
Oracle® Application Server Containers for J2EE
JSP Tag Libraries and Utilities Reference

10g (9.0.4)

Part No. B10319-01

September 2003

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference, 10g (9.0.4)

Part No. B10319-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Julie Basu, Alex Yiu, Sunil Kunisetty, Gael Stevens, Ping Guo, Olga Peschansky, Sumathi
Gopalakrishnan, Nilesh Junnarkar, John O’Duinn, YaQing Wang, Song Lin, Hal Hildebrand, Jasen
Minton, Matthieu Devin, Jerry Schwarz, Shiva Prasad, Kuassi Mensah, Susan Kraft, Sheryl Maring, Ellen
Barnes, Angie Long, Sanjay Singh, Sharon Malek, Deborah Steiner, Jesse Anton, George Tang, Margaret
Taft, Charlie Berger, Olaf van der Geest, Ralph Gordon, David Zhang, Fred Bethke, Charles Murray, Peter
Lubbers, Dmitry Nonkin, Ingrid Snedecor, Jingwu Tang, Sue Pelski, Kelly Chan, Christine Jacobs,
Carolyn Bruse

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, and Oracle Store are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... xi

Preface... xiii

Audience ... xiv
Documentation Accessibility ... xiv
Organization.. xv
Related Documentation .. xvi
Conventions... xx

1 Overview of Tag Libraries and Utilities

Overview of Tag Libraries and Utilities Provided with OC4J ... 1-2
Tag Syntax Symbology and Notes ... 1-3
Overview of Extended Type JavaBeans .. 1-3
Overview of JspScopeListener for Event-Handling .. 1-4
Overview of Integration with XML and XSL ... 1-4
Summary of Data-Access JavaBeans and Tag Library.. 1-5
Summary of JSP Markup Language (JML) Custom Tag Library .. 1-7
Summary of Oracle Application Server Personalization Tag Library 1-9
Summary of Web Services Tags ... 1-12
Summary of File Access and Mail Tags .. 1-14
Summary of EJB Tags... 1-15
Summary of JSP Utility Tags... 1-16

Summary of Oracle Caching Support for Web Applications... 1-17
Oracle Application Server and JSP Caching Features... 1-17

iv

Role of the JSP Web Object Cache .. 1-18
Summary of Tag Libraries for Caching ... 1-20

Support for the JavaServer Pages Standard Tag Library ... 1-24
Overview and Philosophy of JSTL ... 1-24
Summary of JSTL Expression Language ... 1-26
Overview of JSTL Tags and Additional Features .. 1-28
JSTL Usage Notes and Future Considerations ... 1-32

Overview of Tag Libraries from Other Oracle Components .. 1-33
Oracle Business Components for Java Tag Library ... 1-33
Oracle JDeveloper User Interface Extension (UIX) Tag Library .. 1-36
Oracle JDeveloper BC4J UIX JSP Tag Library .. 1-41
Oracle Reports Tag Library ... 1-42
Oracle Application Server Wireless Location Tag Library ... 1-44
Oracle Application Server MapViewer Tag Library ... 1-46
Oracle Ultra Search Tag Library ... 1-48
Oracle Application Server Portal Tag Library.. 1-50
Oracle Business Intelligence Beans Tag Library... 1-51
Oracle Application Server Multimedia Tag Library.. 1-55

2 JavaBeans for Extended Types

Overview of JML Extended Types ... 2-2
JML Extended Type Descriptions .. 2-4

Type JmlBoolean ... 2-4
Type JmlNumber .. 2-5
Type JmlFPNumber.. 2-6
Type JmlString... 2-7
JML Extended Types Example.. 2-8

3 JSP Markup Language Tags

Overview of the JSP Markup Language (JML) Tag Library ... 3-2
JML Tag Library Philosophy... 3-3
JML Tag Categories .. 3-3

JSP Markup Language (JML) Tag Descriptions .. 3-4
Bean Binding Tag Descriptions... 3-4
Logic and Flow Control Tag Descriptions .. 3-8

v

4 Data-Access JavaBeans and Tags

JavaBeans for Data Access .. 4-2
Introduction to Data-Access JavaBeans... 4-2
Data-Access Support for Data Sources and Pooled Connections.. 4-3
Data-Access JavaBean Descriptions... 4-3

SQL Tags for Data Access.. 4-16
Introduction to Data-Access Tags .. 4-16
Data-Access Tag Descriptions .. 4-17

5 XML and XSL Tag Support

Overview of Oracle Tags for XML Support ... 5-2
XML Producers and XML Consumers .. 5-2
Summary of OC4J Tags with XML Functionality .. 5-3

XML Utility Tags ... 5-5
XML Utility Tag Descriptions... 5-6
XML Utility Tag Examples.. 5-9

6 JESI Tags for Edge Side Includes

Overview of Edge Side Includes Technology and Processing ... 6-2
Edge Side Includes Technology.. 6-2
Oracle Application Server Web Cache and ESI Processor ... 6-4

Overview of JESI Functionality ... 6-7
Advantages of JESI Tags.. 6-7
Overview of JESI Tags Implemented by Oracle... 6-8
JESI Usage Models.. 6-9
Invalidation of Cached Objects... 6-17
Personalization of Cached Pages.. 6-17
JESI Fallback Execution ... 6-18

Oracle JESI Tag Descriptions.. 6-20
Descriptions of Tags for Dynamic Caching .. 6-20
Descriptions of Tags and Subtags for Invalidation of Cached Objects............................... 6-36
Description of Tag for Page Personalization .. 6-46

JESI Tag Handling and JESI-to-ESI Conversion... 6-48
Example: JESI-to-ESI Conversion for Included Pages... 6-48

vi

Example: JESI-to-ESI Conversion for a Template and Fragment .. 6-49

7 Web Object Cache Tags and API

Overview of the Web Object Cache .. 7-2
Benefits of the Web Object Cache... 7-2
Web Object Cache Components ... 7-4
Cache Policy and Scope ... 7-5

Key Functionality of the Web Object Cache.. 7-7
Cache Block Naming: Implicit Versus Explicit... 7-7
Cloneable Cache Objects.. 7-8
Cache Block Runtime Functionality... 7-10
Data Invalidation and Expiration... 7-10

Attributes for Policy Specification and Use .. 7-12
Cache Policy Attributes ... 7-12
Expiration Policy Attributes.. 7-18

Web Object Cache Tag Descriptions ... 7-22
Cache Tag Descriptions ... 7-23
Cache Invalidation Tag Description .. 7-35

Web Object Cache API Descriptions... 7-40
Cache Policy Object Creation.. 7-40
CachePolicy Methods... 7-42
Expiration Policy Object Retrieval ... 7-48
ExpirationPolicy Methods ... 7-48
CacheBlock Methods .. 7-49
Tag Code Versus API Code... 7-50

Cache Policy Descriptor... 7-56
Cache Policy Descriptor DTD ... 7-56
Sample Cache Policy Descriptor... 7-57
Cache Policy Descriptor Loading and Refreshing ... 7-58

Cache Repository Descriptor .. 7-59
Cache Repository Descriptor DTD... 7-59
Sample Cache Repository Descriptor .. 7-60

Configuration for Back-End Repository... 7-61
Configuration Notes for Oracle Application Server Java Object Cache 7-61
Configuration Notes for File System Cache.. 7-62

vii

8 File Access and Mail Beans and Tags

File-Access JavaBeans and Tags ... 8-2
Overview of OC4J File-Access Functionality ... 8-2
File Upload and Download JavaBean and Class Descriptions .. 8-6
File Upload and Download Tag Descriptions.. 8-18

Mail JavaBean and Tag .. 8-27
General Considerations for the Mail JavaBean and Tag... 8-27
Mail Attachments ... 8-28
SendMailBean Description.. 8-30
The sendMail Tag Description.. 8-35

9 JSP Utilities and Utility Tags

JSP Event-Handling with JspScopeListener.. 9-2
General Use of JspScopeListener.. 9-2
Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments................................ 9-3
Examples Using JspScopeListener ... 9-7

EJB Tags .. 9-15
EJB Tag Configuration ... 9-15
EJB Tag Descriptions.. 9-16
EJB Tag Examples ... 9-20

General Utility Tags ... 9-23
Display Tags .. 9-24
Miscellaneous Utility Tags .. 9-25

10 Personalization Tags

Overview of Personalization .. 10-2
General Overview of Personalization.. 10-2
Introduction to Oracle Application Server Personalization... 10-3
Overview of Recommendation Engine API Concepts and Features 10-6

Overview of Personalization Tag Functionality ... 10-12
Recommendation Engine Session Management .. 10-12
Use of Items in Personalization Tags... 10-14
Mode of Use for Item Recording Tags... 10-21
Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags 10-22

viii

Personalization Tag and Class Descriptions.. 10-26
Session Management Tag Descriptions... 10-27
Recommendation and Evaluation Tag Descriptions ... 10-32
Item Recording and Removal Tag Descriptions .. 10-46
Item Class Description ... 10-55
Personalization Tag Constraints... 10-57

Personalization Tag Library Configuration Files ... 10-58
The personalization.xml Files ... 10-58
Element Descriptions for personalization.xml ... 10-58
Sample personalization.xml File... 10-62

11 Web Services Tags

Overview of Web Services .. 11-2
General Web Services Overview .. 11-2
Overview of SOAP and Related Features ... 11-3
Overview of Web Services Description Language Key Elements 11-4
Overview of Web Service Messages and XML Schema Definitions 11-5
Web Service Example... 11-6

OC4J Web Services Tags .. 11-10
Overview of OracleAS Web Services and the Tag Library Implementation 11-10
Overview of Functionality of Web Services Tags .. 11-11
Web Services Tag Descriptions... 11-13
Web Services Tag Examples.. 11-21

A JML Compile-Time Syntax and Tags

JML Compile-Time Syntax Support.. A-2
JML Bean References and Expressions, Compile-Time Implementation A-2
Attribute Settings with JML Expressions .. A-3

JML Compile-Time Tag Support.. A-5
The taglib Directive for Compile-Time JML Support.. A-5
JML Tag Summary, Compile-Time Versus Runtime... A-6
Descriptions of Additional JML Tags, Compile-Time Implementation A-7

ix

B Third Party Licenses

Apache HTTP Server.. B-2
The Apache Software License... B-2

Apache JServ.. B-4
Apache JServ Public License ... B-4

Jaxen .. B-6
The Jaxen Software License... B-6

SAXPath .. B-8
The SAXPath License ... B-8

Index

x

xi

Send Us Your Comments

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference, 10g
(9.0.4)

Part No. B10319-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: appserverdocs_us@oracle.com
� FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
� Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

JavaServer Pages (JSP) technology, as specified by an industry consortium led by
Sun Microsystems, is a component of the standard Java 2 Enterprise Edition (J2EE).
The J2EE component of the Oracle Application Server is known as the Oracle
Application Server Containers for J2EE (OC4J). This document provides reference
information as well as some conceptual material for JSP tag libraries and utilities
included with OC4J in Oracle Application Server 10g (9.0.4). These libraries
generally conform to the JSP specification.

For general information about the OC4J JSP implementation, including the JSP tag
library framework, refer to the Oracle Application Server Containers for J2EE Support
for JavaServer Pages Developer’s Guide.

This preface contains the following sections:

� Audience

� Documentation Accessibility

� Organization

� Related Documentation

� Conventions

xiv

Audience
This document is intended for Web application developers using servlet and
JavaServer Pages technology. It assumes that working Web, servlet, and JSP
environments already exist, and that readers are already familiar with the
following:

� General Web technology

� Java

� HTML

� Java servlets

� JavaServer Pages

� Configuration of their Web server and servlet environments

� Oracle JDBC (for JSP applications accessing Oracle Database)

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for background information about standard JavaServer
Pages technology, the Oracle JSP implementation, and tag library support.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

xv

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

Chapter 1, "Overview of Tag Libraries and Utilities"
This chapter provides an overview of the tag libraries documented in the remainder
of the manual, as well as overviews of tag libraries provided with other Oracle
components, outside of OC4J.

Chapter 2, "JavaBeans for Extended Types"
This chapter discusses JavaBeans provided with the JSP Markup Language (JML)
library that can be used as extended Java types.

Chapter 3, "JSP Markup Language Tags"
This provides JML syntax and tag descriptions, as well as an overview of the
philosophy behind the JML tag library.

Chapter 4, "Data-Access JavaBeans and Tags"
This documents JavaBeans and tags for database access.

Chapter 5, "XML and XSL Tag Support"
This chapter describes tags to use in handling XML documents and outputting or
transforming their data.

Chapter 6, "JESI Tags for Edge Side Includes"
This chapter describes the Oracle implementation of JESI tags to support Edge Side
Includes technology for Web caching.

Chapter 7, "Web Object Cache Tags and API"
This describes concepts, custom tags, the Java API, and XML descriptor files for the
Web Object Cache, an application-level Java caching interface provided with OC4J.

xvi

Chapter 8, "File Access and Mail Beans and Tags"
This chapter covers tags and JavaBeans for file access (uploading and downloading)
and e-mail.

Chapter 9, "JSP Utilities and Utility Tags"
This chapter discusses miscellaneous utility features included with OC4J:
JspScopeListener for event-handling, tags for using EJBs, and general utility
tags.

Chapter 10, "Personalization Tags"
This chapter describes a set of tags to support use of Oracle Application Server
Personalization, a mechanism to tailor recommendations to application users based
on behavioral, purchasing, rating, and demographic data.

Chapter 11, "Web Services Tags"
This chapter describes the Web services tag library, which allows developers to
create JSP pages for use as client programs for Web services.

Appendix A, "JML Compile-Time Syntax and Tags"
This chapter provides an overview of the compile-time implementation of the
Oracle JML sample tag library (the only way the library was supported in pre-JSP
1.1 releases), and documents tags not supported in the runtime implementation that
is documented in Chapter 3.

Appendix B, "Third Party Licenses"
This appendix includes the Third Party License for third party products included
with Oracle Application Server and discussed in this document.

Related Documentation
For more information, see these Oracle resources:

Additional OC4J documents available from the Oracle Java Platform Group:

� Oracle Application Server Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

xvii

� Oracle Application Server Containers for J2EE Stand Alone User’s Guide

This version of the user’s guide is specifically for the standalone version of
OC4J, and is available when you download the standalone version from OTN.
OC4J standalone is used in development environments, but not typically in
production environments.

� Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J, including basic servlet development, use of
JDBC and EJBs, building and deploying applications, and servlet and Web site
configuration.

� Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

� Oracle Application Server Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server
Java Object Cache.

� Oracle Application Server Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server 10g
Security Guide), describes security features and implementations particular to
OC4J. This includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

� Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

� Oracle9i Java Developer’s Guide

� Oracle9i Java Stored Procedures Developer’s Guide

� Oracle9i JDBC Developer’s Guide and Reference

� Oracle9i SQLJ Developer’s Guide and Reference

xviii

� Oracle9i JPublisher User’s Guide

Available from the Oracle Application Server group:

� Oracle Application Server 10g Administrator’s Guide

� Oracle Application Server 10g Security Guide

� Oracle Application Server 10g Performance Guide

� Oracle Enterprise Manager Concepts

� Oracle HTTP Server Administrator’s Guide

� Oracle Application Server 10g Globalization Guide

� Oracle Application Server Web Cache Administrator’s Guide

� Oracle Application Server Web Services Developer’s Guide

� Oracle Application Server 10g Upgrading to 10g (9.0.4)

Available from the Oracle JDeveloper group:

� Oracle JDeveloper online help

� Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Available from the Oracle Server Technologies group:

� Oracle XML Developer's Kit Programmer's Guide

� Oracle XML Reference

� Oracle9i Application Developer’s Guide - Fundamentals

� Oracle9i Supplied PL/SQL Packages and Types Reference

� PL/SQL User’s Guide and Reference

� Oracle9i SQL Reference

� Oracle9i Net Services Administrator’s Guide

� Oracle Advanced Security Administrator’s Guide

� Oracle9i Database Reference

xix

For information about OracleAS Personalization, which is the foundation of the
Personalization tag library, you can refer to the following documents from the
OracleAS Personalization group:

� Oracle Application Server Personalization Administrator’s Guide

� Oracle Application Server Personalization Programmer’s Guide

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation

The following OTN Web site for Java servlets and JavaServer Pages is also available:

http://otn.oracle.com/tech/java/servlets/

The following resources are available from Sun Microsystems.

� Web site for JavaServer Pages, including the latest specifications:

http://java.sun.com/products/jsp/index.html

� Web site for Java Servlet technology, including the latest specifications:

http://java.sun.com/products/servlet/index.html

� jsp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to listserv@java.sun.com with the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

xx

Conventions
The following conventions are used in this manual:

Convention Meaning

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

Boldface text Boldface type in text indicates a GUI component such as a link or
button to click.

Italics Italic typeface indicates book titles or emphasis, or terms that are
defined in the text.

Monospace
(fixed-width)
font

Monospace typeface within text indicates items such as executables,
file names, directory names, Java class names, Java method names,
variable names, other programmatic elements (such as JSP tags or
attributes, or XML elements or attributes), or database SQL
commands or elements (such as schema names, table names, or
column names).

Italic monospace
(fixed-width)
font

Italic monospace font represents placeholders or variables.

[] Brackets enclose optional clauses from which you can choose one or
none.

| A vertical bar represents a choice of two or more options. Enter one
of the options. Do not enter the vertical bar.

Overview of Tag Libraries and Utilities 1-1

1
Overview of Tag Libraries and Utilities

This manual documents tag libraries, JavaBeans, and other utilities supplied with
Oracle Application Server Containers for J2EE (OC4J) that are implemented
according to JSP standards. There is also a discussion of support for the JavaServer
Pages Standard Tag Library (JSTL), and a section summarizing tag libraries
provided with Oracle components outside of OC4J.

Oracle-specific features, as well as an introduction to the OC4J JSP container,
standard JSP technology, and standard JSP 1.2 tag library features, are covered in
the Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide.

This chapter consists of the following sections:

� Overview of Tag Libraries and Utilities Provided with OC4J

� Summary of Oracle Caching Support for Web Applications

� Support for the JavaServer Pages Standard Tag Library

� Overview of Tag Libraries from Other Oracle Components

Tags and JavaBeans introduced in the first section provide functionality in several
different areas, including type extensions, integration with XML/XSL, database
access, and programming convenience.

Note: The Sample Applications chapter available in previous
releases has been removed. Applications that were listed there are
available in the OC4J demos, available from the following location
on the Oracle Technology Network (requiring an OTN
membership, which is free of charge):

http://otn.oracle.com/tech/java/oc4j/demos/

Overview of Tag Libraries and Utilities Provided with OC4J

1-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
The Oracle extensions that are introduced in the following sections are
implemented through tag libraries or custom JavaBeans that comply with JSP and
JavaBeans standards.

� Tag Syntax Symbology and Notes

� Overview of Extended Type JavaBeans

� Overview of JspScopeListener for Event-Handling

� Overview of Integration with XML and XSL

� Summary of Data-Access JavaBeans and Tag Library

� Summary of JSP Markup Language (JML) Custom Tag Library

� Summary of Oracle Application Server Personalization Tag Library

� Summary of Web Services Tags

� Summary of File Access and Mail Tags

� Summary of EJB Tags

� Summary of JSP Utility Tags

Be aware that some custom tag libraries provided with OC4J—XML, data-access,
and JML—pre-date the JavaServer Pages Standard Tag Library (JSTL) and have
areas of duplicate functionality. For standards compliance, it is now generally
advisable to use JSTL instead of these custom libraries. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-24.

Oracle is not desupporting the existing libraries, however. For features in the
custom library that are not yet available in JSTL, where there seems to be general
usefulness, Oracle will try to have the features adopted into the JSTL standard as
appropriate.

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-3

Tag Syntax Symbology and Notes
For the syntax documentation in tag descriptions throughout this manual, note the
following:

� Italic indicates that you must specify a value or string.

� Optional attributes are enclosed in square brackets: [...]

� Default values of optional attributes are indicated in bold.

� Choices in attribute values are separated by vertical bars: |

� Except where noted, you can use JSP runtime expressions to set tag attribute
values: "<%= jspExpression %>"

� Tag descriptions in this manual use certain tag prefixes by convention; however,
you can designate any desired prefix in your taglib directives.

Overview of Extended Type JavaBeans
JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following standard type categories is fully suitable for use in JSP
pages:

� Primitive types such as int, float, and double

Values of these types cannot have a specified scope. They cannot be stored in a
JSP scope object (for page, request, session, or application scope),
because only objects can be stored in a scope object.

Notes:

� See "Summary of Oracle Caching Support for Web
Applications" on page 1-17 for information about tag libraries
provided with OC4J to support caching features.

� See the OC4J demos for sample applications using the features
introduced in this section. They can be downloaded from the
following location on the Oracle Technology Network
(requiring an OTN membership, which is free of charge):

http://otn.oracle.com/tech/java/oc4j/demos/

Overview of Tag Libraries and Utilities Provided with OC4J

1-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� Wrapper classes in the standard java.lang package, such as Integer,
Float, and Double

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, they cannot be declared in a jsp:useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide zero-argument constructors.

Additionally, instances of the wrapper classes are immutable. To change a
value, you must create a new instance and assign it appropriately.

To work around these limitations, OC4J provides the JmlBoolean, JmlNumber,
JmlFPNumber, and JmlString JavaBean classes in package oracle.jsp.jml to
wrap the most common Java types.

For information, see Chapter 2, "JavaBeans for Extended Types".

Overview of JspScopeListener for Event-Handling
OC4J provides the JspScopeListener interface for lifecycle management of Java
objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the
javax.servlet.http.HttpSessionBindingListener interface, but this is
for session-based events only. The Oracle JspScopeListener can be integrated
with HttpSessionBindingListener to manage session-based events, and can
handle page-based, request-based, and application-based events as well.

For information, see "JSP Event-Handling with JspScopeListener" on page 9-2.

Overview of Integration with XML and XSL
You can use JSP syntax to generate any text-based MIME type, not just HTML code.
In particular, you can dynamically create XML output. When you use JSP pages to
generate an XML document, however, you often want a stylesheet applied to the
XML data before it is sent to the client. This is difficult in JavaServer Pages
technology, because the standard output stream used for a JSP page is written
directly back through the server.

OC4J provides special tags to specify that all or part of a JSP page should be
transformed through an XSL stylesheet before it is output. Input can be from the tag
body or from an XML DOM object, and output can be to an XML DOM object to the
browser.

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-5

You can use these tags multiple times in a single JSP page if you want to specify
different style sheets for different portions of the page.

There is additional XML support as well:

� A utility tag converts data from an input stream to an XML DOM object.

� Several tags, for such features as caching and SQL operations, now can take
XML objects as input or send them as output.

XML utility tags are summarized in Table 1–1. Note that there is also XML
functionality in the dbOpen SQL tag and the cacheXMLObj Web Object Cache tag.
For more information, see Chapter 5, "XML and XSL Tag Support".

You can find information about standard JSP 1.2 XML support in the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Summary of Data-Access JavaBeans and Tag Library
OC4J supplies a set of custom JavaBeans for use in accessing Oracle Database. The
following beans are provided in the oracle.jsp.dbutil package:

� ConnBean opens a database connection. This bean also supports data sources
and connection pooling.

� ConnCacheBean uses the Oracle connection caching implementation for
database connections. (This requires JDBC 2.0.)

� DBBean executes a database query.

Table 1–1 Summary of XML Utility Tags

Tag Description Attributes

transform Output XML data with an XSL transformation,
either to an HTTP client or a specified XML DOM
object.

href
fromXMLObjName
toXMLObjName
toWriter

styleSheet Same as transform tag. href
fromXMLObjName
toXMLObjName
toWriter

parsexml Convert from an input stream to an XML DOM
object.

resource
toXMLObjName
validateResource
root

Overview of Tag Libraries and Utilities Provided with OC4J

1-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� CursorBean provides general DML support for queries; UPDATE, INSERT, and
DELETE statements; and stored procedure calls.

For information, see "JavaBeans for Data Access" on page 4-2.

For JSP programmers, OC4J also provides a custom tag library for SQL
functionality, wrapping the functionality of the JavaBeans. These tags are
summarized in Table 1–2. For further information, see "SQL Tags for Data Access"
on page 4-16.

Table 1–2 Summary of Data-Access Tag Library

Tag Description Attributes

dbOpen Open a database connection. This tag also supports
data sources and connection pooling.

connId
scope
dataSource
user
password
URL
commitOnClose

dbClose Close a database connection. connId
scope

dbQuery Execute a query. queryId
connId
scope
output
maxRows
skipRows
bindParams
toXMLObjName

dbCloseQuery Close the cursor for a query. queryId

dbNextRow Process the rows of a result set. queryId

dbExecute Execute any SQL statement (DML or DDL). connId
scope
output
bindParams

dbSetParam Set a parameter to bind into a dbQuery or
dbExecute tag.

name
value
scope

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-7

Summary of JSP Markup Language (JML) Custom Tag Library
Although the JSP specification supports scripting languages other than Java, Java is
the primary language used. Even though JavaServer Pages technology is designed
to separate the dynamic/Java development effort from the static/HTML
development effort, it is a hindrance if the Web developer does not know any Java,
especially in small development groups where no Java experts are available.

OC4J provides custom tags as an alternative: the JSP Markup Language (JML). The
Oracle JML tag library provides an additional set of JSP tags so that you can script
your JSP pages without using Java statements. JML provides tags for variable
declarations, control flow, conditional branches, iterative loops, parameter settings,
and calls to objects. The JML tag library also supports XML functionality, as noted
previously.

The following example shows use of the JML for tag, repeatedly printing "Hello
World" in progressively smaller headings (H1, H2, H3, H4, H5):

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
 <H<%=i%>>
 Hello World!
 </H<%=i%>>
</jml:for>

The JML tag library is summarized in Table 1–3. For more information, see
Chapter 3, "JSP Markup Language Tags".

dbSetCookie Set a cookie. name
value
domain
comment
maxAge
version
secure
path

Table 1–2 Summary of Data-Access Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries and Utilities Provided with OC4J

1-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Table 1–3 Summary of JSP Markup Language Tag Library

Tag Description Attributes

useVariable This tag offers a convenient alternative to the
jsp:useBean tag for declaring simple variables.

id
scope
type
value

useForm This tag provides a convenient syntax for declaring
variables and setting them to values passed in
from the request.

id
scope
type
param

useCookie This tag offers a convenient syntax for declaring
variables and setting them to values contained in
cookies.

id
scope
type
cookie

remove This tag removes an object from its scope. id
scope

if This tag evaluates a single conditional statement. If
the condition is true, then the body of the if tag is
executed.

condition

choose The choose tag, with associated when and
otherwise tags, provides a multiple conditional
statement.

(None)

when This is used with the choose tag. condition

otherwise This is optionally used with the choose and when
tags.

(None)

for This tag provides the ability to iterate through a
loop, as with a Java for loop.

id
from
to

foreach This tag provides the ability to iterate over a
homogeneous set of values in a Java array,
Enumeration instance, or Vector instance.

id
in
limit
type

return When this tag is reached, execution returns from
the page without further processing.

(None)

flush This tag writes the current contents of the page
buffer back to the client. This applies only if the
page is buffered; otherwise, there is no effect.

(None)

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-9

Summary of Oracle Application Server Personalization Tag Library
Web site personalization is a mechanism to tailor recommendations to users of a
site, based on behavioral and demographic data. Recommendations are made in
real-time, during a user’s Web session. User behavior is saved to a database
repository for use in building models for predictions of future user behavior.

OracleAS Personalization uses data mining algorithms in Oracle Database to choose
the most relevant content available for a user. Recommendations are calculated by
an OracleAS Personalization recommendation engine, using typically large
amounts of data regarding past and current user behavior. This is superior to other
approaches that rely on common-sense heuristics and require manual definition of
rules in the system.

The OracleAS Personalization tag library brings this functionality to a wide
audience of JSP developers for use in HTML, XML, or JavaScript pages. The tag
interface is layered on top of the Java API of the recommendation engine.

Table 1–4 summarizes the OracleAS Personalization tag library. See Chapter 10,
"Personalization Tags" for information.

Note: Oracle JSP container versions preceding the JSP 1.1
specification use an Oracle-specific compile-time implementation of
the JML tag library. Oracle still supports this implementation as an
alternative to the standard runtime implementation, as
documented in Appendix A, "JML Compile-Time Syntax and Tags".

Table 1–4 Summary of OracleAS Personalization Tag Library

Tag Description Attributes

startRESession Start an OracleAS
Personalization
recommendation engine
session.

REName
REURL
RESchema
REPassword
RECacheSize
REFlushInterval
applicationSession
createSession
userType
userID
storeUserIDIn
disableRecording

Overview of Tag Libraries and Utilities Provided with OC4J

1-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

endRESession Explicitly end a
recommendation engine
session.

(None)

setVisitorToCustomer Use this tag for situations
where an anonymous visitor
creates a registered customer
account.

customerID

getRecommendations Request a set of
recommendations for
purchasing, navigation, or
ratings.

from
fromHotPicksGroups
storeResultsIn
storeInterestDimensionIn
maxQuantity
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
filteringName
filteringTaxonomyID
filteringMethod
filteringCategories
sortOrder

getCrossSellRecommendations Request a set of
recommendations for
purchasing, navigation, or
ratings, based on input of a
set of past items (such as past
purchases) that are used as a
basis for the
recommendations.

storeResultsIn
storeInterestDimensionIn
fromHotPicksGroups
inputItemList
maxQuantity
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
filteringName
filteringTaxonomyID
filteringMethod
filteringCategories
sortOrder

Table 1–4 Summary of OracleAS Personalization Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-11

selectFromHotPicks Request recommendations
from a set of "hot picks"
groups only.

hotPicksGroups
storeResultsIn
storeInterestDimensionIn
maxQuantity
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
filteringName
filteringTaxonomyID
filteringMethod
filteringCategories
sortOrder

evaluateItems Evaluate only the set of items
that are input to the tag.

storeResultsIn
taxonomyID
inputItemList
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
sortOrder

forItem Select individual items input
to a tag that requires an input
list.

index
itemList
type
ID

getNextItem Optionally use this tag within
some recommendation tags to
access and process returned
items.

storeTypeIn
storeIDIn
storeItemIn

recordNavigation Record a navigation item into
the recommendation engine
session cache.

type
ID
index
itemList

recordPurchase Record a purchasing item into
the recommendation engine
session cache.

type
ID
index
itemList

Table 1–4 Summary of OracleAS Personalization Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries and Utilities Provided with OC4J

1-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of Web Services Tags
The Web services tag library provided with OC4J enables developers to
conveniently create JSP pages for Web service client applications. The
implementation uses a SOAP-based mechanism, supporting RPC-style or
document-style services. A client application would access a Web Services
Description Language (WSDL) document, then use the WSDL information to access
the operations of a Web service.

The tag library also uses the Oracle implementation of the dynamic invocation API,
described in the Oracle Application Server Web Services Developer’s Guide. When a

recordRating Record a rating item into the
recommendation engine
session cache.

value
type
ID
index
itemList

recordDemographic Record a demographic item
into the recommendation
engine session cache.

type
value

removeNavigationRecord Remove a navigation item
that had been recorded into
the recommendation engine
session cache earlier in the
session.

type
ID
index
itemList

removePurchaseRecord Remove a purchasing item
that had been recorded into
the recommendation engine
session cache earlier in the
session.

type
ID
index
itemList

removeRatingRecord Remove a rating item that
had been recorded into the
recommendation engine
session cache earlier in the
session.

value
type
ID
index
itemList

removeDemographicRecord Remove a demographic item
that had been recorded into
the recommendation engine
session cache earlier in the
session.

type
value

Table 1–4 Summary of OracleAS Personalization Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-13

client application acquires a WSDL document at runtime, the dynamic invocation
API is the vehicle for invoking any SOAP operation described in the WSDL
document.

The Web services tag library is summarized in Table 1–5. For more information, see
Chapter 11, "Web Services Tags".

Table 1–5 Summary of Web Services Tag Library

Tag Description Attributes

webservice Create a Web service proxy. The tag requires the
URL of a WSDL document and uses either a
binding and SOAP location or a service name and
port in creating the proxy.

wsdlUrl
id
scope
binding
soapLocation
service
port

map Use map tags nested within a webservice tag to
have the Web service proxy add entries to the
SOAP mapping registry for type mapping between
SOAP/XML and Java. Use one map tag for each
desired type mapping.

localName
namespaceUri
javaType
encodingStyle
java2xmlClassName
xml2javaClassName

property Optionally use this tag to specify a name/value
pair that defines any of several supported custom
properties for use by the Web service client
application.

name
value

invoke Invoke an operation of a Web service. The invoke
tag gains access to a Web service proxy either by
being nested within a webservice tag or by
accessing a Web service proxy scripting variable
created in a webservice tag.

id
operation
webservice
inputMsgName
outputMsgName
xmlToWriter
toXMLObjName

part Use this tag if the operation being performed
requires input message part values, using one part
tag for each input part.

name
value

Overview of Tag Libraries and Utilities Provided with OC4J

1-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of File Access and Mail Tags
OC4J provides tag libraries for file access (uploading and downloading) and for
sending e-mail messages from an application.

For uploading files, you can use the httpUpload tag or the
oracle.jsp.webutil.fileaccess.HttpUploadBean JavaBean. For
downloading, there is the httpDownload tag or the HttpDownloadBean
JavaBean. Table 1–6 summarizes the file access tags. For more information, see
"File-Access JavaBeans and Tags" on page 8-2.

For sending e-mail messages, optionally with server-side or client-side attachments,
you can use the oracle.jsp.webutil.email.SendMailBean JavaBean or the

Table 1–6 Summary of File Access Tag Library

Tag Description Attributes

httpUploadForm For convenience, you can use this tag to create a
form in your application, using multipart
encoded form data, that allows users to specify
the files to upload.

formsAction
maxFiles
fileNameSize
maxFileNameSize
includeNumbers
submitButtonText

httpUpload Upload files from the client to a server. You can
upload into either a file system or a database.

destination
destinationType
connId
scope
overwrite
fileType
table
prefixColumn
fileNameColumn
dataColumn

httpDownload Download files from a server to the client. You
can download from either a file system or a
database.

servletPath
source
sourceType
connId
scope
recurse
fileType
table
prefixColumn
fileNameColumn
dataColumn

Overview of Tag Libraries and Utilities Provided with OC4J

Overview of Tag Libraries and Utilities 1-15

sendMail tag. Table 1–7 summarizes the sendMail tag. See "Mail JavaBean and
Tag" on page 8-27 for more information.

Summary of EJB Tags
OC4J provides a custom tag library to simplify the use of Enterprise JavaBeans in
JSP pages. The functionality of the OC4J EJB tags follows the J2EE specification. The
tags allow you to instantiate EJBs by name, using configuration information in the
web.xml file.

There are tags to create a home instance, create an EJB instance, and iterate through
a collection of EJBs. Table 1–8 summarizes the EJB tag library. See "EJB Tags" on
page 9-15 for more information.

Table 1–7 Summary of sendMail Tag

Tag Description Attributes

sendMail Send an e-mail message from a JSP page. Tag
functionality includes globalization support.

host
sender
recipient
cc
bcc
subject
contentType
contentEncoding
serverAttachment
clientAttachment

Table 1–8 Summary of EJB Tag Library

Tag Description Attributes

useHome Look up the home interface for the EJB and create
an instance of it.

id
type
location
local

useBean Instantiate and use the EJB. The functionality is
similar to that of the standard jsp:useBean tag
for a JavaBean.

id
type
value
scope
local

createBean For first instantiating an EJB, if you do not use the
value attribute of the EJB useBean tag, you must
nest an EJB createBean tag within the useBean
tag to do the work of creating the EJB instance.

instance

Overview of Tag Libraries and Utilities Provided with OC4J

1-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of JSP Utility Tags
OC4J has utility tags for displaying a date, displaying an amount of money in the
appropriate currency, displaying a number, iterating through a collection,
evaluating and including the tag body (depending on whether the user belongs to a
specified role), and displaying the last modification date of the current file.
Table 1–9 summarizes these tags. See "General Utility Tags" on page 9-23 for more
information.

iterate Iterate through a collection of EJB instances (more
typical for entity beans).

id
type
collection
max

Table 1–9 Summary of General Utility Tag Library

Tag Description Attributes

displayCurrency Display a specified amount of money, formatted as
currency for the locale.

amount
locale

displayDate Display a specified date, formatted appropriately
for the locale.

date
locale

displayNumber Display the specified number, for the locale and
optionally in the specified format.

number
locale
format

iterate Iterate through a collection. id
type
collection
max

ifInRole Evaluate the tag body and include it in the body of
the JSP page, depending on whether the user is in
the specified application role.

role
include

lastModified Display the date of the last modification of the
current file, in appropriate format for the locale.

locale

Table 1–8 Summary of EJB Tag Library (Cont.)

Tag Description Attributes

Summary of Oracle Caching Support for Web Applications

Overview of Tag Libraries and Utilities 1-17

Summary of Oracle Caching Support for Web Applications
This section provides the following information:

� An introduction to caching features supported by the Oracle Application Server
in general and the OC4J JSP container in particular

� A discussion of the role of the OC4J Web Object Cache in relation to other
Oracle Application Server caching components

� A summary of tag libraries relating to caching features

The Oracle tag libraries introduced in this section comply with JSP standards.

Oracle Application Server and JSP Caching Features
The Oracle Application Server and OC4J provide the following caching features:

� Oracle Application Server Web Cache

This is an HTTP-level cache, maintained outside the application, providing very
fast cache operations. It is a content-based cache, capable of caching static data
(such as HTML, GIF, or JPEG files) or dynamic data (such as servlet or JSP
results). Given that it exists as a content-based cache outside the application, it
cannot cache objects (such as Java objects or XML DOM objects) in a Java object
format. In addition, post-processing operations applicable to cached data
cannot be coded in Java and are predefined by the cache itself.

The OracleAS Web Cache provides an ESI processor to support Edge Side
Includes, an XML-style markup language that allows dynamic content
assembly away from the Web server. This technology enables you to separate
cacheable pages into distinct cached objects, as desired. OC4J supports this
technology through its JESI tag library.

For an overview of Edge Side Includes and the OracleAS Web Cache, as well as
detailed documentation of the JESI tag library, see Chapter 6, "JESI Tags for
Edge Side Includes".

Note: See the OC4J demos for sample applications using the
features introduced in this section. The can be downloaded from
the following location on the Oracle Technology Network:

http://otn.oracle.com/tech/java/oc4j/demos/

Summary of Oracle Caching Support for Web Applications

1-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

For additional information about the OracleAS Web Cache, see the Oracle
Application Server Web Cache Administrator’s Guide.

� OC4J Web Object Cache

This is an application-level cache that is embedded and maintained within a
Java Web application. It is a hybrid cache, both Web-based and object-based. A
custom tag library or API enables you to define page fragment boundaries and
to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each page
fragment can produce a separate cache object. The produced objects can be
HTML or XML text fragments, XML DOM objects, or Java serializable objects.
These objects can be cached conveniently in association with HTTP request and
session semantics. Alternatively, they can be reused outside HTTP, such as
when an application outputs cached XML objects through Simple Mail Transfer
Protocol (SMTP), Java Messaging Service (JMS), Advanced Queueing (AQ), or
Simple Object Access Protocol (SOAP).

For more information, see Chapter 7, "Web Object Cache Tags and API".

� Oracle Application Server Java Object Cache

The Oracle Application Server Java Object Cache is a general-use Java cache to
manage Java objects within a process, across processes, and on local disk. By
managing local copies of objects that are difficult or expensive to retrieve or
create, the Java Object Cache can significantly improve application
performance. By default, the OC4J Web Object Cache uses the Oracle
Application Server Java Object Cache as its underlying cache repository.

For details about the Java Object Cache, see the Oracle Application Server
Containers for J2EE Services Guide.

Role of the JSP Web Object Cache
It is important to understand the role of the OC4J Web Object Cache in the overall
setup of a Web application. It works at the Java level and is closely integrated with
the HTTP environment of servlet and JSP applications. By contrast, the Oracle
Application Server Java Object Cache works at the Java object level, but is not
integrated with HTTP. As for the OracleAS Web Cache, it is well integrated with
HTTP and is orders of magnitude faster than the Web Object Cache, but it does not
operate at the Java level and cannot be directly invoked by Web application code.
For example, it cannot apply a style sheet to a cached DOM object within the J2EE
container, reuse the cached result in other protocols, or allow direct DOM
operations. OracleAS Web Cache can, however, apply a style sheet to text-based

Summary of Oracle Caching Support for Web Applications

Overview of Tag Libraries and Utilities 1-19

XML documents, as opposed to DOM objects, that were cached from the original
Web server through HTTP.

The Web Object Cache is not intended for use as the main Web cache for an
application. It is an auxiliary cache embedded within the same Java virtual machine
that is running your servlets and JSP pages. Because the retrieval path for cached
results in the Web Object Cache includes the JVM and the JSP and servlet engines, it
generally takes much longer to serve a page from the Web Object Cache compared
to the OracleAS Web Cache.

The Web Object Cache does not replace or eliminate the need for either the
OracleAS Web Cache or the Oracle Application Server Java Object Cache. It is a
complementary caching component in the overall framework of a Web application
and should be used together with the other caching products, as appropriate. In
fact, the Web Object Cache uses the Java Object Cache as its default repository. And
through combined use of the OC4J JESI tags and Web Object Cache tags, you can
use the Web Object Cache and OracleAS Web Cache together in the same page.

Web Object Cache Versus OracleAS Web Cache
Think of the OracleAS Web Cache as the primary caching component. It serves
cached pages directly to HTTP clients and handles large volumes of HTTP traffic
quickly, fitting the requirements of most Web sites. You can use the OracleAS Web
Cache to store complete Web pages or partial pages (through use of the JESI tags).
Cached pages can be customized, to a certain extent, before being sent to a client,
including cookie-replacement and page-fragment concatenation, for example.

It is advisable to use the OracleAS Web Cache as much as possible to speed up
response and reduce the load on the Web application server and back-end database.
The caching needs of a large percentage of Web pages can be addressed by the
OracleAS Web Cache alone.

As a complement to the OracleAS Web Cache, you can use the Web Object Cache to
capture intermediate results of JSP and servlet execution and subsequently reuse
these cached results in other parts of the Java application logic. It is not beneficial to
use the Web Object Cache in your Web application unless you can repeatedly reuse
objects after they are cached and you require post-processing on cached objects
before they are served to a client.

Web Object Cache Versus Oracle Application Server Java Object Cache
In comparison to the Oracle Application Server Java Object Cache, the Web Object
Cache makes it much easier to store and maintain partial execution results in
dynamic Web pages. The Java Object Cache, being a pure object-based framework

Summary of Oracle Caching Support for Web Applications

1-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

for any general Java application, is not aware of any HTTP environment in which it
might be embedded. For example, its cache keys do not automatically depend on
HTTP cookies or sessions. When you directly use the Java Object Cache within a
Web application, you are responsible for creating any necessary interfacing with
resulting Web pages. The Java Object Cache provides only a programmatic way to
specify cache maintenance policies, whereas the Web Object Cache allows the
alternative of specifying policies through configuration files.

Summary of Tag Libraries for Caching
OC4J supplies two tag libraries for use with Oracle Application Server caching
features:

� JESI tag library

� Web Object Cache tag library

This section summarizes those libraries.

Summary of JESI Tag Library
OC4J provides the JESI tag library as a convenient interface to ESI tags and Edge
Side Includes functionality for Web caching. Developers have the option of using
ESI tags directly in any Web application, but JESI tags provide additional
convenience in a JSP environment.

Table 1–10 summarizes the JESI tag library. See "Oracle JESI Tag Descriptions" on
page 6-20 for more information.

Table 1–10 Summary of JESI Tag LIbrary

Tag Description Attributes

control Control caching characteristics for JSP pages in the
control/include usage model. You can use a JESI
control tag in the top-level page or any included
page.

expiration
maxRemovalDelay
cache
control

include This tag, like a standard jsp:include tag,
enables you to dynamically insert output from the
included page into output from the including
page. However, it results in the included page
being processed and assembled by the ESI
processor, typically inside OracleAS Web Cache.

page
alt
ignoreError
copyParam
flush

param This is a subtag of the JESI include tag. You can
use one or more JESI param tags to pass additional
query parameters to the included page.

name
value

Summary of Oracle Caching Support for Web Applications

Overview of Tag Libraries and Utilities 1-21

Summary of Web Object Cache Tag Library
The OC4J Web Object Cache is a mechanism that allows Web applications written in
Java to capture, store, reuse, post-process, and maintain the partial and intermediate
results generated by a dynamic Web page, such as a JSP page or servlet. The
programming interfaces it provides are a tag library (for use in JSP pages) and a
Java API (for use in servlets).

template Use this tag (together with JESI fragment tags)
when you are splitting a JSP page into separate
cache fragments. The JESI template tag specifies
caching behavior for the aggregate page, outside
any fragments.

expiration
maxRemovalDelay
cache
control

fragment Use one or more JESI fragment tags within a JESI
template tag, between the JESI template
start-tag and end-tag, to denote separately
cacheable fragments.

expiration
maxRemovalDelay
cache
control

codeblock This is a subtag of the JESI template tag. You can
use JESI codeblock tags to specify conditional
execution of code blocks within the template code.

execute

invalidate Use this tag, with its JESI object subtag, to
explicitly invalidate one or more objects cached by
OracleAS Web Cache.

url
username
password
config
output

object Use this required subtag of the JESI invalidate
tag to specify cached objects to invalidate,
according to either the complete URI or a URI
prefix.

uri
prefix
maxRemovalDelay

cookie Optionally use this subtag of the JESI object tag
to use cookie information as a further criterion for
invalidation.

name
value

header Optionally use this subtag of the JESI object tag
to use HTTP/1.1 header information as a further
criterion for invalidation.

name
value

personalize Use this tag to allow page customization, by
directing the ESI processor to perform cookie value
substitution for every request for an object.

name
default

Table 1–10 Summary of JESI Tag LIbrary (Cont.)

Tag Description Attributes

Summary of Oracle Caching Support for Web Applications

1-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Table 1–11 summarizes the Web Object Cache tag library. See "Web Object Cache Tag
Descriptions" on page 7-22 for more information.

Table 1–11 Summary of Web Object Cache Tag LIbrary

Tag Description Attributes

cache Use this tag to cache an object, for example a
text fragment, in a JSP application. (Note,
however, that there are separate tags for caching
XML DOM objects or Java serializable objects.)

policy
ignoreCache
invalidateCache
scope
autoType
selectedParam
selectedCookies
reusableTimeStamp
reusableDeltaTime
name
expirationType
TTL
timeInaDay
dayInaWeek
dayInaMonth
writeThrough
printCacheBlockInfo
printCachePolicy
cacheRepositoryName
reportException

cacheXMLObj Generally speaking, use this tag instead of the
cache tag if you are caching XML DOM
objects. The cacheXMLObj tag supports all the
cache tag attributes, as well as additional
XML-specific parameters.

All attributes of the
cache tag, plus:
fromXMLObjName
toXMLObjName
toWriter

useCacheObj Use this tag to cache any Java serializable
object. The useCacheObj tag supports all the
cache tag parameters, as well as additional
attributes specific to its functionality.

All attributes of the
cache tag, plus:
type
id
cacheScope

cacheInclude This tag combines functionality of the cache
tag (but not the cacheXMLObj tag or
useCacheObj tag) and the standard
jsp:include tag.

policy
page
printCacheBlockInfo
reportException

Summary of Oracle Caching Support for Web Applications

Overview of Tag Libraries and Utilities 1-23

invalidateCache Use this tag to programmatically invalidate a
cache object. Most attributes of the
invalidateCache tag behave the same way
as attributes of the same names in the cache
tag.

policy
ignoreCache
scope
autoType
selectedParam
selectedCookies
name
invalidateNameLike
page
autoInvalidateLevel
cacheRepositoryName
reportException

Table 1–11 Summary of Web Object Cache Tag LIbrary (Cont.)

Tag Description Attributes

Support for the JavaServer Pages Standard Tag Library

1-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Support for the JavaServer Pages Standard Tag Library
With Oracle Application Server 10g (9.0.4), the OC4J JSP product includes an
implementation of the JavaServer Pages Standard Tag Library (JSTL), as specified in
the Sun Microsystems JavaServer Pages Standard Tag Library, Version 1.0 specification.
The following sections provide an overview of JSTL features and OC4J support:

� Overview and Philosophy of JSTL

� Summary of JSTL Expression Language

� Overview of JSTL Tags and Additional Features

� JSTL Usage Notes and Future Considerations

For complete information about JSTL, refer to the specification at the following
location:

http://www.jcp.org/aboutJava/communityprocess/first/jsr052/index.html

Overview and Philosophy of JSTL
JSTL is intended as a convenience for JSP page authors who are not familiar or not
comfortable with scripting languages such as Java. Historically, scriptlets have been
used in JSP pages to process dynamic data. With JSTL, the intent is for JSTL tag
usage to replace the need for scriptlets.

Readers who have used previous versions of the OC4J JSP product will recognize
this as similar to the goals of the Oracle JavaServer Pages Markup Language (JML)
tag library. While the JML tag library is still supported, use of the standard JSTL is
encouraged. Also see "JSTL Usage Notes and Future Considerations" on page 1-32.

Key JSTL features include the following:

� JSTL expression language (EL)

The expression language further simplifies the code required to access and
manipulate application data, making it possible to avoid request-time
expressions as well as scriptlets. See the next section, "Summary of JSTL
Expression Language".

� Core tags for expression language support, conditional logic and flow control,
iterator actions, and access to URL-based resources

Note: JSTL 1.0 requires a JSP 1.2 environment.

Support for the JavaServer Pages Standard Tag Library

Overview of Tag Libraries and Utilities 1-25

� Tags for XML processing, flow control, and XSLT transformations

� SQL tags for database access

� Tags for I18N-capable internationalization and formatting

(The term "I18N" refers to an internationalization standard.)

Tag support is broken into four JSTL sublibraries according to the preceding
functional areas. Table 1–12 shows the standard TLD URI and prefix for each
sublibrary.

See "Overview of JSTL Tags and Additional Features" on page 1-28 for more
information.

Table 1–12 JSTL Sublibraries

Functionality URI Prefix

Core http://java.sun.com/jstl/core c:

XML processing http://java.sun.com/jstl/xml x:

SQL database access http://java.sun.com/jstl/sql sql:

I18N internationalization and
formatting

http://java.sun.com/jstl/fmt fmt:

Note: Given the constraints of having to work with JSP 1.2
containers, the JSTL 1.0 implementation was required to support
both the expression language model and the request-time
expression model. This dual support is accomplished through
parallel JSTL sublibraries. For each sublibrary (core, XML, SQL, and
I18N) there are separate TLDs, and hence separate TLD URIs, for
the two versions.

It is expected that most users will want to use the expression
language model, corresponding to the URIs listed previously. To
use the request-time expression model, add "_rt" to each URI in
order to access the appropriate TLDs. By convention, add "_rt" to
each prefix as well ("c_rt:", for example).

Support for the JavaServer Pages Standard Tag Library

1-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of JSTL Expression Language
The JSTL expression language makes use of the fact that JSP scoped attributes and
request parameters are the preferred vehicles for passing information to and from
JSP pages. By using the JSTL expression language, you can avoid having to use JSP
scriptlets and request-time expressions.

In JSTL 1.0, the expression language can be used only in JSTL tag attribute values.

As an example, consider the following use of the JSTL c:if tag to pick out
steel-making companies from a company list:

<c:if test="${company.industry == ’steel’}">
 ...
</c:if>

The rest of this section summarizes JSTL expression language syntax and
documents how to enable JSTL expression language evaluation in your OC4J JSP
applications.

JSTL Expression Language Syntax
This following list offers a brief summary of key syntax features of the JSTL
expression language. This is followed by a few simple examples.

� Invocation

The JSTL expression language is invoked through ${expression} syntax. The
most basic semantic is that invocation of a named variable ${foo} yields the
same result as the method call PageContext.findAttribute(foo).

� Data structure access

To access data within JavaBeans and within collections such as lists, maps, and
arrays, the expression language supports the "." and "[]" constructs. The "."
construct allows access to properties whose names are standard Java identifiers.
The "[]" construct is for more generalized access, but for valid Java identifiers
is equivalent to the "." construct. The expressions foo.bar and foo["bar"]
yield the same result, for example.

� Relational operators

The expression language supports the relational operators == (or eq), != (or
ne), < (or lt), > (or gt), <= (or le), >= (or ge).

Support for the JavaServer Pages Standard Tag Library

Overview of Tag Libraries and Utilities 1-27

� Arithmetic operators

The expression language supports the arithmetic operators +, -, *, / (or div), %
(or mod, for remainder or modulo).

� Logical operators

The expression language supports the logical operators && (or and), || (or or),
! (or not), empty.

Example: Basic The following example shows fairly basic invocations of the
expression language, including the relational "<=" (less than or equal to) operator.

<c:if test="${auto.price <= customer.priceLimit}">
 The <c:out value="${auto.makemodel}"/> is in your price range.
</c:if>

Example: Accessing Collections The following example, from the Sun Microsystems
JavaServer Pages Standard Tag Library, Version 1.0 specification, shows use of the "."
and "[]" constructs:

<%-- "productDir" is a Map object containing the description of
 products, "preferences" is a Map object containing the
 preferences of a user --%>
product:
<c:out value="${productDir[product.custId]}"/>
shipping preference:
<c:out value="${user.preferences[’shipping’]}"/>

JSTL Expression Language Implicit Objects
JSTL offers the following implicit objects:

� pageScope: Allows access to page-scope variables.

� requestScope: Allows access to request-scope variables.

� sessionScope: Allows access to session-scope variables.

� applicationScope: Allows access to application-scope variables.

� pageContext: Allows access to all properties of the page context of a JSP page.

� param: This is a Java Map object where param["foo"] returns the first string
value associated with the request parameter foo.

� paramValues: Use paramValues["foo"], for example, to return an array of
all string values associated with request parameter foo.

Support for the JavaServer Pages Standard Tag Library

1-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� header: Similarly to using param, you can use this to access the first string
value associated with a request header.

� headerValues: Similarly to using paramValues, you can use this to access
all string values associated with a request header.

� initParam: Allows access to context initialization parameters.

� cookie: Allows access to cookies received in the request.

JSTL Expression Language Additional Features
The expression language also offers the following features:

� It can provide default values where failure to evaluate an expression is
considered to be recoverable.

� Where application data might not exactly match the type expected by a tag
attribute or expression language operator, there are rules to convert the type of
the resulting value to the expected type.

See the JSTL 1.0 specification for information.

Overview of JSTL Tags and Additional Features
The following sections provide a summary of JSTL tags and discuss some
additional JSTL features:

� Scoped Variables

� Configuration Data and the Config Class

� JSTL Tag Summary

Scoped Variables
JSTL tags make data available through JSP scoped attributes, referred to as scoped
variables, which are used in place of scripting variables. JSTL tags that can make
data available in this way have var and scope among their attributes, used as
follows:

� var: the variable that is to be exposed

� scope: the scope of the variable, either page (default), request, session, or
application

Support for the JavaServer Pages Standard Tag Library

Overview of Tag Libraries and Utilities 1-29

The scope attribute would not be relevant for NESTED variables (which would
always have page scope), but variables in the JSTL are AT_END (available from the
end-tag to the end of the page).

The following example uses the core library iterator action tag forEach and
expression language support tag out to expose the current item of an employees
collection:

<c:forEach var="employee" items="${customers}">
 The current employee is <c:out value="${customer}"/>
</c:forEach>

Configuration Data and the Config Class
JSTL includes functionality to dynamically override JSP configuration data for a
particular scope, through a scoped variable. You can accomplish this using
functionality of the javax.servlet.jsp.jstl.core.Config class.

According to the JSP specification, all scopes (page, request, session, and
application) that exist within a JSP page context should together form a single
namespace; that is, the name of a scoped variable should be unique across execution
of a page.

The Config class has functionality to transparently manipulate configuration
parameter names to produce the effect that each scope has its own namespace.
Effectively, this enables you to set a configuration parameter for a particular scope
only.

See the JSTL 1.0 specification for information.

JSTL Tag Summary
Table 1–13 summarizes the JSTL tags, organized into functional groups. The JSTL
standard tag prefix is noted for each group.

Table 1–13 Summary of JavaServer Pages Standard Tag Library

Tag Group Description of Group Individual Tags

Core, EL support Includes tags to evaluate an expression and
output the result to the current JspWriter
object, set the value of a scoped variable or
of a property of a target object, remove a
scoped variable, and catch a Throwable
instance thrown by a nested action.

c:out
c:set
c:remove
c:catch

Support for the JavaServer Pages Standard Tag Library

1-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Core, conditional Includes tags to evaluate body content if a
test attribute evaluates as true, and
specify mutually exclusive conditional
execution paths. The when and
otherwise tags are used with the choose
tag.

c:if
c:choose
c:when
c:otherwise

Core, iterators Includes tags to iterate body execution over
a collection of objects, or a specified
number of times, and iterate over a set of
tokens separated by supplied delimiters.

c:forEach
c:forTokens

Core, URL-related Includes tags to import the content of a
URL-based resource, create a URL using
appropriate rewriting rules, send an HTTP
redirect to the client, and add a request
parameter to a URL. The param tag is a
subtag of the import, url, and redirect
tags.

c:import
c:url
c:redirect
c:param

XML, core Includes tags to parse an XML document,
evaluate an XPath expression and output
the result to the current JspWriter object,
and evaluate an XPath expression and store
the result in a scoped variable. (See the
note after this table regarding XPath.)

x:parse
x:out
x:set

XML, flow control Includes tags to evaluate a specified XPath
expression and render its content if the
expression evaluates as true, specify
mutually exclusive conditional execution
paths, and evaluate a specified XPath
expression and repeat body execution over
the result. The when and otherwise tags
are used with the choose tag.

x:if
x:choose
x:when
x:otherwise
x:forEach

XML, transforms Includes tags to apply an XSLT style sheet
transformation to a document, and set
transformation parameters. The param tag
is a subtag of the transform tag.

x:transform
x:param

Table 1–13 Summary of JavaServer Pages Standard Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Support for the JavaServer Pages Standard Tag Library

Overview of Tag Libraries and Utilities 1-31

SQL Includes tags to query a database, update a
database (UPDATE/INSERT/DELETE),
establish a transaction context for queries
and updates, export a data source as a
scoped variable or data source
configuration variable, set the values for
parameter placeholders ("?") in a SQL
statement, and set the values for parameter
placeholders where the type is
java.util.Date. The param and
dateParam tags are subtags of the query
and update tags.

sql:query
sql:update
sql:transaction
sql:setDataSource
sql:driver
sql:param
sql:dateParam

I18N, internationalization Includes tags to store a specified locale in
the locale configuration variable, create an
I18N localization context for use within the
tag, create a localization context and store it
for use outside the tag, look up a localized
message in a resource bundle, and set the
request character encoding. The param tag
can be used with the message tag to
replace a parameter in the message tag.

fmt:locale
fmt:bundle
fmt:message
fmt:param
fmt:requestEncoding

I18N, formatting Includes tags to specify a time zone for
formatting or parsing, store a specified
time zone in a scoped variable or time zone
configuration variable, format a numeric
value as appropriate for a locale or special
customization, parse the string
representation of a numeric value that had
been formatted for a locale or special
customization, format a date or time for a
locale or special customization, and parse
the string representation of a date or time
that had been formatted for a locale or
special customization.

fmt:timeZone
fmt:setTimeZone
fmt:formatNumber
fmt:parseNumber
fmt:formatDate
fmt:parseDate

Note: JSTL tags for XML processing are based on XPath (XML
Path), a W3C recommendation. XPath provides a concise notation
for specifying and selecting parts of an XML document. Refer to the
following Web site for information:

http://www.w3.org/TR/xpath

Table 1–13 Summary of JavaServer Pages Standard Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Support for the JavaServer Pages Standard Tag Library

1-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSTL Usage Notes and Future Considerations
Be aware off the following considerations:

� The Oracle Application Server 10g (9.0.4) JSTL implementation is based on the
Jakarta 1.0.3 JSTL version and is suitable for use with OC4J. See the following
location for more information about Jakarta:

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

� The custom JML, XML, and data-access (SQL) tag libraries provided with OC4J
pre-date JSTL and have areas of duplicate functionality. For standards
compliance, it is now generally advisable to use JSTL instead of the custom
libraries. Oracle is not desupporting the existing tags, however. For features in
the custom libraries that are not yet available in JSTL, where there seems to be
general usefulness, Oracle will try to have the features adopted into the JSTL
standard as appropriate.

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-33

Overview of Tag Libraries from Other Oracle Components
A number of other Oracle components, outside OC4J, provide JSP tag libraries. The
following sections summarize these libraries:

� Oracle Business Components for Java Tag Library

� Oracle JDeveloper User Interface Extension (UIX) Tag Library

� Oracle JDeveloper BC4J UIX JSP Tag Library

� Oracle Reports Tag Library

� Oracle Application Server Wireless Location Tag Library

� Oracle Application Server MapViewer Tag Library

� Oracle Ultra Search Tag Library

� Oracle Application Server Portal Tag Library

� Oracle Business Intelligence Beans Tag Library

� Oracle Application Server Multimedia Tag Library

The Oracle tag libraries introduced in this section comply with JSP standards.

The following discussion assumes some prior knowledge of the underlying
components.

Oracle Business Components for Java Tag Library
Oracle JDeveloper provides a set of custom tags known as Oracle Business
Components for Java (BC4J) data tags. BC4J data tags provide a simple tag-based
approach for interaction with business components data sources. The tags provide
complete access to business components and allow viewing, editing, and full DML
control.

Custom data tags allow simplified interaction with BC4J data sources. The
tag-based approach to building JSP applications with BC4J does not require
extensive Java programming and is very much like coding an HTML page.

Table 1–14 summarizes the BC4J tag library. The default or typical tag prefix is jbo,
but you can change this in your taglib directives.

For more information, refer to the Oracle JDeveloper online help or to the following
location on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Overview of Tag Libraries from Other Oracle Components

1-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Note: Because of the size of this library, tags are not described
individually.

Table 1–14 Summary of BC4J Tag Library

Tag Group Description of Group Individual Tags

Component tags This group includes tags to display a form and
edit a record, handle business component events,
perform a search on a data source, display a
record bound to a data source, display a table
bound to a data source, and render database
transaction operations.

DataEdit
DataHandler
DataNavigate
DataQuery
DataRecord
DataScroller
DataTable
DataTransaction

Connection tags This group includes tags to create a BC4J
application module instance to service HTTP
requests, apply changes made on a data source to
the database, create a handle for a rowset, create
a dynamic view object from an application
module, create a JSP page data source, create a
data source variable, post changes made on a
data source to the database, reexecute the data of
a data source, trigger the release of an application
module instance, roll back current data source
changes, and create a scriptable variable to work
with the view object API.

ApplicationModule
Commit
CreateRowSet
CreateViewObject
DataSource
DataSourceRef
PostChanges
RefreshDataSource
ReleasePageResources
RollBack
ViewObject

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-35

Data access tags This group includes tags to iterate through the
data source attribute definition, set a WHERE
clause, execute a SQL statement, display an
attribute using a field renderer, retrieve a data
row instance and perform an operation, iterate
through the rows of a data source, move the
viewing range of a data source, update an
attribute in a row, set bind parameters to
customize a WHERE clause on the view object,
display the criteria of a data item, display the
meta data of an attribute, display the hints of an
attribute, display an attribute value, set search
view criteria, and iterate through the rows of
view criteria.

AttributeIterate
Criteria
CriteriaRow
ExecuteSQL
RenderValue
Row
RowsetIterate
RowsetNavigate
SetAttribute
SetWhereClauseParam
ShowCriteria
ShowDefinition
ShowHint
ShowValue
ViewCriteria
ViewCriteriaIterate

Event tags This group includes tags to execute a business
component event, handle a business component
event, and build a URL for events.

FormEvent
OnEvent
UrlEvent

Forms tags This group includes tags to insert an input date
field, insert an input field, insert a hidden input
field, insert a password field, overwrite the field
renderer, and add HTML attributes to an input
tag.

InputDate
InputHidden
InputPassword
InputRender
InputSelect
InputSelectGroup
InputSelectLOV
InputText
InputTextArea
SetDomainRenderer
SetFieldRenderer
SetHtmlAttribute

interMedia tags This group includes tags to insert an HTML
ANCHOR tag for an interMedia object, insert an
HTML OBJECT tag for an interMedia audio
object, insert an HTML IMAGE tag for an
interMedia image object, insert an HTML OBJECT
tag for an interMedia video object, insert an
HTML FORM tag for a file upload, and insert a
URL string for an interMedia object.

AnchorMedia
EmbedAudio
EmbedImage
EmbedVideo
FileUploadForm
MediaUrl

Web bean tags This group includes tags to insert a Web bean or
Data Web bean into a page.

DataWebBean
WebBean

Table 1–14 Summary of BC4J Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Overview of Tag Libraries from Other Oracle Components

1-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JDeveloper User Interface Extension (UIX) Tag Library
Oracle JDeveloper provides a set of custom tags known as User Interface Extension
(UIX) tags. The tags invoke UIX controls, generating the HTML to render tabs,
buttons, tables, headers, and other layout and navigational components that
implement the Oracle browser look and feel.

The tags are included on several palette pages: UIX JSP Border Layout, UIX JSP
Form, UIX JSP Layout, UIX JSP Message Components, UIX JSP Page Layout, UIX
JSP Simple Components, and UIX JSP Table.

Table 1–15 summarizes the UIX tag library. The default or typical tag prefix is uix,
but you can change this in your taglib directives.

For more information, refer to the Oracle JDeveloper online help or to the following
location on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Note: Because of the size of this library, tags are not described
individually.

Table 1–15 Summary of UIX Tag Library

Tag Group Description of Group Individual Tags

Border Layout tags This group includes tags to lay out
components relative to one another in a
specified area (borderLayout) of a page.
"Indexed" child components are laid out in the
order in which they are listed. "Named"
components are laid out in named, predefined
areas such as left, right, innerStart,
innerEnd, and so forth.

alternateContent
borderLayout
bottom
center
frameBorderLayout
innerBottom
innerEnd
innerLeft
innerRight
innerStart
innerTop
left
right
top

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-37

Form tags This group includes tags to create input forms
and related controls, such as HTML forms,
text fields, calendars, radio buttons, lists of
values (LOVs), and text fields. Also included
are tags for functions such as validating and
submitting the input (for example, checking
upload files) and submitting values entered by
the user. There are also tags for validating
input (with a JavaScript regular expression
validator, for example).

checkBox
choice
date
dateField
decimal
fileUpload
filterChoice
form
formParameter
formValue
list
listOfValues
lovField
onBlurValidater
onSubmitValidater
option
radioButton
radioGroup
regExp
resetButton
submitButton
textInput
utf8Length
wml

Layout tags This group includes tags to lay out child
components horizontally or vertically, plus
special tags for laying out content in tables,
cells, columns, and content containers.

cellFormat
contentContainer
flowLayout
header
labeledFieldLayout
rowLayout
spacer
stackLayout
tableLayout

Table 1–15 Summary of UIX Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Overview of Tag Libraries from Other Oracle Components

1-38 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Message Component
tags

This group includes tags to display messages
(such as information, warning, and error
messages), either as simple inline messages or
as messages associated with other controls
such as radio buttons, date fields, and LOVs.

inlineMessage
messageBox
messageCheckBox
messageChoice
messageDateField
messageFileUpload
messageLovField
messagePrompt
messageRadioButton
messageRadioGroup
messageStyledText
messageText
messageTextInput

Page Layout tags This group consists of tags for creating the
main layout and navigation controls for a
page, with tags for including branding and
advertising information as well. Also included
are tags for creating navigation controls such
as headers and footers, tabs, global buttons,
and context switchers.

about
cobranding
contentFooter
contextSwitcher
copyright
corporateBranding
footer
footNote
globalButton
globalButtonBar
globalButtons
globalHeader
largeAdvertisement
mediumAdvertisement
messages
pageButtons
pageHeader
pageHeaderLayout
pageLayout
pageStatus
privacy
productBranding
quickSearch
returnNavigation
sideBar
sideNav
subTabBar
subTabs
subTabLayout
tabs
userInfo

Table 1–15 Summary of UIX Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-39

Simple Component
tags

This group includes a diverse collection of
tags not otherwise covered by the UIX JSP tag
categories. Included are tags for creating
controls that are not necessarily complex
controls (like tables or page layouts), such as
buttons, shuttles, switches, "bread crumbs",
lists, text, menus, and trees. There are also
structural tags for creating and managing
documents and user interface nodes, such as
tags for writing document meta information,
importing and using JavaScript libraries,
building and using UIX user interface node
(UINode) trees, and so on. This group also
includes tags used for binding user interface
controls to data sources.

applicationSwitcher
body
boundMessage
breadCrumbs
browseMenu
bulletedList
bundle
button
case
catch
categories
contentLink
contents
dataScope
displayException
document
end
filter
formattedText
frame
head
hideShow
hideShowHeader
image
importScript
include
items
label
leading
leadingFooter
link
location
media
messageList
metaContainer
navigationBar
nodeStamp
pageButtonBar
prompt
provider
proxy
rawText

Table 1–15 Summary of UIX Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Overview of Tag Libraries from Other Oracle Components

1-40 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Simple Component
tags

(Continued) script
selection
separator
servletInclude
shuttle
start
styleSheet
styledItem
styledList
styledText
switcher
tabBar
text
tip
trailing
trailingFooter
train
tree
try
urlInclude

Table tags This group includes tags for creating and
formatting table layouts in which tabular data
can be displayed and manipulated by users.
Included in this group is the hGrid control for
displaying tabular data in a tree-like control.

addTableRow
column
columnFooter
columnFormat
columnHeader
columnHeaderStamp
detail
hGrid
multipleSelection
rowHeaderStamp
singleSelection
sortableHeader
table
tableFilter
tableFormat
tableSelection
totalRow

Table 1–15 Summary of UIX Tag Library (Cont.)

Tag Group Description of Group Individual Tags

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-41

Oracle JDeveloper BC4J UIX JSP Tag Library
UIX JSP pages can include both BC4J data tags and BC4J UIX convenience tags that
simplify the presentation of data.

The BC4J UIX convenience tags rely on an ApplicationModule data tag to get the
data source from the BC4J application module. In addition to the BC4J UIX tags
listed here, you can use the (non-UIX) BC4J tags in UIX JSP pages.

Table 1–16 summarizes the BC4J UIX JSP tags. The default or typical tag prefix is
bc4juix, but you can change this in your taglib directives.

For more information, refer to the Oracle JDeveloper online help or to the following
location on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Table 1–16 Summary of BC4J UIX JSP Tag Library

Tag Description Attributes

AddTableRow Renders a special "table row" that lets users add
rows of data to the data source. The body can
contain JSP content.

text
rows
destination

InputRender Renders an input field from a data source to a
page.

datasource
dataitem

LabelStyledText Binds styled text labels to the data source
automatically.

datasource
dataitem
styleClass
accessKey
labeledNodeId

NavigationBar Binds the navigation bar to the data source
automatically.

datasource

RenderValue Displays data of special datatypes—such as
images, audio, or video—using a field render
specific to the data object type.

datasource
dataitem

StyledText Binds styled text to the data source automatically. datasource
dataitem
styleClass
accessKey
destination
labeledNodeId

Overview of Tag Libraries from Other Oracle Components

1-42 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle Reports Tag Library
Oracle Reports consists of Oracle Reports Developer (a component of the Oracle
Developer Suite) and Oracle Reports Services (a component of the Oracle
Application Server). The Oracle Reports Developer includes tags integrated with
data model objects that are used to create JSP reports. The Oracle Reports custom
tags allow you to quickly add report blocks and graphs to existing JSP files. These
tags can be used as templates to enable you to build and insert your own
data-driven Java component into an HTML page for a JSP-based Web report.

