
Oracle® Application Server Containers for J2EE
Security Guide

10g (9.0.4)

Part No. B10325-02

September, 2003

Oracle Application Server Containers for J2EE Security Guide, 10g (9.0.4)

Part No. B10325-02

Copyright © 1996, 2003 Oracle Corporation. All rights reserved.

Primary Author: Elizabeth Hanes Perry

Contributors: Rick Sapir, Alfred Franci

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discover,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

iii

Contents

List of TablesList of FiguresList of Examples

Send Us Your Comments .. xvii

Preface.. xix

Audience .. xx
Documentation Accessibility .. xx
Organization.. xx
Related Documentation .. xxi
Conventions... xxii

1 Introduction

The Java 2 Security Model .. 1-2
Principals and Subjects ... 1-2

Principals ... 1-2
Subjects... 1-2

Authentication and Authorization .. 1-3
Secure Communications.. 1-4

Secure Sockets Layer .. 1-4
Certificates ... 1-4
HTTPS .. 1-4
Identity Propagation .. 1-5

Developing Secure J2EE Applications.. 1-5

Part I JAAS

iv

2 Overview of JAAS in Oracle Application Server

The JAAS Provider ... 2-2
Provider Types .. 2-2

What Is JAAS? ... 2-3
Login Module Authentication .. 2-3
Roles.. 2-4
Realms .. 2-4
Applications... 2-5
Policies and Permissions.. 2-5

Sun Policy Example... 2-5
XML-Based Example... 2-5

JAAS Framework Features .. 2-7
User Managers ... 2-8

Using JAZNUserManager ... 2-9
Using XMLUserManager... 2-10

Specifying UserManagers ... 2-11
Capability Model of Access Control .. 2-11
Role-Based Access Control (RBAC) .. 2-12

Role Hierarchy ... 2-12
Role Activation... 2-13

3 Configuring And Deploying the JAAS Provider

LDAP-Based Provider Environment Settings ... 3-2
J2EE Deployment Descriptors .. 3-3
OC4J Deployment Descriptors... 3-3
JAAS Provider Configuration Files ... 3-4

Specifying JAAS as the Policy Provider (Optional) ... 3-4
Locating jazn.xml.. 3-5
The <jazn> Tag.. 3-5

The <jazn> Tag and the XML-Based Provider .. 3-6
The <jazn> Tag and the LDAP-Based Provider.. 3-7
The <property> Subelement Of <jazn>.. 3-9

Specifying Authentication (auth-method) ... 3-11
Specifying auth-method in web.xml.. 3-11
Specifying auth-method in orion-web.xml and orion-application.xml.............................. 3-12

v

Specifying auth-method in orion-application.xml .. 3-13
Configuring Servlet Authorization (runas-mode and doasprivileged-mode) in
<jazn-web-app> .. 3-13
Mapping Security Roles In Servlets (run-as) .. 3-14
Configuring RealmLoginModule.. 3-16

Enabling RealmLoginModule Using A Text Editor ... 3-16
Configuring the JAAS Provider To Use SSL With Oracle Internet Directory 3-18
Configuring For EJB RMI Client Access .. 3-19
Configuring Caching (LDAP-Based Provider Only) ... 3-19

Session Cache Details... 3-20
Disabling Caching .. 3-20
Configuration .. 3-21

Specifying a UserManager In orion-application.xml .. 3-22
Using the <principals> element and principals.xml ... 3-24

4 JAAS Provider Administration Tasks

JAAS Provider Management Overview ... 4-2
Realm and Policy Management ... 4-2

Realm and Policy Management Tools ... 4-3
JAAS Provider Realm Framework ... 4-5
Realm Management in XML-Based Environments ... 4-5

XML-Based Realms ... 4-5
XML-Based Realm and Policy Information Storage... 4-5

Realm Management in LDAP-Based Environments ... 4-7
LDAP-Based Realm Types ... 4-7
LDAP-Based Realm Data Storage ... 4-11
LDAP-Based Realm Permissions .. 4-14

JAAS Provider Policy Administration... 4-14
Oracle Internet Directory Administration ... 4-15
AdminPermission Class ... 4-15
Policy Partitioning... 4-16

JAAS Provider Debug Logging.. 4-16

5 Using the JAZN Admintool

Before You Start... 5-2

vi

Authentication and the JAZN Admintool (XML-based Provider Only).................................. 5-3
Specifying an Admintool LoginModule in jazn-data.xml .. 5-3

JAZN Admintool Command-Line Options ... 5-4
Syntax ... 5-4

Admintool Authentication (XML-based Provider Only) .. 5-4
Clustering Operations... 5-5
Configuration Operations .. 5-5
Interactive Shell.. 5-5
Login Modules ... 5-5
Migration Operations.. 5-5
Miscellaneous... 5-5
Password Management (XML-based Provider only)... 5-5
Policy Operations .. 5-6
Realm Operations .. 5-6

Adding Clustering Support (XML-based Provider Only) .. 5-7
Adding and Removing Login Modules .. 5-7
Adding and Removing Policy Permissions (XML-based Provider Only) 5-8
Adding and Removing Principals (XML-based Provider Only) ... 5-9
Adding and Removing Realms .. 5-10
Adding and Removing Roles ... 5-10
Adding and Removing Users (XML-based Provider Only).. 5-11
Checking Passwords (XML-based Provider Only)... 5-12
Configuration Operations ... 5-12
Granting and Revoking Permissions .. 5-12
Granting and Revoking Roles .. 5-13
Listing Login Modules... 5-14
Listing Permissions .. 5-14
Listing Permission Information ... 5-14
Listing Principal Classes ... 5-15
Listing Principal Class Information .. 5-15
Listing Realms ... 5-16
Listing Roles .. 5-16
Listing Users .. 5-17
Migrating Principals from the principals.xml File (XML-based Provider Only) 5-17
Setting Passwords (XML-based Provider only) .. 5-18

vii

Using the JAZN Admintool Shell ... 5-19
Navigating the JAZN Admintool Shell ... 5-19

add: Creating Provider Data.. 5-19
cd: Navigating Provider Data.. 5-20
clear: Clearing the Screen ... 5-20
exit: Exiting the JAZN Shell ... 5-20
help: Listing JAZN Admintool Shell Commands... 5-20
ls: Listing Data ... 5-20
man: Viewing JAZN Admintool Man Pages... 5-21
pwd: Displaying The Working Directory .. 5-21
rm: Removing Provider Data... 5-21
set: Updating Values... 5-21

Admintool Shell Directory Structure... 5-22

6 Security and J2EE Applications

Introduction ... 6-2
Security Considerations During Development and Deployment .. 6-2

Development ... 6-2
Deployment ... 6-3

OC4J and the JAAS Provider .. 6-3
OC4J Integration ... 6-4
JAZNUserManager... 6-4

Replacing principals.xml.. 6-4
JAZNUserManager Features ... 6-4

Authentication Environments .. 6-5
Integrating the JAAS Provider with SSO-Enabled Applications... 6-5

SSO-Enabled J2EE Environments: A Typical Scenario .. 6-6
Integrating the JAAS Provider with SSL-Enabled Applications ... 6-8

SSL-Enabled J2EE Environments: A Typical Scenario... 6-8
Integrating the JAAS Provider with Basic Authentication... 6-10

Basic Authentication J2EE Environments: Typical Scenario... 6-11
J2EE and JAAS Provider Role Mapping.. 6-12

J2EE Security Roles.. 6-12
JAAS Provider Roles and Users .. 6-13
OC4J Group Mapping to J2EE Security Roles... 6-13

viii

Authentication in the J2EE Environment ... 6-14
Running with an Authenticated Identity .. 6-14
Retrieving Authentication Information... 6-15

Authorization in the J2EE Environment... 6-15

7 Custom LoginModules

Custom JAAS LoginModule Integration with OC4J ... 7-1
Packaging and Deployment .. 7-2

Deploying as Standard Extensions or Optional Packages.. 7-3
Deploying Within the J2EE Application.. 7-3
 Using the OC4J Classloading Mechanism ... 7-3
Using the JAAS Provider Classloading Mechanism.. 7-4

Configuration .. 7-4
jazn-data.xml ... 7-4

<jazn-loginconfig>... 7-4
<jazn-policy>.. 7-5

orion-application.xml... 7-6
<jazn> .. 7-6
<security-role-mapping>.. 7-7
<library> ... 7-7

Simple Login Module J2EE Integration ... 7-7
Development ... 7-7
Packaging... 7-7
Deployment ... 7-7

8 JAAS and Enterprise Manager

Startup ... 8-2
Editing Global Security Settings ... 8-4
Editing Individual Security Settings .. 8-5

Selecting a UserManager ... 8-7
Mapping Security Roles .. 8-9
Creating Users ... 8-10
Creating Groups .. 8-11
Deleting Users Or Groups... 8-12
Editing Users.. 8-12

ix

Assigning Users To Groups .. 8-13
Granting Permissions To Groups .. 8-14

Part II Other Technologies

9 Java 2 Security

Introduction ... 9-2
Permissions.. 9-2
Protection Domains .. 9-2

JAAS Provider Permission Classes ... 9-3
Creating a Java 2 Policy File.. 9-4
The Java 2 Security Manager .. 9-5

Using PrintingSecurityManager To Debug Java 2 Policy... 9-6

10 Password Management

Introduction ... 10-2
Password Obfuscation In jazn-data.xml and jazn.xml.. 10-2

Hand-editing jazn-data.xml .. 10-3
Creating An Indirect Password .. 10-3

Indirect Password Examples... 10-4
Specifying a UserManager In orion-application.xml .. 10-4

11 Oracle HTTPS for Client Connections

Introduction ... 11-1
Overview of SSL Keys and Certificates ... 11-2
Creating Keys and Certificates With OC4J and Oracle HTTP Server 11-4

Example: Creating an SSL Certificate and Generating Your Own Signature.................... 11-6
Requesting Client Authentication.. 11-7

Oracle HTTPS And Clients... 11-9
HTTPConnection Class.. 11-9
OracleSSLCredential Class (OracleSSL Only) .. 11-9

Overview of Oracle HTTPS Features.. 11-11
SSL Cipher Suites.. 11-11

Choosing a Cipher Suite... 11-12

x

SSL Cipher Suites Supported by OracleSSL .. 11-12
SSL Cipher Suites Supported by JSSE .. 11-13

Access Information About Established SSL Connections... 11-13
Security-Aware Applications Support .. 11-14
java.net.URL Framework Support ... 11-14

Specifying Default System Properties.. 11-15
javax.net.ssl.KeyStore... 11-16
javax.net.ssl.KeyStorePassword ... 11-16

Potential Security Risk with Storing Passwords in System Properties...................... 11-16
Oracle.ssl.defaultCipherSuites (OracleSSL only) ... 11-16

Oracle HTTPS Example ... 11-17
Initializing SSL Credentials In OracleSSL ... 11-19
Verifying Connection Information... 11-20
Transferring Data Using HTTPS .. 11-20

Using HTTPClient with JSSE ... 11-21
Configuring HTTPClient To Use JSSE... 11-22

Configuring Oracle HTTP Server and OC4J for SSL... 11-23
Oracle HTTP Server Configuration Steps for SSL.. 11-23
OC4J Configuration Steps for SSL.. 11-23

Configuring OC4J Standalone for SSL... 11-25
Requesting Client Authentication with OC4J Standalone.. 11-31

HTTPS Common Problems and Solutions .. 11-32

12 EJB Security

EJB JNDI Security Properties ... 12-2
JNDI Properties in jndi.properties.. 12-2
JNDI Properties Within Implementation .. 12-2

Configuring Security.. 12-3
Granting Permissions in Browser... 12-3
Authenticating and Authorizing EJB Applications ... 12-3

Specifying Users and Groups .. 12-5
Specifying Logical Roles in the EJB Deployment Descriptor.. 12-5
Specifying Unchecked Security for EJB Methods ... 12-8
Specifying the runAs Security Identity .. 12-9
Mapping Logical Roles to Users and Groups.. 12-10

xi

Specifying a Default Role Mapping for Undefined Methods 12-11
Specifying Users and Groups by the Client .. 12-12

Specifying Credentials in EJB Clients .. 12-12
Credentials in JNDI Properties.. 12-13
Credentials in the InitialContext ... 12-13

13 J2EE Connector Architecture Security

Deploying Resource Adapters ... 13-2
The oc4j-ra.xml Descriptor .. 13-2

The <security-config> Element ... 13-2
The oc4j-connectors.xml Descriptor... 13-4

Specifying Container-Managed or Component-Managed Sign-On....................................... 13-5
Authentication in Container-Managed Sign-On .. 13-6

JAAS Pluggable Authentication ... 13-7
The InitiatingPrincipal and InitiatingGroup Classes ... 13-8
JAAS and the <connector-factory> Element ... 13-9

User-Created Authentication Classes.. 13-9
Extending AbstractPrincipalMapping ... 13-13

Modifying oc4j-ra.xml.. 13-14

14 Configuring CSIv2

Introduction to CSIv2 Security Properties... 14-2
EJB Server Security Properties in internal-settings.xml ... 14-2
CSIv2 Security Properties in internal-settings.xml.. 14-4
CSIv2 Security Properties in ejb_sec.properties... 14-5

Trust Relationships... 14-5
CSIv2 Security Properties in orion-ejb-jar.xml ... 14-6

The <transport-config> element .. 14-6
The <as-context> element.. 14-7
The <sas-context> element.. 14-7

DTD ... 14-8
EJB Client Security Properties in ejb_sec.properties... 14-8

xii

15 Security Tips

HTTPS ... 15-2
Overall Security... 15-3
JAAS .. 15-3

A JAAS Provider Standards and Samples

Sample jazn-data.xml Code .. A-2
Supplemental Code Samples.. A-8

Supplementary Code Sample: Creating an Application Realm... A-9
Supplementary Code Sample: Modifying User Permissions ... A-10

B JAAS Provider Schemas

Schema for jazn-data.xml .. B-1
Schema for jazn.xml ... B-7

Index

xiii

List of Tables

2–1 Policy File Parameters... 2-5
2–2 JAAS Provider Features.. 2-7
2–3 OC4J User Managers And Repositories ... 2-8
2–4 User Permissions ... 2-12
3–1 J2EE Deployment Descriptors ... 3-3
3–2 OC4J Configuration Files ... 3-3
3–3 (XML-Based Provider) The <jazn> Tag In orion-application.xml 3-6
3–4 (LDAP-Based Provider) The <jazn> Tag in orion-application.xml 3-8
3–5 Values For <property> Element of <jazn> Tag ... 3-10
3–6 Values for auth-method in web.xml... 3-12
3–7 runas-mode and doasprivileged-mode Settings... 3-14
3–8 RealmLoginModule Options ... 3-17
3–9 LDAP Cache Properties.. 3-21
3–10 UserManager Tags .. 3-23
3–11 Elements in principals.xml... 3-24
4–1 Tools For Managing XML-Based and LDAP-Based Provider Environments 4-2
4–2 Realm and Policy Management Tools.. 4-3
4–3 Implementation of Realm Types ... 4-8
4–4 External Realm Responsibilities .. 4-9
4–5 Identity Management Realm Responsibilities .. 4-10
4–6 Application Realm Responsibilities.. 4-11
4–7 ADMIN Permission Example .. 4-16
5–1 LoginModule Control Flags... 5-7
9–1 Java Permission Instance Elements... 9-2
9–2 JAAS Provider Permission Classes ... 9-4
11–1 Cipher Suites Supported By OracleSSL ... 11-12
11–2 Cipher Suites Supported By JSSE.. 11-13
14–1 EJB Server Security Properties... 14-2
14–2 EJB Client Security Properties ... 14-9
A–1 Objects In Sample Application Realm Creation Code ... A-9
A–2 Objects In Sample Modifying User Permissions Code .. A-11

xiv

List of Figures

1–1 Identity Propagation Using CSIv2 .. 1-5
2–1 OC4J Security Architecture Under the JAZNUserManager Class 2-10
2–2 Role-Based Access Control... 2-13
4–1 Simplified Directory Information Tree for the External Realm 4-9
4–2 Simplified Directory Information Tree for the Identity Management Realm 4-10
4–3 Simplified Directory Information Tree for the Application Realm.............................. 4-11
4–4 Global JAZNContext Subtree .. 4-12
4–5 A Realm-Specific Subtree ... 4-13
4–6 Subscriber JAZNContext Subtree.. 4-13
5–1 JAZN Shell Directory Structure... 5-22
5–2 Illustrated Shell Directory Structure... 5-23
6–1 Oracle Component Integration in SSO-Enabled J2EE Environments............................ 6-6
6–2 Oracle Component Integration In SSL-Enabled J2EE Environments 6-8
6–3 Oracle Component Integration in j2ee Environment ... 6-10
8–1 Enterprise Manager Home Tab ... 8-2
8–2 Enterprise Manager Targets Tab ... 8-2
8–3 OC4J Instance Home Page.. 8-3
8–4 Oracle Enterprise Manager for Oracle Application Server OC4J Home Page 8-4
8–5 Oracle Enterprise Manager for Oracle Application Server Administration 8-4
8–6 Oracle Enterprise Manager for Oracle Application Server OC4J Home Page 8-5
8–7 Oracle Enterprise Manager for Oracle Application Server Application Page.............. 8-6
8–8 Oracle Enterprise Manager for Oracle Application Server Application Page.............. 8-7
8–9 User Manager area of Properties Page ... 8-8
8–10 Security Page .. 8-9
8–11 Security: Map Role Screen.. 8-10
8–12 Security: Add User Screen.. 8-11
8–13 Security: Add Group Screen .. 8-12
8–14 User Screen ... 8-13
8–15 User Screen ... 8-14
8–16 Group Screen.. 8-15
9–1 Java 2 Security Model.. 9-3
12–1 Role Mapping... 12-4
12–2 Security Mapping .. 12-5
12–3 Security Mapping .. 12-11

xv

List of Examples

11–1 HTTPS Communication With Client Authentication .. 11-27
11–2 Creating an SSL Certificate and Configuring HTTPS.. 11-28
12–1 Mapping Logical Role to Actual Role .. 12-10
A–1 Sample jazn-data.xml File .. A-2
A–2 Application Realm Creation Code.. A-9
A–3 Modifying User Permissions Code ... A-11

xvi

xvii

Send Us Your Comments

Oracle Application Server Containers for J2EE Security Guide, 10g (9.0.4)

Part No. B10325-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and
part number of the document, and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

■ Electronic mail: iasdocs_us@oracle.com
■ FAX: 650-506-7365 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally)
electronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xviii

xix

Preface

This manual discusses how to make effective use of the Oracle Application Server
Containers for J2EE (OC4J) security features.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

xx

Audience
This manual is intended for experienced Java developers, deployers, and
application managers who want to understand the security features of OC4J.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at:

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

■ Chapter 1, "Introduction"

■ Chapter 2, "Overview of JAAS in Oracle Application Server"

■ Chapter 3, "Configuring And Deploying the JAAS Provider"

■ Chapter 4, "JAAS Provider Administration Tasks"

xxi

■ Chapter 5, "Using the JAZN Admintool"

■ Chapter 6, "Security and J2EE Applications"

■ Chapter 7, "Custom LoginModules"

■ Chapter 8, "JAAS and Enterprise Manager"

■ Chapter 9, "Java 2 Security"

■ Chapter 10, "Password Management"

■ Chapter 11, "Oracle HTTPS for Client Connections"

■ Chapter 12, "EJB Security"

■ Chapter 13, "J2EE Connector Architecture Security"

■ Chapter 14, "Configuring CSIv2"

■ Chapter 15, "Security Tips"

■ Appendix A, "JAAS Provider Standards and Samples"

■ Appendix B, "JAAS Provider Schemas"

Related Documentation
For more information, see these Oracle resources:

■ Oracle Application Server 10g Security Guide

■ Oracle Application Server 10g Administrator’s Guide

■ Oracle Identity Management Concepts and Deployment Planning Guide

■ Oracle Application Server Certificate Authority Administrator’s Guide

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ Oracle Application Server Single Sign-On Application Developer’s Guide

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Internet Directory Application Developer’s Guide

■ Oracle Application Server Containers for J2EE Services Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Application Server Web Services Developer’s Guide

■ The OC4J Javadoc

xxii

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at:

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at:

http://otn.oracle.com/documentation/content.html

For additional information, see:

■ The Sun Java and J2EE Web pages, especially the Java Authentication and
Authorization Service (JAAS) website at
http://java.sun.com/products/jaas/index-14.html

Conventions
The following conventions are also used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

italic text Italicized text indicates placeholders or variables for which you must
supply particular values.

[] Brackets enclose optional clauses from which you can choose one or
none.

Introduction 1-1

1
Introduction

This chapter describes the following topics:

■ The Java 2 Security Model

■ Principals and Subjects

■ Authentication and Authorization

■ Developing Secure J2EE Applications

For a broader description of Oracle Application Server security in middle-tier
environments that connect to the Internet, see the Oracle Application Server 10g
Security Guide. For information on Web services, see the Oracle Application Server Web
Services Developer’s Guide.

The Java 2 Security Model

1-2 Security Guide

The Java 2 Security Model
The Java 2 Security Model enables configuration of security at all levels of
restriction. This provides developers and administrators with increased control over
many aspects of enterprise applet, component, servlet, and application security. The
Java 2 Security Model is capability-based and enables you to establish protection
domains, and set security policies for these domains.

For a tutorial on Java 2 Security, see
http://java.sun.com/docs/books/tutorial/
security1.2/index.html. For full information on Java 2 Security, see
http://java.sun.com/security.

Principals and Subjects

Principals
A principal is a specific identity, such as a user named frank or a role named hr. A
principal is associated with a subject upon successful authentication to a computing
service. Principals are instances of classes that implement the
java.security.Principal interface. A principal class must define a namespace
that contains a unique name for each instance of the class.

Subjects
A subject represents a grouping of related information for a single user of a
computing service, such as a person, computer, or process. This related information
includes the subject's identities and security-related attributes (such as passwords
and cryptographic keys).

Subjects can have multiple identities; principals represent identities in a subject. A
subject becomes associated with a principal (user frank) upon successful
authentication to a computing service—that is, the subject provides evidence (such
as a password) to prove its identity.

Principals bind names to a subject. For example, a person subject, user frank, may
have two principals:

■ One binds the principal frank doe (name on his driver license) to the subject

■ Another binds the identification principal 999-99-9999 (number on his student
identification card) to the subject

Both principals refer to the same subject.

Authentication and Authorization

Introduction 1-3

Subjects can also own security-related attributes (known as credentials). Sensitive
credentials requiring special protection, such as private cryptographic keys, are
stored in a private credential set. Credentials intended to be shared, such as public
key certificates or Kerberos server tickets, are stored in a public credential set.
Different permissions are required to access and modify different credential sets.

Subjects are represented by the javax.security.auth.Subject class.

To perform work as a particular subject, an application invokes the method
Subject.doAs(Subject, PrivilegedAction) (or one of its variations). This
method associates the subject with the current thread's AccessControlContext and
then executes the specified request.

Authentication and Authorization
Software security depends on two fundamental concepts: authentication and
authorization.

■ Authentication is establishing the identity and credentials of a subject.

Authentication information is stored in a user repository. When a subject
attempts to access a J2EE application, a user manager looks up the subject in the
user repository and verifies the subject’s identity. A user repository can be a file
or a directory server, depending on your environment. The Oracle Internet
Directory is an example of a user repository.

Although each J2EE application determines which user can use the application,
it is the user manager that authenticates the user’s identity using the user
repository.

OC4J supports several different authentication options; for details, see
"Authentication Environments" on page 6-5.

■ Authorization is granting privileges to an authenticated subject.

Developers specify authorization for subjects in the application’s J2EE and
OC4J-specific deployment descriptors. These deployment descriptors indicate
what roles are needed to access the different parts of the application. Roles are
the identities that each application uses to indicate access rights to its different
objects. The OC4J-specific deployment descriptors provide a mapping between
the logical roles and the users and groups known by OC4J.

Secure Communications

1-4 Security Guide

Secure Communications
To communicate securely, applications must satisfy the following goals:

■ Secure communications—the data transmitted over the network cannot be
intercepted, read, or altered by a third party. OC4J supports secure
communications using the HTTP protocol over the Secure Sockets Layer.

■ Network authentication—clients and servers must be able to authenticate
themselves to one another over the network. This is achieved using digital
certificates, single sign-on, or username/password combinations.

■ Identity propagation—allowing one client to act as the agent of another client,
using the original client’s identity.

Secure Sockets Layer
The Secure Sockets Layer (SSL) is the industry-standard point-to- point protocol
which provides confidentiality, via encryption, authentication and data integrity.
Although SSL is used by many protocols, it is most important for OC4J when used
with the HTTP browser protocol and in the AJP link between the OHS and OC4J
processes.

Certificates
Applications need to transmit authentication and authorization information over
the network. A digital certificate, as specified by the X.509 v3 standard, contains data
establishing a principal’s authentication and authorization information. A
certificate contains:

■ A public key, which is used in Public Key Infrastructure (PKI) operations

■ Identity information (for example, name, company, country, and so on)

■ Optional digital rights which grant privileges to the owner of the certificate.

Each certificate is digitally signed by a trustpoint. The trustpoint signing the
certificate can be a certificate authority such as VeriSign, a corporation, or an
individual.

HTTPS
For convenience, this book uses "HTTPS" as shorthand when discussing HTTP
running over SSL. Although there is an https: URL prefix, there is no HTTPS
protocol as such.

Developing Secure J2EE Applications

Introduction 1-5

Identity Propagation
OC4J supports propagating the identity of principals from context to context. A
Web client can establish its identity to a servlet; the servlet can then use that identity
to communicate with other EJBs and servlets, as illustrated in Figure 1–1.

Figure 1–1 Identity Propagation Using CSIv2

Developing Secure J2EE Applications
J2EE software development is based on a develop-deploy-manage cycle. The Oracle
JAAS Provider plays an important role in the deploy-manage part of the cycle. The
Oracle JAAS Provider is integrated with J2EE security. This means that developers
can use a declarative security model instead of having to integrate security
programmatically, unburdening the developer.

Web Client
(such as browser)

J2EE
Container

Enterprise
Information
System tierJSP/

servlet

EJB EJB

ERP, SAP
Applications

Messaging
System

J2EE
Container

EJB
caller ID

CSIv2

caller ID

CSIv2

username
password

Database

Developing Secure J2EE Applications

1-6 Security Guide

The following list summarizes the J2EE development cycle, with an emphasis on the
tasks specific to developing secure applications.

1. The software developer creates Web components, enterprise beans, applets,
servlets, and/or application clients.

The JAAS Provider offers programmatic interfaces, but the developer can create
components without making use of those interfaces.

2. The application assembler takes these components and combines them into an
Enterprise Archive (EAR) file.

As part of this process, the application assembler specifies JAAS Provider
options appropriate to the environment.

3. The deployer installs the EAR into an instance of OC4J.

As part of the deployment process, the deployer may map roles to users.

4. The system administrator maintains and manages the deployed application.

This task includes creating and managing JAAS roles and users as required by
the application customers.

Part I
 JAAS

This section discusses Java Authentication and Authorization (JAAS), in Oracle
Application Server Containers for J2EE (OC4J). JAAS is one of the core Java security
technologies.

This part contains the following chapters:

■ Chapter 2, "Overview of JAAS in Oracle Application Server"

■ Chapter 3, "Configuring And Deploying the JAAS Provider"

■ Chapter 4, "JAAS Provider Administration Tasks"

■ Chapter 5, "Using the JAZN Admintool"

■ Chapter 6, "Security and J2EE Applications"

■ Chapter 7, "Custom LoginModules"

■ Chapter 8, "JAAS and Enterprise Manager"

Overview of JAAS in Oracle Application Server 2-1

2
Overview of JAAS in Oracle Application

Server

This chapter introduces support for Oracle Application Server Java Authentication
and Authorization Service (JAAS), in Oracle Application Server Containers for J2EE
(OC4J). JAAS enables application developers to integrate authentication,
authorization, and delegation services with their applications.

This chapter contains these topics:

■ The JAAS Provider

■ What Is JAAS?

■ JAAS Framework Features

■ User Managers

■ Specifying UserManagers

■ Capability Model of Access Control

■ Role-Based Access Control (RBAC)

The JAAS Provider

2-2 Security Guide

The JAAS Provider
OracleAS supports JAAS by implementing a JAAS Provider. The JAAS Provider
implements user authentication, authorization, and delegation services that
developers can integrate into their application environments. Instead of devoting
resources to developing these services, application developers can focus on the
presentation and business logic of their applications.

The JAAS framework and the Java 2 Security model form the foundation of JAAS.
The OracleAS JAAS Provider implements support for JAAS policies. Policies
contain the rules (permissions) that authorize a user to use resources, such as
reading a file. Using JAAS, services can authenticate and enforce access control
upon resource users. The JAAS Provider is easily integrated with J2SE and J2EE
applications that use the Java 2 Security model.

Provider Types
The OC4J JAAS implementation supports two different provider types. Each
provider type implements a repository for secure, centralized storage, retrieval, and
administration of provider data. This data consists of realm (users and roles) and
JAAS policy (permissions) information.

■ XML-Based Provider

The XML-based provider is used for lightweight storage of information in XML
files. The XML-based provider stores user, realm, and policy information in an
XML file, normally jazn-data.xml.

■ LDAP-Based Provider

The LDAP-based provider is based on the Lightweight Directory Access
Protocol (LDAP) for centralized storage of information in a directory. The

Note: Some class and component names contain the word
"JAZN," which is a shortened name for the OC4J JAAS Provider.

Note: XML files are used as property and configuration files by
both LDAP-based and XML-based provider types. However, only
the XML-based provider stores users, realms, and policies in an
XML file, jazn-data.xml.

What Is JAAS?

Overview of JAAS in Oracle Application Server 2-3

LDAP-based provider stores user, realm, and policy information in the
LDAP-based Oracle Internet Directory.

What Is JAAS?
JAAS is a Java package that enables applications to authenticate and enforce access
controls upon users. The JAAS Provider is an implementation of the JAAS interface.

JAAS is designed to complement the existing code-based Java 2 security. JAAS
implements a Java version of the standard Pluggable Authentication Module (PAM)
framework. This enables an application to remain independent from the
authentication service.

JAAS extends the access control architecture of the Java 2 Security Model to support
principal-based authorization.

This section describes JAAS support for the following authentication, authorization,
and user community (realm) features. The JAAS Provider enhances some of these
features.

■ Login Module Authentication

■ Roles

■ Realms

■ Policies and Permissions

Login Module Authentication
To associate a principal (such as frank) with a subject, a client attempts to log into
an application. In login module authentication, the LoginContext class provides
the basic methods used to authenticate subjects such as users, roles, or computing
services. The LoginContext class consults configuration settings to determine
whether the authentication modules (known as login modules) are configured for

See Also:

■ "JAAS Framework Features" on page 2-7 for information on how the
OracleAS JAAS Provider enhances the JAAS framework to explicitly
define key authorization, authentication, and user community (realm)
features

■ JAAS documentation at the following Web site for more specific
discussions of key JAAS features:

http://java.sun.com/products/jaas/

What Is JAAS?

2-4 Security Guide

use with the particular application that the subject is attempting to access. Different
login modules can be configured with different applications; furthermore, a single
application can use multiple login modules.

Because the LoginContext separates the application code from the authentication
services, you can plug a different login module into an application without affecting
the application code.

Actual authentication is performed by the method LoginContext.login(). If
authentication succeeds, then the authenticated subject can be retrieved by invoking
LoginContext.getSubject(). The real authentication process can involve
multiple login modules. The JAAS framework defines a two-phase authentication
process to coordinate the login modules configured for an application.

After retrieving the subject from the LoginContext, the application then performs
work as the subject by invoking Subject.doAs() or
Subject.doAsPrivileged().

Roles
The JAAS framework does not explicitly define roles or groups. Instead, roles or
groups are implemented as concrete classes that use the interface
java.security.Principal.

The JAAS framework does not define how to support the role-based access control
(RBAC) role hierarchy, in which you can grant a role to a role.

Realms
The JAAS framework does not explicitly define user communities. However, the
J2EE reference implementation (RI) defines a similar concept of user communities
called realms. A realm provides access to users and roles (groups) and optionally
provides administrative functionality. A user community instance is essentially a
realm that is maintained internally by the authorization system. The J2EE RI Realm
API supports user-defined realms through subclassing.

See Also:

"JAAS Provider Realm Framework" on page 4-5 for JAAS Provider
enhancements to realms

What Is JAAS?

Overview of JAAS in Oracle Application Server 2-5

Applications
The JAAS framework does not explicitly define an application or subsystem for
partitioning authorization rules.

Policies and Permissions
A policy is a repository of JAAS authorization rules. The policy includes grants of
permissions to principals, thus answering the question: given a grantee, what are the
granted permissions of the grantee?

Policy information is supplied by the JAAS Provider. The JAAS framework does not
define an administrative API for policy administration. The administrative API
provided by the JAAS Provider is an Oracle extension.

Table 2–1 describes the Sun Microsystems implementation of policy file parameters.

Sun Policy Example
The following example shows a typical entry in the JAAS policy file as
implemented by Sun’s implementation of the JAAS policy provider:

grant CodeBase "http://www.example.com",
 Principal com.sun.security.auth.SolarisPrincipal "duke"
{
 permission java.io.FilePermission "/home/duke", "read, write";
};

Code from www.example.com running as a SolarisPrincipal with the
username duke has the permission that permits the executing code to read and
write files in /home/duke.

XML-Based Example
The JAAS XML-based provider can store policy data in the file jazn-data.xml. In
the following example, a segment of the jazn-data.xml file grants the jazn.com
/administrators permission to modify realm data, to drop realms, and to create
roles:

Table 2–1 Policy File Parameters

Where Is Defined As Example

subject one or more principal(s) duke

codesource codebase, signer http://www.example.com, mysigner

What Is JAAS?

2-6 Security Guide

<!--JAZN Policy Data -->
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm>jazn.com</realm>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole
 </class>
 <name>jazn.com/administrators</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 RealmPermission$jazn.com$modifyrealmmetadata</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.
 RealmPermission$jazn.com$droprealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.realm.RealmPermission$jazn.
 com$createrole</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>createrealm</actions>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

See Also:

■ "Sample jazn-data.xml Code" on page A-2 to view a complete
jazn-data.xml file.

JAAS Framework Features

Overview of JAAS in Oracle Application Server 2-7

JAAS Framework Features
Table 2–2 contains the JAAS framework features implemented by the Oracle
Application Server JAAS Provider.

Table 2–2 JAAS Provider Features

Feature Description See Also

Authentication ■ Integrates with Oracle Application Server Single
Sign-On (SSO) for SSO login authentication in
J2EE application environments.

■ Supplies an out-of-the-box
RealmLoginModule class for non-SSO
environments, such as OracleAS Core or Java
Edition

■ Supports any JAAS-compliant custom
LoginModule

Chapter 6, "Security and J2EE
Applications"

Declarative Model ■ Integrates J2EE deployment descriptors, such as.
web.xml, with JAAS security

■ Supports programmatic model as well

Chapter 3, "Configuring And
Deploying the JAAS Provider"

Role-based access
control (RBAC)

■ Provides centralized role-based access control,
including support for hierarchical roles

"Role-Based Access Control
(RBAC)" on page 2-12

Realms ■ Organizes users and roles (groups) around user
communities. An Oracle API package
(oracle.security.jazn.realm) is
provided to support user and role management.
This API includes a RealmPrincipal
interface that extends from
java.security.Principal and
associates a realm with users and roles.

"Realms" on page 2-4

"JAAS Provider Realm
Framework" on page 4-5

Management ■ Manages settings and data using command-line
tool (Admintool) or programmatic level APIs

■ Supports a centrally managed provider type
with Oracle Internet Directory

Chapter 4, "JAAS Provider
Administration Tasks"

JAZNUserManag
er

■ Provides an implementation of the OC4J
UserManager that integrates with both the
XML-based and the LDAP-based providers.

"OC4J and the JAAS Provider" on
page 6-3

Chapter 6, "Security and J2EE
Applications"

User Managers

2-8 Security Guide

User Managers
OC4J security employs a user manager to authenticate and authorize users and
groups that attempt to access a J2EE application. You base your choice of user
manager on performance and security needs.

All UserManager classes implement the
com.evermind.security.UserManager interface. UserManager classes
manage users, groups, and passwords through methods such as createUser(),
getUser(), and getGroup().

OC4J provides two predefined user managers, JAZNUserManager and
XMLUserManager. JAZNUserManager supports both XML-based and
LDAP-based providers. We recommend using JAZNUserManager because it is
based on the JAAS specification and is integrated with Oracle Application Server
Single Sign-On and Oracle Internet Directory. JAZNUserManager is the default
security provider, because it offers powerful and flexible security control.
Customers can also supply their own classes that implement the UserManager
interface.

Table 2–3 lists the user managers provided by OC4J.

See "Specifying UserManagers" on page 2-11 for directions on how to use Enterprise
Manager to define the default UserManager for all applications or a single
UserManager for a specific application.

Note: For a discussion of creating a custom UserManager, see
http://otn.oracle.com/sample_code/tech/xml/xmlnews
/News_Security.html

Table 2–3 OC4J User Managers And Repositories

User Manager Class User Repository

oracle.security.jazn.oc4j.JAZNUserMan
ager

Two types:

■ using the XML-based provider —
jazn-data.xml

■ using the LDAP-based provider—Oracle Internet
Directory

com.evermind.server.XMLUserManager The principals.xml file

Custom user manager Customized user repository

User Managers

Overview of JAAS in Oracle Application Server 2-9

The following sections describe the JAZN and XML user managers:

■ Using JAZNUserManager

■ Using XMLUserManager

Using JAZNUserManager
The JAZNUserManager class is the default user manager. The primary purpose of
the JAZNUserManager class is to leverage the JAAS Provider as the security
infrastructure for OC4J.

There are two JAAS Providers supplied with OC4J security: XML-based and
LDAP-based.

■ The XML-based provider is a fast, lightweight implementation of the JAAS
Provider API. This provider type uses XML to store user names and encrypted
passwords. The user repository is stored in the jazn-data.xml file, in a
location specified in the jazn.xml file. For details, see Chapter 3, "Configuring
And Deploying the JAAS Provider".

Select JAZN-XML as the user manager in the Enterprise Manager. Configure its
users, roles, and groups using the JAZN Admintool. For information on the
Admintool, see Chapter 5, "Using the JAZN Admintool".

■ The LDAP-based provider is scalable, secure, enterprise-ready, and integrated
with Single Sign-On. The LDAP-based provider is the only JAAS Provider that
supports Single Sign-On.

Select JAZN-LDAP as the user manager in the Enterprise Manager. Configure
its users and groups using the Delegated Administrative Service (DAS) from
Oracle Internet Directory. The user repository is an Oracle Internet Directory
instance, which requires that the application server instance be associated with
an infrastructure. If it the server is not associated with an Oracle Internet
Directory instance, then the LDAP-based provider is not a security option.For
information on using the Enterprise Manager, see Chapter 8, "JAAS and
Enterprise Manager".

Figure 2–1 shows the two different JAAS Providers supplied with OC4J.

User Managers

2-10 Security Guide

Figure 2–1 OC4J Security Architecture Under the JAZNUserManager Class

Using XMLUserManager
The XMLUserManager class is a simple user manager that manages users, groups,
and roles in an XML-based system. It stores user passwords in the clear, and
therefore is not as secure as the JAZNUserManager. All XMLUserManager
configuration information is stored in the principals.xml file, which is the user
repository for the XMLUserManager class.

Note: The XMLUserManager class is supported for backward
compatibility only. Oracle recommends that you use one of the
JAAS provider types.

Capability Model of Access Control

Overview of JAAS in Oracle Application Server 2-11

Specifying UserManagers
The user manager, employing the user name and password, verifies the user’s
identity using information in the user repository. The user manager contains your
definitions for users, groups, or roles. The default user manager is the
JAZNUserManager.

You can define a user manager for all applications or for specific applications.

■ Global user manager—The global (default) user manager is inherited by all
applications that have not defined a specific user manager.

■ Specific user manager—This user manager is defined solely for a single
application. It is not used by any other application.

■ In some cases, if an application inherits from another application instead of
inheriting from the global application, then the application’s parent user
manager will be the global UserManager instance instead of the
UserManager instance specified in the parent application.

Capability Model of Access Control
The capability model is a method for organizing authorization information. The JAAS
Provider is based on the Java 2 Security Model, which uses the capability model to
control access to permissions. With the capability model, authorization is associated
with the principal (a user named frank in the following example). Table 2–4 shows
the permissions that user frank is authorized to use:

Note: Within a single OC4J instance you can specify different
values for the application-specific UserManager instance and the
global UserManager instance. When you do this, we recommend
that you not mix custom UserManagers and Oracle-supplied
UserManagers. You can use different custom UserManagers for the
application and the global instance, and you can use different
Oracle-supplied UserManagers for the application and the global
instance, but you should avoid using a custom UserManager for the
one instance and an Oracle-supplied UserManager for the other.

Role-Based Access Control (RBAC)

2-12 Security Guide

When user frank logs in and is successfully authenticated, the permissions
described in Table 2–4 are retrieved from the JAAS Provider (whether the LDAP-
based Oracle Internet Directory or XML-based provider) and granted to user
frank. User frank is then free to execute the actions permitted by these
permissions.

Role-Based Access Control (RBAC)
RBAC enables you to assign permissions to roles. You grant users permissions by
making them members of appropriate roles. Support for RBAC is a key JAAS
feature. This section describes the following RBAC features:

■ Role Hierarchy

■ Role Activation

Role Hierarchy
RBAC simplifies the management problems created by direct assignment of
permissions to users. Assigning permissions directly to multiple users is potentially
a major management task. If multiple users no longer require access to a specific
permission, you must individually remove that permission from each user.

Instead of directly assigning permissions to users, permissions are assigned to a
role, and users are granted their permissions by being made members of that role.
Multiple roles can be granted to a user. A role can also be granted to another role,
thus forming a role hierarchy that provides administrators with a tool to model
enterprise security policies. Figure 2–2 provides an example of role-based access
control.

Table 2–4 User Permissions

User Has These File Permissions

frank Read and write permissions on a file named salaries.txt in the
/home/user directory

Role-Based Access Control (RBAC)

Overview of JAAS in Oracle Application Server 2-13

Figure 2–2 Role-Based Access Control

When a user's responsibilities change (for example, through a promotion), the user's
authorization information is easily updated by assigning a different role to the user
instead of a massive update of access control lists containing entries for that
individual user.

For example, if multiple users no longer require write permissions on a file named
salaries in the /home/user directory, those privileges are removed from the HR
role. All members of the HR role then have their permissions and privileges
automatically updated.

Role Activation
A user is typically granted multiple roles. However, not all roles are enabled by
default. An application can selectively enable the required roles to accomplish a
specific task in a user session with the run-as security identity and
Subject.doAS(). Selectively enabling roles upholds the principle of least
privilege: the application is not enabling permissions or privileges unnecessary for
the task. This limits the damage that can potentially result from an accident or error.

