
Oracle® Application Server Containers for J2EE
Servlet Developer’s Guide

10g (9.0.4)

Part No. B10321-01

September 2003

Oracle Application Server Containers for J2EE Servlet Developer’s Guide, 10g (9.0.4)

Part No. B10321-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

Primary Author: Brian Wright

Contributing Authors: Tim Smith

Contributors: Jasen Minton, Bryan Atsatt, Serge Zloto, David Leibs, James Kirsch, Joyce Yang, JJ
Snyder, Sunil Kunisetty, Sastry Malladi, Olivier Caudron, Lenny Phan, Cania Chung, Ashok Banerjee,
Debu Panda, Shiva Prasad, Charlie Shapiro, Philippe Le Mouel, Gerald Ingalls, Bill Bishop, Paolo
Ramasso, Olaf Heimburger, Sheryl Maring, Mike Sanko, Ellen Barnes

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, PL/SQL, and Oracle Store are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... ix

Preface.. xi

Audience .. xii
Documentation Accessibility .. xii
Organization.. xiii
Related Documentation .. xiv
Conventions... xvii

1 Servlet Overview

Introduction to Servlets ... 1-2
Review of Servlet Technology .. 1-2
Advantages of Servlets .. 1-3
The Servlet Interface and Request and Response Objects .. 1-4
Servlets and the Servlet Container ... 1-5
Introduction to Servlet Sessions ... 1-8
Introduction to Servlet Contexts .. 1-9
Introduction to Servlet Configuration Objects ... 1-11
Introduction to Servlet Filters ... 1-12
Introduction to Event Listeners .. 1-12
JSP Pages and Other J2EE Component Types .. 1-13

A First Servlet Example ... 1-14
Hello World Code... 1-14
Compiling and Deploying the Servlet... 1-14

iv

Running the Servlet .. 1-15

2 Servlet Development

OC4J Standalone for Development ... 2-2
Overview: Using OC4J Standalone .. 2-2
Key OC4J Flags for Development... 2-4
Removal of tools.jar from OC4J Standalone ... 2-6

Servlet Development Basics and Key Considerations .. 2-7
Sample Code Template .. 2-7
Servlet Lifecycle .. 2-8
Servlet Preloading... 2-9
Servlet Classloading and Application Redeployment .. 2-11
Servlet Information Exchange... 2-14
Servlet Includes and Forwards ... 2-15
Servlet Thread Models and Related Considerations ... 2-16
Servlet Performance and Monitoring .. 2-17
JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages 2-19

Additional Oracle Features ... 2-21
OC4J Logging .. 2-21
Servlet Debugging .. 2-24
Oracle JDeveloper Support for Servlet Development ... 2-27
Introduction to OC4J Support for Open Source Frameworks.. 2-27

Servlet Invocation ... 2-28
Summary of URL Components .. 2-28
Servlet Invocation by Class Name During OC4J Development .. 2-32
Servlet Invocation in an Oracle Application Server Production Environment 2-34
Servlet Invocation in an OC4J Standalone Environment .. 2-35

Servlet Sessions ... 2-37
Session Tracking ... 2-37
Features of the HttpSession Interface .. 2-40
Session Cancellation ... 2-41
Session Replication in a Distributable Application ... 2-42
Session Servlet Example .. 2-45

Servlet Security ... 2-49
Use of Security Features... 2-50

v

Configuration of Oracle HTTP Server and OC4J for SSL ... 2-55
SSL Common Problems and Solutions.. 2-57
Additional Security Considerations .. 2-58

3 Servlet Filters and Event Listeners

Servlet Filters ... 3-2
Overview of Servlet Filters.. 3-2
How the Servlet Container Invokes Filters... 3-3
Filtering of Forward or Include Targets.. 3-4
Filter Examples.. 3-4

Event Listeners .. 3-18
Event Categories and Listener Interfaces.. 3-18
Typical Event Listener Scenario ... 3-19
Event Listener Declaration and Invocation .. 3-20
Event Listener Coding and Deployment Guidelines .. 3-21
Event Listener Methods and Related Classes... 3-21
Event Listener Sample ... 3-24

4 JDBC and EJB Calls from Servlets

Use of JDBC in Servlets... 4-2
Database Query Servlet ... 4-2
Deployment and Testing of the Database Query Servlet ... 4-6

EJB Calls from Servlets.. 4-9
Servlet-EJB Overview... 4-10
EJB Local Lookup ... 4-12
EJB Remote Lookup within the Same Application.. 4-20
EJB Remote Lookup Outside the Application.. 4-27

5 Deployment and Configuration Overview

General Overview of OC4J Deployment and Configuration .. 5-2
Overview: OC4J Standalone Versus the Oracle Application Server Environment 5-2
Overview of OC4J Deployment Scenarios.. 5-4
Using Oracle Deployment Tools Versus Expert Modes ... 5-6

Overview of Configuration Files ... 5-8

vi

Introduction to OC4J and J2EE Configuration Files .. 5-9
OC4J Top-Level Server Configuration File: server.xml .. 5-14
OC4J and J2EE Application Descriptors.. 5-17
OC4J and J2EE Web Descriptors .. 5-22
OC4J Web Site Descriptors .. 5-26
Example: Mappings to and from Web Site Descriptors.. 5-28

Application Packaging ... 5-30
J2EE Application Structure.. 5-30
EAR File and WAR File Structures .. 5-32

Deployment Scenarios to OC4J Standalone .. 5-34
Setting Up an Administrative User and Password.. 5-35
Starting and Stopping OC4J Standalone ... 5-36
OC4J Default Application and Default Web Application... 5-37
Deploying an EAR File to OC4J Standalone ... 5-39
Deploying Files into a J2EE Application Structure on OC4J Standalone 5-45
Deploying an Independent WAR File to OC4J Standalone.. 5-47
Deploying Files into a Web Application Directory Structure on OC4J Standalone.......... 5-49
Application Undeployment or Redeployment in OC4J Standalone 5-51

OC4J Deployment in Oracle Application Server ... 5-56
Overview of OC4J Deployment and Configuration in Oracle Application Server........... 5-56
OC4J Default Web Application in Oracle Application Server ... 5-58
Application Undeployment and Redeployment in Oracle Application Server 5-59

6 Configuration File Descriptions

Configuration for global-web-application.xml and orion-web.xml ... 6-2
Element Descriptions for global-web-application.xml and orion-web.xml......................... 6-2
DTD for global-web-application.xml and orion-web.xml .. 6-19
Hierarchical Representation of global-web-application.xml and orion-web.xml............. 6-24
Sample global-web-application.xml Settings ... 6-25

Configuration for Web Site XML Files ... 6-28
Element Descriptions for Web Site XML Files.. 6-28
DTD for Web Site XML Files... 6-39
Hierarchical Representation of Web Site XML Files.. 6-41
Sample default-web-site.xml File ... 6-42

vii

7 Configuration with Enterprise Manager

Web Module Configuration in Oracle Enterprise Manager ... 7-2
Application Server Control Page Descriptions... 7-3

Application Server Control OC4J Home Page ... 7-3
Application Server Control OC4J Applications Page.. 7-5
Application Server Control Deploy Application (EAR) Page.. 7-6
Application Server Control Deploy Web Application (WAR) Page 7-8
Application Server Control OC4J Administration Page ... 7-9
Application Server Control Website Properties Page ... 7-10
Application Server Control Web Module Page.. 7-11
Application Server Control Web Module Properties Page .. 7-12
Application Server Control Web Module Mappings Page... 7-15
Application Server Control Web Module Filtering and Chaining Page 7-17
Application Server Control Web Module Environment Page ... 7-19
Application Server Control Web Module Advanced Properties Page 7-21

A Open Source Frameworks and Utilities

Configuration and Use of Jakarta Struts in OC4J .. A-2
Overview of Jakarta Struts .. A-2
Downloading the Struts Binary Distribution ... A-3
Unpacking the Struts Binary Distribution .. A-3
Installing and Accessing Struts Documentation .. A-4
Installing the Struts Sample Web Application ... A-6
Deploying Your Own Application with the Struts Framework .. A-8

Configuration and Use of Jakarta log4j in OC4J .. A-11
Overview of Jakarta log4j .. A-11
Downloading the log4j Binary Distribution ... A-12
Unpacking the log4j Binary Distribution .. A-12
Installing the log4j Library .. A-12
Using log4j Configuration Files.. A-15
Enabling log4j Debug Mode.. A-19

B Third Party Licenses

Apache HTTP Server.. B-2

viii

The Apache Software License ... B-2
Apache JServ .. B-4

Apache JServ Public License ... B-4

Index

ix

Send Us Your Comments

Oracle Application Server Containers for J2EE Servlet Developer’s Guide, 10g (9.0.4)

Part No. B10321-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: appserverdocs_us@oracle.com
� FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
� Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

This document introduces and explains the Oracle implementation of Java servlet
technology, specified by an industry consortium led by Sun Microsystems. It
summarizes standard features and covers Oracle implementation details and
value-added features. The discussion includes basic servlets, data-access servlets,
and servlet filters and event listeners.

Servlet technology is a component of the standard Java 2 Enterprise Edition (J2EE).
The J2EE component of the Oracle Application Server is known as the Oracle
Application Server Containers for J2EE (OC4J).

The OC4J servlet container in Oracle Application Server 10g (9.0.4) is a complete
implementation of the Sun Microsystems Java Servlet Specification, Version 2.3.

This document also provides an overview of OC4J deployment and configuration,
with detailed descriptions of key configuration files.

Because this manual is intended for developers, its content is largely targeted for
users of the OC4J standalone development environment; however, there is ample
consideration of OC4J within an Oracle Application Server production
environment.

This preface contains the following sections:

� Audience

� Documentation Accessibility

� Organization

� Related Documentation

� Conventions

xii

Audience
The guide is intended for J2EE developers who are writing Web applications that
use servlets and possibly JavaServer Pages (JSP). It provides the basic information
you will need regarding the OC4J servlet container. It does not attempt to teach
servlet programming in general, nor does it document the Java Servlet API in detail.

You should be familiar with the current version of the Java Servlet Specification,
produced by Sun Microsystems. This is especially true if you are developing a
distributable Web application, in which sessions can be replicated to servers
running under more than one Java virtual machine (JVM).

Because this is a developer’s guide, and development and testing are more
convenient in an OC4J standalone environment, key aspects of OC4J standalone are
discussed, and the assumption is that most developers will be using a standalone
environment at some point in their development.

If you are developing applications that primarily use JavaServer Pages, refer to the
Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

xiii

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

Chapter 1, "Servlet Overview"
Summarizes servlet technology and servlet development in general, introduces the
OC4J servlet container, and provides a simple "Hello World" example.

Chapter 2, "Servlet Development"
Describes how the OC4J servlet container supports servlet development and
invocation, including a discussion of key development considerations, a summary
of servlet SSL features, and related examples. This chapter also introduces the OC4J
standalone environment for the development stages.

Chapter 3, "Servlet Filters and Event Listeners"
Explains the use of filters to affect servlet input or output, and event listeners to
track session and application events and manage resources accordingly. These
features were introduced in the servlet 2.3 specification.

Chapter 4, "JDBC and EJB Calls from Servlets"
Provides examples for using JDBC calls and EJB calls from servlets.

Chapter 5, "Deployment and Configuration Overview"
Discusses how to build and deploy a Web application in OC4J, and provides an
overview of files for servlet and Web site configuration. This chapter is primarily
useful for OC4J standalone users but also considers Oracle Application Server.

Chapter 6, "Configuration File Descriptions"
Documents all the elements and attributes of the
global-web-application.xml and orion-web.xml files for servlet
configuration, and the default-web-site.xml file (or other Web site XML files)
for Web site configuration. This level of detail is primarily useful for OC4J
standalone users.

xiv

Chapter 7, "Configuration with Enterprise Manager"
Shows and describes Oracle Enterprise Manager pages for servlet and Web site
configuration for deployment to an Oracle Application Server environment.

Appendix A, "Open Source Frameworks and Utilities"
This appendix has instructions for an OC4J standalone environment for installing
and running open source framework utilities you can use with OC4J. For the OC4J
9.0.4 implementation, this consists of Struts and log4j from the Apache Jakarta
Project.

Appendix B, "Third Party Licenses"
This appendix includes the Third Party License for third party products included
with Oracle Application Server and discussed in this document.

Related Documentation
For more information, see the following Oracle resources.

Additional OC4J documents available from the Oracle Java Platform Group:

� Oracle Application Server Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

� Oracle Application Server Containers for J2EE Stand Alone User’s Guide

This version of the user’s guide is specifically for the standalone version of
OC4J, and is available when you download the standalone version from OTN.
OC4J standalone is used in development environments, but not typically in
production environments. (Because a servlet developer will often find it useful
to use OC4J standalone during development, considerations for the standalone
version are discussed throughout the Oracle Application Server Containers for
J2EE Servlet Developer’s Guide.)

� Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

xv

� Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J. There is also a summary of tag libraries from other Oracle product
groups.

� Oracle Application Server Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server
Java Object Cache.

� Oracle Application Server Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server 10g
Security Guide), describes security features and implementations particular to
OC4J. This includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

� Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

This book provides information about the EJB implementation and EJB
container in OC4J.

Also available from the Oracle Java Platform group:

� Oracle9i Java Developer’s Guide

� Oracle9i Java Stored Procedures Developer’s Guide

� Oracle9i JDBC Developer’s Guide and Reference

� Oracle9i SQLJ Developer’s Guide and Reference

� Oracle9i JPublisher User’s Guide

Available from the Oracle Application Server group:

� Oracle Application Server 10g Administrator’s Guide

� Oracle Application Server 10g Security Guide

� Oracle Application Server Certificate Authority Administrator’s Guide

� Oracle Application Server 10g Performance Guide

� Oracle Enterprise Manager Concepts

� Oracle HTTP Server Administrator’s Guide

xvi

� Oracle Application Server 10g Globalization Guide

� Oracle Application Server Web Cache Administrator’s Guide

� Oracle Application Server Web Services Developer’s Guide

� Oracle Application Server 10g Upgrading to 10g (9.0.4)

Available from the Oracle JDeveloper group:

� Oracle JDeveloper online help

� Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Available from the Oracle Server Technologies group:

� Oracle XML Developer's Kit Programmer's Guide

� Oracle XML Reference

� Oracle9i Application Developer’s Guide - Fundamentals

� Oracle9i Supplied PL/SQL Packages and Types Reference

� PL/SQL User’s Guide and Reference

� Oracle9i SQL Reference

� Oracle9i Net Services Administrator’s Guide

� Oracle Advanced Security Administrator’s Guide

� Oracle9i Database Reference

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation

xvii

The following OTN Web site for Java servlets and JavaServer Pages is also available:

http://otn.oracle.com/tech/java/servlets/

For further servlet information, refer to the Java Servlet Specification, Version 2.3 at the
following location:

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

Resources from Sun Microsystems:

� Web site for Java servlet technology, including the latest specifications:

http://java.sun.com/products/servlet/index.html

� Web site for JavaServer Pages, including the latest specifications:

http://java.sun.com/products/jsp/index.html

� The servlet API Javadoc:

http://java.sun.com/products/servlet/2.3/javadoc/index.html

Conventions
The following conventions are used in this manual:

Convention Meaning

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

Boldface text Boldface type in text indicates a GUI component such as a link or
button to click.

Italics Italic typeface indicates book titles or emphasis, or terms that are
defined in the text.

Monospace
(fixed-width)
font

Monospace typeface within text indicates items such as executables,
file names, directory names, Java class names, Java method names,
variable names, other programmatic elements (such as JSP tags or
attributes, or XML elements or attributes), or database SQL
commands or elements (such as schema names, table names, or
column names).

Italic monospace
(fixed-width)
font

Italic monospace font represents placeholders or variables.

xviii

[] Brackets enclose optional clauses from which you can choose one or
none.

| A vertical bar represents a choice of two or more options. Enter one
of the options. Do not enter the vertical bar.

Convention Meaning

Servlet Overview 1-1

1
Servlet Overview

Oracle Application Server Containers for J2EE (OC4J) enables you to develop and
deploy standard J2EE-compliant applications. Applications are packaged in
standard EAR (Enterprise archive) deployment files, which include standard WAR
(Web archive) files to deploy the Web modules, and JAR files for any EJB and
application client modules in the application.

With Oracle Application Server 10g (9.0.4), OC4J complies with the J2EE 1.3
specification, including full servlet 2.3 compliance in the OC4J servlet container.

The most important concepts to understand about servlet development under OC4J
are how a Web application is built and how it is deployed. If you are new to
servlets, see Chapter 2, "Servlet Development". If OC4J is a new development
environment for you, see Chapter 5, "Deployment and Configuration Overview", to
learn how applications are deployed under OC4J.

This chapter introduces the Java servlet and provides an example of a basic servlet.
It also briefly discusses how you can use servlets in a J2EE application to address
some server-side programming issues.

This chapter contains the following sections:

� Introduction to Servlets

� A First Servlet Example

Note: Sample servlet applications are included in the OC4J
demos, available from the following location on the Oracle
Technology Network (requiring an OTN membership, which is free
of charge):

http://otn.oracle.com/tech/java/oc4j/demos/

Introduction to Servlets

1-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets
The following sections offer a brief introduction to servlet technology:

� Review of Servlet Technology

� Advantages of Servlets

� The Servlet Interface and Request and Response Objects

� Servlets and the Servlet Container

� Introduction to Servlet Sessions

� Introduction to Servlet Contexts

� Introduction to Servlet Configuration Objects

� Introduction to Servlet Filters

� Introduction to Event Listeners

� JSP Pages and Other J2EE Component Types

Review of Servlet Technology
In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic Web pages. A servlet is a Java program that
runs in a Web server, as opposed to an applet that runs in a client browser. Typically,
the servlet takes an HTTP request from a browser, generates dynamic content (such
as by querying a database), and provides an HTTP response back to the browser.
Alternatively, it can be accessed directly from another application component or
send its output to another component. Most servlets generate HTML text, but a
servlet might instead generate XML to encapsulate data.

More specifically, a servlet runs in a J2EE application server, such as OC4J. Servlets
are one of the main application component types of a J2EE application, along with

Note: The terms Web module and Web application are
interchangeable in most uses and are both used throughout this
document. If there is a distinction, it is that "Web module" typically
indicates a single component, whether or not it composes an
independent application, while "Web application" typically
indicates a working application that might consist of multiple
modules or components.

Introduction to Servlets

Servlet Overview 1-3

JavaServer Pages (JSP) and Enterprise JavaBeans (EJB), which are also server-side
J2EE component types. These are used in conjunction with client-side components
such as applets (part of the Java 2 Platform, Standard Edition specification) and
application client programs. An application might consist of any number of any of
these components.

Prior to servlets, Common Gateway Interface (CGI) technology was used for
dynamic content, with CGI programs being written in languages such as Perl and
being called by a Web application through the Web server. CGI ultimately proved
less than ideal, however, due to its architecture and scalability limitations.

Advantages of Servlets
In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications such as those accessing a database. One advantage of
running in the server is that the server is usually a robust machine with many
resources, making the program more scalable. Running in the server also results in
more direct access to the data. The Web server in which a servlet is running is on the
same side of the network firewall as the data being accessed.

Servlet programming also offers advantages over earlier models of server-side Web
application development, including the following:

� Servlets outperform earlier technologies for generating dynamic HTML, such as
server-side "includes" or CGI scripts. Once a servlet is loaded into memory, it
can run on a single lightweight thread; CGI scripts must be loaded in a different
process for every request.

� Servlet technology, in addition to improved scalability, offers the well-known
Java advantages of object orientation, platform independence, security, and
robustness.

� Servlets are fully integrated with the Java language and its standard APIs, such
as JDBC for Java database connectivity.

� Servlets are fully integrated into the J2EE framework, which provides an
extensive set of services that your Web application can use, such as Java
Naming and Directory Interface (JNDI) for component naming and lookup,
Java Transaction API (JTA) for managing transactions, Java Authentication and
Authorization Service (JAAS) for security, Remote Method Invocation (RMI) for
distributed applications, and Java Message Service (JMS). There is information
about the J2EE framework and services at the following Web site:

http://java.sun.com/j2ee/docs.html

Introduction to Servlets

1-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� A servlet handles concurrent requests (through either a single servlet instance
or multiple servlet instances, depending on the thread model), and servlets
have a well-defined lifecycle. Also, servlets can optionally be loaded when
OC4J starts, so that any initialization is handled in advance instead of at the
first user request. See "Servlet Preloading" on page 2-9.

� The servlet request and response objects provide a convenient way to handle
HTTP requests and send text and data back to the client.

Because servlets are written in the Java programming language, they are supported
on any platform that has a Java virtual machine and a Web server that supports
servlets. Servlets can be used on different platforms without recompiling. You can
package servlets together with associated files such as graphics, sounds, and other
data to make a complete Web application. This simplifies application development
and deployment.

In addition, you can port a servlet-based application from another Web server to
OC4J with little effort. If your application was developed for a J2EE-compliant Web
server, then the porting effort is minimal.

The Servlet Interface and Request and Response Objects
A Java servlet, by definition, implements the javax.servlet.Servlet interface.
This interface specifies methods to initialize a servlet, process requests, get the
configuration and other basic information of a servlet, and terminate a servlet
instance.

For Web applications, you can implement the Servlet interface by extending the
javax.servlet.http.HttpServlet abstract class. (Alternatively, for
protocol-independent servlets, you can extend the
javax.servlet.GenericServlet class.) The HttpServlet class includes the
following methods:

� init(...): Initialize the servlet.

� destroy(...): Terminate the servlet.

� doGet(...): Execute an HTTP GET request.

� doPost(...): Execute an HTTP POST request.

� doPut(...): Execute an HTTP PUT request.

� doDelete(...): Execute an HTTP DELETE request.

� service(...): Receive HTTP requests and, by default, dispatch them to the
appropriate doXXX() methods.

Introduction to Servlets

Servlet Overview 1-5

� getServletInfo(...): Retrieve information about the servlet.

A servlet class that extends HttpServlet implements some or all of these
methods, as appropriate, overriding the original implementations as necessary to
process the request and return the response as desired. For example, most servlets
override the doGet() method or doPost() method or both to process HTTP GET
and POST requests.

Each method takes as input an HttpServletRequest instance (an instance of a
class that implements the javax.servlet.http.HttpServletRequest
interface) and an HttpServletResponse instance (an instance of a class that
implements the javax.servlet.http.HttpServletResponse interface).

The HttpServletRequest instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The HttpServletResponse instance provides HTTP-specific
functionality in sending the response, such as specifying the content length and
MIME type and providing the output stream.

Servlets and the Servlet Container
Unlike a Java client program, a servlet has no static main() method. Therefore, a
servlet must execute under the control of an external container.

Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. It is the servlet container that calls servlet methods and provides services
that the servlet needs when executing. A servlet container is usually written in Java
and is either part of a Web server (if the Web server is also written in Java) or
otherwise associated with and used by a Web server. OC4J includes a fully
standards-compliant servlet container.

The servlet container provides the servlet easy access to properties of the HTTP
request, such as its headers and parameters. When a servlet is called, such as when
it is specified by URL, the Web server passes the HTTP request to the servlet
container. The container, in turn, passes the request to the servlet. In the course of
managing a servlet, a servlet container performs the following tasks:

� It creates an instance of the servlet and calls its init() method to initialize it.

Introduction to Servlets

1-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� It constructs a request object to pass to the servlet. The request includes, among
other things:

– Any HTTP headers from the client

– Parameters and values passed from the client (for example, names and
values of query strings in the URL)

– The complete URI of the servlet request

� It constructs a response object for the servlet.

� It invokes the servlet service() method. Note that for HTTP servlets, the
generic service method is usually overridden in the HttpServlet class. The
service method dispatches requests to the servlet doGet() or doPost()
methods, depending on the HTTP header in the request (GET or POST).

� It calls the destroy() method of the servlet to discard it when appropriate, so
that it can be garbage collected. (For performance reasons, it is typical for a
servlet container to keep a servlet instance in memory for reuse, rather than
destroying it each time it has finished its task. It would be destroyed only for
infrequent events, such as Web server shutdown.)

Figure 1–1 shows how a servlet relates to the servlet container and to a client, such
as a Web browser. When the Web listener is the Oracle HTTP Server (powered by
Apache), the connection to the OC4J servlet container goes through the mod_oc4j
module. See the Oracle HTTP Server Administrator’s Guide for details.

Introduction to Servlets

Servlet Overview 1-7

Figure 1–1 Servlets and the Servlet Container

Introduction to Servlets

1-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Introduction to Servlet Sessions
Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful
way. Servlet session tracking is similar in nature to session tracking in previous
technologies, such as CGI.

This section provides an introduction to servlet sessions. See "Servlet Sessions" on
page 2-37 for more information and examples.

Introduction to Session Tracking
Servlets provide convenient ways to keep the client and a server session in
synchronization, enabling stateful servlets to maintain session state on the server
over the whole duration of a client browsing session.

The following session-tracking mechanisms are supported. See "Session Tracking"
on page 2-37 for more information.

� Cookies

The servlet container sends a cookie to the client, which returns the cookie to
the server upon each HTTP request. This associates the request with the session
ID indicated by the cookie. This is the most frequently used mechanism and is
supported by any servlet container that adheres to the servlet 2.2 or higher
specification.

� URL rewriting

In case cookies might be disabled, the servlet can call the encodeURL()
method of the response object, or the encodeRedirectURL() method for
redirects, to append a session ID to the URL path for each request. This allows
the request to be associated with the session. This is the most frequently used
mechanism where clients do not accept cookies.

Introduction to the HttpSession Interface
In the standard servlet API, each client session is represented by an instance of a
class that implements the javax.servlet.http.HttpSession interface.
Servlets can set and get information about the session in this HttpSession object,
which must be of application-level scope. A servlet uses the getSession()
method of an HttpServletRequest object to retrieve or create an HttpSession
object for the user. This method takes a boolean argument to specify whether a new
session object should be created for the client if one does not already exist within
the application. See "Features of the HttpSession Interface" on page 2-40 for more
information.

Introduction to Servlets

Servlet Overview 1-9

Introduction to Servlet Contexts
A servlet context is used to maintain information for all instances of a Web
application within any single JVM (that is, for all servlet and JSP page instances that
are part of the Web application). There is one servlet context for each Web
application running within a given JVM; this is always a one-to-one
correspondence. You can think of a servlet context as a container for a specific
application.

Servlet Context Basics
Any servlet context is an instance of a class that implements the
javax.servlet.ServletContext interface, with such a class being provided
with any Web server that supports servlets.

A ServletContext object provides information about the servlet environment
(such as name of the server) and allows sharing of resources between servlets in the
group, within any single JVM. (For servlet containers supporting multiple
simultaneous JVMs, implementation of resource-sharing varies.)

A servlet context provides the scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct classloader and
its runtime objects are distinct from those of any other application. In particular, the
ServletContext object is distinct for an application, much as each HttpSession
object is distinct for each user of the application.

Beginning with the Sun Microsystems Java Servlet Specification, Version 2.2, most
implementations can provide multiple servlet contexts within a single host, which is
what allows each Web application to have its own servlet context. (Previous
implementations usually provided only a single servlet context with any given
host.)

How to Obtain a Servlet Context
Use the getServletContext() method of a servlet configuration object to
retrieve a servlet context. See "Introduction to Servlet Configuration Objects" on
page 1-11.

Servlet Context Methods
The ServletContext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that
the servlet can retrieve application-level environment and state information.
Methods specified in ServletContext include those listed here. For complete

Introduction to Servlets

1-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

information, you can refer to the Sun Microsystems Javadoc at the following
location:

http://java.sun.com/products/servlet/2.3/javadoc/index.html

� void setAttribute(String name, Object value)

This method binds the specified object to the specified attribute name in the
servlet context. Using attributes, a servlet container can give information to the
servlet that is not otherwise provided through the ServletContext interface.

� Object getAttribute(String name)

This method returns the attribute with the given name, or null if there is no
attribute by that name. The attribute is returned as a java.lang.Object
instance.

� java.util.Enumeration getAttributeNames()

This method returns a java.util.Enumeration instance containing the
names of all available attributes of the servlet context.

� void removeAttribute(String attrname)

This method removes the specified attribute from the servlet context.

� String getInitParameter(String name)

This method returns a string that indicates the value of the specified
context-wide initialization parameter, or null if there is no parameter by that
name. This allows access to configuration information that is useful to the Web
application associated with this servlet context.

� Enumeration getInitParameterNames()

This method returns a java.util.Enumeration instance containing the
names of the initialization parameters of the servlet context.

� RequestDispatcher getNamedDispatcher(String name)

This returns a javax.servlet.RequestDispatcher instance that acts as a
wrapper for the specified servlet.

Note: For a servlet context, setAttribute() is a local operation
only. It is not intended to be distributed to other JVMs within a
cluster. (This is in accordance with the servlet specification.)

Introduction to Servlets

Servlet Overview 1-11

� RequestDispatcher getRequestDispatcher(String path)

This returns a javax.servlet.RequestDispatcher instance that acts as a
wrapper for the resource located at the specified path.

� String getRealPath(String path)

This returns the real path, as a string, for the specified virtual path.

� URL getResource(String path)

This returns a java.net.URL instance with a URL to the resource that is
mapped to the specified path.

� String getServerInfo()

This method returns the name and version of the servlet container.

� String getServletContextName()

This returns the name of the Web application with which the servlet context is
associated, according to the <display-name> element of the web.xml file.

Introduction to Servlet Configuration Objects
A servlet configuration object contains initialization and startup parameters for a
servlet and is an instance of a class that implements the
javax.servlet.ServletConfig interface. Such a class is provided with any
J2EE-compliant Web server.

You can retrieve a servlet configuration object for a servlet by calling the
getServletConfig() method of the servlet. This method is specified in the
javax.servlet.Servlet interface, with a default implementation in the
javax.servlet.http.HttpServlet class.

The ServletConfig interface specifies the following methods:

� ServletContext getServletContext()

Retrieve a servlet context for the application. See "Introduction to Servlet
Contexts" on page 1-9.

� String getServletName()

Retrieve the name of the servlet.

� Enumeration getInitParameterNames()

Retrieve the names of the initialization parameters of the servlet, if any. The
names are returned in a java.util.Enumeration instance of String

Introduction to Servlets

1-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

objects. (The Enumeration instance is empty if there are no initialization
parameters.)

� String getInitParameter(String name)

This returns a String object containing the value of the specified initialization
parameter, or null if there is no parameter by that name.

Introduction to Servlet Filters
Request objects (instances of a class that implements HttpServletRequest) and
response objects (instances of a class that implements HttpServletResponse) are
typically passed directly between the servlet container and a servlet.

The servlet specification, however, allows servlet filters, which are Java programs
that execute on the server and can be interposed between the servlet (or group of
servlets) and the servlet container for special request or response processing.

If there is a filter or a chain of filters to be invoked before the servlet, these are called
by the container with the request and response objects as parameters. The filters
pass these objects, perhaps modified, or alternatively create and pass new objects, to
the next object in the chain using the doChain() method.

See "Servlet Filters" on page 3-2 for more information.

Introduction to Event Listeners
The servlet specification adds the capability to track key events in your Web
applications through event listeners. This functionality allows more efficient resource
management and automated processing based on event status.

When creating listener classes, there are standard interfaces you can implement for
servlet context lifecycle events, servlet context attribute changes, HTTP session
lifecycle events, and HTTP session attribute changes. A listener class can implement
one, some, or all of the interfaces as appropriate.

An event listener class is declared in the web.xml deployment descriptor and
invoked and registered upon application startup. When an event occurs, the servlet
container calls the appropriate listener method.

See "Event Listeners" on page 3-18 for more information.

Introduction to Servlets

Servlet Overview 1-13

JSP Pages and Other J2EE Component Types
In addition to servlets, an application might include other server-side components
such as JavaServer Pages (JSP) and Enterprise JavaBeans (EJB). It is especially
common for servlets to be used in combination with JSP pages in a Web application.

While servlets are managed by the OC4J servlet container, EJBs are managed by the
OC4J EJB container and JSP pages are managed by the OC4J JSP container. These
containers form the core of OC4J.

JSP pages also involve the servlet container, because the JSP container itself is a
servlet and is therefore executed by the servlet container. The JSP container
translates JSP pages into page implementation classes, which are executed by the
JSP container and are also essentially servlets.

For more information about JSP pages and EJBs, see the following:

� JSP and EJB primer chapters in the Oracle Application Server Containers for J2EE
User’s Guide

� Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

� Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

Note: Wherever this manual mentions functionality that applies
to servlets, you can assume it applies to JSP pages as well unless
stated otherwise.

A First Servlet Example

1-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

A First Servlet Example
Looking at a basic example is the best way to demonstrate the general framework
for writing a servlet.

Hello World Code
This servlet prints "Hi There!" back to the client. The comments note some of the
basic aspects of writing a servlet.

// You must import at least the following packages for any servlet you write.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

// Extend HttpServlet, the base servlet implementation.
public class HelloServlet extends HttpServlet {

 // Override the base implementation of doGet(), as desired.
 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 // Set the MIME type for the response content.
 resp.setContentType("text/html");

 // Get an output stream to use in sending the output to the client.
 ServletOutputStream out = resp.getOutputStream();
 // Put together the HTML code for the output.
 out.println("<html>");
 out.println("<head><title>Hello World</title></head>");
 out.println("<body>");
 out.println("<h1>Hi There!</h1>");
 out.println("</body></html>");
 }
}

Compiling and Deploying the Servlet
To try out the sample servlet code in an OC4J standalone environment, save it as
HelloServlet.java in the /WEB-INF/classes directory of the OC4J default
Web application. (See "OC4J Default Application and Default Web Application" on
page 5-37.)

Next, compile the servlet. First be sure that servlet.jar, supplied with OC4J, is
in your classpath. This contains the Sun Microsystems javax.servlet and
javax.servlet.http packages.

A First Servlet Example

Servlet Overview 1-15

Running the Servlet
Assuming that the OC4J server is up and running and that invocation by class name
is enabled with the servlet-webdir built-in default setting of "/servlet/", you
can invoke the servlet and see its output from a Web browser as follows, where
host is the name of the host that the OC4J server is running on and port is the
Web listener port:

http://host:port/servlet/HelloServlet

(See "Servlet Invocation by Class Name During OC4J Development" on page 2-32
for information about invocation by class name and about the OC4J
servlet-webdir attribute.)

In an OC4J standalone environment, use port 8888 to access the OC4J Web listener
directly. (See "OC4J Standalone for Development" on page 2-2 for an overview.)

This example assumes that "/" is the context path of the Web application, as is true
by default in OC4J standalone for the default Web application.

Note: For convenience during development and testing, use the
OC4J auto-compile feature for servlet code. This is enabled through
the setting development="true" in the <orion-web-app>
element of the global-web-application.xml file in the OC4J
configuration files directory. The source-directory attribute
might also have to be set appropriately. With auto-compile enabled,
after you change the servlet source and save it in the appropriate
directory, the OC4J server automatically compiles and redeploys
the servlet the next time it is invoked.

See "Element Descriptions for global-web-application.xml and
orion-web.xml" on page 6-2 for more information about
development and source-directory.

Important: The way of invoking servlets that is shown here
invokes directly by class name. This is suitable for a development
environment but presents a significant security risk. OC4J should
not be configured to operate in this mode in a production
environment. See "Servlet Invocation by Class Name During OC4J
Development" on page 2-32 and "Additional Security
Considerations" on page 2-58 for more information.

A First Servlet Example

1-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Development 2-1

2
Servlet Development

This chapter, consisting of the following sections, provides basic information for
developing servlets for OC4J and the Oracle Application Server. The first section
highlights the use of the standalone version of OC4J for convenience during your
development and testing phases.

� OC4J Standalone for Development

� Servlet Development Basics and Key Considerations

� Additional Oracle Features

� Servlet Invocation

� Servlet Sessions

� Servlet Security

OC4J Standalone for Development

2-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

OC4J Standalone for Development
This manual assumes you are using an OC4J standalone environment for at least
your initial development phases. This term refers to the use of a single OC4J
instance outside of the Oracle Application Server environment and Oracle
Enterprise Manager. Using OC4J standalone is typically more convenient for early
development.

The following sections provide some overview and key considerations:

� Overview: Using OC4J Standalone

� Key OC4J Flags for Development

� Removal of tools.jar from OC4J Standalone

To obtain OC4J standalone, download the oc4j_extended.zip file from the
Oracle Technology Network (OTN) at the following location:

http://otn.oracle.com/tech/java/oc4j/content.html

Overview: Using OC4J Standalone
You can start, manage, and control standalone OC4J instances through oc4j.jar
(the OC4J standalone executable) and the admin.jar command-line utility,
provided with the standalone product. Deploying an EAR file and binding its Web
module through admin.jar result in automatic updates to key configuration files.

Notes:

� To use OC4J standalone, you must have a supported version of
the Sun Microsystems JDK installed. A JDK is not provided
with the OC4J standalone product.

� During development, also consider the Oracle JDeveloper
visual development tool for development and deployment.
This tool offers a number of conveniences, as described in
"Oracle JDeveloper Support for Servlet Development" on
page 2-27.

OC4J Standalone for Development

Servlet Development 2-3

During testing, it is also possible to manually install an EAR file or individual files
according to the J2EE directory structure, and to complete the process by manually
updating key configuration files, which triggers OC4J to unpack and deploy the
application.

If you have an independent Web application, you can deploy it as a WAR file (or as
a directory structure) within the OC4J default J2EE application, rather than using an
EAR file.

In addition, for a convenient testing mode, you can deploy individual servlets or
JSP pages to the OC4J default Web application.

An OC4J standalone environment, by default, includes the following key
directories:

� J2EE home: j2ee/home, relative to where you install OC4J

� Global configuration files directory: j2ee/home/config

� Default Web application root directory: j2ee/home/default-web-app

� Root target directory for deployed applications: j2ee/home/applications

� Root target directory for deployment descriptors (such as orion-web.xml and
orion-application.xml): j2ee/home/application-deployments

In the simplest case, deploying a test servlet to the OC4J default Web application
consists of placing the class file under the /WEB-INF/classes directory under the
default Web application root directory.

More detailed deployment considerations, primarily targeting OC4J standalone
users, are discussed in Chapter 5. See the following sections in particular:

� "General Overview of OC4J Deployment and Configuration" on page 5-2

� "OC4J Default Application and Default Web Application" on page 5-37

� "Deployment Scenarios to OC4J Standalone" on page 5-34

Note: Key aspects of the admin.jar utility are covered in
Chapter 5, "Deployment and Configuration Overview", particularly
in "Deploying an EAR File to OC4J Standalone" on page 5-39. For
further information, see the Oracle Application Server Containers for
J2EE Stand Alone User’s Guide.

OC4J Standalone for Development

2-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Also, for information about invoking a servlet in OC4J standalone, see "Servlet
Invocation in an OC4J Standalone Environment" on page 2-35.

For detailed information about admin.jar and about how to start, stop, configure,
and manage your standalone process, download the Oracle Application Server
Containers for J2EE Stand Alone User's Guide along with OC4J_extended.zip.

Key OC4J Flags for Development
There are several OC4J flags to be aware of during your development stages,
presumably while using OC4J standalone. Note that these flags work
independently of each other.

� OC4J check-for-updates flag

In the OC4J server.xml file, the top-level <application-server> element
includes a check-for-updates attribute that determines whether the OC4J
task manager automatically checks for updates to XML configuration files
(including server.xml itself), library JAR files, and JSP tag libraries. This is
often referred to as OC4J polling. The default setting, for use during
development, is "true". You can disable polling as follows:

<application-server ... check-for-updates="false" ... >
 ...
</application-server>

For example, during manual operations (considered "expert modes") during
development, you can install your application by hand, then manually update
the server.xml file, global application.xml file, and
http-web-site.xml file as appropriate to define and bind your Web
application. With the default check-for-updates="true" setting, OC4J will
automatically detect the changes and deploy your application (unpacking the
EAR or WAR file in the process, if applicable).

See "OC4J Top-Level Server Configuration File: server.xml" on page 5-14 for
more information about this file.

OC4J Standalone for Development

Servlet Development 2-5

� admin.jar -updateConfig option

If you manually update OC4J XML configuration files while
check-for-udpates="false", you can run the admin.jar utility with the
-updateConfig option to trigger a one-time check for updates:

% java -jar admin.jar -updateConfig

� Servlet development flag

For convenience during development and testing, use the
development="true" setting in the <orion-web-app> element of the
global-web-application.xml file or orion-web.xml file. With this
setting, whenever you update the servlet code under a particular
directory—typically a /WEB-INF/classes directory, or according to the
source-directory attribute of <orion-web-app>—the servlet is
recompiled and redeployed automatically the next time it is invoked. See
"Element Descriptions for global-web-application.xml and orion-web.xml" on
page 6-2 for more information about the development and
source-directory attributes.

� JSP main_mode flag

This is a flag to direct the mode of operation of the JSP container, particularly
for automatic retranslation of JSP pages and reloading of JSP-generated Java
classes that have changed. During development, use the recompile (default)
setting to check timestamps of JSP pages, and retranslate and reload them if

Important: The check-for-updates flag is used only in OC4J
standalone. It is disregarded in an Oracle Application Server
environment, where the Oracle Process Management and
Notification system (OPMN) and Distributed Configuration
Management subsystem (DCM) manage the OC4J file update
facilities.

Important: If you want to re-enable checking after it had been
disabled, you must use the admin.jar -updateConfig option
after setting check-for-udpates="true", so that OC4J notices
this change. After that, automatic checking will be enabled again.

OC4J Standalone for Development

2-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

they have been modified since they were last loaded. (Use the justrun setting
to not check any timestamps, such as for production mode.) See the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide for more information about this flag and how to set it.

Removal of tools.jar from OC4J Standalone
The OC4J 9.0.3 standalone implementation provided the tools.jar file from the
Sun Microsystems JDK 1.3.1. This file includes the java front-end executable and
javac compiler executable, for example, among many other components.

The OC4J 9.0.4 standalone implementation no longer provides tools.jar, for a
variety of logistical reasons. Therefore, it is required that you install a supported
JDK before installing OC4J. The supported JDK versions for the OC4J 9.0.4
implementation are JDK 1.3.1 and JDK 1.4. Oracle Application Server 10g (9.0.4)
includes JDK 1.4, so you would likely want to use this JDK version for OC4J
standalone as well. However, there are migration issues to consider, particularly the
JDK 1.4 requirement that all invoked classes must be in packages. See "JDK 1.4
Considerations: Cannot Invoke Classes Not in Packages" on page 2-19.

Note: OC4J standalone uses javac from the same directory
where java is accessed when you start with the "java -jar
oc4j.jar" command, ensuring use of the appropriate javac
version.

Servlet Development Basics and Key Considerations

Servlet Development 2-7

Servlet Development Basics and Key Considerations
Most HTTP servlets follow a standard form. They are written as public classes that
extend the HttpServlet class. A servlet overrides the init() and destroy()
methods when code is required for initialization work at the time the servlet is
loaded by the container, or for finalization work when the container shuts down the
servlet. Most servlets override either the doGet() method or the doPost()
method of HttpServlet, to handle HTTP GET or POST requests appropriately.
These two methods take request and response objects as parameters.

This chapter provides sample servlets that are more advanced than the
HelloWorldServlet in "A First Servlet Example" on page 1-14.

The following sections cover features and issues to consider before developing your
applications:

� Sample Code Template

� Servlet Lifecycle

� Servlet Preloading

� Servlet Classloading and Application Redeployment

� Servlet Information Exchange

� Servlet Includes and Forwards

� Servlet Thread Models and Related Considerations

� Servlet Performance and Monitoring

� JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

Sample Code Template
Here is a sample code template for servlet development:

public class myServlet extends HttpServlet {

 public void init(ServletConfig config) {
 }

 public void destroy() {
 }

Servlet Development Basics and Key Considerations

2-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 public void doGet(HttpServletRequest request, HttpServletResponse)
 throws ServletException, IOException {
 }

 public void doPost(HttpServletRequest request, HttpServletResponse)
 throws ServletException, IOException {
 }

 public String getServletInfo() {
 return "Some information about the servlet.";
 }

You can optionally override the init(), destroy(), and getServletInfo()
methods, but the simplest servlet just overrides either doGet() or doPost().

The reason for overriding the init() method would be to perform special actions
that are required only once in the servlet lifetime, such as the following:

� Establishing data source connections

� Getting initialization parameters from the servlet configuration object and
storing the values

� Recovering persistent data that the servlet requires

� Creating expensive session objects such as hashtables

� Logging the servlet version to the log() method of the ServletContext
object

Servlet Lifecycle
Servlets have a predictable and manageable lifecycle:

� When the servlet is loaded, its configuration details are read from web.xml.
These can include initialization parameters.

� There is only one instance of a servlet, unless the single-threaded model is used.
See "Servlet Thread Models and Related Considerations" on page 2-16.

� Client requests invoke the service() method of the generic servlet, which
then delegates the request to doGet() or doPost() (or another overridden
request-handling method), depending on the information in the request
headers.

Servlet Development Basics and Key Considerations

Servlet Development 2-9

� Filters can be interposed between the container and the servlet to modify the
servlet behavior, either during request or response. See "Servlet Filters" on
page 3-2 for more information.

� A servlet can forward requests to other servlets or include output from other
servlets. See "Servlet Includes and Forwards" on page 2-15.

� Responses come back to the client through response objects, which the
container passes back to the client in HTTP response headers. Servlets can write
to a response object by using a java.io.PrintWriter or
javax.servlet.ServletOutputStream object.

� The container calls the destroy() method before the servlet is unloaded.

Servlet Preloading
Typically, the servlet container instantiates and loads a servlet class when it is first
requested. However, you can arrange the preloading of servlets through settings in
the server.xml file, the Web site XML file (such as default-web-site.xml or
http-web-site.xml), and the web.xml file. Preloaded servlets are loaded and
initialized when the OC4J server starts up or when the Web application is deployed
or redeployed.

Preloading requires the following steps:

1. Verify that the relevant <application> element in the server.xml file has
the attribute setting auto-start="true". OC4J inserts this setting by default
when you deploy an application.

2. Specify the attribute setting load-on-startup="true" in the relevant
<web-app> subelement of the <web-site> element of the Web site XML file.
See "Configuration for Web Site XML Files" on page 6-28 for information about
the elements and attributes of Web site XML files.

3. For any servlet you want to preload, there must be a <load-on-startup>
subelement under the <servlet> element in the web.xml file for the Web
module.

Table 2–1 explains the behavior of the <load-on-startup> element in web.xml.

Servlet Development Basics and Key Considerations

2-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Table 2–1 File web.xml <load-on-startup> Behavior

Value Range Behavior

Less than zero (<0)

For example:

<load-on-startup>-1</load-on-startup)

Servlet is not preloaded.

Greater than or equal to zero (>=0)

For example:

<load-on-startup>1</load-on-startup>

Servlet is preloaded. The order of its
loading, with respect to other
preloaded servlets in the same Web
application, is according to the
load-on-startup value, lowest number
first. (For example, 0 is loaded before
1, which is loaded before 2.)

Empty element

For example:

<load-on-startup/>

The behavior is as if the
load-on-startup value is
Integer.MAX_VALUE, ensuring that
the servlet is loaded after any servlets
with load-on-startup values greater
than or equal to zero.

Note: OC4J supports the specification of startup classes and
shutdown classes. Startup classes are designated through the
<startup-classes> element of the server.xml file and are
called immediately after OC4J initializes. Shutdown classes are
designated through the <shutdown-classes> element of
server.xml and are called immediately before OC4J terminates.

Be aware that startup classes are called before any preloaded
servlets.

See the Oracle Application Server Containers for J2EE User’s Guide for
information about startup classes and shutdown classes.

Servlet Development Basics and Key Considerations

Servlet Development 2-11

Servlet Classloading and Application Redeployment
The following sections describe OC4J features and some important considerations
regarding servlet classloading and application loading:

� OC4J Web Application Redeployment and Class Reloading Features

� Loading WAR File Classes Before System Classes in OC4J

� Sharing Cached Java Objects Across OC4J Servlets in Oracle Application Server

OC4J Web Application Redeployment and Class Reloading Features
In OC4J, any of the following circumstances, depending on OC4J polling, will result
in redeployment of a Web application and, upon request, reloading of servlet classes
and any dependency classes.