The report and objects tags, respectively, delimit and define the report block.
Inside these tags, other custom tags define the content and the look and feel of the
report data.

Table 1–17 summarizes the custom JSP tags for Oracle Reports. By default, these
tags use the rw prefix, but you can change this in your taglib directives.

For more information, refer to the Oracle Reports Developer online help, available
through the Help menu in Reports Builder. You can also find more information
about Oracle Reports on the Oracle Technology Network:

http://otn.oracle.com/products/reports/content.html

Table Binds a table to the data source automatically. The
body can contain JSP content.

datasource
alternateText
destination
formSubmitted
height
width
name
nameTransformed
proxied
summary
text
value
displayattributes

TableDetail Causes the detail column from the data source to
be displayed. The body can contain JSP content.

(None)

Table 1–16 Summary of BC4J UIX JSP Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-43

Table 1–17 Summary of Oracle Reports Tag Library

Tag Description Attributes

report Delimits a report object within a JSP page. id
parameters

objects Encapsulates the XML definition for the report
data model and paper layout.

id

dataArea This tag is a placeholder for report data that is
inserted by the Report Wizard. It can optionally be
used in conjunction with a style tag. The
dataArea tag is used during the report design
process when the JSP page is created, and has no
effect at runtime.

id

field Provides formatting to render a single value source
object in HTML.

id
src
breakLevel
breakValue
nullValue
containsHtml
formatMask
formatTrigger

foreach Loops through a data source group. id
src
startRow
endRow
increment

getValue Retrieves the name of a report object. id
src
formatMask

graph Defines a graph. id
src
groups
dataValues
series
width
height
graphHyperlink

headers Retrieves ID values for row and column headers
generated by the id tag.

id
src

id Generates unique HTML IDs for row and column
headers for accessibility compliance.

id
breakLevel
asArray

Overview of Tag Libraries from Other Oracle Components

1-44 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle Application Server Wireless Location Tag Library
Developers of location-based applications need specialized services for the
following:

� Geocoding: associating geographical coordinates with addresses

� Mapping: providing a graphical map for a point, set of points, route, or driving
maneuver

� Routing: providing driving directions

� Business directories ("yellow pages"): listing businesses by region and by either
category or name

� Traffic: providing information about accidents, construction, and other
incidents that affect traffic flow

The OracleAS Wireless location application components compose an API for
performing geocoding, providing driving directions, and looking up business
directories. Service proxies are included that map existing key providers to the API,
and additional providers are expected to be accommodated in the future.

For JSP developers, a tag library is provided. Table 1–18 summarizes the library,
organizing tags by the types of applications for which they are used. The default or
typical tag prefix is loc, but you can change this in your taglib directives.

include Reformats a top-level layout object into a simple
HTML table.

id
src
format

seq Defines a sequence of values. name
seq

seqval Operates on a sequence of values defined by the
seq tag.

ref
op

style This tag is a placeholder for style information, such
as specification of a style sheet, that is inserted by
the Report Wizard and used to format report data.
It can optionally be used in conjunction with a
dataArea tag. The style tag is used during the
report design process when the JSP page is created,
and has no effect at runtime.

id

Table 1–17 Summary of Oracle Reports Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-45

For more information, refer to the Oracle Application Server Wireless Developer’s
Guide.

Table 1–18 Summary of Location Tag Library

Type of Application
or Usage Description Individual Tags

General (Apply to multiple application
categories.)

geometry
point

Geocoding Provide the geographic locations
of given addresses, or the
addresses associated with given
geographic locations.

address
geocode
iterateGeocodes
iterateReverseGeocodes
listGeocodes
listReverseGeocodes

Mapping Create map images for a single
point, multiple points, a
complete route, or a single
driving maneuver.

map

Routing Provide routing information
(driving directions) based on a
start point, an end point, and
optionally a list of intermediate
points. All points are specified as
longitude/latitude pairs or
addresses.

drivingDistance
drivingTime
iterateManeuvers
listManeuvers
route

Business directory
("yellow pages")

Provide and manipulate lists of
businesses in a given area that
match a specified name or
category.

businesses
category
iterateBusinesses
iterateBusinessesInCity
iterateBusinessesInCorridor
iterateBusinessesInPostalCode
iterateBusinessesInRadius
iterateBusinessesInState
iterateBusinessesNearestTo
iterateCategoriesMatchingKeyword
iterateChildCategories
listBusinessesInCity
listBusinessesInCorridor
listBusinessesInPostalCode
listBusinessesInRadius
listBusinessesInState
listBusinessesNearestTo
listCategoriesMatchingKeyword
listChildCategories

Overview of Tag Libraries from Other Oracle Components

1-46 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle Application Server MapViewer Tag Library
The OracleAS MapViewer is a programmable tool for rendering maps using spatial
data managed by Oracle Spatial or Oracle Locator (also referred to as Locator).
OracleAS MapViewer provides tools that hide the complexity of spatial data queries
and cartographic rendering, while providing customizable options for more
advanced users. These tools can be deployed in a platform-independent manner
and are designed to integrate with map-rendering applications.

Sorting Sort destination points according
to a particular criterion.

iterateByDistance
iterateByDrivingDistance
iterateByName
iterateByRegionName
listByDistance
listByDrivingDistance
listByName
listByRegionName

Location marks Display or manipulate location
marks. A location mark is a
chosen concise name ("My
home", for example) that
represents underlying detailed
information such as address,
latitude, and longitude.

defaultLocationMark
iterateLocationMarks
listLocationMarks

Mobile positioning Associate locations with users. mobilePos

Communities List or manipulate communities.
A mobile community is a
collection of one or more users
who can be granted or denied
positioning rights. Mobile users
can be assigned to one or more
communities, and users can
grant and deny positioning
rights to communities.

addMembers
createPrivateCommunity
createSharedCommunity
createSystemCommunity
deleteCommunity
getCommunity
listAllMembers
listCreatedCommunities
listCreatedPrivateCommunities
listCreatedSharedCommunities
listCreatedSystemCommunities
removeAllMembers
removeMembers
setCommunityName

Table 1–18 Summary of Location Tag Library (Cont.)

Type of Application
or Usage Description Individual Tags

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-47

For convenience, OracleAS MapViewer includes a JSP tag library that you can use
to submit map requests.

The tag library is summarized in Table 1–19. The default or typical tag prefix is mv,
but you can change this in your taglib directives.

For more information, see the Oracle Application Server MapViewer User’s Guide.

Table 1–19 Summary of OracleAS MapViewer Tag Library

Tag Description Attributes

init Create the OracleAS MapViewer bean and
place it in the current session. This must
come before any other OracleAS MapViewer
JSP tags.

url
datasource
id

setParam Specify one or more parameters for the
current map request.

antialiasing
basemap
bgcolor
bgimage
centerX
centerY
height
imagescaling
size
title
width

addPredefinedTheme Add a predefined theme to the current map
request.

name
min_scale
max_scale

addJDBCTheme Add a dynamically defined theme to the
current map request.

name
min_scale
max_scale
spatial_column
srid
datasource
jdbc_host
jdbc_port
jdbc_sid
jdbc_user
jdbc_password
jdbc_mode
asis
render_style
label_style
label_column

Overview of Tag Libraries from Other Oracle Components

1-48 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle Ultra Search Tag Library
Oracle Ultra Search provides a custom tag library for use by developers in
incorporating content search functionality into JSP applications. The library
includes the following functionality:

� The ability to retrieve search attributes, groups, languages, and lists of values
(LOVs) for rendering the advance query form

� The ability to iterate through the resulting hit set and retrieve document
attributes and properties for rendering the result page

importBaseMap Add the predefined themes that are in the
specified base map to the current map
request.

name

makeLegend Create a legend (map inset illustration)
drawn on top of the generated map.

id
datasource
format

getParam Get the value associated with a specified
parameter for the current map request.

name

getMapURL Get the HTTP URL for the currently
available map image, as generated by the
OracleAS MapViewer service.

(None)

identify Get nonspatial attribute (column) values
associated with spatial features that interact
with a specified point or rectangle on the
map display. This optionally uses a marker
style to identify the point or rectangle.

id
datasource
table
spatial_column
srid
x
y
x2
y2
style

run Submit the current map request to the
OracleAS MapViewer service for processing.
The processing can be to zoom in, zoom out,
recenter the map, or perform a combination
of these operations.

action
x
y
x2
y2
factor

Table 1–19 Summary of OracleAS MapViewer Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-49

� The ability to perform a search with "relevance boosting" and an estimation of
the total hit count

The tag library is summarized in Table 1–20. The default or typical tag prefix is US,
but you can change this in your taglib directives.

For more information, see the Oracle Ultra Search User’s Guide. Alternatively, refer to
the Oracle Ultra Search online documentation, under Oracle Ultra Search JSP Tag
Library.

Table 1–20 Summary of Oracle Ultra Search Tag Library

Tag Description Attributes

instance Establish a connection to an Oracle Ultra
Search instance.

instanceId
username
password
url
dataSourceName
tablePagePath
emailPagePath
filePagePath

iterAttributes For an advanced query, use this tag to show
the list of attributes that are available.

instance
locale

iterGroups For an advanced query, use this tag to show
the list of groups that are available.

instance
locale

iterLanguages For an advanced query, use this tag to show
the list of languages defined in the Oracle
Ultra Search instance.

instance

iterLOV Show all values defined for a search
attribute.

instance
locale
attributeName
attributeType

getResult Perform the search. resultId
instance
query
queryLocale
documentLanguage
from
to
boostTerm
withCount

Overview of Tag Libraries from Other Oracle Components

1-50 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle Application Server Portal Tag Library
With OracleAS Portal, developers can accomplish the following:

� Build and deploy Internet portals to deliver relevant information and
applications to customers, employees, and partners.

� Develop portals rapidly, without code, using productive online tools.

� Increase user productivity with single sign-on and self-service publishing.

� Add value quickly with over 250 prebuilt portlets based on open standards.

The OracleAS Portal tag library provides further convenience for developers
building customizable Internet portals. A developer can create internal JSP pages,
which are stored inside the Portal database and downloaded when the portal is
executed, or external JSP pages, which are stored in the file system, or some
combination.

The tag library is summarized in Table 1–21. The default or typical tag prefix is
portal, but you can change this in your taglib directives.

For more information, refer to OracleAS Portal: Adding JSPs, available through the
Oracle Technology Network:

http://otn.oracle.com/documentation

fetchAttribute This is a nested tag within getResult to
specify which attributes of each document
should be fetched along with the query
results. There can be multiple
fetchAttribute tags nested inside a
getResult tag.

attributeName
attributeType

showHitCount If withCount="true" in the getResult
tag, then the result includes a total number
of hits and you can use showHitCount to
display this number.

result

iterResult Iterate through all the documents in the
search results. Use this tag to present the
results in the JSP page.

result
instance

showAttributeValue Render a document attribute. attributeName
attributeType
default

Table 1–20 Summary of Oracle Ultra Search Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-51

Oracle Business Intelligence Beans Tag Library
The Oracle Business Intelligence Beans (Oracle BI Beans) product consists of Java
components, utilities, and a JSP tag library that enable rapid development of
analytical applications. Oracle BI Beans applications leverage the capabilities of
OLAP in Oracle Database. Using Oracle BI Beans, you can develop both
HTML-client and Java-client applications.

Table 1–21 Summary of Portal Tag Library

Tag Description Attributes

usePortal Specify the overall portal, which forms the
framework of the Web page and contains
portlets that have the dynamic content. This
must be the first Portal tag in a JSP page.

id
pagegroup
login

prepare Set up a bundle of one or more portlets that
will be displayed within the portal.

portal
portletHeaders

portlet Use one or more of these tags inside a
prepare tag to declare the portlets to be
displayed.

id
instance
header

showPortlet Display a portlet. This would typically, but
not necessarily, be a portlet that was declared
through a portlet tag. In its simplest
usage, however, the showPortlet tag itself
specifies the portlet to display.

name
portal
header

parameter Use this inside a portlet or showPortlet
tag to specify a parameter setting for a
portlet. (For example, for a stock-quote
portlet, specify the stock to quote.)

name
value

useStyle Specify a CSS style to use for the portal, or
use the default style. (Alternatively, do not
use this tag at all and implement the desired
style by other means.)

name
portal

Note: The Oracle BI Beans product is a component of the Oracle
Developer Suite (OracleDS) and is for use with Oracle JDeveloper.
When you install OracleDS with the J2EE option, the installation
will include JDeveloper and Oracle BI Beans.

Overview of Tag Libraries from Other Oracle Components

1-52 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle BI Beans includes the following groups of Java components:

� Presentation beans: beans that let you view, manipulate, and print data

� OLAP beans: beans that interact with an Oracle OLAP data source

� Persistence service: a set of Java packages that support the storage and retrieval
of object definitions in the Oracle BI Beans Catalog

For further developer convenience, Oracle BI Beans includes a JSP tag library. You
can use JDeveloper to create Oracle BI Beans JSP pages. A JDeveloper wizard
prompts you for information related to the tag that you want to use and inserts the
coded tag in the JSP page.

The Oracle BI Beans tags are categorized as follows:

� Common tags: BIThinSession, Render, InsertHiddenFields

� Explorer tags: ExplorerDetail, ExplorerQuickSearch, ExplorerTree,
SearchTool

� Thin presentation tag and customizer tags: Presentation, Toolbar,
FavoriteTool, RotateTool, SortTool, ViewType

� Thin dialog tags: DialogLink, ApplyButton, CancelButton, SaveButton,
ExportOptions, FindMember, PrintOptions, PrinterFriendlyView,
SaveAs, SaveConfirmation

Table 1–22 summarizes the individual tags. The default or typical tag prefix is
orabi, but you can change this in your taglib directives.

For more information, refer to the Oracle BI Beans online help. Under "Building
Web Modules", click "Using JSP Tags", then "List of BI Beans JSP Tags".

Table 1–22 Summary of Oracle BI Beans JSP Tag Library

Tag Description Attributes

BIThinSession Store initialization information for each
page.

id
configuration
scope
stateful
charset

Render Render a specified thin presentation bean. targetId
parentForm

InsertHiddenFields Add hidden fields to the generated HTML
form.

parentForm
biThinSessionId

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-53

ExplorerDetail Browse a specified root folder in the Oracle
BI Beans Catalog and provide the ability to
search for and select an object.

id
scope
openPage
openFrame
presentationId
rootName
allowSearch
allowFilter
submitFolderPage
submitFolderTargetId

ExplorerQuickSearch Provide an alternative approach for
displaying search controls for an
ExplorerDetail tag.

id
scope
explorerDetailId

ExplorerTree Browse a tree file structure. id
scope
rootName
selectedFolder
allowFilter
allowSearch
explorerDetailPage
explorerDetailFrame
explorerDetailId
searchPage
searchFrame
searchToolId

SearchTool Provide the same display as an
ExplorerDetail tag. (Present in the
current release only for backward
compatibility.)

id
scope
openPage
presentationId

Presentation Create an instance of a thin presentation
bean.

id
scope
location
newViewType
pagingControlVisible
referenceId
findMemberPage
findMemberId

Toolbar Provide tools for manipulating a thin
presentation bean, including the
FavoriteTool, RotateTool, SortTool,
and ViewType.

id
scope
presentationId

Table 1–22 Summary of Oracle BI Beans JSP Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

1-54 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

FavoriteTool Apply favorite selections to a thin
presentation bean without using the
ViewToolBar.

id
scope
presentationId

RotateTool Manipulate the layout of dimensions on a
thin presentation bean without using the
ViewToolBar.

id
scope
presentationId

SortTool Sort the dimensions on a thin presentation
bean without using the ViewToolBar.

id
scope
presentationId

ViewType Change the type of a thin presentation bean
between thin Crosstab and thin Graph
without using the ViewToolBar.

id
scope
presentationId

DialogLink Create a button that initializes a thin dialog. id
scope
presentationId
targetFrame
targetPage
targetToolId
text

ApplyButton Create an Apply button for use in any of the
thin dialogs.

id
scope
dialogId
text

CancelButton Create a Cancel button for use in any of the
thin dialogs.

id
scope
dialogId
text

SaveButton Create a button for use in saving a
presentation bean.

id
scope
presentationId
saveConfirmationPage
saveConfirmationId

ExportOptions Display a thin dialog to export a thin table
or thin crosstab.

id
scope
presentationId

FindMember Display additional members of a dimension
for selection in the page control of a thin
presentation bean.

id
scope

Table 1–22 Summary of Oracle BI Beans JSP Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-55

Oracle Application Server Multimedia Tag Library
Oracle Application Server provides the Multimedia Tag Library, a custom JSP tag
library for use by developers and Web page authors when generating multimedia
HTML tags in JSP pages and uploading multimedia data into interMedia objects.

Oracle interMedia enables Oracle Database to store, retrieve, manage, and
manipulate images, audio, video, and other media data, while integrating it with
other enterprise information. Specifically, Oracle interMedia supports media
storage, media retrieval, media management, and manipulation of media data
managed by Oracle and stored in binary large objects, file-based large objects, URLs
that contain media data, and specialty servers. Oracle interMedia is accessible to
applications through relational and object interfaces.

 Oracle interMedia uses object types that are similar to Java classes to describe
media data. These interMedia objects have a common media data storage model.
Oracle interMedia also provides Java classes to enable users to write Java
applications using interMedia objects. There are also Oracle interMedia Java classes
for servlets and JavaServer Pages to facilitate retrieving and uploading media data
from and to Oracle Database instances.

PrintOptions Display a thin dialog to print a thin
presentation bean.

id
scope
presentationId
applyPage
printerFriendlyViewId

PrinterFriendlyView Display a printable version of a
presentation.

id
scope
presentationId

SaveAs Display a thin dialog to save a thin
presentation bean.

id
scope
explorerTreeId
presentationId
selectFolderPage
selectFolderTargetId
saveConfirmationPage
saveConfirmationId

SaveConfirmation Display a thin dialog to prompt for
confirmation during the saving of a thin
presentation bean.

id
scope

Table 1–22 Summary of Oracle BI Beans JSP Tag Library (Cont.)

Tag Description Attributes

Overview of Tag Libraries from Other Oracle Components

1-56 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The Multimedia Tag Library includes a set of tags for retrieving media data and a
set for uploading media data. The Multimedia JSP tags for media retrieval include a
set of common attributes and tag-specific media-render-attributes. The common
attributes are: custom-retrieval-attributes, database-connection-attributes,
media-access-attributes, media-cache-control-attributes, and
table-and-column-attributes. The media-render-attributes are described with each
media retrieval tag.

Table 1–23 summarizes the Multimedia JSP tags for media retrieval and lists the
media-render-attributes for each tag.

Table 1–23 Multimedia JSP Tags for Media Retrieval

Tag Description media-render-attributes

embedAudio Build an HTML <OBJECT> tag and
<EMBED> tag to embed an audio object in a
page. This tag can specify the audio player.
It also defines a common set of audio
attributes.

height
width
alt
helperApp
showControls
autoStart
loop
standby
audio

embedImage Build an HTML tag to embed an
image in a page. A common set of
tag attributes is also defined. The generated
 tag always includes the height and
width attributes. If these attributes are not
specified in this tag, they are obtained
either from the image object specified in
this tag or from the image object fetched
from the database.

height
width
border
align
alt
longdesc
image

embedVideo Build an HTML <OBJECT> tag and
<EMBED> tag to embed a video object in a
page. This tag can specify the video player.
It also defines a common set of video
attributes.

height
width
alt
helperApp
showControls
autoStart
loop
standby
video

mediaUrl Generate a media retrieval URL object that
can be used in the tag body.

id

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries and Utilities 1-57

Table 1–24 summarizes the Multimedia JSP tags for media upload.

See Oracle Application Server 10g Multimedia Tag Library for JSP User’s Guide and
Reference for additional information about the Multimedia JSP tags. That guide is a
supplement to Oracle interMedia Reference, Oracle interMedia User's Guide, and Oracle
interMedia Java Classes Reference.

Table 1–24 Multimedia JSP Tags for Media Upload

Tag Description Attributes

storeMedia Load the uploaded media data from HTML
form into the OrdImage, OrdAudio,
OrdVideo, or OrdDoc object in the
specified table and column in the database.
This tag is intended for use within the
body of the uploadFormData tag. It
implicitly uses the form data object created
by the uploadFormData tag through the
parameter attribute. After loading the
media data in the database BLOB, the tag
calls the setProperties() method to set
the media properties within the object.

conn
mediaColumns
mediaParameters
otherColumns
otherValues
table
key
keyColumn
rowid

uploadFile Provide access to uploaded file
information. This tag uses the object
created by the uploadFormData tag
implicitly, through the parameter
attribute. This tag is nested within the
uploadFormData tag.

parameter
mimetype
length
fullFileName
shortFileName
inputStream

uploadFormData Parse the multipart/form-data HTTP
request to provide access to text-based
form parameters and the contents of
uploaded files transmitted from a browser
to a Web server.

formDataId
releaseFormData
maxMemory
tempDir

Overview of Tag Libraries from Other Oracle Components

1-58 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Extended Types 2-1

2
JavaBeans for Extended Types

This chapter describes JavaBeans provided with OC4J for use as extended types. For
JSP pages, these types offer advantages over Java primitive types or java.lang
types.

The chapter consists of the following sections:

� Overview of JML Extended Types

� JML Extended Type Descriptions

Overview of JML Extended Types

2-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JML Extended Types
JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following type categories is fully suitable for use in JSP pages:

� Primitive types such as int, float, and double

Values of these types cannot have a specified scope. They cannot be stored in a
JSP scope object (for page, request, session, or application scope),
because only objects can be stored in a scope object.

� Wrapper classes in the standard java.lang package, such as Integer,
Float, and Double

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, they cannot be declared in a jsp:useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide zero-argument constructors.

Additionally, instances of the wrapper classes are immutable. To change a
value, you must create a new instance and assign it appropriately.

To work around these limitations, OC4J provides the following JavaBean classes in
the oracle.jsp.jml package to act as wrappers for the most common Java types:

� JmlBoolean to represent a boolean value

� JmlNumber to represent an int value

� JmlFPNumber to represent a double value

� JmlString to represent a String value

Each of these classes has a single attribute, value, and includes methods to get the
value, set the value from input in various formats, test whether the value is equal to
a value specified in any of several formats, and convert the value to a string.

Alternatively, instead of using the getValue() and setValue() methods, you
can use the jsp:getProperty and jsp:setProperty tags, as with any other
bean.

The following example creates a JmlNumber instance called count that has
application scope:

<jsp:useBean id="count" class="oracle.jsp.jml.JmlNumber" scope="application" />

Later, assuming that the value has been set elsewhere, you can access it as follows:

<h3> The current count is <%=count.getValue() %> </h3>

Overview of JML Extended Types

JavaBeans for Extended Types 2-3

The following example creates a JmlNumber instance called maxSize that has
request scope, and sets it using setProperty:

<jsp:useBean id="maxSize" class="oracle.jsp.jml.JmlNumber" scope="request" >
 <jsp:setProperty name="maxSize" property="value" value="<%= 25 %>" />
</jsp:useBean>

JML Extended Type Descriptions

2-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Extended Type Descriptions
This section documents the public methods of the four extended
types—JmlBoolean, JmlNumber, JmlFPNumber, and JmlString—followed by
an example.

Type JmlBoolean
A JmlBoolean object represents a Java boolean value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java boolean value.

� boolean getValue()

� void setValue(boolean)

The setTypedValue() method has several signatures and can set the value
property from a string (such as "true" or "false"), a java.lang.Boolean value,
a Java boolean value, or a JmlBoolean value. For the string input, conversion of
the string is performed according to the same rules as for the valueOf() method
of the java.lang.Boolean class.

� void setTypedValue(String)

� void setTypedValue(Boolean)

� void setTypedValue(boolean)

� void setTypedValue(JmlBoolean)

The equals() method tests whether the value property is equal to the specified
Java boolean value.

� boolean equals(boolean)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "true" or "false"),
java.lang.Boolean value, or JmlBoolean value.

� boolean typedEquals(String)

� boolean typedEquals(Boolean)

Note: To use the JML extended types, verify that the
ojsputil.jar file is installed and in your classpath. This file is
supplied with OC4J.

JML Extended Type Descriptions

JavaBeans for Extended Types 2-5

� boolean typedEquals(JmlBoolean)

The toString() method returns the value property as a java.lang.String
value, either "true" or "false".

� String toString()

Type JmlNumber
A JmlNumber object represents a 32-bit number equivalent to a Java int value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java int value.

� int getValue()

� void setValue(int)

The setTypedValue() method has several signatures and can set the value
property from a string, a java.lang.Integer value, a Java int value, or a
JmlNumber value. For the string input, conversion of the string is performed
according to the same rules as for the decode() method of the
java.lang.Integer class.

� void setTypedValue(String)

� void setTypedValue(Integer)

� void setTypedValue(int)

� void setTypedValue(JmlNumber)

The equals() method tests whether the value property is equal to the specified
Java int value.

� boolean equals(int)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "1234"),
java.lang.Integer value, or JmlNumber value.

� boolean typedEquals(String)

� boolean typedEquals(Integer)

� boolean typedEquals(JmlNumber)

JML Extended Type Descriptions

2-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The toString() method returns the value property as an equivalent
java.lang.String value (such as "1234"). This method has the same
functionality as the toString() method of the java.lang.Integer class.

� String toString()

Type JmlFPNumber
A JmlFPNumber object represents a 64-bit floating point number equivalent to a
Java double value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java double value.

� double getValue()

� void setValue(double)

The setTypedValue() method has several signatures and can set the value
property from a string (such as "3.57"), a java.lang.Integer value, a Java int
value, a java.lang.Float value, a Java float value, a java.lang.Double
value, a Java double value, or a JmlFPNumber value. For the string input,
conversion of the string is according to the same rules as for the valueOf()
method of the java.lang.Double class.

� void setTypedValue(String)

� void setTypedValue(Integer)

� void setTypedValue(int)

� void setTypedValue(Float)

� void setTypedValue(float)

� void setTypedValue(Double)

� void setTypedValue(double)

� void setTypedValue(JmlFPNumber)

The equals() method tests whether the value property is equal to the specified
Java double value.

� boolean equals(double)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "3.57"),
java.lang.Integer value, Java int value, java.lang.Float value, Java

JML Extended Type Descriptions

JavaBeans for Extended Types 2-7

float value, java.lang.Double value, Java double value, or JmlFPNumber
value.

� boolean typedEquals(String)

� boolean typedEquals(Integer)

� boolean typedEquals(int)

� boolean typedEquals(Float)

� boolean typedEquals(float)

� boolean typedEquals(Double)

� boolean typedEquals(JmlFPNumber)

The toString() method returns the value property as a java.lang.String
value (such as "3.57"). This method has the same functionality as the toString()
method of the java.lang.Double class.

� String toString()

Type JmlString
A JmlString object represents a java.lang.String value.

The getValue() and setValue() methods get or set the value property of the
bean as a java.lang.String value. If the input in a setValue() call is null,
then the value property is set to an empty (zero-length) string.

� String getValue()

� void setValue(String)

The toString() method is functionally equivalent to the getValue() method.

� String toString()

The setTypedValue() method sets the value property according to the specified
JmlString value. If the JmlString value is null, then the value property is set
to an empty (zero-length) string.

� void setTypedValue(JmlString)

The isEmpty() method tests whether the value property is an empty
(zero-length) string: ""

� boolean isEmpty()

JML Extended Type Descriptions

2-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The equals() method has two signatures and tests whether the value property is
equal to a specified java.lang.String value or JmlString value.

� boolean equals(String)

� boolean equals(JmlString)

JML Extended Types Example
This example illustrates the use of JML extended type JavaBeans for management of
simple types at scope. The page declares four session objects, one for each JML type.
The page presents a form that enables you to enter values for each of these types.
Once new values are submitted, the form displays both the new values and the
previously set values. In the process of generating this output, the page updates the
session objects with the new form values.

<jsp:useBean id = "submitCount" class = "oracle.jsp.jml.JmlNumber" scope = "session" />

<jsp:useBean id = "bool" class = "oracle.jsp.jml.JmlBoolean" scope = "session" >
 <jsp:setProperty name = "bool" property = "value" param = "fBoolean" />
</jsp:useBean>

<jsp:useBean id = "num" class = "oracle.jsp.jml.JmlNumber" scope = "session" >
 <jsp:setProperty name = "num" property = "value" param = "fNumber" />
</jsp:useBean>

<jsp:useBean id = "fpnum" class = "oracle.jsp.jml.JmlFPNumber" scope = "session" >
 <jsp:setProperty name = "fpnum" property = "value" param = "fFPNumber" />
</jsp:useBean>

<jsp:useBean id = "str" class = "oracle.jsp.jml.JmlString" scope = "session" >
 <jsp:setProperty name = "str" property = "value" param = "fString" />
</jsp:useBean>

<HTML>

<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=iso-8859-1">
 <META NAME="GENERATOR" Content="Visual Page 1.1 for Windows">
 <TITLE>Extended Datatypes Sample</TITLE>
</HEAD>

<BODY BACKGROUND="images/bg.gif" BGCOLOR="#FFFFFF">

JML Extended Type Descriptions

JavaBeans for Extended Types 2-9

<% if (submitCount.getValue() > 1) { %>
 <h3> Last submitted values </h3>

 bool: <%= bool.getValue() %>
 num: <%= num.getValue() %>
 fpnum: <%= fpnum.getValue() %>
 string: <%= str.getValue() %>

<% }

 if (submitCount.getValue() > 0) { %>

 <jsp:setProperty name = "bool" property = "value" param = "fBoolean" />
 <jsp:setProperty name = "num" property = "value" param = "fNumber" />
 <jsp:setProperty name = "fpnum" property = "value" param = "fFPNumber" />
 <jsp:setProperty name = "str" property = "value" param = "fString" />

 <h3> New submitted values </h3>

 bool: <jsp:getProperty name="bool" property="value" />
 num: <jsp:getProperty name="num" property="value" />
 fpnum: <jsp:getProperty name="fpnum" property="value" />
 string: <jsp:getProperty name="str" property="value" />

<% } %>

<jsp:setProperty name = "submitCount" property = "value" value = "<%= submitCount.getValue() + 1
%>" />

<FORM ACTION="index.jsp" METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">
<P> <pre>
 boolean test: <INPUT TYPE="text" NAME="fBoolean" VALUE="<%= bool.getValue() %>" >
 number test: <INPUT TYPE="text" NAME="fNumber" VALUE="<%= num.getValue() %>" >
fpnumber test: <INPUT TYPE="text" NAME="fFPNumber" VALUE="<%= fpnum.getValue() %>" >
 string test: <INPUT TYPE="text" NAME="fString" VALUE= "<%= str.getValue() %>" >
</pre>

<P> <INPUT TYPE="submit">

</FORM>

</BODY>

</HTML>

JML Extended Type Descriptions

2-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language Tags 3-1

3
JSP Markup Language Tags

This chapter documents the Oracle JSP Markup Language (JML) tag library, which
provides a set of JSP tags to allow developers to script JSP pages without using Java
statements. The JML library provides tags for variable declarations, control flow,
conditional branches, iterative loops, parameter settings, and calls to objects.

The chapter consists of the following sections:

� Overview of the JSP Markup Language (JML) Tag Library

� JSP Markup Language (JML) Tag Descriptions

Note: The library described here, which uses a standard runtime
implementation, is also supported through an Oracle-specific
compile-time implementation. The compile-time syntax and tags
are documented in Appendix A, "JML Compile-Time Syntax and
Tags". General considerations in using compile-time tags instead of
runtime tags are discussed in the Oracle Application Server Containers
for J2EE Support for JavaServer Pages Developer’s Guide.

Overview of the JSP Markup Language (JML) Tag Library

3-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of the JSP Markup Language (JML) Tag Library
OC4J supplies the JSP Markup Language (JML) tag library, developed according to
JSP standards. JML tags are intended to simplify coding syntax for JSP developers
who are not proficient with Java. There are two main categories of JML tags:
logic/flow control and bean binding.

These topics are covered in the following sections:

� JML Tag Library Philosophy

� JML Tag Categories

Note the following requirements for using JML tags:

� Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with the OC4J installation, in the "well-known" tag library directory.

� The tag library descriptor, jml.tld, must be available to the application, and
any JSP page using the library must have an appropriate taglib directive. In
an Oracle Application Server installation, the TLD is in ojsputil.jar. The
uri value for jml.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jml.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

Note: The custom JML tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. For standards compliance, it is now
generally advisable to use JSTL instead. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-24.

Oracle is not desupporting the existing library, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try to have
the features adopted into the JSTL standard as appropriate.

Overview of the JSP Markup Language (JML) Tag Library

JSP Markup Language Tags 3-3

JML Tag Library Philosophy
JavaServer Pages technology is intended for two separate developer communities:

� Those whose primary skill is Java programming

� Those whose primary skill is in designing static content, particularly in HTML,
and who may have limited scripting experience

The JML tag library is designed to allow most Web developers, with little or no
knowledge of Java, to assemble JSP applications with a full complement of program
flow-control features.

This model presumes that the business logic is contained in JavaBeans that are
developed separately by a Java developer.

JML Tag Categories
The JML tag library covers a feature set split into two functional categories, as
summarized in Table 3–1.

Table 3–1 JML Tag Functional Categories

Tag Categories Functionality Tags

Bean binding tags The purpose of these tags is to
declare or undeclare a JavaBean at a
specified JSP scope. See "Bean
Binding Tag Descriptions" on
page 3-4.

useVariable
useForm
useCookie
remove

Logic/flow control tags These tags offer simplified syntax to
define code flow, such as for
iterative loops or conditional
branches. See "Logic and Flow
Control Tag Descriptions" on
page 3-8.

if
choose..when..[otherwise]
foreach
return
flush

JSP Markup Language (JML) Tag Descriptions

3-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions
The following sections document the JML tags that are supported in the current JSP
runtime implementation:

� Bean Binding Tag Descriptions

� Logic and Flow Control Tag Descriptions

Bean Binding Tag Descriptions
The following sections document JML tags used for bean-binding operations:

� JML useVariable Tag

� JML useForm Tag

� JML useCookie Tag

� JML remove Tag

JML useVariable Tag
This tag offers a convenient alternative to the jsp:useBean tag for declaring
simple variables.

Syntax

<jml:useVariable id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"]
 type = "string" | "boolean" | "number" | "fpnumber"
 [value = "stringLiteral"] />

Attributes

� id (required): Specifies the variable being declared.

Notes:

� The prefix "jml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

JSP Markup Language (JML) Tag Descriptions

JSP Markup Language Tags 3-5

� scope: Defines the duration or scope of the variable (as with a jsp:useBean
tag). The default scope is page.

� type (required): Specifies the type of the variable. Type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber.

� value: Use this to set the variable directly in the declaration, as either a string
literal or a JSP expression enclosed in <%=... %> syntax. If this attribute is not
specified, then the value remains the same as when it was last set (if it already
exists) or is initialized with a default value. If it is specified, then the value is
always set, regardless of whether this declaration instantiates the object or
merely acquires it from the named scope.

Example Consider the following example:

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= dbConn.isValid() %>" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "isValidUser" class = "oracle.jsp.jml.JmlBoolean" scope = "session" />
<jsp:setProperty name="isValidUser" property="value" value = "<%= dbConn.isValid() %>" />

JML useForm Tag
This tag provides a convenient syntax for declaring variables and setting them to
values passed in from the request.

Syntax

<jml:useForm id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"]
 [type = "string" | "boolean" | "number" | "fpnumber"]
 param = "requestParameterName" />

Attributes

� id (required): Specifies the variable being declared or referenced.

� scope: Defines the duration or scope of the variable (as with a jsp:useBean
tag). The default is "page".

� type: Specifies the type of the variable. Type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber. The default is
"string".

� param (required): Specifies the name of the request parameter whose value is
used in setting the variable. If the request parameter exists, then the variable

JSP Markup Language (JML) Tag Descriptions

3-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

value is always updated, regardless of whether this declaration brings the
variable into existence. If the request parameter does not exist, then the variable
value remains unchanged.

Example The following example sets a session variable named user of the type
JmlString to the value of the request parameter named user.

<jml:useForm id = "user" type = "string" param = "user" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jml.JmlString" scope = "session" />
<jsp:setProperty name="user" property="value" param = "user" />

JML useCookie Tag
This tag offers a convenient syntax for declaring variables and setting them to
values contained in cookies.

Syntax

<jml:useCookie id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"]
 [type = "string" | "boolean" | "number" | "fpnumber"]
 cookie = "cookieName" />

Attributes

� id (required): Specifies the variable being declared or referenced.

� scope: Defines the duration or scope of the variable. This attribute is optional;
the default is "page".

� type: Identifies the type of the variable. Type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber. The default is
"string".

� cookie (required): Specifies the name of the cookie whose value is used in
setting this variable. If the cookie exists, then the variable value is always
updated, regardless of whether this declaration brings the variable into
existence. If the cookie does not exist, then the variable value remains
unchanged.

JSP Markup Language (JML) Tag Descriptions

JSP Markup Language Tags 3-7

Example The following example sets a request variable named user of the type
JmlString to the value of the cookie named user.

<jml:useCookie id = "user" type = "string" cookie = "user" scope = "request" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jml.JmlString" scope = "request" />
<%
 Cookies [] cookies = request.getCookies();
 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("user")) {
 user.setValue(cookies[i].getValue());
 break;
 }
 }
%>

JML remove Tag
This tag removes an object, typically a bean, from its scope.

Syntax

<jml:remove id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"] />

Attributes

� id (required): Specifies the name of the bean being removed.

� scope: Specifies the scope of the bean being removed. If not specified, then
scopes are searched in the following order: 1) page, 2) request, 3) session,
4) application. The first object whose name matches id is removed.

Example The following example removes the session user object:

<jml:remove id = "user" scope = "session" />

This is equivalent to the following:

<% session.removeValue("user"); %>

JSP Markup Language (JML) Tag Descriptions

3-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Logic and Flow Control Tag Descriptions
The following sections document JML tags that are used for logic and flow control:

� JML if Tag

� JML choose...when...[otherwise] Tags

� JML for Tag

� JML foreach Tag

� JML return Tag

� JML flush Tag

These tags, which are intended for developers without extensive Java experience,
can be used in place of Java logic and flow control syntax such as iterative loops and
conditional branches.

JML if Tag
This tag evaluates a single conditional statement. If the condition is true, then the
body of the if tag is executed.

Syntax

<jml:if condition = "<%= jspExpression %>" >
 ...body of jml:if tag (executed if the condition is true)...
</jml:if>

Attributes

� condition (required): Specifies the conditional expression to be evaluated.

Example The following e-commerce example displays information from a user's
shopping cart. The code checks to see if the variable holding the current T-shirt
order is empty. If not, then the size that the user has ordered is displayed. Assume
currTS is of type JmlString.

<jml:if condition = "<%= !currTS.isEmpty() %>" >
 <S>(size: <%= currTS.getValue().toUpperCase() %>)</S>
</jml:if>

JSP Markup Language (JML) Tag Descriptions

JSP Markup Language Tags 3-9

JML choose...when...[otherwise] Tags
The choose tag, with associated when and otherwise tags, provides a multiple
conditional statement.

The body of the choose tag contains one or more when tags, where each when tag
represents a condition. For the first when condition that is true, the body of that
when tag is executed. A maximum of one when body is executed.

If the when conditions are all false, and if the optional otherwise tag is specified,
then the body of the otherwise tag is executed.

Syntax

<jml:choose>
 <jml:when condition = "<%= jspExpression %>" >
 ...body of 1st jml:when tag (executed if the condition is true)...
 </jml:when>
 ...
 [...optional additional when tags...]
 [<jml:otherwise>
 ...body of jml:otherwise tag (executed if all when conditions false)...
 </jml:otherwise>]
</jml:choose>

Attributes The when tag uses the following attribute:

� condition (required): Specifies the conditional expression to be evaluated.

 The choose and otherwise tags have no attributes.

Example The following e-commerce example displays information from a user's
shopping cart. This code checks to see if anything has been ordered. If so, the
current order is displayed; otherwise, the user is asked to shop again. (This example
omits the code to display the current order.) Presume orderedItem is of the type
JmlBoolean.

<jml:choose>
 <jml:when condition = "<%= orderedItem.getValue() %>" >
 You have changed your order:
 -- output the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can't interest you in something, cheapskate?
 </jml:otherwise>
</jml:choose>

JSP Markup Language (JML) Tag Descriptions

3-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML for Tag
This tag provides the ability to iterate through a loop, as with a Java for loop.

The id attribute is a local loop variable of the type java.lang.Integer that
contains the value of the current range element. The range starts at the value
expressed in the from attribute and is incremented by one after each execution of
the body of the loop, until it exceeds the value expressed in the to attribute.

Once the range has been traversed, control goes to the first statement following the
for end-tag.

Syntax

<jml:for id = "loopVariable"
 from = "<%= jspExpression %>"
 to = "<%= jspExpression %>" >
 ...body of jml:for tag (executed once at each value of range, inclusive)...
</jml:for>

Attributes

� id (required): This is the name of the loop variable, which holds the current
value in the range. This is a java.lang.Integer value and can be used only
within the body of the tag.

� from (required): Specifies the start of the range. This is an expression that must
evaluate to a Java int value.

� to (required): Specifies the end of the range. This is an expression that must
evaluate to a Java int value.

Example The following example repeatedly prints "Hello World" in progressively
smaller headings (H1, H2, H3, H4, H5).

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
 <H<%=i%>>
 Hello World!
 </H<%=i%>>
</jml:for>

Note: Descending ranges are not supported. The from value must
be less than or equal to the to value.

JSP Markup Language (JML) Tag Descriptions

JSP Markup Language Tags 3-11

JML foreach Tag
This tag provides the ability to iterate over a homogeneous set of values. The body
of the tag is executed once for each element in the set. If the set is empty, then the
body is not executed.

The id attribute is a local loop variable containing the value of the current set
element. Its type is specified in the type attribute. The specified type should match
the type of the set elements, as applicable.

This tag currently supports iterations over the following types of data structures:

� Java array

� java.util.Enumeration

� java.util.Vector

Syntax

<jml:foreach id = "loopVariable"
 in = "<%= jspExpression %>"
 limit = "<%= jspExpression %>"
 type = "package.class" >
...body of jml:foreach tag (executes once for each element in data structure)...
</jml:foreach>

Attributes

� id (required): This is the name of the loop variable, which holds the value of
the current element at each step of the iteration. It can be used only within the
body of the tag. Its type is the same as specified in the type attribute.

� in (required): Specifies a JSP expression that evaluates to a Java array,
Enumeration object, or Vector object containing the set of values over which
to iterate.

� limit (required): Specifies a JSP expression that evaluates to a Java int value
defining the maximum number of iterations, regardless of the number of
elements in the set.

� type (required): Specifies the type of the loop variable. This should match the
type of the set elements, as applicable.

JSP Markup Language (JML) Tag Descriptions

3-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Example The following example iterates over the request parameters.

<jml:foreach id="name" in="<%= request.getParameterNames() %>" type="java.lang.String" >
 Parameter: <%= name %>
 Value: <%= request.getParameter(name) %>

</jml:foreach>

Alternatively, if you want to handle parameters with multiple values:

<jml:foreach id="name" in="<%= request.getParameterNames() %>" type="java.lang.String" >
 Parameter: <%= name %>
 Value: <jml:foreach id="val" in="<%=request.getParameterValues(name)%>"
 type="java.lang.String" >
 <%= val %> :
 </jml:foreach>

</jml:foreach>

JML return Tag
When this tag is reached, execution returns from the page without further
processing.

Syntax

<jml:return />

Attributes

None.

Example The following example returns without processing the page if the timer has
expired.

<jml:if condition="<%= timer.isExpired() %>" >
 You did not complete in time!
 <jml:return />
</jml:if>

JML flush Tag
This tag writes the current contents of the page buffer back to the client. This
applies only if the page is buffered; otherwise, there is no effect.

Syntax

<jml:flush />

JSP Markup Language (JML) Tag Descriptions

JSP Markup Language Tags 3-13

Attributes

None.

Example The following example flushes the current page contents before performing
an expensive operation.

<jml:flush />
<% myBean.expensiveOperation(out); %>

JSP Markup Language (JML) Tag Descriptions

3-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Data-Access JavaBeans and Tags 4-1

4
Data-Access JavaBeans and Tags

This chapter describes JavaBeans and tags provided with OC4J for use in accessing
a database from servlets and JSP pages.

The chapter consists of the following sections:

� JavaBeans for Data Access

� SQL Tags for Data Access

JavaBeans for Data Access

4-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
The OC4J product includes a set of JavaBeans that you can use to access a database.
The following sections describe the beans:

� Introduction to Data-Access JavaBeans

� Data-Access Support for Data Sources and Pooled Connections

� Data-Access JavaBean Descriptions

Introduction to Data-Access JavaBeans
OC4J supplies a set of custom JavaBeans for database access. The following beans
are included in the oracle.jsp.dbutil package:

� ConnBean opens a database connection. This bean also supports data sources
and connection pooling. See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-3 for related information.

� ConnCacheBean uses the Oracle JDBC connection caching implementation for
database connections. This requires JDBC 2.0.

� DBBean executes a database query. It also has its own connection mechanism,
but does not support data sources.

� CursorBean provides general DML support for queries; UPDATE, INSERT, and
DELETE statements; and stored procedure calls.

This section presumes a working knowledge of Oracle JDBC. Consult the Oracle9i
JDBC Developer’s Guide and Reference as necessary.

To use the data-access JavaBeans, verify that the file ojsputil.jar is installed
and in your classpath. This file is provided with the OC4J installation. For
XML-related methods and functionality, you will also need the file xsu12.jar (for
JDK 1.2.x) or xsu111.jar (for JDK 1.1.x), both of which are provided with Oracle
Application Server.

Note: The JavaBeans described here are used by the tags
discussed in "SQL Tags for Data Access" on page 4-16. Generally
speaking, these beans and tags can be used with non-Oracle
databases, assuming you have appropriate JDBC driver classes;
however, numerous features described below, as noted, are
Oracle-specific.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-3

You will also need appropriate JDBC driver classes installed and in your classpath,
such as classes12.zip for Oracle Database and JDK 1.2 or higher.

Data-Access Support for Data Sources and Pooled Connections
The data-access JavaBeans, as well as the data-access tag library, support the use of
data sources to specify connection properties. This is also how support for
connection pooling is implemented. This mechanism supports both Oracle
connection objects and OC4J connection objects.

To use a data source in a JSP page, you must define the data source, its JNDI name,
and its connection and pooling properties. In OC4J, do this in a <data-source>
element in the data-sources.xml file. Here is an example:

<data-source
 class="oracle.jdbc.pool.OracleDataSource"
 name="jdbc/ejbpool/OracleDS"
 location="jdbc/ConnectionDS"
 ejb-location="jdbc/ejbpool/OracleDS"
 url="jdbc:oracle:thin:@myhost:1521:orcl"
 username="scott"
 password="tiger"
 min-connections="3"
 max-connections="50"
 wait-timeout="10"
 inactivity-timeout="30" />

It is advisable to use only the ejb-location JNDI name in the JNDI lookup for an
emulated data source. See the Oracle Application Server Containers for J2EE Services
Guide for more information about data sources.

Data-Access JavaBean Descriptions
The following sections describe attributes and methods of the data-access
JavaBeans—ConnBean, ConnCacheBean, DBBean, and CursorBean—and
concludes with an example that uses a data source:

� ConnBean for a Database Connection

Note: The Oracle data-access JavaBeans implement the Oracle
JspScopeListener interface for event notification. Refer to "JSP
Event-Handling with JspScopeListener" on page 9-2 for information
about this interface.

JavaBeans for Data Access

4-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� ConnCacheBean for Connection Caching

� DBBean for Queries Only

� CursorBean for DML and Stored Procedures

� Example: Using ConnBean and CursorBean with a Data Source

ConnBean for a Database Connection
Use oracle.jsp.dbutil.ConnBean to establish a simple database connection,
one that uses no connection pooling or caching.

ConnBean has the following properties. The user, password, and URL properties
are not required if you use a data source.

� dataSource: JNDI name for a data source location

This is valid only for an environment that supports data sources. See
"Data-Access Support for Data Sources and Pooled Connections" on page 4-3
for information about how to set up a data source in OC4J.

� user: user ID for database schema

� password: user password

� URL: database connection string

� stmtCacheSize: cache size for Oracle JDBC statement caching

Setting stmtCacheSize enables Oracle JDBC statement caching.

� executeBatch: batch size for Oracle JDBC update batching

Setting executeBatch enables Oracle JDBC update batching.

� preFetch: number of statements to prefetch in Oracle JDBC row prefetching

Setting preFetch enables Oracle JDBC row prefetching.

� commitOnClose: "true" or "false" for whether to execute commit when the
connection is closed

The value of commitOnClose indicates whether an automatic commit should
be executed when the connection is closed. A "true" setting results in a

Note: For queries only, if you do not require a data source, it is
simpler to use DBBean, which has its own connection mechanism.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-5

commit; a "false" setting results in a rollback. Prior to Oracle9iAS Release
2, an automatic commit was always executed, but in current releases the
default is an automatic rollback. The commitOnClose property allows for
backward compatibility to ease migration.

Be aware that there can be an application-wide commit-on-close setting in
the application web.xml file, but the setting of the ConnBean property is not
automatically dependent on that setting. If a JSP pages uses ConnBean instead
of a dbOpen tag, the value of the commit-on-close context parameter should
be retrieved and then explicitly set as the commitOnClose value in the
ConnBean instance. For reference, here is a sample web.xml entry that sets the
commit-on-close context parameter:

<context-param>
 <param-name>commit-on-close</param-name>
 <param-value>true</param-value>
</context-param>

ConnBean provides the following setter and getter methods for these properties:

� void setDataSource(String)

� String getDataSource()

� void setUser(String)

� String getUser()

� void setPassword(String)

� String getPassword()

� void setURL(String)

� String getURL()

� void setStmtCacheSize(int)

� int getStmtCacheSize()

� void setExecuteBatch(int)

Note: See the Oracle9i JDBC Developer’s Guide and Reference for
information about statement caching, update batching, and row
prefetching.

JavaBeans for Data Access

4-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� int getExecuteBatch()

� void setPreFetch(int)

� int getPreFetch()

� void setCommitOnClose(String)

� String getCommitOnClose()

Use the following methods to open and close a connection or to verify its status:

� void connect()

Establish a database connection using ConnBean property settings.

� void close()

Close the connection and any open cursors.

� boolean isConnectionClosed()

Determine if the connection is closed.

Use the following method to open a cursor and return a CursorBean object:

� CursorBean getCursorBean(int, String)

or:

� CursorBean getCursorBean(int)

Input the following:

– One of the following int constants to specify the type of JDBC statement
you want: CursorBean.PLAIN_STMT for a Statement object,
CursorBean.PREP_STMT for a PreparedStatement object, or
CursorBean.CALL_STMT for a CallableStatement object

– A string specifying the SQL operation to execute (optional)

Alternatively, you can specify the SQL operation in the CursorBean
method call that executes the statement.

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnBean properties with a jsp:setProperty action
instead of using the setter method directly.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-7

See "CursorBean for DML and Stored Procedures" on page 4-11 for information
about CursorBean functionality.

ConnCacheBean for Connection Caching
Use oracle.jsp.dbutil.ConnCacheBean to use the Oracle JDBC connection
caching mechanism, using JDBC 2.0 connection pooling, for your database
connections. Refer to the Oracle9i JDBC Developer’s Guide and Reference for
information about connection caching.

ConnCacheBean has the following properties:

� user: user ID for database schema

� password: user password

� URL: database connection string

� maxLimit: maximum number of connections allowed by this cache

� minLimit: minimum number of connections existing for this cache

If you use fewer than this number, there will also be connections in the idle pool
of the cache.

� stmtCacheSize: cache size for Oracle JDBC statement caching

Setting stmtCacheSize enables the Oracle JDBC statement caching feature.
Refer to the Oracle9i JDBC Developer’s Guide and Reference for information about
Oracle JDBC statement caching features and limitations.

� cacheScheme: type of cache

This is indicated by one of the following int constants.

– DYNAMIC_SCHEME: New pooled connections can be created above and
beyond the maximum limit, but each one is automatically closed and freed

Notes:

� To use data sources or simple connection objects, use
ConnBean instead.

� ConnCacheBean extends OracleConnectionCacheImpl,
which extends OracleDataSource (both in Oracle JDBC
package oracle.jdbc.pool).

JavaBeans for Data Access

4-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

as soon as the logical connection instance that it provided is no longer in
use.

– FIXED_WAIT_SCHEME: When the maximum limit is reached, any new
connection waits for an existing connection object to be released.

– FIXED_RETURN_NULL_SCHEME: When the maximum limit is reached, any
new connection fails, returning null, until connection objects have been
released.

The ConnCacheBean class supports methods defined in the Oracle JDBC
OracleConnectionCacheImpl class, including the following getter and setter
methods for its properties:

� void setUser(String)

� String getUser()

� void setPassword(String)

� String getPassword()

� void setURL(String)

� String getURL()

� void setMaxLimit(int)

� int getMaxLimit()

� void setMinLimit(int)

� int getMinLimit()

� void setStmtCacheSize(int)

� int getStmtCacheSize()

� void setCacheScheme(int)

Specify ConnCacheBean.DYNAMIC_SCHEME,
ConnCacheBean.FIXED_WAIT_SCHEME, or
ConnCacheBean.FIXED_RETURN_NULL_SCHEME.

� int getCacheScheme()

Returns ConnCacheBean.DYNAMIC_SCHEME,
ConnCacheBean.FIXED_WAIT_SCHEME, or
ConnCacheBean.FIXED_RETURN_NULL_SCHEME.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-9

The ConnCacheBean class also inherits properties and related getter and setter
methods from the oracle.jdbc.pool.OracleDataSource class. This provides
getter and setter methods for the following properties: databaseName,
dataSourceName, description, networkProtocol, portNumber,
serverName, and driverType. For information about these properties and their
getter and setter methods, see the Oracle9i JDBC Developer’s Guide and Reference.

Use the following methods to open and close a connection:

� Connection getConnection()

Get a connection from the connection cache using ConnCacheBean property
settings.

� void close()

Close all connections and any open cursors.

Although the ConnCacheBean class does not support Oracle JDBC update
batching and row prefetching directly, you can enable these features by calling the
setDefaultExecuteBatch(int) and setDefaultRowPrefetch(int)
methods of the Connection object that you retrieve from the getConnection()
method. Alternatively, you can use the setExecuteBatch(int) and
setRowPrefetch(int) methods of JDBC statement objects that you create from
the Connection object. (Update batching is supported only in prepared
statements.) Refer to the Oracle9i JDBC Developer’s Guide and Reference for
information about these features.

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnCacheBean properties with a jsp:setProperty
action instead of using the setter method directly.

Notes:

� ConnCacheBean has the same functionality as the
OracleConnectionCacheImpl class. See the Oracle9i JDBC
Developer’s Guide and Reference for more information.

� When you use ConnCacheBean, use normal Connection
object functionality to create and execute statement objects
(unlike the case with ConnBean).

JavaBeans for Data Access

4-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

DBBean for Queries Only
Use oracle.jsp.dbutil.DBBean to execute queries only.

DBBean has the following properties:

� user: user ID for database schema

� password: user password

� URL: database connection string

DBBean provides the following setter and getter methods for these properties:

� void setUser(String)

� String getUser()

� void setPassword(String)

� String getPassword()

� void setURL(String)

� String getURL()

Use the following methods to open and close a connection:

� void connect()

Establish a database connection using DBBean property settings.

Notes:

� DBBean has its own connection mechanism but does not
support data sources. If you require a data source, use
ConnBean instead.

� Use CursorBean for any other DML operations (UPDATE,
INSERT, DELETE, or stored procedure calls).

Note: As with any JavaBean you use in a JSP page, you can set
any of the DBBean properties with a jsp:setProperty statement
instead of using the setter method directly.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-11

� void close()

Close the connection and any open cursors.

Use either of the following methods to execute a query:

� String getResultAsHTMLTable(String)

Input a string that contains the SELECT statement. This method returns a string
with the HTML commands necessary to output the result set as an HTML table.
SQL column names (or aliases) are used for the table column headers.

� String getResultAsXMLString(String)

Input a string with the SELECT statement. This method returns the result set as
an XML string, using SQL names (or aliases) for the XML tags.

CursorBean for DML and Stored Procedures
Use oracle.jsp.dbutil.CursorBean for SELECT, UPDATE, INSERT, or
DELETE operations, or stored procedure calls, on a simple connection. It uses a
previously defined ConnBean object for the connection.

You can specify a SQL operation in a ConnBean object getCursorBean() call or
through a call to one of the create(), execute(), or executeQuery() methods
of a CursorBean object as described below.

CursorBean supports scrollable and updatable cursors, update batching, row
prefetching, and query timeout limits. For information about these Oracle JDBC
features, see the Oracle9i JDBC Developer’s Guide and Reference.

CursorBean has the following properties:

� executeBatch: batch size for Oracle JDBC update batching

Setting this property enables Oracle JDBC update batching.

� preFetch: number of statements to prefetch in Oracle JDBC row prefetching

Setting this property enables Oracle JDBC row prefetching.

� queryTimeout: number of seconds for the driver to wait for a statement to
execute before issuing a timeout

Note: To use connection caching, use ConnCacheBean and
normal Connection object functionality. Do not use CursorBean.

JavaBeans for Data Access

4-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� resultSetType: scrollability of the result set

This is indicated by one of the following int constants.

– TYPE_FORWARD_ONLY (default): Use this for a result set that can scroll only
forward (using the next() method) and cannot be positioned.

– TYPE_SCROLL_INSENSITIVE: Use this for a result set that can scroll
forward or backward and can be positioned, but is not sensitive to
underlying data changes.

– TYPE_SCROLL_SENSITIVE: Use this for a result set that can scroll forward
or backward, can be positioned, and is sensitive to underlying data
changes.

� resultSetConcurrency: updatability of the result set

This is indicated by one of the following int constants.

– CONCUR_READ_ONLY (default): Use this for a result set that is read-only
(cannot be updated).

– CONCUR_UPDATABLE: Use this for a result set that is updatable.

You can set these properties with the following methods to enable Oracle JDBC
features, as desired:

� void setExecuteBatch(int)

� int getExecuteBatch()

� void setPreFetch(int)

� int getPreFetch()

� void setQueryTimeout(int)

� int getQueryTimeout()

� void setResultSetConcurrency(int)

Specify CursorBean.CONCUR_READ_ONLY or
CursorBean.CONCUR_UPDATABLE.

� int getResultSetConcurrency()

Returns CursorBean.CONCUR_READ_ONLY or
CursorBean.CONCUR_UPDATABLE.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-13

� void setResultSetType(int)

Specify CursorBean.TYPE_FORWARD_ONLY,
CursorBean.TYPE_SCROLL_INSENSITIVE, or
CursorBean.TYPE_SCROLL_SENSITIVE.

� int getResultSetType()

Returns CursorBean.TYPE_FORWARD_ONLY,
CursorBean.TYPE_SCROLL_INSENSITIVE, or
CursorBean.TYPE_SCROLL_SENSITIVE.

To execute a query once a CursorBean instance has been defined in a
jsp:useBean statement, you can use CursorBean methods to create a cursor in
one of two ways. Use the following methods to create the cursor and supply a
connection in separate steps:

� void create()

� void setConnBean(ConnBean)

Alternatively, use the following method to combine the process into a single step:

� void create(ConnBean)

Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 4-4.

Use the following method to specify and execute a query (using a JDBC plain
Statement object behind the scenes):

� ResultSet executeQuery(String)

Input a string that contains the SELECT statement.

Alternatively, if you want to format the result set as an HTML table or XML string,
use either of the following methods instead of executeQuery():

� String getResultAsHTMLTable(String)

Returns a string with HTML statements to create an HTML table for the result
set. Specify a string with the SELECT statement.

Note: As with any JavaBean you use in a JSP page, you can set
any of the CursorBean properties with a jsp:setProperty
action instead of using the setter method directly.

JavaBeans for Data Access

4-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� String getResultAsXMLString(String)

Returns the result set data in an XML string. Specify a string with the SELECT
statement.

To execute an UPDATE, INSERT, or DELETE statement once a CursorBean instance
has been defined in a jsp:useBean action, you can use CursorBean methods to
create a cursor in one of two ways. Use the following methods to create the cursor,
specifying a statement type as an integer and specifying a SQL statement as a string,
and supply a connection:

� void create(int, String)

� void setConnBean(ConnBean)

Alternatively, use the following method to combine the process into a single step:

� void create(ConnBean, int, String)

Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 4-4.

The int input takes one of the following constants to specify the type of JDBC
statement you want: CursorBean.PLAIN_STMT for a Statement object,
CursorBean.PREP_STMT for a PreparedStatement object, or
CursorBean.CALL_STMT for a CallableStatement object. The String input is
to specify the SQL statement.

Use the following method to execute the INSERT, UPDATE, or DELETE statement.
You can ignore the boolean return value.

� boolean execute()

Alternatively, for update batching, use the following method, which returns the
number of rows affected.

� int executeUpdate()

Note: Specify the SQL operation either during statement creation
or during statement execution, but not both. The execute() and
executeUpdate() methods can optionally take a string to specify
a SQL operation. This is also true of the create() method, as well
as the getCursorBean() method in ConnBean.

JavaBeans for Data Access

Data-Access JavaBeans and Tags 4-15

Additionally, CursorBean supports Oracle JDBC functionality such as
registerOutParameter() for callable statements, setXXX() methods for
prepared statements and callable statements, and getXXX() methods for result sets
and callable statements.

Use the following method to close the database cursor:

� void close()

Example: Using ConnBean and CursorBean with a Data Source
This following is a sample JSP page that uses ConnBean with a data source to open
a connection, then uses CursorBean to execute a query.

<%@ page import="java.sql.*, oracle.jsp.dbutil.*" %>
<jsp:useBean id="cbean" class="oracle.jsp.dbutil.ConnBean" scope="session">
 <jsp:setProperty name="cbean" property="dataSource"
 value="<%=request.getParameter("datasource")%>"/>
</jsp:useBean>
<% try {
 cbean.connect();
 String sql="SELECT ename, sal FROM scott.emp ORDER BY ename";
 CursorBean cb = cbean.getCursorBean (CursorBean.PREP_STMT, sql);
 out.println(cb.getResultAsHTMLTable());
 cb.close();
 cbean.close();
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println("<PRE>" + e + "</PRE>\n<P>"); }
%>

SQL Tags for Data Access

4-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
OC4J includes a set of tags you can use in JSP pages to execute SQL commands to
access a database. The following sections describe the tags:

� Introduction to Data-Access Tags

� Data-Access Tag Descriptions

Introduction to Data-Access Tags
OC4J supplies a custom tag library for SQL functionality, consisting of the following
tags:

� dbOpen: Open a database connection. This tag also supports data sources and
connection pooling. See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-3 for related information.

� dbClose: Close a database connection.

� dbQuery: Execute a query.

� dbCloseQuery: Close the cursor for a query.

� dbNextRow: Process the rows of a result set.

� dbExecute: Execute any SQL statement (DML or DDL).

� dbSetParam: Set a parameter to bind into a dbQuery or dbExecute tag.

� dbSetCookie: Set a cookie.

Note: The custom SQL tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. For standards compliance, it is now
generally advisable to use JSTL instead. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-24.

Oracle is not desupporting the existing library, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try to have
the features adopted into the JSTL standard as appropriate.

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-17

Note the following requirements for using SQL tags:

� You will need the appropriate JDBC driver file, such as classes12.zip for
JDK 1.2 or higher, installed and in your classpath.

� Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with the OC4J installation, in the "well-known" tag library directory.

� The tag library descriptor, sqltaglib.tld, must be available to the
application, and any JSP page using the library must have an appropriate
taglib directive. In an Oracle Application Server installation, the TLD is in
ojsputil.jar. The uri value for sqltaglib.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld

For general information about JSP tag library usage, including tag library descriptor
files, taglib directives, the well-known tag library directory, and the meaning of
uri values, refer to the Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide.

Data-Access Tag Descriptions
The following sections provide detailed syntax for the data-access tags and an
example using dbOpen and dbQuery tags with a data source:

� SQL dbOpen Tag

� SQL dbClose Tag

� SQL dbQuery Tag

Notes:

� The data-access tags use the beans described in "JavaBeans for
Data Access" on page 4-2. Generally speaking, these beans and
tags can be used with non-Oracle databases, assuming you
have appropriate JDBC driver classes; however, numerous
features described below, as noted, are Oracle-specific.

� For applications using the data-access tags, consider using the
dbSetParam tag to supply only parameter values rather than
textual completion of the SQL statement itself. This avoids the
possibility of what is referred to as "SQL poisoning", where
users might enter additional SQL in addition to the expected
value.

SQL Tags for Data Access

4-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� SQL dbCloseQuery Tag

� SQL dbNextRow Tag

� SQL dbExecute Tag

� SQL dbSetParam Tag

� SQL dbSetCookie Tag

� Example: Using dbOpen and dbQuery with a Data Source

SQL dbOpen Tag
Use the dbOpen tag to open a database connection for subsequent SQL operations
through such tags as dbQuery and dbExecute. Do this by specifying a data source
location, in which case connection caches are supported, or by specifying the user,
password, and URL individually. See "Data-Access Support for Data Sources and
Pooled Connections" on page 4-3 for information about how to set up a data source
in OC4J.

The implementation uses oracle.jsp.dbutil.ConnBean instances. For simple
connections, but not connection caches, you can optionally set ConnBean properties
such as stmtCacheSize, preFetch, and batchSize to enable those Oracle JDBC
features. See "ConnBean for a Database Connection" on page 4-4 for more
information.

The ConnBean object for the connection is created in an instance of the
tag-extra-info class of the dbOpen tag. Refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide for information
about the standard JSP tag library framework and tag-extra-info classes.

Syntax

<sql:dbOpen
 [connId = "connection_id"]

Notes:

� The prefix "sql:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-19

 [scope = "page" | "request" | "scope" | "application"]
 [dataSource = "JNDI_name"]
 [user = "username"
 password = "password"
 URL = "databaseURL"]
 [commitOnClose = "true" | "false"] >

 ...

</sql:dbOpen>

Nested code that you want to execute through this connection can go into the tag
body, between the dbOpen start-tag and end-tag.

Attributes

� connId: Optionally use this to specify an ID name for the connection. You can
then reference this ID in subsequent tags such as dbQuery or dbExecute.
Alternatively, you can nest dbQuery and dbExecute tags inside the dbOpen
tag. You can also reference the connection ID in a dbClose tag when you want
to close the connection.

You can still specify a connection ID if you nest dbQuery or dbExecute tags
inside the dbOpen tag. In this case, the connection will be found through the
connection ID. With the scope attribute, it is possible to have multiple
connections using the same connection ID but different scopes.

If you specify a connection ID, then the connection is not closed until you close
it explicitly with a dbClose tag. Without a connection ID, the connection is
closed automatically when the dbOpen end-tag is encountered.

Note: You must set either the dataSource attribute or the user,
password, and URL attributes. Optionally, you can use a data
source to specify a URL, then use the dbOpen tag user and
password attributes separately.

When a data source is used, and is for a cache of connections, the
first use of the cache initializes it. If you specify the user and
password through the dbOpen tag user and password attributes,
that will initialize the cache for that user and password. Subsequent
uses of the cache are for the same user and password.

SQL Tags for Data Access

4-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� scope (used only with a connId): Use this to specify the desired scope of the
connection instance. The default is page scope.

If you specify a scope setting in a dbOpen tag, then you must specify the same
scope setting in any other tag—dbQuery, dbExecute, or dbClose—that uses
the same connection ID.

� dataSource (required if you do not set the user, password, and URL
attributes): Optionally use this to specify the JNDI name of a data source for
database connections. First set up the data source in the OC4J
data-sources.xml file. (See "Data-Access Support for Data Sources and
Pooled Connections" on page 4-3.) The dataSource setting should correspond
to the location name, ejb-location name, or pooled-location name in
a <data-source> element in data-sources.xml.

A data source must specify a URL setting, but does not have to specify a
user/password pair. You can use the dbOpen tag user and password
attributes instead.

This attribute is supported only in OC4J environments.

� user (required if no user/password pair is specified through a data source):
This is the user name for a database connection.

If a user name is specified through both a data source and the user attribute,
the user attribute takes precedence. It is advisable to avoid such duplication,
because conflicts could arise if the data source is a pooled connection with
existing logical connections using a different user name.

� password (required if no user/password pair is specified through a data
source): This is the user password for a database connection.

Note that you do not have to hardcode a password into the JSP page, which
would be an obvious security concern. Instead, you can get the password and
other parameters from the request object, as follows:

<sql:dbOpen connId="conn1" user='<%=request.getParameter("user")%>'
 password='<%=request.getParameter("password")%>' URL="url" />

Note: It is advisable to use only the ejb-location JNDI name in
the JNDI lookup for an emulated data source. See the Oracle
Application Server Containers for J2EE Services Guide for more
information about data sources.

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-21

As with the user attribute, if a password is specified through both a data
source and the password attribute, the password attribute takes precedence.

� URL (required if no data source is specified): This is the URL for a database
connection. If a URL is supplied through a data source, the dbOpen tag URL
attribute is ignored.

� commitOnClose: Set this to "true" for an automatic SQL commit when the
connection is closed or goes out of scope. The default "false" setting results in
an automatic SQL rollback.

As a convenience, if you want to specify application-wide automatic commit or
rollback behavior, set the parameter name commit-on-close in the
application web.xml file, as in the following example:

<context-param>
 <param-name>commit-on-close</param-name>
 <param-value>true</param-value>
</context-param>

The commitOnClose setting in a dbOpen tag takes precedence over the
commit-on-close setting in web.xml.

SQL dbClose Tag
Use the dbClose tag to close a connection associated with the optional connId
parameter specified in a dbOpen tag. If connId is not used in the dbOpen tag, then
the connection is closed automatically when the dbOpen end-tag is reached; a
dbClose tag is not required.

Note that by using the JspScopeListener utility provided with OC4J, you can
have the connection closed automatically with session-based event-handling. Refer
to "JSP Event-Handling with JspScopeListener" on page 9-2 for information.

Syntax

<sql:dbClose connId = "connection_id"
 [scope = "page" | "request" | "scope" | "application"] />

Note: In previous releases, the behavior is always to commit
automatically when the connection is closed. The commitOnClose
attribute offers backward compatibility to simplify migration.

SQL Tags for Data Access

4-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

� connId (required): This is the ID for the connection being closed, specified in
the dbOpen tag that opened the connection.

� scope: This is the scope of the connection instance. The default is "page", but if
the dbOpen tag specified a scope other than page, you must specify that same
scope in the dbClose tag.

SQL dbQuery Tag
Use the dbQuery tag to execute a query, outputting the results either as a JDBC
result set, HTML table, XML string, or XML DOM object. Place the SELECT
statement (one only) in the tag body, between the dbQuery start-tag and end-tag.