Role-Based Access Control (RBAC)

2-14 Security Guide

Configuring And Deploying the JAAS Provider 3-1

3
Configuring And Deploying the JAAS

Provider

This chapter describes the configuration tasks you must perform to use the Java
Authentication and Authorization (JAAS) Provider in a Java 2 Platform, Enterprise
Edition (J2EE) environment under Oracle Application Server Containers for J2EE
(OC4J). It also has a high-level overview of J2EE and OC4J deployment descriptors.
This chapter contains these topics:

■ LDAP-Based Provider Environment Settings

■ J2EE Deployment Descriptors

■ OC4J Deployment Descriptors

■ JAAS Provider Configuration Files

■ Specifying Authentication (auth-method)

■ Configuring Servlet Authorization (runas-mode and doasprivileged-mode) in
<jazn-web-app>

■ Mapping Security Roles In Servlets (run-as)

■ Configuring RealmLoginModule

■ Configuring the JAAS Provider To Use SSL With Oracle Internet Directory

■ Configuring For EJB RMI Client Access

■ Configuring Caching (LDAP-Based Provider Only)

■ Specifying a UserManager In orion-application.xml

LDAP-Based Provider Environment Settings

3-2 Security Guide

Before using your JAAS-based application, you must configure the JAAS Provider
components. This chapter discusses configuring JAAS in an OC4J and J2EE
environment.

LDAP-Based Provider Environment Settings
The JAAS LDAP-based provider depends on the OID client library
ldapjclnt9.jar in the directory:

[ORACLE_HOME]/jlib

 The OID client library depends on a native library (for example,
libldapjclnt9.so in Solaris) in the directory:

[ORACLE_HOME]/lib

These dependencies affect how you launch the JAZN Admintool, especially when
you are using the LDAP-based provider. Before launching the Admintool, you
must:

■ Ensure that your classpath contains:

[ORACLE_HOME]/jlib/ldapjclnt9.jar

■ Ensure that the operating-system-specific environment variable controlling
loading of dynamic libraries (for example, LD_LIBRARY_PATH in Solaris)
includes:

[ORACLE_HOME]/lib

When you manage OC4J with the Enterprise Manager, it sets these two variables
automatically.

Notes: This chapter does not describe how to configure OC4J as a
whole. See the Oracle Application Server Containers for J2EE User’s
Guide for those instructions.

To use the LDAP provider, you must install Oracle Application
Server and Oracle Internet Directory (OID). For details, see the
Oracle Application Server 10g Installation Guide.

OC4J Deployment Descriptors

Configuring And Deploying the JAAS Provider 3-3

J2EE Deployment Descriptors
J2EE provides the following XML deployment descriptors that have security
implications:

OC4J Deployment Descriptors
OC4J provides the following container-specific XML deployment descriptor files
that have security implications:

Table 3–1 J2EE Deployment Descriptors

Filename Security Tags

web.xml For Web applications, servlets, and Gasps, module-level
security roles, security constraints, and authorization
constraints

ejb-jar.xml For EJBs, module-level and method-level security roles,
security constraints, and authorization constraints

application.xml
(the file contained in an
application’s EAR file)

For applications, application-level descriptors for multiple
modules

Note: For a full discussion of these descriptors, see the Oracle
Application Server Containers for J2EE User’s Guide; this chapter
discusses only the security-related aspects of these descriptors.

Table 3–2 OC4J Configuration Files

File Security-related Tags

The global
application.xml

 mappings, user manager, <jazn>,
<security-role-mapping>, <jazn-web-app>
embedded in <jazn>.

orion-web.xml <jazn-web-app>

orion-application.
xml

<jazn> tag, <jazn-web-app> embedded in <jazn> .

JAAS Provider Configuration Files

3-4 Security Guide

JAAS Provider Configuration Files
The JAAS provider stores configuration information in various files; sample
configuration files are provided with the product. You edit the JAAS Provider
configuration files using the JAZN Admintool or manually, using a text editor.

You configure the JAAS Provider in all of the files listed in Table 3–2, as well as in
the following JAAS-specific files:

■ jazn.xml

The JAAS Provider configuration file; this specifies the default configuration for
the JAAS provider, including whether the provider is LDAP-based (uses OID as
the data store) or XML-based (uses jazn-data.xml as the data store).

■ jazn-data.xml

The XML-based provider stores user, role, and policy information in this file;
you edit it with the JAZN Admintool.

■ java2.policy

The standard Java 2 policy file granting permissions to codebases. This file is
located in $ORACLE_HOME/j2ee/home/config.

Specifying JAAS as the Policy Provider (Optional)
If you use the JVM shipped with Oracle Application Server 10g, the Oracle JAAS
Provider is automatically specified as the JAAS policy provider. If you use another
JVM, you must explicitly specify
oracle.security.jazn.spi.PolicyProvider as the policy provider.
By default, the JVM uses the Sun JAAS provider.

To specify the JAAS Provider as the policy provider:

Caution: If you edit these configuration files manually and you
are not running OC4J standalone, you must run dcmctl
updateconfig to propagate your changes throughout the cluster.

Note: If you use the LDAP-based provider, you use DAS to
manage users and groups. See the Oracle Internet Directory
Administrator’s Guide. for details.

JAAS Provider Configuration Files

Configuring And Deploying the JAAS Provider 3-5

1. Add the following information to the end of the
$JAVA_HOME/jre/lib/security/java.security file:

auth.policy.provider=oracle.security.jazn.spi.PolicyProvider
login.configuration.provider=oracle.security.jazn.spi.LoginConfigProvider

Locating jazn.xml
The file jazn.xml is the configuration file for both the XML-based and
LDAP-based JAAS providers. The JAAS Provider must locate a valid jazn.xml file
before it can begin running.

When the JAAS provider starts up, it searches for jazn.xml in order through the
directories specified by:

1. oracle.security.jazn.config (system property)

2. java.security.auth.policy (system property)

3. $J2EE_HOME/config ($J2EE_HOME is specified by the system property
oracle.j2ee.home)

4. $ORACLE_HOME/j2ee/home/config ($ORACLE_HOME is specified by the
system property oracle.home)

5. ./config

The JAAS provider stops searching after locating a jazn.xml file. If no file is
found, you receive the error message "JAZN has not been properly
configured."

The <jazn> Tag
You use the <jazn> tag to configure the JAAS Provider. The <jazn> tag can
appear in any of the following locations

■ The application’s orion-application.xml

■ The global application.xml

■ jazn.xml

A sample orion-application.xml file with all attributes and property names
specified is provided in "Specifying auth-method in orion-application.xml" on
page 3-13.

JAAS Provider Configuration Files

3-6 Security Guide

The tag supports different attributes depending on whether you are using the
XML-based Provider or the LDAP-based provider. This section discusses the two
separately, in the following sections:

■ The <jazn> Tag and the XML-Based Provider

■ The <jazn> Tag and the LDAP-Based Provider

■ The <property> Subelement Of <jazn>

The <jazn> Tag and the XML-Based Provider
When you are using the XML-based Provider, the <jazn> tag supports the
attributes shown in Table 3–3.

Note: You cannot edit the <jazn> tag using Enterprise Manager.

Table 3–3 (XML-Based Provider) The <jazn> Tag In orion-application.xml

Attribute Value (default is bold) Example

provider XML or LDAP provider="XML"

location (Required) Path to file containing provider
data. This can be an absolute path, or a path
relative to the jazn.xml file. The JAAS
Provider first looks for jazn-data.xml in
the directory containing jazn.xml.

location="./jazn-data.xml"

JAAS Provider Configuration Files

Configuring And Deploying the JAAS Provider 3-7

The <jazn> Tag and the LDAP-Based Provider
You configure your application to use LDAP-based provider by adding an entry to
the orion-application.xml file similar to the following example:

<jazn provider="LDAP"/>

This assumes that the OC4J instance has been properly associated with OID using
either the installer or Enterprise Manager.

When you associate an OC4J instance with an Oracle Application Server
Infrastructure (including the Oracle Internet Directory (OID)), your application can
leverage the LDAP-based provider for central management of users. You can
specify the use of the LDAP-based provider in several different configuration files
(see Chapter 3, "Configuring And Deploying the JAAS Provider" of the Oracle
Application Server Containers for J2EE Security Guide)

persistence NONE

Do not persist (write) changes to
jazn-data.xml.

ALL

Persist changes after every modification.

VM_EXIT

Persist changes when JVM exits.

persistence="ALL"

default-realm The realm used whenever an authentication or
authorization request does not specify a realm
explicitly. This attribute is not needed if you
have configured only one realm in the
repository.

default-realm="myrealm"

config If a config attribute appears, the JAAS
provider reads all provider properties from
the file specified in the pathname. This
attribute cannot be combined with any other
attribute; it must appear alone.

config="./jazn.xml"

See: "Specifying Authentication (auth-method)" on page 3-11 for
information on the <jazn-web-app> element and its attributes
auth-method, runas-mode, and doasprivileged-mode.

Table 3–3 (XML-Based Provider) The <jazn> Tag In orion-application.xml

Attribute Value (default is bold) Example

JAAS Provider Configuration Files

3-8 Security Guide

If you specify the LDAP-based provider globally in the application.xml
configuration file, then you must set up the following users and groups in OID
DAS:

■ An administrators group

■ An admin user that is a member of the administrators group

You must then grant the following permissions to the administrators group
using the JAZN Admintool:

■ com.evermind.server.AdministrationPermission
("administration")

■ com.evermind.server.rmi.RMIPermission("login")

You can set additional attributes and properties. The <jazn> tag in
orion-application.xml has the attributes shown in Table 3–4.

Table 3–4 (LDAP-Based Provider) The <jazn> Tag in orion-application.xml

Attribute Value (default is bold) Example

provider XML or LDAP (this attribute can also be
specified

provider="LDAP"

location The URL of an LDAP server. Avoid using. See Note.

default-rea
lm

The realm used whenever an
authentication or authorization request
does not specify a realm explicitly. This
attribute is not needed if you have
configured only one realm.

default-realm="us"

config If a config attribute appears, the JAAS
provider reads all provider properties
from the file specified in the pathname.
This attribute cannot be combined with
any other attribute; it must appear alone.

config="configpath"

persistence ALL

Persist changes after every modification.

"The LDAP-based Provider always sets
this value to ALL.

JAAS Provider Configuration Files

Configuring And Deploying the JAAS Provider 3-9

The <jazn> tag can contain a <jazn-web-app> tag that specifies authentication
information.

If you want to permit anonymous, read-only logins to the application, do not assign
values to these attributes.

A sample orion-application.xml file with all attributes and property names
specified is provided in "Specifying auth-method in orion-application.xml" on
page 3-13.

The <property> Subelement Of <jazn>
The <jazn> tag can contain a <property> element. Most of these properties can
be set only on a per-VM business, in the global jazn.xml. The only exceptions are
ldap.password and ldap.user. The syntax of the <property> subelement is:

<property name="propname" value="propvalue">

Notes:

■ If you do not specify the provider attribute in the <jazn> tag
in orion-application.xml, you can specify it in
jazn.xml.

■ The provider and location attributes can be edited using
Enterprise Manager; all other attributes must be edited by
hand.

■ The JAAS LDAP-based provider does not depend on the
location attribute in the <jazn> element. If you do not
specify this attribute (it is not specified by default), then the
JAAS runtime obtains infrastructure information from
configured system settings. The system settings are configured
when you use Enterprise Manager to associate a mid-tier to an
infrastructure. To take advantage of this feature, we
recommend that you do not set the location attribute in the
<jazn> element in any JAAS configuration files, including
jazn.xml and orion-application.xml.

See: "Specifying Authentication (auth-method)" on page 3-11 for
information on the <jazn-web-app> element and its attributes
auth-method, runas-mode, and doasprivileged-mode.

JAAS Provider Configuration Files

3-10 Security Guide

Table 3–5 lists the supported properties.

Table 3–5 Values For <property> Element of <jazn> Tag

Property Name Default Value

classpath This property, when set, tells the JAAS Provider where to
look for third-party classes and JAR files if they cannot be
found elsewhere.

classpath="./loginmodules"

external.synchron
ization

false When set to true, the XML-based JAAS Provider monitors
its data repository (normally jazn-data.xml) for
external updates. When you add new users outside your
application (for example, by using the Admintool), these
users will be picked up automatically by OC4J. If you do
not set this property, you must stop and restart OC4J in
order to make the new users visible.

Set to false for production environments.

role.mapping.dyna
mic

false role.mapping.dynamic="true"

When set to true, the JAAS Provider does authorization
checks based on the current Subject instead of using
static configurations. When set to false, the JAAS
Provider uses static configurations as the basis for
authorization checks.

jndi.ctx_pool.ini
t_size

5 Initial size for JNDI/LDAP connection pool.

jndi.ctx_pool.inc
_size

10 Pool increment size for JNDI/LDAP connection pool —
number of connections added to pool whenever the supply
of connections in the pool is exhausted.

ldap.cache.* See "Configuring the JAAS Provider To Use SSL With Oracle Internet
Directory" on page 3-18 and Table 3–9 for details.

ldap.connect.max.
retry

5 Number of times the JAAS Provider attempts to create an
LDAP connection before giving up.

ldap.connect.slee
p

5000 Number of milliseconds the JAAS Provider waits before
retrying a failed LDAP connection attempt.

Specifying Authentication (auth-method)

Configuring And Deploying the JAAS Provider 3-11

Specifying Authentication (auth-method)
You specify the authentication method (auth-method) in one of several
configuration files, using either the <jazn-web-app> or <login-config>
elements.

Specifying auth-method in web.xml
To specify authentication method at the global level, you use the <login-config>
element of web.xml. For example:

ldap.password Obfuscated password for the LDAP user name. For
example:

{903}oZZYqmGc/iyCaDrD4qs2FHbXf3LAWtMN

See "Password Obfuscation In jazn-data.xml and jazn.xml"
on page 10-2 for details on obfuscation.

ldap.user LDAP username or DN. For example:

orcladmin or cn=orcladmin

ldap.walletloc Pathname for the Oracle Wallet.

ldap.walletpwd Obfuscated password for the Oracle Wallet. See "Password
Obfuscation In jazn-data.xml and jazn.xml" on page 10-2
for details on obfuscation.

Notes:

■ To specify a cleartext ldap.password or ldap.walletpwd
entry, place an exclamation point (!) in front of the password
value:, as in !welcome. The entry will be automatically
obfuscated.

■ When set to false, the XML-based JAAS Provider does not
check the file system periodically for external updates to the
XML-based data repository. To enable dynamic external
synchronization, set the external.synchronization
property to true in the <jazn> tag.

Table 3–5 Values For <property> Element of <jazn> Tag

Property Name Default Value

Specifying Authentication (auth-method)

3-12 Security Guide

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

 In web.xml, auth-method can have the values shown in Table 3–6:

These values can be overridden at the application level by using the
<jazn-web-app> element in orion-web.xml or orion-application.xml.

Specifying auth-method in orion-web.xml and orion-application.xml
The auth-method supplied in the top-level <jazn-web-app> element overrides
the auth-method in web.xml.

There is only one possible value for the auth-method in orion-web.xml and
orion-application.xml: SSO, meaning that the application uses Oracle Single
Sign-On.

A sample entry for orion-web.xml would look like:

<jazn-web-app
 auth-method="SSO"
/>

A sample entry for orion-application.xml would look like:

<jazn provider="LDAP"
 <jazn-web-app auth-method="SSO"/>
</jazn>

Table 3–6 Values for auth-method in web.xml

Setting Meaning

BASIC (default) The application uses basic authentication, the standard J2EE
authentication.

FORM The application uses form-based authentication.

DIGEST The application uses HTTP DIGEST authentication

CLIENT-CERT The application requires the client to supply its own certificate
for use with SSL.

Configuring Servlet Authorization (runas-mode and doasprivileged-mode) in <jazn-web-app>

Configuring And Deploying the JAAS Provider 3-13

Specifying auth-method in orion-application.xml
The auth-method supplied in the <jazn-web-app> element of the <jazn>
element overrides the auth-method in web.xml. There are two possible values:
SSO, meaning that the application uses Oracle SSO, and BASIC, meaning that the
application uses whatever authentication method is specified in web.xml. A
sample entry would look like:

<jazn provider="XML"
 location="jazn-data.xml"
 default-realm="JAZN.com"
 persistence="ALL"

<!-- default values for this application -->
 <jazn-web-app
 auth-method="SSO"
 />
</jazn>

Configuring Servlet Authorization (runas-mode and
doasprivileged-mode) in <jazn-web-app>

If you want a servlet to be invoked using subject.doAs() or
subject.doAsPrivileged(), you must set the runas-mode and
doasprivileged-mode attributes of the <jazn-web-app> element in the
orion-web.xml or orion-application.xml files.

■ subject.doAs() invokes the servlet using the privileges of a particular
subject. A subject is defined by an instance of the
javax.security.auth.Subject class and includes a set of facts regarding a
single entity, such as a person. Such facts include identities and security-related
attributes, such as passwords and cryptographic keys. The JAAS Provider
passes in the Subject instance in the method call.

When the doAs() method is used, an AccessControlContext instance is
retrieved from the current thread (from the server).

■ subject.doAsPrivileged() uses the privileges of a particular subject
without being limited by the access-control restrictions of the server.

When the doAsPrivileged() method is used, the JAAS Provider invokes the
method with a null java.security.AccessControlContext instance, in

Mapping Security Roles In Servlets (run-as)

3-14 Security Guide

order to start the action fresh and execute the servlet without the restrictions of
the current server AccessControlContext instance.

runas-mode and doasprivileged-mode control whether the servlet is invoked
with subject.doAsPrivileged() or subject.doAs(). By default,
runas-mode is set to false, which means that neither
subject.doAsPrivileged() or subject.doAs() is invoked.

Thus, to have your servlet invoked using subject.doAsPrivileged() you
should have a <jazn-web-app> element that looks like this:

<jazn-web-app
 auth-method="SSO"
 runas-mode="true"
 doasprivileged-mode="true"
/>

Mapping Security Roles In Servlets (run-as)
You can map J2EE security roles to JAAS roles using OC4J groups. This enables
your application to run with the privileges of the security role or specific
RealmPrincipal class. The following tasks pertain to both kinds of privileges.

Note: runas-mode is unrelated to the servlet.runAs method.

Table 3–7 runas-mode and doasprivileged-mode Settings

If runas-mode
is Set To

And
doasprivileged-mode
Is Set To Then the servlet is invoked with:

false
(default)

true or false No special privileges

true true (default) subject.doAsPrivileged()

true false subject.doAs()

Note: The run-as element is unrelated to runas-mode.

Mapping Security Roles In Servlets (run-as)

Configuring And Deploying the JAAS Provider 3-15

If the run-as element is specified, then the <role-name> maps to a security role
already defined for the Web application.

The following steps assume that sr_manager has already been defined as a
security role in web.xml as follows:

<security-role>
 <role-name>sr_manager</role-name>
</security-role>

To map J2EE security roles to JAAS roles:

1. Specify the run-as element within the <servlet> tag to run as the specific
J2EE security role or specific RealmPrincipal class in the web.xml file

For example, to run as the security role sr_manager:

<servlet>
 <servlet-name>DevGroup</servlet-name>
 <servlet-class>DevGroupServlet</servlet-class>
 <!-- run as security role "sr_manager" -->
 <run-as>
 <role-name>sr_manager</role-name>
 </run-as>
</servlet>

2. Define a JAAS <role> element in the jazn-data.xml file:

For example, developer is defined within a role:

<roles>
 <role>
 <name>developer</name>
 <members>
 <member>
 <type>user<type>
 <name>john<name>
 </member>
 </members>
 </role>
 </roles>

An XSD schema for jazn-data.xml is provided in Appendix B, "JAAS Provider
Schemas".

3. Integrate the definitions created in Step 1 and Step 2. Use OC4J groups in the
orion-application.xml file as follows:

Configuring RealmLoginModule

3-16 Security Guide

■ Map the role-name defined in the web.xml file as a security role
(sr_manager).

■ Map the role defined in jazn-data.xml as a OC4J group name
(developer).

For example, the sr_manager security role is mapped to the group named
developer in the JAAS Provider:

<security-role-mapping name="sr_manager">
 <group name="developer" />
</security-role-mapping>

Because the developer group is mapped to the J2EE security role sr_manager,
the user (john in this example) has access to the application resources defined by
the sr_manager role.

Configuring RealmLoginModule
The RealmLoginModule class is the default LoginModule that is configured
through the jazn-data.xml file. The RealmLoginModule class authenticates
user login credentials before the user can access J2EE applications. Authentication is
performed using OC4J container-based authentication (HTTP BASIC, FORM, and so
on). You do not need to enable the RealmLoginModule class if your application
uses SSO authentication.

You can enable RealmLoginModule either using the JAZN Admintool or by
editing jazn-data.xml. For details on using the Admintool, see "Adding and
Removing Login Modules" on page 5-7.

Enabling RealmLoginModule Using A Text Editor
Use a text editor to modify the login configuration file jazn-data.xml where
needed.

See Also: ■

■ Java Servlet Specification, available at
http://java.sun.com/products/servlet/download.h
tml

■ Chapter 6, "Security and J2EE Applications"

See Also: Oracle Application Server 10g Installation Guide for SSO
configuration tasks.

Configuring RealmLoginModule

Configuring And Deploying the JAAS Provider 3-17

The default configuration for the RealmLoginModule class setting in the
jazn-data.xml file is as follows:

<!DOCTYPE jazn-data (View Source for full doctype...)>
 <jazn-data>
 .
 .
 .
<!-- Login Module Data -->
 <jazn-loginconfig>
 <application>
 <name>JAZNUserManager</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 </jazn-loginconfig>
 </jazn-data>
The <login-module> tag supports the following <option> values:

Table 3–8 RealmLoginModule Options

Name Meaning Default

debug If set to true, prints debugging messages. false

addRoles If set to true, the RealmLoginModule adds
all directly granted roles of the user to the
Subject after successful authentication.

true

addAllRoles If set to true, the RealmLoginModule adds
all directly or indirectly granted roles of the user
to the Subject after successful authentication.

true

storePrivateCredentials If set to true, the RealmLoginModule adds
all private credentials (for instance, password
credentials) to the Subject after successful
authentication.

false

Configuring the JAAS Provider To Use SSL With Oracle Internet Directory

3-18 Security Guide

Configuring the JAAS Provider To Use SSL With Oracle Internet
Directory

This section discusses configuring the JAAS provider to use SSL with OID. For
information on how to configure OID to use SSL, see the Oracle Internet Directory
Administrator’s Guide and Servlet Developer’s Guide.

There are three ways to use SSL to communicate with OID:

1. NULL authentication—data are encrypted with the Anonymous Diffie-Hellman
cipher suite, but no certificates are used for authentication.

2. Server-side authentication only (one-way authentication)—server authenticates
itself to client with a digital certificate, but client does not authenticate itself.

3. Client and server authentication (two-way authentication)—both client and
server authenticate themselves using digital certificates.

For NULL authentication (case 1), add a <property> tag to the <jazn> tag to
specify a protocol (note that you do not specify a wallet location or password,
because NULL authentication does not use certificates):

<?xml version = '1.0' encoding = 'UTF-8'?>
<jazn provider="LDAP" location="ldap://pichan-sun.us.oracle.com:5000"
default-realm="us">

supportCSIv2 If set to true, the RealmLoginModule
supports CSIv2.

false

supportNullPassword If set to true, the RealmLoginModule does
not check to see if the supplied password is null
or empty. If set to false, authentication fails if
the supplied password is null or empty.

false

See Also: The JAAS Provider Javadoc.

"Adding and Removing Login Modules" on page 5-7

Note: See Table 11–1, "Cipher Suites Supported By OracleSSL" for
a list of supported cipher suites.

Table 3–8 RealmLoginModule Options

Name Meaning Default

Configuring Caching (LDAP-Based Provider Only)

Configuring And Deploying the JAAS Provider 3-19

 <property name="ldap.protocol" value="ssl"/>

</jazn>

<property name="ldap.protocol" value="ssl"/>

For either one-way or two-way authentication (cases 2 and 3), use the <property>
tag to specify protocol, wallet location, and wallet password:

<?xml version = '1.0' encoding = 'UTF-8'?>
<jazn provider="LDAP" location="ldap://pichan-sun.us.oracle.com:5000"
default-realm="us">

 <property name="ldap.protocol" value="ssl"/>
 <property name="ldap.walletloc"
value="/private/oracle/oid/ssl2/testwallet.txt"/>
 <property name="ldap.walletpwd" value="!welcome1"/>

</jazn>

Configuring For EJB RMI Client Access
(LDAP-Based Provider Only)

To enable fat client access to EJBs via RMI, you must grant the correct permissions
using the JAZN Admintool. You must grant the RMIPermission (login) to your user
or role. For example:

java -jar jazn.jar -grantperm myrealm -role administrators \
 com.evermind.server.rmi.RMIPermission login

Configuring Caching (LDAP-Based Provider Only)
The LDAP-based JAAS Provider supports caching, providing improved
performance and scalability. There are three separate caches:

■ Policy cache, which stores grantees and permissions

■ Realm cache, which stores realms, users and roles, and a role graph.

■ Session cache, which stores users and role graphs in an HTTP session object.
(This cache is available only to web-based clients with cookies enabled.)

Configuring Caching (LDAP-Based Provider Only)

3-20 Security Guide

The caching service maintains a global HashMap, which is used to store and retrieve
cached objects. A daemon thread runs periodically in the background to invalidate
and clean up expired objects in the HashMap. Objects in the cache expire based on a
time-to-live algorithm; expiration time can be set with the cache properties,
described in Table 3–9.

Session Cache Details
HttpSession objects persist for the duration of the server-side session. An
application can terminate a session explicitly, by invoking
HttpSession.invalidate(); a container can terminate a session based on the
<session-timeout> value.

The default session timeout for the OC4J server is 20 minutes. You can change this
default by editing web.xml and changing the <session-timeout>.

<session-config>
 <session-timeout>10 </session-timeout>
</session-config>

The JAAS Provider invokes HttpSession.invalidate() to invalidate the
session explicitly as appropriate. For example, when WebSSOUtil.logout() is
invoked, the JAAS Provider invalidates the session.

Disabling Caching
Caching is enabled by default. You should disable the caches when performing
management and administrative tasks. In particular:

Note: Only the LDAP-based Provider provides these caches. The
XML-based Provider defaults to caching the entire XML document.

See Also: The Oracle HTTP Server Administrator’s Guide for more
information about session support in OC4J.

Note: Objects stored in an HttpSession instance must
implement the java.io.Serializable interface in order to be
deployed with the <distributable /> flag in web.xml.

Configuring Caching (LDAP-Based Provider Only)

Configuring And Deploying the JAAS Provider 3-21

■ Disable the policy cache when managing policy. If the policy cache is enabled,
calling Policy.grant() or Policy.revoke() causes an
UnsupportedOperationException.

■ Disable the realm cache when managing realms. This includes adding realms,
dropping realms, granting roles, and revoking roles.

■ Disable the session cache when you disable HTTP session cookies.

The following is a sample excerpt from jazn.xml showing how to disable caching:

<jazn provider="LDAP">
 <property name="ldap.user" value="cn=orcladmin"/>
 <property name="ldap.password"
value="{903}3o4PTHbgMzVlzbVfKITIO5Bgio6KK9kD"\/>
 <property name="ldap.cache.session.enable"
value="false" />
 <property name="ldap.cache.realm.enable"
value="false" />
 <property name="ldap.cache.policy.enable"
value="false" />
</jazn>

Configuration
The following table describes the cache properties and their default values. You can
set these properties only at the virtual machine level, in the <jazn> tag in the
global jazn.xml file.

Table 3–9 LDAP Cache Properties

Property Description Default

ldap.cache.policy.enabl
e (see Note)

If set to true, enables cache; if set to
false, disables cache.

true

ldap.cache.realm.enable If set to true, enables cache; if set to
false, disables cache.

true

ldap.cache.session.enab
le

If set to true, enables cache; if set to
false, disables cache.

true

ldap.cache.initial.capa
city

Initial capacity for the HashMap. 20

ldap.cache.load.factor Load factor for the HashMap. .7

Specifying a UserManager In orion-application.xml

3-22 Security Guide

A jazn.xml file with all caches enabled, a cache size of 100, and a
10000-millisecond timeout would look like:

< ?xml version="1.0" encoding="UTF-8" standalone='yes'?>
< !DOCTYPE jazn PUBLIC "JAZN Config"
 "http://xmlns.oracle.com/ias/dtds/jazn.dtd">
< jazn provider="LDAP" location="ldap://example.com:389" >
 < property name="ldap.cache.initial capacity" value="100" />
 < property name="ldap.cache.purget.timeout" value="10000" />
</jazn>

Specifying a UserManager In orion-application.xml
Every application, including the top-level default application, has an associated
UserManager. The UserManager’s primary function is to authenticate users who
attempt to access web pages and EJBs. The UserManager is used to authenticate
users connections are made to the application. These are specified using
subelements within an <orion-application> element that define the

ldap.cache.purge.initia
l.delay

String containing an integer that
represents the number of milliseconds
the daemon thread waits before starts
checking for expired objects.

3600000

ldap.cache.purge.timeou
t

The string representation of an integer
that represents the number of
milliseconds an object remains in cache
before being invalidated and removed.
It is also the sleep time for the daemon
thread between each run looking for
expired objects.

3600000

Note: ldap.cache.policy.enable replaces the deprecated
property ldap.cache.enable.

Table 3–9 LDAP Cache Properties

Property Description Default

Specifying a UserManager In orion-application.xml

Configuring And Deploying the JAAS Provider 3-23

configuration. There are three tags that can be used to specify a UserManager.
They are:.

There may be more than one of these three elements within a single
<orion-application> element; Which element determines the UserManager
is determined by the order the elements appear in the table: <user-manager>
takes precedence over <jazn>, which takes precedence over <principals>. For
example, if both a <jazn> and a <principals> element are present, the
UserManager is based on the <jazn> element. If multiple elements with the
highest-priority tag are present, then the UserManagers are chained together as
parents. That is, the UserManager specified in the first tag becomes the parent of
the UserManager specified in the second, and so on. The last UserManager
specified then becomes the UserManager of the application. The parent of the first
UserManager is the UserManager associated with the parent application (if any)
of the application. The default application does not have a parent application and
the parent of its UserManager is null.

If no user manager is specified, then the UserManager is determined according to
the following rules.

■ For the default application, a JAAS UserManager is created based on
jazn-data.xml in the directory containing application.xml. If no
jazn-data.xml is present in that directory, one is created. The default realm
of the created jazn-data.xml is jazn.com.

■ At deployment time, if the UserManager of the parent application is the JAAS
UserManager, then a JAAS UserManager is created based on
jazn-data.xml. If necessary, a jazn-data.xml file is created in the same
way as the previous bullet. A <jazn> element is written into the
orion-application.xml associated with the application.

■ At deployment time, if the UserManager of the parent application is based on
principals.xml, then the UserManager of the application will be a

Table 3–10 UserManager Tags

Tag Meaning

<user-manager> A user manager implemented by some user-defined class

<jazn> A JAAS user manager.

<principals> A user manager defined in a principals.xml file. See
"Using the <principals> element and principals.xml" on
page 3-24

Specifying a UserManager In orion-application.xml

3-24 Security Guide

principals UserManager. If a principals.xml file is not present, then an
empty file is created. A <jazn> element is written into the
orion-application.xml associated with the application.

■ If the UserManager of the parent application is user-written, then the parent’s
UserManager will become the UserManager of the application.

Using the <principals> element and principals.xml
The <principals> element tells OC4J to use the UserManager described in a
principals file, normally principals.xml. A <principals> element has one
attribute, <path>, which specifies a path for the principals file, normally
principals.xml.

For example,

<principals path=”myprincipals.xml” />

A principals.xml file also contains a <principals> element; this contains
two sub-elements, <groups> and <users>. The <groups> element contains one
or more <group> elements, and the <users> element contains one or more
<user> elements.

Note: The XMLUserManager class is supported for backward
compatibility only. Oracle recommends that you use one of the
JAAS provider types.

Table 3–11 Elements in principals.xml

Element Can Contain Attributes Description

<principals> <groups>,
<users>

NA Containing element in file

<groups> <group> A list of groups known to this user
manager

<group> <description>
,
<permission>

name Identifies a single user group; name
attribute specifies group name

<description> Not used by JAAS provider, but is
displayed in various circumstances.

Specifying a UserManager In orion-application.xml

Configuring And Deploying the JAAS Provider 3-25

Groups in principals.xml correspond to roles in the JAAS Provider. The
principals.xml file does not support any equivalent of the JAAS provider’s
concept of realms. Permissions granted to groups may be checked explicitly, and
OC4J does check for the special permissions listed above. However, group
permissions are not integrated with the usual Permission checking performed by
a SecurityManager.

Here is an example principals.xml file.

<?xml version="1.0" standalone='yes'?>
<!DOCTYPE principals PUBLIC "//Evermind - Orion Principals//"
"http://xmlns.oracle.com/ias/dtds/principals.dtd">

<permission> name A java.security.Permission
that is granted to principals. There are
two special values:

■ administrator—equivalent to
com.evermind.security.Ad
ministrationPermission()

■ rmi:login— equivalent to
com.evermind.server.rm.R
MIPermission(“login”)

<users> <user> List of users known to the
UserManager

<user> <description>
,
<group-member
ship>

Single user belonging to this group

username String used to identify the user

password Cleartext password used to authenticate
the user. There is no mechanism for
obfuscating this password.

deactivated Either true or false. If true, then
this user will not be found in lookups
and will not be able to be authenticated

<description> Arbitrary content that may be displayed
in various circumstances

<group-membership> group Name attribute of a <group> which
contains this user

Table 3–11 Elements in principals.xml

Element Can Contain Attributes Description

Specifying a UserManager In orion-application.xml

3-26 Security Guide

<principals>
 <groups>
<group name="guests">
 <description>users</description>
 </group>
 <group name="administrators">
 <description>administrators</description>
 <permission name="administration" />
 </group>
 </groups>
 <users>
 <user username="SCOTT" password="TIGER">
 <group-membership group="guests" />
 </user>
 <user username="anonymous" password="">
 <description>The default guest/anonymous user</description>
 <group-membership group="guests" />
 </user>
 <user username="admin" password="" deactivated="true">
 <description>The default administrator</description>
 <group-membership group="users" />
 <group-membership group="administrators" />
 </user>
 </users>
</principals>

JAAS Provider Administration Tasks 4-1

4
JAAS Provider Administration Tasks

This chapter describes how to manage the Oracle Application Server Containers for
J2EE (OC4J) JAAS Provider.

This chapter contains these topics:

■ JAAS Provider Management Overview

■ Realm and Policy Management

■ JAAS Provider Debug Logging

JAAS Provider Management Overview

4-2 Security Guide

JAAS Provider Management Overview
Managing the JAAS Provider in the J2SE and J2EE environments involves creating
and managing realms, users, roles, permissions, and policy. OC4J provides two
tools for managing JAAS configuration: the JAAS Provider Admintool and Oracle
Enterprise Manager (OEM). You can also manage JAAS programatically.

■ Oracle Enterprise Manager

■ Oracle Internet Directory Delegated Administrative Service (OID DAS)

■ JAZN Admintool, a command-line tool

■ JAAS Provider APIs

Table 4–1 describes which tools can be used in the XML and LDAP provider
environments.

Realm and Policy Management
The JAAS Provider supports two types of repository providers, referred to as
provider types:

■ The XML-based provider type used with an XML file, typically
jazn-data.xml

■ The LDAP-based provider type used with Oracle Internet Directory (OID)

Note: Configuration tasks differ by whether your application uses
an XML-based or LDAP-based JAAS Provider.

Table 4–1 Tools For Managing XML-Based and LDAP-Based Provider Environments

Using This Tool
With XML-Based
provider type

With LDAP-Based
provider type

Oracle Enterprise
Manager

Map security roles. Map security roles.

OID DAS Not applicable. Manage users and groups.

JAZN Admintool Manage users, roles, and policy. Manage policy.

Realm and Policy Management

JAAS Provider Administration Tasks 4-3

OID and jazn-data.xml are repositories used to store realm (users and roles) and
policy (permissions) information. This section discusses the following topics in
relation to the two different provider types:

■ Realm and Policy Management Tools

■ JAAS Provider Realm Framework

■ Realm Management in XML-Based Environments

■ Realm Management in LDAP-Based Environments

■ JAAS Provider Policy Administration

Realm and Policy Management Tools
Several tools are provided for managing realm and policy information. Table 4–2
describes these tools and indicates the environment in which they operate.

Note: To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide. for details.

Table 4–2 Realm and Policy Management Tools

Method/Environment Description See Also

Oracle Enterprise
Manager

LDAP-based only

A graphical user interface tool that enables you to manage users,
roles, and groups.

"JAAS and
Enterprise
Manager" on
page 8-1

JAZN Admintool

Both LDAP and
XML-based environments

A command line interface tool that enables administrators to
create and manage users, realms, roles, and policies. The JAZN
Admintool:

■ Uses the JAAS Provider API to perform functions

■ Can be executed from the operating system command line

The JAZN Admintool has the same capabilities and limitations
as the JAAS Provider APIs. For example, you cannot create users
with the JAZN Admintool if your provider type is LDAP-based
Oracle Internet Directory. However, you can create users if your
provider type is XML-based.

"Using the
JAZN
Admintool" on
page 5-1

Realm and Policy Management

4-4 Security Guide

See Also:

The Oracle Application Server 10g Installation Guide for information on
installing the provider type you want to use.

Realm and Policy Management

JAAS Provider Administration Tasks 4-5

JAAS Provider Realm Framework
The J2EE environment defines the concept of user communities. A user community
instance is essentially a realm maintained internally by the authorization system.

The API package oracle.security.jazn.realm is provided to support realms.
This API package is an enhancement to the JAAS policy provider.

Realms can be managed in both provider type environments:

■ XML-based

Provides a lightweight form of storage for realms and JAAS policy

■ LDAP-based Oracle Internet Directory

Provides centralized storage of realms and JAAS policy in a directory

Realm Management in XML-Based Environments
A realm provides user and role management. The XML-based provider offers a
lightweight, less restrictive, and faster implementation of realms than does the
LDAP-based provider.

XML-Based Realms
You can use the JAAS Provider to create one or more realms for an XML-based
environment.

XML-Based Realm and Policy Information Storage
The XML-based Provider enables you to:

■ Create realms, users, and roles

■ Grant roles to users and to other roles

■ Assign permissions to specific users and roles (principals)

This information is stored in an XML file, typically, jazn-data.xml. The
following example shows the structure used in a jazn-data.xml file to create
realms, users, and roles.

<!--JAZN Realm Data -->

See Also: "Using the JAZN Admintool" on page 4-1 for
instructions on creating realms

Realm and Policy Management

4-6 Security Guide

 <jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>admin</name>
 <displayName>Realm Administrator</displayName>
 <description>Administrator for this realm</description>
 <credentials>
 {903}ZcOsWfcw5YRI0Bsq4sNFuLioZgX3a6CF
 </credentials>
 </user>
 <user>
 <name>anonymous</name>
 <description>The default guest/anonymous
 user</description>
 </user>
 </users>
 <roles>
 <role>
 <name>guests</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 </members>
 </role>
 <role>
 <name>administrators</name>
 <displayName>Realm Admin Role</displayName>
 <description>Administrative role for this
 realm</description>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 <role>

Realm and Policy Management

JAAS Provider Administration Tasks 4-7

 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 </roles>
 </realm>
 </jazn-realm>

Realm Management in LDAP-Based Environments
A realm provides user and role management. You can manage the data in an
LDAP-based realm:

■ Internally by creating and managing user information with the JAAS Provider.
See Chapter 4, "JAAS Provider Administration Tasks".

■ Externally by creating and managing user and role information with Oracle
Internet Directory and then integrating it with the JAAS Provider.

LDAP-Based Realm Types
The JAAS Provider supports three types of realms for LDAP-based environments.
Each realm provides different user and role management capabilities. Table 4–3
describes these realms.

See Also: "Sample jazn-data.xml Code" on page A-2 for a
completed jazn-data.xml file

Note: Setting the <credentials> element as follows enables
you to use clear (readable) passwords in the jazn-data.xml file.

■ <credentials clear="true">welcome</credentials>

■ <credentials>!welcome</credentials>

This enables the administrator to directly edit jazn-data.xml with a
text editor. When the file is read and persistence occurs, the password in
jazn-data.xml is obfuscated and becomes unreadable.

Realm and Policy Management

4-8 Security Guide

When you use the LDAP-based JAAS provider with OracleAS Single Sign-On, you
must use the Identity Management Realm. The External Realm and Application
Realm are not supported when using OracleAS Single Sign-On.

Each realm type consists of:

■ A role manager for role management

■ A user manager for user management

User and role managers perform their duties internally (through JAAS permissions)
or externally (through OID Delegated Administration Service (DAS)).

Table 4–3 Implementation of Realm Types

Realms Type Description Use This Realm See Also

External
Realm

■ Supports external, read-only
user and role management

■ Integrates existing user
communities with the JAAS
Provider

For non-hosting
environments

Figure 4–1 on
page 4-9

Identity
Management
Realm

■ Created through
provisioning tools

■ Used in hosting
environments

■ Supports external, read-only
user and role management

In a hosting
environment in
which multiple
customers or
companies subscribe
to shared services

Figure 4–2 on
page 4-10

Application
Realm

■ Supports external, read-only
user management

■ Supports internal roles
management

If you want to use
the JAAS Provider
role management
feature

Figure 4–3 on
page 4-11

Note: The JAAS Provider does not supply an internal user
manager for creating users. You can create users with DAS or a
command line tool such as ldapadd.

Realm and Policy Management

JAAS Provider Administration Tasks 4-9

Figure 4–1 shows a sample LDAP DIT containing an External Realm that is
registered as an instance with the JAAS Provider. The realm type is created below a
Realms container.

Figure 4–1 Simplified Directory Information Tree for the External Realm

Table 4–4 describes the user and role management responsibilities of the External
Realm.

Figure 4–2 shows a sample LDAP DIT containing an Identity Management Realm
that is registered as an instance with the JAAS Provider. The realm type is created
below a Realms container.

Table 4–4 External Realm Responsibilities

External Realm Name Role Management User Management

abcRealm Retrieves external, read-only
roles

Retrieves external, read-only
users

Realm and Policy Management

4-10 Security Guide

Figure 4–2 Simplified Directory Information Tree for the Identity Management Realm

Table 4–5 describes the user and role management responsibilities of the Identity
Management Realm.

Table 4–5 Identity Management Realm Responsibilities

Identity Management
Realm Name Role Management User Management

BestCOMRealm Retrieves external,
read-only roles of a
subscriber

Retrieves external, read-only users

Realm and Policy Management

JAAS Provider Administration Tasks 4-11

Figure 4–3 shows a sample LDAP directory information tree (DIT) containing an
Application Realm that is registered as an instance with the JAAS Provider. The
realm type is created below a Realms container.

Figure 4–3 Simplified Directory Information Tree for the Application Realm

Table 4–6 describes the user and role management responsibilities of the
Application Realm.

LDAP-Based Realm Data Storage
The realm framework provides a means for registering realm instances with the
JAAS Provider and managing their information.