� If a servlet .class file under /WEB-INF/classes changes, such as by
recompilation, then when the servlet is next requested, the associated Web
application is redeployed and the servlet class and any dependency classes are
reloaded. This does not depend on OC4J polling. Note that nothing happens
until the servlet is next requested. Also note that if only non-servlet .class
files under /WEB-INF/classes change, nothing is reloaded.

Notes:

� "OC4J polling" refers to the automatic checking of library JAR
files and XML configuration files by the OC4J task manager for
updates. In an Oracle Application Server environment, this is
controlled by OPMN and DCM. In OC4J standalone, it is
controlled by the server.xml check-for-updates flag (set
to "true" by default), described in "Key OC4J Flags for
Development" on page 2-4.

� In this discussion, "redeployment" of a Web application refers
to the process where OC4J removes the Web application from
its execution space, removes the classloader that was associated
with execution of the Web application, reparses web.xml and
orion-web.xml, and reinitializes servlet listeners, filters, and
mappings.

Servlet Development Basics and Key Considerations

2-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� If the web.xml file changes, or a library JAR file in /WEB-INF/lib changes,
and OC4J polling is enabled, then the associated Web application is redeployed
the next time the OC4J task manager runs, which by default is once each
second. Any servlet class in the Web application and any dependency classes
are reloaded upon the next request for the servlet. Alternatively, if polling is not
enabled, you can trigger one-time polling and the resulting redeployment and
reloading by using the admin.jar -updateConfig option.

Be aware of the following important considerations:

� In the preceding scenarios, a servlet and its dependency classes are reloaded
immediately, instead of upon next request, if the servlet is set to be preloaded.
This is according to load-on-startup settings. See "Servlet Preloading" on
page 2-9.

� OC4J servlet reloading functionality does not extend to JSP page
implementation classes. Changing a JSP page implementation .class file does
not result in any reloading. JSP recompilation and reloading behavior is
determined by the JSP main_mode flag, as described in the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide.

� Classes in Web modules of a parent application are not visible to child
applications, although other classes of the parent application (such as EJBs, for
example) are visible.

� You can use <library> elements in the global application.xml file or
server.xml file to specify directories or JAR or ZIP files for shared code.
Upon startup, OC4J will load all classes in any JAR or ZIP file specified in any
<library> element, and all classes in any JAR or ZIP file in any directory that
is specified in any <library> element.

To avoid unnecessary overhead, it is advisable to use <library> elements
somewhat sparingly, to specify particular JAR or ZIP files instead of entire
directories wherever possible, and, where directories are specified, to minimize
the number of JAR or ZIP files in those directories.

Note: Changing a servlet class file in a directory location specified
in a <classpath> element in global-web-application.xml
or orion-web.xml has the same effect as changing a servlet class
file in /WEB-INF/classes. However, changing a JAR file or
dependency class file (such as for a JavaBean) in a <classpath>
location has no effect.

Servlet Development Basics and Key Considerations

Servlet Development 2-13

By default, there is a <library> element in application.xml for the
j2ee/home/applib directory.

Loading WAR File Classes Before System Classes in OC4J
The servlet specification recommends, but does not require, loading local classes,
which are classes in the WAR file, before system classes, which are any other classes
in the environment. Note that "classes in the WAR file" might include classes from
the WAR file manifest classpath. By default, the OC4J servlet container does not
load local classes first, but this is configurable through the
<web-app-class-loader> element in global-web-application.xml or
orion-web.xml. This element has two attributes:

� search-local-classes-first: Set this to "true" to search and load WAR
file classes before system classes. The default setting is "false".

� include-war-manifest-class-path: Set this to "false" to not include the
classpath specified in the WAR file manifest Class-Path attribute when
searching and loading classes from the WAR file, regardless of the
search-local-classes-first setting. The default setting is "true".

Note: Changing a JAR or ZIP file that is specified in a <library>
element, or that is in a directory specified in a <library> element,
does not by itself result in redeployment of any Web applications or
reloading of classes. The OC4J task manager does not poll these
shared library locations.

Notes:

� If both attributes are set to "true", the overall classpath is
constructed so that classes physically residing in the WAR file
are loaded prior to any classes from the WAR file manifest
classpath. So you can assume that in the event of any conflict,
classes physically residing in the WAR file would take
precedence.

� In accordance with the servlet specification,
search-local-classes-first functionality cannot be
used in loading classes in java.* or javax.* packages.

Servlet Development Basics and Key Considerations

2-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Also see "Element Descriptions for global-web-application.xml and orion-web.xml"
on page 6-2.

Sharing Cached Java Objects Across OC4J Servlets in Oracle Application Server
In order to take advantage of the distributed functionality of the Oracle Application
Server Java Object Cache, or to share a cached object between servlets, some minor
modification to an application deployment is necessary. Any user-defined objects
that will be shared between servlets or distributed between JVMs must be loaded
by the system classloader; however, by default, objects loaded by a servlet are
loaded by the context classloader. Objects loaded by the context classloader are
visible only to the servlets within the servlet context corresponding to that
classloader. The object definition would not be available to other servlets or to the
cache in another JVM. If an object is loaded by the system classloader, however, the
object definition will be available to other servlets and to the cache on other JVMs.

With OC4J, the system classpath is derived from the manifest of the oc4j.jar file
and any associated .jar files, including cache.jar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J, do one
of the following with the .class file, assuming an Oracle Application Server
environment:

� Copy it to the ORACLE_HOME/javacache/sharedobjects/classes
directory.

� Add it to the ORACLE_HOME/javacache/cachedobjects/share.jar file.

Both the classes directory and the share.jar file are included in the manifest
for cache.jar, and are therefore included in the system classpath.

For information about the Oracle Application Server Java Object Cache, see the
Oracle Application Server Containers for J2EE Services Guide.

Servlet Information Exchange
A servlet typically receives information from one or more sources, including the
following:

� Parameters from the request object

� HTTP session object

� Servlet context object

� Sources of data outside the servlet (for example: databases, file systems, or
external sensors)

Servlet Development Basics and Key Considerations

Servlet Development 2-15

The servlet adds information to the response object; the container sends the
response back to the client.

Servlet Includes and Forwards
Many servlets use other servlets in the course of their processing, either by
"including" another servlet or "forwarding" to another servlet.

In servlet terminology, a servlet include is the process by which a servlet includes
response from another servlet within its own response. Processing and response are
initially handled by the originating servlet, then are turned over to the included
servlet, then revert back to the originating servlet once the included servlet is
finished.

With a servlet forward, processing is handled by the originating servlet up to the
point of the forward call, at which point the response is reset and the target servlet
takes over processing of the request. When a response is reset, any HTTP header
settings and any information in the output stream are cleared from the response.
After a forward, the originating servlet must not attempt to set headers or write to
the response. Also note that if the response has already been committed, then a
servlet cannot forward to or include another servlet.

In order to forward to or include another servlet, you must obtain a request
dispatcher for that servlet using either of the following servlet context methods:

� RequestDispatcher getRequestDispatcher(String path)

� RequestDispatcher getNamedDispatcher(String name)

For getRequestDispatcher(), input the path of the target servlet. For
getNamedDispatcher(), input the name of the target servlet, according to the
<servlet-name> element for that servlet in the web.xml file.

In either case, the returned object is an instance of a class that implements the
javax.servlet.RequestDispatcher interface. (Such a class is provided by the
servlet container.) The request dispatcher is a wrapper for the target servlet. In
general, the duty of a request dispatcher is to serve as an intermediary in routing
requests to the resource that it wraps.

A request dispatcher has the following methods to effect any includes or forwards:

� void include(ServletRequest request,
 ServletResponse response)

� void forward(ServletRequest request,
 ServletResponse response)

Servlet Development Basics and Key Considerations

2-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

As you can see, you pass in your request and response objects when you call these
methods.

Servlet Thread Models and Related Considerations
Generally, for a servlet in a non-distributable environment, a servlet container uses
only one servlet instance for each servlet declaration. In a distributable
environment, a container uses only one servlet instance for each servlet declaration
in each JVM. Therefore, a servlet container, including the OC4J servlet container,
generally handles concurrent requests to a servlet by using multiple threads for
multiple concurrent executions of the servlet service() method.

Servlet developers must keep this in mind, making provisions for simultaneous
processing through multiple threads and designing their servlets so that access to
shared resources is somehow synchronized or coordinated. Shared resources fall
into two main areas:

� In-memory data such as instance or class variables

� External objects such as files, database connections, and network connections

One option is to synchronize the service() method as a whole; however, this
might adversely affect performance.

A better approach is to selectively protect instance or class fields, or access to
external resources, through synchronization blocks.

Notes:

� When a servlet forwards to or includes another servlet, default
OC4J functionality is to enforce web.xml security constraints
on the target servlet as well as the originating servlet. This does
not comply with the servlet specification, but you can disable
this behavior through the <authenticate-on-dispatch>
element in global-web-application.xml or
orion-web.xml. See "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-2 for
information about this element.

� When a servlet forwards to or includes another servlet, the
default behavior is that any filters that apply to the originating
servlet are not executed on the target servlet, but this behavior
is configurable. See "Filtering of Forward or Include Targets" on
page 3-4.

Servlet Development Basics and Key Considerations

Servlet Development 2-17

As perhaps a last resort, the servlet 2.3 specification supports a single-thread model. If
a servlet implements the javax.servlet.SingleThreadModel interface, the
servlet container must guarantee that there is never more than one request thread at
a time in the service() method of any instance of the servlet. This is typically
accomplished by creating a pool of servlet instances, with a separate instance
handling each concurrent request. This has significant performance impact on the
servlet container, however, and should be avoided if at all possible. Furthermore,
the SingleThreadModel interface is expected to be deprecated in the servlet 2.4
specification.

For general information about multithreading, see the Sun Microsystems Java
Tutorial on Multithreaded Programming at the following Web site:

http://java.sun.com/Series/Tutorial/java/threads/multithreaded.html

Servlet Performance and Monitoring
The following sections list servlet performance considerations and introduce the
Oracle Application Server Dynamic Monitoring Service (DMS):

� General Performance Considerations

� Oracle Application Server Dynamic Monitoring Service

For general OC4J performance information, including coverage of DMS and the
dmstool for performance metrics, refer to the Oracle Application Server 10g
Performance Guide.

General Performance Considerations
This section provides a summary of issues, mostly documented elsewhere in this
manual, that might impact performance:

� Consider the optimal expiration setting for Web pages in your application. You
can set the expiration for pages that match a given URL pattern, using the
<expiration-setting> subelement of <orion-web-app> in
global-web-application.xml or orion-web.xml. (See "Element
Descriptions for global-web-application.xml and orion-web.xml" on page 6-2.)
A more appropriate setting will decrease load on the application and improve
performance.

� Be aware of performance implications relating to how multiple concurrent
requests are synchronized or coordinated, and also be aware of related
considerations regarding thread models. See "Servlet Thread Models and
Related Considerations" on page 2-16.

Servlet Development Basics and Key Considerations

2-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� There are performance implications related to how session state is replicated in
a distributable environment. Replication is triggered each time there is a
setAttribute() call on the session object, so large numbers of such calls in a
servlet might impact performance. Also be aware that for performance reasons,
OC4J does not wait to confirm successful replication of session state. See
"Session Replication in a Distributable Application" on page 2-42.

� There are servlet configuration parameters that can significantly affect
performance. See "Element Descriptions for global-web-application.xml and
orion-web.xml" on page 6-2 for information about the
file-modification-check-interval attribute of the <orion-web-app>
element. See "Element Descriptions for Web Site XML Files" on page 6-28 for
information about the use-keep-alives attribute of the <web-site>
element.

� There are additional JSP-related configuration parameters that can significantly
affect performance. See "Element Descriptions for global-web-application.xml
and orion-web.xml" on page 6-2 for information about the
simple-jsp-mapping and enable-jsp-dispatcher-shortcut
attributes of the <orion-web-app> element.

� OC4J standalone supports a mode of "shared" operation for a single application
through multiple Web sites, where a site is defined as a particular host and port.
This is particularly for secure applications where some but not all
communications require HTTPS. Running the non-critical communications
through an HTTP port improves performance. See "Element Descriptions for
Web Site XML Files" on page 6-28 for information about the shared attribute of
the <web-app> element.

� If you ever use OC4J standalone as a production environment (although this is
not typical), remember to disable the server.xml check-for-updates flag.
See "Key OC4J Flags for Development" on page 2-4.

Oracle Application Server Dynamic Monitoring Service
In an Oracle Application Server environment, DMS adds performance-monitoring
features to a number of components, including OC4J. The goal of DMS is to provide
information about runtime behavior through built-in performance measurements so
that users can diagnose, analyze, and debug any performance problems. DMS
provides this information in a package that can be used at any time, including
during live deployment. Data are published through HTTP and can be viewed with
a browser.

Servlet Development Basics and Key Considerations

Servlet Development 2-19

There is standard configuration for the DMS servlets, such as the spy servlet and
monitoring agent, in the global application.xml file and the
default-web-site.xml file.

In the OC4J application.xml file, the Web modules dms and dms0 and the paths
to their WAR files are specified. The default-web-site.xml file specifies that
these Web modules are deployed to the OC4J default application and binds them to
their context paths. Do not directly alter any of these DMS configurations.

Use the Oracle Enterprise Manager to access DMS, display DMS information, and, if
appropriate, alter DMS configuration.

JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages
Among the migration considerations in moving to a Sun Microsystems JDK 1.4
environment, which is the environment that is shipped with Oracle Application
Server 10g (9.0.4), there is one of particular importance to servlet and JSP
developers.

As stated by Sun Microsystems, "The compiler now rejects import statements that
import a type from the unnamed namespace." This was to address security concerns
and ambiguities with previous JDK versions. Essentially, this means that you cannot
invoke a class (a method of a class) that is not within a package. Any attempt to do
so will result in a fatal error at compilation time.

This especially affects JSP developers who invoke JavaBeans from their JSP pages,
as such beans are often outside of any package (although the JSP 2.0 specification
now requires beans to be within packages, in order to satisfy the new compiler
requirements). Where JavaBeans outside of packages are invoked, JSP applications
that were built and executed in an OC4J 9.0.3 / JDK 1.3.1 environment will no
longer work in an OC4J 9.0.4 / JDK 1.4 environment.

Until you update your application so that all JavaBeans and other invoked classes
are within packages, you have the alternative of reverting back to a JDK 1.3.1
environment to avoid this issue.

Servlet Development Basics and Key Considerations

2-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

For more information about the "classes not in packages" issue and other JDK 1.4
compatibility issues, refer to the following Web site:

http://java.sun.com/j2se/1.4/compatibility.html

In particular, click the link "Incompatibilities Between Java 2 Platform, Standard
Edition, v1.4.0 and v1.3".

Notes:

� The javac -source compiler option is intended to allow JDK
1.3.1 code to be processed seamlessly by the JDK 1.4 compiler,
but this option does not account for the "classes not in
packages" issue.

� Only the JDK 1.3.1 and JDK 1.4 compilers are supported and
certified by OC4J. It is possible to specify an alternative
compiler by adding a <java-compiler> element to the
server.xml file, and this might provide a workaround for the
"classes not in packages" issue, but no other compilers are
certified or supported by Oracle for use with OC4J.
(Furthermore, do not update the server.xml file directly in an
Oracle Application Server environment. Use the Oracle
Enterprise Manager.)

Additional Oracle Features

Servlet Development 2-21

Additional Oracle Features
The followings section discuss additional features, mostly Oracle-specific, to
consider in developing and running servlets in OC4J:

� OC4J Logging

� Servlet Debugging

� Oracle JDeveloper Support for Servlet Development

� Introduction to OC4J Support for Open Source Frameworks

OC4J Logging
The following sections provide an overview of OC4J logging features:

� OC4J Logs

� Oracle Diagnostic Logging Versus Text-Based Logging

� Additional Oracle Application Server Log Files

OC4J Logs
A number of logs are available in OC4J. Because they are not specific to servlets,
they are documented elsewhere, but this section provides a summary list and
appropriate cross-references. For each log, you have the option of using text-based
logging or ODL logging. (See the next section, "Oracle Diagnostic Logging Versus
Text-Based Logging".) Note that for ODL, log file names always take the form
logN.xml, where N is an integer. For text-based logging, you specify the log file
names.

For each log, there is a configuration element (in the appropriate OC4J
configuration file) to enable text-based logging, and a separate element to enable
ODL logging. The presence of a logging configuration element is what enables the
associated type of logging.

Note: Logging features discussed here are for log messages from
the OC4J server. It is also possible to use open source frameworks
and utilities with OC4J, such as those from the Apache Jakarta
Project. This includes log4j, a complementary technology that you
can use to insert log statements in your own code. See
"Configuration and Use of Jakarta log4j in OC4J" on page A-11.

Additional Oracle Features

2-22 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

OC4J supports the following logs:

� Application log

There is a log for each application deployed, as configured in
orion-application.xml. For text-based logging, a typical name is
application.log.

� Global application log

There is a log for global logging for all applications, including the default
application, as configured in the OC4J global application.xml file. For
text-based logging, a typical name is global-application.log.

� JMS log

There is a log for Java Message Service functionality, as configured in jms.xml.
For text-based logging, a typical name is jms.log.

� RMI log

There is a log for remote method invocation functionality, as configured in
rmi.xml. For text-based logging, a typical name is rmi.log.

� Server log

There is a server-wide log, as configured in server.xml. For text-based
logging, a typical name is server.log.

� Web site access log

There is a Web site access log (one log file for each Web site to log all accesses of
the site), as configured in the Web site XML file. For text-based logging, a
typical name is http-access.log.

Configuration of the Web access log is covered in this manual. Under "Element
Descriptions for Web Site XML Files" on page 6-28, see the information about the
<access-log> and <odl-access-log> subelements of the <web-site>
element.

The Oracle Application Server Containers for J2EE User’s Guide has information about
how to enable logging to the other OC4J files.

Note: For Web site accessing logging, you can use only one type of
logging, not both.

Additional Oracle Features

Servlet Development 2-23

Oracle Diagnostic Logging Versus Text-Based Logging
For each of the logs listed in the preceding section, "OC4J Logs", you have the
option of using Oracle Diagnostic Logging (ODL), which offers a some advantages
over text-based logging.

ODL provides standardized logging across all components of OC4J, creating the log
files in an XML format that can be loaded to a repository for reporting and viewing.
You can view ODL logs from Oracle Enterprise Manager, for example.

With ODL, it is also easier to manage the size and number of your log files. In many
situations, text-based logging results in the need to periodically shut down the OC4J
server and manually clean up the files.

To configure ODL logging for the Web site access log file, use the
<odl-access-log> subelement of the <web-site> element in the Web site XML
file. To use text-based logging, use the <access-log> subelement of the
<web-site> element instead.

For each of the other OC4J logs, use the <odl> subelement of the <log> element in
the appropriate XML configuration file if you want to use ODL logging. To use
text-based logging, use the <file> subelement of the <log> element instead.

See the Oracle Application Server Containers for J2EE User’s Guide for additional
information about ODL.

Additional Oracle Application Server Log Files
In an Oracle Application Server environment, in addition to the OC4J log files
discussed previously, there is support for the following log files:

� OPMN log file (one log file for each OC4J instance, for Oracle Process
Management and Notification functionality)

� ons.log (OPMN notification system log, configured in opmn.xml)

Note: Web site access logs commonly use standard XLF or CLF
format (extended log file format or common log file format). Users
can split the files according to a specified time period, such as time
of day or day of month. ODL Web site logs, however, do not
support XLF or CLF format and you cannot split files by time
period. When you reach the maximum size of an ODL log file, a
new file is automatically created. (Log file names are log1.xml,
log2.xml, and so on.)

Additional Oracle Features

2-24 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� ipm.log (OPMN process management log, configured in opmn.xml)

OPMN manages Oracle HTTP Server and OC4J processes within an application
server instance. For information about this, refer to the Oracle Application Server 10g
Administrator’s Guide.

Servlet Debugging
This discussion summarizes debugging features and considerations for servlet
developers, with appropriate cross-references for additional information. It consists
of the following sections:

� OC4J Debugging Flags

� Setting OC4J Debugging Flags

� Timing Considerations for Debugging in Oracle Application Server

� Debugging through JDeveloper and Other IDEs

OC4J Debugging Flags
OC4J supports a number of flags to enable debugging output for various
subsystems.

For HTTP debugging:

� http.error.debug for all HTTP errors; otherwise some are consumed
without being reported

� http.cluster.debug for debugging statements regarding HTTP clustering
and session persistence

� http.session.debug for HTTP session errors and lifecycle statements

� http.request.debug for information from HTTP request stream

� http.redirect.debug for information about HTTP redirects

� debug.http.contentLength to print explicit content-length calls as well as
extra sendError information

� http.virtualdirectory.debug to print the enforced virtual directory
mappings upon startup

� http.method.trace.allow to enable the traceHTTP() method

Additional Oracle Features

Servlet Development 2-25

For AJP debugging (for Oracle Application Server with Oracle HTTP Server only):

� ajp.debug to print the incoming AJP stream

� ajp.io.debug to print the AJP response from the server

The AJP flags do not produce user-friendly output, but are necessary for debugging
some AJP issues.

For JDBC debugging:

� datasource.verbose for information about the creation of data sources and
database connections

� jdbc.debug for detailed information about JDBC calls

For EJB debugging:

� ejb.cluster.debug for information about EJB clustering

For RMI debugging:

� rmi.debug for information about remote method invocations

� rmi.verbose for detailed information about RMI calls

For Web services debugging:

� ws.debug for information about Web services

Setting OC4J Debugging Flags
The debugging flags are enabled through Java option settings such as the following:

-Dhttp.session.debug=true

If you are using OC4J standalone, this would be on the Java command line when
you start OC4J. In an Oracle Application Server environment, use Oracle Enterprise
Manager. This would be in the Java Options field under Command Line Options in
the Application Server Control Server Properties Page for the OC4J instance. To get
to this page, select Server Properties under Instance Properties in the
Administration Page for the OC4J instance. See "Application Server Control OC4J
Administration Page" on page 7-9. See the Oracle Application Server Containers for
J2EE User’s Guide for further information.

Additional Oracle Features

2-26 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Timing Considerations for Debugging in Oracle Application Server
Due to how OPMN functions, there are timing issues to consider when debugging
in an Oracle Application Server environment. Specifically, whenever debugging
results in the halting of a process, OPMN will terminate that process once the halt
goes beyond the timeout period.

To remedy this situation, you must set an appropriate timeout value, using the
<timeout> element in the opmn.xml file.

For information about opmn.xml, refer to the Oracle Application Server 10g
Administrator’s Guide.

Debugging through JDeveloper and Other IDEs
If you use Oracle JDeveloper as your development environment, you can take
advantage of its debugging features.

For debugging, JDeveloper offers local and remote debugging of JSP pages, servlets,
and other Java source files. You can start by setting breakpoints in the source files
within JDeveloper and running a debugging session with the source selected. While
debugging an application such as a servlet in JDeveloper, you have complete
control over the execution flow and can view and modify variable values as well as
perform advanced application performance monitoring such as viewing class
instance counts and memory usage. JDeveloper will follow calls from your
application into other source files or offer to generate stub classes for class sources
that are not available. Remote debugging, once the code to be debugged is launched
and the JDeveloper debugger is attached to it, is very similar to local debugging.

See "Oracle JDeveloper Support for Servlet Development" on page 2-27 for a general
summary of JDeveloper features for servlet development.

Note: Other key IDE vendors have built plug-in modules that
allow seamless integration with OC4J. This provides developers
with the capability to build, deploy, and debug J2EE applications
running on OC4J directly from within the IDE. You can refer to the
following Web site for more information:

http://otn.oracle.com/products/ias/9ias_partners.html

(You will need an Oracle Technology Network membership, but
they are free of charge.)

Additional Oracle Features

Servlet Development 2-27

Oracle JDeveloper Support for Servlet Development
Visual Java programming tools now typically support servlet coding. In particular,
Oracle JDeveloper supports servlet development and includes the following
features:

� Wizards to help generate servlet code

� Integration of the OC4J servlet container to support the full application
development cycle: editing, debugging, and running servlets

� Debugging of deployed servlets

� An extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

� Support for incorporating custom JavaBeans

� A deployment option for servlet applications that rely on the JDeveloper
Business Components for Java (BC4J)

Also see "Debugging through JDeveloper and Other IDEs" on page 2-26.

For general information about JDeveloper, refer to the JDeveloper online help or to
the following site on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Introduction to OC4J Support for Open Source Frameworks
OC4J supports some common open source utilities and frameworks. For Oracle
Application Server 10g (9.0.4), this document discusses support for two in
particular:

� Jakarta Struts

� Jakarta log4j

The focus is on configuring and using these open source utilities in the OC4J
standalone environment. See Appendix A, "Open Source Frameworks and Utilities".

Servlet Invocation

2-28 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Invocation
A servlet is invoked by the container when a request for the servlet arrives from a
client. The client request might come from a Web browser or a Java client
application, or from another servlet in the application using the request forwarding
mechanism, or from a remote object on a server.

A servlet is requested through its URL mapping, as described shortly.

Servlet invocation, including some special OC4J features for invoking a servlet by
class name in a development or testing scenario, is covered in the following
sections:

� Summary of URL Components

� Servlet Invocation by Class Name During OC4J Development

� Servlet Invocation in an Oracle Application Server Production Environment

� Servlet Invocation in an OC4J Standalone Environment

Summary of URL Components
Before discussing servlet invocation, it is useful to summarize the components of a
URL. Here is the generic construct (though note that pathinfo is usually empty):

protocol://host:port/contextpath/servletpath/pathinfo

You could also have additional information following any delimiters, such as
request parameter settings following a question mark ("?") delimiter:

protocol://host:port/contextpath/servletpath/pathinfo?param=value

Servlet Invocation

Servlet Development 2-29

Table 2–2 describes the components of the generic construct.

Table 2–2 URL Components

Component Description

Protocol The network protocol to be used when invoking the Web application.
Examples are http, https, ftp, and ormi (for EJBs).

Host The network name of the server that the Web application is running
on. If the Web client is on the same system as the application server,
you can use localhost. Otherwise, use the host name (as defined in
/etc/hosts on a UNIX system, for example), such as:

www.example.com

Port The port that the Web server listens on. If a URL does not specify a
port, most browsers assume port 80 for HTTP protocol or port 443 for
HTTPS.

For OC4J, the port number is specified in the port attribute of the
<web-site> element in the Web site XML file, such as
default-web-site.xml for an Oracle Application Server
environment or http-web-site.xml for OC4J standalone. (For
each port, there must be one associated protocol according to the
<web-site> element protocol attribute.)

Context path The designated root path for the servlet context. You specify the
context path when you deploy an application. For OC4J, the specified
context path is reflected in the setting of the root attribute of the
<web-app> element (a subelement of <web-site>) in the Web site
XML file.

Each servlet context is associated with a directory path in the server
file system.

The <web-app> element also indicates the J2EE application name
(and EAR file name) through its application attribute, and the
Web module name (and WAR file name) through its name attribute.
The J2EE application name, Web module name, and context path are
all mapped together in this way. Here is an example:

<web-app application="ojspdemos" name="ojspdemos-web"
 root="/ojspdemos" />

Servlet Invocation

2-30 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet path The designated path, beyond the context path, for the particular
servlet you want to invoke. You specify the servlet path through
standard mappings in the application web.xml file. A servlet class is
mapped to an arbitrary servlet name through <servlet-class>
and <servlet-name> subelements of a <servlet> element. The
servlet name is mapped to a servlet path through <servlet-name>
and <url-pattern> subelements of a <servlet-mapping>
element. (You can map a single servlet class to multiple servlet names
and multiple servlet paths.) Here is an example:

<web-app>
 ...
 <servlet>
 <servlet-name>logout</servlet-name>
 <servlet-class>
 oracle.security.jazn.samples.http.Logout
 </servlet-class>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>logout</servlet-name>
 <url-pattern>/logout/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

Path information (This is typically empty.) Beyond the context path and servlet path, a
URL can contain additional information that is supplied to the servlet
through the HTTP request object. Such information is presumably
understood by the servlet. This information is separate from any
request parameter settings or other URL components that follow
delimiters such as question marks. Such delimiters would follow any
path information.

Note: The name specified in a <servlet-name> element is the
name you would input to the servlet context
getNamedDispatcher() method if you want a request
dispatcher for that servlet.

Table 2–2 URL Components (Cont.)

Component Description

Servlet Invocation

Servlet Development 2-31

For more information about the OC4J configuration elements and attributes
discussed in the table, see "Element Descriptions for Web Site XML Files" on
page 6-28. For information about elements and attributes of the web.xml file, see
the Sun Microsystems Java Servlet Specification.

Consider the following sample URL:

http://www.example.com:8888/foo/bar/mypath/MyServlet/info1/info2?user=Amy

In the process of invoking a servlet according to a URL supplied by a client browser,
the servlet container takes the following steps:

1. It examines everything in the URL after the port number, then examines its own
configuration settings (such as in a Web site XML file) for recognized context
paths, then determines what part of the URL is the context path.

Assume for this example that /foo/bar is the context path.

2. It examines everything in the URL after the context path, then examines the
servlet mappings in the web.xml file for recognized servlet paths, then
determines what part of the URL is the servlet path.

At this point, the servlet can be invoked. The servlet container does not use any
information beyond the servlet path.

Assume for this example that /mypath/MyServlet is the servlet path.

3. If anything remains in the URL after the servlet path and preceding any URL
delimiters (such as "?" in this example, which delimits request parameter
settings), that portion of the URL is taken as extra information and is passed to
the servlet through the HTTP request object.

Assume for this example that /info1/info2 is the extra path information.

It is important to realize that the context path, servlet path, and any path
information can all be "compound" components, with one or more forward-slashes
in between parts. This is shown in the preceding example. In many cases, the
context path might be simple, such as just foo, and the servlet path might also be
simple, such as just MyServlet, and any path information might be simple as well.
But it is impossible to know by just looking at a URL what part of it is the context
path, what part is the servlet path, and what part is extra path information (if any).
You must examine the configuration in the Web site XML file and web.xml file to
determine this.

Servlet Invocation

2-32 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Invocation by Class Name During OC4J Development
For a development or testing scenario in OC4J, there is a convenience mechanism
for invoking a servlet by class name. For security reasons, the presumption is that
you would use this mechanism only while developing your application.

The servlet-webdir attribute in the <orion-web-app> element of the
global-web-application.xml file or orion-web.xml file defines a special
URL component that is used to invoke servlets by class name. This URL component
follows the context path in the URL, and anything following this URL component is
assumed to be a servlet class name, including applicable package information,
within the appropriate servlet context. The servlet class name appears instead of a
servlet path in the URL. (Technically, the servlet-webdir value is the servlet
path and acts as a servlet itself, and the class name of the servlet you wish to
execute is taken as path information.)

Generally speaking, for any given application, OC4J behavior for invocation by
class name is determined by the servlet-webdir setting in the orion-web.xml
file for that application, if there is a setting. But note the following:

� Any setting of servlet-webdir in the global-web-application.xml file
acts as a default value (as is true with configuration settings in
global-web-application.xml in general). If there is no servlet-webdir

Notes:

� See the Oracle Application Server Containers for J2EE User’s Guide
or Oracle Application Server Containers for J2EE Stand Alone User’s
Guide for information about defined ports and what listeners
they are mapped to, and for information about how to alter
these settings.

� Cookie names are based on the host name, port number, and
path (just the context path by default, but possibly including
the servlet path as well).

� The concepts of servlet contexts and context paths were
introduced in the servlet 2.2 specification. Apache JServ, for
example, preceded this specification and has no such concepts.

� You can retrieve the context path, servlet path, and path
information through the getContextPath(),
getServletPath(), and getPathInfo() methods of the
HTTP request object.

Servlet Invocation

Servlet Development 2-33

setting in global-web-application.xml, however, then the default value is
"" (empty quotes). This setting disables invocation by class name. The default
value is used in the event that orion-web.xml is not provided with the
application deployment, or does not have a servlet-webdir setting.

� You can disable servlet invocation by class name in either of two ways:

– Set the system property http.webdir.enable to a value of false. This
results in any servlet-webdir setting being ignored.

– Set a servlet-webdir value of "" (empty quotes), either through
global-web-application.xml or orion-web.xml.

For information about OC4J system properties, see the Oracle Application Server
Containers for J2EE Stand Alone User’s Guide, or the Oracle Application Server
Containers for J2EE User’s Guide for an Oracle Application Server environment. See
the Oracle Application Server 10g Release Notes for your platform for information
about the default value of the http.webdir.enable system property and any
default setting of servlet-webdir in the global-web-application.xml file
that is shipped with OC4J.

The following URL invokes a servlet called SessionServlet by its class name,
assuming a setting of servlet-webdir="/servlet/". In this example, assume
SessionServlet is in package foo.bar and executes in the OC4J default Web
application. Also assume a context path of "/" (the default for the default Web
application in OC4J standalone).

http://www.example.com:8888/servlet/foo.bar.SessionServlet

This mechanism applies to any servlet context, however, and not just for the default
Web application. If the context path is foo, for example, the URL to invoke by class
name would be as follows:

http://www.example.com:8888/foo/servlet/foo.bar.SessionServlet

Important: Allowing the invocation of servlets by class name
presents a significant security risk; OC4J should not be configured
to operate in this mode in a production environment. See
"Additional Security Considerations" on page 2-58 for information.

Servlet Invocation

2-34 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Invocation in an Oracle Application Server Production Environment
The following sections describe Oracle HTTP Server and OC4J features for servlet
invocation in an Oracle Application Server Environment:

� Key Features for Invocation in Oracle Application Server

� Use of Perceived Front-End Hosts by OC4J

Key Features for Invocation in Oracle Application Server
In an Oracle Application Server production environment, OC4J should always be
accessed through the Oracle HTTP Server. Oracle HTTP Server uses AJP (Apache
JServ protocol) to communicate to OC4J, but this is invisible to the end user.

When a servlet is requested, the OC4J servlet container interprets the URL as
described in "Summary of URL Components" on page 2-28.

Whatever port number is used would be mapped to AJP protocol through a
<web-site> element in the default-web-site.xml file. (This is the typical
name, but Web site XML file names are according to settings in the server.xml
file and can be changed as desired.) This is through the port and protocol
attributes of the <web-site> element, with port set as desired and protocol set
to "ajp13". By default, as the product is currently shipped, port 7777 is for access
through the Oracle HTTP Server with Oracle Application Server Web Cache
enabled.

Whenever you use Enterprise Manager to deploy an application, you are prompted
for a URL mapping, which will result in a new OC4J mount point in
mod_oc4j.conf. If you specify a URL mapping of "/mypath", for example, this is
the context path of your Web application and is defined as a new OC4J mount
point. Then you would invoke a servlet with a URL such as the following:

http://www.example.com:7777/mypath/MyServlet

See "Application Server Control Deploy Application (EAR) Page" on page 7-6 and
"Application Server Control Deploy Web Application (WAR) Page" on page 7-8 for
information about the Enterprise Manager EAR and WAR deployment pages.

For an overview of deployment to Oracle Application Server, see "OC4J
Deployment in Oracle Application Server" on page 5-56. For further information,
see the Oracle Application Server Containers for J2EE User’s Guide. For general
information about Enterprise Manager, see Oracle Enterprise Manager Concepts.

See the Oracle HTTP Server Administrator’s Guide for information about Oracle HTTP
Server configuration, mount points, and the mod_oc4j.conf file.

Servlet Invocation

Servlet Development 2-35

Use of Perceived Front-End Hosts by OC4J
There is an additional element in the default-web-site.xml file (or other Web
site XML file) that is relevant in servlet invocation. The <frontend> subelement of
the <web-site> element can specify a perceived front-end host and port of the
Web site as seen by HTTP clients. When the site is behind a load balancer or
firewall, the <frontend> specification is necessary to provide appropriate
information to the Web application for functionality such as URL rewriting.
Attributes are host, for the name of the front-end server (such as
"www.example.com"), and port, for the port number of the front-end server
(such as "8080"). Using this front-end information, the back-end server that is
actually running the application knows to refer to www.example.com instead of to
itself in any URL rewriting. This way, subsequent requests properly come in
through the front-end again, instead of trying to access the back-end directly.

The specified front-end host and port settings are also reflected back to the servlet
and are the values you receive if you call the getServerName() or
getServerPort() method of the HTTP request object.

Servlet Invocation in an OC4J Standalone Environment
In OC4J standalone, a Web site uses HTTP protocol without going through the
Oracle HTTP Server and AJP, and is configured according to settings in the
http-web-site.xml file. (This is the typical name, but Web site XML file names
are according to settings in the server.xml file and can be changed as desired.)

When a servlet is requested, the OC4J servlet container interprets the URL as
described in "Summary of URL Components" on page 2-28.

Whatever port number is used would be mapped to HTTP protocol through a
<web-site> element in the http-web-site.xml file (or other Web site XML file,
as applicable). This is through the port and protocol attributes of the
<web-site> element, with port set as desired and protocol set to "http". By
default (as currently shipped), port 8888 is for direct access to OC4J through its own
Web listener.

In OC4J standalone, the default context path is "/" to use HTTP protocol for an
application that is deployed to the OC4J default Web application. Here is an
example:

http://www.example.com:8888/MyServlet

If you are not using the default Web application, specify the context path while
deploying the application. You can either do this through the admin.jar utility, or

Servlet Invocation

2-36 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

by manual deployment and manual edits of the http-web-site.xml file (not
generally recommended). Deployment for OC4J standalone is discussed in
"Deployment Scenarios to OC4J Standalone" on page 5-34, but for complete
information see the Oracle Application Server Containers for J2EE Stand Alone User’s
Guide. That document also has information about OC4J port settings and other
default settings.

If you specify "/mypath" as the context path, for example, you would invoke the
servlet with a URL such as the following:

http://www.example.com:7777/mypath/MyServlet

Servlet Sessions

Servlet Development 2-37

Servlet Sessions
Servlet sessions were introduced in "Introduction to Servlet Sessions" on page 1-8.
The following sections provide details and examples:

� Session Tracking

� Features of the HttpSession Interface

� Session Cancellation

� Session Replication in a Distributable Application

� Session Servlet Example

Session Tracking
This section provides an overview of servlet session tracking and features, then
describes the OC4J implementation.

Overview of Session Tracking
The HTTP protocol is stateless by design. This is fine for stateless servlets that
simply take a request, do a few computations, output some results, and then in
effect go away. But many, if not most, server-side applications must keep some state
information and maintain a dialogue with the client. The most common example of
this is a shopping cart application. A client accesses the server several times from
the same browser and visits several Web pages. The client decides to buy some of
the items offered for sale at the Web site and clicks the BUY ITEM buttons. If each
transaction were being served by a stateless server-side object, and the client
provided no identification on each request, it would be impossible to maintain a
filled shopping cart over several HTTP requests from the client. In this case, there
would be no way to relate a client to a server session, so even writing stateless
transaction data to persistent storage would not be a solution.

Session tracking involves identifying user sessions by ID numbers and tying
requests to their session through use of the ID number. The typical mechanisms for
this are cookies or URL rewriting.

The OC4J servlet container, in accordance with the servlet specification, implements
session tracking through HTTP session objects, which are instances of a class that
implements the javax.servlet.http.HttpSession interface.

When a servlet creates an HTTP session object (through the request object
getSession() method), the client interaction is considered to be stateful.

Servlet Sessions

2-38 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

An HTTP session object has scope over the Web application only. You cannot use
session objects to share data between applications. Nor can you use session objects
to share data between different clients of the same application. There is one HTTP
session object for each client in each application.

Cookies
A number of approaches have been used in attempting to add a measure of
statefulness to the HTTP protocol. The most widely accepted is the use of cookies,
used to transmit an identifier between server and client, in conjunction with stateful
servlets that can maintain session objects. Session objects are simply dictionaries
that store values (Java objects) together with their associated keys (Java strings).

Cookie usage is as follows:

1. With the first response from a stateful servlet after a session is created, the
server (container) sends a cookie with a session identifier back to the client,
often along with a small amount of other useful information (all less than 4 KB).
The container sends the cookie, named JSESSIONID, in the HTTP response
header.

2. Upon each subsequent request from the same Web client session (assuming the
client supports cookies), the client sends the cookie back to the server as part of
the request, and the cookie value is used by the server to look up session state
information to pass to the servlet.

3. With subsequent responses, the container sends the updated cookie back to the
client.

The servlet code is not required to do anything to send a cookie; this is handled by
the container. Sending cookies back to the server is handled automatically by the
Web browser, unless the user disables cookies.

The container uses the cookie for session maintenance. A servlet can retrieve
cookies using the getCookies() method of the HttpServletRequest object,
and can examine cookie attributes using the accessor methods of the
javax.servlet.http.Cookie objects.

Note: To share information between clients or applications, you
can store such persistent data in a database if you need the
protection, transactional safety, and backup that a database offers.
Alternatively, you can save persistent information on a file system
or in a remote object.

Servlet Sessions

Servlet Development 2-39

URL Rewriting
An alternative to using cookies is URL rewriting, through the encodeURL()
method of the response object. This is where the session ID is encoded into the URL
path of a request. See "Session Servlet Example" on page 2-45 for an example of URL
rewriting.

The name of the path parameter is jsessionid, as in the following example:

http://host:port/myapp/index.html?jsessionid=6789

Similarly to the functionality of cookies, the value of the rewritten URL is used by
the server to look up session state information to pass to the servlet.

Although cookies are typically enabled, the only way for you to ensure session
tracking is to use encodeURL() in your servlets, or encodeRedirectURL() for
redirects.

Other Session Tracking Methods
Other techniques have been used in the past to relate client and server sessions,
including server hidden form fields and user authentication mechanisms to store
additional information. Oracle does not recommend these techniques in OC4J
applications. They have many drawbacks, including performance penalties and loss
of confidentiality.

Session Tracking in OC4J
For session-tracking in OC4J, the servlet container will first attempt to accomplish
tracking through cookies. If cookies are disabled, session tracking can be
maintained only by using the encodeURL() method of the response object, or the
encodeRedirectURL() method for redirects. You must include the
encodeURL() or encodeRedirectURL() calls in your servlet if cookies might be
disabled.

The use of session cookies is disabled by the following setting in the
global-web-application.xml or orion-web.xml file:

<session-tracking cookies="disabled" ... >
 ...
</session-tracking>

Note: In accordance with the servlet specification, calls to the
encodeURL() and encodeRedirectURL() methods will result
in no action if cookies are enabled.

Servlet Sessions

2-40 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Cookies are enabled by default.

Features of the HttpSession Interface
As noted earlier, the servlet container uses HTTP session objects—instances of a
class that implements the javax.servlet.http.HttpSession interface—in
tracking and managing user sessions. The HttpSession interface specifies the
following public methods to get and set session information:

� void setAttribute(String name, Object value)

This method binds the specified object to the session, under the specified name.

� Object getAttribute(String name)

This method retrieves the object that is bound to the session under the specified
name (or null if there is no match).

Depending on the configuration of the servlet container and the servlet itself,
sessions might expire automatically after a set amount of time or might be
invalidated explicitly by the servlet. Servlets can manage session lifecycle with the
following methods, specified by the HttpSession interface:

� void invalidate()

This method immediately invalidates the session, unbinding any objects from it.

Notes:

� OC4J does not support auto-encoding, where session IDs are
automatically encoded into the URL by the servlet container.
This is a non-standard and expensive process.

� An encodeURL() or encodeRedirectURL() call will not
encode the session ID into the URL if the cookie mechanism is
found to be working properly.

� The encodeURL() method replaces the servlet 2.0
encodeUrl() method (note capitalization), which is
deprecated.

Servlet Sessions

Servlet Development 2-41

� void setMaxInactiveInterval(int interval)

This method sets a session timeout interval, in seconds, as an integer. A
negative value indicates no timeout. A value of 0 results in immediate timeout.

� boolean isNew()

This method returns true within the request that created the session; it returns
false otherwise.

� long getCreationTime()

This method returns the time when the session object was created, measured in
milliseconds since midnight, January 1, 1970.

� long getLastAccessedTime()

This method returns the time of the most recent request associated with the
client session, measured in milliseconds since midnight, January 1, 1970. If the
client session has not yet been accessed, this method returns the session creation
time.

For an example of how a servlet can use an HTTP session object, see "Session
Servlet Example" on page 2-45.

For complete information about HttpSession methods, you can refer to the Sun
Microsystems Javadoc at the following location:

http://java.sun.com/products/servlet/2.3/javadoc/index.html

Session Cancellation
HTTP session objects persist for the duration of the server-side session. A session is
either terminated explicitly by the servlet or it "times out" after a certain period and
is cancelled by the container.

Cancellation Through a Timeout
The default session timeout for the OC4J server is 20 minutes. You can change this
for a specific application by setting the <session-timeout> subelement under
the <session-config> element of web.xml. Specify the timeout in minutes, as
an integer. For example, to reduce the session timeout to five minutes, add the
following lines to the application web.xml file:

<session-config>
 <session-timeout>5</session-timeout>
</session-config>

Servlet Sessions

2-42 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

According to the servlet specification, a negative value specifies the default
behavior that a session never times out. For example:

<session-config>
 <session-timeout>-1</session-timeout>
</session-config>

A value of 0 results in an immediate timeout.

Cancellation by the Servlet
A servlet explicitly cancels a session by invoking the invalidate() method on
the session object. You must obtain a new session object by invoking the
getSession() method of the HttpServletRequest object.

Session Replication in a Distributable Application
The session object of a stateful servlet can be replicated to other OC4J servers in a
load-balanced cluster island. If the server handling a request to a servlet should fail,
the request can "failover" to another JVM on another server in the cluster island and
the session state will still be available.

The following sections provide more information:

� Overview of Session Replication and Requirements

� Possible Clustering Error Conditions and Related Environment Flags

� Session Replication Details and Logistics

Overview of Session Replication and Requirements
To enable replication of the session state of an application between OC4J servers,
you must mark the Web application as distributable, by use of the standard
<distributable> element in the web.xml file. The presence of this subelement
of the <web-app> element, as follows, specifies that the application is distributable:

<web-app ... >
 ...
 <distributable/>
 ...
</web-app>

Servlet Sessions

Servlet Development 2-43

Objects that are stored by a servlet in the HttpSession object are replicated. They
must be serializable (directly or indirectly implementing the
java.io.Serializable interface) or remoteable (directly or indirectly
implementing the java.rmi.Remote interface) for replication to work properly.
Furthermore, any objects that are referenced by objects in the session object must
themselves be serializable or remoteable.

Possible Clustering Error Conditions and Related Environment Flags
Replicated data is sent asynchronously to the other OC4J servers in the cluster
island. For performance reasons, OC4J does not wait to confirm successful
replication. It is therefore possible, though highly unlikely, that either of the
following error scenarios would occur.

� Broadcast latency, where session replication messages are not received and
processed by the other OC4J servers before a client is rerouted:

1. A client sends a request and receives a response from the OC4J server.

2. The server broadcasts a replication message to the other OC4J servers in the
cluster island with the updated state for the client.

3. The client sends another request before the broadcast of the updated state
has been received and processed by all OC4J servers.

4. The original server fails and the client is rerouted to one of the OC4J servers
that does not yet have the new state information, resulting in the client
receiving old data.

� Failure before response to client, where a server fails after it has broadcast its
replication message to other servers, but before it has completed its response to
the client:

1. A client sends a request to the OC4J server.

2. The server broadcasts a replication message to the other OC4J servers in the
cluster island with the updated state for the client.

Note: In an Oracle Application Server environment, accomplish
this through Oracle Enterprise Manager. See the discussion of
clustering in the Oracle Application Server Containers for J2EE User’s
Guide for details.

Servlet Sessions

2-44 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

3. The server fails, however, before completing its response to the client. This
results in the client being unaware of the processing completed by the
server, even though other OC4J servers are aware.

