information

If the URL engine is not activated, you can activate it by doing the following:

1. Add an engine element for the URL engine to the server configuration file. For
example, your engine element might be as follows:

<engine id="rwURLEng"
class="oracle.reports.engine.URLEngineImpl"
initEngine="1"
maxEngine="1"
minEngine="0"
engLife="50"
maxIdle="30"
callbackTimeOut="60000"
/>

2. Add a job element that associates the appropriate job types with the URL
engine to the server configuration file. For example, your job element might be
as follows:
<job jobType="urlEngine"

enginelId="rwURLEng"
/>

3. Stop and restart Reports Server.

Note: When you restart your Reports Server with these new
elements, you should see the number of engines increase
accordingly in the Reports Server status message box. In the above
example, the number of engines would increase by one (the value
of initEngine) when you restart Reports Server.

To learn about sending requests to the URL engine, refer to Chapter 13, "Running
Report Requests".

3.5 Entering Proxy Information

Some features of OracleAS Reports Services support retrieving or sending
information through a firewall. For example, the URL engine, the XML data source,
the Text data source, and the mail destination features all retrieve or send
information through the firewall. For these features to function properly, Reports
Server requires certain proxy information. In the interests of simplicity, you store
the necessary proxy information in a single location and point to it from the Reports

3-54 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

Server configuration file. To configure your Reports Server with proxy information,
you do the following:

1. Add the pluginParam element to the server configuration file and have it
point to the proxy information file (e.g., proxyinfo.xml). For example, your
pluginParam element might be as follows:

<pluginParam name="proxy" type="file">proxyinfo.xml</pluginParam>

Note: You can optionally specify a path for the proxy information
file. By default, this file is located in ORACLE_
HOME/reports/conf.

2. Update the proxy information file with the necessary proxy values for your
configuration. For example, proxyinfo.xml might contain the following:

<proxyInfo>
<proxyServers>
<proxyServer name="xyz.abc.com" port="80" protocol="http"/>
<proxyServer name="www-proxyl.xyz.abc.com" port="80" protocol="ftp"/>
<proxyServer name="www-prox2l.xyz.abc.com" port="80" protocol="https"/>
</proxyServers>
<bypassProxy>
<domain>*.abc.com</domain>
</bypassProxy>
</proxyInfo>

Note: Refer to the default proxy information file, ORACLE_
HOME/reports/conf/proxyinfo.xml, for additional
information.

3.6 Configuring Reports Server with the Oracle Process Manager and
Notification Server and Oracle Enterprise Manager

The best way to start, shutdown, monitor, and manage Reports Server is through
the Oracle Process Manager and Notification Server (OPMN) and Oracle Enterprise
Manager. OPMN provides a centralized mechanism for initializing, maintaining,
and shutting down your Oracle Application Server components, including Reports
Server. Oracle Enterprise Manager, included with Oracle Application Server,
provides managing and monitoring services to OracleAS Reports Services. You can
conveniently monitor your Reports Servers through Oracle Enterprise Manager

Configuring OracleAS Reports Services 3-55

Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

and, if the process crashes for any reason, OPMN restarts Reports Server for you
automatically.

During installation of Oracle Application Server, Reports Servers are automatically
configured in OPMN and registered with Oracle Enterprise Manager. If you add
any Reports Servers after installing Oracle Application Server, you should register
the new server(s) in two places:

s The Oracle Process Manager and Notification Server’s opmn . xm1 file.
s The Oracle Enterprise Manager’s targets .xml file.

To register a new Reports Server in both opmn . xml and targets.xml, run the
following command line:

On UNIX:

ORACLE_HOME/bin/addNewServerTarget.sh reports_server_name

On Windows:

ORACLE_HOME\bin\addNewServerTarget.bat reports_server_name

You can add a Reports Server to OPMN using addNewServerTarget . sh (UNIX)
or addNewServerTarget .bat (Windows). However, to view the Reports Server

on the Enterprise Manager page, you must restart OPMN by using the following
commands:

opmnctl stopall
opmnctl startall

3.6.1 opmn.xml

Components are configured with OPMN in the opmn . xm1 file located in ORACLE_
HOME/opmn/conf. To configure Reports Server through OPMN, you need the
following in opmn . xm1:

= aprocess module

= for the in-process Reports Server, a specification of Reports Server within the
desired Oracle Application Server Containers for J2EE component

» for the standalone Reports Server, a Reports Server component

See Also: For a detailed description of OPMN configuration and
the contents of opmn . xm1:

» Oracle Application Server 10g Administrator’s Guide

3-56 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

3.6.1.1 Process Module

The module tag is included by default in opmn . xm1 and tells OPMN that it needs
to load a particular module. In the case of Reports Server, the OracleAS Reports
Services module must be loaded. This module is loaded with the following
information by default in opmn . xm1:

<module path="/private/oraclehome/opmn/lib/libopmnreports">

<module-

</module>

id id="ReportsServices"/>

3.6.1.2 Standalone Reports Server Specification

In the case of the standalone Reports Server, the Reports Server is running in its
own component. Therefore, you must specify a separate component for Reports

Server. For example:

<ias-component id="<RSName>" status="enabled" id-matching="false">
<process-type id="ReportsServer" module-id="ReportsServices">
<process-set id="<RSName>" restart-on-death="true" numprocs="1">
<environment>
<variable id="PATH" value="your_shell_path"/>
</environment>
<module-data>
<category id="general-parameters">
<data id="batch" value="yes"/>
</category>
<category id="restart-parameters">
<data id="reverseping-timeout" value="120"/>
</category>
</module-data>
<dependencies>
<0ID infrastructure="true"/>
<database infrastructure-key="portal"/>

<managed-process ias-component="0C4J" process-type="0C4J_BI_Forms"

process-set="default_island" autostart="true"/>

<managed-process ilas-component="HTTP_Server"
process-type="HTTP_Server" process-set="HTTP_Server"
autostart="true"/>

<managed-process ias-component="WebCache" process type="WebCache"

process_set="WebCache" autostart="true"/>
</dependencies>
<start timeout="120" retry="3"/>
<stop timeout="120"/>
<restart timeout="120"/>
<ping timeout="30" interval="30"/>

Configuring OracleAS Reports Services 3-57

Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

</process-set>
</process-type>
</ias-component>

Note: The timeout values in the above example are all in number
of seconds.

The key segments of this specification for Oracle Reports are described below.
<ias-component id="<RSName>" ...>

This tag specifies the name of Reports Server. It must match the Reports Server
internal name from targets.xml.

See Also: Chapter 19, "Managing and Monitoring OracleAS
Reports Services"

For more information about targets.xml.

<process-type id="ReportsServer" module-id="ReportsServices">

This tag defines the process for the named Reports Server and associates it with the
OracleAS Reports Services process module.

<process-set id="<RSName>" restart-on-death="true" numprocs="1">

This tag defines the process characteristics for the named Reports Server. It
indicates whether Reports Server should be restarted when it crashes. It also
specifies the number of Reports Servers started for this process set, which has to be
1 because the process-set id identifies a single Reports Server name.

<variable id="PATH" value="your_shell_path"/>

The first tag specifies the value for the PATH environment variable for the process.
This variable must be set for the start script to find uname. This environment
element is not needed on the Microsoft Windows platform.

<category id="general-parameters">
<data id="batch" value="yes"/>
</category>

This group of tags gathers together all of the data (parameters) common to the
process. In this particular example, it provides a way to specify that the BATCH
parameter be sent to Reports Server. batch=yes | no is an option to the start and

3-58 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

stop commands of Reports Server. If it is not configured, this option is not passed in
to Reports Server.

<category id="restart-parameters">
<data id="reverseping-timeout" value="120"/>
</category>

This group of tags indicates the restart parameters category, which defines
parameters to be used in detecting whether the process has failed and needs to be
restarted. If a notification is not received within the specified
reverseping-timeout period, then the process is considered failed and will be
restarted.

<dependencies>

This tag delimits the list of components upon which Reports Server depends. For
example, Reports Server typically depends upon, among other things, the Oracle
HTTP Server and Oracle Application Server Containers for J2EE.

OPMN uses dependencies to determine whether to start a process. Like
module-data and environment blocks, dependencies blocks can be defined
for multiple elements within opmn . xm1. OPMN creates an aggregate dependency
list at the process set level that contains all of the dependencies defined at or above
it. If duplicate dependencies are defined at different levels, then duplicate checks on
that dependency are made before starting a process.

OPMN has two primary types of dependencies: external and internal. External
dependencies are resources not managed by OPMN (the database, Oracle Internet
Directory, and OracleAS Single Sign-On). For external resources, an external
program performs the check on the resource. Internal dependencies are
OPMN-managed processes, which may include processes managed by a remote
OPMN instance. Internal dependencies are indicated in the list by the
managed-process tag.

OPMN maintains a cache of dependency states that contains the last known state of
each dependency and the time it was last checked. A single cache entry exists for
each dependency with identical attributes, even if that dependency is specified in
multiple locations (i.e., for different process sets). A cache timeout parameter for
each dependency allows users to specify how long to use its state in the cache.
Likewise, a general timeout parameter for each dependency determines how long
OPMN should wait for a status update before aborting the dependency check and
the process start.

Dependencies are checked in the order in which you declare them. The traversal of
this list of dependencies concludes either when the full sequence of checks

Configuring OracleAS Reports Services 3-59

Configuring Reports Server with the Oracle Process Manager and Notification Server and Oracle Enterprise Manager

completes successfully (the resource is available) or when one of the checks fails
(the resource is not available or the check timed out).

The following example tags illustrate a typical list of dependencies for Reports
Server:

<0ID infrastructure="true"/>

<database infrastructure-key="portal"/>

<managed-process ilas-component="0C4J" process-type="0C4J_BI_Forms"
process-set="default_island" autostart="true"/>

<managed-process ias-component="HTTP_Server"
process-type="HTTP_Server" process-set="HTTP_Server"
autostart="true"/>

<managed-process ilas-component="WebCache"
process-type="WebCache" process-set="WebCache"
autostart="true"/>

The 01D tag indicates that Reports Server uses the default Oracle Internet Directory
instance for this Oracle Application Server installation.

The database tag points to the OracleAS Portal instance used by Reports Server.

The first managed-process tag specifies the Oracle Application Server Containers
for J2EE instance used by Reports Server. The second managed-process tag
indicates the Oracle HTTP Server instance.

See Also: For more information about opmn . xm1 and its
contents:

» Oracle Application Server 10§ Administrator’s Guide

3.6.1.3 In-Process Reports Server Specification

In the case of the in-process Reports Server, the Reports Server is running inside the
OC4J component. If you are using the in-process Reports Server, then, within the
OC4J component, you must specify the Reports Server data. For example:

<ias-component i1d="0C4J">
<process-type id="0C4J_BI_Forms">
<module-data>
<category id="urlping-parameters">
<data id="/reports/rwservlet/pingserver?start=auto" value="200"/>
</category>
</module-data>
<process-set .../>
</process-type>
</ilas-component>

3-60 Oracle Application Server Reports Services Publishing Reports to the Web

DISPLAY and Printer Dependencies on UNIX

The key segments of this specification are described below.

<category id="urlping-parameters">

urlping-parameters is a category that identifies all of the URLs to be pinged by
the OC4] module. The protocol used for pinging is AJPv1.3.

<data id="/reports/rwservlet/pingserver?start=auto" value="200"/>

/reports/rwservlet/pingserver?start=auto is the URL to be pinged by
the OC4] module. In the context of the in-process Reports Server, pinging this URL
allows OPMN to determine whether the Reports Server application is responsive. If
it is unresponsive, OPMN restarts the corresponding OC4J process.

value=200 specifies a valid HTTP code (200) that is expected in response to the
ping request. If the response HTTP code matches the value configured here, OPMN
considers the application healthy and responsive. Otherwise, OPMN restarts the
OC4] process.

3.7 DISPLAY and Printer Dependencies on UNIX

In previous releases of OracleAS Reports Services on UNIX, you had to set the
DISPLAY environment variable for Reports Server. Previous releases required
DISPLAY to use the windowing system display surface for creating images and
getting pixel resolution. This dependency is removed in OracleAS Reports Services
10g (9.0.4).

Additionally, previous releases required a valid printer on UNIX for fonts. When no
valid printer was available, OracleAS Reports Services used the screen fonts, which
again required setting the DISPLAY environment variable. In Release 10g (9.0.4),
OracleAS Reports Services includes a default screen printer surface, ScreenPrinter,
that emulates a screen or printer for fonts in the absence of an available printer. As a
result, OracleAS Reports Services does not require a printer on UNIX as of
OracleAS Reports Services 10g (9.0.4).

By default, the environment variable REPORTS_DEFAULT_DISPLAY is set to YES,
which specifies that OracleAS Reports Services should:

= remove the dependency on the DISPLAY environment variable (UNIX only)

= use ScreenPrinter for surface resolution for images and font information (UNIX
only)

= enable the Advanced Imaging Support (all platforms)

Configuring OracleAS Reports Services 3-61

DISPLAY and Printer Dependencies on UNIX

If you wish to revert to the old behavior from previous releases, you can set
REPORTS_DEFAULT_DISPLAY=NO.

See Also: Appendix B, "Reports-Related Environment Variables"

For more information on Oracle Reports environment variables.

3.7.1 ScreenPrinter

The PostScript printer driver screenprinter . ppd provides surface resolution for
images and specifies font information. This driver is the first entry in
uiscreenprint. txt. The file locations (UNIX only) are:

uiscreenprint.txt : ORACLE_HOME/guicommon9/tk90/admin
screenprinter.ppd : ORACLE_HOME/guicommon9/tk90/admin/PPD

ScreenPrinter is used for:
s Surface resolution when REPORTS_DEFAULT DISPLAY=YES.
= Removal of the printer dependency.

If, when generating report output, there is no valid printer queue available (not
found from TK_PRINTER, ORACLE_PRINTER, PRINTER, or uiprint.txt), the
surface based on screenprinter . ppd will be created and used to get font
information. You can modify the Fonts section of screenprinter.ppd to
include new fonts, and modify the DefaultResolution field to change the
resolution (DefaultResolution is 96).

Note: If you do add new fonts, ensure that the new AFM files are
placed in the AFM directory.

The font look up algorithm on UNIX is:

if a valid printer available then
look up font information from the printer
else
create a screenPrinter surface
look up font information from ScreenPrinter
if ScreenPrinter creation fails then
REP-1800 : Formatter Error if REPORTS_DEFAULT_ DISPLAY is set
else
use Screen Fonts

3-62 Oracle Application Server Reports Services Publishing Reports to the Web

DISPLAY and Printer Dependencies on UNIX

Note: In certain multi-byte languages like Chinese, you may want
to use screen fonts. However, this would necessitate setting the
DISPLAY variable for running the report.

To revert to DISPLAY and use screen fonts (old font look up
algorithm):

s Set REPORTS_DEFAULT_DISPLAY=NO

= Remove the screenprinter.ppd entry in the
uiscreenprint. txt file.

See Also:
= Managing Fonts in Oracle Reports
= Printing on UNIX with Oracle Reports

For more information about fonts and printing on UNIX.

3.7.2 Advanced Imaging Support

The quality of images contributes considerably to the overall appearance of a report,
particularly for a Web report. You may prefer different image formats in your report
output depending on the needs of your project. For example, an aeronautical firm
might prefer the higher quality of JPEG or PNG images in their Web reports instead
of GIF images. On the other hand, if you are building a Web portal, you might
prefer GIF images because of their smaller size and faster download. Similarly, you
may wish to import images of these various formats into your report.

Depending on the format of your output, you may choose from a variety of formats
for your images.

Table 3-20 Image Format Options by Output Type

Report Output Available Image Format Choices
HTML,HTMLCSS PNG, JPEG, JPG, GIF

PDF PNG, JPEG, JPG, GIF

RTF PNG, JPEG, JPG, BMP

Configuring OracleAS Reports Services 3-63

Setting the default printer for an in-process server

Note: As you choose your image format, you should take into
account the quality and size considerations. Typically, the higher
the quality of the image format, the greater the size. For example,
PNG and JPEG are higher quality than GIF, but they may also
require more storage space.

To enable advanced imaging, you must set the REPORTS_DEFAULT_DISPLAY
environment variable to YES. The REPORTS_DEFAULT_OUTPUTIMAGEFORMAT
environment variable lets you choose the default image type. Users can override the
default choice for images with the OUTPUTIMAGEFORMAT command line keyword.
For example:

rwclient server=my_rep_server report=images.rdf destype=file desformat=html

desname=images.html userid=scott/tiger outputimageformat=PNG

Enabling advanced imaging also allows you to import images of these same formats
into your report.

Note: Enabling advanced imaging means that you can no longer
use the old CGM and OGD formats in outputs of type HTML or
HTMLCSS. If you require these formats for input sources, you
should set REPORTS_DEFAULT_DISPLAY to NO. This limitation
does not apply on the Windows platform.

See Also:

= Appendix B, "Reports-Related Environment Variables"
For more information on environment variables.

= Appendix A, "Command Line Options"

For more information on command line keywords.

3.8 Setting the default printer for an in-process server

The in-process server does not recognize the default printer of a user currently
logged on to Windows. This is because the service that runs the in-process server is
logged on as the Local System. Therefore, you might face the following issues:

3-64 Oracle Application Server Reports Services Publishing Reports to the Web

Setting the default printer for an in-process server

Printing to default printer fails with the REP_3002 error. For example, the
following command:

http://myrepsrvr.us.oracle.com:7777/reports/rwservlet?report=myrep.rdf&desty
pe=printer&desformat=html

will result in the following error:

Error:"REP-3002: Error initializing printer. Please make sure a printer is
installed."

Font alignment problems in a PDF file output from an in-process server.

To work around the issue:

1.

Open the Windows registry using a registry editor (e.g., regedit . exe).

Note: Create a backup of the registry before editing it.

Navigate to the following key:

HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows

Copy the string value of Device for this key. For example:

\\MOWGLI\sierra,winspool,Ne02:

Navigate to the following key:

HKEY_USERS\ .DEFAULT\Software\Microsoft\Windows NT\CurrentVersion\Windows

Paste the Device value copied from HKEY_CURRENT_USER (the string value of
Device for this key will be empty).

Note: This workaround must be applied everytime you alter the
value of the Default Printer.

Configuring OracleAS Reports Services 3-65

Setting the default printer for an in-process server

3-66 Oracle Application Server Reports Services Publishing Reports to the Web

4

Managing Fonts in Oracle Reports

This chapter provides information about fonts in Oracle Reports. In particular, it
covers:

= Using Fonts

= Adding Fonts

= Font Configuration Files

= Font Aliasing

s Troubleshooting Font Issues

= Font Types

4.1 Using Fonts
In Oracle Reports, fonts come into play:
= Atbuild time (in Reports Builder)
= Atruntime (in the report’s output)

s In the user interface of Reports Builder

4.1.1 Fonts in Reports Builder

Reports Builder provides a list of fonts that are available on the system in the font
picker box.

Managing Fonts in Oracle Reports 4-1

Using Fonts

Figure 4-1 Font list in Reports Builder

i?‘[‘ Courier Mew [westemn] vi 11 1] v;

On Windows, the font list is derived from the fonts that are installed on the system
along with the fonts available on the current default printer. A small printer icon
before the font name identifies printer fonts. True Type fonts are associated with a
TTF icon.

On UNIX, the font list is derived by querying the X-server display on which the
application is running for the available fonts. The command is similar to the UNIX
xlsfonts command, which lists all of the available fonts for the X-server display.
From this font list, Reports Builder generates a list of usable fonts with the valid
style, weight, width, size, and encoding characteristics to match the character set.
The character set is driven by the NLS_LANG environment variable. Reports Builder
includes only those fonts with an encoding of 1s08859-1, unless specified
differently in the toolkit resource file, Tk2Motif . MapsCS. For more information on
Tk2Motif.MapsCs, refer to Font Configuration Files.

4.1.2 Fonts in Report Output

During report formatting, fonts associated with the layout objects are first checked
against the font alias file, ui font.ali, (refer to Font Configuration Files). If an
entry in the font alias file is found, the mapped font is used instead of the original
one. The mapped font is then looked up in the list of fonts available on the system
or printer. If a particular font is not found, Oracle Reports will look for the nearest
matching font under the same character set which can be used instead.

4.1.2.1 Font lookup

On Windows, the font lookup mechanism is simple due to the availability of printer
drivers, which have the capability of uploading fonts from the system as needed.
Any output from Oracle Reports running on Windows will contain fonts from either
one of the following:

s The system
» The printer

For this reason, Oracle Reports considers both the printer and the system fonts
when looking for the available fonts.

On UNIX, the fonts available for generating output are either one of the following;:

4-2 Oracle Application Server Reports Services Publishing Reports to the Web

Using Fonts

= the fonts available on the printer, specifically the fonts defined in the PPD or
TEM files

= if no printer is specified, the fonts available in ScreenPrinter,
screenprinter.ppd.

See Also:

= Font Configuration Files

s ScreenPrinter

For more information about uiprint . txt and ScreenPrinter

(screenprinter.ppd).

41.21.1 Font lookup algorithm Figure 4-2 illustrates the process of determining the
available fonts for generating report output.

Figure 4-2 Font lookup flow

Iz the ‘ .
printer B
defined? I Read
acreen
fants.

PCL?
\[Read HPD

file for
-

inatalled
forts.
Read FFD
file for
installed
farits.

character set as the application and
encodng as defined in Tk2Motif. rgh.

List of availsble
fonts for generating

output on Unix.

Select fonts with the same r F

Managing Fonts in Oracle Reports 4-3

Using Fonts

The following steps describe how Oracle Reports generates a list of the available
fonts for generating output (e.g., for the screen, printer, or file):

1. Oracle Reports looks in the printer configuration file uiprint. txt for all the
printers that are listed for the application. If no printers are defined or available,
Oracle Reports uses ScreenPrinter.

See Also:
= Font Configuration Files

s ScreenPrinter

For more information about uiprint . txt and ScreenPrinter
(screenprinter.ppd).

2. Get their type, version and printer definition file.
3. Check for the existence of these printers in the system.

4. If the printers are present, the printer definition files are loaded and the
information in these files is read along with the information related to the fonts
available for the printer. If these printers are not found, then Oracle Reports
uses ScreenPrinter.

5. The AFM files, which are named the same as the font names given in the PPD
files, are searched.

6. If found, Oracle Reports then reads this AFM file for all the valid keywords,
checks for their correctness and, in case of any discrepancy, default values are
used for those keywords.

7. If the AFM file is not found, Oracle Reports marks the font as unusable.

Note: Similarly for PCL printers, the HP printer definition file
(glue file) is loaded and all the fonts defined in the file are also
loaded. While looking for a font, Oracle Reports searches for an
entry in the HPD file with the font name and accordingly takes the
font if the TFM file for this font is also found. Otherwise, Oracle
Reports matches this font to the closest available one.

Once the list of available fonts is generated, the mapped font is searched for in this
list of fonts and, again, the AFM files are read for the purpose of calculating the text
size and weight.

4-4 Oracle Application Server Reports Services Publishing Reports to the Web

Using Fonts

Substituting fonts

If a particular font is needed but not found in the PPD file or if an AFM file is not
found, Oracle Reports will look for the nearest matching font according to its
matching rules. For example, suppose a report is originally designed with a Korean
font SimSun and in the uifont.ali file no mapping for this font is found. Oracle
Reports will look for the font SimSun in the list of available fonts generated by the
Font lookup algorithm. If this font name is not in that list, Oracle Reports tries to
look for the closest matching font from the list of fonts given in the printer
definition file.

For the SimSun font, the character set is 850. If it cannot find any matching font for
this character set, Oracle Reports searches for a font that has a character set for the
environment in which the application is running. After a set of fonts with a similar
character set is found, Oracle Reports picks the closest match to the requested font
based on the font weight, style, etc. If more than one font has the same parameters,
Oracle Reports picks the first one and uses it instead of the original font.

Font matching rules

When attempting to match a font, Oracle Reports will try to find the closest match
according to the following criteria for fonts with the same character set:

fontface > fontsize > fontstyle > fontweight > fontwidth

If Oracle Reports can't match the font face, it will try to match the font size; if it can't
match the size, it will try to match the font style; and so on.

If a font matches the font size but nothing else and another font matches the style,
weight, and width but not the font size, then Oracle Reports will pick the font with
the same font size.

It should be noted that irrespective of any font in the output file, the final printed
output will depend solely on the fonts installed in the printer.

Example: Suppose that a report has layout objects associated with one of two
fonts, Helvetica font of size §, style Plain, and weight Medium, and Courier font. If
the user is running this report on a PostScript-1 printer and generating HTML
output, the fonts are chosen as follows:

1. While formatting, Oracle Reports checks uifont.ali for any mappings of
either specified font. Suppose that uifont.ali contains this entry in the
[Printer:PostScript1] section:

Helvetica.8.Plain.Medium.. = "Mkai-Medium"..

Managing Fonts in Oracle Reports 4-5

Using Fonts

Oracle Reports will now search for the Mkai-Medium font instead of the
Helvetica font.

2. Oracle Reports looks for the mapped font in the printer definition (PPD) file.
Suppose that the PPD file contains the following entry in the *Font Information
section:

"*Font Mkai-Medium: Standard "(001.004)" Standard ROM"

3. Oracle Reports now checks for the associated AFM file (named Mkai-Medium)
in the AFM directory. If an AFM file with this name is not found, it will look for
another font that has size 8, style Plain, and weight Medium under the same
character set as the original font.

Because a report may have to run in many different environments, Oracle Reports
always tries to approximate a font for the original font when the original is
unavailable. This algorithm is not entirely foolproof. When you create a report, you
must be aware of the fonts defined and you should always consider whether those
same fonts will be available on the platform where users will run the report. If the
font that you have defined is not available in the runtime environment, Oracle
Reports substitutes another font that is available on the machine. This process can
lead to unexpected and undesirable results, such as strange characters in the report
output (e.g., Wingding characters) and incorrect formatting of objects.

If you are encountering these kinds of problems, you should use font aliasing to
control the font substitutions made by Oracle Reports. Refer to Font Aliasing.

Oracle Reports follows the above described mechanisms for all output file
generation except PDF, which has the PDF font sub setting/embedding capabilities.

See Also: Chapter 6, "Using PDF in Oracle Reports"

For more information on the PDF features and enhancements in
OracleAS Reports Services.

For more information on PDF in general, consult the Adobe PDF
documentation.

For printing, Oracle Reports generates output based upon the printer driver, in case
of Windows, or the printer, in the case of UNIX. On Windows, the output
generation is handled by the printer driver. The fonts in this case can either be from
the system or from the printer. For fonts which are not available on the printer, the
printer will get the fonts from the system through Windows APIs.

4-6 Oracle Application Server Reports Services Publishing Reports to the Web

Using Fonts

4.1.3 Fonts in the User Interface

Text in the user interface of Reports Builder, like the window title, menu items,
message boxes, and data model object names, use fonts taken from the system
resource files for the current language. These system resource files are supplied
with Oracle Reports installation. In Oracle Reports, you can map these fonts in the
[RWBUILDER] section of uifont.ali. If found, the mapped font is used instead of
the original font. Otherwise, Oracle Reports uses the original font.

On UNIX, these fonts are defined in Tk2Motif . rgb under Tk2Motif*fontList.
If the font is not defined, then the default font (fixed for default character set) is
used instead. The default system font need not be the one defined in

Tk2Motif . rgb. If the defined font does not match the character set on which the
application is running, some other available font will be used following the font
lookup algorithm discussed in the previous section.

On Windows, in order to maintain the look and feel of the windows, Oracle Reports
makes extensive use of the system font, which is obtained from the Windows
system parameters. For non-Unicode environments, the font is obtained from the
icon objects. You can change it by modifying the fonts via Display Property >
Appearance. Select Icon from the drop down box and select the desired font name
and size. For Japanese Unicode systems, the font is MS Gothic. For Korean, it's MS
Sans Serif. For simplified, traditional, and Hong Kong it’s Arial. For other
languages, it's Lucida Sans Unicode.

You can also change the Windows tool tip font by changing the icon font as
described above. This change is not completely reflected across Reports Builder
because some tool tip fonts are taken from the resource file.

In Oracle Reports, fonts for the Web Source view are selected by making an entry in
the alias file under the [RWBUILDER] section. The entry required for this change
should only be aliased to the character set and not to any specific font. For example,
if you want to use Arial Unicode MS when NLS is set to UTES, then you should
create an entry like this one:

....UTF8 = "Arial Unicode MS"....

Refer to Font Aliasing for more information.

The supported styles are: Plain, Italic, Oblique, Underline, Outline, Shadow,
Inverted, Overstrike, and Blink.

The supported weights are: Ultralight, Extralight, Light, Demilight, Medium,
Demibold, Bold, Extrabold, and Ultrabold.

Managing Fonts in Oracle Reports 4-7

Adding Fonts

You should not use fonts with a weight of Regular because this weight is not
supported and may cause Reports Builder to display undesirable results.

4.2 Adding Fonts

In Oracle Reports, fonts can be added for use:

At build time (in Reports Builder)
At runtime (in the output)

In the user interface

4.2.1 Adding Fonts to Reports Builder

To build a report in a certain font, the font must be available in Reports Builder from
the font picker when you are designing the report. In order for the fonts to appear
in the font picker, the fonts should be added to the system or the display on which
Reports Builder is running. Please review your operating system documentation for
adding fonts before attempting this procedure.

To add Type1 fonts on UNIX:

1.

Get the font-related files from the vendor. These include the .pfb, .pfa, and the
AFM files.

Convert the .pfb binary file to .pfa ASCII font using one of the available
convertors. Typically, you can get such converters as shareware, e.g., t lascii.

Copy the .pfa files to the directory where the fonts need to be installed
following the instructions for our platform.

Verify the installation of the fonts by entering the x1sfonts -ucommand.
This command lists all the fonts that are available for that system.

If you are using a UNIX emulator like reflection X, the fonts installed on the
system may not appear in the x1sfonts command. The reason for this
behavior is that it is taking fonts from the font path or the font server, which is
configured for this emulator. If using a font server, make sure that, after
installing the font, you add the font directory to the font server configuration
file and restart the font server. In the emulator, specify the font path to this font
server wherever the fonts are installed. If you are still not able to see the fonts in
xlsfonts, ensure that the new font directory is the first element of the
catalogue in the configuration file.

4-8 Oracle Application Server Reports Services Publishing Reports to the Web

Adding Fonts

Figure 4-3 xlIsfonts sample output

Wwindow Edit Options Help

Eadobe—couri er—bold—o—normal —0—0-0-0-m—0—1 s08559—1

—adobe—courier—bol d—o—normal —0-0-75—7 5—m—0—1i S0B8859—1
—adobe—courier-mediumr-normal —8-80-73—75—m—50—i 088991
—adobe—helvetica—hold—1-normal —0-0-0-0—p—0—1 s08833-1
—adobe—helvetica—hold—o—normal —14—140-75—75—p—82—15088959-1
—adobe—helvetica—hold—o—normal —18—180-753—75—p—104—hp—r omand
=adobe=helvetica=medivm=i=no rmal=—0=0=0=0=p=0=1i co8859=1
—adobe—helvetica—nedium-o-no rmal—0-0-75-75—p-0-1502859-1
—adobe—helvetica—medium—r-no rina 1 —8-80-?5-7?5—p—4E—1 5088591

—adobe—it< avant garde gothic—hook—o—normal—10-100-?5—75-p—59-15088559—1
—adobe—itc avant garde gothic—demi—r—normal—34-240—100-100—p—1 82— so88549—1
—adobe—i t< avant garde gothic—demi—r—normal—&—80-75-75-p—51-1 5088591
—adobe—itc Tubalin graph—book—o—normal—10-100—75—75—p—E0-1508855—1
—adobe—it< Tubalin graph—book—r—normal—12-120—75-75—p—70-1508855—1
—adobe—it< Tubalin graph—demi—o—normal—10-100—75—75—p—E2-1508855—1
—adobe—new century schoolbook—hal d—i-normal—24-240-75—75-p—148-hp—romans
—adobe—new century schoolbook—bold—i—-normal—24-240—75-75-p—148—1 5088551
—adobe—symbol-medi ur—r—normal—24-240-75-75—p—142—adobe—-fontspecific
=adobe=cymbol=medi um=r=norma.]=—g=80=73=75=p=51=adobe=fontcpeci fic

5. Start Reports Builder on the display that points to the font server on which
these fonts are installed or to the display where the fonts are installed.

4.2.2 Adding New Fonts for Report Output

For generating output in Oracle Reports, only the fonts that are specified in the
printer definition file are used. To use a newly added font in your output, you
should first add it to Reports Builder so that you can assign the font to layout
objects when designing the report. Refer to Adding Fonts to Reports Builder for
further information.

Note: If you use fonts in Reports Builder that are not available on
your runtime platform, you should alias those fonts on the runtime
platform. Refer to Font Aliasing for more information.

The process for adding fonts is different on Windows and UNIX:
= Adding fonts on UNIX
= Adding fonts on Windows

Managing Fonts in Oracle Reports 4-9

Adding Fonts

4.2.2.1 Adding fonts on UNIX

To add PostScript fonts:

1. Add the entry for this new font to the *Font Information section in the printer
definition (PPD) file:

*Font new_ font_name Standard '(00.1001)" Standard ROM
*Font ...

2. Copy the AFM file for the new font toORACLE_
HOME/guicommon9/tk90/admin/AFM. Ensure that the AFM file name is the
same as the new_font_name given in the PPD file because Oracle Reports
searches for this file based on the font name in the PPD file.

For example, if the PPD file contains *Font CodedreineunBold:
Standard ' (00.1001)" Standard ROM, then the AFM file name should be
named CodedreineunBold without any extension.

3. If necessary, make changes in the alias file for mapping to this font.

If the layout objects are associated with the same font name as the new font,
then mapping is not required. If the fonts for the layout objects are different and
the new fonts are desired in the output file instead of the original ones, then you
must map the original fonts to the new ones.

For example, if the layout objects’ font is Helvetica and you want newly
installed fonts in the output, then you could add the following to the
[Printer:PostScript1] section:

Helvetica = CodedreineunBold

Please note the section will be different if you are using a different PostScript
level in your uiprint. txt. Refer to Font Aliasing.

To add PCL fonts:

In order to use a new font in Oracle Reports, you need to have the HPD (printer
definition files) and TEM files for your printer. The HPD file can be copied from an
existing one. You need to be sure that the file is suitable for your printer; fonts
referenced in this file should be available on your printer. If the TFM files (fonts) are
not available on Oracle Reports installation, you need to contact your font/printer
supplier. The new TFM files must be added to the HPD file under a unique font
name.

4-10 Oracle Application Server Reports Services Publishing Reports to the Web

Font Configuration Files

1. Inthe HPD, you will have to add the new font entry. For example if the new
font is Codedreineun then include a new line such as:

FONT= Codedreineun
/tfm=9nb17035. tfm

2. Copy the associated TFM file into the TFM directory:

ORACLE_HOME/guicommon9/tk90/admin/TFM

3. Modify the alias file, if necessary, as described in Adding fonts on UNIX for the
PostScript printers. The section in which the mapping is done should be [PCL].

4.2.2.2 Adding fonts on Windows

For adding a new font on Windows, refer to your operating system documentation
on adding a new font. If the new font has a character set that is compatible with
Reports Builder, the new font will appear in the font picker.

4.3 Font Configuration Files

The listing below describes all of the files associated with font configuration for
Oracle Reports.

uiprint.txt (UNIX only)

The printer configuration file contains a list of printers installed for the application
along with the type of the printer, its version, and the printer definition file. The list
of available fonts for runtime is taken from the printer definition file. If no printer is
present, Oracle Reports chooses a PostScript printer as the default and
default.ppd file as the printer definition file.

See Also:

= Editing uiprint.txt File

= uiprint.txt

For more information on the uiprint. txt file.

Example:

Printer: Printer_driver:Driver_specifying_language_and_level:Printer_
description:Printer_definition_file:

Each line contains five fields separated by colons.

Managing Fonts in Oracle Reports 4-11

Font Configuration Files

If you are using PCL printing, then this entry should contain the name of an HPD
file.

screenprinter.ppd (UNIX only)

screenprinter.ppd is used when a printer is not available on UNIX.
screenprinter.ppdisin ORACLE_HOME/guicommon9/tk90/admin/PPD.

uifont.ali

This file contains mapping information for fonts which can be substituted for other
fonts at runtime. Refer to Font Aliasing for more information.

Oracle Reports has added three new sections to the uifont.ali file:
[PDF] - Used for font aliasing and multi-byte language support

[PDF: Subset] - Used for TrueType font subsetting and multi-byte language
support

[PDF : Embed] - Used for Typel font embedding

Caution: Do not alter the sections as Oracle Reports parses the
uifont.ali file looking for keywords. The sections can be in any
order.

Some general rules for the uifont.ali file are:

= Use double quotes around any font or character set names containing two or
more words, or spaces.

» Use #in the first column for comments.
s Comment out lines instead of deleting them to be able to use them in the future.

» Font aliasing is a font name-to-font name or character set-to-CID font (from Adobe)
only.

= Font subsetting is for TrueType fonts only.

= Font subsetting uses the font name and subsets using the TrueType font file
name.

= Font embedding is for Typel fonts only. These fonts have two files. One for
metrics, containing either a afm or pfm file extension and the binary containing
the pfb file extension.

4-12 Oracle Application Server Reports Services Publishing Reports to the Web

Font Configuration Files

Font embedding uses the font name and embeds using the Type 1 font file names
(both the *FM and PFB files are required in this order).

Refer to Font Aliasing for more information.

PPD and AFM files (UNIX only)

PostScript Printer Definition (PPD) files and AFM (Adobe Font Metrics) files are
supplied by Adobe and by printer vendors. These files contain information about
the printer. Along with other parameters, these files are read for the information
about the available fonts for the printer, which Oracle Reports will use. For all the
fonts listed in the PPD file, Oracle Reports searches for the corresponding AFM file
according to the font name and loads all of the fonts for which there is an available
AFM.

From the fonts perspective, you should modify these files when you add new fonts
for the printer and want these changes reflected in Oracle Reports.

Example:

*$ Font Information =====================

*DefaultFont: Error

*Font AvantGarde-Demi: Standard "(001.001)" Standard

*Font AvantGarde-DemiOblique: Standard " (001.001)" Standard
*Font Courier: Standard "(001.004)" Standard

*Font Courier-Bold: Standard " (001.004)" Standard

The AFM files contain information such as the font attributes (style, weight, width,
encoding scheme), whether the font is fixed pitch or proportional, and how large
each character is.

After looking for the font names from the PPD files, Oracle Reports searches for the
AFM files with the same name as the font according to the search criteria described
in File Searching. For example, if Oracle Reports finds AvantGarde-Demi :
Standard in the PPD file, it will search for an AFM file named AvantGarde-Demi
in the AFM directory.

Please note that the AFM files are NOT font files, they are metrics files, which give
Oracle Reports information on how to properly format the character for the printer.
If you have an AFM file, but the font is not available on the printer, then Oracle
Reports cannot generate the font.

Since the AFM files are NOT fonts themselves, if you wish to have more PostScript
printer fonts available, you need to:

1. Purchase the fonts and have them installed on the printer.

Managing Fonts in Oracle Reports 4-13

Font Configuration Files

2. Obtain revised AFM and PPD files from the font/printer vendor.
3. Obtain matching X Server display fonts (if necessary).

HPD and TFM files

PCL5 uses HPD and TFM files. The HPD files contain a list of fonts available for the
printer and each font refers to a TFM file. The HPD file is an ASCII file, which can
be edited, but the TFM file is a binary file, which cannot be edited. Even though
TFM files are binary and uneditable, you can perform string operations to read
some specific keywords from these files. Oracle Reports recognizes the font name
that is in the TFM files and not the one specified in the HPD file. The font vendor
should provide TFM files and new fonts should be added to the HPD file for your
printer when installed.

Tk2Motif.rgb (UNIX only)

This file contains resource settings for all Oracle Motif tools based on Oracle Toolkit.
For font specific resource settings, Tk2Motif* fontMapCs and
Tk2Motif*fontList are used.

FontMapsCs governs the base character set of fonts that the application will use,
which are on the X-window display.

If Tk2Motif*fontMapCs: 1s08859-2=EE8IS08859P2, then the NLS_LANG
should be EE8IS08859P2 and only fonts with encoding as 1s08859-2 will be
used for the application. If the system does not find any fonts with the above
encoding, it will fail with a REP-3000 error.

Tk2Motif*fontList specifies the default system font that will be used by the
application. The following means that the Helvetica font with medium weight and
normal width of size 12 will be used:

Tk2Motif*fontList: -*-helvetica-medium-r-normal-*-120%

The syntax for the above entries can be found in Tk2Motif . rgb file as comments.

4.3.1 File Searching

The criteria for searching files is dependent upon the type of file and the various
environment variables defined.

4-14 Oracle Application Server Reports Services Publishing Reports to the Web

Font Aliasing

Table 4—-1 File information

Filename Type Description

uiprint.txt UNKNOWN Printer configuration file

uifont.ali FONTALIAS Font aliasing file

PPD PPD PostScript printer definition
file

AFM AFM Adobe Font metrics file

HPD HPD HP glue file

TFM TFM HP glue file

Oracle Reports will first look for the variable in TK90_ type, then in the ORACLE_
type, and then in the global directory. For instance, the PPD files are searched for in
the directory specified by TK90_PPD, then in ORACLE_PPD, and then in ORACLE_
HOME/guicommon9/tk90/admin/PPD.

For example, looking for uiprint . txt, Oracle Reports will first look at the
environment variable TK90_UNKNOWN, then look at ORACLE_UNKNOWN, and then in
the default directory.

Environment Variables:

REPORTS_NO_DUMMY_PRINTER: If this variable is defined to any value, Oracle
Reports will use screen fonts instead of the printer fonts.

4.4 Font Aliasing

Font aliasing is a mechanism in Oracle Reports that allows a font or its associated
attributes like style, weight, width, size and character set to be mapped to another
desired font or its associated attributes. Its primary use is when applications are
ported from one platform to another and the font associated with some or all of the
objects in the layout on the source platform do not exist on the target platform. In
such cases font aliasing will be helpful as the nonexistent fonts can be mapped to
another available one producing the required results. For example, when moving
from MS Windows to Motif one would use font aliasing to map the MS Arial to a
font available on Motif, such as Helvetica.

Managing Fonts in Oracle Reports 4-15

Font Aliasing

4.4.1 Specify Aliasing Information

The file that contains mapping specifications is uifont.ali. To include any new or
changed mapping rules, you must edit this file.

The general format is,

"Original_font" = "Font_to_be_aliased"

where Original_font is the font name or its other attributes that will be mapped
to the font name or attributes of Font_to_be_aliased.

The fonts along with their attributes can be described as:

Face.Size.Style.Weight.Width.CharSet =
Face.Size.Style.Weight.Width.CharSet

The Face must be the name (string/identifier) of a font face like Courier. The
Style, Weight, Width,and CharSet may either be a numeric value or a
predefined identifier/string. For example, both Plain and 0 are valid Style values
and refer to the same style. The Size dimension must be an explicit size, in points.

These attributes take effect for font aliasing, font subsetting, and font embedding.
For example, in the case of font subsetting it is:

Font name = Filename.ttf
Face.Size.Style.Weight.Width.CharSet = Filename.ttf.

The following is a list of recognized names and their numeric equivalents:

Table 4-2 Style names and their numeric equivalents

Style name Numeric equivalent
Plain 0

Italic 1

Oblique 2

Underline 4

Outline 8

Shadow 16

Inverted 32

Blink 64

4-16 Oracle Application Server Reports Services Publishing Reports to the Web

Font Aliasing

Table 4-3 Weights and their numeric equivalents

Weight name Numeric equivalent
Ultralight

Extralight
Light

1
2
3
Demilight 4
Medium 5

6

Demibold

Table 4-4 Widths and their numeric equivalents

Width name Numeric equivalent

Ultradense
Extradense
Dense
Semidense
Normal
Expand

Extraexpand

O X 3 O s W N

Ultraexpand

Styles may be combined; you can use the plus sign (+) to delimit parts of a style. For
example:

Arial..Italic+Overstrike = Helvetica.l2.Italic.Bold

This mapping indicates that any Arial that has both Italic and Overstrike styles will
be mapped to a 12-point, bold, italic Helvetica font.

For multibyte language support, you must alias a character set with a CID font (CID
Fonts) from the Asian font pack from Adobe. For example, in your Japanese report
you have aliased a multi-byte Shift-JIS characterset be aliased to
HeiseiKakuGo-W5-Acro CID font with the following entry: JA16SJIS =
"HeiseiKakuGo-W5-Acro"

Managing Fonts in Oracle Reports 4-17

Font Aliasing

All strings are case-insensitive in mapping. Font faces are likely to be case-sensitive
on lookup, depending on the platform and surface. As a result, take care with the
names used. For example, if the font name arial is used on the left-hand side (the
original font), all layout objects with fonts such as arial or Arial are mapped to
the aliased font.

4.4.2 Font Aliasing Mechanism

For font aliasing, Oracle Reports searches for entries under the related section in the
alias file that matches the original font attributes given in the report. Refer to Font
Alias File Sections for more information about the sections of the font alias file. If an
exact match is found, Oracle Reports maps the original font on the left to the target
font on the right.

For example:

Arial.8.Italic.Medium.Normal.WE8ISO8859P1 = Helvetica.l2.Plain.Light.Normal.WE8IS08859P1
If an Arial font with all of the attributes listed on the left is found, it will be mapped
to a Helvetica font with all of the attributes listed on the right.

Any field can have a blank entry, which means it will be matched regardless. For
instance:

Arial..... = Helvetica.l2.Plain.Light.Normal.WE8IS08859P1

In this case, all of the Arial fonts, irrespective of size and other attributes, are
mapped to Helvetica with size 12, style Plain, weight Light, having Normal width
under character set WESIS0O8859P1.

Another way to specify an aliasing rule is:

Arial = "OCR B"

This method will preserve the other attributes of the present font but will change
the font name to OCR B. You need to be certain in such cases about the availability
of mapped fonts with the attributes of other fonts. For example, in this rule the Arial
font with style Italic might be mapped to the OCR B font with Plain style because
the OCR B font does not have the Italic style present.

After a mapped font is read from the alias file (uifont.ali), Oracle Reports looks
for the font following the font lookup procedure, which is described in Font lookup.
If the mapped font is found on the system, then Oracle Reports uses this font.
Otherwise, it looks for the original font in the system.

4-18 Oracle Application Server Reports Services Publishing Reports to the Web

Font Aliasing

Font attributes are searched for with the font face, size, style, weight, and width
under the specified character set.

In Oracle Reports, fonts for the Web Source view and PL/SQL editor can be
mapped by providing a mapping specification in the [RWBUILDER] section. This
feature is mainly intended for supporting Unicode fonts in these editors.

4.4.3 Font Alias File Sections
The uifont.ali file can be found in the following locations for Oracle Reports:
ORACLE_HOME\tools\common90 (Windows)

ORACLE_HOME/guicommon9/tk90/admin (UNIX)

The alias file consists of various sections which contains font mapping instructions
for a particular area. Since Oracle Reports looks in specific sections for specific
purposes, it is crucial that you place your mapping entries in the appropriate
section for what you are trying to accomplish.

Table 4-5 Font mapping file sections

Section name Description

Global Applies everywhere.

Printer Only applies to printer output.

Printer:PostScri Applies to PostScript Level 1 printers.

ptl

Printer:PostScri Applies to PostScript Level 2 printers.

pt2

Printer:PCL5 Applies to PCL 5 printers.

Display Only applies to the display (the screen).

Display:Motif Applies only to the Motif display.

Display:CM Applies only to character-mode display.

PDF Used for font aliasing (from Oracle Reports 61)
and multibyte language support (from Oracle
Reports)

PDF : Embed (Oracle Reports only) Used for Type 1 font
embedding.

PDF: Subset (Oracle Reports only)

Managing Fonts in Oracle Reports 4-19

Font Aliasing

Table 4-5 Font mapping file sections

Section name Description

RWBUILDER (Oracle Reports only) Fonts for the Web source
and PL/SQL editor can be mapped in this
section.

printer_name A section for a specific printer, such as:

[Printer:PostScriptl:20p813al

Note: In the Web Source view of the Report Editor, the following
languages may appear garbled: Japanese, Thai, Arabic, and
Hebrew. To work around this issue, you can set the font names for
Reports Builder in uifont.ali as follows:

[rwbuilder]
..... jal6sjis="MS Gothic"

..... ar8mswinl256="Courier New"

Order of precedence

When aliasing a particular font, only one section is read based upon the context in

which the font is used. Hence, if three sections apply, only one is read. For example,
suppose you have three sections, [Printer], [Printer:PostScript], and
[Printer:PostScript:20op81l3al. When generating output, if the printer is
20p813a, only the mapping rules in section [Printer:PostScript:20p8l3a]
are read. For printers other than 20p813a, Oracle Reports would use the
[Printer:PostScript] section.

The more specific sections of the alias file take precedence over the more general
sections. For example, a specific printer section, such as
[Printer:PostScriptl:2op81l3a] would take precedence over the
[Printer:PostScriptl] section, which would take precedence over the
[Printer] section, which would take precedence over the [Global] section.

The uifont.ali fileis the configuration file controlling all of the Oracle Reports
PDF font enhancements. It can be found in the ORACLE_HOME\tools\common90
(Windows) directory and in the ORACLE_HOME/guicommon9/tk90/admin
(UNIX) directory. The uifont .ali file is text readable, i.e., you can edit it with a
standard text editor. Exercise caution when editing the file. The uifont.ali file

4-20 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Font Issues

should be saved as a text file with no formatting or special characters that may
corrupt the file.
See Also: Chapter 6, "Using PDF in Oracle Reports"

For more information on the various sections in the uifont.ali
file.

4.4.4 Font Aliasing File Verification

fontchk90 is used to verify whether the uifont.ali file is correct and can be
found in the ORACLE_HOME/bin directory. It is always advisable to run this utility
on the modified uifont.ali file to catch any errors:

fontchk90 [filename]
where £ilename is the name of the uifont.ali file. If you don't specify any file
name, it will check the default file based on the environment variables.

If the alias file has errors, the utility returns an error message along with the file on
which the error was found. For example:

Parsing font alias file "/home/oracle/guicommon9/tk90/admin/uifont.ali"
Ms san serif

Error at line 85: Invalid font specification
Parse of font alias file failed

The above error indicates that there is a syntax error inuifont.ali in the
mapping rule for MS San Serif font on line 85.

4.5 Troubleshooting Font Issues

How to check whether the desired font is used in a PostScript file:

PostScript files have a list of fonts, which is created after reading the PPD file. If you
examine the PostScript file, you can check the fonts by looking for the following
tags:

s DocumentNeededResource has the list of fonts referenced in the PPD file.

s DocumentSuppliedResource has the list of fonts for which the PostScript
driver was able to find the AFM file.

Managing Fonts in Oracle Reports 4-21

Troubleshooting Font Issues

= %%Page paragraph before the field’s $IncludeResource: font has the font
name which will be used for the field.

For PCL output files, you can check whether a particular font was used or not.
Depending on this information the font settings in Oracle Reports or the printer can
be modified.

Example:

The test results below are based on a Lexmark Optra printer. The fonts and their
numbers as well as the control commands are examples and may vary with other
printers.

Fontinfo The Lexmark has a small menu with the option of printing all available
fonts (PCL Emulation Fonts). This includes both resident fonts (defaults) and Flash

fonts (installed on the printer separately)

Table 4-6 Sample font information

Font name Style Weight Example output

RO Courier 0 0 ... <ESC>(<symset><ESC>(s0p<pitch>h0s0b4099T...

R39 Courier Bold 0 3 ... <ESC>(<symset><ESC>(s0p<pitch>h0s3b4099T...

R40 Courier Italic 1 0 ... <ESC>(<symset><ESC>(s0p<pitch>h1s0b4099T...

R55 Century 0 0 ... <ESC>(<symset><ESC>(s1p<point>v0s0b24703T ...

Schoolbook Roman

Table 4-7 Sample Flash font information

Symbol
Font name set Style Weight Example output
F2 OCR-A 00 0 0 ... <ESC>(00<ESC>(s0p<pitch>h0s0b4200T ...

F3 OCR-B 10 0 3 ... <ESC>(10<ESC>(s0p<pitch>h0s0b4206T

In these examples, there are many more fonts and each font has its own code. OCRB
for example has code 4206. This number is important later on.

Creating output

When having problems getting the correct font, simplify the report and thereby the
output. This can be done by creating a straightforward report using select

4-22 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Font Issues

sysdate from dual as the query and limiting the number of fonts. This will
avoid long runs and create much smaller output files.

The output file

The resulting PCL-file is a binary file but is reasonably readable in the VI editor. The
first small part and the end part is binary, but the middle part is readable and
contains data that can be interpreted.

Verifying the output file

The only interesting information is in the readable, middle part of the file. Find the
text (this is the text displayed in the reports output) and check out the part
preceding the text.

It looks like this:

....;sp1,14,2,0,3,10.34,5,0,6,0,7,4099;LB here is your text

In the example above, the font is selected with code 4099. For the Lexmark printer,
this is selecting Courier.

In one example, the font OCR-B (code 4206) was needed. The font did not come out
until that specific code was generated just before the selected text. It looks like this:

....;s8D1,14,2,0,3,8.57,5,0,6,0,7,4206;LBThis is OCRB font....

Problems & answers

If the output file contains the correct code, but the font does not appear on the
printer, the printer probably does not have the font available. This will also occur if
the code in the output file (deduced from TFM file) is not the same as the one the
printer is expecting. On the Lexmark printer, the font was replaced by the default
font on the printer.

If the output file does not contain the code for the font, Reports Builder did not
generate the code to the output file. Check for the HPD and TFM file.

Environment variables

DEBUG_SLFIND can help you ascertain which of these files was used. With
reference to the fonts, you can find the list of AFM/TEFM files the application looked
at after reading the printer definition file and which font files it read after the
aliasing. In this manner, you can also determine whether a font is mapped or not.
Usually the order of file reading will be as follows.

» First read the printer definition file.

Managing Fonts in Oracle Reports 4-23

Troubleshooting Font Issues

= Read all the associated font files for the font supplied by this printer definition
file

s Read in the alias file

» If there is a mapping of file then read in font information files for those fonts
and finally again read the AFM file for the fonts that are used in generating the
output.

TK_DEBUG_POSTSCRIPT will affect PostScript output. It can be set to any
combination of these strings:

= Functions list each toolkit function called in comments in the PostScript output.
= Long produces long, slow, intelligible PostScript.
= Memory displays memory usage at the bottom of each page.

Any of the options can appear in the environment variable, abbreviated down to
one letter. You can set it to any combination of these, separated by "/". This variable
is case insensitive. For example, Func/L/Mem would give you all three options.

Note that the output that results from using this variable will not be supported by
Oracle for customer use. It exists for diagnostics purposes only.

Repairing fonts not appearing correctly in Web source view

Text in the user interface of Reports Builder, such as the window title, uses fonts
taken from the system resource files for the current language. These system resource
files are supplied with the Oracle Reports installation. In Oracle Reports, you can
map these fonts in the [RWBUILDER] section of uifont.ali. If found, the
mapped font is used instead of the original font; if not, Oracle Reports uses the
original font.

Note: The mapped font needs to be a fixed-width font.

In the Web Source view of the Report Editor, the following languages may appear
garbled: Arabic, Central European languages, Cyrillic, Greek, Hebrew, Japanese,
Thai, and Turkish. To work around this issue, you can set the font names for
Reports Builder in uifont.ali as follows:

[rwbuilder]

..... ARBMSWIN1256="Courier New"
..... CL8MSWIN1251="Courier New"
..... EESMSWIN1250="Courier New"

4-24 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Font Issues

.. .EL8MSWIN1253="Courier New"
...IW8MSWIN1255="Courier New"
...JA16SJIS="MS Gothic"
...TH8TISASCII="Andale Duospace WT"
.. .TR8MSWIN1254="Courier New"

You can download a copy of the Andale Duospace WT (fixed-width) font from
Metalink, (http://metalink.oracle.com). The ARU number is 2638552.

Limitations

On Windows:

For Unicode, Oracle Reports relies on the Windows operating system for the
font and input method for different languages. To enter and display text in a
particular language, you must be running a version of Windows that supports
that language. Font support is limited, but not restricted, to the Windows NT
operating system font support.

In JDK, a bug causes the bold Korean font to appear incorrectly. OracleAS
Reports Services uses the JRE and therefore all bold Korean strings in graphs
within reports show up incorrectly.

Windows NT 4.0 and later versions, provides True Type Big Fonts. These fonts
contain all the characters necessary to display or print multilingual text. If you
try to type, display, or print multilingual text and see unexpected characters,
you are probably not using a big font. Big fonts provided by Microsoft under
NT 4.0 and later, are as follows: Arial, Courier New, Lucida Console, and
Lucida Sans Unicode. Arial Unicode MS, which is a true big font, is available
from Microsoft site for download.

Wingdings fonts may not appear when NL.S_LANG is UTF8.

The only Wingdings fonts available when using UTF8 are the characters
between ASC 32 and 127. ASC 252 would display a blank because it is not
supported by UTES.

Any of the following font sets would provide a reasonable work around.
s Webdings - chr(97)

s Wingdings2 - chr(80)

s Wingdings2 - chr(87)

Managing Fonts in Oracle Reports 4-25

Troubleshooting Font Issues

On UNIX:

AFM support is only for single byte PostScript file generation except for the
Japanese encoding. The encoding schemes supported for the AFM files are
AdobeStandardEncoding, ExtJIS12-88-CFEncoding, FontSpecific, HRoman,
ISOLatinHebrew, JIS12-88-CFEncoding, and JIS12e-88-CFEncoding.

AFM version that is supported is 2.0

X11 does not support the underline font attribute. Output to file should work
according to steps given below.

In JDK, a bug causes the bold Korean font to appear incorrectly. OracleAS
Reports Services uses the JRE and therefore all bold Korean strings in graphs
within reports show up incorrectly.

PostScript printing will not load the fonts to the printer. So for the desired fonts
to appear in the printed output, it is necessary that those fonts should be
installed on the printer.

For PCL output, only TEM font formats are supported.

The display system on UNIX (for example, X11) is totally independent of any
application or printer. There is no direct connection between printing and
displaying. There can be a font displayed on your screen that is not printed.

Display and printer fonts are somewhat similar but have more differences than
similarities.
X fonts (display fonts) are bitmap display glyphs, which are displayed on an X

terminal by an X Server.

Printer fonts are PostScript fonts (mathematical descriptions of fonts, not
bitmaps) that are present in a PostScript printer and are generated by a
PostScript Interpreter on that printer.

Font size changes after applying a template.

Creating a template with font set to Times New Roman size 10 (for all fields)
and making the report use this template, makes the Paper Design view of the
Report Editor display a different font size.

The reason for this behavior is that defaulting couldn't fit the layout into the
desired area.

First it reduced the size of text fields and then reduced the size of the fonts. This
is much better than wrapping the fields and keeping the template font size.

4-26 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Font Issues

Also, for templates, the font chosen may be different to that in the template
since it matches first on the character set. So if the template font doesn't support
the current character set, the font will change to one that does. This is mostly
visible if you have an English template, which you use in a Hebrew / Arabic
environment.

Common Problems

Problem: Letters are truncated from the right margin on printed label reports.

You have printed a mailing label report on a Windows machine and notice that the
last letter, or last few letters, on each line are being truncated. The letters are not
missing when you preview the report. You have tried changing the page formatting
and font settings, but this has failed to resolve the problem.

Solution: If the report displays correctly using a DESTYPE of Preview, this is not a
problem with the printer driver. The problem may be occurring due to the frame
properties.

If a frame around the layout objects has a Horizontal Elasticity setting of Fixed and
the data exceeds the frame size, it can cause this truncation of data.

Try testing the results after changing Horizontal Elasticity to Expand or Variable.
Problem: When generating to file as HTMLCSS, a column is dropped off in the
output.

You are generating a report to an HTMLCSS file format and it appears to be fine in
the Paper Design view of the Report Editor. When you click on the newly created
file it comes up in your browser, but the last column is missing from the report
output.

If you re-run the report again, it still looks fine in the Paper Design view and the
column is there as it should be. Clicking on the file again appears to have the
column dropped off and missing from the report output. PDF appears fine in Paper
Design view and the Adobe Acrobat reader.

Solution:

1. Quit Oracle Reports and any other open applications.

2. Choose Windows Control Panel > Display > Settings.

3. Set your fonts to be Small Fonts, click Apply button and then click OK to
reconfigure your Windows font settings.

Managing Fonts in Oracle Reports 4-27

Troubleshooting Font Issues

4. Reboot your computer in order for the new font settings to take effect.

5. You can now go back into Windows Control Panel > Display > Settings to
verify that you have small fonts as a default for your system.

When you click on the HTMLCSS file your browser shows the report correctly with
all of the columns intact.

When viewing HTMLCSS files with your browser, it is recommended to have Small
Fonts as the default setting for your Windows system.

If you have Large Fonts as your default, your HTMLCSS file may not display
correctly.

Problem: How to choose bitmap fonts sizes of less than 8 point in Reports Builder.

Solution: There are times when a font size of 6 or less is required for reporting
purposes. Keeping in mind that font mapping and sizing is actually a product of
operating system font files and driver/printer specifications, it is possible to change
many fonts to minimal sizes such as 6 or less.