A Realms container object is created under the site-wide JAAS context. (For
example, see the Realms container in Figure 4–1 on page 4-9.) For each registered
realm instance, a corresponding realm entry is created under the Realms container
that stores the realm's attributes. This directory hierarchy is known to the JAAS

Table 4–6 Application Realm Responsibilities

Application Realm Name Role Management User Management

devRealm Internally creates and
manages modifiable roles

Retrieves external, read-only
users

Realm and Policy Management

4-12 Security Guide

Provider, which enables the JAAS Provider to create new realm instances in the
desirable directory location and find all the registered realms in runtime.

For example, the distinguished name (DN) for a realm called oracle can be
"cn=oracle,cn=realms,cn=JAZNContext,cn=site root".

Upon successful installation of the JAAS Provider, a default realm instance is
installed. Predefined realm properties are configured for starting the default realm.
Any realm type must provide concrete implementations for the system-defined Java
interfaces UserManager and RoleManager. During runtime, the JAAS Provider
finds all the registered realms and their attributes (name, user manager
implementation class, role manager implementation class, and their properties)
from the provider type (Oracle Internet Directory) and instantiates the realm's
implementation class with the properties for initialization.

Realm Hierarchy As Figure 4–4 illustrates, the JAAS Provider stores its entries within
the product container cn=JAZNContext. Beneath cn=JAZNContext is a
cn=Realms container, which stores realm entries, and a cn=Policy container,
which stores global JAAS Provider policies. The cn=Policy container in turn
stores two types of entries, cn=Permissions and cn=Grantees.

Note that the JAAS Provider has its own Groups and Users containers. The
Groups container contains the group JAZNAdminGroup. The Users container
contains the users that populate these groups.

Figure 4–4 Global JAZNContext Subtree

Figure 4–5 shows the directory entries that are placed under the example realm
cn=sampleRealm. The entry cn=usermgr stores information related to user
management while the entry cn=rolemgr stores information related to role

Realm and Policy Management

JAAS Provider Administration Tasks 4-13

(group) management. The policy-related entries under cn=sampleRealm store
realm-specific policies.

Figure 4–5 A Realm-Specific Subtree

In an identity management-based environment, a subscriber is registered as a realm.
Using the subscriber DN, the JAAS Provider locates the subscriber-specific Oracle
Context and creates a cn=JAZNContext subtree. In this case, the JAAS Provider
stores the entries cn=usermgr and cn=rolemgr and policy-related entries under
the subscriber’s JAZNContext.

In Figure 4–6 cn=oracle is a subscriber.

Figure 4–6 Subscriber JAZNContext Subtree

ACLs and JAZN directory entries JAAS Provider directory entries are protected by
ACLs at the root of the product subtree. These ACLs grant the group
JAZNAdminGroup and the JAAS Provider superuser JAZNAdminUser full

Realm and Policy Management

4-14 Security Guide

privileges (read, write) for JAAS Provider directory objects. Non-superusers who
are not JAZNAdminGroup members are denied access to JAAS Provider entries.

Because identity management JAZNContext subtrees are mirror images of their
site-wide parents, the security measures that they use to protect entries are the
same.

LDAP-Based Realm Permissions
A RealmPermission class is defined to represent realm permissions.
RealmPermission extends from java.security.Permission. It is used like
any regular Java permission. RealmPermission has the following characteristics:

■ Realm name, also known as target name

■ List of actions (permissions applicable to the realm, such as creating a realm,
dropping a role, and so on)

JAAS Provider Policy Administration
The JAAS Provider implementation of javax.security.auth.Policy uses
either an LDAP-based Oracle Internet Directory or XML-based provider type for
storing policy (authorization rules). The JAAS Provider administrator uses various
grant and revoke methods of the JAZNPolicy class to create authorization policies
for principals.

The policy provider must be administered in a secure manner. There are several
ways to administer the JAAS Provider policy:

■ Oracle Enterprise Manager (LDAP environments only)

■ JAAS Provider Admintool

■ Oracle Internet Directory Administration

■ AdminPermission Class

See Also:

■ The JAAS Provider Javadoc

See Also: Table 4–2 on page 4-3 for information on Oracle
Enterprise Manager and "Using the JAZN Admintool" on page 5-1
for information on the JAZN Admintool

Realm and Policy Management

JAAS Provider Administration Tasks 4-15

Oracle Internet Directory Administration
For LDAP-based application environments, you manage realm and policy data as
Oracle Internet Directory entries through:

■ The OID DAS and Oidadmin administrative tools

■ Definition of access control lists in Oracle Internet Directory

Two possible administrative groups can manage the data:

■ A JAAS Provider site-wide administrative group that is granted permissions to
access and modify the site-wide JAZNContext and any identity
management-specific JAZNContext

■ A realm-specific administrative group for each realm instance or administrative
user

In hosted application environments, part of the policy data may be partitioned
along subscriber boundaries and stored in a subscriber subtree. That policy data
cannot be administered by the realm-specific administrative group. The same is true
with role information.

With the JAAS Provider policy data (including realm data), only users that belong
to JAZNAdminGroup have read-access capabilities on provider data.

The LDAP-based environment caches provider policy data; for details, see
"Configuring Caching (LDAP-Based Provider Only)" on page 3-18.

AdminPermission Class
The AdminPermission class can be used in either LDAP-based or XML-based
environments.

The AdminPermission class represents the right to administer a permission. This
enables a grantee (such as a user named frank) to further grant and revoke the
granted right/permission to other grantees. Instances of this permission class
include instances of other permissions. Because this is a permission about
permission, it varies slightly from the permission definition, which includes a
simple name, actions pair. This variation is resolved by encoding a permission
instance as a string and using that as the name of the AdminPermission instance.
Table 4–7 provides an example:

See Also: Oracle Internet Directory Administrator’s Guide.

JAAS Provider Debug Logging

4-16 Security Guide

 grant Principal com.oracle.security.jazn.JAZNPrincipal "frank"
{
 permission com.oracle.security.jazn.policy.AdminPermission
 "class=java.io.FilePermission, name=\"/tmp/*\", actions=\"read, write\""
};

The JAAS Provider does not support recursive embedding of AdminPermission
(that is, an AdminPermission instance embedded within another
AdminPermission instance). In the initial policy, the user is granted
AdminPermission to java.security.AllPermission, enabling the JAAS
Provider user to grant and revoke all permissions to anyone.

A RoleAdminPermission class is defined for roles. This means that when role hr
is granted to frank, frank is granted both role hr and a RoleAdminPermission
that enables frank to further grant and revoke role hr.

Policy Partitioning
The JAAS Provider supports policy partitioning among realms (that is, each realm
has its own realm-specific policy). This realm-specific policy is administered by the
realm-specific administrative group.

Each subscriber is represented by a realm and the subscriber-specific information
subtree is stored under a subscriber-specific JAZNContext. This subscriber-specific
subtree, however, is primarily administered by the JAAS Provider administrative
group from the perspective of the LDAP server (Oracle Internet Directory).

JAAS Provider Debug Logging
To turn on JAAS provider debug logging, set the system property
jazn.debug.log.enable to true during Java Virtual Machine (JVM) startup.
You do this by modifying the JVM settings for your OC4J instance. In Oracle

Table 4–7 ADMIN Permission Example

If User Then User

frank is granted the AdminPermission for
java.io.FilePermission("/tmp/*","re
ad,write")

frank can further grant and revoke
any permission implied by the
embedded permission (that is,
FilePermission in this instance).

JAAS Provider Debug Logging

JAAS Provider Administration Tasks 4-17

Application Server, you normally manage JVM settings via the <java-options>
element in opmn.xml. In standalone mode, you set this property using JVM
command-line options. For instance, you might start OC4J standalone with a
command line such as:

java -Djazn.debug.log.enable=true -jar oc4j.jar

 Or you can start the Admintool shell in debug mode with the command:

java -Djazn.debug.log.enable=true -jar jazn.jar -shell

In Oracle Application Server, the debug output is captured by OPMN and written
to the log files associated with the OC4J instance.

JAAS Provider Debug Logging

4-18 Security Guide

Using the JAZN Admintool 5-1

5
Using the JAZN Admintool

The JAZN Admintool can manage both XML-based and LDAP-based JAAS
configurations and data from the command prompt.

The JAZN Admintool is a flexible Java console application, with functions that can
be called directly from the command line or through an interactive shell. The shell
uses UNIX-derived commands to perform specific JAAS functions. The JAZN
Admintool is located in OC4J_HOME/j2ee/home/jazn.jar.

This chapter discusses how to perform common administration tasks using the
JAZN Admintool. It is divided into the following sections:

■ Before You Start

■ Authentication and the JAZN Admintool (XML-based Provider Only)

■ JAZN Admintool Command-Line Options

■ Adding Clustering Support (XML-based Provider Only)

■ Adding and Removing Login Modules

■ Adding and Removing Policy Permissions (XML-based Provider Only)

■ Adding and Removing Principals (XML-based Provider Only)

■ Adding and Removing Realms

■ Adding and Removing Roles

Note: The JAZN Admintool manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Before You Start

5-2 Security Guide

■ Adding and Removing Users (XML-based Provider Only)

■ Checking Passwords (XML-based Provider Only)

■ Configuration Operations

■ Granting and Revoking Permissions

■ Granting and Revoking Roles

■ Listing Login Modules

■ Listing Permissions

■ Listing Permission Information

■ Listing Principal Classes

■ Listing Realms

■ Listing Roles

■ Listing Users

■ Migrating Principals from the principals.xml File (XML-based Provider Only)

■ Setting Passwords (XML-based Provider only)

■ Using the JAZN Admintool Shell

Before You Start
When you use the Admintool to manage XML provider data, by default it edits the
file jazn-data.xml under the config directory of the OC4J home instance. The
pathname of jazn-data.xml is specified in the <jazn provider="xml"
location="pathname"> element in jazn.xml. The password for the admin user
is set during installation time to the same value as the Oracle Application Server
administrator (ias_admin) password.

For using the Admintool with the LDAP-based provider, be sure to:

1. Set the correct environment settings as described in "LDAP-Based Provider
Environment Settings" on page 3-2.

2. Disable the cache as described in "Disabling Caching" on page 3-20.

Authentication and the JAZN Admintool (XML-based Provider Only)

Using the JAZN Admintool 5-3

Authentication and the JAZN Admintool (XML-based Provider Only)
If you are using the XML-based Provider, you must authenticate yourself to the
JAZN Admintool before making administrative changes. You authenticate yourself
in one of two ways:

■ Supplying the -user and -password switches, as in:

java -jar jazn.jar -user myusername -password mypassword -listrealms

■ Supplying a username and password when prompted by the Admintool, as in:

java -jar jazn.jar -listrealms
>RealmLoginModule username: martha
>RealmLoginModule password: mypass

In either case you may specify a LoginModule for the Admintool in
jazn-data.xml. If it is not provided, the RealmLoginModule is used by default.

Specifying an Admintool LoginModule in jazn-data.xml
Your jazn-data.xml file can specify which LoginModule the Admintool uses to
authenticate its users. For example:

<application>
 <name>oracle.security.jazn.tools.Admintool</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>

Note: If you are using the -user, -password, or
-clustersupport options, you must specify them before all
other options on the command line.

Note: The Admintool does not require authentication when used
with the LDAP-based provider; if you specify the -user and
-password options when using LDAP, they are ignored.

JAZN Admintool Command-Line Options

5-4 Security Guide

 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
</application>

If you try to run the Admintool without specifying a LoginModule, the
RealmLoginModule with the default options is used.

JAZN Admintool Command-Line Options
The JAZN Admintool provides the following command options, described in
greater detail in the following sections. The tool prints error messages if the syntax
or parameters are incorrect. You can list all the options and their syntax with the
-help option, as in:

java -jar jazn.jar -help

Syntax
The overall syntax for the Admintool is

java -jar jazn.jar [-user username -password mypassword
 -clustersupport ORACLE_HOME] [otheroptions]

This section lists all the Admintool command options.

Admintool Authentication (XML-based Provider Only)
-user username -password mypassword
See "Authentication and the JAZN Admintool (XML-based Provider Only)" on
page 5-3.

Note: If you are using the -user, -password, or
-clustersupport options, you must specify them before all
other options on the command line.

JAZN Admintool Command-Line Options

Using the JAZN Admintool 5-5

Clustering Operations
-clustersupport oracle_home

See "Adding Clustering Support (XML-based Provider Only)" on page 5-7.

Configuration Operations
-getconfig

See "Configuration Operations" on page 5-12.

Interactive Shell
-shell

See "Using the JAZN Admintool Shell" on page 5-19.

Login Modules
-addloginmodule application_name login_module_name
 control_flag [options]
-listloginmodules [application_name]
-remloginmodule application_name login_module_name

See "Adding and Removing Login Modules" on page 5-7 and "Listing Login
Modules" on page 5-14.

Migration Operations
-convert filename realm

See "Migrating Principals from the principals.xml File (XML-based Provider Only)"
on page 5-17.

Miscellaneous
-help [<command name>]

To display help for a specific command.

Password Management (XML-based Provider only)
-checkpasswd realm user [-pw password]
-setpasswd realm user old_pwd new_pwd

JAZN Admintool Command-Line Options

5-6 Security Guide

See "Checking Passwords (XML-based Provider Only)" on page 5-12 and "Setting
Passwords (XML-based Provider only)" on page 5-18.

Policy Operations
-addperm permission permission_class action target [description]
-addprncpl principlename principle_class parameters [description]
-grantperm {<realm> {-user user|-role <role>} | <principal_class>
 <principal_params>} <permission_class> [<permission_params>] |
-listperms [<realm> {-user <user> |-role <role>} |
 <principal_class> <principal_params> | <permission_name>] |
-listperm permission
-listprncpls
-listprncpl principal_name
-remperm permission
-remprncpl principal_name
-revokeperm {<realm> {-user user|-role <role>} | <principal_class>
 <principal_params>} <permission_class> [<permission_params>] |

See "Adding and Removing Policy Permissions (XML-based Provider Only)" on
page 5-8, "Adding and Removing Principals (XML-based Provider Only)" on
page 5-9, "Granting and Revoking Permissions" on page 5-12, "Listing Permissions"
on page 5-14, "Listing Permission Information" on page 5-14, "Listing Principal
Classes" on page 5-15, and"Listing Principal Class Information".

Realm Operations
-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype}
-addrole realm role
-adduser realm username password
-grantrole role realm {user|-role to_role}
-listrealms
-listroles [realm [user|-role role]]
-listusers [realm [-role role|-perm permission]]
-remrealm realm
-remrole realm role
-remuser realm user
-revokerole role realm {user|-role from_role}

See "Adding and Removing Realms" on page 5-10, "Adding and Removing Roles"
on page 5-10, "Adding and Removing Users (XML-based Provider Only)" on
page 5-11, "Granting and Revoking Roles" on page 5-13, "Listing Realms" on
page 5-16, "Listing Roles" on page 5-16, and "Listing Users" on page 5-17.

Adding and Removing Login Modules

Using the JAZN Admintool 5-7

Adding Clustering Support (XML-based Provider Only)
-clustersupport oracle_home

This option instructs the Admintool to propagate all JAAS configuration changes
throughout a cluster. The oracle_home argument specifies the absolute pathname
of the Oracle home directory. You can combine -clustersupport with the
-shell option.

For example:

java -jar jazn.jar -clustersupport /oracle_home -shell

Adding and Removing Login Modules
-addloginmodule application_name login_module_name
 control_flag [optionname=value ...]
-remloginmodule application_name login_module_name

The -addloginmodule option configures a new LoginModule for the named
application.

The control_flag must be one of required, requisite, sufficient or
optional, as specified in javax.security.auth.login.Configuration.
See Table 5–1.
.

Notes: If you are using the -clustersupport option, you must
specify it before all other options on the command line.

The -clustersupport option is meaningful only when using the
XML-based provider.

Table 5–1 LoginModule Control Flags

 Flag Meaning

Required The LoginModule must succeed. Whether or not it succeeds,
authentication proceeds down the LoginModule list.

Adding and Removing Policy Permissions (XML-based Provider Only)

5-8 Security Guide

If the LoginModule accepts its own options, you specify each option and its value
as an optionname=value pair. Each LoginModule has its own individual set of
options.

For instance, to add MyLoginModule to the application myapp as a required
module with debug set to true, type:

java -jar jazn.jar -addloginmodule myapp MyLoginModule required debug=true

To delete MyLoginModule from myapp, type:

java -jar jazn.jar -remloginmodule myapp MyLoginModule

Admintool shell:
JAZN:> addloginmodule myapp MyLoginModule required debug=true
JAZN: remloginmodule myapp MyLoginModule

Adding and Removing Policy Permissions (XML-based Provider Only)
-addperm permission permission_class action target
[description]
-remperm permission

The -addperm option registers a permission with the JAAS Provider
PermissionClassManager. The -remperm option removes registration for the

Requisite The LoginModule must succeed. If it succeeds,
authentication continues down the LoginModule list. If it
fails, control immediately returns to the application
(authentication does not continue down the LoginModule
list).

Sufficient The LoginModule is not required to succeed. If it succeeds,
control immediately returns to the application and
authentication does not proceed down the LoginModule
list. If it fails, authentication continues down the
LoginModule list.

Optional The LoginModule is not required to succeed. Whether or
not it succeeds, authentication proceeds down the
LoginModule list.

Table 5–1 LoginModule Control Flags

 Flag Meaning

Adding and Removing Principals (XML-based Provider Only)

Using the JAZN Admintool 5-9

specified permission class. To supply multiple words in the permission or
description arguments, enclose them in quotation marks ("three word
permission").

If you add a permission that already exists, the Admintool updates the permission’s
action and target lists.

For instance, to create permission to drop a realm, type:

java -jar jazn.jar -addperm perm1 oracle.security.jazn.realm.RealmPermission
droprealm "permission to drop a realm"

To delete the droprealm permission, type:

java -jar jazn.jar -remperm perm1

Admintool shell:
JAZN:> addperm perm1 oracle.security.jazn.realm.RealmPermission droprealm -null
"permission to drop a realm"
JAZN: remperm perm1

Adding and Removing Principals (XML-based Provider Only)
-addprncpl principlename principle_class parameters
[description]
-remprncpl principal_name

The -addprncpl option registers a principal with the JAAS Provider
PrincipalClassManager. The -remprncpl option removes registration for the
specified principal class. To supply multiple words in the principal_name and
description arguments, enclose them in quotation marks ("three word
description").

If you add a principal that already exists, the Admintool updates the principal’s
parameter list.

For example, to add the principal staff, type:

java -jar jazn.jar -addprincpl staff oracle.security.jazn.spi.xml.XMLRealmUser
 "a staff user"

Admintool shell:

JAZN:> addprincpl staff oracle.security.jazn.spi.xml.XMLRealmUser -null "a staff

Adding and Removing Realms

5-10 Security Guide

user"

Adding and Removing Realms
-addrealm realm admin {adminpwd adminrole | adminrole
 userbase rolebase realmtype}
-remrealm realm

The -addrealm option creates a realm of the specified type with the specified
name, and -remrealm deletes a realm.

For example, using the XML-based Provider, the administrator martha with
password mypass using role hr would add the realm employees as follows:

java -jar jazn.jar -addrealm employees martha mypass hr

Using the LDAP-based Provider, the administrator martha using role hr would
add the realm employees to userbase ub and rolebase rb in an external realm as
follows:

java -jar jazn.jar -addrealm employees martha hr ub rb external

In either environment, the administrator would delete employees as follows:

java -jar jazn.jar -remrealm employees

Adding and Removing Roles
-addrole realm role
-remrole realm role

The -addrole option creates a role in the specified realm; the -remrole option
deletes a role from the realm.

Note: The realmtype argument is required only when using the
LDAP-based Provider. The possible values for realmtype are:

■ external

■ application

Adding and Removing Users (XML-based Provider Only)

Using the JAZN Admintool 5-11

For example, to add the role roleFoo to the realm foo, type:

java -jar jazn.jar -addrole foo fooRole

To delete the role from the realm, type:

java -jar jazn.jar -remrole foo fooRole

Admintool shell: JAZN:> remrole foo fooRole

Adding and Removing Users (XML-based Provider Only)
-adduser realm username password
-remuser realm user

The -adduser option adds a user to a specified realm; the -remuser option
deletes a user from the realm. For example, to add the user martha to the realm
foo with the password mypass, type:

java -jar jazn.jar -adduser foo martha mypass

To delete martha from the realm, type:

java -jar jazn.jar -remuser foo martha

Admintool shell: JAZN:> adduser foo martha mypass

Note: If you are using the LDAP-based provider, -addrole and
-remrole are supported only for application realms; they are not
supported for external or identity management realms.

Notes: ■

■ To insert a user with no password, end the command line with the
-null option, as in:
jazn -jar jazn.jar -adduser foo martha -null

■ If you are using the LDAP-based provider, these commands will not
work.

Checking Passwords (XML-based Provider Only)

5-12 Security Guide

Checking Passwords (XML-based Provider Only)
-checkpasswd realm user [-pw password]

The -checkpasswd option indicates whether the given user requires a password
for authentication.

When you specify -checkpasswd alone, the Admintool responds "A password
exists for this principal" if the user has a password, or "No password
exists for this principal" if the user has no password.

When you specify -checkpasswd together with the -pw option, the Admintool
responds "Successful verification of user/password pair" if the
username and password pair are correct, or "Unsuccessful verification of
user/password pair" if username and/or password is incorrect.

For example, to check whether the user martha in realm foo uses the password
Hello, type:

java -jar jazn.jar -checkpasswd foo martha -pw Hello

Admintool shell: JAZN:> checkpasswd foo martha -pw Hello

Configuration Operations
-getconfig

The -getconfig option displays the current configuration setting in jazn.xml.

For example, to check the configuration settings for the realm foo, type:

java -jar jazn.jar -getconfig

Admintool shell: JAZN:> getconfig foo

Granting and Revoking Permissions
-grantperm realm {-user user|-role role } | principal_class
principal_parameters} permission_class [permission_parameters]
-revokeperm realm {-user user|-role role} | principal_class
principal_parameters} permission_class [permission_parameters]
-listperms realm {-user user|-role role} | principal_class

Granting and Revoking Roles

Using the JAZN Admintool 5-13

principal_parameters} permission_class [permission_parameters]

where principal_class is the fully qualified name of a class that implements the
principal interface (e.g., com.sun.security.auth.NTDomainPrincipal) and
principal_paramters is a single String parameter.

The -grantperm option grants the specified permission to a user (when called
with -user) or a role (when called with -role) or a principal. The -revokeperm
option revokes the specified permission from a user or role or principal

A permission_descriptor consists of a permission’s explicit class name (for
example, oracle.security.jazn.realm.RealmPermission), its action, and
its action and target parameters (for RealmPermission, realmname action).
Note that there may be multiple action and target parameters.

For example, to grant FilePermission with target a.txt and actions "read,
write" to user martha in realm foo, type:

java -jar jazn.jar -grantperm foo martha java.io.FilePermission
 a.txt read, write

Admintool shell: JAZN:> grantperm foo martha java.io.FilePermission a.txt read,
write

Granting and Revoking Roles
-grantrole role realm {user|-role to_role}
-revokerole role realm {user|-role from_role}

The -grantrole option grants the specified role to a user (when called with a user
name) or a role (when called with -role). The -revokerole option revokes the
specified role from a user or role.

For example, to grant the role editor to the user martha in realm foo, type:

java -jar jazn.jar -grantrole editor foo martha

Note: If you are using the LDAP-based provider, -grantrole
and -revokerole are supported only for application realms; they
are not supported for external or identity management realms.

Listing Login Modules

5-14 Security Guide

Admintool shell: JAZN:> grantrole editor foo martha

Listing Login Modules
-listloginmodules [application_name]

The -listloginmodules option displays all LoginModules either in the
specified application_name or, if no application_name is specified, in all
applications.

For example, to display all LoginModules for the application myapp, type:

java -jar jazn.jar -listloginmodules myapp

Admintool shell: JAZN:> listloginmodules myapp

Listing Permissions
-listperms realm {-user user|-role role} | principal_class
principal_parameters} permission_class [permission_parameters]

The -listperms option displays all permissions that match the list criteria. This
option lists the following:

■ All permissions registered with the JAAS Provider
PermissionClassManager

■ Permissions that are granted to a role when the -role option is used.

■ Permissions that are grated to a prinicpal.

For example, to display all permissions for the user martha in realm foo, type:

java -jar jazn.jar -listperms foo martha

Admintool shell: JAZN:> listperms foo martha

Listing Permission Information
-listperm permission

Listing Principal Class Information

Using the JAZN Admintool 5-15

The-listperm option displays detailed information about the specified
permission, including the permission’s display name, class, description, actions,
and targets.

For example, to list all information about the permission perm1, type:

java -jar jazn.jar -listperm perm1

Typical output might look like

Name:
perm1

Class:
oracle.security.jazn.realm.RealmPermission

Description:
permission to drop realm

Targets:

Actions:
droprealm <no description available>

Admintool shell: JAZN:> listperm perm1

Listing Principal Classes
-listprncpls

The -listprncpls option lists all principal classes registered with the
PrincipalClassManager.

For example:

java -jar jazn.jar -listprncpls

Admintool shell: JAZN:> listprncpls

Listing Principal Class Information
-listprncpl principal_name

Listing Realms

5-16 Security Guide

The -listprncpl option displays detailed information about the specified
principal, including the display name, class, description, and actions.

For example, to list all information about the principal martha, type:

java -jar jazn.jar -listprncpl martha

In our example, the output would be:

Name:
martha
Class:
oracle.security.jazn.spi.xml.XMLRealmUser
Description:
a staff user
Parameters:

Admintool shell: JAZN:> listprncpl martha

Listing Realms
-listrealms

The -listrealms option displays all realms in the current JAAS environment.

For example, to list all realms, type:

java -jar jazn.jar -listrealms

Admintool shell: JAZN:> listrealms

Listing Roles
-listroles [realm [user|-role role]]

The -listroles option displays a list of roles that match the list criteria. This
option lists:

■ All roles in all realms, when called without any parameters

■ All roles granted to a user, when called with a realm name and user name

■ Roles that are granted the specified role, when called with a realm name and
the option -role

Migrating Principals from the principals.xml File (XML-based Provider Only)

Using the JAZN Admintool 5-17

For example, to list all roles in realm foo, type:

java -jar jazn.jar -listroles foo

Admintool shell: JAZN:> listroles foo

Listing Users
-listusers [realm [-role role|-perm permission]]

The -listusers option displays a list of users that match the list criteria. This
option lists:

■ All users in all realms, when called without any parameters

■ All users in a realm, when called with a realm name

■ Users that are granted a certain role or permission, when called with a realm
name and the option -role or -perm

For example, to list all users in realm foo, type:

java -jar jazn.jar -listusers foo

For example, to list all users in realm foo using permission bar, type:

java -jar jazn.jar -listusers foo -perm bar
The Admintool lists users one per line, as in:

scott
admin
anonymous

Admintool shell: JAZN:> listusers foo

Migrating Principals from the principals.xml File
(XML-based Provider Only)

-convert filename realm

The -convert option migrates the principals.xml file into the specified realm
of the current JAAS Provider. The filename argument specifies the pathname of
the input file (typically ORACLE_HOME/j2ee/home/config/principals.xml).

Setting Passwords (XML-based Provider only)

5-18 Security Guide

The migration converts principals.xml users to JAAS users and
principals.xml groups to JAAS roles. All permissions that were previously
granted to a principals.xml group are mapped to the JAAS role. Users that were
deactivated at the time of migration are not migrated. This ensures that no users can
inadvertently gain access through the migration.

An error (either Javax.naming.AuthenticationException:Invalid
username/password or javax.naming.NamingException:Lookup Error)
is returned if the input file contains errors.

Before you convert principals.xml, you must make sure that you have an
administrator user that is authorized to manage realms. To do this:

1. Activate the administrative user in principals.xml, which is deactivated by
default. Be sure to create a password for the administrator.

Make sure that the administrator name you used to create the realm is different
from the name of the administrator in principals.xml. This is necessary
because the convert command does not migrate duplicate users, and migrates
duplicate roles by overwriting the old one.

2. Create the realm principals.com with a dummy user and a dummy role. For
example, in the Admintool shell you would type:

JAZN> addrealm principals.com u1 welcome r1
3. Migrate principals.xml to the principals.com realm, as in

java -jar jazn.jar -convert config/principals.xml principals.com
4. Edit jazn.xml and change the <default-realm> entry to

principals.com.

5. Stop OC4J and restart it.

Setting Passwords (XML-based Provider only)
-setpasswd realm user old_pwd new_pwd

The -setpasswd option allows administrators to reset the password of a user
given the old password.

Note: In previous releases this option was called -migrate. The
syntax and behavior of -convert are identical to those of
-migrate.

Using the JAZN Admintool Shell

Using the JAZN Admintool 5-19

For example, to change the user martha in realm foo from password mypass to
password a2d3vn, type:

java -jar jazn.jar -setpasswd foo martha mypass a2d3vn

Admintool shell: JAZN:> setpasswd foo martha mypass a2d3vn

Using the JAZN Admintool Shell
-shell

The -shell option starts a JAZN Admintool shell. The JAZN Admintool shell
provides interactive administration of JAAS principals and policies through a
UNIX-derived interface.

java -jar jazn.jar -user martha -password mypass -shell
JAZN:>

The shell responds with the JAZN:> prompt. To leave the interface shell, type exit.

If you are using the XML-based provider you must supply a username and
password to the Admintool; for details see "Authentication and the JAZN
Admintool (XML-based Provider Only)" on page 5-3. If you are using the
LDAP-based Provider, you do not need to specify the -user and -password
arguments.

Navigating the JAZN Admintool Shell
The Admintool shell supports UNIX-like commands for navigating within a JAZN
structure. For a complete discussion of the Admintool directory structure, see
"Admintool Shell Directory Structure" on page 5-22. All the Admintool commands
support relative and absolute paths.

 The Admintool navigation commands are:

add: Creating Provider Data
add directory_name [other_parameter]

Note: Multi-word arguments must be enclosed in quotes. For
example, java -jar jazn.jar -user ’Oracle DBA’ ...

Using the JAZN Admintool Shell

5-20 Security Guide

mkdir directory_name [other_parameter]
mk directory_name [other_parameter]

The add, mkdir, and mk commands are synonyms: they create a subdirectory or
node in the current directory. For example, if the current directory is the root, then
mk creates a realm. If the current directory is /realm/users, then mk creates a
user. The effect of add depends upon the current directory. Some commands require
additional parameters in addition to the name.

cd: Navigating Provider Data
cd path

The cd command allows users to navigate the directory tree. Relative and absolute
path names are supported. To exit a directory, type:

cd ..

Typing cd / returns the user to the root node. An error message is displayed if the
specified directory does not exist.

clear: Clearing the Screen
clear

The clear command clears the terminal screen by displaying 80 blank lines.

exit: Exiting the JAZN Shell
exit

The exit command exits the JAZN shell.

help: Listing JAZN Admintool Shell Commands
help

The help command displays a list of all valid commands.

ls: Listing Data
ls [path]

The ls command lists the contents of the current directory or node. For example, if
the current directory is the root, then ls lists all realms. If the current directory is

Using the JAZN Admintool Shell

Using the JAZN Admintool 5-21

/realm/users, then ls lists all users in the realm. The results of the listing
depends on the current directory. The ls command can operate with the *
wildcard.

man: Viewing JAZN Admintool Man Pages
man command_option
man shell_command

The man command displays detailed usage information for the specified shell
command or JAZN Admintool command option. Where information presented by
the man page and this document conflict, this document contains the correct usage
for the command.

pwd: Displaying The Working Directory
pwd

The pwd command displays the current location of the user in the directory tree.
Undefined values are left blank in this listing.

rm: Removing Provider Data
rm directory_name

The rm command removes the directory or node in the current directory. For
example, if the current directory is the root, then rm removes the specified realm. If
the current directory is /realm/users, it removes the specified user. The effect of
rm depends on the current directory. An error message is displayed if the specified
directory does not exist.

The rm command accepts the * wildcard.

set: Updating Values
set name=value

The set command updates the value of the specified name. For example, use this
command to update the login module class, or a login module control flag, or a
login module class option, depending on the working directory.

Using the JAZN Admintool Shell

5-22 Security Guide

Admintool Shell Directory Structure
The JAZN Admintool includes a shell called the JAZN shell interface. The JAZN
shell is an interactive interface to the JAAS Provider API.

The shell directory structure consists of nodes, where nodes contain subnodes that
represent the parent node’s properties. Figure 5–1 illustrates the node structure.

Figure 5–1 JAZN Shell Directory Structure

In this structure, the user and role nodes are linked together. This means that the
roles link under user is the same link as the roles link under realm. In Unix
terms, the role at numeral 1 in the diagram is a symbolic link to role at numeral 2
in the diagram.

Figure 5–2 shows nodes of the xmlRealm created by the jazn-data.xml file in
"Sample jazn-data.xml Code" on page A-2.

Note: In this release, the policy directory is always empty.

Using the JAZN Admintool Shell

Using the JAZN Admintool 5-23

Figure 5–2 Illustrated Shell Directory Structure

Using the JAZN Admintool Shell

5-24 Security Guide

Security and J2EE Applications 6-1

6
Security and J2EE Applications

This chapter describes security issues affecting J2EE applications in Oracle
Application Server Containers for J2EE (Oracle Application Server Containers for
J2EE).

This chapter contains these topics:

■ Introduction

■ Security Considerations During Development and Deployment

■ OC4J and the JAAS Provider

■ Authentication in the J2EE Environment

■ Authorization in the J2EE Environment

Introduction

6-2 Security Guide

Introduction
When the JAAS Provider is integrated with applications developed for the Java 2
Platform, the following Oracle components are available to developers:

■ The JAAS Provider, which provides support for storage, retrieval, and
administration of realm information (users and roles) and policy information
(permissions). The JAAS Provider supports two possible repositories or provider
types:

■ XML-based Provider Type

■ LDAP-based Oracle Internet Directory (available only with OracleAS
Infrastructure installation)

■ Login modules, such as the JAAS Provider RealmLoginModule

Security Considerations During Development and Deployment
The JAAS Provider is designed to work with the J2EE declarative security model.
This declarative model requires little or no programming to use JAAS security in
your application. Instead, most security decisions are made as part of the
deployment process, making it easy to make changes without requiring re-coding.
If the declarative model is not sufficient, the JAAS Provider also supports
programmatic security in the same manner that JAAS is used in any J2SE
environment.

Development
If your application relies on the declarative security model (where J2EE security
roles are defined in deployment descriptors, such as web.xml), the developer must
determine if the application uses application-specific roles. If so, the developer must
define these roles so that they can be mapped to the J2EE logical roles during the
deployment phase.

See Also: ■"Provider Types" on page 2-2 for further information
about provider types

■ Oracle Application Server 10g Security Guide for information on
installing Oracle Internet Directory.

OC4J and the JAAS Provider

Security and J2EE Applications 6-3

If your application uses JAAS programmatically, then the developer must create a
JAAS LoginContext and explicitly call the login() method to invoke a JAAS
LoginModule.

Deployment
Using the declarative security model, the deployer must make the following
security-related decisions:

■ Determine the J2EE logical roles that are assumed in the application, then define
these roles in the deployment descriptors. For example, an HR application may
assume that the J2EE logical role hr_manager is running the application; the
deployer must define that role.

■ Determine the authorization constraints that apply to these roles and define
them in the deployment descriptors. For web modules, these constraints
typically apply to URL patterns as defined in the J2EE specification. EJB
modules typically have constraints at the EJB-method level.

■ Decide whether to use an XML flat file or OID (LDAP) as the repository for the
JAAS Provider. This also determines which provider, XML-based or
LDAP-based, and user manager the application uses.

■ Map the security roles (including the application-specific roles, if they exist) to
users and groups defined by the OC4J user manager (for instance,
JAZNUserManager). For example, the J2EE logical role called hr_manager
may be mapped to a given set of users defined by the OC4J user manager.

For information on making and implementing these decisions, see Chapter 3,
"Configuring And Deploying the JAAS Provider"; for a full discussion of
deployment, see the Oracle Application Server Containers for J2EE User’s Guide.

OC4J and the JAAS Provider
Oracle Application Server Containers for J2EE is a J2EE container that accepts HTTP
and RMI client connections. These connections permit access to servlets, Java Server
Pages (JSPs), and Enterprise JavaBeans (EJBs).

J2EE containers separate business logic from resource and lifecycle management.
This enables developers to focus on writing business logic, rather than writing
enterprise infrastructure. For example, Java servlets simplify Web development by
providing an infrastructure for component, communication, and session
management in a Web container integrated with a Web server.

OC4J and the JAAS Provider

6-4 Security Guide

OC4J Integration
The JAAS Provider is integrated with Oracle Application Server Containers for J2EE
to enhance application security. This integration provides the following benefits:

■ Integration with single sign-on (SSO)

■ Fine-grained access control through Java 2 permissions

■ run-as identity support, delegation support (from servlet to Enterprise
JavaBeans)

■ Secure file-based storage of user passwords

JAZNUserManager
Another key component of JAAS integration in the J2EE environment is
JAZNUserManager. JAZNUserManager is an implementation of the Oracle
Application Server Containers for J2EE UserManager interface.

Replacing principals.xml
The OC4J principals.xml file is less secure and less flexible than authentication
with JAZNUserManager. JAZNUserManager provides the following:

■ Secure storage of obfuscated passwords

■ Full role-based access control (RBAC), including hierarchical roles

■ Full support for the Java 2 permission model and JAAS

■ Secure implementation based on the Java 2 permission model, allowing
non-trusted (or partially trusted) code to run in the same JVM as the JAAS
Provider

JAZNUserManager Features
In addition to the features mentioned in "Replacing principals.xml" on page 6-4,
JAZNUserManager provides many other features, including:

Note: We strongly encourage you to migrate your existing
applications from using principals.xml to using
JAZNUserManager. For instructions, see "Migrating Principals
from the principals.xml File (XML-based Provider Only)" on
page 5-17.

OC4J and the JAAS Provider

Security and J2EE Applications 6-5

■ Single Sign-On (SSO) integration with Oracle Application Server Containers for
J2EE

■ RealmLoginModule integration in non-SSO environments

■ Support for custom login modules

■ Identity propagation

■ Location, reading, editing, removal, and management of user and group objects

■ Enforcement of security constraints

Authentication Environments
The JAAS Provider integrates with three different login authentication
environments in a J2EE application.

■ SSO

Uses OracleAS Single Sign-On to authenticate logins

■ SSL

■ Uses Secure Socket Layers for client certificate-based authentication

■ Uses a login module (for example, RealmLoginModule) to authenticate
logins

■ Basic Authentication

■ Prompts user directly for username and password, without going through
OracleAS Single Sign-On

■ Uses a login module (for example, RealmLoginModule) to authenticate
logins

The following sections discuss how the JAAS Provider integrates with each of these
authentication types.

Integrating the JAAS Provider with SSO-Enabled Applications
SSO lets a user access multiple accounts and applications with a single set of login
credentials. Figure 6–1 shows JAAS integration in an application running in an
SSO-enabled J2EE environment.

OC4J and the JAAS Provider

6-6 Security Guide

Figure 6–1 Oracle Component Integration in SSO-Enabled J2EE Environments

SSO-Enabled J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSO-enabled J2EE environment.

1. An HTTP client attempts to access a Web application, WebApp A1, hosted by
Oracle Application Server Containers for J2EE (the Web container for executing
servlets). Oracle HTTP Server (using an Apache listener) handles the request.

2. mod_osso/Oracle HTTP Server receives the request and:

■ Determines that WebApp A1 application requires Web-based SSO for
authenticating HTTP clients

■ Redirects the HTTP client request to the Web-based SSO OracleAS Single
Sign-On (because it has not yet been authenticated).

OC4J and the JAAS Provider

Security and J2EE Applications 6-7

3. The HTTP client is authenticated by OracleAS Single Sign-On through HTTP or
public key infrastructure (PKI) Authentication. OracleAS Single Sign-On then:

■ Validates the user's stored login credentials

■ Sets the SSO cookie (including the user’s distinguished name and realm)

■ Redirects back to the WebApp A1 application (in Oracle Application Server
Containers for J2EE)

4. The JAAS Provider retrieves the SSO user.

5. The final step or steps depend on the setting of the runas-mode in the
<jazn-web-app> element.

If the runas-mode is set to false, then the following happens:

a. The target servlet is invoked.

If the runas-mode is set to true, then the following happens:

b. The JAAS Provider invokes the target servlet within a PrivilegedAction
block through Subject.doAs(). The JAZNUserManager enforces
security constraints.

– When Subject.doAs() is called, JAAS consults the JAAS Provider
for permissions associated with the SSO user through the
getPermissions() method.

– The JAAS Provider retrieves the permissions associated with the given
grantee from the provider type (LDAP-based or XML-based), and
updates the policy cache as appropriate. The JAAS Provider then
returns the granted set of permissions to the JAAS Provider runtime.

– The JAAS Provider runtime constructs a new
AccessControlContext based on the permissions returned from
getPermissions().

c. The servlet's code runs under the AccessControlContext of the SSO
user.

d. If the servlet's code attempts to write to a file in the operating system’s file
system, then this triggers a call to
SecurityManager.checkPermission().

e. The JVM then:

– Examines the authorization context associated with the current thread

OC4J and the JAAS Provider

6-8 Security Guide

– Determines that the current subject has the required permissions to
write to the file

f. SecurityManager.checkPermission() returns safely and the client
HTTP request proceeds.

Integrating the JAAS Provider with SSL-Enabled Applications
SSL is an industry standard protocol for managing the security of message
transmission on the Internet. Figure 6–2 shows JAAS integration in an application
running in an SSL-enabled J2EE environment.

Figure 6–2 Oracle Component Integration In SSL-Enabled J2EE Environments

SSL-Enabled J2EE Environments: A Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in an SSL-enabled J2EE environment. In this environment,

OC4J and the JAAS Provider

Security and J2EE Applications 6-9

OracleAS Single Sign-On is not used. A login module (for example,
RealmLoginModule) is used.

1. An HTTP client attempts to access a Web application (named WebApp A1)
hosted by Oracle Application Server Containers for J2EE (the Web container for
executing servlets). Oracle HTTP Server (using an Apache listener) handles the
request.

2. mod_ossl/Oracle HTTP Server receives the request and determines that the
WebApp A1 application requires SSL server authentication for HTTP clients.

3. If a server and/or client wallet certificate is configured, the HTTP client is
prompted to accept the server certificate of OHS and provide the client
certificate.

4. The JAAS Provider retrieves the SSL client certificate.

5. The JAAS Provider retrieves the SSL user from the certificate.

6. The final step or steps depend on the runas-mode specified in the
<jazn-web-app> element.

If runas-mode is set to false, then the target servlet is invoked.

If runas-mode is set to true, then the following happens:

a. The JAAS Provider invokes the target servlet within a PrivilegedAction
block through Subject.doAs(). The JAZNUserManager enforces
security constraints.

– When Subject.doAs() is called, the method consults for permissions
associated with the SSL user through the getPermissions() method.

– The JAAS Provider retrieves the permissions associated with the given
grantee from the provider type (LDAP-based or XML-based), and
updates the policy cache as appropriate. The JAAS Provider then
returns the granted set of permissions to the JAAS Provider runtime.