This tag uses an oracle.jsp.dbutil.CursorBean object for the cursor, so you
can set properties such as the result set type, result set concurrency, batch size, and
prefetch size, if desired. See "CursorBean for DML and Stored Procedures" on
page 4-11 for information about CursorBean functionality.

For XML usage, this tag acts as an XML producer. See "XML Producers and XML
Consumers" on page 5-2 for more information. Also see "Example Using the
transform and dbQuery Tags" on page 5-11.

Syntax

<sql:dbQuery
 [queryId = "query_id"]
 [connId = "connection_id"]
 [scope = "page" | "request" | "scope" | "application"]
 [output = "HTML" | "XML" | "JDBC"]
 [maxRows = "number"]
 [skipRows = "number"]
 [bindParams = "value"]
 [toXMLObjName = "objectname"] >

 ...SELECT statement (one only)...

 </sql:dbQuery>

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-23

Attributes

� queryId: You can use this to specify an ID name for the cursor. This is required
if you want to process the results using a dbNextRow tag.

If the queryId parameter is present, then the cursor is not closed until you
close it explicitly with a dbCloseQuery tag. Without a query ID, the cursor is
closed automatically when the dbQuery end-tag is encountered. This is not a
request-time attribute, meaning it cannot take a JSP expression value.

� connId: This is the ID for a database connection, according to the connId
setting in the dbOpen tag that opened the connection. If you do not specify
connId in a dbQuery tag, then the tag must be nested within the body of a
dbOpen tag and will use the connection opened in the dbOpen tag. This is not a
request-time attribute.

� scope: This is the scope of the connection instance. The default is "page", but if
the associated dbOpen tag specified a scope other than page, you must specify
that same scope in the dbQuery tag. This is not a request-time attribute.

� output: This is the desired output format, one of the following.

– HTML specifies that the result set is to be output as an HTML table (default).

– XML specifies that the result set is to be output as an XML string, or an XML
DOM object if an object name is specified in the toXMLObjName attribute.

– JDBC specifies that the result set is to be output as a JDBC ResultSet
object that can be processed using the dbNextRow tag to iterate through the
rows.

� maxRows: This is the maximum number of rows of data to display. The default
is all rows.

� skipRows: This is the number of data rows to skip in the query results before
displaying results. The default is 0.

� bindParams: Use this to bind a parameter into the query. The following
example is from an application that prompts the user to enter an employee

Important:

� Do not terminate the SELECT statement with a semicolon. This
currently results in a syntax error.

� The dbQuery tag does not currently support LOB columns.

SQL Tags for Data Access

4-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

number, using bindParams to bind the specified value into the empno field of
the query:

<sql:dbQuery connId="con1" bindParams="empno">
 select * from EMP where empno=?
</sql:dbQuery>

Alternatively, you can set a parameter value with the dbSetParam tag to bind
it in through the bindParams attribute. See "SQL dbSetParam Tag" on
page 4-27.

� toXMLObjName: Specify an XML object name if you want to output the results
as an XML DOM object. To use this, you must also set output to "XML".

SQL dbCloseQuery Tag
Use the dbCloseQuery tag to close a cursor associated with the optional queryId
parameter specified in a dbQuery tag. If queryId is not specified in the dbQuery
tag, then the cursor is closed automatically when the dbQuery end-tag is reached; a
dbCloseQuery tag is not required.

Syntax

<sql:dbCloseQuery queryId = "query_id" />

Attributes

� queryId (required): The ID for the cursor to be closed, specified in the
dbQuery tag that opened the cursor.

SQL dbNextRow Tag
Use the dbNextRow tag to process each row of a result set obtained in a dbQuery
tag and associated with the specified queryId. Place the processing code in the tag
body, between the dbNextRow start-tag and end-tag. The body is executed for each
row of the result set.

To use the dbNextRow tag, the dbQuery tag must set output to "JDBC" and
specify a queryId for the dbNextRow tag to reference.

The result set object is created in an instance of the tag-extra-info class of the
dbQuery tag. Refer to the Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for information about the standard JSP tag library
framework and tag-extra-info classes.

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-25

Syntax

<sql:dbNextRow queryId = "query_id" >
...Row processing...
</sql:dbNextRow >

Attributes

� queryId (required): This is the ID of the cursor containing the results to be
processed, specified in the dbQuery tag that opened the cursor.

Example The following example shows the combined use of a dbOpen, dbQuery,
and dbNextRow tag.

<sql:dbOpen connId="con1" URL="jdbc:oracle:thin:@myhost:1521:816"
 user="scott" password="tiger">
</sql:dbOpen>
<sql:dbQuery connId="con1" output="jdbc" queryId="myquery">
 select * from EMP
</sql:dbQuery>
<sql:dbNextRow queryId="myquery">
 <%= myquery.getString(1) %>
</sql:dbNextRow>
<sql:dbCloseQuery queryId="myquery" />
<sql:dbClose connId="con1" />

SQL dbExecute Tag
Use the dbExecute tag to execute a single DML or DDL statement. Place the
statement in the tag body, between the dbExecute start-tag and end-tag.

This tag uses an oracle.jsp.dbutil.CursorBean object for the cursor. See
"CursorBean for DML and Stored Procedures" on page 4-11 for information about
CursorBean functionality.

Syntax

<sql:dbExecute
 [connId = "connection_id"]
 [scope = "page" | "request" | "scope" | "application"]
 [output = "yes" | "no"]
 [bindParams = "value"] >

 ...DML or DDL statement (one only)...

</sql:dbExecute >

SQL Tags for Data Access

4-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

� connId: This is the ID of a database connection, according to the connId
setting in the dbOpen tag that opened the connection. If you do not specify
connId in a dbExecute tag, then the tag must be nested within the body of a
dbOpen tag and will use the connection opened in the dbOpen tag.

� scope: This is the scope of the connection instance. The default is "page", but if
the dbOpen tag specified a scope other than page, you must specify that same
scope in the dbExecute tag.

� output: If output="yes", then for DML statements the HTML string "number
row[s] affected" will be output to the browser to notify the user how many
database rows were affected by the operation. For DDL statements, the
statement execution status will be printed. The default is "no".

� bindParams: Use this to bind a parameter into the SQL statement. The
following example is from an application that prompts the user to enter an
employee number, using bindParams to bind the specified value into the
empno field of the DELETE statement:

<sql:dbExecute connId="con1" bindParams="empno">
 delete from EMP where empno=?
</sql:dbExecute>

Alternatively, you can set a parameter value with the dbSetParam tag to bind
it in through the bindParams attribute. See the next section, "SQL dbSetParam
Tag".

Important:

� Do not terminate the DML or DDL statement with a semicolon.
This currently results in a syntax error.

� The dbExecute tag does not currently support LOB columns.

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-27

SQL dbSetParam Tag
You can use this tag to set a parameter value to bind into a query, through the
dbQuery tag, or to bind into any other SQL operation, through the dbExecute tag.

Syntax

<sql:dbSetParam name = "param_name"
 value = "param_value"
 [scope = "page" | "request" | "scope" | "application"] />

Attributes

� name (required): This is the name of the parameter to set.

� value (required): This is the desired value of the parameter.

� scope: This is the scope of the bind parameter. The default is page scope.

Example The following example uses a dbSetParam tag to set the value of a
parameter named id2. This value is then bound into the SQL statement in the
dbExecute tag.

<sql:dbSetParam name="id2" value='<%=request.getParameter("id")%>'
 scope="session" />
Result:
 <HR>
 <sql:dbOpen dataSource="<%= dataSrcStr %>" >
 <sql:dbExecute output="yes" bindParams="id2 name job sal">
 insert into emp(empno, ename, deptno, job, sal)
 values (?, ?, 20, ?, ?)
 </sql:dbExecute>
 </sql:dbOpen>
 <HR>

Note: For applications using the data-access tags, consider using
the dbSetParam tag to supply only parameter values rather than
textual completion of the SQL statement itself. This avoids the
possibility of what is referred to as "SQL poisoning", where users
might enter more SQL code in addition to the expected value.

SQL Tags for Data Access

4-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL dbSetCookie Tag
You can use this tag to set a cookie. The dbSetCookie tag wraps functionality of
the standard javax.servlet.http.Cookie class.

Syntax

<sql:dbSetCookie name = "cookie_name"
 [value = "cookie_value"]
 [domain = "domain_name"]
 [comment = "comment"]
 [maxAge = "age"]
 [version = "protocol_version"]
 [secure = "true" | "false"]
 [path = "path"] />

Attributes

� name (required): This is the name of the cookie.

� value: This is the desired value of the cookie. Because it is permissible to have
a null-value cookie, this attribute is not required.

� domain: This is the domain name for the cookie. The form of the domain name
is according to the RFC 2019 specification.

� comment: This is for a comment describing the purpose of the cookie.

� maxAge: This is the maximum allowable age of the cookie, in seconds. Use a
setting of "-1" for the cookie to persist until the browser is shut down.

� version: This is the version of the HTTP protocol that the cookie complies
with.

� secure: This informs the browser whether the cookie should be sent using a
secure protocol, such as HTTPS.

� path: This specifies a file system path for the cookie, the location to which the
client should return the cookie.

Example

<sql:dbSetCookie name="cId" value='<%=request.getParameter("id")%>'
 maxAge='800000' />

SQL Tags for Data Access

Data-Access JavaBeans and Tags 4-29

Example: Using dbOpen and dbQuery with a Data Source
This section provides a sample JSP page that uses a dbOpen tag with a data source
to open a connection, then uses a dbQuery tag to execute a query.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld"
prefix="sql" %>
<HTML>
<BODY>
 <sql:dbOpen dataSource='<%=request.getParameter("datasource") %>'
 connId="con1">
 </sql:dbOpen>
 <sql:dbQuery connId="con1">
 SELECT * FROM emp ORDER BY ename
 </sql:dbQuery>
 <sql:dbClose connId="con1" />
</BODY>
</HTML>

SQL Tags for Data Access

4-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML and XSL Tag Support 5-1

5
XML and XSL Tag Support

This chapter describes tags provided with OC4J that you can use for XML data and
XSL transformation, and summarizes additional XML functionality in other OC4J
tags. These tags are implemented according to the JSP specification.

The chapter consists of the following sections:

� Overview of Oracle Tags for XML Support

� XML Utility Tags

Note: See the Oracle Application Server Containers for J2EE Support
for JavaServer Pages Developer’s Guide for additional information
about XML-related functionality for JSP pages.

Overview of Oracle Tags for XML Support

5-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Oracle Tags for XML Support
The following sections provide an overview of tags supplied with OC4J that have
XML functionality. This includes tags that can take XML DOM objects as input,
generate XML DOM objects as output, transform XML documents according to a
specified stylesheet, and parse data from an input stream to an XML DOM object.

� XML Producers and XML Consumers

� Summary of OC4J Tags with XML Functionality

XML Producers and XML Consumers
An XML-related operation can be classified as either of the following, or as both:

� XML producer, which outputs an XML object

� XML consumer, which takes an XML object as input

Similarly, an XML-related tag can be classified as an XML producer, an XML
consumer, or both. XML producers can pass XML objects to XML consumers either
explicitly or implicitly; the latter is also known as anonymous passing.

For explicit passing between XML-related tags, there is a toXMLObjName attribute
in the producer tag and a fromXMLObjName attribute in the consumer tag. Behind
the scenes, the passing is done through the getAttribute() and
setAttribute() methods of the standard JSP pageContext object.

Note: The custom XML tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. For standards compliance, it is now
generally advisable to use JSTL instead. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-24.

Oracle is not desupporting the existing library, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try to have
the features adopted into the JSTL standard as appropriate.

Overview of Oracle Tags for XML Support

XML and XSL Tag Support 5-3

The following example uses explicit passing:

<sql:dbQuery output="XML" toXMLObjName="foo" ... >
 ...SQL query...
</sql:dbQuery>
...
<ojsp:cacheXMLObj fromXMLObjName="foo" ... />

For implicit passing between XML-related tags, do not use the toXMLObjName and
fromXMLObjName attributes. The passing is accomplished through direct
interaction between the tag handlers, typically in a situation with a nested tag. The
following example uses implicit passing:

<ojsp:cacheXMLObj ... >
 <sql:dbQuery output="XML" >
 ...SQL query...
 </sql:dbQuery>
</ojsp:cacheXMLObj>

Here, the XML produced in the dbQuery tag is passed to the cacheXMLObj tag
directly, without being stored to the pageContext object.

For a tag to be able to function as a consumer with implicit passing, the tag handler
implements the OC4J ImplicitXMLObjConsumer interface:

interface ImplicitXMLObjConsumer
{
 void setImplicitFromXMLObj();
}

Summary of OC4J Tags with XML Functionality
For the tag libraries supplied with OC4J, Table 5–1 summarizes the tags that can
function as XML producers or consumers.

Table 5–1 OC4J Tags with XML Functionality

Tag Library
Producer /
Consumer Related Attributes Tag Information

transform /
styleSheet

XML Both fromXMLObjName
toXMLObjName

"XML transform and
styleSheet Tags for
XML/XSL Data
Transformation" on page 5-6

Overview of Oracle Tags for XML Support

5-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

parsexml XML Producer toXMLObjName "XML parsexml Tag to
Convert from Input Stream"
on page 5-8

cacheXMLObj Web Object
Cache

Both fromXMLObjName
toXMLObjName

"Web Object Cache
cacheXMLObj Tag" on
page 7-28

dbQuery SQL Producer toXMLObjName "SQL dbQuery Tag" on
page 4-22

invoke Web Services Producer toXMLObjName "Web Services invoke Tag"
on page 11-18

Notes:

� The XML transform and styleSheet tags are equivalent
and produce identical results.

� For convenience, the cacheXMLObj tag is defined in the XML
tag library descriptor file (xml.tld) as well as the Web Object
Cache tag library descriptor file (jwcache.tld).

Table 5–1 OC4J Tags with XML Functionality (Cont.)

Tag Library
Producer /
Consumer Related Attributes Tag Information

XML Utility Tags

XML and XSL Tag Support 5-5

XML Utility Tags
The following sections describe XML utility tags supplied with OC4J:

� XML Utility Tag Descriptions

� XML Utility Tag Examples

Note the following requirements for the XML utility tag library:

� The XML tag library requires ojsputil.jar, xmlparserv2.jar, and
xsu12.jar (or xsu111.jar for JDK 1.1.x) to be installed and in your
classpath. These files are supplied with OC4J. The ojsputil.jar file is
located in the "well-known" tag library directory.

� The tag library descriptor, xml.tld, must be available to the application, and
any JSP page using the library must have an appropriate taglib directive. In
an Oracle Application Server installation, the TLD is in ojsputil.jar. The
uri value for xml.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xml.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

Notes:

� The prefix "xml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

XML Utility Tags

5-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tag Descriptions
The following sections describe XML utility tags:

� XML transform and styleSheet Tags for XML/XSL Data Transformation

� XML parsexml Tag to Convert from Input Stream

XML transform and styleSheet Tags for XML/XSL Data Transformation
Many uses of XML and XSL for dynamic JSP pages require an XSL transformation
to occur in the server before results are returned to the client. Oracle provides two
synonymous tags in the XML library to simplify this process. You can output the
result directly to the HTTP client or, alternatively, you can output to a specified
XML DOM object. Use either the transform tag or the styleSheet tag, as
described and shown in this section. The two tags have identical effects.

Each tag acts as both an XML producer and an XML consumer. They can take as
input either of the following:

� An XML DOM object

� The tag body, containing JSP commands and static text that produce the XML
code

The tags can output to either or both of the following, with the specified stylesheet
being applied in either case:

� An XML DOM object

� The output writer to the browser, in which case the specified stylesheet is
applied

When you use the tag body for input, the tag applies to what is between the
start-tag and end-tag. You can have multiple XSL transformation blocks within a
page, with each block bounded by its own transform or styleSheet tag,
specifying its own href pointer to the appropriate style sheet.

Syntax

<xml:transform href="xslRef"
 [fromXMLObjName = "objectname"]
 [toXMLObjName = "objectname"]

Important: Tag attributes are request-time attributes, meaning
they can take JSP expressions as input, unless otherwise noted.

XML Utility Tags

XML and XSL Tag Support 5-7

 [toWriter = "true" | "false"] >

 [...body...]

</xml:transform >

or:

<xml:styleSheet href="xslRef"
 [fromXMLObjName = "objectname"]
 [toXMLObjName = "objectname"]
 [toWriter = "true" | "false"] >

 [...body...]

</xml:styleSheet >

Attributes

� href (required): Specify the XSL stylesheet to use for the XML data
transformation. This is required whether you are outputting to an XML object
(where you can have transformation without formatting) or to the browser.

Note the following regarding the href attribute:

– It can refer to either a static XSL stylesheet or a dynamically generated one.
For example, it can refer to a JSP page or servlet that generates the
stylesheet.

– It can be a fully qualified URL (http://host:port/path), an
application-relative JSP reference (starting with "/"), or a page-relative JSP
reference (not starting with "/"). Refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide for
information about application-relative and page-relative paths.

– Its value can be a static Java string constant literal, or it can be dynamically
specified through a standard JSP request-time expression.

� fromXMLObjName: Use this to specify an input XML DOM object if input is
from a DOM object instead of from the tag body. If there is both a tag body and
a fromXMLObjName specification, fromXMLObjName takes precedence.

� toXMLObjName: Use this to specify the name of an output XML DOM object if
output is to a DOM object, instead of or in addition to going to the JSP writer
object for output to the HTTP client. This is not required if there is an implicit

XML Utility Tags

5-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML consumer, such as a tag within which the transform or styleSheet tag
is nested.

� toWriter: This is "true" or "false" to indicate whether output goes to the
JSP writer object for output to the HTTP client. This can be instead of or in
addition to output to a DOM object. The default is "true", for backward
compatibility. (Prior to Oracle9iAS Release 2, this was the only output choice;
there was no toXMLObjName attribute.)

XML parsexml Tag to Convert from Input Stream
The XML tag library supplies an XML producer utility tag, parsexml, that converts
from an input stream to an XML DOM object. This tag can take input from a
specified resource or from the tag body.

Syntax

<xml:parsexml
 [resource = "xmlresource"]
 [toXMLObjName = "objectname"]
 [validateResource = "dtd_path"]
 [root = "dtd_root_element"] >

 [...body...]

</xml:parsexml >

Attributes

� resource: Use this to specify an XML resource if input is from a resource
instead of from the tag body. For example:

resource="/dir1/hello.xml"

If there is both a tag body and a specified resource, the resource takes
precedence.

� toXMLObjName: Specify the name of the XML DOM object where the output
will go. This is not required if there is an implicit XML consumer, such as a tag
within which the parsexml tag is nested.

� validateResource: For XML validation, you can specify the path to the
appropriate DTD. Alternatively, the DTD can be embedded in the XML
resource. This is not a request-time attribute.

XML Utility Tags

XML and XSL Tag Support 5-9

� root: If validating, specify the root element in the DTD for validation. This is
not a request-time attribute. If you specify validateResource without
specifying root, the default root is the top-level of the DTD.

XML Utility Tag Examples
The following sections provide examples that use XML utility tags:

� Example Using the transform Tag

� Example Using the transform and dbQuery Tags

� Examples Using the transform and parsexml Tags

Example Using the transform Tag
This section provides a sample XSL stylesheet and a sample JSP page that uses the
transform tag to filter its output through the stylesheet. This is a simplistic
example, with the XML in the page being static. A more realistic example might use
the JSP page to dynamically generate all or part of the XML before performing the
transformation.

Sample Stylesheet: hello.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="page">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>
 </head>
 <body bgcolor="#ffffff">
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="title">
 <h1 align="center">
 <xsl:apply-templates/>
 </h1>

XML Utility Tags

5-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 </xsl:template>

 <xsl:template match="paragraph">
 <p align="center">
 <i>
 <xsl:apply-templates/>
 </i>
 </p>
 </xsl:template>

</xsl:stylesheet>

Sample JSP Page: hello.jsp

<%@ page session = "false" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xml.tld"
 prefix="xml" %>

<xml:transform href="style/hello.xsl" >

<page>
 <title>Hello</title>
 <content>
 <paragraph>This is my first XML/XSL file!</paragraph>
 </content>
</page>

</xml:transform>

XML Utility Tags

XML and XSL Tag Support 5-11

The example results in the following output:

Example Using the transform and dbQuery Tags
This example returns a result set from a dbQuery tag, using a transform tag to
filter the query results through the XSL style sheet rowset.xsl (code below). It
uses a dbOpen tag to open a connection, with the connection string being obtained
either from the request object or through the useDataSource.jsp page (code
below). Data passing from the dbOpen tag to the transform tag is done implicitly.
For related information, see "SQL dbQuery Tag" on page 4-22 and "SQL dbOpen
Tag" on page 4-18.

JSP Page

<%@ page import="oracle.sql.*, oracle.jdbc.driver.*, oracle.jdbc.*, java.sql.*"
%>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xml.tld"
 prefix="xml" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld"
 prefix="sql" %>

<%

XML Utility Tags

5-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 String dataSrcStr=request.getParameter("dataSrcStr");
 if (dataSrcStr==null) {
 dataSrcStr=(String)session.getValue("dataSrcStr");
 } else {
 session.putValue("dataSrcStr",dataSrcStr);
 }
 if (dataSrcStr==null) { %>
<jsp:forward page="../../sql/useDataSource.jsp" />
<%
 }

%>
<h3>Transform DBQuery Tag Example</h3>
<xml:transform href="style/rowset.xsl" >
 <sql:dbOpen connId="conn1" dataSource="<%= dataSrcStr %>" />
 <sql:dbQuery connId="conn1" output="xml" queryId="myquery" >
 select ENAME, EMPNO from EMP order by ename
 </sql:dbQuery>
 <sql:dbCloseQuery queryId="myquery" />
 <sql:dbClose connId="conn1" />
</xml:transform>

rowset.xsl

<xsl:stylesheet version='1.0' xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="ROWSET">
 <html><body>
 <h1>A Simple XML/XSL Transformation</h1>
 <table border="2">
<xsl:for-each select="ROW">
 <tr>
 <td><xsl:value-of select="@num"/></td>
 <td><xsl:value-of select="ENAME"/></td>
 <td><xsl:value-of select="EMPNO"/></td>
 </tr>
</xsl:for-each>
</table>
</body></html>
</xsl:template>
</xsl:stylesheet>

Note: For the dbOpen tag in this example, assume that the data
source specifies the user name and password as well as the URL.

XML Utility Tags

XML and XSL Tag Support 5-13

useDataSource.jsp

<body bgcolor="#FFFFFF">

Please enter a suitable JDBC connection string, before you try the above
demo
<pre>
 To use a data source that you have set up in data-sources.xml, enter the
 data source string below. Once you have set the data source string it
 will remain in effect until the session times out.

</pre>
<%
 String dataSrcStr;
 dataSrcStr=request.getParameter("dataSrcStr");
 if (dataSrcStr==null) {
 dataSrcStr=(String)session.getValue("dataSrcStr");
 }
 if (dataSrcStr==null) {
 dataSrcStr="jdbc/OracleCoreDS"; // default data source string
 }

 session.putValue("dataSrcStr",dataSrcStr);
%>
<FORM METHOD=get ACTION="<%= request.getParameter("nextaction") %>" >
<INPUT TYPE="text" NAME="dataSrcStr" SIZE=40 value="<%=dataSrcStr%>" >
<INPUT TYPE="submit" VALUE="Change Data Source String" >
</FORM>

Examples Using the transform and parsexml Tags
This section provides two examples that take output from a parsexml tag and
filter it through a transform tag, using the XSL stylesheet email.xsl. In each
case, data is collected by the parsexml tag handler from a specified resource XML
file, then passed explicitly from the parsexml tag to the transform tag through
the toxml1 XML object.

The first example uses the XML resource email.xml and the DTD email.dtd. No
root attribute is specified, so validation is from the top-level element, <email>.

The second example uses the XML resource emailWithDtd.xml, which has the
DTD embedded in the file. The root attribute explicitly specifies that validation is
from the element <email>.

XML Utility Tags

5-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The files email.xml, email.dtd, emailWithDtd.xml, and email.xsl are also
listed below.

Example 1 for transform and parsexml

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xml.tld"
 prefix="xml" %>
<h3>XML Parsing Tag Email Example</h3>
<xml:transform fromXMLObjName="toxml1" href="style/email.xsl">
 <xml:parsexml resource="style/email.xml" validateResource="style/email.dtd"
 toXMLObjName="toxml1">
 </xml:parsexml>
</xml:transform>

Example 2 for transform and parsexml

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xml.tld"
 prefix="xml" %>
<h3>XML Parsing Tag Email Example</h3>
<xml:transform fromXMLObjName="toxml1" href="style/email.xsl">
 <xml:parsexml resource="style/emailWithDtd.xml" root="email"
 toXMLObjName="toxml1">
 </xml:parsexml>
</xml:transform>

email.xml

<email>
<recipient>Manager</recipient>
<copyto>jsp_dev</copyto>
<subject>XML Bug fixed</subject>
<bugno>BUG 1109876!</bugno>
<body>for reuse tag and checked in the latest version!</body>
<sender>Developer</sender>
</email>

email.dtd

<!ELEMENT email (recipient,copyto,subject,bugno,body,sender)>
<!ELEMENT recipient (#PCDATA)>
<!ELEMENT copyto (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT bugno (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ELEMENT sender (#PCDATA)>

XML Utility Tags

XML and XSL Tag Support 5-15

emailWithDtd.xml

<!DOCTYPE email [
<!ELEMENT email (recipient,copyto,subject,bugno,body,sender)>
<!ELEMENT recipient (#PCDATA)>
<!ELEMENT copyto (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT bugno (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ELEMENT sender (#PCDATA)>]>
<email>
<recipient>Manager</recipient>
<copyto>jsp_dev</copyto>
<subject>XML Bug fixed</subject>
<bugno>BUG 1109876!</bugno>
<body>for reuse tag and checked in the latest version!</body>
<sender>Developer</sender>
</email>

email.xsl

<xsl:stylesheet version='1.0' xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:template match="email">
 <html><body>
 To: <xsl:value-of select="recipient"/>
 CC: <xsl:value-of select="copyto"/>
 Subject: <xsl:value-of select="subject"/> ...
 <xsl:value-of select="body"/> !!
 Thanks <xsl:value-of select="sender"/>
</body></html>
</xsl:template>
</xsl:stylesheet>

XML Utility Tags

5-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI Tags for Edge Side Includes 6-1

6
JESI Tags for Edge Side Includes

This chapter describes the Edge Side Includes for Java (JESI) tag library that is
supplied with OC4J. These tags operate on top of an Edge Side Includes (ESI)
framework that is available in the Oracle Application Server Web Cache to provide
ESI caching functionality in a JSP application.

The chapter consists of the following sections:

� Overview of Edge Side Includes Technology and Processing

� Overview of JESI Functionality

� Oracle JESI Tag Descriptions

� JESI Tag Handling and JESI-to-ESI Conversion

For an overview of Web caching, including a discussion of the OracleAS Web Cache,
the Oracle Application Server Java Object Cache, and the OC4J Web Object Cache,
see "Summary of Oracle Caching Support for Web Applications" on page 1-17.

Note: The JESI specification is not yet finalized. Although every
effort has been made to comply with the latest working version, it
is not possible to assure that the OC4J 9.0.4 implementation will
fully comply with the final version of the JESI specification.

Overview of Edge Side Includes Technology and Processing

6-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Edge Side Includes Technology and Processing
JESI tags, which are used to break down dynamic content of JSP pages into
cacheable components, are based upon the Edge Side Includes architecture and
markup language.

Although the use of JESI tags does not depend on any particular ESI processor or
caching system, a typical scenario among Oracle customers is to use the OracleAS
Web Cache and its ESI processor.

The following sections provide background information about some of the
underlying technology upon which the Oracle JESI tags are based.

� Edge Side Includes Technology

� Oracle Application Server Web Cache and ESI Processor

This discussion provides only a brief overview of the ESI architecture and language.
For additional information about ESI technology, refer to the following Web site:

http://www.esi.org

Edge Side Includes Technology
This section introduces the features of ESI technology and the concept of ESI
surrogates.

Introduction to ESI
Edge Side Includes is an XML-style markup language that allows dynamic content
assembly at the "edge" of the network, away from the origin Web server, and is
designed to take advantage of available tools such as Web caches and content
delivery networks (CDNs) to improve performance for users.

ESI provides a way to reduce the load on Web and application servers by promoting
processing on intermediaries, known as surrogates or reverse proxies, that understand
the ESI language and act on behalf of the Web server. ESI content is intended for
processing somewhere between the time it leaves the originating Web server and
the time it is displayed in the user’s browser. A surrogate is commanded through
HTTP headers. Such a surrogate can be referred to as an ESI processor and can be
included as part of the functionality of a Web cache.

ESI lends itself to a partial-page caching methodology, where each dynamic portion
of a Web page can be cached individually and retrieved separately and
appropriately.

Overview of Edge Side Includes Technology and Processing

JESI Tags for Edge Side Includes 6-3

Using the ESI markup tags, a developer can define aggregate Web pages and the
cacheable components that are to be retrieved and assembled, as appropriate, by the
ESI processor for viewing in the HTTP client. Think of an aggregate page, which is
the resource associated with the URL that a user specifies, as a container for
assembly. This includes retrieval and assembly instructions that are specified
through the ESI tags.

More About Surrogates
Because surrogates act on behalf of Web servers, where page content is owned, they
allow content owners to have sufficient control over their behavior. In this way, they
offer greater potential for performance improvements than would otherwise be
available.

The caching process in surrogates operates similarly to the caching process in HTTP,
using similar freshness and validation mechanisms as the foundation. However,
surrogates also possess additional control mechanisms.

Key ESI Features
Version 1.0 of the ESI language includes the following key areas of functionality:

� Inclusion

An ESI processor assembles fragments of dynamic content, retrieved from the
network, into aggregate pages to output to the user. Each fragment can have its
own meta data to control its caching behavior. See Figure 6–1 below.

� Support of variables

ESI supports the use of variables that are based on HTTP request attributes. ESI
statements can use variables during processing or can output them directly into
the processed markup.

� Conditional processing

ESI allows the use of boolean comparisons for conditional logic in determining
how pages are processed.

Note: A JESI user does not have to (and would typically not want
to) use ESI tags directly. JESI tag handlers translate JESI tags to ESI
tags behind the scenes.

Overview of Edge Side Includes Technology and Processing

6-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� Error handling and alternative processing

Some ESI tags support specification of a default resource or an alternative
resource (or both), such as an alternate Web page, if the primary resource
cannot be found.

Figure 6–1 ESI Include Model

Oracle Application Server Web Cache and ESI Processor
This section introduces the OracleAS Web Cache and its ESI processor. See the
Oracle Application Server Web Cache Administrator’s Guide for more information.

Introduction to Oracle Application Server Web Cache
Oracle offers OracleAS Web Cache to help e-businesses manage Web site
performance issues. It is a content-aware server accelerator, or reverse proxy server,
that improves the performance, scalability, and availability of Web sites that run on
the Oracle Application Server.

By storing pages from frequently accessed URLs in memory, OracleAS Web Cache
eliminates the need to repeatedly process requests for those URLs on the
application Web server. Unlike legacy proxy servers that handle only static
documents, OracleAS Web Cache caches both static content and dynamically
generated content from one or more application Web servers. As the result of more

Overview of Edge Side Includes Technology and Processing

JESI Tags for Edge Side Includes 6-5

frequent cache hits, performance enhancement is greater than with legacy proxies
and the load on application servers is less.

Conceptually, OracleAS Web Cache is positioned in front of application Web
servers, caching their content and sending that content to Web browsers that
request it. When Web browsers access the Web site, they send HTTP protocol or
HTTPS protocol requests to OracleAS Web Cache, which, in turn, acts as a virtual
server for the application Web servers. If the requested content has expired, has
been invalidated, or is no longer accessible, then OracleAS Web Cache retrieves the
new content from the application Web servers.

Steps in Oracle Application Server Web Cache Usage
Here are the steps for typical browser interaction with OracleAS Web Cache:

1. A browser sends a request to the Web site of a company.

2. The request, in turn, generates a request to the Domain Name System (DNS) for
the IP address of the Web site.

3. DNS returns the IP address of OracleAS Web Cache.

4. The browser sends the request for the Web page to OracleAS Web Cache.

5. If the requested content is in its cache, then OracleAS Web Cache sends the
content directly to the browser. This is known as a cache hit.

6. If OracleAS Web Cache does not have the requested content, or if the content is
outdated or invalid, then the Web cache hands off the request to the application
Web server. This is known as a cache miss.

7. The application Web server sends the content through OracleAS Web Cache.

8. OracleAS Web Cache sends the content to the client and makes a copy of the
page in cache.

Note: A page that is stored in the cache is removed at some point
after it becomes invalid or outdated.

Overview of Edge Side Includes Technology and Processing

6-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle Application Server Web Cache ESI Processor
OracleAS Web Cache includes an ESI processor to support the use of the Edge Side
Includes markup language in caching. (See "Edge Side Includes Technology" on
page 6-2.)

Web developers in an OracleAS Web Cache environment can use the ESI language
directly in their applications; however, for JSP developers, there are several reasons
to use the JESI tag library that is provided as a convenient JSP interface to the ESI
language. See "Advantages of JESI Tags" on page 6-7.

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-7

Overview of JESI Functionality
The following sections introduce JESI functionality and the Oracle implementation:

� Advantages of JESI Tags

� Overview of JESI Tags Implemented by Oracle

� JESI Usage Models

� Invalidation of Cached Objects

� Personalization of Cached Pages

� JESI Fallback Execution

You can access the proposed JESI specification at the following Web site:

http://www.esi.org

Advantages of JESI Tags
OC4J provides the JESI tag library as a convenient interface to ESI tags and Edge
Side Includes functionality for Web caching. Developers have the option of using
ESI tags directly in any Web application, but JESI tags provide additional
convenience for JSP pages. Here are the main advantages in using JESI tags instead
of using ESI tags directly:

� Standard JSP framework and convenient features

– JESI tags allow use of the familiar and convenient features of JSP
programming. For example, you can reference included pages according to
page-relative or application-relative locations, instead of the complete URL
or file path.

– You can pass dynamic values to JESI tag attributes.

– You can use JESI tags in combination with tags from other JSP tag libraries.

� JESI shortcut syntax

JESI tags support convenient syntax and tag attributes for specifying meta data
information (such as expiration for cached pages), explicitly invalidating pages
as appropriate, and personalizing pages using cookie information.

� Application-level configuration files

The JESI tag library can use application-level configuration files for convenient
specification of deployment-time parameters and application default settings

Overview of JESI Functionality

6-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

that are appropriate to a particular environment. In this way, you can deploy to
different environments that have diverse needs and set appropriate defaults
without changing application code. For example, you can use such a
configuration file to preset the cache server URL, user name, and password for
invalidation requests.

Overview of JESI Tags Implemented by Oracle
The Oracle implementation of JESI is layered on top of the standard ESI framework.
It also conforms with the pending (as of the OC4J 9.0.4 implementation) JESI
standard, JSR-128, which is sponsored by the Java Community Process (JCP)
organization. For more information about the JCP organization and the status of
JSR-128, go to the following location:

http://www.jcp.org

Because the JESI tag library is a standard implementation, note the following:

� An application that uses JESI tags does not depend on the OC4J JSP container. It
is portable to any standard JSP container. (Outside of OC4J, you can use either
the reference implementation to be provided with JSR-128, or the JESI
implementation that is provided with the JSP container you are using, if
applicable.)

� Even though this document discusses the OracleAS Web Cache and its ESI
processor in particular, the JESI tag library does not depend on any particular
caching environment and can work with any ESI processor that conforms to the
ESI 1.0 specification.

The Oracle JESI tag library supports the following tags:

� JESI control, JESI include, JESI param, JESI template, JESI fragment,
and JESI codeblock for dynamic caching of page content

� JESI invalidate (and subtags) for explicit invalidation of cached objects,
when appropriate

� JESI personalize for page customization through cookies

JSP developers use these tags (such as JESI include) instead of corresponding ESI
tags (such as esi:include). The usefulness and convenience of this is discussed in
"Advantages of JESI Tags" on page 6-7.

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-9

JESI Usage Models
There are two models for how to use JESI tags to define aggregate pages and their
cacheable components:

� Control/include model

� Template/fragment model

This section describes these models and concludes with some special notes about
the JESI include tag.

Control/Include Model
The control/include approach to using JESI tags is modular, typically bringing most
(or all) cacheable content into the aggregate page as included pages. This is
particularly convenient when you are developing new pages. Use this model as
follows:

� Use the JESI control tag in the top-level page to set caching parameters for
content outside the included content, as applicable.

� Use JESI include tags to bring in dynamic content.

� Use a JESI control tag inside each included page to set caching parameters for
those pages, as appropriate.

Each included file is a distinct cacheable object (although caching can be disabled
according to tag settings), and any content in the top-level page is also a distinct
object.

Both tags are optional, depending on the situation. A page can have a JESI control
tag without any JESI include tags. In fact, this is a simple way to convert an
existing page for JESI use. There is also no requirement for a JESI control tag in a
page that uses JESI include tags. The ESI processor will be appropriately notified
of the presence of the JESI include tags, regardless. And there is no requirement
for an included page to have a JESI control tag.

Note: The Oracle JESI tag library is implemented according to
general standards for JSP custom tag libraries. For information
about the standard JavaServer Pages tag library framework, refer to
the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide.

Overview of JESI Functionality

6-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The cacheability of a page, either top-level or included, is determined as follows:

� If there is a JESI control tag, cacheability depends on attribute settings or on
the default attribute values, as applicable.

� If there is no JESI control tag, cacheability depends on configuration settings
of the ESI processor.

� The JESI control tag in the top-level page has no effect on included pages.

See the following sections for tag syntax and examples:

� "JESI control Tag" on page 6-21

� "JESI include Tag" on page 6-23

� "JESI param Tag" on page 6-26

� "Examples: Control/Include Model" on page 6-27

Template/Fragment Model
In the template/fragment approach, content is contained in a single page and you split
the page into separately cacheable fragments as desired. This model is particularly
convenient when you are converting existing pages for JESI use and want certain
portions to be separate cacheable components. Use this model as follows:

� Use the JESI template tag to enclose the aggregate of all visible content. This
tag sets caching parameters for the content outside the fragments. There must
be no visible content outside the template tag.

� Use JESI fragment tags as desired, between the template start-tag and
end-tag, to define fragments within the aggregate, to be cached separately.

� Optionally use JESI include tags as well, either at the template level or the
fragment level.

� Optionally use codeblock tags within the template tag, outside of any
fragments, to mark conditional execution of blocks of code.

The JESI template tag and JESI fragment tag are always used together. If you do
not need separate fragments in a page, use the JESI control tag instead of the JESI
template tag.

Each fragment is a distinct, cacheable object. Any content at the template level,
outside any fragments, is a distinct, cacheable object. Any page that is included
through a JESI include tag is also a distinct, cacheable object.

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-11

Cacheability is determined as follows:

� The cacheability of the template (content outside any fragments) depends on
the JESI template tag attribute settings or on the default attribute values, as
applicable.

� Similarly, the cacheability of a fragment depends on the attribute settings of the
JESI fragment tag or on the default attribute values, as applicable.

� The cacheability of an included page is determined as follows.

– If there is a JESI control tag, cacheability depends on attribute settings or
on the default attribute values, as applicable.

– If there is no JESI control tag, cacheability depends on configuration
settings of the ESI processor.

Because the template and fragments are independent, cacheable objects, they can
expire at different times in the ESI processor. When a cache miss occurs or an object
that has expired is requested, the ESI processor makes a request to the origin server
(OC4J in the case of Oracle Application Server) for a fresh copy.

If a requested object is a JESI template, the JSP container executes code in the page
that is outside any fragments. In output that is generated by the JSP translator, the
translator also places ESI markup that designates where all the fragments should be
included. The code that is contained in the JESI fragments will not be executed at
that time. Figure 6–2, which follows, illustrates this.

Note: It is permissible for the template/fragment model to be
used in a response that has already processed a JESI control tag.
This might be required, for example, in a case where conditional
generation of the aggregate response can include response from any
of a set of alternative pages. In this case, the JSP container uses the
attribute settings of the control tag, ignores the attribute settings
of the template tag, but notes the fact that there is a template
tag properly enclosing any fragment tags, as required. As is
always the case in the template/fragment model, there must be no
cacheable content outside the template tag.

Overview of JESI Functionality

6-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Figure 6–2 JESI Request for Template

When a fragment expires, the ESI processor makes a request to the origin server for
that particular fragment. To execute a fragment, the OC4J JSP container executes the
template code (code outside of any fragments) plus the code of the fragment being
requested. The template code is executed to allow a fragment to rely on certain side
effects, such as declaration or initialization of variables.

The output of the fragment code is returned in the response; the output of the
template code is discarded. Upon receiving the response, the ESI processor will
cache the updated copy of the fragment. Figure 6–3, which follows, illustrates this.

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-13

Figure 6–3 JESI Request for Fragment

Remember this behavior when choosing code placement and expiration policies for
your templates and fragments. In particular, because template code is executed in
every update request, be aware of where you place any expensive code. Do not
place an expensive computation at the template level unless it must be executed
every time or is appropriately placed within a codeblock tag. Otherwise, place
expensive computation in a fragment that has as long an expiration time as
possible.

Note: To avoid needlessly repeating the execution of expensive
template code, strategically place the code within JESI codeblock
tags. Configure each codeblock tag according to when you want
the code within it to be executed (whenever the template is
requested, whenever a fragment is requested, or always).

Overview of JESI Functionality

6-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Figure 6–4 shows one codeblock tag scenario, in which the code block is to be
executed only when a fragment is requested. In this figure, the request is for the
template, so the code block is not executed.

Figure 6–5 shows another codeblock tag scenario, in which the code block is still
to be executed only when a fragment is requested. This time, however, the request is
for the fragment, so the code block is executed.

Figure 6–4 JESI codeblock Fragment Execution with Request for Template

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-15

Figure 6–5 JESI codeblock Fragment Execution with Request for Fragment

Additionally, remember that no two fragments are ever executed during the same
request. For example, you should not declare or set the value of a scriptlet variable
in one fragment and depend on that variable or the set value in another fragment. If
a variable is needed in more than one fragment, then it should be declared and set
in the template code (possibly inside a codeblock tag). Similarly, do not set a
request or session attribute in one fragment and then try to read it in another
fragment. Such "page-global logic" should also be placed at the template level.

Finally, remember that the different fragments of a page will be refreshed at
different times, according to invalidation messages and expiration settings.
Typically, in a well-tuned application, most fragments would be served from the ESI
cache, having to be regenerated only infrequently.

Overview of JESI Functionality

6-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

See the following sections for tag syntax and examples:

� "JESI template Tag" on page 6-29

� "JESI fragment Tag" on page 6-32

� "JESI include Tag" on page 6-23

� "JESI codeblock Tag" on page 6-33

� "Examples: Template/Fragment Model" on page 6-34

Notes About JESI and JSP Includes
In using either the control/include or template/fragment model, be aware of the
following notes regarding the JESI include statement:

� A nested JESI inclusion is supported, either as a JESI include statement that
includes a page that, in turn, has its own JESI include statement, or as a JESI
include statement inside a fragment that is defined with a JESI fragment
statement.

In the second case, for example, the ESI processor executes the following steps:

1. It requests the content of the aggregate page.

2. It locates the content of the fragment in the cache (if applicable) or requests
it.

3. It locates the content of the included page in the cache (if applicable) or
requests it.

� Despite conceptual similarities between the JESI include tag and the standard
jsp:include tag, there are situations in which you should not substitute a
JESI include tag for a jsp:include tag when you convert a JSP page for
caching. Because the ESI processor uses separate HTTP requests, you are unable

Note: Beginning with the OC4J 9.0.4 implementation, you can
intersperse JESI template, JESI fragment, and JESI include
tags with jsp:include tags if the JESI tags follow JESI rules and
are properly nested with respect to each other. For example, you
can have a page with a JESI template tag, have a jsp:include
tag within the template tag, and have JESI fragment tags in the
included page. You can also use the JESI template tag within an
included page if there is no other template tag at a higher level,
and if all output to the response buffer is within the template tag.

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-17

to pass an HTTP request or response object between one page and a page it
includes through a JESI include tag. If the code in the included page requires
access to the request or response object of the originating page, then you should
consider using the JESI template/fragment model and putting the code in a JESI
fragment tag (within the JESI template tag of the aggregate page) instead of
using the JESI include tag.

Invalidation of Cached Objects
There might be situations where cached objects must be explicitly invalidated due
to external circumstances, such as changes to relevant data in a database. There
might also be situations where execution of one page might invalidate the data of
cached objects corresponding to another page.

For this reason, JESI provides the JESI invalidate tag and related subtags. These
tags allow you to invalidate pages based on appropriate combinations of the
following:

� Full URI or URI prefix

� Cookie name-value pair (optional)

� HTTP/1.1 request header name-value pair (optional)

Invalidation messages are in an XML-based format and specify the URLs to be
invalidated. These messages are initiated by the JSP container when it executes the
JESI invalidate tag, and transmitted to the cache server over HTTP using a POST
method. The cache server then replies with an invalidation response, sent back over
HTTP.

See "Descriptions of Tags and Subtags for Invalidation of Cached Objects" on
page 6-36 for tag syntax and examples.

Personalization of Cached Pages
Dynamic Web pages frequently display customized information tailored to each
individual user. For example, a welcome page might display the user’s name and a
special greeting, or current quotes for stocks the user owns.

For this kind of tailored output, the Web page depends on cookie information,
which can be provided through the JESI personalize tag. Without this tag to
inform the ESI processor of the need to perform cookie substitution, the Web page
cannot be shared by multiple users at the ESI level.

Overview of JESI Functionality

6-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

See "Description of Tag for Page Personalization" on page 6-46 for tag syntax and
examples.

JESI Fallback Execution
If no ESI processor is available for a page that uses JESI tags (such as on a system
without OracleAS Web Cache, or in which Web Cache or its ESI processor is down),
then the OC4J JSP container steps in to assemble the pages appropriately.
Essentially, it takes over and provides the most crucial functionality to execute the
pages properly. Caching does not take place, nor does error-checking of JESI tag
attribute values.

In these circumstances, the JSP container processes the particular JESI tags as
follows:

� It ignores JESI control tags.

� It executes JESI include tags as though they are jsp:include tags, and the
associated JESI param tags as though they are jsp:param tags. Note that any
scriptlet code that is nested within a JESI include tag will still be executed.

� It checks JESI template and fragment tags for proper nesting, but otherwise
ignores them and executes all their tag bodies during a single request.

� It unconditionally executes any code in JESI codeblock tags.

Note: Do not confuse this tag with the Oracle Application Server
Personalization tag library, which encompasses much more
functionality. JESI personalization consists of the ESI processor
replacing placeholders in a cached page with dynamic strings that
come from cookies sent in a request or response. This process
enables different users to share the same cached page. OracleAS
Personalization, using data mining on the back-end, is much more
dynamic and comprehensive. It produces output that changes
automatically, according to user activity. See Chapter 10,
"Personalization Tags" for more information.

Note: In this circumstance, unlike with JESI include
functionality, there is no longer a separate response object for an
included page.

Overview of JESI Functionality

JESI Tags for Edge Side Includes 6-19

� It ignores JESI invalidation tags and all subtags.

� For JESI personalize tags, it inserts the cookie value into the response body if
the cookie previously existed. If the cookie did not previously exist and a
default value is specified in the personalize tag, then the JSP container
inserts the default value into the response body. If the cookie did not previously
exist and no default value is specified, then the personalize tag has no effect.

Oracle JESI Tag Descriptions

6-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
The following sections describe the syntax and attributes of the JESI tags provided
with OC4J, followed by usage examples:

� Descriptions of Tags for Dynamic Caching

� Descriptions of Tags and Subtags for Invalidation of Cached Objects

� Description of Tag for Page Personalization

Note the following requirements for the JESI tag library:

� The Oracle JESI tag library, a standard JavaServer Pages tag library
implementation, is included in the ojsputil.jar file, which is provided with
OC4J and is located in the "well-known" tag library directory. Verify that this
file is installed and in your classpath.

� The tag library descriptor, jesitaglib.tld, must be available to the
application, and any JSP page using the library must have an appropriate
taglib directive. In an Oracle Application Server installation, the TLD is in the
ojsputil.jar file. The uri value for jesitaglib.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld

Refer to the Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide for information about taglib directives, the well-known tag
library directory, TLD files, and the meaning of uri values.

Descriptions of Tags for Dynamic Caching
The following sections cover the use of JESI tags for dynamic caching, document
their syntax and attributes, and provide examples:

� JESI control Tag

� JESI include Tag

Notes:

� The prefix "jesi:" is used in the tag syntax here. This is by
convention and is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-21

� JESI param Tag

� Examples: Control/Include Model

� JESI template Tag

� JESI fragment Tag

� JESI codeblock Tag

� Examples: Template/Fragment Model

See "JESI Usage Models" on page 6-9 for overviews of the control/include and
template/fragment models.

JESI control Tag
The JESI control tag controls caching characteristics for JSP pages in the
control/include usage model. You can use a JESI control tag in the top-level page
or any included page, but it is not mandatory. For any page without a JESI control
tag in the control/include model, cacheability is according to the configuration
settings of the ESI processor. (See "JESI Usage Models" on page 6-9.)

Because action resulting from the JESI control tag sets the HTTP response header,
this tag should appear as early as possible in the page, before any other JESI tags or
any buffer flushes in the page.

Note the following:

� All attributes of the JESI control tag are optional. If you use a tag without any
settings, then, by default, the cacheability of a response has an expiration setting
of 24 hours, with immediate removal of expired objects.

� If you want caching behavior to be determined by the configuration of the ESI
processor, then do not use a JESI control tag for the page in question.

� The JESI control tag of an originating page (a page with a JESI include tag)
has no effect on included pages. Use a JESI control tag in each included page
as well, as necessary.

� If the JSP container encounters multiple JESI control tags while generating a
single response, then only the first one is processed. The rest are ignored. Note
that a page that is included through a JESI include tag (where such a page
might have its own JESI control tag) results in a separate response.

� If the JSP container has already encountered a JESI template tag when it
encounters a JESI control tag while still generating the same response, then
the control tag is ignored.

Oracle JESI Tag Descriptions

6-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� If a page with a JESI control tag depends on request parameters, consider
whether you must cache different versions of the page, depending on the
request query string. Another alternative is to not cache the page at all (set
cache="no") if you anticipate that too many different request parameter
values will result in too many cached versions of the page.

Syntax

<jesi:control
 [expiration = "value"]
 [maxRemovalDelay = "value"]
 [cache = "yes" | "no" | "no-remote"]
 [control = "uninterpreted_string"] />

Attributes

� expiration: Specifies the lifetime, in seconds, of the cached object. The
default is 86400 (24 hours).

� maxRemovalDelay: Specifies the maximum time, in seconds, that the ESI
processor continues to store the cached object after it has expired. The default is
0, for immediate removal.

� cache: Specifies whether the response corresponding to the tag is cacheable. A
"yes" setting (the default) enables caching. Alternatively, you can set cache to
"no" to disable caching, or to "no-remote" to enable caching only on the closest
cache (instead of on a remote ESI processor or content delivery network).

One reason to make a page noncacheable, for example, is if you are using a JESI
include tag with copyParam="yes". See "JESI include Tag" below.

� control: The value of this attribute is appended without change to the
Surrogate-Control response header that was created during processing of
the JESI control tag. The OracleAS Web Cache ESI processor does not use this
attribute; however, it would be useful if you are using another ESI processor for
your application and want to pass it any additional proprietary information in
the header.

Note: This is a change from the default value of 300 prior to the
OC4J 9.0.4 implementation, to conform with the proposed JESI
specification.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-23

JESI include Tag
The JESI include tag, as with a standard jsp:include tag, allows dynamic
insertion of output from the included page into output from the originating page. It
does so by directing the ESI processor to process and assemble the included pages.
Each included page is a separate cacheable object (but might not be cached,
depending on settings).

You can use this tag in either the control/include model or the template/fragment
model, in any of the following scenarios:

� By itself, without a JESI control tag or JESI template and fragment tags

� In the control/include model, after a JESI control tag

� In the template/fragment model, within a JESI fragment tag, or within the
JESI template tag but outside any fragments

(See "JESI Usage Models" on page 6-9.)

In addition, it is permissible to nest JESI includes, either by using a JESI include
tag inside a page that is itself included through a JESI include tag, or by using a
JESI include tag inside a page that is included through a standard jsp:include
tag.

The cacheability of an included page is determined as follows:

� If there is a JESI control tag, cacheability depends on attribute settings or on
the default attribute values, as applicable.

� If there is no JESI control tag, cacheability depends on configuration settings
of the ESI processor.

Syntax

<jesi:include page = "uri"
 [alt = "alternate_uri"]
 [ignoreError = "true" | "false"]
 [flush = "true" | "false"]

Notes:

� Do not confuse the control attribute name with the control
tag name.

� "JESI Tag Handling and JESI-to-ESI Conversion" on page 6-48
includes some discussion of the Surrogate-Control header.

Oracle JESI Tag Descriptions

6-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 [copyParam = "true" | "false"] >

...optional jesi:param tags, related scriptlets...

</jesi:include>

Attributes

� page (required): Specifies the URI of the JSP page to be included, either a
page-relative or application-relative location. (Refer to the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide regarding
syntax for page-relative and application-relative locations.) A full
"http://..." or "https://..." URL is supported as well.

The URI can optionally specify additional query parameters and values to pass
to the included page, but using JESI param subtags is a preferred mechanism
for this. See "JESI param Tag" on page 6-26.

Notes:

� As with standard jsp:include tags and their optional
jsp:param subtags, you can use JESI param tags nested
within a JESI include tag to specify new parameters that will
be sent to the originating page (the page with the JESI include
tag). See "JESI param Tag" on page 6-26 for tag syntax. In
addition, the body of a JESI include tag can contain scriptlet
code to be used in evaluating the added parameters. Output
from the scriptlet code, however, and from the body of any JESI
include tag in general, is discarded.

� In some cases, JESI include tags behave differently from
jsp:include tags. This is because the JESI include tag
results in separate request and response objects for the included
page. A JESI include tag is not suitable, for example, when
the originating page sets a request attribute and the included
page reads this attribute from the request object.

� For backward compatibility, the deprecated "copyparam" form
of the copyParam attribute is accepted. The change from
copyparam to copyParam was made to comply with the
proposed JESI specification. It is likely that copyparam will be
desupported at some point.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-25

� alt: Specifies a URI for an alternate page that is to be included if the page that
is specified in the page attribute cannot be found. Syntax is the same as for the
page attribute.

� ignoreError: Set this to "true" for continued processing of the originating
page, even if no included page can be accessed (neither the page page nor the
alt page). The default is "false".

� flush: This attribute is ignored, but is allowed in order to ease migration from
jsp:include syntax.

� copyParam: If the included page makes use of request parameters, set this to
"true" if you want to copy parameters and their values from the HTTP request
string of the originating page to the included page. The default value is
"false".

If request parameters are significant to the included page and
copyParam="true", then either the originating page should not be cached
(cache="no" in the JESI control, JESI template, or JESI fragment tag), or
multiple versions of the originating page should be cached, according to
parameter settings.

As an example, avoid scenarios such as the following:

<jesi:control cache="yes"/>
...
<jesi:include page="arf.jsp" copyParam="true" />

The reason is that if a copy of this originating page is served from the cache,
and if parameters of this subsequent request are different than those of the
original request, then the page will not execute on the server or have a chance to
properly copy new parameters into arf.jsp. This would result in clients being
served arf.jsp generated from incorrect parameters.

However, this scenario would not be problematic in certain circumstances, such
as either of the following:

– The arf.jsp page does not use the request parameters.

– Appropriate versions of the originating page and arf.jsp are cached in
the ESI processor, based on URL parameters. See the Oracle Application
Server Web Cache Administrator’s Guide for more information.

Oracle JESI Tag Descriptions

6-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI param Tag
The JESI param tag is an optional subtag of the JESI include tag. These tags work
together in the same way that standard jsp:include and jsp:param tags work
together.

You can use one or more JESI param subtags to pass additional query parameters to
the target page of the JESI include tag. Doing this is more straightforward than
the alternative, which is to specify parameters in the page URI of the JESI include
tag. If you use both mechanisms, then parameters from param tags are appended
after parameters from the include tag page URI. Any parameters that are copied
from the original request, through an include tag copyParam="yes" setting, are
appended after parameters from JESI param tags.

See "Example 5: Control/Include with param Tag" on page 6-29 for a sample.

Syntax

<jesi:include page = "uri" ... >
 <jesi:param name="param_name"
 value="param_value" />
 ...
</jesi:include>

Attributes

� name (required): Specifies the name of the parameter.

� value (required): Specifies the value of the parameter.

Note: Be aware that the parameter name and value will be
evaluated when the originating page (the page with the JESI
include and param tags) is generated. If, afterward, the
originating page is cached in an ESI processor, then the name and
value of the parameter, passed down to the included page, remain
unchanged until the originating page is regenerated. (This is similar
to the treatment of request parameters that are copied from the
request through a copyParam="true" setting.)

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-27

Examples: Control/Include Model
This section provides examples of JESI tag usage in the control/include model.

Example 1: Control/Include The following example employs default cache settings; no
JESI control tag is necessary. The JESI include tags specify no alternate files, and
a "file not found" error will halt processing. The flush attribute is permissible, but
ignored.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>
<html>
<body>
<jesi:include page="stocks.jsp" flush="true" />
<p>
<hr>
<jesi:include page="/weather.jsp" flush="true" />
<p>
<hr>
<jesi:include page="../sales.jsp" flush="true" />
</body>
</html>

Example 2: Control/Include This example uses the JESI control tag to specify
nondefault cache settings for maxRemovalDelay and expiration. In addition, it
explicitly enables caching of the page, though this is already enabled by default. The
first JESI include tag specifies an alternate page in case order.jsp cannot be
retrieved by the ESI processor, and specifies that processing should continue even if
neither page can be retrieved. The second JESI include tag specifies no alternate
page; processing will halt if the page cannot be retrieved.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>

<jesi:control maxRemovalDelay="1000" expiration="300" cache="yes"/>
<jesi:include page="order.jsp" alt="alt.jsp" ignoreError="true"/>
<jesi:include page="commit.jsp" />

Example 3: Control/Include This example is of an aggregate page with conditional
output. A cookie represents the identity of a customer. If no cookie is found, the
user will be shown a generic welcome page with general product information. If a
cookie is found, the user will be shown a list of products according to the user
profile. This list is brought into the page through a JESI include statement.

Oracle JESI Tag Descriptions

6-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The JESI control tag also sets nondefault values for maxRemovalDelay and
expiration and explicitly enables caching for the page.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>

<jesi:control maxRemovalDelay="1000" expiration="300" cache="yes"/>
<%
 String customerId=CookieUtil.getCookieValue(request,"customerid");

 if (customerId==null) {

 // some unknown customer
%>
 <jesi:include page="genericwelcome.jsp" />
<%
 }
 else {

 // a known customer; trying to retrieve recommended products from profiling

 String recommendedProductsDescPages[]=
 ProfileUtil.getRecommendedProductsDescURL(customerId);

 for (int i=0; i < recommendedProductsDescPages.length; i++) {
%>
 <jesi:include page="<%=recommendedProductsDescPages[i]%>" />
<%
 }
 }
%>

Example 4: Control/Include This example illustrates the use of JESI include
statements with request parameters. Assume that the main page is accessed through
the following URL:

http://host:port/application1/main.jsp?p2=abc

The main page takes the parameter setting p2=abc. Here is that page:

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>
<html>
<jesi:control cache="no" />
<jesi:include page="a.jsp?p1=v1" />
<h3>hello ...</h3>

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-29

<jesi:include page="b.jsp" />
<h3>world ...</h3>
<jesi:include page="c.jsp?p1=v2" copyParam="true" />
</html>

The a.jsp page takes the parameter setting p1=v1. The c.jsp page takes the
setting p1=v2 as well as the setting p2=abc, as a result of the copyParam setting
and the p2 setting in the URL for the main page.

Additionally, the top-level page is noncacheable, according to the cache="no"
setting. In fact, remember that you should use the copyParam setting in a JESI
include tag only when the originating page is noncacheable, because the request
attributes might change from one request to the next. Remember, too, that the
cache="no" setting has no effect on the included pages. They are still cacheable by
default. In other words, each is cacheable unless it has its own JESI control tag
with cache="no" for some reason.

Example 5: Control/Include with param Tag This example illustrates use of a JESI param
tag to add runtime values as new parameters to the included page request. Assume
the main page is accessed through a URL such as the following, taking the
parameter setting p1=v1:

http://host:port/application/main.jsp?p1=v1

Here is the page:

<jesi:control cache="yes" />
<jesi:include page="a.jsp" >
 <% String v2 = null;
 if(request.getParameter("p1").equals("v1")
 v2 = "v1 set";
 else
 v2 = "v2 unset";
 %>
 <jesi:param name="p2" value="<%=v2%>" />
</jesi:include>

JESI template Tag
Use the JESI template tag to specify caching behavior for the template content,
outside any fragments, in the template/fragment usage model. (See "JESI Usage
Models" on page 6-9.) The corresponding HTTP header will be set according to the
ESI specification. The content outside the fragments is referred to here as the

Oracle JESI Tag Descriptions

6-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

template content and is a separate cacheable object, and the content of each fragment
set aside with a JESI fragment tag is a separate cacheable object.

Always use the JESI template tag together with JESI fragment tags. If you have
no need for separate fragments, then use a JESI control tag instead of a JESI
template tag.

Note the following:

� All attributes of the JESI template tag are optional. If you use a tag without
any settings, then, by default, the cacheability of a response has an expiration
setting of 24 hours, with immediate removal of expired objects.

� In the template/fragment model, you cannot delegate decisions about
cacheability to the ESI processor. You must have a JESI template tag, and
cacheability of the template content is according to the template tag attribute
settings or default values, as applicable. Similarly, each fragment must be set
aside with a JESI fragment tag, and cacheability of each fragment is according
to its fragment tag attribute settings or default values.

� Do not use multiple JESI template tags in a single JSP page. In addition, do
not use additional JESI template tags in pages that are included, through
jsp:include functionality, into the same response object. In either case, an
exception will result.

� Beginning with the OC4J 9.0.4 implementation, it is permissible to place a JESI
template tag inside a page that is included through a standard jsp:include
tag, as long as there is no template tag in any higher-level pages and you
follow any other relevant restrictions that are mentioned in this section.

� If the JSP container has already encountered a JESI control tag when it
encounters a JESI template tag while still generating the same response, then
any attributes of the template tag are ignored and caching is according to the
control tag.

Important: All response output must be generated between the
template start-tag and end-tag. Place the JESI template start-tag
as early in the page as possible. It must appear before any JESI
fragment tags or any buffer flushes in the page. It must also
appear before any other visible output content such as text, HTML
markup, new lines, or white space. Place the JESI template
end-tag as late in the page as possible, after any JESI fragment
tags and any other visible output content.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-31

� The JESI template tag cacheability settings have no effect on the enclosed
fragments; fragments provide their own settings (or default values).

� If request parameters are significant to a fragment, then either the enclosing
template content should not be cached (cache="no" in the JESI template
tag), or separate versions of the template content should be cached, according to
parameter values. Different versions of the fragment should also be cached,
according to parameter values.

In the background, a fragment involves an additional request, as with a page
included through a JESI include tag. Request parameters (if any) are always
passed from the template to the fragment, equivalent to JESI include tag
functionality with a setting of copyParam="true". (This kind of issue is also
discussed in "JESI include Tag" on page 6-23.)

The JESI template tag has the same attributes, with the same usage, as the JESI
control tag.

Syntax

<jesi:template
 [expiration = "value"]
 [maxRemovalDelay = "value"]
 [cache = "yes" | "no" | "no-remote"]
 [control = "uninterpreted_string"] >

...page content, jesi:fragment tags, optional jesi:include tags, optional
jesi:codeblock tags..

</jesi:template>

Attributes

For attribute descriptions, see "JESI control Tag" on page 6-21.

Note: In this situation, the template tag is not ignored
completely. When the template/fragment model is used in a page
that also has a JESI control tag (which can happen if a page with
a template tag is included dynamically, and usually
conditionally), the JSP container notes the fact that there is a
template tag properly enclosing any fragment tags, as required.

Oracle JESI Tag Descriptions

6-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI fragment Tag
Use one or more JESI fragment tags within a JESI template tag, between the JESI
template start-tag and end-tag, in the template/fragment model. (See "JESI Usage
Models" on page 6-9.) Each JESI fragment tag defines a separate fragment of the
JSP page, as desired, for caching behavior. Each fragment is a separate cacheable
object.

When a particular fragment is requested for inclusion into the aggregate response
through the ESI mechanism, the ESI processor retrieves only that fragment.

The JESI fragment tag has the same attributes, with the same usage, as the JESI
control and JESI template tags.

Note the following:

� Each JESI fragment tag specifies its own caching instructions to the ESI
processor. Cacheability is according to the specified attribute settings or the
default values, as applicable. The settings of the surrounding JESI template
tag have no effect on the fragments.

� You cannot nest a JESI fragment tag within another JESI fragment tag.

� Unlike with the control/include model, it is not possible to delegate caching
instructions to the ESI processor in the template/fragment model, given that a
template tag, and fragment tags as applicable, are required. Caching is
always according to template or fragment tag attribute settings or the
default values.

� Beginning with the OC4J 9.0.4 implementation, as long as you follow the
restrictions mentioned in this section, it is permissible to place a JESI fragment
tag inside a page that is included through a standard jsp:include tag. The
JESI template tag that encloses the JESI fragment tag can appear in the same
included page or in a higher level page such as the page containing the
jsp:include statement.

Syntax

<jesi:fragment
 [expiration = "value"]
 [maxRemovalDelay = "value"]
 [cache = "yes" | "no" | "no-remote"]
 [control = "uninterpreted_string"] >

...JSP code fragment...

</jesi:fragment>

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-33

Attributes

For attribute descriptions, see "JESI control Tag" on page 6-21.

JESI codeblock Tag
In the template/fragment model, you can optionally use one or more JESI
codeblock tags within template code, outside of any fragments, to mark
conditional execution of particular blocks of code. Each codeblock tag surrounds
a block of code and specifies when it should be executed:

� Only when the template is requested

or:

� Only when a fragment (any fragment) is requested

or:

� Always (whether a template or fragment is requested)

Without use of this tag, all template code is executed with every request—with each
request for the template as well as with each request for any fragment, although
template output is discarded in the case of a request for a fragment.

Although it is important to execute the template whenever a fragment is
requested—to allow fragments to depend on template code side effects such as
variable declaration or initialization—there might be blocks of code that are not
critical to fragments. You can place any such code block into a codeblock tag with
a specification to execute the block only when the template is requested.

Alternatively, there might be blocks of template code that are potentially vital to all
fragments, but not to the template itself. You can place any such code block into a
codeblock tag with a specification to execute the block only when any fragment is
requested.

Oracle JESI Tag Descriptions

6-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Syntax

<jesi:template ... >
...
 <jesi:codeblock execute = "template" | "fragment" | "always" >
 ...request-dependent JSP content...
 </jesi:codeblock>
...
</jesi:template>

Attributes

� execute (required): Specify the value "template" to execute the code block
only when the template is requested. Specify the value "fragment" to execute
the code block only when any fragment is requested. A setting of "always"
results in the code block being executed with every request for the page, and is
equivalent to not using a codeblock tag at all.

Examples: Template/Fragment Model
This section contains examples of JESI tag usage in the template/fragment model.

Example 1: Template/Fragment This is a general example showing use of the JESI
template and JESI fragment tags. Because only the expiration attribute is set
in any of the tags, all other settings are according to defaults. The setting of the
cache attribute defaults to "yes", so the template and all three fragments are
cached.

The template content (outside the fragments) uses an expiration of 3600 seconds,
according to the JESI template tag. This applies to all the HTML blocks because

Note: It is advisable to not generate any visible output within a
JESI codeblock tag. This is to avoid unexpected behavior due to
differences in execution between requests for the template and
requests for fragments. If execute="template" (or "always")
and the template is requested, then the code is executed and the
content is output, as presumably intended. However, if
execute="fragment" (or "always") and the request is for a
fragment, then the code is executed but the entire output of the
template is suppressed, as is always the case when a fragment is
requested. See Figure 6–3 in "Template/Fragment Model" on
page 6-10.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-35

they are outside the fragments. JSP code block #1 is cached with an expiration
setting of 60; JSP code block #2 is cached with the default expiration setting; and JSP
code block #3 is cached with an expiration setting of 600.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>
<jesi:template expiration="3600">
...HTML block #1...
 <jesi:fragment expiration="60">
 ...JSP code block #1...
 </jesi:fragment>
...HTML block #2...
 <jesi:fragment>
 ...JSP code block #2...
 </jesi:fragment>
...HTML block #3...
 <jesi:fragment expiration="600">
 ...JSP code block #3...
 </jesi:fragment>
...HTML block #4...
</jesi:template>

Example 2: Template/Fragment This example employs JESI include tags inside the
fragments. The following are the cacheable objects for this page:

� Each included page

� Each fragment, outside of the page it includes

� The aggregate of the HTML blocks, which are all at the template level outside
any fragments

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>
<jesi:template expiration="3600">
...HTML block #1...
 <jesi:fragment expiration="60">
 ...JSP code block #1...
 <jesi:include page="stocks.jsp" />
 </jesi:fragment>
...HTML block #2...
 <jesi:fragment>
 ...JSP code block #2...
 <jesi:include page="/weather.jsp" />
 </jesi:fragment>
...HTML block #3...

Oracle JESI Tag Descriptions

6-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 <jesi:fragment expiration="600">
 ...JSP code block #3...
 <jesi:include page="../sales.jsp" />
 </jesi:fragment>
...HTML block #4...
</jesi:template>

Example 3: Template/Fragment with Codeblock This is a conceptual example of how you
can use the codeblock tag in the template/fragment model. In this case, to
improve performance, the code that connects to the database would be placed in the
code block so that it is not reexecuted needlessly.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>
<jesi:template>
Welcome to the Frequent Flyer Home page!
<jesi:codeblock execute="fragment" >
 /* Open a database connection and store it in the variable dbConn. */
</jesi:codeblock>
BEST DEALS
<jesi:fragment expiration="600" maxRemovalDelay="180">
...in Air Travel
/* Select the three cheapest USA domestic round-trip fares, using the database
connection stored in dbConn. */
</jesi:fragment>

<jesi:fragment expiration="600" maxRemovalDelay="180">
...in Accommodations
/* select the three best hotel deals, using the database connection stored in
dbConn. */
</jesi:fragment>

Click here to access your current Mileage account <...>
</jesi:template>

Descriptions of Tags and Subtags for Invalidation of Cached Objects
Use the JESI invalidate tag and the following subtags, as appropriate, to
explicitly invalidate cached objects in the ESI processor:

� JESI object

� JESI cookie (subtag of JESI object)

� JESI header (subtag of JESI object)

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-37

The following sections cover the syntax of these tags, the JESI configuration file
(which can be used to specify the user name, password, and URL to log in for
invalidation), and some examples:

� JESI invalidate Tag

� JESI Configuration File

� JESI object Subtag

� JESI cookie Subtag

� JESI header Subtag

� Examples: Page Invalidation

See "Invalidation of Cached Objects" on page 6-17 for an overview.