Oracle Reports typically allows fonts to be downsized to a size of 8. This is
accomplished by opening a report in Reports Builder, going to the Layout Model
view, and selecting the report objects that you wish to change. Once the object is
selected, go to the font size list next to the font picker and select your font size.

Typically, your size will be limited to a range from 8 to 72 for True Type fonts, less
for other fonts.

You can enter a size smaller or larger than the sizes in the list. To do this, again
select the object, place your cursor in the font size field, press Delete to remove the
current size number, enter the font size you desire, and then press the TAB key. The
change takes effect immediately.

Once again, keep in mind that not all font sizes are possible. Also, some
combinations of fonts and attributes are not practical. Simply having the ability to
choose a font size does not mean that the font will be legible when printed. Fonts
that involve small sizes, combined with bold, italic, or other attributes, may also
present legibility problems when printed or displayed due to the limitations of the
printer driver, printer, font metrics, language, code sets, NL.S_LANG, and, of course,
human eyesight.

Problem: The report output font size is different in Windows and UNIX.

A simple report designed on Windows NT uses the Arial and a font size of 8. This
report was ported to Sun Solaris and was found to have a different font size in the

4-28 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Font Issues

output on Solaris. In the UNIX environment, the report is uses the Helvetica font
and a font size of 9. The Arial font has been mapped to the equivalent font,
Helvetica, on Solaris using uifont.ali.

Solution:

1. First look for the font size available for Helvetica on the UNIX system by either
using the x1sfont command or any other UNIX font utility.

2. You should map variable sized fonts on Windows to variable sized fonts on
Solaris. For example, modify the mapping for MS Windows Arial.8 =
Helvetica.8 (assuming that size 8 is available for Helvetica on the UNIX system)
and make sure uifont.ali is in the correct directory (see font mapping).

It's probable that the Helvetica font installed on your machine is bit mapped
(rasterized) and so it doesn't automatically scale to any arbitrary size. If so, you
need to install a scalable Type 1 font, which should allow you to choose any point
size.

There may always be differences between fonts on different systems even if the
fonts installed are the same because the font configuration files may be different on
these systems.

Problem: When printing, fonts are replaced by non True Type fonts. In the Paper
Design view, the fonts are fine.

Solution: Check the printer settings (advanced) and make sure that it doesn't say:

True Type Font: Substitute with Device Font
UNIX

Problem While running Oracle Reports on X-windows emulators, fonts installed
on UNIX do not appear in the font lookup box.

Solution: On X-windows emulators, where the font path is usually a font
directory on the local machine, the fonts that were installed on will not be available
and only the fonts in the local font directory will be used by the Oracle Reports font
lookup box. In such cases, you should start a font server on a remote machine
where the fonts were installed and point the font path entry to this font server. For
starting the font server and setting the font path entry, consult the system manual
and X-windows emulator help.

Managing Fonts in Oracle Reports 4-29

Font Types

For finding the font path or font server that is currently being used, use the UNIX
command xset -.

4.6 Font Types
This section discusses the fonts and character sets relevant to Oracle Reports:
s Character Sets
= Unicode
= Typel Fonts
s TrueType Fonts
= Barcode Fonts

s CID Fonts

4.6.1 Character Sets

The character set component of the NLS environment variables specifies the
character set in which data is represented in your environment. When data is
transferred from a system using one character set to a system using another
character set, it is processed and displayed correctly on the second system, even
though some characters might be represented by different binary values in the
character sets.

If you are designing a multilingual application, or even a single-language
application that runs with multiple character sets, you need to determine the
character set most widely used at runtime and then generate with the NLS
environment variable (NLS_LANG) set to that particular character set.

If you design and generate an application in one character set and run it in another
character set, performance can suffer. Furthermore, if the runtime character set does
not contain all the characters in the generate character set, then question marks
appear in place of the unrecognized characters. Portable Document Format (PDF)
supports multibyte character sets. There might be situations where you create an
application with a specific font but find that a different font is being used when you
run that application. You would most likely encounter this when using an English
font (such as MS Sans Serif or Arial) in environments other than Western European.
This occurs because Oracle Reports checks to see if the character set associated with
the font matches the character set specified by the language environment variable
(NLS_LANG). If the two do not match, Oracle Reports automatically substitutes the
font with another font whose associated character set matches the character set

4-30 Oracle Application Server Reports Services Publishing Reports to the Web

Font Types

specified by the language environment variable. This automatic substitution assures
that the data being returned from the database gets displayed correctly in the
application. Note: If you enter local characters using an English font, then Windows
does an implicit association with another font. There might be cases, however,
where you do not want this substitution to take place. You can avoid this
substitution by mapping all desired fonts to the WE8IS08859P1 character set in the
font alias file (uifont.ali).

4.6.2 Unicode

Unicode is a global character set that allows multilingual text to be displayed in a
single application. This enables multinational corporations to develop a single
multilingual application and deploy it worldwide. Oracle Reports provides
Unicode support. If you use Unicode, you are able to display multiple languages,
both single-byte languages such as those spoken in Western Europe, Eastern
Europe, Bidirectional Middle Eastern, and multibyte Asian languages such as
Chinese, Japanese, and Korean (CJK) in the same application. Use of a single
character set that encompasses all languages eliminates the need to have various
character sets for various languages. For example, to display a multibyte language
such as Japanese, the NLS_LANG environment variable must be set to the following:

NLS_LANG=JAPAN_JAPANESE.JA16SJIS

To display a single-byte language such as German, NL.S_LANG must be set to the
following:

NLS_LANG=GERMAN_GERMANY .WE8IS08859P1

The obvious disadvantage of this scheme is that applications can only display
characters from one character set at a time. Mixed character set data is not possible.

With the Unicode character set, you can set the character set portion of NLS_LANG
to UTFS instead of a specific language character set. This allows characters from
different languages and character sets to be displayed simultaneously. For example,
to display Japanese and German together on the screen, the NL.S_LANG variable
must be set to one of the following:

NLS_LANG=JAPAN_JAPANESE.UTF8
NLS_LANG=GERMAN_GERMANY .UTF8

Oracle Reports relies on the operating system for the font and input method for
different languages. To enter and display text in a particular language, you must be
running a version of the operating system that supports that language. Font support
is limited but not restricted to the operating system font. Windows NT release 4.0

Managing Fonts in Oracle Reports 4-31

Font Types

and later versions provide True Type Big Fonts. These fonts contain all the
characters necessary to display or print multilingual text. If you try to type, display,
or print multilingual text and see unexpected characters, then you are probably not
using a Big Font. Big Fonts provided by Microsoft under Windows NT release 4.0
and later, are as follows:

s Arial

s Courier New

s Lucida Console

s Lucida Sans Unicode

s Times New Roman

Third-party Unicode fonts are also available.

To enable Unicode support, set the NLS_LANG environment variable as follows:

NLS_LANG=character_set.UTF8

4.6.3 Typel Fonts

PostScript font formats Adobe Type 1 fonts are stored in two common formats:
.pfa (PostScript Font ASCII) and . pfb (PostScript Font Binary). These contain
descriptions of the character shapes, with each character being generated by a small
program that calls on other small programs to compute common parts of the
characters in the font. In both cases, the character descriptions are encrypted. Before
such a font can be used, it must be rendered into dots in a bitmap, either by the
PostScript interpreter, or by a specialized rendering engine, such as Adobe Type
Manager, which is used to generate low-resolution screen fonts on Apple Macintosh
and on Microsoft Windows systems.

The Type 1 binary files(.pfa, .pfb) contain character information while the metric
(.afm - Adobe Font Metric or .pfm - Printer Font Metric) files contain the metric
information to form the character. These metrics files are ASCII files with a
well-defined easy-to-parse structure.

4.6.4 TrueType Fonts

The personal computer brought about a need for scalable font technology, thought
to be an important part of any future operating system. TrueType is this scalable
font technology that enables you to view the same output without the jagged
aliasing caused by scaling that is apparent when bitmapped fonts are used.

4-32 Oracle Application Server Reports Services Publishing Reports to the Web

Font Types

This technology involves two parts:
s The Rasterizer
s TrueType fonts

The Rasterizer is an application that is included in both Windows and Macintosh
operating systems. It acts as an interpreter and translates the font information into a
form that the video display can render.

The TrueType fonts themselves contain information that describes the outline of
each character in the typeface. Higher quality fonts also contain hinting codes.
Hinting is a process that makes a font that has been scaled down to a small size look
its best. Instead of simply relying on the vector outline, the hinting codes ensure
that the characters line up well with the pixels so that the font looks as smooth and
legible as possible.

Adobe wanted both Apple and Microsoft to license its PostScript code, which was
capable of handling this role, but both companies were concerned about having a
third party control key parts of their operating systems. Apple and Microsoft agreed
to a cross-licensing and product development deal, with Microsoft creating a
PostScript-style graphics engine and Apple creating a font system. Apple developed
what was to become TrueType, which proved superior to other competing
technologies on performance and rendering quality. Apple and Microsoft
announced their strategic alliance against Adobe, where Apple would do the font
system, Microsoft the printing engine. Apple released TrueType in March 1991 and
the first TrueType fonts:

s Times Roman
s Helvetica
s Courier

Microsoft introduced TrueType into Windows with version 3.1 in early 1992. They
created a core set of fonts:

s Times New Roman
s Arial
s Courier

Both Apple's and Microsoft's TrueType fonts showed that scalable fonts could
generate bitmaps virtually as though each size had been designed by hand.

Managing Fonts in Oracle Reports 4-33

Font Types

4.6.5 Barcode Fonts

Barcode fonts can be quite confusing. Some industries have chosen a specific
barcode type. If this is what you need, then using the appropriate barcode font
should work. For example, if you are interested in putting barcode on retail
packages or books, the choice of a barcode is simple. Retail packages in North
America use the UPC-A bar code. European retail articles use the EAN barcode .

All book ISBN numbers use the Bookland barcode (an EAN 13 bar code with a 5
digit supplement). Fonts are one way to obtain barcode, but not the only way.
Oracle Reports offers another solution for producing barcodes using a Java barcode
bean. The Java barcode bean is capable of creating barcodes based on the most
popular barcode types.

4.6.6 CID Fonts

Character IDentifier (CID) fonts are a format of composite (multibyte) Typel fonts
used to better address the requirements of Far East markets. Adobe developed the
CID-keyed font file format to support large character set fonts for use with
PostScript. It is the ideal format for Chinese, Japanese, or Korean fonts and can also
be used for roman fonts with very large character sets. CID-keyed refers to the
character identifier (CID) numbers used to index and access the characters in the
font. A CID (character identifier) font consists of a large font file containing all the
character outlines and a small CMap file that contains a list of characters,
encodings, and character identifiers. The combination of the font file and the CMap
file yields a font that is a specific character set and encoding information. Each CID
font can support many character set and encoding combinations.

4-34 Oracle Application Server Reports Services Publishing Reports to the Web

o)

Printing on UNIX with Oracle Reports

Oracle Reports provides a rich set of features out of the box for printing on various
platforms. Printing on UNIX requires some setup and configuration to create the
proper printing environment. This chapter provides information about printing on
UNIX with Oracle Reports. In particular, it covers:

s UNIX Printing Overview

m Setting Up a Printer on UNIX

s Configuring the Printing Environment
» Printer-Related Files

= NLS Support

= Debugging Options

» Frequently Asked Questions

5.1 UNIX Printing Overview

This section explains how to print from Oracle Reports on UNIX and highlights the
key differences between the UNIX and Windows platforms. It also explains the
operating system requirements for any application to print successfully.

s General Printing Mechanism
s Oracle Reports Printing Mechanism on UNIX and Windows
= Printing Support

Printing on UNIX with Oracle Reports 5-1

UNIX Printing Overview

5.1.1 General Printing Mechanism

In trying to understand how printing works for Oracle Reports on UNIX, it is useful
to have the Microsoft Windows printing mechanism as a reference point. Microsoft
Windows provides an application level API that supports different types of printers
based on the installed printer drivers. Applications can interact with various printer
drivers through these standard APIs. For example, to change the paper margin, an
application needs to call the appropriate Microsoft Windows API method, which
conveys the desired changes to the printer driver. On Microsoft Windows, printer
drivers are printer specific, i.e., you need to install a specific printer driver for a
printer. These printer drivers know how to communicate to the printer and provide
services to applications that need to send output to the printer. Applications can
access the printer properties, change their properties, and perform printing through
these standard APIs.

Motif and character-based UNIX operating systems do not have their own standard
interface to printers as does Microsoft Windows. Individual applications are
responsible for sending their output in a streamed file to the printer and adhering to
the specifications of the printer. On UNIX platforms, Oracle Reports output must be
formatted properly (e.g., PostScript or PCL) before sending it as a stream to the
printers. To print on UNIX, Oracle Reports mimics the behavior of the Microsoft
Windows printer drivers internally. The next section describes more precisely how
this mechanism works on UNIX.

5.1.2 Oracle Reports Printing Mechanism on UNIX and Windows

The diagrams below depicts the differences between Oracle Reports printing on
UNIX and on Microsoft Windows.

5-2 Oracle Application Server Reports Services Publishing Reports to the Web

UNIX Printing Overview

Figure 5-1 Oracle Reports printing on UNIX

Get Printer Queus @ n

Validate CQueue @

* @

@ Create Printer Definiion

M3 Windaws AP|

To support printing on UNIX, Oracle Reports internally creates logical printer
drivers. A logical printer driver simulates the behavior of Microsoft Windows

Printing on UNIX with Oracle Reports 5-3

UNIX Printing Overview

printer drivers and provides a printing service interface for Oracle Reports on
UNIX. Through the logical printer driver, Oracle Reports can access the printer
properties and perform printer-related operations. These logical drivers:

= Support PostScript and PCL printing specifications, which are the most popular
printing standards.

= Read the printer description files (e.g., PPD or HPD) to get the printer
descriptions.

= Embed the various printer commands in the generated PostScript or PCL
output. For example, to change paper margin, the logical printer driver needs to
write the corresponding printer commands in the generated output. These
commands differ depending on whether you use a PostScript or a PCL printer.
When the generated PostScript or PCL file is sent to the printer via the printing
executable (e.g., 1pr), the printer interprets the commands in the file and
processes them accordingly.

To function correctly, the logical printer drivers require the following input:

s The printer queue name that is used to spool the print request.

s The printer description file that contains the printer properties.

s The driver type required by the specified printer queue, PostScript or PCL.

You provide this information in a file called uiprint . txt. Oracle Reports uses this
file to get a list of the printer queue names available for printing. In uiprint. txt,
you need to specify the printer queue name, the type of driver needed for the
queue, the version of the driver, and any special printer description file that the
print driver needs for that specific printer (e.g., a PPD file for the PostScript driver).
Once this information is available, the internal logical printer drivers are
constructed and they use the definition files provided to access the printer
properties.

5.1.3 Printing Support
Oracle Reports supports the following printing standards on UNIX:

» PostScript Level 1 and 2
s PCLLevel 3
= ASCII (for character mode printing)

The printers you use with Oracle Reports should be compatible with the above
versions.

5-4 Oracle Application Server Reports Services Publishing Reports to the Web

Setting Up a Printer on UNIX

5.2 Setting Up a Printer on UNIX

This section describes:
= Installing a Printer on UNIX
= Verifying the Printer Setup for Oracle Reports

5.2.1 Installing a Printer on UNIX

The installation of a printer queue is slightly different depending upon your flavor
of UNIX. Some platforms may have user interface tools to help in the installation.
Please refer to your UNIX platform documentation for the steps on adding a printer
queue.

The following sample script adds a printer queue on the Solaris 2.6 platform. The
domain information expldomain and printer names printerl and printer2 are
hard coded in this example. The printer is a Xerox DCS model.

#!/bin/sh

echo "Please enter the Printer Name Either printerl or printer2\n"
read PRINTER

LOGFILE=/var/adm/config.log

PATH=/usr/bin: /usr/sbin:$PATH

export PRINTER LOGFILE PATH

lpsystem -t bsd expldomain >$LOGFILE 2>&1

lpadmin -p "SPRINTER" -s expldomain!"SPRINTER" -I any >SLOGFILE 2>&1
mkdir -p /usr/Xerox_DCS /usr/Xerox_DCS/original

chown -R 755 /usr/Xerox_DCS /usr/Xerox_DCS/original

cp /usr/bin/lp /usr/Xerox_DCS/original

mv /usr/bin/lp /usr/bin/lp.Xerox

In -s /tmp /usr/Xerox_DCS/tmp

echo "$PRINTER" > /usr/Xerox_DCS/printer.db

cp /usr/local/packages/dc99cc23.txt /usr/Xerox_DCS

In -s /usr/Xerox_DCS/dc99cc23.txt /usr/bin/lp

lpadmin -d "$SPRINTER"

5.2.2 Verifying the Printer Setup for Oracle Reports

To verify that your printer queue installed correctly:

1. Make sure that the PPD or HPD file used with the installed printer queue is
available in the following location:

ORACLE_HOME/guicommon9/tk90/admin/PPD
ORACLE_HOME/guicommon9/tk90/admin/HPD

Printing on UNIX with Oracle Reports 5-5

Configuring the Printing Environment

2. Make sure that the font metrics, AFM or TFM files, installed on the printer are
available in the following location:

ORACLE_HOME/guicommon9/tk90/admin/AFM
ORACLE_HOME/guicommon9/tk90/admin/TFM

5.3 Configuring the Printing Environment

This section explains the various configuration steps to be performed on UNIX after
printer installation.

= Editing uiprint.txt File
s Environment Variables

= Print Property Dialog Boxes

5.3.1 Editing uiprint.txt File

As discussed in UNIX Printing Overview, Oracle Reports creates logical printer
drivers. To create these internal printer drivers, it needs information from you like
the available printer queue, the type of driver to be used with the queue, the version
of the driver, and the printer description file. uiprint.txt is the main file for
providing this information. It is located in:

ORACLE_HOME/guicommon9/tk90/admin
uiprint.txt is the printer configuration file and Oracle Reports reads it when it

creates the internal printer drivers. You should modify this file for each instance of
Oracle Reports.

The format of entries in uiprint. txt is:
Printer:DriverType:DriverVersion:PrinterDescription:PrinterDescriptionFile:
This one line entry, in prescribed format, in uiprint. txt defines a printer to be

used by Oracle Reports. Each line contains five fields separated by colons.
Table 5-1 describes each element of the uiprint . txt entry.

5-6 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Printing Environment

Table 5-1 uiprint.txt entry elements

Element

Description

Printer

DriverType

DriverVersion

PrinterDescription

Specifies the name of the printer (or printer queue), as used
with the 1pr or 1p command.

To get a list of all available printers, use the following
command:

Ipstat -a

To check the status of the printer, use the lpstat command:
Solaris

Ipstat -p printername

Linux

Ipstat -p printername

HP-UX

Ipstat -d printername

HP Tru64

Ipstat -p printername

IBM AIX

Ipstat -pprintername

No space is allowed after -p on IBM AIX.

Specifies the type of printer driver used for the printer. The
driver can be PostScript, PCL, or ASCIL

Specifies the version of the driver type that should be used.
This can be 1 or 2 for PostScript printers, and PCL Version 5 for
PCL.

Specifies the description of the printer, for example, the speed
and the location of the printer. This information is used for
display in the printer-related dialog box.

Printing on UNIX with Oracle Reports 5-7

Configuring the Printing Environment

Table 5-1 uiprint.txt entry elements

Element Description

PrinterDescriptionFile Specifies the printer description file to be used with the printer.

It can be one of the following types:

= When using a PostScript printer, this entry contains the
name of a PPD file. PPD stands for PostScript Printer
Description. If Oracle Reports cannot find the specified
PPD file, it uses default . ppd. Oracle Reports searches
for PPD files in:

ORACLE_HOME/guicommon9/tk90/admin/PPD

= When using a PCL printer, this entry contains the name of
an HPD file. If Oracle Reports cannot find the specified
HPD file, it uses ui4 . hpd. Oracle Reports searches for
HPD files in:

ORACLE_HOME/guicommon9/tk90/admin/HPD

= When using an ASCII printer, this entry would be set to
none. This field is ignored for all ASCII printers.

Usage Note:

All the fields in the uiprint . txt entry must be filled and every line must end
with a colon.

At least one entry must be defined in uiprint. txt. Alternatively, you can set
the related printer variables (TK_PRINTER and PRINTER). Without these,
Oracle Reports is unable to perform any printer-related task.

See Also: Environment Variables

For more information on printer-related environment variables.

The internal printer drivers provide a drawing surface for Oracle Reports. In
addition to using this surface for printing, Oracle Reports uses it internally
whenever output is generated to a file. Hence, you need to have a valid entry in
uiprint.txt or to set one of the printer-related environment variables. To
simplify the selection of printers for your users, we recommended that you list
all printers accessible to users in uiprint. txt.

Example:
Following are two example entries for uiprint . txt:

colprtld:PostScript:2:RMSC Atrium HPLaserJetb:default.ppd:

5-8 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring the Printing Environment

colprtl5PCL:5:RMSC 1st Floor HPLaser4:uid.hpd:

5.3.2 Environment Variables

This section lists the environment variables related to printing:

See Also: Reports-Related Environment Variables
For more information on the various environment variables that
can be set in Oracle Reports.

s TK_PRINTER / PRINTER

= TK_PRINTER

m TK_PRINT_STATUS

= REPORTS_NO_DUMMY_PRINTER

= TK90_HPD and ORACLE_HPD

= TK90_PPD and ORACLE_PPD

s TK90_TFM and ORACLE_TFM

m TK90_AFM and ORACLE_AFM

5.3.3 Print Property Dialog Boxes

On UNIX, Reports Builder provides several dialog boxes for printer-related
operations.

5.3.3.1 Page Setup dialog box

The Page Setup dialog box enables you to specify how the printed page appears.
The available options depend on the type of printer driver being used. The internal
printer drivers use this dialog box to get all the information necessary, (e.g., scale,
rotation, width, and height) for formatting a page on a printer.

5.3.3.2 Print Job dialog box

Each print job has unique characteristics depending on the printer driver being
used. The Print Job dialog box displays just prior to print job execution and prompts
you for the print job information required to send the job to the printer.

Printing on UNIX with Oracle Reports 5-9

Printer-Related Files

5.4 Printer-Related Files

This section explains the different printing related files. It gives an overview of
these files and also provides information for editing these files for common printing
needs.

s Overview of Files
= PPD Files

= HPD Files

= Font Metrics Files
= uifont.ali

= uiprint.txt

= Editing the Printer-Related Files

5.4.1 Overview of Files
Table 5-2 lists files used by Oracle Reports for printing on UNIX.

Table 5-2 Printer-related files overview

File name/extension Description

.ppd PostScript Printer Definition file
.hpd HP glue file

.afm Adobe font metrics file

.tfm PCL font metrics file
uifont.ali font aliasing file

uiprint.txt printer configuration file

5.4.2 PPD Files

PostScript is Adobe’s page description programming language. PPD files define
what capabilities a printer has for applications like Oracle Reports. For example, a
PPD file might define which paper tray to use, what paper sizes are available, what
is the physical dimension of the paper, and what font is available. Currently, Oracle
Reports reads the paper sizes and fonts available on the printer as well as its default
resolution from this file. In the future, more information may be used, such as
memory for proper image partitioning.

5-10 Oracle Application Server Reports Services Publishing Reports to the Web

Printer-Related Files

The only reason to modify the PPD file is to allow Oracle Reports to recognize
newly added fonts or memory. You can also change the DefaultPageSize to your
preferred page size.

Note: Page sizes, like all PPD entries, are case sensitive. Other
entries in the PPD file should generally be left undisturbed.

When you select a printer that is not listed in uiprint. txt or change the type of
printer to a PostScript type in the Choose Printer dialog box, you are prompted for
the PPD file for the printer. You must choose the PPD file for a printer that most
closely resembles the printer being used. PPD file names typically bear some
resemblance to the printer model name.

Inuiprint. txt, a PPD file must be specified for each printer. If an invalid PPD
file is specified for the current printer (e.g., no PPD file is found or the PPD file
format is wrong), Oracle Reports will use default.ppd for that printer. You
should make default.ppd a copy of another PPD file that better reflects the most
likely default, local printer.

Oracle Reports includes a common set of PPD files, but sometimes you may need to
get specific PPD files for your printers from the vendor. Table 5-3 shows some
examples of PPD files that are shipped with Oracle Reports:

Table 5-3 Common PPD files shipped with Oracle Reports

PPD file name Corresponding Printer
appl230.ppd Apple LaserWriter v23.0
datap462.ppd Dataproducts LZR-2665
declps32.ppd Digital PrintServer 40
default.ppd Default Level 1 PostScript Printer
hpljet4dl.ppd HP LaserJet 4/4M PostScript 600DPI
lwntx470.ppd Apple LaserWriter Il NTX
nccps801.ppd NEC Colormate PS/80
tkphzr33.ppd Tektronix Phaser III PXi v2011.108
1530_523.ppd Linotronic 530
screenprinter.ppd Bil;?;(llt PPD file to be used when a printer is not available on

Printing on UNIX with Oracle Reports 5-11

Printer-Related Files

If you need a PPD file that is not among those shipped with Oracle Reports, you
must do one of the following (in order of preference):

= Ask the printer vendor for the PPD file.

= Download the PPD file from Adobe's Web site

= Copy an existing PPD file and edit it

= Ask Adobe for the PPD specs and write the PPD file.

The PostScript file only has the font information not the font metrics. Oracle Reports
refers to the AFM file installed for the font metrics information. The font vendors
provide these AFM files. Oracle Reports ships AFM files for some of the most
commonly used fonts. The printer must have the required font installed in order to
correctly print the PostScript file generated by Oracle Reports.

5.4.2.1 Local customization of PPD files

A PPD file is a static representation of the features of a printer. It contains default
factory settings. Once a printer is installed, features such as additional memory,
paper trays, and fonts may be added to the device. The task of managing a device is
a dynamic issue that requires keeping track of fonts downloaded to disk, error
handlers, RAM-based fonts and procedure sets, default device setup, and so forth.
This kind of device management is beyond the scope of PPD files. However, there
are some provisions for customizing the information contained in PPD files to adapt
them to local instances of printers or to specific applications when necessary.

Instead of modifying the original PPD file, another approach would be having a
new file having the local customization of certain parameters and refer to the
primary file for the remaining information. The local customization file must
contain a reference to the primary PPD file in this format:

*Include: "filename"
where filename is the name of the primary PPD file. This referencing allows a
system administrator to later replace the primary PPD file without forcing users to

edit their local customization files. A file referenced by the *Include keyword is
treated as though it were in the including (local customization) file.

For example, suppose that the default . ppd file is defined as:

*PPD-Adobe: "4.0"
*Include: "datap462.ppd"

*$ Page definitions
*DefaultPageSize: Letter

5-12 Oracle Application Server Reports Services Publishing Reports to the Web

Printer-Related Files

*Defaul tPageRegion: Letter

The primary PPD file is datap462 . ppd.

Administrators should change the name of the included file to conform to their
site's default printer type.

When a local customization file includes a primary PPD file, there might be several
instances of the same keyword in the composite file. Hence, the location of the
primary file in the customization file (beginning or end) is important and effects the
changes made by the customization file.

5.4.3 HPD Files

HPD files provide functionality for PCL printers that is similar to what PPD files
provide for PostScript printers. HPD or HP glue files provide information on what
fonts are available for a PCL printer. The HPD file format can be found in the HP
PCLS5 Developer's Guide.

Just as PostScript has AFM files, every HP font must have an associated TFM file.
The font vendor should provide TFM files and new fonts should be added to the
HPD file for your printer when installed. For a new font, you should specify the
following fields in the HPD file:

FONT={fontname}
/tfm={tfm-filename}

where
fontname is a descriptive name for the font.
tfm-filename is the base file name for the TFM file.

If the TEM file isn't specific enough, you can also specify the following after the
FONT field:

/ptsize={size {size ...}}

If the specified font is a bit mapped font but is listed in the TFM file as a scalable
font, you can limit the point sizes used by listing the acceptable sizes as follows:

/symset={symset {symset ...}}

This field limits the supported symbol sets to those listed. See the HP PCL
documentation for a list of recognized symbol sets.

Printing on UNIX with Oracle Reports 5-13

Printer-Related Files

Oracle Reports also supports the defaultpaper field for printing to PCL format.
This field can be used to set the defaultpaper to be used by the Toolkit. The
format of this field is:

<defaultpaper={papername}>

For example, the following sets the paper name to A4:

<defaultpaper=A4>

The paper name is case insensitive. If you specify defaultpaper in more than one
place, then the last instance of defaultpaper is used. If you specify a paper name
that is not supported by the printer, defaultpaper is ignored and LETTER is used
as the paper name instead. Similarly, if the paper name is incorrect, then LETTER is
used.

5.4.4 Font Metrics Files

Oracle Reports supports two kinds of font metrics files:
= AFMfiles
= TFM files

5.4.4.1 AFM files

Each AFM files contains the font-related metrics for a single font. The metrics
include various font attributes such as style, weight, width, and character set. AFM
files and a description of the AFM file format are typically available from the font or
printer vendors.

To install the AFM file, just copy it to the AFM file location, which is listed in
Verifying the Printer Setup for Oracle Reports. The name of the file must match
name of the font without the . afm extension. For example, if the font name is
CodedreineunBold, the file name must be CodedreineunBold.

To verify the font name, you can look for the fontname string in the AFM file. Please
note that the AFM files are not font files, they are metrics files, which give
information on how to properly format the characters for the printer. If you have an
AFM file for a font, but the font is not present on the printer, Oracle Reports cannot
generate the correct output on the printer because of the font metrics mismatch. You
must ensure that the font used to design the report is also available on the printer.

5-14 Oracle Application Server Reports Services Publishing Reports to the Web

Printer-Related Files

5.4.4.2 TFM files

PCL5 uses HPD and TFM files. The HPD file contains the list of available fonts for
the printer and each font refers to a TFM file. TEM files serve the same purpose as
Adobe's AFM files, with each file listing information about a single font. The HPD
file is an ASCII file, which can be edited, but the TEM file is a binary file, which
cannot be edited.

To use a new font in Oracle Reports and have it appear correctly in PCL output, you
need the HPD and TFM files for the printer. You can copy an HPD file from an
existing one, provided that you ensure it is suitable for your printer. The fonts
specified in the HPD file must be available on the printer.

Oracle Reports includes a common set of TFM files. If you need other font metrics
files for your printer, you should obtain them from your font or printer vendor. To
install the TFM file, just copy it to the TEM file location, which is listed in Verifying
the Printer Setup for Oracle Reports.

5.4.5 uifont.ali

The uifont.ali file defines the font aliases used by Oracle Reports. It is an
extremely useful tool for cross-platform development because it enables you to
define which fonts to substitute when a particular font is unavailable. uifont.ali
is located in:

ORACLE_HOME/guicommon9/tk90/admin

To alias a font, use the following syntax:

source_font = destination_font

For each font, you may also specify the following attributes:

face.size.style.weight.width.character_set

Styles may also be combined using a plus sign + to delimit the styles. For example:

Arial.Italic+Overstrike = Helvetica.l2.Italic.Bold
This entry maps any Arial font that has both Italic and Overstrike styles to a
12-point, bold, and italic Helvetica font. Font faces can be case sensitive depending

on the platform and the surface, i.e., printer or system.

See Also: Chapter 4, "Managing Fonts in Oracle Reports"

For more font-related information.

Printing on UNIX with Oracle Reports 5-15

Printer-Related Files

5.4.6 uiprint.txt

uiprint.txt provides a convenient way for you to provide details about the
printer queue, such as the type of printer driver and the printer description. You
should edit uiprint. txt for each instance of Oracle Reports.

See Also: Editing uiprint.txt File

For more information about uiprint. txt

5.4.7 Editing the Printer-Related Files

The sections that follow describe how to edit the various print-related files.

5.4.7.1 Editing PPD files

In some cases, you may need to change certain attributes in your PPD file. The
sections that follow describe some of the attributes that you would commonly need
to change.

5.4.7.1.1 Changing the default paper size Suppose that you need the page size to be A4
for some of your reports. On Motif platforms, the printer driver is specified in
uiprint.txt and the default page size is not necessarily set to A4. For example,
hpljet4l.ppdhas LETTER as the default page size. Note that the default page
size setting for each printer queue is taken from the corresponding PPD file.

To set A4 as the default page size, you would do the following:

1. Edituiprint.txt to include a PostScript Printer Description file (extension is
.ppd) that supports the A4 page size. For example, you might include
hpljetdl.ppd.

2. Asabackup, make a copy of hpljet4l.ppd.
3. Addanentry touiprint.txt:

Printer_name: PostScript:1: the printer on floorl:hpljet4l.ppd

4. Edithpljet4l.ppd and change these settings as follows:

DefaultPageSize: A4
DefaultPageRegion: A4
DefaultImageableArea: A4
DefaultPaperDimension: A4

5-16 Oracle Application Server Reports Services Publishing Reports to the Web

Printer-Related Files

5.4.7.1.2 Changing the printer margin settings To change the margins, you need to
modify the ImageableArea section in the PPD file. ImageableArea provides the
bounding box of the area in which the printer may print for the page size named
mediaOption. There will be one statement for each named page size supported by
the device. *DefaultlmageableArea provides the mediaOption name of the default
imageable area. Since there can be only one default page size, this value should be
the same as the value of *DefaultPageSize, *DefaultPageRegion, and
*DefaultPaperDimension.

The syntax for defining imageable area is as follows:

*ImageableArea mediaOption: "llx 1lly urx ury "
*DefaultImageableArea: mediaOption | Unknown

11 stands for lower left corner and ur for upper right corner. The bounding box
value of *ImageableArea is given as four real numbers, representing the x and y
coordinates of the lower left and upper right corners of the region, respectively, in
the PostScript language default user space coordinate system. The x and y axes of a
given page size correspond to the x and y axes of that page size in the
*PaperDimension entry.

The imageable area is defined as the part of the page where the printer may actually
make marks. On some printers, the imageable area of a given page size varies as a
result of the current resolution, amount of memory, the direction of paper feed, and
other factors. In PPD files where the imageable area of a given page size can vary,
the imageable area recorded for that page size will be the intersection of all possible
imageable areas for that page size. This formula ensures that the available
imageable area is never smaller than that shown in the PPD file and all marks made
within the imageable area will be visible. It does, however, also mean that the
imageable area in the current configuration might actually be larger than the
imageable area shown in the PPD file.

The following table contains the option keywords currently registered for
mediaOption, which designates a given page size on a device:

Table 5-4 mediaOption keywords

mediaOption

(paper size) size (pts) size (mm) size (inches)
Letter 612 *792 2159*279.4 8511

Legal 612 * 1008 215.9 * 355.6 8.5%*14
Ledger 1224 * 792 431.8*279.4 17*11

Printing on UNIX with Oracle Reports 5-17

Printer-Related Files

Table 5-4 mediaOption keywords

mediaOption

(paper size) size (pts) size (mm) size (inches)
Tabloid 792 * 1224 279.4 * 431.8 11*17

A3 842 * 1191 297 * 420 11.69 * 16.54
A4 595 * 842 210 * 297 8.27 * 11.69
A5 420 * 595 148 * 210 5.83 * 8.27

B4 729 * 1032 257 * 364 10.12 * 14.33
B5 516 * 729 182 * 257 7.17*10.12
Example

To change the margins of an A4 page in the default . ppd, you would perform the
following steps:

1.

Modify the default page from Letter to A4 in the following sections:

*% Page definitions
*DefaultPageSize: A4d
*PageSize Ad: " "

*% These entries set up the frame buffer. Usually used with manual feed.
*DefaultPageRegion: A4
*PageRegion Ad: "A4"

*% These provide the physical dimensions of the paper (by keyword)
*DefaultPaperDimension: A4
*PaperDimension A4: "595 842"

Add the margin definition in the following sections:

*% Imageable (writable) areas for each page size, in pixels
*DefaultImageableArea: A4
*ImageableArea Ad: "2 2 593 840 "

Note: All PPD entries are case sensitive.

5.4.7.1.3 Adding a new font entry to PPD files On PostScript printers, Oracle Reports
only allows you to use fonts known to be available on the printer. Since printers are

5-18 Oracle Application Server Reports Services Publishing Reports to the Web

Printer-Related Files

rarely available for personal requests on multi-process operating systems, Oracle
Reports gets a complete list of fonts from the PPD file.

When a new font is installed on the printer, a corresponding font entry needs to be
added to the printer's PPD file. The format for a font entry is:

*Font {fontname}: {encoding} " ({version})" {charset}

where

{ fontname} is the Adobe font face name as specified in PostScript.
{encoding} is the PostScript encoding name.

{version} is the FontInfo version number.

{charset} is the Adobe character set.

The encoding value has slightly different meanings depending on the font type. If
the encoding cannot be determined, the value of encoding may be set to unknown.
Fonts are usually re-encoded by applications to provide other encodings; the
charset value for each font indicates which encodings are possible for that font.
For more information, please refer to the PPD specification from Adobe.

When new fonts are added to the printer, the matching AFM files must also be
added to the font metrics directory. Oracle Reports requires the AFM files to get the
actual font attributes and properly place text on the printed page.

Example

Suppose you add a new font, CodedreineunBold, and need to edit the PPD file to
include the new font.

1. In the PPD file, search for:

*$ Font Information

2. For the new font, append the following at the end of the paragraph:

*Font CodedreineunBold: Standard '(00.1001)" Standard ROM

5.4.7.1.4 Overriding the printer tray setting The PostScript output generated by Oracle
Reports has the tray information embedded into it. The PPD file defines the default
tray to be used and is followed by the definitions of valid trays for the printer. To
print to a different tray, the DefaultInputSlot entry in the PPD file must be
updated.

Printing on UNIX with Oracle Reports 5-19

Printer-Related Files

In the PPD file, you should find a section that lists the default tray and the valid
input slots. The section typically starts with a line like this one:

*OpenUI *InputSlot: <PickOne>

The default tray entry looks like the following:

*DefaultInputSlot: Lower

The defined slots typically follow the default entry and look like the following:

*InputSlot Upper/Multipurpose Tray: "
*InputSlot Lower/Paper Cassette: "

The section ends with a line like the following:

*CloseUI: *InputSlot

You can set DefaultInputSlot to be any of the values in the list of defined slots.

5.4.7.2 Editing HPD files for PCL printing

In some cases, you may need to change certain attributes in you HPD file. The
sections that follow describe some of the attributes that you would commonly need
to change.

5.4.7.21 Changing the paper size For example, to change the papersize to A4, add the
following to the HPD file used:

<defaultpaper=A4>
5.4.7.2.2 Adding a new font entry As with PostScript's AFM files, every HP font must
have a TFM file in order for Oracle Reports to use it. The font vendor should

provide TEM files. You should add new fonts to the HPD file when you install
them.

You must specify the following settings in the HPD file for any new font:

FONT={fontname} # {fontname} is a descriptive name for the font
/tfm={tfm-filename} # {tfm-filename} is the base filename for TFM file

Note: The font name entries in HPD files must be unique.

5-20 Oracle Application Server Reports Services Publishing Reports to the Web

NLS Support

5.5 NLS Support

This section explains multibyte character set printing support from Oracle Reports.
It also explains the new PASTA component, which is supported only for Oracle
Reports when installed and used in conjunction with Oracle Applications.

= Multibyte Character Set Printing
s Overview of IX and PASTA

5.5.1 Multibyte Character Set Printing

Oracle Reports does not currently support Unicode character sets in PostScript
output. As an alternative, you can use Oracle Reports PDF output, which supports
multibyte character sets, and print it.

Oracle Reports supports a set of encoding schemes for the AFM files for the
multibyte character sets.

See Also: Chapter 4, "Managing Fonts in Oracle Reports"

For more font-related information.

The fonts must be installed on the printer that prints the PostScript report output.

Example

Suppose you build a report and its generated PostScript output contains a Chinese
character set. First, you need AFM and PPD files that adhere to the encoding
scheme for multibyte character sets. The destination printer must also have the
required Chinese fonts installed because the PostScript file generated by Oracle
Reports on UNIX does not have fonts embedded in it. The PostScript file contains
only the font name and the font metrics taken from the AFM files. If you try to send
the report to a printer that does not have the Chinese fonts installed, it will not print
the Chinese characters properly.

5.5.2 Overview of IX and PASTA

When installed and used with Oracle Applications, Oracle Reports has an
additional utility for font embedding in PostScript output.

For character mode reports, the utility is called PASTA. For bit-mapped reports, a
new component called IX is shipped with Oracle Reports. IX allows you to embed
the fonts in the PostScript output thereby allowing you to print even if the font is

Printing on UNIX with Oracle Reports 5-21

Debugging Options

not installed on the printer. Both PASTA and IX are supported only for Oracle
Reports used with Oracle Applications.

When used for character mode reports, PASTA takes tagged character mode output
(generated via an appropriate prt file) and generates a PostScript rendition of it. IX
enables Oracle Reports to print PostScript bit-mapped reports for all character sets,
including UTEFS8, on a PostScript printer. With this functionality, PostScript printing
in Unicode as well as all native languages on Solaris is supported. The IX library is
turned off by default with the Oracle Reports patch.

Please refer to your Oracle Applications System Administrator’s Guide for the setup
and usage information for IX and PASTA with Oracle Reports. If you are a member
of MetaLink (http://metalink.oracle.com), you can also get this information
from MetaLink notes 189708.1 and 159225.

If you have problems with PASTA, you can use the following technique to isolate
the problem:

1. Unset the PASTA environment variable.
2. Try to perform the steps that caused the problem again.

3. If the problem reproduces without the environment variable set, then it should
be treated as a normal Oracle Reports printing problem and the diagnostic steps
provided in this document should be applied.

If the problem reproduces only with the PASTA environment variable set, then
follow the diagnostic process given in the Oracle Applications documentation.

5.6 Debugging Options

This section explains the different environment variables and techniques available
in Oracle Reports for the debugging of UNIX printing problems.

s DEBUG_SLFIND

s TK_DEBUG_POSTSCRIPT

5.6.1 DEBUG_SLFIND

If this environment variable is set, the file-finding routine lists what was searched
for and where Oracle Reports searched for it. This information is a tremendous help
if your current configuration does not work. You can send the output to a file,
stdout (for standard output), or to stderr (for output to standard error). If you

5-22 Oracle Application Server Reports Services Publishing Reports to the Web

Debugging Options

try to send the output to a file and it cannot be written to, Oracle Reports uses
stderr instead.

We recommend sending the output to a file because it is faster and the output can
be quite large. Sample output from DEBUG_SLFIND is shown below. Notice how the
debug information generated helps you identify the various setup issues, such as
which PPD and AFM files are being referred to and their location.

You can see all of the following in this output:

s The various environment variables, such as TK90_PPD and TK90_AFM, and
their values.

» The resource files, such as the PPD and AFM, and their locations, which helps
you to determine if any are the missing.

s The default location of various resource files under ORACLE_HOME.

slsfindfile(): checking environment variable TK90_PPD(8) .

slsfindfile(): environment variable not set

slsfindfile(): checking environment variable ORACLE_PPD(10).
():

slsfindfile environment variable not set
slfpath(): looking up path
/s/rw/994/solohome/guicommon9/tk90/admin/PPD/
slfexist(): testing /s/rw/994/solohome/guicommon9/tk90/admin/PPD
slfexist(): testing /s/rw/994/solohome/guicommon9/tk90/admin/PPD/default.ppd

slsfindfile() :returned
/s/rw/994/solohome/guicommon9/tk90/admin/PPD/default.ppd
slfindfile(): type = 39 (AFM)slfindfile(): name = Courier-Bold
slsfindfile(): checking environment variable TK90_AFM(8).
slsfindfile(): environment variable not set
slsfindfile(): checking environment variable ORACLE_AFM(10).

()

()

slsfindfile(): checking ORACLE_HOME environment variable.

slsfindfile(): environment variable set to /s/rw/994/solohome (len=18)
slfpath(): looking up path/s/rw/994/solohome/guicommon9/tk90/admin/AFM/
slfexist(): testing /s/rw/994/solohome/guicommon9/tk90/admin/AFM

slfexist(): testing /s/rw/994/solohome/guicommon9/tk90/admin/AFM/Courier-Bold
slsfindfile() :returned /s/rw/994/solohome/guicommon9/tk90/admin/AFM/Courier-Bold

slfindfile(): name = uiprint.txt

slsfindfile(): checking ORACLE_HOME environment variable.

slfpath(): looking up path/s/rw/994/solohome/guicommon9/tk90/admin/
slfexist(): testing /s/rw/994/solohome/guicommon9/tk90/admin

slfexist(): testing /s/rw/994/solohome/guicommon9/tk90/admin/uiprint. txt

slsfindfile(): returned /s/rw/994/solohome/guicommon9/tk90/admin/uiprint.txt

Printing on UNIX with Oracle Reports 5-23

Frequently Asked Questions

5.6.2 TK_DEBUG_POSTSCRIPT

This variable effects the PostScript output generated by Oracle Reports. Table 5-5
shows the settings for this variable.

Table 5-5 Settings for TK_DEBUG_POSTSCRIPT

Setting Description

Functions (Func) Function lists each toolkit function called in comments in the
PostScript output.

Long (L) Long produces more intelligible PostScript output but runs

much more slowly than normal PostScript generation.

Memory (Mem) Memory displays memory usage at the bottom of each page.

Any of the options can appear in the environment variable, abbreviated down to
one letter. You can set it to any combination of these, separated by "/". This variable
is case insensitive. For example, Func/L/Mem would give you all three options.

Note: The PostScript output from this variable is for your own
debugging purposes. You do not need to provide this output to
Oracle Support for investigation.

5.7 Frequently Asked Questions

This section addresses some commonly encountered problems with UNIX printing.

Common Printing Error Messages
PCL Printing Issues

PostScript Printing Issues
Font-Related Printing Issues

Printed Output Issues

5-24 Oracle Application Server Reports Services Publishing Reports to the Web

Frequently Asked Questions

5.7.1 Common Printing Error Messages
REP-00177 - Error while running in remote server
REP-1800 - Formatter error
REP-3300 - Fatal error in ‘component hame
UI-9 - This function call is out of context.
REP-3002: Internal error initializing printer information

Cause:
These errors generally indicate a printer configuration issue.

Solution:

Check the printer queues that have been defined at the operating system level in
your setup. You can use:

s 1lpc status

s lpstat -a

If a valid printer queue is installed, check for the following;:

= uiprint.txt musthave a valid entry for the printer.

s Oracle Reports must be able to open and read the uiprint. txt file:

The person running the report must have operating system level read
permissions on uiprint. txt. Oracle Reports must be able to open the
uiprint.txt. UNIX operating systems do have an open file limit. If you are
over that limit, Oracle Reports might not be able to open uiprint. txt.

s The printer description files specified in uiprint. txt must exist in your
installation in:

ORACLE_HOME/guicommon9/tk90/admin
= The printer specified in uiprint . txt must be enabled at the operating system
level. A quick test is to try printing any file from the command line using 1p or

lpr. If you can print using one of these commands and get the output on the
printer, then the printer is enabled.

Printing on UNIX with Oracle Reports 5-25

Frequently Asked Questions

s The printer queue and uiprint . txt entry syntax must be valid.

If the printer validation fails, refer to the environment variables TK_PRINT_
STATUS and REPORTS_NO_DUMMY_PRINTER in Environment Variables.

REP-00826 - Invalid printer driver xxx specified by parameter desformat.

REP-00177 - Error while running in remote server (When run through
CaGl)

Cause:

An invalid value was specified for DESFORMAT for the specified report execution
mode.

Solution:
The DESFORMAT parameter specifies which output format is needed. Valid formats
are:

= For bit-mapped reports, any of the output formats supported by Oracle Reports
(PostScript, PCL, PDE, HTML, XML, HTMLCSS) is valid for DESFORMAT. You
should not give the PRT file names here. While running to a file, the
DESFORMAT parameter needs to be set to a valid printer queue. Oracle Reports
uses the printer definition file associated with the printer to format the output.

» For character mode reports, DESFORMAT sets up the output for ASCII printers
and passes escape characters. For running character mode reports, make sure
you change the MODE parameter to Character and use any valid .PRT file.

Table 5-6 maps the command line options (DESTYPE, DESNAME, and DESFORMAT)
to the printer by what you are trying to achieve.

Table 5-6 DESTYPE, DESNAME, and DESFORMAT settings by case

Case DESTYPE DESNAME DESFORMAT
Generating to a file File file_name.ps printer name
Printing Printer printer name

Distribute=Yes printer name
Mode=Character file _name.prt

5-26 Oracle Application Server Reports Services Publishing Reports to the Web

Frequently Asked Questions

REP-01800 - Formatter error.

REP-00177 - Error while running in remote server
(When run through CGI)

Cause:

The error indicates that a printer configuration issue has occurred on a UNIX server.
Even if there is not a physical printer available on the system, you have to set it up
as if there was one.

Solution:

1. Verify that there is a valid entry in uiprint. txt.

2. If you have multiple printer queue entries in uiprint . txt and you need to set
the default printer, verify that the environment variable is set to a printer that is
listed in uiprint. txt. If the related environment variable is not set, then the

first entry in uiprint . txt is used. For more information about printer related
environment variables, refer to Environment Variables.

If there is no printer available for your system, refer to Configuring the Printing
Environment for alternatives.

Error while printing to a printer with spaces in its name

Cause

If you are on Solaris 2.8 and have printers that have spaces in the names, you may
encounter a bug that causes an error resulting from the 1pr/1p command
including quotes around the printer name.

Solution
To resolve this issue, you must do either one of the following:

= Remove the spaces in the printer’s name.

= Install the Solaris 2.8 patch from Sun Microsystems that fixes the 1pr/1p
command so that quotes can be used in printers names.

and

= Modify the section of rwlpr. sh that provides the workaround for including
quotes, in order to make accessible any printer that has a space in the name. The
rwlpr.sh file is located in the ORACLE_HOME/bin directory.

Printing on UNIX with Oracle Reports 5-27

Frequently Asked Questions

Specifically, make the following changes:

#either LPR or LP Command was found
if [-x $PRNCMDPATH]

then
if [“basename $PRNCMDPATH' = "lpr"]
then
#if [/usr/bin/uname -r' = "5.8"]
#then
#S$PRNCMDPATH ‘echo $@ | tr -d "\""°
#else
SPRNCMDPATH "s@"
#f1
else
parse and Fix the command Line as Required by lp
#1if [" /usr/bin/uname -r' = "5.8"]
#then
#getLpCommandLine “echo $@ \ tr -d "\"""
#telse
getLpCommandLine "$@"
#fi
$SPRNCMDPATH
fi

exit with the command's exit code , This will tell the
server Print module if the command completed successfully
or not.
exit $?
fi
done

5.7.2 PCL Printing Issues

Why do fields that appear as gray on my PC print as white on a UNIX
PCL printer?

PCL color printing is not supported. When the pattern is set to transparent, PCL
printing uses the white pen (in PCL language) to draw. When the pattern is set to a
solid pattern, it uses the black pen. This behavior occurs irrespective of what color is
set for the foreground or background. PostScript printing logic is different. It uses
the foreground color set when the pattern is solid and the background color set
when the pattern is transparent.

5-28 Oracle Application Server Reports Services Publishing Reports to the Web

Frequently Asked Questions

What PCL level is supported in Oracle Reports?

The Oracle Reports PCL driver currently supports the features of PCL Level 3. It
does support HPD files for later PCL versions, but it will not honor the additional
features introduced since PCL Level 3.

5.7.3 PostScript Printing Issues

What is the work around for duplex printing on PostScript printers?
You should have a printer with a duplex option and an appropriate PPD file. The

example that follows was tested with a PPD file for the Kyocera FS-9000 printer.
You also need the UNIX sed tool named to filter the output file.

The problem with duplexing is that it is enabled at the job level, but it gets reset in
the page setup because the paper size and printer tray information are generated for
every page. To work around this problem, you need a script that removes the page
level setup information to avoid resetting the duplex setting. A side effect of this
work around is that you cannot switch the printer tray between pages.

1. Write a sed script with the following three lines:

/~%%BeginPageSetup/,$ {
/~%%BeginFeature/, /"%%EndFeature/d

}

2, Save the script to a file named duplexsed.
3. Copy duplexsed to an appropriate directory, such as ORACLE_HOME/bin.
4. Set the environment variable TK_PRINT as follows:

TK_PRINT="sed -f $ORACLE_HOME/bin/duplexsed | lpr -1 -s -P'%n' -#'%c'"
export TK_PRINT

Note: Print commands differ for various kinds of UNIX. Check
your installation guide and man pages for your platform. Refer to
Environment Variables for a description of TK_PRINT.

The command stored in TK_PRINT is only executed if
DESTYPE=PRINTER. If DESTYPE=FILE, you still get a PostScript
file with page level setup information. You can run the duplexsed
script against the PostScript file to correct it.

Printing on UNIX with Oracle Reports 5-29

Frequently Asked Questions

What PostScript level is supported in Oracle Reports?
Oracle Reports supports PostScript Level 1 and 2.

How do you dynamically change the printer tray setting in the midst of a
print job?

In some cases, you may want to switch printer trays in the middle of a report. For
example, you might want the first page of a report printed on letterhead stationary
and subsequent pages printed on plain white paper. For character mode reports,
you can achieve this result through a combination of editing the .prt file and
changing the report’s properties. For bit-mapped reports, you use the SRW. SET_
PRINTER_TRAY built-in function. On UNIX, this functionality is supported for
PostScript output but not PCL output. For PCL, Oracle Reports ignores the
commands for changing orientation and paper tray. Although dynamically
changing the orientation and printer tray for PCL is not supported on UNIX, you
can change them at runtime through the print dialog box for PCL.

By using the Before Report, Between Pages, or format triggers you can switch to
different printer trays as your report formats. This allows you to easily print pages
of the same report on different sheets of paper.

SRW.SET_PRINTER_TRAY is a built in Oracle Reports function for setting the
printer tray. The Reports Builder online help system describes this function’s syntax.

Example
From the Before Report trigger, you can set the printer tray for the very first page:

function BeforeReport return boolean is
begin
srw.set_printer_tray('UPPER PAPER TRAY');
return (TRUE);
end;

To set the printer tray dynamically for subsequent pages, add a format Trigger to an
item that prints on each page of the report. The following code checks for even
pages and sets the page number accordingly:

function B_tbpFormatTrigger return boolean is
page_num number;
begin
srw.get_page_num(page_num) ;
begin
if mod(page_num, 2) = 0 then
srw.set_printer_tray('UPPER PAPER TRAY');

5-30 Oracle Application Server Reports Services Publishing Reports to the Web

Frequently Asked Questions

else

srw.set_printer_tray('LOWER PAPER TRAY');
end if;

return (true);
end;
end;

Why does the external print command ignore the tray select option while
trying to print the PostScript output generated by Oracle Reports?
Suppose that you enter the following print command:

- lp -dprinter -oupper S$report_print_filel

In this case, the -~oupper option in the 1p command is ignored. The reason for this
behavior is that Oracle Reports generates tray information in its PostScript output.
The tray selection in the PostScript overrides the specification on the command line.
If you want the tray information on the command line to be respected, you need to

remove the tray information from the PostScript file. You can do this by searching
for and removing the following from your PostScript file:

%%BeginFeature: *InputSlot name of printer tray
$%EndFeature

For more information on switching printer trays, refer to How do you dynamically
change the printer tray setting in the midst of a print job?

5.7.4 Font-Related Printing Issues

How do you check whether a font is used in Oracle Reports printing?

PostScript files have a list of fonts, which is created after reading the PPD file. If you
examine the PostScript file, you can check the fonts by looking for the following
tags:

m DocumentNeededResource has the list of fonts referenced in the PPD file.

s DocumentSuppliedResource has the list of fonts for which the PostScript
driver was able to find corresponding AFM files.

m %%Page before the field's $IncludeResource: font has the font name that
will be used for the field.

Printing on UNIX with Oracle Reports 5-31

Frequently Asked Questions

For PCL output files, you can check whether a particular font was used. Depending
on this information, the font settings in Oracle Reports or the printer can be
modified.

See Also: Chapter 4, "Managing Fonts in Oracle Reports"

For more font-related information.

What is the real difference between running reports to Screen and
Preview?

Formatting a report to Screen, for screen fonts, guarantees that the report will look
good in the Paper Design view of the Report Editor. If an attempt is made to print a
report formatted with screen fonts, though, it is likely to come out with some
differences because screen fonts typically map very poorly to printer fonts. If
Preview is selected instead of Screen, the report is formatted with printer fonts and
the output on the screen is almost certain to match the printed output.

Will there be any font issues if | do not have a valid printer installed?

Earlier versions of OracleAS Reports Services required a valid printer on UNIX for
fonts. When no valid printer was available, OracleAS Reports Services used the
screen fonts, which again required the DISPLAY variable mentioned above. In
OracleAS Reports Services 10g (9.0.4) includes a default screen printer surface,
ScreenPrinter, that emulates a screen or printer for fonts in the absence of an
available printer. As a result, OracleAS Reports Services does not require a printer
on UNIX as of OracleAS Reports Services 10g (9.0.4).

See Also: Chapter 5, "Printing on UNIX with Oracle Reports"

For more information on DISPLAY and printer dependencies on
UNIX.

5.7.5 Printed Output Issues

Why does my report look okay on the screen but have truncated data
when printed?
Any one of a number of possible causes may account for the truncation of fields.

» Check the field and determine if it is allowed to expand.

1. In Reports Builder, double-click the field in the Paper Design or Paper
Layout view to display the Property Inspector.

5-32 Oracle Application Server Reports Services Publishing Reports to the Web

Frequently Asked Questions

o g k& 0D

7.
8.

Find the Horizontal Elasticity property.

If it is set to Fixed, you should change it to Variable or Expand.
Run the report to the printer.

If it still truncates, it could be that the field requires multiple lines.

Return to the Property Inspector for the field and check its Vertical
Elasticity.

If it is set to Fixed, you should change it to Variable or Expand.

Run the report to the printer again.

If the right most fields on the page are always the ones truncating, it could be an
issue with the printable area of the printer. If you are using a PCL printer, then
you will have to estimate the size of the printable area and resize your margins
accordingly:

1.
2.
3.

Open the report in Reports Builder.
Go to the Paper Layout view.

Click on the Margin tool on the top tool bar. A thick black line appears
indicating where the body of your report ends and the margin begins.

Click and drag the black line to the left approximately 0.5 inches.
Save and run the report to the printer again.

If necessary, repeat steps 4 and 5 to determine approximately where the
printable area boundary is located and then ensure that your report body
fits within that area.

If you are using a PostScript printer, you can get the printable area boundary to
appear in the Paper Layout view as follows:

1.

o g & 0 b

Open the report in Reports Builder.

Choose File > Page Setup.

Verify that the margins are small and that the orientation is correct.

Click OK. The Paper Layout view should now be able to read the boundary.
Go to the Paper Layout view.

Click on the Margin tool on the top tool bar. A thick black line appears
indicating where the body of your report ends and the margin begins. A

Printing on UNIX with Oracle Reports 5-33

Frequently Asked Questions

black hashed line also appears indicating the boundary of the printable
area.

7. Ensure that the thick black line is inside of the black hashed line. If it is not,
click and drag the black line inside the printable area.

8. (Click the Margin tool to leave margin mode.
9. If necessary, reposition your fields to fit within the new body boundaries.
10. Save and run the report to the printer.

s For PCL, if it is still truncating, try using a fixed space font instead of a
proportional font. Sometimes PCL printers have problems interpreting
proportional space fonts and it leads to truncation. You should try using a fixed
space font, such as Courier, and possibly font aliasing.

See Also: Chapter 4, "Managing Fonts in Oracle Reports"

For more font-related information.

Note: Default layouts are built against a generic printer. Each
printer has its own printable area. As a result, you may have to
reset the report to fit the printer. Ideally, if you know the various
printers you will be using, you can design the report from the start
to fit the printer with the smallest printable area.

5-34 Oracle Application Server Reports Services Publishing Reports to the Web

6

Using PDF in Oracle Reports

Adobe Portable Document Format (PDF) is a universal file format that preserves all
the fonts, formatting, graphics, and color, of any source document regardless of the

application and platform used to create it. Oracle Reports was one of the first report
generation tools to embrace this technology and generate quality PDF documents.

This chapter contains the following main sections:

PDF Features Included in Oracle Reports

This section contains information on the various PDF features supported by
Oracle Reports. This includes compression, font aliasing, font subsetting, font
embedding, accessibility, and taxonomy.

Resolving PDF Font Issues During Cross-Platform Deployment

This section contains information on resolving PDF font issues that occur when
you design a report on a Windows platform and deploy it on a UNIX platform.

Generating a Unicode PDF File

This section contains information on how to generate a PDF file using Unicode
character sets.

Generating a BiDi PDF File

This section contains information on how to generate a PDF file using
bidirectional (BiDi) languages such as Hebrew and Arabic.

Generating a Multibyte PDF File

This section contains information on how to generate a PDF file using multbyte
fonts.

Generating a Barcode PDF File

This section contains information on how to generate a Barcode PDF file.

Using PDF in Oracle Reports 6-1

PDF Features Included in Oracle Reports

6.1 PDF Features Included in Oracle Reports

Oracle Reports supports PDF 1.4 and is capable of generating high fidelity PDF
reports on all platforms. The PDF features supported by Oracle Reports include:

s Compression

= Font Related Features
» Accessibility

s Taxonomy

= Enhanced Graph Support

6.1.1 Compression

PDF compression decreases the PDF file size, thereby reducing the time spent in
downloading the PDF file.