– The JAAS Provider runtime constructs a new
AccessControlContext based on the permissions returned from
getPermissions().

b. The servlet's code runs under the AccessControlContext of the SSL
user.

c. If the servlet's code attempts to write to a file in the operating system’s file
system, then this triggers a call to
SecurityManager.checkPermission().

OC4J and the JAAS Provider

6-10 Security Guide

d. The JVM then:

– Examines the authorization context associated with the current thread

– Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPermission() returns safely and the client
HTTP request proceeds.

Integrating the JAAS Provider with Basic Authentication
Basic authentication bypasses OracleAS Single Sign-On. Figure 6–3 shows specific
JAAS integration in an application configured for Basic authentication in a J2EE
environment.

Figure 6–3 Oracle Component Integration in j2ee Environment

OC4J and the JAAS Provider

Security and J2EE Applications 6-11

Basic Authentication J2EE Environments: Typical Scenario
This section describes the responsibilities of Oracle components when an HTTP
client request is initiated in a J2EE environment configured for Basic authentication.
In this environment, OracleAS Single Sign-On is not used. A login module (for
example, RealmLoginModule) is used.

1. An HTTP client attempts to access a Web application (named WebApp A1)
hosted by Oracle Application Server Containers for J2EE (the Web container for
executing servlets).

2. The JAAS Provider retrieves the user.

3. The final step or steps depend on the setting of the runas-mode in the
jazn-web-app element.

If the runas-mode is set to false, then the following happens:

a. The target servlet is invoked.

If the runas-mode is set to true, then the following happens:

a. The JAAS Provider invokes the target servlet's service() method within
a PrivilegedAction block through Subject.doAs(). The
JAZNUserManager enforces security constraints.

– When Subject.doAs() is called, JAAS consults the JAAS Provider
for permissions associated with the SSO user through the
getPermissions() method.

– The JAAS Provider retrieves the permissions associated with the given
grantee from the provider type (LDAP-based or XML-based), and
updates the policy cache as appropriate. The JAAS Provider then
returns the granted set of permissions to the JAAS Provider runtime.

– The JAAS Provider runtime constructs a new
AccessControlContext based on the permissions returned from
getPermissions().

Note: If you have configured Basic authentication, OC4J invokes
the RealmLoginModule whenever the user credentials are
required. For example, when a request hits a protected page, OC4J
will ask the JAAS Provider to authenticate the user, then the
RealmLoginModule will be invoked to authenticate the user,
using the credentials sent by the user via the browser over HTTP.

OC4J and the JAAS Provider

6-12 Security Guide

b. The servlet's code runs under the AccessControlContext of the user.

c. The servlet's code attempts to write to a file in the operating system’s file
system, triggering a call to SecurityManager.checkPermission().

d. The JVM then:

– Examines the authorization context associated with the current thread

– Determines that the current subject has the required permissions to
write to the file

e. SecurityManager.checkPermission() returns safely and the client
HTTP request proceeds.

J2EE and JAAS Provider Role Mapping
Two distinct role types are available to application developers creating
JAAS-integrated applications in J2EE environments: J2EE roles and JAAS roles.
When these role types are mapped together using Oracle Application Server
Containers for J2EE group mappings, users can access an application with a defined
set of role permissions for as long as the user is mapped to this role.

This section describes these role types and how which they are mapped together.

■ J2EE Security Roles

■ JAAS Provider Roles and Users

■ OC4J Group Mapping to J2EE Security Roles

J2EE Security Roles
The J2EE development environment includes a portable security roles feature
defined in the web.xml file for servlets and Java Server Pages (JSPs). Security roles
define a set of resource access permissions for an application. Associating a
principal (in this case, a JAAS user or role) with a security role assigns the defined
access permissions to that principal for as long as they are mapped to the role. For
example, an application defines a security role called sr_developer:

<security-role>
 <role-name>sr_developer</role-name>
</security-role>

See Also: Your Sun Java documentation for more information on
J2EE by visiting the following URL:

http://java.sun.com/j2ee/

OC4J and the JAAS Provider

Security and J2EE Applications 6-13

You also define the access permissions for the sr_developer role.

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>access to the entire application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <!-- authorization -->
 <auth-constraint>
 <role-name>sr_developer</role-name>
 </auth-constraint>
 </security-constraint>

JAAS Provider Roles and Users
JAAS roles and users are defined depending on the provider type, LDAP-based or
XML-based.

For example, with the XML-based provider type, developer is listed as a role
element in the jazn-data.xml file:

<role>
 <name>developer</name>
 <members>
 <member>
 <type>user<type>
 <name>john<name>
 </member>
 </members>
</role>

OC4J Group Mapping to J2EE Security Roles
Oracle Application Server Containers for J2EE (OC4J) enables you to map portable
J2EE security roles defined in the J2EE web.xml file to groups in an
orion-application.xml file.

The roles and users defined in your provider environment are mapped to the Oracle
Application Server Containers for J2EE developer group role in the
orion-application.xml file.

For example, the sr_developer security role is mapped to the group named
developer.

<security-role-mapping name="sr_developer">

Authentication in the J2EE Environment

6-14 Security Guide

 <group name="developer" />
 </security-role-mapping>

Notice that a <group> in a <security-role-mapping> element corresponds to
a role in the JAAS provider. Therefore, this association permits the developer
group to access the resources allowed for the sr_developer security role.

In this paradigm, the user john is listed as a member of the developer role.
Because the developer group is mapped to the J2EE security role sr_developer
in the orion-application.xml file, john has access to the application resources
defined by the sr_developer role.

Authentication in the J2EE Environment
Authentication is the process of verifying the identity of a user in a computing
system, often as a prerequisite to granting access to resources in a system. User
authentication in the J2EE environment is performed by the following:

■ OracleAS Single Sign-On (for SSO environments) or the JAAS Provider
RealmLoginModule or other login module (for non-SSO environments)

Before HTTP requests can be dispatched to the target servlet, the
JAZNUserManager gets the authenticated user information (set by mod_osso)
from the HTTP request object and sets the JAAS subject in Oracle Application
Server Containers for J2EE.

■ One of the following:

■ JAZNUserManager

■ XMLUserManager

■ A developer-supplied UserManager

Running with an Authenticated Identity
You can choose to configure the JAZNUserManager so that a filter enables the
target servlet to run with the permissions and roles associated with an
authenticated identity or run-as identity. To do this, configure the jazn-web-app
element.

See Also: "JAZNUserManager" on page 6-4 for further
information on options and configuration of the
JAZNUserManager filter, including the jazn-web-app element.

Authorization in the J2EE Environment

Security and J2EE Applications 6-15

Retrieving Authentication Information
The following javax.servlet.HttpServletRequest APIs retrieve
authentication information within the servlet:

■ getRemoteUser for the authenticated username

■ getAuthType for the authentication scheme

■ getUserPrincipal for the authenticated principal object

■ getAttribute("java.security.cert.X509certificate") for the SSL
client certificate

Authorization begins with a call to Subject.doAs().

Authorization in the J2EE Environment
Authorization is the process of granting the permissions and privileges entitled to
the user. This section discusses authentication within servlets.

If the servlet is configured to permit doAs(), the JAZNUserManager invokes an
authenticated target servlet within a Subject.doAs() block to enable JAAS-based
authorization in the target servlets.

Authorization is achieved through the following:

■ JAZNUserManager

■ Methods based on the Java 2 Security Model:

■ Servlet.service() in the servlet

■ Subject.doAs() and Subject.doAsPrivileged() in the client

■ SecurityManager.checkPermission()in the server

See Also: Configuring Servlet Authorization (runas-mode and
doasprivileged-mode) in <jazn-web-app> on page 3-13.

Authorization in the J2EE Environment

6-16 Security Guide

Custom LoginModules 7-1

7
Custom LoginModules

This chapter discusses how to write and install a LoginModule to be used with the
Oracle Application Server Containers for J2EE (OC4J) JAAS Provider. This chapter
contains the following sections:

■ Custom JAAS LoginModule Integration with OC4J

■ Packaging and Deployment

■ Configuration

■ Simple Login Module J2EE Integration

Custom JAAS LoginModule Integration with OC4J
Because OC4J's support for JAAS fully complies with the JAAS 1.0 specification,
users can plug in any JAAS-compliant LoginModule implementation, if desired.
OC4J includes the LoginModule, RealmLoginModule that combines J2EE
security constraints with either the XML-based or LDAP-based provider types for
environments in which OracleAS Single Sign-On (SSO) is not available. When
Oracle Internet Directory (OID) is in use, we recommend that you use Oracle
Identity Management to integrate with other authentication and identity
management systems.

Note: Because the JAAS specification does not cover user
management, when you configure your application to use a custom
LoginModule, the use of the UserManager API within your
application is effectively disabled. The J2EE API, however, will
continue to function within your application.

Packaging and Deployment

7-2 Security Guide

See the Oracle Identity Management Concepts and Deployment Planning Guide for
details.

A custom JAAS LoginModule may be desirable when OracleAS Identity
Management is not available and users are defined in an external repository. For
those cases, you can configure a LoginModule using the XML-based provider type,
and the following preliminary questions need to be considered.

1. Development. Do you want to take advantage of J2EE security constraints?

2. Development, packaging, and deployment. Are you using the login modules
that come with J2SE 1.4? Or are you deploying in-house or third-party login
modules?

Packaging and Deployment
If you are using one or more of the default login modules provided with J2SE 1.3
and 1.4 (such as the J2SE1.4
com.sun.security.auth.module.Krb5LoginModule), then no additional
configuration is needed. The OracleAS JAAS Provider can locate the default login
modules.

If you are deploying your application with a custom login module, then you must
deploy the login module and configure the JAAS Provider properly so that the
module can be found at runtime.

Four options are available when packaging and deploying your custom login
modules:

■ Deploying as Standard Extensions or Optional Packages

■ Deploying Within the J2EE Application

■ Using the OC4J Classloading Mechanism

■ Using the JAAS Provider Classloading Mechanism

The remainder of this section discusses these options in greater detail.

Note: Custom login modules are supported only with the
XML-based Provider.

Packaging and Deployment

Custom LoginModules 7-3

Deploying as Standard Extensions or Optional Packages
If you deploy your login modules as standard extensions, the JAAS Provider will be
able to find them. No additional configuration is necessary. Deploying login
modules as standard extensions allows multiple applications to share the deployed
login modules.

For example, one way to deploy your login modules as standard extensions is to
deploy them to the ${java.home}/lib/ext directory.

Deploying Within the J2EE Application
If your login module is used only by a single J2EE application rather than shared
among multiple applications, then you can simply package your login module as
part of your application, and the JAAS Provider will be able to find it. No additional
configuration is necessary.

If a later application needs the same LoginModule, you must repackage the login
module and any relevant classes with the new application.

If you want to allow multiple applications to share the same LoginModule but you
cannot deploy the LoginModule as an extension, then you can consider using the
OC4J classloading mechanism or the JAAS Provider classloading mechanism.

 Using the OC4J Classloading Mechanism
The JAAS Provider is integrated with OC4J's classloading architecture. If you
configure your application so that the deployed custom login modules are part of
your application classpath, then the JAAS Provider can locate them.

One way to accomplish this is using the <library> element in either of the
following files:

■ application.xml

■ orion-application.xml

See Also:
http://java.sun.com/j2se/1.4/docs/guide/extensions

See Also: The Oracle Application Server Containers for J2EE Services
Guide for more information about the <library> element.

Configuration

7-4 Security Guide

Using the JAAS Provider Classloading Mechanism
If for some reason you cannot configure your application's classpath, you can
take advantage of the JAAS Provider's classloading mechanism. Deploy your login
modules and specify their location using the classpath property of the <jazn>
tag. See Table 3–3, "(XML-Based Provider) The <jazn> Tag In orion-application.xml"
for complete information on the <jazn> tag properties.

Configuration
You modify the following files to configure your application to take advantage of
custom login modules:

■ jazn-data.xml

■ orion-application.xml

These files are discussed in greater detail below.

jazn-data.xml
This file serves as the repository for the XML-based provider.

Although many jazn-data.xml files can be associated with an OC4J instance, the
jazn-data.xml specified in the default jazn.xml serves as the default repository
for the OracleAS JAAS provider.

Note that Oracle supports only the XML-based provider in conjunction with custom
login modules.

The following sections discuss these XML elements:

■ <jazn-loginconfig>

■ <jazn-policy>

<jazn-loginconfig>
This tag contains information that associates applications with login modules.

Example:

<jazn-loginconfig>
 <application>
 <name>sampleLM</name>
 <login-modules>
 <login-module>

Configuration

Custom LoginModules 7-5

 <class>sample.SampleLoginModule</class>
 <control-flag>required</control-flag>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

This sample fragment associates the application sampleLM with the login module
sample.SampleLoginModule.

<jazn-policy>
This tag contains information that associates grantees with permissions.

Example:

<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>sample.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

This sample fragment grants the permission
com.evermind.server.rmi.RMIPermission with target name login to the
principal with class sample.SampleUser and name ray.

Note: Oracle recommends that you manage the contents of
jazn-data.xml using the JAZN Admintool.

Configuration

7-6 Security Guide

For more information about the JAZN Admintool, see Chapter 5, "Using the JAZN
Admintool".

orion-application.xml
This file contains application configuration information specific to OC4J. The
following tags are discussed in detail:

■ <jazn>

■ <security-role-mapping>

■ <library>

<jazn>
For a full discussion of the <jazn> tag, see "The <jazn> Tag" on page 3-5.

The following properties are specific to LoginModule configuration:

■ role.mapping.dynamic

This property, when set to true, instructs the JAAS Provider to perform
authorization checks based on the current Subject instead of based on users
and roles defined in the application specific jazn-data.xml.

The LoginModule instance(s) must ensure that the appropriate principals
(users, roles, or groups) are associated with the Subject instance during the
commit phase of the authentication process, in order for the principals to be
taken into consideration during the authorization process. This association of
principals to the Subject is typically implemented using the standard JAAS
API.

■ classpath

This property, when set, tells the JAAS Provider where to look for third-party
classes and JAR files if they cannot be found elsewhere. Example:

<jazn provider="XML" location="./jazn-data.xml">
 <property name="classpath"
value="../../shared/lib/sample.jar;../../shared/lib/samplemodule.jar" />
 <property name="role.mapping.dynamic" value="true" />
</jazn>

For details, see Table 3–3, "(XML-Based Provider) The <jazn> Tag In
orion-application.xml".

Simple Login Module J2EE Integration

Custom LoginModules 7-7

<security-role-mapping>
This optional tag describes static security-role mapping information. For details, see
the Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

<library>
This tag sets the classpath associated with your application. Whenever possible,
use this tag instead of the classpath property in the <jazn> tag. Example:

<library path="../../shared/lib/sample.jar"/>
<library path="../../shared/lib/samplemodule.jar"/>

For details, see the Oracle Application Server Containers for J2EE User’s Guide.

Simple Login Module J2EE Integration
Developing a simple LoginModule follows the standard development, packaging,
and deployment cycle. The following sections discuss each step in the cycle.

Development
Develop a JAAS-compliant LoginModule according to the JAAS SPI (see the
Javadoc for javax.security.auth.spi.LoginModule for more
information).

Packaging
Package your LoginModule in one of two ways:

■ Package your LoginModule classes as part of your application's EAR file.
For Web applications, include the classes under the WEB-INF/classes.

■ Package it separately and refer to it using the classloading mechanisms.

Deployment
To deploy your LoginModule in the global jazn-data.xml file:

1. Register your application's login module within the <application> tag.

The following entry registers the login module sample.SampleLoginModule
to be used for authenticating users accessing the sampleLM application.

 <application>

Simple Login Module J2EE Integration

7-8 Security Guide

 <name>sampleLM</name>
 <login-modules>
 <login-module>
 <class>sample.SampleLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

2. Optional. Grant relevant permissions to your users and roles.

For example, if the principal admin needs EJB access, then you must grant the
permission com.evermind.rmi.RMIPermission to admin.

<grant>
 <grantee>
 <principals>
 <principal>
 <class>sample.SampleUser</class>
 <name>admin</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
</grant>

To deploy your LoginModule in the application-specific
orion-application.xml file:

1. Set the <jazn> property role.mapping.dynamic to true:

<jazn provider="XML" location="./jazn-data.xml" >
 <property name="role.mapping.dynamic" value="true" />
</jazn>

Simple Login Module J2EE Integration

Custom LoginModules 7-9

2. Create appropriate <security-role-mapping> entries.

<security-role-mapping name="sr_developer">
 <user name="developer" />
</security-role-mapping>
<security-role-mapping name="sr_manager">
 <group name="managers" />
</security-role-mapping>

Simple Login Module J2EE Integration

7-10 Security Guide

JAAS and Enterprise Manager 8-1

8
JAAS and Enterprise Manager

The JAAS LDAP-based Provider stores information in Oracle Internet Directory
(OID). This chapter describes how to use Oracle Enterprise Manager to manage
data in the Oracle Application Server Containers for J2EE (OC4J) JAAS Provider.

This chapter contains these topics:

■ Startup

■ Selecting a UserManager

■ Mapping Security Roles

■ Creating Users

■ Creating Groups

■ Deleting Users Or Groups

■ Editing Users

■ Assigning Users To Groups

■ Granting Permissions To Groups

Startup

8-2 Security Guide

Startup
Use this procedure to access the Oracle Enterprise Manager for OC4J Home page.

1. From the Enterprise Manager home, click Targets.

Figure 8–1 Enterprise Manager Home Tab

2. From the Targets tab, click All Targets.

Figure 8–2 Enterprise Manager Targets Tab

3. From the All Targets page, select your specific OC4J instance.

Startup

JAAS and Enterprise Manager 8-3

4. From the Home page of the OC4J instance, click Administer in the Related
Links area near the bottom of the page.

Figure 8–3 OC4J Instance Home Page

5. From the Enterprise Manager for Oracle Application Server OC4J Home page,
select one of the following options:

■ To edit the global application security settings, click Administration.
Continue with "Editing Global Security Settings" on page 8-4.

■ To edit an individual module’s security settings, click Application.
Continue with "Editing Individual Security Settings" on page 8-5.

Note: You may be required to supply your username and
password to log into the administer page.

Startup

8-4 Security Guide

Editing Global Security Settings
1. From the Enterprise Manager for Oracle Application Server OC4J Home page,

click Administration.

Figure 8–4 Oracle Enterprise Manager for Oracle Application Server OC4J Home Page

2. From the Administration page, click Security.

Figure 8–5 Oracle Enterprise Manager for Oracle Application Server Administration

The security page appears (see Figure 8–10 on page 8-9).

Startup

JAAS and Enterprise Manager 8-5

Editing Individual Security Settings
1. From the Enterprise Manager for Oracle Application Server OC4J Home page,

click Applications.

Figure 8–6 Oracle Enterprise Manager for Oracle Application Server OC4J Home Page

2. Select an deployed application or click Default.

Startup

8-6 Security Guide

3. From the module’s Application page, click Security.

Figure 8–7 Oracle Enterprise Manager for Oracle Application Server Application Page

The Security page appears (see Figure 8–10 on page 8-9).

Selecting a UserManager

JAAS and Enterprise Manager 8-7

Selecting a UserManager
1. From a module’s Application page (see Figure 8–7 on page 8-6), click General

in the Administration Properties area.

Figure 8–8 Oracle Enterprise Manager for Oracle Application Server Application Page

Selecting a UserManager

8-8 Security Guide

2. On the Properties screen, scroll down to the User Manager area.

Figure 8–9 User Manager area of Properties Page

3. Click the user manager you want to use, and fill in the appropriate pathname
and realm information.

Mapping Security Roles

JAAS and Enterprise Manager 8-9

Mapping Security Roles
1. Navigate to the Security page as discussed in "Startup" on page 8-2 and click

Map Role To Principals in the Security Roles area.

Figure 8–10 Security Page

Creating Users

8-10 Security Guide

2. Select the group and/or user to map to the role and click Apply.

Figure 8–11 Security: Map Role Screen

Creating Users

Note: Enterprise Manager manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Creating Groups

JAAS and Enterprise Manager 8-11

1. From the Security page (see Figure 8–10 on page 8-9), click Add User in the
Users area. The Security: Add User screen appears.

Figure 8–12 Security: Add User Screen

2. Fill in the Name, Description, Password, and Confirm Password fields and
place checks beside any groups the user should be a member of. Click OK.

Creating Groups

1. From the Security page (see Figure 8–10 on page 8-9), click Add Group in the
Groups area. The Security: Add Group screen appears.

Note: Enterprise Manager manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Deleting Users Or Groups

8-12 Security Guide

Figure 8–13 Security: Add Group Screen

2. Fill in the Name and Description fields and place checks beside any
permissions you want to grant the group. Click OK.

Deleting Users Or Groups

1. From the Security page (see Figure 8–10 on page 8-9), select the user or group
from the appropriate list.

2. Click Remove.

3. A confirmation screen appears asking whether you want to remove the
specified user or group. Click Yes.

Editing Users

Note: Enterprise Manager manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Note: Enterprise Manager manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Assigning Users To Groups

JAAS and Enterprise Manager 8-13

1. From the Security page (see Figure 8–10 on page 8-9), select a user.

Figure 8–14 User Screen

2. Type the new description or password into the appropriate text box. (To help
avoid typographical errors, you must type the password twice.)

3. Click Apply.

Assigning Users To Groups

Note: Enterprise Manager manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Granting Permissions To Groups

8-14 Security Guide

1. From the Security page (see Figure 8–10 on page 8-9), select the user from the
Users list. The User screen appears.

Figure 8–15 User Screen

2. To add the selected user to a group, click the group’s checkbox.

3. Click Apply.

Granting Permissions To Groups

Note: Enterprise Manager manages only XML-based roles and
users. To manage LDAP-based users and roles, use the Delegated
Administration Service (DAS); see the Oracle Internet Directory
Administrator’s Guide for details.

Granting Permissions To Groups

JAAS and Enterprise Manager 8-15

1. From the Security page (see Figure 8–10 on page 8-9), select the group from the
Groups list. The Group screen appears.

Figure 8–16 Group Screen

2. To grant the group RMI or Administration permission, click the appropriate
checkbox.

3. Click Apply.

Granting Permissions To Groups

8-16 Security Guide

Part II
Other Technologies

This part discusses Java technologies other than JAAS that affect application
security.

This part contains the following chapters:

■ Chapter 9, "Java 2 Security"

■ Chapter 10, "Password Management"

■ Chapter 11, "Oracle HTTPS for Client Connections"

■ Chapter 12, "EJB Security"

■ Chapter 13, "J2EE Connector Architecture Security"

■ Chapter 14, "Configuring CSIv2"

■ Chapter 15, "Security Tips"

Java 2 Security 9-1

9
Java 2 Security

This chapter discusses Java 2 Security features. It contains the following sections:

■ Introduction

■ JAAS Provider Permission Classes

■ Creating a Java 2 Policy File

■ The Java 2 Security Manager

Introduction

9-2 Security Guide

Introduction
The Java 2 Security Model is fundamental to the JAAS Provider. The Java 2 Security
Model enables configuration of security at all levels of restriction. This provides
developers and administrators with increased control over many aspects of
enterprise applet, component, servlet, and application security.

Permissions
Permissions are the basis of the Java 2 Security Model. All Java classes (whether run
locally or downloaded remotely) are subject to a configured security policy that
defines the set of permissions available for those classes. Each permission
represents a specific access to a particular resource. Table 9–1 identifies the elements
that comprise a Java permission instance.

Protection Domains
Each Java class, when loaded, is associated with a protection domain. Protection
domains can be configured for all levels of restriction (from complete restriction on
resources to full access to all resources). Each protection domain is assigned a group
of permissions based on a configured security policy at Java virtual machine (JVM)
startup.

At runtime, the authorization check is done by stack introspection. This consists of
reviewing the runtime stack and checking permissions based on the protection
domains associated with the classes on the stack. This is typically triggered by a call
to either:

See Also: For a tutorial on Java 2 Security, see
http://java.sun.com/docs/books/tutorial/security1.
2/index.html. For full information on Java 2 Security, see
http://java.sun.com/security.

Table 9–1 Java Permission Instance Elements

Element Description Example

Class name The permission class java.io.FilePermission

Target The target name (resource) to which
this permission applies

Directory /home/*

Actions The actions associated with this target Read, write, and execute permissions
on directory /home/*

JAAS Provider Permission Classes

Java 2 Security 9-3

■ SecurityManager.checkPermission()

■ AccessController.checkPermission()

The permission set in effect is defined as the intersection of all permission sets
assigned to protection domains at the moment of the security check.

Figure 9–1 shows the basic model for authorization checking at runtime.

Figure 9–1 Java 2 Security Model

JAAS Provider Permission Classes
Table 9–2 lists the permission classes furnished by the JAAS Provider. These classes
allow applications to control access to resources. For information about the classes
discussed, see the JAAS Provider Javadoc.

See Also:

■ Chapter 4, "JAAS Provider Administration Tasks"

■ Sun Java documentation at the URL

http://java.sun.com/security/

Creating a Java 2 Policy File

9-4 Security Guide

Creating a Java 2 Policy File
The Java 2 policy file grants permissions to trusted code or applications that you
run. This enables code or applications to access Oracle support for JAAS or JDK
APIs requiring specific access privileges.

A preconfigured Java 2 policy (java2.policy) is provided in
ORACLE_HOME/j2ee/home/config.

You need to modify the Java 2 policy file to grant permissions to trusted code or
applications.

For example, the following section of a java2.policy file grants
java.security.AllPermission to the trusted jazn.jar.

/* grant the JAZN library AllPermission */
grant codebase "file:${oracle.home}/j2ee/home/jazn.jar" {
 permission java.security.AllPermission;
};

The following example grants specific permissions to all applications running in the
$ORACLE_HOME/appdemo directory.

/* Assuming you are running your application demo in $ORACLE_HOME/appdemo/, */

Table 9–2 JAAS Provider Permission Classes

Permission Part of Package Description

AdminPermission oracle.security.ja
zn.policy

Represents the right to administer a permission
(that is, grant or revoke another user’s
permission assignment).

RoleAdminPermission oracle.security.ja
zn.policy

The grantee of this permission is granted the
right to further grant/revoke the target role.

JAZNPermission oracle.security.ja
zn

For authorization permissions.
JAZNPermission contains a name (also
called a target name), but no actions list; you
either have or do not have the named
permission.

RealmPermission oracle.security.ja
zn.realm

Represents permission actions for a realm (such
as createRealm, dropRealm, and so on).
RealmPermission extends from
java.security.Permission, and is used
like any regular Java permission.

The Java 2 Security Manager

Java 2 Security 9-5

/* Grant JAZN permissions to the demo to run JAZN APIs*/
grant codebase "file:/${oracle.ons.oraclehome}/appdemo/-" {
 permission oracle.security.jazn.JAZNPermission "getPolicy";
 permission oracle.security.jazn.JAZNPermission "getRealmManager";
 permission oracle.security.jazn.policy.AdminPermission
"oracle.security.jazn.realm.RealmPermission$*$createRealm,dropRealm,
 createRole, dropRole,modifyRealmMetaData";

The Java 2 Security Manager
The JAAS Provider checks permissions only when a SecurityManager has been
installed. You specify a SecurityManager in one of two ways:

■ Calling System.setSecurityManager()

■ Setting the system property java.security.manager when starting OC4J

You can use either mechanism to install either the default SecurityManager or a
custom UserManager.

The permissions granted to particular classes by the default SecurityManager are
determined by reading a policy file. The default policy file is supplied as part of
J2EE. You can specify a policy file explicitly using the system property
java.security.policy, as in

 -Djava.security.policy=policyfilepath

Within an Oracle9i Application Server installation, OC4J instances run by default
with no SecurityManager. If you choose to install a SecurityManager, you
must specify one that does not interfere with normal OC4J functions. You can find a
sample policy file at ORACLE_HOME/j2ee/home/config/java2.policy. The
sample file grants "AllPermission" to most OC4J JARs. A typical block in this file
looks like:

 grant codebase "file:${oracle.home}/j2ee/home/ejb.jar" {
 permission java.security.AllPermission;
 };

Note: You set system properties by using the -D command-line
option in Enterprise Manager; see the Advanced Configuration
chapter in the fOracle Application Server Containers for J2EE User’s
Guide for details.

The Java 2 Security Manager

9-6 Security Guide

Note the use of "${oracle.home}" to specify the location of ORACLE_HOME. You
can set oracle.home by specifying the system property:

 -Doracle.home=oraclehomepathname

Path canonicalization follows the rules of java.io.File. On UNIX, the path
cannot contain any symbolic links. If you do not specify a canonical path, then the
default SecurityManager will not apply the codebase specification in the policy
file.

You may need to grant additional permissions to your application code and to
classes generated by OC4J. The sample java2.policy file contains at the bottom
a block that was required to run a demo with Java 2 security enabled. The required
permissions will depend on the details of your application and the required
codebase will depend on the details of your installation.

Using PrintingSecurityManager To Debug Java 2 Policy
In order to simplify the determination of what permissions need to be granted,
Oracle supplies a custom SecurityManager, PrintingSecurityManager, that
never throws a SecurityException. Instead, whenever a security exception
would normally be thrown, PrintingSecurityManager prints messages
specifying what exceptions the default SecurityManager would have thrown. To
determine what permissions must be granted to your application, start OC4J using
PrintingSecurityManager and execute your application.

When you run an application with the default SecurityManager, the application
terminates when the first SecurityException is thrown; after you correct the
first problem, you must execute the application again and again to track down all
the causes of the exception. By using PrintingSecurityManager, you can
create one large list of all the SecurityExceptions.

To install the PrintingSecurityManager, you must specify it on the command
line that starts OC4J, as in

 -Djava.security.manager=oracle.oc4j.security.PrintingSecurityManager
 -Djava.security.policy=yourpolicypath

You must grant sufficient permissions (normally
java.security.AllPermission)to oc4j.jar, which contains
PrintingSecurityManager. If you have granted insufficient permissions,
PrintingSecurityManager goes into an infinite loop as certain operations it

The Java 2 Security Manager

Java 2 Security 9-7

performs triggers permission checks that fail. This eventually causes a
StackOverflowError.

PrintingSecurityManager prints two kinds of messages on System.out. The
first is

 SecurityManager would throw java.security.AccessControlException: access denied
 (java.io.FilePermission path read)

where path is the actual path of your class. This message means that the default
SecurityManager would have thrown the specified exception. Whenever the
PrintingSecurityManager generates such a message, it tries to determine what
codesource would need to be granted the indicated Permission. If the
PrintingSecurityManager succeeds in determining the needed permission, it
prints a diagnostic message that looks like:

(file:path/yourclass) needs (java.io.FilePermission path read)

PrintingSecurityManager cannot completely reproduce the actions of the
default SecurityManager; this means that in some cases this message is an
incorrect guess.

The Java 2 Security Manager

9-8 Security Guide

Password Management 10-1

10
Password Management

This chapter discusses managing passwords within XML files. It contains the
following sections:

■ Introduction

■ Password Obfuscation In jazn-data.xml and jazn.xml

■ Creating An Indirect Password

■ Specifying a UserManager In orion-application.xml

Introduction

10-2 Security Guide

Introduction
Many OC4J components require passwords for authentication. Embedding these
passwords into deployment and configuration files poses a security risk, especially
if the permissions on the files allow them to be read by any user. To avoid this
problem, OC4J provides two solutions:

■ password obfuscation, which replaces passwords stored in cleartext files with an
encrypted version of the password. This is discussed in "Password Obfuscation
In jazn-data.xml and jazn.xml".

■ password indirection, which replaces cleartext passwords with information
necessary to look up the password in another location. This is discussed in
"Creating An Indirect Password".

Password Obfuscation In jazn-data.xml and jazn.xml
The JAAS configuration files, jazn.xml and jazn-data.xml, contain user names
and passwords for JAAS authorization. To protect these files, OC4J uses password
obfuscation.

Whenever you update jazn.xml or jazn-data.xml, OC4J reads the file, then
rewrites it with obfuscated (encrypted) versions of all passwords. In all other OC4J
configuration files, you can avoid exposing password cleartext by using password
indirection, as "Creating An Indirect Password" explains below.

The JAAS Provider does not obfuscate passwords in orion-application.xml.
This means that you should not embed passwords within a <jazn> element that is
stored in orion-application.xml.

If you are using the LDAP-based provider, you should create a separate jazn.xml
file that contains a <jazn> element defining your application; this file does not
contain any user or group data. This <jazn> element looks like:

<jazn provider="LDAP" location="yourlocation">
 <property name="ldap.name" value="cn=orcladmin" />
 <property name="ldap.password" value="!welcome1" />
</jazn>

You then create a <jazn> element in orion-application.xml that points to the
jazn.xml file using the config attribute, as in:

<jazn config="./jazn.xml" />

Creating An Indirect Password

Password Management 10-3

JAZN automatically obfuscates the password stored in this separate jazn.xml file
the first time it reads this file.

Hand-editing jazn-data.xml
If you prefer, you can directly edit jazn-data.xml with a text editor. The next
time OC4J reads jazn-data.xml, it will rewrite the file with all passwords
obfuscated and unreadable.

Setting the clear attribute of the <credentials> element to true enables you to
use clear (human-readable) passwords in the jazn-data.xml file.

<credentials clear="true">welcome</credentials>
<credentials>!welcome</credentials>

Creating An Indirect Password
The following OC4J XML configuration and deployment files support password
indirection in one or more entities:

■ data-sources.xml—password attribute of <data-source> element

■ ra.xml — <res-password> element

■ rmi.xml— password attribute of <cluster> element

■ application.xml— password attributes of <resource-provider>
and <commit-coordinator> elements

■ jms.xml— <password> element

■ internal-settings.xml— <sep-property> element, attributes
name=" keystore-password" and name=" truststore-password"

To make any of these passwords indirect, replace the literal password string with a
string containing "->" followed by either the username or by the realm and
username separated by a slash ("/").

Note: To begin a literal (non-indirect) password with the string
"->", precede the password by "->!". For instance, you would
represent the direct password "->silly" as "->!->silly".

Specifying a UserManager In orion-application.xml

10-4 Security Guide

Indirect Password Examples
■ <data-source password="->Scott">— Use JaznUserManager to look

up Scott in the JaznUserManager, and use the password stored there.

■ <res-password="->customers/Scott">— Use JaznUserManager to
look up Scott in the customers realm, and use the password stored there.

■ <cluster password="martha">—The literal string "martha" is the
password; the password is not indirect.

Specifying a UserManager In orion-application.xml
The <password-manager> element specifies the UserManager that the global
application uses to look up indirect passwords. (See "Creating An Indirect
Password" on page 10-3.) If this element is omitted, the UserManager of the
global application is used for authentication and authorization of indirect
passwords. The <jazn> element within a <password-manager> element can be
different from the <jazn> element at the top level.

For example, you can use an LDAP-based UserManager for the regular
UserManager, but use an XML-based UserManager to authenticate indirect
passwords. This is the only way to use indirect passwords in LDAP.

For full details, see"Specifying a UserManager In orion-application.xml" on
page 3-22.

Note: It is possible to use pluggable UserManagers as password
managers. However, if you use XMLUserManager as your
password manager, principals.xml will not have passwords
obfuscated.

Oracle HTTPS for Client Connections 11-1

11
Oracle HTTPS for Client Connections

This chapter describes the Oracle Application Server Containers for J2EE (Oracle
Application Server Containers for J2EE) implementation of HTTPS that provides
SSL functionality to client HTTP connections. The following topics are included:

■ Introduction

■ Overview of SSL Keys and Certificates

■ Creating Keys and Certificates With OC4J and Oracle HTTP Server

■ Oracle HTTPS And Clients

■ Overview of Oracle HTTPS Features

■ Oracle HTTPS Example

■ Specifying Default System Properties

■ Configuring Oracle HTTP Server and OC4J for SSL

■ Configuring OC4J Standalone for SSL

■ HTTPS Common Problems and Solutions

Introduction
This chapter discusses how to use the Secure Sockets Layer protocol to
communicate securely between networked applications. It begins by discussing
fundamental SSL concepts, then continues with information about using Oracle
HTTPS and JSSE.

Overview of SSL Keys and Certificates

11-2 Security Guide

Overview of SSL Keys and Certificates
In SSL communication between two entities, such as companies or individuals, the
server has a public key and an associated private key. Each key is a number, with the
private key of an entity being kept secret by that entity, and the public key of an
entity being publicized to any other parties with which secure communication
might be necessary. The security of the data exchanged is guaranteed by keeping
the private key secret, and by the complex encryption algorithm. This system is
known as asymmetric encryption, because the key used to encrypt data is not the
same as the key used to decrypt data.

Asymmetric encryption has a performance cost due to its complexity. A much faster
system is symmetric encryption, where the same key is used to encrypt and decrypt
data. But the weakness of symmetric encryption is that the same key has to be
known by both parties, and if anyone intercepts the exchange of the key, then the
communication becomes insecure.

SSL uses both asymmetric and symmetric encryption to communicate. An
asymmetric key (PKI public key) is used to encode a symmetric encryption key (the
bulk encryption key); the bulk encryption key is then used to encrypt subsequent
communication. After both sides agree on the bulk encryption key, faster
communication is possible without losing security and reliability.

When an SSL session is negotiated, the following steps take place:

1. The server sends the client its public key.

2. The client creates a bulk encryption key, often a 128 bit RC4 key, using a
specified encryption suite.

Notes:

■ Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OC4J. (Also note that the secure AJP protocol
used between Oracle HTTP Server and OC4J is not visible to
the end user.) This section covers only secure communication
between OC4J and the client.

■ OC4J standalone supports SSL communication directly
between a client and OC4J, using HTTPS. This is discussed in
"Configuring OC4J Standalone for SSL" on page 11-25.

Overview of SSL Keys and Certificates

Oracle HTTPS for Client Connections 11-3

3. The client encrypts the bulk key with the server's public key, and sends the
encrypted bulk key to the server.

4. The server decrypts the bulk encryption key using the server’s private key.

This set of operations is called key exchange. After key exchange has taken place, the
client and the server use the bulk encryption key to encrypt all exchanged data.

In SSL the public key of the server is sent to the client in a data structure known as
an X.509 certificate. This certificate, created by a certificate authority (CA), contains a
public key, information concerning the owner of the certificate, and optionally some
digital rights of the owner. Certificates are digitally signed by the CA which created
them using that CA's digital certificate public key.

In SSL, the CA's signature is checked by the receiving process to ensure that it is on
the approved list of CA signatures. This check is sometimes performed by analysis of
certificate chains. This occurs if the receiving process does not have the signing CA's
public key on the approved list. In that case the receiving process checks to see if the
signer of the CA's certificate is on the approved list or the signer of the signer, and
so on. This chain of certificate, signer of certificate, signer of signer of certificate,
and so on is a certificate chain. The highest certificate in the chain (the original
signer) is called the root certificate of the certificate chain.

The root certificate is often on the approved list of the receiving process. Certificates
in the approve list are called trust points or trusted certificates. A root certificate can
be signed by a CA or can be self-signed, meaning that the digital signature that
verifies the root certificate is encrypted through the private key that corresponds
with the public key that the certificate contains, rather than through the private key
of a higher CA.

Functionally, a certificate acts as a container for public keys and associated
signatures. A single certificate file can contain one or multiple chained certificates,
up to an entire chain. Private keys are normally kept separately to prevent them
from being inadvertently revealed, although they can be included in a separate
section of the certificate file for convenient portability between applications.

A keystore is used to store certificates, including the certificates of all trusted parties,
for use by a program. Through its keystore, an entity such as OC4J (for example)
can authenticate other parties as well as authenticate itself to other parties. Oracle
HTTP Server has what is called a wallet for the same purpose. Sun's SSL

Note: It is possible, but rare, for the client to have its own private
and public keys as well.

Creating Keys and Certificates With OC4J and Oracle HTTP Server

11-4 Security Guide

implementation introduces the notion of a truststore, which is a keystore file that
includes the trusted certificate authorities that a client will implicitly accept during
an SSL handshake.

In Java, a keystore is a java.security.KeyStore instance that you can create
and manipulate using the keytool utility that is provided with the Sun
Microsystems JDK. The underlying physical manifestation of this object is a file. Go
to the following site for information about keytool:

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

Creating Keys and Certificates With OC4J and Oracle HTTP Server
The steps for using keys and certificates for SSL communication in OC4J are as
follows. These are server-level steps, typically executed prior to deployment of an
application that will require secure communication, perhaps when you first set up
an OracleAS instance.

1. Use keytool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two
approaches.

You can generate your own signature:

a. Use keytool to "self-sign" the certificate. This is appropriate if your clients
will trust you as, in effect, your own certificate authority.

Alternatively, you can obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keytool to generate a certificate
request, which is a request to have the certificate signed by a certificate
authority.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority and import it into the
keystore, again using keytool. In the keystore, the signature will be
matched with the associated certificate.

Creating Keys and Certificates With OC4J and Oracle HTTP Server

Oracle HTTPS for Client Connections 11-5

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of OracleAS, the
OracleAS documentation does not cover it. You can go to the Web site of any
certificate authority for information. (Any browser should have a list of trusted
certificate authorities.) Here are the Web addresses for VeriSign, Inc. and Thawte,
for example:

http://www.verisign.com/

http://www.thawte.com/

For SSL communication between OC4J and Oracle HTTP Server, you would also
execute the preceding steps for Oracle HTTP Server, but using a wallet and Oracle
Wallet Manager instead of a keystore and the keytool utility. See the Oracle
Application Server 10g Security Guide for information about wallets and the Oracle
Wallet Manager.

In addition, you would execute the following steps as appropriate.

If the OC4J certificate is signed by an entity that Oracle HTTP Server does not yet
trust:

3. From OC4J, use keytool to export the OC4J certificate. This places the
certificate into a file that is accessible to Oracle HTTP Server.

4. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

If the Oracle HTTP Server certificate is signed by an entity that OC4J does not yet
trust, and if OC4J is in a mode of operation that requires client authentication (as
discussed in "Requesting Client Authentication" on page 11-7):

5. From Oracle HTTP Server, use Oracle Wallet Manager to export the Oracle
HTTP Server certificate. This places the certificate into a file that is accessible to
OC4J.

6. From OC4J, use keytool to import the Oracle HTTP Server certificate.

Note: Oracle Application Server includes OracleAS Certificate
Authority (OCA). This allows customers to create and issue
certificates for themselves and their users, although these
certificates would likely be unrecognized outside a customer’s
organization without prior arrangements. See the Oracle Application
Server 10g Security Guide for information about OCA.

Creating Keys and Certificates With OC4J and Oracle HTTP Server

11-6 Security Guide

During communications over SSL between Oracle HTTP Server and OC4J, all data
on the communications channel between the two is encrypted. The following steps
are executed:

1. The OC4J certificate chain is authenticated to Oracle HTTP Server during
establishment of the encrypted channel.

2. Optionally, if OC4J is in client-authentication mode, Oracle HTTP Server is
authenticated to OC4J. This also occurs during establishment of the encrypted
channel.

3. The bulk encryption key is securely exchanged using the PKI public key, and is
then used for the encryption of further communications on the channel.

Example: Creating an SSL Certificate and Generating Your Own Signature
This example corresponds to Step 2 above, in the mode where you generate your
own signature by using keytool to self-sign the certificate.