JESI invalidate Tag
Use the JESI invalidate tag with its JESI object subtag to explicitly invalidate
one or more cached objects.

Use the subtags as follows:

� Use the required JESI object subtag to specify what to invalidate, according to
the URI or URI prefix.

� Optionally use JESI cookie subtags or JESI header subtags (or both) of the
JESI object tag to specify further criteria for what to invalidate, according to
cookie or HTTP header information.

Syntax

<jesi:invalidate
 [url = "url"
 username = "user_name"
 password = "password"]
 [config = "configfilename"]
 [output = "browser"] >

Required subtag (described in "JESI object Subtag" on page 6-42):

 <jesi:object ... >

Optional subtag of JESI object (described in "JESI cookie Subtag" on
page 6-43):

 <jesi:cookie ... />

Oracle JESI Tag Descriptions

6-38 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Optional subtag of JESI object (described in "JESI header Subtag" on
page 6-44):

 <jesi:header ... />

 </jesi:object>

</jesi:invalidate>

Either specify the user, password, and URL all through their individual attributes,
or all in the configuration file that is either referred to in the config attribute or is
found in the default location. The default location is /WEB-INF/jesi.xml or, for
backward compatibility, /WEB-INF/config.xml. See "JESI Configuration File" on
page 6-39 for information about the file. If the user name, password, and URL are
specified through the configuration file as well as through the attribute settings,
then the attribute settings take precedence.

If you specify a <user> element for the OracleAS Web Cache "invalidator" account
in the OC4J jazn-data.xml file, then you can use special syntax in the password
attribute to refer to the information in jazn-data.xml instead of specifying the
password in clear text. The password is specified in jazn-data.xml in an
obfuscated form. See the username and password attribute descriptions below.
See the Oracle Application Server Containers for J2EE Security Guide for information
about the jazn-data.xml file.

Attributes

� url: Specifies the URL of the cache server. If this attribute is omitted, then you
must specify the URL, as well as the user name and password, in the JESI
configuration file.

� username: Specifies the user name for logging in to the cache server to perform
invalidation. OracleAS Web Cache typically requires an "invalidator" user
name. If this attribute is omitted, then you must specify the user name, as well
as the password and URL, in the JESI configuration file.

Note: It is permissible to have multiple object tags within an
invalidate tag.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-39

If the OC4J jazn-data.xml file contains a <user> element for the OracleAS
Web Cache "invalidator" account, then you can use that account name for the
username value, such as:

username="invalidator"

� password: Specifies the password for logging in to the cache server to perform
invalidation. If this attribute is omitted, then you must specify the password, as
well as the user name and URL, in the JESI configuration file.

If the OC4J jazn-data.xml file contains a <user> element for the OracleAS
Web Cache "invalidator" account, then you can get the de-obfuscated password
from that file by using special right-arrow syntax with a dash ("-") and
right-carrot (">") followed by the invalidator account name, such as:

password="->invalidator"

� config: Specifies a JESI configuration file, using either an application-relative
or a page-relative location. You can use this file to provide the cache server
URL, user name for invalidation, and password instead of using the
corresponding tag attributes. Note the following:

– You can use a configuration file in the default location instead of specifying
one through the config attribute. See "JESI Configuration File" on
page 6-39.

– No configuration file is consulted if username, password, and url are all
specified through tag attributes.

� output: Optionally sets an output device to receive the invalidation response
from the cache server. Currently, the only supported setting is "browser",
which wraps the Web cache response with HTML formatting to show the
message in the user’s Web browser. If you do not set this parameter, then the
invalidation response will not be displayed.

JESI Configuration File
The proposed JESI specification supports the use of a configuration file. Currently,
you can use a configuration file only to specify the user name, password, and URL
for invalidation. (Alternatively, you can specify the user name, password, and URL
through attributes of each JESI invalidate tag. See "JESI invalidate Tag" on
page 6-37.)

A JESI configuration file must have a <jesi-config> top-level element, an
<invalidation> subelement under that, and <username>, <password>, and
<url> subelements under the <invalidation> element.

Oracle JESI Tag Descriptions

6-40 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

In the current implementation there are two possible default files, or you can place
the file anywhere within your application and specify its name and location
through the config attribute of the invalidate tag, specifying either an
application-relative or a page-relative location.

As of the OC4J 9.0.4 implementation, the preferred default file is
/WEB-INF/jesi.xml, which conforms with the proposed JESI specification. For
backward compatibility, the previous default file, /WEB-INF/config.xml, is also
supported.

The following precedence is used to obtain the user name, password, and URL for
invalidation:

1. If the JESI invalidate tag specifies the username, password, and url
attribute settings (all three), then those values are used.

2. If you do not specify username, password, and url in the invalidate tag,
but the config attribute specifies a configuration file, then values from the
specified configuration file are used.

3. If you do not specify username, password, url, and config in the
invalidate tag, then the JSP container attempts to use a default configuration
file. First, the container searches for /WEB-INF/jesi.xml and uses the
settings from that file if it is found. If that file is not found, then the container
searches for /WEB-INF/config.xml and uses the settings from that file if it is
found.

Note: For backward compatibility, the deprecated elements
<ojsp-config> and <web-cache> are currently acceptable
instead of <jesi-config> and <invalidation>, respectively.
The new elements are to comply with the proposed JESI
specification. It is likely that the <ojsp-config> and
<web-cache> will be desupported in a future release.

Note: If the invalidate tag specifies one or two of these
attributes but not all three, an exception is raised. An exception is
also raised if one or more of the attribute values is an empty string
or null.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-41

If the OC4J jazn-data.xml file contains a <user> element for the OracleAS Web
Cache "invalidator" account, you can that account name in the JESI configuration
file and get the password from jazn-data.xml by using special right-arrow
syntax with a dash ("-") and right-carrot (">"), followed by the invalidator account
name. See "Example 2: Configuration File Obtaining Password from jazn-data.xml"
below.

Example 1: Configuration File with Clear Text for Password The following example shows
a configuration file that is used instead of the url, username, and password
attributes to set the URL and login information:

<?xml version="1.0" ?>
<jesi-config>
 <invalidation>
 <url>http://yourhost.yourcompany.com:4001</url>
 <username>invalidator</username>
 <password>invpwd</password>
 </invalidation>
</jesi-config>

Example 2: Configuration File Obtaining Password from jazn-data.xml The following
example, instead of using clear text to specify the password, uses special "->"
syntax to obtain the de-obfuscated password from the jazn-data.xml file. This
example assumes jazn-data.xml contains a <user> element for the OracleAS
Web Cache "invalidator" account:

<?xml version="1.0" ?>
<jesi-config>
 <invalidation>
 <url>http://yourhost.yourcompany.com:4001</url>
 <username>invalidator</username>
 <password>->invalidator</password>
 </invalidation>
</jesi-config>

Notes: If the invalidate tag does not specify the user name,
password, and URL, an exception is thrown under either of the
following circumstances:

� If at any point a configuration file is found that does not specify
all three attributes

� If no configuration file is found

Oracle JESI Tag Descriptions

6-42 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI object Subtag
Use the required JESI object subtag of the JESI invalidate tag to specify cached
objects to invalidate, according to either the complete URI or a URI prefix.
Optionally, use JESI cookie subtags or JESI header subtags (or both) to specify
further criteria for invalidation, based on cookie or HTTP header information.

Specify either the complete URI or the URI prefix in the uri attribute setting.
Whether this field is interpreted as a full URI or as a prefix depends on the setting
of the prefix attribute.

Syntax

<jesi:object uri = "uri_or_uriprefix"
 [maxRemovalDelay = "value"]
 [prefix = "yes" | "no"] >

Optional subtag (described in "JESI cookie Subtag" on page 6-43):

 <jesi:cookie ... />

Optional subtag (described in "JESI header Subtag" on page 6-44):

 <jesi:header ... />

</jesi:object>

Here is the syntax if you do not use either subtag:

<jesi:object uri = "uri_or_uriprefix"
 [maxRemovalDelay = "value"]
 [prefix = "yes" | "no"] />

Notes:

� It is permissible to have multiple object tags within an
invalidate tag.

� It is permissible to have multiple cookie tags or header tags
within an object tag.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-43

Attributes

� uri (required): Specifies either the complete URI of the page whose
corresponding cached object is to be invalidated (if prefix="no"), or a URI
prefix that specifies objects for multiple pages to be invalidated according to
location (if prefix="yes").

If a prefix is specified, then cached objects for all pages under that location are
invalidated. For example, for a prefix of "/abc/def", cached objects for all
pages in the corresponding directory and any subdirectories are invalidated.

� prefix: Set this to "yes" if the uri attribute is to be interpreted as a URI prefix
only. Use the default "no" setting if the uri value is to be interpreted as a
complete URI.

� maxRemovalDelay: Specifies the maximum delay, in seconds, between the
time when a cached object is invalidated and the time when it is removed and,
therefore, can no longer be served by the ESI processor. This delay is 0 by
default, for immediate removal.

JESI cookie Subtag
Use one or more JESI cookie subtags of the JESI object tag (which is a subtag of
the JESI invalidate tag) if you want to use cookie information as further criteria
for invalidation. This cookie information is in addition to the URI or URI prefix
setting in the JESI object tag, and possibly in addition to JESI header tags as well.
The cookie tag is useful for invalidating objects that have had multiple versions
cached, based on cookie information.

The cookie tag has no body.

Syntax

<jesi:cookie name = "cookie_name"
 [value = "cookie_value"] />

Notes:

� It is permissible to have multiple cookie tags within an
object tag.

� Unlike most other JESI tag attributes, it is permissible for the
value attribute to have a null or empty-string value.

Oracle JESI Tag Descriptions

6-44 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

� name (required): This is the name of the cookie.

� value: This is the value of the cookie.

For each use of the cookie subtag, the request URL of the object to be invalidated
must have a cookie that matches the name attribute setting and, if specified, the
value attribute setting.

JESI header Subtag
Use one or more JESI header subtags of the JESI object tag (which is a subtag of
the JESI invalidate tag) if you want to use HTTP/1.1 header information as
further criteria for invalidation. This header information is in addition to the URI or
URI prefix setting in the JESI object tag, and possibly in addition to JESI cookie
tags as well. The header tag is useful for invalidating objects that have had
multiple versions cached, based on header information.

The header tag has no body.

Syntax

<jesi:header name = "header_name"
 value = "header_value" />

Attributes

� name (required): This is the name of the HTTP/1.1 header.

� value (required): This is the value of the HTTP/1.1 header.

For each use of the header subtag, the request URL of the object to be invalidated
must have a header that matches the name and value attribute settings.

Examples: Page Invalidation
This section provides examples of page invalidation using the JESI invalidate
tag, its JESI object subtag, and the JESI cookie subtag of the JESI object tag.

Note: It is permissible to have multiple header tags within an
object tag.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-45

Example 1: Page Invalidation This example invalidates a single object in the ESI
processor, specified by its complete URI. (By default, the uri attribute of the
object tag specifies a full URI, not a URI prefix.) The JESI invalidate tag also
specifies the URL for the cache server, and the user name and password for the
invalidation account. In addition, it specifies that the invalidation response from the
cache server should be displayed in the user’s browser.

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd"
 output="browser">
 <jesi:object uri="/images/logo.gif"/>
</jesi:invalidate>
...

Example 2: Page Invalidation This example is equivalent to "Example 1: Page
Invalidation" immediately above, but uses a configuration file to specify the cache
server URL and login information.

...
<jesi:invalidate config="/myconfig.xml" output="browser">
 <jesi:object uri="/images/logo.gif"/>
</jesi:invalidate>
...

The JESI invalidate tag specifies an application-relative location for the
configuration file. As an example, suppose myconfig.xml has the following
content:

<?xml version="1.0" ?>
<jesi-config>
 <invalidation>
 <url>http://yourhost.yourcompany.com:4001</url>
 <username>invalidator</username>
 <password>invpwd</password>
 </invalidation>
</jesi-config>

Example 3: Page Invalidation This example invalidates all objects in the ESI processor,
according to the URI prefix "/". It does not specify that the invalidation response
should be displayed in the browser, so it will not be displayed at all.

Oracle JESI Tag Descriptions

6-46 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd">
 <jesi:object uri="/" prefix="yes"/>
</jesi:invalidate>
...

Example 4: Page Invalidation This example invalidates a single object but allows it to
be served stale for up to 30 minutes (1800 seconds).

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd">
 <jesi:object uri="/images/logo.gif" maxRemovalDelay="1800"/>
</jesi:invalidate>
...

Example 5: Page Invalidation This example specifies the same object for invalidation as
"Example 1: Page Invalidation" on page 6-45, but specifies that it should be
invalidated only if its request URL has a cookie named user_type with the value
customer.

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd">
 <jesi:object uri="/images/logo.gif">
 <jesi:cookie name="user_type" value="customer"/>
 </jesi:object>
</jesi:invalidate>
...

Description of Tag for Page Personalization
To allow page customization when sharing the same cached page between multiple
users, the ESI processor must be informed of dependencies by the page on cookie
and session information. Cookie value replacement, for example, occurs in the ESI
processor instead of in the Web server.

JESI personalize Tag
Use the JESI personalize tag to allow page customization, by directing the ESI
processor to substitute cookie values from a current request before serving a cached
page.

Oracle JESI Tag Descriptions

JESI Tags for Edge Side Includes 6-47

The effect of this tag is to insert an ESI placeholder with the cookie name and value
into the response body. If the cookie that is specified in the name attribute is found
in the request and has a non-null value, its value is used. If the cookie is not found
in the request or has a null value, but a value is specified through the default
attribute, then a new cookie is created and the default value is used. If the cookie
did not previously exist and no default value is specified, the tag has no effect.

The personalize tag has no body.

Syntax

<jesi:personalize name = "cookie_name"
 [default = "default_value"] />

Attributes

� name (required): Specifies the name of the cookie whose value is used as the
basis for personalizing the page.

� default: This is an optional default value in case the cookie is not found or
has a null value.

Example: Page Personalization
The following example shows usage of the JESI personalize tag:

<jesi:personalize name="user_id" default="guest" />

The corresponding ESI tag that is generated allows the ESI processor to find the
necessary information. In this case, it looks for a cookie named user_id and
retrieves its value. If it cannot find the cookie, it uses a default value of "guest".

Handling this cookie-value replacement in the ESI processor allows the ESI
processor to serve multiple customized pages from a single cached copy, without
involving the application server.

Note: For backward compatibility, the deprecated "value" form
of the default attribute is accepted. The change from value to
default was made to comply with the proposed JESI
specification. It is likely that value will be desupported in a future
release.

JESI Tag Handling and JESI-to-ESI Conversion

6-48 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI Tag Handling and JESI-to-ESI Conversion
JESI tag handler classes, supplied as part of the JESI tag library with OC4J, provide
the bridge from JSP functionality to ESI functionality. Tag handlers generate ESI tags
from JESI tags and, as appropriate, generate HTTP requests for invalidation, set
HTTP response headers, and so on. Be aware, however, that there is not always a
simple one-to-one mapping between JESI tags and ESI tags, or between JESI tag
attributes and ESI tag attributes.

Example: JESI-to-ESI Conversion for Included Pages
As an example of JESI-to-ESI conversion, consider the following JSP code:

<p>BEGIN</p>
<jesi:control cache="no"/>
<jesi:include page="stocks.jsp" flush="true" />
<p>
<hr>
<jesi:include page="/weather.jsp" copyParam="true" flush="true" />
<p>
<hr>
<jesi:include page="../sales.jsp?tax=local" copyParam="true" flush="true" />
<p>END</p>

Assume that this JSP code is part of a page with the following URL:

http://host:port/application1/top.jsp

Further assume the following request:

http://host:port/application1/top.jsp?city=Washington_DC

In this case, the JESI include tag handler generates ESI markup such as in the
following response.

In the response header:

Surrogate-Control: content="ESI/1.0",max-age=86400+0,no-store

In the response body:

<p>BEGIN</p>
<esi:include src="/application1/stocks.jsp"/>

<p>
<hr>

JESI Tag Handling and JESI-to-ESI Conversion

JESI Tags for Edge Side Includes 6-49

<esi:include src="/weather.jsp?city=Washington_DC"/>

<p>
<hr>
<esi:include src="/sales.jsp?tax=local&city=Washington_DC"/>

<p>END</p>

This response is read by the ESI processor before being delivered to the client. A
Surrogate-Control header alerts the ESI processor that the response body
contains ESI markup; therefore, the caching mechanism looks inside the response
body for ESI tags. In addition, the Surrogate-Control header sets the cache
directive to no-store, according to the cache="no" attribute setting. Expiration
and maximum delay interval have no impact in this case.

In response to each of the three esi:include tags, the ESI processor makes an
additional request to the URL that is specified. Each response is included into the
top-level page, and only after that is the assembled page delivered to the client.
Note that the client receives one response, but the cache initially makes four
requests to obtain it. This might seem like a lot of overhead; however, the overall
efficiency will be improved if many additional requests also use the same included
pages, such as weather.jsp. No requests for these pages are required, because
they are cached separately on the ESI processor.

Example: JESI-to-ESI Conversion for a Template and Fragment
Suppose that when employees connect to a corporate intranet site, the content of
their pages is dynamic except for a few features that are present in every response.
In particular, there is always a footer displaying the stock chart and latest business
headlines for the company, and the business headlines are obtained from an
external business news site. Because all returned pages will have to include the
same information, and it is expensive to obtain, it is more efficient to cache the
footer in the ESI processor.

The remainder of the page response is dynamic, incorporating the stock fragment in
a slightly different way each time. To avoid having to rewrite the page, you can
mark the footer as a JESI fragment and the enclosing page as a JESI template.

Also assume that a charity campaign is in progress and that the organizers want to
display a bar chart showing their goal amount and the current donation amount as
part of all corporate pages. This information is stored in a special database table and
is updated twice a day. The chart is a good candidate to be an additional JESI
fragment. Therefore, you would add a JESI template tag at the top of the page and

JESI Tag Handling and JESI-to-ESI Conversion

6-50 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

use JESI fragment tags to enclose the fragments that are to be cached as separate
entities.

Assume that the URL to the corporate page is as follows:

http://www.bigcorp.com/employee_page.jsp

Further assume that you have modified the page as follows:

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jesitaglib.tld"
 prefix="jesi" %>
<jesi:template cache="no" >

<p>BEGIN</p>
... some dynamic page content...
<jesi:fragment>
This_is_the_body_of_Charity_Chart
</jesi:fragment>
... some more dynamic content...
<jesi:fragment>
This_is_the_body_of_Business_Footer
</jesi:fragment>
</jesi:template>
<p>END</p>

When the page is requested, an HTTP response is generated as follows.

In the response header:

Surrogate-Control: content="ESI/1.0",max-age=86400+0,no-store

In the response body:

<p>BEGIN</p>
... some dynamic page content...
<esi:include src="/employee_page.jsp?__esi_fragment=1"/>
... some more dynamic content...
<esi:include src="/employee_page.jsp?__esi_fragment=2"/>
<p>END</p>

As with the JESI include example in "Example: JESI-to-ESI Conversion for
Included Pages" on page 6-48, the ESI processor is alerted by the
Surrogate-Control response header. Note the no-store directive, generated
because of the cache="no" setting in the JESI template tag.

The ESI processor makes two additional requests, where it fetches and caches the
two fragments. After that, the composite page is returned to the employee. When

JESI Tag Handling and JESI-to-ESI Conversion

JESI Tags for Edge Side Includes 6-51

the employee works with the page again, the dynamic content will be newly
generated but the chart and the footer will be served from the cache.

Note: Surrogate-Control headers are consumed by the ESI
processor and are not seen in the final response to the client.

JESI Tag Handling and JESI-to-ESI Conversion

6-52 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tags and API 7-1

7
Web Object Cache Tags and API

This chapter describes the Web Object Cache, an application-level caching
mechanism supplied with OC4J. For Web applications written in Java, you can use
the Web Object Cache in conjunction with the Oracle Application Server Web Cache
for increased speed and scalability.

The chapter consists of the following sections:

� Overview of the Web Object Cache

� Key Functionality of the Web Object Cache

� Attributes for Policy Specification and Use

� Web Object Cache Tag Descriptions

� Web Object Cache API Descriptions

� Cache Policy Descriptor

� Cache Repository Descriptor

� Configuration for Back-End Repository

For an overview of Web caching, including a discussion of the OracleAS Web Cache
and Oracle Application Server Java Object Cache, see "Summary of Oracle Caching
Support for Web Applications" on page 1-17.

Overview of the Web Object Cache

7-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of the Web Object Cache
The OC4J Web Object Cache is a mechanism that allows Web applications written in
Java to capture, store, reuse, post-process, and maintain the partial and intermediate
results generated by a dynamic Web page, such as a JSP or servlet. For
programming interfaces, it provides a tag library and a Java API.

The Web Object Cache works at the Java level and is closely integrated with the
HTTP environment of JSP and servlet applications. Cached objects might consist of
HTML or XML fragments, XML DOM objects, or Java serializable objects.

With the Web Object Cache programming interfaces, you can split Web pages into
page blocks that define separate cache objects for finer control of caching. (The
terms block and object are used somewhat interchangeably in this sense.) In this way,
the application itself can control life span and other behavior of individual cache
entities during runtime. Application developers have the best understanding of the
life cycle patterns of their application Web pages, so are best suited to determine
how to split pages into cache blocks. You can specify maintenance policies for
cached objects either declaratively in an external file, the cache policy descriptor, or
programmatically within the application itself.

The following sections provide an overview of the Web Object Cache:

� Benefits of the Web Object Cache

� Web Object Cache Components

� Cache Policy and Scope

Benefits of the Web Object Cache

Using the Web Object Cache can significantly reduce the amount of time spent in
constructing page blocks or Java objects in dynamic applications, such as those with
expensive intermediate operations like querying a database and formatting or

Note: The Web Object Cache is useful in particular scenarios and
does not replace the need for other caching mechanisms, including
the OracleAS Web Cache. For an overview of the Web Object Cache
and how it relates to the OracleAS Web Cache and the Oracle
Application Server Java Object Cache, including a discussion of
when it is appropriate to use each one, see "Summary of Oracle
Caching Support for Web Applications" on page 1-17.

Overview of the Web Object Cache

Web Object Cache Tags and API 7-3

transforming the results. Subsequent queries pull the information out of the cache,
so the query and formatting do not have to be repeated.

Furthermore, developers can closely control the cache programmatically, through
API calls or custom JSP tags. This can include controlling when cache entries are
created, what they are named, when they expire, which users can see which cached
data, and what operations can be applied to cached data before the results are
served to the user.

Some kinds of Web applications benefit more than others by using the Web Object
Cache, depending on the nature and use of their data. For example, applications
such as catalog and directory browsing, delayed stock quotes, and personalized
portals would particularly benefit. Applications such as real-time stock trading or
real-time stock quotes, however, would not benefit, because the data has to be
updated so frequently that the overhead of the caching operations would outweigh
the benefits. (In these circumstances, however, the OracleAS Web Cache might still
be useful because of its lighter overhead.)

In general, the Web Object Cache is most useful in the following situations:

� For special post-processing on cached data objects, such as XSLT or XML DOM
operations

� For sharing data in a non-HTTP situation, such as reusing cached XML data or
Java objects and sending the data to others through SMTP, JMS, AQ, or SOAP

� For special storage needs, such as storing cached data in a file system or
database for persistent storage of data with a long lifetime

� For application-specific authorization, allowing different users to have different
access rights to different data items, such as for a Web-based groupware
application

The application can have its own authorization scheme. The Web Object Cache
is embedded within Java authorization logic.

Using the Web Object Cache in JSP pages is particularly convenient. JSP code
generation can save much of the development effort.

Overview of the Web Object Cache

7-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Components
The Web Object Cache consists of two main components:

� Cache repository

� Cache programming interfaces

This section also provides a brief introduction to the Oracle Application Server Java
Object Cache, which is the default cache repository of the Web Object Cache.

Cache Repository
The cache repository is the component that is responsible for data storage, data
distribution, and cache expiration. There can be multiple repository
implementations for a programmable Web cache (such as the Web Object Cache),
depending on the tier and platform. For example, the file system might be used for
secondary storage in the middle tier, and database tables might be used for primary
storage in the database tier.

The Web Object Cache uses the Oracle Application Server Java Object Cache as its
default repository. The Java Object Cache is a general-purpose Java caching service
and API designed for application use, with objects being accessible by name.

The Java Object Cache is a powerful and flexible programming facility. There are no
restrictions on the types of objects that can be cached or the original source of the
objects. The management of each object is easily customizable. Each object has a set
of attributes such as the following:

� How the object is loaded into the cache

� Where the object is stored (in memory, on disk, or both)

� The lifetime, also known as the time-to-live, of the object

� Whom to notify when the object is invalidated

Objects can be invalidated as a group or individually.

For more information about the Java Object Cache, see the Oracle Application Server
Containers for J2EE Services Guide.

Note: See "Configuration for Back-End Repository" on page 7-61
for information about configuring the Java Object Cache or a file
system as the back-end repository for the Web Object Cache.

Overview of the Web Object Cache

Web Object Cache Tags and API 7-5

Cache Programming Interfaces
The front-end caching interfaces are used through JSP pages and servlets to handle
HTTP processing and to direct the semantics relating to the cache policy (rules and
specifications determining how the cache works).

The OC4J Web Object Cache programming interfaces can be further divided as
follows:

� Web Object Cache API

This is the common layer across servlets and JSP pages, dealing with the HTTP
semantics and cache policy. This layer communicates with the cache repository.

� Web Object Cache tag library

This is a convenient wrapper, using JSP custom tag functionality, for the Web
Object Cache API. Use custom tags in a JSP page to control the caching, with the
API being called through the underlying tag handler classes.

This chapter describes these programming interfaces and their interaction with the
cache repository. Cache tags are described in "Web Object Cache Tag Descriptions"
on page 7-22. The underlying cache policy API is described in "Web Object Cache
API Descriptions" on page 7-40. In servlets, you will use the underlying API; in JSP
pages, you will typically use the more convenient tags.

Cache Policy and Scope
The cache policy is a set of specifications determining details of the cache and how it
will behave. This includes the following:

� Cache scope

� Cache block naming rules

� Data expiration rules

� Cache repository name

You can set cache policy specifications (as described in "Attributes for Policy
Specification and Use" on page 7-12) through any of the following:

� Cache tag attributes (for JSP pages)

See "Web Object Cache Tag Descriptions" on page 7-22.

� Cache policy methods (for servlets)

See "Web Object Cache API Descriptions" on page 7-40.

Overview of the Web Object Cache

7-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� External cache policy descriptor files (for JSP pages or servlets)

See "Cache Policy Descriptor" on page 7-56.

A cache policy object—an instance of the oracle.jsp.jwcache.CachePolicy
class—is created with policy settings based on these inputs. Because the expiration
policy is part of the cache policy, each CachePolicy object includes an attribute
that is an instance of the oracle.jsp.jwcache.ExpirationPolicy class.

Cache data can be of either session scope, where it is available to only the current
HTTP session, or application scope, where it is available to all users of the application.

For example, consider an online banking application that caches the account
balance. Only the current user is interested in this information, so session scope is
appropriate.

By contrast, consider an online store with a welcome page that issues the same
general product recommendations to all users. In this case, it is appropriate for the
page to use a cache that has application scope.

Key Functionality of the Web Object Cache

Web Object Cache Tags and API 7-7

Key Functionality of the Web Object Cache
The following sections discuss key areas of functionality of the Web Object Cache:

� Cache Block Naming: Implicit Versus Explicit

� Cache Block Runtime Functionality

� Data Invalidation and Expiration

Cache Block Naming: Implicit Versus Explicit
A cache block is associated with a cache block name, which can be determined
either implicitly by the caching policy (generally advisable) or explicitly by your
application code. For retrieval, to avoid regenerating the page fragment in question,
there is a lookup of the cache block name.

For implicit naming, there are two inputs:

� Cache policy

A cache policy API layer performs naming logic.

� HTTP request object

The caching logic borrows corresponding semantics from the standard Java
servlet API.

For most situations, implicit naming will result in names that are sufficiently
informative, because the HTTP request usually includes all the inputs to the Web
application (inputs that determine what the application should generate).

Explicit naming might be desirable in some cases, however, such as when a group
of users needs to share the same data. In this case, because relevant identification
information might not be available directly from the user’s HTTP request, an
implicit cache name would not be useful. Instead, you can write code to explicitly
generate a cache name that identifies the group. Preferably, the name-generation
logic should still use only request parameters as input, not other states existing
inside the application. This makes the semantics easier to follow and the code easier
to debug.

Following is an example of explicit naming. In the cache tag, note the name
attribute with a JSP expression that calls someMethod() to set the cache block
name.

Key Functionality of the Web Object Cache

7-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

<ojsp:cache policy="/WEB-INF/policy1.cpd"
 name="<%= someObj.someMethod() %>" >
...static text...
<% // dynamic content ... %>
</ojsp:cache>

In the following example, because there is no name attribute in the cache tag, the
cache block name will be determined implicitly according to the HTTP request and
the cache policy:

<ojsp:cache policy="/WEB-INF/policy2.cpd" >
...static text...
<% // dynamic content ... %>
</ojsp:cache>

See "More About Cache Block Naming and the autoType Attribute" on page 7-16 for
more information.

Cloneable Cache Objects
The OC4J Web Object Cache provides an interface,
oracle.jsp.jwcache.CloneableCacheObj, that you can implement in
serializable cache objects that you want to be cloneable. For mutable objects that are
cached without being serialized, cloning is useful in providing a complete and
hierarchical copy of the cache object. This section explains the usefulness of
cloneability, first covering some necessary background information.

Memory-Oriented Repositories Versus Secondary Storage Repositories
There are two categories of repositories that can be used as the back-end of the Web
Object Cache:

� Secondary storage cache repository such as a file system repository

� Memory-oriented cache repository such as the Oracle Application Server Java
Object Cache, the default repository of the Web Object Cache

A secondary storage repository requires Java serialization during cache operations.
During storage to the cache, objects are serialized into the repository; during
retrieval from the cache, they are deserialized into memory. Therefore, as a result of

Note: Cache blocks can be nested. In this case, the logic of the
inner cache block will be executed only when the content of the
outer block must be regenerated.

Key Functionality of the Web Object Cache

Web Object Cache Tags and API 7-9

the serialization/deserialization process, a complete and distinct copy of the cache
object is automatically created during each cache operation.

This is not the case when you store or retrieve cache objects to or from a
memory-oriented repository. With a memory-oriented repository, the identical
object in the user application will be stored to the cache, or the identical object in the
cache will be retrieved for the user. By default, no copy is made. If there are
multiple retrievals, all retrievals share the same object.

Advantages in Cloning Copies of Cache Objects
In many cases in your applications, you will want to ensure that different retrievals
use different copies of a cache object. There are two key reasons for this:

� If the identical cache object is shared across multiple retrievals, changes made to
the data in one place might unintentionally affect values retrieved and used
elsewhere.

� If the identical cache object is shared across multiple retrievals, then multiple
Java threads might access the same object simultaneously. This would result in
thread safety issues if the original object design was not thread-safe. Perhaps,
for example, the object was originally intended for page-scope or request-scope
usage only, where there could be only one thread for each object. This
thread-behavior assumption would be violated.

To avoid these possible problems, use complete and hierarchical copies when you
store and retrieve generic Java serializable data to or from a memory-oriented
repository. "Complete and hierarchical" means copying not just the direct members
referenced by the object, but also any indirect variables that are referenced. For
example, assume an object xyz has a java.util.Vector instance as a member
variable. Cloning a complete and hierarchical copy involves copying not just the
Vector instance itself, but also all mutable objects or elements referenced by the
Vector instance.

Use of the CloneableCacheObject Interface
If you implement the CloneableCacheObject interface and its
cloneCacheObj() method in your cache objects, then the Web Object Cache will
automatically call cloneCacheObj() to make a complete and hierarchical copy of
each cache object whenever it is stored to or retrieved from a memory-oriented
cache repository.

Key Functionality of the Web Object Cache

7-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Cache Block Runtime Functionality
During runtime, when a Web Object Cache cache tag is encountered, the tag handler
checks whether a corresponding cache object exists and was created recently
enough to reuse. If so, the code in the body of the tag is not executed; instead, the
cache object is reused. But if the cache object does not exist or is too old, the tag
body code will be executed to generate a new object (page fragment, XML DOM
object, or Java serializable object). Then this freshly generated object will be
captured, such as through special buffer writing or object passing, and stored into
the cache.

If computations in content generation are costly, such as for a complicated database
query, and the life span of the cache is appropriate, so that the cached data is
reusable, then the Web Object Cache can save significant amounts of time and
system resources. Application speed and throughput will be greatly improved.

Data Invalidation and Expiration
You can set up cache blocks to expire after a specified duration or at a specified
time, or they can be invalidated explicitly by a method call or tag invocation.

Cache Block Expiration
Because cache blocks mainly consist of semi-static fragments of information, the
Oracle implementation does not require a tightly coherent expiration model. A
looser model typically provides acceptable results and requires less synchronization
overhead.

There are two categories of expiration for data in Web Object Cache blocks:

� Duration (time-to-live): Expiration occurs after data has been in the cache for a
specified amount of time.

� Fixed time/day: Expiration occurs regularly at a set time, such as at a specified
time each day or on a specified day each week.

Expiration details are determined by the settings of attributes in an instance of the
oracle.jsp.jwcache.ExpirationPolicy class. This ExpirationPolicy
object is an attribute of the CachePolicy object associated with the cache block.
See "Expiration Policy Attributes" on page 7-18.

In JSP pages, you can set ExpirationPolicy attributes through attributes of the
Web Object Cache cache tags. In servlets, you can use methods of the
ExpirationPolicy object directly. (See "ExpirationPolicy Methods" on

Key Functionality of the Web Object Cache

Web Object Cache Tags and API 7-11

page 7-48.) Alternatively, you can set ExpirationPolicy attributes through a
cache policy descriptor. (See "Cache Policy Descriptor" on page 7-56.)

Cache Block Invalidation
Instead of depending on expiration to invalidate a cache, you can invalidate it
explicitly in one of the following ways:

� Use the invalidateCache tag. See "Web Object Cache invalidateCache Tag"
on page 7-35.

� Use the overloaded invalidateCache(), invalidateCacheLike(), or
invalidateCacheOtherPathLike() method of a CachePolicy instance to
explicitly invalidate one or more cache blocks. See "CachePolicy Methods" on
page 7-42.

Attributes for Policy Specification and Use

7-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use
This section describes cache policy attributes—specifically, attributes of the
CachePolicy and ExpirationPolicy classes. You can set these attributes
through custom tags in JSP pages, directly through the provided Java API in
servlets, or through a cache policy descriptor file.

Cache Policy Attributes
Cache policies, introduced in "Cache Policy and Scope" on page 7-5, consist of the
details that determine how cache blocks behave. You can set cache policy attributes
in several ways, as described in subsequent sections:

� In JSP pages through custom tags

See "Web Object Cache Tag Descriptions" on page 7-22.

� In servlets through method calls

See "CachePolicy Methods" on page 7-42.

� Through a cache policy descriptor file

See "Cache Policy Descriptor" on page 7-56.

Specification of cache policy settings results in the creation of a cache policy object,
which includes an expiration policy object as one of its attributes. Following is
abbreviated code for the CachePolicy class (in package oracle.jsp.jwcache),
for illustration purposes only, showing the names of the cache policy attributes:

class CachePolicy
{
 boolean ignoreCache;
 int scope;
 int autoType;
 String selectedParameters[];
 String selectedCookies[];
 Date reusableTimeStamp;
 long reusableDeltaTime;
 ExpirationPolicy expirationPolicy;
 String cacheRepositoryName;
 boolean reportException;
}

Attributes for Policy Specification and Use

Web Object Cache Tags and API 7-13

Cache Policy Attribute Descriptions
Table 7–1 describes cache policy object attributes.

Note: The names documented below for integer constants are for
servlet usage. Different names can be used for the Web Object
Cache tags. See "Web Object Cache cache Tag" on page 7-23.

Table 7–1 Cache Policy Attribute Descriptions

Attribute Type Description

ignoreCache boolean This is for use during development only. When
making frequent code changes, set this to true to
disable the cache, typically so that results that
were generated prior to your changes will not be
returned.

Default: false

scope int Specifies the scope of the cache. Use the integer
constant SCOPE_SESSION for the cache block to
be accessible only to the current HTTP session, or
SCOPE_APP for the cache block to be accessible to
all HTTP sessions of the application.

Default: SCOPE_APP

autoType int Specifies whether the cache block is named
explicitly or implicitly and how properties of the
HTTP request are used in cache block naming
(for implicit naming). The name is relevant in
determining when the cache is reused for
subsequent requests. See "More About Cache
Block Naming and the autoType Attribute" on
page 7-16.

Default: implicitly, according to the URI plus all
parameters plus selected cookies
(TYPE_URI_ALLPARAM)

selectedParameters[] String [] These are selected request parameter names used
in cache block naming, used in conjunction with
autoType. See "More About Cache Block
Naming and the autoType Attribute" on
page 7-16.

Default: null

Attributes for Policy Specification and Use

7-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

selectedCookies[] String[] These are selected cookie names used in cache
block naming, used in conjunction with
autoType. See "More About Cache Block
Naming and the autoType Attribute" on
page 7-16.

Default: null

reusableTimeStamp java.util.Date This is an absolute time limit for cache usability,
where any cache block created prior to that time
will not be reused. Instead, data is regenerated
but the cache block is unaltered. See "More About
reusableTimeStamp and reusableDeltaTime" on
page 7-17.

Note the following regarding
reusableTimeStamp:

� It can be expressed as milliseconds between
midnight, January 1, 1970 and the desired
absolute time limit, or as a
java.util.Date instance. Additional
convenient formats are available through the
cache tag. (See "Web Object Cache Tag
Descriptions" on page 7-22.)

� It takes precedence over
reusableDeltaTime.

� If its value is set as the integer constant
REUSABLE_ALWAYS or the string constant
REUSABLE_IGNORED, then cache entries are
always reusable, for as long as they remain
in the cache.

� It is not available through the XML cache
policy descriptor file.

Default: always reusable

Table 7–1 Cache Policy Attribute Descriptions (Cont.)

Attribute Type Description

Attributes for Policy Specification and Use

Web Object Cache Tags and API 7-15

reusableDeltaTime long This is a relative time limit for cache usability,
where a cache block is not reused if the difference
between cache block creation time and current
time is greater than reusableDeltaTime.
Instead, data is regenerated but the cache block is
unaltered. See "More About reusableTimeStamp
and reusableDeltaTime" on page 7-17.

Note the following regarding
reusableDeltaTime:

� It is specified in seconds.

� The reusableTimeStamp attribute
overrides it.

� If its value is set as the integer constant
REUSABLE_ALWAYS or the string constant
REUSABLE_IGNORED, then cache entries are
always reusable, for as long as they remain
in the cache.

Default: always reusable

expirationPolicy ExpirationPolicy This is an expiration policy object (an instance of
oracle.jsp.jwcache.ExpirationPolicy),
which specifies circumstances under which the
repository will remove cache blocks from storage.

Default: the default expiration policy object

For information about expiration policy objects,
parameters, and defaults, see "Expiration Policy
Attributes" on page 7-18.

cacheRepositoryName String This is the name of the cache repository. Each
cache policy can use its own repository.

The configurations of cache repositories are
defined in the /WEB-INF/wcache.xml file.

Default: "DefaultCacheRepository"

reportException boolean A false setting of this attribute results in most
cache operation failures being silent, without any
exception being reported to the browser.

Default: true

Table 7–1 Cache Policy Attribute Descriptions (Cont.)

Attribute Type Description

Attributes for Policy Specification and Use

7-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

More About Cache Block Naming and the autoType Attribute
As discussed in "Cache Block Naming: Implicit Versus Explicit" on page 7-7, cache
blocks can be named either implicitly, sometimes called auto-naming, or explicitly,
sometimes called user-naming.

More specifically, there are six ways for cache blocks to be named. Explicit naming
is the first way. Specify this with an autoType setting of TYPE_USERSPECIFIED
(an integer constant).

The other five ways are variations of implicit naming:

� Implicit naming with only the request URI being used in the name

Specify this with an autoType setting of TYPE_URI_ONLY.

� Implicit naming according to the following:

Request URI + query string + selected cookies

Specify this with an autoType setting of TYPE_URI_QUERYSTR. Specify the
cookies in the selectedCookies[] attribute.

� Implicit naming according to the following:

Request URI + all parameters + selected cookies (default)

Specify this with an autoType setting of TYPE_URI_ALLPARAM. Specify the
cookies in the selectedCookies[] attribute.

� Implicit naming according to the following:

Request URI + selected parameters + selected cookies

Specify this with an autoType setting of TYPE_URI_SELECTEDPARAM. Specify
the parameters in the selectedParameters[] attribute and the cookies in
the selectedCookies[] attribute.

� Implicit naming according to the following:

Request URI + all but excluded parameters + selected cookies

Specify this with an autoType setting of TYPE_URI_EXCLUDEDPARAM. Specify
the cookies in the selectedCookies[] attribute and the excluded parameters
in the selectedParameters[] attribute.

Attributes for Policy Specification and Use

Web Object Cache Tags and API 7-17

As an example, assume that you have developed a JSP page, welcome.jsp, with a
personalized greeting for each user. The data with the personalized greeting is the
only cache block in the page. Further assume that you have specified "request URI +
selected parameters + selected cookies" naming, with user as the only selected
parameter for cache block naming and no selected cookies for naming.

Now assume the page is requested as follows:

http://host:port/a.jsp?user=Amy

In this case, a.jsp?user=Amy becomes the cache block name.

Now assume that the page is later requested by another user, as follows:

http://host:port/a.jsp?user=Brian

This will not reuse the "Amy" cache, because the value of user is different. Instead,
a new cache block is created with a.jsp?user=Brian as the name.

Now assume a later request by the first user, as follows:

http://host:port/a.jsp?mypar=3&user=Amy

Because the user is again Amy, this request will reuse the first cache, displaying
Amy’s customized information without having to regenerate it. The mypar
parameter is irrelevant to the caching mechanism because it was not included in the
selectedParameters[] list of the cache policy object, presumably because the
value of mypar is not relevant in terms of cacheable page output.

Now assume the following subsequent request:

http://host:port/a.jsp?yourpar=4&user=Brian&hello=true&foo=barfly

Because the user is again Brian, this request will reuse the second cache, displaying
Brian’s customized information without having to regenerate it. The yourpar,
hello, and foo parameters are irrelevant to the caching mechanism because they
were not included in the selectedParameters[] list of the cache policy object.

More About reusableTimeStamp and reusableDeltaTime
Be aware that the concept of reusable is different than the concept of time-to-live
(TTL) and is intended for more advanced use. Time-to-live, which controls the
general lifetime of a cache, is described in "Expiration Policy Attributes" on
page 7-18. Usually time-to-live is all that is required to appropriately limit the use of
cached data.

Attributes for Policy Specification and Use

7-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The attributes for reusability—reusableTimeStamp and
reusableDeltaTime—are intended for more specialized use and do not affect the
expiration or invalidation of cached data. As an example, consider a situation where
different users have different requirements for how up-to-date a Web report is.
Assume that most users can accept a report produced anytime within the past day,
and that they all want to be looking at the same version so they can compare
figures. An appropriate TTL value, then, would be "one day".

Also presume, however, that there is a small group of privileged users for whom
the data is much more time-sensitive. They want to have information that is no
more than one hour old.

In this case, although TTL is set to "one day" for all users, there can be a
reusableDeltaTime setting of "one hour" for the privileged users, which will
result in the cache not being used for them if the data is more than one hour old.
Remember, though, that reusableTimeStamp and reusableDeltaTime do not
expire the cache or otherwise affect it. The cached data can still be used for
non-privileged users, according to the time-to-live.

It is up to the application logic to set appropriate values of reusableTimeStamp
and reusableDeltaTime for the privileged user group.

Expiration Policy Attributes
Expiration policies are introduced in "Data Invalidation and Expiration" on
page 7-10. Expiration policies contain the details that determine when cache blocks
expire, at which point their data should no longer be used and the data should be
regenerated instead. (Note that for most discussion, you can think of the expiration
policies as being part of the cache policies.) ExpirationPolicy attributes, as with
CachePolicy attributes, can be set in any of the following ways:

� In JSP pages through custom tags

See "Web Object Cache Tag Descriptions" on page 7-22.

� In servlets through method calls

See "ExpirationPolicy Methods" on page 7-48.

� Through a cache policy descriptor file

See "Cache Policy Descriptor" on page 7-56.

The following abbreviated code for the ExpirationPolicy class (in package
oracle.jsp.jwcache), provided for illustration purposes only, shows the names
of the expiration policy attributes.

Attributes for Policy Specification and Use

Web Object Cache Tags and API 7-19

class ExpirationPolicy
{
 int expirationType;
 long TTL;
 long timeInaDay;
 int dayInaWeek;
 int dayInaMonth;
 boolean writeThrough;
}

Table 7–2 describes the expiration policy object attributes.

Note: The names documented below for integer constants are for
servlet usage. Different names can be used for the Web Object
Cache tags. See "Web Object Cache cache Tag" on page 7-23.

Table 7–2 Expiration Policy Attribute Descriptions

Attribute Type Description

expirationType int This is the type of expiration policy and is one of the
following, where TYPE_XXX values are integer
constants:

� Time-to-live, to expire after a certain amount of
time according to the TTL attribute, specified
with an expirationType setting of TYPE_TTL

� Daily, to expire within a day at a certain time
according to the timeInaDay attribute, specified
with an expirationType setting of
TYPE_DAILY

� Weekly, to expire within a week on a certain day
at a certain time according to the dayInaWeek
and timeInaDay attributes, specified with an
expirationType setting of TYPE_WEEKLY

� Monthly, to expire within a month on a certain
date at a certain time according to the
dayInaMonth and timeInaDay attributes,
specified with an expirationType setting of
TYPE_MONTHLY

Default: time-to-live

Attributes for Policy Specification and Use

7-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

TTL long This is time-to-live, the amount of time the cache
block is good for, expressed in seconds. The value
must be a positive number.

Default: 300 (5 minutes)

timeInaDay long This is the time of day used for daily, weekly, or
monthly expiration, expressed in seconds from
midnight, where 0 is 00:00:00 (midnight) and 86399 is
23:59:59.

Default: 300 (00:05:00); ignored if
expirationType=TYPE_TTL

dayInaWeek int This is the day of the week for weekly expiration, at
the specified timeInaDay. Possible values are
WEEKLY_SUNDAY, WEEKLY_MONDAY,
WEEKLY_TUESDAY, WEEKLY_WEDNESDAY,
WEEKLY_THURSDAY, WEEKLY_FRIDAY, or
WEEKLY_SATURDAY (integer constants).

Default: Wednesday; ignored unless
expirationType=TYPE_WEEKLY

dayInaMonth int This is the date of the month for monthly expiration,
such as 10 for the 10th of each month, at the specified
timeInaDay. The maximum setting is the number of
days in the month when the cache block is created.
For example, if a cache block is created in June and
dayInaMonth has a setting of 31, then its effective
value will be 30.

Default: 10; ignored unless
expirationType=TYPE_MONTHLY

Table 7–2 Expiration Policy Attribute Descriptions (Cont.)

Attribute Type Description

Attributes for Policy Specification and Use

Web Object Cache Tags and API 7-21

writeThrough boolean This flag specifies whether the cache repository
should treat the cache entry as a write-through cache,
writing it immediately into secondary storage such as
a file system or database. Set this to true for
write-through mode. A write-through cache will
survive a server restart or power failure.

With a false setting, the cache entry is treated as a
delayed-write cache, which is appropriate for caches
that have a short life span, such as 5 or 10 minutes,
and are not overly expensive to recompute.

Note that some cache repositories might not support
write-through mode; others might always use
write-through mode.

Default: true

Table 7–2 Expiration Policy Attribute Descriptions (Cont.)

Attribute Type Description

Web Object Cache Tag Descriptions

7-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
From JSP pages, you can specify cache policy settings, expiration policy settings,
and explicit invalidation through custom tags provided with OC4J. The following
sections describe the tags:

� Cache Tag Descriptions

� Cache Invalidation Tag Description

Note the following requirements for the Web Object Cache tag library:

� The Web Object Cache classes are in the file ojsputil.jar, which is supplied
with OC4J and is located in the "well-known" tag library directory. Verify that
this file is installed and in your classpath.

� To use the Oracle Application Server Java Object Cache as the back-end
repository, the file cache.jar must be installed and in your classpath. This file
also comes with OC4J. In the OC4J 9.0.4 implementation, cache.jar is listed
in the manifest classpath of oc4j.jar. If the Web Object Cache tag library is
loaded by OC4J, then no action on your part is necessary.

� The tag library descriptor, jwcache.tld, must be available to the application,
and any JSP page using the library must have an appropriate taglib directive.
In an Oracle Application Server installation, the TLD is in ojsputil.jar. The
uri value for jwcache.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jwcache.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

Notes:

� The prefix "ojsp:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-23

Cache Tag Descriptions
This section describes the following tags:

� cache

This tag is for general character-based caching (HTML or XML fragments).

� cacheXMLObj

This tag is for caching XML objects; its parameters are a superset of the cache
tag parameters. Because the Web Object Cache is particularly useful when
post-processing XML documents, you will likely use the cacheXMLObj tag
more often than the cache tag.

� useCacheObj

This tag is for general caching of Java serializable objects. Some of the semantics
and syntax are patterned after the standard jsp:useBean tag.

� cacheInclude

This tag combines the functionality of the cache tag with that of the standard
jsp:include tag.

This section also describes conditional execution of code within the cache tags,
possible resulting problems, the workaround of dividing cache blocks into
individual JSP pages, and, optionally, using the cacheInclude tag to combine the
pages together appropriately.

Web Object Cache cache Tag
This section documents the syntax and attributes of the cache tag, which you can
use to set up general caching in a JSP application, in contrast to the caching of XML
objects or Java serializable object.

Note: For caching XML objects, use the cacheXMLObj tag
instead. For caching Java serializable objects, use the useCacheObj
tag. These tags support all the cache tag attributes described here.
See "Web Object Cache cacheXMLObj Tag" on page 7-28 and "Web
Object Cache useCacheObj Tag" on page 7-31.

Web Object Cache Tag Descriptions

7-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Syntax

<ojsp:cache
 [policy = "filename"]
 [ignoreCache = "true" | "false"]
 [invalidateCache = "true" | "false"]
 [scope = "application" | "session"]
 [autoType = "user" | "URI" | "URI_query" | "URI_allParam" |
 "URI_selectedParam" | "URI_excludedParam"]
 [selectedParam = "space-delimited_string_of_parameter_names"]
 [selectedCookies = "space-delimited_string_of_cookie_names"]
 [reusableTimeStamp = "yyyy.mm.dd hh:mm:ss z" |
 "yyyy.mm.dd hh:mm:ss" | "yyyy.mm.dd"| "ignored"]
 [reusableDeltaTime = "number" | "ignored"]
 [name = "blockname"]
 [expirationType = "TTL" | "daily" | "weekly" | "monthly"]
 [TTL = "number"]
 [timeInaDay = "number"]
 [dayInaWeek = "Sunday" | "Monday" | "Tuesday" | "Wednesday" |
 "Thursday" | "Friday" | "Saturday"]
 [dayInaMonth = "number"]
 [writeThrough = "true" | "false"]
 [printCacheBlockInfo = "true" | "false"]
 [printCachePolicy = "true" | "false"]
 [cacheRepositoryName = "name"]
 [reportException = "true" | "false"] >

...Code for cache block...

</ojsp:cache>

Attributes

Most of the parameters of the cache tag correspond to attributes in the
CachePolicy or ExpirationPolicy class, described earlier in this chapter (as
referenced below).

Note: Key default values are as follows: TTL 300 seconds,
dayInaMonth 10 (10th of the month), cache repository name
DefaultCacheRepository.

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-25

� policy: Optionally use this to specify a cache policy descriptor, the settings of
which would be used in defining the cache policy. You can use a cache policy
descriptor instead of using the various individual cache tag attribute settings, or
to establish default values that you can optionally override through tag
attribute settings.

Specify the descriptor file name according to JSP application-relative syntax.
You can refer to the Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for information about application-relative
syntax.

Here is a simple example of a cache policy descriptor:

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
 <expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
 writeThrough="true" />
</cachePolicy>

See "Cache Policy Descriptor" on page 7-56 for more information.

� ignoreCache: See "Cache Policy Attributes" on page 7-12.

� invalidateCache: Enable this flag for the corresponding cache block (any
pre-existing cache block with the same name) to first be invalidated. This is
particularly useful where implicit cache block naming is used, but can also be
used for explicit names by specifying the cache block name in the name
attribute of the cache tag. The default setting is "false".

� scope: See "Cache Policy Attributes" on page 7-12.

Note: Do not confuse this attribute with the more general-purpose
invalidateCache tag. See "Web Object Cache invalidateCache
Tag" on page 7-35. The invalidateCache attribute is for more
specialized or advanced use to invalidate individual cache blocks.

Web Object Cache Tag Descriptions

7-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� autoType: See "Cache Policy Attributes" on page 7-12. The correspondence
between tag attribute settings and class attribute values (integer constants) is as
follows:

– The user setting is equivalent to TYPE_USERSPECIFIED.

– URI is equivalent to TYPE_URI_ONLY.

– URI_query is equivalent to TYPE_URI_QUERYSTR.

– URI_allParam is equivalent to TYPE_URI_ALLPARAM.

– URI_selectedParam is equivalent to TYPE_URI_SELECTEDPARAM.

– URI_excludedParam is equivalent to TYPE_URI_EXCLUDEDPARAM.

� selectedParam: See "Cache Policy Attributes" on page 7-12.

� selectedCookies: See "Cache Policy Attributes" on page 7-12.

� reusableTimeStamp: See "Cache Policy Attributes" on page 7-12.

� reusableDeltaTime: See "Cache Policy Attributes" on page 7-12.

� name: Where you use explicit cache-block naming, use the name parameter to
specify the block name.

� expirationType: See "Expiration Policy Attributes" on page 7-18.

� TTL: See "Expiration Policy Attributes" on page 7-18.

� timeInaDay: See "Expiration Policy Attributes" on page 7-18.

� dayInaWeek: See "Expiration Policy Attributes" on page 7-18.

� dayInaMonth: See "Expiration Policy Attributes" on page 7-18.

� writeThrough: See "Expiration Policy Attributes" on page 7-18.

� printCacheBlockInfo (for debugging): Enabling this parameter results in
printing of the internal cache name, creation time, and expiration time of the
cache block, within HTML or XML comment constructs. The default setting is
"false".

� printCachePolicy (for debugging): Enabling this parameter results in
printing of the values of all cache policy attributes for this cache block, within
HTML or XML comment constructs. The default setting is "false".

� cacheRepositoryName: See "Cache Policy Attributes" on page 7-12.

� reportException: See "Cache Policy Attributes" on page 7-12.

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-27

Attribute Usage Notes

� The name attribute is relevant only when autoType is set to user.

� The selectedParam attribute is relevant only when autoType is set to
URI_selectedParam or URI_excludedParam.

� The selectedCookies attribute is not relevant when autoType is set to
user or URI.

� The timeInaDay attribute is not relevant when expirationType is set to
TTL.

� The dayInaWeek attribute is relevant only when expirationType is set to
weekly.

� The dayInaMonth attribute is relevant only when expirationType is set to
monthly.

Example: cache Tag

This example lists and caches a set of items, using the cache tag.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jwcache.tld"
 prefix="ojsp" %>
<title>listitem.jsp</title>
<%
 String itemid=request.getParameter("itemid");
 if (itemid==null) {
 out.println("Please select a category from the above drop down box.");
 return;
 }
%>
<% long l1=(new java.util.Date()).getTime(); %>
<ojsp:cache autoType="URI_selectedParam" selectedParam="itemid"
 printCacheBlockInfo="true" printCachePolicy="true"
 policy="/WEB-INF/test-policy.cpd"
>
 Item List: <%= itemid %>

 Time: <%= new java.util.Date() %>

 <jsp:useBean class="java.util.Hashtable" id="table" scope="application" />
 <hr>
 <%
 Vector list=(Vector) table.get(itemid);
 if (list==null) {
 out.println("No such item!");

Web Object Cache Tag Descriptions

7-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 }
 else {
 for (int i=0; i<list.size(); i++) {
 %>
 <%= list.elementAt(i) %>

 <%
 }
 }
 %>
 timestamp:<%= new java.util.Date() %>

</ojsp:cache>
<% long l2=(new java.util.Date()).getTime(); %>
Time for general cache operation:<%= l2-l1 %>

Web Object Cache cacheXMLObj Tag
Generally speaking, use the cacheXMLObj tag instead of the cache tag if you are
caching XML DOM objects.

The cacheXMLObj tag supports all the cache tag attributes described in "Web
Object Cache cache Tag" on page 7-23, as well as the attributes described here.

Syntax (in addition to that of the cache tag)

<ojsp:cacheXMLObj
 ...
 [fromXMLObjName = "objectname"]
 [toXMLObjName = "objectname"]
 [toWriter = "true" | "false"] >

[...Code for cache block...]

</ojsp:cacheXMLObj>

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-29

Attributes (in addition to those of the cache tag)

� fromXMLObjName: For explicit passing, specify the name of the XML input
object being passed to the cache (from the pageContext object).

� toXMLObjName: For explicit passing, specify the name of the XML output
object being passed from the cache (to the pageContext object).

� toWriter: Set this to "true" to write the XML object to a JSP writer to output
directly to the user’s browser. The default value is "false".

Notes:

� This tag can optionally be in the form of a single tag with no
body, in which case the fromXMLObjName attribute can be
used for input instead:

<ojsp:cacheXMLObj ... fromXMLObjName="..." ... />

� For convenience, this tag is duplicated in the XML tag library,
being defined in the xml.tld tag library descriptor file.

� This tag can act as both an XML producer and an XML
consumer. Do not use fromXMLObjName and toXMLObjName
if the XML object is being passed implicitly. (See "XML
Producers and XML Consumers" on page 5-2.)

Note: The cacheXMLObj tag is one of several custom tags
supplied with OC4J that are XML-related, meaning these tags
sometimes (or always) take an XML object as input or create one as
output. Other such tags include the SQL library dbQuery tag,
which can output query results as an XML DOM object, and the
XML library transform and styleSheet tags, which can take an
XML object as input and use XSLT transformation to create another
XML object or a JSP writer as output. These tags are consistent in
having a fromXMLObjName attribute and a toXMLObjName
attribute for explicit passing of XML data. For general information,
see "XML Producers and XML Consumers" on page 5-2.

Web Object Cache Tag Descriptions

7-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Example: cacheXMLObj Tag

This example uses Web Object Cache tags, JESI tags, and tags from the XML and
SQL tag libraries. (For JESI tag descriptions, see "Oracle JESI Tag Descriptions" on
page 6-20. For a description of the XML transform tag, see "XML Utility Tags" on
page 5-5. For SQL tag descriptions, see "SQL Tags for Data Access" on page 4-16.)

The SQL dbOpen and SQL dbQuery tags connect to the database and execute a
query. The cacheXMLObj tag caches the XML DOM object produced by the query.
In subsequent executions (for output through different stylesheets, for example), the
query does not have to be reexecuted, because the DOM object can be retrieved
from the Web Object Cache. The XML transform tag outputs the query results
according to an XML stylesheet, specified through a variable. The JESI fragment
tag encloses HTML output to be cached, which does not require application-level
caching. The JESI template tag disables caching outside the fragment, through the
cache="no" setting.

<jesi:template cache="no">
<% String userStyleLoc="style/rowset.xsl"; %>
<h3>Transform DBQuery Tag Example</h3>
<h4>Current Time=<%= new java.util.Date() %></h4>
<jesi:fragment expiration="60">
<!-- You can cache HTML in OracleAS Web Cache with JESI
 or you can cache it in Oracle Web Object Cache -->
<h4>Cached Time=<%= new java.util.Date() %></h4>
<sql:dbOpen connId="conn1" dataSource="<%= dataSrcStr %>" />
<xml:transform href="<%= userStyleLoc %>" >
<%-- The XML DOM object is produced by dbQuery
 And, the DOM object is cached in Oracle Web Object Cache.
 XSLT is performed on the cached object. --%>
 <ojsp:cacheXMLObj TTL="60" toWriter="false">
 <sql:dbQuery connId="conn1" output="xml" queryId="myquery" >
 select ENAME, EMPNO from EMP
 </sql:dbQuery>
 </ojsp:cacheXMLObj>
</xml:transform>
<sql:dbCloseQuery queryId="myquery" />
<sql:dbClose connId="con1" />
</jesi:fragment>
</jesi:template>

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-31

Web Object Cache useCacheObj Tag
Use the useCacheObj tag to cache any Java serializable object.

The useCacheObj tag supports all the cache tag attributes described in "Web
Object Cache cache Tag" on page 7-23, as well as the attributes described here.

Syntax (in addition to that of the cache tag)

<ojsp:useCacheObj
 ...
 type="classname"
 id = "instancename"
 [cacheScope = "application" | "session"] >

...Code for cache block...

</ojsp:useCacheObj>

Attributes (in addition to those of the cache tag)

� type (required): Specify the class name of the Java object to cache.

� id (required): Specify the instance name of the Java object to cache.

� cacheScope: This attribute has the same usage as the scope attribute in the
cache and cacheXMLObj tags. See "Cache Policy Attributes" on page 7-12.

The type and id attributes here are used similarly to the type (or class) and id
attributes in a jsp:useBean tag.

Example: useCacheObj Tag

<ojsp:useCacheObj id="a2" policy="/WEB-INF/test-policy.cpd"
 type="examples.RStrArray" >
<%
 // create a temp writeable array
 WStrArray tmpa2=new WStrArray(3);
 tmpa2.setStr(2,request.getParameter("testing4"));
 tmpa2.setStr(1,"def");
 tmpa2.setStr(0, (new java.util.Date()).toString());
 // create a readonly copy for the cache

Note: The id and type attributes are not request-time attributes,
so cannot be set using JSP runtime expressions.

Web Object Cache Tag Descriptions

7-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 a2=new RStrArray(tmpa2);
 // storing the a2 into pagecontext
 // so useCacheObj tag can pick it up
 pageContext.setAttribute("a2",a2);
%>
</ojsp:useCacheObj>

Conditional Execution of Code Inside the Cache Tags
Be aware that code inside a cache tag (cache, cacheXMLObj, or useCacheObj) is
executed conditionally. In particular:

� Any code inside a cache tag is executed only when the associated cache block is
not reused.

Consider the following example:

<% String str=null; %>
<% ojsp:useCacheObj ... >
 <% str = "abc"; //...more Java code...%>
</ojsp:useCacheObj>
<% out.print(str.length()); // May cause null pointer exception

If the cache is available and reused, the code to properly initialize the string str
is not executed.

� If you put a method-based variable declaration inside a cache tag, the variable
is not available outside the tag.

Consider the following example:

<ojsp:useCacheObj ... >
 <% String str = "abc"; //...more Java code...%>
</ojsp:useCacheObj>
<% // String str will not be available here %>

If you are using the cache tag (not cacheXMLObj or useCacheObj), it might be
helpful to break your cache blocks into separate JSP pages so that you would be less
likely to fall into this type of situation. In this case, each cache block would be
represented by its own URI and you could use dynamic-include functionality to
combine the pages together as desired.

To make this more convenient, Oracle also provides the cacheInclude tag,
described in the following section, "Web Object Cache cacheInclude Tag".

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-33

Web Object Cache cacheInclude Tag
The cacheInclude tag combines functionality of the cache tag (but not the
cacheXMLObj tag or useCacheObj tag) and the standard jsp:include tag.

There are a number of advantages in putting cache blocks into separate pages and
using cacheInclude, including general considerations of modularity and clarity
as well as the issues discussed in the preceding section, "Conditional Execution of
Code Inside the Cache Tags".

Be aware of the following limitations, however:

� You cannot use a runtime JSP expression in the cacheInclude tag.

� You must use implicit cache-block naming for the cache block.

� There is no flush parameter, unlike for the jsp:include tag.

If any of these limitations presents a problem, then use separate cache and
jsp:include tags.

Also be aware of an important difference between the cacheInclude tag and the
JESI include tag. (See "JESI include Tag" on page 6-23 for information about that
tag.) Because the OracleAS Web Cache is in a different caching layer than the Web
Object Cache, the including page and included page for a JESI include tag cannot
share the same request object. There is no such limitation with the cacheInclude
tag, however. The including page and included page share the same request object,
so beans and attributes of request scope can be passed between the two pages.

Syntax

<ojsp:cacheInclude
 policy = "filename"
 page = "URI"
 [printCacheBlockInfo = "true" | "false"]
 [reportException = "true" | "false"] >

...Code for cache block...

</ojsp:cacheInclude>

Web Object Cache Tag Descriptions

7-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

� policy (required): You must use a cache policy descriptor file to specify cache
policy settings; individual parameter settings are not supported.

� page (required): Use the page attribute to specify the URI of the page to
dynamically include, as with a standard jsp:include tag.

� printCacheBlockInfo (for debugging): See "Web Object Cache cache Tag"
on page 7-23.

� reportException: See "Cache Policy Attributes" on page 7-12.

Attribute Usage Notes

Consider the following cacheInclude tag usage:

<ojsp:cacheInclude page="anotherPage.jsp" policy="foo.cpd" >

This is equivalent to the following:

<ojsp:cache policy="foo.cpd" >
 <% pageContext.include("anotherPage.jsp"); %>
</ojsp:cache>

It is also equivalent to the following:

<jsp:include page="anotherPage.jsp" flush="true" />

Assume anotherPage.jsp consists of the following:

<ojsp:cache policy="foo.cpd" >
...anotherPage.jsp contents...
</ojsp:cache>

Note: For the cacheInclude tag, because policy and page are
not request-time attributes, you do not have the option of
determining their values through JSP expressions. (Be aware that
policy is a request-time attribute for the cache, cacheXMLObj,
and useCacheObj tags.)

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-35

Cache Invalidation Tag Description
This section describes how to use the invalidateCache tag.

Web Object Cache invalidateCache Tag
To explicitly invalidate a cache block through program logic, you can use the
invalidateCache tag. This section documents the syntax and attributes of this
tag.

Syntax

<ojsp:invalidateCache
 [policy = "filename"]
 [ignoreCache = "true" | "false"]
 [scope = "application" | "session"]
 [autoType = "user" | "URI" | "URI_query" | "URI_allParam" |
 "URI_selectedParam" | "URI_excludedParam"]
 [selectedParam = "space-delimited_string_of_parameter_names"]
 [selectedCookies = "space-delimited_string_of_cookie_names"]
 [name = "blockname"]
 [invalidateNameLike = "true" | "false"]
 [page = "URI"]
 [autoInvalidateLevel = "application" | "page" | "param" | "cookie"]
 [cacheRepositoryName = "name"]
 [reportException = "true" | "false"] />

Notes:

� The invalidateCache tag does not accept new cookies; it can
use only existing cookies of the current HTTP request. For
information about inputting new cookies, see "CachePolicy
Methods" on page 7-42.

� Do not confuse the invalidateCache tag with the
invalidateCache attribute of the cache tags. The attribute is
of more limited use, to invalidate the pre-existing cache object.

Note: The default value of autoInvalidateLevel depends on
specifics of the page URI. See "Use of page and
autoInvalidateLevel" on page 7-37.

Web Object Cache Tag Descriptions

7-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

Most parameters of the invalidateCache tag also exist in the cache and
cacheXMLObj tags and are used in the same way, as described earlier in this
chapter (and as referenced below).

� policy: See "Web Object Cache cache Tag" on page 7-23.

� ignoreCache: See "Cache Policy Attributes" on page 7-12.

� scope: See "Cache Policy Attributes" on page 7-12.

� autoType: See "Cache Policy Attributes" on page 7-12. The correspondence
between tag attribute settings and class attribute values (integer constants) is as
follows:

– The user setting is equivalent to TYPE_USERSPECIFIED.

– URI is equivalent to TYPE_URI_ONLY.

– URI_query is equivalent to TYPE_URI_QUERYSTR.

– URI_allParam is equivalent to TYPE_URI_ALLPARAM.

– URI_selectedParam is equivalent to TYPE_URI_SELECTEDPARAM.

– URI_excludedParam is equivalent to TYPE_URI_EXCLUDEDPARAM.

� selectedParam: See "Cache Policy Attributes" on page 7-12.

� selectedCookies: See "Cache Policy Attributes" on page 7-12.

� name: Use this with invalidateNameLike to invalidate one or more cache
blocks that were named through explicit cache-block naming, according to the
instructions in "Use of name and invalidateNameLike" below.

� invalidateNameLike: Use this with name to invalidate one or more cache
blocks that were named through explicit cache-block naming, according to the
instructions in "Use of name and invalidateNameLike" below. The default
setting is "false".

� page: Specify a page-relative or application-relative URI. Use this with
autoInvalidateLevel to invalidate one or more cache blocks that were
named through implicit cache-block naming, according to the instructions in
"Use of page and autoInvalidateLevel" below.

� autoInvalidateLevel: Use this with page to invalidate one or more cache
blocks that were named through implicit cache-block naming, according to the
instructions in "Use of page and autoInvalidateLevel" below.

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-37

� cacheRepositoryName: See "Cache Policy Attributes" on page 7-12.

� reportException: See "Cache Policy Attributes" on page 7-12.

Use of name and invalidateNameLike To invalidate one or more cache blocks that were
named through explicit cache-block naming, use the name and
invalidateNameLike attributes together, as follows:

� If invalidateNameLike="false", then use the name parameter to specify
the name of a single cache block to invalidate.

� If invalidateNameLike="true", and the underlying cache repository
supports wild card characters, then you can use the wildcard "*" character in the
name parameter to invalidate multiple cache blocks whose names fit the
criteria. (The Oracle Application Server Java Object Cache currently does not
support wild card characters.)

Use of page and autoInvalidateLevel To invalidate one or more cache blocks that were
named through implicit cache-block naming, use the page and
autoInvalidateLevel attributes together.

Use the page attribute to specify the appropriate URI of the Web page. With
implicit naming, cache block names are based on Web page URIs.

Use autoInvalidateLevel to specify the scope of invalidation—application
scope, page scope, parameter scope, or cookie scope—as follows:

� If autoInvalidateLevel="application", then all cache blocks associated
with the application that the page belongs to will be invalidated.

For example, if there is an application under the /mycontext context path, and
autoInvalidateLevel="application", then all cache entries of all pages
under http://host:port/mycontext will be invalidated.

Here is a corresponding usage example:

<ojsp:invalidateCache page="/" autoInvalidateLevel="application" />

� If autoInvalidateLevel="page", then all cache block entries associated
with the page will be invalidated. Consider the following example:

http://host:port/mycontext/mypage01.jsp?foo=bar

For this request, if autoInvalidate="page", then all cache entries of
mypage01.jsp will be invalidated, regardless of what request parameters and

Web Object Cache Tag Descriptions

7-38 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

cookies they are associated with. This includes cache blocks associated with the
following, for example:

http://host:port/mycontext/mypage01.jsp?p1=v1

Here is a corresponding usage example:

<ojsp:invalidateCache page="/mypage01.jsp" autoInvalidateLevel="page" />

� If autoInvalidateLevel="param", then all cache entries of the page that
have the identical selected parameter names and values will be invalidated,
regardless of what cookies they are associated with.