The amount of space saved using compression varies based on the contents of the
report, for example, the number of images versus the size of the content.

» Images: PDF compression does not significantly affect the size of files
containing images in it, as image files are typically already compressed.

= Formatted data: Highly formatted data can achieve higher compression rates.
However, actual compression rates will vary for each report.

Compressed files are about one fifth the size of the original file. Testing has shown
that the best case compression ratio of one-eigth to the worst case compression ratio
of one-half was achieved based on the contents in the original file.

6.1.1.1 Setup

Oracle Reports implements a command line option to control the compression level
of the PDF output. The PDF output from Oracle Reports is compressed, by default,
and can be switched off or varied using the command line option: PDFCOMP .

Table 6-1 indicates which commands can use the PDFCOMP keyword.

Table 6-1 Commands that can use PDFCOMP

rwclient rwrun rwbuilder rwconverter rwserviet rwcgi rwserver

yes yes no no yes yes no

Description Use PDFCOMP to specify whether PDF output should be compressed.

6-2 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

Syntax PDFCOMP=value|{YES|NO}

Values

» value Any value 0 through 9. A value of 0 means the PDF file will not be
compressed. A value of 1 through 9 will compress the PDF file and permit users
to control the compression level.

Note: Levels 0 through 9 provide incremental levels of
compression. 0 being no compression and 9 being the maximum
amount of compression. The greater the compression you apply, the
longer it will take the report to generate the PDF file.

= YES Compresses output at compression level 6.

= NO Compresses output at compression level 0 (no compression).

Default 6

Although compressed files download quickly, the time taken to generate a
compressed file is much slower when compared to a non-compressed file.

Figure 6—1 Compressed Output vs. Non-Compressed Output

Name | Size | Type | M odified |
'@ pdf_no_comp.pdf T2AKB Adobe Acrobat Doc... 3431/2003 5:02 P
ﬂ pdf_ves comp.pdf 119KE Adobe Acrobat Doc... 4/3/2003 3:06 PM

Note: Compression rate depends on the report’s content; thus, the
time taken to generate the PDF file as well as the PDF file size will
vary from report to report.

6.1.2 Font Related Features

6.1.2.1 Font aliasing

Font aliasing enables you to substitute one font for another, i.e., font-to-font
substitution. This font-to-font substitution is usually used when porting
applications (in this case, your PDF file) across platforms. You can alias multibyte
fonts as well as character sets.

Using PDF in Oracle Reports 6-3

PDF Features Included in Oracle Reports

Font aliasing occurs at the time of generating the PDF file. The PDF file will contain
only the necessary font information required to display the output. The fonts used
will not be embedded in the PDF file.

Note: The fonts must be available on the machine displaying the
PDF output. The fonts need not be available on the machine
generating the PDF file.

At the time of viewing the report, Adobe Acrobat replaces the aliased fonts based
on the following:

1. If the fonts do not exist on the machine displaying the output, Adobe Acrobat
substitutes it with the Adobe Sans MM font.

2. If the Adobe Sans MM font does not match, the output may display dots for the
data.

Font aliasing will work with any or all of the following;:

= Single byte fonts, including Eastern European fonts for both ASCII and
ISO-Latin character sets

= Adobe multibyte Character ID (CID) fonts, both multibyte and Unicode fonts,
which are available as a free download from Adobe

= Type 1 Postscript fonts
s TrueType fonts

6.1.2.1.1 Setup
There are no command line options for font aliasing.

Include the font aliasing entries in the uifont.ali file. Oracle Reports aliases the
font only when the entries in the ui font . ali file match the font information
included in the generated PDF file.

6-4 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

Note: Theuifont.ali fileislocated in:
m ORACLE_HOME\tools\common90 (Windows)
m ORACLE_HOME/guicommon9/tk90/admin (UNIX)

The uifont.ali file is the configuration file controlling all the
Oracle Reports PDF font enhancements. See Managing Fonts in
Oracle Reports, for more information.

The section for font aliasing in the uifont.ali fileis [PDF].
The entry in the uifont.ali file for:
= Single byte fonts

[PDF]
"Font Name"="Font Name"

Note: The font name entries should be enclosed within double
quotes for font names containing two or more words. For example,
"Brush Script MT".

= Multibyte fonts

[PDF]
Character Set = "Font Name"
or
"Font Name"....Character Set="Font Name"

Note: The font name entries should be enclosed in double quotes
for font names containing two or more words. For example,
"HeiseiKakuGo-W5-Acro".

Here is an example of a font aliasing entry in the uifont.ali file:

[PDF]
/*Alias TrueType to available Type 1 font */
"Kino MT" = UtopiaBold

Using PDF in Oracle Reports 6-5

PDF Features Included in Oracle Reports

/*Alias multibyte to available CID font */
..... SJIS = "HeiseiKakuGo-W5-Acro"

where:

= In "Kino MT" = UtopiaBold, Oracle Reports substitutes every Kino MT
character found, with the UtopiaBold equivalent.

s In..... SJIS = "HeiseiKakuGo-W5-Acro", Oracle Reports substitutes
every multibyte character set found, with the HeiseiKakuGo-W5-Acro (CID)
equivalent.

6.1.2.1.2 Troubleshooting
If font aliasing does not work, verify that:

= In Acrobat Reader, click File > Document Properties > Fonts. Verify that the
aliased font has been added to the list. If it is not included, then font aliasing
did not occur. The fonts were not found or the entry in the uifont.ali fileis
incorrect.

= The fonts specified for the report are available on the machine where the report
will be viewed.

= The [PDF] section name in the uifont.ali file has not been modified as
Oracle Reports parses the file for the section name.

» The version of the Adobe Acrobat Reader used for viewing is version 3.0 or
higher. This is the version required for multibyte character reports to display

properly.

6.1.2.2 Font Subsetting

PDF font subsetting is a variant of PDF font embedding. This option includes only
the glyphs and character information that is actually used in the document.

With font subsetting, there is no dependency on the machine having the fonts
installed. PDF font subsetting works for both single and multibyte fonts and is the
preferred method of creating multibyte reports.

Note: Font subsetting will work only if the glyphs and font data
are included in the PDF file.

6.1.2.2.1 Setup

6-6 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

There are no command line options for font subsetting.
Before using the font subsetting feature you must:

= Include the font file paths in the REPORTS_PATH environment variable. Oracle
Reports looks for fonts in the path specified in the REPORTS_PATH environment
variable when generating a PDF file.

s Include the font subsetting entries in the uifont .ali file. Oracle Reports
subsets the fonts only when the font entries listed in the uifont .ali file exist
in the PDF file being generated.

The section for font subset in the uifont.ali fileis [PDF:Subset].
The entry in the uifont.ali fileis:

[PDF: Subset]
Font Name = "Font File Name"

The file name entries should be enclosed within quotes; however, only font names
containing two or more words should be enclosed within quotes.

The font file name referenced in the uifont.ali file must match the existing font
file name for font subsetting to work correctly.

Note: The font file name is not the font name displayed in Reports
Builder.

Example

[PDF: Subset]
Arial = "Arial.ttf"

Note: Oracle Reports supports TTF as well as TTC.

When you subset a font in a PDF file, it becomes a custom font because it contains
only those characters needed for the report output.

Using Adobe Acrobat 3.0 or higher, you can view the fonts used in your report:

= File > Document Properties > Fonts.

Using PDF in Oracle Reports 6-7

PDF Features Included in Oracle Reports

s The Document Font dialog box displays Original Font, Type, Encoding, Actual
Font (or the font used), and Type.

Figure 6-2 Font Subsetting

Document Fonts x|
Forts ;. utfBtest,pdf
Qriginal Font Tvpe Encoding Actual Fonk Twpe
Lta piaMediurnItalic Type 1 Windows Lkopi aMediumIkalic Type 1 __J
Zourier Type 1 Windows Courier Type 1
Fz Twpe 3 Custom Fz Type 3
List All Fonts. . 1

Note: In the case of font subsetting:

s The Encoding column will display Custom

s The Actual Font column will display F2

» The Type column will display Type3

Type3 fonts are imaged characters that look slightly bolder than
they would if expressed as a Typel font.

Recommended

For optimum viewing, we recommend that you use Adobe Acrobat Reader 5.0 and
set the following parameters in Adobe Acrobat Reader:

1. [Edit > Preferences > General.

Display > Smoothing.

Select Smooth Text, Smooth Line Art, and Smooth Images.

2
3.
4. (Laptop/LCD Screens) Select the Use CoolType check box.
5.

Click OK.

PDF font subsetting in Oracle Reports works with TrueType fonts only and not
with Typel fonts. To include specific TrueType fonts in your report, convert Typel
fonts to TrueType fonts using available 3rd party tools.

6-8 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

There is a limitation on UNIX platforms when working with TrueType fonts. To
work around this issue do the following;:

1. Copy the TrueType fonts to the UNIX machine.

2. Ensure that the correct font path is specified in the REPORTS_PATH
environment variable.

3. Run the report with the associated TrueType fonts. Refer to Designing the
Report on Windows and Deploying it on UNIX, for more information on
running a report on UNIX machines.

6.1.2.2.2 Troubleshooting If font subsetting does not work, verify the following:

s In Acrobat Reader, click File > Document Properties > Fonts. Verify that the
Actual Font value is Custom and Type is Type3. If this is not specified then font
subsetting did not occur. The problem could be either that the fonts were not
found or the entry in the uifont.ali file is incorrect.

s The font file names are valid.

s The font types are TrueType, i.e., filename.ttf/filename. ttc.

s The font name is enclosed in double quotes if it consists of two or more words.
» The font name does not contain embedded parenthesis.

s The font files are located in the path specified by the REPORTS_PATH
environment variable. When generating a PDF file, Oracle Reports looks for
fonts in the path specified in the REPORTS_PATH environment variable.

s The font names are correct and are available on the machine where the PDF file
is generated.

s The [PDF:Subset]section name in the uifont.ali file has not been
modified. Oracle Reports parses the file looking for the section name.

s The version of the Adobe Acrobat Reader used for viewing is version 3.0 or
higher. This is the version required for multibyte character reports to display
properly.

= Fonts that are subset look bold. This is an issue with Type3 fonts, which are
created during font subsetting. Type 3 fonts are imaged characters that look

slightly bolder than they would if expressed as a Type 1 font. See
Recommended for more information on improving the viewing quality.

Refer to Designing the Report on Windows and Deploying it on UNIX, for more
information on running a report on UNIX machines.

Using PDF in Oracle Reports 6-9

PDF Features Included in Oracle Reports

6.1.2.3 Font Embedding

PDF font embedding is the process of including the entire font set along with the
data in the PDF file. PDF font subsetting and font embedding are mutually
exclusive.

Note: Font embedding increases your PDF file size.

PDF font embedding in Oracle Reports is for Typel fonts only (either single or
multibyte fonts) and not for TrueType fonts. Convert TrueType fonts to Typel fonts
using available 3rd party tools in order to include specific Typel fonts in your
report.

PDF font embedding with Oracle Reports occurs between a font and a set of font
file names.

Note: You must ensure that you have the necessary font licenses
before embedding any fonts in your output.

6.1.2.3.1 Setup

The setup for PDF embedding includes:

= A command line option: PDFEMBED

= Anentry in the uifont.ali File Entry, [PDF : Embed]

The command line option PDFEMBED is used to specify whether Oracle Reports will
embed the Typel postscript fonts specified in the uifont.ali file into the PDF
output.

Note: Font embedding will work only if the fonts are included in
the PDF file.

PDFEMBED
Table 6-2 indicates which commands can use the PDFEMBED keyword.

Table 6-2 Commands that can use PDFEMBED

rwclient rwrun rwbuilder rwconverter rwserviet rwcgi rwserver

yes yes no no yes yes no

6-10 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

Description Use PDFEMBED to specify whether Oracle Reports will embed the
Typel PostScript font file(s) specified in the uifont.ali file into PDF output.

Syntax PDFEMBED={YES|NO}

Values

s YES The PDF driver will embed the font(s) specified in the [PDF : Embed]
header of the uifont.ali file into the PDF output.

= NO The font(s) will not be added to PDF output.

Default YES

uifont.ali File Entry
The section for font aliasing in the uifont.ali fileis [PDF : Embed].

(Windows only) The entry in the uifont.ali file should be:

Font Name = "Font Name.pfm Font Name.pfb"

(UNIX only) The entry in the uifont.ali file should be:

Font Name = "Font Name.afm Font Name.pfa"

Example 6-1 Font Embedding

[PDF : Embed]
Symbol = "Symbol.pfm Symbol.pfb"

In Example 6-1, the Symbol font is embedded into the PDF file. This ensures
portability by:

1. Creating the report with the Symbol font.

2. Embedding the Symbol font in the PDF file (Figure 6-3).

Using PDF in Oracle Reports 6-11

PDF Features Included in Oracle Reports

Figure 6-3 Font Embedding

Document Fonts

Fontsin: embedded, pdf

Original Fonk Type Encoding Ackual Font Type

Symbaol Type 1 Built-in Embedded Tvpe 1 J

List all Fonts., ..

6.1.2.3.2 Troubleshooting

If PDF font embedding does not work, verify the following:

In Acrobat Reader, click File > Document Properties > Fonts. Verify that the
embedded font has been added to the list. If the font has not been added, then
font embedding did not occur. The problem could be either that the fonts were
not found or the entry in the uifont.ali file is incorrect.

The correct font file name is used.

The font path specified in the REPORTS_PATH environment variable is correct.
When generating the PDF file, Oracle Reports looks for fonts in the paths
specified in the REPORTS_PATH environment variable.

The font type is a Typel font.

The font name is enclosed within double quotes if it consists of 2 or more
words.

The [PDF:Embed] section name in the uifont.ali file has not been
modified. Oracle Reports parses the file looking for the section name.

The format to specify the embedded font is valid

Font Name="fontfilename.pfm/.afm file fontfilename.pfb/.pfa file".

For example (Windows):

UtopiaMediumItalic = "UtopiaMediumItalic.pfm UtopiaMediumItalic.pfb"

The font name is correct and available on the machine where the PDF file is
generated.

6-12 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

6.1.3 Precedence of Execution

The precedence order for the same font in multiple places within the uifont.ali
file is as follows:

1. Font aliasing takes precedence over font embedding (highest)
2. Font embedding takes precedence over font subsetting (intermediate)
3. Font subsetting takes no precedence (lowest)

For example, if you have included the same font entries for both font embedding
and font subsetting, then font embedding will override font subsetting. This is
assuming you have not set the command line option of PDFEMBED=NO.

For all font features —font aliasing, font subsetting, and font embedding—include
the specific entries first followed by the generic entries. For example, if you want to
subset Arial Plain, Arial Bold, Arial Italic, and Arial Bold-Italic fonts, your entries
should be in the following order:

[PDF:Subset]

Arial..Italic.Bold.. = "Arialbi.ttf"

Arial...Bold.. = "Arialb.ttf"

Arial..Italic... = "Ariali.ttf"

Arial..... = "Arial.ttf"

If the plain Arial. = "Arial.ttf" entry appears first, then all the styles of

the Arial font in the layout will be subset as Arial Plain font. Here is a sample of a
portion of the uifont.ali file for all the PDF entries containing all three PDF
sections:

Sample 1

[PDF]

Palatino = "Kino MT.ttf"
[PDF:Subset]

Garmond. .Italic.Bold.. =
"Garmacbi.ttf"

Garmond. ..Bold.. = "Garmacb.ttf"
Garmond. .Italic... = "Garmaci.ttf"
Garmond..... = "Garamac.ttf"

[PDF:Embed]

Arial = "Arial.pfm Arial.pfb"

Sample 2
[PDF]

Using PDF in Oracle Reports 6-13

PDF Features Included in Oracle Reports

Arial.10.Italic = “Times New Roman”.l12.Italic.Bold
“Courier New” = Symbol

[PDF : Embed]

“Times New Roman”.14..Bold = “TimesBold.pfm TimesBold.pfb”
[PDF: Subset]

Verdana..Italic.Bold = “Verdanaz.ttf”

Verdana..Bold = “Verdanab.ttf”

Table 6-3 Value Comparison of the various PDF types

PDF Type Advantage Disadvantage
Font Aliasing Multibyte support Unicode character set
Good display not supported

Asian Font Packs are
required on the client
machine, if the client’s
operating system and
Acrobat Reader are not
the native version.

Small file size (Japanese
example; 23kb for font
aliasing when compared
to 130kb for font
subsetting)

Limited fonts support .
For example, there is no
support for font
emphasis.

Font Embedding Guaranteed display Only single byte support
provided.

Large file size.

Font Subsetting Unicode support Inadequate display (*)

Guaranteed display No styles (Italic and
Bold) support

The generated PDF file
cannot be edited using
Acrobat Reader.

(*) Refer to Recommended for more information on how to correct this.

6.1.4 Accessibility

Oracle Reports provides several ways for you to include accessibility features in
your PDF file. The PDF format file follows the tagged-PDF standard defined in PDF
1.4. This standard along with Acrobat Reader 5 (or higher) provides you with
features for inclusion in the paper layout. The command line option to include
accessibility features in your output is ACCESSIBLE.

6-14 Oracle Application Server Reports Services Publishing Reports to the Web

PDF Features Included in Oracle Reports

Table 64 indicates which commands can use the ACCESSIBLE keyword.

Table 6-4 Commands that can use ACCESSIBLE

rwclient rwrun rwbuilder rwconverter rwserviet rwegi rwserver

yes yes yes no yes yes no

Description Use ACCESSIBLE to specify whether accessibility-related features
offered through Oracle Reports are enabled (YES) or disabled (NO) for the PDF file.

Syntax ACCESSIBLE={YES | NO}

Values
= YES Accessibility features are enabled for PDF file.

s NO Accessibility features are not enabled for PDF file.

Default NO

Using the additional properties (Figure 6—4), you can provide the required
information necessary for generating PDF documents that can be interpreted by
assistive technology. For more information on accessibility, see the Creating
Accessible Enterprise Reports using Oracle9i Reports white paper on
(http://otn.oracle.com)under Accessibility.

Figure 6—4 Accessibility

| @ Prnter Code Alter

= Acceszibilitp
@0 F1
@ Alternative Test

@ Headers -

6.1.5 Taxonomy

A PDF document can include global information about itself such as the
document’s title, author, creation and modification dates. This global information
proves useful at the time of cataloguing or searching for documents in external
databases.

Using PDF in Oracle Reports 6-15

PDF Features Included in Oracle Reports

Oracle Reports provides properties to enable such a classification, otherwise known
as taxonomy. They are:

n Title

= Author

= Subject

= Keywords

Table 6-5 Taxonomy Properties

Property

Name Type Description Default Value

Title String Document title PDF document

name

Author String Document’s Oracle Reports
author

Subject String Document’s None
subject

Keywords String Specifies None
keywords that

can be used to
categorize the
document

Note: The taxonomy properties are report level properties.

Refer to the Reports Builder online help for more information on the taxonomy
properties.

6.1.6 Enhanced Graph Support

Oracle Reports now provides enhanced support for graphs in PDE. This includes
specifying a higher dots per inch (DPI) value to increase or improve the image
resolution of the graph. The improved graph support enables you to scale the graph
without compromising on the image quality.

The environment variable is REPORTS_GRAPH_IMAGE_DPI.

6-16 Oracle Application Server Reports Services Publishing Reports to the Web

Resolving PDF Font Issues During Cross-Platform Deployment

Description The REPORTS_GRAPH_IMAGE_DPI environment variable specifies a
dots per inch (DPI) value for graphs being output to a printer (PDF, PostScript, or
PCL). This environment variable allows you to increase the earlier fixed default
value of 72 DPI, which helps in improving the image resolution for printed (PDF,
PostScript, or PCL) graphs.

Valid Values 72 through 300

Default 250

Usage Notes

= On Windows, use the registry to specify the value. On Unix/Linux, set the
environment variable in reports. sh.

= Generating a high resolution chart will increase the PDF file size relatively and
the time taken to generate the PDF file/printer output.

= When you set a DPI value greater than 250 and your chart is bigger than 5"x5"
(approximately), you may also need to change the JVM heap size value via
REPORTS_JVM_OPTIONS to avoid the Out Of Memory error for the JVM. See
REPORTS_JVM_OPTIONS, for more information on setting the JVM options

s Torevert to the old behavior, set the value of this environment variable to 72
DPIL.

» This variable is currently not supported in Oracle Reports distribution
functionality as this is specific to PDF, PS, and printer outputs only.

6.2 Resolving PDF Font Issues During Cross-Platform Deployment

There are font and text alignment issues when you design a report (single byte or
multibyte) on the Windows platform and deploy it on a UNIX platform. The
reason is that the font handling and windowing system are completely different
across the two platforms.

6.2.1 Designing and Deploying the Report on the Same Platform

Your report is designed and deployed on the same platform, e.g., Windows:
s There should be no font or text alignment issues in the PDF file.

= If the PDF file is generated with font subsetting enabled, then the PDF file can
be viewed in the same manner across platforms.

Using PDF in Oracle Reports 6-17

Resolving PDF Font Issues During Cross-Platform Deployment

6.2.1.1 Designing the Report on Windows and Deploying it on UNIX

Your report is designed on the Windows platform and deployed on the UNIX
platform.

(Windows) You use the TrueType fonts located in the Windows machine. Oracle
Reports queries the font information from the Windows system for formatting the
report.

(UNIX) When this report is sent to PDF on Solaris or any other UNIX platforms,
there are two stages:

1. Oracle Reports renders the font metrics information for the fonts and uses this
information to format various objects in the report.

Note: Oracle Reports renders the font metrics information from
the AFM files mentioned in the printer’s PPD file.

2. Oracle Reports then looks for the entries in the [PDF] section of the
uifont.ali file. For font subsetting, Oracle Reports refers to the [PDF:
Subset] section and subsets the TrueType fonts from the given location. The
subsetted fonts are then embedded in the PDF file.

Note: The corresponding AFM files for all the TrueType fonts used
in your report should be available on the UNIX machine to ensure
adequate formatting is enforced.

6.2.1.1.1 Step by Step Procedure for Single Byte fonts This section outlines the steps
involved in generating a PDF report (using single byte fonts) designed on the
Windows platform on either Solaris or any other UNIX platform. These steps are
required only if you see font alignment issues in your PDF output.

1. Create a report on the Windows platform with TrueType fonts. For this
procedure, the fonts referred to are arial.ttf and tahoma. ttt.

2. Copy the fonts (arial.ttf and tahoma. ttf) and your report’s . rdf file to
the UNIX platform. The path for the font files should be ORACLE_HOME/font
folder. Add the font file’s path to the REPORTS_PATH environment variable.

3. Create the AFM files for the font files (arial.ttf and tahoma.ttf).

4. Copy the AFM files (arial.afmand tahoma.afm) generated to ORACLE_
HOME/guicommon9/tk90/admin/AFM.

6-18 Oracle Application Server Reports Services Publishing Reports to the Web

Resolving PDF Font Issues During Cross-Platform Deployment

10.

11.

Note: The AFM files should be copied to the AFM directory
without the . afm extension. Additionally, ensure that the name of
afm file, the name of the font in the .ppd file, and the name of the
font the uifont.ali file are an exact match.

Ensure that the TK_PRINTER environment variable or the PRINTER
environment variable is set to the printer name. For example, hrprinter.

Ensure that the uiprint . txt file has the following entry:

printer name:PostScript:2:test:default.ppd:

For example:

hrprinter:PostScript:2:test:default.ppd:

Add the AFM entries to the ppd file.

Note: This ppd file is the first entry in the uiprint. txt file and
contains your font information. The default ppd file is
datap462.ppd.

*Font arial: Standard "(001.001)" Standard ROM
*Font tahoma: Standard " (001.001)" Standard ROM

Ensure that there are no entries in the [PDF : Subset] section at this time in the
uifont.ali file.

Run the report to generate the PDF file. In Acrobat Reader, click File >
Document Properties > Fonts or File >Document Info > Fonts:

a. The Original Font column displays the Arial and Tahoma fonts.
b. There will be some font alignment issues.

Add the following entry in the uifont.ali file:

[PDF:Subset]
"arial" = "arial.ttf"
"tahoma" = "tahoma.ttf"

Run the report again to generate the PDF file. The PDF file should not contain
any font alignment issues.

Using PDF in Oracle Reports 6-19

Resolving PDF Font Issues During Cross-Platform Deployment

To confirm that the fonts are subset in the PDF file:
a. In Acrobat Reader, click File > Document Properties > Fonts.

b. The Original Font column should display F2, the Encoding column should
display Custom, and the Type column should display Type3.

6.2.1.1.2 Step by Step Procedure for MultiByte and Unicode fonts There are additional
steps for generating reports with multibyte fonts. The steps involved in resolving
font issues with PDF subsetting when deploying multibyte reports on UNIX
platforms are as follows:

1.

Create a report on the Windows platform using TrueType multibyte fonts with
the appropriate character set. For this procedure the font and the character sets
referred to are the Korean font h2mjsm. ttf and the KO16KSC5601 character
set.

Copy the Korean font h2mjsm. tt £ and your report’s . rdf file to the UNIX
platform. The font file path should be SORACLE_HOME/ font folder. Add
the font file’s path to the REPORTS_PATH environment variable.

Create the AFM files for the Korean font h2mjsm. ttf.
Copy the AFM file to the following location:

SORACLE_HOME/guicommon9/tk90/admin/AFM/ .
% cp h2mjsm.afm ORACLE_HOME/guicommon9/tk90/admin/AFM/h2mjsm

Ensure that the TK_PRINTER environment variable or the PRINTER
environment variable is set to the printer name. For example, hrprinter.

Ensure the uiprint. txt file has the following entry:

printer name:PostScript:2:test:default.ppd:

For example:

hrprinter:PostScript:2:test:default.ppd:

Add the following lines in the . ppd file:

Note: This ppd file is the first entry in the uiprint. txt file and
contains your font information. The default ppd file is
datap462.ppd.

*DefaultFont: h2mjsm

6-20 Oracle Application Server Reports Services Publishing Reports to the Web

Resolving PDF Font Issues During Cross-Platform Deployment

10.

11.

12.

13.

*Font h2mjsm: Special "(001.001)" Special ROM

Comment the Symbol line in the file:

*$Font Symbol: Special "(001.001)" Special ROM

Edit the following section in the uifont.ali file to mention the font used for
the character set:

Note: Theuifont.ali fileislocated in:
m ORACLE_HOME\tools\common90 (Windows)
s ORACLE_HOME/guicommon9/tk90/admin (UNIX)

The uifont.ali file is the configuration file controlling all the
Oracle Reports PDF font enhancements. Refer to Managing Fonts in
Oracle Reports, for more information.

[Global]

..... kol6ksc5601 ="h2mjsm"
[Printer:PostScript2]
..... kol6ksc5601 ="h2mjsm"

Ensure that there are no entries in any of the [PDF] or [PDF: Subset] sections
at this time in the uifont .ali file.

Run the report to generate the PDF file. In Acrobat Reader, click File >
Document Properties > Fonts or File > Document Info > Fonts:

a. The Original Font column displays the h2mjsm font.
b. There will be some font alignment issues.
Add the following entries in the uifont .ali file to enable PDF subsetting:

[PDF:Subset]
"h2mjsm"="h2mjsm.ttf"

Run the report again to generate the PDF file. The PDF file should not contain
any font alignment issues.

To confirm that the fonts are subset in the PDF file:

a. In Acrobat Reader, click File > Document Properties > Fonts or File >
Document Info > Fonts.

Using PDF in Oracle Reports 6-21

Generating a Unicode PDF File

b. The Original Font column should display F2, the Encoding column should
display Custom, and the Type column should display Type3.

Note: There might be some variations in the alignment, as the font
metrics handling is different in UNIX and Windows. This issue
cannot be avoided.

A PDF file generated with the font subsetting enabled might have
some font style issues (e.g., some content could be displayed as
bold) when viewed in Acrobat Reader. This is because Acrobat
Reader has a limitation while displaying the Type 3 fonts. See
Recommended for more information on how to smoothen the
display for Type 3 fonts.

6.3 Generating a Unicode PDF File

This section outlines the steps involved in generating a PDF file with a Unicode
character set.

6.3.1 Font Subsetting

The steps involved in generating a Unicode PDF file using the font subsetting
feature are as follows:

1.
2.

Set NLS_LANG=AMERICAN_AMERICA.UTFS.

Set REPORTS_PATH to the font directory in which the TrueType font exists. For
example, C: \WINNT\Fonts.

Open the uifont.ali file and edit the [PDF: Subset] section to specify the
TrueType font name.

Note: Theuifont.ali fileislocated in:
m ORACLE_HOME\tools\common90 (Windows)

s ORACLE_HOME/guicommon9/tk90/admin (UNIX)

Example

[PDF:Subset]
"Andale Duospace WT J" = "Aduoj.ttf"
"Albany WT J"="AlbanWTJ.ttf"

6-22 Oracle Application Server Reports Services Publishing Reports to the Web

Generating a BiDi PDF File

The specified font should cover the Unicode range that your report uses.

4. Create a report having MLS data and set its font to the Unicode font.

5.

Run a report having MLS data with DESTYPE=FILE DESFORMAT=PDF .

6.4 Generating a BiDi PDF File

This section outlines the steps involved in generating a PDF file for bidirectional
(BiDi) languages.

Oracle Reports provides two environment variables that resolve font re-shaping
and numeric options with bidirectional (BiDi) languages, such as Hebrew and
Arabic. They are:

1.

REPORTS_BIDI_ALGORITHM

This environment variable switches the layout algorithm for bidirectional (BiDi)
languages (for example, Arabic or Hebrew). The valid values for this
environment variable are ORACLE or UNICODE.

See Also: REPORTS_BIDI_ ALGORITHM

For more information on the environment variable.

REPORTS_ARABIC_NUMERAL

This environment variable specifies the numeric format for Arabic PDF output.

See Also: REPORTS_ARABIC_NUMERAL

For more information on the environment variable.

6.4.1 Font Subsetting

The steps involved in generating a PDF file for bidirectional (BiDi) languages using
the font subsetting feature are as follows:

1.

Set NLS_LANG=ARABIC_EGYPT.AR8MSWIN1256 (OI‘ AR8IS08859P6 on
UNIX)

Set REPORTS_PATH to the font directory in which the TrueType font exists. For
example, C: \WINNT\Fonts.

Open the uifont.ali file and edit the [PDF : Subset] section to specify the
TrueType font name.

Using PDF in Oracle Reports 6-23

Generating a Multibyte PDF File

Note: Theuifont.ali fileislocated in:
s ORACLE_HOME\tools\common90 (Windows)

m ORACLE_HOME/guicommon9/tk90/admin (UNIX)

Example

[PDF: Subset]
"Andale Duospace WT J" = "Aduoj.ttf"
"Albany WT J"="AlbanWTJ.ttf"

4. Create a report having Arabic data and set it to the font specified in the
example.

5. Runa report with DESTYPE=FILE DESFORMAT=PDF.

6.5 Generating a Multibyte PDF File

This section outlines the steps involved in generating a PDF file with multibyte

fonts.

Figure 6-5 outlines the mapping table between Oracle NL.S_ CHARACTERSET, CMap
name, and its CID font name used in aliasing pdf.

Figure 6-5 CID Font Mapping for Aliasing PDF

Oracle
Language NLS CHARACTERSET CMap name CIDFont name
name
JATESIIS 90 ms-R KSJ-H "KozMinPro-Reqular-Acra" (%)
Japanese "HeiseikakuGo-wWh-Acro” ™)
JATBELIC EUC-H "HeizeiMin-W3-Acro” (™)
WOTEKSCSE01 WSe-EUC-H "HY Shyeonglo Std-Medium-Acro” ()
Korean "HY GoThic-MediureAcro” (™)
KO1BMSWINTG4S KSCmsUHC-H "HY SWlyeonoo-Medium-Acra” (™)
ZHT3ZEUC CMS-EUC-H "MSunuStd-LinhtAcro” ()
. . ZHTIBBIGS, "MHei-Medium-Acro” (™)
Traditional Chinese ZHT 1B MSWING5D ETen-B5-H “MSun g-Light-Acro® ()
ZHT1EHKSC S Hkscs-B5-H "M3Sun gStd-Light Acra"(™)
PR . ZHS16C GEZ31280 GB-ELIC-H "STSono Std- Lioht-Acra” (%)
Simplified Chinese iSRG B GRIEUCH "ST Song-Light- Acra"(™)

(*) Those fonts are available Adobe in Acrobat Reader Version 5

(**) Those fonts are available Adobe in Acrobat Reader Version 4

6-24 Oracle Application Server Reports Services Publishing Reports to the Web

Generating a Multibyte PDF File

It is recommended that you use Version 5 CIDFonts(*) with Acrobat Reader 5.0 in
order to avoid unexpected font mapping, which results in multibyte characters
overlapping.

6.5.1 Font Aliasing

The steps involved in generating a PDF file for multibyte fonts using the font
aliasing feature are as follows:

1. Set NLS_LANG=JAPANESE_JAPAN.JA16SJIS (or JA16EUC on UNIX)

2. Opentheuifont.ali file located and set the font alias under the
[PDF] section.

Note: Theuifont.ali fileislocated in:
m ORACLE_HOME\tools\common90 (Windows)

s ORACLE_HOME/guicommon9/tk90/admin (UNIX)

Example

[PDF]

..... JA16SJIS = "KozMinPro-Regular-Acro"

"MS UI Gothic"..... JA16SJIS = "KozMinPro-Regular-Acro"

3. Create a report having Japanese data with the Japanese font (MS UI Gothic).
4. Run areport with DESTYPE=FILE DESFORMAT=PDF.

5. If your Acrobat Reader is a non-Japanese version installed on a non-Japanese
operating system, you need to install the Japanese font pack from Adobe's site.

If you view the PDF file with the Japanese version of Acrobat Reader 4.0/5.0 on
the Japanese version of Windows, you do not need to install the Japanese font
pack.

6.5.1.1 Font Subsetting

The steps involved in generating a PDF file for multibyte fonts using the font
subsetting feature are as follows:

1. SetNLS_LANG=JAPANESE_JAPAN.JA16SJIS (or JA16EUC on UNIX)

2. Set the REPORTS_PATH environment to the font directory in which the
TrueType font exists. For example, C: \WINNT\Fonts.

Using PDF in Oracle Reports 6-25

Generating a Barcode PDF File

3. Opentheuifont.ali file located in the ORACLE_HOME\tools\common90
directory and edit it at the [PDF: Subset] section to specify the TrueType font

name.

Example

[PDF:Subset]

"Andale Duospace WT J" = "Aduoj.ttf"
"Albany WT J"="AlbanWTJ.ttf"

"MS UI Gothic" = "msgothic.ttc"

4. Create a report having Japanese data and set it to the font mentioned in the
example.

5. Run areport with DESTYPE=FILE DESFORMAT=PDF.

6.6 Generating a Barcode PDF File

This section outlines the steps involved in generating a PDF file with barcode
information.

6.6.1 Font Embedding

The steps involved in generating a barcode PDF file using the font embedding
feature are as follows:

1. Set the REPORTS_PATH environment variable to the font directory containing
the Typel font.

2. Opentheuifont.ali file and include the following under the font embed
[PDF : Embed] section.

Note: Theuifont.ali fileis located in:
s ORACLE_HOME\tools\common90 (Windows)

m ORACLE_HOME/guicommon9/tk90/admin (UNIX)

Example

[PDF:Embed]
SAdHC39a = "SAdHC39a.pfm SAdHC39a.pfb"

6-26 Oracle Application Server Reports Services Publishing Reports to the Web

Generating a Barcode PDF File

3.

4.

Create a report having Barcode data and set its font to the one mentioned in the
example.

Run a report with DESTYPE=FILE DESFORMAT=PDF.

6.6.1.1 Font Subsetting

The steps involved in generating a barcode PDF file using the font subsetting
feature are as follows:

1.

Set the REPORT'S_PATH environment variable to the directory containing the
TrueType font. For example, C: \WINNT\Fonts.

Open the uifont.ali file in the ORACLE_HOME\tools\common90 directory
and include the following under the [PDF: Subset] section to specify the
TrueType font name:

Example

[PDF:Subset]
SAdHC39a = "SAdHC39a.ttf"

Create a report having Barcode data and set it to the font mentioned in the
example.

Run a report with DESTYPE=FILE DESFORMAT=PDF.

Using PDF in Oracle Reports 6-27

Generating a Barcode PDF File

6-28 Oracle Application Server Reports Services Publishing Reports to the Web

7

Configuring Destinations for OracleAS
Reports Services

Two things to consider when you run a report are how the report should be output
(destination) and who should receive it (distribution). Distribution is discussed in
Chapter 15, "Creating Advanced Distributions". This chapter explores how
OracleAS Reports Services handles output processing to default and custom
destinations. It provides an overview of output processing and information on
registering destination types with the OracleAS Reports Services.

It includes the following sections:
s Overview of Output Processing

= Registering Destination Types with the Server

7.1 Overview of Output Processing

How the report should be output is controlled by the destype that you specify at
runtime, which, in turn, are determined by the destination output types you have
registered in your server configuration file (server_name.conf). You can register
no output types and simply use the default types provided by OracleAS Reports
Services:

» Cache (i.e., browser)

s SMTP-compliant e-mail
= File

s Printer

» OracleAS Portal (this is an exception in that, for access to the portal, it requires
the specification of a userid and password in the server configuration file)

Configuring Destinations for OracleAS Reports Services 7-1

Overview of Output Processing

You can also define custom output types, such as fax, Oracle's Internet File System
(iFS), or any type you define using the OracleAS Reports Services Destinations APIL.
This API enables you to define new destination types and build handlers to usher
your reports to custom destinations.

Note: Build a custom destination type via the OracleAS Reports
Services Destinations API. Look for upcoming information about
Oracle Reports APIs and destination types for download on the
Oracle Technology Network, (http://otn.oracle.com).

The OracleAS Reports Services architecture standardizes the way output is
generated and delivered. It takes responsibility for delivering report output to the
appropriate destination (via the Reports Server), yet generates output independent
of its destination (via the Reports Engine). This provides a significant improvement
in efficiency by allowing one run of a report to be used in a number of different
ways. It also opens up the output processing architecture to allow for any number
of destination types.

In the past, the Reports Runtime engine was totally responsible for delivering the
output. Consequently, it had to know how to communicate with output
destinations. This resulted in a tight coupling between the engine and the
supported destinations.

OracleAS Reports Services eliminates this tight coupling and its attendant
restrictions. The runtime engine now treats all destinations alike. It doesn't need to
know the destination type for which the output is being produced. The server
hands output off to destination handlers that prepare the material for delivery to
their associated destination types. You can use predefined destination types (with
predefined handlers) or create a handler for a custom destination type you intend to
support. Almost any type of destination can be plugged into Oracle Reports.

Figure 7-1 illustrates the main components of the OracleAS Reports Services output
processing architecture.

7-2 Oracle Application Server Reports Services Publishing Reports to the Web

Overview of Output Processing

Figure 7-1 Main components of destination/distribution architecture

Reports
Engine

Requests flow through the output processing architecture in the following sequence:

1.
2.
3.

The user submits a request from a client or browser to the Reports Server.
The server passes it along to the runtime engine.

The runtime engine creates/processes the destination objects (which include file
lists for specific destinations as well as any properties related to those
destinations) and the report output; the runtime engine sends the destination
objects to the Reports Server and the report output to cache.

The Reports Server sends the destination objects to the Reports Server's
destination component.

Configuring Destinations for OracleAS Reports Services 7-3

Registering Destination Types with the Server

5. The destination component of the Reports Server fetches the report output from
cache.

6. The Reports Server destination component sends the report and the destination
objects (which specify how the destination device should handle the output) to
the appropriate destination handler.

7.2 Registering Destination Types with the Server

Before OracleAS Reports Services can send a report to a particular destination type,
the type must be a default type (printer, e-mail, cache, or file) or a type registered in
the server's configuration file, server_name.cont. The configuration file contains
a destination element for registering destination types that are valid for your
reports. You can register anywhere from zero to any number of destination types.

Registering a destination type with the server involves:
= Setting Up a Destination Section in the Server Configuration File
» Entering Valid Values for a Destination

These tasks are described in the following sections.

7.2.1 Setting Up a Destination Section in the Server Configuration File
To set up a destination section in the server. name.conf file:
1. Open the server configuration file with your preferred text editor.

You'll find the server configuration file in the following directory (Windows and
UNIX use the same path):

ORACLE_HOME\reports\conf\server name.conf
2. If the configuration file does not have a destination section, create one

underneath the element that precedes it in the configuration file's data type
definition file (rwservercont . dtd) section.

Note: The server configuration file follows the order of elements
defined in the file's related document type definition file (ORACLE_
HOME\reports\dtd\rwserverconf.dtd). Place destination
after the elements that precede it, whichever are present in your
server configuration file.

7-4 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Destination Types with the Server

3. Use the following syntax to register all the destination types you will use for
outputting reports:

<destination destype="output_type 1" class="java_class_1">
<property name="valid_destype_property" value="valid value"/>
<property name="valid destype property" value="valid value"/>

</destination>

<destination destype="output_type 2" class="java_class 2">
<property name="valid destype property" value="valid value"/>

</destination>

The valid values for these tags are discussed in the following sections.

7.2.2 Entering Valid Values for a Destination

7.2.2.1 Destination destypes and classes

The destype and class attributes are required for valid registration of a
non-default output type. They specify the destination types and their associated
Java classes. The predefined (default) destination types and classes that come with
OracleAS Reports Services are listed in Table 7-1:

Table 7-1 Standard destination types and classes

Destination destype class
OracleAS Portal content area oraclePort oracle.reports.server.DesOracl
al ePortal

SMTP-compliant e-mail mail oracle.reports.server.DesMail
file file oracle.reports.server.DesFile
cache cache oracle.reports.server.DesCache
printer printer oracle.reports.server.DesPrint
FIP ftp oracle.reports.plugin.destinat

ion.ftp.DesFTP

WebDAV WebDAV oracle.reports.plugin.destinat
ion.webdav.DesWebDAV

Contrary to the other default types, you must register an oraclePortal destype.
This is because the oraclePortal destype requires the specification of a userid
and password for accessing the portal.

Configuring Destinations for OracleAS Reports Services 7-5

Registering Destination Types with the Server

See Also: Chapter A, "Command Line Options"

For examples on pushing a report using the oraclePortal
destype.

You are not limited to the predefined destypes and classes provided with the server.
You can register custom destination types, such as a fax, once you have defined a
custom handler (through the Destinations API).

Note: Look for upcoming information about Oracle Reports APIs
on the Oracle Technology Network, (http://otn.oracle.com).

7.2.2.2 Destination Property name/value Pairs

The server configuration file allows the association of an unlimited number of
properties with a registered destination. Destination properties consist of
name/value pairs that define some aspect of an output type's configuration. They
are expressed in terminology recognized by the destination type. For example, a
destination with a destype of oraclePortal would recognize the name/value
pair:

<property name="portalUserid" value="portal_id/portal_password@portal_schema"
confidential="yes" encrypted="no"/>

This example defines the values to be associated with a portal user ID. It includes
the attributes confidential and encrypted:confidential="yes", which
indicate that the values within this element should be encrypted;
encrypted="no", which indicates that the values are not yet encrypted. The next
time the Reports Server starts, it will automatically encrypt the values and reset
encryptedto yes.

Note: Elements and attributes allowable in server configuration
file are determined by the syntax defined in the

rwserverconf .dtd file (ORACLE_
HOME\reports\dtd\rwserverconf .dtd). This is discussed in
detail in Chapter 3, "Configuring OracleAS Reports Services".

What is valid for a destination type's properties depends entirely on the destination
type. These values do not come from Oracle Reports and are not put to use by the
Reports Server. They come from the destination type itself and use terms the

7-6 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Destination Types with the Server

destination recognizes. It is up to the developer to understand the requirements of a
custom destination and to know what properties to associate with a given custom
output type.

When we begin to discuss distribution, you may note that within the distribution
XML file, the destype element also allows for the use of property name/value
pairs. It's important to make a distinction between properties entered for a
destination element in the server configuration file and those entered for a
destype element in the distribution XML file:

s Properties entered for a destination element in the server configuration file
should deal only with configuring an output type, for example setting an
allowable number of retries for a destination fax.

m Properties entered for a destype element in the distribution XML file should
deal only with specifying a runtime parameter, for example the identity of the
fax's intended recipient.

7.2.3 Example Destination

The following example illustrate a destination element for pushing content into
OracleAS Portal:

<destination destype="oraclePortal" class="oracle.reports.server.DesOraclePortal">
<property name="portalUserid" value="<the_username_password_tnsname_for_ logon_to_portal>"
encrypted="vyes"/>
</destination>

Configuring Destinations for OracleAS Reports Services 7-7

Registering Destination Types with the Server

7-8 Oracle Application Server Reports Services Publishing Reports to the Web

8

Configuring and Using the JDBC PDS

The JDBC pluggable data source (PDS) enables you to access any JDBC sources,
such as:

= An RDBMS like Oracle, DB2, Sybase, or SQL Server
= A non-relational data source like Microsoft Excel
= Any ODBC data source through the JDBC-ODBC bridge

The JDBC PDS is installed by default with Oracle Reports to allow access to all of
the JDBC supported data sources.

This chapter contains the following sections:
= JDBC Configuration File

= Defining and Running a JDBC Query

= Troubleshooting Information

= Adding Your Own PDS

8.1 JDBC Configuration File

The jdbcpds . conf file, located in the ORACLE_HOME\reports\conf directory,
is the Oracle Reports JDBC PDS configuration file. This file is pre-configured for the
Merant DataDirect drivers provided by Oracle. You need to add or modify relevant
entries in the jdbcpds . conf file to include any other JDBC drivers that you want
to use.

Reports Builder displays a list of drivers in the JDBC Query Connection dialog box
based on the entries in the jdbcpds . conf file. Use this list to select specific drivers
for your report’s JDBC query.

Configuring and Using the JDBC PDS 8-1

JDBC Configuration File

Reports Builder reads and caches the entries in the jdbcpds . conf when it is
invoked. Restart Reports Builder to view the result of any changes made to the
jdbcpds . conf file, e.g., adding a new JDBC driver entry.

The jdbcpds . conf file has two sections:

= An Internal DTD section describing the XML format and driver configuration
information

Caution: This section should not be modified.

= An XML section detailing the driver information like driver name, connect
string format, driver class, etc.,

Note: You can modify or add your driver information in this
section.

Example
The following sample illustrates the contents of the jdbcpds . conf file:

<!-- DTD section - Not to be modified -->

<!DOCTYPE jdbcpds [

<!ELEMENT jdbcpds (driverInfo)>
<!ELEMENT driverInfo (driver+)>
<!ELEMENT driver (property*)>

<!ATTLIST driver name CDATA #REQUIRED
sourceDatabase (oracle |
sqlserver |
sybase |
db2 |
informix |
odbc |
other) "oracle"
mainProtocol (jdbc) "jdbc"
subProtocol CDATA #REQUIRED
connectString CDATA #REQUIRED
class CDATA #REQUIRED
connection CDATA #REQUIRED
loginTimeout CDATA "5"

>
<!ELEMENT property EMPTY>

8-2 Oracle Application Server Reports Services Publishing Reports to the Web

JDBC Configuration File

<!ATTLIST property name CDATA #REQUIRED
value CDATA #REQUIRED >

1>

<!-- Add or modify the following section for your driver information -->
<!-- Following drivers are available out-of-box in 9iAS -->

<jdbcpds>
<driverInfo>
<driver name = "oracleThin"
sourceDatabase = "oracle"
subProtocol = "oracle:thin"
connectString = "mainProtocol:subProtocol:@databaseName"
class= "oracle.jdbc.driver.OracleDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">
</driver>

<driver name = "oracle"
sourceDatabase = "oracle"
subProtocol = "oracle:oci8"
connectString = "mainProtocol:subProtocol:@databaseName"
class = "oracle.jdbc.driver.OracleDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">

</driver>

<driver name = "jdbc-odbc"
sourceDatabase = "odbc"
subProtocol = "odbc"
connectString = "mainProtocol:subProtocol:databaseName"
class = "sun.jdbc.odbc.JdbcOdbcDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">

</driver>

<driver name = "sqglserver-merant"
sourceDatabase = "sqglserver"
subProtocol = "merant:sglserver"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.sglserver.SQLServerDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">

Configuring and Using the JDBC PDS 8-3

JDBC Configuration File

</driver>

<driver name = "sybase-merant"
sourceDatabase = "sybase"
subProtocol = "merant:sybase"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.sybase.SybaseDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling"
loginTimeout = "0">

</driver>

<driver name = "db2-merant"
sourceDatabase = "db2"
subProtocol = "merant:db2"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.db2.DB2Driver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling"
loginTimeout = "0">

</driver>

<driver name = "informix-merant"
sourceDatabase = "informix"
subProtocol = "merant:informix"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.informix.InformixDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">

</driver>

</driverInfo>
</jdbcpds>

Table 8-1 outlines the various attributes that can be associated with a driver.

Table 8-1 Driver Attributes

Attribute Name Description Sample

name A unique user-defined value used to refer sybase-merant
to a specific JDBC driver in Oracle
Reports.

8-4 Oracle Application Server Reports Services Publishing Reports to the Web

JDBC Configuration File

Table 8-1 Driver Attributes

Attribute Name Description

Sample

sourceDatabase Database referenced by the driver. The
valid entries are:

oracle
sglserver
sybase
db2
informix
odbc

other

subProtocol Driver sub protocol added with the
database URL before creating a database
connection. This is driver-specific
information and can be found in the
driver documentation. Example: The sub
protocol used for connecting to the
Merant driver:

Sybase is merant : sybase

SQL Server is merant : sglserver

connectString Format of the driver’s connect string
format is mainProtocol:sub
Protocol://databaseURL. For
example,
jdbc : subProtocol : //databaseName
. Do not specify the actual values for
subProtocol or databaseName, use
the fixed placeholder names instead.

class Driver class name used to register to
REPORTS_CLASSPATH and load the
driver. This is driver-specific information
and can be found in the driver
documentation.

oracle

merant : sybase

mainProtocol:subP
rotocol://databas
eName

com.oracle.ias.jd
bc.informix.Infor
mixDriver

Configuring and Using the JDBC PDS 8-5

JDBC Configuration File

Table 8-1 Driver Attributes

Attribute Name Description Sample

connection Driver’s connection handling class. The oracle.reports.pl
JDBC PDS can have different connection ugin.datasource.j
handling classes for each driver. Oracle dbcpds.
Reports” default connection handling JDBCConnectionHan
class, which is sufficient for most drivers, dling
is
oracle.reports.plugin.datasource.jdbcpds.JDB
CConnectionHandling

Refer to the Oracle Reports Java
document, for more information on how
to extend your JDBC Connection class

loginTimeout Driver-specific parameter. Specify the 0
(Optional) value in seconds. Please refer to the driver
documentation for more information.

property Specify any additional properties of your -
driver as Attribute Name and Value.

When you submit your report’s connection details, the connection information is
combined with the driver’s configuration information specified in the

jdbcpds . conf file. The resulting connection information is submitted to the
database as a complete connection URL. Refer to Table 8-2, Table 8-3, Table 84,
Table 8-5, and Table 8-6 for more information on sample connection information.

Figure 8-1 shows a list of all drivers configured in the jdbcpds . conf file.

8-6 Oracle Application Server Reports Services Publishing Reports to the Web

JDBC Configuration File

Figure 8—-1 JDBC Connect dialog in Reports Builder

Connect

Enter the connection information for the datasource.
Connection Infarmation : P_JDBCPDS

User Mame: |Repurts

EEEEE

Password:

Database: |Server1 Jpnauser.com:1300:5101

Driver Type | oracleThin -

aracle

COnneet | e adhe

sqlserver-merant
sybase-merant
dbZ2-merant
informix-merant

8.1.1 Verifying Pre-installed Driver Entries

Drivers like SQL Server and Excel with JDBC-ODBC, Oracle JDBC Thin, and Oracle
JDBC OCI (thick) are installed and configured with Oracle Reports. These drivers
do not require any additional JAR files to be installed.

s Oracle JDBC Thin driver
s Oracle JDBC OCI (thick) driver
= JDBC-ODBC driver

You can use SQL Server / Excel with the JDBC-ODBC driver. This entry is
pre-configured in the jdbcpds . conf file. Before you can use SQL Server or
Excel with JDBC-ODBC, you need to create an ODBC data source. Refer to
Windows help, for more information on how to create an ODBC data source.

Note: Oracle Application Server provides Merant DataDirect
drivers which can also be used to access SQL Server.

8.1.2 Installing and Configuring Merant DataDirect Drivers

Oracle provides a set of Merant DataDirect drivers (Version 3.2) that can be
downloaded from OTN, (http://otn.oracle.com). The driver configuration

Configuring and Using the JDBC PDS 8-7

JDBC Configuration File

file, i.e., jdbcpds . conf contains relevant entries for the Merant DataDirect
drivers. Additionally, the JDBC Connect dialog (Table 8-1) lists the entries for the
set of Merant DataDirect drivers provided by Oracle.

However, you need to install the appropriate JAR files and specify them in Oracle
Reports specific classpath entries, in order to make them available to Reports
Builder and OracleAS Reports Services

The drivers provided by Oracle for use with Oracle Application Server / Oracle
Developer Suite are:

= Sybase Driver

s DB2 Driver

s SQL Server Driver
» Informix Driver

You can also install and configure a Custom Driver for use with Oracle Application
Server and Oracle Developer Suite.

The following procedure outlines the generic steps involved in configuring the
Merant DataDirect drivers. To configure specific Merant DataDirect drivers refer to
the appropriate sections.

To configure the Merant DataDirect drivers:

1. Install the relevant JAR files in your Oracle Application Server and Oracle
Developer Suite directory.

2. Include an entry in the REPORTS_CLASSPATH to make the files available to
Reports Builder and OracleAS Reports Services. Refer to the relevant driver in
this section for information on the required JAR files.

a. Reports Builder: Prefix the driver location to the existing entries in
REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users. Refer to the relevant
driver in this section for an example.

b. rwbuilder.conf: Append the driver location to the engine classPath
attribute in the rwbuilder.conf configuration file. Refer to the relevant
driver in this section for an example.

c. Reports Server: Append the driver location to the classPath attribute of
the engine, in the Reports Server configuration file. Refer to the relevant
driver in this section for an example

8-8 Oracle Application Server Reports Services Publishing Reports to the Web

JDBC Configuration File

jdbepds.conf: Located in the ORACLE_HOME\reports\conf directory.
Refer to Table 8-1 for more information on the parameters. Refer to the
relevant driver in this section for an example.

8.1.2.1 Sybase Driver

1.

Install the relevant JAR files in your Oracle Application Server and Oracle
Developer Suite directory.

Jar files required: YMutil. jar, YMsybase. jar, and YMbase. jar.

Include an entry in the REPORTS_CLASSPATH to make the files available to
Reports Builder and OracleAS Reports Services.

a.

Reports Builder: Prefix the driver location to the existing entries in
REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users.

Example:

D:\sybase_installed\YMutil.jar;D:\sybase_
installed\YMsybase.jar;D:\sybase_installed\YMbase.jar;existing classpath
entries

rwbuilder.conf: Append the driver location to the engine classPath
attribute in the rwbuilder.conf configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50" maxIdle="30"
callbackTimeOut="60000" classPath="D:\sybase_

installed\YMutil.jar;D:\sybase installed\YMsybase.jar;D:\sybase
installed\YMbase.jar;">

</engine>

Reports Server: Append the driver location to the classPath attribute of
the engine in the Reports Server configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50" maxIdle="30"
callbackTimeOut="60000" classPath="D:\sybase_

installed\YMutil.jar;D:\sybase installed\YMsybase.jar;D:\sybase
installed\YMbase.jar;">

</engine>

Configuring and Using the JDBC PDS 8-9

JDBC Configuration File

jdbepds . conf: Located in the ORACLE_HOME\reports\conf directory.
Refer to Table 8-1 for more information on the required parameters.

Example:
<driver name = "sybase-merant"
sourceDatabase = "sybase"
subProtocol = "merant:sybase"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.sybase.SybaseDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling"
loginTimeout = "0">
</driver>

8.1.2.2 DB2 Driver

Install the relevant JAR files in your Oracle Application Server and Oracle
Developer Suite directory.

1.

JAR files required: YMutil. jar, YMdb2. jar,and YMbase. jar

Include an entry in the REPORTS_CLASSPATH to make the files available to
Reports Builder and OracleAS Reports Services.

a.

Reports Builder: Prefix the driver location to the existing entries in
REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users.

Example:
D:\db2_installed\YMutil.jar;D:\db2_installed\YMdb2.jar;D:\db2_
installed\YMbase.jar;existing classpath entries

rwbuilder.conf: Append the driver location to the engine classPath
attribute in the rwbuilder. conf configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"
maxIdle="30" callbackTimeOut="60000" classPath="D:\db2_
installed\YMutil.jar;D:\db2_installed\YMdb2.jar;D:\db2_
installed\YMbase.jar">

</engine>

Reports Server: Append the driver location to the classPath attribute of
the engine in the Reports Server configuration file.

8-10 Oracle Application Server Reports Services Publishing Reports to the Web

JDBC Configuration File

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"
maxIdle="30" callbackTimeOut="60000" classPath="D:\db2
installed\YMutil.jar;D:\db2_installed\YMdb2.jar;D:\db2_
installed\YMbase.jar">

</engine>

jdbepds . conf: Located in the ORACLE_HOME\reports\conf directory.
Refer to Table 8-1 for more information on the parameters.

Example:

<driver name = "db2-merant"
sourceDatabase = "db2"
subProtocol = "merant:db2"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.db2.DB2Driver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling"
loginTimeout = "0">

</driver>

8.1.2.3 SQL Server Driver

1.

Install the relevant . jar files in your Oracle Application Server and Oracle
Developer Suite directory.

Jar files required: YMutil. jar, YMsqlserver.jar,and YMbase.jar

Include an entry in the REPORTS_CLASSPATH to make the files available to
Reports Builder and OracleAS Reports Services.

Reports Builder: Prefix the driver location to the existing entries in
REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users.

Example:

D:\sqglserver_installed\YMutil.jar;D:\sglserver_
installed\YMsqglserver.jar;D:\sqglserver_installed\YMbase.jar;existing
classpath entries

rwbuilder.conf: Append the driver location to the engine classPath
attribute in the rwbuilder . conf configuration file.

Example:

Configuring and Using the JDBC PDS 8-11

JDBC Configuration File

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"
maxIdle="30" callbackTimeOut="60000" classPath="D:\sqlserver_
installed\YMutil.jar;D:\sqglserver
installed\YMsqglserver.jar;D:\sqlserver installed\YMbase.jar;">

</engine>

Reports Server: Append the driver location to the classPath attribute of
the engine in the Reports Server configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"
maxIdle="30" callbackTimeOut="60000" classPath="D:\sqlserver_
installed\YMutil.jar;D:\sqglserver
installed\YMsqglserver.jar;D:\sqglserver installed\YMbase.jar;">

</engine>

jdbcpds.conf: Located in the ORACLE_HOME\reports\conf directory.
Refer to Table 8-1 for more information on the parameters.

Example:

<driver name = "sglserver-merant"
sourceDatabase = "sglserver"
subProtocol = "merant:sglserver"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.sqglserver.SQLServerDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">

</driver>

8.1.2.4 Informix Driver

1.

Install the relevant JAR files in your Oracle Application Server and Oracle
Developer Suite directory.

JAR files required: YMutil.jar, YMinformix. jar, and YMbase. jar

Include an entry in the REPORTS_CLASSPATH to make the files available to
Reports Builder and OracleAS Reports Services.

Reports Builder: Prefix the driver location to the existing entries in
REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users.

8-12 Oracle Application Server Reports Services Publishing Reports to the Web

JDBC Configuration File

Example:

D:\informix_installed\YMutil.jar;D:\informix_
installed\YMinformix.jar;D:\informix_installed\YMbase.jar;existing
classpath entries

b. rwbuilder.conf:Append the driver location to the engine classPath
attribute in the rwbuilder . conf configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"

maxIdle="30" callbackTimeOut="60000" classPath="D:\informix
installed\YMutil.jar;D:\informix_installed\YMinformix.jar;D:\informix
installed\YMbase.jar">

</engine>

c. Reports Server: Append the driver location to the classPath attribute of
the engine in the Reports Server configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"

maxIdle="30" callbackTimeOut="60000" classPath="D:\informix
installed\YMutil.jar;D:\informix installed\YMinformix.jar;D:\informix
installed\YMbase.jar">

</engine>

d. jdbcpds.conf: Located in the ORACLE_HOME\reports\conf directory.
Refer to Table 8-1 for more information on the parameters.

Example:

<driver name = "informix-merant"
sourceDatabase = "informix"
subProtocol = "merant:informix"
connectString = "mainProtocol:subProtocol://databaseName"
class = "com.oracle.ias.jdbc.informix.InformixDriver"
connection = "oracle.reports.plugin.datasource.jdbcpds.
JDBCConnectionHandling">

</driver>

8.1.2.5 Custom Driver

Any driver that is not provided by Oracle must be installed and configured:

Configuring and Using the JDBC PDS 8-13

JDBC Configuration File

1. Install the relevant JAR files in your Oracle Application Server and Oracle
Developer Suite directory.

2. Include an entry in the REPORTS_CLASSPATH to make the files available to
Reports Builder and OracleAS Reports Services.