Because of the possible error scenarios, OC4J and Oracle HTTP Server maintain
session affinity, meaning they make every effort to always route requests and
responses through the same OC4J JVM. The session cookie, JSESSIONID,
maintains the required, detailed routing information across HTTP requests to
ensure that subsequent requests through Oracle HTTP Server are dispatched to the
originating JVM wherever possible.

In addition, the OC4J 9.0.4 implementation introduces two environment flags that
you can use to reduce the risk of either error scenario occurring:

� cluster.thread.priority: By default, OC4J clustering threads run with
the same priority as the other main OC4J threads. You can, however, set this
flag to any integer value from 6 through 10 to give clustering threads higher
priority, with 10 being the highest priority.

� cluster.failover.delay: In the event that an OC4J server fails, this flag
results in a delay of the specified number of milliseconds before a client is
rerouted to an alternate server. The default is no delay. A setting between 7000
and 9000 is likely sufficient to avoid the first of the error scenarios described
above.

Session Replication Details and Logistics
For a distributable application, session replication is triggered each time there is a
setAttribute() call on the session object. The name and value specified in the
call are serialized and replicated, with the serialized value being stored using the
specified name as the key. The value is deserialized only upon first access by a
failed-over servlet.

Be aware that you must explicitly call setAttribute() whenever you update a
data item belonging to the session object. For example, if you call
getAttribute() on the session object to retrieve a bean, then call a method on
the bean to change its state, you must then call setAttribute() on the session
object to update the bean in the session. This is in contrast to the situation in a
non-distributable environment, where the bean is passed to you by reference and
updated directly within the session object as soon as you call the method on the
bean.

Also be aware of the performance implications of this functionality. A servlet with a
large number of setAttribute() calls might have lower performance due to the
small overhead introduced when performing state replication.

Servlet Sessions

Servlet Development 2-45

Session Servlet Example
The SessionServlet code below implements a servlet that establishes an
HttpSession object and prints data held by the request and session objects.

SessionServlet Code
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Date;

public class SessionServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // Get the session object. Create a new one if it doesn’t exist.
 HttpSession session = req.getSession(true);

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 out.println("<head><title> " + "SessionServlet Output " +
 "</title></head><body>");
 out.println("<h1> SessionServlet Output </h1>");
 // Set up a session hit counter. "sessionservlet.counter" is just the
 // conventional way to create a key for the value to be stored in the
 // session object "dictionary".
 Integer ival =
 (Integer) session.getAttribute("sessionservlet.counter");
 if (ival == null) {
 ival = new Integer(1);
 }
 else {
 ival = new Integer(ival.intValue() + 1);
 }

Note: You can observe the runtime status of replication and
session state updates by enabling the OC4J debugging flags
http.session.debug and http.cluster.debug. See "OC4J
Debugging Flags" on page 2-24 and "Setting OC4J Debugging
Flags" on page 2-25.

Servlet Sessions

2-46 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 // Save the counter value.
 session.setAttribute("sessionservlet.counter", ival);

 // Report the counter value.
 out.println(" You have hit this page " +
 ival + " times.<p>");

 // This statement provides a target that the user can click
 // to activate URL rewriting. It is not done by default.
 out.println("Click <a href=" +
 res.encodeURL(HttpUtils.getRequestURL(req).toString()) +
 ">here");
 out.println(" to ensure that session tracking is working even " +
 "if cookies aren't supported.
");
 out.println("Note that by default URL rewriting is not enabled" +
 " due to its large overhead.");

 // Report data from request.
 out.println("<h3>Request and Session Data</h3>");
 out.println("Session ID in Request: " +
 req.getRequestedSessionId());
 out.println("
Session ID in Request is from a Cookie: " +
 req.isRequestedSessionIdFromCookie());
 out.println("
Session ID in Request is from the URL: " +
 req.isRequestedSessionIdFromURL());
 out.println("
Valid Session ID: " +
 req.isRequestedSessionIdValid());

 // Report data from the session object.
 out.println("<h3>Session Data</h3>");
 out.println("New Session: " + session.isNew());
 out.println("
 Session ID: " + session.getId());
 out.println("
 Creation Time: " + new Date(session.getCreationTime()));
 out.println("
Last Accessed Time: " +
 new Date(session.getLastAccessedTime()));

 out.println("</body>");
 out.close();
 }

 public String getServletInfo() {
 return "A simple session servlet";
 }
}

Servlet Sessions

Servlet Development 2-47

Deploying and Testing
In OC4J standalone, save the preceding code into a file SessionServlet.java in
the OC4J default Web application /WEB-INF/classes directory. By default, the
default Web application root directory is j2ee/home/default-web-app. (See
"OC4J Default Application and Default Web Application" on page 5-37 for more
information.)

For convenience, use the development="true" setting in the <orion-web-app>
element of the global-web-application.xml file. See "Element Descriptions
for global-web-application.xml and orion-web.xml" on page 6-2 for more
information about the development flag.

Figure 2–1 shows the output of this servlet when it is invoked the second time in a
session by a Web browser that has cookies enabled. Experiment with different Web
browser settings—for example, by disabling cookies—then select the HREF that
causes URL rewriting.

Servlet Sessions

2-48 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Figure 2–1 Session Servlet Display

Servlet Security

Servlet Development 2-49

Servlet Security
OC4J supports Secure Socket Layer (SSL) communication between Oracle HTTP
Server and OC4J in an Oracle Application Server environment, using secure AJP.
This is the secure version of Apache JServ Protocol, the protocol used by Oracle
HTTP Server to communicate with OC4J. The following sections go into
appropriate detail:

� Use of Security Features

� Configuration of Oracle HTTP Server and OC4J for SSL

� SSL Common Problems and Solutions

This discussion is followed by a section of general security considerations:

� Additional Security Considerations

See the following documents for additional information about Oracle Application
Server security and Oracle HTTP Server.

� Oracle Application Server 10g Security Guide (including information about secure
protocol between a client and Oracle HTTP Server)

� Oracle Application Server Containers for J2EE Security Guide (including an
overview of SSL keys, certificates, and related concepts)

� Oracle HTTP Server Administrator’s Guide

Notes:

� Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. (Also note that the secure AJP protocol
used between Oracle HTTP Server and OC4J is not visible to
the end user.) This section covers only secure communication
between Oracle HTTP Server and OC4J.

� In addition, OC4J standalone supports SSL communication
directly between a client and OC4J, using HTTPS. See the
Oracle Application Server Containers for J2EE Stand Alone User’s
Guide, available when you download the standalone version
from OTN.

Servlet Security

2-50 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Use of Security Features
The following sections discuss how to use SSL features with OC4J and Oracle HTTP
Server:

� Using Certificates with OC4J and Oracle HTTP Server

� Requesting Client Authentication

Using Certificates with OC4J and Oracle HTTP Server
The steps below are for using keys and certificates for SSL communication in OC4J.
These are server-level steps, typically executed prior to deployment of an
application that will require secure communication, perhaps when you first set up
an Oracle Application Server instance.

Note that a keystore is used to store certificates, including the certificates of all
trusted parties, for use by a program. Through its keystore, an entity such as OC4J
(for example) can authenticate other parties as well as authenticate itself to other
parties. Oracle HTTP Server uses what is called a wallet for the same purpose.

In Java, a keystore is a java.security.KeyStore instance that you can create
and manipulate using the keytool utility that is provided with the Sun
Microsystems JDK. The underlying physical manifestation of this object is a file. Go
to the following site for information about keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

The Oracle Wallet Manager has functionality for Oracle wallets that is equivalent to
the functionality of keytool for keystores.

Here are the steps in using certificates between OC4J and Oracle HTTP Server:

1. Use keytool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two
approaches.

You can generate your own signature:

a. Use keytool to "self-sign" the certificate. This is appropriate if your clients
will trust you as, in effect, your own certificate authority.

Servlet Security

Servlet Development 2-51

Alternatively, you can obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keytool to generate a certificate
request, which is a request to have the certificate signed by a certificate
authority.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority and import it into the
keystore, again using keytool. In the keystore, the signature will be
matched with the associated certificate.

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle
Application Server, the Oracle Application Server documentation does not cover it.
You can go to the Web site of any certificate authority for information. (Any browser
should have a list of trusted certificate authorities.) Here are the Web addresses for
VeriSign, Inc. and Thawte, Inc., for example:

http://www.verisign.com/

http://www.thawte.com/

For SSL communication between OC4J and Oracle HTTP Server, you would also
execute the preceding steps for Oracle HTTP Server, but using a wallet and Oracle
Wallet Manager instead of a keystore and the keytool utility. See the Oracle
Application Server 10g Security Guide for information about wallets and the Oracle
Wallet Manager.

Note: Oracle Application Server includes Oracle Application
Server Certificate Authority (OCA). This allows customers to create
and issue certificates for themselves and their users, although these
certificates would likely be unrecognized outside a customer’s
organization without prior arrangements. See the Oracle Application
Server Certificate Authority Administrator’s Guide for information
about OCA.

Servlet Security

2-52 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

In addition to steps 1 and 2 above, execute steps 3 and 4 as necessary:

3. If the OC4J certificate is signed by an entity that Oracle HTTP Server does
not yet trust, obtain the certificate of the entity and import it into Oracle HTTP
Server. The specifics depend on whether the OC4J certificate in question is
self-signed, as follows.

If OC4J has a self-signed certificate (essentially, Oracle HTTP Server does not
yet trust OC4J):

a. From OC4J, use keytool to export the OC4J certificate. This places the
certificate into a file that is accessible to Oracle HTTP Server.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

Alternatively, if OC4J has a certificate that is signed by another entity (that
Oracle HTTP Server does not yet trust):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the
certificate of the entity.

4. If the Oracle HTTP Server certificate is signed by an entity that OC4J does
not yet trust, and OC4J is in a mode of operation that requires client
authentication (as discussed in "Requesting Client Authentication" on
page 2-54), then obtain the certificate of the entity in any appropriate way, such
as by exporting it from the entity. The exact steps vary widely, depending on the
entity. From OC4J, use keytool to import the certificate of the entity.

Note: During communications over SSL between Oracle HTTP
Server and OC4J, all data on the communications channel between
the two is encrypted. The following steps are executed: 1) The OC4J
certificate chain is authenticated to Oracle HTTP Server during
establishment of the encrypted channel. 2) Optionally, if OC4J is in
client-authentication mode, Oracle HTTP Server is authenticated to
OC4J. This also occurs during establishment of the encrypted
channel. 3) Any further communication after this initial exchange
will be encrypted.

Servlet Security

Servlet Development 2-53

Example: Creating an SSL Certificate and Generating Your Own Signature This example
corresponds to Step 2 above, in the mode where you generate your own signature
by using keytool to self-sign the certificate.

First, create a keystore with an RSA private/public keypair, using the keytool
command. The following example (in which % is the system prompt) uses the RSA
keypair algorithm to generate a keystore to reside in a file named mykeystore,
which has a password of 123456 and is valid for 21 days:

% keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456 -validity 21

Note the following:

� The keystore option specifies the name of the file in which the keys are
stored.

� The storepass option sets the password for protecting the keystore.

� The validity option sets the number of days for which the certificate is valid.

The keytool prompts you for more information, as follows:

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

Note: To determine your two-letter country code, use the ISO
country code list at the following URL:

 http://www.bcpl.net/~jspath/isocodes.html.

Servlet Security

2-54 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

The mykeystore file is created in the current directory. The default alias of the key
is mykey.

Requesting Client Authentication
OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In
an Oracle Application Server environment, Oracle HTTP Server acts as the client to
OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and
authenticates itself by sending a certificate and a certificate chain that ends with a
root certificate. OC4J can be configured to accept only root certificates from a
specified list in establishing a chain of trust back to a client.

A certificate that OC4J trusts is called a trust point. In the certificate chain from
Oracle HTTP Server, the trust point is the first certificate that OC4J encounters that
matches one in its own keystore. There are three ways to establish trust:

� The client certificate is in the keystore.

� One of the intermediate CA certificates in the certificate chain from Oracle
HTTP Server is in the keystore.

� The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

If you request client authentication with the needs-client-auth attribute,
perform the following steps. See "OC4J Configuration Steps for SSL" on page 2-55
for how to configure this attribute.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be
your trust point. Ensure that you either have control over the issuance of
certificates using this trust point or that you trust the certificate authority as an
issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point
for authentication of the client certificate.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Servlet Security

Servlet Development 2-55

3. Execute the steps to create the client certificate (documented in "Using
Certificates with OC4J and Oracle HTTP Server" on page 2-50). The client
certificate includes the intermediate or root certificate that is installed in the
server. If you wish to trust another certificate authority, obtain a certificate from
that authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate for the Oracle HTTP Server initiation of the secure AJP
connection.

Configuration of Oracle HTTP Server and OC4J for SSL
For secure communication between Oracle HTTP Server and OC4J, configuration
steps are required at each end, as detailed in the following sections:

� Oracle HTTP Server Configuration Steps for SSL

� OC4J Configuration Steps for SSL

Oracle HTTP Server Configuration Steps for SSL
In Oracle HTTP Server, verify proper SSL settings in mod_oc4j.conf for secure
communication. SSL must be enabled, with a wallet file and password specified, as
follows:

Oc4jEnableSSL on
Oc4jSSLWalletFile wallet_path
Oc4jSSLWalletPassword pwd

The wallet_path value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.) The pwd value is the wallet password.

For more information about the mod_oc4j.conf file, see Oracle HTTP Server
Administrator’s Guide.

OC4J Configuration Steps for SSL
In the default-web-site.xml file (or other Web site XML file, as appropriate),
you must specify appropriate SSL settings under the <web-site> element.

1. Turn on the secure flag to specify secure communication, as follows:

<web-site ... secure="true" ... >
 ...
</web-site>

Servlet Security

2-56 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Setting secure="true" specifies that the AJP protocol should use an SSL
socket.

2. Use the <ssl-config> subelement and its keystore and
keystore-password attributes to specify the path and password for the
keystore, as follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd" />
</web-site>

The <ssl-config> element is required whenever the secure flag is set to
"true".

The path_and_file value can indicate either an absolute or relative directory
path and includes the file name. A relative path is relative to the location of the
Web site XML file.

3. Optionally, to specify that client authentication is required, turn on the
needs-client-auth flag. This is an attribute of the <ssl-config> element.

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

This sets up a mode where OC4J will accept or reject a client entity, such as
Oracle HTTP Server, for secure communication depending on its identity. The
needs-client-auth flag instructs OC4J to request the client certificate chain
upon connection. If OC4J recognizes the root certificate of the client, then the
client is accepted.

The keystore that is specified in the <ssl-config> element must contain the
certificates of any clients that are authorized to connect to OC4J through secure
AJP and SSL.

Here is an example that sets up secure communication with client authentication:

<web-site display-name="OC4J Web Site" protocol="ajp13" secure="true" >
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome"
 needs-client-auth="true" />
</web-site>

Servlet Security

Servlet Development 2-57

Only the portions in bold are specific to security. The protocol value is always
"ajp13" for communication through Oracle HTTP Server, whether or not you use
secure communication. A protocol value of ajp13 with secure="false"
indicates AJP protocol, while ajp13 with secure="true" indicates secure AJP
protocol.

For more information about elements and attributes of the <web-site> and
<ssl-config> elements, see "Element Descriptions for Web Site XML Files" on
page 6-28.

Also see "Requesting Client Authentication" on page 2-54 for related information.

SSL Common Problems and Solutions
This section discusses some common SSL errors and their causes and remedies,
followed by a brief discussion of general SSL debugging.

SSL Common Errors
The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: There is trailing white space, which the keytool utility does not allow.

Action: Delete all trailing white space. If the error still occurs, add a newline in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using the keytool utility from an older JDK.

Action: Use the keytool utility from the latest JDK on your system. To ensure
that you are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply
Cause: The keytool utility cannot locate the root CA certificates in your
keystore, so cannot build the certificate chain from your server key to the
trusted root certificate authority.

Action: Execute the following:

keytool -keystore keystore -import -alias cacert -file cacert.cer (keytool
-keystore keystore -import -alias intercert -file inter.cer)

Servlet Security

2-58 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

If you use an intermediate CA keytool utility, then execute the following:

keystore keystore -genkey -keyalg RSA -alias serverkey keytool -keystore
keystore -certreq -file my.host.com.csr

Get the certificate from the Certificate Signing Request (CSR), then execute the
following:

keytool -keystore keystore -import -file my.host.com.cer -alias serverkey

No available certificate corresponds to the SSL cipher suites that are enabled
Cause: Something is wrong with your certificate.

Action: Determine and rectify the problem.

General SSL debugging
While you are developing in OC4J standalone, you can display verbose debug
information from the Java Secure Socket Extension (JSSE) implementation. To get a
list of options, start OC4J as follows:

java -Djavax.net.debug=help -jar oc4j.jar

Start it as follows to enable full verbosity:

java -Djavax.net.debug=all -jar oc4j.jar

This will display the browser request header, server HTTP header, server HTTP
body, content length (before and after encryption), and SSL version.

Additional Security Considerations
In addition to the SSL functionality discussed previously, there are several
considerations regarding the security of your Web application running in the OC4J
servlet container:

� In the global-web-application.xml file or orion-web.xml file, use the
<jazn-web-app> subelement of <orion-web-app> to configure the
OracleAS JAAS Provider and Single Sign-On (SSO) properties for servlet
execution. These features must be set appropriately in order to invoke a servlet
under the privileges of a particular security subject. This element is described
under "Element Descriptions for global-web-application.xml and
orion-web.xml" on page 6-2.

Servlet Security

Servlet Development 2-59

� OC4J includes standard support for security constraints and security roles
through the <security-role> element of the web.xml deployment
descriptor. For general information, refer to the Sun Microsystems Java Servlet
Specification. OC4J also offers related support through the
global-web-application.xml file <security-role-mapping> element.
See "Configuration for global-web-application.xml and orion-web.xml" on
page 6-2 for details about elements and attributes of
global-web-application.xml.

� Use of invocation by class name should be considered only in a development
environment, because there is a significant security risk when users are allowed
to invoke servlets in this way.

Invoking by class name can bypass standard security constraints unless this is
specifically addressed in the web.xml file. It is also true that when a servlet is
invoked by class, any exception it throws might reveal the physical path of the
servlet location, which is highly undesirable.

To resolve security issues, particularly in a production environment, you can
disable servlet invocation by class name in either of two ways:

– Set the system property http.webdir.enable to a value of false. This
results in any servlet-webdir setting being ignored.

– Set a servlet-webdir value of "" (empty quotes), either through
global-web-application.xml or orion-web.xml.

(Invocation by class name is described in "Servlet Invocation by Class Name
During OC4J Development" on page 2-32, including additional information
about servlet-webdir settings.)

The following configuration in orion-web.xml, for example, would disable
invocation by class name:

<orion-web-app ... servlet-webdir="" ... >
 ...
</orion-web-app>

� To guard against having session ID numbers guessed or "hacked" for possibly
destructive purposes, OC4J uses java.security.SecureRandom
functionality to generate random session ID numbers.

Servlet Security

2-60 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Filters and Event Listeners 3-1

3
Servlet Filters and Event Listeners

This chapter describes the following servlet features that were introduced in the
servlet 2.3 specification:

� Servlet Filters

� Event Listeners

Servlet Filters

3-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Filters
Servlet filters are used for preprocessing Web application requests and
post-processing responses. While this particular functionality was introduced in the
servlet 2.3 specification, earlier Web servers have supported similar constructs.

The following sections cover servlet filters:

� Overview of Servlet Filters

� How the Servlet Container Invokes Filters

� Filter Examples

Overview of Servlet Filters
When the servlet container calls a method in a servlet on behalf of the client, the
HTTP request that the client sent is, by default, passed directly to the servlet. The
response that the servlet generates is, by default, passed directly back to the client,
with its content unmodified by the container. In this scenario, the servlet must
process the request and generate as much of the response as the application
requires.

But there are many cases where some preprocessing of the request for servlets
would be useful. In addition, it is sometimes useful to modify the response from a
class of servlets. One example is encryption. A servlet, or a group of servlets in an
application, might generate response data that is sensitive and should not go out
over the network in clear-text form, especially when the connection has been made
using a non-secure protocol such as HTTP. A filter can encrypt the responses. Of
course, in this case the client must be able to decrypt the responses.

A common scenario for a filter is where you want to apply preprocessing or
post-processing to requests or responses for a group of servlets, not just a single
servlet. If you need to modify the request or response for just one servlet, there is no
need to create a filter—just do what is required directly in the servlet itself.

Note that filters are not servlets. They do not implement and override
HttpServlet methods such as doGet() or doPost(). Rather, a filter implements
the methods of the javax.servlet.Filter interface. The methods are:

� init()

� destroy()

� doFilter()

Servlet Filters

Servlet Filters and Event Listeners 3-3

How the Servlet Container Invokes Filters
Figure 3–1 shows how the servlet container invokes filters. On the left is a scenario
where no filters are configured for the servlet being called. On the right, several
filters (1, 2, ..., N) have been configured in a chain to be invoked by the container
before the servlet is called and after it has responded. The web.xml file specifies
which servlets cause the container to invoke the filters.

Figure 3–1 Servlet Invocation with and without Filters

The order in which filters are invoked depends on the order in which they are
configured in the web.xml file. The first filter in web.xml is the first one invoked
during the request, and the last filter in web.xml is the first one invoked during the
response. Note the reverse order during the response.

Servlet Filters

3-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Filtering of Forward or Include Targets
In the OC4J 9.0.4 implementation, when a servlet is filtered, any servlets that are
forwarded to or included from the filtered servlet are not filtered by default. You can
change this behavior, however, through the following environment setting:

oracle.j2ee.filter.on.dispatch=true

This flag is set to false by default.

See "Servlet Includes and Forwards" on page 2-15 for general information about
including and forwarding.

Filter Examples
This section lists and describes three servlet filter examples.

Filter Example 1
This section provides a simple filter example. Any filter must implement the three
methods in the javax.servlet.Filter interface or must extend a class that
implements them. So the first step is to write a class that implements these methods.
This class, which we will call MyGenericFilter, can be extended by other filters.

Generic Filter Here is the generic filter code. Assume this generic filter is part of a
package com.example.filter and set up a corresponding directory structure.

This is an elementary example of an empty (or "pass-through") filter and could be
used as a template.

Note: Be careful in coordinating any use of multiple filters, in case
of possible overlap in functionality or in what the filters are
overwriting.

Note: This flag is a temporary mechanism for the current release.
Future releases will follow the next servlet specification (servlet
2.4), which also directs that servlets that are forwarded to or
included from a filtered servlet are not filtered by default. But in
accordance with the specification, this behavior will be configurable
through the web.xml file.

Servlet Filters

Servlet Filters and Event Listeners 3-5

package com.example.filter;
import javax.servlet.*;

public class MyGenericFilter implements javax.servlet.Filter {
 public FilterConfig filterConfig; //1

 public void doFilter(final ServletRequest request, //2
 final ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException {
 chain.doFilter(request,response); //3
 }

 public void init(final FilterConfig filterConfig) { //4
 this.filterConfig = filterConfig;
 }

 public void destroy() { //5
 }
}

Save this code in a file called MyGenericFilter.java in the package directory.
The numbered code notes refer to the following:

1. This declares a variable to save the filter configuration object.

2. The doFilter() method contains the code that implements the filter.

3. In the generic case, just call the filter chain.

4. The init() method saves the filter configuration in a variable.

5. The destroy() method can be overridden to accomplish any required
finalization.

Filter Code: HelloWorldFilter.java This filter overrides the doFilter() method of the
MyGenericFilter class above. It prints a message on the console when it is called
on entrance, then adds a new attribute to the servlet request, then calls the filter
chain. In this example there is no other filter in the chain, so the container passes the
request directly to the servlet. Enter the code that follows into a file called
HelloWorldFilter.java.

Servlet Filters

3-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

package com.acme.filter;

import javax.servlet.*;

public class HelloWorldFilter extends MyGenericFilter {
 private FilterConfig filterConfig;

 public void doFilter(final ServletRequest request,
 final ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException {
 System.out.println("Entering Filter");
 request.setAttribute("hello","Hello World!");
 chain.doFilter(request,response);
 System.out.println("Exiting HelloWorldFilter");
 }
}

JSP Code: filter.jsp To keep the example simple, the "servlet" to process the filter
output is written as a JSP page. Here it is:

<HTML>
<HEAD>
<TITLE>Filter Example 1</TITLE>
</HEAD>
<BODY>
<HR>
<P><%=request.getAttribute("hello")%></P>
<P>Check your console output!</P>
<HR>
</BODY>
</HTML>

The JSP page gets the new request attribute, hello, that the filter added, and prints
its value on the console. Put the filter.jsp page in the root directory of the OC4J
standalone default Web application and make sure your console window is visible
when you invoke filter.jsp from your browser.

Setting Up Example 1 To test the filter examples in this chapter, the OC4J standalone
default Web application will be used. The filter should be configured in the
web.xml file in the default Web application /WEB-INF directory
(j2ee/home/default-web-app/WEB-INF by default).

Servlet Filters

Servlet Filters and Event Listeners 3-7

You will need the following entries in the <web-app> element:

 <!-- Filter Example 1 -->
 <filter>
 <filter-name>helloWorld</filter-name>
 <filter-class>com.acme.filter.HelloWorldFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>helloWorld</filter-name>
 <url-pattern>/filter.jsp</url-pattern>
 </filter-mapping>
 <!-- end Filter Example 1 -->

The <filter> element defines the name of the filter and the Java class that
implements the filter. The <filter-mapping> element defines the URL pattern
that specifies to which targets the <filter-name> should apply. In this simple
example, the filter applies to only one target: the JSP code in filter.jsp.

Running Example 1 Invoke filter.jsp from your Web browser. The console output
should look something like this:

<hostname>% Entering Filter
Exiting HelloWorldFilter

Note: There is a <servlet-filter> element for the
global-web-application.xml file or orion-web.xml file
that has equivalent functionality. You can use either mechanism,
but remember that web.xml settings override
global-web-application.xml settings for the <web-app>
element, and orion-web.xml settings override web.xml settings.

Servlet Filters

3-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

The output to the Web browser is something like what is shown in Figure 3–2.

Figure 3–2 Example 1 Output

Servlet Filters

Servlet Filters and Event Listeners 3-9

Filter Example 2
A filter can be configured with initialization parameters in the web.xml file. This
section provides a filter example that uses the following web.xml entry, which
demonstrates a parameterized filter:

 <!-- Filter Example 2 -->
 <filter>
 <filter-name>message</filter-name>
 <filter-class>com.acme.filter.MessageFilter</filter-class>
 <init-param>
 <param-name>message</param-name>
 <param-value>A message for you!</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>message</filter-name>
 <url-pattern>/filter2.jsp</url-pattern>
 </filter-mapping>
 <!-- end Filter Example 2 -->

Here, the filter named message has been configured with an initialization
parameter, also called message. The value of the message parameter is "A
message for you!"

Filter Code: MessageFilter.java The code to implement the message filter example is
shown below. Note that it uses the MyGenericFilter class from "Filter Example
1" on page 3-4.

package com.acme.filter;
import javax.servlet.*;

public class MessageFilter extends MyGenericFilter {
 public void doFilter(final ServletRequest request,
 final ServletResponse response,
 FilterChain chain)
 throws java.io.IOException, javax.servlet.ServletException {
 System.out.println("Entering MessageFilter");
 String message = filterConfig.getInitParameter("message");
 request.setAttribute("message",message);
 chain.doFilter(request,response);
 System.out.println("Exiting MessageFilter");
 }
}

Servlet Filters

3-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This filter uses the filterConfig object that was saved in the generic filter. The
filterConfig.getInitParameter() method returns the value of the
initialization parameter.

JSP Code: filter2.jsp As in the first example, this example uses a JSP page to
implement the "servlet" that tests the filter. The filter named in the <url-pattern>
tag above is filter2.jsp. Here is the code, which you can enter into a file
filter2.jsp in the OC4J standalone default Web application root directory:

<HTML>
<HEAD>
<TITLE>Lesson 2</TITLE>
</HEAD>
<BODY>
<HR>
<P><%=request.getAttribute("message")%></P>
<P>Check your console output!</P>
<HR>
</BODY>
</HTML>

Running Example 2 Make sure that the filter configuration has been entered in the
web.xml file, as shown above. Then access the JSP page with your browser. The
console output should show something like the following:

Auto-deploying file:/private/tssmith/appserver/default-web-app/ (Assembly had
been updated)...
Entering MessageFilter
Exiting MessageFilter

Note the message from the server showing that it redeployed the default Web
application after the web.xml file was edited, and note the messages from the filter
as it was entered and exited.

Servlet Filters

Servlet Filters and Event Listeners 3-11

The Web browser screen should show something like what is shown in Figure 3–3.

Figure 3–3 Example 2 Output

Servlet Filters

3-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Filter Example 3
A particularly useful function for a filter is to manipulate the response to a request.
To accomplish this, use the standard
javax.servlet.http.HttpServletResponseWrapper class, a custom
javax.servlet.ServletOutputStream object, and a filter. To test the filter,
you also need a target to be processed by the filter. In this example, the target that is
filtered is a JSP page.

There are three new classes to create to implement this example:

� FilterServletOutputStream: This is a new implementation of
ServletOutputStream for response wrappers.

� GenericResponseWrapper: This is a basic implementation of the response
wrapper interface.

� PrePostFilter: This is the code that implements the filter.

This example uses the HttpServletResponseWrapper class to wrap the
response before it is sent to the target. This class is an object that acts as a wrapper
for the ServletResponse object (using a Decorator design pattern, as described in
software design textbooks). It is used to wrap the real response so that it can be
modified after the target of the request has delivered its response.

The HTTP servlet response wrapper developed in this example uses a custom
servlet output stream that lets the wrapper manipulate the response data after the
servlet (or JSP page, in this example) is finished writing it out. Normally, this cannot
be done after the servlet output stream has been closed (essentially, after the servlet
has committed it). That is the reason for implementing a filter-specific extension to
the ServletOutputStream class in this example.

Output Stream: FilterServletOutputStream.java The FilterServletOutputStream
class is used to manipulate the response of another resource. This class overrides
the three write() methods of the standard java.io.OutputStream class.

Here is the code for the new output stream:

package com.acme.filter;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class FilterServletOutputStream extends ServletOutputStream {

 private DataOutputStream stream;

Servlet Filters

Servlet Filters and Event Listeners 3-13

 public FilterServletOutputStream(OutputStream output) {
 stream = new DataOutputStream(output);
 }

 public void write(int b) throws IOException {
 stream.write(b);
 }

 public void write(byte[] b) throws IOException {
 stream.write(b);
 }

 public void write(byte[] b, int off, int len) throws IOException {
 stream.write(b,off,len);
 }

}

Save this code in the following directory under the default Web application root
directory (j2ee/home/default-web-app by default), and compile it:

/WEB-INF/classes/com/acme/filter

Servlet Response Wrapper: GenericResponseWrapper.java To use the custom
ServletOutputStream class, implement a class that can act as a response object.
This wrapper object is sent back to the client in place of the original response that
was generated.

The wrapper must implement some utility methods, such as to retrieve the content
type and content length of its content. The GenericResponseWrapper class
accomplishes this:

package com.acme.filter;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class GenericResponseWrapper extends HttpServletResponseWrapper {
 private ByteArrayOutputStream output;
 private int contentLength;
 private String contentType;

Servlet Filters

3-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 public GenericResponseWrapper(HttpServletResponse response) {
 super(response);
 output=new ByteArrayOutputStream();
 }

 public byte[] getData() {
 return output.toByteArray();
 }

 public ServletOutputStream getOutputStream() {
 return new FilterServletOutputStream(output);
 }

 public PrintWriter getWriter() {
 return new PrintWriter(getOutputStream(),true);
 }

 public void setContentLength(int length) {
 this.contentLength = length;
 super.setContentLength(length);
 }

 public int getContentLength() {
 return contentLength;
 }

 public void setContentType(String type) {
 this.contentType = type;
 super.setContentType(type);
 }

 public String getContentType() {
 return contentType;
 }
}

Save this code in the following directory under the default Web application root
directory (j2ee/home/default-web-app by default), and compile it:

/WEB-INF/classes/com/acme/filter

Servlet Filters

Servlet Filters and Event Listeners 3-15

Writing the Filter This filter adds content to the response after that target is invoked.
This filter extends the filter from "Generic Filter" on page 3-4.

Here is the filter code, PrePostFilter.java:

package com.acme.filter;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class PrePostFilter extends MyGenericFilter {

 public void doFilter(final ServletRequest request,
 final ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException {
 OutputStream out = response.getOutputStream();
 out.write("<HR>PRE<HR>".getBytes());
 GenericResponseWrapper wrapper = new
 GenericResponseWrapper((HttpServletResponse) response);
 chain.doFilter(request,wrapper);
 out.write(wrapper.getData());
 out.write("<HR>POST<HR>".getBytes());
 out.close();
 }
}

Save this code in the following directory under the default Web application root
directory (j2ee/home/default-web-app by default), and compile it:

/WEB-INF/classes/com/acme/filter

As in the previous examples, create a simple JSP page:

<HTML>
<HEAD>
<TITLE>Filter Example 3</TITLE>
</HEAD>
<BODY>
This is a testpage. You should see

this text when you invoke filter3.jsp,

as well as the additional material added

by the PrePostFilter.

</BODY>
</HTML>

Servlet Filters

3-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Save this JSP code in filter3.jsp in the root directory of the default Web
application.

Configuring the Filter The following <filter> element must be added to web.xml,
after the configuration of the message filter:

 <!-- Filter Example 3 -->
 <filter>
 <filter-name>prePost</filter-name>
 <display-name>prePost</display-name>
 <filter-class>com.acme.filter.PrePostFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>prePost</filter-name>
 <url-pattern>/filter3.jsp</url-pattern>
 </filter-mapping>
 <!-- end Filter Example 3 -->

Running Example 3 Invoke the servlet in your Web browser.

Servlet Filters

Servlet Filters and Event Listeners 3-17

You should see a page that looks something like what is shown in Figure 3–4.

Figure 3–4 Example 3 Output

Event Listeners

3-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Event Listeners
The servlet specification includes the capability to track key events in your Web
applications through event listeners. This functionality allows more efficient resource
management and automated processing based on event status. The following
sections describe servlet event listeners:

� Event Categories and Listener Interfaces

� Typical Event Listener Scenario

� Event Listener Declaration and Invocation

� Event Listener Coding and Deployment Guidelines

� Event Listener Methods and Related Classes

� Event Listener Sample

Event Categories and Listener Interfaces
There are two levels of servlet events:

� Servlet context-level (application-level) event

This involves resources or state held at the level of the application servlet
context object.

� Session-level event

This involves resources or state associated with the series of requests from a
single user session; that is, associated with the HTTP session object.

At each of these two levels, there are two event categories:

� Lifecycle changes

� Attribute changes

You can create one or more event listener classes for each of the four event
categories. A single listener class can monitor multiple event categories.

Create an event listener class by implementing the appropriate interface or
interfaces of the javax.servlet package or javax.servlet.http package.
Table 3–1 summarizes the four categories and the associated interfaces.

Event Listeners

Servlet Filters and Event Listeners 3-19

Typical Event Listener Scenario
Consider a Web application consisting of servlets that access a database. A typical
use of the event listener mechanism would be to create a servlet context lifecycle
event listener to manage the database connection. This listener might function as
follows:

1. The listener is notified of application startup.

2. The application logs in to the database and stores the connection object in the
servlet context.

3. Servlets use the database connection to perform SQL operations.

4. The listener is notified of imminent application shutdown (shutdown of the
Web server or removal of the application from the Web server).

5. Prior to application shutdown, the listener closes the database connection.

Table 3–1 Event Listener Categories and Interfaces

Event Category Event Descriptions Interface

Servlet context
lifecycle changes

Servlet context creation, at which
point the first request can be serviced

Imminent shutdown of the servlet
context

javax.servlet.
ServletContextListener

Servlet context
attribute changes

Addition of servlet context attributes

Removal of servlet context attributes

Replacement of servlet context
attributes

javax.servlet.
ServletContextAttributeListener

Session lifecycle
changes

Session creation

Session invalidation

Session timeout

javax.servlet.http.
HttpSessionListener

Session attribute
changes

Addition of session attributes

Removal of session attributes

Replacement of session attributes

javax.servlet.http.
HttpSessionAttributeListener

Event Listeners

3-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Event Listener Declaration and Invocation
Event listeners are declared in the application web.xml deployment descriptor
through <listener> elements under the top-level <web-app> element. Each
listener has its own <listener> element, with a <listener-class> subelement
specifying the class name. Within each event category, event listeners should be
specified in the order in which you would like them to be invoked when the
application runs.

After the application starts up and before it services the first request, the servlet
container creates and registers an instance of each listener class that you have
declared. For each event category, listeners are registered in the order in which they
are declared. Then, as the application runs, event listeners for each category are
invoked in the order of their registration. All listeners will remain active until after
the last request is serviced for the application.

Upon application shutdown, session event listeners are notified first, in reverse
order of their declarations, then application event listeners are notified in reverse
order of their declarations.

Here is an example of event listener declarations, from the Sun Microsystems Java
Servlet Specification, Version 2.3:

<web-app>
 <display-name>MyListeningApplication</display-name>
 <listener>
 <listener-class>com.acme.MyConnectionManager</listenerclass>
 </listener>
 <listener>
 <listener-class>com.acme.MyLoggingModule</listener-class>
 </listener>
 <servlet>
 <display-name>RegistrationServlet</display-name>
 ...
 </servlet>
</web-app>

Assume that MyConnectionManager and MyLoggingModule both implement
the ServletContextListener interface, and that MyLoggingModule also
implements the HttpSessionListener interface.

When the application runs, both listeners will be notified of servlet context lifecycle
events, and the MyLoggingModule listener will also be notified of session lifecycle
events. For servlet context lifecycle events, the MyConnectionManager listener
will be notified first, because of the declaration order.

Event Listeners

Servlet Filters and Event Listeners 3-21

Event Listener Coding and Deployment Guidelines
Be aware of the following rules and guidelines for event listener classes:

� In a multithreaded application, attribute changes might occur simultaneously.
There is no requirement for the servlet container to synchronize the resulting
notifications; the listener classes themselves are responsible for maintaining
data integrity in such a situation.

� Each listener class must have a public zero-argument constructor.

� Each listener class file must be packaged in the application WAR file, either
under /WEB-INF/classes or in a JAR file in /WEB-INF/lib.

Event Listener Methods and Related Classes
This section lists event listener methods that are called by the servlet container
when a servlet context event or session event occurs. These methods take different
types of event objects as input, so these event classes and their methods are also
discussed.

ServletContextListener Methods, ServletContextEvent Class
The ServletContextListener interface specifies the following methods:

� void contextInitialized(ServletContextEvent sce)

The servlet container calls this method to notify the listener that the servlet
context has been created and the application is ready to process requests.

� void contextDestroyed(ServletContextEvent sce)

The servlet container calls this method to notify the listener that the application
is about to be shut down.

The servlet container creates a javax.servlet.ServletContextEvent object
that is input for calls to ServletContextListener methods. The

Note: In a distributed environment, the scope of event listeners is
one for each deployment descriptor declaration for each JVM.
There is no requirement for distributed Web containers to
propagate servlet context events or session events to additional
JVMs. This is discussed in the Sun Microsystems Java Servlet
Specification.

Event Listeners

3-22 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

ServletContextEvent class includes the following method, which your listener
can call:

� ServletContext getServletContext()

Use this to retrieve the servlet context object that was created or is about to be
destroyed, from which you can obtain information as desired. See "Introduction
to Servlet Contexts" on page 1-9 for information about the
javax.servlet.ServletContext interface.

ServletContextAttributeListener Methods, ServletContextAttributeEvent Class
The ServletContextAttributeListener interface specifies the following
methods:

� void attributeAdded(ServletContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute
was added to the servlet context.

� void attributeRemoved(ServletContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute
was removed from the servlet context.

� void attributeReplaced(ServletContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute
was replaced in the servlet context.

The container creates a javax.servlet.ServletContextAttributeEvent
object that is input for calls to ServletContextAttributeListener methods.
The ServletContextAttributeEvent class includes the following methods,
which your listener can call:

� String getName()

Use this to get the name of the attribute that was added, removed, or replaced.

� Object getValue()

Use this to get the value of the attribute that was added, removed, or replaced.
In the case of an attribute that was replaced, this method returns the old value,
not the new value.

Event Listeners

Servlet Filters and Event Listeners 3-23

HttpSessionListener Methods, HttpSessionEvent Class
The HttpSessionListener interface specifies the following methods:

� void sessionCreated(HttpSessionEvent hse)

The servlet container calls this method to notify the listener that a session was
created.

� void sessionDestroyed(HttpSessionEvent hse)

The servlet container calls this method to notify the listener that a session was
destroyed.

The container creates a javax.servlet.http.HttpSessionEvent object that is
input for calls to HttpSessionListener methods. The HttpSessionEvent
class includes the following method, which your listener can call:

� HttpSession getSession()

Use this to retrieve the session object that was created or destroyed, from which
you can obtain information as desired. See "Introduction to Servlet Sessions" on
page 1-8 for information about the javax.servlet.http.HttpSession
interface.

HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class
The HttpSessionAttributeListener interface specifies the following
methods:

� void attributeAdded(HttpSessionBindingEvent hsbe)

The servlet container calls this method to notify the listener that an attribute
was added to the session.

� void attributeRemoved(HttpSessionBindingEvent hsbe)

The servlet container calls this method to notify the listener that an attribute
was removed from the session.

� void attributeReplaced(HttpSessionBindingEvent hsbe)

The servlet container calls this method to notify the listener that an attribute
was replaced in the session.

The container creates a javax.servlet.http.HttpSessionBindingEvent
object that is input for calls to HttpSessionAttributeListener methods. The
HttpSessionBindingEvent class includes the methods that follow, which your
listener can call.

Event Listeners

3-24 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� String getName()

Use this to get the name of the attribute that was added, removed, or replaced.

� Object getValue()

Use this to get the value of the attribute that was added, removed, or replaced.
In the case of an attribute that was replaced, this method returns the old value,
not the new value.

� HttpSession getSession()

Use this to retrieve the session object that had the attribute change.

Event Listener Sample
This section provides code for a sample that uses a servlet context lifecycle and
session lifecycle event listener. This includes the following components:

� SessionLifeCycleEventExample: This is the event listener class,
implementing the ServletContextListener and HttpSessionListener
interfaces.

� SessionCreateServlet: This servlet creates an HTTP session.

� SessionDestroyServlet: This servlet destroys an HTTP session.

� index.jsp: This is the application welcome page (the user interface), from
which you can invoke SessionCreateServlet or
SessionDestroyServlet.

� web.xml: This is the deployment descriptor, where the servlets and listener
class are declared.

To download and run this application, go to the following link:

http://otn.oracle.com/tech/java/oc4j/htdocs/oc4j-how-to.html

If you do not already have an Oracle Technology Network membership, select the
membership link at the following address:

http://otn.oracle.com/

Memberships are free of charge.

Event Listeners

Servlet Filters and Event Listeners 3-25

Welcome Page: index.jsp
Here is the welcome page, the user interface that enables you to invoke the
session-creation servlet by clicking the Create New Session link, or to invoke the
session-destruction servlet by clicking the Destroy Current Session link.

<%@page session="false" %>
<H2>OC4J - HttpSession Event Listeners </H2>
<P>
This example demonstrates the use of the HttpSession Event and Listener that is
new with the Java Servlet 2.3 API.
</P>
<P>
[Create New Session]
[Destroy Current Session]
</P>
<P>
Click the Create link above to start a new HttpSession. An HttpSession
listener has been configured for this application. The servler container
will send an event to this listener when a new session is created or
destroyed. The output from the event listener will be visible in the
console window from where OC4J was started.
</P>

Deployment Descriptor: web.xml
The servlets and the event listener are declared in the web.xml file. This results in
SessionLifeCycleEventExample being instantiated and registered upon
application startup. Because of this, its methods are automatically called by the
servlet container, as appropriate, upon the occurrence of servlet context or session
lifecycle events. Here are the web.xml entries:

<web-app>
 <listener>
 <listener-class>SessionLifeCycleEventExample</listener-class>
 </listener>

Note: No new session object is created if you click the Create New
Session link again after having already created a session from the
same client, unless the session had reached a timeout limit or you
had explicitly destroyed it in the meantime.

Event Listeners

3-26 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 <servlet>
 <servlet-name>sessioncreate</servlet-name>
 <servlet-class>SessionCreateServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>sessiondestroy</servlet-name>
 <servlet-class>SessionDestroyServlet</servlet-class>
 </servlet>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Listener Class: SessionLifeCycleEventExample
This section shows the listener class. Its sessionCreated() method is called by
the servlet container when an HTTP session is created, which occurs when you click
the Create New Session link in index.jsp. When sessionCreated() is called,
it calls the log() method to print a "CREATE" message indicating the ID of the
new session.

The sessionDestroyed() method is called when the HTTP session is destroyed,
which occurs when you click the Destroy Current Session link. When
sessionDestroyed() is called, it calls the log() method to print a "DESTROY"
message indicating the ID and duration of the terminated session.

import javax.servlet.http.*;
import javax.servlet.*;

public class SessionLifeCycleEventExample
 implements ServletContextListener, HttpSessionListener
{
 /* A listener class must have a zero-argument constructor: */
 public SessionLifeCycleEventExample()
 {
 }

 ServletContext servletContext;

 /* Methods from the ServletContextListener */
 public void contextInitialized(ServletContextEvent sce)
 {
 servletContext = sce.getServletContext();
 }

Event Listeners

Servlet Filters and Event Listeners 3-27

 public void contextDestroyed(ServletContextEvent sce)
 {
 }

 /* Methods for the HttpSessionListener */
 public void sessionCreated(HttpSessionEvent hse)
 {
 log("CREATE",hse);
 }
 public void sessionDestroyed(HttpSessionEvent hse)
 {

 HttpSession _session = hse.getSession();
 long _start = _session.getCreationTime();
 long _end = _session.getLastAccessedTime();
 String _counter = (String)_session.getAttribute("counter");
 log("DESTROY, Session Duration:"
 + (_end - _start) + "(ms) Counter:" + _counter, hse);
 }

 protected void log(String msg, HttpSessionEvent hse)
 {
 String _ID = hse.getSession().getId();
 log("SessionID:" + _ID + " " + msg);
 }

 protected void log(String msg)
 {
 System.out.println("[" + getClass().getName() + "] " + msg);
 }
}

Session Creation Servlet: SessionCreateServlet.java
This servlet is invoked when you click the Create New Session link in index.jsp.
Its invocation results in a request object and associated session object being created
by the servlet container. Creation of the session object results in the servlet container
calling the sessionCreated() method of the event listener class.

import java.io.*;
import java.util.Enumeration;
import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;

Event Listeners

3-28 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

public class SessionCreateServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 //Get the session object
 HttpSession session = req.getSession(true);

 // set content type and other response header fields first
 res.setContentType("text/html");

 // then write the data of the response
 PrintWriter out = res.getWriter();

 String _sval = (String)session.getAttribute("counter");
 int _counter=1;

 if(_sval!=null)
 {
 _counter=Integer.parseInt(_sval);
 _counter++;
 }

 session.setAttribute("counter",String.valueOf(_counter));

 out.println("<HEAD><TITLE> " + "Session Created Successfully ..
 Look at OC4J Console to see whether the HttpSessionEvent invoked "
 + "</TITLE></HEAD><BODY>");
 out.println("<P>[Reload] ");
 out.println("[Destroy Session]");
 out.println("<h2>Session created Successfully</h2>");
 out.println("Look at the OC4J Console to see whether the HttpSessionEvent
 was invoked");
 out.println("<h3>Session Data:</h3>");
 out.println("New Session: " + session.isNew());
 out.println("
Session ID: " + session.getId());
 out.println("
Creation Time: " + new Date(session.getCreationTime()));
 out.println("
Last Accessed Time: " +
 new Date(session.getLastAccessedTime()));
 out.println("
Number of Accesses: " + session.getAttribute("counter"));

 }
}

Event Listeners

Servlet Filters and Event Listeners 3-29

Session Destruction Servlet: SessionDestroyServlet.java
This servlet is invoked when you click the Destroy Current Session link in
index.jsp. Its invocation results in a call to the invalidate() method of the
session object. This in turn results in the servlet container calling the
sessionDestroyed() method of the event listener class.

import java.io.*;
import java.util.Enumeration;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionDestroyServlet extends HttpServlet {

 public void doGet (HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 //Get the session object
 HttpSession session = req.getSession(true);
 // Invalidate Session
 session.invalidate();

 // set content type and other response header fields first
 res.setContentType("text/html");

 // then write the data of the response
 PrintWriter out = res.getWriter();

 out.println("<HEAD><TITLE> " + "Session Destroyed Successfully ..
 Look at OC4J Console to see whether the HttpSessionEvent invoked "
 + "</TITLE></HEAD><BODY>");
 out.println("<P>[Restart]");
 out.println("<h2> Session Destroyed Successfully</h2>");
 out.println("Look at the OC4J Console to see whether the
 HttpSessionEvent was invoked");
 out.close();
 }
}

Event Listeners

3-30 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

JDBC and EJB Calls from Servlets 4-1

4
JDBC and EJB Calls from Servlets

Dynamic Web applications typically access a database to provide content. This
chapter, consisting of the following sections, shows how servlets can use JDBC, the
Java standard for database connectivity, and Enterprise JavaBeans, used for secure,
transactional server-side processing:

� Use of JDBC in Servlets

� EJB Calls from Servlets

Use of JDBC in Servlets

4-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets
A servlet can access a database using a JDBC driver. The recommended way to use
JDBC is by using an OC4J data source to get the database connection. See Oracle
Application Server Containers for J2EE Services Guide for information about OC4J data
sources. For more information about JDBC, see the Oracle9i JDBC Developer’s Guide
and Reference.