For example, consider the following:

<ojsp:invalidateCache policy="/WEB-INF/c1.cpd"
 page="/mypage01.jsp?foo=bar"
 autoInvalidateLevel="param" />

In this case, cache blocks associated with the following, for example, will not be
invalidated:

http://host:port/mycontext/mypage01.jsp?foo=bar2

However, cache blocks associated with the following will be invalidated,
regardless of what cookies they are associated with:

http://host:port/mycontext/mypage01.jsp?foo=bar

Continuing this example, consider the following:

http://host:port/mycontext/mypage01.jsp?foo=bar&p1=v1

Cache blocks associated with this request will be invalidated if c1.cpd selects
the foo HTTP request parameter only, and the cache blocks are stored under
the same cache policy, c1.cpd. However, the cache objects will not be
invalidated if they were not stored under c1.cpd, or if c1.cpd also selects the
p1 parameter.

� If autoInvalidateLevel="cookie", then the only cache entries invalidated
are those associated with the same page, same selected parameters and values,
and same cookies.

Web Object Cache Tag Descriptions

Web Object Cache Tags and API 7-39

Example: Use of Cache Invalidation Tag
This section provides a brief example of cache invalidation.

Example: invalidateCache Tag

The following page adds an item to a list of items previously cached, then
invalidates the cache. The list will presumably be re-cached later with the new item.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jwcache.tld"
 prefix="ojsp" %>
<title>added.jsp</title>
<jsp:useBean class="java.util.Hashtable" id="table" scope="application" />
<%
 String itemid=request.getParameter("itemid");
 String addItem=request.getParameter("addItem");
 Vector list=(Vector) table.get(itemid);
 if (list==null) {
 list=new Vector();
 table.put(itemid,list);
 }
 list.addElement(addItem);
%>
<%= addItem %> was added into category <%= itemid %>.

<% String viewPage="listitem.jsp?itemid="+itemid; %>
<% long l1=(new java.util.Date()).getTime(); %>
<ojsp:invalidateCache page="<%= viewPage %>" autoInvalidateLevel="param"
 policy="/WEB-INF/test-policy.cpd"
 />
<% long l2=(new java.util.Date()).getTime(); %>
Existing cache entry has been invalidated.

Invalidation took <%= l2-l1 %> milliseconds.

<jsp:include page="<%= viewPage %>" flush="true" />

Select items
or
Add items

Note: If the page URI includes a question mark, then the default
autoInvalidateLevel is param. If there is no question mark,
then the default is page.

Web Object Cache API Descriptions

7-40 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions
From servlets, you can use CachePolicy methods to modify cache policy settings
or to invalidate a cache block, and ExpirationPolicy methods to modify
expiration settings. This requires creating a cache policy object and retrieving its
expiration policy object attribute, which the JSP cache tag handlers do
automatically.

The following sections describe the API:

� Cache Policy Object Creation

� CachePolicy Methods

� Expiration Policy Object Retrieval

� ExpirationPolicy Methods

� CacheBlock Methods

� Tag Code Versus API Code

The Web Object Cache classes discussed here are in the oracle.jsp.jwcache
package and are supplied in the file ojsputil.jar, which comes with OC4J.
Verify that this file is installed and in your classpath. Also, to use the Oracle
Application Server Java Object Cache as the back-end repository, the file
cache.jar must be installed and in your classpath. This file also comes with OC4J.

For more information about the classes, interfaces, and methods described in this
section, see the Javadoc that is supplied with OC4J.

Cache Policy Object Creation
There are two approaches to creating a CachePolicy object:

� Use the static lookupPolicy() method of the CacheClientUtil class.

� Use one of the public CachePolicy constructors.

Note: Cache policy objects are not resource objects, such as
database connections or cursors, so you can manipulate them
without life-cycle or resource management concerns.

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-41

Using the lookupPolicy() Method
In most situations, the most convenient way to create a CachePolicy object is
through the static lookupPolicy() method of the CacheClientUtil class, as in
the following example:

CachePolicy cachePolicyObject = oracle.jsp.jwcache.CacheClientUtil.lookupPolicy
 (servletConfig, request, "/WEB-INF/foo.cpd");

Input a servlet configuration object (a javax.servlet.ServletConfig
instance), a request object (a javax.servlet.http.HttpServletRequest
instance), and the URI path, relative to the application root, of an XML cache policy
descriptor file.

Here is a simple example of a cache policy descriptor file:

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
writeThrough="true" />
</cachePolicy>

See "Cache Policy Descriptor" on page 7-56 for more information.

Using a CachePolicy Constructor
The CachePolicy class has three public constructors: a simple constructor
requiring only a servlet configuration object, a "copy" constructor that copies
another CachePolicy object, and a "copy" constructor with a given servlet
configuration object, as follows:

public CachePolicy(javax.servlet.ServletConfig config)

public CachePolicy(CachePolicy cPolicy)

public CachePolicy(javax.servlet.ServletConfig config,
 CachePolicy cPolicy)

Web Object Cache API Descriptions

7-42 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

CachePolicy Methods
Several utility methods are available in CachePolicy objects, as well as getter and
setter methods for key attributes.

CachePolicy Method Signatures and Common Parameters
The following abbreviated code, for illustration purposes only, contains signatures
for key methods available in CachePolicy objects.

See "Cache Policy Attributes" on page 7-12 for a discussion of relevant attributes.

class CachePolicy
{
 boolean isRecent(CacheBlock block);
 void putCache(Object data, HttpServletRequest req, SectionId sectionId);
 void putCache(Object data, HttpServletRequest req, String specifiedName);
 void putAutoCacheForOtherPath(Object data, HttpServletRequest req,
 String otherPath, StringSectionid sectionId);
 void putAutoCacheForOtherPath(Object data, HttpServletRequest req,
 String otherPath, Cookie[] newCookies, StringSectionid sectionId);
 CacheBlock getCache(HttpServletRequest req, SectionId sectionId);
 CacheBlock getCache(HttpServletRequest req, String specifiedName);
 CacheBlock getAutoCacheForOtherPath(HttpServletRequest req,
 String otherPath, StringSectionId sectionId);
 CacheBlock getAutoCacheForOtherPath(HttpServletRequest req,
 String otherPath, Cookie[] newCookies, StringSectionId sectionId);
 void invalidateCache(HttpServletRequest req, SectionId sectionId);
 void invalidateCache(HttpServletRequest req, String specifiedName);
 void invalidateCacheLike(HttpServletRequest req, String specifiedName);
 void invalidateCacheLike(HttpServletRequest req, int autoInvalidateLevel);
 void invalidateCacheLike(HttpServletRequest req, String specifiedName,
 int autoInvalidateLevel);
 void invalidateCacheOtherPathLike(HttpServletRequest req, String otherPath);
 void invalidateCacheOtherPathLike(HttpServletRequest req, String otherPath,
 Cookie[] newCookies, int autoInvalidateLevel);
 Date getCurrentTime();
}

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-43

These methods use several common parameters:

� req, a javax.servlet.http.HttpServletRequest instance

This is the current HTTP request object.

� newCookies, a javax.servlet.http.Cookie[] array

This is an array of new cookies. If you pass in new cookies, they are used in
cache operations that use the otherPath parameter (such as the
putAutoCacheForOtherPath() method), assuming the cache policy selects
some cookies and invalidation is at the cookie level. If you do not pass in new
cookies, then cookies of the current HTTP request are used instead.

� specifiedName, a Java string

For explicit cache-block naming, this is the name—either the desired cache
block name if you are creating a new cache block, or the existing cache block
name if you are retrieving an existing cache block.

� sectionId, an oracle.jsp.jwcache.SectionId instance, specifically a
StringSectionId or NumberSectionId instance

For implicit cache-block naming, this is a counter that is used in tracking cache
blocks. In JSP pages, it is used, incremented, and maintained by JSP cache tag
handlers. It is stored in the JSP pageContext object.

SectionId is an interface that is implemented by two classes:
StringSectionId and NumberSectionId. Where StringSectionId is
specified in a method signature, you must use an instance of that class. Where
SectionId is specified, you can use an instance of either class, but should
typically use StringSectionId. The NumberSectionId class is primarily
intended for use by JSP tag handlers.

In a servlet, you must create a section ID instance manually. "Servlet Page:
DemoCacheServlet.java" on page 7-53 demonstrates the use of a
StringSectionId instance.

Note: When you construct a StringSectionId instance, the
string must begin with an alphabetic (not numeric) character.

Web Object Cache API Descriptions

7-44 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� otherPath, a Java string

This is the URI of another JSP page that has an associated cache block that you
want to store, retrieve, or invalidate.

� autoInvalidateLevel, an integer

For implicit cache-block naming, you can use this to specify a level of
invalidation, either application, page, parameter, or cookie. Use the
CachePolicy integer constant AUTO_INVALIDATE_APP_LEVEL,
AUTO_INVALIDATE_PAGE_LEVEL, AUTO_INVALIDATE_PARAM_LEVEL, or
AUTO_INVALIDATE_COOKIE_LEVEL.

CachePolicy Method Descriptions
The CachePolicy methods function as follows:

� isRecent()

This method checks the timestamp of the specified cache block and determines
whether it is recent enough, given the current time and the values of the cache
policy reusableTimeStamp and reusableDeltaTime attributes.

� putCache(...)

Use this method to place an object into the cache repository. The data
parameter is any serializable Java object you want to cache that will not require
any further modification or mutation. In JSP pages, the JSP cache tag handler
calls putCache() to cache a BodyContent instance. The cacheXMLObj tag
handler calls it to cache an XML DOM object. In a servlet or useCacheObj tag,
the cache target object can be any Java serializable object.

You must also provide an HTTP request object, along with a cache block name
(for explicit naming) or a section ID (for implicit naming).

� putAutoCacheForOtherPath(...)

Place the specified object into the cache repository according to a specified
string-based section ID and a specified page path, optionally using specified
cookies as well. You must also input an HttpServletRequest object. The

Note: The putCache() method does nothing if the cache policy
ignoreCache attribute is set to "true".

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-45

cache policy must not use explicit naming (in other words, must not have
autoType=TYPE_USERSPECIFIED).

� getCache(...)

Use this method to retrieve a cached item from the repository, in the form of an
CacheBlock instance. You can specify the cache block name (for explicit
naming) or the section ID (for implicit naming). You must also provide an
HTTP request object.

� getAutoCacheForOtherPath(...)

Retrieve a cached item from the repository according to a specified string-based
section ID and a specified page path, optionally using specified cookies as well.
You must also input an HttpServletRequest object. The cache policy must
not use explicit naming, otherwise an exception is thrown. (In other words, you
cannot have autoType=TYPE_USERSPECIFIED.)

� invalidateCache(...)

Use this method to invalidate a single cache block. Invalidation is according to
the HTTP request object and also according to the specified cache block name
(for explicit naming) or section ID (for implicit naming).

� invalidateCacheLike(...)

Use this method to invalidate multiple cache blocks. If you use explicit
cache-block naming and the cache repository supports wild-card naming, you
can input the specifiedName parameter with "*" wild card characters. The
Oracle Application Server Java Object Cache currently does not support wild
card characters.

If you use implicit cache-block naming, you must specify the
autoInvalidateLevel parameter to determine, in combination with the
HttpServletRequest object and optionally the specifiedName parameter,
what cache blocks are invalidated. The autoInvalidateLevel parameter has
the same functionality as in a JSP invalidateCache tag, as explained in "Web
Object Cache invalidateCache Tag" on page 7-35 (using information from the
request object, instead of using information from the page parameter of the
invalidateCache tag).

Note: The getCache() method does nothing if the cache policy
ignoreCache attribute is true.

Web Object Cache API Descriptions

7-46 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� invalidateCacheOtherPathLike(...)

Use this method to invalidate cache blocks associated with the URI you provide
in the otherPath parameter. In the signature taking only a request object and
the URI, the autoInvalidateLevel parameter is set automatically according
to the URI. It is set to param level if there is a question mark ("?") in the URI or
to page level otherwise.

The detailed signature of this method enables you to specifically control the
autoInvalidateLevel setting and the cookies used in invalidation.

� getCurrentTime()

Retrieve the current time value, as a java.util.Date instance, of the
underlying cache repository specified in this cache policy.

CachePolicy Getter and Setter Methods
You can use the following methods to retrieve or alter CachePolicy object
attributes. See "Cache Policy Attributes" on page 7-12 for a discussion of these
attributes.

� boolean getIgnoreCache()

� void setIgnoreCache(boolean ignoreCache)

� void setIgnoreCache(String ignoreCacheStr)

� int getScope()

� void setScope(int scope)

For scope values, use the integer constants SCOPE_APP and SCOPE_SESSION.

� int getAutoType()

� void setAutoType(int autoType)

For autoType values, use the integer constants TYPE_USERSPECIFIED,
TYPE_URI_ONLY, TYPE_URI_QUERYSTR, TYPE_URI_ALLPARAM,
TYPE_URI_SELECTEDPARAM, and TYPE_URI_EXCLUDEDPARAM.

� String[] getSelectedParam()

� void setSelectedParam(String[] selectedParameters)

� void setSelectedParam(String selectedParamStr)

� String[] getSelectedCookies()

� void setSelectedCookies(String[] selectedCookies)

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-47

� void setSelectedCookies(String selectedCookiesStr)

� Date getReusableTimeStamp()

� void setReusableTimeStamp(Date reusableTimeStamp)

� void setReusableTimeStamp(long reusableTimeStamp)

For reusableTimeStamp values, the integer constant REUSABLE_ALWAYS
indicates that the cache is always reusable.

� long getReusableDeltaTime()

� void setReusableDeltaTime(long reusableDeltaTime)

For reusableDeltaTime values, the integer constant REUSABLE_ALWAYS
indicates that the cache is always reusable.

� ExpirationPolicy getExpirationPolicy()

� void setExpirationPolicy(ExpirationPolicy
 expirationPolicy)

� String getCacheRepositoryName()

� void setCacheRepositoryName(String repoName)

� boolean getReportException()

� void setReportException (boolean reportException)

� void setReportException (String reportExceptionStr)

The following methods are also available, but are primarily intended for use by the
Web Object Cache tag handlers:

� void setScope(String scopeStr)

For scope values, there are the string constants SCOPE_APP_STR and
SCOPE_SESSION_STR.

� void setAutoType(String autoTypeStr)

� void setReusableTimeStamp(String reusableTimeStampStr)

For reusableTimeStamp values, the string constant REUSABLE_IGNORED
indicates that the cache is always reusable.

� void setReusableDeltaTime(String reusableDeltaTimeStr)

For reusableDeltaTime values, the string constant REUSABLE_IGNORED
indicates that the cache is always reusable.

Web Object Cache API Descriptions

7-48 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Expiration Policy Object Retrieval
Each CachePolicy object has an ExpirationPolicy attribute. If you want to set
expiration policies for a cache block, you can use the getExpirationPolicy()
method of its CachePolicy object, as in the following example:

CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy
 (config, request, "/WEB-INF/mypolicy.cpd");
ExpirationPolicy expPolicyObj = cachePolicyObj.getExpirationPolicy();

ExpirationPolicy Methods
The ExpirationPolicy class has getter and setter methods for its attributes, as
follows. For descriptions of these attributes, see "Expiration Policy Attributes" on
page 7-18.

� int getExpirationType()

� void setExpirationType(int expirationType)

� void setExpirationType(String expirationTypeStr)

� long getTTL()

� void setTTL(long ttl)

� long getTimeInaDay()

� void setTimeInaDay(long timeInaDay)

� void setTimeInaDay(String timeInaDayStr)

� int getDayInaWeek()

� void setDayInaWeek(int dayInaWeek)

� void setDayInaWeek(String dayInaWeekStr)

� int getDayInaMonth()

� void setDayInaMonth(int dayInaMonth)

� boolean getWriteThrough()

� void setWriteThrough(boolean writeThrough)

� void setWriteThrough(String writeThroughStr)

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-49

Additionally, the ExpirationPolicy class has the following utility method:

� long getExpirationTime(long createTime)

Given the creation time of a cache block expressed in milliseconds since
midnight January 1, 1970, this method calculates and returns the expiration
time, also in milliseconds since midnight January 1, 1970. That is, the timestamp
when expiration should occur, according to the expiration policy.

The ExpirationPolicy class also defines the following integer constants for the
expirationType attribute:

� TYPE_TTL

� TYPE_DAILY

� TYPE_WEEKLY

� TYPE_MONTHLY

And the following integer constants are defined for the dayInaWeek attribute:

� WEEKLY_SUNDAY

� WEEKLY_MONDAY

� WEEKLY_TUESDAY

� WEEKLY_WEDNESDAY

� WEEKLY_THURSDAY

� WEEKLY_FRIDAY

� WEEKLY_SATURDAY

CacheBlock Methods
You can use the getCache() method of a CachePolicy object to retrieve the
associated CacheBlock object, as documented in "CachePolicy Methods" on
page 7-42 and shown in "Servlet Page: DemoCacheServlet.java" on page 7-53. The
following abbreviated code, for illustrative purposes only, shows the key methods
of the oracle.jsp.jwcache.CacheBlock class:

class CacheBlock
{
 long getCreationTime();
 long getExpirationTime();
 Serializable getData();
}

Web Object Cache API Descriptions

7-50 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Here are brief descriptions of these methods:

� getCreationTime(): Returns the timestamp indicating when the cache block
was created.

� getExpirationTime(): Returns the timestamp indicating the expiration time
of the cache block.

� getData(): Returns the cache block data.

Tag Code Versus API Code
This example presents code for three approaches to an application that caches and
presents timestamp output from two cache fragments:

� The first approach, tagcode.jsp, is a simple JSP page that uses the Oracle
Web Object Cache tags.

� The second approach, servletcode.jsp, is a more involved JSP page that
uses the Web Object Cache API inside a Java scriptlet instead of using the Web
Object Cache tags.

� The third approach, DemoCacheServlet.java, uses the Web Object Cache
API inside a servlet.

Following the three code samples is a listing of the cache policy descriptor,
test-policy.cpd.

In each approach, the application will cache the two fragments it displays. You can
reload repeatedly, but the times displayed in the fragments will not change until the
cached fragments expire. The first fragment takes 25 seconds to expire, getting the
25-second time-to-live value from the TTL setting in the cache policy descriptor
(test-policy.cpd). The second fragment takes 15 seconds to expire, overriding
the cache policy descriptor time-to-live value with a value set directly in the page
code.

Output for the sample applications looks something like the following:

fragment#1 (expires in 25 seconds based on TTL value test-policy)
Sun May 27 15:20:46 PDT 2001

Note: Creation time and expiration time are expressed in
milliseconds since midnight, January 1, 1970.

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-51

fragment#2 (expires in 15 seconds because TTL overrides test-policy value)
Sun May 27 15:20:46 PDT 2001

Simple JSP Page: tagcode.jsp
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jwcache.tld"
 prefix="ojsp" %>
<title>tagcode.jsp</title>
<pre>
tagcode.jsp
<ojsp:cache policy="/WEB-INF/test-policy.cpd" >
 fragment#1 (expires in 25 seconds based on TTL value test-policy)
 <%= new java.util.Date() %>
</ojsp:cache>
<ojsp:cache policy="/WEB-INF/test-policy.cpd" TTL="15" >
 fragment#2 (expires in 15 seconds because TTL overrides test-policy value)
 <%= new java.util.Date() %>
</ojsp:cache>
</pre>

Scriptlet JSP Page: servletcode.jsp
Code notes are the same as for the servlet version in the next section, "Servlet Page:
DemoCacheServlet.java".

<%@ page import="oracle.jsp.jwcache.*,java.io.*" %>
<title>servletcode.jsp</title>
<pre>
servletcode.jsp
<%
 CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy(config,request,
 "/WEB-INF/test-policy.cpd"); // Note A
 StringSectionId sectionId=new StringSectionId("s1"); // Note B
 CacheBlock cacheBlockObj=null;

 cacheBlockObj = cachePolicyObj.getCache(request,sectionId); // Note C
 if (!cachePolicyObj.isRecent(cacheBlockObj)) { // Note D
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println
("fragment#1 (expires in 25 seconds based on TTL value test-policy)");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

Web Object Cache API Descriptions

7-52 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 if (cacheBlockObj == null) { // Note E
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 // Note F
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 sectionId=new StringSectionId("s2");
 long timeToLive = 15; // now set TTL to 15 on this block
 ExpirationPolicy expirationPolicy = cachePolicyObj.getExpirationPolicy();
 expirationPolicy.setTTL(timeToLive);
 cachePolicyObj.setExpirationPolicy(expirationPolicy);
 cacheBlockObj = cachePolicyObj.getCache(request,sectionId);
 if (!cachePolicyObj.isRecent(cacheBlockObj)) {
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println
("fragment#2 (expires in 15 seconds because TTL overrides test-policy value)");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) {
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

%>
</pre>

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-53

Servlet Page: DemoCacheServlet.java
Code notes are explained at the end of the code.

package demoPkg;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;

import java.io.PrintWriter;
import java.io.CharArrayWriter;

import oracle.jsp.jwcache.CachePolicy;
import oracle.jsp.jwcache.ExpirationPolicy;
import oracle.jsp.jwcache.StringSectionId;
import oracle.jsp.jwcache.CacheBlock;
import oracle.jsp.jwcache.CacheClientUtil;

public class DemoCacheServlet extends HttpServlet{

 public void service(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // standard writer object from servlet engine
 PrintWriter out=response.getWriter();
 ServletConfig config=getServletConfig();

 try {
 CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy(config,request,
 "/WEB-INF/test-policy.cpd"); // Note A
 StringSectionId sectionId=new StringSectionId("s1"); // Note B
 CacheBlock cacheBlockObj=null;

 cacheBlockObj = cachePolicyObj.getCache(request,sectionId); // Note C
 if (!cachePolicyObj.isRecent(cacheBlockObj)) { // Note D
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println("fragment#1");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) { // Note E
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);

Web Object Cache API Descriptions

7-54 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 // Note F
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 sectionId=new StringSectionId("s2");
 long timeToLive = 15; // now set TTL to 15 on this block
 ExpirationPolicy expirationPolicy = cachePolicyObj.getExpirationPolicy();
 expirationPolicy.setTTL(timeToLive);
 cachePolicyObj.setExpirationPolicy(expirationPolicy);
 cacheBlockObj = cachePolicyObj.getCache(request,sectionId);
 if (!cachePolicyObj.isRecent(cacheBlockObj)) {
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println("fragment#2");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) {
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 } catch (Throwable th) {
 // your exception handling code here
 th.printStackTrace(out);
 }
 }
}

Web Object Cache API Descriptions

Web Object Cache Tags and API 7-55

Code Notes The following notes describe some of the key functionality of the
preceding example:

� The cache policy object is created in the lookupPolicy() call (Note A), with
attribute settings according to the cache policy descriptor test-policy.cpd.

� The section ID is created for each cache block (Note B), as required for implicit
cache-block naming. See "CachePolicy Methods" on page 7-42 for information
about section IDs.

� The cache block is retrieved from the repository through the getCache()
method of the cache policy object (Note C) and placed into the repository
through the putCache() method, according to the section ID in each case.

� The isRecent() call determines if the cache block is recent enough to use
(Note D). If so, the cached data is retrieved through the getData() method of
the cache block. (See "CacheBlock Methods" on page 7-49.) If not, a special
PrintWriter object is created to buffer the output and save it back to the
cache repository. If the cache block object is not found (is null, Note E), then the
putCache() method of the cache policy object is called to create a new cache
block (Note F).

Cache Policy Descriptor: test-policy.cpd
This cache policy descriptor is used by all three approaches to the sample
application: tagcode.jsp, servletcode.jsp, and DemoCacheServlet.java:

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
writeThrough="true" />
</cachePolicy>

Cache Policy Descriptor

7-56 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Cache Policy Descriptor
You can optionally use an XML-style cache policy descriptor to specify attribute
settings for the CachePolicy and ExpirationPolicy objects. In any JSP pages
or servlets that you use, you would then specify the cache policy descriptor through
the policy attribute of a cache, cacheXMLObj, useCacheObj, cacheInclude,
or invalidateCache tag.

The following sections provide the cache policy descriptor DTD, a sample cache
policy descriptor, and information about loading and refreshing the cache policy
descriptor:

� Cache Policy Descriptor DTD

� Sample Cache Policy Descriptor

� Cache Policy Descriptor Loading and Refreshing

Cache Policy Descriptor DTD
This section provides a listing of the Web Object Cache cache policy descriptor
DTD, cachepolicy.dtd.

<!--
cachepolicy.dtd
-->
<!--
This DTD is used to validate any (Oracle programmable web)
cache policy descriptors (for example, "/WEB-INF/foo.cpd").
-->

<!--
The cachePolicy element is the root element of cache policy descriptors.
configuration descriptor.
-->

<!ELEMENT cachePolicy (
 selectedParam*, selectedCookie*,
 reusableTimeStamp?, reusableDeltaTime?,
 cacheRepositoryName?, expirationPolicy?) >

<!ATTLIST cachePolicy ignoreCache (true | false) "false" >
<!ATTLIST cachePolicy scope (application | session) "application" >

Cache Policy Descriptor

Web Object Cache Tags and API 7-57

<!ATTLIST cachePolicy autoType
 (user | URI | URI_query |
 URI_allParam | URI_selectedParam | URI_excludedParam)
 "URI_allParam" >
<!ATTLIST cachePolicy reportException (true | false) "true" >

<!ELEMENT selectedParam (#PCDATA) >
<!ELEMENT selectedCookie (#PCDATA) >
<!ELEMENT reusableTimeStamp (#PCDATA) >
<!ELEMENT reusableDeltaTime (#PCDATA) >
<!ELEMENT cacheRepositoryName (#PCDATA) >

<!ELEMENT expirationPolicy EMPTY >

<!ATTLIST expirationPolicy expirationType (TTL | daily | weekly | monthly)
 "TTL" >
<!ATTLIST expirationPolicy TTL CDATA "300" >
<!ATTLIST expirationPolicy timeInaDay CDATA #IMPLIED >
<!ATTLIST expirationPolicy dayInaWeek
 (Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday)
 "Wednesday" >
<!ATTLIST expirationPolicy dayInaMonth CDATA "10" >
<!ATTLIST expirationPolicy writeThrough (true | false) "true" >

Sample Cache Policy Descriptor
This section provides an example of a simple cache policy descriptor that sets the
TTL and timeInaDay attributes.

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
writeThrough="true" />
</cachePolicy>

Cache Policy Descriptor

7-58 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Cache Policy Descriptor Loading and Refreshing
To create a CachePolicy object from an XML cache policy descriptor file, there
must be a call to the static lookupPolicy() method of the CacheClientUtil
class. For JSP pages, this is handled automatically. For servlets, you must include
the lookupPolicy() call in your code. See "Servlet Page: DemoCacheServlet.java"
on page 7-53.

If the caching policy has not been previously loaded, the lookupPolicy()
invocation results in the XML descriptor being parsed and used in constructing a
new CachePolicy object and an ExpirationPolicy attribute of this object. See
"Cache Policy Object Creation" on page 7-40 for information about the
lookupPolicy() method.

The CachePolicy object is stored indirectly under the ServletContext object
associated with your application. When the same caching policy is requested again,
the stored policy object will be returned without the descriptor being reread or
re-parsed. For performance reasons, because the cache policy descriptor files are
seldom changed, as well as for security reasons, OC4J does not provide descriptor
auto-reloading functionality. The resulting cache policy object is stored in the
middle-tier JVM for faster access.

The CachePolicy object will be valid until the servlet context is destroyed or
someone calls the static refreshPolicy() method of the CacheClientUtil
class. This method has the same calling sequence as the lookupPolicy() method.
For example:

oracle.jsp.jwcache.CacheClientUtil.refreshPolicy
 (servletConfig, request, "/WEB-INF/foo.cpd");

When you alter and refresh the caching policy, active cache blocks are not affected.

Cache Repository Descriptor

Web Object Cache Tags and API 7-59

Cache Repository Descriptor
Use an XML-style cache repository descriptor to specify what to use as the back-end
cache repository for the Web Object Cache and how to configure it. The following
sections list the DTD for cache repository descriptors, as well as a sample cache
repository descriptor:

� Cache Repository Descriptor DTD

� Sample Cache Repository Descriptor

Cache Repository Descriptor DTD
This section provides a listing of the Web Object Cache cache repository descriptor
DTD, wcache.dtd.

<!--
Copyright 2000 Oracle Corporation
wcache.dtd
-->
<!--
This DTD is used to validate "/WEB-INF/wcache.xml", which is used to hold
web cache repositories configuration information for
Oracle programmable web caching components.
-->
<!--
The wcache-config element is the root element of web cache repositories
configuration descriptor.
-->
<!ELEMENT wcache-config (cache-repository*)>

<!ELEMENT cache-repository
(cache-repository-name,cache-repository-class,init-param*)>

<!ELEMENT cache-repository-name (#PCDATA)>
<!ELEMENT cache-repository-class (#PCDATA)>

<!ELEMENT init-param (param-name,param-value)>
<!ELEMENT param-name (#PCDATA)>
<!ELEMENT param-value (#PCDATA)>

Note: By default, the Web Object Cache uses the Oracle
Application Server Java Object Cache as its cache repository.

Cache Repository Descriptor

7-60 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Sample Cache Repository Descriptor
This section lists the cache repository descriptor provided with OC4J.

<wcache-config>

<cache-repository>
 <cache-repository-name>DefaultCacheRepository</cache-repository-name>
 <cache-repository-class>
 oracle.jsp.jwcache.repository.impl.OCSRepoImpl
 </cache-repository-class>
</cache-repository>

<cache-repository>
 <cache-repository-name>SimpleFSRepo</cache-repository-name>
 <cache-repository-class>
 oracle.jsp.jwcache.repository.impl.SimpleFSRepositoryImpl
 </cache-repository-class>
 <init-param>
 <param-name>reporoot</param-name>
 <param-value>/tmp/reporoot</param-value>
 </init-param>
</cache-repository>

</wcache-config>

Note: The DTD does not include reporoot, which is a
specific-use parameter that only a file system cache implementation
requires.

Configuration for Back-End Repository

Web Object Cache Tags and API 7-61

Configuration for Back-End Repository
This section describes how to configure the Oracle Application Server Java Object
Cache or a file system as the back-end repository for the OC4J Web Object Cache.

Configuration Notes for Oracle Application Server Java Object Cache
The OC4J server.xml file must have a <javacache-config> element to specify
the Java Object Cache configuration file. This is a subelement of the
<application-server> element. By default, the entry is as follows:

<application-server ... >
...
 <javacache-config path="../../../javacache/admin/javacache.xml" />
...
</application-server>

As shown, and assuming the default configuration file directory location (where
server.xml is located), the default is for OC4J instances to share the same Java
Object Cache configuration file, javacache.xml, in the
ORACLE_HOME/javacache/admin directory.

Here is a sample Java Object Cache configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <logging>
 <location>javacache.log</location>
 <level>ERROR</level>
 </logging>
 <communication>
 <isDistributed>true</isDistributed>
 <coordinator discovery-port="7000"/>
 </communication>
 <persistence>
 <location>diskcache</location>
 <disksize>32</disksize>
 </persistence>
 <max-objects>1000</max-objects>
 <max-size>48</max-size>
 <clean-interval>30</clean-interval>
</cache-configuration>

Configuration for Back-End Repository

7-62 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

For more information about the Java Object Cache, its configuration, and the
javacache.xml file, see the Oracle Application Server Containers for J2EE Services
Guide. For more information about the server.xml file, refer to the Oracle
Application Server Containers for J2EE User’s Guide.

Configuration Notes for File System Cache
To use a file system as the back-end repository, edit the cache repository descriptor,
wcache.xml, to set reporoot to specify a root directory for the file system cache.
This file is located in the /WEB-INF directory where the OC4J samples are installed.
See "Cache Repository Descriptor" on page 7-59 for general information and for an
example of a cache repository descriptor that sets a reporoot value.

For example, for a UNIX system:

<init-param>
 <param-name>reporoot</param-name>
 <param-value>/mydir/repositoryroot</param-value>
</init-param>

Alternatively, for a Windows system:

<init-param>
 <param-name>reporoot</param-name>
 <param-value>c:\mydir\repositoryroot</param-value>
</init-param>

File Access and Mail Beans and Tags 8-1

8
File Access and Mail Beans and Tags

This chapter covers OC4J tags and JavaBeans for file access (uploading and
downloading) and for e-mail. The e-mail tag and JavaBean make use of the file
access functionality for attachments. The chapter is organized as follows:

� File-Access JavaBeans and Tags

� Mail JavaBean and Tag

File-Access JavaBeans and Tags

8-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
OC4J provides a standards-compliant tag library and JavaBeans that add
convenient file upload and file download functionality for JSP pages and servlets.
Files can be uploaded to or downloaded from a file system or database.

The following sections document the file-access tags and beans:

� Overview of OC4J File-Access Functionality

� File Upload and Download Tag Descriptions

� File Upload and Download JavaBean and Class Descriptions

Overview of OC4J File-Access Functionality
Developers have the option of using either custom tags or JavaBeans to program
applications that allow users to upload or download files. In either case, the
application is presumably programmed so that users specify through the browser
where files come from on the client system for uploading or where they go to on the
client system for downloading. For JSP pages for uploading, OC4J supplies a
convenience tag, httpUploadForm, to create a form to use in specifying where the
files come from.

For processing an upload, including specifying the destination file system or
database location, use the HttpUploadBean JavaBean or the httpUpload tag. For
processing a download, including specifying the source file system or database
location, use HttpDownloadBean or the httpDownload tag. The beans extend
HttpFileAccessBean, which is not intended for public use. All of the beans are
in the oracle.jsp.webutil.fileaccess package.

Overview of File Uploading
For user specification in a JSP page of where uploaded files will come from, you can
use the httpUploadForm tag to create a form. This tag lets users select the files for
uploading and creates the necessary multipart HTTP request. You also have the
option of using a standard HTML form to create the request.

Use the HttpUploadBean JavaBean or the httpUpload tag to receive and process
the multipart form-encoded data stream and write the files to the appropriate

Note: In Oracle Application Server, the file-access JavaBeans and
tags require the OC4J environment; JServ is not supported.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-3

location, either in the file system or a database. There is functionality to let you
decide whether previous data will be overwritten if the target file or database row
already exists.

File System Destination If the destination is in a file system, you must provide a
properties file that designates a base directory. The properties file must be named
fileaccess.properties, must be located in the /WEB-INF directory of your
application, and must have a fileaccess.basedir entry that indicates an
absolute directory path. Here is an example:

fileaccess.basedir=/tmp

There should be subdirectories as appropriate under the base directory, such as a
subdirectory for each authorized user. Destination subdirectories under the base
directory must be specified through an attribute of the upload bean or tag. All
directories and subdirectories must already exist and be writable; they cannot be
created or made writable through OC4J functionality.

Database Destination If the destination is in a database, you can optionally use a
default table, fileaccess, that you create through the supplied
fileaccess.sql script, or you can use any other previously existing table
containing the required column types. In either case, you must provide a connection
to the database, as an instance of either oracle.jsp.dbutil.ConnBean or the
standard java.sql.Connection. You can provide a ConnBean instance
explicitly, or in a JSP page you also have the option of providing it implicitly as a
result of nesting the httpUpload tag inside a dbOpen tag. (For information about
the ConnBean JavaBean and dbOpen tag, see Chapter 4, "Data-Access JavaBeans
and Tags".)

Note: The maximum file size for any upload is 2 GB.

Note: On a Windows system, you must still use a forward-slash,
not a back-slash, for the directory path:

fileaccess.basedir=c:/tmp

Furthermore, the specified drive (C: in this case) must be the same
drive on which OC4J is installed.

File-Access JavaBeans and Tags

8-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

You are also required to specify a destination through an attribute of the upload
bean or tag. The destination is simply a Java string value that will be placed in the
prefix column of the database table. The prefix is equivalent to a file system path.

File data is written to a database as either a BLOB or a CLOB. You can specify which
through an upload bean or tag attribute.

If you do not use the default fileaccess table, you must use attributes of the
upload bean or tag to specify the database table name and the names of the columns
that will contain the file data, the file prefix, and the file name. Any other table you
use must adhere to the pattern of fileaccess, as follows:

� It must have a concatenated unique key consisting of the column that holds the
file name and the column that holds the prefix.

� It must have a BLOB or CLOB column for the file data.

� Any column other than the file data column must allow null data.

Security Considerations for Uploading For uploading to a database, the database table
does not have a column to indicate a particular authorized user for any given file.
Therefore, without precaution, each user can see files that were uploaded by other
users, without having to know the file prefixes. To prevent this, you can prepend an
appropriate user name to each prefix.

Note: The java.sql.Connection type is currently supported
for the file-access beans only, not the tags.

Notes:

� When you use a ConnBean instance, the connection will be
closed automatically at the end of the scope designated in the
jsp:useBean tag that invokes it. There is no such
functionality for a Connection instance.

� ConnBean uses and requires the JspScopeListener
interface. See "JSP Event-Handling with JspScopeListener" on
page 9-2 for information about that utility.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-5

Overview of File Downloading
Use the HttpDownloadBean JavaBean or the httpDownload tag as follows:

� To allow users to specify the file system source directory or the database prefix
to match for file retrieval

Note the following:

– Matching the prefix for downloads from a database is case-sensitive.

– Matching the source directory for downloads from a file system is
case-sensitive in a case-sensitive operating system, such as UNIX.

– There is currently no support for specifying file names, either partial or
complete.

� To obtain and display a list of the files that are available for download

Once presented with a list of available files, the user can download them one at
a time from the list.

There is also functionality to specify whether you want recursive downloading,
where files in subdirectories or with additional database prefix information will also
be available for download. For database downloading, a prefix is equivalent to a file
system path and can be used to group files into a hierarchy. As an example of
recursive downloading from a database, assume you have specified /user as the
prefix. Recursive downloading would find matches for files with any prefixes
starting with "/user", such as "/user/bill" and "/user/mary", and also such as
"/user1", "/user2", "/user1/tom", and "/user2/susan".

For downloading files from a file system, utilize the mechanism described in
"Overview of File Uploading" on page 8-2. Use the fileaccess.properties file
to specify a base directory and use attributes in the download bean or tag to specify
the rest of the file path.

For downloading files from a database, as with uploading files to a database, you
must provide an instance of oracle.jsp.dbutil.ConnBean or
java.sql.Connection. In addition, if you are not using the default fileaccess
table (that you can create using the supplied fileaccess.sql script), you must
provide all the necessary information about the database table and columns. Specify
this information through attributes of the download bean or tag.

The actual downloading of the files is accomplished by DownloadServlet,
supplied with OC4J. In using the download tag, specify the path of this servlet
through a tag attribute. For a file system source, hyperlinks are automatically
created to the servlet so that the user can select a link for each file in order to

File-Access JavaBeans and Tags

8-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

download the file. For a database source, the servlet will fetch the selected CLOB or
BLOB data that forms the file contents. (See "The Download Servlet" on page 8-17.)

Security Considerations for Downloading For downloading, consider limiting the users’
ability to see what is in the source (server-side) file system or database. Without
precaution, the following scenarios are possible:

� For file system downloading, a source value of "*" (perhaps specified through
user input) would mean that all directories under the base directory would be
available for downloading, with the names of all the files presumably being
displayed for the user to choose from.

� For recursive downloading from a database, all files having a prefix beginning
with the source string (perhaps specified through user input) would be
available for downloading, with the names of all these files presumably being
displayed. A source of "*" matches all prefixes.

If this is of concern, you can consider protective measures such as the following:

� Not accepting source values of "*" when downloading from file systems

� Not allowing recursive downloading from databases

� Automatically prepending the source value with a partial directory path or
prefix string, such as a user name, to restrict the areas to which users have
access

File Upload and Download JavaBean and Class Descriptions
This section describes attributes and methods of the file upload and download
JavaBeans provided with OC4J: HttpUploadBean and HttpDownloadBean,
respectively.

There is also brief discussion of DownloadServlet, provided with OC4J to
perform the actual file downloading, and the class FileAccessException that is
used by the file-access JavaBeans for exceptions relating to file uploads and
downloads.

To comply with the JavaBean specification, the file upload and download JavaBeans
provide no-argument constructors.

Note: To use the file upload and download JavaBeans, verify that
the file ojsputil.jar is installed and in your classpath. This file
is provided with OC4J.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-7

The HttpUploadBean
The oracle.jsp.webutil.fileaccess.HttpUploadBean JavaBean provides
numerous setter methods for specifying information used for the uploading. It also
includes most corresponding getter methods. Once you have set all the required
and appropriate attributes, use the upload() method to perform the upload. There
is also a method to display the names of the files that were uploaded, typically so
you can provide an informative message to the browser.

HttpUploadBean, as with HttpDownloadBean, extends HttpFileAccessBean,
which itself is not intended for public use.

See "Overview of File Uploading" on page 8-2 for related information.

Summary of Required Attributes

The following list summarizes required attributes for HttpUploadBean:

� Always required: destination

� Also required for uploads to a database: destinationType, connection

� Also required for uploads to a database table other than the default
fileaccess table: table, prefixColumn, fileNameColumn, dataColumn

� Also required for uploads to a database table using a CLOB column for file
data: fileType

In addition, for an upload to a file system, you must call the setBaseDir()
method to provide a servlet context and HTTP request object so that the bean can
find the fileaccess.properties file that specifies the base directory.

Methods

Here are descriptions of the public methods of HttpUploadBean.

� void upload(javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

Once all required and appropriate bean attributes have been set, use this
method for the upload. The req parameter is the HTTP request instance

Note: Many of the attributes and setter methods for
HttpUploadBean are the same as for HttpDownloadBean.

File-Access JavaBeans and Tags

8-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

containing the multipart form-encoded files. For a JSP page, use the implicit
request object.

� void setBaseDir(javax.servlet.ServletContext sc,
 javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

For an upload to a file system, use this method to determine what to use as a
base directory. It gets this information from the fileaccess.properties file
in your application /WEB-INF directory, which it finds through the servlet
context input parameter. The baseDir setting, together with the
destination setting, specifies the absolute path to the upload directory.

The req parameter is the servlet request instance to use in requesting the base
directory information. For JSP pages, use the implicit request object.

This method is not relevant for database uploads.

� void setDestination(String destination)

This method is always required.

For an upload to a file system, destination and the base directory together
specify the absolute path to the upload directory.

For an upload to a database, destination is used as the file prefix. (There is
no "base directory".) The prefix is equivalent to a file system path and can be
used to group files into a hierarchy. It is permissible to include separator
characters such as "." and "/" in the destination string.

� void setDestinationType(String destinationType)
 throws FileAccessException

� void setDestinationType(int destinationType)
 throws FileAccessException

Use the overloaded setDestinationType() method to specify whether the
upload is to a file system or a database.

To upload to a database, set destinationType to one of the following: the
string "database", the defined String constant

Note: Typically, the destination value will be based at least
partially on user input.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-9

FileAccessUtil.DATABASE, the int value 1, or the defined int constant
FileAccessUtil.LOCATION_TYPE_DATABASE.

Uploading to a file system is the default, but if you want to specify this
explicitly, set destinationType to one of the following: the string
"filesystem", the defined String constant
FileAccessUtil.FILESYSTEM, the int value 0, or the defined int constant
FileAccessUtil.LOCATION_TYPE_FILESYSTEM.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

� String getDestinationType()

Retrieve the destination information. Note there is a getter method for the string
version only.

� void setOverwrite(String overwrite)
 throws FileAccessException

� void setOverwrite(boolean overwrite)

Use the overloaded setOverwrite() method to overwrite existing files or
update rows with the same file name and prefix. This is relevant for both file
system and database uploads.

Overwriting is enabled by default, but you can enable it explicitly with an
overwrite setting of the string "true" or the boolean value true. Disable
overwriting with a setting of the string "false" or the boolean value false.
String settings are case-insensitive. No settings are accepted other than those
listed here.

� void setFileType(String fileType)
 throws FileAccessException

� void setFileType(int fileType) throws FileAccessException

For an upload to a database, use the overloaded setFileType() method to
specify whether the data is to be stored in a BLOB for binary data (the default)
or a CLOB for character data. For a CLOB, set fileType to one of the
following: the string "character", the defined String constant
FileAccessUtil.CHARACTER_FILE, or the int value 1. To explicitly specify
a BLOB, set fileType to one of the following: the string "binary", the defined
String constant FileAccessUtil.BINARY_FILE, or the int value 0. String
settings are case-insensitive. No settings are accepted other than those listed
here.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

File-Access JavaBeans and Tags

8-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� String getFileType()

Retrieve the file type information. Note there is a getter method for the string
version only.

� void setTable(String tableName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the table name.

� String getTable()

Retrieve the table name.

� void setPrefixColumn(String prefixColumnName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the name of the column containing the file prefix. (In
fileaccess, this column name is fileprefix.) The destination value
will be written into this column.

� String getPrefixColumn()

Retrieve the name of the column containing the file prefix.

� void setFileNameColumn(String fileNameColumnName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the name of the column containing the file name. (In
fileaccess, this column name is filename.) File names will include any file
name extensions.

� String getFileNameColumn()

Retrieve the name of the column containing the file name.

� void setDataColumn(String dataColumnName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the name of the BLOB or CLOB column containing the
file contents. (In fileaccess, this column name is data.)

� String getDataColumn()

Retrieve the name of the column containing the file contents.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-11

� void setConnection(ConnBean conn)

� void setConnection(java.sql.Connection conn)

For an upload to a database table (default table or otherwise), use this
overloaded method to provide a database connection. You can provide an
instance of either oracle.jsp.dbutil.ConnBean or the standard
java.sql.Connection type. For information about the ConnBean JavaBean,
see "ConnBean for a Database Connection" on page 4-4.

If you use a Connection instance, you must explicitly open and close it. For a
ConnBean instance, this is handled automatically.

� java.util.Enumeration getFileNames()

This method returns an Enumeration instance containing the names of the
files that were uploaded. (This functionality is not available through the
httpUpload tag.)

Example: This example uses a plain HTML form to specify a file to upload to a file
system, then uses a JSP page that employs HttpUploadBean for the upload.

Here is the HTML form, which specifies beanUploadExample.jsp for its action
and will generate the multipart upload stream.

<html><body>
<form action="beanUploadExample.jsp" ENCTYPE="multipart/form-data" method=POST>

 File to upload: <INPUT TYPE="FILE" NAME="File" SIZE="50" MAXLENGTH="120" >

<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Send"> </form>
</body></html>

And here is the beanUploadExample.jsp page.

<%@ page language="java"
 import="java.util.*, oracle.jsp.webutil.fileaccess.*" %>
<html><body>
<% String userdir = "fileaccess"; %> // user’s part of the upload directory
<jsp:useBean id="upbean"
 class="oracle.jsp.webutil.fileaccess.HttpUploadBean" >
 <jsp:setProperty name="upbean" property="destination"
 value="<%= userdir %>" />
</jsp:useBean>

Note: Remember to set the base directory appropriately for
uploads to a file system. See "File System Destination" on page 8-3.

File-Access JavaBeans and Tags

8-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

<% upbean.setBaseDir(application, request);
 upbean.upload(request);
 Enumeration fileNames = upbean.getFileNames();
 while (fileNames.hasMoreElements()) { %>

<%= (String)fileNames.nextElement() %>
 <% } %>

Done!
</body></html>

The HttpDownloadBean
The oracle.jsp.webutil.fileaccess.HttpDownloadBean JavaBean
provides numerous setter methods for specifying information used for
downloading. It also includes most corresponding getter methods. Once you have
set all the required and appropriate attributes, use the listFiles() method to list
the files available for download. The actual downloading is accomplished through
DownloadServlet, supplied with OC4J, one file at a time. See "The Download
Servlet" on page 8-17.

HttpDownloadBean, as with HttpUploadBean, extends HttpFileAccessBean,
which itself is not intended for public use.

See "Overview of File Uploading" on page 8-2 for related information.

Summary of Required Attributes

The following list summarizes required attributes for HttpDownloadBean:

� Always required: source

� Also required for uploads to a database: sourceType, connection

� Also required for downloads from a database table other than the default
fileaccess table: table, prefixColumn, fileNameColumn, dataColumn

� Also required for downloads from a database table using a CLOB column for
file data: fileType

In addition, for a download from a file system, you must call the setBaseDir()
method to provide a servlet context and HTTP request object so that the bean can
find the fileaccess.properties file that specifies the base directory.

Note: You must construct the URL for DownloadServlet in
your application code.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-13

Methods

Here are descriptions of the public methods of HttpDownloadBean.

� void listFiles(javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

Once all required and appropriate bean attributes have been set, use this
method to list the files available for download. These are files in the source
directory or matching the source database prefix. The req parameter is the
HTTP response instance. For a JSP page, use the implicit request object.

For use from the file list, you can create HREF links to DownloadServlet,
passing it each file and file prefix, allowing users to select the link for each file
they want to download.

� java.util.Enumeration getFileNames()

This method returns an Enumeration instance containing the names of the
files that are available for download. It requires that the listFiles() method
was already called. The listFiles() method writes the file names to memory
and to the JSP page or servlet. The getFileNames() method reads them from
memory.

� void setBaseDir(javax.servlet.ServletContext sc,
 javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

For a download from a file system, use this method to determine what to use as
the base directory. It gets this information from the fileaccess.properties
file in your application /WEB-INF directory, which it finds through the servlet
context input parameter. The baseDir setting, together with the source

Note: Many of the attributes and setter methods for
HttpDownloadBean are the same as for HttpUploadBean.

Note: The listFiles() method writes the file names to
memory and to the JSP page or servlet. If you later want to access
the file names again, use the getFileNames() method to read
them from memory.

File-Access JavaBeans and Tags

8-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

setting, specifies the absolute path to the directory from which files will be
downloaded.

The sc parameter is the servlet context instance for the application. For JSP
pages, use the implicit application object.

The req parameter is for the HTTP request instance to use in requesting the
base directory information. For JSP pages, use the implicit request object.

A base directory is not relevant for downloads from a database.

� void setSource(String source)

This is always required.

For a download from a file system, source and the base directory together
specify the absolute path to the directory from which files will be downloaded.
If source is set to "*", then all directories under the base directory will be
available for downloading.

For a download from a database, source is used as the file prefix. (The base
directory is not relevant.) The prefix is equivalent to a file system path and can
be used to group files into a hierarchy. If recursive downloading is enabled
(through the setRecurse() method), "%" will be appended onto the source
value, and the WHERE clause for the query will contain an appropriate LIKE
clause. Therefore, all files with prefixes that are partially matched by the
source value will be available for download. If you want to match all rows in
the database table, set source to "*".

� void setSourceType(String sourceType)
 throws FileAccessException

� void setSourceType(int sourceType)
 throws FileAccessException

Use the overloaded setSourceType() method to specify whether the
download is from a file system or a database.

Note: Typically, the source value will be based at least partially
on user input.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-15

To download from a database, set sourceType to one of the following: the
string "database", the defined String constant
FileAccessUtil.DATABASE, the int value 1, or the defined int constant
FileAccessUtil.LOCATION_TYPE_DATABASE.

Downloading from a file system is the default, but if you want to specify this
explicitly, set sourceType to one of the following: the string "filesystem",
the defined String constant FileAccessUtil.FILESYSTEM, the int value
0, or the defined int constant
FileAccessUtil.LOCATION_TYPE_FILESYSTEM.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

� String getSourceType()

Retrieve the source type information. Note there is a getter method for the
string version only.

� void setRecurse(String recurse) throws FileAccessException

� void setRecurse(boolean recurse)

Use the overloaded setRecurse() method to enable or disable recursive
downloading functionality, where files in file system subdirectories or with
additional database prefix information will also be listed as available for
downloading. As an example of this functionality from a database, assume
source is set to "/user". Recursiveness would also find matches for files with
prefixes such as "/user/bill" and "/user/mary", and also such as
"/user1", "/user2", "/user1/tom", and "/user2/susan".

Recursiveness is enabled by default, but you can enable it explicitly with a
recurse setting of the string "true" or the boolean true. Disable the recursive
functionality with a setting of the string "false" or the boolean false. String
settings are case-insensitive. No settings are accepted other than those listed
here.

� void setFileType(String fileType)
 throws FileAccessException

� void setFileType(int fileType) throws FileAccessException

For a download from a database, use the overloaded setFileType() method
to specify whether the data is stored in a BLOB for binary data (the default) or a
CLOB for character data. For a CLOB, set fileType to one of the following: the
string "character", the defined String constant
FileAccessUtil.CHARACTER_FILE, or the int value 1. To explicitly specify
a BLOB, set fileType to one of the following: the string "binary", the defined

File-Access JavaBeans and Tags

8-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

String constant FileAccessUtil.BINARY_FILE, or the int value 0. String
settings are case-insensitive. No settings are accepted other than those listed
here.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

� String getFileType()

Retrieve the file type information. Note there is a getter method for the string
version only.

� void setTable(String tableName)

For a download from a database table other than the default fileaccess
table, use this method to specify the table name.

� String getTable()

Retrieve the table name.

� void setPrefixColumn(String prefixColumnName)

For a download from a database table other than the default fileaccess
table, use this method to specify the name of the column containing the file
prefix. (In fileaccess, this column name is fileprefix.)

� String getPrefixColumn()

Retrieve the name of the column containing the file prefix.

� void setFileNameColumn(String fileNameColumnName)

For a download from a database table other than the default fileaccess
table, use this method to specify the name of the column containing the file
name. (In fileaccess, this column name is filename.) The file name
includes any file name extension.

� String getFileNameColumn()

Retrieve the name of the column containing the file name.

� void setDataColumn(String dataColumnName)

For a download from a database table other than the default fileaccess
table, use this method to specify the name of the BLOB or CLOB column that
holds the file contents. (In fileaccess, this column name is data.)

� String getDataColumn()

Retrieve the name of the column containing the file contents.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-17

� void setConnection(ConnBean conn)

� void setConnection(java.sql.Connection conn)

For a download from a database table (default table or otherwise), use this
method to provide a database connection. You can provide an instance of either
oracle.jsp.dbutil.ConnBean or the standard java.sql.Connection
type. For information about the ConnBean JavaBean, see "ConnBean for a
Database Connection" on page 4-4.

If you use a Connection instance, you must explicitly open and close it. For a
ConnBean instance, this is handled automatically.

Example This example is a JSP page that uses HttpDownloadBean for a download
from a file system. Note that the page must construct the URL for the download
servlet.

<%@ page language="java" import="java.util.*, oracle.jsp.webutil.fileaccess.*"
%>
<html><body>
<% String servletPath = "/servlet/download/"; // path to the download servlet
 String userDir = "fileaccess/"; // user part of download directory
%>
<jsp:useBean id="dbean"
 class="oracle.jsp.webutil.access.HttpDownloadBean" >
 <jsp:setProperty name="dbean" property="source" value=’<%=userDir %>’ />
</jsp:useBean>
<% dbean.setBaseDir(application, request);
 dbean.listFiles(request); %>
The following files were found:
<% Enumeration fileNames = dbean.getFileNames();
 while (fileNames.hasMoreElements()) {
 String name = (String)fileNames.nextElement(); %>

<a href="<%= servletPath + name %>" > <%= name %>
<% } %>

Done!
</body></html>

The Download Servlet
To use download functionality, through either HttpDownloadBean or the
httpDownload tag, you must have the class
oracle.jsp.webutil.fileaccess.DownloadServlet available in your Web
server. Its mapping in your Web server must be reflected in your servlet path

File-Access JavaBeans and Tags

8-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

settings, either through the servletPath attribute if you use the httpDownload
tag, or in your application code if you use HttpDownloadBean.

FileAccessException Class
The oracle.jsp.webutil.fileaccess.FileAccessException class is a
convenience class supplied with OC4J for file-access exception-handling. It wraps
the functionality of the standard java.sql.SQLException and
java.io.IOException classes. It handles exceptions from either of the file-access
beans in addition to handling SQL and I/O exceptions.

File Upload and Download Tag Descriptions
For file uploading, OC4J supplies the httpUpload tag. This tag, in turn, uses
HttpUploadBean. For convenience, you can also use the httpUploadForm tag in
programming the form through which users specify the files to upload, or you can
code the form manually.

For file downloading, OC4J provides the custom httpDownload tag.This tag uses
HttpDownloadBean. This section describes these tags and their attributes.

Note the following requirements for the file upload and download tags:

� Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

� The tag library descriptor, fileaccess.tld, must be available to the
application, and any JSP page using the library must have an appropriate
taglib directive. In an Oracle Application Server installation, the TLD is in
ojsputil.jar. The uri value for fileaccess.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/fileaccess.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-19

The httpUploadForm Tag
For convenience, you can use the httpUploadForm tag to create a form in your
application, using multipart encoded form data, that allows users to specify the files
to upload.

Syntax

<fileaccess:httpUploadForm formsAction = "action"
 [maxFiles = "max_number"]
 [fileNameSize = "file_input_box_num_chars"]
 [maxFileNameSize = "max_file_name_num_chars"]
 [includeNumbers = "true" | "false"]
 [submitButtonText = "button_label_text"] />

Attributes

� formsAction (required): This is to indicate the action that will be performed
after the form is submitted. For example, formsAction could be the name of a
JSP page that uses HttpUploadBean or the httpUpload tag.

� maxFiles: Use this if you want to specify the number of input lines you want
to appear in the form. The default is 1.

� fileNameSize: Use this if you want to specify the character-width of the file
name input box (or boxes). The default is 20 characters.

� maxFileNameSize: Use this if you want to specify the maximum number of
characters allowed in a file name. The default is 80 characters.

Notes:

� The prefix "fileaccess:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

Note: The httpUploadForm tag can optionally use a body. For
example, the body might consist of a user prompt.

File-Access JavaBeans and Tags

8-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� includeNumbers: Set this to "true" if you want the file name input boxes to
be numbered. The default setting is "false".

� submitButtonText: Use this if you want to specify the text that appears on
the "submit" button of the form. The default is "Send".

The httpUpload Tag
This tag wraps the functionality of the HttpUploadBean JavaBean, paralleling its
attributes. See "Overview of File Uploading" on page 8-2 and "The
HttpUploadBean" on page 8-7 for related information.

Syntax

<fileaccess:httpUpload destination = "dir_path_or_prefix"
 [destinationType = "filesystem" | "database"]
 [connId = "id"]
 [scope = "request" | "page" | "session" | "applicaton"]
 [overwrite = "true" | "false"]
 [fileType = "character" | "binary"]
 [table = "table_name"]
 [prefixColumn = "column_name"]
 [fileNameColumn = "column_name"]
 [dataColumn = "column_name"] />

Attributes

� destination (required): For uploading to a file system, this indicates the
path, beneath the base directory supplied in the
/WEB-INF/fileaccess.properties file, of the directory into which files
will be uploaded. For uploading to a database, destination indicates the file
prefix, conceptually equivalent to a file system path.

Note: For uploads to a file system, the base directory is
automatically retrievable by the tag handler from the JSP page
context.

Note: Typically, the destination value will be based at least
partially on user input.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-21

� destinationType: Set this to "database" for uploading to a database. The
default is to upload to a file system, but you can also explicitly set it to
"filesystem". These values are case-insensitive.

� connId: For uploading to a database, use this attribute to provide a ConnBean
connection ID for the database connection to be used. Or, alternatively, use the
httpUpload tag inside a dbOpen tag to implicitly use the dbOpen connection.
For information about the ConnBean JavaBean and dbOpen tag provided with
OC4J, see Chapter 4, "Data-Access JavaBeans and Tags".

� scope: For uploading to a database, use this attribute to specify the scope of the
ConnBean instance for the connection. The scope setting here must match the
scope setting when the ConnBean instance was created, such as in a dbOpen
tag. If the httpUpload tag is nested inside a dbOpen tag, then there is no need
to specify connId or scope. In this case, information will be taken from the
dbOpen tag. Otherwise, the default scope setting is "page".

� overwrite: Set this to "false" if you do not want to overwrite existing files
that have the same paths and names as the files you are uploading, or if you do
not want to update rows with the same file name and prefix for database
uploading. In this case, an error will be generated if a file already exists. By
default, overwrite is set to "true" and httpUpload overwrites files.

� fileType: For uploading to a database, set this attribute to "character" for
character data, which will be written into a CLOB. The default setting is
"binary" for binary data, which will be written into a BLOB.

� table: For uploading to a database table other than the default fileaccess
table, use this attribute to specify the table name.

� prefixColumn: For uploading to a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file prefixes. This column is where the destination values will be
written.

� fileNameColumn: For uploading to a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file names.

� dataColumn: For uploading to a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file contents.

File-Access JavaBeans and Tags

8-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Example This example has a page that uses the httpUploadForm tag to create the
HTML form for specifying files to upload. The httpUploadForm tag specifies
httpUploadExample.jsp as its forms action. The httpUploadExample.jsp
page uses the httpUpload tag to upload to the default fileaccess table in a
database.

Here is the page for the HTML form:

<%@ page language="java" import="java.io.*" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/fileaccess.tld"
 prefix="upload" %>
<html> <body>
<fileaccess:httpUploadForm
 formsAction="httpUploadExample.jsp"
 maxFiles='<%= request.getParameter("MaxFiles") %>'
 includeNumbers="true" fileNameSize="50" maxFileNameSize="120" >

 File:
</fileaccess:httpUploadForm>
</body> </html>

And following is the httpUploadExample.jsp page. Note that the httpUpload
tag gets its database connection as a result of being inside a dbOpen tag. Also note
that useDataSource.jsp is used to obtain the connection, if necessary. See
"useDataSource.jsp" on page 5-13.

<%@ page language="java" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/fileaccess.tld"
 prefix="upload" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld"
 prefix="sql" %>
<% String dataSrcStr=request.getParameter("dataSrcStr"); // get conn string
 if (dataSrcStr==null) { dataSrcStr=(String)session.getValue("dataSrcStr"); }
 else { session.putValue("dataSrcStr",dataSrcStr); }
 if (dataSrcStr==null) { %>
 <jsp:forward page="useDataSource.jsp" />
<% } %>
<html><body>
<sql:dbOpen dataSource="<%= dataSrcStr %>" >
 <fileaccess:httpUpload destinationType = "database"
 destination="tagexample" />
</sql:dbOpen>
Done! </body></html>

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-23

The httpDownload Tag
This tag wraps the functionality of the HttpDownloadBean JavaBean, paralleling
its attributes. See "Overview of File Downloading" on page 8-5 and "The
HttpDownloadBean" on page 8-12 for related information.

Syntax

<fileaccess:httpDownload servletPath = "path"
 source = "dir_path_or_prefix"
 [sourceType = "filesystem" | "database"]
 [connId = "id"]
 [scope = "request" | "page" | "session" | "applicaton"]
 [recurse = "true" | "false"]
 [fileType = "character" | "binary"]
 [table = "table_name"]
 [prefixColumn = "column_name"]
 [fileNameColumn = "column_name"]
 [dataColumn = "column_name"] />

Attributes

� servletPath (required): This is the path to the Oracle DownloadServlet,
which executes the actual download of each file. For example, if
DownloadServlet has been installed in the application app and mapped to
the name download, then use "/app/download/", with leading and trailing
slashes, as the servletPath setting. The httpDownload tag handler uses this
path in constructing the URL to DownloadServlet.

Note: For the dbOpen tag in this example, assume that the data
source specifies the user name and password as well as the URL.

Notes:

� The httpDownload tag can optionally use a body. For
example, the body might consist of a user prompt.

� For downloads from a file system, the base directory is
automatically retrievable by the tag handler from the JSP page
context.

File-Access JavaBeans and Tags

8-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

See "The Download Servlet" on page 8-17 for more information about this
servlet.

� source (required): For downloading from a file system, this attribute indicates
the path, beneath the base directory supplied in the file
/WEB-INF/fileaccess.properties, of the directory from which files are
retrieved. A value of "*" results in all directories under the base directory being
available.

For downloading from a database, this attribute indicates the file prefix,
conceptually equivalent to a file system path. If recursive downloading is
enabled (through the recurse attribute), "%" will be appended onto the
source value, and the WHERE clause for the query will contain an appropriate
LIKE clause. Therefore, all files with prefixes that are partially matched by the
source value will be available for download. If you want to match all rows in
the database table, set source to "*".

� sourceType: Set this to "database" for downloading from a database. The
default is to download from a file system, or you can explicitly set this to
"filesystem".

� connId: For downloading from a database, use this attribute to provide a
ConnBean connection ID for the database connection to be used. Or,
alternatively, you can use the httpDownload tag inside a dbOpen tag to
implicitly use the dbOpen connection. For information about the ConnBean
JavaBean and dbOpen tag provided with OC4J, see Chapter 4, "Data-Access
JavaBeans and Tags".

� scope: For downloading from a database, use this attribute to specify the scope
of the ConnBean instance for the connection. The scope setting here must
match the scope setting when the ConnBean instance was created, such as in a
dbOpen tag. If the httpDownload tag is nested inside a dbOpen tag, then there
is no need to specify connId or scope. In this case, information will be taken
from the dbOpen tag. Otherwise, the default scope setting is "page".

� recurse: Set this to "false" if you do not want recursive downloading
functionality, where files in file system subdirectories or with additional
database prefix information will also be listed as available for download. As an

Note: Typically, the source value is based at least partially on
user input.

File-Access JavaBeans and Tags

File Access and Mail Beans and Tags 8-25

example of this functionality from a database, assume you have set source to
"/user". Recursiveness would also find matches for files with prefixes such as
"/user/bill" and "/user/mary", and also such as "/user1", "/user2",
"/user1/tom", and "/user2/susan". The default mode is recursiveness, or
you can enable it explicitly with a setting of "true".

� fileType: For downloading from a database, set this attribute to
"character" for character data, which will be retrieved from a CLOB. The
default setting is "binary" for binary data, which will be retrieved from a
BLOB.

� table: For downloading from a database table other than the default
fileaccess table, use this attribute to specify the table name.

� prefixColumn: For downloading from a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file prefixes, which is where source values are stored.

� fileNameColumn: For downloading from a database table other than the
default fileaccess table, use this attribute to specify the name of the column
containing file names. File names include any file name extensions.

� dataColumn: For downloading from a database table other than the default
fileaccess table, use this attribute to specify the name of the column that
stores the file contents.

Example This example is a JSP page that uses the httpDownload tag to download
from the default fileaccess table of a database. The tag body content ("
:")
will be output before each file name in the list of files available for download. Note
that you must specify the DownloadServlet servlet path in the httpDownload
tag. The tag handler will use it in constructing the URL to DownloadServlet,
which performs the actual downloading.

<%@ page language="java" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/fileaccess.tld"
 prefix="download" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld"
 prefix="sql" %>
<% String dataSrcStr=request.getParameter("dataSrcStr");
 if (dataSrcStr==null) { dataSrcStr=(String)session.getValue("dataSrcStr");}
 else { session.putValue("dataSrcStr",dataSrcStr);}
 if (dataSrcStr==null) { %>
 <jsp:forward page="useDataSource.jsp" />
<% } %>

File-Access JavaBeans and Tags

8-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

<html> <body>
<% String servletPath = "/servlet/download/"; %>
<sql:dbOpen dataSource="<%= dataSrcStr %>" >
<fileaccess:httpDownload sourceType = "database"
 source="tagexample" servletPath = ‘<%= servletPath %>’ >

:
</fileaccess:httpDownload>
</sql:dbOpen>

Done!
</body> </html>

Note: For the dbOpen tag in this example, assume that the data
source specifies the user name and password as well as the URI.

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-27

Mail JavaBean and Tag
It is often useful to send e-mail messages from a Web application, based on Web site
status or user actions, for example. Sun Microsystems has specified a
platform-independent and protocol-independent framework for this through its
javax.mail package and subpackages, known as the JavaMail API.

For further convenience, Oracle supplies a JavaBean and JSP custom tag based on
the JavaMail API to use in providing e-mail functionality through your servlets or
JSP pages. The bean and tag, as with other JavaBeans and custom tags supplied
with OC4J, are implemented according to JSP and servlet standards.

The following sections describe the mail JavaBean and tag:

� General Considerations for the Mail JavaBean and Tag

� Mail Attachments

� SendMailBean Description

� The sendMail Tag Description

For more information about the JavaMail API, refer to the following Sun
Microsystems Web site:

http://java.sun.com/products/javamail/1.2/docs/javadocs/index.html

General Considerations for the Mail JavaBean and Tag
Be aware of the following points, which apply to use of either the mail JavaBean
(SendMailBean) or the mail tag (sendMail):

� The files mail.jar, containing the JavaMail packages, and jaf.jar, for the
JavaBeans Activation Framework, must be in your classpath for mail
functionality. These files are provided with OC4J.

� To enable support for attachments, the file sendmail.properties must exist,
with an appropriate setting, in the application /WEB-INF directory. See
"Enabling Attachments" on page 8-28.

Note: In Oracle Application Server, the mail JavaBean and tag
require the OC4J environment; JServ is not supported.

Mail JavaBean and Tag

8-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� There is no particular limit to the size of an e-mail message, other than limits of
the JVM, system memory, or mail server.

� Setting up default mail sessions is specific to the particular Web server. The
current implementations of the mail bean and tag do not support automatic use
of the default mail session. As an alternative, you can write your own code to
obtain the default mail session if one exists for your platform, and to make the
session available to the mail bean or tag.

Mail Attachments
The mail bean and tag support the sending of attachments with e-mail messages.
(This support was introduced in the OC4J 9.0.3 implementation.) There are three
modes of operation:

� No support for attachments

� Support for attaching one or more files that are on the OC4J server machine,
known as server-side attachments

� Support for attaching one file that is on the client machine, known as a
client-side attachment

For a client-side attachment, the file is automatically uploaded to the server
machine as part of the process. Multiple client-side attachments are not supported.

Enabling Attachments
Whether attachments are enabled, and which kind of attachments, is determined by
a sendmail.properties file in the application /WEB-INF directory. A file with
the following content disables attachments:

email attachment permissions
sendmail.attachment=none

You must create this file in /WEB-INF and update it appropriately for any OC4J
instance that will use mail attachments.

Any single application can support server-side attachments or client-side
attachments, but not both.

To enable server-side attachments, change the setting to server, as follows:

sendmail.attachment=server

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-29

To enable client-side attachments, change the setting to client:

sendmail.attachment=client

Having multiple settings is an error condition.

Sending Attachments
For the mail tag, if server-side attachments are enabled, use the
serverAttachment tag attribute if you want to specify one or more server-side
files to attach to a message. If client-side attachments are enabled, use the
clientAttachment tag attribute if you want to specify a client-side file to attach
to a message (maximum of one file). See "The sendMail Tag Description" on
page 8-35. Note that either one of the two attachment modes, but not both, can be
supported for any single application.

For both the server attachment mode and the client attachment mode, the mail bean
includes methods to specify or retrieve the name (or names) of the file (or files) to
attach. See information about setServerAttachment(),
getServerAttachment(), setClientAttachment(), and
getClientAttachment() in "SendMailBean Method Descriptions" on page 8-31.

With either the mail tag or mail bean, a list of server-side files to attach can be either
comma-delimited or semicolon-delimited, but not space-delimited (given that
spaces are allowed in file names in some operating systems).

Attachment Usage Notes
Be aware of the following usage notes for mail attachments, applying to both the
mail tag and mail bean.