Jar files required: Refer to the relevant driver documentation.

a. Reports Builder: Prefix the driver location to the existing entries in
REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users.

Example:
driver location\lst jar file;driver location\2nd jar file2;existing
classpath entries

b. rwbuilder.conf: Append the driver location to the engine classPath
attribute in the rwbuilder.conf configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"

maxIdle="30" callbackTimeOut="60000" classPath="driver location\lst jar
file;driver location\2nd jar file;">

</engine>

c. Reports Server: Append the driver location to the classPath attribute of
the engine in the Reports Server configuration file.

Example:

<engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"

maxIdle="30" callbackTimeOut="60000" classPath="driver location\lst jar
file;driver location\2nd jar file;">

</engine>

d. Jjdbcpds.conf: Located in the ORACLE_HOME\reports\conf directory.
Add relevant driver configuration information to the jdbcpds . conf file.
Refer to Table 8-1 for more information on the required parameters.

Example:
<driver name = "<driver name>"
sourceDatabase = "<sourceDatabase>"
subProtocol = "<subProtocol>"
connectString = "mainProtocol:subProtocol://databaseName"

8-14 Oracle Application Server Reports Services Publishing Reports to the Web

Defining and Running a JDBC Query

class = "<driver class name>"
connection ="<connection handling class">
</driver>

Note: This value can still be connection =
"oracle.reports.plugin.datasource.jdbcpds.JDBCConn
ectionHandling"for your custom drivers, if you do not want to
implement a custom connection dialog

8.2 Defining and Running a JDBC Query

After configuring the relevant JDBC drivers, you can define and run a JDBC query
using either SQL or a stored procedure.

To define a JDBC query:
1. Start Reports Builder.
2. Invoke the Reports Wizard.

3. Select the data source type as JDBC Query and click Next. For more
information on how to work with the Report Wizard, refer to the Reports Builder
online help.

Figure 8-2 Select a Data Source Type

Report Wizard

Chooze a data source type below:

M SOL Queny
7 Text Query
-"M? FML Quemy

F of

Configuring and Using the JDBC PDS 8-15

Defining and Running a JDBC Query

4. In the Data Source Definition window, click Query Definition.
5. Define one of the following:
= ASQL query:

SELECT * FROM DEPARTMENT;

= A stored procedure:

Enter the complete call syntax of your database’s stored procedure. For
example:

TestProc (40)

For more information on the call syntax, refer to your database
documentation.

JDBC PDS submits the calling statement to the driver as specified, to invoke
the stored procedure.

&JDBC Query =) x|

Enter the information for this JDBC Query or Procedure and the connection parameters
for the datasource.
QueryProcedure

Enter the SQL or Stored Pracedure to define the data for this query.
open_tryProceduredd! 21,3,2)

Connection

Define the parameters that the guery uses to connect to the datasource.

Selectthe sign-on parameter for this connection: m\;gigngn|
Connectto the datasource: Connect...

QK Cancel Help

Usage Notes
= To specify an Excel data source:

8-16 Oracle Application Server Reports Services Publishing Reports to the Web

Defining and Running a JDBC Query

Query (Single worksheet):

SELECT * FROM [SHEET1S$] or SELECT COL1, COL2, ...COLn
FROM [SHEET1S$]

* Where SHEET1S is the name of a .x1s file
* Where the first worksheet row value is taken as a column name for the
query

Query (Multiple worksheets):

SELECT * FROM [WORKSHEETNAMES]

* Where [WORKSHEETNAMES] is the name of the worksheet

* Where the first worksheet row is taken as a column name for the query

Note: If a value is not mentioned in any of the columns in the first
row, then the default name is FcolumnNumber. For example, the
8th column will be F8, the ninth column will be F9, and so on.

6. Specify a sign-on parameter name. This sign-on parameter is associated with
the connection information when run against a database. The default sign-on
parameter value is p_jdbcpds:

a.

Enter a new sign-on name and click Connect. Use this sign-on parameter to
specify a database connection when you are running your report using
OracleAS Reports Services.

Enter the connection information (user name, password, and database
name) for the driver type. Refer to Table 8-2, Table 8-3, Table 8—4, Table 8-5,
and Table 8-6 for sample connection information.

Select the driver type. The driver list is displayed based on the values
entered in the jdbcpds . conf file.

Click Connect to gain access to the database using the new sign-on. The
connect string formed internally is a combination of:

* The connectString driver attribute (Table 8-1) defined in the
jdbcpds . conf file

* The connection information supplied in the Connect dialog.

Configuring and Using the JDBC PDS 8-17

Defining and Running a JDBC Query

7. Click OK to execute the JDBC query.
8. The Reports Wizard displays the query description.

Diiver Type : sybasemerant
E}urew?F'rot:sere: : m?TfstwiéhPafam:‘l]
Sign-On Parameter; P_LIDBCEDS:

[name: id]

ety Definition It s, I Gornest,.

9. Follow the steps in the wizard to define the layout and to run the report based
on your JDBC query.

8.2.1 Sample Connection Information

Table 8-2, Table 8-3, Table 8—4, Table 8-5, and Table 8-6 lists sample connection
information for use with the pre-installed drivers.

Table 8-2 Oracle Thin Driver

Property Value
Username Reports
Password Welcome

8-18 Oracle Application Server Reports Services Publishing Reports to the Web

Defining and Running a JDBC Query

Table 8-2 Oracle Thin Driver

Property Value

Database hostname: The TCP/IP address or TCP/IP host name of the
server you are connecting to.

port: The TCP/IP port number.

property: The connection properties. Refer to the driver
documentation for a list of connection properties and their
valid values.

Example: serverl.us.oracle.com:1300:sessionl

Table 8-3 Oracle Thick Driver

Property Value
Username Reports
Password Welcome
Database nl23

where n123 is a tnsname entry in the tnsnames. ora file

Table 8-4 JDBC-ODBC Driver

Property Value

Username N/A

Password This password is set at the time of establishing an ODBC
connection.

Database SQLSVR
where SQLSVR is the ODBC Data entry in the ODBC data
source

Table 8-5 Sybase

Property Value
Username Reports
Password Welcome

Configuring and Using the JDBC PDS 8-19

Running a JDBC Report Using OracleAS Reports Services

Table 8-5 Sybase

Property Value

Database hostname: The TCP/IP address or TCP/IP host name of the
server you are connecting to.

port: The number of the TCP/IP port.

Example: serverl.us.oracle.com:1300

Table 8-6 DB2

Property Value

Username Reports

Password Welcome

Database hostname: The TCP/IP address or TCP/IP host name of the

server you are connecting to.
port: The TCP/IP port number.

property: The connection properties. Refer to the driver
documentation for a list of connection properties and their
valid values.

Examplel: serverl:1654
Example2: server2:1721; PackageName=pkgl

8.3 Running a JDBC Report Using OracleAS Reports Services

When you run a report having a JDBC query (Reports Server or rwrun engine), use
the sign-on parameter to submit the connection information for the JDBC data
source. This sign-on parameter is defined for your JDBC query in the design time.

For example, if your report has a JDBC query to a Sybase data source, a JDBC query
to a DB2 data source, and a SQL query to an Oracle data source, then the request
could be defined as:

http://your ias
server:port//reports/rwservlet?report=my.rdf&userid=user/pwdeoracledb
&desformat-pdf&destype=cache&p_sybasepds=sybaseuser/pwlsybasehost :port
&p_db2pds=db2user/pwd@db2host : port

where:

» p_sybasepds is the sign-on parameter associated with the sybase JDBC query.

8-20 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Information

= p_db2pds is the sign-on parameter associated with the DB2 JDBC query
defined in the report at design time.

= useridis the value for connecting the SQL query to the Oracle database. You
do not need to specify the userid if your report does not have a SQL query or
a REF cursor query.

The default sign-on parameter name p_jdbcpds will be used if you have not
specified a name in the JDBC query dialog while designing the report.

8.4 Troubleshooting Information

This section lists:
= JDBC PDS error messages (Error Messages)
= JDBC query troubleshooting (Trace Information).

8.4.1 Error Messages

Table 8-7, Table 8-8, and Table 8-9 lists troubleshooting information related to the
JDBC PDS.

Table 8-7 Error Messages related to the database connection

Error Message Cause Action

Connection class Invalid connection class Ensure that the driver

{0} can't be mentioned in the connection class specified in

loaded jdbcpds . conf file forthe the jdbcpds. conf file is both
selected driver. valid and available.

Failed to connect Invalid connection Ensure the validity of the

to the datasource information. username, password, database,

and driver type.

Invalid sign-on Invalid sign-on parameter for Ensure the sign-on parameter

parameter {0} the specified query or is available and valid for the
procedure. report’s JDBC query type.

Invalid value is Invalid connect string for the Ensure that the specified

given to the specified sign-on parameter. connect string for this sign-on

sign-on parameter parameter is valid for the

{0}. selected driver.

Configuring and Using the JDBC PDS 8-21

Troubleshooting Information

Table 8-8 Error messages related to executing the data source

Error Message

Cause

Action

Reference
parameter of type
Date is not
supported by JDBC
driver used.

Invalid lexical
parameter {0} is
used in the query

SQL Error:

Invalid
query/procedure
for the specified
datasource.

Invalid reference
parameter value

No
query/procedure
is entered.

Database URL:

Either the number
of columns or the
types of columns
does not match
the query
definition

The driver used to connect to
database does not support
the Date data type as a
reference parameter.

Invalid lexical parameter
used in the query or
procedure.

SQL syntax error in the

specified query or procedure.

Invalid query or procedure
syntax.

Invalid reference parameter
value.

The query or procedure text
field is empty.

Invalid database URL.

The data fetched does not
match the number of
columns or column types
specified in the query
definition.

Use either:

The String data type as the
reference parameter

A different JDBC driver that
supports the Date data type as
a reference parameter.

Ensure that the query or
procedure uses valid lexical
parameters. Create a new
parameter if it is not available.

Ensure that the syntax of the
query or procedure is valid.
Refer to the relevant data
source’s documentation.

Ensure that the syntax of the
query or procedure is valid.
Refer to the relevant data
source’s documentation

Verify that the reference
column types and values are
correct.

Enter a valid query or
procedure in the text field.

Verify the validity of the
specified database name and
the selected driver type.

Ensure that the number of
columns and the column types
match the query definition.

8-22 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Information

Table 8-8 Error messages related to executing the data source

Error Message Cause Action

The column type This column type is not Ensure that only column types
{0} used in the supported by the Oracle supported by the Oracle
query/procedure Reports JDBC query Reports JDBC query interface
is not supported interface. are used. Refer to the JDBC
by Reports JDBC specification and Oracle
query. Reports documentation for a

list of all supported types.

Table 8-9 Isolating driver / pds issues

Error Message Cause Action

The inline DTD The format of the inline DTD If the DTD format is modified,

section of the section in the ensure the validity of

configuration file jdbcpds.conf file has configuration file against the

jdbcpds.conf has been altered. JDBC PDS requirement.

been modified.

Line Number: An error was found on the Correct the error on the
specified line of the specified line.

jdbcpds . conf file.

Configuration file The jdbcpds.conf fileis Ensure that the jdbcpds . conf

jdbcpds.conf is not found under the file is available in the
not found reports/conf directory. reports/conf directory.
Parsing error in The XML section in the Ensure that the XML section in

the configuration jdbcpds.conf filedoesnot the jdbcpds.conf file refers
file jdbcpds.conf. conform with its inline DTD. to the correct inline DTD.
Number of

errors: {0}

No entry is The driver used in the query Ensure that the entry for the
present for the is not mentioned in the required driver along with the
driver {0} in the jdbcpds.conf file. related driver information is in
jdbcpds.conf file. the jdbcpds . conf file.

8.4.2 Trace Information

Use the detailed trace information (ORACLE_HOME\reports\logs\) generated by
Oracle Reports to debug your JDBC query.

= Design time (building a JDBC query) and run time (running a JDBC query)

Configuring and Using the JDBC PDS 8-23

Troubleshooting Information

The trace information generated is helpful to find out the following:
s Lexical and bind parameters.
= Final connect string formed to connect to the driver.
s Metadata information received from the driver.
= Final query submitted to the database.
See Example 8-1 for a sample design-time trace output.

See Example 8-2 for a sample run-time trace output.

Sample trace output

Example 8—1 Building a JDBC Query from JDBC Query Dialog

Connection handling trace showing final connect string

[2003/4/7 5:41:38:686] Debug 50103 (jdbcpds): handleConnectButtonEvent : start
[2003/4/7 5:41:38:686] Debug 50103 (jdbcpds): handleConnectButtonEvent :
subProtocol :sybase-merant

[2003/4/7 5:41:38:686] Debug 50103 (jdbcpds): handleConnectButtonEvent :
connection class

:oracle.reports.plugin.datasource. jdbcpds.JDBCConnectionHandling

[2003/4/7 5:41:38:696] Debug 50103 (jdbcpds): handleConnectButtonEvent : combine
string :jdbc:merant:sybase://serverl.us.oracle.com:1300

[2003/4/7 5:41:38:696] Debug 50103 (jdbcpds): JDBCDataSource : setJDBCQueryType:
sybase

[2003/4/7 5:41:41:350] Debug 50103 (jdbcpds): JDBCUIEventHandler :
handleConnectEvent : Valid Connection
com.oracle.ias.jdbc.sybase.SybaseConnection@56fcl6

[2003/4/7 5:41:41:350] Debug 50103 (jdbcpds): JDBCUIEventHandler :
handleConnectEvent : END com.oracle.ias.jdbc.sybase.SybaseConnection@56fcl6

Design time metadata of query

[2003/3/31 6:35:46:363] Debug 50103 (jdbcpds): JDBCUIEventHandler :
handleOKEvent : Serialize XML<jdbcpds DTDVersion="
1.0"><JIDBCQuery>jdbcpdspkyg.proc_with_
param(1,2,3,4,5)</JIDBCQuery><QueryDefinition>1</QueryDefinition><driverType>orac
le</driverType><connectionClass>oracle.reports.plugin.datasource. jdbcpds.JIJDBCCon
nectionHandling</connectionClass><SignOnParameter>P_
JDBCPDS</SignOnParameter><jdbcElements><elementname = "EMPNO" type = "2"
typeName = "NUMBER" columnSize = "4" columnScale = "0" /><element name =
"ENAME" type = "12" typeName ="VARCHAR2" columnSize = "10" columnScale =
"0" /><element name = "JOB" type = "12" typeName = "VARCHAR2" columnSize =
"9" columnScale ="0" /><element name = "MGR" type = "2" typeName = "NUMBER"

8-24 Oracle Application Server Reports Services Publishing Reports to the Web

Troubleshooting Information

columnSize = "4" columnScale = "0" /><element name = "HIREDATE" type = "93"
typeName = "DATE" columnSize = "16" columnScale = "0" /><element name = "SAL"
type = "2" typeName = "NUMBER" columnSize = "7" columnScale= "2" /><element
name = "COMM" type = "2" typeName = "NUMBER" columnSize = "7" columnScale =
"2" /><element name = "DEPTNO" type = "2" typeName = "NUMBER" columnSize = "2"
columnScale = "0"
/></jdbcElements><referenceColumns></referenceColumns></jdbcpds>

[2003/3/31 6:35:46:383] Debug 50103 (jdbcpds): JDBCUIEventHandler :handleOKEvent
END

Example 8-2 Running a JDBC Query:

[2003/3/18 5:45:17:707] Debug 50103 (jdbcpds): JDBCDataSource : startRuntime
method : START

Describing the JDBC Query:

[2003/3/18 5:45:17:707] Debug 50103 (jdbcpds): JDBCDataSource : describe :
START

[2003/3/18 5:45:17:707] Debug 50103 (jdbcpds): applyXML: Extract the Serilzed
XML containing Query Meta Data <jdbcpds DTDVersion=" 1.0"><JDBCQuery>select *
from
emp</JDBCQuery><QueryDefinition>0</QueryDefinition><driverType>oracle</driverTyp
e><connectionClass>oracle.reports.plugin.datasource. jdbcpds.JDBCConnectionHandli
ng</connectionClass>...

ConnectionHandling At Runtime:

[2003/3/18 5:45:17:737] Debug 50103 (jdbcpds): JDBCDataSource : startRuntime :
Create a new connection and handle it

[2003/3/18 5:45:17:737] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
handleConnection : START

[2003/3/18 5:45:17:778] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
handleConnection : set driver

[2003/3/18 5:45:17:778] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
handleConnection : Check if Connection for the sign on parameter is pooled
[2003/3/18 5:45:17:778] Debug 50103 (jdbcpds): JDBCExecuteQuerySource
:handleConnection : connection available in pool

[2003/3/18 5:45:17:778] Debug 50103 (jdbcpds): handleConnection : END
[2003/3/18 5:45:17:778] Debug 50103 (jdbcpds): JDBCDataSource : startRuntime :
END

Runtime execution of jdbc query
[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCDataSource : execute : run

Query
[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :

Configuring and Using the JDBC PDS 8-25

Troubleshooting Information

getOutputFromDatabase : START

[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase: start Query stringto be submitted
jdbcpdspkg.proc_with_param(1,2,3,4,5)

[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : check connection

[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : QSource Id: 1

[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource:
executeOracleProcedure: Start

[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource:
executeOracleProcedure:Procedure to be submitted { call
jdbcpdspkg.proc_with_param(?,?,?,?,?,?) }

[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource:
executeOracleProcedure: Set parameters for the procedure call
[2003/3/31 6:36:2:836] Debug 50103 (jdbcpds): JDBCExecuteQuerySource:
executeOracleProcedure: execute procedure

[2003/3/31 6:36:2:847] Debug 50103 (jdbcpds): JDBCDataSource : execute : query
execution over andresulset object is
oracle.jdbc.driver.OracleResultSetImpl@751a9e

[2003/3/31 6:36:2:847] Debug 50103 (jdbcpds): JDBCDataSource : execute : END

Running Report trace with Result set info

2003/4/7 5:26:6:996] Debug 50103 (jdbcpds): JDBCDataSource : execute : replace
lexical columns withactual string for the query

[2003/4/7 5:26:6:996] Debug 50103 (jdbcpds): JDBCDataSource : execute : run
Query

[2003/4/7 5:26:6:996] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : START

[2003/4/7 5:26:6:996] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase: start Query stringto be submitted select * from reports
[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : check connection

[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : QSource Id: 4

[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : Query source is SQL query

[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): JDBCExecuteQuerySource:executeQuery
Start

[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): executeQuery prepareStatement select
* from reports

[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): executeQuery : bind parameters set
for the query

[2003/4/7 5:26:7:6] Debug 50103 (jdbcpds): executeQuery : JDBC Query executed

8-26 Oracle Application Server Reports Services Publishing Reports to the Web

Adding Your Own PDS

[2003/4/7 5:26:7:387] Debug 50103 (jdbcpds): JDBCExecuteQuerySource :
getOutputFromDatabase : Query result col 0 test col 1 10

[2003/4/7 5:26:7:387] Debug 50103 (jdbcpds): JDBCExecuteQuerySource:executeQuery
Start

[2003/4/7 5:26:7:387] Debug 50103 (jdbcpds): executeQuery prepareStatement
select * from reports

[2003/4/7 5:26:7:387] Debug 50103 (jdbcpds): executeQuery : bind parameters set
for the query

[2003/4/7 5:26:7:387] Debug 50103 (jdbcpds): executeQuery : JDBC Query executed
[2003/4/7 5:26:7:767] Debug 50103 (jdbcpds): JDBCDataSource : execute : query

execution over andresulset object is
com.oracle.ias.jdbc.base.BaseResultSet@56c3ct
[2003/4/7 5:26:7:767] Debug 50103 (jdbcpds): JDBCDataSource : execute : END

8.5 Adding Your Own PDS

Oracle Reports has exposed the PDS API and also contains an RSDK tutorial
(http://otn.oracle.com/products/reports/apis/index.html) that
describes in detail how to implement or customize your own PDS. Using this AP]I,
you can implement an unlimited number of PDSs to access any kind of data sources
that you have.

The main tasks you must perform to add your PDS are:
= Registering the PDS

= Configuring the jdbcpds.conf File

= Installing Your PDS JAR Files

» Installing the Driver’s JAR Files

8.5.1 Registering the PDS

Register your PDS with the preferences file to make it available to Reports Builder
and OracleAS Reports Services.

Table 8-10 Preferences file

File Location Operating System
cauprefs.ora ORACLE_HOME Windows
prefs.ora ORACLE_HOME Unix

Configuring and Using the JDBC PDS 8-27

Adding Your Own PDS

The preferences file should reference the factory class implementation of either
Oracle Reports or your custom class file. Reports Builder displays the relevant PDS
icon only if the factory class is registered:

Reports.PluggableDataSourceFactories =
("oracle.reports.plugin.datasource.xmlpds.XMLDataSourceFactory",
"oracle.reports.plugin.datasource. jdbcpds.JDBCDataSourceFactory",
"oracle.reports.plugin.datasource.textpds.TextDataSourceFactory",
"oracle.reports.plugin.datasource.myPDS.myPDSDataSourceFactory",
"oracle.dss.pds.bibeans.xrpds.XRPDSFactory",
"oracle.dss.pds.snapi.expresspds.ExpressPDSFactory")

To add your PDS:
1. Open the preferences file (Table 8-10) using any text editor.
2. Locate Reports.PluggableDataSourceFactories.

3. Include the name of any JDBC factory class using the following syntax:

Reports.PluggableDataSourceFactories = ("pluginClassname"[,
"pluginClassname"]...)

pluginClassname is the name of the factory class containing the required
implementation.

Note: Refer to the Oracle Reports SDK on OTN,
(http://otn.oracle.com), for more information on
implementing your custom PDS class.

4. Restart Reports Builder / OracleAS Reports Services for the changes to take
effect.

8.5.2 Configuring the jdbcpds.conf File

For more information on how to configure the jdbcpds . conf file, refer to the
JDBC Configuration File section.

8.5.3 Installing Your PDS JAR Files

Specify the path to your PDS JAR files. This makes all the relevant classes available
to Reports Builder and Reports Server.

8-28 Oracle Application Server Reports Services Publishing Reports to the Web

Adding Your Own PDS

8.5.3.1 Reports Builder

Prefix the path of all dependent JAR files to the Oracle Reports environment
variable REPORTS_CLASSPATH. This variable is located in the registry for Windows
users and in the reports. sh file for Solaris users.

Example: D:\mypds.jar;existing classpath entries

8.5.3.2 rwbuilder.conf

Add the JAR file location to the engine classPath attribute in the
rwbuilder.conf configuration file.

Example: <engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"
maxIdle="30" callbackTimeOut="60000" classPath="d:\mypds.jar;">

</engine>

8.5.3.3 Reports Server

Append the jar file location to the c1lassPath attribute in the Reports Server
configuration file.

Example: <engine id="rwEng" class="oracle.reports.engine.EngineImpl"
initEngine="1" maxEngine="1" minEngine="0" engLife="50"
maxIdle="30" callbackTimeOut="60000" classPath="d:\mypds.jar;">

</engine>

8.5.4 Installing the Driver’s JAR Files

Refer to the Custom Driver section for more information on how to install the
driver’s JAR files.

Configuring and Using the JDBC PDS 8-29

Adding Your Own PDS

8-30 Oracle Application Server Reports Services Publishing Reports to the Web

9

Securing OracleAS Reports Services

The celebrated openness of the Internet brings with it concerns about controlling
who has access to what confidential company information. OracleAS Reports
Services provides a number of security options that enable you to ensure that the
appropriate users are getting important data in a secure fashion. This chapter
provides an overview of the available security options.

= About OracleAS Reports Services Security

= Configuring OracleAS Reports Services Security

9.1 About OracleAS Reports Services Security

This section describes how OracleAS Reports Services security operates to secure
access to your reports and the data they include.

s Resources Protected
s Authorization and Access Enforcement

s Leveraging Oracle Identity Management Infrastructure

9.1.1 Resources Protected

OracleAS Reports Services encompasses functionality for three main areas of
security:

= Application security (i.e., controlling access to the report application, where
users launch report requests)

= Resource security (i.e., controlling access to reports, printers, calendars, and
Reports Servers)

= Data source security (i.e., for controlling access to a particular database)

Securing OracleAS Reports Services 9-1

About OracleAS Reports Services Security

9.1.1.1 Application Security

Typically, users must log on to an application or site from which they can access and
run their reports. This launcher application is typically protected by some sort of
login facility, such as OracleAS Single Sign-On. Once they successfully gain entry
into the launcher application, resource security takes over and determines which
reports and destinations a given user or group may request.

For application security, OracleAS Single Sign-On provides a single point of user
login and, optionally, data source security. In a typical configuration, the user would
log on through OracleAS Single Sign-On to gain access to a report application,
where they would access and run their reports.

Oracle Internet Directory stores user and group privilege information which is used
by OracleAS Single Sign-On. Oracle Internet Directory also stores data source
security information on a per user basis. Oracle Delegated Administration Services
edits the information stored in Oracle Internet Directory. Oracle Delegated
Administration Services can be accessed from within OracleAS Portal or separately,
as a standalone component.

Alternatively, you might have your own application for launching reports with its
own login mechanism and user/group repository. In this case, OracleAS Reports
Services provides interfaces that allow you to integrate it with these non-Oracle
components.

See Also: Configuring OracleAS Reports Services Security

For more information on these interfaces.

9.1.1.2 Resource Security

Resource security ensures that only authorized users or groups execute a specific
report. It also keeps users or groups from accessing particular printers or Reports
Servers for the execution of the report. You might well imagine a situation where
certain printers and servers might be reserved for a particular group of users.
Alternatively, some printers and servers may simply be inaccessible during certain
times for maintenance activities.

Once it is determined that a user has the necessary privileges to execute a given
report via the specified Reports Server to the specified destination, then the user's
privileges to the data source accessed by the report must be ascertained.

OracleAS Portal provides resource security for reports, printers, calendars, and
Reports Servers out of the box. In a typical configuration, the administrator or
developer could specify which users and groups could access which reports,
Reports Servers, and printers from OracleAS Portal.

9-2 Oracle Application Server Reports Services Publishing Reports to the Web

About OracleAS Reports Services Security

As with application security, you might have your own mechanism for protecting
resources. In this case, OracleAS Reports Services provides interfaces that allow you
to integrate it with these non-Oracle components.

See Also: Configuring OracleAS Reports Services Security

For more information on these interfaces.

9.1.1.3 Data Source Security

Data source security defines the users or roles that can access the data within the
given data source. A report might access multiple data sources and the current user
must have privileges on all of the data sources accessed by the report in order to run
it and view the output. The data source administrator (typically a DBA) grants
access to data sources. Data source security must be established and in place prior
to configuring your reports environment.

You can provide for data source security in two different ways with OracleAS
Reports Services:

= You can associate data source connection information with a Single Sign-On
user. In this case, the first time a user attempts to access the data source, Oracle
Delegated Administration Services prompts them to create a resource for their
data source connection. After the user creates this data source resource,
OracleAS Single Sign-On associates it with the user in Oracle Internet Directory.
Once the data source resource is associated with the Single Sign-On user, it
becomes part of their Single Sign-On identity and they can access the data
source without having to log into it separately. This method has two key
advantages. First, it enables each user to gain access to the data source through
their Single Sign-On identity without having to login separately. Second, it
enables a single report URL to be used by many users because the data source
login information is stored with the user’s identity and therefore does not have
to be hard coded into the report’s URL or a key mapping.

= In your report URLs or key mappings, you can code AUTHID and the necessary
connection parameters (e.g., USERID) for your report. This functionality is
much the same as it was in previous releases of OracleAS Reports Services. For
a complete discussion of URL syntax, refer to The Reports URL Syntax. For a
complete discussion of key mapping, refer to Using a Key Map File.

As with the other security areas, you might have your own mechanism for
protecting data sources. In this case, OracleAS Reports Services provides interfaces
that allow you to integrate it with these non-Oracle components.

Securing OracleAS Reports Services 9-3

About OracleAS Reports Services Security

See Also: Configuring OracleAS Reports Services Security

For more information on these interfaces.

9.1.2 Authorization and Access Enforcement

Access control for report requests can be maintained with or without OracleAS
Single Sign-On.

» Handling Report Requests with OracleAS Single Sign-On
» Handling Report Requests without OracleAS Single Sign-On

9.1.2.1 Handling Report Requests with OracleAS Single Sign-On

OracleAS Single Sign-On makes use of an encrypted cookie to track authenticated
application users. When rwservlet receives a request to execute a report on a
secured Reports Server, it queries the Oracle HTTP Server (via the getRemoteUser
call) to determine whether the user has already logged on through OracleAS Single
Sign-On (i.e., a Single Sign-On cookie exists for the user):

= If the user has logged on already (i.e., the cookie exists), then rwservlet gets the
user’s identity from the Oracle HTTP Server.

= If the user has not logged on already (i.e., the cookie does not exist yet), then the
Oracle HTTP Server redirects the user to OracleAS Single Sign-On, which
prompts the user to login. Once the user is authenticated, the Single Sign-On
cookie is created and the user is redirected back to rwservlet, which then
proceeds as described in the previous bullet item.

Note: If the report request is launched from within OracleAS
Portal rather than rwservlet, OracleAS Reports Services will
similarly validate the user’s privileges on the report before running
it. Even for unauthenticated (PUBLIC) users viewing public pages,
OracleAS Reports Services verifies that the PUBLIC user account
has appropriate privileges on the report.

9.1.2.1.1 Report Request Flow with Single Sign-On In this scenario, a report request is
sent to a secured Reports Server with Single Sign-On enabled.

1. If the report is to be run from within OracleAS Portal, the user must be logged
into OracleAS Portal and, consequently, OracleAS Single Sign-On. As part of its
security, OracleAS Portal validates that the user has the required security

9-4 Oracle Application Server Reports Services Publishing Reports to the Web

About OracleAS Reports Services Security

permissions to see the report object. For example, if the report object is on a
page, the user must have appropriate privileges to see the page and the reports
object. Otherwise, OracleAS Portal will not display the page or the report object
to the user.

If the report is not to be run from within OracleAS Portal, the user must
somehow have gained access to the URL that launches the report request (e.g.,
via a link on a Web page or a bookmark).

The report request is made via one of the following methods:

s From within OracleAS Portal, the user requests to run the report object (e.g.,
clicks the Run link).

s From outside of OracleAS Portal, the user chooses a link or a bookmark that
contains a URL that requests the report.

Note: The URL may optionally contain or reference (i.e., via the
key map file) a Single Sign-On parameter (SSOCONN) with a value
of the form:

key _name/data_source_type/parameter_name

In the case of an Oracle database, the Single Sign-On value would
look something like the following:

mykey/OracleDB/userid

If you do not specify a data source type and parameter name, an
Oracle database is assumed.

The URL redirects the user to either rwservlet or the JSP depending upon
whether this report has been set to execute via rwservlet or a JSP.

If you used SSOCONN in your URL, rwservlet checks the Single Sign-On key
against the Oracle Internet Directory to see if it already has been mapped to a
data source connection string (e.g., scott/tiger@my_or_db).

If you used SSOCONN and the Oracle Internet Directory already has a
connection string associated with the key, then rwservlet uses that
connection string for the data source connection of the report. If you used
SSOCONN but Oracle Internet Directory does not already contain a connection
string for the key, the Oracle Delegated Administration Services Create
Resource page is displayed and the user must enter their data source connection
string. See Figure 9-1. Oracle Delegated Administration Services stores the

Securing OracleAS Reports Services 9-5

About OracleAS Reports Services Security

string in Oracle Internet Directory for future use and rwservlet uses the
newly entered connection string for the data source connection string of the
report.

Note: Because of this feature, many users can use the same report
URL even if they all use different data source connection strings.

Figure 9—1 Oracle Delegated Administration Services Create Resource

Resource Access Information

Username iscott

Password i*****

Database ;orqa_dh|

¢ Local intranet i

&

6. rwservlet constructs a command line from the URL (and Oracle Internet
Directory information if you used SSOCONN) and passes it to the Reports Server.

7. The Reports Server validates the user credentials against the Oracle Internet
Directory server. The Reports Server checks whether the user has the necessary
privileges to run the report on the specified server at the specified time to the
specified destination. If the validation check fails for any reason, then an error
condition is returned to the user and the process terminates.

8. The Reports Server delegates the job to a Reports Engine that accesses the data
source, retrieves the data, and formats the report.

9-6 Oracle Application Server Reports Services Publishing Reports to the Web

About OracleAS Reports Services Security

9. The completed output is sent to the specified destination. Depending upon the
destination, the output may be sent to a printer, served back to the browser, or
stored in a file for future reference.

9.1.2.2 Handling Report Requests without OracleAS Single Sign-On

If Single Sign-On is not being used, then any user accessing a secured instance of
the Reports Server is challenged to identify themselves by rwservlet via its own
authentication mechanism (identical to the behavior of Oracle Reports6i). Because
the HTTP 1.0 protocol is stateless (i.e., each call to the server is effectively
independent of all others), users might need to authenticate themselves for each
report request unless a cookie is maintained. To allow users to authenticate
themselves only once per session, rwservlet has its own client-side cookie, the
authid cookie, in which it stores the required authentication information for the
current session. Once the user is authenticated, an encrypted cookie is created in the
browser to enable the user to submit multiple report jobs without re-authenticating
for each request.

Note: If you want to force users to authenticate themselves for a
specific report, you can use the SHOWAUTH command line option.
Alternatively, you can include a %S in the corresponding report
entry in the key map file. This file is usually called cgicmd.dat
and is located in ORACLE_HOME\reports\conf. %S forces users
to enter their username and password each time the report is called.

The authid cookies are terminated when the user closes their browser session, but
you should not rely strictly on this method of terminating the cookie. You should
limit the lifetime of the cookie within a given session. For example, a user might log
on and then go to lunch, leaving the browser session open. To minimize the
potential for a security breach in this situation, the administrator may specify the
COOKIEEXPIRE parameter in the rwservlet.properties file. When
rwservlet receives a job request, it compares the time saved in the cookie with the
current system time. If the time is longer than the number of minutes defined in the
environment variable (e.g., 30 minutes), the cookie is rejected and the user is
challenged to provide authentication information.

See Also: Configuring the Reports Servlet

For more information about the COOKIEEXPIRE parameter and the
rwservlet.properties file.

Securing OracleAS Reports Services 9-7

About OracleAS Reports Services Security

9.1.2.2.1 Report Request Flow without OracleAS Single Sign-On In this scenario, the
report request is sent to a secured Reports Server with Single Sign-On disabled. In
this case, rwservlet or a JSP report might be called through the use of a bookmark
or from an OracleAS Portal component.

1.

The user must somehow gain access to the URL that launches the report request
(e.g., via a link on a Web page or a bookmark), and choose the URL.

rwservlet checks for the AUTHID parameter on the URL or an existing Oracle
Reports Authid Cookie. If it finds the AUTHID parameter, it uses that to
authenticate the user. If it does not find the AUTHID parameter, it looks for an
existing Reports Authid Cookie. (If the report is launched from OracleAS Portal,
AUTHID is added to the URL automatically.) If neither AUTHID nor a Reports
Authid Cookie is found, rwservlet displays the System Authentication screen,
where the user must supply their Single Sign-On username and password. This
information is subsequently stored in the Reports Authid Cookie.

If only partial data source credentials are provided on the URL (e.g.,
USERID=scott@orqa), the Database Authentication page is displayed with the
partial credentials priming the fields. The user must supply the remainder of
the data source credentials before proceeding further. Note that you can control
which Database Authentication page is used via the DBAUTH parameter in the
rwservlet.properties file. If no data source credentials at all are provided,
the Database Authentication page is not displayed and it is assumed the report
does not require a data source.

See Also: Configuring the Reports Servlet

For more information about the DBAUTH parameter and the
rwservlet.properties file.

rwservlet constructs a command line with the necessary information from
the previous steps and passes it to the Reports Server.

The Reports Server validates the user credentials against the Oracle Internet
Directory. It also checks whether the user has the necessary privileges to run the
report on the specified server at the specified time to the specified destination. If
the validation check fails for any reason, then an error condition is returned to
the user and the process terminates.

The data source credentials are stored in a Reports Userid Cookie for possible
future reference. Note that Pluggable Data Source credentials are not stored in
the Reports Userid Cookies.

9-8 Oracle Application Server Reports Services Publishing Reports to the Web

About OracleAS Reports Services Security

7. The Reports Server delegates the job to a Reports Engine that accesses the data
source, retrieves the data, and formats the report.

8. The completed output is sent to the specified destination. Depending upon the
destination, the output may be sent to a printer, served back to the browser, or
stored in a file for future reference.

9.1.3 Leveraging Oracle Identity Management Infrastructure

OracleAS Reports Services can take advantage of the capabilities in OracleAS Single
Sign-On, which is part of the Oracle Identity Management infrastructure.

9.1.3.1 OracleAS Single Sign-On

With the increasing number of Web-based, e-business applications that companies
deploy for use by their employees, customers, and partners, many businesses must
now consider Single Sign-On functionality. Single Sign-On refers to the ability to log
on to a single security system once, rather than logging on separately to multiple
security systems. With Single Sign-On, each user maintains a single identity and
password for all data and associated resources to which they need access.

Within a given Web application, OracleAS Reports Services eases the user's
experience with OracleAS Single Sign-On. OracleAS Single Sign-On ensures that
each user authenticates only once.

9.1.3.1.1 Single Sign-On Components Figure 9-2 provides an overview of the Single
Sign-On component architecture.

Securing OracleAS Reports Services 9-9

About OracleAS Reports Services Security

Figure 9-2 SSO Architecture

Browser

' '

I Middle-Tier . Infrastructure

Oracle HTTP Server CracleAS Single
Sign-Om

mod_oss0 Cracle Infernet
Directory

Reports Serviet

Reports Server

The components of the Single Sign-On environment include:

A client Web browser

Oracle HTTP Server

The Oracle HTTP Server processes requests from the client browser.
Reports Servlet

Oracle Application Server Containers for J2EE

The Reports Servlet is a component of OracleAS Reports Services that runs
inside of the Oracle HTTP Server's Oracle Application Server Containers for
J2EE (OC4J). When a report request comes to the Oracle HTTP Server, the
Reports Servlet passes the job request to the Reports Server.

Reports Server

The Reports Server processes client requests, which includes ushering them
through authentication and authorization checking, scheduling, caching, and
distribution.

9-10 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring OracleAS Reports Services Security

= OracleAS Single Sign-On

OracleAS Single Sign-On is responsible for managing users' Single Sign-On
sessions. It verifies users' login credentials by looking them up in the Oracle
Internet Directory.

= Oracle Internet Directory

Oracle Internet Directory is Oracle’s highly scalable, native LDAP version 3
service and hosts the Oracle common user identity. OracleAS Single Sign-On
authenticates users against the information stored in Oracle Internet Directory.
As noted in earlier sections, when Single Sign-On is enabled for OracleAS
Reports Services, it checks the Oracle Internet Directory for user and group
privilege information. It also retrieves data source connection information from
the Oracle Internet Directory.

s Oracle Delegated Administration Services

The Delegated Administration Service provides a comprehensive interface for
making updates to the Oracle Internet Directory. OracleAS Reports Services
displays Oracle Delegated Administration Services when it encounters a Single
Sign-On key that does not already have a data source connection string
associated with it in the Oracle Internet Directory.

For more information, refer to Chapter 10, "Configuring and Administering
OracleAS Single Sign-On".

9.2 Configuring OracleAS Reports Services Security

This section provides an overview of configuration considerations for OracleAS
Reports Services.

9.2.1 Configuring OracleAS Reports Services Security Options

The out-of-the-box implementation of OracleAS Reports Services security includes
all of the Oracle components described in Resources Protected pre configured to
work with your OracleAS Reports Services installation. If you choose to implement
your own security configuration, you can follow the steps in Chapter 10,
"Configuring and Administering OracleAS Single Sign-On" and Chapter 11,
"Deploying Reports in OracleAS Portal” to use all or only some of these
components. For example, you can choose to use OracleAS Single Sign-On without
implementing data source security or OracleAS Portal. In another configuration,
you might choose to use a different Internet directory to store user and group
information. If you prefer to implement none of the above security components,

Securing OracleAS Reports Services 9-11

Configuring OracleAS Reports Services Security

you can still configure a secured Reports Server, which provides security similar to
that available in Oracle Reports6i.

Note: At the highest level, all communication to and from Oracle
HTTP Server may be configured to use SSL. The Oracle HTTP
Server incorporates an OpenSSL module to provide support for
Secure Sockets Layer (SSL) and HTTP Secure Sockets Layer
(HTTPS). Once this is set up in the Oracle HTTP Server (see Oracle
HTTP Server Administrator’s Guide), rwservlet automatically
detects the SSL port number.

9.2.1.1 OracleAS Portal

OracleAS Portal provides a number of security features available to OracleAS
Reports Services that enable you to ensure that the appropriate users are getting
important data in a secure fashion. With OracleAS Portal security features in place,
your users see only the data they’re supposed to see.

Use OracleAS Portal to control:

= Who has access to each report

= When a report can be run

= Which servers and printers can be used to run a report

= Which report parameters a user can edit with what range of values

OracleAS Portal is a browser-based, data publishing and developing solution that
offers Web-based tools for publishing information on the Web and building
Web-based, data-driven applications.

OracleAS Portal is tightly integrated with OracleAS Reports Services to create a
robust and secure data publishing environment. OracleAS Portal provides
easy-to-use wizards for setting up OracleAS Reports Services security. These
include wizards for defining user access to reports, Reports Servers, printers, output
formats, and report parameters.

Once you define access control information, it's stored in the OracleAS Portal
repository. As an OracleAS Portal user, you can then, optionally, publish registered
RDFs and JSPs to an OracleAS Portal page. As with all OracleAS Portal
functionality, using Portal to deliver your reports is not required. You can deliver
reports through command lines, as you may always have, and still benefit from the
access control features available to you through OracleAS Portal.

9-12 Oracle Application Server Reports Services Publishing Reports to the Web

Configuring OracleAS Reports Services Security

Access to OracleAS Reports Services’ security features is not dependent on whether
you also use Portal to publish report links or report content. Even if you don't
publish via Portal, you can still take advantage of the OracleAS Reports Services’
security features available in OracleAS Portal to control user access to all of your
reports.

When you expose a report as a portlet through OracleAS Portal, OracleAS Reports
Services leverages the Single Sign-On feature. Single Sign-On eliminates the need
for users to enter multiple logins, first to the portal then to each of the reports
exposed through portlets within the portal. With OracleAS Single Sign-On, when
you log in, OracleAS Portal automatically logs you into all registered portlet
providers and subsystems.

See Also: OracleAS Portal
For a detailed description of report request flow within OracleAS

Portal.

Refer to the Oracle Application Server 10g Security Guide for more information about
OracleAS Single Sign-On and OracleAS Portal. You'll find this and other related
documentation on the Oracle Technology Network, (http://otn.oracle.com).

For more information, refer to Chapter 11, "Deploying Reports in OracleAS Portal"

9.2.1.2 Security Interfaces

The Security API of the Reports Software Development Kit (RSDK) allows you to
integrate your own security model with the Reports Server. OracleAS Reports
Services enables you to plug in any security you wish, using the provided APIL

The Security API can control:

= Who has access to each report

= When a report can be run

= Which servers and printers can be used to run a report

= Which report parameters a user can edit with what range of values

The RSDK includes a tutorial that shows you how to integrate your own security
using an XML file to store the authorization information. At the end of this tutorial,
you will be able to:

= Implement a security class with OracleAS Reports Services

= Register a security class with OracleAS Reports Services

Securing OracleAS Reports Services 9-13

Configuring OracleAS Reports Services Security

s Use the security class with OracleAS Reports Services

The tutorial and further information on the RSDK can be found on the Oracle
Technology Network.

9-14 Oracle Application Server Reports Services Publishing Reports to the Web

10

Configuring and Administering OracleAS
Single Sign-On

Single Sign-On enables you to establish a unique identity for each user, and tie that
identity to the resources and data sources unique to that user. For example, a user
might log into an environment such as OracleAS Portal, which enables them to
access certain reports and printers for which they have the necessary privileges.
When they choose to run a report from this environment, they can access the
necessary data sources for the report because their data source credentials are stored
with the single user identity used to login to OracleAS Portal. Thus, logging in once
provides them access to all of the resources and data sources they require to run
their reports.

Because OracleAS Reports Services provides a flexible approach to security, you can
implement many variations of the configuration described above. For example, you
might choose not to store data source credentials with the single user identity. Or
you might prefer to use direct URLs for launching reports rather than a platform
like OracleAS Portal. If your reports are public and do not require any security, then
you might choose to turn off report security altogether.

This chapter describes how you can implement and administer various
configurations of OracleAS Single Sign-On with OracleAS Reports Services.

» Prerequisites

s Configuring Out-of-the-Box OracleAS Single Sign-On

s Administering OracleAS Single Sign-On

s Choosing the connecting entity for the Oracle Internet Directory

s OracleAS Forms Services Security Considerations

Configuring and Administering OracleAS Single Sign-On 10-1

Prerequisites

10.1 Prerequisites

OracleAS Single Sign-On can be implemented only in a secure server environment.
This means that you must have a security policy in place in your Reports Server
configuration file before you can consider implementing OracleAS Single Sign-On
with OracleAS Reports Services.

Note: Security settings are discussed in the following places:
Chapter 3, "Configuring OracleAS Reports Services" tells you how
to specify the Java class that defines the security policy for the
server; Chapter 11, "Deploying Reports in OracleAS Portal" tells
you how to deploy OracleAS Reports Services reports in OracleAS
Portal; Appendix A, "Command Line Options" provides
information about the SSOCONN command line option.

With OracleAS Single Sign-On, your administrator establishes a user identity for
each user. The administrator does this in the Oracle Internet Directory, through its
user interface, the Oracle Delegated Administration Services. You can access Oracle
Delegated Administration Services standalone or through OracleAS Portal. In either
case, the information is saved to the Oracle Internet Directory.

The user identity is comprised of the user name and password. Once users are
established, data source connection strings may be associated with them. At login,
users must enter their user names and passwords (their user identities), which will
in turn give them access to all of the data sources associated with those identities.
OracleAS Single Sign-On issues a session cookie that effectively acts as a key that
opens all authorized doorways for that session.

Note: For detailed information about the requirements and
procedures required for setting up SSO-related components, such
as the Oracle Internet Directory, see the Oracle Internet Directory
Administrator’s Guide and the Oracle HTTP Server Administrator’s
Guide on the Oracle Application Server documentation CD and on
the Oracle Technology Network, (http://otn.oracle.com).

10.2 Configuring Out-of-the-Box OracleAS Single Sign-On

By default, the Reports Server is secured and, to run a report, you must login with a
valid Single Sign-On userid and password. The Reports Server is configured by
default with the OracleAS Single Sign-On instance installed as part of Oracle

10-2 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Application Server. The Oracle Internet Directory instance installed with Oracle
Application Server is used as the default repository for user and group information.
If you want to configure the Reports Server to use a different Oracle Internet
Directory instance or disable security, refer to Administering OracleAS Single
Sign-On. For information on how to add users to the Oracle Internet Directory, refer
the Oracle Internet Directory Administrator’s Guide. In addition, for each Oracle
Application Server installation, the Reports Server instances connect to the Oracle
Internet Directory as an application entity that is unique to the Oracle Application
Server installation. For more information on this behavior, refer to Connecting to
the Oracle Internet Directory.

If a user is not already logged in to OracleAS Single Sign-On, they are prompted to
login when they attempt to run a report to the Reports Server via rwservlet. If the
user parameters for a report include SSOCONN, OracleAS Single Sign-On will search
for the user’s data source credentials in the Oracle Internet Directory. If none are
found, then OracleAS Single Sign-On prompts the user to create a new resource. For
more information on rwservlet, refer to rwservlet. For more information about
SSOCONN, refer to SSOCONN.

The Reports Server is also configured to operate with OracleAS Portal by default.
You can optionally add reports to the portal and enable users to launch them from
the portal. Since users must login to the portal in this case, they are not prompted to
login again when they launch their reports because they have already been
identified to OracleAS Single Sign-On by logging in to the portal.

You can also optionally define access controls for resources associated with the
Reports Server (e.g., reports, printers, Reports Servers, and calendars) in OracleAS
Portal. To control access to resources, you must add them to the portal and specify
their access options. The resource access controls you specify in OracleAS Portal
apply to reports that you run outside of the portal as well. For example, if a user
tries to run a report through rwservlet, it will be subject to any access controls you
have put in place through OracleAS Portal.

See Also: Deploying Reports in OracleAS Portal

For more information about the integration between OracleAS
Portal and OracleAS Reports Services.

10.3 Administering OracleAS Single Sign-On

This section describes some of the administrative tasks you may need to perform as
you maintain security for OracleAS Reports Services.

= Enabling and Disabling OracleAS Single Sign-On

Configuring and Administering OracleAS Single Sign-On 10-3

Administering OracleAS Single Sign-On

= Enabling and Disabling Reports Server Security
= Enabling and Disabling Data Source Security

s Connecting to the Oracle Internet Directory

10.3.1 Enabling and Disabling OracleAS Single Sign-On

To take advantage of OracleAS Single Sign-On out-of-the-box, the SINGLESIGNON
parameter in the rwservlet configuration file (rwservlet .properties) is set to
YES, which indicates that you will use OracleAS Single Sign-On to authenticate
users. You may change this parameter to NO, if you choose not to use OracleAS
Single Sign-On. If you choose NO, the Reports Server authenticates users by itself
(i.e., the same mechanism used in Oracle Reports6i). The rwservlet configuration
file is usually found in:

ORACLE_HOME\reports\conf

The SINGLESIGNON value is usually commented out after installation, but the
default value is YES.

Note: OracleAS Reports Services is configured for OracleAS
Single Sign-On out-of-the-box. Oracle considers this to be the
normal security deployment model and you should only turn it off
if you plan to run in a completely custom security configuration.

10.3.2 Enabling and Disabling Reports Server Security

Reports Server security is turned on and off in the Reports Server configuration file.
By default, the Reports Server configuration file, ORACLE
HOME/reports/conf/servername.conf, contains a security element like the
following:

<security id="rwSec” class="oracle.reports.server.RWSecurity”>
<!--property name="securityUserid" value="portal_id/portal_password@portal_
schema" confidential="yes” encrypted="no"-->
<property name="oidEntity" value="%REPORTS_OID_ENTITY%" confidential="yes”
encrypted="no"/>

</security>

10-4 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Note: In releases prior to 10g (9.0.4), the securityUserid
property was specified differently. In 10g (9.0.4) and later releases,
the old property specification is still provided but commented out.

This security element is referenced by default from the two default job elements in
the configuration file to indicate that Reports Server security should be enforced:

<job jobType="report” engineld="rwEng” securityId="rwSec”/>

<job jobType="report” engineld="rwEngURL” securityId="rwSec”/>

To disable Reports Server security, you must remove or comment the security
element as well as the secuirtyId attributes from the job element specifications.

10.3.3 Enabling and Disabling Data Source Security

To enable data source security through OracleAS Single Sign-On, you must do the
following:

= Include SSOCONN in the URL that launches the report.

= Populate the Oracle Internet Directory with data source connection information
using one of three methods.

If you wish to implement data source security through OracleAS Single Sign-On for
your own pluggable data sources, you need to perform the following additional
task:

= Add a new resource type to the Oracle Internet Directory

The sections that follow explain how to perform these operations.

10.3.3.1 SSOCONN

To enable data source security through OracleAS Single Sign-On, the URL must
contain or reference (i.e., via the key map file) a OracleAS Single Sign-On parameter
(SSOCONN) with a value of the form:

key_name/data_source_type/parameter_name

key_name maps to a string stored in the Oracle Internet Directory that provides the
necessary information to connect to the database. When Oracle Reports encounters
a key_name, it checks to see if the current user has a corresponding key stored in
the Oracle Internet Directory. If so, Oracle Reports uses the string stored in that key
to connect to the data source. If not, Oracle Reports checks to see if the key_name

Configuring and Administering OracleAS Single Sign-On 10-5

Administering OracleAS Single Sign-On

maps to a publicly available key. If so, Oracle Reports uses that key. If not, Oracle
Delegated Administration Services prompts the user to create a new resource.

See Also: Populating the Oracle Internet Directory

For more information about populating the Oracle Internet
Directory with resources

data_source_type is the kind of data source to which you are connecting. data_
source_type lets Oracle Reports know what format to expect in the string
associated with key_name. data_source_type must be a valid resource type
stored in the Oracle Internet Directory. Oracle Reports provides default resource
types for the following:

» Oracle database (OracleDB)
= JDBC (jdbcpds)
s Oracle Express (EXPRESSPDS)

You can also create addition resource types in the Oracle Internet Directory for your
own pluggable data sources.

See Also: Adding a New Resource Type

For more information about adding resource types.

parameter_name specifies the Oracle Reports system or user parameter to be used
to pass the connection string to Oracle Reports. For example, in the case of the
OracleDB data source, Oracle Reports receives the connection string via the USERID
parameter and uses it to connect to the specified Oracle database. Similarly, for the
EXPRESSPDS, the EXPRESS_ SERVER parameter is used and, for the jdbcpds, p_
jdbcpds is used. If you have your own custom pluggable data sources, you would
need to define your own user parameter for passing the connection string to Oracle
Reports and specify it as parameter_name for SSOCONN.

10.3.3.1.1 Oracle Database Example In the case of an Oracle database, the URL to call
a report with SSOCONN would look something like the following:

http://myhost.mycompany.com:7779/reports/rwservlet?server=rs_cped
&report=my.rdf&destype=cache&ssoconn=mykey/OracleDB/userid&desformat=html

10.3.3.1.2 Oracle Express Example In the case of an Oracle Express database, the
Single Sign-On value would look something like the following;:

http://myhost.mycompany.com:7779/reports/rwservlet?server=rs_cped

10-6 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

&report=exppds.rdf&destype=cache&ssoconn=exptestl/EXPRESSPDS/express_server&desformat=html
10.3.3.1.3 JDBC Pluggable Data Source Example In the case of a JDBC data source, the
Single Sign-On value would look something like the following;:

http://myhost.mycompany.com:7779/reports/rwservlet?server=rs_cped
&report=Jdbcthin.rdf&destype=cache&desformat=html&ssoconn=jdl/jdbcpds/p_jdbcpds

In this case, jd1 is an Oracle Internet Directory resource name.

See Also: Configuring and Using the JDBC PDS

For more information on how to configure a JDBC data source.

Usage Notes
= When you use SSOCONN in a command line, you cannot:

= Specify authid in the same command line.
= Run against a Reports Server that is not secure.
s Have SINGLESIGNON set to NO in rwservlet.properties.

Doing any of the above with SSOCONN in the command line results in an error.

10.3.3.2 Populating the Oracle Internet Directory

For data source security to function with OracleAS Single Sign-On, you need to
store the data connection information for each user in the Oracle Internet Directory
or make the resource a default one available to every user. You can populate Oracle
Internet Directory with this information in any one of the following ways:

= Oracle Delegated Administration Services

s User Prompt

= Batch Loading

= Making a Resource Available to All Users

10.3.3.2.1 Oracle Delegated Administration Services If you only need to enter
credentials for a small number of users (e.g., for a development environment), you

can use Oracle Delegated Administration Services to directly enter connection
string information into the Oracle Internet Directory for each user.

Configuring and Administering OracleAS Single Sign-On 10-7

Administering OracleAS Single Sign-On

Note: Before a user can access Oracle Delegated Administration
Services, an administrator must have already entered a user
identity in the Oracle Internet Directory for the user. This step can
be done by batch loading information that is already entered into
an LDAP directory in some other source.

See the Oracle Internet Directory Administrator’s Guide for
information on batch loading. You'll find it on the Oracle
Application Server documentation CD and on the Oracle
Technology Network, (http://otn.oracle.com).

During Oracle Application Server installation, you specify the location of Oracle
Delegated Administration Services. You use this URL to access Oracle Delegated
Administration Services for administrative purposes. Once in Oracle Delegated
Administration Services, you enter the information via the Resource Access
Information section of the Preferences tab for the user. See Figure 10-1. Note that,
for the Preferences tab to appear, there must already be a resource in place.

10-8 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Figure 10-1 Delegated Administration Services Preferences

Preferences My Profile - Microsoft Intemet Explorer

hitp:/Alohesun.us. oracle. com: 777 7 /oiddasAui/oracle/Idap/das/mypage/E wtPrefstyPage

Internet Directo

Preferences

Resource Access Information

For Oracle Reports and Forms based applications Refrash Pags B
(Create)
(SelectResourceand .. 0 Edit) Delete) |
Select Resource Name © 00000000 Resource Type @00 1000
& dhi OracleDB
© db2 OracleDB
© db3 OracleDB
© dhdl OracleDB

(Create J.

Home | My Profile | Directory | Configuration | Logout | Help

Copyright @ 1896, 2003, Oracle Corp. &l rights reserved

If you need to enter data source information for a large number of users, you should
use either the user prompt or batch methods of populating the Oracle Internet
Directory.

10.3.3.2.2 User Prompt If you prefer to have users enter their own connection string
information, you do not have to pre-populate the Oracle Internet Directory with
data source connection information at all. If you use SSOCONN when launching the
report but the Oracle Internet Directory does not already contain a connection string
for the key and the key is not publicly available to all users, the Oracle Delegated
Administration Services Create Resource page is displayed to the user, who must
enter their data source connection string. See Figure 10-2. Oracle Delegated
Administration Services stores the string entered by the user in the Oracle Internet
Directory for future use and rwservlet uses the newly entered connection string for
the data source connection string of the report.

Configuring and Administering OracleAS Single Sign-On 10-9

Administering OracleAS Single Sign-On

Note: Because of this feature, many users can use the same report
URL even if they all use different data source connection strings.

Figure 10-2 Oracle Delegated Administration Services Create Resource

Resource Access Information

Username iscott

Password ;*****

Database [orga_db|

% Local intranet e

&

Note: In the Create Resource dialog, if you want to enter a JDBC
connection string, you can do so by entering hostname :port:sid
in the Database field.

10.3.3.2.3 Batch Loading Resources for OracleAS Reports Services are created in the
Oracle Internet Directory under the following entry:

orclresourcename=resource_name, cn=Resource Access Descriptor,

orclownerguid=guid, cn=Extended Properties, cn=OracleContext,

dc=us, dc:oracle,dc:coml

! dc=us,dc=oracle,dc=com is merely an example in this instance. You would normally enter
your own values for these items.

10-10 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Before You Begin You need to create orclownerguid=guidin the above Oracle
Internet Directory entry before you can proceed with the batch loading of resources.
If you used Oracle Delegated Administration Services to create your users,
orclownerguid=guid was created automatically and you can proceed to Batch
Loading Resources.

If you seeded users into the Oracle Internet Directory with an LDIF file, then, before
following the steps in Batch Loading Resources, you need to complete the following
steps:

1. Get the users’ GUIDs.

Depending on how your users are created in the Oracle Internet Directory, you
can use any number of methods to get their GUIDs. You can get user GUIDs
using the Oracle Internet Directory LDAP API. You can also get it using the
ldapsearch command:

D:\ora9ias\BIN>ldapsearch -h host_name -p port_num -L -D cn=orcladmin
-w orcladmin’s_password -b "cn=users,dc=us,dc=oracle,dc=com" -s sub
"objectclass=*" dn orclguid

2. Create the user entry orclownerguid=guidunder cn=Extended
Properties, cn=0racleContext, dc=us, dc=oracle, dc=com.

a. Modify the sample script, ORACLE_
HOME\reports\samples\scripts\createuser.1ldif by replacing
the place holder with real values.

b. Load createuser.1dif using 1dapadd. For example:

D:\ora9ias\BIN>ldapadd -D cn=orcladmin -w welcomel
-h host_name -p port_num -f createuser.ldif

3. Once you have created orclownerguid=guid, proceed to Batch Loading
Resources.

Batch Loading Resources Follow the steps below to batch load data source
resources for your users:

1. Create the user's resource entry orclresourcename=resource_name,
cn=Resource Access Descriptor under orclownerguid=guid,
cn=Extended Properties, cn=0racleContext, dc=us, dc=oracle,
dc=com, where orclownerguid=guidis the GUID created in Before You
Begin.

Configuring and Administering OracleAS Single Sign-On 10-11

Administering OracleAS Single Sign-On

a. Modify the sample script, ORACLE_
HOME\reports\samples\scripts\createresource.ldif by
replacing the place holder with real values.

b. Load createresource.1dif using 1dapadd. For example:
D:\ora9ias\BIN>ldapadd -D cn=orcladmin -w orcladmin’s_password -h host_
name -p port_num -f createresource.ldif

10.3.3.24 Making a Resource Available to All Users If you want to make a resource
publicly available to all of your users, you can do so by following these steps:
1. Launch Oracle Delegated Administration Services and go to the Home tab.
2. Login as the administrator (orcladmin).