Database Query Servlet
Part of the power of servlets comes from their ability to retrieve data from a
database. A servlet can generate dynamic HTML by getting information from a
database and sending it back to the client. A servlet can also update a database,
based on information passed to it in the HTTP request.

The example in this section shows a servlet that gets some information from the
user through an HTML form and passes the information to a servlet. The servlet
completes and executes a SQL statement, querying the sample Human Resources
(HR) schema to get information based on the request data.

A servlet can get information from the client in many ways. This example reads a
query string from the HTTP request.

HTML Form
The Web browser accesses a form in a page that is served through the Web listener.
Copy the following HTML into a file, EmpInfo.html:

<html>

<head>
<title>Query the Employees Table</title>
</head>

Note: For simplicity, this example makes the following
assumptions:

� A database is installed and accessible through localhost at
port 1521.

� You are using OC4J standalone and the OC4J default Web
application, with the default context root of "/".

Use of JDBC in Servlets

JDBC and EJB Calls from Servlets 4-3

<body>
<form method=GET ACTION="/servlet/GetEmpInfo">
The query is

SELECT LAST_NAME, EMPLOYEE_ID FROM EMPLOYEES WHERE LAST NAME LIKE ?.<p>

Enter the WHERE clause ? parameter (use % for wildcards).

Example: 'S%':

<input type=text name="queryVal">
<p>
<input type=submit>
</form>

</body>
</html>

Then save this file in the root directory of the OC4J default Web application
(j2ee/home/default-web-app by default).

Servlet Code: GetEmpInfo
The servlet that the preceding HTML page calls takes the input from a query string.
The input is the completion of the WHERE clause in the SELECT statement. The
servlet then appends this input to construct the database query. Much of the code in
this servlet consists of the JDBC statements required to connect to the database
server and retrieve and process the query rows.

This servlet makes use of the init() method to do a one-time lookup of a data
source, using JNDI. The data source lookup assumes a data source such as the
following has been defined in the data-sources.xml file in the OC4J
configuration files directory, as is the case by default:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@localhost:1521:orcl"
 inactivity-timeout="30"
/>

Use of JDBC in Servlets

4-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

It is advisable to use only the ejb-location JNDI name in the JNDI lookup for an
emulated data source. See the Oracle Application Server Containers for J2EE Services
Guide for more information about data sources.

This example also assumes the following data source definition in the web.xml file:

 <resource-ref>
 <res-auth>Container</res-auth>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 </resource-ref>

Here is the servlet code:

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // for JNDI
import javax.sql.*; // extended JDBC interfaces (such as data sources)
import java.sql.*; // standard JDBC interfaces
import java.io.*;

public class GetEmpInfo extends HttpServlet {

 DataSource ds = null;
 Connection conn = null;

 public void init() throws ServletException {
 try {
 InitialContext ic = new InitialContext(); // JNDI initial context
 ds = (DataSource) ic.lookup("jdbc/OracleDS"); // JNDI lookup
 conn = ds.getConnection(); // database connection through data source
 }
 catch (SQLException se) {
 throw new ServletException(se);
 }
 catch (NamingException ne) {
 throw new ServletException(ne);
 }
 }

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

/* Get the user-specified WHERE clause from the HTTP request, then */
/* construct the SQL query. */
 String queryVal = req.getParameter("queryVal");

Use of JDBC in Servlets

JDBC and EJB Calls from Servlets 4-5

 String query =
 "select last_name, employee_id from employees " +
 "where last_name like " + queryVal;

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
 out.println("<html>");
 out.println("<head><title>GetEmpInfo</title></head>");
 out.println("<body>");

/* Create a JDBC statement object, execute the query, and set up */
/* HTML table formatting for the output. */
 try {
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);

 out.println("<table border=1 width=50%>");
 out.println("<tr><th width=75%>Last Name</th><th width=25%>Employee " +
 "ID</th></tr>");

/* Loop through the results. Use the ResultSet getString() and */
/* getInt() methods to retrieve the individual data items. */
 int count=0;
 while (rs.next()) {
 count++;
 out.println("<tr><td>" + rs.getString(1) + "</td><td>" +rs.getInt(2) +
 "</td></tr>");

 }
 out.println("</table>");
 out.println("<h3>" + count + " rows retrieved</h3>");

 rs.close();
 stmt.close();
 }
 catch (SQLException se) {
 se.printStackTrace(out);
 }

 out.println("</body></html>");
 }

Use of JDBC in Servlets

4-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 public void destroy() {
 try {
 conn.close();
 }
 catch (SQLException se) {
 se.printStackTrace();
 }
 }
}

Deployment and Testing of the Database Query Servlet
To deploy this example, save the HTML file in the root directory of the OC4J default
Web application (j2ee/home/default-web-app by default) and save the Java
servlet in the /WEB-INF/classes directory of the default Web application. The
GetEmpInfo.java file is automatically compiled when the servlet is invoked by
the form.

To test the example directly through the OC4J listener, such as in OC4J standalone,
invoke the EmpInfo.html page from a Web browser as follows:

http://host:8888/EmpInfo.html

This assumes "/" is the context path of the OC4J standalone default Web
application.

Complete the form and click Submit Query.

Note: For general information about invoking servlets in OC4J,
see "Servlet Invocation" on page 2-28.

Use of JDBC in Servlets

JDBC and EJB Calls from Servlets 4-7

When you invoke EmpInfo.html, you will see a browser window that looks
something like Figure 4–1.

Figure 4–1 Employee Information Query

Use of JDBC in Servlets

4-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Entering "S%" in the form and clicking Submit Query calls the GetEmpInfo
servlet. The results look something like Figure 4–2.

Figure 4–2 Employee Information Results

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-9

EJB Calls from Servlets
A servlet can call Enterprise JavaBeans to perform additional processing. A typical
application design often uses servlets as a front-end to do the initial processing of
client requests, with EJBs being called to perform the business logic that accesses or
updates a database. Container-managed-persistence (CMP) entity beans, in
particular, are well-suited for such tasks.

The following sections discuss and provide examples for typical scenarios for the
use of EJBs from servlets:

� Servlet-EJB Overview

� EJB Local Lookup

� EJB Remote Lookup within the Same Application

� EJB Remote Lookup Outside the Application

Important: Examples in this section assume you are using OC4J in
standalone mode during development. This might affect the URL
for a JNDI lookup, as compared to the URL in an Oracle
Application Server environment, but otherwise has no effect on the
servlet code.

Notes:

� For detailed information about EJB features and for servlet-EJB
examples in an Oracle Application Server environment, refer to
the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

� OC4J provides an EJB tag library to make accessing EJBs from
JSP pages more convenient. See the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference for
information.

EJB Calls from Servlets

4-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet-EJB Overview
The following sections provide an overview of considerations for the use of EJBs
from servlets:

� Servlet-EJB Scenarios

� EJB Local Interfaces Versus Remote Interfaces

Servlet-EJB Scenarios
The servlet-EJB examples in this chapter cover three scenarios:

� Local lookup: The servlet calls an EJB that is co-located, meaning it is in the same
application and on the same host, running in the same JVM. The servlet and EJB
would have been deployed in the same EAR file, or in EAR files with a
parent/child relationship. The example uses EJB local interfaces, which were
introduced in the EJB 2.0 specification. See "EJB Local Lookup" on page 4-12.

� Remote lookup within the same application: The servlet calls an EJB that is in
the same application but on a different host. (The same application is deployed
to both hosts.) This requires EJB remote interfaces. This would be the case for a
multitier application where the servlet and EJB are in the same application but
on different tiers. See "EJB Remote Lookup within the Same Application" on
page 4-20.

� Remote lookup outside the application: The servlet calls an EJB that is not in the
same application. This is a remote lookup and requires EJB remote interfaces.
The EJB might be on the same host or on a different host, but is not running in
the same JVM. See "EJB Remote Lookup Outside the Application" on page 4-27.

Servlet-EJB communications use JNDI for lookup and RMI for the EJB calls, over
either ORMI (the Oracle implementation of RMI) or IIOP (the standard and
interoperable Internet Inter-Orb Protocol). For the JNDI initial context factory, the
examples below use the ApplicationInitialContextFactory class, which
supports EJB references in web.xml, and the RMIInitialContextFactory class,
which does not. Depending on the situation, another possibility is
ApplicationClientInitialContextFactory, which supports EJB references
in the application-client.xml file. For more information about the use of
JNDI and RMI with EJBs, refer to the Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

A remote lookup requires a JNDI environment to be set up, including the URL and
a user name and password. This setup is typically in the servlet code, as shown in
the "EJB Remote Lookup Outside the Application" on page 4-27, but for a lookup in
the same application it can be in the rmi.xml file instead.

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-11

Remote lookup within the same application on different hosts also requires proper
setting of the remote flag in the orion-application.xml file for your
application on each host, as shown in "Use of the Remote Flag" on page 4-21.

As in any application where EJBs are used, there must be an entry for each EJB in
the ejb-jar.xml file.

EJB Local Interfaces Versus Remote Interfaces
In the EJB 1.1 specification, an EJB always had a remote interface extending the
javax.ejb.EJBObject interface and a home interface extending the
javax.ejb.EJBHome interface. In this model, all EJBs are defined as remote
objects, adding unnecessary overhead to EJB calls in situations where the servlet or
other calling module is co-located with the EJB.

The EJB 2.0 specification adds support for local interfaces for co-located lookups. In
this case, the EJB has a local interface that extends the
javax.ejb.EJBLocalObject interface, in contrast to having a remote interface.
And it has a local home interface that extends the javax.ejb.EJBLocalHome
interface, in contrast to having a home interface.

Any lookup involving EJB remote interfaces uses RMI and has additional overhead
such as for security. RMI and other overhead are eliminated when you use local
interfaces.

Note: The examples here consider only an ORMI scenario. For
information about using IIOP, see the Oracle Application Server
Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Note: The OC4J copy-by-value attribute (of the
<session-deployment> element of the orion-ejb-jar.xml
file) is also related to avoiding unnecessary overhead, specifying
whether to copy all incoming and outgoing parameters in EJB calls.
See the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for information.

EJB Calls from Servlets

4-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

EJB Local Lookup
This section presents an example of a single servlet, HelloServlet, that calls a
single co-located EJB, HelloBean, using local interfaces. This is the simplest
servlet-EJB scenario.

Here are the key steps of the servlet code:

1. Import the EJB package for access to the bean home and remote interfaces. Also
note the imports of javax.naming for JNDI and javax.rmi for RMI.

2. Print the message from the servlet.

3. Create an output string, with an error default.

4. Use JNDI to look up the EJB local home interface.

5. Create the EJB local object from the local home.

6. Invoke the helloWorld() method on the local object, which puts the EJB
output message in a Java string.

7. Print the message from the EJB.

The following sections cover all aspects of the sample:

� Servlet-EJB Application Code for Local Lookup

� Configuration and Deployment for Local Lookup

� Invocation of the Servlet-EJB Application

Notes:

� An EJB can have both local and remote interfaces. The
examples in this section use either local interfaces or remote
interfaces, but not both.

� The term local lookup in this document refers to a co-located
lookup, in the same JVM. Do not confuse "local lookup" with
"local interfaces". While it is true that local interfaces are
typically used in any local lookup, there might be situations
where remote interfaces are used instead. (This is how local
lookups had to be performed prior to the EJB 2.0 specification.)

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-13

For further discussion and another complete example of using local interfaces, see
the OC4J How-To document at the following location:

http://otn.oracle.com/tech/java/oc4j/htdocs/how-to-ejb-local-interfaces.html

Servlet-EJB Application Code for Local Lookup
This section has code for a servlet that calls a co-located EJB, using local interfaces.
This includes servlet code, EJB code, and EJB interface code. Note the bold passages
in particular.

Servlet Code: HelloServlet This section has the servlet code. For a local lookup, the
default JNDI context is used.

By default, this servlet uses ApplicationInitialContextFactory for the JNDI
initial context factory, and therefore the web.xml file is searched for EJB references.
The java:comp syntax for the JNDI lookup indicates there is a reference defined
within the application for the EJB, in this case in the web.xml file.

See Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide
for information about JNDI initial context factory classes.

package myServlet;

// Step 1: Import the EJB package.
import myEjb.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // for JNDI
import javax.rmi.*; // for RMI, including PortableRemoteObject
import javax.ejb.CreateException;

public class HelloServlet extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Hello from Servlet</title></head>");
 // Step 2: Print a message from the servlet.
 out.println("<body><h1>Hello from hello servlet!</h1></body>");

EJB Calls from Servlets

4-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 // Step 3: Create an output string, with an error default.
 String s = "If you see this message, the ejb was not invoked properly!!";
 // Step 4: Use JNDI to look up the EJB local home interface.
 try {
 InitialContext ic = new InitialContext();
 HelloLocalHome hlh = (HelloLocalHome)ic.lookup
 ("java:comp/env/ejb/HelloBean");

 // Step 5: Create the EJB local interface object.
 HelloLocal hl = (HelloLocal)hlh.create();
 // Step 6: Invoke the helloWorld() method on the local object.
 s = hl.helloWorld();
 } catch (NamingException ne) {
 System.out.println("Could not locate the bean.");
 } catch (CreateException ce) {
 System.out.println("Could not create the bean.");
 } catch (Exception e) {
 // Unexpected exception; send back to client for now.
 throw new ServletException(e);
 }
 // Step 7: Print the message from the EJB.
 out.println("
" + s);
 out.println("</html>");
 }
}

EJB Code: HelloBean Stateful Session Bean The EJB, as shown here, implements a
single method, helloWorld(), that returns a greeting to the caller. The local home
and local EJB interface code is also shown below.

package myEjb;
import javax.ejb.*;

public class HelloBean implements SessionBean
{
 public String helloWorld () {
 return "Hello from myEjb.HelloBean";
 }

 public void ejbCreate () throws CreateException {}
 public void ejbRemove () {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-15

EJB Interface Code: Local Home and Local Interfaces Here is the code for the local home
interface:

package myEjb;

import javax.ejb.EJBLocalHome;
import javax.ejb.CreateException;

public interface HelloLocalHome extends EJBLocalHome
{
 public HelloLocal create () throws CreateException;
}

Here is the code for the local interface:

package myEjb;

import javax.ejb.EJBLocalObject;

public interface HelloLocal extends EJBLocalObject
{
 public String helloWorld ();
}

Configuration and Deployment for Local Lookup
This section discusses the deployment steps and configuration for the Servlet-EJB
local lookup sample application. In the descriptor files, note the bold passages in
particular. To deploy this application, you will need an EAR file that contains the
following:

� A WAR (Web archive) file that includes the servlet code and web.xml Web
descriptor

� An EJB JAR archive file that includes the EJB code and ejb-jar.xml EJB
descriptor

� The application.xml application-level descriptor

See Chapter 5, "Deployment and Configuration Overview", for an overview of
deployment to OC4J. See the Oracle Application Server Containers for J2EE User’s
Guide for detailed information.

EJB Calls from Servlets

4-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Web Descriptor and Archive Create a standard web.xml Web descriptor as follows.
Note the <ejb-local-ref> element and its <local-home> and <local>
subelements for the use of local interfaces.

<?xml version="1.0"?>
<!DOCTYPE WEB-APP PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>HelloServlet</display-name>
 <description> HelloServlet </description>
 <servlet>
 <servlet-name>ServletCallingEjb</servlet-name>
 <servlet-class>myServlet.HelloServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>ServletCallingEjb</servlet-name>
 <url-pattern>/DoubleHello</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file> index.html </welcome-file>
 </welcome-file-list>
 <ejb-local-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myEjb.HelloLocalHome</local-home>
 <local>myEjb.HelloLocal</local>
 </ejb-local-ref>
</web-app>

Next, create the standard J2EE directory structure for Web application deployment,
then move the web.xml Web deployment descriptor and the compiled servlet class
file into the structure. Once you create and populate the directory structure, create a
WAR file named myapp-web.war (for example) to contain the files. Here are the
WAR file contents:

META-INF/
META-INF/MANIFEST.MF
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/myServlet/
WEB-INF/classes/myServlet/HelloServlet.class
WEB-INF/web.xml

 (The MANIFEST.MF file is created automatically by the JAR utility.)

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-17

EJB Descriptor and Archive Create a standard ejb-jar.xml EJB descriptor as
follows. Note that the <ejb-ref-name> value in the web.xml file above
corresponds to the <ejb-name> value here. In this example, they use the same
name, which is a good practice but is not required. The Web tier can specify any
reference name, which is independent of the JNDI name.

Also note the <local-home> and <local> elements, for the use of local
interfaces. These must be the same entries as in the web.xml file.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <description>Hello Bean</description>
 <ejb-name>ejb/HelloBean</ejb-name>
 <local-home>myEjb.HelloLocalHome</local-home>
 <local>myEjb.HelloLocal</local>
 <ejb-class>myEjb.HelloBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 </assembly-descriptor>
</ejb-jar>

Create a JAR file named myapp-ejb.jar (for example) with the standard J2EE
structure to hold the EJB components. Here are the JAR file contents:

META-INF/
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
myEjb/
myEjb/HelloBean.class
myEjb/HelloLocalHome.class
myEjb/HelloLocal.class

(The MANIFEST.MF file is created automatically by the JAR utility.)

EJB Calls from Servlets

4-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application-Level Descriptor To deploy the application, create a standard application
deployment descriptor, application.xml. This file describes the modules in the
application.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
<application>
 <display-name>Servlet_calling_ejb_example</display-name>
 <module>
 <web>
 <web-uri>myapp-web.war</web-uri>
 <context-root>/myapp</context-root>
 </web>
 </module>
 <module>
 <ejb>myapp-ejb.jar</ejb>
 </module>
</application>

The <context-root> element is required, but in an OC4J standalone environment
it is ignored. The context path is actually specified through the root attribute of the
appropriate <web-app> element in http-web-site.xml, as shown in
"Deployment Configuration" below. For consistency, and to avoid confusion, use the
same setting for <context-root> as for the <web-app> root attribute.

Finally, create an EAR file named myapp.ear (for example) with the standard J2EE
structure to hold the application components. Here are the EAR file contents:

META-INF/
META-INF/MANIFEST.MF
META-INF/application.xml
myapp-ejb.jar
myapp-web.war

(The MANIFEST.MF file is created automatically by the JAR utility.)

Deployment Configuration To deploy the application, the following entry is added to
the server.xml file in the OC4J configuration files directory, specifying the
appropriate path information:

 <application
 name="myapp"
 path="your_path/lib/myapp.ear"
 />

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-19

If you use the admin.jar -deploy option to deploy the application, this entry is
made automatically. (See "Using admin.jar to Deploy the EAR File" on page 5-39.)

The next step is to bind the Web module to a Web site. You will need the following
entry in the Web site XML file (typically http-web-site.xml in OC4J standalone)
in the OC4J configuration files directory:

 <web-app
 application="myapp"
 name="myapp-web"
 root="/myapp"
 />

If you use the admin.jar -bindWebApp option after deploying the application,
this entry is made automatically. (See "Using admin.jar to Bind the Web
Application" on page 5-41.)

Invocation of the Servlet-EJB Application
According to the configuration of this example, you can invoke the servlet as
follows, assuming a host myhost. By default, OC4J standalone uses port 8888.

http://myhost:8888/myapp/DoubleHello

The context path, myapp, is according to the relevant <web-app> element root
setting in the Web site XML file. The servlet path, DoubleHello, is according to the
relevant <url-pattern> element in the web.xml file.

Figure 4–3, which follows, shows the application output to a Web browser. The
output from the servlet is printed in H1 format at the top, then the output from the
EJB is printed in text format below that.

EJB Calls from Servlets

4-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Figure 4–3 Output from HelloServlet

EJB Remote Lookup within the Same Application
This section adapts the preceding HelloServlet/HelloBean example for remote
lookup within the same application, where the servlet and EJB are in the same
application but on different tiers. The discussion highlights use of the
orion-application.xml file remote flag, which determines where EJBs are
deployed and searched for, and necessary changes to the code and descriptor files.

In this example, the default ApplicationInitialContextFactory is used for
the JNDI context, as in the preceding local lookup example. An alternative would be
to use RMIInitialContextFactory, as discussed in the next example, "EJB
Remote Lookup Outside the Application" on page 4-27.

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-21

Use of the Remote Flag
In OC4J, to perform a remote EJB lookup within the same application but on
different tiers (where the same application has been deployed to both tiers), you
must set the EJB remote flag appropriately on each tier. When this flag is set to
"true", beans will be looked up on a remote server instead of the EJB service being
used on the local server.

The remote flag is an attribute in the <ejb-module> subelement of an
<orion-application> element in the orion-application.xml file. The
default setting is remote="false". Here is an example of setting it to "true":

<orion-application ... >
 ...
 <ejb-module remote="true" ... />
 ...
</orion-application>

The suggested steps are illustrated in Figure 4–4 and described below.

Figure 4–4 Setup for Remote Lookup within Application

1. Deploy the application EAR file to both servers, with a remote flag value of
"false". If you provide an orion-application.xml file, it is suggested that
it either have the remote flag explicitly set to "false", or no remote flag
setting at all, in which case its value is "false" by default. If you do not
provide orion-application.xml, OC4J generates the file automatically
with the remote flag disabled.

EJB Calls from Servlets

4-22 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

2. Set remote="true" in the orion-application.xml file for your
application on server 1, the servlet tier. Given this setting, the servlet will not
look for EJBs on server 1.

3. Ensure that remote="false" in the orion-application.xml file for your
application on server 2, the EJB tier. Given this setting, the servlet will look for
EJBs on server 2.

4. Use a <server> element in the rmi.xml file on server 1 to specify the remote
host, server 2, where the servlet will look for the EJB. This includes the host
name and port as well as a user name and password for authentication:

<rmi-server ... >
...
 <server host="remote_host" port="remote_port" username="user_name"
 password="password" />
...
</rmi-server>

If there are <server> elements for multiple remote servers, the OC4J container
will search all of them for the target EJB.

5. Ensure that your deployment and configuration file changes are picked up by
OC4J on each server. You can accomplish this (on each server) in any of the
following ways:

– If the check-for-updates flag is enabled

– By using the admin.jar -updateConfig option

– By restarting the server

See "Key OC4J Flags for Development" on page 2-4 for information about
check-for-updates and -updateConfig.

Note: In the rmi.xml configuration, use the default
administrative user name for the remote host, and the
administrative password set up on the remote host through the
OC4J -install option. This avoids possible JAZN configuration
issues. See "Setting Up an Administrative User and Password" on
page 5-35.

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-23

Servlet-EJB Application Code for Remote Lookup in the Same Application
This section has code for a servlet-EJB sample using remote lookup of an EJB
component within the same application. This includes servlet code, EJB code, and
EJB interface code. Note the bold passages in particular.

Servlet Code: HelloServlet This section contains the servlet code. In this example, the
code and configuration are fundamentally the same as in the local lookup example,
aside from two differences:

� This example uses remote interfaces instead of local interfaces.

� This example uses the javax.rmi.PortableRemoteObject.narrow()
static method to ensure that objects can be cast to the desired type. This was not
required in the local lookup example, but is mandatory for any remote lookup.

Again, the default ApplicationInitialContextFactory is used for the JNDI
initial context factory, the java:comp syntax is used for the lookup, and the
web.xml file is searched for EJB references.

This example assumes that the rmi.xml file on the servlet tier has been set up to
specify the host, port, user name, and password for the remote lookup, as shown in
the preceding section, "Use of the Remote Flag". With this assumption, there is no
need to set up a JNDI context (URL, user name, and password) in the servlet code.

package myServlet;
// Step 1: Import the EJB package.
import myEjb.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Note: Remember that this discussion assumes an OC4J standalone
environment during development. In an Oracle Application Server
environment, any configuration must be through Enterprise
Manager or the dcmctl command-line utility. If updating
orion-application.xml is not feasible after deployment, you
would have to create and deploy two separate EAR files, one with
an orion-application.xml file with remote="true" and one
with an orion-application.xml file with remote="false".

Servlet EJB calls in an Oracle Application Server environment are
discussed in the Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

EJB Calls from Servlets

4-24 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

import javax.naming.*; // for JNDI
import javax.rmi.*; // for RMI, including PortableRemoteObject
import javax.ejb.CreateException;
import java.rmi.RemoteException;

public class HelloServlet extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><head><title>Hello from Servlet</title></head>");

 // Step 2: Print a message from the servlet.
 out.println("<body><h1>Hello from hello servlet!</h1></body>");
 // Step 3: Create an output string, with an error default.
 String s = "If you see this message, the ejb was not invoked properly!!";
 // Step 4: Use JNDI to look up the EJB home interface.
 try {
 InitialContext ic = new InitialContext();
 Object homeObject = ic.lookup("java:comp/env/ejb/HelloBean");
 HelloHome hh = (HelloHome)
 PortableRemoteObject.narrow(homeObject,HelloHome.class);
 // Step 5: Create the EJB local interface object.
 HelloRemote hr = (HelloRemote)
 PortableRemoteObject.narrow(hh.create(),HelloRemote.class);
 // Step 6: Invoke the helloWorld() method on the local object.
 s = hr.helloWorld();
 } catch (NamingException ne) {
 System.out.println("Could not locate the bean.");
 } catch (CreateException ce) {
 System.out.println("Could not create the bean.");
 } catch (RemoteException ce) {
 System.out.println("Error during execution of remote call.");
 } catch (Exception e) {
 // Unexpected exception; send back to client for now.
 throw new ServletException(e);
 }
 // Step 7: Print the message from the EJB.
 out.println("
" + s);
 out.println("</html>");
 }
}

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-25

EJB Code: HelloBean Stateful Session Bean The EJB code for a remote lookup within
the same application is very similar to that for a local lookup, but adds a
RemoteException. The home and remote EJB interface code is also shown below.

package myEjb;

import javax.ejb.*;

public class HelloBean implements SessionBean
{
 public String helloWorld () {
 return "Hello from myEjb.HelloBean";
 }

 public void ejbCreate () throws CreateException {}
 public void ejbRemove () {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

EJB Interface Code: Home and Remote Interfaces Here is the code for the home interface.
Extend EJBHome (instead of EJBLocalHome as when local interfaces are used).
Also, a RemoteException is added.

package myEjb;

import java.rmi.RemoteException;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;

public interface HelloHome extends EJBHome
{
 public HelloRemote create () throws RemoteException, CreateException;
}

Here is the code for the remote interface. Extend EJBObject (instead of
EJBLocalObject as when local interfaces are used). As with the home interface
above, the use of RemoteException is added.

package myEjb;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

EJB Calls from Servlets

4-26 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

public interface HelloRemote extends EJBObject
{
 public String helloWorld () throws RemoteException;
}

Configuration for Remote Lookup in the Same Application
This section highlights web.xml and ejb-jar.xml entries to use with remote
interfaces. You can compare the highlighted passages to parallel passages in the
local interface example.

The remote flag must also be set appropriately in orion-application.xml on
each host, as discussed in "Use of the Remote Flag" on page 4-21.

Web Descriptor The contents of web.xml for this example are as follows. Note the
<ejb-ref> element and its <home> and <remote> subelements, for use of remote
interfaces.

<?xml version="1.0"?>
<!DOCTYPE WEB-APP PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>HelloServlet</display-name>
 <description> HelloServlet </description>
 <servlet>
 <servlet-name>ServletCallingEjb</servlet-name>
 <servlet-class>myServlet.HelloServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>ServletCallingEjb</servlet-name>
 <url-pattern>/DoubleHello</url-pattern>
 </servlet-mapping>

Note: The web.xml and ejb-jar.xml files would be the same
for deployment to each host.

The server.xml entry on each host is the same as for the local
lookup example, as shown in "Deployment Configuration" on
page 4-18. This is handled automatically if you use the admin.jar
-deploy option to deploy the application. The
http-web-site.xml entry on the servlet tier is the same as for
the local lookup example, but is not applicable on the EJB tier.

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-27

 <welcome-file-list>
 <welcome-file> index.html </welcome-file>
 </welcome-file-list>
 <ejb-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
 </ejb-ref>
</web-app>

EJB Descriptor For this example, the contents of ejb-jar.xml are as follows. Note
the <home> and <remote> elements, for the use of remote interfaces.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <description>Hello Bean</description>
 <ejb-name>ejb/HelloBean</ejb-name>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
 <ejb-class>myEjb.HelloBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 </assembly-descriptor>
</ejb-jar>

EJB Remote Lookup Outside the Application
This section adapts the preceding HelloServlet/HelloBean example for remote
lookup to a different application (deployed to a different OC4J instance),
highlighting necessary changes to the code and descriptor files.

Instead of using the default JNDI initial context factory,
ApplicationInitialContextFactory, this example uses
RMIInitialContextFactory.

The remote flag discussed in the preceding section, "EJB Remote Lookup within
the Same Application" on page 4-20, is not relevant.

EJB Calls from Servlets

4-28 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet-EJB Application Code for Remote Lookup Outside the Application
This section has code for a servlet-EJB sample using remote lookup outside the
application. This includes servlet code, EJB code, and EJB interface code. Note the
bold passages in particular.

Servlet Code: HelloServlet This section contains the servlet code. In this scenario, the
specification of URL, user, and password must be in the servlet code. (In the
example of a remote lookup within the same application, there is an assumption
that this information is specified in the rmi.xml file.) A step is added to the servlet
code here to set up the JNDI environment for the lookup. In this code, the following
are static fields of the javax.naming.Context interface, which is implemented
by the javax.naming.InitialContext class:

� The INITIAL_CONTEXT_FACTORY setting specifies the initial context factory to
use, RMIInitialContextFactory in this case.

� The SECURITY_PRINCIPAL setting specifies the identity of the principal (user
name) for authenticating the caller to the service.

� The SECURITY_CREDENTIALS setting specifies the password of the principal
for authenticating the caller to the service.

� The PROVIDER_URL setting specifies the URL, or a comma-delimited list of
URLs, for the lookup. The information after the port number corresponds to the
application name as defined in the server.xml file, "myapp" in this example.

When RMIInitialContextFactory is used, there is no java:comp syntax in
the JNDI lookup of the remote EJB component you wish to connect to, and the
lookup must use the EJB name as specified in the ejb-jar.xml file. The web.xml
file is not accessed, so any EJB references there will be ignored for the lookup.

package myServlet;

// Step 1: Import the EJB package.
import myEjb.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // for JNDI
import javax.rmi.*; // for RMI, including PortableRemoteObject
import javax.ejb.CreateException;
import java.rmi.RemoteException

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-29

public class HelloServlet extends HttpServlet {

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html><head><title>Hello from Servlet</title></head>");
 // Step 2: Print a message from the servlet.
 out.println("<body><h1>Hello from hello servlet!</h1></body>");

 //Step 2.5: Set up JNDI properties for remote call
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.evermind.server.rmi.RMIInitialContextFactory");
 env.put(Context.SECURITY_PRINCIPAL, "admin");
 env.put(Context.SECURITY_CREDENTIALS, "welcome");
 env.put(Context.PROVIDER_URL, "ormi://myhost:port/myapp");

 // Step 3: Create an output string, with an error default.
 String s = "If you see this message, the ejb was not invoked properly!!";
 // Step 4: Use JNDI to look up the EJB home interface.
 try {
 InitialContext ic = new InitialContext(env);
 Object homeObject = ic.lookup("ejb/HelloBean");
 HelloHome hh = (HelloHome)
 PortableRemoteObject.narrow(homeObject, HelloHome.class);

 // Step 5: Create the EJB remote interface.
 HelloRemote hr = (HelloRemote)
 PortableRemoteObject.narrow(hh.create(), HelloRemote.class);
 // Step 6: Invoke the helloWorld() method on the remote object.
 s = hr.helloWorld();
 } catch (NamingException ne) {
 System.out.println("Could not locate the bean.");
 } catch (CreateException ce) {
 System.out.println("Could not create the bean.");
 } catch (RemoteException ce) {
 System.out.println("Error during execution of remote call.");
 } catch (Exception e) {
 // Unexpected exception; send back to client for now.
 throw new ServletException(e);
 }

EJB Calls from Servlets

4-30 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 // Step 7: Print the message from the EJB.
 out.println("
" + s);
 out.println("</html>");
 }
}

EJB Code: HelloBean Stateful Session Bean The EJB code for a remote lookup outside
the application, including the bean code and the interface code, is the same as for a
remote lookup within the application, including the use of RemoteException.

package myEjb;

import javax.ejb.*;

public class HelloBean implements SessionBean
{
 public String helloWorld () {
 return "Hello from myEjb.HelloBean";
 }

 public void ejbCreate () throws CreateException {}
 public void ejbRemove () {}
 public void setSessionContext (SessionContext ctx) {}
 public void ejbActivate () {}
 public void ejbPassivate () {}
}

Notes:

� In the JNDI properties setup, use the default administrative
user name for the remote host, and the administrative
password set up on the remote host through the OC4J
-install option. This avoids possible JAZN configuration
issues. See "Setting Up an Administrative User and Password"
on page 5-35.

� For an Oracle Application Server environment, use
"opmn:ormi://..." syntax instead of "ormi://..." syntax
for the ORMI URL. This is due to OPMN dynamic port
assignments in Oracle Application Server.

� In OC4J standalone cluster mode, use "lookup:ormi://..."
syntax.

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-31

EJB Interface Code: Home and Remote Interfaces Here is the code for the home interface:

package myEjb;

import java.rmi.RemoteException;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;

public interface HelloHome extends EJBHome
{
 public HelloRemote create () throws RemoteException, CreateException;
}

Here is the code for the remote interface.

package myEjb;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

public interface HelloRemote extends EJBObject
{
 public String helloWorld () throws RemoteException;
}

Configuration and Deployment for Remote Lookup Outside the Application
This section highlights ejb-jar.xml entries that are specific to remote lookup.
These entries are the same as for remote lookup within the application. You can
compare the highlighted passages to parallel passages in the other examples.

Because RMIInitialContextFactory is used in the servlet for the JNDI initial
context factory, the web.xml file is not relevant.

EJB Calls from Servlets

4-32 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

EJB Descriptor and Archive The contents of ejb-jar.xml are as follows. Note the
<home> and <remote> elements, for use of remote interfaces.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.12//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <enterprise-beans>
 <session>
 <description>Hello Bean</description>
 <ejb-name>ejb/HelloBean</ejb-name>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
 <ejb-class>myEjb.HelloBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 </assembly-descriptor>
</ejb-jar>

Note: The ejb-jar.xml file would be the same for deployment
to each host.

The server.xml entry on the local host is the same as for the local
lookup example, as shown in "Deployment Configuration" on
page 4-18. This is handled automatically if you use the admin.jar
-deploy option to deploy the application. The server.xml file
on the remote host is configured as appropriate for the remote
application. The http-web-site.xml entry on the local host is
the same as for the local lookup example, but is not applicable on
the remote host.

EJB Calls from Servlets

JDBC and EJB Calls from Servlets 4-33

Deployment Notes for Remote Lookup Outside the Application Complete the following
steps:

1. To deploy the remote EJBs, place them in a separate EAR file and deploy them
to the appropriate OC4J server. The server you deploy to is reflected in the
PROVIDER_URL in the servlet code.

2. Ensure that the remote and home interfaces are available to the calling servlet.
For simplicity, you can make the whole EJB JAR file available in either of the
following ways:

� Place it in the /WEB-INF/lib directory of the WAR file.

� Place it anywhere, as desired, and point to it through a <library> element
in the orion-application.xml file of the application.

EJB Calls from Servlets

4-34 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Deployment and Configuration Overview 5-1

5
Deployment and Configuration Overview

This chapter provides an overview of OC4J configuration, packaging, and
deployment for servlet developers, primarily in an OC4J standalone environment. It
includes the following sections:

� General Overview of OC4J Deployment and Configuration

� Overview of Configuration Files

� Application Packaging

� Deployment Scenarios to OC4J Standalone

� OC4J Deployment in Oracle Application Server

General Overview of OC4J Deployment and Configuration

5-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

General Overview of OC4J Deployment and Configuration
Because this is a developer’s guide, much of it is intended for use in an OC4J
standalone environment, which is convenient for application development stages.
OC4J standalone consists of a single OC4J instance outside the Oracle Application
Server environment. Most of this chapter is specific to configuration and
deployment in a standalone environment, where you are developing on the same
system you are deploying to.

When your application is ready for enterprise use, you can deploy it to the Oracle
Application Server environment. This chapter provides an overview of deployment
and configuration in Oracle Application Server, and Chapter 7, "Configuration with
Enterprise Manager", provides additional information . Your primary information
source for using OC4J in an Oracle Application Server environment, however,
should be the Oracle Application Server Containers for J2EE User’s Guide.

The following sections provide some overview:

� Overview: OC4J Standalone Versus the Oracle Application Server Environment

� Overview of OC4J Deployment Scenarios

� Using Oracle Deployment Tools Versus Expert Modes

Overview: OC4J Standalone Versus the Oracle Application Server Environment
Many OC4J features discussed in this manual, particularly in this chapter, are for
use in OC4J standalone only, during development. In Oracle Application Server,
which offers enterprise management features for large-scale production
environments, it is critical to maintain controls to prevent actions that might
compromise the server during operation. Because this is not such a concern while
you are developing in a standalone environment, there are fewer restrictions on
what you can or should do in OC4J standalone.

OC4J standalone provides the admin.jar command-line utility for deploying,
configuring, and managing applications. It is also possible, especially for early
testing, to manually deploy files and manually update configuration files. In
particular, for initial testing, there is an OC4J default Web application that you can
use for individual servlet files, JSP pages, and dependency classes.

Note: Key admin.jar commands are discussed where applicable
under "Deployment Scenarios to OC4J Standalone" on page 5-34.

General Overview of OC4J Deployment and Configuration

Deployment and Configuration Overview 5-3

For initial considerations when using OC4J standalone for development, including
use of the OC4J development flag to trigger automatic recompilation and
reloading of modified servlets, see "OC4J Standalone for Development" on page 2-2.

In an enterprise production environment, OC4J is contained within Oracle
Application Server, which takes over management of the J2EE enterprise systems.
Oracle Application Server can oversee multiple clustered OC4J processes and is
managed through the Oracle Enterprise Manager. Through Enterprise Manager,
you can manage and configure your OC4J processes across multiple application
server instances and hosts. Thus, you cannot locally manage your OC4J process by
using the admin.jar tool or by manually updating configuration files, because this
would conflict with the management provided by Enterprise Manager.

Table 5–1 summarizes OC4J deployment and configuration features, comparing
OC4J standalone to OC4J in Oracle Application Server.

Table 5–1 OC4J in Standalone Versus Oracle Application Server: Deployment

Feature OC4J Standalone OC4J in Oracle Application Server

Deployment vehicle Use admin.jar or manually
place files.

Use Enterprise Manager or dcmctl.

Configuration vehicle Use admin.jar (for
automatic configuration
resulting from deployment)
or manually update files.

Use Enterprise Manager or dcmctl.
Do not manually update files.

Deployment packaging Use an EAR file, a WAR file,
loose files in a J2EE
application directory
structure, or loose files in a
Web application directory
structure.

Use an EAR file or a WAR file.

Default J2EE application
or J2EE application
wrapper

The OC4J default J2EE
application is available to
contain independent WAR
files. You do not have to
create an EAR file for simple
Web applications.

When you deploy an independent
WAR file, OC4J automatically
creates a J2EE application and an
EAR file to wrap it.

Default Web application The OC4J default Web
application allows
deployment of servlets
through placement of files
under the default root
directory. No configuration is
required.

Not applicable.

General Overview of OC4J Deployment and Configuration

5-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Table 5–2 summarizes OC4J features and practices relating to Web sites, again
comparing OC4J standalone to OC4J in Oracle Application Server.

Overview of OC4J Deployment Scenarios
OC4J supports the standard J2EE application structure and deployment vehicles.
This includes the use of an EAR file to deploy a complete J2EE application, which
might include Web modules, EJB modules, application client modules, and resource
adapter modules (used for connector factories). There can be zero or more of each
type of module. It is also possible to use an independent WAR file to deploy an
independent Web application. (For a complete application that includes a Web
module, the WAR file is included inside the EAR file.) For more information about

Automatic reloading of
application or Web
application

Modify application.xml,
web.xml, servlet code under
/WEB-INF/classes, or
JAR file under
/WEB-INF/lib.

Not applicable/appropriate.

Automatic recompilation
and reloading

Use development="true"
(or set JSP main_mode to
"recompile" for JSP pages).

Not applicable/appropriate.

Table 5–2 OC4J in Standalone Versus Oracle Application Server: Web Sites

Feature OC4J Standalone OC4J in Oracle Application Server

Web server OC4J Oracle HTTP Server

Protocol HTTP / HTTPS AJP / secure AJP

Default port to invoke
Web applications

8888 7777 (for Oracle HTTP Server and
Oracle Application Server Web
Cache)

Web site XML file http-web-site.xml default-web-site.xml

Note: In Oracle Application Server, use Enterprise Manager or
dcmctl, but do not attempt to use both simultaneously to target
the same OC4J instance or instances, or do not use both for different
parts of the same deployment.

Table 5–1 OC4J in Standalone Versus Oracle Application Server: Deployment (Cont.)

Feature OC4J Standalone OC4J in Oracle Application Server

General Overview of OC4J Deployment and Configuration

Deployment and Configuration Overview 5-5

these features, refer to the Sun Microsystems Java 2 Platform Enterprise Edition
Specification and the Java Servlet Specification. These are available at the following
Web sites:

http://java.sun.com/j2ee/docs.html

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

Before deploying a J2EE application, you must complete the following steps:

1. Create all components of the application, such as static HTML files, servlets, JSP
pages, and EJBs.

2. Create J2EE descriptors, such as application.xml and web.xml, and, as
desired, create OC4J descriptors, such as orion-application.xml and
orion-web.xml. If you do not create the OC4J descriptors, they will be
generated automatically during deployment of a J2EE application, which is
sufficient if you do not need anything beyond default settings.

3. Package the application components and descriptors according to the J2EE
application structure. If you provide orion-application.xml, place it with
application.xml. If you provide orion-web.xml, place it with web.xml.
Although it is possible to deploy loose files into the appropriate directory
structure, it is more typical to deploy applications in EAR or WAR files. See
"Application Packaging" on page 5-30.

After you have packaged your application, there are several scenarios for
deployment, as discussed later in this chapter.

In an OC4J standalone environment, your options include the following:

� Deploy an EAR file. See "Deploying an EAR File to OC4J Standalone" on
page 5-39.

� Manually deploy files for a complete J2EE application into an application
directory structure. See "Deploying Files into a J2EE Application Structure on
OC4J Standalone" on page 5-45.

Note: In Oracle Application Server, deployment and
configuration through Enterprise Manager results in the
appropriate OC4J configuration files being created or updated
automatically.

General Overview of OC4J Deployment and Configuration

5-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� Deploy an independent WAR file. See "Deploying an Independent WAR File to
OC4J Standalone" on page 5-47.

� Manually deploy files for an independent Web application into a Web
application directory structure. See "Deploying Files into a Web Application
Directory Structure on OC4J Standalone" on page 5-49. This includes the option
of conveniently deploying servlets or JSP pages into the OC4J default Web
application during initial testing. (See "OC4J Default Application and Default
Web Application" on page 5-37.)

In an Oracle Application Server environment, use Enterprise Manager to deploy
and configure your applications. See "Overview of OC4J Deployment and
Configuration in Oracle Application Server" on page 5-56.

Using Oracle Deployment Tools Versus Expert Modes
This discussion considers two modes of operation when deploying and configuring
applications for OC4J. One can be called supported client mode, using tools provided
by Oracle for either OC4J standalone or Oracle Application Server. The other, used
during development and testing phases and in OC4J standalone only, can be called
expert mode. In expert mode, you are manipulating files directly—manually placing
EAR files, WAR files, or loose files on the system, and manually updating
configuration descriptors. These modes are summarized in the following table.

In expert mode, you are operating outside the safeguards and constraints of the
OC4J and Oracle Application Server tools.

In OC4J standalone, Oracle generally assumes that you will either deploy with
admin.jar and not manually update files, or you will manually update files and

Note: You can also use an IDE, such as Oracle JDeveloper, for
developing, packaging, deploying, and configuring your
application. See "Oracle JDeveloper Support for Servlet
Development" on page 2-27 for an introduction and overview.

OC4J Standalone OC4J in Oracle Application Server

Supported Client
Mode

admin.jar Enterprise Manager or dcmctl

Expert Mode
Direct manipulation of server
files

Not applicable/appropriate

General Overview of OC4J Deployment and Configuration

Deployment and Configuration Overview 5-7

not deploy with admin.jar. Crossing between these scenarios might cause
unpredictable results.

In Oracle Application Server, do not try to directly manipulate server files. The
Oracle Application Server Distributed Configuration Management subsystem
(DCM) maintains a repository of configuration information. This repository—not
configuration files on the file system—contains the true configuration settings.
Enterprise Manager and the dcmctl command-line tool work in concert with DCM
so that the configuration repository is properly updated when you use either of
these tools.

Overview of Configuration Files

5-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Overview of Configuration Files
There are several categories and levels of configuration files—both OC4J-specific
and J2EE-standard, and both global and application-level—for configuring OC4J
and an OC4J application.

While developing and testing your application in an OC4J standalone environment,
you can manipulate these configuration files either manually or through the
admin.jar utility, which OC4J provides. For example, the admin.jar -deploy
command automatically updates server.xml to add the specified J2EE
application to OC4J, and the admin.jar -bindWebApp command automatically
updates the specified Web site XML file to bind the specified Web module to the
Web site.

Key admin.jar commands are discussed later in this chapter, where applicable.
See the Oracle Application Server Containers for J2EE Stand Alone User’s Guide for
further details about the admin.jar utility.

The following sections introduce OC4J and application configuration files:

� Introduction to OC4J and J2EE Configuration Files

� OC4J Top-Level Server Configuration File: server.xml

� OC4J and J2EE Application Descriptors

� OC4J and J2EE Web Descriptors

� OC4J Web Site Descriptors

� Example: Mappings to and from Web Site Descriptors

Important: In an Oracle Application Server environment, nearly
all configuration is accomplished through Oracle Enterprise
Manager. Do not directly manipulate the configuration files
discussed here. Doing so would undermine enterprise management
and cause undesirable results.