� For a client-side file attachment, the file-access httpUpload tag is used behind
the scenes. The file is uploaded to a temporary location on the OC4J server
machine, then deleted once the message has been sent. Any limitations or
requirements of the httpUpload tag apply to a client-side mail attachment as
well. See "File Upload and Download Tag Descriptions" on page 8-18.

� Many e-mail servers have somewhat restrictive size limitations, often
approximately 4 MB for any one attachment. The only restrictions for the mail
tag or bean are according to disk or memory limitations of the server machine.

Note: The absence of a sendmail.properties file is treated as
equivalent to the presence of sendmail.properties with a
setting of none. Mail attachments are disabled in this case.

Mail JavaBean and Tag

8-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� If a problem is encountered with any attachment, the e-mail message is
terminated.

� Path names are not exposed to the mail recipient in either the server attachment
or client attachment mode. Only the file name itself is indicated.

� For server-side attachments, attaching multiple files of the same name (but
obviously with different paths) is supported. How this is handled at the
recipient end, regarding any possible file renaming to avoid conflict, is
according to the mail client being used. Similarly, in either attachment mode,
the mail client might rename a file if an attachment has the same name as an
attachment to a previous message. This is all beyond the scope and control of
the OC4J mail attachment feature.

� You cannot use wild-card characters for file names.

SendMailBean Description
The oracle.jsp.webutil.email.SendMailBean JavaBean is supplied with
OC4J to support e-mail functionality from servlet or JSP applications. To use it in a
JSP page, you can instantiate it through the standard jsp:useBean tag. (For JSP
applications, however, you would typically use the sendMail tag instead of
SendMailBean. See "The sendMail Tag Description" on page 8-35.)

SendMailBean Requirements
To use SendMailBean, verify that the files ojsputil.jar, mail.jar, and
activation.jar are installed and in your classpath. These files are supplied with
OC4J.

When you use SendMailBean in your code, you must provide the following:

� Message sender

Use the setSender() method to specify the sender.

� Primary recipient (or recipients) of the message

Use the setRecipient() method to specify the primary recipient (or
recipients).

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-31

� Valid JavaMail session object (javax.mail.Session), either directly or
indirectly

There are three ways to supply a JavaMail session:

– Use the setHost() method to specify a host system. In this case, a
JavaMail session object will be created automatically.

– Use the setMailSession() method to provide a JavaMail session object
directly.

– For JSP applications, use the setSession() method to specify the name of
a JavaMail session object that already exists and is accessible through a
"session string, javax.mail.Session object" pair in the JSP page context.
In this case, you must supply the page context instance as an input
parameter when you call the sendMessage() method to send the e-mail
message.

All other SendMailBean attributes are optional.

SendMailBean Method Descriptions
This section lists and describes SendMailBean methods to send mail messages,
close mail sessions, and set or get bean attributes.

Here are the public SendMailBean methods:

� void sendMessage()

� void sendMessage(javax.servlet.jsp.PageContext)

Use the sendMessage() method to send the e-mail message.

If you use the setSession() method to supply a JavaMail session, then you
must use the sendMessage(PageContext) signature and provide the page
context instance that holds the specified mail session instance.

If you use the setMailSession() or setHost() method to supply a
JavaMail session, then you do not have to provide a page context in using the
sendMessage() method.

Also be aware, however, that specifying a page context instance might be
relevant in determining the character set of an e-mail message with a "text"

Note: To comply with the JavaBean specification, SendMailBean
has a no-argument constructor.

Mail JavaBean and Tag

8-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

content type. If you provide no page context when invoking the
sendMessage() method, then the default character set is ISO-8859-1. If you
do provide a page context, then the default character set is that of the response
object of the page context. Also note that you can specify the content type and
character set directly through the setContentType() method.

� void close()

Use this method if you want to release the resources of the JavaMail session
instance from the SendMailBean instance. This method does not actually close
the session.

� void setBcc(String s)

Specify a space-delimited or comma-delimited list of any IDs (e-mail addresses
or aliases) to receive blind copies of the message. These IDs will be suppressed
from the message Cc field.

� String getBcc()

Retrieve the list of IDs to receive blind copies of the message.

� void setCc(String s)

Specify a space-delimited or comma-delimited list of any IDs (e-mail addresses
or aliases) to receive copies of the message. These IDs will appear in the
message Cc field.

� String getCc()

Retrieve the list of IDs to receive copies of the message.

� void setContent(String s)

Specify the contents of the e-mail message.

� String getContent()

Retrieve the contents of the e-mail message.

� void setContentEncoding(String s)

Specify the content encoding of the e-mail message. Specify "base64" or "B" for
base64 encoding, "quoted-printable" or "Q" for quoted-printable encoding,
"7bit" for seven-bit encoding, or "8bit" for eight-bit encoding. These content
encodings are part of the JavaMail and RFC 2047 standards. Entries are
case-insensitive.

The default content encoding setting is "null", in which case the encoding of
the message and headers will be determined by the content. If most characters

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-33

to be encoded are in ASCII, then quoted-printable encoding will be used;
otherwise, base64 encoding will be used.

� String getContentEncoding()

Retrieve the content encoding of the message.

� void setContentType(String s)

Specify the MIME type and optionally the character set of the message, such as
in the following examples:

setContentType("text/html");

setContentType("text/html; charset=US-ASCII");

The default MIME type setting is "text/plain", but you cannot specify a
character set without explicitly specifying that or some other "text/xxxx"
MIME type setting.

The default character set depends on whether you provide a JSP page context
instance when you call the sendMessage() method to send the e-mail
message. If you provide no page context, then the default character set is
ISO-8859-1. If you do provide a page context, then the default character set is
that of the response object of the page context.

� String getContentType()

Retrieve the MIME type (and character encoding, if applicable) of the message.

� void setHost(String s)

One of the ways to supply a JavaMail session is to specify a mail server host
name, in which case SendMailBean will obtain a session automatically. Use
the setHost() method for this purpose, providing a mail host name such as
"gmail.oraclecorp.com".

See "SendMailBean Requirements" on page 8-30 for an overview of supplying
the JavaMail session.

� String getHost()

Retrieve the specified mail server host name.

� void setMailSession(javax.mail.Session sessobj)

One of the ways to supply a JavaMail session is to provide the session object
directly. Use the setMailSession() method for this purpose, providing a
javax.mail.Session instance.

Mail JavaBean and Tag

8-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

See "SendMailBean Requirements" on page 8-30 for an overview of supplying
the JavaMail session.

� javax.mail.Session getMailSession()

This returns a JavaMail session that you had previously set.

� void setRecipient(String s)

Specify a space-delimited or comma-delimited list of IDs (e-mail addresses or
aliases) of the primary recipients of the message. These IDs will appear in the To
field of the message. You must specify at least one recipient.

� String getRecipient()

Retrieve the list of IDs of the primary recipients of the message.

� void setSender(String s)

Specify the ID (e-mail address or alias) of the message sender. This ID will
appear in the From field of the message. You must specify the sender.

� String getSender()

Retrieve the ID of the message sender.

� void setSession(String s)

One of the ways to supply a JavaMail session is to provide the name of a
javax.mail.Session instance that already exists in the JSP page context
object. Use the setSession() method for this purpose, specifying the name of
the session instance.

In this case, when you use the sendMessage() method to send the e-mail
message, you must provide the javax.servlet.jsp.PageContext instance
as input.

See "SendMailBean Requirements" on page 8-30 for an overview of supplying
the JavaMail session.

� String getSession()

Retrieve the name of the session instance.

� void setSubject(String s)

Specify the subject line of the message.

� String getSubject()

Retrieve the subject line of the message.

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-35

� void setServerAttachment(String s)

Specify a comma-delimited or semicolon-delimited list of file names (including
paths), for server-side files to attach to an e-mail message. These must be files
on the OC4J server machine. Server-side attachments must be enabled in the
sendmail.properties file.

� String getServerAttachment()

Retrieve the file name list for server-side files to attach to the message. This
might be useful in presenting a user confirmation page, for example.

� void setClientAttachment(String s)

Specify the path and file name of the client-side file to attach to the e-mail
message (maximum of one). This must be a file on the user’s client machine.
Client-side attachments must be enabled in the sendmail.properties file.

� String getClientAttachment()

Retrieve the name of the client-side file to attach to the message. This might be
useful in presenting a user confirmation page, for example.

The sendMail Tag Description
As a convenience for JSP developers, OC4J supplies the sendMail tag to provide
e-mail functionality for a JSP page. The following sections describe the tag:

� The sendMail Tag Syntax

� The sendMail Tag Attribute Descriptions

� Sample Application for sendMail Tag

Be aware of the following requirements for the sendMail tag:

� Verify that the files ojsputil.jar, mail.jar, and activation.jar are
installed and in your classpath. These files are supplied with OC4J;
ojsputil.jar is in the "well-known" tag library directory.

Note: Regarding mail attachments, see "Mail Attachments" on
page 8-28 for related information. Be aware that for any one
application, you can use server-side attachments or client-side
attachments but not both.

Mail JavaBean and Tag

8-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� In the current implementation, the sendMail tag has its own tag library
descriptor, email.tld. This must be available to the application, and any JSP
page using the tag must have an appropriate taglib directive. In an Oracle
Application Server installation, the TLD is in ojsputil.jar. The uri value
for email.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/email.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

The sendMail Tag Syntax
The sendMail tag has the following syntax:

<mail:sendMail host = "SMTP_host_name" | session = "JavaMail_session_name"
 sender = "sender_address"
 recipient = "primary_recipient_IDs"
 [cc = "cc_recipient_IDs"]
 [bcc = "bcc_recipient_IDs"]
 [subject = "subject_line"]
 [contentType = "MIME_type; [charset=charset]"]
 [contentEncoding = "B"|"base64"|"Q"|"quoted-printable"|
 "7bit"|"8bit"]
 [serverAttachment = "server_file_list" |
 clientAttachment = "client_file"] >
...
E-mail body
...
</mail:sendMail>

sendMail Tag Usage Notes Be aware of the following when using the sendMail tag:

� The sender and recipient attributes are required, and either the host or
session attribute is required.

� Multiple recipients, cc targets, or bcc targets are space-delimited or
comma-delimited.

� Use of serverAttachment assumes server-side attachments are enabled in
the sendmail.properties file. Similarly, use of clientAttachment
assumes client-side attachments are enabled in sendmail.properties. Only
one mode can be enabled for a single application. See "Enabling Attachments"
on page 8-28.

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-37

� File names in the serverAttachment setting can be comma-delimited or
semicolon-delimited, but not space-delimited.

� The e-mail body can contain JSP syntax, which will be processed by the JSP
translator.

� Attributes used by the tag are typically input by the user in form fields. All
attributes accept request-time expressions.

� The prefix "mail:" is used in the tag syntax here. This is by convention but is not
required. You can specify any desired prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general information
about tag syntax conventions in this manual.

The sendMail Tag Attribute Descriptions
The sendMail tag supports the following attributes:

� host (required if session is not specified): This is the appropriate mail host
name, such as "gmail.oraclecorp.com". This is used in creating a JavaMail
session object for the mail message. Alternatively, you can determine a JavaMail
session through the session attribute.

� session (required if host is not specified): This is the name of an existing
JavaMail session object that can be retrieved from the JSP page context.
Alternatively, you can determine a JavaMail session through the host attribute.

� sender (required): This is the ID (e-mail address or alias) of the sender of the
message. This ID will appear in the From field of the message.

� recipient (required): This is a space-delimited or comma-delimited list of IDs
of the primary recipients of the message. These IDs will appear in the To field of
the message.

� cc : This is a space-delimited or comma-delimited list of IDs to receive a copy of
the message. These IDs will appear in the Cc field of the message.

� bcc : This is a space-delimited or comma-delimited list of IDs to receive a blind
copy of the message. These IDs will be suppressed from the Cc field.

� subject: This is the subject line of the message.

� contentType: This is for the MIME type of the message, and optionally a
character set as well, as in the following examples:

contentType="text/html"
contentType="text/html; charset=US-ASCII"

Mail JavaBean and Tag

8-38 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The default MIME type setting is "text/plain", but you cannot specify a
character set without explicitly specifying that or some other text/xxxx
MIME type.

The default character set is that of the response object of the JSP page context.

� contentEncoding: Specify "B" or "base64" for base64 encoding, "Q" or
"quoted-printable" for quoted-printable encoding, "7bit" for seven-bit
encoding, or "8bit" for eight-bit encoding. These are standard JavaMail and
RFC 2047 encodings. Entries are case-insensitive.

The default content encoding setting is "null", in which case the encoding of
the message and headers will be determined by the content. If most characters
to be encoded are in ASCII, then quoted-printable encoding will be used.
Otherwise, base64 encoding will be used.

� serverAttachment: This is a comma-delimited or semicolon-delimited list of
server-side files to attach to the e-mail message. Server-side attachments must
be enabled in the sendmail.properties file.

Here is an example:

serverAttachment="/tmp/confirm.pdf,/home/schedule.doc"

� clientAttachment: This is the name of a client-side file (maximum of one) to
attach to the e-mail message. Client-side attachments must be enabled in the
sendmail.properties file.

Here is an example:

clientAttachment="c:\finance\budget02.xls"

Sample Application for sendMail Tag
This sample application illustrates use of the sendMail tag with no attachments.
During the first execution cycle through the page, before the user has specified the
sender (or anything else), the HTML form is displayed for user input. During the
next execution cycle through the page, after the user has sent the input, the

Note: Regarding e-mail attachments, see "Mail Attachments" on
page 8-28 for related information. Be aware that for any one
application, you can use server-side attachments or client-side
attachments but not both.

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-39

sendMail tag is executed. This page also uses an error page, error.jsp (shown
below), to display any exceptions that are thrown.

<%@ page language="java" errorPage="error.jsp" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/email.tld"
 prefix="mail" %>
<% if (request.getParameter("sender")==null) { %>
<HTML>
<HEAD><TITLE>SendMail Sample</TITLE></HEAD>
<FORM METHOD=post>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH="20%">
<TR><TD>Host:</TD><TD><INPUT TYPE="text" name="host" ></TD></TR>
<TR><TD>From:</TD><TD><INPUT TYPE="text" name="sender" ></TD></TR>
<TR><TD>To:</TD><TD><INPUT TYPE="text" name="recipient" ></TD></TR>
<TR><TD>Cc:</TD><TD><INPUT TYPE="text" name="cc" ></TD></TR>
<TR><TD>Bcc:</TD><TD><INPUT TYPE="text" name="bcc" ></TD></TR>
<TR><TD>Subject:</TD><TD><INPUT TYPE="text" name="subject"
VALUE="Hi"></TD></TR>
</TABLE>

<TEXTAREA name="body" ROWS=4 COLS=30>"How are you!"</TEXTAREA>

<INPUT TYPE="submit" value="Send">
</FORM>
<%
}
else{
%>
<BODY BGCOLOR="#FFFFFF">
<P>Result:
 <HR>
 <mail:sendMail host='<%=request.getParameter("host")%>'
 sender='<%=request.getParameter("sender")%>'
 recipient='<%=request.getParameter("recipient")%>'
 cc='<%=request.getParameter("cc")%>'
 bcc='<%=request.getParameter("bcc")%>'
 subject='<%=request.getParameter("subject")%>'>
 <%=request.getParameter("body")%>
 </mail:sendMail>
Sent out Successfully!
 <HR>
</BODY>
<%
}
%>
</HTML>

Mail JavaBean and Tag

8-40 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Here is the error page, error.jsp:

<%@ page language="java" isErrorPage="true"%>
<HTML>
Error: <%= exception.getMessage() %>
</HTML>

When you run this application, you will initially see the following default screen:

Mail JavaBean and Tag

File Access and Mail Beans and Tags 8-41

And here is sample user input for a message from brian.wright@oracle.com to
blodney.treehut@oracle.com through the host gmail.oraclecorp.com:

Mail JavaBean and Tag

8-42 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Utilities and Utility Tags 9-1

9
JSP Utilities and Utility Tags

This chapter, consisting of the following sections, documents various OC4J utility
features for JSP pages:

� JSP Event-Handling with JspScopeListener

� EJB Tags

� General Utility Tags

JSP Event-Handling with JspScopeListener

9-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling with JspScopeListener
In standard servlet and JSP technology, only session-based events are supported.
Oracle extends this support to page-based, request-based, and application-based
events through the JspScopeListener interface and JspScopeEvent class in
the oracle.jsp.event package.

JspScopeListener functionality is documented in the following sections,
concluding with examples:

� General Use of JspScopeListener

� Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments

� Examples Using JspScopeListener

General Use of JspScopeListener
For Java objects in your application, implement the JspScopeListener interface
in the appropriate class, then attach objects of that class to a JSP scope using tags
such as jsp:useBean.

When the end of a scope is reached, objects that implement JspScopeListener
and have been attached to the scope will be notified. The JSP container
accomplishes this by sending a JspScopeEvent instance to such objects through
the outOfScope() method specified in the JspScopeListener interface.

This event listener mechanism significantly benefits developers who want to always
free object resources that are of page or request scope, regardless of error
conditions. It frees these developers from having to surround their page
implementations with Java try/catch/finally blocks.

Properties of the JspScopeEvent object include the following:

� Scope that is ending, represented by one of the int constants PAGE_SCOPE,
REQUEST_SCOPE, SESSION_SCOPE, or APPLICATION_SCOPE

You can retrieve this scope with the following JspScopeEvent method:

public int getScope()

� Container object that is the repository for objects at this scope, one of the
implicit objects page, request, session, or application

This is the object that manages the relevant scope. You can retrieve this object
with the following JspScopeEvent method:

public java.lang.Object getContainer()

JSP Event-Handling with JspScopeListener

JSP Utilities and Utility Tags 9-3

� Name of the object to which the notification pertains

This is the name of the instance of the class that implements
JspScopeListener. The instance of this class is an attribute of either the
page, request, session, or application object (as applicable), so this
instance name is the attribute name. You can retrieve this name with the
following JspScopeEvent method:

public String getName()

� JSP implicit application object

You can retrieve this with the following JspScopeEvent method:

public ServletContext getApplication()

The JspScopeEvent class has a constructor as follows:

public JspScopeEvent (ServletContext sc, Object container, String name,
 int scope)

Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments
JspScopeListener uses different mechanisms to support the different scopes,
though all are implemented according to servlet and JSP standards.

For pages running in an OC4J environment, there is also an OC4J-specific runtime
implementation for page scope, for convenience.

These features are covered in the following sections:

� Requirements for JspScopeListener

� Runtime and Tag Implementations to Support Page Scope

� Servlet Filter Implementation to Support Request Scope

� Listener Class Implementation to Support Application Scope

� Integration with HttpSessionBindingListener to Support Session Scope

JSP Event-Handling with JspScopeListener

9-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Requirements for JspScopeListener
The JspScopeListener implementation requires the following:

� The oracle.jsp.event.JspScopeListener interface and
JspScopeEvent class, and the classes of the oracle.jsp.event.impl
package, all of which are supplied in the ojsp.jar file

� A servlet 2.3 or higher environment (such as OC4J)

Runtime and Tag Implementations to Support Page Scope
For OC4J and JServ environments, there is support for page scope functionality
through an Oracle-specific runtime implementation. For OC4J, enable this by
setting the JSP check_page_scope configuration parameter to true. The default
is false, for performance reasons. (For JServ, page scope checking is always
enabled and check_page_scope has no effect.)

For portability to other environments, there is also an implementation to support
page scope through a custom tag, checkPageScope. Put the appropriate code
between the checkPageScope start-tag and end-tag. This tag, with no attributes, is
defined as follows:

<!-- The checkPageScope tag -->
<tag>
 <name>checkPageScope</name>
 <tagclass>oracle.jsp.jml.tagext.CheckPageScopeListenerTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 To provide the notification logic for any
 JspScopeListener stored in page scope.
 This tag is not needed on
 JServ or OC4J.
 </info>
</tag>

Here is an example of its use:

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/jml.tld"
 prefix="jml" %>
<jml:checkPageScope>
pagescope.jsp
<jsp:useBean id="tb" class="testpkg.TestData" />
<%
 /* testpkg.TestData implements oracle.jsp.event.JspScopeListener.
 checkPageScope tag will provide the notification logic for any
 JspScopeListener stored in page scope.

JSP Event-Handling with JspScopeListener

JSP Utilities and Utility Tags 9-5

 This tag is not needed on JServ
 or OC4J.
 */
 // some more JSP / code here ...
%>
<%= new java.util.Date() %>
</jml:checkPageScope>

Servlet Filter Implementation to Support Request Scope
Objects of request scope are supported through a servlet filter. The filtering
applies to any servlets matching a specified URL pattern.

For support of event-handling for request-scope objects, add an entry such as the
following to the web.xml file for your application, or to orion-web.xml or
global-web-application.xml as appropriate. To ensure proper operation of
the JspScopeListener functionality, this setting must be after any other filter
settings.

<filter>
 <filter-name>Request Filter</filter-name>
 <filter-class>oracle.jsp.event.impl.RequestScopeFilter</filter-class>
</filter>
<!-- Define filter mappings for the defined filters -->
<filter-mapping>
 <filter-name>Request Filter</filter-name>
 <url-pattern>/jsp/*</url-pattern>
</filter-mapping>

Note: The checkPageScope tag is currently part of the Oracle
JML tag library, which is included in the ojsputil.jar file and
requires the jml.tld tag library descriptor file. An appropriate
taglib directive is shown in the preceding example. See
"Overview of the JSP Markup Language (JML) Tag Library" on
page 3-2 for related information.

Note: In this particular example, "/jsp/*" is the URL pattern
covered by the filter. Users can choose other patterns instead, such
as "/*.jsp" or "/*".

JSP Event-Handling with JspScopeListener

9-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Listener Class Implementation to Support Application Scope
Objects with application scope are supported through a servlet context listener
implementation class, in accordance with the servlet specification.

For support of event-handling for application-scope objects, add an entry such as
the following to the web.xml file for your application. To ensure proper operation
of the JspScopeListener functionality, this setting must be after any other
listener settings.

<listener>
 <listener-class>oracle.jsp.event.impl.AppScopeListener</listener-class>
</listener>

For an application-scope object, in addition to notification upon the conclusion of
the application and servlet context, there is notification when an attribute is
replaced in the servlet context or removed from the servlet context. For example, the
listener outOfScope() method of an application-scope object is called in either of
the following circumstances, assuming a servlet context object ctx:

ctx.setAttribute("name", "Smith");
...
ctx.setAttribute("name, "Jones");

or:

ctx.setAttribute("name", "Smith");
...
ctx.removeAttribute("name");

Integration with HttpSessionBindingListener to Support Session Scope
For session-scope objects, you can write a class that implements both the
JspScopeListener interface and the standard
javax.servlet.http.HttpSessionBindingListener interface. This would
give you the flexibility of supporting instances of this class for other scopes as well.
If instances would never be used outside of session scope, however, there is no
need to implement JspScopeListener.

Note: This functionality was not available prior to Oracle9iAS
Release 2.

JSP Event-Handling with JspScopeListener

JSP Utilities and Utility Tags 9-7

In the integration scenario, the valueUnbound() method, specified in the
HttpSessionBindingListener interface, should call the outOfScope()
method that is specified in the JspScopeListener interface.

Following is a basic example:

import oracle.jsp.event.impl.*;
import javax.servlet.*;
import javax.servlet.http.*;

class SampleObj implements HttpSessionBindingListener,JspScopeListener
{
 public void valueBound(HttpSessionBindingEvent e)
 {
 System.out.println("The object implements the JspScopeListener also");
 }

 public void valueUnBound(HttpSessionBindingEvent e)
 {
 try
 {
 outOfScope(new JspScopeEvent(null,(Object)e.getSession(),
 e.getName(),javax.servlet.jsp.PageContext.SESSION_SCOPE));
 } catch (Throwable e) {}

 }
 public void outOfScope(JspScopeEvent e)
 {...}
}

Examples Using JspScopeListener
This section provides two examples of JspScopeListener usage: a JSP page and
accompanying JavaBean, then a servlet.

Example: JSP Page Using JspScopeListener
This example consists of a JavaBean, ScopeDispatcher, that implements the
JspScopeListener interface, and a JSP page that uses ScopeDispatcher
instances for request-scope and application-scope functionality.

bookcatalog.jsp The bookcatalog.jsp page allows users to search for a book in
the catalog or insert a new book entry. The catalog is kept in a hashtable that is
initially read from the local file stream.

JSP Event-Handling with JspScopeListener

9-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

At the end of a request, if a new book has been submitted: 1) the book is entered
into the application-level catalog hashtable; 2) the book count is incremented.

At the end of execution of the application, the catalog hashtable is sent back to the
local file stream, the number of newly inserted books is shown, and query results
are displayed if there was a book search.

<%@ page import="java.util.*" %>
<%@ page import="java.io.*" %>
<%! static int newbookCount = 0; %>
<%! static Hashtable catalog; %>
<%! boolean bookAdded = false; %>
<html>
<head>
<title> BookStore Price catalog </title>
</head>
<body bgcolor="white">

<table color="#FFFFCC" width="100%" border="1" cellspacing="0" cellpadding="0" >
<tr>
<td>
<form action="bookcatalog.jsp">
 BookName
<input type="text" name="bookname">
<input type="submit" value="Get the Price">
</form>
</td>
<td>
<form action="bookcatalog.jsp">
BookName
<input type="text" name="new_book">

Price
<input type="text" name="price">
<input type="submit" value="Add to Catalog">
</form>
</td>
</tr>
</table>

<%
 String bookname = request.getParameter("bookname");
 catalog = (Hashtable) application.getAttribute("pricelist");

JSP Event-Handling with JspScopeListener

JSP Utilities and Utility Tags 9-9

 if (catalog == null)
 {
 try{
 ObjectInputStream oin = new ObjectInputStream
 (new FileInputStream("bookcatalog.out"));
 Object obj = oin.readObject();
 catalog = (Hashtable) obj;
 oin.close();
 }
 catch(Exception e) {
 catalog = new Hashtable();}
 application.setAttribute("pricelist",catalog);
 }
 if (bookname != null)
 {
 String price = (String) catalog.get(bookname.trim());
 if (price != null)
 {
 out.println("<h2>Book : " +bookname+ "</h2>");
 out.println("<h2>Price: "+price +"</h2>");
 }
 else
 out.println("<h2> Sorry, the Book : " + bookname + " is not available in
 the catalog</h2>");
 }
%>

<%-- declare the event dispatchers --%>
<jsp:useBean id = "requestDispatcher"
 class = "oracle.jsp.sample.event.ScopeDispatcher"
 scope = "request" >
 <jsp:setProperty name = "requestDispatcher" property = "page"
 value = "<%= this %>" />
 <jsp:setProperty name = "requestDispatcher" property = "methodName"
 value = "request_OnEnd" />
</jsp:useBean>

<jsp:useBean id = "appDispatcher"
 class = "oracle.jsp.sample.event.ScopeDispatcher"
 scope = "application" >
 <jsp:setProperty name = "appDispatcher" property = "page"
 value = "<%= this %>" />
 <jsp:setProperty name = "appDispatcher" property = "methodName"
 value = "application_OnEnd" />
</jsp:useBean>

JSP Event-Handling with JspScopeListener

9-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

<%!
 // request_OnEnd Event Handler
 public void request_OnEnd(HttpServletRequest request) {
 // acquire beans
 String newbook = request.getParameter("new_book");
 bookAdded = false;
 if ((newbook != null) && (!newbook.equals("")))
 {
 catalog.put(newbook,request.getParameter("price"));
 newbookCount++;
 bookAdded = true;
 }
 }
%>

<%!
 public void application_OnEnd(ServletContext application)
 {
 try
 {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("bookcatalog.out"));
 os.writeObject(catalog);
 os.flush();
 os.close();
 }
 catch (Exception e)
 {}
 }
%>

<%
if (bookAdded)
 out.println("<h2> The New book is been added in the catalog </h2>");
%>
<%-- Page implementation goes here --%>
<h2> Total number of books added is <%= newbookCount %></h2>

</body>
</html>

JSP Event-Handling with JspScopeListener

JSP Utilities and Utility Tags 9-11

ScopeDispatcher.java

package oracle.jsp.sample.event;
import java.lang.reflect.*;
import oracle.jsp.event.*;

public class ScopeDispatcher extends Object implements JspScopeListener {
 private Object page;
 private String methodName;
 private Method method;

 public ScopeDispatcher() {
 }

 public Object getPage() {
 return page;
 }

 public void setPage(Object page) {
 this.page = page;
 }

 public String getMethodName() {
 return methodName;
 }

 public void setMethodName(String m) throws NoSuchMethodException,
 ClassNotFoundException {
 method = verifyMethod(m);
 methodName = m;
 }

 public void outOfScope(JspScopeEvent ae) {
 int scope = ae.getScope();

 if ((scope == javax.servlet.jsp.PageContext.REQUEST_SCOPE ||
 scope == javax.servlet.jsp.PageContext.APPLICATION_SCOPE)
 && method != null) {
 try {
 Object args[] = {ae.getContainer()};
 method.invoke(page, args);
 } catch (Exception e) {
 // catch all and continue
 }
 }

JSP Event-Handling with JspScopeListener

9-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 }

 private Method verifyMethod(String m) throws NoSuchMethodException,
 ClassNotFoundException {
 if (page == null) throw new NoSuchMethodException(
 "A page hasn't been set yet.");

 // Don't know whether this is a request or page handler so try one then
 // the other
 Class c = page.getClass();
 Class pTypes[] = {Class.forName("javax.servlet.ServletContext")};

 try {
 return c.getDeclaredMethod(m, pTypes);
 } catch (NoSuchMethodException nsme) {
 // fall through and try the request signature
 }

 pTypes[0] = Class.forName("javax.servlet.http.HttpServletRequest");
 return c.getDeclaredMethod(m, pTypes);
 }
}

Example: Servlet Using JspScopeListener
This section contains a sample servlet that uses JspScopeListener functionality
for a request-scope object. The nested class DBScopeObj implements the
JspScopeListener interface.

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Enumeration;
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.jsp.event.*;
import oracle.jsp.event.impl.*;

public class RequestScopeServlet extends HttpServlet {

 PrintWriter out;

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 out = response.getWriter();

JSP Event-Handling with JspScopeListener

JSP Utilities and Utility Tags 9-13

 out.println("<html>");
 out.println("<body>");
 out.println("<head>");
 out.println("<title> RequestScopeServlet! </title>");
 out.println("</head>");
 response.setContentType("text/html");
 DBScopeObj aobj = new DBScopeObj();
 request.setAttribute("dbcon",aobj);
 request.setAttribute("name","scott");
 request.setAttribute("company","oracle");
 request.setAttribute("city","sanmateo");
 Enumeration en = request.getAttributeNames();
 out.println("
 Request Attributes :

");
 while (en.hasMoreElements()) {
 String key = (String)en.nextElement();
 Object value = request.getAttribute(key);
 out.println(key + " : " + value+"
");
 }
 out.println("</body>");
 out.println("</html>");
 }

 class DBScopeObj implements JspScopeListener
 {
 public void initDBConnection()
 {
 // can create a minimum number of predefined
 // DBConnections
 }

 DBScopeObj()
 {
 // if DBconnection is available in the connection
 // pool then pickup from the pool and give the handle.
 }

 public void outOfScope(JspScopeEvent e)
 {
 ServletContext ctx = e.getApplication();
 out.println
 ("
***");
 out.println("
 JspScopeEvent
");
 out.println("<BLINK>");
 out.println
 ("
 In outOfScope method for the Request Attribute
");

JSP Event-Handling with JspScopeListener

9-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 out.println("Name = " +e.getName() + "
");
 out.println("</BLINK>");
 out.println
 ("***
");
 // logging in the context also

 ctx.log("***");
 ctx.log(" JspScopeEvent ");
 ctx.log(" In outOfScope method for the Request Attribute ");
 ctx.log("Name = " +e.getName());
 ctx.log("***");
 returnDBConnection();
 }

 public void returnDBConnection()

 {
 //Can return the handle to the connection pool
 }
 }
}

EJB Tags

JSP Utilities and Utility Tags 9-15

EJB Tags
OC4J provides a custom tag library to simplify the use of Enterprise JavaBeans in
JSP pages. The library includes tags to create a home instance, create an EJB
instance, and iterate through a collection of EJBs.

The functionality of the OC4J EJB tags follows the J2EE specification. The tags allow
you to instantiate EJBs by name, using configuration information in the web.xml
file. One of the tags is a useBean tag, with functionality similar to that of the
jsp:useBean tag for invoking a regular JavaBean.

The following sections document the tags, concluding with examples:

� EJB Tag Configuration

� EJB Tag Descriptions

� EJB Tag Examples

EJB Tag Configuration
Use an <ejb-ref> element in your application web.xml file for each EJB you will
use, as in the following example:

<ejb-ref>
 <ejb-ref-name>ejb/DemoSession</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>ejbdemo.DemoSessionHome</home>
 <remote>ejbdemo.DemoSession</remote>
</ejb-ref>

The <ejb-ref> element and its subelements, or <ejb-local-ref> to use local
interfaces, are used according to the servlet specification. Briefly, this is as follows:

� The <ejb-ref-name> subelement specifies a reference name that can be used
by other components of a J2EE application to access this component. For
example, this name could be used in a location value.

� The <ejb-ref-type> subelement specifies the category of EJB.

� The <home> subelement specifies the package and type of the EJB home
interface. Alternatively, use the <local-home> subelement for EJB local
interfaces.

� The <remote> subelement specifies the package and type of the EJB remote
interface. Alternatively, use the <local> subelement for EJB local interfaces.

EJB Tags

9-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

These values are reflected in attribute values of the EJB tags.

See the Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide for additional information about EJB development and configuration.

EJB Tag Descriptions
This section provides syntax and attribute descriptions for the OC4J EJB tags. Be
aware of the following requirements:

� Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

� The tag library descriptor, ejbtaglib.tld, must be available to the
application, and any JSP page using the library must have an appropriate
taglib directive. In an Oracle Application Server installation, the TLD is in
ojsputil.jar. The uri value for ejbtaglib.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/ejbtaglib.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

The following sections provide information about the EJB tags:

� EJB useHome Tag

� EJB useBean Tag

� EJB createBean Tag

� EJB iterate Tag

Notes:

� The prefix "ejb:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

EJB Tags

JSP Utilities and Utility Tags 9-17

When first creating an EJB instance, you will have to use a useHome tag to create a
home interface instance. Then use the following as appropriate:

� To create a single EJB instance: a useBean tag, and either the useBean tag
value attribute or a nested createBean tag

� To create a collection of EJB instances and iterate through them (more typical for
entity beans): an iterate tag

After an EJB instance is created, it is placed in the appropriate scope object. You will
need only a useBean tag to access it subsequently.

EJB useHome Tag
The useHome tag looks up the home interface for the EJB and creates an instance of
it.

Syntax

<ejb:useHome id = "home_instance_name"
 type = "home_interface_type"
 location = "home_lookup_name"
 [local = "true" | "false"] />

This tag uses no body.

Attributes

� id (required): Specify a name for the home interface instance. This can be for
either a local or remote home interface, depending on the setting of the local
attribute. The instance is accessible from the start-tag to the end of the page.

� type (required): This is for the name (Java type) of the home interface.

� location (required): This is a JNDI name used to look up the home interface
of the desired EJB within the application.

� local: Set this to "true" to use the local home interface. The default value is
"false", to use the remote home interface. If local="true" for the useHome
tag, this must also be the case for the useBean tag.

Example

<ejb:useHome id="aomHome" type="com.acme.atm.ejb.AccountOwnerManagerHome"
 location="java:comp/env/ejb/accountOwnerManager" />

EJB Tags

9-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB useBean Tag
Use the EJB useBean tag for instantiating and using the EJB. The id, type, and
scope attributes are used as in a standard jsp:useBean tag that instantiates a
regular JavaBean.

You can use one of two mechanisms when you first instantiate the EJB:

� The value attribute

or:

� A nested EJB createBean tag

When using a nested createBean tag, the EJB instance is implicitly returned into
the value attribute of the parent useBean tag. Once the EJB is instantiated, value
attributes and nested createBean tags are unnecessary for subsequent useBean
tags using the same EJB instance.

Syntax

<ejb:useBean id = "EJB_instance_name"
 type = "EJB_class_name"
 [value = "<%=Object%>"]
 [scope = "page" | "request" | "session" | "application"]
 [local = "true" | "false"] >

... nested createBean tag for first instantiation, if no value attribute ...

</ejb:useBean>

Attributes

� id (required): Specify an instance name for the EJB.

� type (required): Specify the class name for the EJB.

� value: When first instantiating the EJB, if you do not use a nested
createBean tag, you can use the value attribute to return an EJBObject
instance to narrow. This is a mechanism for instantiating the EJB.

� scope: Specify the scope of the EJB instance. The default scope setting is
"page".

Note: See "EJB iterate Tag" on page 9-19 for how to use a collection
of EJB instances.

EJB Tags

JSP Utilities and Utility Tags 9-19

� local: Set this to "true" to use the local home interface. The default value is
"false", to use the remote home interface. If local="true" for the useBean
tag, this must also be the case for the useHome tag.

Example This example shows the use of an EJB that has already been instantiated.

<ejb:useBean id="bean" type="com.acme.MyBean" scope="session" />

EJB createBean Tag
For first instantiating an EJB, if you do not use the value attribute of the EJB
useBean tag, you must nest an EJB createBean tag within the useBean tag to do
the work of creating the EJB instance. This will be an EJBObject instance. The
instance is implicitly returned into the value attribute of the parent useBean tag.

Syntax

<ejb:createBean instance = "<%=Object%>" />

This tag uses no body.

Attributes

� instance (required): This is to return the EJB, a created EJBObject instance.

Example In this createBean tag, the create() method of the EJB home interface
instance creates an instance of the EJB.

<ejb:useBean id="bean" type="com.acme.MyBean" scope="session">
 <ejb:createBean instance="<%=home.create()%>" />
</ejb:useBean>

EJB iterate Tag
Use this tag to iterate through a collection of EJB instances. This is more typical for
entity beans, because standard finder methods for entity beans return collections.

In the start-tag, obtain the collection through finder results from the home interface.
In the tag body, iterate through the collection as appropriate.

Note: You cannot use local="true" if scope="session" in a
distributable application.

EJB Tags

9-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Syntax

<ejb:iterate id = "EJB_instance_name"
 type = "EJB_class_name"
 collection = "<%=Collection%>"
 [max = "<%=Integer%>"] >

... body ...

</ejb:iterate>

The body is evaluated once for each EJB in the collection.

Attributes

� id (required): This is an iterator variable, the EJB instance name for each
iteration.

� type (required): This is the EJB class name.

� collection (required): This is to return the EJB collection.

� max: Optionally specify a maximum number of beans to iterate through.

Example

<ejb:iterate id="account" type="com.acme.atm.ejb.Account"
 collection="<%=accountManager.getOwnerAccounts()%>"
 max="100">
 <jsp:getProperty name="account" property="id" />
</ejb:iterate>

EJB Tag Examples
This section provides examples of EJB tag usage, one using a session bean and one
using an entity bean.

Note: See "EJB useBean Tag" on page 9-18 for how to use a single
EJB instance.

EJB Tags

JSP Utilities and Utility Tags 9-21

EJB Tag Session Bean Example
This example relies on the following configuration in the application web.xml file:

<ejb-ref>
 <ejb-ref-name>ejb/DemoSession</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>ejbdemo.DemoSessionHome</home>
 <remote>ejbdemo.DemoSession</remote>
</ejb-ref>

Here is the sample code:

<%@ page import="ejbdemo.*" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/ejbtaglib.tld"
 prefix="ejb" %>
<html>
<head> <title>Use EJB from JSP</title> </head>
<body>

<ejb:useHome id="home" type="ejbdemo.DemoSessionHome"
 location="java:comp/env/ejb/DemoSession" />
<ejb:useBean id="demo" type="ejbdemo.DemoSession" scope="session" >
 <ejb:createBean instance="<%=home.create()%>" />
</ejb:useBean>
<heading2> Enterprise Java Bean: </heading2>
 <p> My name is "<%=demo.getName()%>". </p>
</body>
</html>

This sample code accomplishes the following:

� It creates the home instance of the EJB home interface. Note that the type value
of the useHome tag matches the value of the <home> subelement of the
<ejb-ref> element in the web.xml file. Also, the location value of
useHome reflects the value of the <ejb-ref-name> subelement of the
<ejb-ref> element.

� It uses the home.create() method to create the demo instance of the EJB.
Note that the type value of the useBean tag matches the value of the
<remote> subelement of the <ejb-ref> element in the web.xml file.

� It uses the demo.getName() method to print a user name.

EJB Tags

9-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tag Entity Bean Example
This example relies on the following configuration in the application web.xml file:

<ejb-ref>
 <ejb-ref-name>ejb/DemoEntity</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>ejbdemo.DemoEntityHome</home>
 <remote>ejbdemo.DemoEntity</remote>
</ejb-ref>

Here is the sample code:

<%@ page import="ejbdemo.*" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/ejbtaglib.tld"
 prefix="ejb" %>
<html>
<head> <title>Iterate over EJBs from JSP</title> </head>
<body>

<ejb:useHome id="home" type="ejbdemo.DemoEntityHome"
 location="java:comp/env/ejb/DemoEntity" />
<% int i=0; %>
<ejb:iterate id="demo" type="ejbdemo.DemoEntity"
 collection="<%=home.findAll()%>" max="3" >
 <heading2> Bean #<%=++i%>: </heading2>
 My name is "<%=demo.getName()+"_"+ demo.getId()%>".
</ejb:iterate>
</body>
</html>

This sample code accomplishes the following:

� It creates the home instance of the EJB home interface. Note that the type value
of the useHome tag matches the value of the <home> subelement of the
<ejb-ref> element in the web.xml file. Also, the location value of
useHome reflects the value of the <ejb-ref-name> subelement of the
<ejb-ref> element.

� It uses the home.findAll() method to return a collection of EJBs. Note that
the type value in the iterate tag matches the value of the <remote>
subelement of the <ejb-ref> element in the web.xml file.

� It iterates through the collection, always using demo for the current instance,
and using the demo.getName() and demo.getId() methods to output
information from each EJB.

General Utility Tags

JSP Utilities and Utility Tags 9-23

General Utility Tags
OC4J provides miscellaneous utility tags to perform a number of operations. The
following sections contain details about the tags:

� Display Tags

� Miscellaneous Utility Tags

Note the following requirements for the utility tags:

� Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

� The tag library descriptor, utiltaglib.tld, must be available to the
application, and any JSP page using the library must have an appropriate
taglib directive. In an Oracle Application Server installation, the TLD is in
ojsputil.jar. The uri value for utiltaglib.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/utiltaglib.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

Notes:

� The prefix "util:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

General Utility Tags

9-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Display Tags
The following sections document syntax and attributes of the display tags:

� Utility displayCurrency Tag

� Utility displayDate Tag

� Utility displayNumber Tag

Utility displayCurrency Tag
This tag displays a specified amount of money, formatted as currency appropriate
for the locale. If no locale is specified, then the request object will be searched for
a locale. If none is found there, the system default locale is used.

Syntax

<util:displayCurrency amount = "<%=Double%>"
 [locale = "<%=Locale%>"] />

This tag uses no body.

Attributes

� amount (required): Specify the amount to format.

� locale: Optionally specify a locale, as a java.util.Locale instance.

Example

<util:displayCurrency amount="<%=account.getBalance()%>"
 locale="<%=account.getLocale()%>" />

Utility displayDate Tag
This tag displays a specified date, formatted appropriately for the locale. If no locale
is specified, the system default locale is used.

Syntax

<util:displayDate date = "<%=Date%>"
 [locale = "<%=Locale%>"] />

This tag uses no body.

General Utility Tags

JSP Utilities and Utility Tags 9-25

Attributes

� date (required): Specify the date to format, as a java.util.Date instance.

� locale: Optionally specify a locale, as a java.util.Locale instance.

Example

<util:displayDate date="<%=account.getDate()%>"
 locale="<%=account.getLocale()%>" />

Utility displayNumber Tag
This displays the specified number appropriately for the locale and optionally in the
specified format. If no locale is specified, the system default locale is used.

Syntax

<util:displayNumber number = "<%=Double%>"
 [locale = "<%=Locale%>"]
 [format = "<%=Format%>"] />

This tag uses no body.

Attributes

� number (required): Specify the number to format.

� locale: Optionally specify the locale, as a java.util.Locale instance.

� format: Optionally specify a format, as a java.text.Format instance.

Example

<util:displayNumber number="<%=shoe.getSize()%>" />

Miscellaneous Utility Tags
The following sections document syntax and attributes of the general utility tags:

� Utility ifInRole Tag

� Utility lastModified Tag

General Utility Tags

9-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Utility iterate Tag
Use this tag to iterate through a collection. Obtain the collection in the start-tag and
iterate through the collection in the body.

Syntax

<util:iterate id = "instance_name"
 type = "class_name"
 collection = "<%=Collection%>"
 [max = "<%=Integer%>"] >

... body ...

</util:iterate>

The body is evaluated once for each element in the collection.

Attributes

� id (required): This is an iterator variable, the instance name for each iteration.

� type (required): This is the class name; the collection is a set of instances of this
type.

� collection (required): This is the collection itself.

� max: Optionally specify a maximum number of elements to iterate through.

Example

<util:iterate id="contact" type="com.acme.connections.Contact"
 collection="<%=company.getContacts()%>" >
 <jsp:getProperty name="contact" property="name"/>
</util:iterate>

Utility ifInRole Tag
Use this tag to evaluate the tag body and include it in the body of the JSP page,
depending on whether the user is in the specified application role. The tag handler
executes the isUserInRole() method of the request object.

The concept of "role" is according to the servlet specification. Roles are defined in
<role> elements in the application web.xml file.

General Utility Tags

JSP Utilities and Utility Tags 9-27

Syntax

<util:ifInRole role = "<%=String%>"
 [include = "true" | "false"] >

 ... body to include ...

</util:ifInRole>

Attributes

� role (required): Specify the role to check, to see if the user included in this role.

� include: Use a "true" setting (the default) to include the body only if the user
is in the role. Use a "false" setting to include the body only if the user is not in
the role.

Example

<util:ifInRole role="users" include="true">
 Logged in as <%=request.getRemoteUser()%>

 <form action="logout.jsp">
 <input type="submit" value="Log out">

 </form>
</util:ifInRole>
<util:ifInRole role="users" include="false">
 <form method="POST">
 Username: <input name="j_username" type="text">

 Password: <input name="j_password" type="password">

 <input type="submit" value="Log in">
 </form>
</util:ifInRole>

Utility lastModified Tag
This tag displays the date of the last modification of the current file, appropriately
formatted for the locale. If no locale is specified, then the request object will be
searched for a locale. If none is found there, the system default locale is used.

Syntax

<util:lastModified
 [locale = "<%=Locale%>"] />

This tag uses no body.

General Utility Tags

9-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

� locale: Optionally specify the locale, as a java.util.Locale instance.

Example

<util:lastModified />

Personalization Tags 10-1

10
Personalization Tags

This chapter documents the tag library supplied with OC4J for use with Oracle
Application Server Personalization. Use of this library assumes that the OracleAS
Personalization product has been properly installed.

The chapter consists of the following section:

� Overview of Personalization

� Overview of Personalization Tag Functionality

� Personalization Tag and Class Descriptions

� Personalization Tag Library Configuration Files

For information about OracleAS Personalization itself, see the Oracle Application
Server Personalization Administrator’s Guide and the Oracle Application Server
Personalization Programmer’s Guide.

Overview of Personalization

10-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization
This section introduces personalization, first covering general concepts and then
providing an overview of the Oracle implementation in particular.

General Overview of Personalization
This overview covers general personalization concepts and describes the differences
between personalization and customization, concepts that are sometimes confused.

Personalization Concepts
Personalization is a mechanism to tailor recommendations to application users,
based on behavioral, purchasing, rating, and demographic data. Recommendations
are made in real-time, during a user’s application session. User behavior is saved to
a profile in a database repository for use in building models to predict future user
behavior.

In future user sessions, the models are used to predict behavior and desires of
similar users (or, within a single session, the same user), such as products or
services to purchase or Web sites to visit. The user will receive recommendations
based on these predictions.

The OracleAS Personalization tag library exposes two key functions of
personalization:

� Choosing the most relevant content to deliver, based on past user behavior as
collected in the user profile

� Embedding this personalized content into application output or Web pages in a
flexible manner

A typical personalization scheme might take any or all of the following into
account:

� User Web-surfing patterns

� Past user purchase activities

� Past user ratings of items

� Anticipated nature and degree of user interest (such as "buy" versus "like")

� User demographics, such as age, sex, and income

Overview of Personalization

Personalization Tags 10-3

Personalization Versus Customization
Personalization, as implemented by Oracle and described in this chapter, is a
complex and dynamic set of features that result in content being chosen
automatically and implicitly. It should not be confused with simpler and more static
Web site mechanisms that are often referred to as "personalization" but are really
simply "customization".

Many sites offer customization such as giving a user a set of possible topics of
interest—local weather, stocks of interest, or favorite sports, for example—then
displaying output based on the chosen topic. Although it is true that this
personalizes the content that is delivered, the process is static and requires explicit
user involvement. The focus of the content does not change until the user has an
opportunity to change it explicitly through another topic selection.

Personalization chooses content for the user automatically, without direct user
request. The process of choosing content is hidden. Moreover, as the system
becomes more familiar with user habits by observing behavior, it achieves increased
accuracy in predicting future behavior and interests.

Introduction to Oracle Application Server Personalization
OracleAS Personalization uses data mining algorithms in Oracle Database to choose
the most relevant content available for a user. Recommendations are calculated by
an OracleAS Personalization recommendation engine (defined in "Introduction to
Recommendation Engines" on page 10-5), typically using large amounts of data
regarding past and current user behavior. This approach is superior to others that
rely on common-sense heuristics and require manual definition of rules in the
system.

The application that uses OracleAS Personalization controls data collection, with
OracleAS Personalization itself providing targeted data. This process allows the
application to avoid collecting large volumes of data of only minimal usefulness.

The OracleAS Personalization tag library brings this functionality to a wide
audience of JSP developers for use in HTML, XML, or JavaScript pages. The tag

Note: The concept of personalization is not limited to Web sites
and Web applications. You can use personalization in any
application where there is appropriate data and a need for
personalized recommendations, such as CRM applications. Web
applications are the focus of this particular document, however.

Overview of Personalization

10-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

interface is layered on top of the lower-level Java API of the recommendation
engine.

Basis for Recommendations
Depending on the configuration and tuning of an OracleAS Personalization
environment, recommendations are based on one or more factors such as the
following:

� Past behavior of similar users, according to demographics

� Behavior of past users who have shown the same interests, such as a general
trend being established that users who look at items 1, 2, and 3 are likely to be
interested in items 5 and 6 as well, without considering the demographics or
profiles of the users

� Behavior of the same user earlier in the current session, allowing user-specific
personalization even for first-time users or anonymous visitors, as well as
providing a high degree of tuning regarding the purpose of the current visit

� Hot picks recommendations, based on current promotions, features of the week,
and so on, which might or might not account for user identity

Key Components
OracleAS Personalization includes the following key components:

� Mining table repository (MTR)

� Mining object repository (MOR)

� Recommendation engine farm, consisting of one or more recommendation
engines

� Recommendation engine Java API

These are all introduced in upcoming sections.

Introduction to Mining Table Repository
The OracleAS Personalization Mining Table Repository (MTR) contains the schema
and data to be used for data mining. It is a set of database tables and views
containing the following:

� Records of previous user behavior

� Data collected elsewhere and imported into the repository

� User demographics

Overview of Personalization

Personalization Tags 10-5

These factors are taken together for use in building models to predict future user
preferences.

Introduction to Models
A model is essentially a collection of rules deduced from user data. A simplified
example of a rule is "female over 55, income between $150,000 and $200,000,
recently purchased scuba tank and mask, likely to buy fins and thermal suit".

In OracleAS Personalization, a model is developed according to recorded facts
gathered from the mining table repository. Rules in the model are deduced strictly
from available data, not from general or common-sense assumptions of what might
be typical for a certain classification of person. How close a particular user’s
characteristics are to the rules of the best available model determines the likelihood
of the resulting recommendation being correct or appropriate.

Introduction to Mining Object Repository
The OracleAS Personalization Mining Object Repository (MOR) is a database schema
that maintains mining meta data and mining model results as defined in the
OracleAS Personalization data mining schema. The mining object repository serves
as the focus for logging in to the data mining system, logging off, and scheduling
OracleAS Personalization events. The building of models out of the mining table
repository is accomplished according to OracleAS Personalization data mining
algorithms.

It is possible to build different models out of the same data by tuning the relevant
algorithm to weigh different characteristics of the data more or less heavily.
Therefore, there might be multiple models in the mining object repository for a
given situation, but only one model is deployed into a recommendation engine at
any particular time.

Introduction to Recommendation Engines
An OracleAS Personalization Recommendation Engine (RE) is an Oracle Database
schema that downloads an OracleAS Personalization model during deployment,
then fetches appropriate user profile data from the mining table repository when
processing a request for recommendations. Each engine is responsible for activities
such as the following:

� Loading and holding model data

� Processing recommendation requests

� Collecting user profile data

Overview of Personalization

10-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

A recommendation engine processes recommendation requests at runtime and
produces personalized recommendations. It also tracks current user behavior at the
Web site, collecting user profile data during a session. This latter features allows
session-specific personalization for anonymous users and registered users alike.

Populating a recommendation engine involves building a model and then
deploying it to a recommendation engine schema, steps that happen behind the
scenes. The calculation of particular recommendations is accomplished by PL/SQL
stored procedures in the schema.

Introduction to Recommendation Engine Farms
A recommendation engine must be part of a recommendation engine farm. All engines
in a farm are loaded with the same model and can be used interchangeably. It is
permissible for a farm to consist of only one engine; however, for load-balancing
and failover purposes, it is advisable to have multiple engines in the farm. To
accomplish the desired effect, these engines would reside in different databases on
different physical systems.

Overview of Recommendation Engine API Concepts and Features
OracleAS Personalization provides a Java API for use with recommendation
engines. The primary use of the API is for requesting recommendations for
appropriate items for a given user. The API essentially acts as a client interface to
the stored procedures of a recommendation engine database schema. Calculation of
recommendations is accomplished through JDBC calls to the stored procedures,
using JDBC connection pooling.

The API also provides short-term storage, referred to as the data collection cache, for
collecting user profile data. These data are periodically flushed to recommendation
engine tables and from there to the mining table repository. Caching the data in this
way, instead of immediately writing user data to the recommendation engine as it is
gathered, minimizes the number of JDBC calls required. Be aware, however, that
each time a recommendation is requested, this does result in a synchronous JDBC
call. Results of recommendation requests are not cached, because of their unique
and personalized nature.

For JSP programmers, the functionality of the recommendation engine API is
wrapped in the functionality of the OracleAS Personalization tag library, so this
document does not discuss details of the API. The tag library provides
programming convenience, automating features that you must manage explicitly if
you use the API directly.

Overview of Personalization

Personalization Tags 10-7

The following sections provide an overview of concepts and features for the
OracleAS Personalization recommendation engine:

� Visitors Versus Customers

� Items, Recommendations, Taxonomies, and Categories

� Ratings and Rankings

� Stateful Versus Stateless Recommendation Engine Sessions

� Requests for Recommendations

Visitors Versus Customers
The recommendation engine has two classifications of users:

� Visitor: This is an anonymous user who is not recognized and does not have a
demographic profile or a stored history of past behavior, preferences, and
actions.

� Customer: This is a registered user who is therefore recognized and has a
demographic profile and stored history of behavior to be used in generating
accurate recommendations.

Items, Recommendations, Taxonomies, and Categories
In OracleAS Personalization, item is a generic concept referring to a single article or
the smallest unit of information. Following are some examples:

� Product

� Service to purchase

� URL selected by a user

� Piece of demographic data such as a user’s gender or age

Items are used in several ways:

� They can be passed to item-recording tags for the recording of user data. In this
situation they are sometimes referred to as data items.

Note: An anonymous visitor can be converted into a registered
user in the middle of a session. See "Personalization
setVisitorToCustomer Tag" on page 10-31.

Overview of Personalization

10-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� They can be returned as suggestions. In this situation, they are referred to as
recommendations. For each item returned as a recommendation, there is also a
prediction value, which is either a rating or a ranking. These terms are
discussed in "Ratings and Rankings" on page 10-9.

� They can be passed as input when the application requests recommendations.
This is done for cross-selling, where recommended items are based on past
items, or to evaluate and rate or rank a particular set of items.

All individual items in an inventory system must belong to a taxonomy. In OracleAS
Personalization, a taxonomy refers to a structural organization of items. Typically,
the organization of items has a hierarchical structure like a tree or collection of trees,
branching from broader groups at the trunk to individual items at the leaves. Item
membership in a taxonomy is not exclusive. It is possible to include the same item
in multiple taxonomies. A taxonomy is represented by a taxonomy ID, which is a
long integer.

Catalog or Web site hosting applications can distinguish among their client data sets
by using different taxonomy IDs for different client catalogs or Web sites.
Appropriate processing is used to distinguish between classifications of users so
that an appropriate taxonomy can be used in each case. For example, a customer at
www.oracle.com might indicate that she is a DBA or Web developer. This will
determine the taxonomy used in personalizing her future visits. The offering of
promotional campaigns, banners, and available books and training, for example,
would be drawn either from a Web productivity tools taxonomy or a database
administration tools taxonomy.

Individual items within a taxonomy can be grouped into categories. In the structure
of a taxonomy, categories are intermediate nodes consisting of groups of related
items. Note, however, that any given item can belong to multiple categories. As an
example, the movie The English Patient might belong to categories such as "Screen
Adaptations of Novels", "Oscar Winners", "Foreign", and "Drama".

Generally, an item is uniquely identified by a type parameter and an ID parameter,
although a rating item also requires a parameter for the rating value itself. It is
assumed that an application will be able to rely on some sort of inventory system
that determines a type and ID for each item. A type might be something like "shoes"
or "sporting events". An ID is an identifying number. Within any single taxonomy,
no two items can have the same ID.

Be aware that for some personalization filtering settings, a recommendation will
represent a category, such as "Drama", rather than an item, such as a specific movie
title. In this case, the item type of the recommendation is "Category". Also see
"Recommendation Filtering" on page 10-23.

Overview of Personalization

Personalization Tags 10-9

The OracleAS Personalization tag library provides a convenient public class to
simplify the use of items and recommendations in JSP pages: the
oracle.jsp.webutil.personalization.Item class. Use this class to access
type, ID, and prediction values. See "Item Class Description" on page 10-55 for more
information.

Ratings and Rankings
Items returned as recommendations include a prediction value, as follows:

� For a rating item, the prediction value of each item is its rating. This is a
predicted measure of user interest.

� For a purchasing or navigation item, the prediction value indicates a relative
ranking among the returned items, based on the estimated probability of user
interest.

A navigation item can represent anything a Web application might consider a "hit",
such as viewing a page, selecting a link, or clicking a button.

About Ratings Rating is a quantitative measure of customer preference on a
predefined scale. For movies, for example, you might adopt a five-star system
where a user gives his or her favorite movie five stars, which can be thought of as a
rating of 5.0. In future sessions, OracleAS Personalization would anticipate a high
level of interest in this movie for this user and other users with similar interests and
backgrounds. A movie that a user likes somewhat, but not as much, might get a
rating of three-and-a-half stars, or 3.5.

A definitive rating value is recorded when a user interactively rates an item on the
Web site. Rating is a floating point number, to allow as much granularity as desired.

A rating that is returned by the recommendation engine API (or, for JSP pages, by a
recommendation tag) is a predicted value, according to OracleAS Personalization
algorithms.

In an OracleAS Personalization rating system, the boundaries are configurable, such
as 0.0 to 5.0 in the preceding example. This is specified in the
MTR.MTR_BIN_BOUNDARY table of the mining table repository.

About Rankings Ranking is a whole number indicating the relative rank of an item
among a group of items. The items are sorted according to the estimated
probabilities of being purchased (for commodities to purchase) or being picked (for
URL links to visit). The probability is calculated using the data mining model and a
customer's profile data.

Overview of Personalization

10-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

As an example, presume three items—item A, item B, and item C—are returned as
recommendations. If A has a 0.9 probability of user interest, B has a 0.55 probability,
and C has a 0.83 probability, then A would have a ranking of 1, C would be ranked
2, and B would be ranked 3.

The ranking of an item is relative and dynamic. It is relative because ranking is
meaningful only for a number of items compared to each other and sorted in a
certain order. It is dynamic because ranking of the same item might change for
different customers or when ranked against different items.

Stateful Versus Stateless Recommendation Engine Sessions
Web applications can be either stateful or stateless. That is, an application might
choose to maintain a user session and user-specific information on the server
between requests, or it might not. The recommendation engine API and tag library
are designed to handle both situations. Although there are obvious benefits to
maintaining user information on the server between requests, there are also
high-volume sites that rely on stateless applications for better throughput.

Note, however, that the recommendation engine will always track open user
sessions in the recommendation engine database schema, regardless of the session
behavior of the Web application.

The recommendation engine tracks a user session by its user ID. Therefore, care
must be taken in assigning temporary user IDs to anonymous visitors. If the same
ID is used for all anonymous visitors, and their behavior is being tracked, then data
collected from all such visitors will be attributed to a single recommendation engine
session and therefore behavior of any one anonymous visitor would influence
recommendations to the others. You can avoid this problem by assigning each
anonymous visitor a temporary ID that is unique within the recommendation
engine.

Note: One of the advantages of the tag library, compared to using
the recommendation engine API directly, is that tracking of
recommendation engine sessions in a stateless application is
managed automatically. You must arrange this mapping yourself if
you use the API directly.

Be aware, however, that recommendation engine session tracking
through the tag library requires the client, presumably a browser, to
support and accept cookies. If this is not always guaranteed, then
you must declare your application as stateful.

Overview of Personalization

Personalization Tags 10-11

Requests for Recommendations
After a recommendation engine session is established and populated with data, an
application can request recommendations from it. OracleAS Personalization returns
the appropriate recommendations to the calling application, then the application
decides what to pass to the user and how to pass it.

In JSP pages, an application can request recommendations through one of several
"recommendation tags". The recommendation engine returns a set of suggested
items according to user data, with respect to tuning and filtering settings. In using
the OracleAS Personalization tag library, you can specify tuning and filtering
settings through tag attributes or in a configuration file.

A set of recommendations is generated in the recommendation engine database
schema through a JDBC call. The time spent in the call may vary. This depends on
the criteria, how many data records must be processed, and such factors as the size
of the rules table, the size of the user profile data, and specifics of the
recommendation request. Recommendations will be chosen according to the
personalization model, which is deployed into the recommendation engine that the
application is connected to. When you use OracleAS Personalization tags, use
attributes of the startRESession tag to specify the recommendation engine to
use.

For cross-sell recommendations, the application must pass in as input one or more
purchasing or navigation items of past user interest. The cross-sell
recommendations will be based on the item or items passed in, and perhaps on past
or current user data as well.

Recommendation items are returned in an array, with a prediction value for each
recommendation—either a rating or a ranking, as described in "Ratings and
Rankings" on page 10-9—and an interest dimension value for the array as a whole.
For items returned as recommendations, the interest dimension indicates how the
items will be of interest to the user—as purchasing items, navigation items, or
rating items.

The recommendation engine API allows filtering of recommendations before they
are returned, based on the taxonomy.

Overview of Personalization Tag Functionality

10-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
The following sections provide an overview of features and functionality of the
OracleAS Personalization tag library. For descriptions and syntax of the individual
tags, see "Personalization Tag and Class Descriptions" on page 10-26.

� Recommendation Engine Session Management

� Use of Items in Personalization Tags

� Mode of Use for Item Recording Tags

� Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags

Recommendation Engine Session Management
The actions of creating and closing a recommendation engine session are handled
through the startRESession and endRESession tags. For a JSP page using
OracleAS Personalization, you must ensure that at least one startRESession tag
is executed and that it is the first OracleAS Personalization tag encountered for the
particular recommendation engine session.

The OracleAS Personalization tag library can support either stateful applications,
which maintain state information through HTTP session objects, or stateless
applications, which do not. You can use the session attribute of
startRESession to specify which mode to use. Use a "true" setting to allow the
tag library to use HTTP session objects, or a "false" setting if you do not want the
tags to participate in HTTP sessions.

Setting the session attribute of a startRESession tag to "true" produces
effects similar to those of setting session to "true" in a JSP page directive. The
difference is that by setting the attribute to "true" in a startRESession tag, you
are affecting not only the page containing the tag, but also any other pages that
contain personalization tags that execute within the same recommendation engine
session.

After the startRESession tag is executed, the personalization tags maintain the
relationship of the Web client to the recommendation engine database session so
that subsequent personalization tags apply to the same user, as appropriate.

Note: The OracleAS Personalization tag library does not assume
that HTML will be the only output format. Other formats, such as
XML and JavaScript, are supported as well.

Overview of Personalization Tag Functionality

Personalization Tags 10-13

Starting a Recommendation Engine Session
The startRESession tag takes the recommendation engine name and other
information from some combination of tag attribute settings and
personalization.xml configuration file settings.

A startRESession tag will result in no operation if the recommendation engine
session was previously started for the same Web client, with no endRESession tag
executed in between. This is for convenience; it allows flexibility regarding the
order in which JSP pages are executed. You can place startRESession tags in
multiple pages of an application without negative consequences.

See "Personalization startRESession Tag" on page 10-27 for more information about
this tag. Also see "Personalization Tag Library Configuration Files" on page 10-58.

Using a Stateful Application
For a stateful application, which uses HTTP sessions, session information is
maintained in the JSP implicit session object, a standard HttpSession instance.

When the startRESession tag is encountered, if its session attribute is set to
"true" (the default), then the session object is created automatically if it does not
already exist.

Using a Stateless Application
For a stateless application, the tag library will maintain internal session tracking
through the use of cookies. Therefore, be aware that if you want to use a stateless
application, personalization tags will work only if the client browser accepts
cookies. If that is not the case, either because the browser chooses to decline cookies
or due to lack of capability, then stateful functionality is required
(session="true" for the startRESession tag).

Ending a Recommendation Engine Session
When a stateful application no longer needs a given recommendation engine
session, you can use the endRESession tag. As with startRESession tags,
repeated executions of endRESession tags result in no further operations, so you
can place them in multiple pages of your application without negative
consequences.

The endRESession tag has no effect in stateless applications.

Using endRESession tags in stateful applications is sometimes optional, but is
necessary in some circumstances, as follows.

Overview of Personalization Tag Functionality

10-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� If the application intends to subsequently start a new recommendation engine
session with a different recommendation engine user ID from the same browser
or within the same HTTP session

� To connect to a different recommendation engine from the same browser or
within the same HTTP session

In these cases, the endRESession tag must be executed before the next
startRESession tag.

Use of endRESession tags is also advisable if an application stops using its
OracleAS Personalization tags significantly before the HTTP session is over, so that
recommendation engine resources can be released.

See "Personalization endRESession Tag" on page 10-30 for detailed information
about this tag.

Use of Items in Personalization Tags
The OracleAS Personalization tag library provides a number of tags for item
manipulation. There are tags to record user behavior information, tags to remove
user behavior information that was previously recorded, tags for outputting items
as recommendations, and a tag for inputting a specific set of items to be evaluated
and rated or ranked.

The following section provide an overview of how to use the tag library:

� Overview of Item Recording and Removal Tags

� Overview of Recommendation and Evaluation Tags

� Use of Tag-Extra-Info Scripting Variables for Returned Items

� Specification of Input Items

� Inputting Item Arrays

� Demographic Items

Note: If endRESession is not used in a stateful application, the
underlying recommendation engine session will be closed
automatically when the HTTP session goes out of scope. In a
stateless application, the underlying recommendation engine
session is allowed to time out.

Overview of Personalization Tag Functionality

Personalization Tags 10-15

Overview of Item Recording and Removal Tags
The following tags are for recording data items into the recommendation engine
session cache or for removing items that were recorded earlier in the session:

� recordNavigation and removeNavigationRecord

� recordPurchase and removePurchaseRecord

� recordRating and removeRatingRecord

� recordDemographic and removeDemographicRecord

To record or remove a purchasing, navigation, or rating item, you must specify the
item to record or remove by providing either a type and ID (and a value, for a rating
item), or an item array and an index into that array. See "Specification of Input
Items" on page 10-18 for more information. To record or remove a demographic
item, which implicitly applies to the current user, you must specify the
demographic type, such as AGE, and a value, such as 44. See "Demographic Items"
on page 10-20.

There is typically little need to use the removeXXXRecord tags. If you place your
recordXXX tags in "receiving pages", there should be no need to use
removePurchaseRecord or removeNavigationRecord tags. Using
removeRatingRecord and removeDemographicRecord tags would be
necessary only in situations where users changed their minds after their initial input
had been recorded. See "Mode of Use for Item Recording Tags" on page 10-21 for
related information.

For detailed tag information, see "Item Recording and Removal Tag Descriptions"
on page 10-46.

Overview of Recommendation and Evaluation Tags
The following tags return an array of items as recommendations:

� selectFromHotPicks

Note: During the session, recorded items are periodically flushed
to the recommendation engine. Removing an item after that point
still works, but requires a database round-trip. See related
information about REFlushInterval in "Personalization
startRESession Tag" on page 10-27.

Overview of Personalization Tag Functionality

10-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� getRecommendations

� getCrossSellRecommendations

� evaluateItems

For the selectFromHotPicks, getRecommendations, and
getCrossSellRecommendations tags, which are referred to in this document as
recommendation tags, the array of items is a set of recommendations returned from an
entire taxonomy or from hot picks groups within a taxonomy. The
getCrossSellRecommendations tag must also take a set of purchasing items or
navigation items as input, on which to base the recommendations (known as
cross-selling).

Hot picks might be promotional items or other specially selected groups of items.
The picks to choose from can be specified through a tag attribute. See the Oracle
Application Server Personalization Administrator’s Guide for more information about
hot picks.

For evaluateItems, you must input a particular set of items for which you want
evaluations. Some or all (or in some cases, none) of the same items are then
returned, either rated or ranked depending on the interest dimension. See "Ratings
and Rankings" on page 10-9 for background information.

For the getRecommendations and evaluateItems tags, the results are based on
the particular user. The user identity is specified through the startRESession tag
and is implicitly applied to all subsequent personalization tags. The
getCrossSellRecommendations tag depends on the set of input items.

More About the Recommendation Tags Following is additional information about each
of the recommendation tags. For detailed tag descriptions, see "Recommendation
and Evaluation Tag Descriptions" on page 10-32.

� selectFromHotPicks: The items returned are from a set of hot picks groups.
Use the hotPicksGroups attribute to specify the hot picks groups to choose
from. In a sense, this as a "non-personal" tag in the OracleAS Personalization
tag library, because the results do not depend on the user. It might still be useful
in personalized applications, however, for displaying promotions for a
first-time visitor or for a particular geographical area or interest group, for
example.

� getRecommendations: The items returned are based on the user, but you can
also specify that they must be from a set of hot picks groups specified through
the fromHotPicksGroups attribute.

Overview of Personalization Tag Functionality

Personalization Tags 10-17

� getCrossSellRecommendations: The items returned are based on input
items. You can also specify that the items returned must be from a set of hot
picks groups specified through the fromHotPicksGroups attribute. The input
items are assumed to be of previous interest to one user. Functionality of this
tag attempts to answer the following question: Assuming that a user bought or
navigated to the input items in the past, what are the most likely additional
items of interest to that user in the future? These could be additional items to
purchase or navigate to, according to the interest dimension.