3. Click the Configuration tab.

4. Click the Preferences sub tab and you should see a page similar to the one in
Figure 10-3.

10-12 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Figure 10-3 Oracle Internet Directory Configuration Preferences Page

J Administration.Create User.Information - Microsoft Internet Explorer

conf/DASE wtPrefsConf*RE S TYPE % 3bselected=0LRE S TYPE % 38length=34event=resireshR ezouceT able

Internet Directo

Preference

Preferences

Configure Resource Type Information
For Cracle Reports and Forms based applications

{ Creats)
‘Select Resource Typeand .. ~ (Edit) Delste)

Select Resource Type Name | © Description® 000000 o oo

& OracleDB Data Source for Oracle Database
| JDBCPDS Data Source for Oracle Reports JOBC PDS
0 ExpressPDS COracle Reports Pluggable Data Source

(Create)

Default Resource Access Information
For Oracle Reports and Forms based applications

(Create)

5. Under Default Resource Access Information, click Create.

6. In the Create Resource page, enter the resource name and select the Resource

type from the drop-down list. For example, JDBCPDS.
7. Click Next.
8. Enter the connection information. For example, scott/tigere@mydb.
9. Click Submit.
10. Click OK.

Configuring and Administering OracleAS Single Sign-On 10-13

Administering OracleAS Single Sign-On

That resource should now appear under Default Resource Access Information
and be available to all users.

10.3.3.3 Adding a New Resource Type

If you want to add a new resource type to support your own pluggable data source,
you need to perform the following procedure:

1. Launch Oracle Delegated Administration Services and go to the Home tab.
2. Login as the administrator (orcladmin).
3. Click the Configuration tab.

4. Click the Preferences sub tab and you should see a page similar to the one in
Figure 10-3.

5. Under Configure Resource Type Information, click Create and you should see a
page similar to the one in Figure 10—4.

10-14 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Figure 10-4 Create Resource Type page

Create Resource Type - Microzoft

Intemet Explorer

a -sUR.ug oracle com: ¥ 777 foiddas/uiforacleldap/das/conf/DASE stPrefzConf Pevent=createResourceT yp

Internet Direc

agement Realm

Create Resource Type

* Authentication CI

* Connection String For

Canfiguration : Preferences = Configure Resource Type Information > Create Resource Type

* Resource Type Mame |

Display Mame |

Description

* User Name/ID Field Mame I
* Paggword Field Name I

Additional Field1 |

{
\

= Logout - Realms Management - Help
tO == L My Profile o] ‘% Configuration

Preference

EE] |

mat |

6. Fill in at least the required fields. Field descriptions are provided in Table 10-1.

Table 10-1 Create Resource Type Properties

Property

Description

Resource Type Name

Display Name

Description

Is the name of the new resource type. This name is used when
you need to reference the resource type, for example, in the
data_source_type portion of the SSOCONN string.

Is the name to be used when the resource type appears in the
user interface.

Is a textual description that explains the purpose of the
resource type and any other documentary information you
want to enter for it.

Configuring and Administering OracleAS Single Sign-On 10-15

Administering OracleAS Single Sign-On

Table 10-1 Create Resource Type Properties

Property

Description

Authentication Class

Connection String Format

User Name/ID Field
Name

Password Field Name

Leave this field blank.

Defines how OracleAS Reports Services should construct the
connection string using the values stored in Oracle Internet
Directory for the resource. For example:

for the Oracle database or a JDBC data source your connection
string format might be:

orclUserIDAttribute/orclPasswordAttribute
@orclFlexAttributel

This string indicates that the user name is followed by a slash,
the password, an at sign (@), and then additional attribute 1
(e.g., for the TNS name of the database). A connection string
that adheres to this format would look similar to this one:

scott/tiger@dbl
for Oracle Express your connection string format might be:

server=orclFlexAttributel/domain=orclFlexAttri
bute2/user=orclUserIDAttribute/password=orclPa
sswordAttribute

This string indicates that server= is followed by the first
additional attribute, a slash, domain=, the second additional
attribute, a slash, the user name, a slash, and the password. A
connection string that adheres to this format would look
similar to this one:

server=al/domain=a2/user=scott/password=tiger

Is the display name of the user name field that contains the
value for orclUserIDAttribute. The display name appears
on the Create Resource page (Figure 10-2) next to the field for
orclUserIDAttribute. Typically, you would enter
something like Username or User Name for this display name.

Is the display name of the password field that contains the
value for orclPasswordAttribute. The display name
appears on the Create Resource page (Figure 10-2) next to the
field for orclPasswordAttribute. Typically, you would
enter something like Password or password for this display
name.

10-16 Oracle Application Server Reports Services Publishing Reports to the Web

Administering OracleAS Single Sign-On

Table 10-1 Create Resource Type Properties

Property Description

Additional Field 1-3 Is the display name of the additional fields, which contain the
values of orclFlexAttributel, orclFlexAttribute2,
and orclFlexAttribute3. You need to specify these fields
for whatever values your connection string requires beyond
user name and password. For example, you might use one of
them to contain a server or domain name.The display name
appears on the Create Resource page (Figure 10-2) next to the
field for orclFlexAttributel, orclFlexAttribute2, or
orclFlexAttribute3. Typically, you would enter something
descriptive of the field’s contents, such as Server or Domain,
for this display name.

7. Click Submit. Your resource type is created and you can now reference it in the
data_source_type portion of the SSOCONN argument.

See Also: SSOCONN

For more information about SSOCONN.

10.3.4 Connecting to the Oracle Internet Directory

As you may recall from Chapter 9, "Securing OracleAS Reports Services", OracleAS
Reports Services must connect to the Oracle Internet Directory to verify user
privileges and obtain existing data source connection information. In connecting to
the Oracle Internet Directory, you must consider:

s Choosing the Connecting Entity for the Oracle Internet Directory

s Choosing the Oracle Internet Directory Instance

10.3.4.1 Choosing the Connecting Entity for the Oracle Internet Directory

When OracleAS Reports Services connects to the Oracle Internet Directory, it does
so as an application entity. By default, each OracleAS Reports Services application
entity is unique to its Oracle Application Server installation. Every Reports Server
started from the same Oracle Application Server installation (i.e., ORACLE_HOME)
uses the same application entity to connect the Oracle Internet Directory. This setup
ensures that each Reports Server can only access information in the Oracle Internet
Directory that is relevant to its instance of Oracle Application Server.

For example, suppose you have two instances of Oracle Application Server, one for
your Finance group and one for your Human Resources group. A Reports Server

Configuring and Administering OracleAS Single Sign-On 10-17

Choosing the connecting entity for the Oracle Internet Directory

from the Finance group’s Oracle Application Server instance would be prevented
from accessing information relevant only to the Human Resources group, and vice
versa. Thus, information stored in the Oracle Internet Directory is more secure by
default.

In previous releases of OracleAS Reports Services, all Reports Servers connected to
the Oracle Internet Directory as the same application entity. As a result, it was not
possible to restrict a Reports Server’s access to information in the Oracle Internet
Directory.

To revert to the less restrictive security mode, refer to the OracleAS Reports Services
chapter of the Oracle Application Server Release Notes.

10.3.4.2 Choosing the Oracle Internet Directory Instance

By default, the Reports Server is configured to use the Oracle Internet Directory
instance installed with Oracle Application Server. If you are building your system
anew, this arrangement is fine. If, however, you have an existing Oracle Internet
Directory instance that you want to use for the Reports Server, you have to make
some adjustments to your configuration.

Changing Oracle Internet Directory instances, though, must be done as part of a
complete change of your Oracle Application Server middle tier. For more
information about this process, please refer to the chapter on reconfiguring
application server instances in the Oracle Application Server 10§ Administrator’s
Guide.

10.4 Choosing the connecting entity for the Oracle Internet Directory

You can merge serveral application entities so that the Reports Servers installed in
separate ORACLE_HOMESs can share available SSOCONN resources. To achieve this
merge, you must execute an 1di £ file with the 1dapmodify command. The 1dif
file should contain the following:

dn: dn of the group which represents the logical grouping of all report
instances

changetype: modify

add: uniquemember

uniquemember: dn of the Reports Application Entity

where:

dn of the group which represents the logical grouping of all report
instances=cn=Virtual Application Group, orclApplicationCommonName=reports_
application_entity;namez, cn=Reports, cn=Products, cn=0OracleContext

10-18 Oracle Application Server Reports Services Publishing Reports to the Web

OracleAS Forms Services Security Considerations

and

dn of the Reports Application Entity =orclApplicationCommonName=reports_
application_entity_name, cn=Reports, cn=Products, cn=OracleContext

10.5 OracleAS Forms Services Security Considerations

The default configuration for Oracle Application Server Forms Services does not
run in OracleAS Single Sign-On (550) mode. The default configuration for
OracleAS Reports Services does run in SSO mode.

Forms applications calling integrated OracleAS Reports Services using the RUN_
REPORT_OBJECT built-in will not experience any problems when OracleAS Forms
Services is running in non-5SO mode and OracleAS Reports Services is running in
SSO mode as long as the Reports Server and the requested report are not registered
in OracleAS Portal.

Other Requirements:

The property, Reports Server, must be set explicitly for all report objects in the
Oracle Forms module.

If a Reports Server other than the default is being used, that server must be
started from the command line as follows:

rwserver server=Reports Server name

The system variable, REPORTS_PATH, must be modified in the file ORACLE_
HOME/bin/reports. sh to reference the path of the reports to be run.

The first time a Reports Server is started, it creates a configuration file called
server_name.conf located in the ORACLE_HOME/server/conf/ directory.

The default status of a Reports Server is secure. To change the Reports Server
status to non-secure, modify ORACLE_HOME/server/conf/reports_
server_name.conf by commenting out the <security> tag and removing
securityId from the <job> tags.

After making these modifications, the Reports Server must be stopped and
restarted.

2 Where reports_application_entity_name is in the format, reportsApp_hostname_GUID.

For examgle, reportsApp_servl.us.oracle.com_
C7543D4

AQE26726E034080020A46EE2

Configuring and Administering OracleAS Single Sign-On 10-19

OracleAS Forms Services Security Considerations

s If OracleAS Forms Services is configured to run in SSO mode, then report
requests are sent with the authid provided, based on the SSO user login.

s Protected reports and Reports Servers can be registered in OracleAS Portal.

Table 10-2 lists the possible Forms/Reports combinations and expected results:

Table 10-2 Outcome of Forms/ Reports Integration when Forms is running in SSO

Mode or Non-SSO Mode

Registered, Secure

Reports Server Registered, Secure

(runs only Reports Server Non-Secure
Report Type registered reports) (runs any reports) Reports Server
Reports with public report generated report generated report generated
access
Reports with report generated report generated report generated
specific user access
Reports with no report not generated report not generated report generated
specific user access
Non-registered report not generated report not generated report generated

reports

10-20 Oracle Application Server Reports Services Publishing Reports to the Web

11

Deploying Reports in OracleAS Portal

This chapter describes how to use OracleAS Portal to deploy your Oracle
Application Server Reports Services reports. It includes the following sections:

» Creating Reports Users and Named Groups in OracleAS Portal
= Registering Oracle Reports Components in OracleAS Portal
Before you deploy reports, both OracleAS Portal and Oracle Application Server
Reports Services must be installed and configured.
See also: The following resources for further information:

» Chapter 3, "Configuring OracleAS Reports Services" for
information on configuring Oracle Application Server Reports
Services

» the Oracle Application Server Portal Configuration Guide for
information on configuring OracleAS Portal

» the Oracle Application Server 10g Installation Guide for
information on installing both components

» the Oracle Application Server documentation CD

» the Oracle Technology Network, (http://otn.oracle.com)

11.1 Creating Reports Users and Named Groups in OracleAS Portal

If you use the security features in OracleAS Portal to control access to your reports,
you must register all of your Reports users in the Oracle Internet Directory (OID)
and assign security privileges to all of them through OracleAS Portal.

Deploying Reports in OracleAS Portal 11-1

Creating Reports Users and Named Groups in OracleAS Portal

Note: If you have a large user population already entered into an
LDAP-compatible directory, you can use Oracle Internet Directory
(OID) features to synchronize the directories and save yourself the
effort of entering your users individually. You'll find information
about OID's Directory Integration Server in the OID Administrator’s
Guide.

In OracleAS Portal, security privileges can be granted to individual users and to
named groups of users. Named groups are useful for streamlining the process of
granting access privileges. You can assign a set of access privileges to a named
group, and grant the entire set of privileges to an individual simply by adding that
person to the group.

Note: When you use features like OracleAS Portal Security, Portal
Destination, and Job Status Repository, the JDBC database
connections made by Oracle Application Server Reports Services
may override the initial NL.S_LANG setting. This change may in turn
affect the behavior of the running report, such as bidirectional
output in PDF. On UNIX platforms, you can work around this issue
by setting the NL.S_LANG explicitly in report . sh. You can also use
the new environment switching functionality to dynamically set the
environment for reports. Refer to Dynamic Environment Switching,
for more information.

The next sections provide overview information on how to create users and groups
in OracleAS Portal. They include:

» Default Reports-related Groups

»s Creating Users and Groups

11.1.1 Default Reports-related Groups

When you install OracleAS Portal, Reports-related groups are created for you
automatically. These include the following groups:

= RW_BASIC_USER
» RW_POWER_USER
» RW_DEVELOPER

11-2 Oracle Application Server Reports Services Publishing Reports to the Web

Creating Reports Users and Named Groups in OracleAS Portal

» RW_ADMINISTRATOR

You need to assign appropriate privileges to these groups to enable group members
to perform any desired functions on reports through OracleAS Portal. For example,
for each report object that you want members of a group (e.g., RW_BASIC_USER) to
be able to run, you have to grant the Execute privilege to that group from the Access
tab of the report object. Similarly, if you want members of a group (e.g., RW_
ADMINISTRATOR) to be able manage Reports Servers, printers, and reports, you
have to grant the Manage privilege to that group from the Access tab of those
objects.

While you can assign object privileges to individual users, we recommend that
every person who will access your reports belong to one of these groups or a group
that you create yourself. If users try to run reports without being a member of one
of these groups, by default, they are assigned the privileges of a basic user.

11.1.1.1 RW_BASIC_USER
Should the security check fail, the users in RW_BASIC_USER see less detailed error
messages than the users in other Oracle Reports groups, such as:

Security Check Error

Typically, you will want to assign this group minimal privileges. For example, you
probably will want to give RW_BASIC_USER the privilege to execute reports and
no more.

11.1.1.2 RW_POWER_USER

In addition to the privileges of the RW_BASIC_USER group, the RW_POWER _
USER group sees error messages that are more detailed than those displayed to
basic users. For example, if they are not permitted to run to HTML, but they try
anyway, they might get the message:

Cannot run report to HTML

This is more detailed than the message an RW_BASIC_USER would receive for the
same error.

11.1.1.3 RW_DEVELOPER

In addition to the privileges of the RW_POWER_USER groups, the RW_
DEVELOPER group can run Web commands, such as SHOWENYV and SHOWMAP,
which show the system environment.

Deploying Reports in OracleAS Portal 11-3

Creating Reports Users and Named Groups in OracleAS Portal

Typically, you would assign privileges to this group needed by a developer who is
testing reports. Depending upon your installation, you might even assign them
limited administrative privileges.

11.1.1.4 RW_ADMINISTRATOR

In addition to the privileges of RW_DEVELOPER, these users also have access to
the administrator's functionality in the Oracle Reports Queue Manager, which
means they can manage the server queue, including rescheduling, deleting,
reordering jobs in the server, and shutting down a server. RW_ADMINISTRATOR
also has the privilege to run Web commands through rwservlet.

Typically, you will want to assign to this group some (but probably not all) of the
same privileges assigned to the PORTAL_ADMINISTRATORS group.

Note: Initially, only members of the PORTAL_
ADMINISTRATORS group have MANAGE privileges for Oracle
Reports objects. They can CREATE, UPDATE, and DELETE the
registered report definition files, servers, and printer objects in
OracleAS Portal. In addition to all the links activated for the
developer user, administrators can navigate to the Access tab on the
Component Management Page, accessible in OracleAS Portal. This
is where the administrator can specify who will have access to this
report. People with administrator privileges can assign security
privileges for other people and receive full error messages from
Oracle Application Server Reports Services.

11.1.2 Creating Users and Groups

OracleAS Portal uses the Delegated Administration Service (DAS) interface to the
Oracle Internet Directory (OID) to register users for access to Portal. You can enter
the DAS interface through Portal to create new users. The creation of new users and
groups is discussed in the Oracle Application Server Portal Configuration Guide
available on the Oracle Application Server documentation CD.

When you create groups, you need to assign appropriate privileges to them to
enable group members to perform any desired functions on reports through
OracleAS Portal. For example, for each report object that you want members of a
group (e.g., RW_BASIC_USER) to be able to run, you have to grant the Execute
privilege to that group from the Access tab of the report object. Similarly, if you
want members of a group (e.g., RW_ADMINISTRATOR) to be able manage Reports

11-4 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

Servers, printers, calendars, and reports, you have to grant the Manage privilege to
that group from the Access tab of those objects.

Ideally, you should provide a user with the necessary privileges on objects by
assigning them to a group that has appropriate privileges for their role. For
example, if you are creating a user who needs to be able to run but not manage
reports, you could assign her to RW_BASIC_USER. If need be, you may assign
object privileges to individual users (e.g., JSMITH) rather than groups, but this
approach is more difficult and time consuming to manage.

11.2 Registering Oracle Reports Components in OracleAS Portal

Before you begin, you must have a sufficient level of privileges in OracleAS Portal
to access the portlets and complete the tasks required for setting access controls. In
order to manage reports in OracleAS Portal, you must belong to both the PORTAL_
ADMINISTRATORS and RW_ADMINISTRATOR groups. If you only belong to
RW_ADMINISTRATOR, you will encounter errors when you attempt to create
report objects.

For more information about joining privilege groups in OracleAS Portal, refer to the
Oracle Application Server Portal Configuration Guide.

See Also: Running Report Requests

For more information on running reports in OracleAS Portal.

This section outlines the necessary steps to go about:
» Creating an Availability Calendar

» Registering a Printer

» Registering a Reports Server

= Registering a Report

11.2.1 Creating an Availability Calendar

Defining availability calendars is an optional step that allows you to further restrict
access to reports, servers, and printers by specifying when they can and cannot be
accessed. Availability calendars are not necessary if the reports, the Reports Servers,
and printers are always available for processing.

This section provides information on:

Deploying Reports in OracleAS Portal 11-5

Registering Oracle Reports Components in OracleAS Portal

Creating a Simple Availability Calendar
Creating a Combined Availability Calendar

You can associate only one availability calendar with a report, a Reports Server, or a
printer. If your production environment requires more than one availability rule,
then you can combine availability calendars.

11.2.1.1 Creating a Simple Availability Calendar

A simple availability calendar defines a single availability rule (for example,
Sunday through Saturday from 12:00 a.m. to 10:00 p.m.).

To create a simple availability calendar:

1.

2
3.
4

Log in as an administrator to OracleAS Portal.
Navigate to the Builder page.
Click the Administer tab.

Click the Oracle Reports Security Settings link in the Oracle Reports Security
portlet.

Click the Create Reports Simple Calendar Access link in the Reports Calendar
Access portlet on the Oracle Reports Security page.

On the resulting page, the Name (internal name) and Portal DB Provider fields
contain default values. To include custom values:

= Enter a unique name in the Name field that will identify the availability
calendar internally in OracleAS Portal, for example, MY_CALENDAR. This
name must follow the OracleAS Portal rules for a valid component name,
ie.:
* It must be no more than 30 characters
* It must contain only alphanumeric characters (no spaces or special
characters allowed).

* The first character must be a letter (not a number).

s In the Display Name field, enter the name you want to display for this
availability calendar when it is exposed through OracleAS Portal. Unlike
the internal name, the display name can have spaces in it.

= Select a Portal DB Provider from the provider list of values. All
components added to or created in OracleAS Portal must belong to a Portal

11-6 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

DB Provider. This list contains the names of only those providers with
which you have privileges to build components.

Note: For information on creating a Portal DB Provider, see the
OracleAS Portal online help.

7. Click Next.

8. Optionally, enter a description of the calendar under Description.

9. Click Next.

10. On the Date/Time Availability page, define the parameters for the calendar:

Under Duration, specify the length of time that comprises a unit of duration (or
duration period). For example, if you plan to set this calendar up to allow
report access from 9:00 AM to 5:00 PM on a given day, then both Start and End
would be the same month, day, and year, but the hour and minute setting for
Start would be 9:00 AM and for End would be 5:00 PM. In this example, the
duration of availability of a report on a given day is from 9:00 AM to 5:00 PM.

Under Repeat, specify how frequently the duration period is repeated:

= Occurs only once means the duration period does not repeat, and
associated components are no longer available when the period expires. For
example, if you select Occurs only once and set a duration period of one
year, then the associated components cease to be available after one year.

= Yearly means the duration period restarts each year. If you select Yearly
and have the same start and end date in your Duration setting, but your
Start hour is set to 9:00 AM and your End hour is set to 5:00 PM, then the
Reports components associated with this availability calendar will be
available one day a year between 9:00 and 5:00.

= Monthly means the duration period restarts each month between the Start
and End dates specified under Duration. If you select Monthly and have
the same date and year in both Start and End—]July 25, 2001—but set the
Start hour for 9:00 AM and the End hour for 5 PM, then the associated
components will be available between 9:00 AM and 5:00 PM on the 25th of
each month.

= The by Date/Day setting applies only to Monthly. With by Date/Day, you
specify whether the duration period is set by the particular date (e.g.,
always on the 25th through the 29th of the month) or by the particular

Deploying Reports in OracleAS Portal 11-7

Registering Oracle Reports Components in OracleAS Portal

11.
12.

13.

14.

day(s) (e.g., always on Monday through Friday—which happen this month
to fall on the 25th through the 29th).

Weekly means the duration period restarts on a weekly basis between the
days specified under Duration.

Daily means the duration period restarts each day between the hours
specified under Duration.

Frequency fills in the missing value for the phrase: Repeat every n (years,
months, weeks, days—depending on what you selected under Repeat). For
example, if you set the duration period to repeat weekly, then set
Frequency to 2, the duration period restarts every two weeks, or every
other week.

Optionally, check Repeat Until and assign a termination date/time for the
calendar. Availability for all associated Reports components ends on the
Repeat Until date/time.

Note: No validation is run on your calendar. If the duration
period exceeds the repetition setting, no error message will be
generated. For example, if you set the duration period for 10 days
and the repetition for weekly, the periods will overlap, but you will
not be notified of the overlap.

Click Next.

On the Summary page, click the Show Calendar button to preview your
availability calendar. If you wish to change some settings, click the Previous
button and make your changes.

On the Summary page, click Finish to complete the availability calendar.

The resulting page summarizes your settings for this calendar. On this page,
you can edit your settings, get detailed information about the calendar, or delete

Click Close to close this page and return to OracleAS Portal's Oracle Reports
Security page.

You can combine this calendar with other calendars or apply it "as is" to registered
Oracle Application Server Reports Services components.

11-8 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

11.2.1.2 Creating a Combined Availability Calendar

A combined availability calendar combines two or more availability calendars into
a single availability calendar. This is useful when you want to set up an availability
period, then exclude specific days, such as holidays, from that period.

When you combine calendars, you can indicate that all the days on one of them be
excluded from all the days on the other. For example, one calendar could describe
availability Monday through Friday; another could describe availability only on
Wednesday. You could combine these, excluding the Wednesday calendar, so that
the combined calendar describes availability Monday, Tuesday, Thursday, Friday.

Conceivably, you could create a simple calendar that covers the weekdays of an
entire year, then multiple additional simple calendars, where one excludes New
Years, another excludes a second holiday, another excludes a third, and so on. You
could combine all these calendars, excluding all the holiday calendars, so that
components were available only on the days your company is open for business,
between certain times of day, throughout the year.

To combine availability calendars:
1. Log in as an administrator to OracleAS Portal.
2. Navigate to the Builder page.
3. Click the Administer tab.
4

Click the Oracle Reports Security Settings link in the Oracle Reports Security
portlet.

5. Click the Create Reports Combined Calendar Access link in the Reports
Calendar Access portlet.

6. Specify an internal name, display name, and Portal DB Provider for the
calendar:

= Enter a unique name in the Name field that will identify the combined
availability calendar internally in OracleAS Portal, for example, MY_
COMBINED_CALENDAR. This name must follow the OracleAS Portal
rules for a valid component name, i.e.,:

* It must be no more than 30 characters

* It must contain only alphanumeric characters (no spaces or special

characters allowed).

The first character must be a letter (not a number).

Deploying Reports in OracleAS Portal 11-9

Registering Oracle Reports Components in OracleAS Portal

10.

11.

12.
13.

= Enter the name you want to display for this combined availability calendar
in the Display Name field. The Display Name is the name that is exposed
to your users through OracleAS Portal.

Note: The Display Name, unlike the internal Name, can have
spaces in it.

= Select a Portal DB Provider from the provider list of values. All
components that you add to or create in Portal must belong to a Portal DB
Provider. This list contains the names of only those providers with which
you have privileges to build components.

Note: For information on creating a Portal DB Provider, see the
OracleAS Portal online help.

Click Next.

(Optional) Enter a description of the Availability Calendar in the Description
field.

Click Next.

On the Selection page, highlight the calendars on the Availability Calendars
list that you want to combine. The calendars are listed by their internal names,
not their display names. Use control-click (Windows) or click (UNIX) to select
multiple calendars.

This page lists the availability calendars that have been defined for the same
Portal DB Provider under which you are creating this combined availability
calendar.

Click the right arrow to move the selected calendars to the Selected
Availability Calendars list.

Click Next.

On the Exclude page, highlight the calendar(s) on the Availability Calendars
list whose dates you want to exclude. Use control-click (Windows) or click
(UNIX) to select multiple calendars.

These are the calendars with dates on which you wish to withdraw availability.

11-10 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

14. Click the right arrow to move the selected calendars to the Excluded
Availability Calendars list.

15. Click Next.

16. On the Summary page, click the Show Calendar button to preview your
calendar.

If your exclusion isn't showing up, select a different view. For example, instead
of the monthly view, select the weekly.

If you want to change the combination, close the calendar and click the
Previous button one or more times to return to the desired page.

17. Click Finish to complete creation of the combined calendar.

The resulting page summarizes your settings for this calendar. On this page,
you can edit your settings, get detailed information about the calendar, or delete
it.

See Also: The Manage Portlet

For more information on the fields and descriptions listed in the
Manage portlet, i.e., Develop, Manage, and Access tabs.

18. Click Close to close this page and return to OracleAS Portal's Oracle Reports
Security page.

You can combine this calendar with other calendars or apply it "as is" to registered
Oracle Application Server Reports Services components.

11.2.2 Registering a Printer

It is not required that you register a printer within the security framework of
OracleAS Portal. You can run a report on any printer as long as it is available to the
Reports Server. However, you might want to confine OracleAS Portal users to a
subset of those printers, constrain the use of a printer for certain periods of time, or
identify a particular printer to be used for printing output of certain reports.

Printer registration with OracleAS Portal is meaningful for reports that you run
through OracleAS Portal as well as those you run through a stand-alone URL.

Once printers are registered within OracleAS Portal, you can associate them with a
Reports Server. Many printers can be registered. However, only printers associated
with particular Reports Servers are available to print when you register a report
with OracleAS Portal and choose those Reports Servers.

Deploying Reports in OracleAS Portal 11-11

Registering Oracle Reports Components in OracleAS Portal

You can choose to restrict even further the registered subset of printers that a
registered report can be sent to. For example, an Reports Server might be connected
to the printer in the office of the CEO, but its selection should not be available to
employees running the general ledger report, unless it is the CEO who is running
the report. A subset of printers can be listed to the OracleAS Portal user running a
report request to select where output should be sent.

Table 11-1 Sample Values

Property Sample Value

Name (internal name) myrep_printer
Display Name My Reports Printer
Portal DB Provider PORTAL_APP

OS Printer Name \\mydomain\printerl
Availability Calendar COMCAL

To register a printer:

1.

2
3.
4

Log in as an administrator to OracleAS Portal.
Navigate to the Builder page.
Click the Administer tab.

Click the Oracle Reports Security Settings link in the Oracle Reports Security
portlet. The Oracle Reports Security portlet enables you to use the security
features in OracleAS Portal at the time of defining access to the server, printer,
calendar, and reports definition file.

Click the Create Reports Printer Access link in the Reports Printer Access
portlet.

On the resulting page, the Name (internal name) and Portal DB Provider fields
contain default values. To include custom values:

= Enter a unique name in the Name field that will identify the printer
internally in OracleAS Portal, for example, MY_PRINTER. This name must
follow the OracleAS Portal rules for a valid component name, i.e.,:
* It must be no more than 30 characters
* It must contain only alphanumeric characters (no spaces or special
characters allowed).

11-12 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

* The first character must be a letter (not a number).

= Enter the name that you want to display for this printer in the Display
Name field. The Display Name is the name that is exposed to your users
through OracleAS Portal.

Note: The Display Name, unlike the internal Name, can have
spaces in it.

= Select the Portal DB Provider that will own the printer from the Portal DB
Provider list of values. The Portal DB Providers displayed are those in
which you have privileges to build components.

Note: All components you add to or create in OracleAS Portal
must belong to a Portal DB Provider. Refer to the OracleAS Portal
online help, for more information on how to create a Portal DB
Provider.

7. Click Next.
8. On the resulting page, fill in desired values:

s Inthe OS Printer Name field, enter the operating system printer name, for
example:

UNIX: printer_name

Windows: \\printer_ server\printer name (for a remote printer)
printer_name (for a local printer)

This printer must be available to the Reports Server.

Note: Printer availability is set via the operating system on the
Report Server's host machine.

= (Optional) Enter a description of the Printer in the Description field.
9. Click Next.

10. (Optional) Select an Availability calendar to restrict the days and times the
printer can be used.

Deploying Reports in OracleAS Portal 11-13

Registering Oracle Reports Components in OracleAS Portal

See Also: Creating an Availability Calendar

For more information on how to create an Availability Calendar.

11. Click Finish.

The resulting page summarizes your settings for this printer. On this page, you
can edit your settings, get detailed registration information about the printer, or
delete it altogether.

See Also: The Manage Portlet

For more information on the fields and descriptions listed in the
Manage portlet, i.e., Develop, Manage, and Access tabs.

12. Click Close to close this page and return to OracleAS Portal's Oracle Reports
Security page.

You have completed registering a printer with OracleAS Portal. This registration is
meaningful for reports that are run through OracleAS Portal as well as those run
outside of OracleAS Portal.

11.2.3 Registering a Reports Server

Before you can define access controls for the Reports Server, you must register your
server within OracleAS Portal. Registration provides OracleAS Portal with the
information it needs to identify and locate all available Reports Servers. This
becomes particularly important when you register individual reports; during this
process you are required to choose from a list of Reports Servers, and servers must
be registered to appear on this list.

Table 11-2 Sample Values

Property Sample Value

Name (internal name) myrep_server

Display Name My Reports Server

Portal DB Provider PORTAL_APP

Reports Server Name rep_machine_name, e.g., rep_
myserverl

Oracle Reports Web http://myias.mycomp.com:7778/

Gateway URL for JSP

reports

11-14 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

Table 11-2 Sample Values

Property Sample Value

Oracle Reports Web http://myias.mycomp.com:7778/report
Gateway URL for RDF s/rwservlet

reports

Availability Calendar COMCAL

This section describes how to register Reports Servers in OracleAS Portal.
To register a Reports Server:

1. Log in as an administrator to OracleAS Portal.

2. Navigate to the Builder page.

3. Click the Administer tab.
4

Click the Oracle Reports Security Settings link in the Oracle Reports Security
portlet. The Oracle Reports Security portlet enables you to use the security
features in OracleAS Portal at the time of defining access to the server, printer,
calendar, and reports definition file.

5. Click the Create Reports Server Access link in the Reports Server Access
portlet.

6. On the resulting page, the Name (internal name) and the Portal DB Provider
fields contain default values. To include custom values:

= Enter a unique name in the Name field that will identify the Reports Server
internally in OracleAS Portal, for example, MY_REPORTS_SERVER. This
name must follow the OracleAS Portal rules for a valid component name,
ie.,:

* It must be no more than 30 characters

* It must contain only alphanumeric characters (no spaces or special
characters allowed).

* The first character must be a letter (not a number).

= Enter the name you want to display for this server in the Display Name
field. The Display Name is the name that is exposed to your users through
OracleAS Portal.

Deploying Reports in OracleAS Portal 11-15

Registering Oracle Reports Components in OracleAS Portal

Note: The Display Name, unlike the internal Name, can have
spaces in it.

= Select the Portal DB Provider that will own the Reports Server from the
Portal DB Provider list of values. The Portal DB Providers displayed are
those in which you have privileges to build components.

Note: All the components you add to or create in OracleAS Portal
must belong to a Portal DB Provider. Refer to the OracleAS Portal
online help, for more information on how to create a Portal DB
Provider.

7. Click Next.
8. On the Server Definition page:

= Enter the name of the Reports Server in the Reports Server Name field.
This is the unique name assigned to the server at the time of installation,
i.e,rwserver -install repservername or rwserver
server=repservername.

= (Optional) Enter a description for the Reports Server in the Description
field.

= Enter the URL location of your JSP files in the Oracle Reports Web
Gateway URL for JSP reports field. The URL should be in the following
format:

http://your_web_server.domain:port/

For example:

http://myias.mycomp.com: 7779/

= Enter the URL location of your Reports Servlet in the Oracle Reports Web
Gateway URL for RDF reports field. The URL should be in the following
format:

http://your_web_server.domain:port/virtual_path_to_rwservlet/rwservlet

See Also: Chapter 3, "Configuring OracleAS Reports Services"

For more information on specifying the virtual path.

11-16 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

10.

11.
12.

13.

For example:
http://myias.mycomp.com:7778/reports/rwservlet
= (Optional) Select the Run Only Registered Report Definition Files check

box. This ensures that only the report definition files registered with
OracleAS Portal can be executed on this Reports Server.

Leave this box unchecked if you want this Reports Server to accept any
report definition file, including those not registered in OracleAS Portal, as
long as the user who submits the report request has access privileges to this
Reports Server.

= Select the printer(s) that you want to make available to this Reports Server
from the Printers list. Use control-click (Windows) or click (UNIX) to select
multiple printers.

Click Next.

(Optional) Enter a Custom Destination Type, if you have defined a custom
destination type.

See Also: Chapter 7, "Configuring Destinations for OracleAS
Reports Services"

For more information on custom destination types.

Click Next.

(Optional) Enter the Availability Calendar name or click the list button to select
the Availability Calendar that determines the days and times this Reports
Server is and is not available to accept report requests.

See Also: Creating an Availability Calendar

For more information on how to create an Availability Calendar.

Click Finish.

The resulting page summarizes your settings for this Reports Server. On this
page, you can edit your settings, get detailed registration information about the
Reports Server, or delete it altogether.

Deploying Reports in OracleAS Portal 11-17

Registering Oracle Reports Components in OracleAS Portal

See Also: The Manage Portlet

For more information on the fields and descriptions listed in the
Manage portlet, i.e., Develop, Manage, and Access tabs.

14. Click Close to close this page and return to the Oracle Reports Security page.

You have registered a Reports Server. Now you can register a report.

11.2.4 Registering a Report

Registering a report is a required step that allows you to define who can run a
report, when a report is available to run, which server(s) can be used to process
report requests, how a report is delivered, and the printer(s) to which a report can
be sent.

In addition to using registration to designate which users have access to a report,
you can also specify, via a OracleAS Portal parameter form, how users are to
interact with the report.

User parameters are created in Reports Builder at the time of designing the report.
You can assign values to these parameters when you run the report in OracleAS
Portal.

Note: You can use the parameter settings available through
OracleAS Portal to duplicate or create a subset of the parameters
defined in Reports Builder at design time. At runtime, the Reports
Server disregards any parameters that you set in OracleAS Portal
not defined in Reports Builder at design time.

Registering a report within OracleAS Portal creates an OracleAS Portal component
that can be deployed as a portlet through Portal. We recommend that you register
only one instance of a report file in OracleAS Portal. If you define multiple
OracleAS Portal report objects for one report, all are given security checks at
runtime. If any of them fail the security check, then all fail, and the job will not run.

11-18 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

Note: Running reports from within OracleAS Portal requires the
HTML iframe tag, which is not supported in Netscape 4.x. As a
result, the following limitations apply when using Netscape 4.x:

= A report portlet cannot display in place if you are using
HTTPS. You need to click on the portlet title to see the report in
a separate browser window.

= A report portlet cannot be scheduled to run via the Customize
link if you are using HTTPS.

Table 11-3 Sample Values

Property Sample Values
Name (internal name) Employee_Report
Display Name Employee Report
Portal DB Provider PORTAL_APP

Oracle Reports File Name employee_report.jsp

Execute as JSP
Name (Optional userid
Parameters)

Display Name (Optional =~ User Identification
Parameters)

To register a report:

1.

2
3.
4

Log in as an administrator to OracleAS Portal.
Navigate to the Builder page.
Click the Administer tab.

Click Oracle Reports Security Settings link in the Oracle Reports Security
portlet.

Click the Create Reports Definition File Access in the Reports Definition File
Access portlet.

On the resulting page, the Name (internal name) and the Portal DB Provider
fields contain default values. To include custom values:

Deploying Reports in OracleAS Portal 11-19

Registering Oracle Reports Components in OracleAS Portal

= Enter a unique name in the Name field that will identify the report
internally in OracleAS Portal, for example, MY_REPORT. This name must
follow the OracleAS Portal rules for a valid component name, i.e.,:

* It must be no more than 30 characters

* It must contain only alphanumeric characters (no spaces or special
characters allowed).

* The first character must be a letter (not a number).

= Enter the name that you want to display for this report in the Display
Name field. The Display Name is the name that is exposed to your users
through OracleAS Portal.

Note: The Display Name, unlike the internal Name, can have
spaces in it.

= Select the Portal DB Provider that will own the Reports Server from the
Portal DB Provider list of values. The Portal DB Providers displayed are
those in which you have privileges to build components.

Note: All the components you add to or create in OracleAS Portal
must belong to a Portal DB Provider. Refer to the OracleAS Portal
online help, for more information on how to create a Portal DB
Provider.

7. Click Next.
8. Enter or select information as follows:

» Select the Reports Server(s) to be available to run this report from the
Reports Servers list of values. Use control-click (Windows) or click (UNIX)
to select multiple servers.

= Enter the report file name, including its extension in the Oracle Reports
File Name field.

The report definition file can be an . rdf, . jsp, or . xml file. If the path to
this file is included in your REPORTS_PATH environment variable, do not
enter it here. If the path is not included in REPORTS_PATH, include it here
along with the filename. Do this for all report definition files except those

11-20 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

10.

you will run as stand-alone JSPs. For JSPs, you need to define the name as
virtual path/reportname.jsp.

See Also:
= Appendix B, "Reports-Related Environment Variables"

For more information on Oracle Reports-related environment
variables.

s Chapter 3, "Configuring OracleAS Reports Services"

For more information on specifying the virtual path.

(Optional) Enter a description for this report in the Description field.

Select either via servlet or as JSP in the Execute field. The selection you
make here will affect the choices that are available on the next wizard page.

* wvia servlet: If you plan to run the report through the Reports Servlet.
youp P g P

* as JSP: If you will run a deployed JSP report.

Click Next.

Select the Destination settings on the Required Parameters page.These settings
are only applicable if you run your report through the Reports Servlet. At
runtime, anywhere you have indicated multiple selections using control-click, a
list of values will be offered to your users from which they can set their own
runtime information:

Select the destination types from among Cache, File, Mail, OraclePortal,
OracleWireless, Printer, FTP, WebDAYV, or custom destination types. Types
specifies the destination types acceptable for this report. If the server you
associate with this report supports custom destination types, which you
indicated when you registered the Reports Server in OracleAS Portal, the
types you indicated will display on this list.

Formats defines the acceptable output format(s) for this report. Choose
among HTML, HTMLCSS, PDF, XML, RTEF, Delimited, PostScript, and
Character

Printers specifies the registered printer(s) to which this report can be sent.
The printers that appear on this list are determined by those you chose
when you set up access to the Reports Server(s) you are associating with
this report. When users choose a Reports Server on the runtime parameter

Deploying Reports in OracleAS Portal 11-21

Registering Oracle Reports Components in OracleAS Portal

form, only those printers that are associated with the selected Reports
Server and that are accessible to those users are listed.

11. Select the Parameter Form Template and click Preview Template to see what
the selected template looks like:

Parameter Form Template specifies the template that will define the look
and feel of the Portal parameter form from which you will run the report.
This value is used only when the report is exposed through the Portal.
Choose a template from the list of values.

Note: For information about adding your own templates to this
list, see the OracleAS Portal online help.

12. Click Next.

13. Define the limits for the report’s existing parameters on the Optional
Parameters page:

14.
15.

Enter the name or user parameter to restrict the values available to users in
the Name field. For example, SALES_REGION or COPIES.

Enter the display name of the system or user parameter. This name will be
used to identify the parameter on the runtime parameter form.

Enter the name of the list of values, or select the values from a predefined
list of values. The list must already exist. For information on creating a list
of values, see the OracleAS Portal online help.

Enter the lowest value that you wish to set for a range of values in the Low
Value field.

Enter the highest value that you wish to set for a range of values in the
High Value field.

Click More Parameters if you wish to add more rows for additional
parameters and values.

Click Next.

(Optional) Enter the Availability Calendar name or click the list button to select
an existing Availability Calendar.

Use the availability calendar to limit the days and times this report can be run.

11-22 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

See Also: Creating an Availability Calendar

For more information on how to create an Availability Calendar.

16. Click Next.

17. (Optional) Enter a validation trigger to create a programmatic restriction.

Use validation triggers to create conditional restrictions that cannot be defined
on either the Required Parameters page or the Optional Parameters page.
Validation triggers are PL/SQL functions.

The function that you specify as a validation trigger must return a boolean
value (TRUE or FALSE). If the function returns TRUE, the job is run. If the
function returns FALSE, an error message is displayed and the job is not run.

18. Click Finish to close the wizard and complete report registration.

The resulting page summarizes your registration information and provides the
opportunity to perform additional actions on your report.

See Also: Publishing a Report in OracleAS Portal

For more information on how to run your report from OracleAS

Portal.

» Click Customize to view the report’s runtime parameter form.

Table 11-4 summarizes the options available on this page.

Table 11-4 Options on the runtime parameter form

Option

Description

Run Report
Save Parameters

Server

Printer

Destype

Click to run this report with the specified parameter values.
Click to save the parameter value selections.

Select the Oracle Reports Server that you want to receive this
report request. Only the servers that you chose at the time of
registering the Report are displayed in this list box.

Select the printer that you want to print your report output. Only
the printers that you chose at the time of registering the report are
displayed in this list box.

Select the destination type. Only the destination types that you
chose at the time of registering the report are displayed in this list
box.

Deploying Reports in OracleAS Portal 11-23

Registering Oracle Reports Components in OracleAS Portal

Table 11-4 Options on the runtime parameter form

Option

Description

Desformat

Desname

SSOCONN

Visible to user

CGI/Servlet Command
Key

Portlet Width

Portlet Height

Additional User
Parameters

Select the destination format. Only the destination format that
you chose at the time of registering the report are displayed in
this list box.

Enter the name of the output file when destype=FILE, or enter
the e-mail addresses when the Destype is MAIL. Separate
multiple addresses with commas. The destination name is
required when you choose FILE or MAIL as the destype.

Enter one or more SSO connection strings. Separate multiple
strings with a comma (but no spaces). For more information
about SSOCONN, refer to SSOCONN.

Check each parameter that you want to make available in the
runtime parameter form when users run this report request. If the
box in not checked, then the parameter is not displayed to users.

Optionally, enter the key from the cgicmd. dat file that
identifies the command line to run for this report.

Use this field to control the width of the portlet. You can enter the
value as a percentage of the page (e.g., 90%) or in pixels (e.g, 700).

If no value is specified, OracleAS Reports Services uses its default
value (640 pixels wide).

Use this field to control the height of the portlet. You can enter the
value as a percentage of the page (e.g., 50%) or in pixels (e.g, 400).

If no value is specified, OracleAS Reports Services uses its default
value (320 pixels high).

Use this field to enter additional user parameters. For example,
you can use this field to enter the path and name of the
distribution XML file that defines how this report should be
distributed.

Use the same syntax you would use to specify these values in a
command line request or within the cgicmd.dat file. If you wish
to enter multiple additional parameters, simply separate each
entry with a space.

For more information about the distribution XML file, see
Chapter 15, "Creating Advanced Distributions".

11-24 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

11.2.5 The Manage Portlet

Use the Manage portlet page to perform actions on existing Oracle Portal portlets;
for example, executing, editing, copying, dropping, or viewing information about

the portlet.

The actions you can perform on the portlet depend on your privileges. Also, not all
actions listed here are available for all portlets. The name of the portlet on which
you can perform these actions appears in the upper left corner of the page.

Table 11-5 details the fields and descriptions listed in the Develop tab.

Table 11-5 The Develop Tab

Field Description
(portlet Type and Name) Displays the portlet's type and name; for example:
Form (table) my_formfor a form
based on a table called my_form.
Provider Displays the name of the provider in which the portlet was

Version(s) Status (Not
applicable to all portlets)

Last Changed

Run Link (Not applicable
to all portlets)

PL/SQL source (Not
applicable to all portlets)

created.

Displays all the versions of the portlet and the current status of
each version. Click a status to edit the portlet version.

Note: If there are no hyperlinks, you do not have privileges to
edit the portlet.

Displays the name of the user who created or last edited the
portlet, and the date and time when the portlet was created or
last edited.

Displays the URL for the procedure or procedures that, when
executed, display the portlet. You can copy and paste this URL
into another Web page to create a link to the portlet.

Note: A procedure that executes the portlet without
parameters has the suffix .show. A procedure that executes the
portlet with parameters has the suffix .show_parms.

The portlet builder wizards create a PL/SQL package to
represent each portlet:

Package Spec: Displays the portlet's PL/SQL specification.
Package Body: Displays the portlet's PL/SQL body:.

Deploying Reports in OracleAS Portal 11-25

Registering Oracle Reports Components in OracleAS Portal

Table 11-5 The Develop Tab

Field

Description

Call Interface (Not
applicable to all portlets)

Edit Data Link (Not
applicable to all portlets)

Edit

Edit as New
Edit Data (Not applicable

to all portlets)

Run

Run As Portlet

Customize

Add to Favorites

About
Delete

Click Show to display the arguments that a portlet can accept
that the end user can change at runtime. Also shown are
examples of calling the portlet from a PL/SQL Stored
Procedure and via a URL. When you run the package
containing the portlet in PL/SQL or by calling it from a URL,
you can edit the call interface to accept different arguments.

Note: To view portlet source code, you must have Customize
or Execute privileges on the portlet or the provider that owns
it.

Click to connect to the URL containing the data, and to see and
edit that data.

Click to edit the most recent version of the portlet. For
example, you can reselect any table columns on which the
portlet is based, change any fields or text that appear in the
portlet, or choose a new look and feel.

Click to create and then edit a new version of this portlet. The
existing portlet version does not change.

Click to see the spreadsheet and be able to edit the data within
it.
Click to run the current PRODUCTION version of the portlet.

Note: If a valid package for the portlet doesn't exist, the portlet
will not run.

Displays how the portlet will look as a portlet in a portal
window (may look different than a full page display).

Click to display the customization form for the portlet. The
customization form enables you to specify values that will be
used to display the portlet.

Note: If the current portlet is a form, Browse appears instead of
Customize on this page.

Click to add the portlet to the Favorites list on your Oracle
Portal Home page.

Displays stored attributes for the portlet.
Click to drop the portlet from the database.

Table 11-6 details the fields and descriptions listed in the Manage tab.

11-26 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

Table 11-6 The Manage Tab

Field

Description

Show /Hide SQL Query
Info (Not applicable to all
portlets)

Show Locks on this portlet
(Not applicable to all
portlets)

Export
Copy
Rename
Generate

Monitor

Select to display or hide the SQL Query when running the
portlet, for debugging purposes.

Displays any locks currently active on the portlet (for example,
if somebody else is editing it).

Click to export the portlet from the database.

Click to copy the portlet from the database.

Click to rename the portlet (within the same provider).

Click to compile the PL/SQL package.

Click to view a chart of all requests for the portlet and the users
who made the request.

Table 11-7, Table 11-8, Table 11-9, Table 11-10, Table 11-11, Table 11-12, and
Table 11-13 details the fields and descriptions listed in the Access tab.

Table 11-7 Portal Access

Field

Description

Publish as Portlet (Not
applicable to all portlets)

Click to make the portlet available as a portlet.

Note: To publish the portlet as a portlet, you must have the
Publish Portlet privilege and you must make the provider that
owns the portlet available via Expose as Provider on the
Access provider page (Manage tab).

Deploying Reports in OracleAS Portal 11-27

Registering Oracle Reports Components in OracleAS Portal

Table 11-8 Privilege Mode

Field

Description

Inherit Privileges from
Provider

Select to allow the provider access privileges to override the
portlet access privileges.

Clear the check box and click Apply to allow the portlet access
privileges to override the provider access privileges. In the
Grant Access section, you can selectively grant or remove
portlet access privileges for different users or groups (for
example, Manage, Edit, View, Customize, or Execute).

Note: To grant portlet access privileges to a user or group, you
must have Manage access privileges on the portlet or provider
that owns the portlet.

Table 11-9 Grant Access

Field Description

Grantee Enter the user or group to whom you want to grant the
provider access privilege.

Execute Choose the privilege you want to grant.

Add Click to grant the provider access privilege.

Table 11-10 Change Access

Field

Description

Grantee

Type

Privilege

Displays the Oracle Portal user or group to whom the privilege
is assigned. Click Error! Unknown switch argument.next to a
grantee to delete all privileges.If you want to grant privileges
to all Oracle Portal users, choose Public as the Grantee.

Displays whether the grantee is an Oracle Portal user or group.

Displays the privilege currently granted. To change a privilege,
choose a new one and click Apply.

11-28 Oracle Application Server Reports Services Publishing Reports to the Web

Registering Oracle Reports Components in OracleAS Portal

Table 11-11 Cell Privilege Mode

Field

Description

Inherit Privileges from
portlet

(Not applicable to all
portlets)

Select to allow the portlet access privileges to override cell
access privileges.

Clear the checkbox and click Apply to allow cell access
privileges to override the portlet access privileges. In the Alter
Access section, you can selectively change cell access privileges
for different users or groups (for example, Manage, Edit, View,
Customize, or Execute).

Note: To alter cell access privileges for a grantee, you must
have Manage access privileges on the portlet or provider that
owns the portlet.

Table 11-12 Alter Access

Field

Description

Grantee (Not applicable to
all portlets)

Alter (Not applicable to all
portlets)

Enter the user or group to whom you want to grant the cell
access privilege.

Click to alter cell access privileges.

Table 11-13 Cache Invalidation

Field

Description

Clear Cache

Clears the cached version of the data, so that the next data
request will be filled from the database.

Deploying Reports in OracleAS Portal 11-29

Registering Oracle Reports Components in OracleAS Portal

11-30 Oracle Application Server Reports Services Publishing Reports to the Web

12

Clustering Reports Servers

A cluster is a virtual grouping of servers into a community for the purpose of
sharing request processing efficiently across members of the cluster. Clustering in
OracleAS Reports Services is peer-level, which means that all members of the
cluster take equal responsibility for sharing and processing incoming requests. If
one member is shut down, the other members carry on managing the request load.
If the output is present in one member’s cache, another member can use it. There is
no single-point-of-failure, where one machine's malfunction brings the whole
system down.

This chapter contains information about enrolling a server in a cluster and benefits
of clustering servers together. It contains the following sections:

m Cluster Overview

» Setting Up a Cluster

121 Cluster Overview
Assume you have the following servers:

serverA.clusterl
serverB
serverC.clusterl

ServerA.clusterl and serverC.clusterl are members of the same cluster
called clusterl. They cooperate to process requests from a client. If a client sends
a synchronous request to serverA.clusterl and it does not have an idle engine
of the specific job type, then it checks to see if serverC.clusterl does. If
serverC.clusterl does have an idle engine, then serverA. clusterl passes
the request to serverC.clusterl for processing.

Clustering Reports Servers 12-1

Setting Up a Cluster

In this example, ServerB is a stand-alone server and cannot receive processing
requests from other servers, nor can it send processing requests to other servers.

You can have an unlimited number of servers in a cluster. If a cluster member is
shut down, then it redistributes its pending synchronous jobs to another server in
the cluster. As long as one server in the cluster is running, the cluster is working.

When the cluster is making its decision as to where an upcoming scheduled or
immediate request should be processed, it prioritizes according to the following
criteria:

1. Does any server in the cluster have information in cache that matches the
request?

2, Is there a current, similar job in the queue?
3. Isanidle engine of the particular job type available?

4. Is the number of currently active engines less then the MAXENGINE number
specified for the server for that job type?

Both stand-alone and clustered servers share the same, basic configuration. The
cluster has no special configuration requirements, beyond needing to share a
common cluster name and common public and private keys. There are no
limitations on the platform used, the number of servers in the cluster, or the location
of the server. There is no requirement to share resources within the cluster servers.

Engine output is locally cached in a particular Reports Server within the cluster, but
it is also known and available to the entire cluster. If a server is down, that server's
cached files are no longer available for reuse. This means that another server within
the cluster must rerun the request to obtain the output. When the server is running
again, all of the cached files become available due to the persistent state of the
cache.

12.2 Setting Up a Cluster

Clustering in OracleAS Reports Services is as easy as naming all member servers
with the same "dot extension," for example server_name.cluster or server._
name.xyz, and ensuring that all member clusters share the same public and private
key.

This section covers renaming your Reports Server, creating and specifying public
and private keys, and submitting requests to a cluster. It contains the following
sections:

= Renaming a Reports Server

12-2 Oracle Application Server Reports Services Publishing Reports to the Web

Setting Up a Cluster

= Generating New Public and Private Keys

= Entering Public and Private Keys in the Server Configuration File

= Restarting the Reports Server

= Submitting a Request to a Cluster

12.2.1 Renaming a Reports Server

It is likely that you are reading this material after you've already set up at least one
Reports Server. If this is the case, you'll need to change the name of your server to
add the cluster name to the server name.

Note: If you haven't yet installed your servers, when you do
install them you must give them all different server names but the
same cluster name, for example servernameA.clusterl,
servernameB.clusterl.

To rename a Reports Server:

1. If the server is running, shut it down:

If it's running on Windows as a service, stop it through the Services control
panel.

If it's running on Windows through a server executable, or on UNIX
through a shell script, click the Shutdown button in the Oracle Reports
Server dialog box.

If it's running from a command line on Windows or UNIX, at the command
prompt enter the following command for Windows or UNIX:

This shuts down the server normally:

rwserver server=server shutdown=normal authid=admin/pword

This shuts down the server immediately:

rwserver server=gerver shutdown=immediate authid=admin/pword

This shuts down the server without displaying any related messages:

rwserver server=gerver shutdown=normal authid=admin/pwrd batch=yes

Clustering Reports Servers 12-3

Setting Up a Cluster

The keywords used with the rwserver command are described in
Appendix A, "Command Line Options".

If you have custom configuration settings in your Reports Server configuration
file (server_name.conft), rename this file to the new cluster name (server._
name.cluster _name.conf).

You'll find the configuration file in the following path on UNIX and Windows:
ORACLE_HOME\reports\conf\server_name.conf
If you don’t have custom configuration settings in your Reports Server

configuration file, a new configuration file with the new name will be generated
automatically when you restart the renamed server(s).

Rename the Reports Server in all affected files, giving each cluster member the
same cluster name.

= Open the servlet configuration file (rwservlet.properties) and
respecify the server name to include the name of your cluster. For example:

SERVER=server_name.cluster_name

You'll find the servlet configuration file on both Windows and UNIX in the
same path:

ORACLE_HOME\reports\conf\rwservlet.properties

s If you run the server as a Windows service, to rename the server you must
uninstall and reinstall the service:

To uninstall the Windows service, at the command prompt enter:

rwserver -uninstall server_ name

To reinstall the Windows service, at the command prompt enter:

rwserver -install server _name.cluster_name

Note: Reinstalling the server also starts it up. You may want to
shut it down until you have renamed all server cluster members,
then start them all up together once you've set up your cluster.
You'll find information on shutting the server down in Chapter 2,
"Starting and Stopping OracleAS Reports Services".

12-4 Oracle Application Server Reports Services Publishing Reports to the Web

Setting Up a Cluster

Before you restart your Reports Server(s), you may generate server public and
private keys and enter the resulting information in each member server's
configuration file. How to do this is discussed in the next sections.

12.2.2 Generating New Public and Private Keys

The server public and private key files aid with message encryption and
authentication between cluster members. The default files are stored in the
rwrun. jar file in the following path (on both UNIX and Windows):

ORACLE_HOME\reports\jlib\rwrun.jar

Each member of a cluster must have the same public and private key files specified
in their configuration files (server_name. cluster_name.conf). To ensure that
your cluster members share exclusive public and private key files, generate new
versions of them when you set up your cluster. Servers that will not be members of
the cluster can go on using the default keys provided with OracleAS Reports
Services.

To generate new public and private key files, at the command prompt, enter the
following command:

rwgenkey.sh public_key file_name private_key file_name (UNIX)
rwgenkey.bat public_key file name private_key file_name (Windows)

You can generate these files to specific directories by specifying the desired path in
the command line along with the new public and private key file names. If you just
specify the file name in the command line, the key files will be generated in the
current directory.

12.2.3 Entering Public and Private Keys in the Server Configuration File

Once you generate new public and private key files, you must enter that
information into all cluster members' Reports Server configuration files. You'll find
each cluster member's version of this file in the following path for both UNIX and
Windows on each server's host machine:

ORACLE_HOME\reports\conf\server_name.cluster_name.conf

Clustering Reports Servers 12-5

Setting Up a Cluster

To change public and private key files, go to the connection element in the server
configuration file, and change (or add) entries for the cluster sub-element as
follows:

<cluster publicKeyFile="path and filename of new public key"
privateKeyFile="path and filename of new private key">

You'll find more information about the connection element in Chapter 3,
"Configuring OracleAS Reports Services".

12.2.4 Restarting the Reports Server

Once you have renamed your cluster members and respecified a common public
and private key for each, you may start up your Reports Servers to activate the
cluster.

To start up a Reports Server:

= If you're starting the Reports Server as a Windows service, open the Service
control panel, and start the service.

= If you're starting the Reports Server from a command line, at the command
prompt, enter the following command:

On Windows:

rwserver server=server_name.cluster_name

On UNIX:

rwserver.sh server=server_name.cluster_name

Once you've renamed your cluster members, re specified your public and private
keys, and restarted your Reports Servers, you've completed the process of setting
up your cluster.

12.2.5 Submitting a Request to a Cluster

To submit a request to a cluster:
In the Reports Servlet or JSP, specity:

server=cluster_name

For example, if you have two cluster members—one named mercury.clusterl, the
other named venus.clusterl—then your server entry would be:

12-6 Oracle Application Server Reports Services Publishing Reports to the Web

Setting Up a Cluster

server=clusterl

The Reports Servlet or JSP will find a running Reports Server in the cluster and
send the request to that Reports Server. Depending on the cache match or the server
load, that Reports Server will either handle the request or redirect it to another
server in the cluster.

Clustering Reports Servers 12-7

Setting Up a Cluster

12-8 Oracle Application Server Reports Services Publishing Reports to the Web

Partll

Sending Requests to the Server

Part II provides detailed, practical information about publishing reports, including
how to run requests; how to set up sophisticated, automatic report distributions;
how to customize reports at runtime via XML customization files, and how to use
database triggers to automatically invoke reports.

Part Il includes the following chapters:

Chapter 13, "Running Report Requests"

Chapter 14, "Using the Oracle Reports Web Service"
Chapter 15, "Creating Advanced Distributions"
Chapter 16, "Customizing Reports with XML"
Chapter 17, "Using Event-Driven Publishing"

13

Running Report Requests

This chapter discusses various ways to send report requests to the Reports Server. It
includes the following sections:

The Reports URL Syntax

Report Request Methods

Deploying Your Reports

Publishing a Report in OracleAS Portal
Specifying a Report Request from a Web Browser
Sending a Request to the URL Engine
Running Reports through a Web Service
Scheduling Reports to Run Automatically
Additional Parameters

Reusing Report Output from Cache
Using a Key Map File

13.1 The Reports URL Syntax

This section provides quick reference information on formulating a URL for
publishing a report. It covers three deployment types:

Servlet
Jsp
CGI (for backward compatibility only)

Running Report Requests 13-1

The Reports URL Syntax

13.1.1 Serviet

The information is largely the same for both Windows and UNIX environments.
Differences are noted.

The syntax for the URL of a report run via the Reports Servlet is:

http://web_server.domain_name:port/alias/rwservlet?parameters
Table 13-1 lists and describes the components of the servlet URL.

Table 13—-1 Components of a URL that calls the Reports Serviet

Component Description

web_server The name you gave the Oracle HTTP Server when you installed
it.

domain_name Your organization's domain name.

port The port number on which the Oracle HTTP Server listens for
requests. When no port is specified, the default is used (80).

alias The virtual path that stands in for the absolute path to the files a
URL will access.

rwservlet Invokes the Reports Servlet.

? Identifies the beginning of the command line options.

parameters All the command line options, or the key to the key map file

where command line options are specified.