First, create a keystore with an RSA private/public keypair, using the keytool
command. This example (in which % is the system prompt) uses the RSA keypair
algorithm to generate a keystore to reside in a file named mykeystore, which has a
password of 123456 and is valid for 21 days:

% keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456 -validity 21

Note the following:

■ The keystore option specifies the name of the file in which the keys are
stored.

■ The storepass option sets the password for protecting the keystore.

■ The validity option sets the number of days for which the certificate is valid.

The keytool prompts you for more information, as follows:

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA

Creating Keys and Certificates With OC4J and Oracle HTTP Server

Oracle HTTPS for Client Connections 11-7

What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB> correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

The mykeystore file is created in the current directory. The default alias of the key
is mykey.

Requesting Client Authentication
OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In
an OracleAS environment, Oracle HTTP Server acts as the client to OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and
authenticate itself by sending a certificate and a certificate chain that ends with a
root certificate. OC4J can be configured to accept only root certificates from a
specified list in establishing a chain of trust back to a client.

A certificate that OC4J trusts is called a trust point. In the certificate chain from
Oracle HTTP Server, the trust point is the first certificate that OC4J encounters that
matches one in its own keystore. There are three ways to establish trust:

■ The client certificate is in the keystore.

■ One of the intermediate CA certificates in the certificate chain from Oracle
HTTP Server is in the keystore.

■ The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

Note: To determine your two-letter country code, use the ISO
country code list at the following URL:

 http://www.bcpl.net/~jspath/isocodes.html.

Creating Keys and Certificates With OC4J and Oracle HTTP Server

11-8 Security Guide

If you request client authentication with the needs-client-auth attribute,
perform the following steps. See "OC4J Configuration Steps for SSL" on page 11-23
for how to configure this attribute.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be
your trust point. Ensure that you either have control over the issuance of
certificates using this trust point or that you trust the certificate authority as an
issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point
for authentication of the client certificate.

3. Execute the steps to create the client certificate (documented in "Creating Keys
and Certificates With OC4J and Oracle HTTP Server" on page 11-4). The client
certificate includes the intermediate or root certificate that is installed in the
server. If you wish to trust another certificate authority, obtain a certificate from
that authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate for the Oracle HTTP Server initiation of the secure AJP
connection.

During secure communication between the client and OC4J, the following
functionality is executed:

■ The link (all communications) between the two is encrypted.

■ OC4J is authenticated to the client. A "secret key" is securely exchanged and
used for the encryption of the link.

■ Optionally, if OC4J is in client-authentication mode, the client is authenticated
to OC4J.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

Oracle HTTPS And Clients

Oracle HTTPS for Client Connections 11-9

Oracle HTTPS And Clients
HTTPS is vital to securing client-server interactions. For many server applications,
HTTPS is handled by the Web server. However, any application that acts as a client,
such as servlets that initiate connections to other Web servers, needs its own HTTPS
implementation to make requests and to receive information securely from the
server. Java application developers who are familiar with either the HTTP package,
HTTPClient, or who are familiar with the Sun Microsystems, Inc., java.net
package can easily use Oracle HTTPS to secure client interactions with a server.

Oracle HTTPS extends the HTTPConnection class of the HTTPClient package,
which provides a complete HTTP client library. To support client HTTPS
connections, several methods have been added to the HTTPConnection class that
use the OracleSSL class, OracleSSLCredential.

HTTPConnection Class
The HTTPConnection class is used to create new connections that use HTTP, with
or without SSL. To provide support for PKI (Public Key Infrastructure) digital
certificates and wallets, the methods described in "Oracle HTTPS Example" on
page 11-17 have been added to this class.

OracleSSLCredential Class (OracleSSL Only)
Security credentials are used to authenticate the server and the client to each other.
Oracle HTTPS uses the Oracle Java SSL package, OracleSSLCredential, to load

See Also:

■ Oracle Application Server 10g Security Guide e and Servlet
Developer’s Guide for information about Oracle Wallet Manager,
PKI, and security fundamentals.

■ Documentation for JSSE and the java.net packages at
http://www.java.sun.com

Note: Oracle HTTPClient supports two different SSL
implementations: the Java Secure Socket Extension (JSSE) and
OracleSSL. This documentation discusses the two implementations
separately.

See Also: The HTTPClient Javadoc.

Oracle HTTPS And Clients

11-10 Security Guide

user certificates and trustpoints from base64 or DER-encoded certificates. (DER,
part of the X.690 ASN.1 standard, stands for Distinguished Encoding Rules.)

The API for Oracle Java SSL requires that security credentials be passed to the
HTTP connection before the connection is established. The
OracleSSLCredential class is used to store these security credentials. Typically,
a wallet generated by Oracle Wallet Manager is used to populate the
OracleSSLCredential object. Alternatively, individual certificates can be added
by using an OracleSSLCredential class API. After the credentials are complete,
they are passed to the connection with the setCredentials method.

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 11-11

Overview of Oracle HTTPS Features
Oracle HTTPS supports HTTP 1.0 and HTTP 1.1 connections between a client and a
server. To provide SSL functionality, new methods have been added to the
HTTPConnection class of this package. These methods are used in conjunction
with Oracle Java SSL to support cipher suite selection, security credential
management with Oracle Wallet Manager, security-aware applications, and other
features that are described in the following sections. Oracle HTTPS uses the Oracle
Java SSL class, OracleSSLCredential, and it extends the HTTPConnection
class of the HTTPClient package. HTTPClient supports two SSL
implementations, OracleSSL and JSSE.

In addition to the functionality included in the HTTPClient package, Oracle
HTTPS supports the following:

■ Multiple cryptographic algorithms

■ Certificate and key management with Oracle Wallet Manager

■ Limited support for the java.net.URL framework

■ Both the OracleSSL and JSSE SSL implementations

In addition, Oracle HTTPS uses the HTTPClient package to support

■ HTTP tunneling through proxies

■ HTTP proxy authentication

The following sections describe Oracle HTTPS features in detail:

■ SSL Cipher Suites

■ SSL Cipher Suites Supported by OracleSSL

■ SSL Cipher Suites Supported by JSSE

■ Security-Aware Applications Support

■ java.net.URL Framework Support

SSL Cipher Suites
Before data can flow through an SSL connection, both sides of the connection must
negotiate common algorithms to be used for data transmission. A set of such
algorithms combined to provide a mix of security features is called a cipher suite.
Selecting a particular cipher suite lets the participants in an SSL connection
establish the appropriate level for their communications.

Overview of Oracle HTTPS Features

11-12 Security Guide

HTTPClient supports two different SSL implementations, each of which supports
different cipher suites. These are discussed below.

Choosing a Cipher Suite
In general, you should prefer:

■ RSA to Diffie-Hellman, because RSA defeats many security attacks.

■ 3DES or RC4 128 to other encryption methods, because 3DES and RC4 128 have
strong keys

■ SHA1 digest to MD5, because SHA1 produces a stronger digest.

SSL Cipher Suites Supported by OracleSSL
OracleSSL supports the cipher suites listed in Table 11–1. Note that with NULL
encryption, SSL is only used for authentication and data integrity purposes.

Table 11–1 Cipher Suites Supported By OracleSSL

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA DES40 CBC SHA1

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_S
HA

DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

Overview of Oracle HTTPS Features

Oracle HTTPS for Client Connections 11-13

SSL Cipher Suites Supported by JSSE
JSSE supports the cipher suites listed in Table 11–1. Note that with NULL
encryption, SSL is only used for authentication and data integrity purposes.

Access Information About Established SSL Connections
Users can access information about established SSL connections using the
getSSLSession method of Oracle HTTPS. After a connection is established, users
can retrieve the cipher suite used for the connection, the peer certificate chain, and
other information about the current connection.

Table 11–2 Cipher Suites Supported By JSSE

Cipher Suite Authentication Encryption
Hash Function
(Digest)

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES EDE CBC SHA1

SSL_RSA_WITH_RC4_128_SHA RSA RC4 128 SHA1

SSL_RSA_WITH_RC4_128_MD5 RSA RC4 128 MD5

SSL_RSA_WITH_DES_CBC_SHA RSA DES CBC SHA1

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA RC4 40 MD5

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA1

SSL_DH_anon_WITH_RC4_128_MD5 DH anon RC4 128 MD5

SSL_DH_anon_WITH_DES_CBC_SHA DH anon DES CBC SHA1

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 DH anon RC4 40 MD5

SSL_DH_anon_EXPORT_WITH_DES40_CBC_S
HA

DH anon DES40 CBC SHA1

SSL_RSA_WITH_NULL_SHA RSA NULL SHA1

SSL_RSA_WITH_NULL_MD5 RSA NULL MD5

SSL_DHE_DSS_WITH_DES_CBC_SHA DH DES CBC SHA1

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA DH 3DES EDE CBC SHA1

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_S
HA

DH DES40 CBC SHA1

Overview of Oracle HTTPS Features

11-14 Security Guide

Security-Aware Applications Support
Oracle HTTPS uses Oracle Java SSL to provide security-aware applications support.
When security-aware applications do not set trust points, Oracle Java SSL allows
them to perform their own validation letting the handshake complete successfully
only if a complete certificate chain is sent by the peer. When applications
authenticate to the trustpoint level, they are responsible for authenticating
individual certificates below the trustpoint.

After the handshake is complete, the application must obtain the SSL session
information and perform any additional validation for the connection.

Security-unaware applications that need the trust point check must ensure that trust
points are set in the HTTPS infrastructure.

java.net.URL Framework Support
The HTTPClient package provides basic support for the java.net.URL
framework with the HTTPClient.HttpUrlConnection class. However, many of
the Oracle HTTPS features are supported through system properties only.

See Also: Oracle Advanced Security Administrator’s Guide for
information about Oracle Java SSL.

Specifying Default System Properties

Oracle HTTPS for Client Connections 11-15

Features that are only supported through system properties are

■ cipher suites selection option

■ confidentiality only option

■ server authentication option

■ mutual authentication option

■ security credential management with Oracle Wallet Manager

Specifying Default System Properties
For many users of HTTPS it is desirable to specify some default properties in a
non-programmatic way. The best way to accomplish this is through Java system
properties which are accessible through the java.lang.System class. These
properties are the only way for users of the java.net.URL framework to set
security credential information. Oracle HTTPS recognizes the following properties:

■ javax.net.ssl.KeyStore

■ javax.net.ssl.KeyStorePassword

■ Oracle.ssl.defaultCipherSuites (OracleSSL only)

The following sections describe how to set these properties.

Note: If the java.net.URL framework is used, then set the
java.protocol.handler.pkgs system property to select the
HTTPClient package as a replacement for the JDK client as
follows:

java.protocol.handler.pkgs=HTTPClient

See Also:

■ "Specifying Default System Properties" on page 11-15 for
information about configuring your client to use JSSE.

■ Documentation for the java.net.URL framework at

http://java.sun.com

Specifying Default System Properties

11-16 Security Guide

javax.net.ssl.KeyStore
This property can be set to point to the text wallet file exported from Oracle Wallet
Manager that contains the credentials that are to be used for a specific connection.
For example:

javax.net.ssl.KeyStore=/etc/ORACLE/WALLETS/Default/default.txt

where default.txt is the name of the text wallet file that contains the credentials.

If no other credentials have been set for the HTTPS connection, then the file
indicated by this property is opened when a handshake first occurs. If any errors
occur while reading this file, then the connection fails and an IOException is
thrown.

If you do not set this property, the application is responsible for verifying that the
certificate chain contains a certificate that can be trusted. However, HTTPClient
using Oracle SSL does verify that all of the certificates in the certificate chain, from
the user certificate to the root CA, have been sent by the server and that all of these
certificates contain valid signatures.

javax.net.ssl.KeyStorePassword
This property can be set to the password that is necessary to open the wallet file. For
example:

javax.net.ssl.KeyStorePassword=welcome1

where welcome1 is the password that is necessary to open the wallet file.

Potential Security Risk with Storing Passwords in System Properties
Storing the wallet file password as a Java system property can result in a security
risk in some environments. To avoid this risk, use one of the following alternatives:

■ If mutual authentication is not required for the application, use a text wallet
that contains no private key. No password is needed to open these wallets.

■ If a password is necessary, then do not store it in a clear text file. Instead, load
the property dynamically before the HTTPConnection is started by using
System.setProperty(). Unset the property after the handshake is
completed.

Oracle.ssl.defaultCipherSuites (OracleSSL only)
This property can be set to a comma-delimited list of cipher suites. For example:

Oracle HTTPS Example

Oracle HTTPS for Client Connections 11-17

Oracle.ssl.defaultCipherSuites=
 SSL_RSA_WITH_DES_CBC_SHA,\
 SSL_RSA_EXPORT_WITH_RC4_40_MD5,\
 SSL_RSA_WITH_RC4_128_MD5

The cipher suites that you set this property to are used as the default cipher suites
for new HTTPS connections.

Oracle HTTPS Example
The following is a simple program that uses Oracle HTTPS, HTTPClient, and
OracleSSL to connect to a Web server, send a GET request, and fetch a Web page.
The complete code for this program is presented here followed by sections that
explain how Oracle HTTPS is used to set up secure connections.

import HTTPClient.HTTPConnection;
import HTTPClient.HTTPResponse;
import oracle.security.ssl.OracleSSLCredential;
import java.io.IOException;

public class HTTPSConnectionExample
{
 public static void main(String[] args)
 {
 if(args.length < 4)
 {
 System.out.println(
 "Usage: java HTTPSConnectionTest [host] [port] " +
 "[wallet] [password]");
 System.exit(-1);
 }

 String hostname = args[0].toLowerCase();
 int port = Integer.decode(args[1]).intValue();
 String walletPath = args[2];
 String password = args[3];

 HTTPConnection httpsConnection = null;
 OracleSSLCredential credential = null;

 try

See Also: Table 11–1 on page 11-12 for a complete list of the
cipher suites that are supported by OracleSSL.

Oracle HTTPS Example

11-18 Security Guide

 {
 httpsConnection = new HTTPConnection("https", hostname, port);
 }
 catch(IOException e)
 {
 System.out.println("HTTPS Protocol not supported");
 System.exit(-1);
 }

 try
 {
 credential = new OracleSSLCredential();
 credential.setWallet(walletPath, password);
 }
 catch(IOException e)
 {
 System.out.println("Could not open wallet");
 System.exit(-1);
 }
 httpsConnection.setSSLCredential(credential);

 try
 {
 httpsConnection.connect();
 }
 catch (IOException e)
 {
 System.out.println("Could not establish connection");
 e.printStackTrace();
 System.exit(-1);
 }

 javax.security.cert.X509Certificate[] peerCerts = null;
 try
 {
 peerCerts =
 (httpsConnection.getSSLSession()).getPeerCertificateChain();
 }
 catch(javax.net.ssl.SSLPeerUnverifiedException e)
 {
 System.err.println("Unable to obtain peer credentials");
 System.exit(-1);
 }

 String peerCertDN =

Oracle HTTPS Example

Oracle HTTPS for Client Connections 11-19

 peerCerts[peerCerts.length -1].getSubjectDN().getName();
 peerCertDN = peerCertDN.toLowerCase();
 if(peerCertDN.lastIndexOf("cn="+hostname) == -1)
 {
 System.out.println("Certificate for " + hostname + " is issued to
"
 + peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
 }

 try
 {
 HTTPResponse rsp = httpsConnection.Get("/");
 System.out.println("Server Response: ");
 System.out.println(rsp);
 }
 catch(Exception e)
 {
 System.out.println("Exception occured during Get");
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

Initializing SSL Credentials In OracleSSL
This program example uses a wallet created by Oracle Wallet Manager to set up
credential information. First the credentials are created and the wallet is loaded
using

credential = new OracleSSLCredential();
credential.setWallet(walletPath, password);

After the credentials are created, they are passed to HTTPSConnection using

httpsConnection.setSSLCredential(credential);

The private key, user certificate, and trust points located in the wallet can now be
used for the connection.

Oracle HTTPS Example

11-20 Security Guide

Verifying Connection Information
Although SSL verifies that the certificate chain presented by the server is valid and
contains at least one certificate trusted by the client, that does not prevent
impersonation by malicious third parties. An HTTPS standard that addresses this
problem requires that HTTPS servers have certificates issued to their host name.
Then it is the responsibility of the client to perform this validation after the SSL
connection is established.

To perform this validation in this sample program, HTTPSConnectionExample
establishes a connection to the server without transferring any data using the
following:

httpsConnection.connect();

After the connection is established, the connection information, in this case the
server certificate chain, is obtained with the following:

peerCerts = (httpsConnection.getSSLSession()).getPeerCertificateChain();

Finally the server certificate’s common name is obtained with the following:

String peerCertDN = peerCerts[peerCerts.length -1].getSubjectDN().getName();
peerCertDN = peerCertDN.toLowerCase();

If the certificate name is not the same as the host name used to connect to the server,
then the connection is aborted with the following:

if(peerCertDN.lastIndexOf("cn="+hostname) == -1)
{
 System.out.println("Certificate for " + hostname + " is issued to " +
 peerCertDN);
 System.out.println("Aborting connection");
 System.exit(-1);
}

Transferring Data Using HTTPS
It is important to verify the connection information before data is transferred from
the client or from the server. The data transfer is performed in the same way for
HTTPS as it is for HTTP. In this sample program a GET request is made to the server
using the following:

HTTPResponse rsp = httpsConnection.Get("/");

Using HTTPClient with JSSE

Oracle HTTPS for Client Connections 11-21

Using HTTPClient with JSSE
OracleAS supports HTTPS client connections using the Java Secure Socket
Extension (JSSE). A client can configure HTTPClient to use JSSE as the underlying
SSL provider.

HTTPClient still uses OracleSSL as the default provider, but the developer can
easily change this by setting the SSLSocketFactory on the HTTPConnection
class. This following code snippet demonstrates how a client could configure
HTTPClient to use JSSE for SSL communication.

public void obtainHTTPSConnectionUsingJSSE() throws Exception
{
// set the trust store to the location of the client's trust store file
 // this value specifies the certificate authorities the client accepts
 System.setProperty("javax.net.ssl.trustStore", KEYSTORE_FILE);
 // creates the HTTPS URL
 URL testURL = new URL("https://" + HOSTNAME + ":" + HTTPS_PORTNUM);
 // call SSLSocketFactory.getDefault() to obtain the default JSSE
implementation
 // of an SSLSocketFactory
 SSLSocketFactory socketFactory =
(SSLSocketFactory)SSLSocketFactory.getDefault();
 HTTPConnection connection = new HTTPConnection(testURL);

 // configure HTTPClient to use JSSE as the underlying
 // SSL provider
 connection.setSSLSocketFactory(socketFactory);
 // call connect to setup SSL handshake
 try
 {
 connection.connect();
 }
 catch (IOException e)
 {
 e.printStackTrace(); }

 HTTPResponse response = connection.Get("/index.html");

Notes: ■The JSSE SSL implementation is not thread-safe; if you need to
use SSL in a threaded application, use OracleSSL.

■ For full information on JSSE, see the Sun documentation at
http://java.sun.com/products/jsse/.

Using HTTPClient with JSSE

11-22 Security Guide

 }

Configuring HTTPClient To Use JSSE
The steps required to use JSSE with HTTPClient are as follows:

1. Create a truststore using the keytool.

2. Set the truststore property. A client wishing to use JSSE must specify the client
truststore location in javax.net.ssl.trustStore. Unlike OracleSSL, the
client does not need to set the javax.net.ssl.keyStore property.

3. Obtain the JSSE SSLSocketFactory by calling
SSLSocketFactory.getDefault().

4. Create an HTTPClient connection.

5. Configure the HTTPClient connection to use the JSSE implementation of SSL.
HTTPClient can be configured to use JSSE in one of two ways:

1. (Per-connection) The client calls
HTTPConnection.setSSLSocketFactory(SSLSocketFactory
factory)

2. (Entire VM) The client calls the static method:
HttpConnection.setDefaultSSLSocketFactory(SSLSocketFacto
ry factory). This static method must be called before instantiating any
HTTPConnection instances.

6. Call HTTPConnection.connect() before sending any HTTPS data. This
allows the connection to verify the SSL handshaking that must occur between
client and server before any data can be encrypted and sent.

Notes: ■For details of using the keytool, see
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.htm
lJ

■ JSSE's implementation of SSL has some subtle differences from
Oracle's implementation. Unlike in OracleSSL, if no truststore is set,
the JDK default truststore will be used. This default will accept known
certificate authorities, such as Verisign and Thawte. Many self-signed
certificates will be rejected by this default.

Configuring Oracle HTTP Server and OC4J for SSL

Oracle HTTPS for Client Connections 11-23

7. Use the HTTPConnection instance normally. At this point, the client is set up
to use HTTPClient with JSSE. There is no additional configuration necessary
and basic usage is the same.

Configuring Oracle HTTP Server and OC4J for SSL
For secure communication between Oracle HTTP Server and OC4J, configuration
steps are required at each end, as detailed in the following sections:

■ Oracle HTTP Server Configuration Steps for SSL

■ OC4J Configuration Steps for SSL

Oracle HTTP Server Configuration Steps for SSL
In Oracle HTTP Server, verify proper SSL settings in mod_oc4j.conf for secure
communication. SSL must be enabled, with a wallet file and password specified, as
follows:

Oc4jEnableSSL on
Oc4jSSLWalletFile wallet_path
Oc4jSSLWalletPassword pwd

The wallet_path value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.) The pwd value is the wallet password.

For more information about the mod_oc4j.conf file, see Oracle HTTP Server
Administrator’s Guide.

OC4J Configuration Steps for SSL
In the default-web-site.xml file (or other Web site XML file, as appropriate),
you must specify appropriate SSL settings under the <web-site> element.

1. Turn on the secure flag to specify secure communication, as follows:

<web-site ... secure="true" ... >
 ...
</web-site>

Setting secure="true" specifies that the AJP protocol should use an SSL
socket.

Configuring Oracle HTTP Server and OC4J for SSL

11-24 Security Guide

2. Use the <ssl-config> sub-element and its keystore and
keystore-password attributes to specify the path and password for the
keystore, as follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd" />
</web-site>

The <ssl-config> element is required whenever the secure flag is set to
"true".

The path_and_file value can indicate either an absolute or relative directory
path and includes the file name. A relative path is relative to the location of the
Web site XML file.

3. Optionally, to specify that client authentication is required, turn on the
needs-client-auth flag. This is an attribute of the <ssl-config> element.

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

This sets up a mode where OC4J will accept or reject a client entity, such as
Oracle HTTP Server, for secure communication depending on its identity. The
needs-client-auth flag instructs OC4J to request the client certificate chain
upon connection. If OC4J recognizes the root certificate of the client, then the
client is accepted.

The keystore that is specified in the <ssl-config> element must contain the
certificates of any clients that are authorized to connect to OC4J through secure
AJP and SSL.

Here is an example that sets up secure communication with client authentication:

<web-site display-name="OC4J Web Site" protocol="ajp13" secure="true" >
 <default-web-app application="default" name="defaultWebApp" root="/j2ee" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome"
 needs-client-auth="true" />
</web-site>

Only the portions in bold are specific to security. The protocol value is always
"ajp13" for communication through Oracle HTTP Server, whether or not you use

Configuring OC4J Standalone for SSL

Oracle HTTPS for Client Connections 11-25

secure communication. A protocol value of ajp13 with secure="false"
indicates AJP protocol, while ajp13 with secure="true" indicates secure AJP
protocol.

For more information about elements and attributes of the <web-site> and
<ssl-config> elements, see the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide.

Configuring OC4J Standalone for SSL
For secure communication between a client and OC4J, configuration is required on
OC4J standalone. You are required to provide a certificate on the client-side only if
you configure client-authentication.

In the default-web-site.xml file of OC4J (or other Web site XML file, as
appropriate), you must specify appropriate SSL settings under the <web-site>
element.

1. Turn on the secure flag to specify secure communication, as follows:

<web-site ... protocol="http" secure="true" ... >
 ...
</web-site>

Setting secure="true" specifies that the HTTP protocol is to use an SSL
socket.

2. Use the <ssl-config> sub-element and its keystore and
keystore-password attributes to specify the directory path and password for
the keystore, as follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd" />
</web-site>

The <ssl-config> element is required whenever the secure flag is set to
"true".

The path_and_file value can indicate either an absolute or relative
directory path and includes the file name.

Configuring OC4J Standalone for SSL

11-26 Security Guide

3. Optionally, turn on the needs-client-auth flag, an attribute of the
<ssl-config> element, to specify that client authentication is required, as
follows:

<web-site ... secure="true" ... >
 ...
 <ssl-config keystore="path_and_file" keystore-password="pwd"
 needs-client-auth="true" />
</web-site>

This step sets up a mode where OC4J accepts or rejects a client entity for secure
communication, depending on its identity. The needs-client-auth attribute
instructs OC4J to request the client certificate chain upon connection. If the root
certificate of the client is recognized, then the client is accepted.

The keystore specified in the <ssl-config> element must contain the
certificates of any clients that are authorized to connect to OC4J through
HTTPS.

4. Optionally, specify each application in the Web site as shared. The shared
attribute of the <web-app> element indicates whether multiple bindings
(different Web sites, or ports, and context roots) can be shared. Supported
values are "true" and "false" (default).

Sharing implies the sharing of everything that makes up a Web application,
including sessions, servlet instances, and context values. A typical use for this
mode is to share a Web application between an HTTP site and an HTTPS site at
the same context path, when SSL is required for some but not all of the
communications. Performance is improved by encrypting only sensitive
information, rather than all information.

If an HTTPS Web application is marked as shared, then instead of using the SSL
certificate to track the session, the cookie is used to track the session. This is
beneficial in that the SSL certificate uses 50K to store each certificate when
tracking it, which sometimes results in an "out of memory" problem for the
session before the session times out. This could possibly make the Web
application less secure, but might be necessary to work around issues such as
SSL session timeouts not being properly supported in some browsers.

Note: You can hide the password through password indirection.
See Oracle Application Server Containers for J2EE Security Guide
for a description of password indirection.

Configuring OC4J Standalone for SSL

Oracle HTTPS for Client Connections 11-27

5. Optionally, set the cookie domain if shared is true and the default ports are not
used. When the client interacts with a Web server over separate ports, the
cookie believes that each separate port denotes a separate Web site. If you use
the default ports of 80 for HTTP and 443 for HTTPS, the client recognizes these
as two different ports of the same Web site and creates only a single cookie.
However, if you use non-default ports, the client does not recognize these ports
as part of the same Web site and will create separate cookies for each port,
unless you specify the cookie domain.

Cookie domains track the client’s communication across multiple servers within
a DNS domain. If you use non-default ports for a shared environment with
HTTP and HTTPS, set the cookie-domain attribute in the
<session-tracking> element in the orion-web.xml file for the
application. The cookie-domain attribute contains the DNS domain with at least
two components of the domain name provided.

<session-tracking cookie-domain=".oracle.com" />

Example 11–1 HTTPS Communication With Client Authentication

The following configures a Web site for HTTPS secure communication with client
authentication:

<web-site display-name="OC4J Web Site" protocol="http" secure="true" >
 <default-web-app application="default" name="defaultWebApp" />
 <access-log path="../log/default-web-access.log" />
 <ssl-config keystore="../keystore" keystore-password="welcome"
 needs-client-auth="true" />
</web-site>

Only the portions in bold are specific to security. The protocol value is always
"http" for HTTP communication, whether or not you use secure communication.
A protocol value of http with secure="false" indicates HTTP protocol; http
with secure="true" indicates HTTPS protocol.

Then, configures the news application to accept both HTTP and HTTPS
connections:

<web-app application="news" name="news-web" root="/news" shared="true" />

This Web site uses the default port numbers for HTTP and HTTPS communication.
If it did not, you would also add the cookie-domain attribute.

<session-tracking cookie-domain=".oracle.com" />

Configuring OC4J Standalone for SSL

11-28 Security Guide

For more information about elements and attributes of the <web-site>,
<web-app>, and <session-tracking> elements, see the XML Appendix in the
Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

Example 11–2 Creating an SSL Certificate and Configuring HTTPS

The following example uses keytool to create a test certificate and shows all of the
XML configuration necessary for HTTPS to work. To create a valid certificate for use
in production environments, see the keytool documentation.

1. Install the correct JDK

Ensure that JDK 1.3.x is installed. This is required for SSL with OC4J. Set the
JAVA_HOME to the JDK 1.3 directory. Ensure that the JDK 1.3.x
JAVA_HOME/bin is at the beginning of your path. This may be achieved by
doing the following:

UNIX

$ PATH=/usr/opt/java130/bin:$PATH
$ export $PATH
$ java -version
java version "1.3.0"

 Windows

set PATH=d:\jdk131\bin;%PATH%

Ensure that this JDK version is set as the current version in your Windows
registry. In the Windows Registry Editor under
HKEY_LOCAL_MACHINE/SOFTWARE/JavaSoft/Java Development Kit,
set 'CurrentVersion' to 1.3 (or later).

2. Request a certificate

a. Change directory to ORACLE_HOME/j2ee

b. Create a keystore with an RSA private/public keypair using the keytool
command. In our example, we generate a keystore to reside in a file named
'mykeystore', which has a password of '123456’ and is valid for 21 days,
using the 'RSA' key pair generation algorithm with the following syntax:

keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456
-validity 21

Where:

Configuring OC4J Standalone for SSL

Oracle HTTPS for Client Connections 11-29

■ the keystore option sets the filename where the keys are stored

■ the storepass option sets the password for protecting the keystore

■ the validity option sets number of days the certificate is valid

The keytool prompts you for more information, as follows:

keytool -genkey -keyalg "RSA" -keystore mykeystore -storepass 123456
-validity 21

What is your first and last name?
 [Unknown]: Test User
What is the name of your organizational unit?
 [Unknown]: Support
What is the name of your organization?
 [Unknown]: Oracle
What is the name of your City or Locality?
 [Unknown]: Redwood Shores
What is the name of your State or Province?
 [Unknown]: CA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Test User, OU=Support, O=Oracle, L=Reading, ST=Berkshire, C=GB>
correct?
 [no]: yes

Enter key password for <mykey>
 (RETURN if same as keystore password):

The mykeystore file is created in the current directory. The default alias of the
key is mykey.

3. If you do not have a secure-web-site.xml file, then copy the
default-web-site.xml to
$ORACLE_HOME/j2ee/home/config/secure-web-site.xml.

4. Edit secure-web-site.xml with the following elements:

a. Add secure="true" to the <web-site> element, as follows:

<web-site port="8888" display-name="Default OracleAS Containers for J2EE

Note: To determine your 'two-letter country code', use the ISO
country code list at the following URL:
http://www.bcpl.net/~jspath/isocodes.html.

Configuring OC4J Standalone for SSL

11-30 Security Guide

Web Site" secure="true">

b. Add the following new line inside the <web-site> element to define the
keystore and the password.

<ssl-config keystore="<Your-Keystore>"
keystore-password="<Your-Password>" />

Where <Your-Keystore> is the full path to the keystore and
<Your-Password> is the keystore password. In our example, this is as
follows:

<!-- Enable SSL -->
<ssl-config keystore="../../keystore" keystore-password="123456"/>

c. Change the web-site port number, to use an available port. For example, the
default for SSL ports is 443, so change the Web site port attribute to
port="4443". To use the default of 443, you have to be a super user.

d. Now save the changes to secure-web-site.xml.

5. If you did not have the secure-web-site.xml file, then edit server.xml to
point to the secure-web-site.xml file.

a. Uncomment or add the following line in the file server.xml so that the
secure-web-site.xml file is read.

<web-site path="./secure-web-site.xml" />

b. Save the changes to server.xml.

6. Stop and re-start OC4J to initialize the secure-web-site.xml file additions. Test
the SSL port by accessing the site in a browser on the SSL port. If successful,
you will be asked to accept the certificate, because it is not signed by an
accepted authority.

When completed, OC4J listens for SSL requests on one port and non-SSL requests
on another. You can disable either SSL requests or non-SSL requests, by

Note: The keystore path is relative to where the XML file resides.

Note: Even on Windows, you use a forward slash and not a back
slash in the XML files.

Configuring OC4J Standalone for SSL

Oracle HTTPS for Client Connections 11-31

commenting out the appropriate *web-site.xml in the server.xml
configuration file.

<web-site path="./secure-web-site.xml" /> - comment out this to remove SSL
<default-site path="./default-web-site.xml" /> - comment out this to
 remove non-SSL

Requesting Client Authentication with OC4J Standalone
OC4J supports a "client-authentication" mode in which the server explicitly requests
authentication from the client before the server will communicate with the client. In
this case, the client must have its own certificate. The client authenticates itself by
sending a certificate and a certificate chain that ends with a root certificate. OC4J
can be configured to accept only root certificates from a specified list in establishing
a chain of trust back to the client.

A certificate that OC4J trusts is called a trust point. This is the first certificate that
OC4J encounters in the chain from the client that matches one in its own keystore.
There are three ways to configure trust:

■ The client certificate is in the keystore.

■ One of the intermediate certificate authority certificates in the client’s chain is in
the keystore.

■ The root certificate authority certificate in the client’s chain is in the keystore.

OC4J verifies that the entire certificate chain up to and including the trust point is
valid to prevent any forged certificates.

If you request client authentication with the needs-client-auth attribute,
perform the following:

1. Decide which of the certificates in the client’s chain is to be your trust point.
Ensure that you either have control of the issue of certificates using this trust
point or that you trust the certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point
for authentication of the client certificate.

3. If you do not want OC4J to have access to certain trust points, make sure that
these trust points are not in the keystore.

4. Execute the preceding steps to create the client certificate, which includes the
intermediate or root certificate installed in the server. If you wish to trust
another certificate authority, obtain a certificate from that authority.

HTTPS Common Problems and Solutions

11-32 Security Guide

5. Save the certificate in a file on the client.

6. Provide the certificate on the client initiation of the HTTPS connection.

a. If the client is a browser, set the certificate in the client browser security
area.

b. If the client is a Java client, you must programmatically present the client
certificate and the certificate chain when initiating the HTTPS connection.

HTTPS Common Problems and Solutions
The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: You cannot allow trailing whitespace in the keytool.

Action: Delete all trailing whitespace. If the error still occurs, add a new line in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using a keytool from an older JDK.

Action: Use the keytool from the latest JDK on your system. To ensure that you
are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply
Cause: The keytool cannot locate the root CA certificates in your keystore; thus,
the keytool cannot build the certificate chain from your server key to the trusted
root certificate authority.

Action: Execute the following:

keytool -keystore keystore -import -alias cacert -file cacert.cer (keytool
-keystore keystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keytool, then execute the following:

keystore keystore -genkey -keyalg RSA -alias serverkey keytool -keystore
keystore -certreq -file my.host.com.csr

Get the certificate from the Certificate Signing Request, then execute the
following:

keytool -keystore keystore -import -file my.host.com.cer -alias serverkey

HTTPS Common Problems and Solutions

Oracle HTTPS for Client Connections 11-33

No available certificate corresponds to the SSL cipher suites which are enabled
Cause: Something is wrong with your certificate.

IllegalArgumentException: Mixing secure and non-secure sites on the same ip +
port
Cause: You cannot configure SSL and non-SSL web-sites to listen on the same
port and IP address.

Action: Check to see that different ports are assigned within
secure-web-site.xml and default-web-site.xml files.

Keytool does not work on HP-UX
Cause: On HP-UX, it has been reported that the 'keytool' does not work with
the RSA option.

Action: Generate the key on another platform and FTP it to the HP-UX server.

HTTPS Common Problems and Solutions

11-34 Security Guide

EJB Security 12-1

12
EJB Security

This chapter discusses security issues affecting EJBs. It discusses the following
topics:

■ EJB JNDI Security Properties

■ Configuring Security

For full information about EJBs, see the Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

EJB JNDI Security Properties

12-2 Security Guide

EJB JNDI Security Properties
There are two JNDI properties that are specific to security. You can either set these
within the jndi.properties file or within your EJB implementation.

JNDI Properties in jndi.properties
If setting the JNDI properties within the jndi.properties file, set the properties
as follows. Make sure that this jndi.properties file is accessible from the
CLASSPATH.

When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the jndi.properties file
deployed with the client’s code.

java.naming.security.principal=<username>
java.naming.security.credentials=<password>

JNDI Properties Within Implementation
Set the properties with the same values, only with different syntax. For example,
JavaBeans running within the container pass their credentials within the
InitialContext, which is created to look up the remote EJBs.

For instance, to pass JNDI security properties within the Hashtable environment,
set these as shown below:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/employeeBean");

// Narrow the reference to a TemplateHome.
EmployeeHome empHome =

(EmployeeHome) PortableRemoteObject.narrow(homeObject,
EmployeeHome.class);

Configuring Security

EJB Security 12-3

Configuring Security
EJB security involves two realms: granting permissions if you download into a
browser and configuring your application for authentication and authorization.
This section covers the following:

■ Granting Permissions in Browser

■ Authenticating and Authorizing EJB Applications

■ Specifying Credentials in EJB Clients

Granting Permissions in Browser
If you download the EJB application as a client where the security manager is
active, you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup",
"read,write";

Authenticating and Authorizing EJB Applications
For EJB authentication and authorization, you define the principals under which
each method executes by configuring of the EJB deployment descriptor. The
container enforces that the user who is trying to execute the method is the same as
defined within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which
each method is allowed to execute. These methods are mapped to users or groups
in the OC4J-specific deployment descriptor. The users and groups are defined
within your designated security user managers, which uses either the JAZN or
XML user manager. For a full description of security user managers, see the Oracle
Application Server Containers for J2EE User’s Guide and Oracle Application Server
Containers for J2EE Services Guide.

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece
of your security within the deployment descriptors, as follows:

■ The EJB deployment descriptor describes access rules using logical roles.

Configuring Security

12-4 Security Guide

■ The OC4J-specific deployment descriptor maps the logical roles to concrete
users and groups, which are defined either the JAZN or XML user managers.

Users and groups are identities known by the container. Roles are the logical
identities each application uses to indicate access rights to its different objects. The
username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 12–1.

Figure 12–1 Role Mapping

Defining users, groups, and roles are discussed in the following sections:

■ Specifying Users and Groups

■ Specifying Logical Roles in the EJB Deployment Descriptor

■ Specifying Unchecked Security for EJB Methods

■ Specifying the runAs Security Identity

■ Mapping Logical Roles to Users and Groups

■ Specifying a Default Role Mapping for Undefined Methods

■ Specifying Users and Groups by the Client

Configuring Security

EJB Security 12-5

Specifying Users and Groups
OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to given applications. You define shared or
application-specific users and groups within either the JAZN or XML user
managers. See the Oracle Application Server Containers for J2EE User’s Guide and
Oracle Application Server Containers for J2EE Services Guide. for directions.

Specifying Logical Roles in the EJB Deployment Descriptor
As shown in Figure 12–2, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct database role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on
page 12-10 for more information.

Figure 12–2 Security Mapping

If you use a logical name for a database role within your bean implementation for
methods such as isCallerInRole, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section
<security-role-ref> element. For example, to define a role used within the
purchase order example, you may have checked, within the bean’s
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the

Configuring Security

12-6 Security Guide

bean to not need to be aware of database roles, you can check
isCallerInRole on a logical name, such as POMgr, because only purchase
order managers can sign off on the order. Thus, you would define the logical
security role, POMgr within the <security-role-ref><role-name>
element within the <enterprise-beans> section, as follows:

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 </security-role-ref>
</enterprise-beans>

The <role-link> element within the <security-role-ref> element can
be the actual database role, which is defined further within the
<assembly-descriptor> section. Alternatively, it can be another logical
name, which is still defined more in the <assembly-descriptor> section
and is mapped to an actual database role within the Oracle-specific deployment
descriptor.

2. Define the role and the methods that it applies to. In the purchase order
example, any method executed within the PurchaseOrder bean must have
authorized itself as myMgr. Note that PurchaseOrder is the name declared in
the <entity | session><ejb-name> element.

Thus, the following defines the role as myMgr, the EJB as PurchaseOrder, and
all methods by denoting the’*’ symbol.

Note: The <security-role-ref> element is not required. You
only specify it when using security context methods within your
bean.

Note: The myMgr role in the <security-role> element is the
same as the <role-link> element within the
<enterprise-beans> section. This ties the logical name of
POMgr to the myMgr definition.

Configuring Security

EJB Security 12-7

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean’s
implementation and the container translates POMgr to myMgr.

The <method-permission><method> element is used to specify the security role
for one or more methods within an interface or implementation. According to the
EJB specification, this definition can be of one of the following forms:

1. Defining all methods within a bean by specifying the bean name and using
the’*’ character to denote all methods within the bean, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Note: If you define different roles within the
<method-permission> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Configuring Security

12-8 Security Guide

2. Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethodInMyBean</method-name>
 </method>
</method-permission>

3. Defining a method with a specific signature among many overloaded versions,
as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>myBean</ejb-name>
 <method-name>myMethod</method-name>
 <method-params>
 <method-param>javax.lang.String</method-param>
 <method-param>javax.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

The parameters are the fully-qualified Java types of the method’s input
parameters. If the method has no input arguments, the <method-params>
element contains no elements. Arrays are specified by the array element’s type,
followed by one or more pair of square brackets, such as int[][].

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, you define these
methods as unchecked, as follows:

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Configuring Security

EJB Security 12-9

<method-permission>
 <unchecked/>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Instead of a <role-name> element defined, you define an <unchecked/>
element. When executing any methods in the EJBNAME bean, the container does not
check for security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity
You can specify that all methods of an EJB execute under a specific identity. That is,
the container does not check different roles for permission to run specific methods;
instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller’s identity as the security
identity.

Specify the runAs security identity in the <security-identity> element, which
is contained in the <enterprise-beans> section. The following XML
demonstrates that the POMgr is the role under which all the entity bean methods
execute.

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <run-as>
 <role-name>POMgr</role-name>
 </run-as>
 </security-identity>
...
 </entity>
</enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

Configuring Security

12-10 Security Guide

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
...
 </entity>
</enterprise-beans>

Mapping Logical Roles to Users and Groups
You can use logical roles or actual users and groups in the EJB deployment
descriptor. However, if you use logical roles, you must map them to the actual users
and groups defined either in the JAZN or XML User Managers.

Map the logical roles defined in the application deployment descriptors to JAZN or
XML User Manager users or groups through the <security-role-mapping>
element in the OC4J-specific deployment descriptor.

■ The name attribute of this element defines the logical role that is to be mapped.

■ The group or user element maps the logical role to a group or user name. This
group or user must be defined in the JAZN or XML User Manager
configuration. See Oracle Application Server Containers for J2EE User’s Guide and
Oracle Application Server Containers for J2EE Services Guide for a description of
the JAZN and XML User Managers.

Example 12–1 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the managers group in the
orion-ejb-jar.xml file. Any user that can log in as part of this group is
considered to have the POMGR role; thus, it can execute the methods of
PurchaseOrderBean.

<security-role-mapping name="POMGR">
<group name="managers" />

</security-role-mapping>

Note: You can map a logical role to a single group or to several
groups.