Input Items For the tags that take items as input—the
getCrossSellRecommendations and evaluateItems tags—you can use one
or more nested forItem tags to specify desired items, or you can input an entire
array of items through a tag attribute. For more information about inputting items,
see "Specification of Input Items" on page 10-18.

Output Items For the evaluateItems and getCrossSellRecommendations
tags, there is a required tag attribute to specify the name of a tag-extra-info (TEI)
variable for the output array of items. For the getRecommendations and
selectFromHotPicks tags, this attribute is optional. Alternatively or
additionally, the items are available sequentially to any getNextItem tags nested
within the getRecommendations or selectFromHotPicks tag.

For the recommendation tags, you can use the maxQuantity attribute to specify
the maximum number of output items. To determine the actual number of items
returned, use the length attribute of the TEI array variable for the returned items.
No separate TEI variable is provided for the array size. See the following section,
"Use of Tag-Extra-Info Scripting Variables for Returned Items", for information
about TEI variables.

Use of Tag-Extra-Info Scripting Variables for Returned Items
For each tag that returns an array of items, there is a tag-extra-info (TEI) class that
provides functionality allowing you to use a scripting variable of the following
array type:

oracle.jsp.webutil.personalization.Item[]

The array of items is returned in this variable. Each of these tags has a
storeResultsIn attribute that you use to specify a variable name. You can loop
through the array in your application to display all the items, such as in an HTML
table. Use the length attribute of the array to determine how many items were
returned.

Overview of Personalization Tag Functionality

10-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The selectFromHotPicks, getRecommendations, and
getCrossSellRecommendations tags can also return a TEI String variable
indicating the interest dimension for the items in the array, either NAVIGATION,
PURCHASING, or RATING. Use the storeInterestDimensionIn tag attribute to
specify a variable name for the interest dimension.

Specification of Input Items
There are two general situations where you must input items:

� To provide input items to a getCrossSellRecommendations or
evaluateItems tag

In addition to the getCrossSellRecommendations or evaluateItems tag,
this can involve one or more nested forItem tags. The forItem tags are used
to select desired input items.

� To record an item into the recommendation engine session or, using similar
syntax, to remove an item that was previously recorded

This involves a recordXXX or removeXXXRecord tag.

You can specify items in the following general ways:

1. Specify the type and ID of each desired item, and also the rating value for a
rating item. Or, for a demographic item, specify the type and value.

2. Supply an item array, and the index into the array for each desired item.

3. Supply an entire array of items (not relevant for recordXXX and
removeXXXRecord tags).

For scenarios #2 and #3, see the following section, "Inputting Item Arrays", for more
information.

You can input one or more items into a getCrossSellRecommendations or
evaluateItems tag as follows:

� Nest one or more forItem tags inside the tag, using the type and ID
attributes of each forItem tag to specify a desired item (scenario #1 above).

Note: For general information about tag-extra-info classes and
scripting variables, refer to the Oracle Application Server Containers
for J2EE Support for JavaServer Pages Developer’s Guide.

Overview of Personalization Tag Functionality

Personalization Tags 10-19

or:

� Nest one or more forItem tags inside the tag, using the itemList attribute of
each forItem tag to specify an item array and using the index attribute to
specify a desired element of the array (scenario #2).

or:

� Specify an Item[] array through the inputItemList attribute of the tag
(scenario #3). The entire array is taken as input.

Note that you can use more than one of these procedures simultaneously. The
getCrossSellRecommendations and evaluateItems tags can take input from
multiple sources.

You can specify an item for a recordXXX or removeXXXRecord tag as follows:

� Use the type and ID attributes of the tag, and the value attribute for
recordRating or removeRatingRecord, to specify the item (scenario #1
above). Or, for recordDemographic or removeDemographicRecord, use
the type and value attributes.

or:

� Use the itemList attribute of the tag to specify an item array, and the index
attribute of the tag to specify the desired element of the array (scenario #2).

Inputting Item Arrays
For situations where you input an array of Item[] objects to a tag, you must
specify the array through a JSP expression. This can apply to any of the following
tags:

� getCrossSellRecommendations or evaluateItems, when you use the
inputItemList attribute to input an entire array

� forItem (inside getCrossSellRecommendations or evaluateItems),
recordPurchase, recordNavigation, recordRating,
removePurchaseRecord, removeNavigationRecord, or
removeRatingRecord, when you use the itemList and index attributes to
input an array and specify one element of it for use

You can supply the array in the following ways:

� Create it in a scriptlet and specify it through a JSP expression:

<% Item[] myList = newItem[] {newItem("shoes", 1)}; %>
<op:evaluateItems inputItemList="<%=myList %> .../>

Overview of Personalization Tag Functionality

10-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� Supply it by using a TEI variable that contains the output from a
recommendation tag:

<op:getRecommendations storeResultsIn="myRecs" .../>
<!-- First tag is closed, but TEI variable is still in scope.
Later use it in second tag. -->
<op:getCrossSellRecommendations inputItemList="<%=myRecs %>" />

Demographic Items
Demographic data items, consisting of background information about the user such
as gender and age, are used in only the recordDemographic and
removeDemographicRecord tags. Because they do not contain purchasing,
navigation, or rating information, they cannot be returned by a recommendation tag
or input to a getCrossSellRecommendations or evaluateItems tag.

Demographic items, instead of being identified by type and ID as for purchasing
and navigation items, are identified by type and value. These are the only two
attributes for the recordDemographic and removeDemographicRecord tags.
There are several pre-defined types, which exist as columns in the mining table
repository in the MTR.MTR_CUSTOMERS table:

� GENDER

� AGE

� MARITAL_STATUS

� PERSONAL_INCOME

� HOUSEHOLD_INCOME

� IS_HEAD_OF_HOUSEHOLD

� HOUSEHOLD_SIZE

� RENT_OWN_INDICATOR

There are also 50 customizable columns: ATTRIBUTE1 through ATTRIBUTE50.

Note: See "Recommendation and Evaluation Tag Descriptions" on
page 10-32 for detailed syntax information for the tags shown here.

Overview of Personalization Tag Functionality

Personalization Tags 10-21

To use a customizable type, you must do the following:

1. Map the ATTRIBUTEx column to an existing enterprise database, thus defining
what the attribute is.

2. Define the corresponding value boundaries in the MTR.MTR_BIN_BOUNDARIES
table.

Mode of Use for Item Recording Tags
You can currently use one mode of operation for item recording tags: receiving mode.
In this mode, if users select something such as an item to purchase or a URL to
navigate to, then the page they are sent to, referred to as the receiving page, contains
the recordXXX tag to record the item.

As a general example, assume that a page uses a getRecommendations tag to
generate a list of recommendations that are displayed in a sequence. Each
recommended item has a Details link that a user can select to get more information
and a Purchase link that a user can select to purchase the item. You can place a
recordNavigation tag in the page the user goes to by selecting Details; and you
can place a recordPurchase tag in the page the user goes to by selecting
Purchase (a purchase confirmation page, for example). In either case, the type and
ID of the item are likely already known on the receiving pages, which are devoted
specifically to that item.

Similarly, you might place a recordDemographic tag in a JSP page where users
enter demographic information. For example, there might be a page that allows
users to enter marital status, age, and personal income. Once a user enters the
information—suppose he is single, age 44, with an annual salary of $50,000—the
target of the action behind the HTML form is an advertising page tailored to that
profile. This page would have recordDemographic tags for types
MARITAL_STATUS, AGE, and PERSONAL_INCOME. You can use multiple
recordDemographic tags in a single page.

It is typical to identify items by specifying the appropriate attributes, such as type
and ID for purchasing and navigation items. Alternatively, you can use a previously
created item list, and an index value into that list, to specify an item. The
application can copy an item list array object into a session or request object
and also pass the index as a parameter to the receiving page. On the receiving page,
the item list can be retrieved from the session or request object and passed to
the recordXXX tag along with the index. This approach has at least one advantage,
in that the sending page or pages can collect more than one index before invoking
the receiving page, then simultaneously record numerous items from the same item
list.

Overview of Personalization Tag Functionality

10-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags
As summarized earlier, the selectFromHotPicks, getRecommendations,
getCrossSellRecommendations, and evaluateItems tags all return an array
of items. The following sections document tuning and filtering settings you can use
to more carefully tailor the recommendations that are returned. There is also
information about a setting to sort the recommendations. Filtering settings do not
apply to the evaluateItems tag, however, because the items output are always
from the set of items input.

� Tuning Settings

� Recommendation Filtering

� Sorting Order

Tuning Settings
Several tuning settings determine some of the qualifications and logic used by the
recommendation engine in returning recommendations. There must be a value for
each setting, determinable in one of the ways described here.

You can specify these settings through the tuningXXX attributes of the
selectFromHotPicks, getRecommendations,
getCrossSellRecommendations, and evaluateItems tags, as summarized in
Table 10–1. Alternatively, you can use the tuningName attribute to get the settings
from the specified <Tuning> element in either the application-level
personalization.xml file (preferred) or the server-wide
personalization.xml file. Also see "Personalization Tag Library Configuration
Files" on page 10-58.

If there are no attribute settings and no <Tuning> element, default values will be
chosen according to the following steps, in order:

1. According to a <DefaultTuning> element in the application-level
personalization.xml file.

2. According to a <DefaultTuning> element in the server-wide
personalization.xml file.

3. According to the following hardcoded settings:

tuningDataSource="ALL"
tuningInterestDimension="NAVIGATION"
tuningPersonalizationIndex="MEDIUM"
tuningProfileDataBalance="BALANCED"
tuningProfileUsage="INCLUDE"

Overview of Personalization Tag Functionality

Personalization Tags 10-23

For more information about tuning settings, refer to the Oracle Application Server
Personalization Administrator’s Guide.

Recommendation Filtering
In addition to tuning settings, there are filtering settings that you can specify for a
recommendations request. There must be a value for each setting, determinable in
one of the ways described here.

You can specify these settings through the filteringXXX attributes of the
getRecommendations, getCrossSellRecommendations, and

Note: To use the hardcoded defaults, do not use any of the
tuningXXX attribute settings. If some tuning settings are defined
in a tag, then none of the hardcoded values will be used. In this
case, if any setting cannot be found in a tag attribute or
personalization.xml file, an exception will be thrown.

Table 10–1 Tuning Settings for Requesting Recommendations

Attribute Description Settings

tuningDataSource Specify the kind of past user data to be
considered in making recommendations.
(Do not confuse this kind of data source
with the data source concept in the J2EE
platform model.)

ALL
NAVIGATION
PURCHASE
RATING
DEMOGRAPHIC

tuningInterestDimension Specify the kind of recommendation to be
returned.

RATING
PURCHASING
NAVIGATION

tuningPersonalizationIndex Choose how generalized or how
personalized the recommendation
algorithm should be.

LOW
MEDIUM
HIGH

tuningProfileDataBalance Choose whether to stress historical data,
current session data, or both in making
recommendations.

HISTORY
CURRENT
BALANCED

tuningProfileUsage Choose whether to use data in the user’s
demographic profile.

INCLUDE
EXCLUDE

Overview of Personalization Tag Functionality

10-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

selectFromHotPicks tags. (Filtering is not relevant to the evaluateItems tag.)
Alternatively, you can use the filteringName attribute to get the settings from
the specified <Filtering> element in either the application-level
personalization.xml file (preferred) or the server-wide
personalization.xml file. Also see "Personalization Tag Library Configuration
Files" on page 10-58.

If there are no attribute settings and no <Filtering> element, default values will
be chosen from the <DefaultFiltering> element in either the application-level
personalization.xml file (preferred) or the server-wide
personalization.xml file.

These are the filtering parameters:

� filteringTaxonomyID: This is a Java string representing an integer, where
the integer is the ID of an item taxonomy in the OracleAS Personalization
environment.

� filteringMethod: This is one of ALL_ITEMS, INCLUDE_ITEMS,
EXCLUDE_ITEMS, SUBTREE_ITEMS, ALL_CATEGORIES,
INCLUDE_CATEGORIES, EXCLUDE_CATEGORIES, SUBTREE_CATEGORIES,
and CATEGORY_LEVEL. Table 10–2 summarizes the meanings. These methods
always apply to the taxonomy specified through the filteringTaxonomyID
value.

For the getCrossSellRecommendations tag, only the ALL_ITEMS,
INCLUDE_ITEMS, EXCLUDE_ITEMS, and SUBTREE_ITEMS settings are
supported.

� filteringCategories: This is a Java string of integer IDs, delimited by a
single plus sign (+) after each ID, identifying existing item categories in the
given taxonomy. Categories are defined in the MTR.MTR_CATEGORY table of the
mining table repository.

Note: Do not provide a filteringCategories setting when
filteringMethod is ALL_ITEMS or ALL_CATEGORIES.

Table 10–2 Filtering Methods for Requesting Recommendations

Filtering Method Description

ALL_ITEMS Recommend items from all leaves in the taxonomy.

Overview of Personalization Tag Functionality

Personalization Tags 10-25

For any of the XXX_CATEGORIES settings, recommendations are returned in the
form of categories, such as "drama", rather than specific items, such as a particular
movie title. The item type is Category in this case, and categories must first be
defined in the mining table repository.

For more information about filtering settings, refer to the Oracle Application Server
Personalization Programmer’s Guide.

Sorting Order
You can sort returned items according to the prediction field of each item, which
is either a rating or a ranking. See "Ratings and Rankings" on page 10-9 for
information about how to use this field.

Use the sortOrder attribute of the selectFromHotPicks,
getRecommendations, getCrossSellRecommendations, or evaluateItems
tag to specify a sorting order of ASCEND, DESCEND, or NONE (default). Ascending
order lists the best match first; descending order does the opposite. An ascending
order of five ranked items would be 1, 2, 3, 4, then 5, because 1 is the highest rank.
An ascending order of five rated items would be something like 4.5, 3.9, 2.5, 2.2,
then 1.8, because a higher number means a higher rating.

INCLUDE_ITEMS Recommend items that belong to the categories specified in
filteringCategories.

EXCLUDE_ITEMS Recommend items in the taxonomy that do not belong to the
categories specified in filteringCategories.

SUBTREE_ITEMS Recommend items that belong to the subtrees of the categories
specified in filteringCategories.

ALL_CATEGORIES Recommend all categories in the taxonomy.

INCLUDE_CATEGORIES Recommend categories specified in filteringCategories.

EXCLUDE_CATEGORIES Recommend categories in the taxonomy that are not specified
in filteringCategories.

SUBTREE_CATEGORIES Recommend categories from the subtrees of the categories
specified in filteringCategories.

CATEGORY_LEVEL Recommend categories of the same level as the categories
specified in filteringCategories.

Table 10–2 Filtering Methods for Requesting Recommendations (Cont.)

Filtering Method Description

Personalization Tag and Class Descriptions

10-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
The following sections provide detailed descriptions of syntax and usage for the
OracleAS Personalization tags and the Item public class, concluding with a
discussion of tag limitations:

� Session Management Tag Descriptions

� Recommendation and Evaluation Tag Descriptions

� Item Recording and Removal Tag Descriptions

� Item Class Description

� Personalization Tag Constraints

Note the following requirements for the OracleAS Personalization tag library:

� Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

� You will need the classes for the recommendation engine API, which are in the
oreapi-rt.jar file. If you install Oracle Application Server with the
"Business Intelligence" option, this file will be installed in the
[SRCHOME]/dmt/jlib directory. Copy it to a location that is accessible to your
application.

� The tag library descriptor, personalization.tld, must be available to the
application, and any JSP page using the library must have an appropriate
taglib directive. In an Oracle Application Server installation, the TLD is in
ojsputil.jar. The uri value for personalization.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/personalization.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

Notes:

� The prefix "op:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

Personalization Tag and Class Descriptions

Personalization Tags 10-27

Using some of the tag attributes described here requires some general knowledge of
the OracleAS Personalization and recommendation engine implementations. Where
information here is incomplete, see the Oracle Application Server Personalization
Administrator’s Guide or the Oracle Application Server Personalization Programmer’s
Guide.

Session Management Tag Descriptions
The following sections document tags for starting, ending, and managing
recommendation engine sessions:

� Personalization startRESession Tag

� Personalization endRESession Tag

� Personalization setVisitorToCustomer Tag

Personalization startRESession Tag
This section provides syntax and attribute descriptions for the startRESession
tag, which you use to start a recommendation engine session. Also see
"Recommendation Engine Session Management" on page 10-12 for related
information.

The startRESession tag must be executed before any other OracleAS
Personalization tag that executes within the same recommendation engine session.

Syntax

<op:startRESession REName = "recommendation_engine_connection_name"
 [REURL = "rec_engine_database_connection_URL"]
 [RESchema = "rec_engine_schema_name"]
 [REPassword = "rec_engine_schema_password"]
 [RECacheSize = "kilobytes_of_cache"]
 [REFlushInterval = "milliseconds_to_flush"]
 [session = "true" | "false"]
 [userType = "visitor" | "customer"]
 [UserID = "user_ID_for_site_login"]
 [storeUserIDIn = "variable_name"]
 [disableRecording = "true" | "false"] />

The startRESession tag has no body.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes Also see "Attribute Usage Notes" following the attribute descriptions.

� REName (required): Use this to specify the name of a recommendation engine
connection in a recommendation engine farm. Under some circumstances, it
must also match the name of an <RE> element in personalization.xml so
that settings can be retrieved from there, as mentioned in the attribute usage
notes. See "Personalization Tag Library Configuration Files" on page 10-58 for
related information.

� REURL: This is the JDBC connection string for the recommendation engine
database.

� RESchema: This is the name of the recommendation engine database schema.

� REPassword: This is the password corresponding to the RESchema name.

If the OC4J jazn-data.xml file contains a <user> element for an account,
scott for example, in the recommendation engine database, you can get the
de-obfuscated password from there by using special right-arrow syntax with a
dash ("-") and right-carrot (">") followed by the account name, such as:

password="->scott"

� RECacheSize: Use this to specify the size of the recommendation engine
session cache, in kilobytes. The default is 3234 KB. This should be adjusted in
coordination with REFlushInterval, as described in the attribute usage
notes.

� REFlushInterval: Use this to specify how often the data in the
recommendation engine session cache is flushed into the recommendation
engine schema. The unit is milliseconds, with a default of 60000 (1 minute). This
should be adjusted in coordination with RECacheSize, as described in the
attribute usage notes.

� session: Use a "true" setting (default) to specify that you want your
OracleAS Personalization JSP pages to act in a stateful manner, through the use
of HTTP session objects. Use a "false" setting for pages to act in a stateless
manner, using cookies instead.

� userType: This indicates whether the Web site user is an anonymous
"visitor" (default) or a registered "customer".

� userID: This is the user name for the Web site user. If not provided, such as for
an anonymous visitor, the ID is generated automatically by the tag handler.

Personalization Tag and Class Descriptions

Personalization Tags 10-29

� storeUserIDIn: If you want to store the userID value for later use,
storeUserIDIn can specify the name of a TEI String variable in which to
store it. This attribute is useful for automatically generated user IDs.

� disableRecording: Use a "true" setting to disable the actions of any
recordXXX tags. This is to allow for the possibility, for example, of a Web site
that permits users to specify that their activities should not be recorded. It is
also a way to improve site performance during peak hours. This attribute can be
set at request-time, based on the current user ID, for example. This permits
recording to be disabled for appropriate users only, or at appropriate times,
without changing your JSP code. The default setting is "false".

Attribute Usage Notes

� For the startRESession tag to work, REName is a required attribute, and you
must define REURL, RESchema, and REPassword through tag attributes or
through one of the personalization.xml files. (Also see "Personalization
Tag Library Configuration Files" on page 10-58.)

� REName specifies the name of a recommendation engine connection in a
recommendation engine farm. Multiple user sessions should share the same
connection whenever possible, for greater efficiency. To accomplish this, use the
same REName value whenever you want to use the same connection. After the
recommendation engine connection is created, it is cached, using the REName
value as a key.

If REURL, RESchema, or REPassword is not set through attributes of the
startRESession tag that first establishes a connection, then the settings of all
three must come from a personalization.xml file with an <RE> element
whose Name attribute matches the REName value of the startRESession tag.
In this case, you must also set RECacheSize and REFlushInterval in the
<RE> element if you want nondefault values. In this scenario, the
application-wide personalization.xml is searched first; the server-wide
personalization.xml is searched only if the application-wide file did not
have an <RE> element with the REName value as its name.

Note: When REName matches the name of an existing connection,
any settings for REURL, RESchema, REPassword, RECacheSize,
and REFlushInterval are superfluous and therefore ignored.

Personalization Tag and Class Descriptions

10-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� You can use the REName attribute together with <RE> element settings to
facilitate load-balancing among recommendation engines in a farm. Each <RE>
element points to a different recommendation engine in the farm. The JSP page
can rotate among different recommendation engines in the farm by assigning
different values to the REName attribute of different startRESession tags,
according to some load-balancing mechanism.

� Although default values are provided for RECacheSize and
REFlushInterval, these are intended only to get you started. Once you have
experience in running the application, you can tune these values according to
Web site conditions. The settings of RECacheSize and REFlushInterval
should be in coordination with each other, and according to your estimate of
how quickly items might be added to the recommendation engine session cache
as the result of user actions. The default cache size is 3234 KB, the maximum
possible, which is enough space to store approximately 4800 items. The default
flush interval of 60 seconds (60000 milliseconds) results in a cache incoming rate
of 80 items each second. If you increase the flush interval to 120 seconds, you
can support only 40 new items being added each second. On the other hand, if
you reduce the flush interval to 30 seconds, you can support a cache incoming
rate of 160 items each second. A disadvantage in shortening the flush interval,
however, is that removing an item (through a removeXXXRecord tag) after it
has been flushed requires a database round-trip.

Be aware that all sessions sharing the same recommendation engine connection
within the same JVM are also sharing the same session cache. The cache
incoming rate is cumulative across all such sessions.

Example The following example shows a startRESession tag that establishes the
URL and user name, scott, for the recommendation engine database and gets the
de-obfuscated password for the scott account from the OC4J jazn-data.xml
file. This assumes an entry for scott in jazn-data.xml.

<op:startRESession REName = "RE1"
 REURL = "@jdbc:oracle:thin:@sid"
 RESchema = "scott"
 REPassword = "->scott" />

Personalization endRESession Tag
Use this tag to explicitly end a recommendation engine session in a stateful
application. This is usually optional, but is required under some circumstances. (See
"Ending a Recommendation Engine Session" on page 10-13.) It is also advisable to
use this tag in a stateful application if application logic determines that the

Personalization Tag and Class Descriptions

Personalization Tags 10-31

recommendation engine session is no longer required. This will free unneeded
resources.

For situations where you do not use endRESession, note the following behavior:

� If you started the recommendation engine session with the session attribute
of the startRESession tag set to "true", then the recommendation engine
session will be closed implicitly at the end of the HTTP session.

� If you started the recommendation engine session with session set to
"false", then the recommendation engine session will be allowed to time out
once it has been inactive for a sufficient period of time. The timeout interval is
specified as a configuration parameter of the recommendation engine schema.
The endRESession tag has no effect.

Syntax

<op:endRESession />

The endRESession tag has no attributes and no body.

Personalization setVisitorToCustomer Tag
Use this tag for situations where an anonymous visitor creates a registered customer
account. Upon execution of this tag, the existing recommendation engine session is
converted from a visitor session to a customer session. Previous data gathered in the
session will be retained. This tag does not actually create the new customer, nor
does it execute a new login. It only converts the ongoing recommendation engine
session.

The customerID is a request-time attribute and must be provided by the
application.

Syntax

<op:setVisitorToCustomer customerID = "<%=registered_customer_name%>" />

The setVisitorToCustomer tag has no body.

Attributes

� customerID (required): The application provides the ID for the newly
registered customer.

Personalization Tag and Class Descriptions

10-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Recommendation and Evaluation Tag Descriptions
The following sections provide detailed descriptions of the recommendation tags,
the evaluation tag, and related subtags:

The following tags are covered:

� Personalization getRecommendations Tag

� Personalization getCrossSellRecommendations Tag

� Personalization selectFromHotPicks Tag

� Personalization evaluateItems Tag

� Personalization forItem Tag

� Personalization getNextItem Tag

Also see "Overview of Recommendation and Evaluation Tags" on page 10-15.

Personalization getRecommendations Tag
Use this tag to request a set of recommendations for purchasing, navigation, or
ratings. Items from a particular taxonomy are considered, with tuning and filtering
as specified. Recommendations are returned in an array of the following type:

oracle.jsp.webutil.personalization.Item[]

Although other tags, such as getCrossSellRecommendations and
evaluateItems, require items to be input for use as a basis for recommendations,
the getRecommendations tag does not. Recommendations are based on user
identity and profile (user session and historical data), not on specific items.

The resulting recommendations can optionally be stored in a TEI variable of type
Item[], with the variable name specified in the storeResultsIn attribute of the
tag. The recommendations are also available implicitly within the
getRecommendations tag. You can optionally use a tag body with nested
getNextItem tags for any desired processing of the items. See "Personalization
getNextItem Tag" on page 10-44.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

Personalization Tags 10-33

Syntax

<op:getRecommendations
 [from = "top" | "bottom"]
 [fromHotPicksGroups = "string_of_Hot_Picks_group_numbers"]
 [storeResultsIn = "TEI_variable_name"]
 [storeInterestDimensionIn = "TEI_variable_name"]
 [maxQuantity = "integer_value"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [filteringName = "name_from_config_file_Filtering_element"]
 [filteringTaxonomyID = "integer_value"]
 [filteringMethod = "ALL_ITEMS"|"EXCLUDE_ITEMS"|"INCLUDE_ITEMS"|
 "SUBTREE_ITEMS"|"ALL_CATEGORIES"|"INCLUDE_CATEGORIES"|
 "EXCLUDE_CATEGORIES"|"SUBTREE_CATEGORIES"|CATEGORY_LEVEL"]
 [filteringCategories = "string_of_integers"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >

...

</op:getRecommendations>

Attributes Also see "Attribute Usage Notes" following the attribute descriptions.

� from: Use this if you want items to be selected from the entire taxonomy of
items. A "top" setting, which is the default and is typical, displays the N (or
less) most desirable items, where N is the maximum number of
recommendations to display (maxQuantity). A "bottom" setting displays the
N (or less) least desirable items. This is useful, for example, if Product
Management wants to know which items are least favored by customers.

� fromHotPicksGroups: Use this if you want items to be selected from one or
more hot picks groups. The application must determine a series of hot picks
group ID numbers, from the same recommendation engine that was specified in
the startRESession tag. In the fromHotPicksGroups attribute, you must
list the group ID numbers in a string, delimited by plus signs (+), such as
"10+20+30".

� storeResultsIn: Optionally specify the name of a TEI variable of type
Item[] in which to store the resulting recommendations. (This is a required
attribute for getCrossSellRecommendations, but not for

Personalization Tag and Class Descriptions

10-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

getRecommendations.) If a variable name is provided, then the scope of the
variable is AT_BEGIN, meaning it is available from the start-tag to the end of
the page. Note that the value is a variable name, not a JSP expression. You must
provide the variable name for translation; this is not a request-time attribute.

� storeInterestDimensionIn: Optionally specify the name of a TEI string
variable in which to store the interest dimension, which is either NAVIGATION,
PURCHASING, or RATING. Use the Item class defined constant
INT_DIM_NAVIGATION, INT_DIM_PURCHASING, or INT_DIM_RATING for
comparisons. If a variable name is provided, then the scope of the variable is
AT_BEGIN, meaning it is available from the start-tag to the end of the page. You
must provide the variable name for translation; this is not a request-time
attribute. The value returned will be the same as the
tuningInterestDimension setting used in the tag.

� maxQuantity: Use this if you want to specify a maximum number of
recommendations that can be returned. This is optional if there is a general
default specified in the <RecommendationSettings> element of the
application personalization.xml file or the server-wide
personalizaton.xml file. Also see "Personalization Tag Library
Configuration Files" on page 10-58.

� tuningName: Use this to specify the name of a <Tuning> element in
personalization.xml so that tuning settings can be retrieved from there.
Alternatively, use the individual tuningXXX attributes.

� tuningDataSource: See "Tuning Settings" on page 10-22.

� tuningInterestDimension: See "Tuning Settings" on page 10-22.

� tuningPersonalizationIndex: See "Tuning Settings" on page 10-22.

� tuningProfileDataBalance: See "Tuning Settings" on page 10-22.

� tuningProfileUsage: See "Tuning Settings" on page 10-22.

� filteringName: Use this to specify the name of a <Filtering> element in
personalization.xml so that filtering settings can be retrieved from there.
Alternatively, use the individual filteringXXX attributes.

� filteringTaxonomyID: See "Recommendation Filtering" on page 10-23.

� filteringMethod: See "Recommendation Filtering" on page 10-23.

� filteringCategories: See "Recommendation Filtering" on page 10-23.
Integers in the string are delimited by plus signs (+), such as "101+200+35".

Personalization Tag and Class Descriptions

Personalization Tags 10-35

� sortOrder: Use this to specify whether items are sorted in ascending order
("ASCEND", best match first) or descending order ("DESCEND"). The default is
neither ("NONE"), for no sorting requirement. See "Sorting Order" on page 10-25
for more information.

Attribute Usage Notes

� You must specify either from or fromHotPicksGroups.

� Access the output items either through the storeResultsIn attribute, or
through a tag body with nested getNextItem tags, or optionally both.

� Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 10-22 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 10-58.

� Specify filteringName, corresponding to the name of a <Filtering>
element in personalization.xml, or specify individual filtering settings
through the filteringXXX attributes. If you do neither, see "Recommendation
Filtering" on page 10-23 for information about how default values are chosen.

� A filteringCategories setting is required, unless filteringMethods is
set to ALL_ITEMS or ALL_CATEGORIES. These settings can be through either
the tag attributes or personalization.xml.

� The XXX_CATEGORIES filtering methods return categories, as defined in the
mining table repository, rather than specific items.

Example Following is an example of basic usage of the getRecommendations tag.
The storeResultsIn attribute defines an Item[] array for receiving and
displaying results.

<op:getRecommendations storeResultsIn="myRecs">
<% for(int i = 0; i< myRecs.length; i++) {
 Render(myRecs(i).getType(),myRecs(i).getID());
} %>
</op:getRecommendations>

Also see "Personalization getNextItem Tag" on page 10-44 for an example of a
getRecommendations tag that uses a nested getNextItem tag.

Personalization Tag and Class Descriptions

10-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization getCrossSellRecommendations Tag
Like the getRecommendations tag, the getCrossSellRecommendations tag
returns a set of recommendations in an array of type Item[] for purchasing,
navigation, or ratings. Items from a particular taxonomy are considered, with
tuning and filtering as specified.

To use getCrossSellRecommendations, however, you must input a set of
purchasing or navigation items of past user interest that are used as a basis for the
resulting recommendations. The items must all be from the same taxonomy.

You can input items through a specified item array or through a tag body with
nested forItem tags. See "Specification of Input Items" on page 10-18 for more
information. Also see "Personalization forItem Tag" on page 10-42.

The recommendations from the getCrossSellRecommendations tag are stored
in a TEI variable of type Item[], with the variable name specified in the
storeResultsIn attribute of the tag.

Syntax

<op:getCrossSellRecommendations
 storeResultsIn = "TEI_variable_name"
 [storeInterestDimensionIn = "TEI_variable_name"]
 [fromHotPicksGroups = "string_of_Hot_Picks_group_numbers"]
 [inputItemList = "item_array_expression"]
 [maxQuantity = "integer_value"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [filteringName = "name_from_config_file_Filtering_element"]
 [filteringTaxonomyID = "integer_value"]
 [filteringMethod = "ALL_ITEMS"|"EXCLUDE_ITEMS"|"INCLUDE_ITEMS"|
 "SUBTREE_ITEMS"]
 [filteringCategories = "string_of_integers"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >
...

</op:getCrossSellRecommendations>

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

Personalization Tags 10-37

Attributes Also see "Attribute Usage Notes" following the attribute descriptions.

� inputItemList: If you want to supply the input items through an Item[]
array, use this attribute with a JSP expression that returns the array. The item
array in the expression can come from a prior recommendation tag. See
"Inputting Item Arrays" on page 10-19 for more information.

All other attributes of the getCrossSellRecommendations tag are used as for
the getRecommendations tag, as described in "Personalization
getRecommendations Tag" on page 10-32, except for any limitations mentioned in
the attribute usage notes, and the fact that storeResultsIn is a required attribute
for the getCrossSellRecommendations tag.

For additional information about tuning, filtering, and sorting, see "Tuning Settings"
on page 10-22, "Recommendation Filtering" on page 10-23, and "Sorting Order" on
page 10-25.

Attribute Usage Notes

� Inputting items requires the inputItemList attribute or a body with nested
forItem tags, or optionally both. If you use both mechanisms, then the
forItem tags will be executed first and the indicated items will be placed in an
item list. Then the inputItemList entries are considered and appended to the
list.

� Unlike for the getRecommendations tag, storeResultsIn is a required
attribute for the getCrossSellRecommendations tag. You must specify the
name of a TEI variable of type Item[] for storage of the resulting
recommendations.

� Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 10-22 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 10-58.

� If the tuningInterestDimension setting is not the same as the
tuningDataSource setting, you might not get any recommendations,
depending on how OracleAS Personalization rules are set.

� Specify filteringName, corresponding to the name of a <Filtering>
element in personalization.xml, or specify individual filtering settings
through the filteringXXX attributes. If you do neither, see "Recommendation
Filtering" on page 10-23 for information about how default values are chosen.

Personalization Tag and Class Descriptions

10-38 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� A filteringCategories setting is required, unless filteringMethods is
set to "ALL_ITEMS". These settings can be through either the tag attributes or
personalization.xml.

� The getCrossSellRecommendations tag cannot use category-based
filtering; therefore, it supports only a limited set of filtering methods:
ALL_ITEMS, INCLUDE_ITEMS, EXCLUDE_ITEMS, and SUBTREE_ITEMS.

Example The following example uses a getCrossSellRecommendations tag to
suggest follow-up DVD titles to a user who rented or purchased certain titles in the
past.

<% long[] ids = ApplicationPackage.getUserHistory("Smith01");
 Item[] DVDs = new Item[ids.length];
 for(int i=0; i<ids.length; i++) {
 DVDs[i] = new Item("DVD", ids[i]);
 }
 pageContext.setAttribute("pastInterest", DVDs);
%>
<op: getCrossSellRecommendations inputItemList="pastInterest"
 storeResultsIn="moreDVDs"
 maxQuantity = "4"
 sortOrder="ASCEND" />
<!-- display 4 best cross-sell items -->
<h1> You will also enjoy these titles! </h1>

ApplicationSupport.displayItem(moreDVDs[1].getType(), moreDVDs[1].getID());
ApplicationSupport.displayItem(moreDVDs[2].getType(), moreDVDs[2].getID());
ApplicationSupport.displayItem(moreDVDs[3].getType(), moreDVDs[3].getID());
ApplicationSupport.displayItem(moreDVDs[4].getType(), moreDVDs[4].getID());

Also see "Personalization forItem Tag" on page 10-42 for an example of a
getCrossSellRecommendations tag that uses a nested forItem tag.

Personalization selectFromHotPicks Tag
Use this tag to request recommendations from a set of hot picks groups only, instead
of from the taxonomy as a whole, and without considering the user profile. Tuning
and filtering are still applied to items in the specified groups.

Other than the fact that selectFromHotPicks does not consider user identity and
profile, it works in essentially the same way as the getRecommendations tag with
a specified fromHotPicksGroups setting. See "Personalization
getRecommendations Tag" on page 10-32 for detailed information about that tag.

Personalization Tag and Class Descriptions

Personalization Tags 10-39

You can optionally store the resulting recommendations in a TEI variable of type
Item[], with the variable name specified in the storeResultsIn attribute of the
tag. The recommendations are also available implicitly within the
selectFromHotPicks tag. You can optionally use a tag body with nested
getNextItem tags for any desired processing of the items. See "Personalization
getNextItem Tag" on page 10-44.

Syntax

<op:selectFromHotPicks
 hotPicksGroups = "string_of_Hot_Picks_group_numbers"
 [storeResultsIn = "TEI_variable_name"]
 [storeInterestDimensionIn = "TEI_variable_name"]
 [maxQuantity = "integer_value"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [filteringName = "name_from_config_file_Filtering_element"]
 [filteringTaxonomyID = "integer_value"]
 [filteringMethod = "ALL_ITEMS"|"EXCLUDE_ITEMS"|"INCLUDE_ITEMS"|
 "SUBTREE_ITEMS"|"ALL_CATEGORIES"|"INCLUDE_CATEGORIES"|
 "EXCLUDE_CATEGORIES"|"SUBTREE_CATEGORIES"|CATEGORY_LEVEL"]
 [filteringCategories = "string_of_integers"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >

...

</op:selectFromHotPicks>

Attributes Also see "Attribute Usage Notes" following the attribute descriptions.

� hotPicksGroups (required): You must use this to specify one or more hot
picks groups from which the recommendations will be selected. The application
must determine one or more hot picks group ID numbers, for the same
recommendation engine that was specified in the startRESession tag. In the
hotPicksGroups attribute, you must list the group ID numbers in a string,
delimited by plus signs (+), such as "1+20+35".

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-40 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Use all other attributes as for the getRecommendations tag, as described in
"Personalization getRecommendations Tag" on page 10-32, except for any
limitations mentioned in the attribute usage notes.

For additional information about tuning, filtering, and sorting, see "Tuning Settings"
on page 10-22, "Recommendation Filtering" on page 10-23, and "Sorting Order" on
page 10-25.

See "Personalization getNextItem Tag" on page 10-44 for an example of a
selectFromHotPicks tag that uses a nested getNextItem tag.

Attribute Usage Notes

� The hotPicksGroups attribute is equivalent to the fromHotPicksGroups
attribute of the getRecommendations tag, but hotPicksGroups is required.

� Access the output items through the storeResultsIn attribute or through a
tag body with nested getNextItem tags, or optionally both.

� Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 10-22 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 10-58.

� Specify filteringName, corresponding to the name of a <Filtering>
element in personalization.xml, or specify individual filtering settings
through the filteringXXX attributes. If you do neither, see "Recommendation
Filtering" on page 10-23 for information about how default values are chosen.

� A filteringCategories setting is required unless filteringMethods is
set to "ALL_ITEMS" or "ALL_CATEGORIES". These settings can be through
either the tag attributes or personalization.xml.

� The XXX_CATEGORIES filtering methods return categories, as defined in the
mining table repository, rather than specific items.

Personalization evaluateItems Tag
Use the evaluateItems tag to evaluate the set of items that are input to the tag.
The items must all be from the same taxonomy. For an interest dimension of
PURCHASING or NAVIGATION, the items are ranked. For an interest dimension of
RATING, the items are rated. A subset of the evaluated items—anywhere from none
to all of the items, depending on effects of the tuningDataSource setting—are
returned in a TEI array variable of type Item[]. You must specify the name of the

Personalization Tag and Class Descriptions

Personalization Tags 10-41

variable through the storeResultsIn attribute. For each item in the array, the
prediction attribute contains the ranking or rating value.

See "Ratings and Rankings" on page 10-9 for background information about item
ratings and rankings.

You can input items through a specified item array or through a tag body with
nested forItem tags. See "Specification of Input Items" on page 10-18 for more
information. Also see "Personalization forItem Tag" on page 10-42.

Syntax

<op:evaluateItems
 storeResultsIn = "TEI_variable_name"
 taxonomyID = "integer_value"
 [inputItemList = "item_array_expression"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >

...

</op:evaluateItems>

Attributes Also see "Attribute Usage Notes" following the attribute descriptions.

� taxonomyID (required): This is an integer specifying the ID of the taxonomy
the items are from.

� inputItemList: If you want to supply the input items through an Item[]
array, use this attribute with a JSP expression that returns the array. The item
array in the expression can come from a prior recommendation tag. See
"Inputting Item Arrays" on page 10-19 for more information.

Use all other evaluateItems attributes as for the getRecommendations tag, as
described in "Personalization getRecommendations Tag" on page 10-32, except for
any limitations mentioned in the attribute usage notes, and the fact that
storeResultsIn is a required attribute for the evaluateItems tag.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-42 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

For additional information about tuning and sorting, see "Tuning Settings" on
page 10-22 and "Sorting Order" on page 10-25.

Attribute Usage Notes

� Inputting items requires the inputItemList attribute or a body with nested
forItem tags, or optionally both. If you use both mechanisms, then the
forItem tags will be executed first and the indicated items will be placed in an
item list. Then the inputItemList entries will be considered and appended to
the list.

� Unlike for the getRecommendations tag, storeResultsIn is a required
attribute for the evaluateItems tag. You must specify a TEI variable of type
Item[] for storage of the rated items.

� Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 10-22 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 10-58.

� There are no filtering attributes for the evaluateItems tag, because the items
to be rated are simply the items that are input. Therefore, you must specify the
taxonomy through a separate attribute: taxonomyID.

Example This example takes sale items as input, uses the evaluateItems tag to
put them in order of highest interest to the user, then displays the most interesting
one.

<% Item[] saleItems = ApplicationSupport.getSaleItems(); %>
<!-- Choose the sale items of greatest interest to this user -->
<op:evaluateItems storeResultsIn="bestItems" taxonomyID="1"
 inputItemList="<%=saleItems%>" />

<% ApplicationSupport.displayItem(bestItems(1)); %>

Personalization forItem Tag
Use this tag to specify individual items for input to a
getCrossSellRecommendations tag or an evaluateItems tag.

See "Specification of Input Items" on page 10-18 for conceptual information about
how to use the forItem tag.

Personalization Tag and Class Descriptions

Personalization Tags 10-43

Syntax

<op:forItem
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"]
 [type = "type_of_item"]
 [ID = "item_ID_number"] />

The forItem tag has no body.

There are two modes of use for this tag:

� Use both index and itemList.

or:

� Use both type and ID.

Attributes

� itemList: Use a JSP expression that returns an Item[] array. The item array
in the expression can come from a prior recommendation tag. Use this attribute
together with index, which specifies a desired element of the array. Do not use
this attribute if you use type and ID. See "Inputting Item Arrays" on page 10-19
for more information.

� index: Use this to specify the index number of the desired element of an item
array. Specify the item array in the itemList attribute. Do not use this
attribute if you use type and ID.

� type: This is for the type of items, such as "shoes". Use this attribute together
with ID. Do not use it if you use index and itemList.

� ID: This is an identification number, unique for each item of a given type. Use
this attribute together with type. Do not use it if you use index and
itemList.

Example The following example uses several specified shoe purchasing items as
input for a cross-sell recommendation, then displays the resulting
recommendations.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-44 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

<op: getCrossSellRecommendations storeResultsIn="shoeItems" >
 <op:forItem type="shoes" ID="20" />
 <op:forItem type="shoes" ID="26" />
 <op:forItem type="shoes" ID="45" />
 <op:forItem type="shoes" ID="93" />
 <op:forItem type="shoes" ID="101" />
</op:getCrossSellRecommendations>
<p> Based on past shoe purchases, here are the shoes we recommend! </p>
<%= ApplicationSupport.displayItemArray(shoeItems) %>

Personalization getNextItem Tag
You can optionally use nested getNextItem tags within a getRecommendations
or selectFromHotPicks tag body to access the recommendations that the outer
tag returns. (The alternative is to access the items through the storeResultsIn
attribute of the getRecommendations or selectFromHotPicks tag.)

The first time a getNextItem tag is executed it accesses the first item, then
subsequent getNextItem executions proceed through the item array one by one,
with each getNextItem execution taking the next item. When the end of the item
array is reached, the tag puts null values into each of its tag attributes.

Use tag attributes to store either the type and ID of the next item, or the Item
instance itself.

Be aware of the following:

� Using the explicit item array from a getRecommendations or
selectFromHotPicks tag, through the storeResultsIn attribute, does not
preclude the use of getNextItem tags. The item array accessible through
storeResultsIn is unaffected by processing through getNextItem tags.

� If you use one or more getRecommendations tags nested inside another
getRecommendations tag, or one or more selectFromHotPicks tags
inside another selectFromHotPicks tag, then only one of the tags can use
nested getNextItem tags to access implicit tag results. Other tags in the
nesting chain must use the storeResultsIn attribute. No such restriction
exists for a getRecommendations tag inside a selectFromHotPicks tag, or
for a selectFromHotPicks tag inside a getRecommendations tag.

Personalization Tag and Class Descriptions

Personalization Tags 10-45

Syntax

<op:getNextItem
 [storeTypeIn = "TEI_variable_for_item_type"]
 [storeIDIn = "TEI_variable_for_item_ID"]
 [storeItemIn = "TEI_variable_for_Item_instance"] />

The getNextItem tag has no body.

There are two modes of use for this tag:

� Use both storeTypeIn and storeIDIn.

or:

� Use storeItemIn.

Attributes Also see "Attribute Usage Notes" following the attribute descriptions.

� storeTypeIn: Specify the name of a TEI String variable to store the type of
the next item. Use this in conjunction with storeIDIn; do not use it if you use
storeItemIn.

� storeIDIn: Specify the name of a TEI String variable to store the ID of the
next item. Use this in conjunction with storeTypeIn; do not use it if you use
storeItemIn.

� storeItemIn: Specify the name of a TEI variable of type Item to store the
next item. Do not use this if you use storeTypeIn and storeIDIn.

Attribute Usage Notes

All TEI variables are of scope AT_END, meaning they are available from the end-tag
to the end of the JSP page. All TEI variables must be declared in scriptlet code
earlier in the page and must be visible in the scope of the getNextItem tag. Unlike
TEI variables in other personalization tags, these variables will not be declared by
the JSP container.

Examples The following example shows a getNextItem tag being used in a loop
inside a getRecommendations tag. The loop terminates when getNextItem
returns null.

<op:getRecommendations from="top"
 tuningName="BalancedTuning"
 filteringName="GeneralFiltering" >
<p> Top Picks selected especially for you: </p>
 <% String type=null;

Personalization Tag and Class Descriptions

10-46 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 String ID=null;
 while(true) { %>
 <op:getNextItem storeTypeIn="type" storeIDIn="ID" />
 <% if(type==null) break;%>
 type: <%=type%> ID: <%=ID%>
 <% } %>
</op:getRecommendations>

And this next example shows a getNextItem tag in a loop inside a
selectFromHotPicks tag:

<op:selectFromHotPicks hotPicksGroups="1+5"
 tuningName="HotPicksTuning"
 filteringName="GeneralFiltering" >
<p> We know you enjoy Horror and Musical movies. Look what we have on
sale this week! </p>
 <% Item item=null;
 while(true) { %>
 <op:getNextItem storeItemIn="item" />
 <% if(item==null) break;%>
 <%= ApplicationSupport.displayItem(item) %>
 <% } %>

</op:selectFromHotPicks>

Item Recording and Removal Tag Descriptions
The following sections provide detailed descriptions of the recordXXX and
removeXXXRecord tags. Use the appropriate recordXXX tag to record an item
into the recommendation engine session cache. Use the corresponding
removeXXXRecord tag if you want to remove an item that was recorded earlier in
the session. Items in the cache are periodically flushed to the recommendation
engine session; removing an item after that point requires a database round-trip.

� Personalization recordNavigation Tag

� Personalization recordPurchase Tag

� Personalization recordRating Tag

� Personalization recordDemographic Tag

� Personalization removeNavigationRecord Tag

� Personalization removePurchaseRecord Tag

� Personalization removeRatingRecord Tag

Personalization Tag and Class Descriptions

Personalization Tags 10-47

� Personalization removeDemographicRecord Tag

Also see "Overview of Item Recording and Removal Tags" on page 10-15.

Personalization recordNavigation Tag
Use this tag to record a navigation item into the recommendation engine session.
This is to record that a user demonstrated an interest in the item by navigating to it.
For example, he or she may see an icon that represents something of interest, then
click a Tell Me More button next to the icon. See "Personalization
removeNavigationRecord Tag" on page 10-51 for information about the tag to
remove a navigation item.

You can disable actions of the recordNavigation tag by setting the
disableRecording attribute of the startRESession tag to "true". See
"Personalization startRESession Tag" on page 10-27 for more information.

Syntax

<op:recordNavigation
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

The recordNavigation tag has no body.

There are two modes of use for this tag:

� Use both type and ID.

or:

� Use both index and itemList.

See "Specification of Input Items" on page 10-18 for related information.

Attributes

� type: This is for the type of item, such as "shoes". Use this attribute together
with ID. Do not use it if you use index and itemList.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-48 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� ID: This is an identification number, unique for each item of a given type. Use
this attribute together with type. Do not use it if you use index and
itemList.

� itemList: Use a JSP expression that returns an Item[] array. The item array
in the expression can come from a prior recommendation tag. Use this attribute
together with index, which specifies a desired element of the array. Do not use
this attribute if you use type and ID. See "Inputting Item Arrays" on page 10-19
for more information.

� index: Use this to specify the index number of the desired element of an item
array. Specify the item array in the itemList attribute. Do not use this
attribute if you use type and ID.

Personalization recordPurchase Tag
Use this tag to record a purchasing item into the recommendation engine session.
This is to record a purchase the user has made. See "Personalization
removePurchaseRecord Tag" on page 10-52 for information about the tag to remove
a purchasing item.

You can disable actions of the recordPurchase tag by setting the
disableRecording attribute of the startRESession tag to "true". See
"Personalization startRESession Tag" on page 10-27 for more information.

Syntax

<op:recordPurchase
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

The recordPurchase tag has no body.

There are two modes of use for this tag:

� Use both type and ID.

or:

� Use both index and itemList.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

Personalization Tags 10-49

See "Specification of Input Items" on page 10-18 for related information.

Attributes

Attributes are the same as for the recordNavigation tag. See "Personalization
recordNavigation Tag" on page 10-47.

Example Consider the following excerpts from two JSP pages.

Page 1:

<%@ page session="true" %>
<op:getRecommendations storeResultsIn "myRecs" />
...display recommendations...
<% session.setAttribute("recommendationList", myRecs); %>

Page 2:

<%@ page session="true" %>
<op:recordPurchase itemList="<%=session.getAttribute(\"recommendationList\") %>"
 index="<%=request.getParameter(\"index\" %>" />

Page 1 obtains a list of recommendations and displays them, along with a Buy link
for each item. The item array is stored in the session object for subsequent pages
to use.

Page 2 is executed when the user selects a link to buy a particular recommendation.
The item list is retrieved from a session attribute; the index of the item selected is
retrieved from a request parameter. Page 2 might be a Shopping Cart page, for
example.

Personalization recordRating Tag
Use this tag to record a rating item into the recommendation engine session. This
would be based on a user rating of the item. See "Personalization
removeRatingRecord Tag" on page 10-53 for information about the tag to remove a
rating item.

This tag differs from recordNavigation and recordPurchase in that a rating
value must also be specified.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-50 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Syntax

<op:recordRating value = "rating_value"
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

The recordRating tag has no body.

There are two modes of use for this tag:

� Use both type and ID.

or:

� Use both index and itemList.

The value attribute is required in either case.

See "Specification of Input Items" on page 10-18 for related information.

Attributes

� value (required): This is a string representing the user rating value. An integer
or floating point number can be entered. The number should be in the
appropriate rating range, according to boundaries in the
MTR.MTR_BIN_BOUNDARIES table in the mining table repository.

The other attributes are the same as for the recordNavigation tag. See
"Personalization recordNavigation Tag" on page 10-47.

Personalization recordDemographic Tag
Use this tag to record a demographic item into the recommendation engine session.
A demographic item consists of a piece of personal information about a particular
user. See "Personalization removeDemographicRecord Tag" on page 10-54 for
information about the tag to remove a demographic item.

This tag differs from the other recordXXX tags in that it has only two attributes:
type and value. The type attribute indicates what kind of information the item
contains, such as "AGE". The value attribute contains the corresponding value, such
as "44".

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

Personalization Tags 10-51

Syntax

<op:recordDemographic
 type = "GENDER"|"AGE"|"MARITAL_STATUS"|"PERSONAL_INCOME"|
 "HOUSEHOLD_INCOME"|"IS_HEAD_OF_HOUSEHOLD"|"HOUSEHOLD_SIZE"|
 "RENT_OWN_INDICATOR"|"ATTRIBUTE1"|...|"ATTRIBUTE50"
 value = "item_value" />

The recordDemographic tag has no body.

Attributes

� type (required): Specify one of the supported demographic types. In addition
to the several named types, there are 50 customizable types: ATTRIBUTE1,
ATTRIBUTE2, ..., ATTRIBUTE50. See "Demographic Items" on page 10-20 for
additional information.

� value (required): Specify an appropriate value, given the demographic type,
such as "MALE" or "FEMALE" for a GENDER item.

Personalization removeNavigationRecord Tag
Use this tag to remove a navigation item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordNavigation Tag" on page 10-47 for information about the tag to record a
navigation item.

To remove an item, you must use the removeNavigationRecord tag during the
same recommendation engine session in which the item was recorded. The session
cache is periodically flushed to the recommendation engine database schema
during the course of a session. If you remove an item after it has been flushed,
execution of the removal tag will require a database round-trip.

Syntax

<op:removeNavigationRecord
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

The removeNavigationRecord tag has no body.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-52 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

There are two modes of use for this tag:

� Use both type and ID.

or:

� Use both index and itemList.

See "Specification of Input Items" on page 10-18 for related information.

Attributes

Attributes are the same as for the recordNavigation tag. See "Personalization
recordNavigation Tag" on page 10-47.

Personalization removePurchaseRecord Tag
Use this tag to remove a purchasing item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordPurchase Tag" on page 10-48 for information about the tag to record a
purchasing item.

To remove an item, you must use the removePurchaseRecord tag during the
same recommendation engine session in which the item was recorded. The session
cache is periodically flushed to the recommendation engine database schema
during the course of a session. If you remove an item after it has been flushed,
execution of the removal tag will require a database round-trip.

Syntax

<op:removePurchaseRecord
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

The removePurchaseRecord tag has no body.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

Personalization Tags 10-53

There are two modes of use for this tag:

� Use both type and ID.

or:

� Use both index and itemList.

See "Specification of Input Items" on page 10-18 for related information.

Attributes

Attributes are the same as for the recordNavigation tag. See "Personalization
recordNavigation Tag" on page 10-47.

Personalization removeRatingRecord Tag
Use this tag to remove a rating item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordRating Tag" on page 10-49 for information about the tag to record a rating
item.

This tag differs from removeNavigationRecord and removePurchaseRecord
in that a rating value must also be specified.

To remove an item, you must use the removeRatingRecord tag during the same
recommendation engine session in which the item was recorded. The session cache
is periodically flushed to the recommendation engine database schema during the
course of a session. If you remove an item after it has been flushed, execution of the
removal tag will require a database round-trip.

Syntax

<op:removeRatingRecord value = "rating_value"
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

The removeRatingRecord tag has no body.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

10-54 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

There are two modes of use for this tag:

� Use both type and ID.

or:

� Use both index and itemList.

The value attribute is required in either case.

See "Specification of Input Items" on page 10-18 for related information.

Attributes

� value (required): This is a string representing the user rating value that was
previously recorded.

The other attributes are the same as for the recordNavigation tag. See
"Personalization recordNavigation Tag" on page 10-47.

Personalization removeDemographicRecord Tag
Use this tag to remove a demographic item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordDemographic Tag" on page 10-50 for information about the tag to record a
demographic item.

This tag differs from the other removeXXXRecord tags in that it has only two
attributes: type and value. The type attribute indicates what kind of information
the item contains, such as "AGE". The value attribute contains the corresponding
value, such as "44".

To remove an item, you must use the removeDemographicRecord tag during the
same recommendation engine session in which the item was recorded. The session
cache is periodically flushed to the recommendation engine database schema
during the course of a session. If you remove an item after it has been flushed,
execution of the removal tag will require a database round-trip.

Note: Also see "Personalization Tag Constraints" on page 10-57.

Personalization Tag and Class Descriptions

Personalization Tags 10-55

Syntax

<op:removeDemographicRecord
 type = "GENDER"|"AGE"|"MARITAL_STATUS"|"PERSONAL_INCOME"|
 "HOUSEHOLD_INCOME"|"IS_HEAD_OF_HOUSEHOLD"|"HOUSEHOLD_SIZE"|
 "RENT_OWN_INDICATOR"|"ATTRIBUTE1"|...|"ATTRIBUTE50"
 value = "item_value" />

The removeDemographicRecord tag has no body.

Attributes

Attributes are the same as for the recordDemographic tag. See "Personalization
recordDemographic Tag" on page 10-50.

Item Class Description
The OracleAS Personalization tag library offers the following convenient wrapper
class to facilitate the use of items, categories, and recommendations in JSP pages:

oracle.jsp.webutil.personalization.Item

Tag handlers create Item instances as necessary. There are two particular scenarios
where you must use, and sometimes create, Item instances directly:

� When you want to retrieve type, ID, and prediction values from a
recommendation item

For a purchasing or navigation item, the prediction value is a ranking. For a
rating item, the prediction value is a rating.

� When you want to create instances manually for input item lists for the
getCrossSellRecommendations and evaluateItems tags

The Item class provides the following getter methods for the first scenario:

� String getType()

Return the item type, such as "shoes", for example, or one of the supported
demographic types for demographic items. A value of "CATEGORY" indicates
that an entire category is being recommended.

� long getID()

Return the item ID number.

Personalization Tag and Class Descriptions

10-56 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� float getPrediction()

Return either the rating, for a rating item, or the ranking, for a purchasing or
navigation item. Rankings are always integers, but this attribute must be
floating point because ratings can be floating point.

The class provides the following setter methods for the second scenario:

� void setType(java.lang.String)

Set the item type.

� void setID(long)

Set the item ID number.

There are also methods to define the item as a category and to determine if it has
already been defined as a category:

� void setCategory()

Set the item type to "CATEGORY".

� boolean isCategory()

Returns true if the item type is "CATEGORY".

The Item class provides the following public constructors:

� Item()

� Item(String type, long ID)

� Item(String type, String ID)

The type attribute must be a string; the ID attribute can be a string or a long
value.

The Item class also defines the following String constant values for interest
dimensions. Use the following values for comparisons to values returned in the
storeInterestDimensionIn attribute of the recommendation tags.

� INT_DIM_NAVIGATION: This indicates an item recommended for its high
navigation interest.

� INT_DIM_PURCHASING: This indicates an item recommended for its high
purchasing interest.

� INT_DIM_RATING: This indicates an item recommended for its high rating
interest.

Personalization Tag and Class Descriptions

Personalization Tags 10-57

Personalization Tag Constraints
Be aware of the following constraints regarding attribute settings for the OracleAS
Personalization tags.

� The startRESession tag has the following limitations:

– The REName attribute has a maximum of 12 characters.

– The REURL attribute has a maximum of 256 characters.

– The RESchema attribute has a maximum of 30 characters.

– The REPassword attribute has a maximum of 30 characters.

– The userID attribute has a maximum of 32 characters.

The same restrictions apply to the corresponding attributes of the <RE> element
of a personalization.xml file, except for userID, which is not used in
personalization.xml.

� There can be no more than 1024 Item elements passed into any tag or returned
by any tag. This is not only the maximum size of any single Item[] array
passed to or from a tag, but is also a combined maximum if any tag receives
input from both an item list and one or more forItem tags.

� For the recommendation tags—getRecommendations,
getCrossSellRecommendations, and selectFromHotPicks—a
maximum of 1024 hot picks groups can be specified. This applies to the
fromHotPicksGroups attribute of the getRecommendations and
getCrossSellRecommendations tags, and to the hotPicksGroups
attribute of the fromHotPicksGroups tag.

� Also for the recommendation tags, the filteringCategories attribute can
specify a maximum of 256 categories.

Equivalently, there can be a maximum of 256 <Category> subelements in the
<Filtering> element of a personalization.xml file.

� Maximum length of the value attribute for the recordDemographic,
removeDemographicRecord, recordRating, and removeRatingRecord
tags is 60 characters.

Personalization Tag Library Configuration Files

10-58 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag Library Configuration Files
The OracleAS Personalization tag library supports the use of configuration files,
named personalization.xml, to specify global and default tag attribute
settings. The following sections document personalization.xml files and their
supported elements:

� The personalization.xml Files

� Element Descriptions for personalization.xml

� Sample personalization.xml File

The personalization.xml Files
The OracleAS Personalization tag library supports configuration files named
personalization.xml. These files are useful in specifying default settings for
optional tag attributes and for specifying default and named tuning and filtering
settings. Using personalization.xml for tuning and filtering settings is
particularly useful, because the settings can be quite involved and it would be
inconvenient to have to set them in multiple tags or multiple pages.

There can be two personalization.xml files relevant to a given application:

� /WEB-INF/personalization.xml

Use this file for the particular application only, for any defaults or settings that
are application-wide.

� ORACLE_HOME/j2ee/home/config/personalization.xml

This is a server-wide configuration file. It is accessed for any required settings
that cannot be found in tag attributes or in the personalization.xml file for
the particular application.

Element Descriptions for personalization.xml
This section documents the XML DTD for personalization.xml elements
supported by the OracleAS Personalization tag library. These elements are inside a
top-level <personalization-config> element.

The personalization tags will validate any personalization.xml file against this
DTD.

Personalization Tag Library Configuration Files

Personalization Tags 10-59

RecommendationSettings Element
Use this element to set a default value for maxQuantity, the maximum number of
recommendations that can be returned, for the getRecommendations,
getCrossSellRecommendations, and selectFromHotPicks tags.

The maxQuantity setting must be a string representing a positive integer.

Definition

<!ELEMENT RecommendationSettings EMPTY>
 <!ATTLIST RecommendationSetting maxQuantity CDATA #REQUIRED>

RE Element
Use this element to specify the name of a recommendation engine connection and to
make the connection. See "Personalization startRESession Tag" on page 10-27 for
information about the attributes.

Definition

<!ELEMENT RE EMPTY>
 <!ATTLIST RE Name CDATA #REQUIRED>
 <!ATTLIST RE URL CDATA #REQUIRED>
 <!ATTLIST RE Schema CDATA #REQUIRED>
 <!ATTLIST RE Password CDATA #REQUIRED>
 <!ATTLIST RE CacheSize CDATA #REQUIRED>
 <!ATTLIST RE FlushInterval CDATA #REQUIRED>

You can refer to the Name attribute in startRESession tag REName attributes.

If the OC4J jazn-data.xml file contains a <user> element for an account in the
recommendation engine database (scott for example), you can get the
de-obfuscated password from there by using special right-arrow syntax with a dash
("-") and right-carrot (">") followed by the account name, such as:

Password="->scott"

Note: Also see "Personalization Tag Constraints" on page 10-57.
Some of these limitations apply to personalization.xml
elements as well as to tag attribute settings.

Personalization Tag Library Configuration Files

10-60 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Tuning Element
Use this element to define named tuning settings. See "Tuning Settings" on
page 10-22 for information about the attributes.

Definition

<!ELEMENT Tuning EMPTY>
 <!ATTLIST Tuning Name CDATA #REQUIRED>
 <!ATTLIST Tuning DataSource
 (NAVIGATION|PURCHASING|RATING|DEMOGRAPHIC|ALL) "ALL" >
 <!ATTLIST Tuning InterestDimension (NAVIGATION|PURCHASING|RATING)
 #REQUIRED >
 <!ATTLIST Tuning PersonalizationIndex (LOW|MEDIUM|HIGH) #REQUIRED >
 <!ATTLIST Tuning ProfileDataBalance (HISTORY|CURRENT|BALANCED)
 #REQUIRED >
 <!ATTLIST Tuning ProfileUsage (INCLUDE|EXCLUDE) "INCLUDE" >

The Name attribute is required and must give a unique name to this set of tuning
settings so that the name can be referred to in recommendation tag tuningName
attributes.

Other attributes are also required to fully define tuning settings for a
recommendation request, except for ProfileUsage, which has a default value of
INCLUDE. See the Oracle Application Server Personalization Programmer’s Guide for
more information.

DefaultTuning Element
Use this element for tuning settings if there are no individual tuning tag attributes
and no tuningName tag attribute (with corresponding <Tuning> element in
personalization.xml).

Attribute meanings are the same as for the <Tuning> element discussed
immediately above.

Definition

<!ELEMENT DefaultTuning EMPTY>
 <!ATTLIST DefaultTuning DataSource
 (NAVIGATION|PURCHASING|RATING|DEMOGRAPHIC|ALL) "ALL" >
 <!ATTLIST DefaultTuning InterestDimension (NAVIGATION|PURCHASING|RATING)
 #REQUIRED >
 <!ATTLIST DefaultTuning PersonalizationIndex (LOW|MEDIUM|HIGH)
 #REQUIRED >

Personalization Tag Library Configuration Files

Personalization Tags 10-61

 <!ATTLIST DefaultTuning ProfileDataBalance (HISTORY|CURRENT|BALANCED)
 #REQUIRED >
 <ATTLIST! DefaultTuning ProfileUsage (INCLUDE|EXCLUDE) "INCLUDE" >

Filtering Element and Category Elements
Use these elements to define named filtering settings. See "Recommendation
Filtering" on page 10-23 for information about the attributes.

Use the filtering Name attribute to provide a unique name to be referenced from
personalization tags.

One or more <Category> elements must be nested within a filtering subelement,
except for the AllItems and AllCategories subelements. Contents of a
<Category> element must be a string representing a long integer.

Definition

<!ELEMENT Filtering (ExcludeItems|IncludeItems|ExcludeCategories|
 IncludeCategories|CategoryLevel|SubTreeItems|
 SubTreeCategories|AllItems|AllCategories) >
 <!ATTLIST Filtering Name CDATA #REQUIRED>
 <!ATTLIST Filtering TaxonomyID CDATA #REQUIRED>

<!ELEMENT Category (#PCDATA) >
<!ELEMENT ExcludeItems (Category+) >
<!ELEMENT IncludeItems (Category+) >
<!ELEMENT ExcludeCategories (Category+) >
<!ELEMENT IncludeCategories (Category+) >
<!ELEMENT CategoryLevel (Category+) >
<!ELEMENT SubTreeItems (Category+) >
<!ELEMENT SubTreeCategories (Category+) >
<!ELEMENT AllItems EMPTY >
<!ELEMENT AllCategories EMPTY >

DefaultFiltering Element
Use this element for filtering settings if there are no individual filtering tag
attributes and no filteringName tag attribute (with corresponding
<Filtering> element in personalization.xml).

Definition

<!ELEMENT DefaultFiltering (ExcludeItems|IncludeItems|ExcludeCategories|
 IncludeCategories|CategoryLevel|SubTreeItems
 SubTreeCategories|AllItems|AllCategories) >

Personalization Tag Library Configuration Files

10-62 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 <!ATTLIST DefaultFiltering TaxonomyID CDATA #REQUIRED>

<!ELEMENT Category (#PCDATA) >
<!ELEMENT ExcludeItems (Category+) >
<!ELEMENT IncludeItems (Category+) >
<!ELEMENT ExcludeCategories (Category+) >
<!ELEMENT IncludeCategories (Category+) >
<!ELEMENT CategoryLevel (Category+) >
<!ELEMENT SubTreeItems (Category+) >
<!ELEMENT SubTreeCategories (Category+) >
<!ELEMENT AllItems EMPTY >
<!ELEMENT AllCategories EMPTY >

Sample personalization.xml File
<?xml version="1.0" ?>
<personalization-config>
 <description> Sample personalization config file </description>
 <RecommendationSettings maxQuantity="5" />
 <RE Name="RE1" URL="jdbc:oracle:thin:@sid" Schema="RESCHEMA"
 Password="secret" CacheSize="2999" FlushInterval="30000" />
 <RE Name="RE2" URL="jdbc:oracle:oci:@acme" Schema="RE2-schema"
 Password="RE2-pwd" CacheSize="5555" FlushInterval="100000" />
 <Tuning Name = "tuning1" DataSource="ALL"
 InterestDimension="NAVIGATION"
 PersonalizationIndex="HIGH" ProfileDataBalance="BALANCED"
 ProfileUsage="INCLUDE" />
 <DefaultTuning DataSource="PURCHASING" InterestDimension="RATING"
 PersonalizationIndex="MEDIUM" ProfileDataBalance="CURRENT"
 ProfileUsage="EXCLUDE" />
 <Filtering Name = "filter1" TaxonomyID="25" >
 <CategoryLevel>
 <Category>10</Category>
 <Category>11</Category>
 <Category>15</Category>
 </CategoryLevel>
 </Filtering>
 <DefaultFiltering TaxonomyID="1" >
 <AllItems/>
 </DefaultFiltering>
</personalization-config>

Personalization Tag Library Configuration Files

Personalization Tags 10-63

Alternatively, if there are jazn-data.xml entries for the RESCHEMA and
RE2-schema accounts, you can get the de-obfuscated passwords from there instead
of specifying them in clear text in personalization.xml, as follows:

 <RE Name="RE1" URL="jdbc:oracle:thin:@sid" Schema="RESCHEMA"
 Password="->RESCHEMA" CacheSize="2999" FlushInterval="30000" />
 <RE Name="RE2" URL="jdbc:oracle:oci:@acme" Schema="RE2-schema"
 Password="->RE2-schema" CacheSize="5555" FlushInterval="100000" />

Personalization Tag Library Configuration Files

10-64 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Services Tags 11-1

11
Web Services Tags

Oracle furnishes a tag library with OC4J that enables developers to create JSP pages
for use as client programs for Web services. This chapter describes the tag library
and consists of the following sections:

� Overview of Web Services

� OC4J Web Services Tags

This chapter is written with the assumption that you are already familiar with Web
services, Simple Object Access Protocol (SOAP), and the Web Services Description
Language (WSDL); however, some overview is provided here. There are also
references to additional documents, including related specifications from the World
Wide Web Consortium (W3C).

The OC4J Web services tag library is based on Oracle Application Server Web
Services. See the Oracle Application Server Web Services Developer’s Guide for
information.

Overview of Web Services

11-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Web Services
The following sections provide a quick overview of Web services concepts:

� General Web Services Overview

� Overview of SOAP and Related Features

� Overview of Web Services Description Language Key Elements

� Overview of Web Service Messages and XML Schema Definitions

� Web Service Example

General Web Services Overview
Web services are sets of procedures, or actions, that can be invoked by a client over
the Internet, regardless of the computing platform. Web services consist of loosely
coupled components over a distributed computing environment following a widely
adopted set of standards such as SOAP, WSDL, and UDDI (all discussed later in this
chapter). As an example, there might be a "World Cup Soccer" service that consists
of actions to get scores, schedules, and standings.

A Web service must have the following features:

� It must be able to describe itself, such as its functionality and its input and
output attributes. A Web service describes itself through an XML-style WSDL
document. See "Overview of Web Services Description Language Key Elements"
on page 11-4.

� It must make itself generally available so that client applications can access it.
The standard way to do this is to be listed in a Universal Description, Discovery,
and Integration (UDDI) directory. Public UDDI directories are available to
aggregate groups of businesses or users (or perhaps to anyone on the Internet),
while private UDDI directories are available only within a particular business
or group.