The URL that calls the Reports Servlet could look like this:

http://neptune.world.com:80/reports/rwservliet?keyname

Keyname refers to a command line listed under a unique header (the key name) in
the cgicmd. dat file. Note that this works differently for JSP files, which use the
keyword/value pair cmdkey=value to specify key names for command lines that
are stored in the cgicmd. dat file. You'll find more information about using key
mapping in Using a Key Map File.

Using the servlet does not mean that you cannot also use JSP report files, if the JSP
files contain both Web and paper layouts. When you run the report, specify the
servlet in the URL and call the JSP with the command line option:
report=myreport.jsp.

For example:

13-2 Oracle Application Server Reports Services Publishing Reports to the Web

The Reports URL Syntax

13.1.2 JSP

http://neptune.world.com:80/reports/rwservliet?report=myreport.jsp&destype=cache&
desformat=html

You'll find more information about command lines in Appendix A, "Command Line
Options".

Note: Yo can also supply these parameters within the JSP file
itself.

The syntax for a JSP-based report URL is:

http://web_server.domain_name:port/alias/myreport.Jjsp?parameters
Table 13-2 lists and describes the components of the JSP-based report URL.

Table 13-2 Components of a JSP-based Report URL

Component Description

web_server The name you gave the Oracle HTTP Server when you installed
it.

domain_name Your organization's domain name.

port The port number on which the Oracle HTTP Server listens for
requests. When no port is specified, the default is used (80).

alias The virtual path that stands in for the absolute path to the files a
URL will access.

myreport.jsp The report * . jsp file[s] that you want this URL to execute.

? Identifies the beginning of the command line options.

parameters All the command line options, and/or the key to the key map

file where command line options are specified.

The URL used to invoke a JSP-based report could look like this:

http://neptune.world.com:80/jsp/myreport.jsp?

You can specify a key in the URL that refers to a command line in the cgicmd.dat
file that contains additional command line parameters. In this case, you must use
the name value pair: cmdkey=keyname. This can appear anywhere in your URL,

Running Report Requests 13-3

The Reports URL Syntax

provided it follows the start of the query string (marked by a question mark). For
example:

http://neptune.world.com:80/jsp/myreport.jsp?userid=scott/tiger@hrdb&cmdkey=keyl

In your URL, use an ampersand (&) with no spaces to string parameters together.

Using a JSP does not mean that you cannot also use the Reports Servlet. When you
run the report, specify the servlet in the URL and call the JSP with the command
line option: report=myreport.jsp.

For example:

http://neptune.world.com:80/reports/rwservliet?report=myreport.jsp&destype=cache&
desformat=html

You'll find more information about command line keywords in Appendix A,
"Command Line Options". You'll find more information about the cgicmd. dat file
in Using a Key Map File.

13.1.3 CGlI

Note: The Reports CGl is included in Oracle Application Server
Reports Services for backward compatibility. We strongly
recommend that you deploy your reports with either a servlet or
JSP implementation.

The syntax for the URL of a report run via the Reports CGI on Windows is:

http://web_server.domain_name:port/alias/rwcgi.exe?parameters

And on UNIX is:

http://web_server.domain_name:port/alias/rwcgi.sh?parameters
Table 13-3 lists and describes the components of a CGI-based report URL.

Table 13-3 Components of a URL that Calls the Reports CGl

Component Description

web_server The name you gave the Oracle HTTP Server when you installed
it.

domain_name Your organization's domain name.

13-4 Oracle Application Server Reports Services Publishing Reports to the Web

Report Request Methods

Table 13-3 Components of a URL that Calls the Reports CGI

Component Description

port The port number on which the Oracle HTTP Server listens for
requests. When no port is specified, the default is used (80).

alias The virtual path that stands in for the absolute path to the files a
URL will access.

rwcgi . exe The executable file that invokes the CGI component of

?

OracleAS Reports Services. If OracleAS Reports Services is

installed on a UNIX machine, use ". sh" in lieu of ". exe".

Identifies the beginning of the command line options.

parameters All the command line options, or the key to the key map file

where command line options are specified.

The URL used to invoke a CGI implementation could look like this on Windows:

http://neptune.world.com:80/cgi-bin/rwcgi.exe?key?2

And like this on UNIX:

http://neptune.world.com:80/cgi-bin/rwcgi.sh?key?2

13.2 Report Request Methods

There are a number of request methods available to you for running your report
requests. These include:

The rwclient command line

The rwclient command line (rwclient . sh on UNIX) is available for
running report requests from a command line in a non-Web architecture. It
references an executable file that parses and transfers the command line to the
specified Reports Server. It can use command line options similar to those used
with the Reports Runtime executable file, rwrun (rwrun. sh on UNIX).

On Windows, a typical rwclient command line request looks like this:

rwclient report=my_report.rdf userid=username/password@my_db server=server._
name destype=cache desformat=html

On UNIX, the same command would look like this:

rwclient.sh report=my_report.rdf userid=username/passwordemy._db
server=server_name destype=cache desformat=html

Running Report Requests 13-5

Deploying Your Reports

See Command Line Options for more information about command line options.
= AURL

To run a report from a browser, use the URL syntax. The Reports Servlet (and
CGlI, for backward compatibility) converts the URL syntax into an rwclient
command line request that is processed by Oracle Application Server Reports
Services. You can give your users the URL syntax needed to make the report
request from their browser, or you can add the URL syntax to a Web site as a
hyperlink. The remainder of this chapter discusses this method in more detail.

s Via OracleAS Portal

The OracleAS Portal component enables you to add a link to a report in an
OracleAS Portal page or portlet, or to output report results directly into a
portlet. Each report link points to a packaged procedure that contains
information about the report request. OracleAS Reports Services system
administrators use OracleAS Portal wizards to create the packaged procedure
making it more convenient and secure to publish the report via the Web.
Authorized users accessing the OracleAS Portal page group simply click the
link to run the report. System administrators can run the report directly from
the wizard. See the OracleAS Portal online help for more information.

Refer to Publishing a Report in OracleAS Portal for more information about
how to publish your report as a portlet.

= A packaged procedure

SRW.RUN_REPORT is a built-in that runs a Reports Runtime command. When
you specify SRW.RUN_REPORT, set the SERVER option to the Reports Server
name to cause the SRW.RUN_REPORT command to behave as though you
executed an rwclient command.

Refer to the Reports Builder online help for more information.
= A Web service

You can expose OracleAS Reports Services as a Web service and then call it from
any Web service aware environment (e.g., a Java application).

13.3 Deploying Your Reports

Once you've created your report, you can deploy it so that end users can view it.
This section describes how to deploy a report with a paper layout (i.e., REP, RDFE,

13-6 Oracle Application Server Reports Services Publishing Reports to the Web

Deploying Your Reports

XML, or JSP report) and how to deploy a report with a Web layout (i.e., a JSP
report).

Note: For an example on building and testing a JSP-based Web
report, refer to the Oracle Reports Tutorial and the "Building a
JSP-Parameter Form for a Web Report” chapter in the Oracle Reports
Building Reports manual.

The following table describes which method you can use to deploy your report,
depending on the type of report.

Table 13-4 Methods for Deploying a Report

Type of Report Method Reason for Using

Report with paper Deploying a Report Method for deploying a report
layout (REP, RDF, XML) with a Paper Layout with only a paper layout.

JSP report with a paper Deploying a Report Simplest method for deploying a

layout with a Paper Layout ~ paper report of any type.
However, if the JSP report has
both a paper and Web layout, we
recommend you refer to
Deploying a JSP report to the

Web and to Paper.
JSP report with a paper Deploying a JSP report Strongly recommended for those
and Web layout to the Web and to who want to publish a report to
Paper both the Web and to paper.

13.3.1 Deploying a Report with a Paper Layout

Once you've created your paper report, you can deploy it to the Reports Server so
that users can run the report. The steps in this section show you how to deploy a
report of type RDF, REP, XML or JSP.

Note:]SP reports can be deployed either to the Web or to paper,
depending on the layout the report designer used for the JSP
report. This section discusses how to deploy a JSP report with a
paper layout. If you want to deploy a JSP report with a paper and
Web layout, follow the steps in Deploying a JSP report to the Web
and to Paper.

Running Report Requests 13-7

Deploying Your Reports

To deploy your paper report:

1. Transfer the report file (RDF, REP, XML, or JSP) and its associated files (e.g.,
PLL, PLX or referenced images) to the deployment directory on your
application server.

Note: To transfer the file, you can use any method available, such
as FTP or WebDAV.

Make sure the directory on the application server where you've transferred the file
is listed in the Reports Server access path. If it is not, use the REPORTS_PATH
environment variable, or set the sourceDir property of the Reports engine
element in the server configuration file.

13.3.2 Running a Report with a Paper Layout

Now that you have deployed your paper report, you can run it from a Web browser.

In a browser, for example, you can type the following URL in the Location field:
http://your_web_server:port_num/rwservlet?server=server._
name&report=myreport.rdf&userid=username/password@my db&desformat=pdf

Your report displays as a PDF (since in this case desformat=PDF) in the browser.

For more information on running a report from the browser, refer to Specifying a
Report Request from a Web Browser.

13.3.3 Deploying a JSP report to the Web and to Paper

There are two ways you can deploy your JSP reports: through the existing Oracle
Reports application, or through a J2EE application you create yourself. Using an
existing application is useful when you are developing and testing your JSP-based
Web reports. When you are ready to deploy your reports, however, we recommend
you use an application you've created yourself.

About JSP reports with both paper and Web layouts

With Reports Builder, you can create a JSP report with a paper layout, a Web layout,
or both. You execute these reports using different processes:

» JSP reports with paper layouts are executed via the Reports Engine

» JSP reports with Web layouts are executed via the J2EE container

13-8 Oracle Application Server Reports Services Publishing Reports to the Web

Deploying Your Reports

If your report depends on Java classes (e.g., Barcode classes, a Web Service stub,
etc.), you must configure the process to access these classes. That is, if your JSP
report with a paper layout contains a Java class, you must set the classPath
property of the Reports engine element in the server configuration file (ORACLE_
HOME\reports\conf\server name.conf).

If your JSP report with a Web layout contains a Java class, you can either add the
classes or JAR to the WAR file, or change the J2EE container classpath. For more
information, refer to the Oracle Application Server Containers for [2EE documentation.

Note: For an example on building a report with a paper and Web
layout, refer to the "Building a Report with a Barcode" chapter in
the Oracle Reports Building Reports manual. For a simple JSP-based
Web report example, refer to the Oracle Reports Tutorial.

The steps in this section show you how to deploy a JSP report with a paper and Web
layout using a J2EE application. To deploy your JSP report with a paper and Web
layout, you can create a new Oracle Reports J2EE application in your Oracle
Application Server. You can create this application in a an existing instance or a
new instance of Oracle Application Server Containers for J2EE (OC4J).

13.3.3.1 Creating a New J2EE Application

In this section, you will create a new J2EE application for Oracle Reports. You will
create a Web application archive (a WAR file) that will contain the application
information, then deploy it as an Enterprise archive (an EAR file). To create a new
J2EE application, you can use Oracle JDeveloper, another Java development tool, or
you can create it manually. If you do not use Oracle JDeveloper to create the
application, you will need to make a few modifications to the application, as well as
to your JSP report.

To create a J2EE application:

Note: If you are not familiar with creating a J2EE application, refer
to Sun’s Web site at,(http://java.sun.com/j2ee/). For more
information on using Oracle JDeveloper, refer to the Oracle
JDeveloper Online Help.

Running Report Requests 13-9

Deploying Your Reports

1. Before you create your WAR file, make sure your application contains all the
necessary directories, such as WEB-INF and the web.xml file.

Note: The WEB-INF directory must contain the JSP tag library for
Oracle Reports, called reports_t1d. jar. In Oracle Developer
Suite, you can find the tag library here:

ORACLE_HOMEN\reports\j2ee\reports_ids\web\WEB-INF\lib

where ORACLE_HOME is the directory where the Oracle Developer
Suite is installed.

In Oracle Application Server, you can find the tag library here:

ORACLE_HOME\j2ee\OC4J_BI_
Forms\applications\reports\web\WEB_INF\lib.

2. Make sure your JSP-based Web report points to the location of the JSP tag
library for Oracle Reports. Otherwise, the report will not run.

3. Create a new WAR file, either manually or using a tool, such as Oracle
JDeveloper. Make sure you create the WAR file according to the appropriate
J2EE format.

4. If your JSP report contains a paper layout and you want to deploy your report
to paper, open the web . xm1 file.

Note: In Oracle Developer Suite, the web . xm1 file is located here:
ORACLE_HOME/reports/j2ee/reports_ids/web/WEB-INF
On Oracle Application Server, the web . xm1 file is located here:

ORACLE_HOME/j2ee/OCAJ_BI_
Forms/applications/reports/web/WEB-INF .

If you are deploying a JSP report that only contains a Web layout, continue to
Step 7.

5. Add the following code to the web . xm1 file.

<servlet>
<servlet-name>rwservlet</servlet-name>

13-10 Oracle Application Server Reports Services Publishing Reports to the Web

Deploying Your Reports

<servlet-class>oracle.reports.rwclient.RWClient</servlet-class>
<load-on-startup>yes</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>rwservlet</servlet-name>
<url-pattern>/rwservlet*</url-pattern>

</servlet-mapping>

This new definition will redirect all URLs ending with /rwservlet to the
servlet you've defined.

Note: You can change the servlet name and URL.

6. Save the web.xml file.

7. Create an EAR file from the WAR file. Once these files are compiled, note where
they are saved.

13.3.3.2 Deploying the Application Using 0C4J

After you've created the WAR and EAR files, you can deploy them to the Oracle
Application Server, which will serve the application to the Web. You can deploy
these files using Oracle Enterprise Manager using either an existing OC4] instance
or a new OC4]J instance.

This section contains the two methods of deploying the J2EE application:
= Deploying the J2EE Application Using an Existing OC4]J Instance
= Deploying the J2EE Application in a New OC4] Instance

13.3.3.2.1 Deploying the J2EE Application Using an Existing OC4J Instance

1. Make sure you've created the J2EE application as described in Creating a New
J2EE Application.

2. In Oracle Enterprise Manager, display the detail page for your middle tier.
3. Under System Components, click OC4J_BI_Forms.

4. Under Deployed Applications, click Deploy EAR file to deploy the EAR file
you created in Creating a New J2EE Application.

5. On the first page of the Deploy Application wizard, click Next (located at the
bottom of the screen).

Running Report Requests 13-11

Deploying Your Reports

10.
11.
12.

13.
14.
15.

16.

17.
18.

On the Select Application page, under Select the J2EE application (EAR file) to
be deployed, enter the location of the EAR file you created in the previous
section.

Under Specify a unique application name for this application, type the name
of your application, such as MyReportApp, then click Next.

On the URL Mapping page, note that the text in the URL Binding field is the
name your users will enter to access the new application.

In the URL Binding field, add a forward slash (/) to the beginning of the
application name, since it is part of a URL address. For example:

/MyReportApp

Click Finish.
On the next page, click Deploy.

On the OC4]_BI_Forms detail page that displays, you should now see your
application (MyReportApp) listed under Deployed Applications.

Click your application name (MyReportApp).
On the Application page, under Properties, click General.

Under Library Paths, click Add Another Row, then add the following path to
the rwrun. jar library:

ORACLE_HOME\reports\jlib\rwrun.jar

Add another row with the following path to the zrclient. jar library:

ORACLE_HOME\jlib\zrclient.jar

Click Apply, then click OK.

Click Stop, then Start to restart your application so that the new library paths
take effect.

13.3.3.2.2 Deploying the J2EE Application in a New OC4J Instance

1.

Make sure you've created the J2EE application as described in Creating a New
J2EE Application.

In Oracle Enterprise Manager, display the detail page for your middle tier.
Click Create OC4]J Instance.
Type the name of your OC4J instance.

13-12 Oracle Application Server Reports Services Publishing Reports to the Web

Deploying Your Reports

Click Create.
On the confirmation page, click OK.

On Application Server page, under System Components, you should now see
the new OC4]J instance.

Now, you must manually configure the OC4]J to support connection to a
Reports Server and the security integration.

Copy the following properties and their definitions in the oc4j.properties
file from an existing OC4] instance, for example the OC4J_BI_FORMS instance
(ORACLE_HOME/j2ee/0C4J_BI_FORM/config/oc4j.properties), into
the oc4j .properties file of your new OC4J instance (ORACLE_
HOME/j2ee/your application/config/oc4j.properties):

m oracle.home

s Java.rmi.server.randomIDs

m oracle.display

m oracle.path

m org.omg.CORBA.ORBClass

m org.omg.CORBA.ORBSingletonClass

In the opmn . xm1 file in your ORACLE_HOME, add the PATH and DISPLAY
properties to your new OC4J instance:

a. In ORACLE HOME/opmn/conf/opmn.xml, find the XML element that
describes your new OC4] instance:

<oc4j instanceName="<your application>" gid="<your application>">
<config-file path="D:\oracle\Ora9iasR2App\j2ee\<your
application>\config\server.xml"/>
<ocdj-option value="-properties"/>
<port ajp="3001-3100" rmi="3101-3200" jms="3201-3300"/>
</ocdj>

b. Add the PATH and DISPLAY properties by copying them from the OC4]J_
BI_FORMS instance in the same opmn . xm1 file, for example:

<ocdj instanceName="<your application>" gid="<your application>">
<config-file path="D:\oracle\Ora9iasR2App\j2ee\<your
application>\config\server.xml"/>
<ocdj-option value="-properties"/>
<port ajp="3001-3100" rmi="3101-3200" jms="3201-3300"/>

Running Report Requests 13-13

Deploying Your Reports

<environment> <!-- entry to copy from the other instan -->
<prop name="PATH" value="values are dependant of the system"/>
<prop name="DISPLAY" value="localhost:0"/>
</environment>
</ocdj>

c. Restart the OC4J instance

13.3.4 Running a JSP-Based Web Report from a Browser

If your JSP report is a Web report, you can now run your JSP-based Web report from
a Web browser. In a browser, type the following URL in the Location field:

http://your_computer_name:port/MyReportApp/JSPreportname. jsp?userid=user
ID/password@database_name

Note: In the above URL, MyReportApp is the name of the
application you created.

If you wish you modify your JSP-based Web report at this point, you can either:
= Replace the report in the above location.

= Recreate the WAR file with the modified JSP-based Web report, then redeploy
the application. For more information, refer to Creating a New J2EE
Application.

For more information on running a report from a browser, refer to Specifying a
Report Request from a Web Browser.

13.3.5 Running a JSP report with a Paper Layout

If your JSP report has a paper layout, you can now run your JSP report from a
browser using the following URL:

http://your_web_server:portnum/MyReportApp/rwservlet?report=
myreport. jsp&userid=username/password@my db&server=server._
name&desformat=pdf&destype=cache

Your report displays as a PDF (since in this case desformat=PDF) in the browser.

For more information on running a report from a browser, refer to Specifying a
Report Request from a Web Browser.

13-14 Oracle Application Server Reports Services Publishing Reports to the Web

Publishing a Report in OracleAS Portal

13.3.6 Running with the WEBMSWIN1252 character set on Solaris

There are no UNIX fonts built into the WESMSWIN1252 character set. This may
cause Oracle Reports to fail when NLS_LANG=AMERICAN_
AMERICA.WE8BMSWIN1252. Therefore, you must map the code page of the installed
fonts (defined in the Tk2Motif . rgb file) to the WESMSWIN1252 character set.
TK2Motif .rgb is located in the ORACLE HOME/guicommon9/tk90/admin/
directory.

Note: This mapping is required for Reports Builder, Reports
Converter in non-batch mode (batch=no), Reports Server /
Reports Runtime with REPORTS_DEFAULT_DISPLAY=NO. Reports
Server / Reports Runtime uses REPORTS_DEFAULT_DISPLAY to
determine the fonts needed.

Examplei:
Tk2Motif*fontMapCs: IS08859-1=WESMSWIN1252 (if there are ISO8859-1
fonts installed on the system.)

13.4 Publishing a Report in OracleAS Portal

One of the best ways to publish your report is through the declarative, secure
interface of OracleAS Portal.

See Also:

Registering a Reports Server
Registering a Report

Registering a Printer

Creating an Availability Calendar

For more information on registering required components with
OracleAS Portal before proceeding.

Running Report Requests 13-15

Publishing a Report in OracleAS Portal

Note: When you use features like OracleAS Portal Security, Portal
Destination, and Job Status Repository, the JDBC database
connections made by OracleAS Reports Services may override the
initial NL.S_LANG setting. This change may in turn affect the
behavior of the running report, such as bidirectional output in PDF.
On UNIX platforms, you can work around this issue by setting the
NLS_LANG explicitly in report . sh. You can also use the new
environment switching functionality to dynamically set the
environment for reports. Refer to Dynamic Environment Switching,
for more information.

To a expose a report in a portal, you must do the following:

1. Create a provider for your reports. This step defines a provider to contain the
reports you wish to make available to users in the portal.

2. Create the report definition file access. This step makes the report available as a
portlet to page designers within the portal by defining the reports properties, in
particular the provider that contains it.

3. Add the report as an item link’ or as a portlet” to a page and optionally
customize it. This step makes the report available to users on a page and
enables the page designer to set the report parameters and schedule it to run
automatically.

13.4.1 Creating a Provider for Your Reports

If you do not already have a provider defined to contain your reports, you need to
create one. For more information on creating a provider, see the OracleAS Portal
online help.

Note: The provider that contains your reports must be a database
provider and must have the Expose as Provider setting selected on
its Access page.

! An individual piece of content (text, hyperlink, image, etc.) that resides on a page in
an item region.

2 A reusable, pluggable Web component that typically displays portions of Web
content.

13-16 Oracle Application Server Reports Services Publishing Reports to the Web

Publishing a Report in OracleAS Portal

13.4.2 Creating the Report Definition File Access

To make your report available as a portlet, you must do the following:

Eal

Note: If you need to create report definition file access for a
number of reports, it may be more efficient to batch register them.
For more information, see Batch Registering Reports in OracleAS
Portal.

If you are not already on the Builder page, click Builder at the top of the page.
Click the Administer tab.
In the Oracle Reports Security portlet, click Oracle Reports Security Settings.

In the Reports Definition File Access portlet, click Create Reports Definition
File Access.

Follow the steps in the wizard and click the question mark in the upper right
corner for additional information about the available settings. At the end of the
wizard, click Finish.

Click the Access tab.
Click Publish to Portal.

Click Apply. Your report has now been added to the Portlet Repository and you
can add it to a page.

13.4.3 Adding the Report Portlet to a Page

Once the portlet for your report is in the Portlet Repository, you may add it to any
page just as you would any other portlet.

1.
2.
3.

If you are not already on the Builder page, click Builder at the top of the page.
Click the Build tab.

In the Page Groups portlet, choose the name of the page group in which you
want to place your report portlet.

Create a new page by clicking Create a Page or edit an existing page by
entering the name of an existing page and clicking Edit.

Running Report Requests 13-17

Publishing a Report in OracleAS Portal

10.
11.
12.

13.

If you are creating a new page, follow the steps in the wizard and click the
question mark in the upper right corner for additional information about the
available settings. Click Finish when you are done.

See Also: Adding the Reports Component as an Item to a Page
for information on how to add the Oracle Reports item to a page.

If you are editing an existing page, skip to the next step.
In the page region where you wish to add your report portlet, click the Add
Portlet tool.

Tip: Hints for each tool will display when you roll your mouse
over them.

Drill down through the Portlet Repository to the provider that contains the
report portlet. The report portlet is listed in the Portlet Repository under the
Portal DB Provider to which it belongs. The location of the provider depends on
how the Portlet Repository has been organized. If the Portal DB Provider is a
fairly new provider, it may be under the New page of the Portlet Repository.

Click the name of your report portlet to add it to the Selected Portlets list.
Click OK.
Click Customize in the upper right corner of your report portlet.

Enter parameter values in the Parameter tab and, if desired, schedule the job to
run automatically in the Schedule tab.

You can control the size of the portlet by specifying the Portlet Width and
Portlet Height parameters on the Customize page for the Reports Definition
File object. The value of these parameters may be a percentage (%) or a number
of pixels.

For example, you can enter:
Portlet Width: 90%
Portlet Height: 480

If no value is specified, Oracle Application Server Reports Services uses its
default value (640 pixels wide and 320 pixels high).

If the Portlet Width and Portlet Height fields are visible to users, then they can
also adjust each portlet’s width and height via Customize. The user’s value will

13-18 Oracle Application Server Reports Services Publishing Reports to the Web

Publishing a Report in OracleAS Portal

override the value set in the Customize page of the Reports Definition File
Object component.

14. You can choose whether to make a report’s parameters visible to users through
the Customization page of a Reports Definition File Access component.

To make a report’s parameters visible to users:

a. Click Customize at the bottom of the Manage Component page for the
report.

b. Click Visible to user for each parameter you want to expose.

Note: You can also set the default value of the parameter from this
page.

The value from the Manage Component page will always be used as the default
value in the Customize page for the portlet. If the parameter you are exposing
has a corresponding OracleAS Portal page parameter, and you leave the
parameter value empty in the Customize page, the portlet inherits the page
parameter’s value. If the user enters a value for the report portlet’s parameter,
that value will override the page parameter value.

Note: Running reports from within OracleAS Portal requires the
HTML iframe tag, which is not supported in Netscape 4.x. As a
result, the following limitations apply when using Netscape 4.x:

= A report portlet cannot display in place if you are using HTTPS
or if it is not a JSP report. You need to click on the portlet title to
see the report in a separate browser window.

= A report portlet cannot be scheduled to run via the Customize
link if you are using HTTPS.

13.4.4 Adding the Reports Component as an ltem to a Page

You can add an Oracle Reports component to a page as an item link using the
Oracle Reports item type.

Running Report Requests 13-19

Publishing a Report in OracleAS Portal

10.

11.

12.
13.

14.

15.

Note: This item type must be included from the hidden list of
item types and can be configured only if you are the page group
administrator.

If you are not already on the Builder page, click Builder at the top of the page.
Click the Build tab.

In the Page Groups portlet, choose the name of the page group in which you
want to place your report item link.

Create a new page by clicking Create a Page or edit an existing page by
entering the name of an existing page and clicking Edit.

If you are creating a new page, follow the steps in the wizard and click the
question mark in the upper right corner for additional information about the
available settings. Click Finish when you are done.

If you are editing an existing page, skip to the next step.

Click the Add Item link. The Oracle Reports item type is available as a hidden
item type. To include it as an available item type, click the configure the list of
available item types link.

Select Oracle Reports in the Hidden Item Types list and click the > link to move
it to the Visible Item Types list. Alternatively, you can click the >> link to move
the entire Hidden Item Types list to the Visible Item Types list.

Click OK.

Select the Oracle Reports item type in the Content Item Types menu and click
Next. The Add Oracle Reports page displays.

Enter a Display Name that users of your portal will view when clicking your
report.

Select from the available default Oracle Reports components.

Select Display Parameter Form if you have require any user inputs before your
report is displayed.

Select Link That Displays Item In New Browser Window to ensure that the
report is viewed in a separate page.

Click Finish. The Oracle Reports item now displays as a link in your page.

13-20 Oracle Application Server Reports Services Publishing Reports to the Web

Sending a Request to the URL Engine

16. Click the link to run the report and provide any parameters required, if Display
Parameter Form is selected.

13.5 Specifying a Report Request from a Web Browser

You can provide the user with the URL syntax needed to make a report request, or
you can add the URL syntax to a Web page as a hyperlink.

URL syntax can be presented in the following forms:
s Full URL request, for example:

http://your_webserver.domain_
name:port/alias/rwservlet?report=myreport.rdf&userid=username/passwordemy
db&server=server_name&desformat=html&destype=cache

If you require additional command line options, then refer to Command Line
Options for a list of valid rwclient command line options.
= Simplified URL request using key mapping, for example:

http://your_webserver.domain_name:port/alias/rwservlet?keyl

13.6 Sending a Request to the URL Engine

If you have activated the Reports Server’s URL engine, you can send job requests to
the URL engine by using the following command line options:

» urlParameter identifies the URL to be placed in the cache. For example,
http://www.oracle.comor aJSP report.

= jobType is the name of a job type (e.g., ur1Engine) in the server
configuration file that is associated with a URL engine.

Note: For information on activating the URL engine, refer to
Configuring OracleAS Reports Services.

For example, a request that specifies an external URL for urlParameter might
look like the following:

http://your_

webserver: portnum/reports/rwservlet?server=ReportsServer+jobType=urlEngine+urlPa
rameter="http://www.oracle.com"+destype=mail+desname=foo@bar.com+desformat=htmlc
ss

Running Report Requests 13-21

Running Reports through a Web Service

Alternatively, a request that specifies a JSP report for urlParameter would look
like the following:

http://your_

webserver :portnum/reports/rwservlet?server=ReportsServer+jobType=rwurl+destype=c
ache+urlParameter="http%3A%2F%2Flocalhost%2Ffoo.jsp%3Fuserid%3Dscott%2Ftiger@ora
DB%3Fserver%3DreportsServer"

Note: If the URL has special characters, they must be encoded as
per the x-www-form-urlencoded format.

13.7 Running Reports through a Web Service

In many cases, reports are integrated components of some larger application rather
a stand alone application themselves. Hence, it can be useful to generate report
requests from within an application. We accomplish this goal by exposing OracleAS
Reports Services as a Web service. This Web service may then be called from within
any Web service aware environment (e.g., a Java application). For example, suppose
that you have a Java-based expense reporting form and you want to allow users to
generate a PDF version of their expense reports from it each time that they complete
an expense form in your system. By creating a Java proxy Oracle Reports Web
Service, you could then easily reference it from your Java development environment
(e.g., Oracle JDeveloper) and add a button that invokes OracleAS Reports Services
to generate the PDF file.

See Also: Using the Oracle Reports Web Service

For more information on the Oracle Reports Web service and
installing and using the sample proxy and Java client.

13.8 Scheduling Reports to Run Automatically

You can use the server to run reports automatically from Reports Queue Manager,
OracleAS Portal, or with the SCHEDULE command line option. The scheduling
feature enables you to specify a time and frequency for the report to run.

Refer to the Reports Queue Manager online help, for more information about
scheduling your reports.

If you publish a report as a portal component on an OracleAS Portal page, then you
can schedule the report request to run automatically and push the resulting reports
to specified pages. Refer to OracleAS Portal online help for more information.

13-22 Oracle Application Server Reports Services Publishing Reports to the Web

Reusing Report Output from Cache

The SCHEDULE keyword is available for use with the rwclient, rwservlet, and
rwcgi commands. See Command Line Options, SCHEDULE for more information.

13.9 Additional Parameters

When you send a request to the Reports Server, the following additional
parameters, the values of which you cannot change, are implicitly passed along

with your request:

Table 13-5 Additional parameters passed with a report request

Name

Description

ACCEPT_LANGUAGE

REMOTE_ADDR

REMOTE_HOST

SCRIPT_NAME

SERVER_NAME

SERVER_PORT

SERVER_PROTOCOL

USER_AGENT

The comma separated list of languages accepted by the
browser/user.

The remote IP address from which the user is making the
request.

The remote host name from which the user is making the
request.

The virtual path of the script being executed.

The host name or IP address of the server on which the Reports
Servlet is running.

The port number of the server on which the Reports Servlet is
running.

The name and revision of the information protocol with which
the request was sent.

The description of the remote client’s browser.

13.10 Reusing Report Output from Cache

When you run a report, a copy of the report output is saved in the OracleAS
Reports Services cache. Subsequently, if an identical report is run (that is, with the
same cache key), then the current request is recognized as a duplicate job.

There are several scenarios where reports caching takes effect:

= When a new job request "A" comes to the Reports Server, and there is another
job "B" that has the same cache key in the Current Jobs Queue (where it is
waiting for an available engine or is in the middle of execution), then job "A"
will use the output from job "B".

Running Report Requests 13-23

Using a Key Map File

The job cache key excludes the destype, desname, server, and tolerance
parameters, and includes almost all other parameters.

This level of cache happens automatically. You don’t need to specify any other
parameters in the command line for it to work.

If the user specifies TOLERANCE=n (where n is a number in units of minutes) in
the new job request "A", and it doesn’t happen, then Reports Server will try to
find a job in the Finished Jobs Queue which was successfully completed within
nminutes. If Reports Server can find such a job, then the new job request "A"
will return the output of job "B".

Note: Refer to Command Line Options for more information
about the TOLERANCE command line option.

In a clustered environment, duplicate job checking (i.e., jobs with the same
cache key) is executed across cluster members. If a duplicate job is found in
another server in the same cluster, the job request will be transferred to that
server to retrieve the cached result.

OracleAS Reports Services cache results are persistent. If the Reports Server is
shut down, once it is up again all the previous cache results are recovered and
ready to use again.

13.10.1 Usage Notes

You can set the cache size through Reports Queue Manager or via the cache
element in the server configuration file (server_name. conf). Reports Server
attempts to keep the total size of cache files below the set limit, deleting the
oldest cache files. In addition, you can empty the cache through Reports Queue
Manager.

For more information on setting the cache, refer to the Reports Queue Manager
online help, and see Configuring OracleAS Reports Services.

13.11 Using a Key Map File

If you choose to provide users with a URL or add a hyperlink to a Web site, then
you can use a key map file to simplify or hide parameters in your URL requests.

The key map file contains command strings for running reports, each headed by a
unique key identifier. Except when you run a report as a JSP, you reference only this

13-24 Oracle Application Server Reports Services Publishing Reports to the Web

Using a Key Map File

key in the runtime URL. The server or servlet sends the key value to the map file
(cgicmd.dat), which in turn returns the command associated with the specified
key to the server or servlet for processing. By using key mapping, the command line
options are all hidden from the user.

Key mapping is useful for:

= Shortening the URL, making it more convenient to use

= Remapping the runtime commands without having to change the original URL
= Standardizing several typical run configurations for your company

= Hiding certain parameters from users (for example, the database connect string)
= Restricting the parameters users can use to run a report

When you specify a key name from the key map file (cgicmd. dat), it must always
be at the beginning of the query string (after the question mark) in a report request
URL. An exception to this is if you use the cmdkey command line keyword, and
express the key name as its value: cmdkey=keyname. In this case, you can place the
key name anywhere in the query string within the report request URL. The cmdkey
keyword can be used with jobs run as JSPs and with the rwservlet command.

Note: You'll find more information about the cmdkey keyword in
Command Line Options.

13.11.1 Enabling Key Mapping

Key mapping is enabled when any of these conditions are met:

= A valid file with the standard file name, cgicmd. dat, is present in the default
location: the ORACLE_HOME\reports\conf\ directory on the Web server
machine (on either Windows or UNIX).

= A valid key map file is entered in the Reports Servlet configuration file
(rwservlet.properties) under the KEYMAPFILE parameter.

s When rwcgi is used, when the REPORTS_ CGIMAP environment variable on the
Web server machine specifies the name of a valid key map file. See
Reports-Related Environment Variables for more information.

13.11.2 Adding Key Mapping Entries to a Key Map File
To add key mapping entries to a key map file:

Running Report Requests 13-25

Using a Key Map File

1. Navigate to the cgicmd. dat file on the machine that hosts your Reports
Server, and open it with a text editor.

You'll find this file in the following directory on both Windows and UNIX:

ORACLE_HOME\reports\server\conf\cgicmd.dat

2. Add a key mapping entry. For example:

keyl: report=your_report.rdf userid=username/password@my_db desformat=html
SERVER=server_name.cluster_name (if present)> destype=cache

In this example, key1 is the name of the key.

Except for the special parameters that are described in the file itself, the
command line options follow the syntax rules of rwclient. See Command
Line Options for more information.

3. Add or update the hyperlinks on your Web page.

For more information, see Specifying a Report Request from a Web Browser.

13.11.3 Using a Key with Everything but JSPs

When you place a key name in a report request URL, it must always be the first
value within the query string (immediately after the question mark). For example:

http://../rwservlet?keyname

Below is an example of a key mapping for a restricted run with a parameter form.
The URL might be:

http://web_server.domain_name:port/cgi-bin/rwcgi.exe?key&parl&par2&parN

The key mapping file might contain:

KEY: REPORT=myreport DEPTNO=%1 MYPARAM=%2 %*

This would generate the equivalent of the following command line request:

rwclient REPORT=myreport DEPTNO=parl MYPARAM=par2 parN
Usage Notes

s In rwcgi URLs, the first option (that is the first information after the question
mark) is treated as a key if it is not otherwise a part of a name/value pair. If the

13-26 Oracle Application Server Reports Services Publishing Reports to the Web

Using a Key Map File

first option is not a name/value pair (i.e., keyword=value), then the whole
command line is used in lieu of a cgicmd. dat key entry.

13.11.4 Using a Key with a Report Run as a JSP

When you run a report as a JSP and want to call a command key in the
cgicmd.dat file, you must use the cmdkey keyword in your URL. For example,
your JSP URL might look like this:

http://../myreport.jsp?cmdkey=key

Note: You can also use cmdkey with the rwservlet command.

When you use cmdkey with a JSP or rwservlet, you can place it anywhere within
the query string. For example:

http://../example.jsp?parameterl=valuel&cmdkey=keyname
http://../rwservlet?parameterl=valuel&cmdkey=keyname

Usage Notes

= When using key mapping, the order in which the parameters are substituted
from the URL into the key is determined by the placement of CMDKEY in the
URL. For example, suppose you have a key such as the following one in the
cgicmd.dat file:

mykeys: DEPTNO=%1 MYPARAM=%2

Now, you execute a JSP report that references this key as follows:

http://neptune.world.com:80/jsp/myreport.jsp?userid=scott/tiger@hrdb
&cmdkey=mykeys&l0&test

Because of the placement of CMDKEY in this URL, the 10 corresponds to %1 and
test corresponds to %2. Even though they are not the first and second
parameters in the URL, 10 and test are the first and second parameters to follow
CMDKEY in the URL.

Running Report Requests 13-27

Using a Key Map File

13-28 Oracle Application Server Reports Services Publishing Reports to the Web

14

Using the Oracle Reports Web Service

A Web service is an application that is built on standard Internet and XML
technologies and has the following characteristics :

= Public interfaces and bindings defined and described using XML

» Publishes these public interfaces and bindings across the network for use by
other programs

A Web service accepts a request, performs its function based on the request, and
returns a response. The request and the response can be part of the same operation,
or they can occur separately, in which case the consumer does not need to wait for a
response. Both the request and the response usually take the form of XML, a
portable data-interchange format, and are delivered over a wire protocol, such as
HTTP.

Web service transactions are usually conducted between businesses. A business that
is a provider of one service can also be a consumer of another service. A Web
service consumer can also be a client device, such as a thin client connecting to the
Web service provider over a lightweight protocol.

This chapter discusses the Oracle Reports Web service and contains the following
sections:

s Overview
» Getting Started

» Installing and Using the Sample Proxy and Java Client

14.1 Overview

Oracle Reports provides several ways of submitting a job request to the
server-infrastructure for processing:

Using the Oracle Reports Web Service 14-1

Getting Started

rwservlet

rwservlet translates and delivers a job request between HTTP and the
Reports Server, such as when submitting from a Web browser or via the
event-driven publishing APIL

rwcgi

rwcgi translates and delivers a job request between HTTP and the Reports
Server, such as when submitting from a Web browser or via the event-driven
publishing APL rwcgi is maintained only for backward compatibility.

rwclient

rwclient parses and transfers a command line to run a a report on a remote
Reports Server.

Oracle Forms

Oracle Forms is a rapid application development (RAD) tool, used to build
highly scalable Internet database applications.

Integrating the Oracle Reports technology into custom applications, especially JAVA
applications, require the implementation of the mechanisms used by

rwservlet, rwegi, rwclient, and Oracle Forms to submit jobs to the server
from within those applications.

The RWwWebService servlet provides the necessary public interfaces and bindings
— required to be exposed and to function as a Web service. This functionality
enables any application developer to include the Oracle Reports in their application.

14.2 Getting Started

This section outlines the steps necessary for :

Invoking the rwwebservice servlet

Viewing the WSDL

14.2.1 Invoking the rwwebservice servlet

To invoke the RWilebService servlet:

Start an Oracle Application Server Containers for J2EE (OC4]) instance where
the Oracle Reports instance resides.

14-2 Oracle Application Server Reports Services Publishing Reports to the Web

Getting Started

2. Enter the following URL in the address field of your browser:
http://host:port/reports/rwwebservice

This takes you to the RWWebService endpoint. The RiWWebService endpoint
page enables you to do the following;:

a. View the Oracle Reports Web service WSDL.
b. Runany RWWebService command using a Web based UL

c. Download the proxy JAR files and proxy sources to invoke the Oracle
Reports Web service using the sample Java client.

14.2.2 Viewing the WSDL

The Web Service Description Language (WSDL) is an XML format for describing
available services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and
messages are described abstractly, and then bound to a concrete network protocol
and message format to define an endpoint.

Note: Oracle Reports Web service does not support dynamic
discovery of the WSDL by publishing to the universal description,
discovery, and integration (UDDI) server.

1. Click the Service Description link on the RWWebService Web page to view
the Oracle Reports Web service’s WSDL document.

Note: Use Internet Explorer to view the WSDL XML output.
When you use Netscape (7.2 and above) you must save the page as
a .xml file and use Internet Explorer to open the file, for example,
rwwebservice.xml.

2. The last entry in the WSDL is the service description and contains the location
of the WebService:

<soap:address location="http://localhost:8888/reports/rwwebservice" />

Using the Oracle Reports Web Service 14-3

Getting Started

Figure 14-1 Viewing the WSDL

RWwWebService endpoint
Click the link to view

WEDL for Service: RwwWebService, generated by O| the WSDL. 113

For a formal definition, please review the Service D‘éﬁ/ ption {rpc stvle).
RWWWebService service
The following operations are supported.

» fetServerinfo
« getloblnfo

o killdoh

« rundob

o QetAPVersion

ocdj client
The java proxy is packaged in a jar either as classes or sources files,

o Prosey Jar
s Proy Source

Ensure that the URL and port number,
http://hostname: portnumber/reports/rwwebservice, defined is
correct.

Note: The hostname specified should be the hostname where the
OC4] instance is running and not where the Reports Server is
running.

If the URL is not correct, you must do the following:
a. Shutdown OC4J.

b. Delete the _ java_stateless_rpc located under the ORACLE_
HOME\j2ee\0OC4J_INSTANCE_
NAME\application-deployments\reports\web\temp\ directory.

c. Restart OC4J.

14-4 Oracle Application Server Reports Services Publishing Reports to the Web

Getting Started

d. Verify that the URL defined reflects:
http://hostname: portnumber/reports/rwwebservice.

Oracle Reports WSDL

<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="RWWebService"
targetNamespace="http://oracle.reports.rwclient/RWWebService.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://oracle.reports.rwclient/RWWebService.wsdl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<documentation>WSDL for Service: RWWebService, generated by Oracle WSDL
toolkit (version: 1.1)</documentation>
- <types>

<schema targetNamespace="http://oracle.reports.rwclient/RWWebService.xsd"
xmlns:tns="http://oracle.reports.rwclient/RiWWebService.xsd"
xmlns="http://www.w3.0org/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" />

</types>
- <message name="runJobInput">

<part name="param0" type="xsd:string" />

<part name="paraml" type="xsd:boolean" />

</message>
- <message name="getServerInfoOutput">

<part name="output" type="xsd:string" />

</message>

<message name="getAPIVersionInput" />
- <message name="getAPIVersionOutput">

<part name="output" type="xsd:string" />

</message>

- <portType name="RWWebServicePortType">

- <operation name="getServerInfo">
<input message="tns:getServerInfoInput" />
<output message="tns:getServerInfoOutput" />
</operation>

- <operation name="getJobInfo">
<input message="tns:getJobInfoInput" />
<output message="tns:getJobInfoOutput" />
</operation>

- <service name="RWWebService">

- <port name="RWWebServicePort" binding="tns:RWWebServiceBinding">
<soap:address location="http://localhost:8888/reports/rwwebservice" />

Using the Oracle Reports Web Service 14-5

Getting Started

</port>
</service>
</definitions>

14.2.3 Oracle Reports Web Service Operations

Oracle Reports exposes the RiiiebService servlet as a Web service with its public
interfaces and bindings defined and described using XML. These public interfaces
and bindings are published across the network through the WSDL.

The various operations supported by the RwwebService endpoint are:
s getAPIVersion

= getServerInfo

= getJobInfo

s KkillJob

= runjob

14.2.3.1 getAPIVersion

The getAPIVersion () operation returns the version details of the Reports Server
in XML format. This operation takes no parameters.

Note: getAPIVersion is the only operation that returns the
entire SOAP response along with the result (in a string). The other
operations, e.g., runJob return the response as an XML block
embedded within the SOAP response.

To view the getAPIVersion response:

1. Click the getAPIVersion link. The Test page should display no parameters
and include only a Invoke button to submit the request.

2, Click Invoke. The SOAP response is displayed in a new window.
The following is a sample response of a get APIVersion operation:

<?xml version="1.0" encoding="UTF-8" ?>
- <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
- <SOAP-ENV:Body>

14-6 Oracle Application Server Reports Services Publishing Reports to the Web

Getting Started

- <nsl:getAPIVersionResponse
xmlns:nsl="http://oracle.reports.rwclient/RiWebService.wsdl"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xsi:type="xsd:string">9.0.4.0.9</return>
</nsl:getAPIVersionResponse>
</SOAP-ENV: Body>
</SOAP-ENV:Envelope>

14.2.3.2 getServerinfo

The getServerInfo (String serverName, String authId)operation takes
two parameters and returns the Reports Server information in an XML format.

The valid parameters are :

» serverName: A valid non-null server name. This operation returns an error if
the specified server is not running in the network.

s authId: A string in the form of username/password, must be specified for a
secured server. This parameter is ignored for a non-secure server.

To view the getServerInfo response:

1. Click the getServerInfo link. The Test page should display the relevant
parameter fields and an Invoke button to submit the request.

2. Enter the Reports Server name (param0) and authid(paraml).
3. Click Invoke. The SOAP response is displayed in a new window.
The following is a sample output of the getServerInfo operation:

<?xml version = '1.0' encoding = 'IS0-8859-1' standalone = 'yes'?>
<serverInfo name="repserv" version="9.0.4.0.7">
<host>incg246bc</host>
<processId>2588</processId>
<startTime>27-May-2003 10:09:34</startTime>
<queue maxQueueSize="1000"/>
<engine id="rwEng" activeEngine="1" runningEngine="0"/>
<engine id="rwURLEng" activeEngine="1" runningEngine="0"/>
<performance>
<property name="successfulJobs" value="6"/>
<property name="currentJobs" value="0"/>
<property name="futureJobs" value="0"/>
<property name="transferredJobs" value="0"/>
<property name="failedJobs" value="0"/>
<property name="responseTime" value="2124"/>
</performance>

Using the Oracle Reports Web Service 14-7

Getting Started

</serverInfo>

14.2.3.3 getJobinfo

The getJobInfo (Integer jobId, String serverName, String
authId)operation returns the job information in XML format.

The valid parameters are:
s JjobId: Jobld of the job for which information is required.

s serverName: A valid non-null Server name value must be supplied. This
operation returns an error if the specified server is not running in the network.

s authId: A string in the form of username/password, must be specified for a
secured server. For a non-secure server this parameter is ignored.

To view the getJobInfo response:

1. Click the getJobInfo link. The Test page should display the relevant
parameter fields and an Invoke button to submit the request.

2. Enter the jobID (param0), Reports Server name (paraml), and
authid(param?2).

3. Click Invoke. The SOAP response is displayed in a new window.
The following is a sample output of a getJobInfo operation for job id=3:

<?xml version = '1.0' encoding = 'IS0-8859-1' standalone = 'yes'?>
<serverQueues>
<job id="3" queueType="past">
<name>test.rdf</name>
<type>report</type>
<status code="4">Finished successfully</status>
<owner>RWUser</owner>
<server>repserv</server>
<destination>
<desType>cache</desType>
<desFormat>html</desFormat>
<file>21748116.htm</file>
<file>217481161.jpg</file>
<file>217481160.jpg</file>
</destination>
<timingInfo>
<queued>27-May-2003 10:21:50</queued>
<started>27-May-2003 10:21:50</started>
<finished>27-May-2003 10:21:51</finished>

14-8 Oracle Application Server Reports Services Publishing Reports to the Web

Getting Started

</timingInfo>
</job>
</serverQueues>

14.2.3.4 killJob

The killJob (Integer jobId, String serverName, String authId)
operation kills the job based on the job id specified and returns the status of the
operation in XML format.

The valid parameters are:
= JobId: Jobld of the job for which information is required.

» serverName: A valid non-null Server name value must be supplied. This
operation returns an error if the specified server is not running in the network.

s authId A string in the form of username/password, must be specified for a
secured server. For a non-secure server this parameter is ignored.

To view the killJob response:

1. Click the killJob link. The Test page should display the relevant parameter
fields and an Invoke button to submit the request.

2. Enter the jobID (param0), Reports Server name (paraml), and
authid(param?2).

3. Click Invoke. The SOAP response is displayed in a new window.
The following is a sample output of a ki11lJob operation for Job ID=3:

<?xml version = '1.0' encoding = 'IS0-8859-1' standalone = 'yes'?>
<serverQueues>
<job id="3" queueType="past">
<name>test.rdf</name>
<type>report</type>
<status code="7">Canceled upon user request</status>
<owner>RWUser</owner>
<server>repserv</server>
<destination>
<desType>cache</desType>
<desFormat>html</desFormat>
</destination>
<timingInfo>
<queued>27-May-2003 10:21:50</queued>
<started>27-May-2003 10:21:50</started>
<finished>27-May-2003 10:22:00</finished>

Using the Oracle Reports Web Service 14-9

Getting Started

</timingInfo>
</job>
</serverQueues>

14.2.3.5 runJob

The runJob (String commandLine, Boolean synchronous) operation runs
a job to the Reports Server specified as part of the commandLine parameter.

Note: Oracle Reports Web service does not return the job output
or the actual report.

The valid parameters are:

s commandLine: The complete command line syntax for submitting a job. For
example:

server=repserv report=test.rdf destype=file desname=output.pdf desformat=pdf
userid=scott/tiger@v815

» synchronous: A Boolean object to indicate if the job should be run
synchronously.

To view the runJob response:

1. Click the runJob link. The Test page should display the relevant parameter
fields and an Invoke button to submit the request.

2. Enter the command line syntax (param0), whether the job should run
synchronously (T/F, Y/N) (paraml).

3. Click Invoke. The SOAP response is displayed in a new window.
The following is a sample output of a runJob operation:

<?xml version = '1.0' encoding = 'IS0-8859-1' standalone = 'yes'?>
<serverQueues>
<job id="7" queueType="current">
<name>test.rdf</name>
<type>report</type>
<status code="1">Waiting in the queue</status>
<owner>RWUser</owner>
<server>repserv</server>
<destination>
<desType>file</desType>
<desName>output .pdf</desName>

14-10 Oracle Application Server Reports Services Publishing Reports to the Web

Installing and Using the Sample Proxy and Java Client

<desFormat>pdf</desFormat>

</destination>

<timingInfo>
<queued>27-May-2003 10:22:00</queued>
<started>27-May-2003 10:22:00</started>
<finished>27-May-2003 10:22:00</finished>

</timingInfo>

</job>
</serverQueues>

14.3 Installing and Using the Sample Proxy and Java Client

The RWWebService Web page contains a link to a sample proxy. This sample proxy
invokes the Web service internally using the appropriate SOAP messages. Thus, the
proxy accesses the various operations performed by the Web service and invokes
them using the appropriate parameters.

The following procedure outlines the necessary steps involved in installing the

proxy:

1. Download the rwwebservice. zip file from the Proxy Jar link displayed on
the RWWebService Web page.

2. Include the path to the rwwebservice. zip file in your system classpath.

3. Include the ORACLE_HOME\soap\lib\soap.jar, ORACLE_
HOME\j2ee\home\lib\http_client.jar; entries in your system
classpath.

4. Include either one of the following in your system classpath:

s The xmlparserv2.jar located in the ORACLE
HOME\lib\xmlparserv2.jar directory.

» The Xerces 1.4.4 parser, xerces. jar.

Note: You must specify the location of the xmlparser in the system
classpath. If you do not specify the location, the SOAP response
will be displayed minus the <> symbols.

5. Modify the RWwWebServiceTest. java to reflect your Reports Server name
and the authid. For more information on constructing a Java client, refer to
Example 14-1.

Using the Oracle Reports Web Service 14-11

Installing and Using the Sample Proxy and Java Client

Note: The authid for non-secured Reports Server is null.

Compile and run the RWwwebServiceTest . java file.

Run the various operations using the sample Java client. For example, get the
API Version (getAPIVersion), run a job(runjob), check the status of any job
(getJobInfo), or get the Reports Server information (getServerInfo).

Note: You can submit many jobs concurrently from multiple
windows using the sample Java client.

Example 14-1 illustrates the contents of the RWWebServiceTest . java file.

Example 14-1 RWWebServiceTest.java

/*

$Id: RWWebServiceTest.java
@author Anil Sharma

Copyright (c) Oracle Corporation 2003. All Rights Reserved

FUNCTION

This is a sample class to demonstrate how the Oracle Reports WebService
Proxy class(oracle.reports.rwclient.proxy.RWWebServiceProxy) can be used
to invoke the Reports WebService from Java Clients. Java based Reports
Clients will use the demonstrated mechanism for invoking & parsing the
results using

NOTES

'oracle.reports.rwclient.proxy.RiWWebServiceProxy' class is supplied as part
of rwwebservice.zip file which can be downloaded by invoking the Reports
WebService from a browser. Please consult Chapter 14 of Oracle Application

Server Reports Services Publishing Reports to the Web manual, available on

*
*
*

*

*/

the Oracle Technology Network Oracle Reports Documentation page
(http://otn.oracle.com/docs/products/reports/content.html) for details.

CREATED Anil Sharma 06/13/03

import oracle.reports.rwclient.proxy.RWWebServiceProxy;

14-12 Oracle Application Server Reports Services Publishing Reports to the Web

Installing and Using the Sample Proxy and Java Client

* This class creates an instance of RWWebServiceProxy and makes API

* calls on it to interact with Reports Server WebService. The result from
* the webservice is usually an XML object which is printed as-is to the

* Standdard output stream. Java based Reports Clients making use of this
* WebService class might need to parse the XML to extract meaningful

* information.

*/

public class RWWebServiceTest

{

public static void main(String[] args)

{

String serverName = "repserv"; //Name of the Reports Server
String authid = "portal/welcomel"; //authid, should be null if

//server is not secured.

String cmdline = "server=repserv report=test.rdf "+

"destype=file desname=output.pdf desformat=pdf "+
"userid=scott/tiger@orcl";

try

{

RWWebServiceProxy proxy = new RWWebServiceProxy();

/**
* The following piece of code invokes proxy class' getAPIVersion()
* to get the Reports Server version information.
*/
System.out.println("Get Reports Server Version:");
System.out.println("RESULT: "+proxy.getAPIVersion());

/**
* Get the Reports Server Information in XML format. This will contain
* some server runtime as well as configuration information.
*/
System.out.println("Get Server Info:");
System.out.println("RESULT:\n"+proxy.getServerInfo (serverName, authid));

/**
* Get information about a particular job (the job ID needs to be
* gpecified.
*/

System.out.println("Get JobInfo for Job Id=3:");;

Using the Oracle Reports Web Service 14-13

Installing and Using the Sample Proxy and Java Client

System.out.println("RESULT: \n"+proxy.getJobInfo (new Integer(3),
serverName, authid));

/**
* Kill a job with a given job ID.
*/
System.out.println("Kill job with Job Id=3:");
System.out.println("RESULT:\n"+proxy.killJob(new Integer(3), serverName,
authid)) ;

* Submit a job to the server. The command string takes the same form
* as the one used for rwclient or any other Oracle Reports client.
* You can specify whether to run the job synchronously or not. The
* returned string is in XML format indicating the job status. Please
* note that with Oracle Reports version 10g (9.0.4), you can not get the
* job output.
*/
System.out.println("Run a job on server");
System.out.println("RESULT: \n"+proxy.runJob(cmdline, new Boolean(true)));

}
catch (Exception e)
{
e.printStackTrace() ;
}

14-14 Oracle Application Server Reports Services Publishing Reports to the Web

15

Creating Advanced Distributions

When you wish to define an advanced distribution for your report, you can design
the distribution by developing a distribution XML file. This file can specify which
section or sections of a report should go to what destination via what format of
output. In one distribution XML file, you can specify many different destinations,
including custom (pluggable) destinations you design.

This chapter provides information on creating a distribution XML file and some
example use cases. It includes the following main sections:

» Distribution Overview

= Introduction to Distribution XML Files
= Elements of a Distribution XML File

s Distribution XML File Examples

s Defining Custom/Pluggable Destinations

15.1 Distribution Overview

Although distribution XML files are not required for specifying the distribution of
report output, they are useful for complex distributions. For example, there may be
times when you want to publish the output of one report in a variety of ways. You
might want to send an executive summary of a report to senior management while
mailing detailed breakdowns to individual managers. In this case, you might
produce a single report with two report sections: a portrait-sized summary section
and a landscape-sized detail section. You would associate the detail section with a
data model group that lists the managers, then alter the destination on each instance
of the group to send each department's output to its related manager.

Creating Advanced Distributions 15-1

Introduction to Distribution XML Files

The distribution XML file tames distribution complexity by enabling you to define
multiple outputs for a given report in one XML file, then call that file from a
command line or URL.

15.2 Introduction to Distribution XML Files

15.2.1 The distribution.dtd File

When you create a distribution XML file, you follow the syntax defined in the
distribution.dtd file located in the following directory (Windows and UNIX
use the same path):

ORACLE_HOME\reports\dtd

As you look through the following sections, it may be useful to you to print the
distribution.dtd file and refer to it as various elements and attributes are described.

Note: information provided in distribution XML file is case
sensitive. The user must preserve case of various elements and
attributes as specified in the distribution.dtd file.

The distribution.dtd file lists all elements that are valid within a distribution
XML file. Each of these elements have attributes. Attributes that come with default
values need not be specified, unless you wish to override the default.

You can create a dynamic distribution by introducing variable values into many
different attributes. Variable values reference columns that are present in the report
that is using the distribution XML file.

15.2.2 Using Variables Within Attributes

You can use variables within attributes by entering & column_name or
& < column_nameé> in the place of a static value.

15-2 Oracle Application Server Reports Services Publishing Reports to the Web

Introduction to Distribution XML Files

Note: The ampersand (&) and less-than symbol (<) have specific
meanings in XML, but they are also required symbols for certain
Oracle Reports Developer command line options (for example,
lexical parameters require the ampersand symbol). To avoid conflict
with the XML meanings of these symbols when you set up
variables, specify the encoded version of the ampersand (&)
and less-than and greater-than symbols (&1t ; and > ;). For
example:

Here is what the variable looks like improperly coded in an XML file:

<mail id="al" to="&<manager>@mycompany.com" ..

Here is what the variable looks like properly coded in an XML file:
<mail id="al" to="&<manager>@mycompany.com" ..>
There is no special requirement for the greater-than symbol (>)

used with variables, but for consistency, we recommend that you
use the encoded version (>).

The variable syntax you use depends on whether the value is expressed by itself or
in combination with other values or strings. For example, a value for a "to" attribute
in a mail element might be expressed as either:

<mail id="a2" to="&email" ..>

OR

<mail id="a3" to:"&<first_name&zgt.&<last_name&tgt@myco.com >

In the first example (id="a2"), the variable's referenced column (email) contains a
full e-mail address and does not require additional information. The second
example (id="a3") uses a combination of variable values (first_name and last_
name) and static text to construct an e-mail address (static text is the period after
first_name and @myco.com). In both cases, you will get dynamic e-mail addressing.
The example you use will depend on whether the variable contains all the
information you need or requires additional information in order to be complete.

For even more complex layouts, you can also reference report columns you created
with PL/SQL formulas. For example, in your report you may define the PL/SQL
column:

Creating Advanced Distributions 15-3

Elements of a Distribution XML File

PL/SQL formula CF_MAILID: return(:first_name||'.'||:last_name)

You'd reference this column in the distribution XML file as:

to="& &1t ;CF_MAILID> ; @mycompany .com"

15.3 Elements of a Distribution XML File
The elements of a distribution XML file include:

s destinations

= foreach

= mail

= body

= include
n file

= printer

= destype
= attach

= property

Most of these elements have attributes that define the behavior of the element. The
following sections describe the distribution XML file elements and their associated
attributes. Distribution XML File Examples provides use cases that demonstrate the
distribution XML file elements and attributes in action.

15.3.1 destinations

Example

<destinations>
[One or more distribution specifications]
</destinations>

Required/Optional

Required. You must have no more or less than one destinations element in your
distribution XML file.

15-4 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

Description

The destinations element opens and closes the content area of the distribution
XML file. In terms of the distribution XML file's tagging hierarchy;, all the other
elements are subordinate to the destinations element.

The destinations element has the following sub-elements:

» foreach
= mail

n file

= printer
= destype

Each of these is discussed in the following subsections.

15.3.2 foreach

Example

<foreach>
<mail id="al" to="my_addressee@mycompany.com" subject="Fourth Quarter
Results">
<attach format="pdf" name="dept_é&department_ID> .pdf"
srcType="report" instance="this">
<include src="mainSection"/>
</attach>
</mail>
</foreach>

OR

<mail id="a4" to="recipient@mycompany.com" subject="Regional Results">
<foreach>
<attach format="pdf" name="report.pdf" srcType="report" instance="all">
<include src="mainSection"/>
</attach>
</foreach>
</mail>

Required/Optional
Optional. You can have as many foreach elements as you require.