Configuring Security

EJB Security 12-11

To map this role to a specific user, do the following:

<security-role-mapping name="POMGR">
<user name="guest" />

</security-role-mapping>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-role-mapping name="POMGR">
 <group name="managers" />
<user name="guest" />

</security-role-mapping>

As shown in Figure 12–3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to managers within the OC4J-specific
deployment descriptor in the <security-role-mapping> element.

Figure 12–3 Security Mapping

Notice that the <role-name> in the EJB deployment descriptor is the same as the
name attribute in the <security-role-mapping> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods
If any methods have not been associated with a role mapping, they are mapped to
the default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any
insecure methods:

<default-method-access>

Configuring Security

12-12 Security Guide

 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" />
 </security-role-mapping>
</default-method-access>

The default role is <default-ejb-caller-role> and is defined in the name
attribute. You can replace this string with any name for the default role. The
impliesAll attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to true, which states that no security role checking
occurs for these methods. If you set this attribute to false, the container will check
for this default role on these methods.

If the impliesAll attribute is false, you must map the default role defined in the
name attribute to a JAZN or XML user or group through the <user> and <group>
elements. The following example shows how all methods not associated with a
method permission are mapped to the "others" group.

<default-method-access>
 <security-role-mapping name="default-role" impliesAll="false" />
 <group name="others" />
 </security-role-mapping>
</default-method-access>

Specifying Users and Groups by the Client
In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the JAZN
or XML User Manager recognizes. And the user or group must be the same one as
designated in the security role for the intended method. See "Specifying Credentials
in EJB Clients" on page 12-12 for more information.

Specifying Credentials in EJB Clients
When you access EJBs in a remote container, you must pass valid credentials to this
container.

■ Stand-alone clients define their credentials in the jndi.properties file
deployed with the EAR file.

■ Servlets or JavaBeans running within the container pass their credentials within
the InitialContext, which is created to look up the remote EJBs.

Configuring Security

EJB Security 12-13

Credentials in JNDI Properties
Indicate the username (principal) and password (credentials) to use when looking
up remote EJBs in the jndi.properties file.

For example, if you want to access remote EJBs as POMGR/welcome, define the
following properties. The factory.initial property indicates that you will use
the Oracle JNDI implementation:

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=

com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/ejbsamples

In your application program, authenticate and access the remote EJBs, as shown
below:

InitialContext ic = new InitialContext();
CustomerHome =
(CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Credentials in the InitialContext
To access remote EJBs from a servlet or JavaBean, pass the credentials in the
InitialContext object, as follows:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
CustomerHome =

(CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean")

Configuring Security

12-14 Security Guide

J2EE Connector Architecture Security 13-1

13
J2EE Connector Architecture Security

This chapter describes the security issues affecting the J2EE Connector Architecture
in an Oracle Application Server Containers for J2EE (OC4J) application. For full
information on the J2EE Connector Architecture, see the Oracle Application Server
Containers for J2EE Services Guide. This chapter covers the following topics:

■ Deploying Resource Adapters

■ Specifying Container-Managed or Component-Managed Sign-On

■ Authentication in Container-Managed Sign-On

Deploying Resource Adapters

13-2 Security Guide

Deploying Resource Adapters
This section discusses deployment descriptors, deploying standalone resource
adapters, and deploying embedded resource adapters.

Oracle Application Server Containers for J2EE supports three deployment
descriptors: ra.xml, oc4j-ra.xml, and oc4j-connectors.xml. The ra.xml
descriptor is normally supplied with the resource adapter. Whenever you deploy a
resource adapter within an EAR file, Oracle Application Server Containers for J2EE
generates oc4j-connectors.xml and oc4j-ra.xml. You should manually edit
the second file.

The oc4j-ra.xml Descriptor
The oc4j-ra.xml descriptor provides Oracle Application Server Containers for
J2EE-specific deployment information (Java Naming and Directory Interface (JNDI)
path name and connector properties) for resource adapters. For each resource
adapter, oc4j-ra.xml contains one or more <connector-factory> elements
specifying a JNDI name corresponding to a set of configuration parameter values.
Oracle Application Server Containers for J2EE binds each connection into the
proper JNDI namespace location as a ConnectionFactory instance.

A <connector-factory> element can contain an optional <security-config>
element that describes how to supply user names and passwords to the EIS.

The <security-config> Element
The <security-config> element specifies the user name and password for
container-managed sign-ons.

There are two ways of supplying this information in the <security-config>
element of the oc4j-ra.xml file:

■ Specifying mapping subelements explicitly (in the
<principal-mapping-entries> subelement)

■ Specifying the name of a user-created mapping class that either implements
oracle.j2ee.connector.PrincipalMapping or inherits from
oracle.j2ee.AbstractPrincipalMapping (in the
<principal-mapping-interface> subelement)

Authentication issues are discussed in detail in "Authentication in
Container-Managed Sign-On" on page 13-6. This section discusses only the syntax
for the <security-config> element.

Deploying Resource Adapters

J2EE Connector Architecture Security 13-3

A <security-config> element contains either a
<principal-mapping-entries> element, specifying user names and
passwords explicitly; a <principal-mapping-interface> element, specifying
the name of the mapping class; or a <jaas-module> element, specifying the JAAS
module to be used for authentication.

<security-config>
 <principal-mapping-entries> // 1
 <default-mapping> // 2
 <res-user>username</res-user> // 3
 <res-password>password</res-password> // 4
 </default-mapping>
 <principal-mapping-entry> // 5
 <initiating-user>iuname</initiating-user> // 6
 <res-user>username</res-user>
 <res-password>password</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>

 <principal-mapping-interface> // 7
 <impl-class>classname</impl-class> // 8
 <property name="propname"
 value="propvalue" /> // 9
 </principal-mapping-interface>

 <jaas-module> // 10
 <jaas-application-name> // 11
 appname
 </jaas-application-name>
 </jaas-module>
</security-config>

1. <principal-mapping-entries>: Ppovides a declarative specification for
resource mapping. This element begins with an optional <default-mapping>
element; it continues with one or more <principal-mapping-entry>
elements.

2. <default-mapping>: specifies the user name and password for the default
resource principal.

3. <res-user>: specifies user name.

4. <res-password>: specifies password.

Deploying Resource Adapters

13-4 Security Guide

5. <principal-mapping-entry>: specifies a mapping from a single initiating
principal to a resource principal and password.

6. <initiating-user>: specifies the initiating principal.

7. <principal-mapping-interface>: specifies information necessary to
employ user-created classes to provide mappings.

8. <impl-class>: specifies the name of the user-provided PrincipalMapping
implementation.

9. <property name="propname" value="propvalue">: specifies
information specific to your PrincipalMapping implementation: for instance,
the path of the principal mapping file, or LDAP server connection information.
(This element is optional and it can be repeated.)

10. <jaas-module>: specifies the JAAS module that is used for authentication. It
has only one element, <jaas-application-name>.

11. <jaas-application-name>: specifies the name of the JAAS module that is
used for authentication.

The oc4j-connectors.xml Descriptor
The oc4j-connectors.xml descriptor configures the resource adapters that are
deployed by oc4j-ra.xml. The oc4j-connectors.xml descriptor lists the
standalone resource adapters that are deployed in this Oracle Application Server
Containers for J2EE instance, as well as the resource adapters that are embedded
within an application. This descriptor contains, for each individual connector, a
connector> element that specifies the name and path name for the connector.
Each <connector> element contains a <security-permission> element that
defines the permissions granted to each resource adapter. The syntax is:

<security-permission enabled="booleanvalue">

This element specifies the permissions to be granted to each resource adapter. Each
<security-permission> contains a <security-permission-spec> that
conforms to the Java 2 Security policy file syntax.

Oracle Application Server Containers for J2EE automatically generates a
<security-permission> element in oc4j-connectors.xml for each

Note: This element supports password indirection. For more
information, refer to "Creating An Indirect Password" on page 10-3.

Specifying Container-Managed or Component-Managed Sign-On

J2EE Connector Architecture Security 13-5

<security-permission> element in ra.xml. Each generated element has the
enabled attribute set to false. Setting the enabled attribute to true grants the
named permission.

Example:

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 . . .
 <security-permission>
 <security-permission-spec enabled="false">
 grant {permission java.lang.RuntimePermission "LoadLibrary", *’};
 </security-permission-spec>
 </security-permission>
 </connector>
</oc4j-connectors>

Specifying Container-Managed or Component-Managed Sign-On
Applications can use either application components or the Oracle Application
Server Containers for J2EE application server to manage resource-adapter sign-on
to the EIS system. Specify the manager using the <res-auth> deployment
descriptor element for EJB or Web components. If <res-auth> is set to
Application, then the application component signs on to the EIS
programmatically. The application component is responsible for providing explicit
security information for the sign-on. If <res-auth> is set to Container, then
Oracle Application Server Containers for J2EE provides the resource principal and
credentials that are required for signing on to the EIS.

Example:

Context initctx = new InitialContext();
// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");
 // For container-managed sign-on, no security information is passed in the
getConnection call
 javax.resource.cci.Connection cx = cxf.getConnection();
 // If component-managed sign-on is specified, the code should instead provide
explicit security
 // information in the getConnection call
 // We need to get a new ConnectionSpec implementation instance for setting
login
 // attributes

Authentication in Container-Managed Sign-On

13-6 Security Guide

 com.myeis.ConnectionSpecImpl connSpec = ...
 connSpec.setUserName("EISuser");
 connSpec.setPassword("EISpassword");
 javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

In either case, the createManagedConnection method in the resource adapter's
implementation of javax.resource.spi.ManagedConnectionFactory
interface is called to create a physical connection to the EIS.

If you specify component-managed sign-on, then Oracle Application Server
Containers for J2EE invokes the createManagedConnection method with a null
Subject and the ConnectionRequestInfo object that is passed in from the
application component code. If you specify container-managed sign-on, then Oracle
Application Server Containers for J2EE provides a
javax.security.auth.Subject object to the createManagedConnection
method. The content of the Subject object depends on the value in the
<authentication-mechanism-type> and <credential-interface>
elements in the resource adapter deployment descriptor.

If <authentication-mechanism-type> is BasicPassword and
<credential-interface> is
javax.resource.spi.security.PasswordCredential, then the Subject
object must contain javax.resource.spi.security.PasswordCredential
objects in the private credential set.

On the other hand, if <authentication-mechanism-type> is Kerberos
version 5 (Kerbv5) or any other non-password-based authentication mechanism,
and <credential-interface> is
javax.resource.spi.security.GenericCredential, then the Subject
object must contain credentials represented by instances of implementers of the
javax.resource.spi.security.GenericCredential interface. The
GenericCredential interface is used for resource adapters that support
non-password-based authentication mechanisms, such as Kerberos.

Authentication in Container-Managed Sign-On
When using container-managed sign-on, Oracle Application Server Containers for
J2EE must provide a resource principal and its credentials to the EIS. The principal
and credentials can be obtained in one of the following ways:

■ Configured Identity: the resource principal is independent of the initiating or
caller principal and can be configured at deployment time in a deployment
descriptor.

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 13-7

■ Principal Mapping: the resource principal is determined by a mapping from the
identity and security attributes of the initiating or caller principal.

■ Caller Impersonation: the resource principal acts on behalf of an initiating or
caller principal by delegating the caller's identity and credentials to the EIS.

■ Credentials Mapping: the resource principal is identical to the initiating or
caller principal, but with its credential mapped from the authentication type
that Oracle Application Server Containers for J2EE uses to the authentication
type that the EIS uses. An example would be to map a public key
certificate-based credential associated with a principal to a Kerberos credential.

Oracle Application Server Containers for J2EE supports all these methods with
three authentication mechanisms:

■ JAAS Pluggable Authentication

■ User-Created Authentication Classes

■ Modifying oc4j-ra.xml

The following sections discuss these mechanisms in detail.

JAAS Pluggable Authentication
Oracle Application Server Containers for J2EE furnishes a JAAS pluggable
authentication framework that conforms to Appendix C in the Connector
Architecture 1.0 specification. With this framework, an application server and its
underlying authentication services remain independent from each other, and new
authentication services can be plugged in without requiring modifications to the
application server.

Authentication services can obtain resource principals and credentials using any of
the following modules:

■ Principal Mapping JAAS module

■ Credential Mapping JAAS module

■ Kerberos JAAS module (for Caller Impersonation)

The JAAS login modules can be furnished by the customer, the EIS vendors, or the
resource adapter vendors. Login modules must implement the
javax.security.auth.spi.LoginModule interface, as documented in the Sun
JAAS specification.

Oracle Application Server Containers for J2EE provides initiating user subjects to
login modules by passing an instance of javax.security.auth.Subject

Authentication in Container-Managed Sign-On

13-8 Security Guide

containing any public certificates and an instance of
oracle.j2ee.connector.InitiatingPrincipal representing the Oracle
Application Server Containers for J2EE user. Oracle Application Server Containers
for J2EE can pass a null Subject if there is no authenticated user (that is, an
anonymous user). The JAAS login module’s login method must, based on the
initiating user, find the corresponding resource principal and create new
PasswordCredential or GenericCredential instances for the resource
principal. The resource principal and credential objects are then added to the
initiating Subject in the commit method. The resource credential is passed to the
createManagedConnection method in the
javax.resource.spi.ManagedConnectionFactory implementation that is
provided by the resource adapter. If a null Subject is passed, the JAAS login
module is responsible for creating a new javax.security.auth.Subject
containing the resource principal and the appropriate credential.

The InitiatingPrincipal and InitiatingGroup Classes
The classes oracle.j2ee.connector.InitiatingPrincipal and
oracle.j2ee.connector.InitiatingGroup represent Oracle Application
Server Containers for J2EE users to the JAAS login modules. Oracle Application
Server Containers for J2EE creates instances of
oracle.j2ee.connector.InitiatingPrincipal and incorporates them into
the Subject that is passed to the initialize method of the login modules. The
oracle.j2ee.connector.InitiatingPrincipal class implements the
java.security.Principal interface and adds the method getGroups().

 /**
 * Returns a Set of groups (or roles in JAZN terminology) that this
 * principal is a member of.
 *
 * @return A set of InitiatingGroup objects representing the groups
 * that this pricipal belongs to.
 */
 public Set getGroups()

The getGroups method returns a java.util.Set of
oracle.j2ee.connector.InitiatingGroup objects, representing the Oracle
Application Server Containers for J2EE groups or JAZN roles for this Oracle
Application Server Containers for J2EE user. The group membership is defined in
Oracle Application Server Containers for J2EE-specific descriptor files such as
principals.xml or jazn-data.xml, depending on the user manager. The
oracle.j2ee.connector.InitiatingGroup class implements but does not
extend the java.security.Principal interface.

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 13-9

Login modules can use getGroups() to provide mappings between Oracle
Application Server Containers for J2EE groups and EIS users. The
java.security.Principal interface methods support mappings between
Oracle Application Server Containers for J2EE users and EIS users. Login modules
do not need to refer to the oracle.j2ee.connector.InitiatingPrincipal
and oracle.j2ee.connector.InitiatingGroup classes if they do not
provide mappings between Oracle Application Server Containers for J2EE groups
and EIS users.

JAAS and the <connector-factory> Element
Each <connector-factory> element in oc4j-ra.xml can specify a different
JAAS login module. Specify a name for the connector factory configuration in the
<jaas-module> element. Here is an example of a <connector-factory>
element in oc4j-ra.xml that uses JAAS login modules for container-managed
sign-on:

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <description>Connection to my EIS</description>
 <config-property name="connectionURL"
value="jdbc:oracle:thin:@localhost:5521:orcl" />
 <security-config>
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

In JAAS, you must specify which LoginModule to use for a particular application,
and in what order to invoke the LoginModules. JAAS uses the value that are
specified in the <jaas-application-name> element to look up LoginModules.
See the Oracle Application Server Containers for J2EE Security Guide for more
information.

User-Created Authentication Classes
Oracle Application Server Containers for J2EE provides the
oracle.j2ee.connector.PrincipalMapping interface for principal mapping.

package oracle.j2ee.connector;

public interface PrincipalMapping
{
/**

Authentication in Container-Managed Sign-On

13-10 Security Guide

* Initializes the various settings for the PrincipalMapping implementation
class.
* Implementation class may use the properties for setting default user name and
* password, LDAP connect info, or default mapping.
*
* OC4J will pass the properties specified in the <principal-mapping-interface>
* element in oc4j-ra.xml to this method.
*
* @param prop A Properties object containing the set up information required
* by the implementation class.
*/
 public void init(Properties prop);

/**
* The ManagedConnectionFactory instance that can be used in creating a
 * PasswordCredential.
 *
 * @param mcf The ManagedConnectionFactory instance that is needed when
 *creating a PasswordCredential instance
 */
 public void setManagedConnectionFactory(ManagedConnectionFactory mcf);

 /**
* Passes the authentication mechanism(s) supported by the resource
* adapter to the PrincipalMapping implementation class.
 * The key of the map passed is a String containing the supported mechanism
* type, such as "BasicPassword", or "Kerbv5". The value is a String
 * containig the corresponding credentials interface as declared in ra.xml,
* such as "javax.resource.spi.security.PasswordCredential".
 *
 * The map may contain multiple elements if the resource adatper supports
 * multiple authentication mechanisms.
 *
 * @param authMechanisms The authentication mechanisms and their corresponding
 * credentials intereface supported by the resource adapter
 */
 public void setAuthenticationMechanisms(Map authMechanisms);

 /**
* This is the method that performs the principal mapping. An application user
 * subject is passed, and the implemetation of this method should return
 * a subject for use by the resource adapter to log in to the EIS resource
* per the Connector specifications.
 *
 * OC4J will only called this method for container-managed sign on.

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 13-11

*
 * @param initiatingSubject A Subject containing the application server logged
 * in principals and public credentials.
 *
 * @return A Subject for use by resource adapter to log in to the remote EIS.
 * It may return null if the proper resource principal cannot be
determined.
 */
 public Subject mapping(Subject initiatingSubject);
}

The mapping method must return a Subject containing the resource principal
and credential. The Subject that is returned must adhere to either option A or
option B in section 8.2.6 of the Connector Architecture 1.0 specification. Oracle
Application Server Containers for J2EE invokes the mapping method with the
initiating user as the initiatingPrincipal.

Oracle Application Server Containers for J2EE also provides the abstract class
oracle.j2ee.connector.AbstractPrincipalMapping. This class furnishes
a default implementation of the setManagedConnectionFactory() and
setAuthenticationMechanism() methods, as well as utility methods to
determine whether the resource adapter supports the BasicPassword or Kerberos
version 5 (Kerbv5) authentication methods, and a method for extracting the
Principal from the application server user Subject. By extending the
oracle.j2ee.connector.AbstractPrincipalMapping class, developers
need only implement the init and mapping methods.

Here are the utility methods provided by the
oracle.j2ee.connector.AbstractPrincipalMapping class:

/**
 * Utility method provided by this abstract class to return
 * the ManagedConnectionFactory instance for use to create a
 * PasswordCredentials object
 *
 * @return The ManagedConnectionFactory instance that is needed when
 * creating a PasswordCredential instance
 */
 public ManagedConnectionFactory getManagedConnectionFactory()

 /**
 * Utility method provided by this abstract class to return the Map
 * of all authentication mechanisms supported by this resource adapter.
 * The key of the map passed is a String containing the supported mechanism

Authentication in Container-Managed Sign-On

13-12 Security Guide

 * type, such as "BasicPassword", or "Kerbv5". The value is a String
 * containig the corresponding credentials interface as declared in ra.xml,
 * such as "javax.resource.spi.security.PasswordCredential".
 *
 * @return The authentication mechanisms and their corresponding
 * credentials intereface supported by the resource adpater
 */
 public Map getAuthenticationMechanisms()

 /**
 * Utility method provided by this abstract class to return whether
 * BasicPassword authention mechanism is supported by this resource
 * adapter.
 *
 * @return true if BasicPassword authentication mechanism is supported
 * by the resource adapter, false otherwise.
 */
 public boolean isBasicPasswordSupported()

 /**
 * Utility method provided by this abstract class to return whether
 * Kerbv5 authention mechanism is supported by this resource
 * adapter.
 *
 * @return true if Kerbv5 authentication mechanism is supported
 * by the resource adapter, false otherwise.
 */
 public boolean isKerbv5Supported()

 /**
 * Utility method provided by this abstract class to extract the
 * Principal object from the given application server user subject
 * passed from OC4J.
 *
 * @param subject The application server user subject passed from
 * OC4J.
 *
 * @return The principal extracted from the given subject
 */
 public Principal getPrincipal(Subject subject)

After you create your implementation class, copy a JAR file containing the class into
the directory containing the decompressed RAR file. This directory is typically
OC4J_HOME/applications/application_name/rar-name. After copying the
file, edit oc4j-ra.xml to contain a <principal-mapping-interface>

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 13-13

element for the new class; see "The <security-config> Element" on page 13-2 for
details.

Extending AbstractPrincipalMapping
This simple example demonstrates how to extend the
oracle.j2ee.connector.AbstractPrincipalMapping abstract class to
provide a principal mapping that always maps the user to the default user and
password. Specify the default user and password by using properties under the
<principal-mapping-interface> element in oc4j-ra.xml.

The PrincipalMapping class is called MyMapping. It is defined as follows:

package com.acme.app;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;
import java.security.*;

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;

 String m_defaultPassword;

 public void init(Properties prop)
 {
 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }

 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation only supporst BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;

Authentication in Container-Managed Sign-On

13-14 Security Guide

 // Use the utility method to retrieve the Principal from the
 // OC4J user. This code is included here only as an example.
 // The principal obtained is not being used in this method.
 Principal principal = getPrincipal(initiatingSubject);

 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();

 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject per option A in section
 // 8.2.6 in the Connector 1.0 spec.
 PasswordCredential cred = new PasswordCredential(m_defaultUser,
resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

You add a <principal-mapping-interface> entry to oc4j-ra.xml that
specifies com.acme.app.MyMapping for the principal mapping mechanism:

 <connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-interface>
 <impl-class>com.acme.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />
 </principal-mapping-interface>
 </security-config>
 ...
 </connector-factory>

Modifying oc4j-ra.xml
If you prefer, you can create default principal mappings in the oc4j-ra.xml file.
To employ the default principal mappings mechanism, use the
<principal-mapping-entries> subelement under the <security-config>
element. For syntax details, see "The <security-config> Element" on page 13-2.

Use the <default-mapping> element to specify the user name and password for
the default resource principal. This principal is used to log on to the EIS if there is

Authentication in Container-Managed Sign-On

J2EE Connector Architecture Security 13-15

no <principal-mapping-entry> element whose initiating user corresponds to
the current initiating principal. If no default mapping is specified, Oracle
Application Server Containers for J2EE uses the values of the configuration
properties UserName and Password from the deployment descriptor (either in
ra.xml or oc4j-ra.xml), assuming that these defaults are acceptable to the
resource adapter. If neither configuration properties nor a default mapping is
specified, Oracle Application Server Containers for J2EE may not be able to log in to
the EIS.

Each <principal-mapping-entry> element contains a mapping from initiating
principal to resource principal and password.

Authentication in Container-Managed Sign-On

13-16 Security Guide

For example, if the Oracle Application Server Containers for J2EE principal scott
should be logged in to a certain EIS, myEIS1, as user name scott and password
tiger, while all other Oracle Application Server Containers for J2EE users should
be logged in to the EIS using user name guest with password guestpw, the
<connector-factory> element in oc4j-ra.xml should look like this:

<connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-entries>
 <default-mapping>
 <res-user>guest</res-user>
 <res-password>guestpw</res-password>
 </default-mapping>
 <principal-mapping-entry>
 <initiating-user>scott</initiating-user>
 <res-user>scott</res-user>
 <res-password>tiger</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 ...
</connector-factory>

Configuring CSIv2 14-1

14
 Configuring CSIv2

Oracle Application Server Containers for J2EE supports the Common Secure
Interoperability Version 2 protocol (CSIv2). CSIv2 specifies different conformance
levels; Oracle Application Server Containers for J2EE complies with the EJB
specification, which requires conformance level 0.

 This chapter covers the following topics:

■ Introduction to CSIv2 Security Properties

■ EJB Server Security Properties in internal-settings.xml

■ CSIv2 Security Properties in internal-settings.xml

■ CSIv2 Security Properties in ejb_sec.properties

■ CSIv2 Security Properties in orion-ejb-jar.xml

■ EJB Client Security Properties in ejb_sec.properties

Note: If your application uses JAAS, you must configure the JAAS
Provider to use CSIv2; see Table 3–8, "RealmLoginModule Options"
for details.

Introduction to CSIv2 Security Properties

14-2 Security Guide

Introduction to CSIv2 Security Properties
Common Secure Interoperability version 2 (CSIv2) is an Object Management Group
(OMG) standard for a secure interoperable wire protocol that supports
authorization and identity delegation. You configure CSIv2 properties in three
different locations:

■ internal_settings.xml

■ orion-ejb-jar.xml

■ ejb_sec.properties

These configuration files are discussed in "CSIv2 Security Properties in
internal-settings.xml" on page 14-4, "EJB Client Security Properties in
ejb_sec.properties" on page 14-6, "CSIv2 Security Properties in orion-ejb-jar.xml" on
page 14-6, and "EJB Client Security Properties in ejb_sec.properties" on page 14-8.

EJB Server Security Properties in internal-settings.xml
You specify server security properties in internal-settings.xml.

This file specifies certain properties as values within <sep-property> entities.
Table 14–1, "EJB Server Security Properties" contains a list of properties.

The table refers to keystore and truststore files, which use the Java Key Store (JKS), a
JDK-specified format, to store keys and certificates. A keystore stores a map of
private keys and certificates. A truststore stores trusted certificates for the certificate
authorities (CAs; such as VeriSign and Thawte).

Note: You cannot edit internal-settings.xml with the
Enterprise Manager.

Table 14–1 EJB Server Security Properties

Property Meaning

port IIOP port number (defaults to 5555)

ssl true if IIOP/SSL is supported, false
otherwise

EJB Server Security Properties in internal-settings.xml

Configuring CSIv2 14-3

If Oracle Application Server Containers for J2EE is started by the Oracle Process
Management Notification service (OPMN) in an OracleAS (as opposed to
standalone) environment, then ports specified in internal-settings.xml are
ignored. If OPMN is configured to disable IIOP for a particular Oracle Application
Server Containers for J2EE instance, then, even though IIOP may be enable through
internal-settings.xml (as pointed to by server.xml), IIOP is not enabled.

ssl-port IIOP/SSL port number (defaults to 5556) This
port is used for server-side authentication only. If
your application uses client and server
authentication, you also need to set
ssl-client-server-auth-port.

ssl-client-server-auth-port Port used for client and server authentication
(defaults to 5557). This is the port on which
OC4J listens for SSL connections that require both
client and server authentication. If not set, OC4J
will listen on ssl-port + 1 for client-side
authentication.

keystore Name of keystore (used only if ssl is true)

keystore-password the keystore password (used only if ssl is
true)

trusted-clients Comma-separated list of hosts whose identity
assertions can be trusted. Each entry in the list
can be an IP address, a host name, a host name
pattern (for instance, *.example.com), or *;
* alone means that all clients are trusted. The
default is to trust no clients.

truststore Name of truststore. If you do not specify a
truststore for a server, OC4J uses the keystore as
the truststore (used only if ssl is true).

truststore-password Truststore password (can only be set if ssl is
true)

Note: In Table 14–1, the properties keystore-password
andtruststore-password support password indirection.

Table 14–1 EJB Server Security Properties (Cont.)

Property Meaning

CSIv2 Security Properties in internal-settings.xml

14-4 Security Guide

The following example shows a typical internal-settings.xml file:

<server-extension-provider name="IIOP"
 class="com.oracle.iiop.server.IIOPServerExtensionProvider">
 <sep-property name="port" value="5555" />
 <sep-property name="host" value="localhost" />
 <sep-property name="ssl" value="false" />
 <sep-property name="ssl-port" value="5556" />
 <sep-property name="ssl-client-server-auth-port" value="5557" />
 <sep-property name="keystore" value="keystore.jks" />
 <sep-property name="keystore-password" value="123456" />
 <sep-property name="truststore" value="truststore.jks" />
 <sep-property name="truststore-password" value="123456" />
 <sep-property name="trusted-clients" value="*" />
</server-extension-provider>

Here is the DTD for internal-settings.xml:

<!-- A server extension provider that is to be plugged in to the server.
-->
<!ELEMENT server-extension-provider (sep-property*) (#PCDATA)>
<!ATTLIST server-extension-provider name class CDATA #IMPLIED>
<!ELEMENT sep-property (#PCDATA)>
<!ATTLIST sep-property name value CDATA #IMPLIED>
<!-- This file contains internal server configuration settings. -->
<!ELEMENT internal-settings (server-extension-provider*)>

CSIv2 Security Properties in internal-settings.xml
This section discusses the semantics of the values you set within the
<sep-property> element in internal_settings.xml. For details of syntax,
see "EJB Server Security Properties in internal-settings.xml" on page 14-2.

To use the CSIv2 protocol with Oracle Application Server Containers for J2EE, you
must both set ssl to true and specify an IIOP/SSL port (ssl-port).

■ If you do not set ssl to true, then CSIv2 is not enabled. Setting ssl to true
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

Note: Although the default value of port is one less than the
default value for ssl-port, this relationship is not required.

CSIv2 Security Properties in ejb_sec.properties

Configuring CSIv2 14-5

■ If you do not specify an ssl-port, then no CSIv2 component tag is inserted by
the server into the IOR, even if you configure an <ior-security-config>
entity in orion-ejb-jar.xml.

When IIOP/SSL is enabled on the server, Oracle Application Server Containers for
J2EE listens on two different sockets—one for server authentication alone and one
for server and client authentication. You specify the server authentication port
within the <sep-property> element; the server and client authentication listener
uses the port number immediately following.

For SSL clients using server authentication alone, you can specify:

■ Truststore only

■ Both keystore and truststore.

■ Neither

If you specify neither keystore nor truststore, the handshake may fail if there are no
default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

CSIv2 Security Properties in ejb_sec.properties
If the client does not use client-side SSL authentication, you must set
client.sendpassword in the ejb_sec.properties file in order for the client
runtime to insert a security context and send the user name and password. You
must also set server.trustedhosts to include your server.

If the client does use client-side SSL authentication, the server extracts the
DistinguishedName from the client's certificate and then looks it up in the
corresponding user manager; it does not perform password authentication.

Trust Relationships
Two types of trust relationships exist:

■ Clients trusting servers to transmit user names and passwords using non-SSL
connections

Note: Server-side authentication takes precedence over a user
name and password.

CSIv2 Security Properties in orion-ejb-jar.xml

14-6 Security Guide

■ Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j.iiop.trustedServers. See
Table 14–2, "EJB Client Security Properties" on page 14-9 for details. Servers list
trusted clients in the trusted-client property of the <sep-property> element
in internal-settings.xml. See "EJB Server Security Properties in
internal-settings.xml" on page 14-2 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

■ presumed trust, in which the server presumes that the logical client is
trustworthy, even if the logical client has not authenticated itself to the server,
and even if the connection is not secure

■ authenticated trust, in which the target trusts the intermediate server based on
authentication either at the transport level or in the trusted-client list or
both

Oracle Application Server Containers for J2EE provides both kinds of trust; you
configure trust using the bean’s <ior-security-config> element in
orion-ejb-jar.xml. See "CSIv2 Security Properties in orion-ejb-jar.xml" on
page 14-6 for details.

CSIv2 Security Properties in orion-ejb-jar.xml
This section discusses the CSIv2 security properties for an EJB. You configure each
individual bean’s CSIv2 security policies in its orion-ejb-jar.xml. The CSIv2
security properties are specified within <ior-security-config> elements. Each
element contains a <transport-config> element, an <as-context> element,
and an <sas-context> element.

The <transport-config> element
This element specifies the transport security level. Each element within
<transport-config> must be set to supported, required, or none. None
means that the bean neither supports nor uses that feature; supports means that

Note: You can also configure the server to both require SSL
client-side authentication and also specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity assertions.

CSIv2 Security Properties in orion-ejb-jar.xml

Configuring CSIv2 14-7

the bean permits the client to use the feature; required means that the bean insists
that the client use the feature. The elements are:

■ <integrity>—Is there a guarantee that all transmissions are received exactly
as they were transmitted?

■ <confidentiality>—Is there a guarantee that no third party was able to
read transmissions?

■ <establish-trust-in-target>—Does the server authenticate itself to the
client?

■ <establish-trust-in-client>—Does the client authenticate itself to the
server?

The <as-context> element
This element specifies the message-level authentication properties.

■ <auth-method>—Must be set to either username_password or none. If set
to username_password, beans use user names and passwords to authenticate
the caller.

■ <realm>—Must be set to default at this release.

■ <required>—If set to true, the bean requires the caller to specify a user name
and password.

The <sas-context> element
This element specifies the identity delegation properties. It has one element,
<caller-propagation>, which can be set to supported, required, or none. If
the <caller-propagation> element is set to supported, then this bean accepts
delegated identities from intermediate servers. If it is set to required, then this

Notes: If you set <establish-trust-in-client> to
required, this overrides specifying username_password in
<as-context>. If you do this, you must also set the <required>
node value in the <as-context> section to false; otherwise
access permission issues will arise.

Setting any of the <transport-config> properties to required
means that the bean will use RMI/IIOP/SSL to communicate.

EJB Client Security Properties in ejb_sec.properties

14-8 Security Guide

bean requires all other beans to transmit delegated identities. If set to none, this
bean does not support identity delegation.

An example:

<ior-security-config>
 <transport-config>
 <integrity>supported</integrity>
 <confidentiality>supported</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>supported</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

DTD
The DTD for the <ior-security-config> element is:

<!ELEMENT ior-security-config (transport-config?, as-context?
sas-context?) >
<!ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >
<!ELEMENT as-context (auth-method, realm, required) >
<!ELEMENT sas-context (caller-propagation) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT confidentiality (#PCDATA)>
<!ELEMENT establish-trust-in-target (#PCDATA) >
<!ELEMENT establish-trust-in-client (#PCDATA) >
<!ELEMENT auth-method (#PCDATA) >
<!ELEMENT realm (#PCDATA) >
<!ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<!ELEMENT caller-propagation (#PCDATA) >

EJB Client Security Properties in ejb_sec.properties
Any client, whether running inside a server or not, has EJB security properties.
Table 14–2 lists the EJB client security properties controlled by the

EJB Client Security Properties in ejb_sec.properties

Configuring CSIv2 14-9

ejb_sec.properties file. By default, Oracle Application Server Containers for
J2EE searches for this file in the current directory when running as a client or in
J2EE_HOME/config when running in the server. You can specify this file’s location
explicitly with -Dejb_sec_properties_location=pathname.

Table 14–2 EJB Client Security Properties

Property Meaning

oc4j.iiop.keyStoreLoc The path name for the keystore.

oc4j.iiop.keyStorePass The password for the keystore.

oc4j.iiop.trustStoreLoc The path name for the truststore.

oc4j.iiop.trustStorePass The password for the truststore.

oc4j.iiop.enable.clientauth Whether the client supports client-side authentication. If this
property is set to true, you must specify a keystore location and
password.

oc4j.iiop.ciphersuites Which cipher suites are to be enabled. The valid cipher suites are:

TLS_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_MD5
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

nameservice.useSSL Whether to use SSL when making the initial connection to the
server.

client.sendpassword Whether to send user name and password in clear form
(unencrypted) in the service context when not using SSL. If this
property is set to true, the user name and password are sent
only to servers listed in the trustedServer list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive passwords sent in
clear form. Has no effect if client.sendpassword is set to
false. The list is comma-separated. Each entry in the list can be
an IP address, a host name, a host name pattern (for instance,
*.example.com), or *; * alone means that all servers are
trusted.

EJB Client Security Properties in ejb_sec.properties

14-10 Security Guide

Note: The properties marked with a # can be set either in
ejb_sec.properties or as system properties. The settings in
ejb_sec.properties always override settings specified as
system properties.

Security Tips 15-1

15
Security Tips

These hints come from the Security Best Practices document, available from Oracle
Technology Network (http://otn.oracle.com). Check the OTN Web site for
updates.

HTTPS

15-2 Security Guide

HTTPS
Oracle HTTP Server (OHS) has several features that provide security to an
application without requiring you to modify the application. You should evaluate
and leverage these features before coding similar features yourself. HTTP security
features include:

■ Authentication — OHS can authenticate users and pass the authenticated
user-id to an application in a standard manner (REMOTE_USER). It also supports
single sign-on, thus reusing existing login mechanisms.

■ Authorization — OHS has directives that can allow access to your application
only if the end user is authenticated and authorized. Again, no code change is
required.

■ Encryption — OHS can provide transparent SSL communication to end
customers without any code change on the application.

Other suggestions for securing HTTPS:

■ Configure Oracle Application Server to fail attempts to use weak encryption. You can
configure Oracle Application Server to use only specified encryption ciphers for
HTTPS connections. For instance, your application could reject connections
from non-128-bit client-side SSL libraries. This ability is especially useful for
banks and other financial institutions because it provides server-side control of
the encryption strength for each connection.

■ Use HTTPS to HTTP appliances for accelerating HTTP over SSL. Use HTTPS
everywhere you need to. However, the huge performance overhead of HTTPS
forces a trade-off in some situations.

For a relatively low cost, HTTPS-to-HTTP appliances can change throughput on
a 500MHz UNIX machine from 20-30 transactions per second to 6000
transactions per second, making this trade-off decision easier.

Moreover, these appliances provide much better solutions than adding
mathematics or cryptography cards to UNIX, Windows, or Linux boxes.

Ensure that sequential HTTPS transfers are requested through the same Web server.
Expect 40 to 50 milliseconds of CPU time to initiate SSL sessions on a 500 MHz
machine. Most of this CPU time is spent in the key exchange logic, where the
bulk encryption key is exchanged. Caching the bulk encryption will
significantly reduces CPU overhead on subsequent accesses, provided that the
accesses are routed to the same Web server.

JAAS

Security Tips 15-3

■ Keep secure pages and pages not requiring security on separate servers. Although it
may be easier to place all pages for an application on one HTTPS server, this
strategy has enormous performance costs. Reserve your HTTPS server for
pages needing SSL, and put the pages not needing SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files to be displayed
on the same screen, it is probably not worth the effort to segregate secure from
nonsecure static content. The SSL key exchange (a major consumer of CPU
cycles) is likely to be called exactly once in any case, and the overhead of bulk
encryption is not that high.

Overall Security
■ When assigning privileges to modules, use the lowest levels that are adequate to perform

the modules’ function(s). Using low-level privileges provides "fault containment":
if security is compromised, it is contained within a small area of the network
and cannot invade the entire intranet.

■ Tune the SSLSessionCacheTimeout directive if you are using SSL. The Apache server
in OracleAS caches a client's SSL session information by default. With session
caching, only the first connection to the server incurs high latency.

In a simple test to connect and disconnect to an SSL-enabled server, the elapsed
time for 5 connections was 11.4 seconds without SSL session caching; with
session caching enabled, the elapsed time was 1.9 seconds.

The default SSLSessionCacheTimeout is 300 seconds. Note that the duration of
an SSL session is unrelated to the use of HTTP persistent connections. You can
change the SSLSessionCacheTimeout directive in httpd.conf file to meet your
application needs.

JAAS
■ Migrate your user management from principals.xml to the JAAS Provider. In earlier

releases of OracleAS, the J2EE application server component stored all user
information in a file called principals.xml (including storing passwords in
cleartext). The OracleAS JAAS Provider provides a similar simple security
model as a default, without storing passwords in cleartext. The JAAS Provider
also offers tight integration with OracleAS Infrastructure (including SSO and
OID) out of the box.

■ Avoid writing custom user managers; instead, extend the JAAS Provider, SSO, and
OID. The Oracle Application Server Containers for J2EE (OC4J) container

JAAS

15-4 Security Guide

continues to supply several methods and levels of extending security providers.
Although you can extend the UserManager class to build a custom user
manager, leveraging the rich functionality provided by the JAAS Provider, SSO,
and OID gives you more time to focus on actual business logic instead of
infrastructure code. Both SSO and OID provide APIs to integrate with external
authentication servers and directories respectively.

■ Use SSO as the authentication mechanism with the JAAS Provider. The JAAS
Provider allows different authentication options. However, we strongly
recommend leveraging the SSO server whenever possible because:

■ It is the default mechanism for most OracleAS components, such as Portal,
Forms, Reports, Wireless, and so on.

■ It is easy to set up in a declarative fashion and does not require any custom
programming.

■ It provides seamless PKI integration.

■ Use the JAAS Provider's declarative features to reduce programming. Because most of
the features in the OracleAS JAAS Provider are controlled declaratively,
particularly in the area of authentication, developers can postpone setup until
deployment time. This not only reduces the programming tasks for integrating
a JAAS based application, it allows the deployer to use environment-specific
security models for that application.

■ Use the fine-grained access control offered by the JAAS Provider and the Java
permission model. Unlike the "coarse-grained" J2EE authorization model as it
exists today, the JAAS Provider integrated with OC4J allows any protected
resource to be modeled using Java permissions. The Java permission model
(and associated Permission class) is extensible and allows a flexible way to
define fine-grained access control.

■ Use OID as the central repository for the JAAS Provider in production environments.
Although the JAAS Provider supports a flat-file XML-based repository useful
for development and testing environments, it should be configured to use OID
for production environments. OID provides LDAP standard features for
modeling administrative metadata and is built on the Oracle database platform,
inheriting all the database properties of scalability, reliability, manageability,
and performance.

■ Take advantage of the authorization features of the JAAS Provider. In addition to the
authorization functionality defined in the JAAS 1.0 specification, the OracleAS
JAAS Provider supports:

■ Hierarchical, role-based access control (RBAC)

JAAS

Security Tips 15-5

■ The ability to partition security policy by subscriber (that is, each user
community)

These extensions provide a more scalable and manageable framework for
security policies covering a large user population.

JAAS

15-6 Security Guide

JAAS Provider Standards and Samples A-1

A
JAAS Provider Standards and Samples

This appendix provides supplemental samples and standards.

This appendix contains these topics:

■ Sample jazn-data.xml Code

■ Supplemental Code Samples

Sample jazn-data.xml Code

A-2 Security Guide

Sample jazn-data.xml Code
This section presents a sample jazn-data.xml file which illustrates the specific
standards that XML files must conform to. This jazn-data.xml file contains a
realm, jazn.com, users (two with obfuscated passwords) and roles.

Example A–1 Sample jazn-data.xml File

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<!DOCTYPE jazn-data PUBLIC "JAZN-XML Data"
"http://xmlns.oracle.com/ias/dtds/jazn-data.dtd">
<jazn-data>

<!-- JAZN Realm Data -->
<jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>SCOTT</name>
 <display-name>SCOTT</display-name>
 <credentials>{903}oZZYqmGc/iyCaDrD4qs2FHbXf3LAWtMN</credentials>
 </user>
 <user>
 <name>admin</name>
 <display-name>OC4J Administrator</display-name>
 <description>OC4J Administrator</description>
 <credentials>{903}FVb95KHGyzR9MkAS2Ru/72P/Ol6eOsQD</credentials>
 </user>
 <user>
 <name>anonymous</name>
 <description>The default guest/anonymous user</description>
 </user>
 <user>
 <name>pwForScott</name>
 <description>Password for database user Scott</description>

See Also:

■ "Realm Management in XML-Based Environments" on
page 4-5.