Overview of Configuration Files

Deployment and Configuration Overview 5-9

Refer to the following for additional information:

� For the use of Enterprise Manager to configure OC4J in an Oracle Application
Server environment, see the Oracle Application Server Containers for J2EE User’s
Guide.

� For the use of Enterprise Manager to configure servlets and Web modules in
particular, see Chapter 7, "Configuration with Enterprise Manager", later in this
manual.

� To configure OC4J standalone, see the Oracle Application Server Containers for
J2EE Stand Alone User’s Guide, available with the OC4J download from the
Oracle Technology Network.

Introduction to OC4J and J2EE Configuration Files
You can divide the OC4J and J2EE configuration files into five categories:

� Server configuration (OC4J-specific), with the overall top-level OC4J
configuration file and server-level configuration files for security, data sources,
RMI, JMS, and load balancing

� Global configuration (OC4J-specific), with a global application descriptor, a
global Web descriptor, and a global descriptor for resource adapters

� Web site configuration (OC4J-specific)

� J2EE application-level configuration, with standard J2EE application, Web, EJB,
application-client, and resource adapter (connector factory) descriptors

� OC4J-specific application-level configuration, with OC4J application, Web, EJB,
application-client, and resource adapter (connector factory) descriptors

The global files can affect anything running on the OC4J server and can establish
defaults for both J2EE and OC4J-specific features at the application level and the
Web-site level. The J2EE files can override any defaults for standard J2EE features
and establish additional J2EE-standard settings. The OC4J-specific application-level
files can override defaults in the corresponding global files, override settings in the
corresponding J2EE files, and add OC4J-specific features and settings.

Of particular interest to servlet developers are the top-level OC4J server
configuration file (server.xml), the application descriptors (OC4J global, J2EE
application-level, and OC4J application-level), the Web descriptors (OC4J global,
J2EE application-level, and OC4J application-level), and the OC4J Web site
descriptors. Each of these topics is discussed in more detail shortly.

Overview of Configuration Files

5-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Server-level and global configuration files are located in the j2ee/home/config
directory by default. OC4J looks there for the server.xml file, and server.xml
in turn specifies the locations of the other server-level and global files (by default,
the same directory). In OC4J standalone, the configuration file directory is
configurable through the java -config command-line option.

The following discussion summarizes the preceding five configuration file
categories.

Summary of Server, Global, and Web Site Configuration Files
The server.xml file is located in the j2ee/home/config directory and specifies
locations of the other server configuration files and the Web site configuration files,
which are also in j2ee/home/config by default.

Server Configuration The files in this category are OC4J-specific, configuring different
aspects of the OC4J server.

� server.xml: This parent file for all OC4J configuration includes elements
pointing to other server-level and global configuration files, all Web sites on the
server, and all applications on the server (including the OC4J default
application). See "OC4J Top-Level Server Configuration File: server.xml" below.

� jazn.xml: This configuration file for Oracle Application Server Java
Authentication and Authorization Service (OracleAS JAAS Provider) specifies
the directory path to the server-level jazn-data.xml file.

� jazn-data.xml: This server-level JAAS file contains user name and role
information for the XML-based provider. There is also an application-level
version. This file is not used if OracleAS JAAS Provider uses the LDAP-based
provider instead.

� data-sources.xml: This file contains data source definitions for database
connections.

� rmi.xml: This file contains configuration features for remote method
invocation.

� jms.xml: This file contains configuration features for the Java Message Service.

Overview of Configuration Files

Deployment and Configuration Overview 5-11

OC4J Global Configuration Files in this category are OC4J-specific, defining settings
for OC4J global features such as the default application and determining default
settings for corresponding application-level configuration files.

� application.xml: This file is the OC4J-specific global application descriptor.
See "OC4J and J2EE Application Descriptors" on page 5-17.

� global-web-application.xml: This is the OC4J-specific global Web
descriptor. See "OC4J and J2EE Web Descriptors" on page 5-22.

� oc4j-connectors.xml: This is the OC4J-specific global descriptor for
resource adapters (for connector factories).

Web Site Configuration Each Web site that is recognized by the server has a Web site
XML file to configure it. In Oracle Application Server, there is just one Web site. In
OC4J standalone, there is typically one Web site, but you might use a second Web
site for "shared" applications, for example, where some communication is through
HTTP and some through HTTPS. It is also possible for there to be no Web sites, if
the OC4J instance is not used for Web modules. See "OC4J Web Site Descriptors" on
page 5-26.

� default-web-site.xml: This is the default Web site descriptor in an Oracle
Application Server environment.

� http-web-site.xml: This is the default Web site descriptor in an OC4J
standalone environment.

� Additional Web site XML files: Create a separate Web site XML file, named as
desired, for any additional Web site.

Note: Do not confuse the OC4J global application descriptor with
the J2EE-standard application-level descriptor application.xml.
They are both used to define Web modules and have other similar
features, but the OC4J global application descriptor uses an
OC4J-specific DTD.

Overview of Configuration Files

5-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Summary of Application-Level Configuration Files
J2EE configuration files are included within the standard application structure. If
you include OC4J application-level configuration files in your EAR or WAR file,
they also go within the application structure. See "J2EE Application Structure" on
page 5-30. Upon deployment of a J2EE application, the OC4J files are either copied
(if you included them) or generated (if you did not include them) in the deployment
directory, typically under j2ee/home/application-deployments.

J2EE Application-Level Configuration Files in this category are all application-level and
are defined by the J2EE specification.

� application.xml: This is the J2EE-standard application descriptor. See
"OC4J and J2EE Application Descriptors" on page 5-17.

� web.xml: This file is the J2EE-standard Web descriptor. See "OC4J and J2EE
Web Descriptors" on page 5-22.

� ejb-jar.xml: This file is the J2EE-standard EJB descriptor.

� application-client.xml: This file is the J2EE-standard descriptor for
application clients.

� ra.xml: This file is the J2EE-standard descriptor for resource adapters (for
connector factories).

Note: Do not confuse the J2EE application descriptor with the
OC4J global application descriptor application.xml. They are
both used to define Web modules and have other similar features,
but have separate and distinct DTDs.

Overview of Configuration Files

Deployment and Configuration Overview 5-13

OC4J Application-Level Configuration Files in this category are OC4J-specific at the
application level. They configure OC4J-specific functionality to complement
standard functionality from the corresponding J2EE descriptor, and override default
settings from the corresponding server-level or global descriptor.

� orion-application.xml: This file is the OC4J-specific application
descriptor. See "OC4J and J2EE Application Descriptors" on page 5-17.

� orion-web.xml: This file is the OC4J-specific Web descriptor. See "OC4J and
J2EE Web Descriptors" on page 5-22.

� orion-ejb-jar.xml: This file is the OC4J-specific EJB descriptor.

� jazn-data.xml: This application-level JAAS file contains user name and role
information for the XML-based provider. There is also a server-level version.
This file is not used if OracleAS JAAS Provider uses the LDAP-based provider
instead.

� orion-application-client.xml: This file is the OC4J-specific descriptor
for application clients.

� oc4j-ra.xml: This file is the OC4J-specific descriptor for resource adapters
(for connector factories).

Additional Information See the following documents for more information about the
preceding descriptors:

� Oracle Application Server Containers for J2EE User’s Guide for information about
server.xml and load balancing

� Oracle Application Server Containers for J2EE Services Guide for information about
data sources, RMI, JMS, and resource adapters in OC4J, and related descriptors

� Oracle Application Server Containers for J2EE Security Guide for information about
security and JAAS in OC4J, and related descriptors

� Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide
for information about EJB development and the J2EE and OC4J EJB descriptors

Overview of Configuration Files

5-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

OC4J Top-Level Server Configuration File: server.xml
The OC4J server.xml file, located in the OC4J j2ee/home/config directory by
default, is the starting point for configuration of the OC4J server and all J2EE
applications, Web applications, and Web sites for the server. In particular, note the
following:

� The attributes of the top-level <application-server> element specify,
among other things, the target directory for deployed EAR files and where they
are unpacked (determined by the application-directory setting), and the
target directory for copied or generated OC4J descriptors (determined by the
deployment-directory setting).

� The <global-application> element specifies the OC4J global application,
otherwise known as the default application, which, by default, is the parent of
all other applications. The name attribute defines its name; the path attribute
specifies what to use as the OC4J global application descriptor. See "OC4J
Default Application and Default Web Application" on page 5-37 for a discussion
of the OC4J default application.

� The <global-web-app-config> element, through its path attribute,
specifies what to use as the OC4J global Web application descriptor.

� There is a <web-site> element for each Web site recognized by the server,
with the path attribute specifying what to use as the corresponding Web site
XML file. OC4J comes with one such element already configured.

� There is an <application> element for each J2EE application deployed to the
server. The name attribute specifies the desired J2EE application name. The
path attribute reflects where the EAR file is deployed and unpacked, or where
application files exist that have already been unpacked (or were manually
placed). In either case, the name attribute is typically the same as the EAR file
name without the .ear extension. In the first case, the path attribute specifies
the full path to the EAR file, including the EAR file name. In the second case,
the path attribute specifies the top-level directory of the extracted files.

Note: A key <application-server> attribute, added with the
OC4J 9.0.4 implementation, is check-for-updates to
automatically check OC4J XML configuration files for updates. See
"Key OC4J Flags for Development" on page 2-4.

Overview of Configuration Files

Deployment and Configuration Overview 5-15

� The <rmi-config> element, through its path attribute, specifies what to use
as the OC4J RMI descriptor.

� The <jms-config> element, through its path attribute, specifies what to use
as the OC4J JMS descriptor.

The server.xml file is discussed in detail in the Oracle Application Server Containers
for J2EE User’s Guide, but an example is also provided here:

<?xml version="1.0"?>
<!DOCTYPE application-server PUBLIC "-//Evermind//DTD Orion
Application-server//EN"
"http://xmlns.oracle.com/ias/dtds/application-server.dtd">

<application-server application-directory="../applications"
 deployment-directory="../application-deployments"
 connector-directory="../connectors"
>
 <rmi-config path="./rmi.xml" />
 <jms-config path="./jms.xml" />
 <log>
 <file path="../log/server.log" />
 </log>
 <transaction-config timeout="250000" />
 <global-application name="default" path="application.xml" />
 <application name="petstore" path="../applications/petstore.ear" ... />
 <global-web-app-config path="global-web-application.xml" />
 <web-site default="true" path="./default-web-site.xml" />
 <web-site path="../myconfig/my-web-site.xml" />
 <cluster id="-1406559522" />
</application-server>

Figure 5–1, which follows, illustrates the mappings between the server.xml file,
other XML files including Web site XML files, and J2EE EAR files. Note that in this
figure, the <application> elements in server.xml point to top-level directories
of extracted EAR files, as opposed to intact EAR files.

Note: In Oracle Application Server, port settings in the RMI
descriptor (rmi.xml by default) and JMS descriptor (jms.xml by
default) are overridden.

Overview of Configuration Files

5-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Figure 5–1 Mappings from the server.xml File

Overview of Configuration Files

Deployment and Configuration Overview 5-17

OC4J and J2EE Application Descriptors
An application descriptor specifies the components of a J2EE application, such as EJB
and Web modules, and can specify additional configuration for the application as
well.

There are three categories of application descriptors to consider in using OC4J. The
following sections discuss each of them, then summarize their relationships to each
other:

� Standard J2EE Application Descriptors

� OC4J Global Application Descriptor

� OC4J-Specific Application Descriptors

� Summary of Relationships Between Application Descriptors

The server.xml file points to the application descriptor of each application on
OC4J, either directly or indirectly. In the case of a typical J2EE application,
server.xml points to the EAR file (or extracted EAR top-level directory) and,
therefore, to the application.xml file that the EAR file contains. In the case of
the OC4J global application, the server.xml file points directly to the OC4J global
application descriptor.

See the Oracle Application Server Containers for J2EE User’s Guide for more
information about application descriptors in OC4J.

Standard J2EE Application Descriptors
The J2EE standard defines the concept and DTD of an application descriptor, called
application.xml, that you must include in the /META-INF directory of the EAR
file of a J2EE application. The application descriptor acts as a manifest of the
modules contained in the application, possibly with additional configuration
information as well, and in some development environments can be created
automatically for you.

See the Sun Microsystems Java 2 Platform Enterprise Edition Specification for more
information.

Here is an example for an application with an EJB module, a Web module, and a
client module:

<?xml version="1.0" ?>
<!DOCTYPE application (View Source for full doctype...)>
<application>
 <display-name>stateful, application:</display-name>

Overview of Configuration Files

5-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 <description>
 A sample J2EE application that uses a remote stateful session
 bean to call a local entity bean.
 </description>
 <module>
 <ejb>stateful-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>stateful-web.war</web-uri>
 <context-root>/stateful</context-root>
 </web>
 </module>
 <module>
 <java>stateful-client.jar</java>
 </module>
</application>

OC4J Global Application Descriptor
There is also an OC4J-specific global application descriptor, defined by an
OC4J-specific DTD, orion-application.dtd. This is the descriptor for the OC4J
global application, as specified by the <global-application> element in the
server.xml file. This element specifies the global application name, default by
default, and the global application descriptor name, application.xml by default
and usually located in the same directory as server.xml.

The OC4J global application is usually referred to as the "default application" and,
by default, is the parent application of all other applications in the OC4J instance.

Following is an abbreviated sample application.xml file for the OC4J default
application. Note that it specifies the name of a Web application, defaultWebApp,
which by convention is bound to one or more Web sites as the default Web
application.

Note: The standard J2EE application descriptor and the OC4J
global application descriptor are both named application.xml,
despite being defined by different DTDs. Do not confuse the two.
There is no standard application.xml file that is applicable to
the OC4J default application.

Overview of Configuration Files

Deployment and Configuration Overview 5-19

Do not confuse the OC4J default J2EE application with the default Web application
that it contains. See "OC4J Default Application and Default Web Application" on
page 5-37 for related information.

<?xml version="1.0" standalone='yes'?>
<!DOCTYPE orion-application PUBLIC "-//Evermind//DTD J2EE Application runtime
1.2//EN" "http://xmlns.oracle.com/ias/dtds/orion-application.dtd">

<!-- The global application config that is the parent of all the other
 applications in this server. -->

<orion-application autocreate-tables="true"
 default-data-source="jdbc/OracleDS">
 <web-module id="defaultWebApp" path="../../home/default-web-app" />
 <connectors path="./oc4j-connectors.xml"/>

 <!-- Path to the libraries that are installed on this server.
 These will accesible for the servlets, EJBs etc -->
 <library path="../../home/lib" />
 <!-- Path to the taglib directory that is shared
 among different applications. -->
 <library path="../../home/jsp/lib/taglib" />

 <log>
 <file path="../log/global-application.log" />
 </log>

 <data-sources path="data-sources.xml" />
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping>
 <group name="administrators" />
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 <write-access>
 <namespace-resource root="">
 <security-role-mapping>
 <group name="administrators" />
 </security-role-mapping>
 </namespace-resource>
 </write-access>
 </namespace-access>
</orion-application>

Overview of Configuration Files

5-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

OC4J-Specific Application Descriptors
In addition to the standard application descriptor, application.xml, there is an
OC4J-specific application-level application descriptor, orion-application.xml.
This is defined by the same DTD as the OC4J global application descriptor. You can
provide an orion-application.xml file as well as an application.xml file,
also in the /META-INF directory of your EAR file. The orion-application.xml
file can add OC4J-specific configuration.

Including an orion-application.xml file in your EAR file is optional. If you
include it, OC4J copies it into the deployment directory during deployment (under
j2ee/home/application-deployments by default). Otherwise, OC4J
generates one for you in the deployment directory, using default settings from the
OC4J global application descriptor (assuming the OC4J default application is the
parent application, as is the case by default) and the application.xml file in the
EAR file. See "J2EE Application Structure" on page 5-30 for information about
where orion-application.xml fits in the application structure.

In most circumstances, you should use orion-application.xml only to define
OC4J-specific configuration such as security role mappings. Also note that if OC4J
generates the file, it creates <web-module> elements to reflect the modules
specified in the J2EE application.xml file.

The following example shows some OC4J-specific configuration and defines the
same EJB, Web, and client modules as defined in the example of the standard
application.xml file in "Standard J2EE Application Descriptors" on page 5-17:

<?xml version="1.0"?>
<!DOCTYPE orion-application PUBLIC "-//Evermind//DTD J2EE Application runtime
1.2//EN" "http://xmlns.oracle.com/ias/dtds/orion-application.dtd">

<orion-application default-data-source="jdbc/OracleDS">
 <ejb-module remote="false" path="stateful-ejb.jar" />
 <web-module id="stateful-web" path="stateful-web.war" />
 <client-module path="stateful-client.jar" auto-start="false" />
 <persistence path="persistence" />

Note: When OC4J copies orion-application.xml, it might
make changes to the file but these changes are transparent. For
example, an attribute setting that specifies the default value might
be ignored or removed.

Overview of Configuration Files

Deployment and Configuration Overview 5-21

 <log>
 <file path="application.log" />
 </log>
 <namespace-access>
 <read-access>
 <namespace-resource root="">
 <security-role-mapping name="<jndi-user-role>">
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </read-access>
 <write-access>
 <namespace-resource root="">
 <security-role-mapping name="<jndi-user-role>">
 <group name="users" />
 </security-role-mapping>
 </namespace-resource>
 </write-access>
 </namespace-access>
</orion-application>

Summary of Relationships Between Application Descriptors
To summarize the relationship between J2EE application descriptors, the OC4J
global application descriptor, and OC4J application-level application descriptors:

� For a typical J2EE application, the key application descriptor is the standard
J2EE application descriptor, application.xml. This file acts as a manifest for
the modules of a J2EE application and must be placed in the /META-INF
directory of the J2EE application EAR file.

� If you want to deploy a standalone WAR file (rather than a WAR file within an
EAR file), you can use the OC4J default application, or global application, as the
containing application. (See "OC4J Default Application and Default Web
Application" on page 5-37.) In this case, the OC4J global application descriptor,
also called application.xml but defined by an OC4J-specific DTD, becomes
relevant because no J2EE standard application.xml file is associated with a
standalone WAR file.

� You can optionally include an orion-application.xml descriptor for
additional OC4J configuration, such as for security role mappings. The
orion-application.xml file might also specify additional modules, beyond
those specified in the J2EE application.xml file, and can even override
modules specified in application.xml (though this is not advisable). The
orion-application.xml file would also be in the /META-INF directory of

Overview of Configuration Files

5-22 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

the EAR file. If you do not include this file, it is created automatically during
deployment, using defaults from the OC4J global application descriptor
(assuming the default application is the parent of your application, which is
true by default). The orion-application.xml descriptors are defined
according to the same DTD as the OC4J global application descriptor.

OC4J and J2EE Web Descriptors
A Web descriptor specifies and configures a set of J2EE Web components: static
pages, servlets, and JSP pages. The Web components might together form an
independent Web application and be deployed in a standalone WAR file. More
typically, however, they will form just part of an overall J2EE application, being
deployed in a WAR file within the EAR file of the J2EE application.

There are three categories of Web descriptors to consider in using OC4J. The
following sections discuss each of them and summarize the relationships between
them:

� Standard J2EE Web Descriptors

� OC4J Global Web Application Descriptor

� OC4J-Specific Web Descriptors

� Summary of Relationships Between Web Descriptors

Standard J2EE Web Descriptors
The J2EE servlet specification defines the concept and DTD of a Web descriptor,
called web.xml, that you must include in the /WEB-INF directory of the associated
WAR file. The web.xml file specifies and configures the Web components of the
WAR file, as well as other components, such as EJBs, that the Web components
might call.

See the Sun Microsystems Java Servlet Specification for more information.

Here is a sample web.xml file specifying, among other things, a servlet, the servlet
mapping, and a local EJB lookup:

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>stateful, web-app:</display-name>
 <description>no description</description>

Overview of Configuration Files

Deployment and Configuration Overview 5-23

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <ejb-local-ref>
 <ejb-ref-name>CartBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>cart.CartHome</local-home>
 <local>cart.Cart</local>
 </ejb-local-ref>

 <servlet>
 <servlet-name>cart</servlet-name>
 <servlet-class>cart.CartServlet</servlet-class>
 <init-param>
 <param-name>param1</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>cart</servlet-name>
 <url-pattern>/cart</url-pattern>
 </servlet-mapping>
 <security-role>
 <role-name>users</role-name>
 </security-role>
</web-app>

OC4J Global Web Application Descriptor
The server.xml file, through its <global-web-app-config> element, specifies
the OC4J global Web application descriptor. It is typically
global-web-application.xml, in the same directory as server.xml. This
descriptor defines default behavior for Web applications in OC4J.

The global Web application descriptor is defined by the DTD orion-web.dtd.
This is the same DTD as for the application-level OC4J-specific Web descriptor,
orion-web.xml, described in the next section, "OC4J-Specific Web Descriptors".

The orion-web.dtd is a superset of the standard DTD for web.xml. There is a
<web-app> subelement of the <orion-web-app> top-level element in
orion-web.dtd, which has the same specification as the top-level <web-app>
element of web.xml. There are also many other subelements of
<orion-web-app> for specifying and configuring OC4J-specific features.

Overview of Configuration Files

5-24 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

For any default settings you specify within the <web-app> element in
global-web-application.xml, you can add to or, optionally, override these
settings through <web-app> settings in web.xml. You can then add to or,
optionally, override the resulting settings through <web-app> settings in
orion-web.xml.

For any default settings you specify outside the <web-app> element in
global-web-application.xml, you can add to or, optionally, override these
settings through parallel settings in orion-web.xml.

For detailed information about the elements and attributes of the OC4J global Web
application descriptor, including the DTD and a hierarchical representation, see
"Configuration for global-web-application.xml and orion-web.xml" on page 6-2.

See "Sample global-web-application.xml Settings" on page 6-25 for an abbreviated
sample global-web-application.xml file.

OC4J-Specific Web Descriptors
In addition to the standard Web descriptor, web.xml, and the OC4J global Web
application descriptor, global-web-application.xml (which establishes
default behavior), there is an OC4J-specific application-level Web descriptor,
orion-web.xml.

The orion-web.xml descriptor is defined by the DTD orion-web.dtd. This is
the same DTD as for the global Web application descriptor that was described in the
previous section, "OC4J Global Web Application Descriptor".

You can provide an orion-web.xml file as well as the web.xml file, also in the
/WEB-INF directory of your WAR file. Use orion-web.xml to add to or,
optionally, override any default settings in global-web-application.xml, as
well as to add to or override any settings in web.xml.

Including an orion-web.xml file in your WAR file (inside the EAR file) is
optional. If you include it, OC4J copies it into the deployment directory during
deployment (under the j2ee/home/application-deployments directory by
default). Otherwise, OC4J generates orion-web.xml for you in the deployment

Note: Generally avoid using the <web-app> element in
global-web-application.xml or orion-web.xml. Because it
is customary to look in web.xml for any <web-app> entries,
having such entries elsewhere could be confusing and might cause
difficulty during troubleshooting.

Overview of Configuration Files

Deployment and Configuration Overview 5-25

directory, using default settings from global-web-application.xml.
Additionally, some web.xml settings will influence the generation of
orion-web.xml. For example, <resource-ref> entries in web.xml will result
in corresponding <resource-ref-mapping> entries in orion-web.xml. See
"J2EE Application Structure" on page 5-30 for information about where
orion-web.xml fits in the application structure.

For detailed information about the elements and attributes of the OC4J-specific Web
descriptor, including the DTD and a hierarchical representation, see "Configuration
for global-web-application.xml and orion-web.xml" on page 6-2.

A sample orion-web.xml file follows:

<?xml version="1.0" ?>
<!DOCTYPE orion-web-app (View Source for full doctype...)>
<orion-web-app jsp-cache-directory="./persistence" temporary-directory="./temp"
 servlet-webdir="/servlet/" default-buffer-size="2048"
 development="false" directory-browsing="deny"
 file-modification-check-interval="1000" jsp-timeout="0 (never)">
 <ejb-ref-mapping name="EmployeeBean" />
 <security-role-mapping name="users">
 <group name="users" />
 </security-role-mapping>
 <!--
 <web-app>
 There are no <web-app> entries in this sample.
 </web-app>
 -->
</orion-web-app>

Summary of Relationships Between Web Descriptors
You can think of the relationship between global-web-application.xml,
web.xml, and orion-web.xml as follows:

1. The global-web-application.xml file establishes defaults for any Web
application in OC4J.

Note: When OC4J copies orion-web.xml, it might make
changes to the file but these changes are transparent. For example,
an attribute setting that specifies the default value might be ignored
or removed.

Overview of Configuration Files

5-26 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

2. The web.xml file overlays anything defined in the <web-app> element of
global-web-application.xml, adding to and possibly overriding any Web
components and other settings defined there.

3. The orion-web.xml file overlays everything, adding to and possibly
overriding any settings from global-web-application.xml and web.xml.

OC4J Web Site Descriptors
Each Web site in OC4J is defined and configured through a Web site XML file. The
key functions of a Web site XML file are the following:

� It binds specified Web modules to the Web site, identifying each Web module to
bind, the J2EE application it belongs to, and the context path portion of the URL
to use in accessing it.

� It defines key settings for the Web site, such as the host name, port number, and
protocol. The protocol setting should indicate AJP (Apache JServ Protocol) in an
Oracle Application Server environment, and HTTP in a standalone
environment.

The server.xml file indicates the number of Web sites that OC4J recognizes, by
including a <web-site> element for each site. Each of these elements specifies the
path and file name for the corresponding Web site XML file, as in the following
sample server.xml entries:

...
<web-site path="./default-web-site.xml" />
<web-site path="mydir/my-web-site.xml" />
...

In Oracle Application Server, there is just one Web site. In OC4J standalone, there is
typically one Web site, but you might use a second Web site for "shared"
applications, for example, where some communication is through HTTP and some
through HTTPS. (For information about shared applications, see the description of
the <web-app> element shared attribute in "Element Descriptions for Web Site
XML Files" on page 6-28.)

A Web site XML file contains a <web-app> element for each Web module to bind to
the Web site. At a minimum, each <web-app> element has the following:

� An application attribute to specify the name of the J2EE application to
which the Web module belongs (the same as the EAR file name without the
.ear extension)

Overview of Configuration Files

Deployment and Configuration Overview 5-27

� A name attribute to specify the name of the Web module (the same as the WAR
file name without the .war extension)

� A root attribute to specify the context path on this Web site to which the Web
module is to be bound

There is also a <default-web-app> element for the default Web application. The
default Web application is useful in OC4J standalone during development, as
discussed in "OC4J Default Application and Default Web Application" on page 5-37.
In Oracle Application Server, it is used for some system-level functionality but is
not otherwise meaningful. See "OC4J Default Web Application in Oracle
Application Server" on page 5-58.

By default, OC4J comes configured with one Web site XML file:
http-web-site.xml in OC4J standalone, or default-web-site.xml in Oracle
Application Server.

See "Configuration for Web Site XML Files" on page 6-28 for detailed information
about the elements and attributes of Web site XML files, including the DTD and a
hierarchical representation.

See "Sample default-web-site.xml File" on page 6-42 for an example, in this case a
sample default-web-site.xml file for an Oracle Application Server
environment.

Important:

� The root setting overrides the setting of the
<context-root> element for this Web module in the
application.xml descriptor for the containing J2EE
application. The <context-root> element is required in
application.xml, but is not used by OC4J. See "Example:
Mappings to and from Web Site Descriptors", which follows.

� A root setting of "/" overrides the OC4J default Web
application. This setting (or a null setting, which is converted to
"/") is not allowed by the admin.jar utility when binding a
Web application to the Web site.

Overview of Configuration Files

5-28 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Example: Mappings to and from Web Site Descriptors
This example shows how an entry in server.xml points to a Web site descriptor
(Web site XML file), and how a <web-app> element in the Web site XML file points
to a Web module. The <web-app> element binds the Web module to the Web site.
The Web module is defined in the application.xml file (also shown) of the
containing J2EE application.

The server.xml file includes an <application> element for the relevant J2EE
application (which contains the desired Web module) and includes a <web-site>
element specifying the Web site XML file for the desired Web site:

<application-server ... >
 ...
 <application name="myear" path="../myapps/myear.ear" />
 ...
 <web-site path="my-web-site.xml" />
 ...
</application-server>

The Web site XML file, my-web-site.xml, configures the Web site and has a
<web-app> element that specifies the J2EE application that contains the Web
module, the name of the Web module itself, and the root context path for accessing
the Web module:

...
<web-site protocol="http" port="8888" display-name="My Web Site"
 host="[ALL]" log-request-info="false" secure="false">
 ...
 <web-app application="myear" name="mywebmod1" root="/someUrl"
 load-on-startup="false" max-inactivity-time="no shutdown"
 shared="false" />
 ...
</web-site>

See "Element Descriptions for Web Site XML Files" on page 6-28 for information
about the <web-site> and <web-app> attributes shown here.

Overview of Configuration Files

Deployment and Configuration Overview 5-29

The J2EE application.xml file in myear.ear specifies the Web module:

<application ... >
 ...
 <module>
 <web>
 <web-uri>mywebmod1.war</web-uri>
 <context-root>/someUrl</context-root>
 </web>
 </module>
 ...
</application>

Note the following:

� The value of the root attribute of the <web-app> element in
my-web-site.xml overrides the value of the <context-root> element in
application.xml. As a convention, though, use the same setting in both
places.

� A Web application deployed to the OC4J default application is defined in the
OC4J global application descriptor.

� In an Oracle Application Server environment, the default-web-site.xml
file, by default, sets up a Web site that accesses OC4J through the Oracle HTTP
Server and AJP (Apache JServ protocol), using a protocol setting of "ajp13"
and a port setting of "0". However, OPMN, the Oracle Process Management and
Notification system, overrides this port setting.

� In an OC4J standalone environment, the http-web-site.xml file, by default,
sets up a Web site that accesses the OC4J listener directly, using a protocol
setting of "http" and a port setting of "8888".

Note: For a Web application (WAR file) that is deployed to the
OC4J default application instead of being deployed within an EAR
file, the <web-app> element application attribute indicates the
name of the OC4J default application (default by default) instead
of indicating an EAR file name.

See "OC4J Default Application and Default Web Application" on
page 5-37 for general information about the default application.

Application Packaging

5-30 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Packaging
OC4J supports standard J2EE archive files for deployment, including WAR files for
Web modules and EAR files for overall J2EE applications. The following sections
review the structure of these files:

� J2EE Application Structure

� EAR File and WAR File Structures

J2EE Application Structure
This section reviews the standard J2EE application structure, which you can use as
your development structure as appropriate. This discussion also shows the relative
locations of optional OC4J-specific descriptors. If you do not include the
OC4J-specific descriptors in your deployment, OC4J generates them for you when
you deploy a J2EE application, using values from corresponding OC4J global
descriptors and J2EE descriptors as defaults.

J2EEAppName/

 META-INF/
 application.xml
 orion-application.xml (optional)

 EJBModuleName/
 (EJB classes, according to package)
 META-INF/
 ejb-jar.xml
 orion-ejb-jar.xml (optional)

 WebModuleName/
 (static files, such as index.html)
 (JSP pages)
 WEB-INF/
 web.xml
 orion-web.xml (optional)
 classes/
 (servlet classes, according to package)
 lib/
 (JAR files for dependency classes)

Application Packaging

Deployment and Configuration Overview 5-31

 ClientModuleName/
 (client classes, according to package)
 META-INF/
 application-client.xml
 orion-application-client.xml

 ResourceAdapterModuleName/
 META-INF/
 ra.xml
 (JAR files for required classes)
 (required static files or other files)

The Web portion is marked in bold type. This portion reflects the structure of WAR
files used to deploy Web modules. At the top level are static pages (such as
index.html), JSP pages, and the /WEB-INF directory.

Notes:

� This structure is defined in the J2EE specification and related
specifications. The J2EE specification is at the following
location:

http://java.sun.com/j2ee/docs.html

� See "OC4J and J2EE Application Descriptors" on page 5-17 for
an overview of application.xml and
orion-application.xml.

� See "OC4J and J2EE Web Descriptors" on page 5-22 for an
overview of web.xml and orion-web.xml.

� See the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for information about
ejb-jar.xml and orion-ejb-jar.xml.

� See the Oracle Application Server Containers for J2EE User’s Guide
for information about application-client.xml and
orion-application-client.xml.

Application Packaging

5-32 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

EAR File and WAR File Structures
In J2EE, a WAR file is typically contained within an EAR file. In the example in the
preceding section, the EAR file, J2EEAppName.ear, would have its /META-INF
directory at the top level, along with Web module WAR files, EJB module JAR files,
client application JAR files, and resource adapter RAR files (zero or more of each, as
applicable):

META-INF/
 application.xml
 orion-application.xml (optional)
EJBModuleName.jar
WebModuleName.war
ClientModuleName.jar
ResourceAdapterModuleName.rar

Sample EAR and WAR File This example shows the structure of the archive files for a
simple Web application. The EAR file contains a WAR file, which contains a single
servlet.

Following are the contents of utility.ear. If there were EJB, client application, or
resource adapter modules, the associated JAR files would be at the same level as the
WAR file. Optionally, you could also include an orion-application.xml file in
the /META-INF directory. Instead, in this example, one would be generated by
OC4J during deployment.

META-INF/MANIFEST.MF
META-INF/application.xml
utility_web.war

Here are the contents of utility_web.war. Optionally, you could also include an
orion-web.xml file in the /WEB-INF directory. Instead, in this example, one
would be generated by OC4J during deployment.

META-INF/MANIFEST.MF
WEB-INF/classes/TestStatusServlet.class
WEB-INF/web.xml
index.html

Application Packaging

Deployment and Configuration Overview 5-33

Notes:

� This document assumes you have some J2EE development
experience and a means of creating EAR and WAR files, either
by using the JAR utility directly, or through an IDE such as
Oracle JDeveloper, or by using the ant utility and a
build.xml file. See the following site for information about
ant:

http://ant.apache.org

� The MANIFEST.MF files are created automatically by the JAR
utility.

Deployment Scenarios to OC4J Standalone

5-34 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Deployment Scenarios to OC4J Standalone
This section reviews some preliminary considerations and then discusses several
scenarios for deployment to OC4J standalone. The primary deployment scenario is
to use the admin.jar utility after you package your application in an EAR file. The
EAR file optionally contains Web module WAR files, EJB module JAR files, client
application JAR files, and resource adapter RAR files (zero or more of each). See
"Application Packaging" on page 5-30 for more information about structure and
packaging.

The use of EAR files for OC4J deployment, and features of the admin.jar utility,
are covered extensively in the Oracle Application Server Containers for J2EE Stand
Alone User’s Guide. Key features are discussed here.

In addition, this section considers alternative deployment scenarios that you might
find useful during development, such as manually creating and populating a J2EE
application structure or deploying an independent WAR file into the OC4J default
application.

This section includes the following subjects:

� Setting Up an Administrative User and Password

� Starting and Stopping OC4J Standalone

� OC4J Default Application and Default Web Application

� Deploying an EAR File to OC4J Standalone

� Deploying Files into a J2EE Application Structure on OC4J Standalone

� Deploying an Independent WAR File to OC4J Standalone

� Deploying Files into a Web Application Directory Structure on OC4J Standalone

� Application Undeployment or Redeployment in OC4J Standalone

Note: In these alternative deployment scenarios, in which you
manually place and update files, you are considered to be in "expert
mode". You are operating outside the safeguards and constraints of
the OC4J and Oracle Application Server tools. See "Using Oracle
Deployment Tools Versus Expert Modes" on page 5-6.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-35

Setting Up an Administrative User and Password
Before using the admin.jar utility to deploy an application in OC4J standalone,
you must have a user with administrative privileges.

The j2ee/home/config/jazn-data.xml file determines security privileges for
user accounts. By default, there is a user admin with administrative privileges, as
specified in the following sample jazn-data.xml entry:

<role>
 <name>administrators</name>
 <display-name>Realm Admin Role</display-name>
 <description>Administrative role for this realm.</description>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
</role>

For the default administrative user admin, the default password is welcome, as in
the following sample jazn-data.xml entry:

<users>
...
 <user>
 <name>admin</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>!welcome</credentials>
 </user>
...
</users>

(The file is automatically rewritten later to obfuscate the specified password.) See
the Oracle Application Server Containers for J2EE Security Guide for more information
about the jazn-data.xml file, especially regarding the <credentials> element.

Important: You cannot use the admin.jar utility in an Oracle
Application Server environment. It is for use in OC4J standalone
only.

Deployment Scenarios to OC4J Standalone

5-36 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Starting and Stopping OC4J Standalone
This section provides a quick review of how to start and stop OC4J standalone.
Assume % is the system prompt and j2ee/home is your current directory.

Issue the following command to start OC4J:

% java -jar oc4j.jar [options]

See the Oracle Application Server Containers for J2EE Stand Alone User’s Guide for a
discussion of OC4J command-line options.

Issue the following command to stop OC4J:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
 adminuser adminpassword -shutdown

For the admin.jar -shutdown command, note the following:

� In OC4J standalone, you can get the OC4J ORMI port number from the
j2ee/home/config/rmi.xml file, where there will be an entry such as the
following:

<rmi-server port="23791" host="[ALL]">

� See the previous section, "Setting Up an Administrative User and Password",
for information about adminuser and adminpassword.

Note: If you are still using the deprecated principals.xml file
for security, the administrative account password is determined
through the OC4J -install command:

% java -jar oc4j.jar -install

(Assume % is the system prompt and j2ee/home is your current
directory.) You will be prompted for the desired password.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-37

OC4J Default Application and Default Web Application
The following sections discuss features and configuration of the OC4J default
application and default Web application. Some of the OC4J standalone deployment
scenarios described later will use these features.

� Use of the Default Application and Default Web Application

� Configuration of the Default Application and Default Web Application

Use of the Default Application and Default Web Application
OC4J is installed with a default configuration that includes a default application (also
known as the global application). The default application is, by default, the parent of
all other J2EE applications in OC4J.

In OC4J, a Web application must be contained within a parent J2EE application.
Usually, a WAR file is deployed within an EAR file that defines the parent J2EE
application. If you want to deploy an independent WAR file, you can deploy to the
OC4J default application instead. By default, the OC4J server.xml file specifies
the location and name of the global application descriptor that defines the default
application.

In a typical OC4J installation, the default application contains a default Web
application. The name and root directory path of the default Web application are
specified in the global application descriptor, and the default Web application is
bound to a Web site through the http-web-site.xml file for OC4J standalone
(default-web-site.xml in Oracle Application Server). In OC4J standalone, the
default context path for the default Web application is "/".

Also by default in OC4J standalone, the root directory of the default Web
application is j2ee/home/default-web-app. To deploy to the default Web
application, place your JSP pages and class files under this directory in the standard
Web application directory structure: static pages and JSP pages at the top level,
servlet classes under j2ee/home/default-web-app/WEB-INF/classes, and
library JAR files in j2ee/home/default-web-app/WEB-INF/lib. Also see

Note: Use of the default application and default Web application
for deployment during testing is a useful OC4J convenience feature,
but is considered to be an expert mode because you are manually
placing application files and sometimes manually updating
configuration files. See "Using Oracle Deployment Tools Versus
Expert Modes" on page 5-6.

Deployment Scenarios to OC4J Standalone

5-38 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

"Using a Web Application Directory Structure in the Default Web Application" on
page 5-50.

Configuration of the Default Application and Default Web Application
This section details the default configurations for the OC4J default application and
default Web application.

server.xml Configuration for Default Application In server.xml, the
<global-application> element specifies the OC4J default application. The
name attribute specifies its name, and the path attribute specifies what to use as the
OC4J global application descriptor:

<application-server ... >
 ...
 <global-application name="default" path="application.xml" />
 ...
</application-server>

application.xml Configuration for Default Web Application The specified descriptor for the
default application (or global application), application.xml, specifies the name
and root directory path of the default Web application, which is contained in the
default application:

<orion-application ... >
 ...
 <web-module id="defaultWebApp" path="../../home/default-web-app" />
 ...
</orion-application>

To deploy to the default Web application, place your files under this directory
according to the standard Web application structure.

Binding of Default Web Application in Web Site XML File By default, the default Web
application is bound to a Web site in the http-web-site.xml file for OC4J
standalone (default-web-site.xml in Oracle Application Server).

Note: The default Web application, in addition to being invoked
by use of the context path "/", is invoked if the context path
mapping of any requested URL fails. This will occur if a requested
URL has no matching context path in any <web-app> element
root attribute in the Web site XML file.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-39

Although most OC4J Web applications are bound to a Web site through <web-app>
subelements of a <web-site> element in the Web site XML file, the default Web
application is instead configured through the <default-web-app> subelement of
<web-site>.

In OC4J standalone, the default context path of the default Web application is "/",
without a root attribute being required. Here is an example:

<web-site ... >
...
 <default-web-app application="default" name="defaultWebApp"
 load-on-startup="true" shared="false" />
...
</web-site>

See "Configuration for Web Site XML Files" on page 6-28 for detailed information
about elements and attributes of Web site XML files.

Deploying an EAR File to OC4J Standalone
The following sections describe the process of deploying an EAR file in OC4J
standalone using the admin.jar utility.

This discussion assumes that if you modify your code, you would then repackage it
and redeploy it.

Using admin.jar to Deploy the EAR File
After you have packaged your application into an EAR file, you can use the OC4J
admin.jar utility to deploy it, using the following syntax:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
 adminuser adminpassword
 -deploy -file path/filename.ear
 -deploymentName appname

This command uses RMI to communicate with OC4J. Note the following:

� See "Starting and Stopping OC4J Standalone" on page 5-36 for information
about the ORMI port.

Note: The <default-web-app> element is required in any Web
site XML file.

Deployment Scenarios to OC4J Standalone

5-40 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� See "Setting Up an Administrative User and Password" on page 5-35 for
information about adminuser and adminpassword.

� For -file, specify the path to the EAR file, including the file name.

� For -deploymentName, specify the desired application name, by convention
the same as the EAR file name without the .ear extension.

By default, a deployment results in the following:

� The EAR file is copied to the j2ee/home/applications directory. This
directory is set as the default through the application-directory attribute
of the <application-server> element in the server.xml file.

� The EAR file is unpacked beneath the j2ee/home/applications directory.

� The OC4J-specific descriptors—at a minimum, orion-application.xml and
orion-web.xml for a Web application in an EAR file—are copied or generated
under the j2ee/home/application-deployments directory. This directory
is set as the default through the deployment-directory attribute of the
<application-server> element in the server.xml file. These descriptors
are copied from the EAR file if they exist there; otherwise, OC4J generates them.

� An <application> element is added to the server.xml file. This element
specifies the application name, according to the -deploymentName setting in
admin.jar, and specifies the path to where the EAR file was deployed,
j2ee/home/applications by default.

See "Sample Deployment" on page 5-42 for an example.

Note: During development, assuming you develop and run on the
same system, you will deploy locally. However, admin.jar is also
capable of deploying remotely.

Note: The target directories are configurable. See the Oracle
Application Server Containers for J2EE Stand Alone User’s Guide for
additional information about admin.jar, including the
-targetPath and -deploymentDirectory options.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-41

Using admin.jar to Bind the Web Application
After you have deployed your application, you can use the OC4J admin.jar utility
to bind the associated Web application to a Web site:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
 adminuser adminpassword
 -bindWebApp appname webappname websitename contextpath

As with the -deploy command, the -bindWebApp command uses RMI to
communicate with OC4J. Note the following:

� See "Starting and Stopping OC4J Standalone" on page 5-36 for information
about the ORMI port.

� See "Setting Up an Administrative User and Password" on page 5-35 for
information about adminuser and adminpassword.

� The appname is the application name, according to the -deploymentName
setting when you deployed it.

� The webappname is the name of the Web application. This is the WAR file name
without the .war extension.

� The websitename is indicated by the Web site XML file name for the desired
site, without the .xml extension (for example, http-web-site in OC4J
standalone).

� Specify the desired context path portion of the URL for invoking the Web
application.

As a result of this command, a <web-app> element is added to the specified Web
site XML file, indicating the application name, the Web application name, and the
context path.

See the next section, "Sample Deployment", for an example.

Note: A context path setting of "/", which overrides the OC4J
default Web application, or null, which is converted to "/", is not
allowed by the admin.jar utility when binding a Web application
to the Web site.

Deployment Scenarios to OC4J Standalone

5-42 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Sample Deployment
This example shows the result of deploying the utility.ear file shown in "EAR
File and WAR File Structures" on page 5-32, then binding its Web application. Here
are the admin.jar commands, assuming % is the system prompt, j2ee/home is
the current directory, and the EAR file is in j2ee/home/demo:

% java -jar admin.jar ormi://myhost:23791 admin welcome
 -deploy -file demo/utility.ear -deploymentName utility

% java -jar admin.jar ormi://myhost:23791 admin welcome
 -bindWebApp utility utility_web http-web-site /utilroot

Note the following:

� The OC4J host name in this example is myhost; the port setting is 23791 in
j2ee/home/config/rmi.xml.

� In this example, the administrative account name is admin and the password is
welcome.

� The Web application name within utility.ear is utility_web, based on
the WAR file name, utility_web.war.

� The -bindWebApp command is to bind utility_web to the Web site defined
by j2ee/home/config/http-web-site.xml. This assumes the following
entry is in the server.xml file, as is the case by default:

 <web-site path="http-web-site.xml" />

� The desired context path portion of the URL to invoke the Web application is
"/utilroot".

The -deploy command results in the following entry in server.xml, as a
subelement of the top-level <application-server> element:

<application name="utility" path="../applications/utility.ear"
 auto-start="true" />

The auto-start attribute specifies whether this application should be
automatically restarted each time OC4J is restarted.

The -bindWebApp command results in the following entry in
http-web-site.xml, as a subelement of the top-level <web-site> element:

<web-app application="utility" name="utility_web" root="/utilroot"
 load-on-startup="false" max-inactivity-time="no shutdown" shared="false" />

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-43

(See "Element Descriptions for Web Site XML Files" on page 6-28 for information
about the load-on-startup, max-inactivity-time, and shared attributes.)

After the deployment of utility.ear, the directory structure for key files is as
follows, assuming default settings for the target directories:

j2ee/home/
 application-deployments/
 utility/
 orion-application.xml
 utility_web/
 orion-web.xml
 applications/
 utility.ear
 utility/
 utility_web.war
 META-INF/
 application.xml
 utility_web/
 index.html
 META-INF/
 WEB-INF/
 web.xml
 classes/
 TestStatusServlet.class

The server.xml and http-web-site.xml files are in the j2ee/home/config
directory.

Notes:

� Remember that the value of the root attribute of the
<web-app> element in http-web-site.xml overrides the
value of the <context-root> element in
application.xml. As a convention, though, use the same
value in both places.

� Information about the resulting server.xml and
http-web-site.xml entries is provided as informative
background. You should not have any reason to update these
files manually when you use admin.jar.

Deployment Scenarios to OC4J Standalone

5-44 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

If orion-application.xml and orion-web.xml exist in the EAR file, they are
copied from there into the directories shown above. Otherwise, OC4J generates
them into the directories shown above, using default settings from the
corresponding OC4J global descriptors and J2EE descriptors.

Descriptors for Sample Deployment
The deployment in the preceding section uses the following descriptors. Passages of
particular interest to servlet developers are marked in bold type.

application.xml The standard application.xml descriptor is supplied by the
developer. Some IDEs, such as Oracle JDeveloper, will create this for you.

<?xml version="1.0" ?>
<!DOCTYPE application (View Source for full doctype...)>
<application>
 <display-name>Web Services Demo</display-name>
 <module>
 <web>
 <web-uri>utility_web.war</web-uri>
 <context-root>/j2ee/utility</context-root>
 </web>
 </module>
</application>

Remember that the <context-root> element here is overridden by the root
attribute of the <web-app> element in the Web site XML file.

web.xml The standard web.xml descriptor is supplied by the developer.