Creating Advanced Distributions 15-5

Elements of a Distribution XML File

Description

Use the foreach element to burst your distribution against a repeating group. You
can use foreach only when the associated report definition file (either RDF, JSP, or
XML) has its "Repeat On" property for the section that will be burst set to an
appropriate group. The foreach element specifies that the distribution defined
between its open and close parameters should be performed for each repeating
group.

The Repeat On property can be set for a report section (Header, Main, and Trailer)
to associate a data model break group to a section. By setting the Repeat On
property for a section, you can generate multiple instances of a section, or a
repeating section.

When you implement bursting and distribution in a report, you can generate
section-level distribution by setting the Repeat On property for a section to a data
model break group, which generates an instance of the section for each column
record of that break group. Then, you can distribute each instance of the section as
appropriate (for example, to individual managers in the MANAGER group).

If you set the Repeat On property for more than one of the Header, Main, and
Trailer sections of a report, all Repeat On property values must be set to the same
data model break group. If the Repeat On property for any one of the Header,
Main, and Trailer sections is set to a different data model break group, Oracle
Reports raises any of the following messages:

REP-0069: Internal Error
REP-57054: In-Process job terminated: Terminated with error
REP-594: No report output generated.

The foreach element has the following sub-elements:

s mail

n file

= printer
m destype
= attach

Each of these is discussed in the following subsections.

You can also use the foreach element as a sub-element of the mail element, as
depicted in the second example provided at the start of this section. (In this
example, assuming that mainSection repeats on G_DEPARTMENT_ID, the

15-6 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

example will produce a single attachment with all the instances of the report's
mainSection in a single file.)

The foreach element works closely with the instance attribute of the attach
and file elements. While foreach specifies that the distribution should be
performed according to record groups, instance specifies whether the burst
groups should be distributed in one file (instance="all") or distributed as
separate files: one file for each group instance (instance="this").

When used with the mail element, foreach can mean different things according
to its position relative to the mail element:

When foreach precedes themail element and instance="this", each
group instance is dispatched as a separate mail. For example:

<foreach>
<mail id="al" to="managers@mycompany.com" subject="results">
<attach name="department_&<department_id> .pdf" instance="this">
<include src="mainSection" />
</attach>
</mail>
</foreach>

If the report is grouped according to department_id, and there are four
departments, then there are four group instances. This means four e-mails per
recipient, each e-mail with its own group instance attached: one e-mail has
department 10's report attached; another e-mail has department 20's report
attached; and so on. Each recipient receives all four e-mails.

When foreach follows the mail element and instance="this", each group
instance is attached to one e-mail going to each recipient. For example:

<mail id="al" to="managers@mycompany.com" subject="results">
<foreach>
<attach name="department_&<department_id> .pdf"
instance="this">
<include src="mainSection" />
</attach>
</foreach>
</mail>

Creating Advanced Distributions 15-7

Elements of a Distribution XML File

15.3.3 mail

Example

<mail id="al" to="jsmith@foo.com" subject="Results">
<body srcType="text">
Attached are quarterly results.
</body>
<attach srcType="report">
<include src="headerSection"/>
<include src="mainSection"/>
</attach>
</mail>

OR

<mail id="a4" to="recipient@mycompany.com" subject="Regional Results">
<foreach>
<attach format="pdf" name="report.pdf" srcType="report" instance="this">
<include src="mainSection"/>
</attach>
</foreach>
</mail>

Required/Optional
Optional. You can have as many mail elements as you require.

Description

Use the mail element to specify distributions via an outgoing SMTP-based mail
server. Use it to specify the recipients, the subject, and the priority of the e-mail.

The mail element has three sub-elements:

= body
= attach
s foreach

Between an open and close mail element, there can be only one body sub-element
and anywhere from zero to multiple attach and foreach sub-elements.

The mail element also has a set of related attributes. These are expressed within
themail tag. For example, the 14, to, and subject attributes are expressed:

<mail id="al" to="jsmith@foo.com" subject="Recent Hires">

15-8 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

Table 15-1 lists and describes the attributes associated with the mail element.

Table 15-1

Attributes of the mail element

Attribute

Valid values

Description

id

to

ccC

bcc

from

replyTo

subject

priority

string

string

string

string

string
string

string

highest|high|normal |
low|lowest

Required. A keyword, unique within a given
distribution XML file, that identifies a
particular mail element. This can be a
combination of a text string and one or more
numbers, for example id="al". The id value
must always start with an alpha character.

Required. Variable values allowed. The
recipient(s) of the e-mail. Contains the full,
formal e-mail address, for example:

to="jsmith@foo.com"

Multiple recipients must be separated with
commas.

Can also contain variable values that reference
columns used in the associated report. See
Section 15.2.2 for more information.

Optional. Variable values allowed. The
recipient(s) to receive a copy of the e-mail.

Optional. Variable values allowed. The
recipient(s) to receive a blind copy of the
e-mail.

Optional. Variable values allowed. The sender
of the e-mail.

Optional. Variable values allowed. The e-mail
account where replies should be sent.

Default: Mail Sent from & ; Report

Optional. Variable values allowed. The subject
of the e-mail. In the absence of a specified
subject, the subject line will read: Mail Sent
from [Name of Report]

Default: normal

The e-mail's delivery priority.

Creating Advanced Distributions 15-9

Elements of a Distribution XML File

15.3.4 body

Table 15—-1 Attributes of the mail element

Attribute Valid values

Description

returnRecei true|false
pt

organizatio string
n

Default: false

Indication of whether the replyto individual or
account should be notified when the e-mail is
received.

Optional. Variable values allowed. The name
of the organization distributing the e-mail, for
example:

organization="Region 10 Sales"
Or

organization="&department_name"

Note: For the mail element to work properly, the Reports Server
must know which outgoing SMTP mail server to send mail to. You
specify this information in the Reports Server configuration file
(server_name.conf). This file has a pluginParam element
where you can enter the name of a mail server. For example:

<pluginParam name=mailServer>smtp0l.mycorp.com</pluginParam>

For more information, see Configuring OracleAS Reports Services.

Example

On Windows

<mail id="al" to="jsmith@foo.com" subject="Results">

<body srcType="file">

<include src="c:\mail\body.html"/>

< /body>
</mail>

On UNIX

<mail id="al" to="jsmith@foo.com" subject="Results">

<body srcType="file">

<include src="/mail/body.html"/>

</body>

15-10 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

</mail>

Required/Optional

Optional. You can have a maximum of one body element associated with a given
mail element.

Description

The body element acts as a sub-element to the mail element. It specifies the content
(or body) of the e-mail. With body, you can type a text string between the open and
close body tag or use an include sub-element to specify either an external file, a
report, or a section of a report. For example:

<mail id="al" to="jsmith@foo.com" subject="Results">
<body srcType="text">
Attached are quarterly results.
</body>

Or

<mail id="al" to="jsmith@foo.com" subject="Results">
<body srcType="file">
<include src="d:/reports/admin/results.html"/>
</body>

Or

<mail id="al" to="&<first_name>.&<last_name>@myco.com"
subject="Quarterly Results">
<body srcType="report" format="html">
<include src="headerSection"/>
</body>

Body has three attributes: srcType, format, and instance. They are described in
Table 15-2.

Creating Advanced Distributions 15-11

Elements of a Distribution XML File

Table 15-2 Attributes of the body sub-element of mail

Attribute Valid values Description

srcType file|report|text Default: report

The source for content of an e-mail. The content is
displayed in the body of the e-mail. In the absence
of a specified srcType, the default is used.

format html |htmlcss|ascii Default: html

Required when srcType is report with a
format other than html, the default; otherwise
format is optional. The format of the content.

instance this]all Default: a1l

Used when the foreach element is also present.
With a grouped report that is burst into separate

reports, instance specifies whether the groups

will be broken into separate content according to
each group instance (this) or all contained within
the same content (all).

15.3.5 attach

Example
<mail id="al" to="jsmith@foo.com" subject="Results">
<body srcType="text">
Attached are quarterly results.
</body>
<foreach>
<attach format="html" name="contacts.htm" srcType="report"
instance="all">
<include src="headerSection"/>
<include src="mainSection"/>
</attach>
</foreach>
</mail>

Required/Optional

Optional. You can have as many attach elements as you require with amail
element. Note that attach is also a sub-element of foreach, and foreach
requires that at least one of its sub-elements be used (out of

mail, file,printer,destype,and attach).

15-12 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

Description

Attach specifies attachments to the e-mail. Additionally, at tach must have at
least one include sub-element, and can have more than one if
srcType="report". Attach attributes are listed and described in Table 15-3.

Table 15-3 Attributes of the attach sub-element of mail

Attribute Valid values Description
format pdf |html |htmlcss|r Default: pdf
tf|

Required when srcType is report and the report
ascii|xml|dflt format is other than pdf, the default; otherwise
format is optional. The format of the attached
material, for example format="htmlcss".

name string Optional. Variable values allowed. The filename of
the attached material. Can also contain variable
values that reference columns used in the
associated report. See Section 15.2.2 for more

information.

srcType file|report|text Default: report
The source of the attachment, either a file, a report,
or text.

instance this|all Default: a1l

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups
will be broken into separate content according to
each group instance (this) or all contained within
the same content (all).

Using these attributes in conjunction with the foreach element, you can design a
destination that will repeat on a group instance and generate an e-mail for each
group attachment. For example:

<foreach>
<mail id="a2" to="first.name@myco.com, second.name@myco.com,
third.name@myco.com, fourth.name@myco.com" subject="Department Summaries">
<body srcType="text">
Attached is the breakdown of department summaries for the last
quarter.
</body>
<attach format="htmlcss" name="deptsum.html" srcType="report"
instance="this">

Creating Advanced Distributions 15-13

Elements of a Distribution XML File

<include src="report"/>
</attach>
</mail>
</foreach>

By moving the location of the foreach element, you can generate one e-mail with
multiple attachments: a separate one for each group instance.

<mail id="a2" to="first.name@myco.com, second.name@myco.com, third.name@myco.com,
fourth.name@myco.com" subject="Department Summaries">
<body srcType="text">
Attached is the breakdown of department summaries for the last
quarter.
</body>
<foreach>
<attach format="htmlcss" name="deptsum.html" srcType="report"
instance="this">
<include src="report"/>
</attach>
</foreach>
</mail>

15.3.6 include

Example

<mail id="al" to="jsmith@foo.com" subject="Q4">
<body srcType="text">
Attached are quarterly results.
</body>
<attach srcType="report" format="pdf">
<include src="report"/>
</attach>
</mail>

Or

<mail id="al" to="jsmith@foo.com" subject="Q4">
<body srcType="text">
Attached are quarterly results.
</body>
<attach srcType="report" format="htmlcss">
<include src="headerSection"/>
</attach>
</mail>

15-14 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

Or

<mail id="al" to="jsmith@foo.com" subject="Q4">
<body srcType="text">
Attached are quarterly results.
</body>
<attach srcType="file">
<include src="d:/management/reports/current/Q4.htm"/>
</attach>
</mail>

Required/Optional

Required when used with body and attach when srcType is report or file,
but not when srcType is text. Also required for file, printer, and destype.
In the instances where it is required, you must have one and can have more than
one includes.

Description

The include element is available for use with the body, attach, file, printer,
and destype elements. It specifies the file, report, or report section to be included
in the body of an e-mail, as an attachment to an e-mail, in the content of a file, in the
printer output, or in the content of a custom destination type.

If you want to specify more than one section, but not the entire report, enter an
include for each required section. For example:

<mail id="al" to="jsmith@foo.com" subject="Results">
<body srcType="text">
Attached are quarterly results.
</body>
<attach srcType="report" format="htmlcss">
<include src="headerSection"/>
<include src="mainSection"/>
</attach>
</mail>

If the preceding body or attach element has srcType of £ile, the subsequent
include can specify the file either with a directory path and filename or with just
the filename, provided the file is located in a directory listed in the REPORTS_PATH
environment variable. For example:

<mail id="al" to="jsmith@foo.com">
<body srcType="file">

Creating Advanced Distributions 15-15

Elements of a Distribution XML File

<include src="g4sales.pdf"/>

</body>
</mail>

If you do specify a path, use the appropriate standard for your platform. For

example:

On Windows: <include src="c:\management\reports\current\Q4.htm"/>

On UNIX: <include src="/management/reports/current/Q4.htm"/>

No other XML elements are placed between an include element’s open and close
tags; however, include does have one attribute: src, described in Table 15-4.

Table 15-4 Attributes of the include sub-element when used with mail's body or

attach

Attribute Valid values

Description

src (path and) filename
report
headerSection
mainSection

trailerSection

Required. The source of material specified in the
preceding attach, body, file, printer, or
destype element.

Because the distribution XML file is called when you
run a specific report, there is no need to specify the
report's name or location in the src attribute when
src="report".

When the preceding body or attach element
specifies a file srcType, provide the directory
path and filename or just a filename, provided the
file is located in a directory listed in the REPORTS_
PATH environment variable.

When the preceding body or at tach element
specifies a report srcType, specify the entire
report (report) or provide the section(s) of the report
to be included in the body or to be attached (e.g.,
headerSection,mainSection, and/or
trailerSection).

15.3.7 file

Example

On Windows <file id="a7" name="c:\management\reports\report.pdf"

format="pdf">

15-16 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

<include src="report"/>
</file>

On UNIX <file id="a7" name="/management/reports/report.pdf" format="pdf">
<include src="report"/>
</file>

Or

<foreach>
<file id="a7" name="section&<department_id> .pdf" format="pdf"
instance="this">
<include src="mainSection"/>
</file>
</foreach>

Required/Optional
Optional. You can have as many £ile elements as you require.

Description

Use the £ile element to specify distributions to a file. File elements have one
sub-element: include. There must be at least one include sub-element and there
may be more between an open and close £ile element.

When used with the foreach element and the instance="this" attribute, the
file element can distribute each group instance of a grouped report to separate
files. For example, if you group a report on department_id, and there are four
departments, you can use the foreach/file/instance="this" combination to
generate four files, each with a separate department’s report. In this case, the file
entry in the distribution XML file might look like this:

<foreach>
<file id="a3" name="dept_&<department_id> .pdf" format="pdf"
instance="this">
<include="report"/>
</file>
</foreach>

In this example, all report sections (header, main, and trailer) must repeat on the
same group instance (e.g., department_id).

File elements also have a set of related attributes. These are expressed within the
file tag. For example, the "id" and "name" file attributes are expressed:

Creating Advanced Distributions 15-17

Elements of a Distribution XML File

Windows: <file id="a7" name="d:\reports\2001\gdsales.pdf">
UNIX: <file id="a7" name="/reports/2001/g4sales.pdf">
Table 15-5 lists and describes the attributes associated with a £i1e element.

Table 15-5 Attributes of the file element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a particular
file element. This can be a combination of a text
string and one or more numbers, for example
id="al". The id value must always start with an
alpha character.

name string Required. Variable values allowed. The location
and filename of the destination file. Enter a
directory path. Include the filename. For example:

Windows: name="d: \reports\file.pdf"
UNIX: name="reports/file.pdf

Can also contain variable values that reference
columns used in the associated report. See
Section 15.2.2 for more information.

format pdf |html |htmlcss| Default: pdf
;;If) |ascii|xml|bit The destination file format, for example:
format="htmlcss"
instance this|all Default: a1l

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups
will be broken into separate files according to each
group instance (this) or all contained within the
same file (all).

15.3.8 printer

Example

On Windows
<printer id="al" name="\\server_name\printer_name" copies="5">
<include src="report"/>

15-18 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

</printer>

On UNIX

<printer id="al" name="alias_to_registered_printer" copies="5" instance="all">
<include src="report"/>

</printer>

Required/Optional
Optional. You can have as many printer elements as you require.

Description

Use the printer element to specify distributions to a printer. Printer elements
have one sub-element: include. There must be at least one include sub-element
and there may be more between an open and close printer element.

When used with the foreach element and the instance="this" attribute, the
printer element can distribute each group instance of a grouped report to a
separate print job. For example, if you group a report on department_id, and there
are four departments, you can use the foreach/printer/instance="this"
combination to generate four printed reports, each containing a separate
department's report. In this case, the printer entry in the distribution XML file
might look like this:

<foreach>
<printer id="a7" name="\\server_name\printer_name" instance="this">
<include="report"/>
</printer>
</foreach>

In this example, all report sections (header, main, and trailer) must repeat on the
same group instance (e.g., department_id).

Table 15-6 lists and describes the attributes associated with a printer element.

Table 15-6 Attributes of the printer element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a particular
file element. This can be a combination of a text
string and one or more numbers, for example
id="al". The id value must always start with an
alpha character.

Creating Advanced Distributions 15-19

Elements of a Distribution XML File

Table 15-6 Attributes of the printer element

Attribute Valid values Description

name string Required. Variable values allowed. The destination
printer. How you enter this information differs
between Windows and UNIX.

For Windows, specify the printer server name and
the printer name. For example:

name="\\server_name\printer_name"

For UNIX, specify the alias assigned to a registered
printer. For example:

name="sales_printer"

Can also contain variable values that reference
columns used in the associated report. See
Section 15.2.2 for more information.

copies string Default: 1

Number of copies of each report or each report
group instance to print.

instance this|all Default: a1l

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups
will be broken into separate printed reports
according to each group instance (this) or all
contained within the same printed report (all).

15.3.9 destype

Example

<destype id="acustoml" name="fax">

<include src="headerSection"/>

<property name="number" value="914925551212"/>
</destype>

Required/Optional
Optional. You can have as many destype elements as you require.

15-20 Oracle Application Server Reports Services Publishing Reports to the Web

Elements of a Distribution XML File

Description

Use the destype element to specify distribution to a custom destination, such as to
a fax machine or an FIP site. You also use destype to specify distribution to a
portal created with OracleAS Portal. The destype element allows for the use of
two sub-elements: property and include. At least one include is required.

The inclusion of a custom destination type requires that you have a defined
distribution handler in place to usher report content to the custom output
destination.

Note: Build a custom destination type via the OracleAS Reports
Services Destinations APL Look for upcoming information about
Reports APIs on the Oracle Technology Network,
(http://otn.oracle.com).

When used with the foreach element and the instance="this" attribute, the
destype element can distribute each group instance of a grouped report to a
separate destype instance (e.g., a separate fax). For example, if you group a report
on department_id, and there are four departments, you can use the
foreach/printer/instance="this" combination to generate four destype
instances, each containing a separate department's report. In this case, the destype
entry in the distribution XML file might look like this:

<foreach>
<destype id="a9" name="fax" instance="this">
<include="report"/>
<property name="number" value="&< fax_number>"/>
</destype>
</foreach>

In this example, all report sections (header, main, and trailer) must repeat on the
same group instance (e.g., department_id).

Custom destination types also have a set of related attributes. These are expressed
within the destype tag. For example, the "id", "name", and "instance" destype
attributes are expressed:

<foreach>
<destype id="al" name="name_of_destination_type" instance="all">
</foreach>

Table 15-7 lists and describes the attributes associated with a destype element.

Creating Advanced Distributions 15-21

Elements of a Distribution XML File

Table 15-7 Attributes of the destype element

Attribute Valid values Description

id string Required. A keyword, unique within a given
distribution XML file, that identifies a particular
file element. This can be a combination of a text
string and one or more numbers, for example
id="al". The id value must always start with an
alpha character.

name string Required. The name of the custom destination. For
example, for a fax, this might be:

name="fax"
For a portal built with OracleAS Portal:

name="oraclePortal"

instance this|all Default: a11

Used when the foreach element is also present.
With a grouped report that is burst into separate
reports, instance specifies whether the groups
will be broken into separate destype instances
according to each group instance (this) or all
contained within the same destype instance
(all).

For example, if you custom destination type is a
fax, instance="this" would mean a separate
fax for each group instance, and
instance="all" would mean one fax for all
groups.

OracleAS Reports Services supports the creation and use of custom destination
types (pluggable destinations) in the Reports Services environment. One way it
does this is by allowing you to include calls to custom destinations in your
distribution XML file. The distribution XML file provides a way to define custom
destinations through property name/value pairs used in conjunction with the
destype element.

15.3.10 property

Example

<foreach>
<destype id="customl" name="fax" instance="all">

15-22 Oracle Application Server Reports Services Publishing Reports to the Web

Distribution XML File Examples

<include src="headerSection"/>
<property name="number" value="914925551212"/>
</destype>
</foreach>

Required/Optional

Optional. You can have as many properties as you require under a destype
element.

Description

The property element allows for the inclusion of name/value pairs expressed in
terms recognized by a custom destination type (destype). Properties are merely
passed along to the destination handler. They serve no function within Reports
Services. How you specify properties is entirely dependent on the requirements of
your custom destination.

15.4 Distribution XML File Examples

This section provides examples, from simple to complex, of distribution XML
elements. They are organized according to the main distribution.dtd elements:

» foreach Examples
= mail Examples
» file Examples

= printer Examples

15.4.1 foreach Examples

The examples in this section include:

= Single E-Mail with Report Groups as Separate Attachments
= Separate E-Mail for Each Group Instance

= Separate E-Mails with Separate Sections as Attachments

» Separate File for Each Section

= Separate Print Run for Each Report

Creating Advanced Distributions 15-23

Distribution XML File Examples

15.4.1.1 Single E-Mail with Report Groups as Separate Attachments

In this example, each attachment contains the corresponding instance from the
header, main, and trailer sections. That is, if the report is grouped on department_
id, and the first department is department 10, the first attachment will be a report
with header, main, and trailer sections all containing department 10 information.
This example is valid only if the header, main, and trailer sections repeat on the
same group instance, in this case department_id.

<mail id="al" to="managers@mycompany.com" subject="New Hires">
<foreach>
<attach format="html" srcType="report" instance="this">
<include src="report"/>
</attach>
</foreach>
</mail>

First of all, assume in this example that "managers@mycompany.com" goes to a
mailing list that distributes to each department manager. If there are four
departments: 10, 20, 30, and 40, the first attachment will contain header, main, and
trailer sections corresponding to department 10; the second to 20; and so on. This
example will yield one e-mail per recipient, each with four attachments.

15.4.1.2 Separate E-Mail for Each Group Instance

In this example, each recipient will receive a separate e-mail for each grouped
report. For example, if the report is grouped on department_id, and there are four
departments, one recipient will receive four e-mails, each with a separate
department's report attached.

<foreach>
<mail id="weeklies" to="managers@mycompany.com">
<attach format="htmlcss" srcType="report" instance="this">
<include src="mainSection"/>
</attach>
</mail>
</foreach>

15.4.1.3 Separate E-Mails with Separate Sections as Attachments

In this example, different sections repeat on different groups. The distribution is set
up so that each recipient will receive a separate e-mail with attachment for each
grouped main section and for each grouped trailer section.

<foreach>
<mail id="a6" to="managers@mycompany.com" subject="Personnel Reports">

15-24 Oracle Application Server Reports Services Publishing Reports to the Web

Distribution XML File Examples

<attach format="pdf" name="attach.pdf" srcType="report" instance="this">
<include src="mainSection"/>
</attach>
<attach format="rtf" name="attach.rtf" srcType="report" instance="this">
<include src="trailerSection"/>
</attach>
</mail>
</foreach>

15.4.1.4 Separate File for Each Section

In this example, a separate file is generated for each group instance. Groups repeat
on department_id. Each file is named with the relevant department ID.

<foreach>
<file id="al0" name="department_&<department_id> .pdf"
instance="this">
<include src="mainSection"/>
</file>
</foreach>

Assuming that there are four departments, 10 through 40, this example will result in
the creation of four files, named in turn department_10.pdf, department_20.pdf,
and so on.

The format attribute is not included in the £ile element because it is not required
when the srcType is file or text. It is required when the srcType is report.

Note: If you do not specify unique filenames through the use of
variable values (see Section 15.2.2), in this example, each
successively created file will overwrite the previously created file.
That is, the department.pdf file for department 20 will overwrite
the department.pdf file for department 10, and so on, until there is
only one file left, department.pdf, with information from the last
department report created (e.g., department 40).

15.4.1.5 Separate Print Run for Each Report

The way you specify a printer name differs between Windows and UNIX. The first
example is for Windows. The second is for UNIX.

15.4.1.5.1 Windows In this example, assuming that the report is grouped on
department_id, a report will be printed for each department.

Creating Advanced Distributions 15-25

Distribution XML File Examples

<foreach>
<printer id="a7" name="\\server name\printer_name" instance="this">
<include src="report"/>
</printer>
</foreach>

15.4.1.5.2 UNIX In this example, assuming that the report is grouped on
department_id, a report will be printed for each department.

<foreach>
<printer id="a7" name="printer_alias" instance="this">
<include src="report"/>
</printer>
</foreach>

15.4.2 mail Examples

The examples in this section include:

= E-Mail with a Whole Report as the Body

s E-Mail with a Section of a Report as the Body

= E-Mail with Two Report Sections as the Body

s E-Mail with External File as Body and Report as Attachment
= E-Mail with Whole Report and Grouped Sections Attached

= E-Mail to Relevant Manager and Department

15.4.2.1 E-Mail with a Whole Report as the Body
The report will comprise the content of this e-mail. That is, when recipients open

this e-mail, they will see the report.

<mail id="ab" to="managers@mycompany.com" subject="Quarterly Report">
<body srcType="report" format="html">
<include src="report"/>
</body>
</mail>

15.4.2.2 E-Mail with a Section of a Report as the Body

A section of a report will comprise the content of this e-mail. That is, when
recipients open this e-mail, they will see a section of the report.

<mail id="ab" to="employees@mycompany.com">

15-26 Oracle Application Server Reports Services Publishing Reports to the Web

Distribution XML File Examples

<body srcType="report" format="html">
<include src="mainSection"/>
</body>
</mail>

The subject attribute is not included in this mail element, so the default subject
will be used: Mail Sent From &Report. Atruntime, the variable
& ; Report will be replaced with the name of the report.

15.4.2.3 E-Mail with Two Report Sections as the Body

Two sections of a report will comprise the body of this e-mail. That is, when
recipients open this e-mail, they'll see two sections, headerSection and mainSection,
joined together in one report.

<mail id="emp_addresses" to="employees@mycompany.com" subject="Employee Address
List">
<body srcType="report" format="html">
<include src="headerSection"/>
<include src="mainSection"/>
</body>
</mail>

15.4.2.4 E-Mail with External File as Body and Report as Attachment

The contents of the body for this email will be an external file, and the report will go
along as an attachment. The path to the file is expressed differently for Windows
and UNIX.

15.42.41 Windows

<mail id="XQRSN" to="accounting@mycompany.com" subject="Salaries"
<body srcType="file">
<include src="c:\mail\body.html"/>
</body>
<attach format="pdf" name="salaries.pdf" srcType="report">
<include src="report"/>

</attach>
</mail>
15.4.2.4.2 UNIX

<mail id="XQRSN" to="accounting@mycompany.com" subject="Salaries"
<body srcType="file">
<include src="/mail/body.html"/>
</body>

Creating Advanced Distributions 15-27

Distribution XML File Examples

<attach format="pdf" name="salaries.pdf" srcType="report">
<include src="report"/>
</attach>
</mail>

15.4.2.5 E-Mail with Whole Report and Grouped Sections Attached

In this example, recipients receive one e-mail with multiple attachments: one
attachment for each group instance and an additional attachment that contains the
entire report. If the report is grouped on department_id and there are four
departments, recipients will receive five attachments: one for each department and
one whole report.

<mail id="grx90" to="sales@mycompany.com">
<body srcType="text">
Attached you will find the summary report and breakdown by department of
weekly totals.
</body>
<attach format="rtf" name="myAttach.rtf" srcType="report">
<include src="report"/>
</attach>
<foreach>
<attach format="pdf" name="myattach.pdf" srcType="report"
instance="this">
<include src="mainSection"/>
</attach>
</foreach>
</mail>

15.4.2.6 E-Mail to Relevant Manager and Department

In this example, the manager for department 10 gets department 10's report; the
manager for department 20 gets department 20's report; and so on. For this tag set
to be valid, the variable must refer to a column that is included in the "repeat on"
group used with the attached section. That is, if the section repeats on G_
department_id, manager must be a column in that group.

<foreach>
<mail id="mgrl090" to="&<manager>@mycompany.com">
<attach format="pdf" name="attach.pdf" srcType="report" instance="this">
<include src="mainSection"/>
</attach>
</mail>
</foreach>

15-28 Oracle Application Server Reports Services Publishing Reports to the Web

Distribution XML File Examples

15.4.3 file Examples

Whenever you burst and distribute grouped reports to files, be sure to specify
filenames with variable values based on the repeating group or some other variable
information. Otherwise, you run the risk of having each successive file that is
created overwrite the previously created file. For example, if you specify an output
filename of department . pdf, and you output separate instances of each
department's report, the second department .pdf file will overwrite the first
department.pdf file; the third will overwrite the second; an so on. You will end up
with only one report, that of the final department to be output. Instead, with
grouped reports that you want to output separately according to each group
instance, use variable values to specify filenames, for example:
name="department_& <department_id> .pdf".

The examples in this section include:

» File for Whole Report

» File for Combined Report Sections

s File for Each Group of Combined Sections

s File for Each Report Group Instance

15.4.3.1 File for Whole Report

This example will yield one file named report.pdf that contains the entire report.

15.4.3.1.1 Windows

<file id="al" name="c:\reports\report.pdf" format="pdf">
<include src="report"/>
</file>

15.43.1.2 UNIX

<file id="al" name="/reports/report.pdf" format="pdf">
<include src="report"/>
</file>

15.4.3.2 File for Combined Report Sections

This example will yield one file named sections.pdf that contains a report consisting
of the header section and the main section of the report.

<file id="a2" name="sections.pdf" format="pdf">
<include="headerSection"/>

Creating Advanced Distributions 15-29

Distribution XML File Examples

<include="mainSection"/>
</file>

15.4.3.3 File for Each Group of Combined Sections

In this example, a separate file will be created for each repeating group. Each file
will contain a report that combines the relevant group main and trailer sections. The
main and trailer sections must repeat on the same group, and the variable file name
must refer to a column contained within the "repeat on" group. That is, if the report
repeats on department_id, and you have four departments, 10 through 40, then one
file will contain the main and trailer sections of department 10; the next will contain
the main and trailer sections of department 20; and so on. The variable value under
name must refer to a column that is within the G_department_id group.

<foreach>
<file id="file9" name="department_&<department_id> .pdf"
instance="this">
<include src="mainSection"/>
<include src="trailerSection"/>
</file>
</foreach>

15.4.3.4 File for Each Report Group Instance

In this example, assuming the report is grouped on department_id and there are
four departments, 10 through 40, you will end up with four files respectively
named: department_10.pdf, department_20.pdf, department_30.pdf, and
department_40.pdf.

<foreach>
<file id="a20" name="department_&<department_id> .pdf"
instance="this">
<include src="report"/>
</file>
</foreach>

15.4.4 printer Examples

The examples in this section include:
s Print Whole Report
= Print Two Sections of a Report

s Print Grouped Report

15-30 Oracle Application Server Reports Services Publishing Reports to the Web

Distribution XML File Examples

s Print Combined Sections for Each Group Instance
s Print Relevant Instance of a Report to Its Relevant Printer

The way printer names are specified, differs between Windows and UNIX. Each
example demonstrates both ways.

15.4.4.1 Print Whole Report

In this example, the entire report will be sent to the specified printer.

15.441.1 Windows

<printer id="a80" name="\\neptune\prtr20">
<include src="report"/>
</printer>

15.4.41.2 UNIX

<printer id="a80" name="10th_floor_printer">
<include src="report"/>
</printer>

15.4.4.2 Print Two Sections of a Report

In this example, two sections of a report will be sent to the printer.

15.4.42.1 Windows

<printer id="al" name="\\neptune\prtr20">
<include src="headerSection"/>
<include src="mainSection"/>
</printer>

15.4.4.2.2 UNIX

<printer id="al" name="10th_floor_printer">
<include src="headerSection"/>
<include src="mainSection"/>
</printer>

15.4.4.3 Print Grouped Report

In this example, one report will be printed. The report will be grouped by, for
example, department_id. For this to work, all sections of the report must repeat on
the same group.

Creating Advanced Distributions 15-31

Distribution XML File Examples

15.4.43.1 Windows

<foreach>
<printer id="prt20" name="\\neptune\prtr20" instance="all">
<include src="report"/>
</printer>
</foreach>

15.4.43.2 UNIX

<foreach>
<printer id="prt20" name="10th_floor_printer" instance="all">
<include src="report"/>
</printer>
</foreach>

15.4.4.4 Print Combined Sections for Each Group Instance

This example will yield a number of print jobs: one for each group instance. The
combined sections must repeat on the same group. If the report repeats on
department_id, and you have four departments, 10 through 40, you will end up
with four print jobs: one for department 10; one for department 20; and so on. The
main and trailer sections must both repeat on department_id.

15.4.4.4.1 Windows

<foreach>
<printer id="prt20" name="\\neptune\prtr20" instance="this">
<include src="mainSection"/>
<include src="trailerSection"/>
</printer>
</foreach>

15.4.4.4.2 UNIX

<foreach>
<printer id="prt20" name="10th_floor_printer" instance="this">
<include src="mainSection"/>
<include src="trailerSection"/>
</printer>
</foreach>

15.4.4.5 Print Relevant Instance of a Report to Its Relevant Printer

For this example to work, the repeat on group must contain a column of printer
names appropriate to the host platform (e.g., the printer_name column must

15-32 Oracle Application Server Reports Services Publishing Reports to the Web

Using a Distribution XML File at Runtime

contain an appropriate printer alias on UNIX and a printer server/name
combination on Windows). For example, if the report is grouped by department_id,
then G_department_id must also have a printer_name column. Assuming the
printer_names are tied to departments, then department 10's report would be
printed on department 10's printer; department 20's report would be printed on
department 20's printer; and so on.

<foreach>
<printer id="a60" name="&printer_name" instance="this">
<include src="mainSection"/>
</printer>
</foreach>

Each group instance equals a separate print job. Each print job goes to the relevant
department's printer

15.5 Using a Distribution XML File at Runtime

The method for using a distribution XML file at runtime is essentially the same
whether you use it in a URL or a command line. Use the commands:

distribute=yes destination=filename.xml

Where filename is the name of the distribution XML file. You are required to
specify either the relative or absolute path of the XML file. For example, for
Windows, you might specify:

distribute=yes destination=c:\ORACLE_HOME\reports\distribution\ filename.xml

For UNIX, you might specify:

distribute=yes destination=0RACLE_HOME/reports/distribution/filename.xml

The paths in these examples are used for illustrative purposes only. There is no
requirement for where you store your distribution XML files. You can store them
wherever you like.

Creating Advanced Distributions 15-33

Defining Custom/Pluggable Destinations

Note: In some cases, Microsoft Internet Explorer ignores the
mimetype of a URL's return stream and instead sets the type by
looking at the URL. This can be a problem when you are using the
distribution feature of OracleAS Reports Services because your
URL might end with the destination parameter, for example:

...distribute=yes
destination=c:\oracle\reports\distribution\mydist.
xml

In this scenario, your URL ends with the extension .xml and
Internet Explorer treats the return stream as XML, when in fact it is
HTML. As a result, you will receive a browser error. To work
around this issue, you should never use recognized file extensions
at the end of a URL. In the example above, you could switch the
positions of the distribute and destination parameters in your URL.

For detailed information on running reports from command lines and URLs and
using the cgicmd. dat file, see Chapter 13, "Running Report Requests".

15.6 Defining Custom/Pluggable Destinations

You can define a custom pluggable destination that can be used by Oracle Reports
during distribution. The following examples illustrate the outlined destinations:

s Fax destination

m oraclePortal Destination

Fax destination

You can specify the destination as per the generic tag structure in the distribution
XML file as follows:

Example 15-1 Generic Fax Destination

<destype id="faxdest" name="fax">
<property name="number" value="123456789"/>
<include src="report"/>

</destype>

15-34 Oracle Application Server Reports Services Publishing Reports to the Web

Defining Custom/Pluggable Destinations

oraclePortal Destination

You can specify the destination as per the generic tag structure in the distribution
XML file as outlined in Example 15-2.

Example 15-2 illustrates a sample structure for DESTYPE=ORACLEPORTAL. When
you push a report output to Portal using DESTYPE=ORACLEPORTAL, the report
output will be created in the PAGEGROUP folder.

See Also: Command Line Options

For more information on the properties outlined in the examples.

Example 15-2 Simple Portal Destination

<destinations>
<destype id="customforPortal" name="oraclePortal">
<property name="outputpage" value="sample_report"/>
<property name="statuspage" value="Reports_Status"/>
<property name="desformat" value="pdf"/>
<property name="pagegroup" value="REPORTS_OUTPUT"/>
<property name="itemtitle" value="MyReport"/>
<include src="report"/>
</destype>
</destinations>

You can specify the custom destination in accordance with the generic destype tag
structure for a pluggable destination. Alternatively, for ease of use, you can specify
a custom, more specific tag structure.

Note: Refer to destype=oraclePortal for more information on the
limitation with using the oraclePortal destination.

Example 15-3 Custom Fax Destination

<fax id="faxdest" number="123456789">
<include src="report"/>
</fax>

These tags are unknown to the distribution.dtd, therefore, they need to be
mapped to the generic destype tag structure specified in the
distribution.dtd.

Creating Advanced Distributions 15-35

Defining Custom/Pluggable Destinations

Reports runtime cannot process the <fax> tag structure as illustrated here because
the <fax> tag is not a standard destination specified in the distribution.dtd
file. The custom tag structure must therefore be converted to the generic format as
shown in Example 15-1.

Use the distribution.xsl file to transform user-defined custom tags in the
distribution XML file to a format required by Reports runtime. Reports can
understand only the generic destype tag structure for any pluggable destination.

The distribution.xsl file is an XML style sheet, located on both Windows and UNIX
at ORACLE_HOME\reports\conf\distribution.xsl. You can modify this file
by adding a template for translating your destype tag format to the required
format defined in the distribution.dtd file.

To achieve this, you must specify a template for the fax destination in the
distribution.xsl file. The template will be used to convert the <fax> tag
structure to the generic destype structure. Your distribution.xsl entry might
look like this:

<xsl:output doctype-system="distribution.dtd"/>

<xsl:template match = "/">
<xsl:apply-templates match = "destinations" />
</xsl:template>

<xsl:template match="destinations">
<destinations>

<I--
The Standard mail/file/printer/destype and foreach must be copied to the
transformed xml. The foreach tag must be copied only if it is specified with
file/mail/printer/destype tags.
-—>

<xsl:copy-of select="mail"/>

<xsl:copy-of select="file"/>

<xsl:copy-of select="printer"/>

<xsl:copy-of select="destype"/>

<xsl:copy-of select="foreach"/>

<!-- apply template for the sample FAX destination -->
<xsl:apply-templates match = "fax" />

</destinations>
</xsl:template>

15-36 Oracle Application Server Reports Services Publishing Reports to the Web

Defining Custom/Pluggable Destinations

<!l--
Sample Transformation Template for a FAX destination specified in the
distribution.xml file

<fax id="FAXDEST" number="123456789">

<include src="report"/>
</fax>

<xsl:template match="fax">

<!-- create a new destype element -->
<xsl:element name="destype">
<!l--
create an ID attribute and copy the value from the ID given for the fax
destination
-—>

<xsl:attribute name="id">
<xsl:value-of select="@id"/>
</xsl:attribute>

<!-- create a Name attribute with a fax as it's value -->
<xsl:attribute name="name">fax</xsl:attribute>
<I--

create a Property Attribute with name / value attribute pairs property tag
is created for number attribute. Similarly create more property tags for any
other attribute you add to the FAX destination
-—>
<xsl:element name="property">
<xsl:attribute name="name">number</xsl:attribute>
<xsl:attribute name="value">
<xsl:value-of select="@number"/>
</xsl:attribute>
</xsl:element>

<!-- copy the include tag as it is -->
<xsl:copy-of select="include"/>
</xsl:element>
<!-- end of template -->
</xsl:template>

</xsl:stylesheet>

Creating Advanced Distributions 15-37

Limitations with using distribution

Note: All you need to do after you modify the XSL file is save it
back to the same location under the same file name. Reports will
automatically look for this XSL file when resolving distributions.

15.7 Limitations with using distribution

15.7.1 destype=oraclePortal
From Oracle9i Reports Release 2 (9.0.2) onwards, Reports Server supports OracleAS
Portal as a destination. By using DESTYPE=ORACLEPORTAL, you can push a report
to an output page specified in OracleAS Portal.

See Also: Command Line Options and the Reports Builder Online
Help for more information on the DESTYPE command line
keyword.

However, there are a few limitations in using this destination:

s The ORACLEPORTAL destination cannot be used with distribution. Instead, you
can use DESTYPE=WEBDAV for advanced XML based distribution to OracleAS

Portal.

Note: Ensure that the OracleAS Portal instance should be
WebDAV-enabled. Refer to the OracleAS Portal online help for more
information on how to enable WebDAV.

For more information on how to use WebDAV for distribution to
OracleAS Portal, refer to the Tech note at:

http://webiv.oraclecorp.com/cgi-bin/webiv/do.pl/Ge
t?WwwID=note:241821.

s The DESTYPE=ORACLEPORTAL destination cannot be used with the rwrun
executable as it causes Reports Server to stop responding. Use this destination
only with rwservlet, rwclient, or rwcgi.

15-38 Oracle Application Server Reports Services Publishing Reports to the Web

http://webiv.oraclecorp.com/cgi-bin/webiv/do.pl/Get?WwwID=note:241821.1

Limitations with using distribution

15.7.2 XML and delimited outputs

Using reference parameters for report bursting (i.e., by specifying
instance=this) is not supported for DESFORMAT=XML and
DESFORMAT=DELIMITED. If used, it results in the following error message:

REP-34310 "Reference parameter not allowed in distribution list for XML
destination files"

However, these formats can be used in distribution without specifying a reference
parameter.

Creating Advanced Distributions 15-39

Limitations with using distribution

15-40 Oracle Application Server Reports Services Publishing Reports to the Web

16

Customizing Reports with XML

Extensible Markup Language (XML) is designed to improve the functionality of the
Web by providing a method to promote detailed information identification. It is
actually a metalanguage (a language used for describing other languages) and can
be used to design customized markup languages for different type of documents.

XML documents are composed of both markup and content:

= Elements are the building blocks of XML. An element instance is a structure
that contains tags (a main tag and appropriate nested tags), attributes, and the
element’s content nested between the tags.

» Tags are used to define the element and the content within it.
= Attributes provide extra information for each tag.

XML customizations enable you to modify reports at runtime without changing the
original report. With the addition of the CUSTOMIZE command to your runtime
command line, you can call a customization file to add to or change a report's
layout or data model. One XML customization file can perform all of these tasks or
any combination of them. You can even use XML to build a report data model for
inclusion in a custom JSP-based report.

By creating and applying different XML customizations, you can alter the report
output on a per user or per user group basis. You can use the same report to
generate different output depending upon the audience.

When you apply an XML customization to a report, you have the option of saving
the combined definition to a file. As a result, you can use XML customizations to
make batch updates to existing reports. You can quickly update a large number of
reports without having to open each file in Reports Builder.

OracleAS Reports Services extends the possible types of Oracle Reports XML
customizations by enabling you to create an entire reports data model in XML. This

Customizing Reports with XML 16-1

includes the creation of multiple data sources, linking between data sources, and
group hierarchies within each data source. Data model support via Oracle Reports
XML customization means that any data model that can be created with Reports
Builder can now be created by specifying XML. Additionally, all properties that can
be set against data model objects can now be set using XML.

This chapter discusses the ways you can use XML to customize reports on the fly
and to build data models. It includes the following sections:

s Customization Overview

s Creating XML Customizations

s Creating XML Data Models

s Using XML Files at Runtime

s Debugging XML Report Definitions

This chapter lists and provides examples of the supported elements in the
reports.dtd file. However, only some of the attributes of these elements are
listed.

For more information, either on the additional attributes or on the Oracle Reports
XML elements, tags, and attributes, refer to the following sources:

s The reports.dtd file lists all the Oracle Reports XML elements, tags, and
attributes and, where present, the attributes' default values. The reports.dtd
file is located in ORACLE_HOME\reports\dtd\ on both Windows and UNIX
platforms. Many of the sub-elements include symbols that denote usage rules.
For example:

= A plus sign (+) means you can have one or more of this type of element in
your XML file.

= An asterisk (*) means you can have from zero to many of this type of
element in your XML file.

= A question mark (?) means you can have either zero or one of this type of
element in your XML file.

= No mark means the element is required, and you can have one and only
one of this type of element in your XML file.

If multiple sub-elements are enclosed in parentheses and followed by a symbol,
the symbol applies to all enclosed sub-elements.

s Topic "Oracle Reports XML tags" in the Reference section of the Reports Builder
online help for descriptions of selected tags.

16-2 Oracle Application Server Reports Services Publishing Reports to the Web

Customization Overview

Build a report that includes the type of customization you are trying to build,
save the report as XML, and view the saved file in a text editor. This provides
an excellent means of seeing Oracle Reports XML in action and provides you
with examples of the more complex models you may wish to build.

16.1 Customization Overview

By using the Oracle Reports XML tags, you can customize reports created using
Reports Builder.

Note: Although it is possible to create an entire report manually
using the Oracle Reports XML tags, only manually created
customizations and data models are documented and supported.

Creating and applying an XML customization is a three-step process:

1.

Create a customization file using Oracle Reports XML tags.

You can create this customization by building a report using Reports Builder
then saving your report as XML. You can also build the customization
manually, with any sort of text editor or a sophisticated XML editor, as long as
you include the XML tags that are required for the particular Oracle Reports
customization.

For descriptions of selected Oracle Reports XML tags, see opic "Oracle Reports
XML tags" in the Reference section of the Reports Builder online help for
descriptions of selected tags.

Store the XML customization in a location that is accessible to OracleAS Reports
Services.

Apply the XML customization to another report with the CUSTOMIZE
command line keyword or the SRW. APPLY_DEFINITION built-in procedure, or
run the XML customization by itself (if it contains a complete report definition)
with the REPORT (or MODULE) command line keyword.

See Also: Command Line Options

For information on using the command line keywords.

Customizing Reports with XML 16-3

Creating XML Customizations

16.2 Creating XML Customizations

This section provides examples of various report customizations. It includes
examples of:

= Required XML Tags

= Changing Styles

s Changing a Format Mask

» Adding Formatting Exceptions

= Adding Program Units and Hyperlinks

= Adding a New Query and Using the Result in a New Header Section
» Encoding the URL

16.2.1 Required XML Tags
Every XML customization must contain the following required tag pair:

<report></report>

For example, the following is the most minimal XML customization possible:

<report name="emp" DTDVersion="9.0.2.0.0">
</report>

This XML customization would have a null effect if applied to a report because it
contains nothing. It can be parsed because it has the needed tags, but it is useful
only as an example of the required tags.

The <report> tag indicates the beginning of the report customization, its name,
and the version of the Data Type Dictionary (DTD) file that is being used with this
XML customization. The </report> tag indicates the end of the report
customization.

The report tag's name attribute can be any name you wish, either the name of the
report the XML file will customize, or any other name.

This example represents a minimal use of the <report> tag. The <report> tag
also has many attributes, most of which are implied and need not be specified. The
only required <report> attribute is DTDVersion.

A full report definition requires both a data model and a layout and therefore also
requires the following tags and their contents:

16-4 Oracle Application Server Reports Services Publishing Reports to the Web

Creating XML Customizations

m <data></data>
s <layout></layout>

The data tag has no accompanying attributes. The 1ayout tag has two attributes,
both of which are required: panelPrintOrder and direction. If you use the
default values for these attributes (respectively acrossDown and default), you
don't need to specify them. Examples of the data and layout elements are
provided in the following sections.

16.2.2 Changing Styles

The example in this section demonstrates the use of XML to change the fill and line
colors used for report fields F_Mincurrent_pricePersymbol and F_
Maxcurrent_pricePersymbol.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>
<section name="main">
<field name="F_Mincurrent_pricePersymbol"
source="Mincurrent_pricePersymbol"
lineColor="black"
fillColor="r100g50b50" />
<field name="F_Maxcurrent_pricePersymbol"
source="Maxcurrent_pricePersymbol"
lineColor="black"
fillColor="r100g50b50" />
</section>
</layout>
</report>

We assume in this example that the section and field tags' name attributes
match the names of fields in the Main section of the report this XML file will
customize. In keeping with this assumption, the other attributes of the field tag
will be applied only to the fields of the same name in the report's Main section.

16.2.3 Changing a Format Mask

The example in this section demonstrates the use of XML to change the format
mask used for a report field £_trade_date.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>
<section name="main"
<field name="f_trade_date"

Customizing Reports with XML 16-5

Creating XML Customizations

source="trade_date"
formatMask="MM/DD/RR" />
</section>
</layout>
</report>

Notice that the field tag provides its own closure (/>). If the field tag used
additional sub-tags, you would close it with </field>.

16.2.4 Adding Formatting Exceptions

The example in this section demonstrates the use of XML to add a formatting
exception to highlight values greater than 10 in a report's £ p_e and £_p_el fields.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>
<section name="main">
<field name="f_p_e" source="p_e">
<exception textColor="red">
<condition source="p_e" operator="gt" operandl="10"/>
</exception>
</field>
<field name="f_p_el" source="p_e">
<exception textColor="blue">
<condition source="p_e" operator="gt" operandl="10"/>
</exception>
</field>
</section>
</layout>
</report>

In this example, the value for operator is gt, for greater than. Operators include
those listed in Table 16-1:

Table 16—-1 Values for the operator attribute

Operator Usage

eq equal

1t less than

lteq less than or equal to
neg not equal to

gt greater than

16-6 Oracle Application Server Reports Services Publishing Reports to the Web

Creating XML Customizations

Table 16—-1 Values for the operator attribute

Operator Usage

gteq greater than or equal to
btw between

notBtw not between

like like

notLike not like
null null

notNull not null

Notice also that, unlike the previous example, the field tags in this example uses
sub-tags, and, consequently, closes with </field>, rather than a self-contained

closure (/>).

16.2.5 Adding Program Units and Hyperlinks

The example in this section demonstrates the use of XML to add a program unit to a
report, which in turn adds a hyperlink from the employee social security number
(:SSN) to employee details.

<report name="anyName" DTDVersion="9.0.2.0.0">
<layout>
<section name="header">
<field name="F_ssnl" source="ssnl">
<advancedLayout formatTrigger="F_ssnlFormatTrigger"/>
</field>
</section>
<section name="main">
<field name="F_ssn" source="ssn">
<advancedLayout formatTrigger="F_ssnFormatTrigger"/>
</field>
</section>
</layout>
<programUnits>
<function name="F_ssnlFormatTrigger">
<textSource>
<! [CDATA[
function F_ssnlFormatTrigger return boolean is
begin

Customizing Reports with XML 16-7

Creating XML Customizations

SRW.SET_HYPERLINK (' #EMP_DETAILS_&<' || LTRIM(TO_CHAR(:SSN))
>
return (TRUE);
end;
11>
</textSource>
</function>
<function name="F_ssnFormatTrigger">
<textSource>
<! [CDATA[
function F_ssnFormatTrigger return boolean is
begin
SRW.SET_LINKTAG ('EMP_DETAILS_&<' || LTRIM(TO_CHAR(:SSN)) ||
'>");
return (TRUE);
end;
11>
</textSource>
</function>
</programUnits>
</report>

A CDATA tag is used around the PL/SQL to distinguish it from the XML. Use the
same tag sequence when you embed HTML in your XML file. In this example, the
functions are referenced by name from the formatTrigger attribute of the
advancedLayout tag.

16.2.6 Adding a New Query and Using the Result in a New Header Section

The example in this section demonstrates the use of XML to add a new query to a
report and a new header section that makes use of the query result.

<report name="ref" DTDVersion="9.0.2.0.0">
<data>
<dataSource name="Q_summary">
<select>select portid ports, locname locations from portdesc
</select>
</dataSource>
</data>
<layout>
<section name="header">
<tabular name="M_summary" template="BLAFbeige.tdf">
<labelAttribute font="Arial"
fontSize="10"
fontStyle="bold"

16-8 Oracle Application Server Reports Services Publishing Reports to the Web

Creating XML Customizations

textColor="white"/>
<field name="F_ports"
source="ports"
label="Port IDs"
font="Arial"
fontSize="10"/>
<field name="F_locations"
source="locations"
label="Port Names"

font="Arial"
fontSize="10"/>
</tabular>
</section>
</layout>
</report>

This example XML can be run by itself because it has both a data model and a
complete layout.

Use aliases in your SELECT statements to ensure the uniqueness of your column
names. If you do not use an alias, then the default name of the report column is
used and could be something different from the name you expect (for example,
portidl instead of portid). This becomes important when you must specify the
source attribute of the field tag, which requires you to supply the correct name
of the source column (the field).

The labelAttribute element defines the formatting for the field labels in the
layout. Because it lies outside of the open and close £ield tag, it applies to all the
labels in the tabular layout. If you wanted it to pertain to only one of the fields, then
you place it inside the <field></field> tag pair. If there is both a global and
local 1abelAttribute element (one outside and one inside the
<field></field> tag pair), the local overrides the global.

16.2.7 Encoding the URL

To ensure that spaces and control characters are passed correctly, you may need to
turn URL encoding on or off for the fields in your report. You can turn URL
encoding on or off with the RW: FIELD tag in a report:

<rw:field
urlEncode=yes |no

/>

Customizing Reports with XML 16-9

Creating XML Data Models

The default value for url1Encode is no.

16.3 Creating XML Data Models

OracleAS Reports Services introduces a greater level of sophistication in the types of
data models you can create using Oracle Reports XML tags. Use XML for:

» Creating Multiple Data Sources

= Linking Between Data Sources

s Creating Group Hierarchies within Each Data Source

» Creating Cross-product (Matrix) Groups

» Creating Formulas, Summaries, and Placeholders at Any Level
s Creating Parameters

This section provides examples of these uses of XML.

In addition to these data model types, OracleAS Reports Services provides support
for using PL/SQL in your XML. This includes support for local program units,
report-level triggers, and attached PL/SQL libraries.

16.3.1 Creating Multiple Data Sources

The <data> tag now supports the creation of multiple data sources as well as the
new pluggable data sources. Each data source is enclosed within its own
<dataSource> tag. The data type definition for the dataSource element is:

<!ELEMENT dataSource
((select|plugin|plsql),
comment?,
displayInfo?,
formula*,
group*) >

<!ATTLIST dataSource
name CDATA #IMPLIED
defaultGroupName CDATA #IMPLIED
maximumRowsToFetch CDATA #IMPLIED>

The following example creates two SQL data sources and names them Q_1 and Q_2.
It also creates all the necessary columns for the data sources and the default

16-10 Oracle Application Server Reports Services Publishing Reports to the Web

Creating XML Data Models

group—giving the group the specified defaultGroupName or defaulting its own
name if defaul tGroupName is not specified.

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>
<dataSource name="Q 1" defaultGroupName="G_DEPARTMENTS">
<select>
select * from departments
</select>
</dataSource>
<dataSource name="Q 2" defaultGroupName="G_EMPLOYEES">
<select>
select * from employees
</select>
</dataSource>
</data>
</report>

16.3.2 Linking Between Data Sources

In the presence of multiple data sources, it may be desirable to link the data sources
together to create the appropriate data model. Oracle Reports data model link
objects have also been exposed through Oracle Reports XML. They support both
group- and column-level links. You can specify any number of links to create the
required data model.

The data type definition for the 1ink element is:

<!ELEMENT link EMPTY>
<!ATTLIST link
name CDATA #IMPLIED
parentGroup CDATA #IMPLIED
parentColumn CDATA #IMPLIED
childQuery CDATA #IMPLIED
childColumn CDATA #IMPLIED
condition (eq|lt|neq|gt|gteq|like|notLike) "eq"
sqlClause (startWith|having|where) "where">

The 1ink element is placed within a data element and can link any two
dataSource objects defined within the data element. For example:

<report name="anyname" DTDVersion="9.0.2.0.0">
<data>
<dataSource name="Q 1" defaultGroupName="G_DEPARTMENTS">
<select>

Customizing Reports with XML 16-11

Creating XML Data Models

select * from departments
</select>
</dataSource>
<dataSource name="Q 2" defaultGroupName="G_EMPLOYEES">
<select>
select * from employees
</select>
</dataSource>
<link name="IL_1" parentGroup="G_DEPARTMENTS"
parentColumn="DEPARTMENT ID" childQuery="Q 2"
childColumn="DEPARTMENT_ID1" condition="eqg" sglClause="where"/>
</data>
</report>

Within the 1ink element, Oracle Reports defaulting mechanism recognizes
DEPARTMENT_IDI as an alias to the DEPARTMENT_ID column in the EMPLOYEES
table without your having to explicitly create such an alias.

16.3.3 Creating Group Hierarchies within Each Data Source

With OracleAS Reports Services, the complete group hierarchy is available to you.
You can specify all the columns within each group and break the order of those
columns. You can use formulas, summaries, and placeholders to further customize
the objects within groups.

The data type definition for the group element is:

<!ELEMENT group
(field|exception|rowDelimiter|xmlSettings|displayInfo|dataltem|formula]|
summary |[placeholder |filter|comment) *>

<IATTLIST group
name CDATA #IMPLIED
fillColor CDATA #IMPLIED
lineColor CDATA #IMPLIED
formatTrigger CDATA #IMPLIED>

The following example demonstrates the use of a group element to create a break
group under a data source.

<report name="anyname" DTDVersion="9.0.2.0.0">

<data>
<dataSource name="Q 1">
<select>
select * from employees
</select>

16-12 Oracle Application Server Reports Services Publishing Reports to the Web

Creating XML Data Models

<group name="G_DEPARTMENTS" >
<dataItem name="DEPARTMENT ID"/>

</group>

<group name="G_EMPLOYEES">
<dataItem="EMPLOYEE_ID"/>
<dataltem="FIRST_NAME"/>
<dataltem="LAST_NAME"/>
<dataIltem="JOB_ID"/>
<dataItem="MANAGER_ID"/>
<dataIltem="HIRE_DATE"/>
<dataItem="SALARY"/>
<dataIltem="COMMISSION_PCT"/>

</group>

</dataSource>
</data>
</report>

16.3.4 Creating Cross-product (Matrix) Groups

Cross-product groups allow you to define a matrix of any number of groups in the
data model. The dimension groups in a cross product may exist in the same data
source or may be combined from different data sources to create a matrix. In
support of this flexibility, the <crossProduct> tag is placed within the <data>
tag after all the data sources and groups have been created.

The data type definition for the crossProduct element is:

<!ELEMENT crossProduct

(xmlSettings|displayInfo|dimension| (formula|summary|placeholder) * | comment) *>
<ATTLIST crossProduct

name CDDATA #IMPLIED

mailText CDDATA #IMPLIED>

The following example demonstrates the creation of a single-query matrix.

<report name="anyname" DTDVersion="9.0.2.0.0">

<data>
<dataSource name="Q_1">
<select>
select * from employees
</select>

<group name="G_DEPARTMENTS" >
<dataltem name="DEPARTMENT_ ID"/>

</group>

<group name="G_JOB_ID>

Customizing Reports with XML 16-13

Creating XML Data Models

<dataltem name="JOB_ID"/>
</group>
<group name="G_MANAGER_ID">
<dataItem name="MANAGER_ID"
</group>
<group name="G_EMPLOYEE_ID">
<dataltem name="EMPLOYEE_ID"/>
<dataltem name="FIRST NAME"/>
<dataltem name="LAST NAME"/>
<dataItem name="HIRE_DATE"/>
<dataltem name="SALARY"/>
<dataItem name="COMMISSION_PCT"/>
</group>
</dataSource>
<crossProduct name="G_Matrix">
<dimension>
<group name="G_DEPARTMENTS">
</dimension>
<dimension>
<group name="G_JOB_ID">
</dimension>
<dimension>
<group name="G_MANAGER_ID">
</dimension>
</crossProduct>
</data>
</report>

16.3.5 Creating Formulas, Summaries, and Placeholders at Any Level

You can place formulas, summaries, and placeholders at any level within the data
model. Additionally, you have complete control over all the attributes for each of
these objects.

The following example demonstrates the creation of a report-level summary whose
source is based on a group-level formula column.

<report name="anyname" DTDVersion="9.0.2.0.0">

<data>
<dataSource name="Q_1">
<select>
select * from employees
</select>

<group name="G_EMPLOYEES">
<dataItem="EMPLOYEE_ID"/>

16-14 Oracle Application Server Reports Services Publishing Reports to the Web

Creating XML Data Models

<dataltem name="EMPLOYEE_ID"/>
<dataItem name="FIRST NAME"/>
<dataItem name="LAST_NAME"/>
<dataItem name="HIRE_DATE"/>
<dataltem name="SALARY"/>
<dataltem name="COMMISSION_PCT"/>
<dataItem name="DEPARTMENT ID"/>
<formula name="CF_REMUNERATION" source="cf_lformula"
datatype="number" width="20" precision="10"/>
</group>
</dataSource>
<summary name="CS_REPORT_LEVEL_SUMMARY" function="sum" width="20"
precision="10" reset="report" compute="report"/>
</data>
<programUnits>
<function name="cf_lformula" returnType="number">
<textSource>
<! [CDATA [
function CF_lFormula return Number is
begin
return (:salary + nvl(:commission_pct,0));
end;
11>
</textSource>
</function>
</programiUnits>
</report>

16.3.6 Creating Parameters

In Oracle Reports XML, the parameter element is placed between open and close
data tags. The data type definition for the parameter element is:

<!ELEMENT parameter (comment?\1istOfValues?)>
<!ATTLIST parameter
name CDATA #REQUIRED
datatype (number|character|date) "number"
width CDATA "20"
scale CDATA "0"
precision CDATA "Q"
initialValue CDATA #IMPLIED
inputMask CDATA #IMPLIED
validationTrigger CDATA #IMPLIED
label CDATA #IMPLIED
defaultWidth CDATA #IMPLIED

Customizing Reports with XML 16-15

Creating XML Data Models

defaultHeight CDATA #IMPLIED>

The following example demonstrates a dynamic list of values (LOV), an initial
value, and a validation trigger.