■ "Realm and Policy Management" on page 4-2 for further
information on managing the JAAS Provider in XML-based
provider environment

Sample jazn-data.xml Code

JAAS Provider Standards and Samples A-3

 <credentials>{903}pjbjHNP53w3haB3ygstBpsglEhQJ1dnN</credentials>
 </user>
 <user>
 <name>user</name>
 <description>The default user</description>
 <credentials>{903}Zg4KSjPqwZ6FGsCWbxiFSJpPFJNrq9Ww</credentials>
 </user>
 <user>
 <name>pwForSSL</name>
 <description>Password for ssl key and trust stores</description>
 <credentials>{903}uMg+4/e5znCrcQSH36NjbrkpHdgC6oMh</credentials>
 </user>
 <user>
 <name>pwForSystem</name>
 <description>Password for database system user </description>
 <credentials>{903}IUHuvYYGY5R9trDfQp7qY//livlqHjVV</credentials>
 </user>
 </users>
 <roles>
 <role>
 <name>administrators</name>
 <display-name>Realm Admin Role</display-name>
 <description>Administrative role for this realm.</description>
 <members>
 <member>
 <type>user</type>
 <name>admin</name>
 </member>
 </members>
 </role>
 <role>
 <name>jmxusers</name>
 <display-name>JMX users</display-name>
 <description>Allows access to application level user defined
MBeans</description>
 <members>
 </members>
 </role>
 <role>
 <name>users</name>
 <members>
 <member>
 <type>user</type>
 <name>user</name>
 </member>

Sample jazn-data.xml Code

A-4 Security Guide

 <member>
 <type>user</type>
 <name>SCOTT</name>
 </member>
 <member>
 <type>role</type>
 <name>administrators</name>
 </member>
 </members>
 </role>
 <role>
 <name>guests</name>
 <members>
 <member>
 <type>user</type>
 <name>anonymous</name>
 </member>
 <member>
 <type>role</type>
 <name>users</name>
 </member>
 </members>
 </role>
 </roles>
 </realm>
</jazn-realm>

<!-- JAZN Policy Data -->
<jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/jmxusers</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>

Sample jazn-data.xml Code

JAAS Provider Standards and Samples A-5

 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/users</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <realm-name>jazn.com</realm-name>
 <type>role</type>
 <class>oracle.security.jazn.spi.xml.XMLRealmRole</class>
 <name>jazn.com/administrators</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$createrealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>dropuser</actions>
 </permission>
 <permission>
 <class>com.evermind.server.AdministrationPermission</class>

Sample jazn-data.xml Code

A-6 Security Guide

 <name>administration</name>
 <actions>administration</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>modifyrealmmetadata</actions>
 </permission>
 <permission>
 <class>com.evermind.server.rmi.RMIPermission</class>
 <name>login</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$createrole</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.RoleAdminPermission</class>
 <name>jazn.com/*</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>
 <actions>createrealm</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$droprole</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$droprealm</name>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>

<name>oracle.security.jazn.realm.RealmPermission$jazn.com$modifyrealmmetadata</n
ame>
 </permission>
 <permission>
 <class>oracle.security.jazn.realm.RealmPermission</class>
 <name>jazn.com</name>

Sample jazn-data.xml Code

JAAS Provider Standards and Samples A-7

 <actions>droprealm</actions>
 </permission>
 <permission>
 <class>oracle.security.jazn.policy.AdminPermission</class>
 <name>oracle.security.jazn.policy.RoleAdminPermission$jazn.com/*$</name>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

<!-- Permission Class Data -->
<jazn-permission-classes>
</jazn-permission-classes>

<!-- Principal Class Data -->
<jazn-principal-classes>
</jazn-principal-classes>

<!-- Login Module Data -->
<jazn-loginconfig>
 <application>
 <name>oracle.security.jazn.tools.Admintool</name>
 <login-modules>
 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>debug</name>
 <value>false</value>
 </option>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
 <application>
 <name>oracle.security.jazn.oc4j.JAZNUserManager</name>
 <login-modules>

Supplemental Code Samples

A-8 Security Guide

 <login-module>
 <class>oracle.security.jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addAllRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

</jazn-data>

Supplemental Code Samples
The following code samples are intended as supplemental information. This section
presents the following:

■ Supplementary Code Sample: Creating an Application Realm

■ Supplementary Code Sample: Modifying User Permissions

Supplemental Code Samples

JAAS Provider Standards and Samples A-9

Supplementary Code Sample: Creating an Application Realm
The following code sample creates an Application Realm with the objects shown in
Table A–1. The objects to be modified are presented in bold.

Example A–2 Application Realm Creation Code

import oracle.security.jazn.spi.ldap.*;
import oracle.security.jazn.*;
import oracle.security.jazn.realm.*;

import java.util.*;

/**
 * Creates an application realm.
 */

public class CreateRealm extends Object
{
 public CreateRealm() {};

 public static void main (String[] args) {
 CreateRealm test = new CreateRealm();
 test.createAppRealm();
 }

 void createAppRealm() {
 Realm realm=null;

 try {
 Hashtable prop = new Hashtable();
 prop.put(Realm.LDAPProperty.USERS_SEARCHBASE,"cn=users,o=dev.com");

Table A–1 Objects In Sample Application Realm Creation Code

Objects Names

sample organization dev.com

adminUser (optional) John.Singh

adminRole administrator

sample realm name devRealm

Supplemental Code Samples

A-10 Security Guide

 // specifying the following LDAP directory object class
 // is optional. When specified, it will
 // be used as a filter to search for users
 prop.put(Realm.LDAPProperty.USERS_OBJ_CLASS,"orclUser");

 // adminUser is optional
 String adminUser = "John.Singh";

 String adminRole = "administrator";

 RealmManager realmMgr = JAZNContext.getRealmManager();

 InitRealmInfo realmInfo = new
 InitRealmInfo(InitRealmInfo.RealmType.APPLICATION_REALM, adminUser,
 adminRole, prop);
 realm = realmMgr.createRealm("devRealm", realmInfo);
 }

catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Supplementary Code Sample: Modifying User Permissions
Example A–3 demonstrates granting java.io.FilePermission to a user named
Jane.Smith. The objects to be modified are presented in bold.

Supplemental Code Samples

JAAS Provider Standards and Samples A-11

Table A–2 lists the objects in Example A–3.

Example A–3 Modifying User Permissions Code

Code Sample
import oracle.security.jazn.*;
import oracle.security.jazn.policy.*;
import oracle.security.jazn.realm.*;
import java.lang.*;
import java.security.*;
import java.util.*;
import java.net.*;
import java.io.*;

public class Init {

 public static void main(String[] args) {

 try {
 RealmManager realmMgr = JAZNContext.getRealmManager();
 Realm realm = realmMgr.getRealm("abcRealm");
 UserManager userMgr = realm.getUserManager();
 RoleManager roleMgr = realm.getRoleManager();
 final JAZNPolicy policy = JAZNContext.getPolicy();

 final RealmUser user = userMgr.getUser("Jane.Smith");

 AccessController.doPrivileged (new PrivilegedAction() {
 public Object run() {

 try {

Table A–2 Objects In Sample Modifying User Permissions Code

Objects Names Comments

RealmUser user Jane.Smith

codesource cs file:/home/task.jar

File path report.data Path is the pathname of the file.

sample organization abc.com abc.com does not appear in this
code directly.

sample External Realm abcRealm

Supplemental Code Samples

A-12 Security Guide

 CodeSource cs = new CodeSource(new URL("
 file:/home/task.jar"), null);
 HashSet prop = new HashSet();
 prop.add((Principal) user);

 // assign permission to principals
 policy.grant(new Grantee(prop, cs), new
 FilePermission("report.data", "read"));

 return null;
 } catch (JAZNException e1) {
 e1.printStackTrace();
 } catch (java.net.MalformedURLException e2) {
 e2.printStackTrace();
 }
 return null;
 }
 }
);

 } catch (JAZNException e) {
 e.printStackTrace();
 }
 }
}

Supplemental Code Samples

JAAS Provider Standards and Samples A-13

Discussion Of Sample Code
The sample code shown in Example A–3 grants a user, Jane.Smith, permission to
use the sample application, AccessTest1 as follows:

The name cs is assigned to the file:/home/task.jar, which includes the
sample application AccessTest1:

CodeSource cs = new CodeSource(new URL("
 file:/home/task.jar"), null);

Jane.Smith is the user added to the hashset prop:

HashSet prop = new HashSet();
 prop.add((Principal) user);

Jane.Smith is granted permission, on the Codesource cs, to read the file
report.data.

policy.grant(new Grantee(prop, cs), new
 FilePermission("report.data", "read"));

Supplemental Code Samples

A-14 Security Guide

JAAS Provider Schemas B-1

B
JAAS Provider Schemas

This appendix gives the XSD (XML Schema) specifications for the jazn-data.xml
file used by the JAAS XML-based Provider and the jazn.xml file used to configure
both JAAS providers.

Schema for jazn-data.xml
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" >
 <xsd:element name="jazn-data" type="JAZN-DATAjazn-dataType"/>
 <xsd:complexType name="JAZN-DATAjazn-dataType">
 <xsd:sequence >
 <xsd:element name="jazn-realm" type="JAZN-DATAjazn-realmType"
minOccurs="0" maxOccurs="1"/>
 <xsd:element name="jazn-policy" type="JAZN-DATAjazn-policyType"
minOccurs="0" maxOccurs="1"/>
 <xsd:element name="jazn-permission-classes"
type="JAZN-DATAjazn-permission-classesType" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="jazn-principal-classes"
type="JAZN-DATAjazn-principal-classesType" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="jazn-loginconfig" type="JAZN-DATAjazn-loginconfigType"
minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAjazn-realmType">
 <xsd:sequence>
 <xsd:element name="realm" type="JAZN-DATArealmType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATArealmType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />

Schema for jazn-data.xml

B-2 Security Guide

 <xsd:element name="users" type="JAZN-DATAusersType" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="roles" type="JAZN-DATArolesType" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="jazn-policy" type="JAZN-DATAjazn-policyType"
minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAusersType">
 <xsd:sequence>
 <xsd:element name="user" type="JAZN-DATAuserType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAuserType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="display-name" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="credentials" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATArolesType">
 <xsd:sequence>
 <xsd:element name="role" type="JAZN-DATAroleType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAroleType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="display-name" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="members" type="JAZN-DATAmembersType" />
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAmembersType">

Schema for jazn-data.xml

JAAS Provider Schemas B-3

 <xsd:sequence>
 <xsd:element name="member" type="JAZN-DATAmemberType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAmemberType">
 <xsd:sequence >
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="name" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAjazn-policyType">
 <xsd:sequence>
 <xsd:element name="grant" type="JAZN-DATAgrantType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

<!-- no way to define key attribute for grant type -->
 <xsd:complexType name="JAZN-DATAgrantType">
 <xsd:sequence >
 <xsd:element name="grantee" type="JAZN-DATAgranteeType" />
 <xsd:element name="permissions" type="JAZN-DATApermissionsType"
minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="grantee-names" type="xsd:string" use="default"
value=""/>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed"
value="grantee-names"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAgranteeType">
 <xsd:sequence >
 <xsd:element name="display-name" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="principals" type="JAZN-DATAprincipalsType"
minOccurs="0" maxOccurs="1"/>
 <xsd:element name="codesource" type="JAZN-DATAcodesourceType"
minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAprincipalsType">
 <xsd:sequence>
 <xsd:element name="principal" type="JAZN-DATAprincipalType" minOccurs="0"

Schema for jazn-data.xml

B-4 Security Guide

maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAprincipalType">
 <xsd:sequence >
 <xsd:element name="realm-name" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="type" type="xsd:string" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="class" type="xsd:string" />
 <xsd:element name="name" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAcodesourceType">
 <xsd:sequence>
 <xsd:element name="url" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATApermissionsType">
 <xsd:sequence>
 <xsd:element name="permission" type="JAZN-DATApermissionType"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATApermissionType">
 <xsd:sequence >
 <xsd:element name="class" type="xsd:string" />
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="actions" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAjazn-permission-classesType">
 <xsd:sequence>
 <xsd:element name="permission-class" type="JAZN-DATApermission-classType"
minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATApermission-classType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="type" type="xsd:string" />

Schema for jazn-data.xml

JAAS Provider Schemas B-5

 <xsd:element name="class" type="xsd:string" />
 <xsd:element name="target-descriptors"
type="JAZN-DATAtarget-descriptorsType" />
 <xsd:element name="action-descriptors"
type="JAZN-DATAaction-descriptorsType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAtarget-descriptorsType">
 <xsd:sequence>
 <xsd:element name="target-descriptor"
type="JAZN-DATAtarget-descriptorType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAtarget-descriptorType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAaction-descriptorsType">
 <xsd:sequence>
 <xsd:element name="action-descriptor"
type="JAZN-DATAaction-descriptorType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAaction-descriptorType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAjazn-principal-classesType">
 <xsd:sequence>
 <xsd:element name="principal-class" type="JAZN-DATAprincipal-classType"
minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAprincipal-classType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />

Schema for jazn-data.xml

B-6 Security Guide

 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="class" type="xsd:string" />
 <xsd:element name="name-description-map"
type="JAZN-DATAname-description-mapType" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAname-description-mapType">
 <xsd:sequence>
 <xsd:element name="name-description-pair"
type="JAZN-DATAname-description-pairType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAname-description-pairType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="description" type="xsd:string" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAjazn-loginconfigType">
 <xsd:sequence>
 <xsd:element name="application" type="JAZN-DATAapplicationType"
minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAapplicationType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="login-modules" type="JAZN-DATAlogin-modulesType" />
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAlogin-modulesType">
 <xsd:sequence>
 <xsd:element name="login-module" type="JAZN-DATAlogin-moduleType"
minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAlogin-moduleType">
 <xsd:sequence >
 <xsd:element name="class" type="xsd:string" />

Schema for jazn.xml

JAAS Provider Schemas B-7

 <xsd:element name="control-flag" type="xsd:string" />
 <xsd:element name="options" type="JAZN-DATAoptionsType" minOccurs="0"
maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="class
control-flag"/>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAoptionsType">
 <xsd:sequence>
 <xsd:element name="option" type="JAZN-DATAoptionType" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="JAZN-DATAoptionType">
 <xsd:sequence >
 <xsd:element name="name" type="xsd:string" />
 <xsd:element name="value" type="xsd:string" />
 </xsd:sequence>
 <xsd:attribute name="Key" type="JAZN-DATAkeyset" use="fixed" value="name
value"/>
 </xsd:complexType>

 <xsd:simpleType name="JAZN-DATAkeyset">
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>

</xsd:schema>

Schema for jazn.xml
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema" >
<xsd:element name="jazn" type="jaznType"/>
<xsd:complexType name="jaznType">
<xsd:sequence >
<xsd:element name="property" type="jaznPropertyType" minOccurs="0"
maxOccurs="unbounded"/>
<xsd:element name="jazn-web-app" type="jazn-web-appType" minOccurs="0"
maxOccurs="1"/>

Schema for jazn.xml

B-8 Security Guide

</xsd:sequence>
<xsd:attribute name="provider" type="xsd:string" use="optional"/>
<xsd:attribute name="location" type="xsd:string" use="optional"/>
<xsd:attribute name="default-realm" type="xsd:string" use="optional"/>
<xsd:attribute name="persistence" type="xsd:string" use="optional"/>
<xsd:attribute name="config" type="xsd:string" use="optional"/>
</xsd:complexType>
<xsd:complexType name="jazn-web-appType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="auth-method" type="xsd:string" use="optional"/>
<xsd:attribute name="runas-mode" type="runas-modeType" use="default"
value="false"/>
<xsd:attribute name="doasprivileged-mode" type="doasprivileged-modeType"
use="default" value="true"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:simpleType name="runas-modeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="true"/>
<xsd:enumeration value="false"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="doasprivileged-modeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="true"/>
<xsd:enumeration value="false"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="jaznPropertyType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="Key" type="jaznKeyset" use="fixed" value="name"/>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="value" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<xsd:simpleType name="jaznKeyset">
<xsd:list itemType = "xsd:string"/>
</xsd:simpleType>
</xsd:schema>

Schema for jazn.xml

JAAS Provider Schemas B-9

<!ENTITY % CHARSET "CDATA">
<!ENTITY % WEBPATH "CDATA">
<!ENTITY % NUMBER "CDATA">
<!ENTITY % HOST "CDATA">
<!ENTITY % PATH "CDATA">
<!ENTITY % CLASSNAME "CDATA">
<!-- A group that this security-role-mapping implies. Ie all the members of the
specified group are included in this role. -->
<!ELEMENT group (#PCDATA)>
<!ATTLIST group name CDATA #IMPLIED
>
<!-- An attribute sent to the context. The only mandatory attribute in JNDI is
the 'java.naming.factory.initial' which is the classname of the context factory
implementation. -->
<!ELEMENT context-attribute (#PCDATA)>
<!ATTLIST context-attribute name CDATA #IMPLIED
value CDATA #IMPLIED
>
<!-- Defines the relative/absolute path to a file containing mime-mappings to
use. -->
<!ELEMENT mime-mappings (#PCDATA)>
<!ATTLIST mime-mappings path CDATA #IMPLIED
>
<!-- Specifies a codebase where classes used by this application
(servlets/beans, etc) can be found. -->
<!ELEMENT classpath (#PCDATA)>
<!ATTLIST classpath path CDATA #REQUIRED
>
<!-- The specification of an optional javax.naming.Context implementation used
for retrieving the resource. This is useful when hooking up with 3rd party
modules, such as a 3rd party JMS server for instance. Either use the context
implementation supplied by the resource vendor or if none exists write an
implementation which in turn negotiates with the vendor software. -->
<!ELEMENT lookup-context (context-attribute+)>
<!ATTLIST lookup-context location CDATA #IMPLIED
>
<!-- Specifies a servlet to use as request-tracker, request-trackers are invoked
for every request and are useful for logging purposes etc. -->
<!ELEMENT request-tracker (#PCDATA)>
<!ATTLIST request-tracker servlet-name CDATA #IMPLIED
>
<!-- The resource-ref element is used for the declaration of a reference to an
external resource such as a datasource, JMS queue, mail session or similar.
The resource-ref-mapping ties this to a JNDI-location when deploying. -->
<!ELEMENT resource-ref-mapping (lookup-context?)>

Schema for jazn.xml

B-10 Security Guide

<!ATTLIST resource-ref-mapping location CDATA #IMPLIED
name CDATA #REQUIRED
>
<!-- Tag that is defined if the application is to be clustered. Clustered
applications have their ServletContext and session data
shared between the apps in the cluster, the values have to be either
Serializable or be remote RMI-objects (implement java.rmi.Remote). -->
<!ELEMENT cluster-config (#PCDATA)>
<!ATTLIST cluster-config host %HOST; "230.0.0.1"
id CDATA "based on local IP"
port %NUMBER; "9127"
>
<!-- Specifies an optional access-mask for this application, hostnames and
ip/subnets can be used to filter out allowed clients of this application. -->
<!ELEMENT access-mask (host-access*, ip-access*)>
<!ATTLIST access-mask default (allow|deny) "allow"
>
<!-- Overrides the value of an env-entry in the assembly descriptor. It is used
to keep the .ear (assembly) clean from deployment-specific values. The body is
the value. -->
<!ELEMENT env-entry-mapping (#PCDATA)>
<!ATTLIST env-entry-mapping name CDATA #IMPLIED
>

<!-- Specifies the Expires setting for a given set of resources, useful for
caching policies (for instance for browsers not to reload images as frequently
as documents etc). -->
<!ELEMENT expiration-setting (#PCDATA)>
<!ATTLIST expiration-setting expires CDATA #IMPLIED
url-pattern CDATA #IMPLIED
>
<!-- Overrides the value of a context-param in the assembly descriptor. It is
used to keep the .ear (assembly) clean from deployment-specific values. The body
is the value. -->
<!ELEMENT context-param-mapping (#PCDATA)>
<!ATTLIST context-param-mapping name CDATA #IMPLIED
>
<!-- Session-tracking settings for this application. -->
<!ELEMENT session-tracking (session-tracker*)>
<!ATTLIST session-tracking autoencode-absolute-urls (true|false) "false"
autoencode-urls (true|false) "true"
autojoin-session (true|false) "false"
cookie-domain CDATA #IMPLIED
cookie-max-age %NUMBER; "in memory only"
cookies (enabled|disabled) "enabled"

Schema for jazn.xml

JAAS Provider Schemas B-11

>
<!-- A user that this security-role-mapping implies. -->
<!ELEMENT user (#PCDATA)>
<!ATTLIST user name CDATA #IMPLIED
>
<!-- Adds a virtual directory mapping, used to include files that doesnt
physically reside below the document-root among the web-exposed files. -->
<!ELEMENT virtual-directory (#PCDATA)>
<!ATTLIST virtual-directory real-path %PATH; #IMPLIED
virtual-path %PATH; #IMPLIED
>
<!-- Specifies an ip/netmask who is allowed access. -->
<!ELEMENT ip-access (#PCDATA)>
<!ATTLIST ip-access ip CDATA #REQUIRED
mode (allow|deny) #REQUIRED
netmask CDATA #IMPLIED
>
<!-- Specifies a servlet to use as chainer for a specified mime-type. Useful to
filter/transform certain kinds of output. -->
<!ELEMENT servlet-chaining (#PCDATA)>
<!ATTLIST servlet-chaining mime-type CDATA #IMPLIED
servlet-name CDATA #IMPLIED
>
<!-- Specifies a domain or netmask who is allowed access. -->
<!ELEMENT host-access (#PCDATA)>
<!ATTLIST host-access domain CDATA #REQUIRED
mode (allow|deny) #REQUIRED
>
<!-- The ejb-ref element is used for the declaration of a reference to
another enterprise bean's home. The ejb-ref-mapping ties this to a JNDI-location
when deploying. -->
<!ELEMENT ejb-ref-mapping (#PCDATA)>
<!ATTLIST ejb-ref-mapping location CDATA #IMPLIED
name CDATA #REQUIRED
>
<!-- The runtime mapping (to groups and users) of a role. Maps to a
security-role of the same name in the assembly descriptor. -->
<!ELEMENT security-role-mapping (group*, user*)>
<!ATTLIST security-role-mapping impliesAll CDATA #IMPLIED
name CDATA #IMPLIED
>
<!-- Specifies a servlet to use as session-tracker, session-trackers are invoked
as soon as a session is created and are useful for logging purposes etc. -->
<!ELEMENT session-tracker (#PCDATA)>
<!ATTLIST session-tracker servlet-name CDATA #IMPLIED

Schema for jazn.xml

B-12 Security Guide

>
<!-- JAZN configuration -->
<!ELEMENT jazn-web-app (#PCDATA)>
<!ATTLIST jazn-web-app auth-method CDATA #IMPLIED
runas-mode (true | false) "false"
doasprivileged-mode (true | false) "true"
>
<!-- Web-app class loader configuration -->
<!ELEMENT web-app-class-loader EMPTY>
<!ATTLIST web-app-class-loader
search-local-classes-first (true | false) "false"
include-war-manifest-class-path (true | false) "true"
>
<!--
Copyright (c) 2000 Sun Microsystems, Inc.,
901 San Antonio Road,
Palo Alto, California 94303, U.S.A.
All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to
technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property
rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or
pending patent applications in the U.S. and in other countries.
This document and the product to which it pertains are distributed
under licenses restricting their use, copying, distribution, and
decompilation. This Product or document may be reproduced but may not
be changed without prior written authorization of Sun and its
licensors, if any.
Third-party software, including font technology, is copyrighted and
licensed from Sun suppliers.
Sun, Sun Microsystems, the Sun logo, Java, JavaServer Pages, Java
Naming and Directory Interface, JDBC, JDK, JavaMail and and
Enterprise JavaBeans are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
Federal Acquisitions: Commercial Software - Government Users Subject to
Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright (c) 2000 Sun Microsystems, Inc.,

Schema for jazn.xml

JAAS Provider Schemas B-13

901 San Antonio Road,
Palo Alto, California 94303, E'tats-Unis.
Tous droits re'serve's.
Sun Microsystems, Inc. a les droits de proprie'te' intellectuels
relatants a` la technologie incorpore'e dans le produit qui est de'crit
dans ce document. En particulier, et sans la limitation, ces droits de
proprie'te' intellectuels peuvent inclure un ou plus des brevets
ame'ricains e'nume're's a` http://www.sun.com/patents et un ou les
brevets plus supple'mentaires ou les applications de brevet en attente
dans les E'tats-Unis et dans les autres pays.
Ce produit ou document est prote'ge' par un copyright et distribue'
avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la de'compilation. Ce produit sa documention associe
n peut e^tre reproduite, par quelque moyen que ce soit, sans
l'autorisation pre'alable et e'crite de Sun et de ses bailleurs de
licence, le cas e'che'ant.
Le logiciel de'tenu par des tiers, et qui comprend la technologie
relative aux polices de caracte`res, est prote'ge' par un copyright et
licencie' par des fournisseurs de Sun.
Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Java
Naming and Directory Interface, JDBC, JDK, JavaMail et and
Enterprise JavaBeans sont des marques de fabrique ou des marques
de'pose'es de Sun Microsystems, Inc. aux E'tats-Unis et dans d'autres
pays.
LA DOCUMENTATION EST FOURNIE "EN L'E'TAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT
EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A
L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE
CONTREFAC,ON.
-->
<!--
This is the XML DTD for the Servlet 2.3 deployment descriptor.
All Servlet 2.3 deployment descriptors must include a DOCTYPE
of the following form:
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
-->
<!--
The following conventions apply to all J2EE deployment descriptor
elements unless indicated otherwise.
- In elements that contain PCDATA, leading and trailing whitespace
in the data may be ignored.
- In elements whose value is an "enumerated type", the value is

Schema for jazn.xml

B-14 Security Guide

case sensitive.
- In elements that specify a pathname to a file within the same
JAR file, relative filenames (i.e., those not starting with "/")
are considered relative to the root of the JAR file's namespace.
Absolute filenames (i.e., those starting with "/") also specify
names in the root of the JAR file's namespace. In general, relative
names are preferred. The exception is .war files where absolute
names are preferred for consistency with the servlet API.
-->

<!--
The web-app element is the root of the deployment descriptor for
a web application.
-->
<!ELEMENT web-app (icon?, display-name?, description?, distributable?,
context-param*, filter*, filter-mapping*, listener*, servlet*,
servlet-mapping*, session-config?, mime-mapping*, welcome-file-list?,
error-page*, taglib*, resource-env-ref*, resource-ref*, security-constraint*,
login-config?, security-role*, env-entry*, ejb-ref*, ejb-local-ref*)>
<!--
The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role-name
used here must either correspond to the role-name of one of the
security-role elements defined for this web application, or be
the specially reserved role-name "*" that is a compact syntax for
indicating all roles in the web application. If both "*" and
rolenames appear, the container interprets this as all roles.
If no roles are defined, no user is allowed access to the portion of
the web application described by the containing security-constraint.
The container matches role names case sensitively when determining
access.

Used in: security-constraint
-->
<!ELEMENT auth-constraint (description?, role-name*)>
<!--
The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining access to any
web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".
Used in: login-config
-->
<!ELEMENT auth-method (#PCDATA)>

Schema for jazn.xml

JAAS Provider Schemas B-15

<!--
The context-param element contains the declaration of a web
application's servlet context initialization parameters.
Used in: web-app
-->
<!ELEMENT context-param (param-name, param-value, description?)>
<!--
The description element is used to provide text describing the parent
element. The description element should include any information that
the web application war file producer wants to provide to the consumer of
the web application war file (i.e., to the Deployer). Typically, the tools
used by the web application war file consumer will display the description
when processing the parent element that contains the description.
Used in: auth-constraint, context-param, ejb-local-ref, ejb-ref,
env-entry, filter, init-param, resource-env-ref, resource-ref, run-as,
security-role, security-role-ref, servlet, user-data-constraint,
web-app, web-resource-collection
-->
<!ELEMENT description (#PCDATA)>
<!--
The display-name element contains a short name that is intended to be
displayed by tools. The display name need not be unique.
Used in: filter, security-constraint, servlet, web-app
Example:
<display-name>Employee Self Service</display-name>
-->
<!ELEMENT display-name (#PCDATA)>
<!--
The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container
Used in: web-app
-->
<!ELEMENT distributable EMPTY>
<!--
The ejb-link element is used in the ejb-ref or ejb-local-ref
elements to specify that an EJB reference is linked to an
enterprise bean.
The name in the ejb-link element is composed of a
path name specifying the ejb-jar containing the referenced enterprise
bean with the ejb-name of the target bean appended and separated from
the path name by "#". The path name is relative to the war file
containing the web application that is referencing the enterprise bean.
This allows multiple enterprise beans with the same ejb-name to be

Schema for jazn.xml

B-16 Security Guide

uniquely identified.
Used in: ejb-local-ref, ejb-ref
Examples:
<ejb-link>EmployeeRecord</ejb-link>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>
-->
<!ELEMENT ejb-link (#PCDATA)>
<!--
The ejb-local-ref element is used for the declaration of a reference to
an enterprise bean's local home. The declaration consists of:
- an optional description
- the EJB reference name used in the code of the web application
that's referencing the enterprise bean
- the expected type of the referenced enterprise bean
- the expected local home and local interfaces of the referenced
enterprise bean
- optional ejb-link information, used to specify the referenced
enterprise bean
Used in: web-app
-->
<!ELEMENT ejb-local-ref (description?, ejb-ref-name, ejb-ref-type,
local-home, local, ejb-link?)>
<!--
The ejb-ref element is used for the declaration of a reference to
an enterprise bean's home. The declaration consists of:
- an optional description
- the EJB reference name used in the code of
the web application that's referencing the enterprise bean
- the expected type of the referenced enterprise bean
- the expected home and remote interfaces of the referenced
enterprise bean
- optional ejb-link information, used to specify the referenced
enterprise bean
Used in: web-app
-->
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type,
home, remote, ejb-link?)>
<!--
The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the web application's environment and is
relative to the java:comp/env context. The name must be unique
within the web application.
It is recommended that name is prefixed with "ejb/".
Used in: ejb-local-ref, ejb-ref
Example:

Schema for jazn.xml

JAAS Provider Schemas B-17

<ejb-ref-name>ejb/Payroll</ejb-ref-name>
-->
<!ELEMENT ejb-ref-name (#PCDATA)>
<!--
The ejb-ref-type element contains the expected type of the
referenced enterprise bean.
The ejb-ref-type element must be one of the following:
<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>
Used in: ejb-local-ref, ejb-ref
-->
<!ELEMENT ejb-ref-type (#PCDATA)>
<!--
The env-entry element contains the declaration of a web application's
environment entry. The declaration consists of an optional
description, the name of the environment entry, and an optional
value. If a value is not specified, one must be supplied
during deployment.
-->
<!ELEMENT env-entry (description?, env-entry-name, env-entry-value?,
env-entry-type)>
<!--
The env-entry-name element contains the name of a web applications's
environment entry. The name is a JNDI name relative to the
java:comp/env context. The name must be unique within a web application.
Example:
<env-entry-name>minAmount</env-entry-name>
Used in: env-entry
-->
<!ELEMENT env-entry-name (#PCDATA)>
<!--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the web application's
code.
The following are the legal values of env-entry-type:
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.String
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double
Used in: env-entry

Schema for jazn.xml

B-18 Security Guide

-->
<!ELEMENT env-entry-type (#PCDATA)>
<!--
The env-entry-value element contains the value of a web application's
environment entry. The value must be a String that is valid for the
constructor of the specified type that takes a single String
parameter, or for java.lang.Character, a single character.
Example:
<env-entry-value>100.00</env-entry-value>
Used in: env-entry
-->
<!ELEMENT env-entry-value (#PCDATA)>
<!--
The error-code contains an HTTP error code, ex: 404
Used in: error-page
-->
<!ELEMENT error-code (#PCDATA)>
<!--
The error-page element contains a mapping between an error code
or exception type to the path of a resource in the web application
Used in: web-app
-->
<!ELEMENT error-page ((error-code | exception-type), location)>
<!--
The exception type contains a fully qualified class name of a
Java exception type.
Used in: error-page
-->
<!ELEMENT exception-type (#PCDATA)>
<!--
The extension element contains a string describing an
extension. example: "txt"
Used in: mime-mapping
-->
<!ELEMENT extension (#PCDATA)>
<!--
Declares a filter in the web application. The filter is mapped to
either a servlet or a URL pattern in the filter-mapping element, using
the filter-name value to reference. Filters can access the
initialization parameters declared in the deployment descriptor at
runtime via the FilterConfig interface.
Used in: web-app
-->
<!ELEMENT filter (icon?, filter-name, display-name?, description?,
filter-class, init-param*)>

Schema for jazn.xml

JAAS Provider Schemas B-19

<!--
The fully qualified classname of the filter.
Used in: filter
-->
<!ELEMENT filter-class (#PCDATA)>
<!--
Declaration of the filter mappings in this web application. The
container uses the filter-mapping declarations to decide which filters
to apply to a request, and in what order. The container matches the
request URI to a Servlet in the normal way. To determine which filters
to apply it matches filter-mapping declarations either on servlet-name,
or on url-pattern for each filter-mapping element, depending on which
style is used. The order in which filters are invoked is the order in
which filter-mapping declarations that match a request URI for a
servlet appear in the list of filter-mapping elements.The filter-name
value must be the value of the <filter-name> sub-elements of one of the
<filter> declarations in the deployment descriptor.
Used in: web-app
-->
<!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-name))>
<!--
The logical name of the filter. This name is used to map the filter.
Each filter name is unique within the web application.
Used in: filter, filter-mapping
-->
<!ELEMENT filter-name (#PCDATA)>
<!--
The form-error-page element defines the location in the web app
where the error page that is displayed when login is not successful
can be found. The path begins with a leading / and is interpreted
relative to the root of the WAR.
Used in: form-login-config
-->
<!ELEMENT form-error-page (#PCDATA)>
<!--
The form-login-config element specifies the login and error pages
that should be used in form based login. If form based authentication
is not used, these elements are ignored.
Used in: login-config
-->
<!ELEMENT form-login-config (form-login-page, form-error-page)>
<!--
The form-login-page element defines the location in the web app
where the page that can be used for login can be found. The path
begins with a leading / and is interpreted relative to the root of the WAR.

Schema for jazn.xml

B-20 Security Guide

Used in: form-login-config
-->
<!ELEMENT form-login-page (#PCDATA)>
<!--
The home element contains the fully-qualified name of the enterprise
bean's home interface.
Used in: ejb-ref
Example:
<home>com.aardvark.payroll.PayrollHome</home>
-->
<!ELEMENT home (#PCDATA)>
<!--
The http-method contains an HTTP method (GET | POST |...).
Used in: web-resource-collection
-->
<!ELEMENT http-method (#PCDATA)>
<!--
The icon element contains small-icon and large-icon elements that
specify the file names for small and a large GIF or JPEG icon images
used to represent the parent element in a GUI tool.
Used in: filter, servlet, web-app
-->
<!ELEMENT icon (small-icon?, large-icon?)>
<!--
The init-param element contains a name/value pair as an
initialization param of the servlet
Used in: filter, servlet
-->
<!ELEMENT init-param (param-name, param-value, description?)>
<!--
The jsp-file element contains the full path to a JSP file within
the web application beginning with a `/'.
Used in: servlet
-->
<!ELEMENT jsp-file (#PCDATA)>
<!--
The large-icon element contains the name of a file
containing a large (32 x 32) icon image. The file
name is a relative path within the web application's
war file.
The image may be either in the JPEG or GIF format.
The icon can be used by tools.
Used in: icon
Example:
<large-icon>employee-service-icon32x32.jpg</large-icon>

Schema for jazn.xml

JAAS Provider Schemas B-21

-->
<!ELEMENT large-icon (#PCDATA)>
<!--
The listener element indicates the deployment properties for a web
application listener bean.
Used in: web-app
-->
<!ELEMENT listener (listener-class)>
<!--
The listener-class element declares a class in the application must be
registered as a web application listener bean. The value is the fully qualified
classname of the listener class.

Used in: listener
-->
<!ELEMENT listener-class (#PCDATA)>
<!--
The load-on-startup element indicates that this servlet should be
loaded (instantiated and have its init() called) on the startup
of the web application. The optional contents of
these element must be an integer indicating the order in which
the servlet should be loaded. If the value is a negative integer,
or the element is not present, the container is free to load the
servlet whenever it chooses. If the value is a positive integer
or 0, the container must load and initialize the servlet as the
application is deployed. The container must guarantee that
servlets marked with lower integers are loaded before servlets
marked with higher integers. The container may choose the order
of loading of servlets with the same load-on-start-up value.
Used in: servlet
-->
<!ELEMENT load-on-startup (#PCDATA)>
<!--
The local element contains the fully-qualified name of the
enterprise bean's local interface.
Used in: ejb-local-ref
-->
<!ELEMENT local (#PCDATA)>
<!--
The local-home element contains the fully-qualified name of the
enterprise bean's local home interface.
Used in: ejb-local-ref
-->
<!ELEMENT local-home (#PCDATA)>
<!--

Schema for jazn.xml

B-22 Security Guide

The location element contains the location of the resource in the web
application relative to the root of the web application. The value of
the location must have a leading `/'.
Used in: error-page
-->
<!ELEMENT location (#PCDATA)>
<!--
The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form login
mechanism.
Used in: web-app
-->
<!ELEMENT login-config (auth-method?, realm-name?, form-login-config?)>
<!--
The mime-mapping element defines a mapping between an extension
and a mime type.
Used in: web-app
-->
<!ELEMENT mime-mapping (extension, mime-type)>
<!--
The mime-type element contains a defined mime type. example:
"text/plain"
Used in: mime-mapping
-->
<!ELEMENT mime-type (#PCDATA)>
<!--
The param-name element contains the name of a parameter. Each parameter
name must be unique in the web application.