<?xml version="1.0" ?>
<!DOCTYPE web-app (View Source for full doctype...)>
<web-app>
 <display-name>Web Services Example</display-name>
 <description>A few examples of web service publication</description>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <servlet>
 <servlet-name>TestStatus</servlet-name>
 <servlet-class>TestStatusServlet</servlet-class>
 </servlet>

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-45

 <servlet-mapping>
 <servlet-name>TestStatus</servlet-name>
 <url-pattern>/TestStatusServlet</url-pattern>
 </servlet-mapping>
</web-app>

orion-application.xml Because the orion-application.xml descriptor is not
included in the EAR file in this example, it is generated by OC4J. Most of the file is
omitted here, but note that the <web-module> element mirrors the entry in the
application.xml file.

<?xml version="1.0" ?>
<!DOCTYPE orion-application (View Source for full doctype...)>
<orion-application deployment-version="9.0.4.0.0"
 default-data-source="jdbc/OracleDS"
 treat-zero-as-null="true" autocreate-tables="true"
 autodelete-tables="false">
 ...
 <web-module id="utility_web" path="utility_web.war" />
 ...
</orion-application>

orion-web.xml Because the orion-web.xml descriptor is not included in the WAR
file (within the EAR file) in this example, it is generated by OC4J. It is not shown
here because there are no entries specific to the example.

Invoking the Sample Application
Given the information for the sample deployment in the preceding sections, in
which /utilroot is specified as the context path in the admin.jar
-bindWebApp command and /TestStatusServlet is specified as the servlet
path in web.xml, you invoke the application as follows:

http://host:port/utilroot/TestStatusServlet

Deploying Files into a J2EE Application Structure on OC4J Standalone
Instead of deploying an EAR file, you can manually deploy the file structure and
then update the server.xml and Web site XML files. This is an expert mode. (See
"Using Oracle Deployment Tools Versus Expert Modes" on page 5-6.)

Look again at "Sample Deployment" on page 5-42, but assume that you manually
create the j2ee/home/applications/utility directory and manually
populate the application directory structure underneath, as follows.

Deployment Scenarios to OC4J Standalone

5-46 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

j2ee/home/applications/utility/
 META-INF/
 application.xml
 utility_web/
 index.html
 META-INF/
 WEB-INF/
 web.xml
 classes/
 TestStatusServlet.class

Further assume that you update the server.xml file as follows:

<application name="utility" path="../applications/utility"
 auto-start="true" />

And you update the http-web-site.xml file as follows:

<web-app application="utility" name="utility_web" root="/utilroot"
 load-on-startup="false" max-inactivity-time="no shutdown" shared="false" />

Note that the path attribute in the <application> element in server.xml is
"../applications/utility" instead of "../applications/utility.ear".
This is because there is no EAR file, just the directory structure under the utility
directory.

By default in OC4J standalone, when you update server.xml, OC4J detects the
change, deploys the application, and copies or generates the orion-web.xml file
and orion-application.xml file under the application-deployments
directory as follows:

j2ee/home/
 application-deployments/
 utility/
 orion-application.xml
 utility_web/
 orion-web.xml

However, if OC4J update-checking is disabled, you must manually inform OC4J of
your configuration updates, using the admin.jar -updateConfig option.
Checking is enabled through the server.xml check-for-updates flag. See
"Key OC4J Flags for Development" on page 2-4.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-47

Deploying an Independent WAR File to OC4J Standalone
"Deploying an EAR File to OC4J Standalone" on page 5-39 discusses using the
admin.jar utility to deploy an EAR file, including a WAR file within an EAR file
for a Web module. For convenience during testing, it is also possible to manually
deploy an independent WAR file, using the OC4J default application as the
containing application. (A Web application must always be part of a parent J2EE
application in OC4J.) This is an expert mode. See "Using Oracle Deployment Tools
Versus Expert Modes" on page 5-6.

See "OC4J Default Application and Default Web Application" on page 5-37 for
background information.

Use the following steps to deploy an independent WAR file to the OC4J default
application:

1. Place your WAR file in the desired directory.

2. Update the OC4J global application.xml file to add a <web-module>
element to specify the Web application name and the location of the WAR file.

3. Update the appropriate Web site XML file, typically http-web-site.xml in
OC4J standalone, to add a <web-app> element to bind the Web application to
the Web site.

The following example illustrates deployment of a WAR file to the default
application.

Example: Web Application Name in OC4J Default Application This example shows entries
in server.xml, the Web site XML file, and the OC4J global application.xml
file for a Web application mywebmod1 within the OC4J default application. Note the
following:

� The path attribute of the <web-site> element in server.xml specifies the
path and name of the Web site XML file, http-web-site.xml in this
example.

Note: In Oracle Application Server, all applications are deployed
in EAR files. If you use the Application Server Control Deploy Web
Application Page in Enterprise Manager, which prompts you for a
WAR file, an EAR file is transparently created to contain the WAR
file.

Deployment Scenarios to OC4J Standalone

5-48 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� The name attribute of the <global-application> element in server.xml
specifies the name of the OC4J default application and corresponds to the
application attribute of the <web-app> element in http-web-site.xml.

� The path attribute of the <global-application> element in server.xml
points to the OC4J global application.xml file.

� The name attribute of the <web-app> element in http-web-site.xml
indicates a Web application, mywebmod1, within the OC4J default application
and corresponds to the id attribute of a <web-module> element in the OC4J
global application.xml file. Both of these attributes typically correspond to
the WAR file name without the .war extension.

� The global application.xml file must specify the name and location of the
WAR file, through the path attribute of the <web-module> element, because
there is no containing EAR file.

The following entries are in the server.xml file (no changes required):

<application-server ... >
 ...
 <global-application name="default" path="application.xml" />
 ...
 <web-site path="http-web-site.xml" />
 ...
</application-server>

Place the bold entry into the Web site XML file, http-web-site.xml:

<web-site protocol="http" port="8888" display-name="HTTP Web Site"
 host="[ALL]" log-request-info="false" secure="false">
 ...
 <web-app application="default" name="mywebmod1" root="/someUrl"
 load-on-startup="false" max-inactivity-time="no shutdown"
 shared="false" />
 ...
</web-site>

(See "Element Descriptions for Web Site XML Files" on page 6-28 for information
about the <web-site> and <web-app> attributes shown here.)

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-49

Place the bold entry into the OC4J global application.xml file:

<orion-application ... >
 ...
 <web-module id="mywebmod1" path="../myhome/mywebmod1.war" />
 ...
</orion-application>

Deploying Files into a Web Application Directory Structure on OC4J Standalone
The previous section discusses how to deploy an independent WAR file to the OC4J
default application. Alternatively, you can manually set up the J2EE Web
application directory structure instead of using a WAR file. Again, this involves the
OC4J default application. The simplest way to do this is to also use the OC4J default
Web application, but you can optionally define a new Web application under the
default application. See "OC4J Default Application and Default Web Application"
on page 5-37 for background information.

Each of these scenarios is an expert mode. (See "Using Oracle Deployment Tools
Versus Expert Modes" on page 5-6.) The following sections discuss them in detail:

� Using a Web Application Directory Structure in the Default Web Application

� Using a Web Application Directory Structure in an Alternative Web Application

Note: By default in OC4J standalone, editing the global
application.xml file automatically results in the WAR file being
unpacked beneath the directory in which you placed it. The
orion-web.xml file, if you included one, is copied from the WAR
file to the deployment directory (under
j2ee/home/application-deployments by default). If you did
not include orion-web.xml, one is generated for you in the
deployment directory.

However, automatic detection of configuration changes depends on
the server.xml check-for-updates flag, which is set to
"true" by default. If this flag is disabled, you can trigger a one-time
check through the admin.jar -updateConfig option. See "Key
OC4J Flags for Development" on page 2-4.

Deployment Scenarios to OC4J Standalone

5-50 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Using a Web Application Directory Structure in the Default Web Application
By default, OC4J comes configured with a default application, and a default Web
application contained in the default application. To use the default Web application
to contain your test files, put them in the standard Web application directory
structure under the j2ee/home/default-web-app directory (by default).

To verify the configuration, look in the server.xml file. First, you should see the
following entry to define the name and specify the application descriptor for the
default application:

<global-application name="default" path="application.xml" />

You should also see the following entry to specify the Web site XML file:

<web-site path="./http-web-site.xml" />

Next, look in the OC4J global application.xml descriptor. You should see the
following entry to define the default Web application name and specify its root
directory:

<web-module id="defaultWebApp" path="../../home/default-web-app" />

Finally, look in the Web site XML file that is indicated in server.xml
(http-web-site.xml, by default, in OC4J standalone). You should see the
following entry to define defaultWebApp as the default Web application for the
Web site. As noted earlier, "/" is the context path for the default Web application in
OC4J standalone, without the necessity of a root attribute in the
<default-web-app> element.

<default-web-app application="default" name="defaultWebApp" />

Given this configuration, you can deploy your files as in the following example. No
further action is necessary before you invoke the servlet.

j2ee/home/default-web-app/
 index.html
 WEB-INF/
 web.xml
 classes/
 TestServlet.class

Using a Web Application Directory Structure in an Alternative Web Application
In the previous section, the OC4J default Web application, defaultWebApp, is used
to deploy a Web application directory structure. Alternatively, you can define some
other Web application that will also be contained in the OC4J default application.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-51

This is useful if you want functionality similar to that of the default Web
application, but deploying to a clean directory. This section describes the steps to
define a Web application, myDefaultWebApp, within the default application.

First, add a <web-module> element to the OC4J global application.xml file, as
in the following example. This defines the name and specifies the root directory of a
new OC4J Web application. The entry for the OC4J default Web application is also
shown for comparison.

<web-module id="defaultWebApp" path="../../home/default-web-app" />
<web-module id="myDefaultWebApp" path="../../home/my-default-web-app" />

Next, add a <web-app> element to the Web site XML file, http-web-site.xml,
as in the following example. This ties the Web application to a context path. The
<default-web-app> element for the OC4J default Web application is also shown
for comparison.

<default-web-app application="default" name="defaultWebApp" />
<web-app application="default" name="myDefaultWebApp" root="/mydefroot" />

Given this configuration, you can deploy your files as in the following example. No
further action is necessary before you invoke the servlet.

j2ee/home/my-default-web-app/
 index.html
 WEB-INF/
 web.xml
 classes/
 TestServlet.class

Application Undeployment or Redeployment in OC4J Standalone
During testing, you will presumably have to modify and redeploy your application.
The following sections describe undeployment and redeployment features for OC4J
standalone:

� Using admin.jar to Undeploy an Application

� Using admin.jar to Redeploy an Application

� Manually Redeploying a WAR File

� Triggering Application Redeployment after File Manipulation

Deployment Scenarios to OC4J Standalone

5-52 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Using admin.jar to Undeploy an Application
If you are finished using an application, you can use admin.jar to undeploy it as
follows:

% java -jar admin.jar ormi://oc4j_host:oc4j_ormi_port
 adminuser adminpassword
 -undeploy appname

This removes associated entries in server.xml and the Web site XML file, as well
as removing all directories and files that were created and copied. See "Starting and
Stopping OC4J Standalone" on page 5-36 for information about the ORMI port. See
"Setting Up an Administrative User and Password" on page 5-35 for information
about adminuser and adminpassword.

To undeploy the utility.ear application shown in "Sample Deployment" on
page 5-42, for example:

% java -jar admin.jar ormi://myhost:23791 admin welcome -undeploy utility

Using admin.jar to Redeploy an Application
As when you initially deploy an application to OC4J standalone, use the
admin.jar -deploy command to redeploy it. There is no difference to the user.
The utility automatically takes care of effectively undeploying it first so that you
will have a clean start. See "Deploying an EAR File to OC4J Standalone" on
page 5-39 for information about the -deploy command.

Before redeploying, you must repackage your EAR file to pick up any updated files.
If you updated OC4J descriptors on the server, such as orion-web.xml and
orion-application.xml, and want to keep the changes, you must include these
in the EAR file as well. Previously copied or generated OC4J descriptors are lost if
there has been any update to the EAR file.

Note: There is no need to undeploy an application before
redeploying it. The admin.jar -undeploy option is for
permanent removal.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-53

Manually Redeploying a WAR File
Deploying an independent WAR file to the OC4J default application is described in
"Deploying an Independent WAR File to OC4J Standalone" on page 5-47. If you
want to redeploy, you must reverse the steps you took to deploy, repackage the
WAR file, and repeat the deployment steps. This is an expert mode. (See "Using
Oracle Deployment Tools Versus Expert Modes" on page 5-6.)

To summarize:

1. Comment out your updates to the global application.xml file and the
http-web-site.xml file (or other Web site XML file).

2. Update or repackage the WAR file with your updates. If there is anything in
orion-web.xml that you want to save, then include it in the WAR file.

3. Place the new WAR file back in the original target directory, overwriting the
original if it is still there.

4. Uncomment the updates in application.xml and http-web-site.xml.
Updating application.xml causes OC4J to unpack the WAR file and copy or
generate the orion-web.xml file as during the initial deployment.

Triggering Application Redeployment after File Manipulation
Depending on OC4J polling, which is enabled by default in OC4J standalone, there
are several ways to trigger a redeployment of your application when you modify
files in place on the server. (This is an expert mode. See "Using Oracle Deployment
Tools Versus Expert Modes" on page 5-6.)

� Modify servlet class files under /WEB-INF/classes.

If you update a servlet .class file under /WEB-INF/classes, the servlet and
its dependency classes are reloaded, and the Web application is redeployed,
upon the next request. This is regardless of whether OC4J polling is enabled.

Deployment Scenarios to OC4J Standalone

5-54 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� Modify standard descriptors (anything that changes the timestamp).

If you modify web.xml while polling is enabled, the Web application is
redeployed the next time the OC4J task manager runs, which by default is once
each second. Servlets and dependency classes in the Web application are
reloaded upon the next request.

If you modify application.xml while polling is enabled, the J2EE
application is redeployed. Servlets and dependency classes in the Web
application are reloaded upon the next request.

� Modify library JAR files under /WEB-INF/lib.

If you modify a JAR file in /WEB-INF/lib while polling is enabled, the Web
application is redeployed the next time the OC4J task manager runs. Servlets
and dependency classes in the Web application are reloaded upon the next
request.

� Set the OC4J development flag to "true".

The development flag is an attribute of the <orion-web-app> element in
global-web-application.xml and orion-web.xml. If development is
set to "true", then the OC4J server checks a particular directory (the
application /WEB-INF/classes directory by default) for updates to servlet
source files. If a source file has changed since the last request, then OC4J will,
upon the next request, recompile the servlet, redeploy the Web application, and
reload the servlet and any dependency classes. See the description of

Notes:

� A servlet and its dependency classes are reloaded immediately,
instead of upon next request, if the servlet is set to be
preloaded. This is according to load-on-startup settings.
See "Servlet Preloading" on page 2-9.

� Changing a servlet class file in a directory location specified in
a <classpath> element in global-web-application.xml
or orion-web.xml has the same effect as changing a servlet
class file in /WEB-INF/classes. However, changing a JAR
file or a dependency class (such as a JavaBean) in a
<classpath> location has no effect. See the description of the
<classpath> element in "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-2.

Deployment Scenarios to OC4J Standalone

Deployment and Configuration Overview 5-55

development under "Element Descriptions for global-web-application.xml
and orion-web.xml" on page 6-2 for further information.

� For JSP applications, set the JSP main_mode flag to "recompile".

See the Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide for information.

� Stop and restart OC4J.

See "Starting and Stopping OC4J Standalone" on page 5-36.

In OC4J standalone, polling is controlled through the server.xml
check-for-updates flag, which is set to "true" by default. Alternatively, you
can use the admin.jar -updateConfig option to trigger one-time polling. See
"Key OC4J Flags for Development" on page 2-4.

Notes: Be aware of a few points in any of the preceding scenarios:

� In this discussion, "redeployment" of a Web application refers
to the process where OC4J removes the Web application from
its execution space, removes the classloader that was associated
with execution of the Web application, reparses web.xml and
orion-web.xml, and reinitializes servlet listeners, filters, and
mappings.

� To ensure a clean start, shut down and restart OC4J after the
redeployment. See "Starting and Stopping OC4J Standalone" on
page 5-36.

� For all intents and purposes, redeployment does not affect
OC4J descriptors such as orion-application.xml and
orion-web.xml in the server deployment directory. After you
trigger reloading, the previously copied or generated files will
keep any nondefault settings that you have specified.

OC4J Deployment in Oracle Application Server

5-56 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

OC4J Deployment in Oracle Application Server
This section considers deployment and redeployment scenarios to OC4J in an
Oracle Application Server environment.

In Oracle Application Server, you must use either Enterprise Manager or parallel
commands in the dcmctl command-line utility for starting, stopping, configuring,
and deploying applications. Both of these tools are coordinated with the Oracle
Application Server Distributed Configuration Management subsystem (DCM). You
cannot use the OC4J standalone utility, admin.jar, for managing OC4J instances in
an Oracle Application Server instance. Also, do not manually update configuration
files in Oracle Application Server. (See "Using Oracle Deployment Tools Versus
Expert Modes" on page 5-6.)

The following sections are included here:

� Overview of OC4J Deployment and Configuration in Oracle Application Server

� OC4J Default Web Application in Oracle Application Server

� Application Undeployment and Redeployment in Oracle Application Server

Overview of OC4J Deployment and Configuration in Oracle Application Server
The Enterprise Manager pages for deploying and configuring Web modules are
discussed in Chapter 7, "Configuration with Enterprise Manager". See the Oracle
Application Server Containers for J2EE User’s Guide for further information about
using Enterprise Manager or the dcmctl command-line utility with OC4J.

The deployment scenarios discussed earlier in this chapter, using admin.jar or a
manual deployment of application files, do not apply in an Oracle Application
Server environment. Enterprise Manager includes pages for deploying an EAR file
or a WAR file, as described in "Application Server Control Deploy Application
(EAR) Page" on page 7-6 and "Application Server Control Deploy Web Application
(WAR) Page" on page 7-8. In Oracle Application Server, do not manually deploy
EAR or WAR files, or deploy loose files, as described in some of the scenarios for
OC4J standalone.

Note: In Oracle Application Server, use either Enterprise Manager
or dcmctl. Do not attempt to use both simultaneously to target the
same OC4J instance or instances, and do not use both for different
parts of the same deployment.

OC4J Deployment in Oracle Application Server

Deployment and Configuration Overview 5-57

In Oracle Application Server, issues of copying EAR or WAR files, unpacking these
files into a directory structure, and copying or generating the OC4J descriptors
(such as orion-web.xml and orion-application.xml) are generally handled
automatically and transparently through Enterprise Manager.

Deployment to Oracle Application Server through Enterprise Manager or dcmctl
automatically registers Web applications with Oracle HTTP Server and results in a
new mount point in the mod_oc4j.conf file. A URL mapping you specify in
Enterprise Manager, such as "/mypath/myapp", defines the mount point. Mount
points determine which URL requests are routed from Oracle HTTP Server to OC4J
for processing. In this case, any URL request starting with "/mypath/myapp" (after
the host and port) is handed off to OC4J.

There are a number of Enterprise Manager pages, also described in Chapter 7, for
configuring servlet or Web site parameters. Manipulating settings in these pages
results in appropriate configuration updates being made automatically. The
configuration files discussed earlier in this chapter are used by OC4J in Oracle
Application Server, but this is largely transparent and there are additional logistics
to consider:

� The Oracle Process Management and Notification subsystem (OPMN)
dynamically overrides some of the settings in the configuration files, as well as
some system properties and environment variables.

� The DCM subsystem maintains a repository of configuration information. This,
rather than the configuration files, contains the true configuration settings.

For these reasons, it is imperative that you not attempt to update configuration
manually in Oracle Application Server.

If for some reason you must modify configuration files without going through
Enterprise Manager, you must run a dcmctl update command to inform DCM of

Notes:

� In Oracle Application Server, all applications are deployed in
EAR files. If you use the Application Server Control Deploy
Web Application Page in Enterprise Manager, which prompts
you for a WAR file, an EAR file is transparently created to
contain the WAR file.

� Do not specify a context path of "/" when deploying to OC4J.

OC4J Deployment in Oracle Application Server

5-58 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

the changes. This will affect all instances of OC4J managed by DCM and should be
avoided.

OPMN, DCM, and the dcmctl tool are documented in the Oracle Application Server
10g Administrator’s Guide. This guide and Oracle Enterprise Manager Concepts provide
further information about Enterprise Manager as well.

OC4J Default Web Application in Oracle Application Server
The default Web application in OC4J standalone is of potential use during
development and is discussed in "OC4J Default Application and Default Web
Application" on page 5-37. OC4J has a default Web application in an Oracle
Application Server environment as well, but it is not for developer use.

In Oracle Application Server, there is just one Web site, and the root namespace is
owned by Oracle HTTP Server, not OC4J. The concept of an OC4J default Web
application in an Oracle Application Server environment is not sensible in the way
that it is for OC4J standalone, in which OC4J itself owns any Web sites.
Furthermore, in OC4J standalone, the default Web application is used by
manipulating files manually, which is not appropriate in Oracle Application Server.

In Oracle Application Server, as noted elsewhere, routing from Oracle HTTP Server
to OC4J is accomplished through mount points in the mod_oc4j.conf file. Each
time you deploy an application to OC4J in Oracle Application Server (as described
in "Application Server Control Deploy Application (EAR) Page" on page 7-6 and
"Application Server Control Deploy Web Application (WAR) Page" on page 7-8), the
URL that you specify as the context path results in the specification of that URL as
another mount point.

One default OC4J mount point and context path, /j2ee, with a default Web
application, defaultWebApp, exists for OC4J system use only. For example, if a
request has a URL pattern that matches an OC4J mount point and, therefore, results
in routing to OC4J, but the specified Web application cannot be found, OC4J uses
this default Web application to print an error message. This context path and
default Web application are specified in the <default-web-app> element in
default-web-site.xml. This element is required, but is not of direct use to
developers.

OC4J Deployment in Oracle Application Server

Deployment and Configuration Overview 5-59

Application Undeployment and Redeployment in Oracle Application Server
Oracle Enterprise Manager includes features to undeploy or redeploy an
application. The following sections introduce these features:

� Using Enterprise Manager to Undeploy an Application

� Using Enterprise Manager to Redeploy an Application

Using Enterprise Manager to Undeploy an Application
If you are finished using a J2EE application in Oracle Application Server, you can
undeploy it through the Application Server Control OC4J Applications Page in
Enterprise Manager. Select the application from the applications list (using the
corresponding radio button) and click the Undeploy button. This removes all
directories and files that were created and copied, and updates the server
configuration appropriately.

See "Application Server Control OC4J Applications Page" on page 7-5 to see what
the page looks like and for further information.

Using Enterprise Manager to Redeploy an Application
You can redeploy a J2EE application in Oracle Application Server through the
Application Server Control OC4J Applications Page in Enterprise Manager. Select
the application from the applications list (using the corresponding radio button)
and click the Redeploy button. You will be prompted for the path to the EAR file.

See "Application Server Control OC4J Applications Page" on page 7-5 to see what
the page looks like and for further information.

Note: Using Enterprise Manager in Oracle Application Server,
you can undeploy or redeploy an application through the
Application Server Control OC4J Applications Page by selecting it
from the applications list and then clicking the appropriate button.
In either case, if you initially deployed a standalone WAR file, it
was automatically wrapped in an EAR file during the deployment
process. Therefore, it appears in the applications list.

Note: There is no need to undeploy an application before
redeploying it. The Enterprise Manager Undeploy feature is for
permanent removal.

OC4J Deployment in Oracle Application Server

5-60 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

During redeployment, if you have not changed the EAR file since the previous
deployment, then server configuration settings are maintained from the previous
deployment. This is particularly relevant for settings in the OC4J descriptors, such
as orion-application.xml and orion-web.xml, given that standard
configuration, such as through application.xml and web.xml, is presumably in
your EAR file anyway.

If you have changed the EAR file, however, then the previous server configuration
is discarded. It is replaced with information from the EAR file, such as from the
OC4J descriptors (if present) and applicable default values. In this scenario, if you
have made OC4J-specific configuration changes on the server, you should make the
same changes to the OC4J descriptors in the EAR file in order to keep those
changes.

After redeployment, you can check the OC4J servlet and Web site configuration
pages, described in Chapter 7, "Configuration with Enterprise Manager", to verify
whether desired configurations settings have been maintained.

Configuration File Descriptions 6-1

6
Configuration File Descriptions

This chapter provides detailed descriptions of the elements and attributes of OC4J
configuration files for servlets and Web sites. It includes the following sections:

� Configuration for global-web-application.xml and orion-web.xml

� Configuration for Web Site XML Files

Note: The detailed discussion in this chapter regarding
configuration files and their elements and attributes assumes an
OC4J standalone development environment. In an Oracle
Application Server environment using Enterprise Manager,
configuration is through Application Server Control Web module
pages, and many of the files and their properties are invisible to the
user. For considerations in configuring and deploying a production
application with Enterprise Manager in Oracle Application Server,
see Chapter 7, "Configuration with Enterprise Manager".

Configuration for global-web-application.xml and orion-web.xml

6-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration for global-web-application.xml and orion-web.xml
The following sections provide detailed information about the
global-web-application.xml and orion-web.xml configuration files:

� Element Descriptions for global-web-application.xml and orion-web.xml

� DTD for global-web-application.xml and orion-web.xml

� Hierarchical Representation of global-web-application.xml and orion-web.xml

� Sample global-web-application.xml Settings

For an overview of these files, see "OC4J and J2EE Web Descriptors" on page 5-22.

Element Descriptions for global-web-application.xml and orion-web.xml
This section provides detailed descriptions of the elements and attributes of the
global-web-application.xml and orion-web.xml files.

The element descriptions in this section are applicable to either
global-web-application.xml or to an application-specific orion-web.xml
configuration file. The global-web-application.xml file configures the global
application and sets defaults; the orion-web.xml file can override these defaults
for a particular application deployment as appropriate.

<orion-web-app ... >
This is the root element for specifying OC4J-specific configuration of a Web
application.

Subelements of <orion-web-app>:

<classpath>
<context-param-mapping>
<mime-mappings>
<virtual-directory>

Note: The autoreload-jsp-pages and
autoreload-jsp-beans attributes of the <orion-web-app>
element are not currently supported by the OC4J JSP container. You
can use the JSP main_mode configuration parameter for
functionality equivalent to that of autoreload-jsp-pages. See
the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about this parameter.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-3

<access-mask>
<cluster-config>
<servlet-chaining>
<request-tracker>
<session-tracking>
<resource-ref-mapping>
<env-entry-mapping>
<security-role-mapping>
<ejb-ref-mapping>
<expiration-setting>
<jazn-web-app>
<web-app-class-loader>
<authenticate-on-dispatch>
<web-app>

Attributes of <orion-web-app>:

� default-buffer-size: Specifies the default size of the output buffer for
servlet responses, in bytes. The default is "2048".

� default-charset: This is the ISO character set to use by default. The default
is "iso-8859-1".

� deployment-version: This is the version of OC4J under which this Web
application was deployed. If this value does not match the current version, then
the application is redeployed. This is an internal server value and should not be
changed.

� development: This is a convenience flag during development. If
development is set to "true", then the OC4J server checks a particular
directory for updates to servlet source files. If a source file has changed since the
last request, then OC4J will, upon the next request, recompile the servlet,
redeploy the Web application, and reload the servlet and any dependency
classes.

The directory is determined by the setting of the source-directory attribute
(see below). Supported values for development are "true" and "false"
(default).

Note: The default-buffer-size attribute does not affect JSP
buffer size.

Configuration for global-web-application.xml and orion-web.xml

6-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� source-directory: For situations where the development attribute is set to
"true", the source-directory setting specifies where to look for servlet
source files to auto-compile. The default is "/WEB-INF/src" if it exists,
otherwise "/WEB-INF/classes".

� directory-browsing: Specifies whether to allow directory browsing for a
URL that ends in "/". Supported values are "allow" and "deny" (default).

Assume the following circumstances:

– There is no index.html file in the application root directory.

– There is no welcome file defined in the web.xml file.

If directory-browsing is set to "allow" under these circumstances, then a
URL ending in "/" results in the contents of the corresponding directory being
displayed in the user’s browser.

If directory-browsing is set to "deny" under these circumstances, then a
URL ending in "/" results in an error indicating that the directory contents
cannot be displayed.

If there is a defined welcome file or there is an index.html file in the
application root directory, then the contents of that file are displayed regardless
of the directory-browsing setting.

� file-modification-check-interval: This applies to static files such as
HTML files and is the amount of time, in milliseconds, for which a
file-modification check is valid. Within that time period since the last check,
further checks are not necessary. Zero or a negative number specifies that a
check always occurs. The default is "1000". For performance reasons, a very
large value (such as "1000000", for example) is recommended in a production
environment.

� jsp-print-null: Set this flag to "false" to print an empty string instead of
the default "null" string for null output from a JSP page. The default is "true".

Note: The OC4J JSP container does not currently support the
development flag. It is for servlets only. Use the JSP main_mode
flag for similar functionality for JSP pages, as documented in the
Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide. Features of the old Orion JSP container that
relate to the development flag do not apply to the OC4J JSP
container.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-5

� jsp-timeout: Specify an integer value, in seconds, after which any JSP page
will be removed from memory if it has not been requested. This frees up
resources in situations where some pages are called infrequently. The default
value is 0 (zero), for no timeout.

� jsp-cache-directory: The JSP cache directory is used as a base directory
for output files from the JSP translator. It is also used as a base directory for
application-level TLD caching. The default value is "./persistence", relative
to the deployment directory of the application.

� jsp-cache-tlds: This flag indicates whether persistent TLD caching is
enabled for JSP pages. TLD caching is implemented both at a global level, for
TLD files in "well-known" tag library locations, and at an application level, for
TLD files under the WEB-INF directory. The default setting is "true".
Well-known locations are according to the jsp-taglib-locations attribute.

� jsp-taglib-locations: If persistent TLD caching is enabled for JSP pages
(through the jsp-cache-tlds attribute), you can use
jsp-taglib-locations to specify a semicolon-delimited list of one or more
directories to use as "well-known" locations. Tag library JAR files can be placed
in these locations for sharing across multiple JSP pages and Web applications
and for TLD caching.

You can specify any combination of absolute directory paths or relative
directory paths. Relative paths would be under ORACLE_HOME if ORACLE_HOME
is defined, or under the current directory (from which the OC4J process was
started) if ORACLE_HOME is not defined. The default value is as follows:

– ORACLE_HOME/j2ee/home/jsp/lib/taglib/ if ORACLE_HOME is
defined.

or:

– ./jsp/lib/taglib if ORACLE_HOME is not defined.

� simple-jsp-mapping: Set this to "true" if "*.jsp" is mapped to only the
oracle.jsp.runtimev2.JspServlet front-end JSP servlet in the
<servlet> elements of any Web descriptors affecting your application

Important: Use the jsp-taglib-locations attribute only in
global-web-application.xml, not in orion-web.xml.

Configuration for global-web-application.xml and orion-web.xml

6-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

(global-web-application.xml, web.xml, and orion-web.xml). This
allows JSP performance improvements. The default setting is "false".

� enable-jsp-dispatcher-shortcut: A "true" setting, which is the case by
default, results in significant performance improvements by the OC4J JSP
container, especially in conjunction with a "true" setting for the
simple-jsp-mapping attribute. This is particularly true for JSP pages with
numerous jsp:include statements. Use of the "true" setting assumes,
however, that if you define JSP files with <jsp-file> elements in web.xml,
then you have corresponding <url-pattern> specifications for those files.

� persistence-path: Indicates where to store servlet HttpSession objects
for persistence across server restarts or application redeployments. Specify a
relative path, which will be relative to an OC4J temporary storage area under
the application-deployments directory. There is no default value. If no
value is defined, then there is no persistence of session objects across restarts or
redeployments.

Session objects must be serializable (directly or indirectly implementing the
java.io.Serializable interface) or remoteable (directly or indirectly
implementing the java.rmi.Remote interface) for this feature to work.

The persistence-path attribute is ignored if OC4J clustering is enabled,
according to the <cluster-config> subelement of the <orion-web-app>
element.

Note: Processing related to the jsp-print-null,
jsp-timeout, jsp-cache-directory, jsp-cache-tlds,
jsp-taglib-locations, simple-jsp-mapping, and
enable-jsp-dispatcher-shortcut attributes are handled by
the OC4J JSP container. For more information about these attributes
and related features, see the Oracle Application Server Containers for
J2EE Support for JavaServer Pages Developer’s Guide.

Note: The OC4J JSP container does not currently support the
persistence-path flag. It is for servlets only.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-7

� servlet-webdir: Specifies the path for invoking a servlet by class name.
Anything appearing after this path in a URL is assumed to be a class name,
including the package as appropriate.

This feature is typically for use in an OC4J standalone environment during
development and testing. For deployment, the standard web.xml mechanisms
for defining the context path and servlet path should be used.

Here is an example of servlet invocation by class name, assuming a setting of
servlet-webdir="/servlet/":

http://www.example.com:8888/servlet/foo.bar.SessionServlet

� temporary-directory: This is the path to a temporary directory that can be
used by servlets and JSP pages for scratch files. The path can be either absolute
or relative to the deployment directory. The default setting is "./temp".

A servlet might use a temporary directory, for example, to write information to
disk as a user is entering data in a form (perhaps for interim or short-term
storage before the information is written to a database).

Important:

� Any servlet-webdir setting that starts with a slash ("/")
enables invocation by class name. This presents a significant
security risk and should not be used in a production
environment. You can disable invocation by class name with a
setting of servlet-webdir="" (empty quotes) or by setting
the OC4J system property http.webdir.enable to a value of
false.

� The servlet-webdir attribute for an application takes its
default value from global-web-application.xml if there
is a setting there. If there is no setting in
global-web-application.xml, then the default value is
"".

Also see "Servlet Invocation by Class Name During OC4J
Development" on page 2-32 and "Additional Security
Considerations" on page 2-58.

Configuration for global-web-application.xml and orion-web.xml

6-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

The specified directory can then be recalled from the servlet context, where it is
available through the attribute javax.servlet.context.tempdir, as in the
following example.

File file = (File)application.getAttribute("javax.servlet.context.tempdir");

A java.io.File object is returned, from which you can obtain directory
information and contents.

<classpath ... >
Use this to inform OC4J of additional code locations for Web application
classloading—either library files or locations for individual class files.

Attribute of <classpath>:

� path: You can specify one or more locations, separated by commas or
semicolons, where a location can be either of the following:

– The complete path to a JAR or ZIP file, including the file name

– A directory path

In either case, you can use an absolute path or a path that is relative to the
configuration file location (global-web-application.xml or
orion-web.xml, as applicable).

If you specify a directory path, the classloader will recognize only individual
class files in the specified directory, not JAR or ZIP files (unless those are
specified separately).

For example, assume the following setting in orion-web.xml:

<classpath path=/abc/def/lib1.jar,/abc/def/zip1.jar,/abc/def,mydir />

The classloader will recognize the following:

– The lib1.jar and zip1.jar libraries (but no other libraries in
/abc/def)

– Any class files in /abc/def

– Any class files in mydir, relative to the location of orion-web.xml

<context-param-mapping ... >deploymentValue</context-param-mapping>
In orion-web.xml, this overrides the value of a context-param setting in the
web.xml file. It is used to keep the EAR assembly clean of deployment-specific
values. The new value is specified in the tag body.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-9

Attribute of <context-param-mapping>:

� name: This is the name of the context-param setting to override.

<mime-mappings ... >
This defines the path to a file containing MIME mappings to use.

Attribute of <mime-mappings>:

� path: This is the path or URL for the file, either absolute or relative to the
location of the orion-web.xml file.

<virtual-directory ... >
This adds a virtual directory mapping for static content, working in a way that is
conceptually similar to symbolic links on a UNIX system, for example. The virtual
directory enables you to make the contents of the real document root directory
available to the application without physically residing in the Web application WAR
file. This would be useful, for example, to link an enterprise-wide error page into
multiple WAR files.

Attributes of <virtual-directory>:

� real-path: This is a real path, such as /usr/local/realpath on UNIX or
C:\testdir in Windows.

� virtual-path: This is a virtual path to map to the specified real path.

<access-mask ... >
Use subelements of <access-mask> to specify optional access masks for this
application. You can use host names or domains to filter clients, through
<host-access> subelements, or you can use IP addresses and subnets to filter
clients, through <ip-access> subelements, or you can do both.

Subelements of <access-mask>:

<host-access>
<ip-access>

Attribute of <access-mask>:

� default: Specifies whether to allow requests from clients that are not
identified through a <host-access> or <ip-access> subelement.
Supported values are "allow" (default) and "deny". There are separate mode
attributes for the <host-access> and <ip-access> subelements, which are
used to specify whether to allow requests from clients that are identified
through those subelements.

Configuration for global-web-application.xml and orion-web.xml

6-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<host-access ... >
This subelement of <access-mask> specifies a host name or domain from which
to allow or deny access.

Attributes of <host-access>:

� domain: This is the host or domain.

� mode: Specifies whether to allow or deny access from the specified host or
domain. Supported values are "allow" (default) or "deny".

<ip-access ... >
This subelement of <access-mask> specifies an IP address and subnet mask from
which to allow or deny access.

Attributes of <ip-access>:

� ip: This is the IP address, as a 32-bit value (example: "123.124.125.126").

� netmask: This is the relevant subnet mask (example: "255.255.255.0").

� mode: Specifies whether to allow or deny access from the specified IP address
and subnet mask. Supported values are "allow" (default) or "deny".

<cluster-config ... >
Use this element if, and only if, you want to use OC4J clustering. Remove it or
comment it out otherwise. Clustered applications have their HTTP session data
replicated between clusters in the cluster island. Objects in the HTTP session data
must be serializable (directly or indirectly implementing the
java.io.Serializable interface) or remoteable (directly or indirectly
implementing the java.rmi.Remote interface) for the session replication to work.

See the Oracle Application Server 10g Performance Guide for general information about
clustering.

Attributes of <cluster-config>:

� host: This is the multicast host/IP for transmitting and receiving cluster data.
The default is "230.230.0.1".

� id: This is the ID (number) of this cluster node to identify itself within the
cluster. The default is based on the local machine IP.

� port: This is the port through which to transmit and receive cluster data. The
default is "9127".

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-11

<servlet-chaining ... >
This element specifies a servlet to call when the response of the current servlet is set
to a specified MIME type. The specified servlet will be called after the current
servlet. This is known as servlet chaining, for filtering or transforming certain kinds
of output.

Attributes of <servlet-chaining>:

� mime-type: This is the MIME type to trigger the chaining, such as
"text/html".

� servlet-name: This is the servlet to call when the specified MIME type is
encountered. The servlet name is tied to a servlet class through its definition in
the <web-app> element of global-web-application.xml, web.xml, or
orion-web.xml.

<request-tracker ... >
This element of specifies a servlet to use as a request tracker. Request trackers are
useful for logging information, for example.

You must define any request trackers in orion-web.xml, not
global-web-application.xml, because a <request-tracker> element
points to a servlet that is defined within the same application.

A request tracker is invoked for each separate request sent from a browser to the
server, at the time that the corresponding response is committed (immediately
before the response is actually sent).

There can be multiple request trackers, each one defined in a separate
<request-tracker> element.

Attribute of <request-tracker>:

� servlet-name: This specifies the servlet to invoke. You can specify either the
servlet name or the class name, according to the corresponding
<servlet-name> or <servlet-class> element (both of which are
subelements of a <servlet> element) in the web.xml file.

Note: Servlet chaining is an older mechanism with essentially the
same functionality as standard servlet filtering, which was
introduced in the servlet 2.3 specification. It is advisable to use
servlet filtering instead. See "Servlet Filters" on page 3-2.

Configuration for global-web-application.xml and orion-web.xml

6-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<session-tracking ... >
This element specifies the session-tracking settings for this application. Session
tracking is accomplished through cookies, assuming a cookie-enabled browser.

For general information about servlet sessions, see "Servlet Sessions" on page 2-37.

The servlet to use as the session tracker is specified through a subelement.

Subelement of <session-tracking>:

<session-tracker>

Attributes of <session-tracking>:

� autojoin-session: Specifies whether users should be assigned a session as
soon as they log in to the application. Supported values are "true" and
"false" (default).

� cookies: Specifies whether to send session cookies. Supported values are
"enabled" (default) and "disabled".

� cookie-domain: This is the desired domain for cookies. In general, this would
be used to track a single client or user over multiple Web sites. The setting must
start with a period ("."). For example:

<session-tracking cookie-domain=".us.oracle.com" />

In this case, the same cookie is used and reused when the user visits any site
that matches the ".us.oracle.com" domain pattern, such as
webserv1.us.oracle.com or webserv2.us.oracle.com.

Notes:

� If cookies are disabled, session tracking can be achieved only if
your servlet explicitly calls the encodeURL() method of the
response object, or the encodeRedirectURL() method for
redirects.

� OC4J does not support auto-encoding, where session IDs are
automatically encoded into the URL by the servlet container.
This is a non-standard and expensive process. Therefore, the
<session-tracking> attributes autoencode-urls and
autoencode-absolute-urls are not supported. Also see
"Session Tracking in OC4J" on page 2-39.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-13

The domain specification must consist of at least two elements, such as
".us.oracle.com" or ".oracle.com". A setting of ".com", for example, is
illegal.

Here are a couple of scenarios where cookie domain functionality is useful:

– It can be used to share session state between nodes of a Web application
running on different hosts.

– In OC4J standalone, it can be used for a shared application, where
shared="true" in a <web-app> element in the Web site XML file. In
such an application, some requests go through a secure port and some go
through an nonsecure port, where each port denotes a separate Web site.
You would want the same cookie used regardless of which port is being
used. In this scenario, using cookie-domain is unnecessary, however, if
you use the default ports of 80 for HTTP and 443 for HTTPS. The client
would already recognize these as different ports of the same Web site, and
only a single cookie would be used.

� cookie-max-age: This number is sent with the session cookie and specifies a
maximum interval (in seconds) for the browser to save the cookie. By default,
the cookie is kept in memory during the browser session and discarded
afterward.

<session-tracker ... >
This subelement of <session-tracking> specifies a servlet to use as a session
tracker. Session trackers are useful for logging information, for example.

You must define any session trackers in orion-web.xml, not
global-web-application.xml, because a <session-tracker> element
points to a servlet that is defined within the same application.

A session tracker is invoked as soon as a session is created; specifically, at the same
time as the invocation of the sessionCreated() method of the HTTP session
listener (an instance of a class implementing the
javax.servlet.http.HttpSessionListener interface).

There can be multiple session trackers, each one defined in a separate
<session-tracker> element.

Attribute of <session-tracker>:

� servlet-name: This specifies the servlet to invoke. You can specify either the
servlet name or the class name, according to the corresponding
<servlet-name> or <servlet-class> element (both of which are
subelements of a <servlet> element) in the web.xml file.

Configuration for global-web-application.xml and orion-web.xml

6-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<resource-ref-mapping ... >
Use this element to declare a reference to an external resource such as a data source,
JMS queue, or mail session. This ties a resource reference name to a JNDI location
when deploying.

Subelement of <resource-ref-mapping>:

<lookup-context>

Attributes of <resource-ref-mapping>:

� location: This is the JNDI location from which to look up the resource. For
example:

location="jdbc/TheDS"

� name: This is the resource reference name, which matches the name of a
resource-ref element in the web.xml file. For example:

name="jdbc/TheDSVar"

<lookup-context ... >
This subelement of <resource-ref-mapping> specifies an optional JNDI context
(javax.naming.Context instance) that will be used to retrieve the resource. This
is useful when connecting to third-party modules, such as a third-party JMS server,
for example. Either use the JNDI context implementation supplied by the resource
vendor, or, if none exists, write an implementation that in turn negotiates with the
vendor software.

Subelement of <lookup-context>:

<context-attribute>

Attribute of <lookup-context>:

� location: This is the name to look for in the "foreign" (such as third-party)
JNDI context when retrieving the resource.

<context-attribute ... >
This subelement of <lookup-context> (which is a subelement of
<resource-ref-mapping>) specifies an attribute to send to the "foreign", such as
third-party, JNDI context.

The only mandatory attribute in JNDI is java.naming.factory.initial,
which is the class name of the context factory implementation.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-15

Attributes of <context-attribute>:

� name: Specifies the name of the attribute.

� value: Specifies the value of the attribute.

<env-entry-mapping ... >deploymentValue</env-entry-mapping>
In orion-web.xml, this element overrides the value of an env-entry setting in
the web.xml file. It is used to keep the EAR assembly clean of deployment-specific
values. The new value is specified in the tag body.

Attribute of <env-entry-mapping>:

� name: This is the name of the env-entry setting to override.

<security-role-mapping ... >
This element maps a security role to specified users and groups or to all users. It
maps to a security role of the same name in the web.xml file. The impliesAll
attribute or an appropriate combination of subelements—<group>, <user>, or
both—should be used.

See the Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide for additional information about the <security-role-mapping> element
in OC4J configuration files.

Subelements of <security-role-mapping>:

<group>
<user>

Attributes of <security-role-mapping>:

� impliesAll: Specifies whether this mapping implies all users. Supported
values are "true" or "false" (default).

� name: This is the name of the security role. It must match a name specified in a
<role-name> subelement of a <security-role> element in web.xml.

Configuration for global-web-application.xml and orion-web.xml

6-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<group ... >
Use this subelement of <security-role-mapping> to specify a group to map to
the security role of the parent <security-role-mapping> element. All the
members of the specified group are included in this role.

Attribute of <group>:

� name: This is the name of the group.

<user ... >
Use this subelement of <security-role-mapping> to specify a user to map to
the security role of the parent <security-role-mapping> element.

Attribute of <user>:

� name: This is the name of the user.

<ejb-ref-mapping ... >
This element creates a mapping between an EJB reference, defined in an
<ejb-ref> element, and a JNDI location when deploying.

The <ejb-ref> element can appear within the <web-app> element of
orion-web.xml or web.xml and is used to declare a reference to an EJB.

Attributes of <ejb-ref-mapping>:

� location: This is the JNDI location from which to look up the EJB home.

� name: This is the EJB reference name, which matches the <ejb-ref-name>
setting of the <ejb-ref> element.

Important: OC4J has an automatic security mapping feature. By
default, if a security role defined in web.xml has the same name as
an OC4J group defined in jazn-data.xml (or other valid user
managers), then OC4J will map them. However, this feature is
completely disabled if you do any explicit mapping through the
<security-role-mapping> element. If you use
<security-role-mapping> at all, OC4J assumes that you want
explicit mapping only. This is to prevent unintended implicit
mappings when a user might intend to declare explicit mappings
only.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-17

<expiration-setting ... >
This element sets the expiration for a given set of resources; that is, how long before
the resources would expire in the browser. (The browser reloads an expired resource
upon the next request for it.) This is useful for caching policies, such as for not
reloading images as frequently as documents.

Attributes of <expiration-setting>:

� expires: This is the number of seconds before expiration, or "never" for no
expiration. The default setting is "0" (zero), for immediate expiration.

� url-pattern: This is the URL pattern that the expiration applies to, such as in
the following example:

url-pattern="*.gif"

<jazn-web-app ... >
Use this element to configure the OracleAS JAAS Provider and Single Sign-On
(SSO) properties for servlet execution. These features must be set appropriately in
order to invoke a servlet under the privileges of a particular security subject.

Attributes of <jazn-web-app>:

� auth-method: Supported values are "BASIC" (for basic J2EE authentication,
the default) and "SSO". Use "SSO" to employ Oracle Application Server Single
Sign-On for HTTP client authentication. You should use "BASIC" mode if your
application uses a custom LoginModule instance.

� runas-mode: Set runas-mode to "true" to invoke the servlet using the
privileges of a particular subject. A subject is defined by an instance of the
javax.security.auth.Subject class and includes a set of facts regarding a
single entity, such as a person. Such facts include identities and security-related
attributes, such as passwords and cryptographic keys.

With the default runas-mode="false" setting, doasprivileged-mode is
ignored.

� doasprivileged-mode: Assuming runas-mode="true", use the default
"true" setting of doasprivileged-mode to use privileges of a particular
subject without being limited by the access-control restrictions of the server.