<report name="anyname" DTDVersion="9.0.2.0.0">

<data>
<dataSource name="Q 1" defaultGroupName="G_DEPARTMENTS">
<select>
select * from departments
</select>
</dataSource>

<parameter name="P_LAST_NAME" datatype="character" precision="10"
initialValue="SMITH" validationTrigger="p_last_namevalidtrigger"
defaultWidth="0" defaultHeight="0">
<listOfValues restrictToList="yes">
<selectStatement hideFirstColumn="yes">
<! [CDATA[select last_name, 'last_name||'-'||employee_id"
from employees]]>
</selectStatement>
</listOfValues>
</parameter>
</data>
<programUnits>
<function name="p_last_namevalidtrigger" returnType="character">
<textSource>
<! [CDATA[function P_LAST_NAMEValidTrigger return boolean is last_name
char (20) ;
begin
select count(*) into last_name from employees
where upper (last_name)=upper (:p_last_name) ;
exception when OTHERS then return(FALSE);
end;
return (TRUE) ;
end;
11>
</textSource>
</function>
</programinits>
</report>

16-16 Oracle Application Server Reports Services Publishing Reports to the Web

Using XML Files at Runtime

16.4 Using XML Files at Runtime

Once you have created your Oracle Reports XML customization file, you can use it
in the following ways:

= You can apply XML report definitions to RDF or other XML files at runtime by
specifying the CUSTOMIZE command line keyword or the SRW.APPLY_
DEFINITION built-in procedure. Refer to Applying an XML Report Definition
at Runtime for more information.

= You can run an XML report definition by itself (without another report) by
specifying the REPORT (or MODULE) command line keyword. Refer to Running
an XML Report Definition by Itself for more information.

= You can use RWCONVERTER to make batch modifications using the CUSTOMIZE
command line keyword. Refer to Performing Batch Modifications for more
information.

The following sections describe each of the cases in more detail and provide
examples.

16.4.1 Applying an XML Report Definition at Runtime

To apply an XML report definition to an RDF or XML file at runtime, you can use
the CUSTOMIZE command line keyword or the SRW.APPLY_DEFINITION built-in
procedure. CUSTOMIZE can be used with rwclient, rwrun, rwbuilder,
rwconverter, and URL report requests.

Note: Refer to Performing Batch Modifications for more
information about using CUSTOMIZE with rwconverter.

16.4.1.1 Applying One XML Report Definition

The following command line sends a job request to OracleAS Reports Services and
applies an XML report definition, EMP . XML, to an RDF file, emp . rdf£. In this
example, the CUSTOMIZE command refers to a file located in a Windows directory
path. For UNIX, specify the path according to UNIX standards (i.e.,
myreports/emp.xml).

rwclient report=emp.rdf customize=\myreports\emp.xml
USERID=username/password@my_db destype=file desname=emp.pdf
desformat=PDF server=server._name

Customizing Reports with XML 16-17

Using XML Files at Runtime

When you use RWRUN, the Reports Runtime command, the equivalent command
line would be:

RWRUN USERID=username/password@my_db report=emp.rdf
customize=\myreports\emp.xml destype=file desname=emp.pdf
desformat=PDF

When testing your XML report definition, it is sometimes useful to run your report
requests with additional options to create a trace file. For example:

TRACEFILE=emp.log TRACEMODE=trace_replace TRACEOPT=trace_app

Note: Unless you care to change the default, it isn't necessary to
include a trace in the command line if you have specified a default
trace option in the Reports Server configuration file.

The trace file provides a detailed listing of the creation and formatting of the report
objects.

16.4.1.2 Applying Multiple XML Report Definitions

You can apply multiple XML report definitions to a report at runtime by providing
a list with the CUSTOMIZE command line keyword. The following command line
sends a job request to OracleAS Reports Services that applies two XML report
definitions, EMPO . XML and EMP1 . XML, to an RDF file, EMP . RDF:

rwclient report=emp.rdf
customize=" (d:\corp\myreports\emp0.xml,d: \corp\myreports\empl.xml)"
userid=username/password@my_db destype=file desname=emp.pdf
desformat=PDF server=server._name

Note: In this example, the CUSTOMIZE command entry
demonstrates a directory path to files stored on a Windows
platform. For UNIX, use that platform's standard for specifying
directory paths (i.e., forward slashes instead of backward).

If you were using Reports Runtime, then the equivalent command line would be:

rwrun report=emp.rdf
customize=" (D:\CORP\MYREPOORTS\EMPO .XML, D: \CORP\MYREPORTS\EMP1 .XML) "
userid=username/password@my_db destype=file desname=emp.pdf
desformat=PDF

16-18 Oracle Application Server Reports Services Publishing Reports to the Web

Using XML Files at Runtime

16.4.1.3 Applying an XML Report Definition in PL/SQL

To apply an XML report definition to an RDF file in PL/SQL, use the SRW.APPLY_
DEFINITION and SRW.ADD_DEFINITION built-ins in the BeforeForm or
AfterForm trigger. The following sections provide examples of these built-ins.

16.4.1.3.1 Applying an XML Definition Stored in a File To apply XML that is stored in the
file system to a report, use the SRW.APPLY_DEFINITION built-in procedure in the
BeforeForm or AfterForm triggers of the report.

On Windows:

SRW.APPLY_DEFINITION ('\ORACLE_HOME\TOOLS\DOC\US\RBBR\COND.XML') ;

On UNIX:

SRW.APPLY_DEFINITION ('ORACLE_HOME/TOOLS/DOC/US/RBBR/COND.XML') ;

When the report is run, the trigger executes and the specified XML file is applied to
the report.

16.4.1.3.2 Applying an XML Definition Stored in Memory To create an XML report
definition in memory, you must add the definition to the document buffer using
SRW.ADD_DEFINITION before applying it using the SRW.APPLY_DEFINITION
built-in procedure.

The following example illustrates how to build up and apply several definitions in
memory based upon parameter values entered by the user. The PL/SQL in this
example is used in the AfterParameterForm trigger of a report called videosales_
custom.rdf.

The videosales_custom.rdf file contains PL/SQL in its AfterParameterForm
trigger that does the following:

= Conditionally highlights fields based upon parameter values entered by the
user at runtime.

= Changes number format masks based upon parameter values entered by the
user at runtime.

The following tips are useful when looking at this example:

s Each time you use the SRW.APPLY_DEFINITION built-in procedure, the
document buffer is flushed and you must begin building a new XML report
definition with SRW.ADD_DEFINITION.

Customizing Reports with XML 16-19

Using XML Files at Runtime

= Notice the use of the parameters hilite_profits,hilite_costs, hilite_
sales, and money_format to determine what to include in the XML report
definition. The hilite profits,hilite costs,and hilite_sales
parameters are also used in the formatting exceptions to determine which
values to highlight.

= Because of the upper limit on the size of VARCHAR2 columns (4000 bytes), you
might need to spread very large XML report definitions across several columns.
If so, then you might have to create several definitions in memory and apply
them separately rather than creating one large definition and applying it once.

function AfterPForm return boolean is
begin
SRW.ADD_DEFINITION ('<report name="vidsales_masks"
author="Generated" DTDVersion="9.0.2.0.0">");
IF :MONEY_FORMAT='S$NNNN.0OO' THEN SRW.ADD_DEFINITION('<layout>');
SRW.ADD_DEFINITION('<section name="main">'");
SRW.ADD_DEFINITION ('<field name="F_TOTAL_PROFIT" source="TOTAL_PROFIT"
formatMask="LNNNNNNNNNNNODOQ"/>") ;
SRW.ADD_DEFINITION ('<field name="F_TOTAL_SALES" source="TOTAL_SALES"
formatMask="LNNNNNNNNNNNODOO"/>") ;
SRW.ADD_DEFINITION('<field name="F_TOTAL_COST" source="TOTAL_COST"
formatMask="LNNNNNNNNNNNODOQ"/>") ;
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_PROFITPerCITY" source="SumTOTAL_
PROFITPerCITY"
formatMask="LNNNNNNNNNNNODOQ"/>") ;
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_SALESPerCITY" source="SumTOTAL_
SALESPerCITY"
formatMask="LNNNNNNNNNNNODOQ"/>") ;
SRW.ADD_DEFINITION ('<field name="F_SumTOTAL_COSTPerCITY" source="SumTOTAL_
COSTPerCITY"
formatMask="LNNNNNNNNNNNODOQ"/>") ;
SRW.ADD_DEFINITION('</section>"');
SRW.ADD_DEFINITION('</layout>"');
ELSIF :MONEY_FORMAT='SNNNN' THEN SRW.ADD_DEFINITION ('<layout>');
SRW.ADD_DEFINITION('<section name="main">');
SRW.ADD_DEFINITION ('<field name="F_TOTAL_PROFIT" source="TOTAL_PROFIT"
formatMask="LNNNNNNNNNNNO"/>") ;
SRW.ADD_DEFINITION ('<field name="F_TOTAL_SALES" source="TOTAL_SALES"
formatMask="LNNNNNNNNNNNO"/>") ;
SRW.ADD_DEFINITION('<field name="F_TOTAL_COST" source="TOTAL_COST"
formatMask="LNNNNNNNNNNNO"/>") ;
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_PROFITPerCITY" source="SumTOTAL_
PROFITPerCITY" formatMask="LNNNNNNNNNNNO"/>");
SRW.ADD_DEFINITION('<field name="F_SumTOTAL_SALESPerCITY" source="SumTOTAL_

16-20 Oracle Application Server Reports Services Publishing Reports to the Web

Using XML Files at Runtime

END

SRW.
SRW.
SRW.

SALESPerCITY" formatMask="LNNNNNNNNNNNO"/>"');

SRW.ADD_DEFINITION ('<field name="F_SumTOTAL_COSTPerCITY" source="SumTOTAL_
COSTPerCITY" formatMask="LNNNNNNNNNNNO"/>"');
SRW.ADD_DEFINITION('</section>"');

SRW.ADD_DEFINITION('</layout>"');

IF;

ADD_DEFINITION('</report>"');

APPLY_ DEFINITION;

ADD_DEFINITION('<report name="vidsales_hilite_costs" author="Generated"

DTDVersion="9.0.2.0.0">");

IF

END

SRW.
SRW.
SRW.

:HILITE_COSTS <> 'None' THEN SRW.ADD_DEFINITION('<layout>');

SRW.ADD_DEFINITION ('<section name="main">');

SRW.ADD_DEFINITION ('<field name="F_TOTAL_COST" source="TOTAL_COST">');
SRW.ADD_DEFINITION ('<exception textColor="red">');

SRW.ADD_DEFINITION ('<condition source="TOTAL_COST" operator="gt"
operandl=":hilite_costs"/>"');

SRW.ADD_DEFINITION ('</exception>"');

SRW.ADD_DEFINITION('</field>"');

SRW.ADD_DEFINITION('</section>');

SRW.ADD_DEFINITION ('</layout>");

IF;

ADD_DEFINITION('</report>"');

APPLY_DEFINITION;

ADD_DEFINITION ('<report name="vidsales_hilite_sales" author="Generated"

DTDVersion="9.0.2.0.0">");

IF

END

SRW.
SRW.
SRW.

:HILITE_SALES <> 'None' THEN SRW.ADD_DEFINITION('<layout>');

SRW.ADD_DEFINITION('<section name="main">");

SRW.ADD_DEFINITION('<field name="F_TOTAL_SALES" source="TOTAL_SALES">');
SRW.ADD_DEFINITION ('<exception textColor="red">');
SRW.ADD_DEFINITION('<condition source="TOTAL_SALES" operator="gt"
operandl=":hilite_sales"/>');

SRW.ADD_DEFINITION ('</exception>"');

SRW.ADD_DEFINITION('</field>");

SRW.ADD_DEFINITION('</section>"');

SRW.ADD_DEFINITION('</layout>"');

IF;

ADD_DEFINITION('</report>"');

APPLY_ DEFINITION;

ADD_DEFINITION ('<report name="vidsales_hilite_profits" author="Generated"

DTDVersion="9.0.2.0.0">");

IF :

HILITE_PROFITS <> 'None' THEN SRW.ADD_DEFINITION ('<layout>');
SRW.ADD_DEFINITION('<section name="main">");

SRW.ADD_DEFINITION ('<field name="F_TOTAL_PROFIT" source="TOTAL_PROFIT">');
SRW.ADD_DEFINITION ('<exception textColor="red">');

SRW.ADD_DEFINITION ('<condition source="TOTAL_PROFIT" operator="gt"

Customizing Reports with XML 16-21

Using XML Files at Runtime

operandl=":hilite_profits"/>"');
SRW.ADD_DEFINITION ('</exception>');
SRW.ADD_DEFINITION('</field>");
SRW.ADD_DEFINITION('</section>"');
SRW.ADD_DEFINITION('</layout>"');
END IF;
SRW.ADD_DEFINITION('</report>"');
SRW.APPLY_DEFINITION;
return (TRUE);
end;

16.4.2 Running an XML Report Definition by ltself

To run an XML report definition by itself, you send a request with an XML file
specified in the REPORT (or MODULE) option. The following command line sends a
job request to OracleAS Reports Services to run a report, emp . xm1, by itself:

rwclient userid=username/password@my._db
report=c:\corp\myreports\emp.xml
destype=file desname=emp.pdf desformat=pdf
server=server_name

When you use rwrun, the Reports Runtime command, the equivalent command
line would be:

rwrun userid=username/password@my_db
report=c:\corp\myreports\emp.xml
destype=file desname=emp.pdf desformat=PDF

When you run an XML report definition in this way, you must specify an XML file
extension. You could also apply an XML customization file to this report using the
CUSTOMIZE option.

16.4.3 Performing Batch Modifications

If you have a large number of reports that need to be updated, then you can use the
CUSTOMIZE command line keyword with RWCONVERTER to perform modifications
in batch. Batch modifications are particularly useful when you must make a
repetitive change to a large number of reports (for example, changing a field's
format mask). Rather than opening each report and manually making the change in
Reports Builder, you can run RWCONVERTER once and make the same change to a
large number of reports at once.

16-22 Oracle Application Server Reports Services Publishing Reports to the Web

Debugging XML Report Definitions

The following example applies two XML report definitions, translate.xml and
customize.xml, to three RDF files, INVEN1 . RDF, INVEN?2 . RDF, and MANU . RDF, and
saves the revised definitions to new files, INVEN1_NEW.RDF, INVEN2_NEW . RDF,
and MANU_NEW . RDF.

rwconverter username/password@my_db
stype=rdffile
source=" (invenl.rdf, inven2.rdf, manu.rdf)"
dtype=rdffile
dest="(invenl_new.rdf, inven2_new.rdf, manu_new.rdf)"
customize=" (d:\apps\trans\translate.xml,d:\apps\custom\customize.xml) "
batch=yes

Note: In this example, the CUSTOMIZE command entry
demonstrates a directory path to files stored on a Windows
platform. For UNIX, use that platform's standard for specifying
directory paths (i.e., forward slashes instead of backward).

16.5 Debugging XML Report Definitions
The following features are available to help you debug your XML report files:
s XML Parser Error Messages
s Tracing Options
s rwbuilder
= Writing XML to a File for Debugging

These features are discussed in the following sections.

16.5.1 XML Parser Error Messages

The XML parser is part of Oracle's XML Development Kit (XDK), which is delivered
with the core Oracle Database release. The XML parser is a Java package that checks
the validity of XML syntax. The JAR files that contain the XML parser are
automatically set up on install and are available to Oracle Reports.

The XML parser catches most syntax errors and displays an error message. The
error message contains the line number in the XML where the error occurred as well
as a brief description of the problem.

Customizing Reports with XML 16-23

Debugging XML Report Definitions

For more information on the XML parser, see the Oracle Technology Network,
(http://otn.oracle.com). Search for XML parser or XDK. Information is also
available in the documentation that came with your Oracle Database.

16.5.2 Tracing Options

When testing your XML report definition, it can be useful to run your report along
with additional options to create a trace file. For example:

RWRUN <username>/<password>@<my._db>
REPORT=\CORP\MYREPORTS\EMP . XML
TRACEFILE=emp.log
TRACEMODE=trace_replace
TRACEOPT=trace_app

The last three options in this command line generate a trace file that provides a
detailed listing of report processing. The default location for trace file logs is the
same on Windows and UNIX platforms:

ORACLE_HOME\reports\logs\

Note: In this example, the REPORT command entry and the path
to the trace log demonstrate directory paths to files stored on a
Windows platform. For UNIX, use that platform's standard for
specifying directory paths,i.e., forward slashes instead of backward.

16.5.3 rwbuilder

When designing an XML report definition, it is sometimes useful to open it in
Reports Builder. In Reports Builder, you can quickly determine if the objects are
being created or modified as expected. For example, if you are creating summaries
in an XML report definition, then opening the definition in Reports Builder enables
you to quickly determine if the summaries are being placed in the appropriate
group in the data model.

To open a full report definition in Reports Builder, use the REPORT (or MODULE)
keyword. For example:

rwbuilder userid=username/password@my_db report=c:\corp\myreports\emp.xml

To open a partial report definition in Reports Builder, use the CUSTOMIZE keyword.
For example:

rwbuilder userid=username/password@my_db report=emp.rdf

16-24 Oracle Application Server Reports Services Publishing Reports to the Web

Debugging XML Report Definitions

customize=c: \myreports\emp.xml

Note: In this example, the REPORT command entry demonstrates
a directory path to files stored on a Windows platform. For UNIX,
use that platform's standard for specifying directory paths,i.e.,
forward slashes instead of backward.

In both cases, Reports Builder is opened with the XML report definition in effect.
You can then use the various views of Reports Builder to determine if the report is
being created or modified as you expected.

16.5.4 Writing XML to a File for Debugging

If you are using SRW.ADD_DEFINTION to build an XML report definition in
memory, then it can be helpful to write the XML to a file for debugging purposes.
The following example demonstrates a procedure that writes each line that you pass
to it to the document buffer in memory and, optionally, to a file that you specify.

PROCEDURE addaline (newline VARCHAR, outfile Text_IO.File_Type) IS
BEGIN
SRW.ADD_DEFINITION (newline) ;
IF :WRITE_TO_FILE='Yes' THEN
Text_IO.Put_Line(outfile, newline);
END IF;
END;

For this example to work, the PL/SQL that calls this procedure would need to
declare a variable of type TEXT_IO.File_Type. For example:

custom_summary Text_IO.File_Type;

You would also need to open the file for writing and call the addaline procedure,
passing it the string to be written and the file to which it should be written. For
example:

custom_summary := Text_IO.Fopen(:file_directory |\ 'vid_summ_per.xml', 'w');
addaline ('<report name="video_custom" author="Generated"
DTDVersion="9.0.2.0.0">",

custom_summary) ;

Customizing Reports with XML 16-25

Debugging XML Report Definitions

16-26 Oracle Application Server Reports Services Publishing Reports to the Web

17

Using Event-Driven Publishing

Modern business processes often require the blending of automation into the work
environment through the invocation of behind-the-scenes functions and procedures.
Behind-the-scenes tasks can include the automatic production of output such as an
invoice that prints automatically when an order is processed, a Web site that is
automatically updated with current data, or an automatic e-mail with fresh report
output when a transaction is completed.

Automatic output in response to events used to be a fairly complicated effort,
particularly if you wished to produce the same results possible through interactive,
RAD development tools, such as Oracle Reports Developer.

To address the requirement of automatic output, Oracle introduced a scheduling
mechanism in OracleAS Reports Services that enabled the invocation of reports on a
scheduled basis without requiring additional user interaction. But this left one
requirement unresolved: the ability to automatically run a report in response to an
event in the database, such as the insertion of a record or the change of a value.

With the OracleAS Reports Services Event-Driven Publishing API, you can
automatically run a report in response to an event in the database, such as the
insertion of a record or the change of a value. The Event-Driven Publishing APl is a
PL/SQL API that allows for the automatic submission of jobs to OracleAS Reports
Services from within the database.

This chapter provides a look at the Event-Driven Publishing API and includes
examples of its use. It includes the following sections:

s The Event-Driven Publishing API
= Debugging Applications that Use the Event-Driven Publishing API
» Invoking a Report From a Database Event

» Integrating with Oracle Advanced Queuing

Using Event-Driven Publishing 17-1

The Event-Driven Publishing API

17.1 The Event-Driven Publishing API

The Event-Driven Publishing API is a PL/SQL package that provides the basic
functions required for the development of procedures that respond to events in the
database. Event-driven jobs are submitted using the HTTP protocol. The server
assigns a unique job_ident record to every call, useful for tracking the status of

the job.

17.1.1 Elements of the API

The API consists of several key elements:

s The SRW-Package contains all relevant functions and procedures for
submitting jobs, checking job status, and cancelling jobs, as well as
manipulating parameter lists.

s The ParamList-Type defines a parameter list. A parameter list is the main
vehicle for passing values when submitting a job. A parameter list is required
for each job submission. It must contain several key parameters.

s The ParamList-Object is required for such features as Advanced Queuing,
where a parameter list must be stored in the database so that it may be passed
along with a message.

These API elements are discussed in more detail in the following sections.

The API is installed together with OracleAS Reports Services Security and OracleAS
Portal, but neither is required. Installation scripts are also available separately
should you want to install the API into a database that does not also hold Oracle
Portal:

» srwAPIins.sql installs the Events-Driven Publishing API.

= srwAPIgrant.sgl grants access privileges to the API. Run this script for each
user to whom you will grant access to the APL If everyone may have access,
you can run this once and grant access to PUBLIC.

s srwAPIdrop.sqgl removes the APL

17.1.2 Creating and Manipulating a Parameter List

A parameter list is a PL/SQL variable of type SRW_PARAMLIST. A variable of this
type is an array of 255 elements of type SRW_PARAMETER, which itself consists of
two attributes: NAME and VALUE. The API provides procedures for manipulating
parameter lists, including;:

17-2 Oracle Application Server Reports Services Publishing Reports to the Web

The Event-Driven Publishing API

s Add_Parameter
s Remove_Parameter
s Clear_Parameter_List

These procedures allow you to manipulate your parameter lists. They are discussed
briefly in this section. You'll find more information in the Oracle Reports API
documentation.

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network, (http://otn.oracle.com).

17.1.2.1 Add_Parameter

Whenever you use a parameter list for the first time, it must be initialized before
you can add parameters to it. For example:

DECLARE
myPlist SRW_PARAMLIST;
BEGIN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',''));
srw.add_parameter (myPlist, 'myParameter', 'myValue');
END;

Both attributes of a parameter (NAME and VALUE) are of type VARCHAR?2 and
may not exceed a length of 80 characters for the NAME and 255 characters for the
value.

The ADD_PARAMETER function has a third—optional—attribute, called MODE. MODE
determines whether a parameter will be overwritten or an error raised in the event
that a parameter with the same name already exists. To specify that an error will be
raised in the event of duplicate names, use the constant CHECK_FOR_EXISTANCE.
This is the default value for the MODE attribute. To specify that a parameter will be
overwritten in the event of duplicate names, use the constant OVERWRITE_IF_
EXISTS.

17.1.2.2 Remove_Parameter

Use REMOVE_PARAMETER to remove a parameter from a parameter list. Call the
procedure, and pass the parameter list from which you want to remove a parameter
along with the name of the parameter you want to remove.

For example:

Using Event-Driven Publishing 17-3

The Event-Driven Publishing API

DECLARE
myPlist SRW_PARAMLIST;

BEGIN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',''));
srw.add_parameter (myPlist, 'myParameter', 'myValue');
Srw.remove_parameter (myPlist, 'myParameter');

END;

17.1.2.3 Clear_Parameter List

To remove ALL parameters from your list, use CLEAR_PARAMETER_LIST. For
example:

DECLARE
myPlist SRW_PARAMLIST;

BEGIN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',''));
srw.add_parameter (myPlist, 'myParameter', 'myValue');
srw.clear_parameter_list (myPlist);

END;

This will remove all parameters from your list.

17.1.3 How to Submit a Job

A parameter list contains all vital parameters for submitting a job. The job type
determines which parameters are required on the list to enable the Reports Server to
process the request.

The listed parameters are the same ones that you must specify when you submit a
job from a browser to the Reports Servlet. In such a case, if the job is a report you
will need at least the following parameters but may have more:

= GATEWAY provides the URL to the Reports Servlet you will use to process the
request.

= SERVER identifies the Reports Server to be used in conjunction with the servlet.
= REPORT identifies the report file to be run.
= USERID identifies the name and user ID of the person running the report.

= AUTHID provides authorization information in the event you are running
against a secured server.

17-4 Oracle Application Server Reports Services Publishing Reports to the Web

The Event-Driven Publishing API

Each request returns a job_ident record that holds the information required to
identify the job uniquely. This information is stored in variable of type SRW.JOB_
IDENT. Be aware that this is a PACKAGE-TYPE and must be referenced SRW.JOB_
IDENT; while the parameter list is an OBJECT-TYPE and must be referenced SRW_
PARAMLIST.

For example:

DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;

BEGIN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',''));
srw.add_parameter (myPlist, 'GATEWAY', 'http://..");
srw.add_parameter (myPlist, 'SERVER', 'mySVR');
srw.add_parameter (myPlist, 'REPORT', 'myReport.RDF') ;
srw.add_parameter (myPlist, 'USERID', 'me/secret');
myIdent := srw.run_report (myPlist);

END;

The API method RUN_REPORT takes a parameter list that contains all vital
information as input (via ADD_PARAMETER), creates and submits the request, and
returns the job_ident record.

The job_ident record contains the following parameters:
s MyIdent.GatewayURL

m MyIdent.ServerName

s MyIdent.JobID

n MyIdent.AuthID

These parameters are needed by the SRW.REPORT_STATUS function to get status
information for a submitted job.

17.1.4 How to Check for Status

The Event-Driven Publishing API provides a two-way communication with the
Reports Server. You submit a job to the server, and you can query the status of this
job from the server using the SRW.REPORT_STATUS function.

This function will return a record of type SRW. STATUS_RECORD that holds the
same information you would see in the job-status display if you were using the
Reports Servlet's SHOWJOBS command.

Using Event-Driven Publishing 17-5

The Event-Driven Publishing API

For example:

DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.Job_Ident;
myStatus SRW.Status_Record;

BEGIN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',''));
srw.add_parameter (myPlist, 'GATEWAY', 'http://..");
srw.add_parameter (myPlist, 'SERVER', 'mySVR');
srw.add_parameter (myPlist, 'REPORT', 'MyReport.RDF') ;
srw.add_parameter (myPlist, 'USERID', 'me/secret');
myIdent := srw.run_report (myPlist);
myStatus := srw.report_status (myIdent);

END;

You can use the returned status record for fetching information about the status of
your job.

17.1.5 Using the Servers' Status Record

The status record contains processing information about your job. It contains the
same information found in the server queue (SHOWJOBS). Additionally, it contains
information about the files produced for finished jobs and the lineage for scheduled
jobs.

The most important information in the status record is the current job status and the
status text, used in turn to check for runtime errors and their causes.

You can use timing information to determine if a job is subject to cancellation
because it has exceeded its predicted time for completion.

One way to use the status record is to cancel a job. The Event-Driven Publishing
API offers a method for cancelling a job that has been submitted to the server. This
might be handy if you want to remove a job that has exceeded its allowed time to
run or if you simply have scheduled jobs you want to cancel.

To cancel a job, use the following procedure:

DECLARE
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;
myStatus SRW.STATUS_RECORD;
BEGIN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',"''));
SRW.ADD_PARAMETER (myPlist, 'GATEWAY', 'http://..");

17-6 Oracle Application Server Reports Services Publishing Reports to the Web

Debugging Applications that Use the Event-Driven Publishing API

SRW.ADD_PARAMETER (myPlist, 'SERVER', 'mySVR') ;
SRW.ADD_PARAMETER (myPlist, 'REPORT', 'myReport.RDF') ;
SRW.ADD_PARAMETER (myPlist, 'USERID', 'me/secret');
myIdent := SRW.RUN_REPORT (myPlist);
myStatus := SRW.REPORT_STATUS (myIdent) ;
if myStatus.StatusCode != srw.RUNNING then
SRW.CANCEL_REPORT (myIdent) ;

END;

As evident in this example, you cancel a report by calling the CANCEL_REPORT
procedure (SRW.CANCEL_REPORT) and passing it the job_ident record of the job
you want to cancel. The procedure takes an optional parameter list to enable you to
pass any additional parameters you might need.

17.2 Debugging Applications that Use the Event-Driven Publishing API

Because these processes all run behind the scenes, there is no actual place where
debugging information is produced during normal execution. Therefore, the API
has two procedures that toggle a special debugging mode that produces extensive
debugging information via DBMS_OUTPUT:

s SRW.START_DEBUGGING
s SRW.STOP_DEBUGGING

To switch on debugging mode simply call SRW.START_DEBUGGING and to stop it
call SRW. STOP_DEBUGGING. The debugging-mode must be started immediately
before you run your actual logic. It stays on as long as the current instance of the
package is loaded.

One way you can display this information is by setting SERVEROUT to ON in
SQL*PLUS before you run your script.

In addition to this method of debugging, the API has a set of pre-defined exceptions
to be used for error handling. You'll find examples of these exceptions in the srw_
test.sql script provided with your OracleAS Reports Services installation.
Additionally, see the Oracle Reports API reference documentation for a detailed
explanation of these exceptions.

Note: Look for upcoming information about Reports APIs on the
Oracle Technology Network, (http://otn.oracle.com).

Using Event-Driven Publishing 17-7

Invoking a Report From a Database Event

17.3 Invoking a Report From a Database Event

Database triggers are the primary mechanism for invoking reports using the
Event-Driven Publishing API. The Oracle database allows you to define various
scopes of triggers that fire in response to various events. To submit a
database-driven job, you use the code described in the previous sections within a
database trigger.

There are many ways to use event-driven publishing. One way is to create security
protocols using a trigger that fires whenever a grant is done or a user logs on or off.
Another way is to create automated processes that respond to certain types of
changes to data in a table. For example, a database trigger could fire when the
status of an expense report changes to DONE; in turn, a report could automatically
be sent to an employee's manager.

For example:

CREATE TRIGGER EXP_REP_TRG
AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;
BEGIN
IF (:new.ExpStat = 'DONE') THEN
myPlist := SRW_PARAMLIST (SRW_PARAMETER('',''))
SRW.ADD_PARAMETER (myPlist, 'GATEWAY', 'http://..'
SRW.ADD_PARAMETER (myPlist, 'SERVER', 'fo0oSVR') ;
SRW.ADD_PARAMETER (myPlist, 'REPORT', 'f00.RDF');
SRW.ADD_PARAMETER (myPlist, 'USERID', 'foo/bar');
SRW.ADD_PARAMETER (myPlist, 'ExpenseID', :new.ExpID) ;
myIdent := SRW.RUN_REPORT (myPlist);
END IF;
END;

)i

This trigger will fire after each update on the EXP_REP table. In the event the status
changes to DONE, the report request is run.

If you want your request to run against a key specified in the cgicmd.dat file,
specify the CMDKEY parameter in lieu of the REPORT parameter. If the key contains
user ID information, you can omit the USERID parameter as well. For example:

CREATE TRIGGER EXP_REP_TRG
AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;
BEGIN
IF (:new.ExpStat = 'DONE') THEN

17-8 Oracle Application Server Reports Services Publishing Reports to the Web

Integrating with Oracle Advanced Queuing

myPlist
SRW.ADD
SRW.ADD

_PARAMETER (myPlist, 'GATEWAY', 'http://..
_PARAMETER (myPlist, 'SERVER', 'fooSVR') ;

:= SRW_PARAMLIST (SRW_PARAMETER('',''));
")

SRW.ADD_PARAMETER (myPlist, 'CMDKEY', 'keyvalue');
SRW.ADD_PARAMETER (myPlist, 'ExpenseID', :new.ExpID);

myIdent

END IF;

END;

:= SRW.RUN_REPORT (myPlist) ;

Additionally, if you have defined an advanced distribution model via a distribution
XML file, you can specify that file with the DESTINATION parameter. For example:

CREATE TRIGGER EXP_REP_TRG
AFTER INSERT OR UPDATE on EXP_REP FOR EACH ROW
myPlist SRW_PARAMLIST;
myIdent SRW.JOB_IDENT;

BEGIN

IF (:new.ExpStat = 'DONE') THEN

myPlist

SRW.ADD_PARAMETER (myPlist, 'GATEWAY', 'http://..

:= SRW_PARAMLIST (SRW_PARAMETER('','"));
')

SRW.ADD_PARAMETER (myPlist, 'SERVER', 'f0o0SVR') ;
SRW.ADD_PARAMETER (myPlist, 'REPORT', 'f00.RDF') ;

SRW.ADD_PARAMETER (myPlist, 'DISTRIBUTE', 'YES') ;

(
(
SRW.ADD_PARAMETER (myPlist, 'USERID', 'foo/bar');
(
(

SRW.ADD_PARAMETER (myPlist, 'DESTINATION', 'filename.xml') ;
SRW.ADD_PARAMETER (myPlist, 'ExpenseID', :new.ExpID) ;

myIdent

END IF;

END;

:= SRW.RUN_REPORT (myPlist) ;

This is one way to move this kind of logic from your application into the database
and use the database as a central storage for business processes.

Note:
Publish

You'll find additional examples of the Event-Driven
ing APl in action in the demo script sxw_test.sql,

included with your OracleAS Reports Services installation.

17.4 Integrating with Oracle Advanced Queuing

Oracle Advanced Queuing is a means for building an asynchronous
request/response mechanism around a so-called queue and two processes:
ENQUEUE, which puts MESSAGES into a queue, and DEQUEUE, which reads the

queue.

Using Event-Driven Publishing 17-9

Integrating with Oracle Advanced Queuing

Advanced queuing provides sophisticated mechanisms for distributing messages
across queues and for queue subscription. These mechanisms are all built on top of
these basic elements (ENQUEUE, DEQUEUE, and MESSAGES).

With the Event-Driven Publishing API you can use these queues to store and
transmit report jobs. You can even build your own queuing mechanism if the one
provided with OracleAS Reports Services does not fit your needs.

17.4.1 Creating a Queue That Holds Messages of Type SRW_PARAMLIST

A queue is a table in the database that holds, along with several administrative
columns, an object column that represents a message. In our case the message is the
parameter list.

The dbms_AQadm package, provided with Advanced Queuing, contains all the
administrative functions required for setting up an advanced queuing system.

Use dbms_AQadm.Create_Queue_Table to create the physical table in the
database. You must pass it a name for the table and a name for the object type that
will define the message for this queue.

For example:

execute dbms_AQadm.Create_Queue_Table
(queue_Table=>'queuename._tab',
queue_Payload_Type=>'SRW_PARAMLIST_OBJECT',
compatible=>'9.0");

In earlier examples, we created the object type SRW_PARAMLIST_OBJECT that
encapsulates the SRW_PARAMLIST type in object notation so it can be used as a
message.

After creating the queue table, you must create the queue with dbms_
AQadm.Create_Queue and start the queue with dbms_AQadm. Start_Queue.

For example:

execute dbms_AQadm.Create_Queue
(Queue_Name=>'queuename',Queue_Table=>'queuename._tab');
prompt .. starting queue
execute dbms_AQadm.Start_Queue
(Queue_Name=>'queuename') ;

17-10 Oracle Application Server Reports Services Publishing Reports to the Web

Integrating with Oracle Advanced Queuing

Note: You'l find a complete example for setting up, creating, and
starting a simple queue in the demo file srwAQsetup. sql,
included with your OracleAS Reports Services installation.

Having created and started the queue, what you need now is a procedure that
creates a message in this queue and a procedure that reads out the queue and
submits the job to the server. These are discussed in the following sections.

17.4.2 Creating the Enqueuing Procedure

The enqueuing procedure is responsible for putting a message into the queue. This
procedure can be part of your application, called by a database-trigger, or provided
via an external mechanism. In this section, we will provide an example of creating a
stored procedure that puts a simple message in this queue.

Because our message is the parameter list itself, the procedure is fairly easy. We use
the same code we used in earlier sections to create a parameter list. In addition to
the variables we used, we define an object variable to hold the message we will
put into the queue.

plist_object SRW_ParamList_Object;

After creating the parameter list we create the actual message object using the object
constructor.

plist_object := SRW_PARAMLIST_OBJECT (plist);

Then we enqueue the message using the enqueue procedure provided by Advanced
Queuing.

dbms_aqg.enqueue (queue_name => 'myQueue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => PList_Object,
msgid => message_handle);

Using Event-Driven Publishing 17-11

Integrating with Oracle Advanced Queuing

The message is put into the queue. Because we did not set up any message
distribution, the message will stay in the queue until it is fetched by a
dequeuing-procedure, which is discussed in the next section.

Note: For the exact syntax of dbms_ag. enqueue refer to the
Advanced Queuing API Reference document.

You'll find additional examples in the srwAQsetup. sql file
included with your OracleAS Reports Services installation.

Look for upcoming information about Reports APIs on the Oracle
Technology Network, (http://otn.oracle.com).

17.4.3 Creating the Dequeuing Procedure

A dequeuing procedure reads out all available messages in a queue and processes
them. In our case, we want to read out the message and submit a job to the server
using the parameter list that was attached to the message.

To accomplish this, we follow this example:

BEGIN
dequeue_options.wait := 1;
loop
DBMS_AQ.DEQUEUE (queue_name => 'myQueue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => PList_Object,
msgid => message_handle);
COMMIT;
plist := plist_object.params;
r_jid := SRW.RUN_REPORT (plist);
end loop;
exception when ag timeout then
begin
NULL;
end;
END;

This code example will read out the queue until all messages have been processed.
Time allowed for processing is determined by the time-out defined in the second
line of code. This time-out defines the amount of seconds the dequeue procedure
should wait for a message before creating a time-out exception.

17-12 Oracle Application Server Reports Services Publishing Reports to the Web

Integrating with Oracle Advanced Queuing

The DBMS_AQ . DEQUEUE built-in is provided by Advanced Queuing for reading out
messages. It puts the payload of the message, the object that holds the information,
into the object defined by the payload parameter.

Using plist, we extract the information from the payload object. As mentioned
before, our object holds a parameter list. It is stored in the attribute PARAMS inside
the object. The extracted parameter list is then handed over to SRW.RUN_REPORT
for submitting the job.

If you want to avoid the need for invoking this dequeuing procedure by hand, you
can run it as a job inside the database.

Using Event-Driven Publishing 17-13

Integrating with Oracle Advanced Queuing

17-14 Oracle Application Server Reports Services Publishing Reports to the Web

Partlli

National Language Support and
Bidirectional Support

Part I1I provides information about Reports-related National Language Support
settings and bidirectional support. It includes the following chapter:

s Chapter 18, "Implementing NLS and Bidirectional Support"

18

Implementing NLS and Bidirectional
Support

When you design reports to be deployed to different countries, you must consider
such things as character sets and text reading order. OracleAS Reports Services
includes the support you need to address any issues related to these considerations:
National Language Support (NLS) for character sets and bidirectional support for
text reading order.

Oracle NLS makes it possible to design applications that can be deployed in several
different languages. Oracle supports most European, Middle Eastern, and Asian
languages. NLS enables you to:

= Use international character sets (including multibyte character sets)
» Display data according to the appropriate language and territory conventions
s Extract strings that appear in your interface and translate them

Bidirectional support enables you to display data in either a left-to-right or
right-to-left orientation, depending on the requirements of your audience.

This chapter provides a look at NLS architecture, including NLS settings relevant to
Reports; explains how to specify character sets in a JSP; and offers information on
bidirectional, Unicode, and translation support available through Oracle9i. It
includes the following main sections:

s NLS Architecture

= NLS Environment Variables

» Specifying a Character Set in a JSP or XML File
= Bidirectional Support

s Unicode

Implementing NLS and Bidirectional Support 18-1

NLS Architecture

s Translating Applications

18.1 NLS Architecture

Oracle NLS architecture consists of two parts:
» Language-Independent Functions

s Language-Dependent Data

18.1.1 Language-Independent Functions

Language-independent functions handle manipulation of data in an appropriate
manner, depending on the language and territory of the runtime operator. Data is
automatically formatted according to local date and time conventions.

18.1.2 Language-Dependent Data

With language-dependent data, you can isolate your data. This enables your
application to deal only with translating strings that are unique to your application.

Because the language-dependent data is separate from the code, the operation of
NLS functions is governed by the data supplied at runtime. New languages can be
added and language-specific application characteristics can be altered without
requiring code changes. This architecture also enables language-dependent features
to be specified for each session.

18.2 NLS Environment Variables

NLS environment variables are automatically set to default values during Oracle
Application Server installation.

Note: On a given OracleAS Reports Services host machine, you
can specify only one language. If you are providing application
server services to a multilingual audience, you must have a
separate host machine for each language.

Table 18-1 lists and describes NLS-related environment variables that are
particularly relevant to OracleAS Reports Services.

18-2 Oracle Application Server Reports Services Publishing Reports to the Web

NLS Environment Variables

Note: For more information on all NLS environment variables, see
the Oracle Application Server 10g Globalization Guide on the Oracle
Technology Network, (http://otn.oracle.com).

Table 18—-1 Environment variables particularly related to OracleAS Reports Services

Variable Description

NLS_LANG Relevant to OracleAS Reports Services. The language
settings used by OracleAS Reports Services.

DEVELOPER_NLS_LANG The language for Reports Builder.

USER_NLS_LANG The language for the Reports Runtime component.

18.2.1 NLS_LANG Environment Variable

The NLS_LANG environment variable specifies the language, territory, and character
set settings to be used by OracleAS Reports Services. Specifically:

s The language for messages displayed to the user
s The default format masks used for DATE and NUMBER data types
s The sorting sequence

m The character set

Note: This environment variable is set automatically when you
install Oracle Application Server. Refer to Defining the NLS_LANG
Environment Variable for more information about changing the
environment variable after installing Oracle Application Server.

The syntax for NLS_LANG is:

NLS_LANG=language territory.charset

The values are defined as follows:
s language

Specifies the language and its conventions for displaying messages (including
error messages) as well as day and month names. If language is not specified,
then the value defaults to American.

Implementing NLS and Bidirectional Support 18-3

NLS Environment Variables

m territory

Specifies the territory and its conventions for default date format, decimal
character used for numbers, currency symbol, and calculation of week and day
numbers. If territory is not specified, then the value defaults to America.

n charset

Specifies the character set in which data is displayed. This should be a character
set that matches your language and platform. This option also specifies the
character set used for displaying messages.

Note: When you use features like OracleAS Portal Security, Portal
Destination, and Job Status Repository, the JDBC database
connections made by OracleAS Reports Services may override the
initial NLS_LANG setting. This change may in turn affect the
behavior of the running report, such as bidirectional output in PDF.
On UNIX platforms, you can work around this issue by setting the
NLS_LANG explicitly in report . sh. You can also use the new
environment switching functionality to dynamically set the
environment for reports. Refer to Dynamic Environment Switching,
for more information.

Table 18-2 lists commonly used language, territory, and character values for NL.S_
LANG:

Table 18-2 Commonly used NL.S_LANG values

Language Language_Territory.Character Set

American AMERICAN_AMERICA.US7ASCII

Arabic ARABIC_UNITED ARAB EMIRATES.ARS8ISO8859P6
Brazilian Portuguese BRAZILIAN PORTUGUESE_BRAZIL.WESDEC
Bulgarian BULGARIAN_BULGARIA.CL8ISO8859P5

Canadian French CANADIAN FRENCH_CANADA.WESISO8859P1
Catalan CATALAN_CATALONIA.WES8ISO8859P1

Croatian CROATTAN_CROATIA.EE8SISO8859P2

Czech CZECH_CZECH REPUBLIC.WESISO8859P1

Danish DANISH_DENMARK.WESISO8859P1

18-4 Oracle Application Server Reports Services Publishing Reports to the Web

NLS Environment Variables

Table 18-2 Commonly used NL.S_LANG values

Language Language_Territory.Character Set

Dutch DUTCH_THE NETHERLANDS.WESISO8859P1
Egyptian ARABIC_UNITED ARAB EMIRATES.ARS8ISO8859P6
English (American) See American

English (United Kingdom)

ENGLISH_UNITED KINGDOM.WESDEC

Estonian ESTONIAN_ESTONIA.BLTSMSWIN1257
Finnish FINNISH_FINLAND.WESISO8859P1
French FRENCH_FRANCE.WESISO8859P1
German GERMAN_GERMANY.WESISO8859P1
Greek GREEK_GREECE.ELS8ISO8859P7

Hebrew HEBREW_ISRAEL.IWSISO8859P8
Hungarian HUNGARIAN_HUNGARY.EESISO8859P2
Icelandic ICELANDIC_ICELAND.WESISO8859P1
Indonesian INDONESIAN_INDONESIA.WESISO8859P1
Italian ITALIAN_ITALY.WESDEC

Japanese JAPANESE_JAPAN.JA16EUC

Korean KOREAN_KOREA.KO16KSC5601

Latin America Spanish

LATIN AMERICAN SPANISH_AMERICA.WESDEC

Latvian

LATVIAN_LATVIA.NEESISO8859P4

Lithuanian

LITHUANIAN_LITHUANIA NEESISO8859P4

Mexican Spanish

(see also Spanish)

MEXICAN SPANISH_MEXICO.WESDEC

Norwegian NORWEGIAN_NORWAY.WESDEC

Polish POLISH_POLAND.EESISO8859P2

Portuguese PORTUGUESE_PORTUGAL.WESDEC

Romanian ROMANIAN_ROMANIA.EE8SISO88592

Russian RUSSIAN_CIS.RU8SPCS855

Simplified Chinese SIMPLIFIED CHINISE_CHINA.ZHS16CGB231280

Implementing NLS and Bidirectional Support

18-5

NLS Environment Variables

Table 18-2 Commonly used NL.S_LANG values

Language Language_Territory.Character Set

Slovak SLOVAK_SLOVAKIA .EE8SISO8859P2

Spanish SPANISH_SPAIN.WESDEC

(see also Mexican Spanish)

Swedish SWEDISH_SWEDEN.WESDEC

Thai THAI_THAILAND.TH8TISASCII

Traditional Chinese TRADITIONAL CHINESE_TATWAN.ZHT32EUC
Turkish TURKISH_TURKEY.WESISO8859P9

Ukrainian UKRAINIAN_UKRAINE.CL8ISO8859P5
Vietnamese VIETNAMESE_VIETNAM.VN8SVN3

Your NLS_LANG setting should take into account regional differences between
countries that use (basically) the same language. For example, if you want to run in
French (as used in France), then you set the NL.'S_LANG environment variable:

NLS_LANG=FRENCH_FRANCE.WE8IS08859P1

If you want to run in French, but this time as used in Switzerland, you would set
the NLS_ LANG environment variable:

NLS_LANG=FRENCH_SWITZERLAND.WE8IS08859P1

Note: The language for the rwserver pages such as help,
showjobs, showenv and error messages are delivered from
machine's locale (or LANG on Solaris) and not NLS_LANG. For
example, you have set your middle tier locale to French and NLS_
LANG=JAPANESE JAPAN.JA16SJIS, the showjobs or error
messages will be displayed in French, not in Japanese.

18.2.1.1 Defining the NLS_LANG Environment Variable

You define the NLS_LANG environment variable in the same way you define other
environment variables on your Windows or UNIX operating system.

18-6 Oracle Application Server Reports Services Publishing Reports to the Web

NLS Environment Variables

18.2.1.1.1 Windows To define the NL.S_ LANG environment variable on Windows, do
the following:

1. Open the Windows registry.

Note: Back up your registry before you edit it.

2. Expand the HKEY_LOCAL_MACHINE node, then expand the SOFTWARE
node.

3. Click ORACLE to display the Oracle environment variables in the right panel
of the Registry Editor.

4. Double-click the NLS_LANG environment variable.
5. Type the new value for NLS_LANG in the Value data text box.
6. Click OK.

18.2.1.1.2 UNIX To define the NL.S_LANG environment variable on the UNIX
platform, set it in the shell script reports. sh, located in your ORACLE_HOME/bin
directory.

18.2.1.2 Character Sets

The character set component of the NLS environment variables specifies the
character set in which data is represented in your environment. When data is
transferred from a system using one character set to a system using another
character set, it is processed and displayed correctly on the second system, even
though some characters might be represented by different binary values in the
character sets.

18.2.1.2.1 Character Set Design Considerations If you are designing a multilingual
application, or even a single-language application that runs with multiple character
sets, you need to determine the character set most widely used at runtime and then
generate with the NLS environment variable set to that particular character set.

If you design and generate an application in one character set and run it in another
character set, performance can suffer. Furthermore, if the runtime character set does
not contain all the characters in the generate character set, then question marks
appear in place of the unrecognized characters.

Portable Document Format (PDF) supports multibyte character sets.

Implementing NLS and Bidirectional Support 18-7

NLS Environment Variables

18.2.1.2.2 Font Aliasing on Windows Platforms There might be situations where you
create an application with a specific font but find that a different font is being used
when you run that application. You would most likely encounter this when using
an English font (such as MS Sans Serif or Arial) in environments other than Western
European. This occurs because OracleAS Reports Services checks to see if the
character set associated with the font matches the character set specified by the
language environment variable. If the two do not match, OracleAS Reports Services
automatically substitutes the font with another font whose associated character set
matches the character set specified by the language environment variable. This
automatic substitution assures that the data being returned from the database gets
displayed correctly in the application.

Note: If you enter local characters using an English font, then
Windows does an implicit association with another font.

There might be cases, however, where you do not want this substitution to take
place. You can avoid this substitution by mapping all desired fonts to the
WESISO8859P1 character set in the font alias file (uifont .ali). For example, if
you are unable to use the Arial font in your application, you can add the following
line to your font alias file (located at ORACLE_HOME\TOOLS \ COMMON\):

ARIAL..... =ARIAL..... WE8IS08859P1

Each line in the uifont . ali file takes the following syntax:
Face.Size.Style.Weight.Width.CharSet=Face.Size.Style.Weight.Width.CharSet

In this example, you're saying that any ARIAL font should be mapped to the same
value, but with the WE8SISO8859P1 character set.

Refer to NLS Environment Variables for more information about the language
environment variables.

18.2.1.3 Language and Territory

While the character set ensures that the individual characters needed for each
language are available, support for national conventions provides correct localized
display of data items.

The specified language determines the default conventions for the following
characteristics:

= Language for server messages

18-8 Oracle Application Server Reports Services Publishing Reports to the Web

NLS Environment Variables

» Language for day and month names and their abbreviations (specified in the
SQL functions TO_CHAR and TO_DATE)

= Symbol equivalents for AM, PM, AD, and BC

= Default sorting sequence for character data when ORDER BY is specified
(GROUP BY uses a binary sort unless ORDER BY is specified)

= Writing direction (both right to left and left to right)
= Affirmative and negative response strings

For example, if the language is set to French, then the following messages in English
are converted to French:

English:
ORA-00942: table or view does not exist
FRM-10043: Cannot open file.

French:
ORA-0092: table ou vue inexistante
FRM-10043: Ouverture de fichier impossible

The specified territory determines the conventions for the following default date
and numeric formatting characteristics:

= Date format

s Decimal character and group separator

s Local currency symbol

= ISO currency symbol

= Week start day

s Credit and debit symbol

s ISO week flag

» List separator

For example, if the territory is set to France, then the numbers are formatted using a
comma as the decimal character.

Implementing NLS and Bidirectional Support 18-9

Specifying a Character Set in a JSP or XML File

18.2.2 DEVELOPER_NLS LANG and USER_NLS LANG Environment Variables

If you must use two sets of resource and message files at the same time, then two
other language environment variables are available. These can be used after Oracle
Application Server installation is completed.

s DEVELOPER_NLS_LANG
s USER_NLS_LANG

The syntax for DEVELOPER_NLS_LANG and USER_NLS_LANG is the same as for the
NLS_LANG environment variable. That is:

DEVELOPER_NLS_LANG=]anguage_territory.charset
USER_NLS_LANG=language_territory.charset
Use these environment variables in lieu of the NLLS_LANG environment variable in

the following situations:

= You prefer to use the Reports Builder in English, but you are developing an
application for another language. DEVELOPER_NLS_LANG and USER_NLS_
LANG environment variables allow you to use different language settings for the
Reports Builder and Reports Runtime.

= You are creating an application to run in a language for which a local language
version of Reports Builder is not currently available.

If these environment variables are not specifically set, then NLS_LANG default
values will be used.

18.3 Specifying a Character Set in a JSP or XML File

If you are producing HTML with your JSP, then you may need to add a character set
to your JSP file using the following syntax (this one specifies a Japanese character
set):

<META http-equiv="Content-Type" content="text/html;charset=shift_jis”>

Additionally, if you plan on outputting a report to XML, you may wish to include a
character set in the report’s XML Prolog Value property, following this syntax:

<?xml version="1.0" encoding="shift_jis” ?>

18-10 Oracle Application Server Reports Services Publishing Reports to the Web

Specifying a Character Set in a JSP or XML File

Note: You can define a character set encoding when saving a
report to an XML file. For more information, refer to REPORTS_
NLS_XML_CHARSETS.

In both instances, the values expressed for the character set should call a character
set that is compatible with the one specified for the host environment. The values
for character sets used on the Web are different from the values expressed in the
NLS_LANG environment variable. Table 18-3 lists commonly used values for the
charset or encoding parameter:

Note: The values for charset and encoding are not case
sensitive. You can enter them in lower- or uppercase.

Note: to set the character set in a .rdf file that you plan to use to
generate HTML, you must ensure that the Before Report Escape
property includes the following;:

charset="text/html;charset=&encoding"

&encoding is then replaced at runtime with the appropriate
setting.

Table 18-3 Valid values for a charset or encoding parameter

Language Valid Character Set(s)
Afrikaans 1s0-8859-1, windows-1252
Albanian is0-8859-1, windows-1252
Arabic is0-8859-6

Basque is0-8859-1, windows-1252
Bulgarian i50-8859-5

Byelorussian is0-8859-5

Catalan 1s0-8859-1, windows-1252
Croatian i50-8859-2

Implementing NLS and Bidirectional Support 18-11

Specifying a Character Set in a JSP or XML File

Table 18-3 Valid values for a charset or encoding parameter

Language Valid Character Set(s)
Czech i50-8859-2

Danish is0-8859-1, windows-1252
Dutch is008859-1, windows-1252
English 1s0-8859-1, windows-1252
Esperanto is0-8859-3 (not widely supported in browsers)
Estonian is0-8859-15

Faroese i50-8859-1, windows-1252
Finnish is0-8859-1, windows-1252
French 1s0-8859-1, windows-1252
Galician is0-8859-1, windows-1252
German i50-8859-1, windows-1252
Greek i50-8859-1

Hebrew is0-8859-8

Hungarian is0-8859-2

Icelandic is0-8859-1, windows-1252

Inuit languages
Irish

Italian
Japanese
Korean
Lapp
Latvian
Lithuanian
Macedonian
Maltese
Norwegian

Polish

is0-8859-10 (not widely supported in browsers)
is0-8859-1

is0-8859-1

shift_jis, iso-2202-jp, euc-jp

euc-kr

i50-8859-10 (not widely supported in browsers)
is0-8859-13, windows-1257

is0-8859-13, windows-1257

i50-8859-5

i50-8859-3 (not widely supported in browsers)
is0-8859-1, windows-1252

is0-8859-2

18-12 Oracle Application Server Reports Services Publishing Reports to the Web

Bidirectional Support

Table 18-3 Valid values for a charset or encoding parameter

Language Valid Character Set(s)
Portuguese is0-8859-1, windows-1252
Romanian is0-8859-2

Russian koi-8-r, is0-8859-5
Scottish i80-8859-1, windows-1252
Serbian is0-8859-5

Slovak i50-8859-2

Slovenian is0-8859-2

Spanish 1s0-8859-1, windows-1252
Swedish i50-8859-1, windows-1252
Turkish is0-8859-9, windows-1254
Ukrainian i50-8859-5

18.4 Bidirectional Support

Bidirectional support enables you to design applications in Middle Eastern and
North African languages whose natural writing direction is right to left.
Bidirectional support enables you to control:

= Layout direction, which includes displaying items with labels at the right of the
item and correct placement of check boxes and radio buttons

= Reading order, which includes text direction (e.g., right to left or left to right)
= Alignment, which includes switching point-of-origin from upper left to upper
right

» Initial keyboard state, which controls whether local or Roman characters are
produced automatically when the user begins data entry in forms (the end user
can override this setting)

When you are designing bidirectional applications, you might want to use the NLS
environment variables DEVELOPER_NLS_LANG and USER_NLS_ LANG rather than
NLS_LANG. For example, if you want to use an American interface while
developing an Arabic application in a Windows environment, then set these
environment variables as follows:

DEVELOPER_NLS_LANG=AMERICAN_AMERICA.AR8MSWIN1256

Implementing NLS and Bidirectional Support 18-13

Unicode

USER_NLS_LANG=ARABIC_UNITED ARAB EMIRATES.ARSMSWIN1256

Note that, in this example, the DEVELOPER_NLS_LANG environment variable uses
an Arabic character set. Refer to NLS Environment Variables for more information
about environment variables.

Note: When you use features like OracleAS Portal Security, Portal
Destination, and Job Status Repository, the JDBC database
connections made by OracleAS Reports Services may override the
initial NLS_LANG setting. This change may in turn affect the
behavior of the running report, such as bidirectional output in PDF.
On UNIX platforms, you can work around this issue by setting the
NLS_LANG explicitly in report . sh. You can also use the new
environment switching functionality to dynamically set the
environment for reports. Refer to Dynamic Environment Switching,
for more information.

18.5 Unicode

Unicode is a global character set that allows multilingual text to be displayed in a
single application. This enables multinational corporations to develop a single
multilingual application and deploy it worldwide.

Global markets require a character set that:

= Allows a single implementation of a product for all languages, yet is simple
enough to be implemented everywhere

= Contains all major living scripts
= Supports multilingual users and organizations

= Enables worldwide interchange of data via the Internet

18.5.1 Unicode Support

OracleAS Reports Services provides Unicode support. If you use Unicode, you are
able to display multiple languages, both single-byte languages such as Western
Europe, Eastern Europe, Bidirectional Middle Eastern, and multibyte Asian
languages such as Chinese, Japanese, and Korean (CJK) in the same application.

Use of a single character set that encompasses all languages eliminates the need to
have various character sets for various languages. For example, to display a

18-14 Oracle Application Server Reports Services Publishing Reports to the Web

Unicode

multibyte language such as Japanese, the NL.S_LANG environment variable must be
set to the following;:

NLS_LANG=JAPAN_JAPANESE.JA16SJIS

To display a single-byte language such as German, NL.S_LANG must be set to the
following:

NLS_LANG=GERMAN_GERMANY .WE8IS08859P1

The obvious disadvantage of this scheme is that applications can only display
characters from one character set at a time. Mixed character set data is not possible.

With the Unicode character set, you can set the character set portion of NLS_LANG
to UTFS8 instead of a specific language character set. This allows characters from
different languages and character sets to be displayed simultaneously. For example,
to display Japanese and German together on the screen, the NLS_LANG variable
must be set to one of the following:

NLS_LANG=JAPAN_JAPANESE.UTF8
NLS_LANG=GERMAN_GERMANY .UTF8

Unicode capability gives the application developer and end user the ability to
display multilingual text in a form. This includes text from a database containing
Unicode, multilingual text, text in graphical user interface (GUI) objects (for
example, button labels), text input from the keyboard, and text from the clipboard.
OracleAS Reports Services currently supports Unicode on Windows.

Note: If you develop applications for the Web, then you can use
Unicode because of the Unicode support provided by Java through
the browser.

18.5.2 Unicode Font Support

OracleAS Reports Services relies on the operating system for the font and input
method for different languages. To enter and display text in a particular language,
you must be running a version of the operating system that supports that language.
Font support is limited but not restricted to the operating system font.

Windows NT release 4.0 and later versions provide True Type Big Fonts. These fonts
contain all the characters necessary to display or print multilingual text. If you try
to type, display, or print multilingual text and see unexpected characters, then you

Implementing NLS and Bidirectional Support 18-15

Unicode

are probably not using a Big Font. Big Fonts provided by Microsoft under Windows
NT release 4.0 and later, are as follows:

» Arial

» Courier New

= Lucida Console

» Lucida Sans Unicode
s Times New Roman

Third-party Unicode fonts are also available.

18.5.3 Enabling Unicode Support
To enable Unicode support, set the NLS_LANG environment variable as follows:

NLS_LANG=1language_territory.UTF8

Refer to NLS Envir