� A client application must be able to invoke it through a standard protocol once
the application has found and examined it. A leading protocol for Web services
is Simple Object Access Protocol (SOAP). With SOAP, the Web service is behind
a SOAP server at the server end and the client application goes through a SOAP
server at the client end. Data exchanges are "SOAP-enveloped" and can gain
access through firewalls. This SOAP exchange is conceptually similar to a
Remote Method Invocation (RMI) exchange, except that RMI exchanges cannot
go through firewalls. See "Overview of SOAP and Related Features" on
page 11-3 for a brief overview of SOAP.

Overview of Web Services

Web Services Tags 11-3

� Once invoked, it must return a response to provide requested results to the
client application. This is performed through the same standard protocol, such
as SOAP.

For more information about Web services, particularly OracleAS Web Services, you
can refer to the Oracle Application Server Web Services Developer’s Guide.

For related specifications, refer to the following Web sites:

http://www.w3.org/TR/SOAP (W3C SOAP specification)

http://www.w3.org/TR/wsdl (W3C WSDL specification)

http://www.uddi.org/specification.html (UDDI specification)

Overview of SOAP and Related Features
This section offers a brief overview of SOAP. See the W3C Simple Object Access
Protocol (SOAP) 1.1 specification for details.

SOAP is a lightweight, XML-based protocol for exchanging typed and structured
data over the Internet or other distributed environments. Among other features,
SOAP supports remote procedure call (RPC) and message-oriented data exchanges.

In a message-oriented implementation, data is exchanged through a modular
packaging and encoding model. A message is a WSDL component that specifies
input data parts and output data parts associated with an operation. See "Overview
of Web Service Messages and XML Schema Definitions" on page 11-5 for more
information.

RPC is an alternative to sockets, with the communication interface being at the level
of procedure calls. It is as though you are calling a local procedure, but arguments
of the call are actually packaged and sent to a remote target. The RPC mechanism
uses a request/response methodology, where an end-point receives a
procedure-oriented message and sends back a corresponding response.

Using SOAP with RPC is independent of the protocol binding. Where HTTP is the
protocol binding, HTTP requests correspond to RPC calls, and HTTP responses
correspond to RPC responses.

Key aspects of SOAP include the following.

� SOAP envelope construct: The envelope encloses a SOAP header and SOAP
body and indicates what is in a message, whether it is required, and who
should process it.

Overview of Web Services

11-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� SOAP encoding rules: Encoding rules define serialization mechanisms for the
exchange of instances of the datatypes used in an application.

� SOAP RPC representation: The RPC representation specifies a convention for
representing RPC calls and responses.

Overview of Web Services Description Language Key Elements
A Web service is described using the XML-based Web Services Description
Language in a WSDL (.wsdl) document.

Following are some key WSDL terms.

� Operation: An operation is a particular action performed by a service, such as
any of the "get scores", "get schedules", and "get standings" examples for a
World Cup service.

� Message: A message is an abstract definition that specifies the data that is being
input and output for an operation.

� Port type: A port type is an abstract definition of the operations supported by a
service.

� Binding: A binding is a protocol and data format specification for one or more
operations supported by a service. A binding mechanism maps the generic or
abstract definition of a Web service to a concrete implementation, including
data encoding, message protocol, and communication protocol.

� Port: A port is a single end-point, a combination of a binding and a network
address. Essentially, a port is the concrete manifestation of the capabilities
described by a port type. In a SOAP-based implementation, a port is a SOAP
location.

To be more precise than previously, a Web service is really a collection of related
ports, or end-points, not just a collection of abstract actions or operations.

The WSDL specification outlines the general structure of a WSDL document, which
includes the following key elements. Refer to the W3C Web Services Description
Language (WSDL) 1.1 specification for complete information.

� A <types> element , through one or more <schema> subelements, contains
descriptions of the data that is exchanged in messages used by the operations of
the service.

� A <message> element provides an abstract definition of data being sent as
input or output for an operation.

Overview of Web Services

Web Services Tags 11-5

� A <portType> element, through one or more <operation> subelements,
contains abstract definitions of the operations of the Web service. An
<operation> element specifies the message that is used for input and the
message that is used for output for the operation.

� A <binding> element, also through <operation> subelements, binds each
operation to the particular protocol and data formats to be used.

� A <service> element defines the ports, or end-points, of the Web service.
Within the <service> element is one or more <port> subelements, where
each <port> element ties a binding to an address to define the end-point.

Overview of Web Service Messages and XML Schema Definitions
Messages define parameters used by the operations, or methods, of a Web service.
A message is a typed definition of the data being communicated, consisting of one
or more parts. Each part corresponds to a logical entity, such as a "Purchase Order"
part and an "Invoice" part. For each part, there are type specifications for the
associated data items.

In a SOAP-based implementation, such as for OracleAS Web Services, the datatypes
used by a message are defined through the XML Schema Definition (XSD)
language, which supports predefined simple types as well as user-defined complex
types.

With an implementation that uses XSD, the syntax for defining a message is as
follows:

 <message name="nmtoken">
 <part name="nmtoken" [type="qname"] [element="qname"] />
 </message>

In this syntax, the element attribute refers to where an XSD complex type is
defined using XSD syntax, the type attribute indicates an XSD simple type,
"nmtoken" indicates a standard XML name token, and "qname" indicates a
standard XML qualified name. There can be zero or more messages, and zero or
more parts for each message.

For a SOAP encoding style of encoded, only simple types are allowed, so the
element attribute is not used. For an encoding style of literal, you can have
simple types or complex types, so a <part> element can use either the type
attribute or the element attribute, but not both.

Overview of Web Services

11-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Here is an example of a message definition, from "Example: WSDL Definition",
which follows shortly:

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

GetLastTradePriceInput is the name of the message, which is an input
message (as the name implies). In this case, the element attribute refers to a
namespace where a complex type, TradePriceRequest, is defined. Here is an
example of such a definition (also part of "Example: WSDL Definition" below):

 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 <element name="companyName" type="string"/>
 </all>
 </complexType>
 </element>

An XML schema primer is available from W3C at the following location:

http://www.w3.org/TR/xmlschema-0/

Web Service Example
This example shows the WSDL definition of a Web service, illustrating the input
and output messages embedded in an HTTP request and HTTP response,
respectively.

Example: WSDL Definition
The W3C Web Services Description Language (WSDL) 1.1 specification provides the
following example of a WSDL document that defines a stock quote service taking a
ticker symbol as input and returns the current stock price as output. Note this uses a
SOAP encoding style of literal, so complex types are allowed (and used).

<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

Overview of Web Services

Web Services Tags 11-7

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>

Overview of Web Services

11-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>

</definitions>

This WSDL definition first specifies the GetLastTradePriceInput and
GetLastTradePriceOutput input and output messages, then ties them to the
operation GetLastTradePrice, then defines a binding and a port for that
operation.

Example: SOAP Messages Embedded in HTTP Request and Response
Corresponding to the Web service defined in the preceding example, this section
shows what the messages would look like, with the soap-enveloped input message

Notes:

� This example has all aspects of the Web service definition,
including the XML schema definitions for data exchanges, in
the same document. Alternatively, stockquote.xsd, for
example, could be a separate XSD document instead of a
namespace within this document. The W3C WSDL
specification illustrates this. Be aware, however, that the OC4J
Web services tag library does not support WSDL documents
that use <import> elements to import other WSDL
documents.

� The example uses a document-style binding. The OC4J 9.0.4
implementation of the Web services tag library supports
RPC-style and document-style bindings. In the document-style
case, the output response object is an XML document of type
XMLElement. In the RPC-style case, the output object might be
of any type.

Overview of Web Services

Web Services Tags 11-9

embedded in an HTTP request, and the soap-enveloped output message embedded
in an HTTP response. These examples are also from the W3C Web Services
Description Language (WSDL) 1.1 specification.

Here is a request:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "SOAP_URI"

 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <m:GetLastTradePrice xmlns:m="xmlns_URI">
 <m:tickerSymbol>DIS</m:tickerSymbol>
 </m:GetLastTradePrice>
 </soapenv:Body>
 </soapenv:Envelope>

In this example, xmlns_URI is a URI value used to identify the namespace where
the GetLastTradePrice operation and its messages are defined, such as the
WSDL document in the preceding "Example: WSDL Definition". This is also where
tickerSymbol is defined. The request is for a stock quote for Walt Disney
Company. SOAP_URI is the URI for the SOAP action HTTP header for the HTTP
binding of SOAP.

And here is the response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some_URI">
 <m:price>34.5</m:price>
 </m:GetLastTradePriceResponse>
 </soapenv:Body>
 </soapenv:Envelope>

By convention, the response for an operation Xxxx is called XxxxResponse.
Some_URI is a URI value used to identify the namespace where the
GetLastTradePriceResponse operation is defined.

OC4J Web Services Tags

11-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

OC4J Web Services Tags
The following sections provide an overview and details of the Web services tag
library, as well as an overview of OracleAS Web Services, upon which the tag
library implementation is based.

� Overview of OracleAS Web Services and the Tag Library Implementation

� Overview of Functionality of Web Services Tags

� Web Services Tag Descriptions

� Web Services Tag Examples

Overview of OracleAS Web Services and the Tag Library Implementation
The Web services tag library provided with OC4J enables developers to
conveniently create JSP pages for Web service client applications. The
implementation uses a SOAP-based mechanism. A client application would access
the WSDL document, then use the WSDL information to access the operations of a
Web service.

The tag library also uses the Oracle implementation of the dynamic invocation API,
described in the Oracle Application Server Web Services Developer’s Guide. When a
client application acquires a WSDL document at runtime, the dynamic invocation
API is the vehicle for invoking any SOAP operation described in the WSDL
document. The tag handler uses the API when sending a SOAP request that invokes
a Web service and when handling the SOAP response.

The Oracle dynamic invocation API consists of classes and interfaces in the
oracle.j2ee.ws.client and oracle.j2ee.ws.client.wsdl packages.

The oracle.j2ee.ws.client package includes the following.

� WebServiceProxyFactory: Given a WSDL document (through a Java input
stream that contains the document or through the URL of the document), a
WebServiceProxyFactory instance can use the name of a service and the
name of one of its ports, as specified in the WSDL document, to create a
WebServiceProxy instance (an instance of a class that implements the
WebServiceProxy interface).

� WebServiceProxy: Use this interface in representing a service defined in a
WSDL document. Each WebServiceProxy instance is based on the location of
the WSDL document and, optionally, on additional qualifiers that identify
which service and port should be used. A WebServiceProxy class exposes
methods to determine the WSDL port type, including the syntax and signatures

OC4J Web Services Tags

Web Services Tags 11-11

of all operations exposed by the WSDL document, and to invoke the defined
operations.

� WebServiceMethod: Use this interface in invoking a Web service method, or
operation.

The oracle.j2ee.ws.client.wsdl package includes the following.

� Operation: This interface represents a WSDL operation.

� Message: This interface represents a message used in the input or output of an
operation.

� Part: This interface represents a message part.

� Input: This interface represents an input message.

� Output: This interface represents an output message.

Overview of Functionality of Web Services Tags
This section provides an overview of the OC4J Web services tag library and its
functionality. The tag library includes support for the following:

� Binding to a Web service

� Using a Web service operation through SOAP requests and SOAP responses

� Defining input and output message parts

� Mapping SOAP/XML datatypes to Java types

� Setting custom properties for use by the client application

The tag library supports invoking operations defined in WSDL documents that use
the W3C XML schema version whose namespace is the following:

http://www.w3.org/2001/XMLSchema

Note: The dynamic invocation API is packaged in dsv2.jar in
the ORACLE_HOME/lib directory. Also note that the SOAP
implementation requires soap.jar in the ORACLE_HOME/soap
directory.

OC4J Web Services Tags

11-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

The Web services tag library includes the webservice tag, optionally with nested
map and property tags, and the invoke tag, optionally with nested part tags.
They are used as follows:

� webservice: Use this tag to create a Web service proxy. The tag requires the
URL of a WSDL document and then uses one of the following combinations:

– A binding and SOAP location, useful for a WSDL document identified in a
UDDI registry

– A service name and port, provided through tag attributes or through the
first service and its first port from the WSDL document

� map: The Web service proxy uses this tag, if specified, to add an entry to the
SOAP mapping registry, which is a registry that maps local SOAP/XML types
to Java types. Any number of map tags can be nested within a webservice tag,
one tag for each desired type mapping.

� property: Optionally, use this tag to define any of several supported custom
properties for use by the Web service client application. Each property tag
must be nested within the webservice tag; the property will have the same
scope as the parent Web service.

� invoke: Use this tag to invoke an operation of the Web service. An invoke tag
accesses a Web service proxy either by being nested within a webservice tag,
or through a scripting variable.

� part: If an operation has input message parts, use part tags, nested within an
invoke tag, to define the message parts. Use one part tag for each part.

Notes: As of Oracle Application Server 10g (9.0.4):

� The tag library does not support the use of <import> elements
within WSDL documents to import other WSDL documents.

� Custom bindings, including custom HTTP bindings or custom
MIME bindings, are not supported.

Because the OC4J Web services tag library implementation is based
on the OracleAS Web Services implementation, any additional
limitations of OracleAS Web Services also apply to the tag library.

OC4J Web Services Tags

Web Services Tags 11-13

Web Services Tag Descriptions
The following sections supply detailed descriptions of the OC4J Web services tags, a
standards-compliant JavaServer Pages tag library implementation, including syntax
documentation:

� Web Services webservice Tag

� Web Services map Tag

� Web Services property Tag

� Web Services invoke Tag

� Web Services part Tag

Note the following requirements for the Web services tag library:

� The Web services tag library is included in the ojsputil.jar file. This file is
provided with OC4J, in the "well-known" tag library directory. Verify that this
file is installed and in your classpath.

� The tag library descriptor, wstaglib.tld, must be available to the application,
and any JSP page using the library must have an appropriate taglib directive.
In an Oracle Application Server installation, the TLD is in ojsputil.jar. The
uri value for wstaglib.tld is the following:

http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/wstaglib.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about taglib directives, the well-known
tag library directory, TLD files, and the meaning of uri values.

For an example that uses the tags described in this section, see "Web Services Tag
Examples" on page 11-21.

Notes:

� The prefix "ws:" is used in the tag syntax here. This is by
convention, but is not required. You can specify any desired
prefix in the taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

OC4J Web Services Tags

11-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Services webservice Tag
Use this tag to create a Web service proxy, an instance of a class that implements the
oracle.j2ee.ws.client.WebServiceProxy interface. The tag requires the
URL of a WSDL document and uses a binding and SOAP location or a service name
and port, as follows:

1. First, if tag attributes provide a binding and SOAP location, the tag handler
uses them in creating the proxy. Tag attributes for service name and port are
ignored in this case.

2. If no binding and SOAP location are provided, the tag handler uses a service
name and port, as follows:

a. If a service name and port are provided through tag attributes, then the tag
handler uses them in creating the proxy.

b. If no service name and port are provided, the tag handler uses the first
service in the WSDL document and the first port listed for that service.

Using a binding and SOAP location is particularly useful for a Web service whose
WSDL document is accessed through a UDDI registry. In that case, the binding and
location can be determined through UDDI queries and supplied to the tag through
request-time expressions.

After the Web service proxy is created, it will use any nested map tags to add entries
to the SOAP mapping registry. See the next section, "Web Services map Tag".

Syntax

<ws:webservice wsdlUrl = "WSDL_URL_of_Web_service"
 [id = "variable_name_for_Web_service_proxy"]
 [scope = "page" | "request" | "session" | "application"]
 [binding = "SOAP_binding_information"]
 [soapLocation = "SOAP_endpoint_URL"]
 [service = "service_name_in_WSDL"]
 [port = "port_name_for_service"] >

...body / nested tags...

</ws:webservice>

Note: The scope attribute cannot take request-time expressions.

OC4J Web Services Tags

Web Services Tags 11-15

Attributes

� wsdlUrl (required): Use this attribute to specify a URL where the WSDL for
the desired Web service can be accessed.

� id: If the Web service is to be accessed by an invoke tag that is not nested
within the webservice tag, use the id attribute to specify the name for a
WebServiceProxy scripting variable so that the variable can be referenced by
the invoke tag. The specified name must be a valid Java identifier. When you
use the id attribute, the specified variable will be declared automatically with
scope AT_END (available from the webservice end-tag to the end of the JSP
page).

� scope: Optionally, specify the scope of the webservice tag. The default
setting is "page".

� binding: In scenario #1 above, use the binding attribute to specify the SOAP
binding information for a SOAP location (end-point URL) that you specify
through the soapLocation attribute. You must use these attributes together.
The binding information is as defined in the WSDL document, specifying
concrete protocol and data format specifications for the operations and
messages defined by a particular port type.

� soapLocation: In scenario #1 above, use soapLocation to specify a SOAP
location (end-point URL) as defined in the WSDL document, for which the
binding information specified through the binding attribute applies. You must
use these attributes together.

� service: In scenario #2a above, use the service attribute to specify the name
of a service defined in the WSDL document. You must use this attribute with
the port attribute, but both are ignored if you use binding and
soapLocation.

� port: In scenario #2a above, use the port attribute to specify a port for the
service that is specified through the service attribute. You must use these
attributes together. The Web service proxy will use the specified port. The port
address will be as specified in the corresponding <service> element in the
WSDL document. The service and port attributes are ignored if you use
binding and soapLocation.

OC4J Web Services Tags

11-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Services map Tag
For interoperability, a mapping mechanism is necessary to map WSDL-defined
SOAP/XML datatypes to the Java types used in JSP pages of a Java client
application. This is possible through the OracleAS Web Services SOAP mapping
registry.

You can have any number of map tags nested within a webservice tag, to have the
Web service proxy add entries to the registry. Use one map tag for each desired type
mapping.

The registry is an instance of the XMLJavaMappingRegistry class of the
org.apache.soap.util.xml package. A WebServiceProxy instance has a
getXMLMappingRegistry() method to access the registry.

The map tag includes attributes to specify the encoding style, serializer, deserializer,
and namespace URI to facilitate the type mapping. The Web services tag library
supports custom serializers and deserializers, if you want to create your own.

Syntax

<ws:map localName = "local_name_of_SOAPXML_type"
 namespaceUri = "URI_of_namespace_for_SOAPXML_type"
 javaType = "Java_type_to_map"
 encodingStyle = "URL_of_SOAP_encoding_style"
 java2xmlClassName = "Java_to_XML_serializer"
 xml2javaClassName = "XML_to_Java_deserializer" />

Attributes

� localName (required): Specify the local name of the SOAP/XML datatype,
such as SOAPStruct, for example.

� namespaceUri (required): Specify a valid URI for the namespace of the
SOAP/XML datatype. The following is an example:

http://soapinterop.org/xsd

� javaType (required): Specify the Java type which you want to map to the
SOAP/XML type. The types must be legally mappable.

Important: When using a map tag, you must nest it within a
webservice tag.

OC4J Web Services Tags

Web Services Tags 11-17

� encodingStyle (required): Specify a valid URI for a SOAP encoding style.
The following is an example:

http://schemas.xmlsoap.org/soap/encoding

� java2xmlClassName (required): Specify the class name with the functionality
for serializing the data for Java-to-XML conversion. This can be a custom class.
The following is an example:

org.apache.soap.encoding.soapenc.BeanSerializer

� xml2javaClassName (required): Specify the class name with the functionality
for deserializing the data for XML-to-Java conversion. This can be a custom
class. The following is an example:

org.apache.soap.encoding.soapenc.BeanSerializer

Web Services property Tag
You can optionally use this tag to specify a name/value pair that defines any of
several supported custom properties for use by the Web service client application.
For example, you could use property tags to specify an HTTP proxy host and
proxy port if a proxy is required for access through a network firewall. The
following properties are supported:

� http.proxyHost: Use this property to specify the host name of an HTTP
proxy server.

� http.proxyPort: Use this property to specify a port number of an HTTP
proxy server.

� javax.net.ssl.KeyStore: Use this property to specify the full path of an
Oracle security wallet file.

Syntax

<ws:property name="http.proxyHost" | "http.proxyPort" | "javax.net.ssl.KeyStore"
 value = "property_value" />

Important: When using a property tag, you must nest it within a
webservice tag. The property will have the same scope as the
parent Web service.

OC4J Web Services Tags

11-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes

� property (required): Specify the property you want to set; it must be one of
the supported properties listed in the tag syntax.

� value (required): Specify the desired value of the property—a host name, port
number, or full path to an Oracle wallet file.

Web Services invoke Tag
Use this tag to invoke an operation of the Web service. The tag handler will call the
remote Web service operation by passing an input message in a SOAP request, then
will wait for the SOAP response. You must specify the operation, as well as an
object ID for the object that will contain the returned response. The tag handler uses
the operation name to find the operation in the WSDL document.

The invoke tag gains access to a Web service proxy in one of two ways:

� The invoke tag is nested within the webservice tag that establishes the
proxy.

� The invoke tag uses its webservice attribute to access a WebProxyService
scripting variable created through a webservice tag id attribute.

In a situation where there are overloaded operations (two operations of the same
name using different I/O messages), the invoke tag has attributes to specify the
input and output message names for the desired operation. In this case, for
RPC-style bindings, the specified input and output message names are used to form
the RPC signature of the operation. Otherwise, the RPC signature is the default
according to the WSDL document.

If the output message has multiple parts, then the returned result is an array of
message parts (all within a single SOAP response).

Beginning with the OC4J 9.0.4 implementation, the invoke tag can act as an XML
producer, supporting explicit passing of an XML output object through the
toXMLObjName attribute. This is useful if the invoke tag is nested inside other
kinds of tags such as Web Object Cache tags or the XML transform tag. Also note
that an XML output object can be written to the JspWriter object of the JSP page
for output directly to the user’s browser. This is enabled through the xmlToWriter
attribute.

OC4J Web Services Tags

Web Services Tags 11-19

Syntax

<ws:invoke id = "variable_name_for_output_result"
 operation = "operation_to_invoke"
 [webservice = "variable_name_of_Web_service_proxy"]
 [inputMsgName = "name_of_input_message"]
 [outputMsgName = "name_of_output_message"]
 [xmlToWriter = "true" | "false"]
 [toXMLObjName = "objectname"] >

...body / nested tags...

</ws:invoke>

Attributes

� id (required): Specify a scripting variable name for the output result object. The
specified name must be a valid Java identifier. See the note preceding the tag
syntax above for information about the scope of the id object.

� operation (required): Specify an operation to be executed (an operation from
the WSDL document).

� webservice: Use this attribute if you want to specify the name of a
WebServiceProxy scripting variable corresponding to the service to invoke.
This is not necessary if the invoke tag is nested inside the webservice tag
that accesses the desired service.

� inputMsgName: Optionally specify the input message name—the name of a
wsdl:input tag in the WSDL document—for the operation. This is only

Notes:

� Waiting for the SOAP response is a blocking function.

� The scope of the output result object, identified by the id
attribute, is the same as the scope of the proxy object defined in
the webservice tag for the Web service. For an invoke tag
nested within a webservice tag, this scope is from the
webservice start-tag to the webservice end-tag. However,
the id object can still be accessed outside the webservice tag
through use of the findAttribute() method of the JSP page
context object.

OC4J Web Services Tags

11-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

necessary if there are overloaded operations (operations with the same name
that use different message names).

� outputMsgName: Optionally specify the output message name—the name of a
wsdl:output tag in the WSDL document—for the operation. This is necessary
only if there are overloaded operations (operations with the same name that use
different message names).

� xmlToWriter: For a document-style Web service, and if the output is an XML
object, set this attribute to "true" if you want to output the XML to the
JspWriter output object of the JSP page. The default setting is "false".

� toXMLObjName: For a document-style Web service, and if you want to
explicitly pass the output in an XML object, use this attribute to specify the
name of the object.

Web Services part Tag
Use this tag, nested within an invoke tag, if the operation being performed
requires input message part values, using one part tag for each input part.

How to specify the part value might depend on whether you are using an RPC-style
or document-style Web service. For RPC-style, you must use the value attribute.
For document-style, you have the option of passing the value through an XML
request element in the tag body.

Syntax

<ws:part name = "part_name"
 [value = "part_value"] >

...optional body, with request element, for document-style...

</ws:part>

Note: If you use both a tag body and the value attribute, the tag
body is ignored.

OC4J Web Services Tags

Web Services Tags 11-21

Attributes

� name (required): Specify the name of the input part (a valid Java identifier).

� value: Specify the value of the input part. This is required for an RPC-style
Web service. For a document-style Web service, you can use the tag body
instead.

Web Services Tag Examples
This section provides a template for use of the Web services tag library, a sample JSP
page to invoke an RPC-style Web service, and a sample page to invoke a
document-style Web service.

Web Services Example: Usage Template
<HTML>
<HEAD>
<TITLE>Title</TITLE>
</HEAD>
<BODY>
<H2>This is sample HTML text.</H2>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/wstaglibrary.tld"
 prefix="ws" %>
<ws:webservice id="myws"
 wsdlUrl="wsdlurl"
 {
 binding="" soapLocation="" | service="" port=""
 }
 {
 scope="page | request | session | application"
 }
 >
 <ws:property name="property" value="string"/>

 <ws:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 localname="SOAPStruct"
 namespaceUri="http://soapinterop.org/xsd"
 javaType="MySoapStructBean"
 java2xmlClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 xml2javaClassName="org.apache.soap.encoding.soapenc.BeanSerializer"
 />

</ws:webservice>

OC4J Web Services Tags

11-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

<ws:invoke id="result" webservice="myws" operation="add" inputMsgName=""
 outputMsgName="">
 <ws:part name="part_name" value="{string | <%= expression %>}"/>
</ws:invoke>

<% =result %>
</BODY>
</HTML>

Web Services Example: Sample JSP Page for RPC-Style Web Service
<%@ page contentType="text/html"%>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/wstaglib.tld"
 prefix="ws" %>
<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; ">
</HEAD>
<BODY>
<%
 String itemID = request.getParameter("itemID");
%>
<ws:webservice id="ebay"
 wsdlUrl="http://www.xmethods.net/sd/2001/EBayWatcherService.wsdl"
 binding="eBayWatcherBinding"
 soapLocation="http://services.xmethods.net:80/soap/servlet/rpcrouter"
 scope="page">
 <ws:property name="http.proxyHost" value="www-proxy.us.oracle.com"/>
 <ws:property name="http.proxyPort" value="80"/>
</ws:webservice>
<ws:invoke id="price" webservice="ebay" operation="getCurrentPrice">
 <ws:part name="auction_id" value="<%=itemID%>"/>
</ws:invoke>

Action price for eBay Item # <%=itemID%> is :

<P>
$<%= price%>
@
<%= new java.util.Date()%>
</P>
</BODY>
</HTML>

OC4J Web Services Tags

Web Services Tags 11-23

Web Services Example: Sample JSP Page for Document-Style Web Service
<%@ page contentType="text/xml;"%>
<%@ page import= oracle.xml.parser.v2.XMLElement;"%>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/wstaglib.tld"
 prefix="ws" %>
<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/xml.tld"
 prefix="xml" %>

<ws:webservice id="bookService"
 wsdlUrl="http://hosting.msugs.ch/cheeso9/books/books.asmx?WSDL"
 binding="LookyBookServiceSoap"
 soapLocation ="http://hosting.msugs.ch/cheeso9/books/books.asmx"
 scope="session">
</ws:webservice>

<ws:invoke id="bookResult"
 operation="GetInfo"
 webservice="bookService">
 <ws:part name="parameters">
 <GetInfo xmlns="http://dinoch.dyndns.org/webservices/">
 <ISBN>SomeISBNNumber</ISBN>
 </GetInfo>
 </ws:part>
</ws:invoke>
<%
 XMLNode resultNode = (XMLNode) bookResult;
 resultNode.Error! Bookmark not defined.(new java.io.PrintWriter(out));
%>
</BODY>
</HTML>

OC4J Web Services Tags

11-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Syntax and Tags A-1

A
JML Compile-Time Syntax and Tags

The JSP tag library framework was introduced in the JSP 1.1 specification. Oracle
JSP releases prior to the implementation of the JSP 1.1 specification could support
JML tags only as Oracle-specific translator extensions. This is referred to as
compile-time tag support in this manual.

JSP releases with OC4J continue to support the compile-time JML implementation;
however, it is generally advisable to use the standards-compliant runtime
implementation whenever possible. The runtime implementation is documented in
Chapter 3, "JSP Markup Language Tags".

This appendix discusses features of the compile-time implementation that are not in
common with the runtime implementation, and consists of the following sections:

� JML Compile-Time Syntax Support

� JML Compile-Time Tag Support

For a general discussion of when it might be advantageous to use a compile-time
implementation, refer to the Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide.

JML Compile-Time Syntax Support

A-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Syntax Support
The following sections describe Oracle-specific bean reference syntax and
expression syntax supported by the compile-time JML implementation for
specifying tag attribute values:

� JML Bean References and Expressions, Compile-Time Implementation

� Attribute Settings with JML Expressions

This functionality requires the OC4J JSP translator; it is not portable to other JSP
environments.

JML Bean References and Expressions, Compile-Time Implementation
A bean reference is any reference to a JavaBean instance that results in accessing
either a property or a method of the bean. This includes a reference to a property or
method of a bean where the bean itself is a property of another bean.

This becomes cumbersome, because standard JavaBeans syntax requires that
properties be accessed by calling their accessor methods rather than by direct
reference. For example, consider the following direct reference:

a.b.c.d.doIt()

This must be expressed as follows in standard JavaBeans syntax:

a.getB().getC().getD().doIt()

The Oracle compile-time JML implementation, however, offers abbreviated syntax,
as described in the following subsections.

JML Bean References
Oracle-specific syntax supported by the compile-time JML implementation allows
bean references to be expressed using direct dot (".") notation. Note that standard
bean property accessor method syntax is also still valid.

Consider the following standard JavaBean reference:

customer.getName()

In JML bean reference syntax, you can express this in either of the following ways:

customer.getName()

JML Compile-Time Syntax Support

JML Compile-Time Syntax and Tags A-3

or:

customer.name

JavaBeans can optionally have a default property whose reference is assumed if no
reference is explicitly stated. You can omit default property names in JML bean
references. In the example above, if name is the default property, then the following
are all valid JML bean references:

customer.getName()

or:

customer.name

or:

customer

Most JavaBeans do not define a default property. Of those that do, the most
significant are the JML datatype JavaBeans described in Chapter 2, "JavaBeans for
Extended Types".

JML Expressions
JML expression syntax supported by the compile-time JML implementation is a
superset of standard JSP expression syntax, adding support for the JML bean
reference syntax documented in the preceding section.

A JML bean reference appearing in a JML expression must be enclosed in the
following syntax:

$[JML_bean_reference]

Attribute Settings with JML Expressions
Tag attribute documentation under "JSP Markup Language (JML) Tag Descriptions"
on page 3-4 notes standards-compliant syntax. You can set attributes, as
documented there, for either the runtime or the compile-time JML implementation
and even for non-Oracle JSP environments.

If you intend to use only the Oracle-specific compile-time implementation,
however, you can set attributes using JML bean references and JML expression
syntax, as documented in the preceding section, "JML Bean References and
Expressions, Compile-Time Implementation". Note the requirements that follow.

JML Compile-Time Syntax Support

A-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

� Wherever Chapter 3 documents an attribute that accepts either a string literal or
an expression, you can use a JML expression in its $[...] syntax inside
standard JSP <%=...%> syntax.

Consider an example using the JML useVariable tag. You would use syntax
such as the following for the runtime implementation:

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= dbConn.isValid() %>" scope = "session" />

You can alternatively use syntax such as the following for the compile-time
implementation (the value attribute can be either a string literal or an
expression):

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= $[dbConn.valid] %>" scope = "session" />

� Wherever Chapter 3 documents an attribute that accepts an expression only,
you can use a JML expression in its $[...] syntax without being nested in
<%=...%> syntax.

Consider an example using JML choose...when tags. You would use
something such as the following syntax for the runtime implementation
(presuming orderedItem is a JmlBoolean instance):

<jml:choose>
 <jml:when condition = "<%= orderedItem.getValue() %>" >
 You have changed your order:
 -- outputs the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can't interest you in something?
 </jml:otherwise>
</jml:choose>

You can alternatively use syntax such as the following for the compile-time
implementation, where the condition attribute can be an expression only:

<jml:choose>
 <jml:when condition = "$[orderedItem]" >
 You have changed your order:
 -- outputs the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can't interest you in something?
 </jml:otherwise>
</jml:choose>

JML Compile-Time Tag Support

JML Compile-Time Syntax and Tags A-5

JML Compile-Time Tag Support
This section presents the following:

� Documentation of the taglib directive that you must use for compile-time
JML support

� Summary of all compile-time tags, noting which are desupported in the runtime
implementation

� Description of tags supported by the compile-time implementation that are
desupported in the runtime implementation

Tags still supported in the runtime implementation are documented in "JSP
Markup Language (JML) Tag Descriptions" on page 3-4.

The taglib Directive for Compile-Time JML Support
The Oracle compile-time JML support implementation uses a custom class,
OpenJspRegisterLib, to implement JML tag support.

In a JSP page using JML tags with the compile-time implementation, the taglib
directive must specify the fully qualified name of this class, instead of specifying a
TLD file as in standard JSP tag library usage:

<%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

For information about usage of the taglib directive for the JML runtime
implementation, see "Overview of the JSP Markup Language (JML) Tag Library" on
page 3-2.

Note: In most cases, JML tags that are desupported in the runtime
implementation have standard JSP equivalents. Some of the
compile-time tags, however, were desupported because they have
functionality that is difficult to implement when adhering to the
current JSP specification.

JML Compile-Time Tag Support

A-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Tag Summary, Compile-Time Versus Runtime
Most JML tags are available in both the runtime model and the compile-time model;
however, there are exceptions, as summarized in Table A–1.

Table A–1 JML Tags Supported: Compile-Time Model Versus Runtime Model

Tag
Supported in Oracle
Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?

Bean Binding Tags:

useBean Yes No; use jsp:useBean.

useVariable Yes Yes

useForm Yes Yes

useCookie Yes Yes

remove Yes Yes

Bean Manipulation Tags:

getProperty Yes No; use jsp:getProperty.

setProperty Yes No; use jsp:setProperty.

set Yes No

call Yes No

lock Yes No

Control Flow Tags:

if Yes Yes

choose Yes Yes

for Yes Yes

foreach Yes; type attribute is optional. Yes; type attribute is required.

return Yes Yes

flush Yes Yes

include Yes No; use jsp:include.

forward Yes No; use jsp:forward.

XML Tags:

transform Deprecated Yes

JML Compile-Time Tag Support

JML Compile-Time Syntax and Tags A-7

Descriptions of Additional JML Tags, Compile-Time Implementation
The following sections provide detailed descriptions of JML tags that are still
supported by the JML compile-time implementation but are not supported by the
JML runtime implementation. The tags supported in the runtime implementation
are documented under "JSP Markup Language (JML) Tag Descriptions" on page 3-4.

� JML useBean Tag

� JML getProperty Tag

� JML setProperty Tag

� JML set Tag

� JML call Tag

� JML lock Tag

� JML include Tag

� JML forward Tag

� JML print Tag

� JML plugin Tag

styleSheet Deprecated Yes

Utility Tags:

print Yes; use double-quotes to specify a
string literal.

No; use JSP expressions.

plugin Yes No; use jsp:plugin.

Note: Since Oracle9iAS Release 2 (9.0.3), the transform and
styleSheet tags are deprecated in the compile-time
implementation.

Table A–1 JML Tags Supported: Compile-Time Model Versus Runtime Model (Cont.)

Tag
Supported in Oracle
Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?

JML Compile-Time Tag Support

A-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML useBean Tag
This tag declares an object to be used in the page, locating the previously
instantiated object at the specified scope by name if it exists. If it does not exist, the
tag creates a new instance of the appropriate class and attaches it to the specified
scope by name.

The syntax and semantics are the same as for the standard jsp:useBean tag,
except that wherever a JSP expression is valid in jsp:useBean usage, either a JML
expression or a JSP expression is valid in JML useBean usage.

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for an overview of the jsp:useBean tag.

Syntax

<jml:useBean id = "beanInstanceName"
[scope ="page" | "request" | "session" | "application"]
 class ="package.class" |
 type = "package.class" |
 class ="package.class" type = "package.class" |
 beanName = "package.class" | "<%= jmlExpression %>" type = "package.class" />

Alternatively, you can have additional nested tags, such as setProperty tags, and
use a </jml:useBean> end-tag.

Attributes

In addition to specifying id, you must specify class, type (or class and type),
or beanName.

Refer to the Sun Microsystems JavaServer Pages Specification for detailed information
about jsp:useBean attributes and their syntax.

Notes:

� The prefix "jml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

� See "Tag Syntax Symbology and Notes" on page 1-3 for general
information about tag syntax conventions in this manual.

JML Compile-Time Tag Support

JML Compile-Time Syntax and Tags A-9

Example

<jml:useBean id = "isValidUser" class = "oracle.jsp.jml.JmlBoolean" scope = "session" />

JML getProperty Tag
This tag is functionally identical to the standard jsp:getProperty tag. It prints
the value of the bean property into the response.

For general information about getProperty usage, refer to the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

Syntax

<jml:getProperty name = "beanInstanceName"
 property = "propertyName" />

Attributes

� name (required): This is the name of the bean whose property is being retrieved.

� property (required): This is the name of the property being retrieved.

Example The following example outputs the current value of the salary property.
Assume salary is of type JmlNumber.

<jml:getProperty name="salary" property="value" />

This is equivalent to the following:

<%= salary.getValue() %>

JML setProperty Tag
This tag covers the functionality supported by the standard jsp:setProperty tag
and adds functionality to support JML expressions. In particular, you can use JML
bean references.

For general information about setProperty usage, refer to the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

JML Compile-Time Tag Support

A-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Syntax

<jml:setProperty name = "beanInstanceName"
 property = " * " |
 property = "propertyName" [param = "parameterName"] |
 property = "propertyName"
 [value = "stringLiteral" | "<%= jmlExpression %>"] />

Attributes

� name (required): This is the name of the bean whose property is being set.

� property (required): This is the name of the property being set.

� value: This is an optional parameter that lets you set the value directly instead
of from a request parameter. The JML setProperty tag supports JML
expressions in addition to standard JSP expressions to specify the value.

Example The following example updates salary with a six percent raise. Assume
salary is of type JmlNumber.

<jml:setProperty name="salary" property="value" value="<%= $[salary] * 1.06 %>" />

This is equivalent to the following:

<% salary.setValue(salary.getValue() * 1.06); %>

JML set Tag
This tag provides an alternative for setting a bean property, using syntax that is
more convenient than that of the setProperty tag.

Syntax

<jml:set name = "beanInstanceName.propertyName"
 value = "stringLiteral" | "<%= jmlExpression %>" />

Attributes

� name (required): This is a direct reference (JML bean reference) to the bean
property to be set.

� value (required): This is the new property value. It is expressed either as a
string literal, a JML expression, or a standard JSP expression.

JML Compile-Time Tag Support

JML Compile-Time Syntax and Tags A-11

Example Each of the following examples updates salary with a six percent raise.
Assume salary is of type JmlNumber.

<jml:set name="salary.value" value="<%= salary.getValue() * 1.06 %>" />

or:

<jml:set name="salary.value" value="<%= $[salary.value] * 1.06 %>" />

or:

<jml:set name="salary" value="<%= $[salary] * 1.06 %>" />

These are equivalent to the following:

<% salary.setValue(salary.getValue() * 1.06); %>

JML call Tag
This tag provides a mechanism to invoke bean methods that return nothing.

Syntax

<jml:call method = "beanInstanceName.methodName(parameters)" />

Attributes

� method (required): This is the method call as you would write it in a scriptlet,
except that the beanInstancename.methodName portion of the statement
can be written as a JML bean reference if enclosed in JML expression $[...]
syntax.

Example The following example redirects the client to a different page:

<jml:call name='response.sendRedirect("http://www.oracle.com/")' />

This is equivalent to the following:

<% response.sendRedirect("http://www.oracle.com/"); %>

JML Compile-Time Tag Support

A-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML lock Tag
This tag allows controlled, synchronous access to the named object for any code that
uses it within the tag body.

Generally, JSP developers need not be concerned with concurrency issues. However,
because application-scope objects are shared across all users running the
application, access to critical data must be controlled and coordinated.

 You can use the JML lock tag to prevent concurrent updates by different users.

Syntax

<jml:lock name = "beanInstanceName" >
 ...body...
</jml:lock>

Attributes

� name (required): This is the name of the object that should be locked during
execution of code in the lock tag body.

Example In the following example, pageCount is an application-scope JmlNumber
value. The variable is locked to prevent the value from being updated by another
user between the time this code gets the current value and the time it sets the new
value.

<jml:lock name="pageCount" >
 <jml:set name="pageCount.value" value="<%= pageCount.getValue() + 1 %>" />
</jml:lock>

This is equivalent to the following:

<% synchronized(pageCount)
 {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>

JML include Tag
This tag includes the output of another JSP page, a servlet, or an HTML page in the
response of the including page (the page invoking include). It provides the same
functionality as the standard jsp:include tag except that the page attribute can
also be expressed as a JML expression.

JML Compile-Time Tag Support

JML Compile-Time Syntax and Tags A-13

For general information about include usage, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

Syntax

<jml:include page = "relativeURL" | "<%= jmlExpression %>"
 flush = "true" | "false" />

Attributes

For general information about include attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification.

Example The following example includes the output of table.jsp, a presentation
component that renders an HTML table based on data in the query string and
request attributes.

<jml:include page="table.jsp?maxRows=10" flush="true" />

JML forward Tag
This tag forwards the request to another JSP page, a servlet, or an HTML page. It
provides the same functionality as the standard jsp:forward tag except that the
page attribute can also be expressed as a JML expression.

For general information about forward usage, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Syntax

<jml:forward page = "relativeURL" | "<%= jmlExpression %>" />

Attributes

For general information about forward attributes, refer to the Sun Microsystems
JavaServer Pages Specification.

Example

<jml:forward page="altpage.jsp" />

JML Compile-Time Tag Support

A-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML print Tag
This tag provides essentially the same functionality as a standard JSP expression:
<%= expr %>. A specified JML expression or string literal is evaluated and the
result is output into the response. With this tag, the JML expression does not have to
be enclosed in <%= ... %> syntax; however, a string literal must be enclosed in
double-quotes.

Syntax

<jml:print eval = ’"stringLiteral"’ | "jmlExpression" />

Attributes

� eval (required): Specifies the string or expression to be evaluated and output.

Examples Either of the following examples outputs the current value of salary,
which is of type JmlNumber:

<jml:print eval="$[salary]" />

or:

<jml:print eval="salary.getValue()" />

The following example prints a string literal:

<jml:print eval=’"Your string here"’ />

JML plugin Tag
This tag has functionality identical to that of the standard jsp:plugin tag.

For general information about plugin usage, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

Third Party Licenses B-1

B
Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle Application Server and discussed in this manual. Topics include:

� Apache HTTP Server

� Apache JServ

� Jaxen

� SAXPath

Apache HTTP Server

B-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written

Apache HTTP Server

Third Party Licenses B-3

 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

Apache JServ

B-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

� Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

� Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

� All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

� The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

� Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

� Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

Apache JServ

Third Party Licenses B-5

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Jaxen

B-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Jaxen
Oracle is required to provide the text of the third-party license, but the third-party
program will be subject to the Oracle license, and Oracle will NOT provide
warranties and technical support for the third-party technology.

This program contains third-party code from Jaxen. Under the terms of the Jaxen
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the Jaxen software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Jaxen software is provided by Oracle
“AS IS” and without warranty or support of any kind from Oracle or Jaxen.

The Jaxen Software License
Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

3. The name "Jaxen" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission,
please contact license@jaxen.org.

4. Products derived from this software may not be called "Jaxen", nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

Jaxen

Third Party Licenses B-7

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE Jaxen AUTHORS OR
THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Jaxen Project and was originally created by bob mcwhirter and James
Strachan . For more information on the Jaxen Project, please see
http://www.jaxen.org/.

SAXPath

B-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SAXPath
Oracle is required to provide the text of the third-party license, but the third-party
program will be subject to the Oracle license, and Oracle will NOT provide
warranties and technical support for the third-party technology.

This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your
right to use the Oracle program, including the SAXPath software, and the terms
contained in the following notices do not change those rights. Notwithstanding
anything to the contrary in the Oracle program license, the SAXPath software is
provided by Oracle “AS IS” and without warranty or support of any kind from
Oracle or SAXPath.

The SAXPath License
Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

3. The name "SAXPath" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission,
please contact license@saxpath.org.

4. Products derived from this software may not be called "SAXPath", nor may
"SAXPath" appear in their name, without prior written permission from the
SAXPath Project Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

SAXPath

Third Party Licenses B-9

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE SAXPath AUTHORS
OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on
behalf of the SAXPath Project and was originally created by bob mcwhirter and
James Strachan . For more information on the SAXPath Project, please see
http://www.saxpath.org/. */

SAXPath

B-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Index-1

Index
A
application events (JspScopeListener), 9-2
attachments (mail JavaBean and tag), 8-28

B
bean references, compile-time JML, A-2
binding (Web services), 11-4

C
cache block (Web Object Cache)

expiration, 7-10
invalidation, 7-11
methods, 7-49
naming, 7-7, 7-16
runtime functionality, 7-10

cache policy (Web Object Cache)
and scope, 7-5
attributes, 7-12
creation, 7-40
descriptor, 7-56
methods, 7-42

cache repository descriptor, Web Object
Cache, 7-59

cache tag (Web Object Cache), 7-23, 7-32
cacheInclude tag (Web Object Cache), 7-33
cacheXMLObj tag (Web Object Cache), 7-28, 7-32
caching

Edge Side Includes, 6-2
JESI tags for Edge Side Includes, 6-7
Oracle Application Server and JSP caching

features, overview, 1-17

Oracle Application Server Java Object
Cache, 1-18

Oracle Web Object Cache, 7-1
OracleAS Web Cache, 6-4

call tag, compile-time JML, A-11
categories (personalization), 10-7
checkPageScope tag (JspScopeListener), 9-4
choose tag, JML, 3-9
cloneable cache objects (Web Object Cache), 7-8
codeblock tag (JESI), 6-33
compile-time JML tags

syntax support, A-2
tag summary and descriptions, A-5
taglib directive, A-5

compile-time tag support, A-1
configuration file for invalidation, JESI, 6-39
configuration file for personalization tags, 10-58
ConnBean JavaBean (for connection), 4-4
ConnCacheBean JavaBean (for connection

cache), 4-7
connection caching

through ConnCacheBean JavaBean, 4-7
through data sources, 4-3

control tag (JESI), 6-21
control/include model (JESI tags)

examples, 6-27
overview, 6-9

cookie tag (JESI), 6-43
createBean tag (EJB), 9-19
CursorBean JavaBean (for DML), 4-11

D
data sources, support for data-access beans and

Index-2

tags, 4-3
data-access JavaBeans

ConnBean for connection, 4-4
ConnCacheBean for connection cache, 4-7
CursorBean for DML, 4-11
DBBean for queries, 4-10
overview, 4-2
support for data sources, connection

pooling, 4-3
data-access tags--see SQL tags
DBBean JavaBean (for queries), 4-10
dbClose SQL tag, close connection, 4-21
dbCloseQuery SQL tag, close cursor, 4-24
dbExecute SQL tag, DML/DDL, 4-25
dbNextRow SQL tag, process results, 4-24
dbOpen SQL tag, open connection, 4-18
dbQuery SQL tag, execute query, 4-22
dbSetCookie SQL tag, 4-28
dbSetParam SQL tag, 4-27
demo location, OTN, 1-1
demographic items (personalization), 10-20
displayCurrency tag (utility), 9-24
displayDate tag (utility), 9-24
displayNumber tag (utility), 9-25
download file features--see file access
DownloadServlet (file access, downloads), 8-17

E
Edge Side Includes

JESI-ESI conversion, 6-48
overview, 6-2

EJB tags
configuration, 9-15
descriptions, 9-16
examples, 9-20
tag library descriptor file, 9-16

endRESession tag (personalization), 10-30
ESI--see Edge Side Includes
evaluateItems tag (personalization), 10-40
event-handling (JspScopeListener), 9-2
expiration policy (Web Object Cache)

attributes, 7-18
methods, 7-48
retrieval, 7-48

expiration, Web Object Cache, 7-10
explicit cache block naming, Web Object

Cache, 7-7, 7-16
expression language (JSTL), 1-26
extensions

JML types, descriptions, 2-4
JML types, overview, 2-2
overview of data-access JavaBeans, 1-5
overview of extended types, 1-3
overview of JML tag library, 1-7
overview of JspScopeListener, 1-4
overview of portable extensions, 1-2
overview of SQL tag library, 1-5
overview of XML/XSL support, 1-4

F
file access tags and beans

DownloadServlet, 8-17
example, httpDownload tag, 8-25
example, HttpDownloadBean, 8-17
example, HttpUploadBean, 8-11
example, httpUploadForm and httpUpload

tags, 8-22
FileAccessException, 8-18
httpDownload tag, 8-23
HttpDownloadBean, 8-12
httpUpload tag, 8-20
HttpUploadBean, 8-7
httpUploadForm tag, 8-19
overview, 8-2
recursive downloading, 8-5
security considerations for downloading, 8-6
security considerations for uploading, 8-4
tag library descriptor file, 8-18

file download features--see file access
file upload features--see file access
fileaccess table, fileaccess.sql script, 8-3
FileAccessException (file access), 8-18
fileaccess.properties file, 8-3
filtering settings (personalization), 10-23
flush tag, JML, 3-12
for tag, JML, 3-10
foreach tag, JML, 3-11
forItem tag (personalization), 10-42

Index-3

forward tag, compile-time JML, A-13
fragment tag (JESI), 6-32

G
getCache() method (Web Object Cache), 7-42
getCrossSellRecommendations tag

(personalization), 10-36
getNextItem tag (personalization), 10-44
getProperty tag, compile-time JML, A-9
getRecommendations tag (personalization), 10-32

H
header tag (JESI), 6-44
hot picks (personalization), 10-16
httpDownload tag (file access, download), 8-23
HttpDownloadBean (file access, download), 8-12
httpUpload tag (file access, upload), 8-20
HttpUploadBean (file access, upload), 8-7
httpUploadForm tag (file access, upload), 8-19

I
if tag, JML, 3-8
ifInRole tag (utility), 9-26
implicit cache block naming, Web Object

Cache, 7-7, 7-16
include tag (JESI), 6-23
include tag, compile-time JML, A-12
interest dimension (personalization), 10-11
invalidate tag (JESI), 6-37
invalidateCache tag (Web Object Cache), 7-35
invalidateCacheXXX() methods (Web Object

Cache), 7-42
invalidation

JESI invalidation examples, 6-44
JESI invalidation of cached objects, 6-17
Web Object Cache, 7-11

invoke tag (Web services), 11-18
Item class (personalization), 10-55
items (personalization)

introduction, 10-7
specification of input items, 10-18
use in personalization tags, 10-14

iterate tag (EJB), 9-19
iterate tag (utility), 9-26

J
Java Object Cache--see Oracle Application Server

Java Object Cache
JavaBeans

bean references, compile-time JML, A-2
for file access, 8-6
JML bean binding tags, 3-4
Oracle data-access beans, 4-2
SendMailBean, 8-30

JavaServer Pages Standard Tag Library--see JSTL
jesi codeblock tag, 6-33
jesi control tag, 6-21
jesi cookie tag, 6-43
jesi fragment tag, 6-32
jesi header tag, 6-44
jesi include tag, 6-23
jesi invalidate tag, 6-37
jesi object tag, 6-42
jesi param tag, 6-26
jesi personalize tag, 6-46
JESI tags

configuration file for invalidation, 6-39
control/include examples, 6-27
control/include model, 6-9
example, personalization of cached pages, 6-47
invalidation, 6-17
invalidation examples, 6-44
invalidation tag and subtags, 6-36
JESI includes, functionality, 6-16
overview of Oracle implementation, 6-8
personalization of cached pages, 6-17
personalization tag, cached pages, 6-46
tag descriptions, 6-20
tag handling, JESI-ESI conversion, 6-48
tag library descriptor file, 6-20
tags for dynamic caching, 6-20
template/fragment examples, 6-34
template/fragment model, 6-10
usage models, 6-9

jesi template tag, 6-29
jml call tag, compile-time JML, A-11

Index-4

jml choose tag, 3-9
JML expressions, compile-time JML

attribute settings, A-3
syntax, A-3

jml flush tag, 3-12
jml for tag, 3-10
jml foreach tag, 3-11
jml forward tag, compile-time JML, A-13
jml getProperty tag, compile-time JML, A-9
jml if tag, 3-8
jml include tag, compile-time JML, A-12
jml lock tag, compile-time JML, A-12
jml otherwise tag, 3-9
jml plugin tag, compile-time JML, A-14
jml print tag, A-14
jml remove tag, 3-7
jml return tag, 3-12
jml set tag, compile-time JML, A-10
jml setProperty tag, compile-time JML, A-9
JML tags

attribute settings, compile-time JML, A-3
bean references, compile-time JML, A-2
descriptions, additional compile-time tags, A-7
descriptions, bean binding tags, 3-4
descriptions, logic/flow control tags, 3-8
expressions, compile-time JML, A-3
overview, 3-2
philosophy, 3-3
requirements, 3-2
summary of tags, categories, 3-3
summary, compile-time vs. runtime, A-6
tag library descriptor file, 3-2
taglib directive, compile-time JML, A-5

JML types
example, 2-8
JmlBoolean, 2-4
JmlFPNumber, 2-6
JmlNumber, 2-5
JmlString, 2-7
overview, 2-2

jml useBean tag, compile-time JML, A-8
jml useCookie tag, 3-6
jml useForm tag, 3-5
jml useVariable tag, 3-4
jml when tag, 3-9

JmlBoolean extended type, 2-4
JmlFPNumber extended type, 2-6
JmlNumber extended type, 2-5
JmlString extended type, 2-7
JSP Markup Language--see JML
JspScopeEvent class, event handling, 9-2
JspScopeListener

application scope support, 9-6
examples, 9-7
general use, 9-2
overview, 9-2
page scope support, 9-4
request scope support, 9-5
requirements, 9-4
sample application, 9-7
session scope, integration with

HttpSessionBindingListener, 9-6
use in OC4J / servlet 2.3, 9-3

JSTL
expression language, 1-26
overview, 1-24
scoped variables, 1-28
tag summaries, 1-29

L
lastModified tag (utility), 9-27
lock tag, compile-time JML, A-12
lookupPolicy() method (Web Object Cache), 7-41

M
mail JavaBean and tag

attachments, 8-28
general considerations, 8-27
introduction, 8-27
sendMail tag description, 8-35
SendMailBean description, 8-30
tag library descriptor file, 8-36

map tag (Web services), 11-16
message (Web services), 11-3, 11-4, 11-5
mining object repository (personalization), 10-5
mining table repository (personalization), 10-4
models (personalization), 10-5
MTR.MTR_BIN_BOUNDARY table

Index-5

(personalization), 10-9

N
navigation items (personalization), 10-9

O
Object Caching Service for Java--see Oracle

Application Server Java Object Cache
object tag (JESI), 6-42
operation (Web services), 11-4
Oracle Application Server Java Object Cache

as default Web Object Cache repository, 7-4
configuration notes, 7-61
introduction, 1-18
versus Web Object Cache, 1-19

OracleAS Web Cache
ESI processor, 6-6
introduction, 1-17, 6-4
steps in usage, 6-5
versus Web Object Cache, 1-19

otherwise tag, JML, 3-9

P
page events (JspScopeListener), 9-2
param tag (JESI), 6-26
parsexml tag for XML output, 5-8
part tag (Web services), 11-20
parts, message (Web services), 11-5
personalization

categories, 10-7
configuration file, personalization.xml, 10-58
demographic items, 10-20
hot picks, 10-16
interest dimension, 10-11
introduction, Oracle implementation, 10-3
Item class description, 10-55
items and recommendations, 10-7
items, usage in tags, 10-14
mining object repository, 10-5
mining table repository, 10-4
models, 10-5
navigation items, 10-9

overview, general, 10-2
prediction value, 10-9
ratings and rankings, 10-9
recommendation engine, 10-5
recommendation engine API features, 10-6
recommendation engine farms, 10-6
recommendation engine session

management, 10-12
requests for recommendations, 10-11
stateful vs. stateless recommendation engine

sessions, 10-10
tag descriptions (also see "personalization

tags"), 10-26
tag functionality (also see "personalization

tags"), 10-12
taxonomies, 10-7

personalization (customization), JESI, 6-17
personalization endRESession tag, 10-30
personalization evaluateItems tag, 10-40
personalization forItem tag, 10-42
personalization getCrossSellRecommendations

tag, 10-36
personalization getNextItem tag, 10-44
personalization getRecommendations tag, 10-32
personalization recordDemographic tag, 10-50
personalization recordNavigation tag, 10-47
personalization recordPurchase tag, 10-48
personalization recordRating tag, 10-49
personalization removeDemographicRecord

tag, 10-54
personalization removeNavigationRecord

tag, 10-51
personalization removePurchaseRecord tag, 10-52
personalization removeRatingRecord tag, 10-53
personalization selectFromHotPicks tag, 10-38
personalization setVisitorToCustomer tag, 10-31
personalization startRESession tag, 10-27
personalization tags

item recording and removal tag
descriptions, 10-46

limitations, 10-57
mode of use for item recording, 10-21
overview of item recording and removal

tags, 10-15
overview of recommendation and evaluation

Index-6

tags, 10-15
recommendation and evaluation tag

descriptions, 10-32
session management tag descriptions, 10-27
specification of input items, 10-18
tag library descriptor file, 10-26
tag-extra-info variables for returned

items, 10-17
tuning, filtering, and sorting, 10-22

personalization.xml configuration file, 10-58
personalize tag (JESI), 6-46
plugin tag, compile-time JML, A-14
port (Web services), 11-4
port type (Web services), 11-4
prediction value (personalization), 10-9
print tag, JML, A-14
property tag (Web services), 11-17
putCache() method (Web Object Cache), 7-42

R
rankings (personalization), 10-9
ratings (personalization), 10-9
recommendation engine (personalization)

introduction, 10-5
overview of API features, 10-6
recommendation engine farms, 10-6
session management, 10-12
stateful vs. stateless sessions, 10-10, 10-13

recommendations (personalization), 10-7
recordDemographic tag (personalization), 10-50
recordNavigation tag (personalization), 10-47
recordPurchase tag (personalization), 10-48
recordRating tag (personalization), 10-49
recursive downloading (file access tags and

beans), 8-5
remove tag, JML, 3-7
removeDemographicRecord tag

(personalization), 10-54
removeNavigationRecord tag

(personalization), 10-51
removePurchaseRecord tag

(personalization), 10-52
removeRatingRecord tag (personalization), 10-53
request events (JspScopeListener), 9-2

resource management
application (JspScopeListener), 9-2
page (JspScopeListener), 9-2
request (JspScopeListener), 9-2
session (JspScopeListener), 9-2

return tag, JML, 3-12
row prefetching, through ConnBean, 4-4
RPC (Web services), 11-3
runtime functionality, Web Object Cache, 7-10

S
sample applications

demo location, OTN, 1-1
JML types example, 2-8
JspScopeListener, event-handling, 9-7
sendMail tag, 8-38
Web services tags, 11-21
XML transform and dbQuery tag example, 5-11
XML transform and parsexml tag example, 5-13
XML transform tag example, 5-9

section IDs (Web Object Cache), 7-43
security considerations

file download tags and beans, 8-6
file upload tags and beans, 8-4

selectFromHotPicks tag (personalization), 10-38
sendMail tag

attribute descriptions, 8-37
sample application, 8-38
syntax, 8-36

SendMailBean, 8-30
session events (JspScopeListener), 9-2
set tag, compile-time JML, A-10
setProperty tag, compile-time JML, A-9
setVisitorToCustomer tag (personalization), 10-31
SOAP (Web services), 11-3
sorting order (personalization), 10-25
SQL tags

overview, tag list, 4-16
requirements, 4-17
support for data sources, connection

pooling, 4-3
tag library descriptor file, 4-17

SQL tags (JSTL), 1-29
startRESession tag (personalization), 10-27

Index-7

statement caching
through ConnBean, 4-4
through ConnCacheBean, 4-7

styleSheet tag for XML transformation, 5-6
surrogates (Edge Side Includes), 6-3

T
tag libraries

for file access, 8-18
for other Oracle components, 1-33
JESI tags, descriptions, 6-20
JESI tags, overview, 6-7
Oracle JML tag descriptions, 3-4
Oracle JML tags, overview, 3-2
Oracle SQL tags, 4-16
sendMail tag, 8-35
syntax and symbology notes, 1-3
XML tags, 5-5

tag library descriptor files
for EJB tags, 9-16
for JESI tags, 6-20
for Oracle file access tags, 8-18
for Oracle JML tags, 3-2
for Oracle mail tag, 8-36
for Oracle personalization tags, 10-26
for Oracle SQL tags, 4-17
for Oracle XML tags, 5-5
for utility tags, 9-23
for Web Object Cache tags, 7-22
for Web services tags, 11-13

tag-extra-info classes, use of variables for
personalization, 10-17

taxonomies (personalization), 10-7
TEI--see tag-extra-info
template code (JESI), 6-29
template tag (JESI), 6-29
template/fragment model (JESI tags)

examples, 6-34
overview, 6-10

transform tag for XML transformation, 5-6
tuning settings (personalization), 10-22
types

JML types example, 2-8
JmlBoolean extended type, 2-4

JmlFPNumber extended type, 2-6
JmlNumber extended type, 2-5
JmlString extended type, 2-7
Oracle JML extended types, descriptions, 2-4
Oracle JML extended types, overview, 2-2
overview of Oracle type extensions, 1-3

U
UDDI (Web services), 11-2, 11-3
update batching, through ConnBean, 4-4
upload file features--see file access
useBean tag (EJB), 9-18
useBean tag, compile-time JML, A-8
useCacheObj tag (Web Object Cache), 7-31, 7-32
useCookie tag, JML, 3-6
useForm tag, JML, 3-5
useHome tag (EJB), 9-17
useVariable tag, JML, 3-4
utility tags

introduction, 9-23
tag library descriptor file, 9-23

W
Web Object Cache

benefits, 7-2
cache block methods, 7-49
cache block naming, 7-7, 7-16
cache block runtime functionality, 7-10
cache policy and scope, 7-5
cache policy attributes, 7-12
cache policy creation, 7-40
cache policy descriptor, 7-56
cache policy methods, 7-42
cache repository descriptor, 7-59
cache tag, 7-23
cache tag examples, 7-39
cacheInclude tag, 7-33
cacheXMLObj tag, 7-28
cloneable cache objects, 7-8
configuration notes for file system cache, 7-62
configuration notes for Oracle Application Server

Java Object Cache, 7-61
data invalidation and expiration, 7-10

Index-8

expiration policy attributes, 7-18
expiration policy methods, 7-48
expiration policy retrieval, 7-48
invalidateCache tag, 7-35
overview, 7-2
overview, cache repository, 7-4
overview, programming interfaces, 7-5
role, versus other caches, 1-18
section IDs, 7-43
servlet API descriptions, 7-40
servlet example, 7-53
tag descriptions, 7-22
tag library descriptor file, 7-22
useCacheObj tag, 7-31

Web services
binding, 11-4
general overview, 11-2
message, 11-3, 11-4, 11-5
operation, 11-4
OracleAS Web Services overview, 11-10
port type, 11-4
RPC, 11-3
SOAP, 11-3
tags (also see "Web services tags"), 11-10
UDDI, 11-2, 11-3
WSDL, 11-3, 11-4, 11-6
XML schema definitions, 11-5

Web services invoke tag, 11-18
Web services map tag, 11-16
Web services part tag, 11-20
Web services property tag, 11-17
Web services tags

descriptions, 11-13
example, 11-21
functionality overview, 11-11
overview, 11-10
tag library descriptor file, 11-13

Web services webservice tag, 11-14
webservice tag (Web services), 11-14
WebServiceProxy interface, 11-10
when tag, JML, 3-9
WSDL (Web services), 11-3, 11-4, 11-6

X
XML schema definitions (Web services), 11-5
XML/XSL tags

parsexml tag for XML output, 5-8
styleSheet tag for XML transformation, 5-6
summary of related OC4J tags, 5-3
tag library descriptor file, 5-5
transform and dbQuery tag example, 5-11
transform and parsexml tag example, 5-13
transform tag example, 5-9
transform tag for XML transformation, 5-6
XML producers and consumers, 5-2

XML/XSL tags (JSTL), 1-29
XPath (XML Path, JSTL), 1-31
XSD--see XML schema definitions

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Overview of Tag Libraries and Utilities
	Overview of Tag Libraries and Utilities Provided with OC4J
	Tag Syntax Symbology and Notes
	Overview of Extended Type JavaBeans
	Overview of JspScopeListener for Event-Handling
	Overview of Integration with XML and XSL
	Summary of Data-Access JavaBeans and Tag Library
	Summary of JSP Markup Language (JML) Custom Tag Library
	Summary of Oracle Application Server Personalization Tag Library
	Summary of Web Services Tags
	Summary of File Access and Mail Tags
	Summary of EJB Tags
	Summary of JSP Utility Tags

	Summary of Oracle Caching Support for Web Applications
	Oracle Application Server and JSP Caching Features
	Role of the JSP Web Object Cache
	Summary of Tag Libraries for Caching

	Support for the JavaServer Pages Standard Tag Library
	Overview and Philosophy of JSTL
	Summary of JSTL Expression Language
	Overview of JSTL Tags and Additional Features
	JSTL Usage Notes and Future Considerations

	Overview of Tag Libraries from Other Oracle Components
	Oracle Business Components for Java Tag Library
	Oracle JDeveloper User Interface Extension (UIX) Tag Library
	Oracle JDeveloper BC4J UIX JSP Tag Library
	Oracle Reports Tag Library
	Oracle Application Server Wireless Location Tag Library
	Oracle Application Server MapViewer Tag Library
	Oracle Ultra Search Tag Library
	Oracle Application Server Portal Tag Library
	Oracle Business Intelligence Beans Tag Library
	Oracle Application Server Multimedia Tag Library

	2 JavaBeans for Extended Types
	Overview of JML Extended Types
	JML Extended Type Descriptions
	Type JmlBoolean
	Type JmlNumber
	Type JmlFPNumber
	Type JmlString
	JML Extended Types Example

	3 JSP Markup Language Tags
	Overview of the JSP Markup Language (JML) Tag Library
	JML Tag Library Philosophy
	JML Tag Categories

	JSP Markup Language (JML) Tag Descriptions
	Bean Binding Tag Descriptions
	Logic and Flow Control Tag Descriptions

	4 Data-Access JavaBeans and Tags
	JavaBeans for Data Access
	Introduction to Data-Access JavaBeans
	Data-Access Support for Data Sources and Pooled Connections
	Data-Access JavaBean Descriptions

	SQL Tags for Data Access
	Introduction to Data-Access Tags
	Data-Access Tag Descriptions

	5 XML and XSL Tag Support
	Overview of Oracle Tags for XML Support
	XML Producers and XML Consumers
	Summary of OC4J Tags with XML Functionality

	XML Utility Tags
	XML Utility Tag Descriptions
	XML Utility Tag Examples

	6 JESI Tags for Edge Side Includes
	Overview of Edge Side Includes Technology and Processing
	Edge Side Includes Technology
	Oracle Application Server Web Cache and ESI Processor

	Overview of JESI Functionality
	Advantages of JESI Tags
	Overview of JESI Tags Implemented by Oracle
	JESI Usage Models
	Invalidation of Cached Objects
	Personalization of Cached Pages
	JESI Fallback Execution

	Oracle JESI Tag Descriptions
	Descriptions of Tags for Dynamic Caching
	Descriptions of Tags and Subtags for Invalidation of Cached Objects
	Description of Tag for Page Personalization

	JESI Tag Handling and JESI-to-ESI Conversion
	Example: JESI-to-ESI Conversion for Included Pages
	Example: JESI-to-ESI Conversion for a Template and Fragment

	7 Web Object Cache Tags and API
	Overview of the Web Object Cache
	Benefits of the Web Object Cache
	Web Object Cache Components
	Cache Policy and Scope

	Key Functionality of the Web Object Cache
	Cache Block Naming: Implicit Versus Explicit
	Cloneable Cache Objects
	Cache Block Runtime Functionality
	Data Invalidation and Expiration

	Attributes for Policy Specification and Use
	Cache Policy Attributes
	Expiration Policy Attributes

	Web Object Cache Tag Descriptions
	Cache Tag Descriptions
	Cache Invalidation Tag Description

	Web Object Cache API Descriptions
	Cache Policy Object Creation
	CachePolicy Methods
	Expiration Policy Object Retrieval
	ExpirationPolicy Methods
	CacheBlock Methods
	Tag Code Versus API Code

	Cache Policy Descriptor
	Cache Policy Descriptor DTD
	Sample Cache Policy Descriptor
	Cache Policy Descriptor Loading and Refreshing

	Cache Repository Descriptor
	Cache Repository Descriptor DTD
	Sample Cache Repository Descriptor

	Configuration for Back-End Repository
	Configuration Notes for Oracle Application Server Java Object Cache
	Configuration Notes for File System Cache

	8 File Access and Mail Beans and Tags
	File-Access JavaBeans and Tags
	Overview of OC4J File-Access Functionality
	File Upload and Download JavaBean and Class Descriptions
	File Upload and Download Tag Descriptions

	Mail JavaBean and Tag
	General Considerations for the Mail JavaBean and Tag
	Mail Attachments
	SendMailBean Description
	The sendMail Tag Description

	9 JSP Utilities and Utility Tags
	JSP Event-Handling with JspScopeListener
	General Use of JspScopeListener
	Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments
	Examples Using JspScopeListener

	EJB Tags
	EJB Tag Configuration
	EJB Tag Descriptions
	EJB Tag Examples

	General Utility Tags
	Display Tags
	Miscellaneous Utility Tags

	10 Personalization Tags
	Overview of Personalization
	General Overview of Personalization
	Introduction to Oracle Application Server Personalization
	Overview of Recommendation Engine API Concepts and Features

	Overview of Personalization Tag Functionality
	Recommendation Engine Session Management
	Use of Items in Personalization Tags
	Mode of Use for Item Recording Tags
	Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags

	Personalization Tag and Class Descriptions
	Session Management Tag Descriptions
	Recommendation and Evaluation Tag Descriptions
	Item Recording and Removal Tag Descriptions
	Item Class Description
	Personalization Tag Constraints

	Personalization Tag Library Configuration Files
	The personalization.xml Files
	Element Descriptions for personalization.xml
	Sample personalization.xml File

	11 Web Services Tags
	Overview of Web Services
	General Web Services Overview
	Overview of SOAP and Related Features
	Overview of Web Services Description Language Key Elements
	Overview of Web Service Messages and XML Schema Definitions
	Web Service Example

	OC4J Web Services Tags
	Overview of OracleAS Web Services and the Tag Library Implementation
	Overview of Functionality of Web Services Tags
	Web Services Tag Descriptions
	Web Services Tag Examples

	A JML Compile-Time Syntax and Tags
	JML Compile-Time Syntax Support
	JML Bean References and Expressions, Compile-Time Implementation
	Attribute Settings with JML Expressions

	JML Compile-Time Tag Support
	The taglib Directive for Compile-Time JML Support
	JML Tag Summary, Compile-Time Versus Runtime
	Descriptions of Additional JML Tags, Compile-Time Implementation

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Jaxen
	The Jaxen Software License

	SAXPath
	The SAXPath License

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