Values of runas-mode="true" and doasprivileged-mode="true" result
in use of the static Subject.doAsPrivileged() method when the servlet is
invoked. Values of runas-mode="true" and
doasprivileged-mode="false" result in use of the static

Configuration for global-web-application.xml and orion-web.xml

6-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Subject.doAs() method. In either case, the JAAS Provider passes in the
Subject instance in the method call.

When the doAsPrivileged() method is used, the JAAS Provider invokes the
method with a null java.security.AccessControlContext instance. This
is to start the action freshly and execute the servlet without the restrictions of
the current server AccessControlContext instance. When the doAs()
method is used, an AccessControlContext instance is retrieved from the
current thread (from the server).

For additional information about JAAS and the features described for this element,
see the Oracle Application Server Containers for J2EE Security Guide. You can also refer
to Sun Microsystems documentation at the following location:

http://java.sun.com/j2se/1.4.1/docs/guide/security/jaas/JAASRefGuide.html

<web-app-class-loader ... >
Use this element for classloading instructions. See "Loading WAR File Classes
Before System Classes in OC4J" on page 2-13 for additional information.

Attributes of <web-app-class-loader>:

� search-local-classes-first: Set this to "true" to search and load WAR
file classes before system classes. The default setting is "false".

� include-war-manifest-class-path: Set this to "false" to not include the
classpath specified in the WAR file manifest Class-Path attribute when
searching and loading classes from the WAR file, regardless of the
search-local-classes-first setting. The default setting is "true".

Notes:

� If both attributes are set to "true", the overall classpath is
constructed so that classes physically residing in the WAR file
are loaded prior to any classes from the WAR file manifest
classpath. So you can assume that in the event of any conflict,
classes physically residing in the WAR file would take
precedence.

� In accordance with the servlet specification,
search-local-classes-first functionality cannot be
used in loading classes in java.* or javax.* packages.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-19

<authenticate-on-dispatch ... >
Use this element to disable OC4J authentication of forward or include targets.

Attributes of <authenticate-on-dispatch>:

� value: Set this to "false" to disable authentication of forward or include
targets, which complies with the servlet specification. This flag is introduced in
the OC4J 9.0.4 implementation. The default value is "true" to protect against
security violations for applications developed against previous OC4J versions.

<web-app ... >
This element is used as in the standard web.xml file; see the servlet specification
for details. In global-web-application.xml, defaults for <web-app> settings
can be established. In web.xml, application-specific <web-app> settings can
override the defaults. In orion-web.xml, deployment-specific <web-app>
settings can override the settings in web.xml.

DTD for global-web-application.xml and orion-web.xml
This section provides the OC4J-specific portion of the DTD for the
global-web-application.xml and orion-web.xml files in the OC4J 9.0.4
implementation. This does not include the DTD portion for the standard
<web-app> element of the web.xml file. (The DTD for
global-web-application.xml and orion-web.xml is a superset of the
standard web.xml DTD.)

<!ENTITY % CHARSET "CDATA">

<!ENTITY % WEBPATH "CDATA">

<!ENTITY % NUMBER "CDATA">

<!ENTITY % HOST "CDATA">

<!ENTITY % PATH "CDATA">

<!ENTITY % CLASSNAME "CDATA">

<!-- A group that this security-role-mapping implies. Ie all the members of the
 specified group are included in this role. -->
<!ELEMENT group (#PCDATA)>
<!ATTLIST group name CDATA #IMPLIED
>

Configuration for global-web-application.xml and orion-web.xml

6-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<!-- An attribute sent to the context. The only mandatory attribute in JNDI is
 the 'java.naming.factory.initial' which is the classname of the context factory
 implementation. -->
<!ELEMENT context-attribute (#PCDATA)>
<!ATTLIST context-attribute name CDATA #IMPLIED
value CDATA #IMPLIED
>

<!-- Defines the relative/absolute path to a file containing mime-mappings to
 use. -->
<!ELEMENT mime-mappings (#PCDATA)>
<!ATTLIST mime-mappings path CDATA #IMPLIED
>

<!-- Specifies a codebase where classes used by this application (such as
 servlets/beans) can be found. -->
<!ELEMENT classpath (#PCDATA)>
<!ATTLIST classpath path CDATA #REQUIRED
>

<!-- The specification of an optional javax.naming.Context implementation used
 for retrieving the resource. This is useful when hooking up with 3rd party
 modules, such as a 3rd party JMS server for instance. Either use the context
 implementation supplied by the resource vendor or if none exists write an
 implementation which in turn negotiates with the vendor software. -->
<!ELEMENT lookup-context (context-attribute+)>
<!ATTLIST lookup-context location CDATA #IMPLIED
>

<!-- Specifies a servlet to use as request-tracker; request-trackers are invoked
 for every request and are useful for logging purposes, for example -->
<!ELEMENT request-tracker (#PCDATA)>
<!ATTLIST request-tracker servlet-name CDATA #IMPLIED
>

<!-- The resource-ref element is used for the declaration of a reference to
 an external resource such as a datasource, JMS queue, mail session or similar.
 The resource-ref-mapping ties this to a JNDI-location when deploying. -->
<!ELEMENT resource-ref-mapping (lookup-context?)>
<!ATTLIST resource-ref-mapping location CDATA #IMPLIED
name CDATA #REQUIRED
>

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-21

<!-- Tag that is defined if the application is to be clustered. Clustered
 applications have their ServletContext and session data
 shared between the apps in the cluster, the values have to be either
 Serializable or be remote RMI-objects (implement java.rmi.Remote). -->
<!ELEMENT cluster-config (#PCDATA)>
<!ATTLIST cluster-config host %HOST; "230.0.0.1"
id CDATA "based on local IP"
port %NUMBER; "9127"
>

<!-- Specifies an optional access-mask for this application, hostnames and
 ip/subnets can be used to filter out allowed clients of this application. -->
<!ELEMENT access-mask (host-access*, ip-access*)>
<!ATTLIST access-mask default (allow|deny) "allow"
>

<!-- Overrides the value of an env-entry in the assembly descriptor. It is used
 to keep the .ear (assembly) clean from deployment-specific values. The body is
 the value. -->
<!ELEMENT env-entry-mapping (#PCDATA)>
<!ATTLIST env-entry-mapping name CDATA #IMPLIED
>

<!-- Specifies the Expires setting for a given set of resources, useful for
 caching policies (for instance for browsers not to reload images as frequently
 as documents). -->
<!ELEMENT expiration-setting (#PCDATA)>
<!ATTLIST expiration-setting expires CDATA #IMPLIED
url-pattern CDATA #IMPLIED
>

<!-- Overrides the value of a context-param in the assembly descriptor. It is
 used to keep the .ear (assembly) clean from deployment-specific values. The
 body is the value. -->
<!ELEMENT context-param-mapping (#PCDATA)>
<!ATTLIST context-param-mapping name CDATA #IMPLIED
>

<!-- Session-tracking settings for this application. -->
<!ELEMENT session-tracking (session-tracker*)>
<!ATTLIST session-tracking autoencode-absolute-urls (true|false) "false"
autoencode-urls (true|false) "true"
autojoin-session (true|false) "false"
cookie-domain CDATA #IMPLIED

Configuration for global-web-application.xml and orion-web.xml

6-22 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

cookie-max-age %NUMBER; "in memory only"
cookies (enabled|disabled) "enabled"
>

<!-- A user that this security-role-mapping implies. -->
<!ELEMENT user (#PCDATA)>
<!ATTLIST user name CDATA #IMPLIED
>

<!-- Adds a virtual directory mapping, used to include files that doesnt
 physically reside below the document-root among the web-exposed files. -->
<!ELEMENT virtual-directory (#PCDATA)>
<!ATTLIST virtual-directory real-path %PATH; #IMPLIED
virtual-path %PATH; #IMPLIED
>

<!-- Specifies an ip/netmask who is allowed access. -->
<!ELEMENT ip-access (#PCDATA)>
<!ATTLIST ip-access ip CDATA #REQUIRED
mode (allow|deny) #REQUIRED
netmask CDATA #IMPLIED
>

<!-- Specifies a servlet to use as chainer for a specified mime-type. Useful to
 filter/transform certain kinds of output. -->
<!ELEMENT servlet-chaining (#PCDATA)>
<!ATTLIST servlet-chaining mime-type CDATA #IMPLIED
servlet-name CDATA #IMPLIED
>

<!-- Specifies a domain or netmask who is allowed access. -->
<!ELEMENT host-access (#PCDATA)>
<!ATTLIST host-access domain CDATA #REQUIRED
mode (allow|deny) #REQUIRED
>

<!-- The ejb-ref element is used for the declaration of a reference to
 another enterprise bean's home. The ejb-ref-mapping ties this to JNDI-location
 when deploying. -->
<!ELEMENT ejb-ref-mapping (#PCDATA)>
<!ATTLIST ejb-ref-mapping location CDATA #IMPLIED
name CDATA #REQUIRED
>

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-23

<!-- The runtime mapping (to groups and users) of a role. Maps to a
 security-role of the same name in the assembly descriptor. -->
<!ELEMENT security-role-mapping (group*, user*)>
<!ATTLIST security-role-mapping impliesAll CDATA #IMPLIED
name CDATA #IMPLIED
>

<!-- Specifies a servlet to use as session-tracker; session-trackers are invoked
 as soon as a session is created and are useful for logging purposes, for
 example -->
<!ELEMENT session-tracker (#PCDATA)>
<!ATTLIST session-tracker servlet-name CDATA #IMPLIED
>

<!-- JAZN configuration -->
<!ELEMENT jazn-web-app (#PCDATA)>
<!ATTLIST jazn-web-app auth-method CDATA #IMPLIED
runas-mode (true | false) "false"
doasprivileged-mode (true | false) "true"
>

<!-- Web-app classloader configuration -->
<!ELEMENT web-app-class-loader EMPTY>
<!ATTLIST web-app-class-loader
search-local-classes-first (true | false) "false"
include-war-manifest-class-path (true | false) "true"
>

<!-- Authentication of forward/include targets -->
<!ELEMENT authenticate-on-dispatch EMPTY>
<!ATTLIST authenticate-on-dispatch
value (true | false) "true"
>

<!-- This file contains the orion-specific configuration for a web-application.
 The path to the file is located at
 ORION_HOME/application-deployments/deploymentName/warname(.war)/orion-web.xml
 or (web-app-root/)WEB-INF/orion-web.xml if no deployment-directory is specified
 in server.xml. -->
<!ELEMENT orion-web-app (classpath*, context-param-mapping*, mime-mappings*,
 virtual-directory*, access-mask?, cluster-config?, servlet-chaining*,
 request-tracker*, session-tracking?, resource-ref-mapping*,
 security-role-mapping*, env-entry-mapping*, ejb-ref-mapping*,
 expiration-setting*, web-app?, jazn-web-app?, web-app-class-loader?,
 authenticate-on-dispatch?)>

Configuration for global-web-application.xml and orion-web.xml

6-24 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<!ATTLIST orion-web-app autoreload-jsp-beans (true|false) "true"
autoreload-jsp-pages (true|false) "true"
default-buffer-size CDATA "2048"
default-charset %CHARSET; "iso-8859-1"
deployment-version CDATA #IMPLIED
development (true|false) "false"
directory-browsing (allow|deny) "deny"
file-modification-check-interval %NUMBER; "1000"
jsp-cache-directory CDATA #IMPLIED
jsp-cache-tlds (true|fase) "true"
jsp-taglib-locations CDATA #IMPLIED
jsp-print-null (true|false) "true"
jsp-timeout %NUMBER; "0 (never)"
simple-jsp-mapping (true|false) "false"
enable-jsp-dispatcher-shortcut (true|false) "true"
persistence-path CDATA #IMPLIED
servlet-webdir %PATH; "/servlet/"
source-directory CDATA #IMPLIED
temporary-directory CDATA #IMPLIED
>

Hierarchical Representation of global-web-application.xml and orion-web.xml
This section provides a graphical representation of the hierarchy of the
global-web-application.xml and orion-web.xml files.

<orion-web-app default-buffer-size="..." default-charset="..."
 deployment-version="..." development="..."
 source-directory="..." directory-browsing="..."
 file-modification-check-interval="..."
 jsp-print-null="..." jsp-timeout="..." jsp-cache-directory="..."
 jsp-cache-tlds="..." jsp-taglib-locations="..."
 simple-jsp-mapping="..." enable-jsp-dispatcher-shortcut="..."
 persistence-path="..." servlet-webdir="..."
 temporary-directory="...">
 <classpath path="...">
 <context-param-mapping name="...">
 <mime-mappings path="...">
 <virtual-directory real-path="..." virtual-path="...">

Note: For simplicity of presentation, end-tags are omitted.

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-25

 <access-mask default="...">
 <host-access domain="..." mode="...">
 <ip-access ip="..." netmask="..." mode="...">
 <cluster-config host="..." id="..." port="...">
 <servlet-chaining mime-type="..." servlet-name="...">
 <request-tracker servlet-name="...">
 <session-tracking autojoin-session="..." cookies="..."
 cookie-domain="..." cookie-max-age="...">
 <session-tracker servlet-name="...">
 <resource-ref-mapping location="..." name="...">
 <lookup-context location="...">
 <context-attribute name="..." value="...">
 <env-entry-mapping name="...">
 <security-role-mapping impliesAll="..." name="...">
 <group name="...">
 <user name="...">
 <ejb-ref-mapping location="..." name="...">
 <expiration-setting expires="..." url-pattern="...">
 <jazn-web-app auth-method="..." runas-mode="..."
 doasprivileged-mode="...">
 <web-app-class-loader search-local-classes-first="..."
 include-war-manifest-class-path="...">
 <authenticate-on-dispatch value="...">
 <web-app> AS IN STANDARD WEB.XML

Sample global-web-application.xml Settings
This is an abbreviated example of a default global-web-application.xml file,
showing some <orion-web-app> attribute settings, mime-mapping settings, and
the setup and mapping of the JSP and RMI front-end servlets (all possibly subject to
change in the shipped product):

<?xml version="1.0" standalone='yes'?>
<!DOCTYPE orion-web-app PUBLIC '//Evermind//Orion web-application'
 'http://xmlns.oracle.com/ias/dtds/orion-web.dtd'>

<orion-web-app
 jsp-cache-directory="./persistence"
 servlet-webdir="/servlet"
 development="false"
 jsp-timeout="0"
 jsp-taglib-locations="./jsp/lib/taglib"
>

Configuration for global-web-application.xml and orion-web.xml

6-26 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

 <!-- The mime-mappings for this server -->
 <mime-mappings path="./mime.types" />

 <web-app>

 <servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>oracle.jsp.runtimev2.JspServlet</servlet-class>
 <load-on-startup>0</load-on-startup>
 <!-- you can disable page scope listener if you
 don't need this function. -->
 <init-param>
 <param-name>check_page_scope</param-name>
 <param-value>true</param-value>
 </init-param>
 <!-- you can set main_mode to "justrun" to speed up
 JSP dispatching, if you don't need to recompile
 your JSP anymore. You can always switch your
 main_mode. Please see our doc for details -->
 <!--
 <init-param>
 <param-name>main_mode</param-name>
 <param-value>justrun</param-value>
 </init-param>
 -->
 </servlet>

 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.jsp</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.JSP</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.sqljsp</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>/*.SQLJSP</url-pattern>
 </servlet-mapping>

Configuration for global-web-application.xml and orion-web.xml

Configuration File Descriptions 6-27

 <servlet>
 <servlet-name>rmi</servlet-name>
 <servlet-class>
 com.evermind.server.rmi.RMIHttpTunnelServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>rmi</servlet-name>
 <url-pattern>/*.tunnelrmi</url-pattern>
 </servlet-mapping>

 </web-app>
</orion-web-app>

Configuration for Web Site XML Files

6-28 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration for Web Site XML Files
The following sections provide detailed information about Web site XML
configuration files, including default-web-site.xml, for an Oracle Application
Server environment, and http-web-site.xml, for an OC4J standalone
environment:

� Element Descriptions for Web Site XML Files

� DTD for Web Site XML Files

� Hierarchical Representation of Web Site XML Files

� Sample default-web-site.xml File

For an overview of these files, see "OC4J Web Site Descriptors" on page 5-26.

Element Descriptions for Web Site XML Files
The element descriptions in this section apply to any OC4J Web site XML file,
including default-web-site.xml (Oracle Application Server) and
http-web-site.xml (OC4J standalone).

<web-site ... >
This is the root element for configuring an OC4J Web site.

Subelements of <web-site>:

<description>
<frontend>
<web-app>
<default-web-app>
<user-web-apps>
<access-log>
<odl-access-log>
<ssl-config>

Attributes of <web-site>:

� cluster-island: A cluster island is two or more Web servers that share
session failover state for replication. Use the cluster-island attribute when
clustering the Web tier between multiple OC4J instances in Oracle Application
Server. If this attribute is set to a cluster island ID (number spawning from 1
and up), then this Web site will participate as a back-end server in the island
specified by the ID. The ID is a chosen number that depends on your clustering
configuration. If only one island is used, the ID is always 1.

Configuration for Web Site XML Files

Configuration File Descriptions 6-29

See the Oracle Application Server 10g Performance Guide for general information
about clustering.

� display-name: This is for a user-friendly or informal Web site name.

� host: Specifies the host for this Web site, as either a DNS host name or an IP
address. If a server is a "multi-home" machine (having multiple IP addresses),
you can use the "[ALL]" setting to listen to all IP addresses. They would all be
combined into this single Web site.

� log-request-info: Specifies whether to write information about the
incoming request into the Web site log if an error occurs. Supported values are
"true" and "false" (default). The Web site log is enabled through either the
<access-log> or <odl-access-log> element, described later in this
section. ("OC4J Logging" on page 2-21 provides additional information about
enabling logs, including the Web site log.)

� max-request-size: Sets a maximum size, in bytes, for incoming requests. If a
client sends a request that exceeds this maximum, it will receive a "request
entity too large" error. The default maximum is 15000.

� secure: Specifies whether to support Secure Socket Layer (SSL) functionality.
Supported values are "true" and "false" (default). For a protocol setting of
"ajp13" (used in an Oracle Application Server environment), a "true" setting
results in secure AJP protocol between Oracle HTTP Server and OC4J. For a
protocol setting of "http" (used in OC4J standalone), a "true" setting results in
HTTPS protocol between the client and OC4J.

Also note that a secure="true" setting requires that you use the
<ssl-config> element (a subelement under the <web-site> element) to
specify the keystore path and password. This element is documented later in
this section.

� protocol: Specifies the protocol that the Web site is using. Possible values are
"http" and "ajp13" (for AJP, the default). In a production environment with
Oracle Application Server, you should use only the "ajp13" setting. The AJP

Note: SSL and HTTPS features are also available through Oracle
HTTP Server for communication between Oracle HTTP Server and
the client. For information, see Oracle Application Server 10g Security
Guide.

Configuration for Web Site XML Files

6-30 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

protocol is for use with Oracle HTTP Server and mod_oc4j. Note that each
protocol must have a corresponding port, and vice versa.

The "http" setting is for OC4J standalone.

To use either an "ajp13" or "http" setting in secure mode (SSL), you must set
the secure flag to "true" and use the <ssl-config> subelement to specify
the keystore path and password. This element is documented later in this
section.

� port: This is the port number for this Web site. Each port must have a
corresponding protocol, and vice versa. In OC4J standalone, a port setting of
8888 is used by default for direct access to the OC4J listener, but you can change
this as desired.

In an Oracle Application Server environment, this port setting is overridden by
OPMN, the Oracle Process Management and Notification system. Oracle
Application Server uses port 7777 by default for access through Oracle HTTP
Server with Oracle Application Server Web Cache enabled.

� use-keep-alives: Typical behavior for a servlet container is to close a
connection once a request has been completed. With a use-keep-alives
setting of "true", however, a connection is maintained across requests. For
AJP protocol, connections are always maintained and this attribute is ignored.
For other protocols, the default is "true"; disabling it might cause major
performance loss.

� virtual-hosts: This optional setting is useful for virtual sites sharing the
same IP address. The value is a comma-delimited list of host names tied to this
Web site.

<description>This is the description.</description>
You can use the body of this element for a brief description of the Web site.

Important: In a UNIX environment, port numbers less than 1024
require root privileges for access. Also note that if there is no port
specification from the client browser, port 80 is assumed for HTTP
protocol and port 443 for HTTPS.

Configuration for Web Site XML Files

Configuration File Descriptions 6-31

<frontend ... >
This specifies a perceived front-end host and port of this Web site as seen by HTTP
clients. When the site is behind a load balancer or firewall, the <frontend>
specification is necessary to provide appropriate information to Web application
code for functionality such as URL rewriting. Using the host and port specified in
the <frontend> element, the back-end server that is actually running the
application knows to refer to the front-end instead of to itself in any URL rewriting.
This way, subsequent requests properly come in through the front-end again
instead of trying to access the back-end directly.

Attributes of <frontend>:

� host: This is the host name of the front-end server, such as "www.acme.com".

� port: This is the port number of the front-end server, such as "80".

<web-app ... >
This element binds a particular Web module to this Web site. It specifies the name of
a J2EE application archive (EAR file name minus the .ear extension) from the
server.xml file, and the name of a Web module within the J2EE application. The
Web module would be defined in the J2EE application.xml file in the
application EAR file (or possibly in the orion-application.xml file in the EAR
file). The Web module is bound at the location specified by the <web-app> element
root attribute.

Note: It is possible to deploy a WAR file by itself, instead of
within an EAR file. In OC4J standalone, such Web applications
would be added to the OC4J default application. (In OC4J, there
must always be a parent application of some sort.) See "OC4J
Default Application and Default Web Application" on page 5-37 for
more information.

In this scenario, the Web site XML file <web-app> element
specifies the name of the default application rather than the name
of a J2EE application archive. More details are provided in the
attribute descriptions and examples that follow.

Configuration for Web Site XML Files

6-32 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Mapping to and from Web site XML files, particularly with respect to the
application and name attributes, is shown in examples elsewhere in this
document. See "Example: Mappings to and from Web Site Descriptors" on page 5-28
(for a typical scenario of deploying a WAR file within an EAR file) and "Deploying
an Independent WAR File to OC4J Standalone" on page 5-47 (for the scenario of
deploying a WAR file by itself to the OC4J default application).

Attributes of <web-app>:

� application: This is the J2EE application archive name, which is the EAR file
name without the .ear extension, and which corresponds to the name attribute
of an <application> element in the server.xml file.

� load-on-startup: Optional attribute to specify whether this Web module
should be preloaded on application startup. Otherwise, it is loaded upon the
first request for it. Supported values are "true" and "false" (default).

Preloading of individual servlets, through <load-on-startup> elements in
the application web.xml file, is possible only if this <web-app> element
load-on-startup attribute is enabled. See "Servlet Preloading" on page 2-9
for more information.

� max-inactivity-time: Optional integer attribute to specify the number of
minutes of inactivity after which OC4J will shut down the Web module. By
default, a Web module is never shut down due to inactivity.

� name: This is the name of a Web module within the specified J2EE application,
and corresponds to the <web-uri> value (without the .war extension) of a
<web> subelement of a <module> element in the J2EE application.xml file.
The J2EE application.xml file is in the EAR file.

Note: If you deploy a WAR file by itself in OC4J standalone, using
the OC4J default application as the parent, then the application
attribute would instead reflect the name of the default application,
according to the <global-application> element in the
server.xml file.

Configuration for Web Site XML Files

Configuration File Descriptions 6-33

� root: This is the path to which the Web module is to be bound, which defines
the context path portion of the URL used to invoke the module. For example, if
the Web module CatalogApp at Web site www.example.com is bound to the
root setting "/catalog", then it can be invoked as follows:

http://www.example.com/catalog

Notes:

� If you deploy a WAR file by itself in OC4J standalone, using the
OC4J default application as the parent, then the name attribute
would instead reflect the value of the id attribute of a
<web-module> element in the OC4J global
application.xml file. This is the application.xml file for
the OC4J default application, but be aware that it is not a
standard J2EE file; it is OC4J-specific. Also note that the id
attribute, like the <web-app> name attribute, does not have the
.war extension.

� An application can also have an orion-application.xml
file in the EAR file, with <web-module> elements that define
additional Web modules, or even override Web modules
defined in the J2EE application.xml file (although
overriding is not advised). The name attribute can reflect the id
value of a <web-module> element in
orion-application.xml, instead of reflecting a
<web-uri> value in the J2EE application.xml file.

� The orion-application.xml file uses the same DTD as the
OC4J global application.xml file; namely,
orion-application.dtd.

Configuration for Web Site XML Files

6-34 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� shared: This allows sharing of a published Web module between Web sites,
where a Web site is defined by a particular pairing of a protocol and a port.
Supported values are "true" and "false" (default). Sharing implies the
sharing of everything that makes up a Web application, including sessions,
servlet instances, and context values. An example is to share a Web application
in OC4J standalone between an HTTP site and an HTTPS site at the same
context path, when SSL is required for some but not all of the communications.
(Performance is improved by encrypting only sensitive information, rather than
all information.)

If an HTTPS Web application is marked as shared, its session tracking strategy
reverts from SSL session tracking to session tracking through cookies or URL
rewriting. This could possibly make the Web application less secure, but might
be necessary to work around issues such as SSL session timeouts not being
properly supported in some browsers.

<default-web-app ... >
This element creates a reference to the default Web application of this Web site. For
users, it is meaningful only in an OC4J standalone environment. See "OC4J Default
Application and Default Web Application" on page 5-37 for more information.

In an Oracle Application Server environment, the OC4J default Web application has
system-level functionality but is not otherwise meaningful. See "OC4J Default Web
Application in Oracle Application Server" on page 5-58.

Important:

� The root attribute overrides the <context-root> value of
the corresponding <web> element in the J2EE
application.xml file. So even though the
<context-root> element is mandatory in an
application.xml file, its value is not used by OC4J.

� Specifying a root setting of "/" will override the OC4J default
Web application. This setting or a null setting is not allowed by
the admin.jar utility when binding a Web application to the
Web site.

Important: Use shared="true" only in OC4J standalone.

Configuration for Web Site XML Files

Configuration File Descriptions 6-35

Attributes of <default-web-app> are the same as for the <web-app> element
described immediately above, but note that the default setting of
load-on-startup is "true".

<user-web-apps ... >
Use this element to support user directories and applications. Each user has his or
her own Web module and associated web-application.xml file. User
applications are reached at /username/ from the server root.

Attributes of <user-web-apps>:

� max-inactivity-time: Optional integer attribute to specify the number of
minutes of inactivity after which OC4J will shut down the Web module. By
default, a Web module is never shut down due to inactivity.

� path: This is a path to specify the local directory of the user application,
including a wildcard for the user name. The default path setting on UNIX, for
example, is "/home/username", where username is replaced by the
particular user name.

<access-log ... >
Use this element to enable text-based access logging for this Web site and to specify
information about the access log, including the path, file name, and what
information is included. The log file is where incoming requests (each access of the
Web site) are logged.

Alternatively, use the <odl-access-log> element (described immediately below)
for ODL logging. See "Oracle Diagnostic Logging Versus Text-Based Logging" on
page 2-23 for information about ODL.

Attributes of <access-log>:

� format: Specifies one or more of several supported variables that result in
information being prepended to log entries. Supported variables are $time
$request, $ip, $host, $path, $size, $method, $protocol, $user,
$status, $referer, $time, $agent, $cookie, $header, and $mime.
Between variables, you can type in any separator characters that you want to
appear between values in the log message.

Note: Do not use both <access-log> and <odl-access-log>;
you can use only one type of logging. (The last element in the Web
site XML file would take precedence, but do not count on this
behavior.)

Configuration for Web Site XML Files

6-36 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

The default setting is as follows:

"$ip - $user - [$time] ’$request’ $status $size"

As an example, this would result in log messages such as the following (with
the second message wrapping around to a second line):

148.87.1.180 - - [06/Nov/2001:10:23:18 -0800] ’GET / HTTP/1.1’ 200 2929
148.87.1.180 - - [06/Nov/2001:10:23:53 -0800] ’GET
/webservices/statefulTest HTTP/1.1’ 200 301

In this example, the user is null, the time is in brackets (as specified in the
format setting), the request is in single-quotes (as specified), and the status
and size in the first message are 200 and 2929, respectively.

� path: Specifies the path and name of the access log. This can be an absolute
path or a path relative to the j2ee/home/config directory. The default setting
in default-web-site.xml is the following:

path="../log/default-web-access.log"

� split: Specifies how often to begin a new access log. Supported values are
"none" (never, which is the default), "hour", "day", "week", or "month".
For a value other than "none", logs are named according to the suffix
attribute.

� suffix: Specifies timestamp information to append to the base file name of the
logs (as specified in the path attribute) if splitting is used, to make a unique
name for each file. The format used is that of
java.text.SimpleDateFormat, and symbols used in suffix settings are
according to the symbology of that class. For information about
SimpleDateFormat and the format symbols that is uses, refer to the Sun
Microsystems Javadoc at the following location:

http://java.sun.com/products/jdk/1.2/docs/api/index.html

The default suffix setting is "-yyyy-MM-dd". These characters are
case-sensitive, as described in the SimpleDateFormat documentation.

Note: Note the difference between the path attribute of
<access-log>, which specifies a path and file name, and the
path attribute of <odl-access-log>, which specifies a path
only. (ODL log file names are fixed.)

Configuration for Web Site XML Files

Configuration File Descriptions 6-37

As an example, assume the following <access-log> element (using the
default suffix value):

<access-log path="c:\foo\web-site.log" split="day" />

Log files would be named such as in the following example:

c:\foo\web-site-2001-11-17.log

<odl-access-log ... >
Use this element to enable ODL-based access logging for the Web site and to specify
information about the access logs, including the path, and maximum values for the
size of each file and the total size of all files in the log directory. The log files are
where incoming requests (each access of the Web site) are logged.

Alternatively, use the <access-log> element (described immediately above) for
text-based logging.

See "Oracle Diagnostic Logging Versus Text-Based Logging" on page 2-23 for
information about ODL.

Attributes of <odl-access-log>:

� path: Specifies the path to the access log directory. This can be an absolute path
or a path relative to the j2ee/home/config directory. For example:

path="../log/default-web-access"

The initial log file name in this directory is log1.xml. As the maximum file
size (specified by the max-file-size attribute) is reached, subsequent log
files are named log2.xml, log3.xml, and so on.

Note: Do not use both <access-log> and <odl-access-log>;
you can only use one type of logging or the other. (The last element
in the Web site XML file would take precedence, but do not count
on this behavior.)

Note: Note the difference between the path attribute of
<access-log>, which specifies a path and file name, and the
path attribute of <odl-access-log>, which specifies a path
only. (ODL log file names are fixed.)

Configuration for Web Site XML Files

6-38 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� max-file-size: Specifies the maximum size of each log file, in kilobytes.

� max-directory-size: Specifies the maximum total size, in kilobytes, of all
log files in the directory that is specified in the path attribute.

<ssl-config ... >
This element specifies SSL configuration settings, if applicable. You must use it
whenever you set the secure attribute of the <web-site> element to "true".

See "Servlet Security" on page 2-49 for related information.

Subelement of <ssl-config>:

<property>

Attributes of <ssl-config>:

� keystore: A relative or absolute path to the keystore database (a binary file)
used by this Web site to store certificates and keys for the user base in this
installation. The path value includes the file name. A relative path is relative to
the location of the Web site XML file.

A keystore is a java.security.KeyStore instance and can be created and
maintained using the keytool utility, provided with the Sun Microsystems
JDK.

� keystore-password: The required password to open the keystore.

� needs-client-auth: Indicates whether the entity that is a client to OC4J,
such as Oracle HTTP Server, must submit a certificate for authorization in order
to communicate with OC4J. Supported values are "true" for "client
authentication" (certificate required), and "false" (default, no certificate
required).

� provider: You can use this to specify a provider if you are using JSSE (Java
Secure Socket Extension). By default, OC4J generally uses the Sun Microsystems
implementation of SSL, using an instance of the following for the provider:

com.sun.net.ssl.internal.ssl.Provider

However, the Oracle SSL implementation is also used in some cases, such as for
SOAP and http_client.

� factory: If you are not using JSSE, use the factory attribute to specify an
implementation of SSLServerSocketFactory. The default setting is:

"JSSE: com.evermind.ssl.JSSESSLServerSocketFactory"

Configuration for Web Site XML Files

Configuration File Descriptions 6-39

If you use a third-party SSLServerSocketFactory implementation, you can
use <property> subelements of the <ssl-config> element to send
parameters to the factory.

<property ... >
Use <property> subelements of the <ssl-config> element to pass parameters
to a third-party SSLServerSocketFactory implementation, if applicable.

Attributes of <property>:

� name: The name of a parameter to pass to the factory.

� value: The value of the specified parameter.

DTD for Web Site XML Files
This section provides the DTD for Web site XML configuration files, including
default-web-site.xml and http-web-site.xml, in the OC4J 9.0.4
implementation.

<!ENTITY % WEBPATH "CDATA">

<!ENTITY % NUMBER "CDATA">

<!ENTITY % HOST "CDATA">

<!ENTITY % BOOLEAN "true|false">

<!ENTITY % PATH "CDATA">

<!-- When enabled user dirs/apps will be supported. Each user has his own
 private web-application (and connected web-application.xml file).
 The user apps are reached at /~username/ from the server root. -->
<!ELEMENT user-web-apps (#PCDATA)>
<!ATTLIST user-web-apps max-inactivity-time CDATA "no shutdown"
path %PATH; #IMPLIED
>

<!-- Reference to the default <a class="link"
 href="web.xml.html">web-application of this site. This application will be
 bound to the root of the site. -->
<!ELEMENT default-web-app (#PCDATA)>
<!ATTLIST default-web-app application CDATA #IMPLIED
load-on-startup (true|false) "true"
max-inactivity-time %NUMBER; #IMPLIED
name CDATA #IMPLIED

Configuration for Web Site XML Files

6-40 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

root %WEBPATH; #IMPLIED
shared (true|false) "false"
>

<!-- A short description of this web-site. -->
<!ELEMENT description (#PCDATA)>

<!-- Relative/absolute path to the access-log for this site, this is where
 incoming requests will be logged. -->
<!ELEMENT access-log (#PCDATA)>
<!ATTLIST access-log format CDATA "$ip - $user - [$time] '$request' $status
 $size"
path CDATA #IMPLIED
split (none|hour|day|week|month) "none"
suffix CDATA #IMPLIED
>

<!-- An ODL formated log file. The max-file-size is the maximum number of
 kilobytes a single log file is allowed to grow to. The max-directory-size is
 the maximum number of kilobytes that the directory is allowed to contain. -->
<!ELEMENT odl-access-log (#PCDATA)>
<!ATTLIST odl-access-log path CDATA #REQUIRED max-file-size CDATA #IMPLIED
 max-directory-size CDATA #IMPLIED>

<!-- Reference to a web-application.
 This application will be bound at the location specified by the 'root'
 attribute. -->
<!ELEMENT web-app (#PCDATA)>
<!ATTLIST web-app application CDATA #IMPLIED
load-on-startup (true|false) "false"
max-inactivity-time %NUMBER; "no shutdown"
name CDATA #IMPLIED
root %WEBPATH; #IMPLIED
shared (true|false) "false"
>

<!-- A configuration parameter. -->
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #IMPLIED
value CDATA #IMPLIED
>

<!-- Specifies SSL-configuration settings. These settings are used if
secure="true" is specified on the site.
If a 3rd party SSLServerSocketFactory implementation is used then x property

Configuration for Web Site XML Files

Configuration File Descriptions 6-41

tags can be defined to send arbitary arguments to the factory. -->
<!ELEMENT ssl-config (property*)>
<!ATTLIST ssl-config factory CDATA
 "com.evermind.server.JSSESSLServerSocketFactory"
keystore CDATA #IMPLIED
keystore-password CDATA #IMPLIED
needs-client-auth (true|false) "false"
provider CDATA #IMPLIED
>

<!-- The frontend tag describes which IP, port, and so on that HTTP clients
 perceive this site to be. This is needed when acting behind a load balancer or
 firewall in order to provide the correct info to web-app code when rewriting
 URLs -->
<!ELEMENT frontend (#PCDATA)>
<!ATTLIST frontend host CDATA #IMPLIED
port CDATA #IMPLIED
>

<!-- This file contains the configuration for a web-site. -->
<!ELEMENT web-site (description?, frontend?, default-web-app, web-app*,
 user-web-apps?, access-log?, odl-access-log?, ssl-config?)>
<!ATTLIST web-site cluster-island CDATA #IMPLIED
display-name CDATA #IMPLIED
protocol CDATA #IMPLIED
host %HOST; "[ALL]"
log-request-info (true|false) "false"
max-request-size CDATA #IMPLIED
port %NUMBER; "80"
secure (true|false) "false"
use-keep-alives CDATA #IMPLIED
virtual-hosts CDATA #IMPLIED
>

Hierarchical Representation of Web Site XML Files
This section provides a graphical representation of the hierarchy of Web site XML
configuration files, including default-web-site.xml and
http-web-site.xml.

Note: For simplicity of presentation, end-tags are omitted.

Configuration for Web Site XML Files

6-42 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<web-site cluster-island="..." display-name="..." host="..."
 log-request-info="..." max-request-size="..." secure="..."
 protocol="..." port="..." use-keep-alives="..."
 virtual-hosts="...">
 <description>
 <frontend host="..." port="...">
 <web-app application="..." load-on-startup="..."
 max-inactivity-time="..." name="..." root="..." shared="...">
 <default-web-app application="..." load-on-startup="..."
 max-inactivity-time="..." name="..." root="..." shared="...">
 <user-web-apps max-inactivity-time="..." path="...">
 <access-log format="..." path="..." split="..." suffix="...">
 <odl-access-log path="..." max-file-size="..." max-directory-size="...">
 <ssl-config keystore="..." keystore-password="..."
 needs-client-auth="..." provider="..." factory="...">
 <property name="..." value="...">

Sample default-web-site.xml File
This is a sample default-web-site.xml file, similar to the default file provided
with OC4J for an Oracle Application Server environment:

<?xml version="1.0" standalone='yes'?>
<!DOCTYPE web-site PUBLIC "Oracle Application Server XML Web-site"
 "http://xmlns.oracle.com/ias/dtds/web-site.dtd">

<web-site host="myhost" port="0" protocol="ajp13"
 display-name="Default Oracle Application Server Java WebSite"
 cluster-island="1" >
 <!-- Uncomment the following line when using clustering -->
 <!-- <frontend host="your_host_name" port="80" /> -->
 <!-- The default web-app for this site, bound to the root -->
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <web-app application="default" name="dms" root="/dmsoc4j" />
 <web-app application="default" name="admin_web" root="/adminoc4j" />

 <!-- Access Log, where requests are logged to -->
 <access-log path="../log/default-web-access.log" />

 <!-- Uncomment this if you want to use ODL logging capabilities
 <odl-access-log path="../log/default-web-access" max-file-size="1000"
 max-directory-size="10000"/>
 -->

</web-site>

Configuration with Enterprise Manager 7-1

7
Configuration with Enterprise Manager

In an Oracle Application Server environment, configuration of Web modules is
through Oracle Enterprise Manager. This chapter describes key features of
Enterprise Manager for servlet and Web site configuration. It includes the following
sections:

� Web Module Configuration in Oracle Enterprise Manager

� Application Server Control Page Descriptions

Web Module Configuration in Oracle Enterprise Manager

7-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Web Module Configuration in Oracle Enterprise Manager
The direct use of global-web-application.xml, orion-web.xml, and
default-web-site.xml elements and attributes described in Chapter 6,
"Configuration File Descriptions" is for development and deployment in an OC4J
standalone environment. In an Oracle Application Server environment, such as for
production deployment, use Enterprise Manager for Web module configuration and
deployment.

Oracle Enterprise Manager Application Server Control is the administration console
for an Oracle Application Server instance. It enables you to monitor real-time
performance, manage Oracle Application Server components and instances, and
configure these components and instances. This includes any instances of OC4J. In
particular, Application Server Control includes pages to configure servlets and Web
sites. Application Server Control comes with your Oracle Application Server
installation. Log in as the ias_admin user.

The discussion in this chapter covers relevant Application Server Control pages for
managing and configuring Web modules in an OC4J instance within Oracle
Application Server. Some of the pages allow you to alter
global-web-application.xml, orion-web.xml, and
default-web-site.xml settings. Other pages display web.xml settings, which
you can override through orion-web.xml settings.

Each page description notes the corresponding elements and attributes in web.xml,
orion-web.xml/global-web-application.xml, or
default-web-site.xml. The elements and attributes for
global-web-application.xml or orion-web.xml are documented in
"Element Descriptions for global-web-application.xml and orion-web.xml" on
page 6-2. The default-web-site.xml elements and attributes are covered in
"Element Descriptions for Web Site XML Files" on page 6-28. For information about
web.xml elements, refer to the Sun Microsystems Java Servlet Specification.

See the Oracle Application Server Containers for J2EE User’s Guide for additional
information about using Enterprise Manager with OC4J. For general information
about using Enterprise Manager to manage your Oracle Application Server
environment, see the Oracle Application Server 10g Administrator’s Guide.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-3

Application Server Control Page Descriptions
The following sections discuss key Application Server Control pages in Enterprise
Manager for servlet and Web site configuration and deployment:

� Application Server Control OC4J Home Page

� Application Server Control OC4J Applications Page

� Application Server Control Deploy Application (EAR) Page

� Application Server Control Deploy Web Application (WAR) Page

� Application Server Control OC4J Administration Page

� Application Server Control Website Properties Page

� Application Server Control Web Module Page

� Application Server Control Web Module Properties Page

� Application Server Control Web Module Mappings Page

� Application Server Control Web Module Filtering and Chaining Page

� Application Server Control Web Module Environment Page

� Application Server Control Web Module Advanced Properties Page

Application Server Control OC4J Home Page
The Oracle Application Server Instance Home Page is the main page you reach
when you first access an Oracle Application Server instance through Application
Server Control in Enterprise Manager. Through this page, you can drill down to any
of the running OC4J instances by selecting the name of the instance (home, for
example) in the System Components table. Application Server Control will then
display the OC4J Home Page for that instance.

Application Server Control Page Descriptions

7-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Figure 7–1 shows portions of the OC4J Home Page for the home instance.

Figure 7–1 Application Server Control OC4J Home Page

From the OC4J Home Page, you can do the following:

� Click Applications to access the Application Server Control OC4J Applications
Page.

� Click Administration to access the Application Server Control OC4J
Administration Page.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-5

Application Server Control OC4J Applications Page
Figure 7–2 shows the OC4J Applications Page, which enables you to deploy
applications. You can reach this page by clicking Applications from the OC4J Home
Page.

In particular, relating to topics covered in this manual, note the following:

� Clicking the Deploy EAR file button provides access to the Deploy Application
Page.

� Clicking the Deploy WAR file button provides access to the Deploy Web
Application Page.

Figure 7–2 Application Server Control OC4J Applications Page

Application Server Control Page Descriptions

7-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Deploy Application (EAR) Page
Figure 7–3 shows the key portion of the Application Server Control Deploy
Application Page, which is the page for deploying an EAR file. Drill down to this
page from the Applications Page of an OC4J instance by clicking the Deploy EAR
file button.

Figure 7–3 Application Server Control Deploy Application Page

In the Deploy Application Page, click the Browse button to select an EAR file to
deploy, then specify the desired J2EE application name, which is typically the same
as the EAR file name without the .ear extension. You can also specify a parent
application, but it is typical to use the OC4J default application as the parent.

Deployment results in a new <application> element being entered in the
server.xml file.

When you click the Continue button, you will come to the Deploy Application:
URL Mapping for Web Modules Page, which enables you to set a URL context path
for the Web application that the J2EE application contains. Figure 7–4 shows this
page, with the default context path for the Web application of a J2EE application
named utility. Clicking the Next button enables you to review your entries and
then deploy.

Specifying a URL context path results in an entry in the default-web-site.xml
file to bind the Web application to the Web site. This is accomplished through a new
<web-app> subelement of the <web-site> element. In addition, the

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-7

mod_oc4j.conf configuration file for the Oracle HTTP Server mod_oc4j Apache
mod is updated with appropriate mount points.

Figure 7–4 Application Server Control Deploy Application: URL Mapping Page

Note: In specifying the context path, the following forms are
treated equivalently:

someUrl
/someUrl
/someUrl/

Application Server Control Page Descriptions

7-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Deploy Web Application (WAR) Page
Figure 7–5 shows the key portion of the Application Server Control Deploy Web
Application Page, which is the page for deploying an independent WAR file. Drill
down to this page from the Applications Page of an OC4J instance by clicking the
Deploy WAR file button.

Figure 7–5 Application Server Control Deploy Web Application Page

In the Deploy Web Application Page, click the Browse button to select a WAR file to
deploy. Then specify a desired J2EE application name along with a URL context
path to map to the Web application. Transparently, a J2EE application by the
specified application name will be created to contain the Web application. In OC4J,
any Web application must be contained in a J2EE application.

As with an EAR file, the deployment results in a new <application> element in
the server.xml file, and in an entry in the default-web-site.xml file to bind
the Web application to the Web site. The Web application binding is accomplished
through a new <web-app> subelement of the <web-site> element. In addition,
the mod_oc4j.conf configuration file for the Oracle HTTP Server mod_oc4j
Apache mod is updated with appropriate mount points.

Note: When you deploy an independent WAR file, it is wrapped
in an EAR file transparently.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-9

Application Server Control OC4J Administration Page
Figure 7–6 shows the OC4J Administration Page, which enables you to access OC4J
instance properties. You can reach this page by clicking Administration from the
OC4J Home Page.

Clicking Website Properties under Instance Properties provides access to the
Website Properties Page, through which you can access a variety of pages to update
Web module properties.

Figure 7–6 Application Server Control OC4J Administration Page

Note: In specifying the context path, the following forms are
treated equivalently:

someUrl
/someUrl
/someUrl/

Application Server Control Page Descriptions

7-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Website Properties Page
Figure 7–7 shows the key portion of the Application Server Control Website
Properties Page for an OC4J instance. Drill down to this page by clicking Website
Properties under Instance Properties in the OC4J Administration Page.

Figure 7–7 Application Server Control Website Properties Page

Among other things, this page enables you to specify whether each application
should be loaded automatically when OC4J starts. (Otherwise, an application is not
loaded until the first request for it.) This corresponds to the load-on-startup
attribute of the appropriate <web-app> subelement of the <web-site> element in
the default-web-site.xml file. (For general information about loading an
application at OC4J startup, see "Servlet Preloading" on page 2-9.)

From the Website Properties Page, drill down to the Web Module Page for any
particular Web module. In the sample page above, for example, you can click
webapp to drill down to the Web Module Page for that module.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-11

Application Server Control Web Module Page
Figure 7–8 shows the key portion of the Application Server Control Web Module
Page for the module webapp. Drill down to the Web Module Page for a particular
module by clicking the module name in the Website Properties Page.

Figure 7–8 Application Server Control Web Module Page

From the Web Module Page, you can access several categories of Web module
properties through the following links under Properties in the Administration
section of the page:

� General to drill down to the Web Module Properties Page

� Mappings to drill down to the Web Module Mappings Page

Application Server Control Page Descriptions

7-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� Filtering and Chaining to drill down to the Web Module Filtering and
Chaining Page

� Environment to drill down to the Web Module Environment Page

� Advanced Properties to drill down to the Web Module Advanced Properties
Page

Application Server Control Web Module Properties Page
Figure 7–9 and Figure 7–10 show portions of the Application Server Control Web
Module Properties Page for a particular module. Drill down to this page by clicking
General under Properties in the Administration section of the Web Module Page.

Figure 7–9 Application Server Control Web Module Properties Page (1 of 2)

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-13

Figure 7–10 Application Server Control Web Module Properties Page (2 of 2)

Correspondence of these settings to orion-web.xml elements is as follows.

In the General section:

� Servlet Directory corresponds to the servlet-webdir attribute of the
<orion-web-app> element.

� Temporary Directory corresponds to the temporary-directory attribute of
the <orion-web-app> element.

� Response Buffer Size corresponds to the default-buffer-size attribute of
the <orion-web-app> element.

Application Server Control Page Descriptions

7-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

� File Check Interval corresponds to the
file-modification-check-interval attribute of the <orion-web-app>
element.

In the Session Configuration section:

� Use Cookies corresponds to the cookies attribute of the
<session-tracking> element, which is a subelement of the
<orion-web-app> element.

� Session Auto Join corresponds to the autojoin-session attribute of the
<session-tracking> element.

� Session Timeout corresponds to the <session-timeout> subelement of the
<session-config> subelement of the standard <web-app> element. You can
use a <web-app> subelement under <orion-web-app> in orion-web.xml
for deployment-specific overrides of <web-app> settings in the application
web.xml file.

� Cookie Max Age corresponds to the cookie-max-age attribute of the
<session-tracking> element.

� Cookie Domain corresponds to the cookie-domain attribute of the
<session-tracking> element.

� Session Storage Directory corresponds to the persistence-path attribute of
the <orion-web-app> element.

In the Class Paths section:

� Adding a classpath here corresponds to setting the path attribute of a
<classpath> subelement of the <orion-web-app> element.

In the Session Trackers section:

� Adding a session tracker here corresponds to setting the servlet-name
attribute of a <session-tracker> element, which is a subelement of the
<session-tracking> element.

In the Virtual Directories section:

� Adding a virtual directory here corresponds to setting the real-path and
virtual-path attributes of a <virtual-directory> subelement of the
<orion-web-app> element.

In the Tag Libraries section:

� This lists JSP tag libraries that are used in the application, according to contents
of the WAR file.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-15

Application Server Control Web Module Mappings Page
Figure 7–11 and Figure 7–12 show portions of the Application Server Control Web
Module Mappings Page for a particular module. Drill down to this page by clicking
Mappings under Properties in the Administration section of the Web Module Page.

Figure 7–11 Application Server Control Web Module Mappings Page (1 of 2)

Figure 7–12 Application Server Control Web Module Mappings Page (2 of 2)

Application Server Control Page Descriptions

7-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

The following settings all correspond to subelements of the <web-app> element in
the web.xml file. You can use a <web-app> subelement under <orion-web-app>
in orion-web.xml for deployment-specific overrides of these settings. You can use
the Advanced Properties Page for this purpose—see "Application Server Control
Web Module Advanced Properties Page" on page 7-21.

In the Servlet Mappings section:

� A servlet name and URL pattern specified here correspond to settings in the
<servlet-name> and <url-pattern> subelements of a
<servlet-mapping> subelement of the <web-app> element.

In the MIME Mappings section:

� A MIME type and extension specified here correspond to settings in the
<mime-type> and <extension> subelements of a <mime-mapping>
subelement of the <web-app> element.

In the Welcome Files section:

� A file name specified here corresponds to the setting in a <welcome-file>
subelement of the <welcome-file-list> subelement of the <web-app>
element.

In the Error Pages section:

� An error code and location specified here correspond to settings in the
<error-code> and <location> subelements of an <error-page>
subelement of the <web-app> element.

� An exception class and location specified here correspond to settings in the
<exception-type> and <location> subelements of an <error-page>
subelement of the <web-app> element.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-17

Application Server Control Web Module Filtering and Chaining Page
Figure 7–13 shows the key portion of the Application Server Control Web Module
Filtering and Chaining Page for a particular module. Drill down to this page by
clicking Filtering and Chaining under Properties in the Administration section of
the Web Module Page.

Figure 7–13 Application Server Control Web Module Filtering and Chaining Page

Application Server Control Page Descriptions

7-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Correspondence of these settings to orion-web.xml elements is as follows.

In the Servlet Filtering section:

� Adding a filter here is equivalent to setting the servlet-name and
url-pattern attributes of a <servlet-filter> subelement of the
<orion-web-app> element. The servlet name you specify is tied to a servlet
class through its standard configuration in the web.xml file.

In the Servlet Chaining section:

� Adding a chain here is equivalent to setting the servlet-name and
mime-type attributes of a <servlet-chaining> subelement of the
<orion-web-app> element. The servlet name you specify is tied to a servlet
class through its standard configuration in the web.xml file.

Note: Servlet chaining is an older mechanism with essentially the
same functionality as standard servlet filtering, which was
introduced in the servlet 2.3 specification. It is advisable to use
servlet filtering instead. See "Servlet Filters" on page 3-2.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-19

Application Server Control Web Module Environment Page
Figure 7–14 shows the key portion of the Application Server Control Web Module
Environment Page for a particular module. Drill down to this page by clicking
Environment under Properties in the Administration section of the Web Module
Page.

Figure 7–14 Application Server Control Web Module Environment Page

Application Server Control Page Descriptions

7-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This page shows settings for servlet context parameter overrides, environment
entry overrides, and resource references. The overrides indicate settings in the
orion-web.xml file that override corresponding web.xml settings.

Correspondence of these settings to web.xml and orion-web.xml elements is as
follows.

In the Servlet Context Parameters section:

� This section displays settings of web.xml <context-param> elements that
can be overridden for this deployment, along with any Deployed Value
overrides that have already been specified. Enter a new value in the Deployed
Value column to specify a new override. Doing so creates a
<context-param-mapping> entry in orion-web.xml.

In the Environment Entries section:

� This section displays settings of web.xml <env-entry> elements that can be
overridden for this deployment, along with any Deployed Value overrides that
have already been specified. Enter a new value in the Deployed Value column
to specify a new override. Doing so creates an <env-entry-mapping> entry
in orion-web.xml.

In the Resource References section:

� This section displays a combination of web.xml and orion-web.xml settings.
The name and type of a resource reference correspond to <res-ref-name>
and <res-type> subelements under a <resource-ref> subelement of the
<web-app> element in the web.xml file. The JNDI location and lookup context
correspond to settings under a <resource-ref-mapping> element and its
<lookup-context> subelement, under the <orion-web-app> element in
the orion-web.xml file.

Application Server Control Page Descriptions

Configuration with Enterprise Manager 7-21

Application Server Control Web Module Advanced Properties Page
Figure 7–15 shows the key portion of the Application Server Control Web Module
Advanced Properties Page for a particular module. Drill down to this page by
clicking Advanced Properties under Properties in the Administration section of the
Web Module Page.

You can use the Web Module Advanced Properties Page to edit orion-web.xml or
global-web-application.xml for any settings not covered by the previously
discussed Application Server Control Web module pages. In fact, you can make any
orion-web.xml or global-web-application.xml entries through the
Advanced Properties Page; however, it is advisable to use the previously described
pages whenever possible because of their error handling and reporting features.

Figure 7–15 Application Server Control Web Module Advanced Properties Page

Application Server Control Page Descriptions

7-22 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Open Source Frameworks and Utilities A-1

A
Open Source Frameworks and Utilities

There are common open source frameworks and utilities that you can use with
OC4J. For Oracle Application Server 10g (9.0.4), this appendix describes how to
configure and use two of them in particular: Jakarta Struts 1.0.2 and Jakarta log4j
1.2.8.

The focus of this discussion is to assist you in configuring and using these open
source utilities in the OC4J standalone environment. The following sections cover
the details:

� Configuration and Use of Jakarta Struts in OC4J

� Configuration and Use of Jakarta log4j in OC4J

Important:

� The packaging and configuration instructions in this document
are written for an OC4J standalone installation. If you are using
an Oracle Application Server installation, use the management
tools provided, such as Enterprise Manager and the dcmctl
command line utility, to accomplish the same tasks. Avoid
manual modifications to configuration files in an Oracle
Application Server environment.

� The open source utilities and frameworks discussed here are
not supported directly by Oracle. In addition, there has been no
formal testing or certification of these utilities and frameworks
with the OC4J product. For assistance in using these
frameworks, use the regular forums available in the open
source community.

Configuration and Use of Jakarta Struts in OC4J

A-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration and Use of Jakarta Struts in OC4J
The following sections cover steps for using Jakarta Struts in an OC4J standalone
environment:

� Overview of Jakarta Struts

� Downloading the Struts Binary Distribution

� Unpacking the Struts Binary Distribution

� Installing and Accessing Struts Documentation

� Installing the Struts Sample Web Application

� Deploying Your Own Application with the Struts Framework

Overview of Jakarta Struts
Jakarta Struts is an open source framework designed to assist with the development
of Web applications using open standards such as Java servlets, JavaServer Pages,
and XML. Struts supports a modular application development model based on the
Model-View-Controller (MVC) pattern. With Struts, you can create an extensible
development environment for your application, based on industry standards and
proven design models.

Following sections describe how to install the Struts libraries, documentation, and
sample applications in an OC4J standalone environment. This document does not
cover how to build applications with Struts. Please see the user guide, installation
guide, and other documentation on the official Struts Web site, including the
following locations:

http://jakarta.apache.org/struts

http://jakarta.apache.org/struts/learning.html

http://jakarta.apache.org/struts/installation.html

Note: Oracle JDeveloper includes a wizard that simplifies Struts
usage.

Configuration and Use of Jakarta Struts in OC4J

Open Source Frameworks and Utilities A-3

Downloading the Struts Binary Distribution
The Struts 1.0.2 distribution is available at the following location:

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0.2/

Download the archive file from this location, choosing the appropriate format (ZIP
file or compressed TAR file) for your platform and saving it to your local file
system.

Unpacking the Struts Binary Distribution
Use the appropriate tool for your platform, such as WinZip or TAR, to unpack the
archive file of the Struts 1.0.2 binary distribution that you downloaded. This will
create the following directory structure:

jakarta-struts-1.0.2/INSTALL
jakarta-struts-1.0.2/LICENSE
jakarta-struts-1.0.2/README

jakarta-struts-1.0.2/lib/jdbc2_0-stdext.jar
jakarta-struts-1.0.2/lib/struts.jar
jakarta-struts-1.0.2/lib/struts.tld
jakarta-struts-1.0.2/lib/struts-bean.tld
jakarta-struts-1.0.2/lib/struts-config_1_0.dtd
jakarta-struts-1.0.2/lib/struts-form.tld
jakarta-struts-1.0.2/lib/struts-html.tld
jakarta-struts-1.0.2/lib/struts-logic.tld
jakarta-struts-1.0.2/lib/struts-template.tld
jakarta-struts-1.0.2/lib/web-app_2_2.dtd
jakarta-struts-1.0.2/lib/web-app_2_3.dtd

Note: Struts is part of the Apache Jakarta Project, sponsored by
the Apache Software Foundation.

Note: The Struts 1.1 Beta releases can be deployed on OC4J in the
same manner as the 1.0.2 release. With the increased functionality
in Struts 1.1, a number of additional library files are supplied with
the distribution. The instructions given here should generally apply
to deploying an application using Struts 1.1, aside from the
addition of the new library files and the specification of additional
tag libraries.

Configuration and Use of Jakarta Struts in OC4J

A-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

jakarta-struts-1.0.2/webapps/struts-blank.war
jakarta-struts-1.0.2/webapps/struts-documentation.war
jakarta-struts-1.0.2/webapps/struts-example.war
jakarta-struts-1.0.2/webapps/struts-exercise-taglib.war
jakarta-struts-1.0.2/webapps/struts-template.war
jakarta-struts-1.0.2/webapps/struts-upload.war

Installing and Accessing Struts Documentation
The Struts documentation is supplied as a Web application in a WAR file in the
webapps directory of the Struts archive. You can use the following steps to deploy
the Struts documentation Web application to the OC4J default application.

Configuration files are in the j2ee/home/config directory.

1. In the OC4J global application descriptor, application.xml, add a new
<web-module> element for the struts-documentation.war file. You can
place this element after any <web-module> elements already in the file.

Specify the path to the directory where the Struts binary distribution was
extracted. Here is a sample entry:

<orion-application ... >
 ...
 <web-module id="struts-documentation"
 path="your_path/jakarta-struts-1.0.2/webapps/struts-documentation.war" />
...
</orion-application>

2. In the Web site XML file, http-web-site.xml, add a new <web-app>
element to bind the documentation Web application to a URL context path. You
can place this element after any <web-app> elements already in the file. Here is
a sample entry specifying /struts/doc as the URL context path for the Struts
documentation:

<web-site ... >
 ...
 <web-app application="default" name="struts-documentation"
 root="/struts/doc" />
 ...
</web-site>

Note the application="default" setting to use the OC4J default
application. Any Web application deployed to OC4J must be contained in a

Configuration and Use of Jakarta Struts in OC4J

Open Source Frameworks and Utilities A-5

J2EE application. Typically this is accomplished by packaging the Web
application WAR file inside a J2EE application EAR file. For convenience,
however, there is an OC4J default application that you can use in deploying a
standalone WAR file, as in this case.

3. Start OC4J from the command line:

% java -jar oc4j.jar

You will see output such as the following:

Auto-unpacking /java/jakarta-struts-1.0.2/webapps/struts-documentation.war
... done.
Oracle Application Server (9.0.4.0.0) Containers for J2EE initialized

Unpacking struts-documentation.war results in creation and population
of the struts-documentation directory and subdirectories under the
jakarta-struts-1.0.2/webapps directory.

4. Access the documentation according to the URL context path you specified in
http-web-site.xml:

http://your_host:8888/struts/doc

Configuration and Use of Jakarta Struts in OC4J

A-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

You will see the following welcome page for the Struts documentation:

Installing the Struts Sample Web Application
The Struts binary distribution also provides a sample Web application in a WAR file
in the webapps directory. As with the documentation Web application, you can
deploy the Struts sample Web application to the OC4J default application. Use the
following steps. Configuration files are in the j2ee/home/config directory.

1. In the OC4J global application descriptor, application.xml, add a new
<web-module> element for the struts-example.war file. Specify the path
to the directory where the Struts binary distribution was extracted. Here is a
sample entry:

<web-module id="struts-example"
 path="your_path/jakarta-struts-1.0.2/webapps/struts-example.war" />

Configuration and Use of Jakarta Struts in OC4J

Open Source Frameworks and Utilities A-7

You can place this immediately after the <web-module> element you created
for struts-documentation.war.

2. In the Web site XML file, http-web-site.xml, add a new <web-app>
element to bind the sample Web application to a URL context path. Here is a
sample entry that specifies /struts/example as the URL context path for the
Struts documentation:

<web-app application="default" name="struts-example"
 root="/struts/example" />

You can place this immediately after the <web-app> element you created for
the documentation Web application.

As with the documentation Web application, the application="default"
setting uses the OC4J default application to contain the sample Web application.

3. Start OC4J from the command line:

% java -jar oc4j.jar

You will see output such as the following:

Auto-unpacking /java/jakarta-struts-1.0.2/webapps/struts-example.war
...done.
Oracle Application Server (9.0.4.0.0) Containers for J2EE initialized

Unpacking struts-example.war results in creation and population of the
struts-example directory and subdirectories under the
jakarta-struts-1.0.2/webapps directory.

4. Access the sample Web application according to the URL context path you
specified in http-web-site.xml:

http://your_host:8888/struts/example

Configuration and Use of Jakarta Struts in OC4J

A-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

You will see the following welcome page for the Struts sample application:

Deploying Your Own Application with the Struts Framework
When deploying your own applications using the Struts framework, you must
package the Struts library artifacts within your own WAR file and configure the
standard web.xml deployment descriptor with the required entries for the Struts
components. Your Web application will be constructed and packaged as a WAR file.

1. Copy the Struts library from the Struts lib directory to the /WEB-INF/lib
directory of your application.

Note: A good example of a WAR file configured to use Struts is
provided in the webapps folder of the Struts archive file as
struts-blank.war. This serves as a useful template when
constructing your own Web applications.

Configuration and Use of Jakarta Struts in OC4J

Open Source Frameworks and Utilities A-9

The following example is for a UNIX environment (from the directory where
you unpacked the archive file), where "%" is the system prompt:

% cp jakarta-struts-1.0.2/lib/struts.jar web-inf/lib

2. Copy the Struts tag library descriptor files (all .tld files, for JSP tag libraries)
from the Struts lib directory to your /WEB-INF directory:

% cp jakarta-struts-1.0.2/lib/*.tld web-inf

3. Add Struts servlet and tag library entries to the web.xml file.

a. Add the servlet definition element for the Struts controller. (You can
optionally specify an application wide MessageResource file to use, the
name and location of the Struts configuration file, and additional properties
such as debugging levels.) The <servlet> element is a subelement of the
top-level <web-app> element.

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>ApplicationResources</param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
</servlet>

b. Add a servlet mapping element for the Struts controller servlet. This maps
the servlet name (mapped to the servlet class in the <servlet> element
above) to a URL servlet path. The <servlet-mapping> element is a
subelement of the top-level <web-app> element.

Note: This is only one way to access JSP tag library descriptor
files, using a JSP 1.1 methodology. Other options are available in a
JSP 1.2 environment such as in OC4J. See the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide for information.

Configuration and Use of Jakarta Struts in OC4J

A-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

c. Add entries for the Struts tag libraries. These entries assume the TLD files
were placed in the /WEB-INF directory as shown in Step 2. The <taglib>
element is a subelement of the top-level <web-app> element.

<taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>

Upon completion of these steps, you have a Web application that can support the
deployment of applications that utilize the Struts framework.

Once the rest of the Web application, including JSP pages, servlets, Struts
components, and other files, has been added to the WAR file, the application can be
deployed to OC4J.

Note: This is not a complete listing of steps required to use Struts
within your applications. Developers are also required to create the
Action classes and other components used by Struts at runtime,
and to make corresponding entries in the Struts configuration file,
struts-config.xml. These points are not OC4J-specific and are
beyond the scope of this document. See the learning guide on the
Struts Web site for more information:

http://jakarta.apache.org/struts/learning.html

Configuration and Use of Jakarta log4j in OC4J

Open Source Frameworks and Utilities A-11

Configuration and Use of Jakarta log4j in OC4J
The following sections cover considerations for using Jakarta log4j in an OC4J
standalone environment:

� Overview of Jakarta log4j

� Downloading the log4j Binary Distribution

� Unpacking the log4j Binary Distribution

� Installing the log4j Library

� Using log4j Configuration Files

� Enabling log4j Debug Mode

Overview of Jakarta log4j
The log4j framework is an open source project designed to provide an efficient and
flexible API to support runtime logging operations for Java applications. It enables
developers to insert log statements into their code, incorporating messages at
different levels of alarm as desired. It also enables system administrators to
separately define the level of logging they wish to see from the application at
runtime, without requiring changes to the supplied application code.

Features of log4j allow you to enable logging at runtime without having to modify
the application binary file. Statements can remain in shipped code without
incurring significant performance cost. Logging is controlled through a
configuration file without requiring changes to the application binary.

Sections that follow describe how to install the log4j library and configure it for use
with OC4J. Use of the extensive log4j API is not OC4J-specific so is not covered in
this document. Please see the documentation on the official log4j Web site,
including the following locations:

http://jakarta.apache.org/log4j/docs/index.html

http://jakarta.apache.org/log4j/docs/documentation.html

Note: The log4j framework is part of the Apache Jakarta Project,
sponsored by the Apache Software Foundation.

Configuration and Use of Jakarta log4j in OC4J

A-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Downloading the log4j Binary Distribution
The log4j distribution is available at the following location:

http://jakarta.apache.org/log4j/docs/download.html

Download the archive file from this location, choosing the appropriate format (ZIP
file or compressed TAR file) for your platform and saving it to your local file
system.

Unpacking the log4j Binary Distribution
Use the appropriate tool for your platform, such as WinZip or TAR, to unpack the
log4j archive file that you downloaded. This will create and populate the following
directory structure:

jakarta-log4j-1.2.8/
 build/
 contrib/
 ...
 dist/
 classes/
 ...
 lib/
 docs/
 ...
 examples/
 ...
 src/
 ...

(This does not show the entire structure; there are many further subdirectories.)

Installing the log4j Library
To enable J2EE applications to use log4j functionality, the log4j library must be made
available by the classloaders of OC4J. This can be accomplished in a variety of
ways, depending on your specific operational requirements. For example, the log4j
library can be installed at a system or global application level, making it available to
all applications deployed to the container. Alternatively, the log4j library can be
packaged as a library of a specific application (or applications). Different
approaches have different operating characteristics, such as the way in which the
automatic loading of configuration files works. For more details about possible

Configuration and Use of Jakarta log4j in OC4J

Open Source Frameworks and Utilities A-13

approaches and their advantages and disadvantages, refer to the log4j Web site and
user mailing lists.

The following sections cover three techniques to make log4j available to OC4J:

1. Use the log4j Library at a Global Application Level

2. Package the log4j Library as a Web Application Library

3. Package the log4j Library as a Shared Library for EJB and Web Applications

Use the log4j Library at a Global Application Level
To install the log4j library at a global application level in OC4J, copy the
log4j-1.2.8.jar file from the log4j lib directory to the j2ee/home/applib
directory. By default, this directory is available for libraries that are to be shared
between all applications that are deployed to the OC4J instance. This is
accomplished through a <library> element in the
j2ee/home/config/application.xml global application descriptor. At
runtime, OC4J automatically loads all libraries in the applib directory. The
following example is for a UNIX environment (from the directory where you
unpacked the archive file), where "%" is the system prompt:

% cp jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar j2ee/home/applib

Package the log4j Library as a Web Application Library
To package the log4j library for a specific Web application, copy the
log4j-1.2.8.jar file from the log4j lib directory into the /WEB-INF/lib
directory of your Web application. At runtime, the servlet container will make the
log4j library available to the Web application through a Web application classloader.

Notes:

� Be aware of the overhead in using this approach. If you do not
want the log4j library to always be loaded, then you should not
use the applib directory.

� Do not use the applib directory for log4j in an Oracle
Application Server environment. Oracle Enterprise Manager
also uses log4j, and placing your copy at the global application
level might cause version conflicts for Enterprise Manager.

Configuration and Use of Jakarta log4j in OC4J

A-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

The following example is for a UNIX environment (from the directory where you
unpacked the archive file), where "%" is the system prompt:

% cp jakarta-log4j-1.2.8/dist/lib/log4j-1.2.8.jar web-inf/lib

Package the log4j Library as a Shared Library for EJB and Web Applications
When you have an application that consists of both EJB components and Web
components and they all use log4j, you can package the log4j library as a single
shared library which can be used by both sets of components.

The J2EE classloading mechanism implies that a Web application that is deployed
within the same EAR file as an EJB application has access to classes available in the
EJB classloader. This means that by making log4j a library of the EJB application, it
also becomes a library of the Web application.

The EJB classloader, as well as the Web classloader, can access any libraries that are
specified in the Class-Path attribute of the META-INF/Manifest.mf file of the
EAR file. The library JAR files are loaded relative to the file (such as the EAR file)
with the Class-Path entry, so they would be stored in the same directory. Using
this facility, it is possible to place the log4j JAR file in the same directory as the EJB
JAR file and reference it in the manifest file as a required library. This will also make
the log4j library accessible to the Web applications inside the same EAR file, because
they have visibility of the classes of the EJB components.

Figure A–1 illustrates the classloading hierarchy for a J2EE application.

Figure A–1 J2EE Classloading Hierarchy

Configuration and Use of Jakarta log4j in OC4J

Open Source Frameworks and Utilities A-15

Using log4j Configuration Files
The log4j framework enables you to control the logging behavior through settings
specified in an external configuration file. The enables you to make changes to the
logging behavior without modifying application code.

There are three common ways to use the external configuration files. Each approach
defines what the configuration files are named and how they are located by the
J2EE application server at runtime.

The following sections describe the three approaches:

1. Use the Default Files for Automatic log4j Configuration

2. Use Alternative Files for Automatic log4j Configuration

3. Programmatically Specify External Configuration Files

Use the Default Files for Automatic log4j Configuration
By default, log4j will use a configuration file named log4j.properties or
log4j.xml to determine its logging behavior. It will automatically attempt to load
these files from the classloaders available to it at runtime. If it finds both,
log4j.xml takes precedence.

To use an automatic configuration file, place it in a directory location that falls
within the classpath used by OC4J. This would include, in order of loading
precedence:

1. Global application level: j2ee/home/applib

2. Web application level: /WEB-INF/classes

Configuration and Use of Jakarta log4j in OC4J

A-16 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Use Alternative Files for Automatic log4j Configuration
You can choose alternative file names instead of using the default names for
automatic configuration of log4j. To do this, specify an additional runtime property
when OC4J is started, as follows, where "%" is the system prompt and url
designates the location of the configuration file to use:

% java -Dlog4j.configuration=url

If the specified value for the log4j.configuration property is a fully formed
URL, log4j will load the URL directly and use that as configuration file.

If the specified value is not a correctly formed URL, log4j will use the specified
value as the name of the configuration file to load from the classloaders it has
available.

For example, assume OC4J is started as follows (where this is a single wraparound
command line):

% java -Dlog4j.debug=true -Dlog4j.configuration=file:///d:\temp\foobar.xml
 -jar oc4j.jar

In this case, log4j will try to load the file d:\temp\foobar.xml as its
configuration file.

As another example, assume OC4J is started as follows:

% java -Dlog4j.debug=true -Dlog4j.configuration=foobar.xml -jar oc4j.jar

Note: A log4j runtime is configured only once using the automatic
configuration files when the first call is made to the
org.apache.log4j.Logger class. If you have installed the log4j
library at the global application level by placing it in the
j2ee/home/applib directory, then you can use only one
automatic configuration file to define all the log levels, appenders,
and other log4j properties for all the applications running on your
server. If you install the log4j library separately for each Web
application, in each /WEB-INF/lib directory, the log4j logger is
initialized separately for each Web application. This enables you to
use separate automatic log4j configuration files for each Web
application. Visit the following log4j site and see the log4j user
mailing list for more information:

http://www.mail-archive.com/log4j-user@jakarta.apache.org/

Configuration and Use of Jakarta log4j in OC4J

Open Source Frameworks and Utilities A-17

In this case, log4j will try to load foobar.xml from the classloaders it has
available. This works in the same manner as using the default automatic
configuration file log4j.xml, but using the specified file name instead.

Programmatically Specify External Configuration Files
Instead of relying on the automatic configuration file loading mechanism, some
applications use a programmatic approach to load the external configuration file. In
this case, the path to the configuration file is supplied directly within the
application code. This allows different file names to be used for each application.
The log4j utility loads and parses the specified configuration file (either an XML
document or a properties file) to determine required logging behavior.

Here is an example:

public void init(ServletContext context) throws ServletException
{
 // Load the barfoo.xml file as the log4j external configuration file.
 DOMConfigurator("barfoo.xml");
 logger = Logger.getLogger(Log4JExample.class);
}

In this case, log4j will try to load barfoo.xml from the same directory where OC4J
was started.

Using the programmatic approach provides the most flexibility to developers and
system administrators. A configuration file can be of any arbitrary name and be
loaded from any location. System administrators can still make changes to the
logging behavior without requiring application code changes through the external
configuration file.

To provide even further flexibility, and to avoid coding a specific name and location
into an application, a useful technique is to supply the file name and location as
parameters inside the standard web.xml deployment descriptor. The servlet or JSP
page reads the values of the parameters specifying the location and name of the
configuration file, and dynamically constructs the location from which to load the
configuration file. This allows system administrators to choose both the name and
location of the configuration file to use.

Note: This approach, while offering an additional level of
flexibility, does require all external configuration files for all
deployed applications to have the same name.

Configuration and Use of Jakarta log4j in OC4J

A-18 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Here is a sample web.xml entry specifying the name and location of the
configuration file:

<context-param>
 <param-name>log4j-config-file</param-name>
 <param-value>/web-inf/classes/app2-log4j-config.xml</param-value>
</context-param>

The application reads the location value from the deployment descriptor, constructs
a full path to the file on the local file system, and loads the file. Following is some
sample code:

public void init(ServletContext context) throws ServletException
{
 /*
 * Read the path to the config file from the web.xml file,
 * should return something line /web-inf/xxx.xml or web-inf/classes/xxx.xml.
 */
 String configPath = context.getInitParameter("log4j-config-file");

 /*
 * This loads the file based on the base directory of the web application
 * as it is deployed on the application server.
 */
 String realPath = context.getRealPath(configPath);
 if(realPath!=null)
 DOMConfigurator.configure(realPath);
 _logger = Logger.getLogger(Log4JExample.class);
}

Note: It is generally a good practice to place files that define
behavior, and which should not be accessible to clients from an
HTTP request, directly into the /WEB-INF directory (not a
subdirectory) of the Web application. This would apply to
log4j.xml, for example. The servlet specification requires
contents of this directory to be inaccessible to clients.

Configuration and Use of Jakarta log4j in OC4J

Open Source Frameworks and Utilities A-19

Enabling log4j Debug Mode
When deploying an application on OC4J that uses log4j and external configuration
files, it is sometimes helpful to view how log4j is trying to find and load the
requested configuration files. To facilitate this, log4j provides a debug mode where
it displays how it is loading (or attempting to load) its configuration files.

To turn on log4j debug mode, specify an additional runtime property when you
start OC4J, as follows (where "%" is the system prompt):

% java -Dlog4j.debug=true -jar oc4j.jar

OC4J will display output similar to the following:

Oracle Application Server (9.0.4.0.0) Containers for J2EE initialized
log4j: Trying to find [log4j.xml] using context classloader [ClassLoader:
[[D:\myprojects\java\log4j\app1\webapp1\WEB-INF\classes],
[D:\myprojects\java\log4j\app1\webapp1\WEB-INF\lib/log4j-1.2.7.jar]]].
log4j: Using URL [file:/D:/myprojects/java/log4j/app1/webapp1/WEB-INF/classes/
log4j.xml] for automatic log4j configuration.
log4j: Preferred configurator class: org.apache.log4j.xml.DOMConfigurator
log4j: System property is :null
log4j: Standard DocumentBuilderFactory search succeded.
log4j: DocumentBuilderFactory is: oracle.xml.jaxp.JXDocumentBuilderFactory
log4j: URL to log4j.dtd is [classloader:/org/apache/log4j/xml/log4j.dtd].
log4j: debug attribute= "null".
log4j: Ignoring debug attribute.
log4j: Threshold ="null".
log4j: Level value for root is [debug].
log4j: root level set to DEBUG
log4j: Class name: [org.apache.log4j.FileAppender]
log4j: Setting property [file] to [d:/temp/webapp1.out].
log4j: Setting property [append] to [false].
log4j: Parsing layout of class: "org.apache.log4j.PatternLayout"
log4j: Setting property [conversionPattern] to [%n%-5p %d{DD/MM/yyyy}
d{HH:mm:ss} [%-10c] [%r]%m%n].
log4j: setFile called: d:/temp/webapp1.out, false
log4j: setFile ended
log4j: Adding appender named [FileAppender] to category [root].

Configuration and Use of Jakarta log4j in OC4J

A-20 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Note: You can also use the debug attribute of the
log4j:configuration tag in an external configuration file to
enable debug output. However, this does not display the loading
operations that take place, so does not offer the best service for
resolving problems in loading configuration files.

Third Party Licenses B-1

B
Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle Application Server and discussed in this manual. Topics include:

� Apache HTTP Server

� Apache JServ

Apache HTTP Server

B-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000-2002 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written

Apache HTTP Server

Third Party Licenses B-3

 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

Apache JServ

B-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

� Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

� Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

� All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

� The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

� Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

� Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA

Apache JServ

Third Party Licenses B-5

APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Apache JServ

B-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Index-1

Index
A
admin.jar utility

admin user/password, 5-35
bindWebApp command, 5-41
deploy command, 5-39
redeploy command, 5-52
undeploy command, 5-52

AJP (Apache JServ Protocol), 2-34
AJP (Apache JServ Protocol), secure, 2-49
AJPS, 2-49
Apache Jakarta Project open source frameworks,

config and use, A-1
Apache JServ Protocol (AJP), 2-34
Apache JServ Protocol (AJP), secure, 2-49
application descriptors, 5-17, 5-21
application packaging, 5-30
Application Server Control

Deploy J2EE Application Page, 7-6
Deploy Web Application Page, 7-8
introduction, 7-2
OC4J Administration Page, 7-9
OC4J Applications Page, 7-5
OC4J Home Page, 7-3
Web Module Advanced Properties Page, 7-21
Web Module Environment Page, 7-19
Web Module Filtering and Chaining Page, 7-17
Web Module Mappings Page, 7-15
Web Module Page, 7-11
Web Module Properties Page, 7-12
Website Properties Page, 7-10

application structure, 5-30
application.xml config file

example, 4-18, 5-44

OC4J/global, 5-18
standard/application-level, 5-17

authentication
also see security
disabling for forward/include targets, 2-16

autoencode-xxx attributes (not supported), 6-12
auto-encoding (not supported), 2-40
autoreload-jsp-xxx attributes (not supported), 6-2

B
buffer size, output buffer, 6-3

C
caching, sharing Java Object Cache objects, 2-14
cancellation of session, 2-42
chaining, servlets, 6-11
classloading, servlets

loading WAR classes before system classes, 2-13
OC4J class reloading, 2-11
sharing cached Java objects across OC4J

servlets, 2-14
clustering (OC4J), 6-10, 6-28
code template, 2-7
co-location of servlet and EJB, 4-10
configuration

application descriptors, 5-17, 5-21
for servlet invocation, 2-34
global-web-application.xml, 6-2
orion-web-app element, 6-2
orion-web.xml, 6-2
overview, OC4J and J2EE config files, 5-9
server.xml file, 5-14

Index-2

Web descriptors, 5-22, 5-25
Web site descriptors, 5-26
web-app element, 6-19
web-site element, 6-28

container, servlet, 1-5
context path, 2-28
cookies, 1-8
cookies, use in servlets, 2-38

D
data source, OC4J, 4-2
DCM, 5-7, 5-57
dcmctl utility, Oracle Application Server, 5-3, 5-4,

5-6, 5-56
debugging

general SSL debugging, 2-58
OC4J debugging flags, 2-24
through JDeveloper, 2-26
timing considerations in Oracle Application

Server, 2-26
default application in OC4J standalone, 5-37
default Web application

deployment, standalone, 5-50
in OC4J standalone, 5-37
in Oracle Application Server, 5-58

default-web-site.xml config file
DTD, 6-39
element descriptions, 6-28
hierarchical representation, 6-41
sample file, 6-42

demo location, OTN, 1-1
deployment

admin user/password, 5-35
application packaging, 5-30
application structure, 5-30
EAR and WAR structure, 5-32
EAR file, standalone, 5-39
into J2EE application structure, standalone, 5-45
of EJB sample servlet, 4-15
of JDBC sample servlet, 4-6
overview of scenarios, 5-4
overview, standalone vs. Oracle Application

Server, 5-2
sample, EAR file, 5-42

scenarios to OC4J standalone, 5-34
to Oracle Application Server, overview, 5-56
to Web module directory structure,

standalone, 5-49
tools vs. expert modes, 5-6
WAR file, standalone, 5-47

destroy() servlet method, 1-4, 2-8
distributable application, 2-42
Distributed Configuration Management

(DCM), 5-7, 5-57
doDelete() servlet method, 1-4
doFilter() filter method, 3-2
doGet() servlet method, 1-4
doPost() servlet method, 1-4
doPut() servlet method, 1-4

E
EAR file

deployment, standalone, 5-39
structure, 5-32

EJB calls from servlets
co-location, 4-10
configuration, 4-15, 4-26, 4-31
deployment, 4-15
local (co-located) lookup, 4-12
local interfaces vs. remote interfaces, 4-11
lookup categories, 4-10
remote lookup outside application, 4-27
remote lookup within application, 4-20
servlet-EJB scenarios, 4-10
use of remote flag, 4-21

ejb-jar.xml config file
for servlet EJB calls, 4-17, 4-27, 4-32

enable-jsp-dispatcher-shortcuts flag, 6-6
Enterprise Manager

Application Server Control Deploy J2EE
Application Page, 7-6

Application Server Control Deploy Web
Application Page, 7-8

Application Server Control OC4J Administration
Page, 7-9

Application Server Control OC4J Applications
Page, 7-5

Application Server Control OC4J Home

Index-3

Page, 7-3
Application Server Control Web Module

Advanced Properties Page, 7-21
Application Server Control Web Module

Environment Page, 7-19
Application Server Control Web Module Filtering

and Chaining Page, 7-17
Application Server Control Web Module

Mappings Page, 7-15
Application Server Control Web Module

Page, 7-11
Application Server Control Web Module

Properties Page, 7-12
Application Server Control Website Properties

Page, 7-10
Application Server Control, introduction, 7-2
Web module configuration, 7-2

event listeners
coding and deployment guidelines, 3-21
declaration, invocation, use of web.xml, 3-20
event categories, 3-18
event listener interfaces, 3-18
introduction, 1-12
methods and related classes, 3-21
sample code, 3-24
typical scenario, 3-19

expert modes, config and deploy, 5-6

F
filters

filter example #1, 3-4
filter example #2, 3-9
filter example #3, 3-12
generic code, 3-4
HelloWorldFilter, 3-5
introduction, 1-12
invocation by servlet container, 3-3
overview, 3-2
using a JSP page, 3-6

forwards (forwarding to another servlet), 2-15
front-end host, OC4J features, 2-35

G
GET, HTTP request, 2-7
getServletInfo() servlet method, 1-4, 2-8
global-web-application.xml config file

DTD, 6-19
element descriptions, 6-2
hierarchical representation, 6-24
overview, 5-23
sample file, 6-25

H
HTTPS, 6-29
HttpServlet class, 1-4
HttpSession interface, 1-8
HttpSessionAttributeListener interface, 3-23
HttpSessionBindingEvent class, 3-23
HttpSessionEvent class, 3-23
HttpSessionListener interface, 3-23
http-web-site.xml config file

DTD, 6-39
element descriptions, 6-28
hierarchical representation, 6-41

I
includes (including another servlet), 2-15
init() servlet method, 1-4, 2-8
invoking a servlet

by name (OC4J-specific), 2-32
context path routing info for OHS, 2-34
OC4J standalone, 2-35
Oracle Application Server production

environment, 2-34
summary of URL components, 2-28
use of front-end host by OC4J, 2-35

J
J2EE, 1-3
JAAS, 1-3
Jakarta open source frameworks, config and

use, A-1
Java Object Cache, sharing objects, 2-14
JDBC in servlets, 4-2

Index-4

JDK 1.4 considerations, 2-19
JMS, 1-3
JNDI, 1-3
JSP parameters

jsp-cache-directory, 6-5
jsp-cache-tlds, 6-5
jsp-print-null, 6-4
jsp-taglib-locations, 6-5
jsp-timeout, 6-5
simple-jsp-mapping, 6-5

JTA, 1-3

L
lifecycle, servlet, 2-8
listeners--see event listeners
load-on-startup, OC4J, 2-9
logging

additional Oracle Application Server log
files, 2-23

log4j (Apache Jakarta Project), config and
use, A-11

OC4J log files, 2-21
ODL (Oracle Diagnostic Logging), 2-23

M
mod_oc4j module, 1-6

O
ODL (Oracle Diagnostic Logging), 2-23
open source frameworks and utilities, A-1
OPMN, 2-24, 5-57
Oracle Diagnostic Logging (ODL), 2-23
Oracle Enterprise Manager--see Enterprise Manager
Oracle Process Management and Notification

(OPMN), 2-24, 5-57
orion-application.xml config file, 5-20

example, 5-45
orion-web-app element, configuration, 6-2
orion-web.xml config file

DTD, 6-19
element descriptions, 6-2
example, 5-45

hierarchical representation, 6-24
overview, 5-24

output buffer size, 6-3

P
performance, servlets, 2-17
POST, HTTP request, 2-7
preloading, servlets in OC4J, 2-9

R
redeployment

in Oracle Application Server with Enterprise
Manager, 5-59

manually redeploy WAR, standalone, 5-53
standalone, 5-52
triggering application reloading,

standalone, 5-53
remote flag, for servlet-EJB calls, 4-21
replication of session state, 2-42
RMI, 1-3

S
sample servlets

demo location, OTN, 1-1
EJB local lookup, 4-12
EJB remote lookup outside application, 4-27
EJB remote lookup within application, 4-20
event listeners, 3-24
filter example #1, 3-4
filter example #2, 3-9
filter example #3, 3-12
HelloWorldServlet, 1-14
JDBC query, 4-2
session servlet, 2-45

Secure Socket Layer--see SSL
security

additional considerations, 2-58
introduction, 2-49
OC4J and OHS configuration, 2-55
requesting client authentication, 2-54
SSL common problems and solutions, 2-57
SSL debugging, 2-58

Index-5

using certificates with OC4J and OHS, 2-50
server.xml config file, 4-18
server.xml file (config), 5-14
service() servlet method, 1-4
servlet chaining, 6-11
servlet configuration object, 1-11
servlet container, 1-5
servlet context, 1-9
servlet filters

filter example #1, 3-4
filter example #2, 3-9
filter example #3, 3-12
generic code, 3-4
HelloWorldFilter, 3-5
invocation by servlet container, 3-3
overview, 3-2
using a JSP page, 3-6

Servlet interface, 1-4
servlet path, 2-28
ServletContextAttributeEvent class, 3-22
ServletContextAttributeListener interface, 3-22
ServletContextEvent class, 3-21
ServletContextListener interface, 3-21
session

cancellation, 2-42
details and examples, 2-37
introduction, 1-8
replication of state, 2-42
session servlet example, 2-45
session-tracking element, 6-12
timeout, 2-41
tracking, 1-8, 2-37
tracking, in OC4J, 2-39

shutdown, OC4J, 5-36
single-thread model, servlets, 2-17
SSL, 2-49, 6-29
starting OC4J, 5-36
stopping OC4J, 5-36
Struts (Apache Jakarta Project), config and use, A-2

T
template, servlet code, 2-7
thread models in servlets, 2-16
timeout of session, 2-41

tracking of sessions, 2-37

U
undeployment

in Oracle Application Server with Enterprise
Manager, 5-59

standalone, 5-52
URL components, summary, 2-28
URL rewriting, 1-8, 2-39

W
WAR file

deployment, standalone, 5-47
structure, 5-32

Web descriptors, 5-22, 5-25
Web module vs. Web application, 1-2
Web site descriptors, 5-26
Web site XML config files

bind Web module to Web site, 4-19
DTD, 6-39
element descriptions, 6-28
hierarchical representation, 6-41
mappings to and from, 5-28
overview, 5-26

web-app element, configuration, 6-19
web-site element, configuration, 6-28
web.xml config file

declaring event listeners, 3-20
example, 5-44
for servlet EJB calls, 4-16, 4-26
overview and example, 5-22

Index-6

	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Servlet Overview
	Introduction to Servlets
	Review of Servlet Technology
	Advantages of Servlets
	The Servlet Interface and Request and Response Objects
	Servlets and the Servlet Container
	Introduction to Servlet Sessions
	Introduction to Servlet Contexts
	Introduction to Servlet Configuration Objects
	Introduction to Servlet Filters
	Introduction to Event Listeners
	JSP Pages and Other J2EE Component Types

	A First Servlet Example
	Hello World Code
	Compiling and Deploying the Servlet
	Running the Servlet

	2 Servlet Development
	OC4J Standalone for Development
	Overview: Using OC4J Standalone
	Key OC4J Flags for Development
	Removal of tools.jar from OC4J Standalone

	Servlet Development Basics and Key Considerations
	Sample Code Template
	Servlet Lifecycle
	Servlet Preloading
	Servlet Classloading and Application Redeployment
	Servlet Information Exchange
	Servlet Includes and Forwards
	Servlet Thread Models and Related Considerations
	Servlet Performance and Monitoring
	JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

	Additional Oracle Features
	OC4J Logging
	Servlet Debugging
	Oracle JDeveloper Support for Servlet Development
	Introduction to OC4J Support for Open Source Frameworks

	Servlet Invocation
	Summary of URL Components
	Servlet Invocation by Class Name During OC4J Development
	Servlet Invocation in an Oracle Application Server Production Environment
	Servlet Invocation in an OC4J Standalone Environment

	Servlet Sessions
	Session Tracking
	Features of the HttpSession Interface
	Session Cancellation
	Session Replication in a Distributable Application
	Session Servlet Example

	Servlet Security
	Use of Security Features
	Configuration of Oracle HTTP Server and OC4J for SSL
	SSL Common Problems and Solutions
	Additional Security Considerations

	3 Servlet Filters and Event Listeners
	Servlet Filters
	Overview of Servlet Filters
	How the Servlet Container Invokes Filters
	Filtering of Forward or Include Targets
	Filter Examples

	Event Listeners
	Event Categories and Listener Interfaces
	Typical Event Listener Scenario
	Event Listener Declaration and Invocation
	Event Listener Coding and Deployment Guidelines
	Event Listener Methods and Related Classes
	Event Listener Sample

	4 JDBC and EJB Calls from Servlets
	Use of JDBC in Servlets
	Database Query Servlet
	Deployment and Testing of the Database Query Servlet

	EJB Calls from Servlets
	Servlet-EJB Overview
	EJB Local Lookup
	EJB Remote Lookup within the Same Application
	EJB Remote Lookup Outside the Application

	5 Deployment and Configuration Overview
	General Overview of OC4J Deployment and Configuration
	Overview: OC4J Standalone Versus the Oracle Application Server Environment
	Overview of OC4J Deployment Scenarios
	Using Oracle Deployment Tools Versus Expert Modes

	Overview of Configuration Files
	Introduction to OC4J and J2EE Configuration Files
	OC4J Top-Level Server Configuration File: server.xml
	OC4J and J2EE Application Descriptors
	OC4J and J2EE Web Descriptors
	OC4J Web Site Descriptors
	Example: Mappings to and from Web Site Descriptors

	Application Packaging
	J2EE Application Structure
	EAR File and WAR File Structures

	Deployment Scenarios to OC4J Standalone
	Setting Up an Administrative User and Password
	Starting and Stopping OC4J Standalone
	OC4J Default Application and Default Web Application
	Deploying an EAR File to OC4J Standalone
	Deploying Files into a J2EE Application Structure on OC4J Standalone
	Deploying an Independent WAR File to OC4J Standalone
	Deploying Files into a Web Application Directory Structure on OC4J Standalone
	Application Undeployment or Redeployment in OC4J Standalone

	OC4J Deployment in Oracle Application Server
	Overview of OC4J Deployment and Configuration in Oracle Application Server
	OC4J Default Web Application in Oracle Application Server
	Application Undeployment and Redeployment in Oracle Application Server

	6 Configuration File Descriptions
	Configuration for global-web-application.xml and orion-web.xml
	Element Descriptions for global-web-application.xml and orion-web.xml
	DTD for global-web-application.xml and orion-web.xml
	Hierarchical Representation of global-web-application.xml and orion-web.xml
	Sample global-web-application.xml Settings

	Configuration for Web Site XML Files
	Element Descriptions for Web Site XML Files
	DTD for Web Site XML Files
	Hierarchical Representation of Web Site XML Files
	Sample default-web-site.xml File

	7 Configuration with Enterprise Manager
	Web Module Configuration in Oracle Enterprise Manager
	Application Server Control Page Descriptions
	Application Server Control OC4J Home Page
	Application Server Control OC4J Applications Page
	Application Server Control Deploy Application (EAR) Page
	Application Server Control Deploy Web Application (WAR) Page
	Application Server Control OC4J Administration Page
	Application Server Control Website Properties Page
	Application Server Control Web Module Page
	Application Server Control Web Module Properties Page
	Application Server Control Web Module Mappings Page
	Application Server Control Web Module Filtering and Chaining Page
	Application Server Control Web Module Environment Page
	Application Server Control Web Module Advanced Properties Page

	A Open Source Frameworks and Utilities
	Configuration and Use of Jakarta Struts in OC4J
	Overview of Jakarta Struts
	Downloading the Struts Binary Distribution
	Unpacking the Struts Binary Distribution
	Installing and Accessing Struts Documentation
	Installing the Struts Sample Web Application
	Deploying Your Own Application with the Struts Framework

	Configuration and Use of Jakarta log4j in OC4J
	Overview of Jakarta log4j
	Downloading the log4j Binary Distribution
	Unpacking the log4j Binary Distribution
	Installing the log4j Library
	Using log4j Configuration Files
	Enabling log4j Debug Mode

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W