Used in: context-param, init-param
-->
<!ELEMENT param-name (#PCDATA)>
<!--
The param-value element contains the value of a parameter.
Used in: context-param, init-param
-->
<!ELEMENT param-value (#PCDATA)>
<!--
The realm name element specifies the realm name to use in HTTP
Basic authorization.
Used in: login-config
-->
<!ELEMENT realm-name (#PCDATA)>
<!--

Schema for jazn.xml

JAAS Provider Schemas B-23

The remote element contains the fully-qualified name of the enterprise
bean's remote interface.
Used in: ejb-ref
Example:
<remote>com.wombat.empl.EmployeeService</remote>
-->
<!ELEMENT remote (#PCDATA)>
<!--
The res-auth element specifies whether the web application code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the web application. In the
latter case, the Container uses information that is supplied by the
Deployer.
The value of this element must be one of the two following:
<res-auth>Application</res-auth>
<res-auth>Container</res-auth>
Used in: resource-ref
-->
<!ELEMENT res-auth (#PCDATA)>
<!--
The res-ref-name element specifies the name of a resource manager
connection factory reference. The name is a JNDI name relative to the
java:comp/env context. The name must be unique within a web application.
Used in: resource-ref
-->
<!ELEMENT res-ref-name (#PCDATA)>
<!--
The res-sharing-scope element specifies whether connections obtained
through the given resource manager connection factory reference can be
shared. The value of this element, if specified, must be one of the
two following:
<res-sharing-scope>Shareable</res-sharing-scope>
<res-sharing-scope>Unshareable</res-sharing-scope>
The default value is Shareable.
Used in: resource-ref
-->
<!ELEMENT res-sharing-scope (#PCDATA)>
<!--
The res-type element specifies the type of the data source. The type
is specified by the fully qualified Java language class or interface
expected to be implemented by the data source.
Used in: resource-ref
-->
<!ELEMENT res-type (#PCDATA)>
<!--

Schema for jazn.xml

B-24 Security Guide

The resource-env-ref element contains a declaration of a web application's
reference to an administered object associated with a resource
in the web application's environment. It consists of an optional
description, the resource environment reference name, and an
indication of the resource environment reference type expected by
the web application code.
Used in: web-app
Example:
<resource-env-ref>
<resource-env-ref-name>jms/StockQueue</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>
-->
<!ELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>
<!--
The resource-env-ref-name element specifies the name of a resource
environment reference; its value is the environment entry name used in
the web application code. The name is a JNDI name relative to the
java:comp/env context and must be unique within a web application.
Used in: resource-env-ref
-->
<!ELEMENT resource-env-ref-name (#PCDATA)>
<!--
The resource-env-ref-type element specifies the type of a resource
environment reference. It is the fully qualified name of a Java
language class or interface.
Used in: resource-env-ref
-->
<!ELEMENT resource-env-ref-type (#PCDATA)>
<!--
The resource-ref element contains a declaration of a web application's
reference to an external resource. It consists of an optional
description, the resource manager connection factory reference name,
the indication of the resource manager connection factory type
expected by the web application code, the type of authentication
(Application or Container), and an optional specification of the
shareability of connections obtained from the resource (Shareable or
Unshareable).
Used in: web-app
Example:
<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

Schema for jazn.xml

JAAS Provider Schemas B-25

<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
-->
<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-auth,
res-sharing-scope?)>
<!--
The role-link element is a reference to a defined security role. The
role-link element must contain the name of one of the security roles
defined in the security-role elements.
Used in: security-role-ref
-->
<!ELEMENT role-link (#PCDATA)>
<!--
The role-name element contains the name of a security role.
The name must conform to the lexical rules for an NMTOKEN.
Used in: auth-constraint, run-as, security-role, security-role-ref
-->
<!ELEMENT role-name (#PCDATA)>
<!--
The run-as element specifies the run-as identity to be used for the
execution of the web application. It contains an optional description, and
the name of a security role.
Used in: servlet
-->
<!ELEMENT run-as (description?, role-name)>
<!--
The security-constraint element is used to associate security
constraints with one or more web resource collections
Used in: web-app
-->
<!ELEMENT security-constraint (display-name?, web-resource-collection+,
auth-constraint?, user-data-constraint?)>
<!--
The security-role element contains the definition of a security
role. The definition consists of an optional description of the
security role, and the security role name.
Used in: web-app
Example:
<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>employee</role-name>
</security-role>

Schema for jazn.xml

B-26 Security Guide

-->
<!ELEMENT security-role (description?, role-name)>
<!--
The security-role-ref element contains the declaration of a security
role reference in the web application's code. The declaration consists
of an optional description, the security role name used in the code,
and an optional link to a security role. If the security role is not
specified, the Deployer must choose an appropriate security role.
The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerInRole(String roleName) method
or the HttpServletRequest.isUserInRole(String role) method.
Used in: servlet
-->
<!ELEMENT security-role-ref (description?, role-name, role-link?)>
<!--
The servlet element contains the declarative data of a
servlet. If a jsp-file is specified and the load-on-startup element is
present, then the JSP should be precompiled and loaded.
Used in: web-app
-->
<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, run-as?,
security-role-ref*)>
<!--
The servlet-class element contains the fully qualified class name
of the servlet.
Used in: servlet
-->
<!ELEMENT servlet-class (#PCDATA)>
<!--
The servlet-mapping element defines a mapping between a servlet
and a url pattern
Used in: web-app
-->
<!ELEMENT servlet-mapping (servlet-name, url-pattern)>
<!--
The servlet-name element contains the canonical name of the
servlet. Each servlet name is unique within the web application.
Used in: filter-mapping, servlet, servlet-mapping
-->
<!ELEMENT servlet-name (#PCDATA)>
<!--
The session-config element defines the session parameters for
this web application.
Used in: web-app

Schema for jazn.xml

JAAS Provider Schemas B-27

-->
<!ELEMENT session-config (session-timeout?)>
<!--
The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The
specified timeout must be expressed in a whole number of minutes.
If the timeout is 0 or less, the container ensures the default
behaviour of sessions is never to time out.
Used in: session-config
-->
<!ELEMENT session-timeout (#PCDATA)>
<!--
The small-icon element contains the name of a file
containing a small (16 x 16) icon image. The file
name is a relative path within the web application's
war file.
The image may be either in the JPEG or GIF format.
The icon can be used by tools.
Used in: icon
Example:
<small-icon>employee-service-icon16x16.jpg</small-icon>
-->
<!ELEMENT small-icon (#PCDATA)>
<!--
The taglib element is used to describe a JSP tag library.
Used in: web-app
-->
<!ELEMENT taglib (taglib-uri, taglib-location)>
<!--
the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.
Used in: taglib
-->
<!ELEMENT taglib-location (#PCDATA)>
<!--
The taglib-uri element describes a URI, relative to the location
of the web.xml document, identifying a Tag Library used in the Web
Application.
Used in: taglib
-->
<!ELEMENT taglib-uri (#PCDATA)>
<!--
The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or

Schema for jazn.xml

B-28 Security Guide

CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can't be changed in transit. CONFIDENTIAL means
that the application requires that the data be transmitted in a
fashion that prevents other entities from observing the contents of
the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.
Used in: user-data-constraint
-->
<!ELEMENT transport-guarantee (#PCDATA)>
<!--
The url-pattern element contains the url pattern of the mapping. Must
follow the rules specified in Section 11.2 of the Servlet API
Specification.
Used in: filter-mapping, servlet-mapping, web-resource-collection
-->
<!ELEMENT url-pattern (#PCDATA)>
<!--
The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected.
Used in: security-constraint
-->
<!ELEMENT user-data-constraint (description?, transport-guarantee)>
<!--
The web-resource-collection element is used to identify a subset
of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP methods
are specified, then the security constraint applies to all HTTP
methods.
Used in: security-constraint
-->
<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>
<!--
The web-resource-name contains the name of this web resource
collection.
Used in: web-resource-collection
-->
<!ELEMENT web-resource-name (#PCDATA)>
<!--
The welcome-file element contains file name to use as a default
welcome file, such as index.html
Used in: welcome-file-list
-->

Schema for jazn.xml

JAAS Provider Schemas B-29

<!ELEMENT welcome-file (#PCDATA)>
<!--
The welcome-file-list contains an ordered list of welcome files
elements.
Used in: web-app
-->
<!ELEMENT welcome-file-list (welcome-file+)>
<!--
The ID mechanism is to allow tools that produce additional deployment
information (i.e., information beyond the standard deployment
descriptor information) to store the non-standard information in a
separate file, and easily refer from these tool-specific files to the
information in the standard deployment descriptor.
Tools are not allowed to add the non-standard information into the
standard deployment descriptor.
-->
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST auth-method id ID #IMPLIED>
<!ATTLIST context-param id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST distributable id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
<!ATTLIST ejb-local-ref id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST filter id ID #IMPLIED>
<!ATTLIST filter-class id ID #IMPLIED>
<!ATTLIST filter-mapping id ID #IMPLIED>
<!ATTLIST filter-name id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>

Schema for jazn.xml

B-30 Security Guide

<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST listener id ID #IMPLIED>
<!ATTLIST listener-class id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST local id ID #IMPLIED>
<!ATTLIST local-home id ID #IMPLIED>
<!ATTLIST location id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST mime-mapping id ID #IMPLIED>
<!ATTLIST mime-type id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>
<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-sharing-scope id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST resource-env-ref id ID #IMPLIED>
<!ATTLIST resource-env-ref-name id ID #IMPLIED>
<!ATTLIST resource-env-ref-type id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST run-as id ID #IMPLIED>
<!ATTLIST security-constraint id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST servlet id ID #IMPLIED>
<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST taglib id ID #IMPLIED>
<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>
<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>
<!ATTLIST web-app id ID #IMPLIED>
<!ATTLIST web-resource-collection id ID #IMPLIED>

Schema for jazn.xml

JAAS Provider Schemas B-31

<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>
<!ATTLIST welcome-file-list id ID #IMPLIED>
<!-- This file contains the orion-specific configuration for a web-application.
The path to the file is located at
ORION_HOME/application-deployments/deploymentName/warname(.war)/orion-web.xml or
(web-app-root/)WEB-INF/orion-web.xml if no deployment-directory is specified in
server.xml. -->
<!ELEMENT orion-web-app (classpath*, context-param-mapping*, mime-mappings*,
virtual-directory*, access-mask?, cluster-config?, servlet-chaining*,
request-tracker*, session-tracking?, resource-ref-mapping*,
security-role-mapping*, env-entry-mapping*, ejb-ref-mapping*,
expiration-setting*, web-app?, jazn-web-app?, web-app-class-loader?)>
<!ATTLIST orion-web-app autoreload-jsp-beans (true|false) "true"
autoreload-jsp-pages (true|false) "true"
default-buffer-size CDATA "2048"
default-charset %CHARSET; "iso-8859-1"
default-mime-type CDATA #IMPLIED
deployment-version CDATA #IMPLIED
development (true|false) "false"
directory-browsing (allow|deny) "deny"
file-modification-check-interval %NUMBER; "1000"
internationalize-resources (true|false) "false"
jsp-cache-directory CDATA #IMPLIED
jsp-cache-tlds (true|fase) "true"
jsp-taglib-locations CDATA #IMPLIED
jsp-print-null (true|false) "true"
jsp-timeout %NUMBER; "0 (never)"
simple-jsp-mapping (true|false) "false"
enable-jsp-dispatcher-shortcut (true|false) "true"
persistence-path CDATA #IMPLIED
servlet-webdir %PATH; "/servlet/"
source-directory CDATA #IMPLIED
temporary-directory CDATA #IMPLIED
>

<!ENTITY % CLASSNAME "CDATA">
<!-- A group that this security-role-mapping implies. Ie all the members of the
specified group are included in this role. -->
<!ELEMENT group (#PCDATA)>
<!ATTLIST group name CDATA #IMPLIED
>

Schema for jazn.xml

B-32 Security Guide

<!-- A relative (to the application root) or absolute path to a directory where
application state should be stored across restarts. -->
<!ELEMENT persistence (#PCDATA)>
<!ATTLIST persistence path CDATA #IMPLIED
>
<!-- An argument used when invoking the client. -->
<!ELEMENT argument (#PCDATA)>
<!ATTLIST argument value CDATA #IMPLIED
>
<!-- A short description of this component. -->
<!ELEMENT description (#PCDATA)>
<!-- A relative/absolute path to log events to. -->
<!ELEMENT file (#PCDATA)>
<!ATTLIST file path CDATA #IMPLIED
>
<!-- An ODL formated log file. The max-file-size is the maximum number of
kilobytes a single log file is allowed to grow to. The max-directory-size is the
maximum number of kilobytes that the directory is allowed to contain. -->
<!ELEMENT odl (#PCDATA)>
<!ATTLIST odl path CDATA #REQUIRED max-file-size CDATA #IMPLIED
max-directory-size CDATA #IMPLIED>
<!-- A ejb-jar module of the application. -->
<!ELEMENT ejb-module (#PCDATA)>
<!ATTLIST ejb-module path CDATA #IMPLIED
remote (true|false) "false"
>
<!-- A relative/absolute path/URL to a directory or a .jar/.zip to add as a
library-path for this server. Directories are scanned for jars/zips to include
at startup. -->
<!ELEMENT library (#PCDATA)>
<!ATTLIST library path CDATA #IMPLIED
>
<!-- The read-access policy. -->
<!ELEMENT read-access (namespace-resource)>
<!-- A e-mail address to log events to. A valid mail-session also needs to be
specified if this option is used. -->
<!ELEMENT mail (#PCDATA)>
<!ATTLIST mail address CDATA #IMPLIED
>
<!-- A list of arguments to used when invoking the app-client if starting it
in-process (auto-start="true"). -->
<!ELEMENT arguments (argument*)>
<!-- Namespace (naming context) security policy for RMI clients. -->
<!ELEMENT namespace-access (read-access, write-access)>
<!-- Contains a name/value pair initialization param. -->

Schema for jazn.xml

JAAS Provider Schemas B-33

<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #IMPLIED
value CDATA #IMPLIED
>
<!-- -->
<!ELEMENT data-sources (#PCDATA)>
<!ATTLIST data-sources path CDATA #IMPLIED
>
<!-- The write-access policy. -->
<!ELEMENT write-access (namespace-resource)>
<!-- An application-client module of the application. An app-client is a GUI or
console-based standalone client that interracts with the server. -->
<!ELEMENT client-module (arguments?)>
<!ATTLIST client-module auto-start (true|false) "false"
deployment-time CDATA #IMPLIED
path CDATA #IMPLIED
user CDATA #IMPLIED
>
<!-- A user that this security-role-mapping implies. -->
<!ELEMENT user (#PCDATA)>
<!ATTLIST user name CDATA #IMPLIED
>
<!-- Specifies an optional user-manager to use, example user-managers are
com.evermind.sql.DataSourceUserManager,
com.evermind.ejb.EJBUserManager, etc... Used to integrate existing systems and
provide custom user-managers for
web-applications. -->
<!ELEMENT user-manager (description?, property*)>
<!ATTLIST user-manager class %CLASSNAME; #IMPLIED
display-name CDATA #IMPLIED
>
<!-- An orion-ejb-jar.xml file contains the deploy-time info for an application.
It is located in
ORION_HOME/application-deployments/deploymentName/orion-application.xml after
deployment and META-INF/orion-application.xml below the application root if
bundled with the application or if no deployment-directory is specified in
server.xml. If using deployment-directory (which is the default) the bundled
version will be copied to the deployment location if and only if no file exists
at that location. It is used to specify initial (first time) deployment
properties.
After each deployment the deployment file is reformatted/augmented/altered by
the server to add any new/missing info to it. -->
<!ELEMENT orion-application
(ejb-module*,web-module*,client-module*,commit-coordinator?,security-role-mappin
g*, persistence?, library*, principals?, mail-session*, user-manager?, log?,

Schema for jazn.xml

B-34 Security Guide

jazn?, data-sources?, connectors?, resource-provider*, namespace-access?,
jndi-clustering?)>
<!ATTLIST orion-application autocreate-tables (true|false) "true"
autodelete-tables (true|false) "false"
default-data-source CDATA #IMPLIED
deployment-version CDATA #IMPLIED
treat-zero-as-null (true|false) "false"
>
<!-- A web-application module of the application. Each web-application can be
installed on any site and in any context on those sites (for instance
http://www.myserver.com/myapp/). -->
<!ELEMENT web-module (#PCDATA)>
<!ATTLIST web-module id CDATA #IMPLIED
path CDATA #IMPLIED
>
<!-- -->
<!ELEMENT principals (#PCDATA)>
<!ATTLIST principals path CDATA #IMPLIED
>
<!-- Logging settings. -->
<!ELEMENT log (file*, mail*, odl*)>
<!-- The runtime mapping (to groups and users) of a role. Maps to a
security-role of the same name in the assembly descriptor. -->
<!ELEMENT security-role-mapping (group*, user*)>
<!ATTLIST security-role-mapping impliesAll CDATA #IMPLIED
name CDATA #IMPLIED
>
<!-- The session SMTP-server host (if using SMTP). -->
<!ELEMENT mail-session (description?, property*)>
<!ATTLIST mail-session location CDATA #IMPLIED
smtp-host CDATA #IMPLIED
username CDATA #IMPLIED
password CDATA #IMPLIED
>
<!-- A resource with a specific security setting. -->
<!ELEMENT namespace-resource (security-role-mapping)>
<!ATTLIST namespace-resource root CDATA #REQUIRED
>
<!-- -->
<!ELEMENT connectors (#PCDATA)>
<!ATTLIST connectors path CDATA #IMPLIED
>
<!-- JAZN configuration -->
<!ELEMENT jazn-web-app (#PCDATA)>
<!ATTLIST jazn-web-app auth-method CDATA ""

Schema for jazn.xml

JAAS Provider Schemas B-35

runas-mode (true | false) "false"
doasprivileged-mode (true | false) "true"
>
<!-- -->
<!ELEMENT jazn (property*, jazn-web-app?)>
<!ATTLIST jazn provider (XML | LDAP) "XML"
location CDATA #IMPLIED
default-realm CDATA #IMPLIED
persistence (NONE | ALL | VM_EXIT) "VM_EXIT"
config CDATA ""
>
<!ELEMENT jndi-clustering (#PCDATA)>
<!ATTLIST jndi-clustering enabled (true | false) "true" >
<!-- -->
<!ELEMENT commit-coordinator (commit-class, property*)>
<!-- -->
<!ELEMENT commit-class (#PCDATA)>
<!ATTLIST commit-class class %CLASSNAME; #IMPLIED
>
<!-- Specifies a resource-provider to plug-in, ie.
com.evermind.server.deployment.ContextScanningResourceProvider -->
<!ELEMENT resource-provider (description?, property+)>
<!ATTLIST resource-provider class %CLASSNAME; #IMPLIED
name CDATA #IMPLIED
>
<!-- Specifies a user manager for use access to security sensitive strings.
If no element is present, then the UserManager for the application
itself will become used.
-->
<!ELEMENT password-manager (principals?, jazn?, user-manager?)>

Schema for jazn.xml

B-36 Security Guide

Index-1

Index
Symbols
<as-context> element, 14-7
<confidentiality> element, 14-7
<default-method-access> element, 12-11
<establish-trust-in-client> element, 14-7
<establish-trust-in-target> element, 14-7
<group> element, 3-24
<groups> element, 3-24
<integrity> element, 14-7
<jazn>

and LoginModule, 7-6
<jazn> element

and <password-manager> element, 10-4
<jazn> entity, 3-5

in orion-application.xml, 3-6, 3-8
<jazn-loginconfig>, 7-4
<jazn-policy>, 7-5
<jazn-web-app> element, 3-11, 3-13

auth-method, 3-12
<login-module> entity

options, 3-17
<method> element

defined, 12-7
<method-permission> element, 12-5, 12-7
<password-manager> element, 10-4
<principals> element, 3-24
<property> element

<jazn> tag, 3-9
<role-link> element, 12-5, 12-6
<role-name> element, 12-5
<run-as> element, 12-9
<sas-context> element, 14-7
<security-identity> element, 12-9

<security-role> element, 12-5
<security-role-mapping> element, 12-10, 12-11
<security-role-ref> element, 12-5
<session-tracking> element, 11-27
<ssl-config> element, 11-25, 11-26
<transport-config> element, 14-6
<unchecked/> element, 12-9
<use-caller-identity/> element, 12-10
<user> element, 3-24
<users> element, 3-24
<web-app> element, 11-26
<web-site> element, 11-25

A
access control lists

definition, 2-11
AccessController, 9-3
AccessTest1, A-13
actions

definition, 9-2
add command, 5-20
adding and removing realms, 5-7, 5-8
adding and removing roles, 5-10
adding and removing users, 5-11
-addperm option to JAZN Admintool, 5-7, 5-8
-addprncpl option to JAZN Admintool, 5-9
-addrealm option to JAZN Admintool, 5-10
-addrole option to JAZN Admintool, 5-10
-adduser option to JAZN Admintool, 5-11
administering

JAAS provider, 4-2 to 4-16
AdminPermission class

administering permissions, 4-15

Index-2

definition, 9-3, 9-4
Apache Listener. See Oracle HTTP Server
Application Realm

creation code, A-9
definition, 4-8
role management, 4-8, 4-11
sample LDAP directory information tree, 4-11
user management, 4-8, 4-11

applications
in Java 2 application environments, 6-2
with JAAS, 2-5

attributes
default-realm, 3-7, 3-8
location, 3-6, 3-8
persistence, 3-7, 3-8
provider, 3-6, 3-8

authentication, 1-3, 2-11
basic, 6-5
environments, 6-5
J2EE, 6-14
SSL, 11-5
using login modules, 2-3
using OracleAS Single Sign-On (SSO), 2-7
using RealmLoginModule class, 2-7
with Basic Authentication, 6-11
with SSL, 6-8
with SSO, 2-7, 6-6

authentication methods, 3-11
auth-method, 3-11, 3-12
authorization, 1-3

J2EE, 6-15

C
cache properties, 3-21
caching, 3-19

disabling, 3-20
capability model

definition, 2-11
certificate authorities (SSL), 11-2
certificates (SSL), 11-2
checking

passwords, 5-12
-checkpasswd option to JAZN Admintool, 5-12
cipher suites

supported by Oracle HTTPS, 11-12, 11-13
class names

definition, 9-2
clear command, 5-20
client.sendpassword property, 14-9
codesource in policy files, 2-5
Common Secure Interoperability version 2 see CSIv2
config

attribute of <jazn> tag, 3-7
configuration data

retrieving from jazn.xml file, 5-12
configuring

LoginModules, 7-4
cookie domain, 11-27
cookie-domain attribute, 11-27
createUser method, 2-8
creation code

Application Realm, A-9
credentials, 1-3, 4-7, 10-3
cryptographic keys, 1-3
CSIv2

and EJBs, 14-4
internal-settings.xml, 14-4
introduction, 14-2
properties in orion-ejb-jar.xml, 14-6
security properties, 14-6

D
DAS, 2-9
data storage

in LDAP-based environments, 4-11
default-realm attribute, 3-7, 3-8
Delegated Administrative Service, see DAS
deploying

LoginModule, 7-2
deployment descriptor

security, 12-5
deployment descriptors, 3-3

J2EE Connector, 13-2
security, 12-5, 12-11

DER, 11-10
digital certificates, 1-4
directory entries

Java Authorization Service, 4-9 to 4-13

Index-3

directory information tree (DIT)
Application Realm, 4-11
External Realm, 4-9
Java Authorization Service, 4-13

directory information tree Identity Management
Realm, 4-9

disabling caching, 3-20
Distinguished Encoding Rules, 11-10
distinguished name (DN), 4-12
doAsPrivileged(), 3-13
doasprivileged-mode, 3-14
DTDs

internal-settings.xml, 14-4
<ior-security-config> element, 14-8

E
EJB

CSIv2, 14-4
interoperability, 14-1
security, 12-3
server security properties, 14-2

ejb_sec.properties, 14-8
ejb-jar.xml, 3-3
environments, 4-5
exit command, 5-20
External Realm

automatically installed, 4-12
definition, 4-8
role management, 4-8, 4-9
sample LDAP directory information tree, 4-9
user management, 4-8, 4-9

F
foundations of the JAAS Provider, 2-2

G
GenericCredential interface

and Kerberos, 13-6
getAttribute("java.security.cert.X509certificate"), 6-

15
getAuthType, 6-15
-getconfig option to JAZN Admintool, 5-12

getGroup method, 2-8
getRemoteUser, 6-15
getUser method, 2-8
getUserPrincipal, 6-15
granting and revoking permissions, 5-12
-grantperm option to JAZN Admintool, 5-12

H
help command, 5-20
hosted application environments, 4-15
HTTPClient.HttpUrlConnection, 11-14
HTTPConnection, 11-9
HTTPS

client-authentication, 11-31
HttpSession, 3-20

I
Identity Management Realm

definition, 4-8
role management, 4-10
sample LDAP directory information tree, 4-9
user management, 4-10

impliesAll attribute, 12-12
integrating

custom LoginModule, 7-1
internal-settings.xml

CSIv2 entities, 14-4
internal-settings.xml file, 14-2

DTD, 14-4
<sep-property> element, 14-2, 14-4

interoperability, 14-1
invoking JAZN Admintool, 5-4
<ior-security-config> element

DTD, 14-8
isCallerInRole method, 12-5

J
J2EE Connector, 13-1

deployment descriptors, 13-2
JAAS Provider

and SSL/OID, 3-18
common configuration tasks

Index-4

configuring a Java 2 Policy File, 9-4
enhancements to realms, 4-2
integration with Basic authentication, 6-10
integration with SSL-enabled applications, 6-8
integration with SSO-enabled applications, 6-5
J2EE configuration tasks

configuring role-name, 3-14
configuring run-as element, 3-14
configuring security role, 3-14

management of, 4-2
permission classes, 9-3
security role, 6-13

JAAS provider
locations for jazn.xml, 3-5

JAAS. See Java Authentication and Authorization
Service (JAAS)

jaas.config file, 3-16
Java 2 application environments, 6-2
Java 2 Platform, Enterprise Edition (J2EE)

application development in, 6-2
creating applications using the Java 2 Security

Model, 1-2, 9-2
definition, 6-2
integration with JAZNUserManager, 6-4
Oracle component responsibilities in basic

authentication environments, 6-11
Oracle component responsibilities in SSL-enabled

environments, 6-8
Oracle component responsibilities in

SSO-enabled environments, 6-6
Java 2 Platform, Standard Edition (J2SE)

application development in, 6-2
creating applications using the Java 2 Security

Model, 1-2, 9-2
definition, 6-2

Java 2 policy
debugging, 9-6

Java 2 policy file
configuring for JAAS Provider, 9-4

Java 2 Security
specifying SecurityManager, 9-5

Java 2 Security Model, 2-3, 6-15
definition, 1-2, 9-2
using access control capability model, 2-11
using with J2EE applications, 1-2, 9-2

using with J2SE applications, 1-2, 9-2
using with JAAS, 2-3

Java Authentication and Authorization Service
(JAAS)

applications, 2-5
definition, 2-3
extending the Java 2 Security Model, 2-3
login modules, 2-3
policy files

example, 2-5
principals, 1-2
realms, 2-4
roles, 2-4
subjects, 1-2

Java Authorization Service
directory entries, 4-9 to 4-13
directory information tree, 4-8 to 4-13

Java Key Store (JKS), 14-2
Java Platform, Enterprise Edition (J2EE)

security role, 6-12
java2.policy, 3-4
java2.policy file, 9-5

configuring for JAAS Provider, 9-4
java.io.FilePermission, A-10
java.net.URL framework, 11-14
java.security.manager property, 9-5
java.security.manager system property, 9-6
java.security.policy system property, 9-5
java.security.Principal, 2-4
java.security.principal, 2-7
java.security.Principal interface

using with principals, 1-2
using with roles and groups, 2-4

javax.net.ssl.KeyStore, 11-16
javax.net.ssl.KeyStorePassword, 11-16
javax.servlet.HttpServletRequest, 6-15
JAZN Admintool, 4-2

adding and removing permissions, 5-7, 5-8
adding and removing principals, 5-9
adding realms, 5-10
adding roles, 5-10
adding users, 5-11
administering policy, 4-14
checking passwords, 5-12
command options, 5-4

Index-5

definition, 4-3
granting and revoking permissions, 5-12
granting roles, 5-13
invoking, 5-4
listing permissions, 5-14
listing principals, 5-15
listing realms, 5-16
listing roles, 5-16
listing users, 5-17
migrating principals, 5-17
navigating shell, 5-19
retrieving configuration data, 5-12
revoking roles, 5-13
setting passwords, 5-18
shell commands, 5-19 to 5-20
starting shell, 5-19

JAZN Admintool shell
starting, 5-17

JAZN Admintool shell commands
add, 5-20
clear, 5-20
exit, 5-20
help, 5-20
man, 5-21
mk, 5-20
pwd, 5-21
rm, 5-21
set, 5-21

JAZNAdminGroup, 4-15
jazn-data.xml, 3-4, 3-6, 3-15

and LoginModule, 7-4
deploying LoginModules, 7-7
schema, B-1 to B-35

jazn-data.xml file, 2-5, 2-8, 2-9, 4-5
and Admintool, 5-2

JAZNPermission class
definition, 9-3, 9-4

JAZNUserManager, 2-8, 6-15
definition, 2-7, 6-4
integration in J2EE environments, 6-4

JAZNUserManager class, 2-9
jazn.xml, 3-4, 3-6

file location, 3-5
schema, B-1 to B-35

jazn.xml file

retrieving configuration data, 5-12
schema, B-1

JVM, 3-4

K
Kerberos, 1-3

and GenericCredential interface, 13-6
keys (SSL), 11-2
keystore

definition, 14-2
keystores (SSL), 11-2

L
LDAP, 2-9
ldapadd tool

creating users, 4-8
LDAP-based provider type, 2-9
ldap.password property name, 3-11
ldap.user property name, 3-11
Lightweight Directory Access Protocol

(LDAP)-based environments
Oracle Internet Directory used as provider

type, 2-2
realm contents, 4-8
realm data storage, 4-11
realm management, 4-7
realm permissions, 4-14
realm types available, 4-7
sample Application Realm directory information

tree, 4-11
sample External Realm directory information

tree, 4-9
sample Identity Management Realm directory

information tree, 4-9
listing

permission information, 5-14
permissions, 5-14
principal class information, 5-15
principal classes, 5-15

listing realms, 5-15
listing roles, 5-16
listing users, 5-17
-listperm option to JAZN Admintool, 5-14

Index-6

-listprncpl option to JAZN Admintool, 5-15
-listprncpls option to JAZN Admintool, 5-15
-listrealms option to JAZN Admintool, 5-16
-listroles option to JAZN Admintool, 5-16
-listusers option to JAZN Admintool, 5-17
location attribute, 3-6, 3-8
login modules

configuring with different applications, 2-3
definition, 2-3
with JAAS, 2-3

login-config element, 3-11
LoginContext class, 2-3

authenticating subjects, 2-3
LoginModules, 7-1 to 7-9

configuring, 7-4
deploying, 7-7
integrating, 7-7
integration with OC4J, 7-1
packaging and deployment, 7-2

M
man command, 5-21
management of JAAS Provider, 4-2
mapping

security roles, 3-14
-migrate option to JAZN Admintool, 5-17
migrating

principals, 5-17
mk command, 5-20

N
nameservice.useSSL property, 14-9
navigating

JAZN Admintool shell, 5-19
needs-client-auth attribute, 11-31

O
obfuscated password, 3-11
obfuscation, 4-7, 10-3
OC4J group, 3-15
oc4j.iiop.ciphersuites property, 14-9
oc4j.iiop.enable.clientauth property, 14-9

oc4j.iiop.keyStoreLoc property, 14-9
oc4j.iiop.keyStorePass property, 14-9
oc4j.iiop.trustedServers property, 14-9
oc4j.iiop.trustStoreLoc property, 14-9
oc4j.iiop.trustStorePass property, 14-9
one-way authentication, 3-18
OPMN, 14-3
Oracle Enterprise Manager, 4-2

JAAS Provider overview, 4-3
Oracle HTTPS, 11-1 to 11-20

default system properties, 11-15
example, 11-17
feature overview, 11-11
supported cipher suites, 11-12, 11-13

Oracle Internet Directory (OID), 1-3, 2-8, 2-9
administering policy data, 4-15
creating users, 4-8
provider type, 4-2

Oracle Process Management Notification
service, 14-3

OracleAS Containers for J2EE (OC4J)
interoperability, 14-1
mapping security roles to JAAS Provider users

and roles, 6-13
OracleAS Single Sign-On (SSO) for SSO

authentication, 2-7
oracle.home system property, 9-6
oracle.security.jazn.realm package

support for realms, 4-2
use of, 2-7

OracleSSLCredential, 11-9
Oracle.ssl.defaultCipherSuites, 11-16
orion-application.xml, 3-3, 3-5, 3-13, 3-15

and LoginModule, 7-6
deploying LoginModules, 7-8
mapping roles, 3-16
mapping security roles to JAAS Provider users

and roles, 6-13
passwords not obfuscated, 10-2
specifying UserManager, 3-22 to 3-26

orion-ejb-jar
<establish-trust-in-target> element, 14-7

orion-ejb.jar file
/<sas-context> element, 14-7
<transport-config> element, 14-6

Index-7

orion-ejb-jar.xml, 14-6
<as-context> element, 14-7
<establish-trust-in-client> element, 14-7
<integrity> element, 14-7
security properties, 14-6

orion-ejb-jar.xml file
<confidentiality> element, 14-7

orion-web.xml, 3-3, 3-13

P
partitioning, 2-5, 4-15
password indirection

definition, 10-2
password obfuscation

definition, 10-2
passwords, 4-7, 10-3

checking, 5-12
checking in JAZN Admintool, 5-12
not obfuscated in orion-application.xml, 10-2
setting, 5-12
setting in JAZN Admintool, 5-18

permissions, 2-12, 12-3
actions, 9-2
adding and removing in JAZN Admintool, 5-7,

5-8
administering with AdminPermission

class, 4-15
class definitions, 9-4
class name, 9-2
definition, 2-5
granting and revoking in JAZN

Admintool, 5-12
granting and revoking with the JAZN

Admintool, 5-12
in Java 2 Security Model, 9-2
JAAS Provider, 9-3
Java permission instance contents, 9-2
listing in JAZN Admintool, 5-14
listing with the JAZN Admintool, 5-14
management in LDAP-based

environments, 4-15
management in XML-based environments, 4-5,

4-15
target, 9-2

persistence, 4-7, 10-3
persistence attribute, 3-7, 3-8
Pluggable Authentication Module (PAM), 2-3
policies

administering with JAZN Admintool, 4-14
administering with Oracle Internet Directory

(OID), 4-15
administration, 4-14
definition, 2-5
information storage in XML-based provider

type, 4-5
management in LDAP-based

environments, 4-15
management in XML-based environments, 4-5
partitioning among realms, 4-16

policy
definition, 2-5

policy cache, 3-19
policy files

codesource, 2-5
example, 2-5
subject, 2-5

principal classes
listing

information with the JAZN Admintool, 5-15
principal-based authorization

support for, 2-3
principals, 1-2

adding and removing in JAZN Admintool, 5-9
definition, 1-2
listing in JAZN Admintool, 5-15
migrating in JAZN Admintool, 5-17
with JAAS, 1-2

principals.xml, 3-24
principals.xml file, 2-8, 2-10, 3-24, 6-4

converting from, 5-17
examples, 3-25

PrintingSecurityManager, 9-6
private keys (SSL), 11-2
privileges, 2-13
property names

ldap.password, 3-11
ldap.user, 3-11

PropertyPermission, 12-3
protection domain

Index-8

in Java 2 Security Model, 9-2
provider attribute, 3-6, 3-8
provider types, 2-2, 4-5

in J2SE environments, 6-2
Oracle Internet Directory (OID), 4-2, 4-14
retrieving permissions from, 2-11
storing policy information, 4-14
XML-based, 4-2, 4-14

public key certificates, 1-3
public keys (SSL), 11-2
pwd command, 5-21

R
RBAC (role-based access control), 2-12
RBAC. See role-based access control (RBAC)
realm cache, 3-19
realm permissions

management in LDAP-based
environments, 4-14

RealmLoginModule, 3-16
RealmLoginModule class, 2-7, 6-14

in J2SE environments, 6-2
RealmPermission class, 4-14

definition, 9-3, 9-4
RealmPrincipal interface, 2-7
realms

adding and removing with the JAZN
Admintool, 5-7, 5-8

adding in JAZN Admintool, 5-10
creation of realm container in LDAP-based

environments, 4-11
data storage in LDAP-based environments, 4-11
definition, 2-4, 2-7
information storage in XML-based provider

type, 4-5
JAAS Provider enhancements, 4-2
JAAS Provider framework, 4-5
JAAS Provider support, 2-7
listing in JAZN Admintool, 5-16
listing with the JAZN Admintool, 5-15
managing in LDAP-based environments, 4-7
managing in XML-based provider type, 4-5
permission management in LDAP-based

environments, 4-14

policy partitioning, 4-16
realm contents in LDAP-based

environments, 4-8
types available in LDAP-based

environments, 4-7
types available in XML-based provider

type, 4-5
with JAAS, 2-4

-remperm option to JAZN Admintool, 5-7, 5-8
-remprncpl option to JAZN Admintool, 5-9
-remrealm option to JAZN Admintool, 5-10
-remrole option to JAZN Admintool, 5-10
-remuser option to JAZN Admintool, 5-11
retrieving authentication information, 6-15
-revokeperm option to JAZN Admintool, 5-12
revoking

roles in JAZN Admintool, 5-13
rm command, 5-21
RMI/IIOP, 14-1
role activation

definition, 2-13
role hierarchy

definition, 2-12
role management, 4-8
role manager, 4-8
RoleAdminPermission class, 4-16

definition, 9-3, 9-4
role-based access control (RBAC), 2-4, 2-7

definition, 2-12
JAAS Provider support for, 2-7
role activation, 2-13
role hierarchy, 2-12

RoleManager interface, 4-12
roles, 1-3

adding and removing with the JAZN
Admintool, 5-10

adding in JAZN Admintool, 5-10
definition, 2-12
granting in JAZN Admintool, 5-13
listing in JAZN Admintool, 5-16
listing with the JAZN Admintool, 5-16
management in Application Realms, 4-8, 4-11
management in External Realms, 4-8, 4-9
management in Identity Management

Realms, 4-8, 4-10

Index-9

management in LDAP-based environments, 4-8
management in XML-based environments, 4-5
mapping in the orion-application.xml file, 3-16
revoking in JAZN Admintool, 5-13
using the J2EE security role, 6-12
with JAAS, 2-4

run-as element, 2-13, 3-15
runAs security identity, 12-9
runas-mode, 3-14, 6-9
RuntimePermission, 12-3

S
sample application

AccessTest1, A-13
secure socket layer (SSL)

authentication method, 6-5
integration with Basic authentication, 6-10
integration with JAAS Provider, 6-8

Secure Socket Layers (SSL), 6-5
Secure Sockets Layer. See SSL
security, 12-3

authentication, 11-5
keys and certificates, 11-2
OC4J and OHS configuration, 11-23, 11-25
permissions, 12-3
requesting client authentication, 11-7
using certificates with OC4J and OHS, 11-4

security managers
PrintingSecurityManager, 9-6

security role, 3-15
using in the web.xml file, 6-12

security roles
mapping, 3-14

SecurityManager, 9-3
specifying, 9-5

SecurityManager.checkPermission, 6-15
<sep-property> element, 14-2, 14-4
servlet, 3-15
Servlet.service, 6-15
session cache, 3-19
set command, 5-21
-setpasswd option to JAZN Admintool, 5-18
setting a password, 5-12
-shell option to JAZN Admintool, 5-19

single sign-on (SSO), 6-5, 6-14
integration with JAAS Provider, 6-5

SocketPermission, 12-3
specifying

security manager, 9-5
sr_manager

security role, 3-15
SSL, 1-4

client-authentication, 11-31
use with OID and JAAS Provider, 3-18

starting
JAZN Admintool, 5-4

subject
definition, 3-13

Subject.doAs method, 2-13, 6-15
associating a subject with

AccessControlContext, 1-2
invoking, 2-3

subject.doAs(), 3-13
subjects, 1-2

definition, 1-2
with JAAS, 1-2

system properties
java.security.lmanager, 9-6
java.security.manager, 9-5
java.security.policy, 9-5
oracle.home, 9-6

System.setSecurityManager(), 9-5

T
target names

definition, 9-2
<transport-config> element, 14-6
trustpoint, 1-4
truststore

definition, 14-2
two-way authentication, 3-18

U
user communities, 2-4, 4-5
user manager, 4-8

definition, 1-3
user repository

Index-10

definition, 1-3
jazn-data.xml, 2-8, 2-9
Oracle Internet Directory (OID), 2-8, 2-9
principals.xml, 2-8, 2-10

UserManager
interface, 4-12
specifying, 3-22 to 3-26

users
adding and removing with the JAZN

Admintool, 5-11
adding in JAZN Admintool, 5-11
creating with Oracle Internet Directory, 4-8
creating with the ldapadd tool, 4-8
listing in JAZN Admintool, 5-17
listing with the JAZN Admintool, 5-17
management in Application Realms, 4-8, 4-11
management in External Realms, 4-8, 4-9
management in Identity Management

Realms, 4-8, 4-10
management in LDAP-based environments, 4-8
management in XML-based environments, 4-5

W
web.xml, 3-3, 3-11, 3-15

using the J2EE security role, 6-12

X
XML-based provider type, 2-2, 2-9

jazn-data.xml, 4-5
provider type, 4-2
realm and policy information storage, 4-5
realm management, 4-5
realm type available, 4-5

XMLUserManager, 2-8
XMLUserManager class, 2-10

	Oracle® Application Server Containers for J2EE
	Security Guide
	Contents
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Introduction
	The Java 2 Security Model
	Principals and Subjects
	Principals
	Subjects

	Authentication and Authorization
	Secure Communications
	Secure Sockets Layer
	Certificates
	HTTPS
	Identity Propagation

	Developing Secure J2EE Applications

	Part I� JAAS
	2 Overview of JAAS in Oracle Application Server
	The JAAS Provider
	Provider Types

	What Is JAAS?
	Login Module Authentication
	Roles
	Realms
	Applications
	Policies and Permissions
	Sun Policy Example
	XML-Based Example

	JAAS Framework Features
	User Managers
	Using JAZNUserManager
	Using XMLUserManager

	Specifying UserManagers
	Capability Model of Access Control
	Role-Based Access Control (RBAC)
	Role Hierarchy
	Role Activation

	3 Configuring And Deploying the JAAS Provider
	LDAP-Based Provider Environment Settings
	J2EE Deployment Descriptors
	OC4J Deployment Descriptors
	JAAS Provider Configuration Files
	Specifying JAAS as the Policy Provider (Optional)
	Locating jazn.xml
	The <jazn> Tag
	The <jazn> Tag and the XML-Based Provider
	The <jazn> Tag and the LDAP-Based Provider
	The <property> Subelement Of <jazn>

	Specifying Authentication (auth-method)
	Specifying auth-method in web.xml
	Specifying auth-method in orion-web.xml and orion-application.xml
	Specifying auth-method in orion-application.xml

	Configuring Servlet Authorization (runas-mode and doasprivileged-mode) in <jazn-web-app>
	Mapping Security Roles In Servlets (run-as)
	Configuring RealmLoginModule
	Enabling RealmLoginModule Using A Text Editor

	Configuring the JAAS Provider To Use SSL With Oracle Internet Directory
	Configuring For EJB RMI Client Access
	Configuring Caching (LDAP-Based Provider Only)
	Session Cache Details
	Disabling Caching
	Configuration

	Specifying a UserManager In orion-application.xml
	Using the <principals> element and principals.xml

	4 JAAS Provider Administration Tasks
	JAAS Provider Management Overview
	Realm and Policy Management
	Realm and Policy Management Tools
	JAAS Provider Realm Framework
	Realm Management in XML-Based Environments
	XML-Based Realms
	XML-Based Realm and Policy Information Storage

	Realm Management in LDAP-Based Environments
	LDAP-Based Realm Types
	LDAP-Based Realm Data Storage
	LDAP-Based Realm Permissions

	JAAS Provider Policy Administration
	Oracle Internet Directory Administration
	AdminPermission Class
	Policy Partitioning

	JAAS Provider Debug Logging

	5 Using the JAZN Admintool
	Before You Start
	Authentication and the JAZN Admintool (XML-based Provider Only)
	Specifying an Admintool LoginModule in jazn-data.xml

	JAZN Admintool Command-Line Options
	Syntax
	Admintool Authentication (XML-based Provider Only)
	Clustering Operations
	Configuration Operations
	Interactive Shell
	Login Modules
	Migration Operations
	Miscellaneous
	Password Management (XML-based Provider only)
	Policy Operations
	Realm Operations

	Adding Clustering Support (XML-based Provider Only)
	Adding and Removing Login Modules
	Adding and Removing Policy Permissions (XML-based Provider Only)
	Adding and Removing Principals (XML-based Provider Only)
	Adding and Removing Realms
	Adding and Removing Roles
	Adding and Removing Users (XML-based Provider Only)
	Checking Passwords (XML-based Provider Only)
	Configuration Operations
	Granting and Revoking Permissions
	Granting and Revoking Roles
	Listing Login Modules
	Listing Permissions
	Listing Permission Information
	Listing Principal Classes
	Listing Principal Class Information
	Listing Realms
	Listing Roles
	Listing Users
	Migrating Principals from the principals.xml File (XML-based�Provider�Only)
	Setting Passwords (XML-based Provider only)
	Using the JAZN Admintool Shell
	Navigating the JAZN Admintool Shell
	add: Creating Provider Data
	cd: Navigating Provider Data
	clear: Clearing the Screen
	exit: Exiting the JAZN Shell
	help: Listing JAZN Admintool Shell Commands
	ls: Listing Data
	man: Viewing JAZN Admintool Man Pages
	pwd: Displaying The Working Directory
	rm: Removing Provider Data
	set: Updating Values

	Admintool Shell Directory Structure

	6 Security and J2EE Applications
	Introduction
	Security Considerations During Development and Deployment
	Development
	Deployment

	OC4J and the JAAS Provider
	OC4J Integration
	JAZNUserManager
	Replacing principals.xml
	JAZNUserManager Features

	Authentication Environments
	Integrating the JAAS Provider with SSO-Enabled Applications
	SSO-Enabled J2EE Environments: A Typical Scenario

	Integrating the JAAS Provider with SSL-Enabled Applications
	SSL-Enabled J2EE Environments: A Typical Scenario

	Integrating the JAAS Provider with Basic Authentication
	Basic Authentication J2EE Environments: Typical Scenario

	J2EE and JAAS Provider Role Mapping
	J2EE Security Roles
	JAAS Provider Roles and Users
	OC4J Group Mapping to J2EE Security Roles

	Authentication in the J2EE Environment
	Running with an Authenticated Identity
	Retrieving Authentication Information

	Authorization in the J2EE Environment

	7 7 Custom LoginModules
	Custom JAAS LoginModule Integration with OC4J
	Packaging and Deployment
	Deploying as Standard Extensions or Optional Packages
	Deploying Within the J2EE Application
	Using the OC4J Classloading Mechanism
	Using the JAAS Provider Classloading Mechanism

	Configuration
	jazn-data.xml
	<jazn-loginconfig>
	<jazn-policy>

	orion-application.xml
	<jazn>
	<security-role-mapping>
	<library>

	Simple Login Module J2EE Integration
	Development
	Packaging
	Deployment

	8 JAAS and Enterprise Manager
	Startup
	Editing Global Security Settings
	Editing Individual Security Settings

	Selecting a UserManager
	Mapping Security Roles
	Creating Users
	Creating Groups
	Deleting Users Or Groups
	Editing Users
	Assigning Users To Groups
	Granting Permissions To Groups

	Part II� Other Technologies
	9 Java 2 Security
	Introduction
	Permissions
	Protection Domains

	JAAS Provider Permission Classes
	Creating a Java 2 Policy File
	The Java 2 Security Manager
	Using PrintingSecurityManager To Debug Java 2 Policy

	10 Password Management
	Introduction
	Password Obfuscation In jazn-data.xml and jazn.xml
	Hand-editing jazn-data.xml

	Creating An Indirect Password
	Indirect Password Examples

	Specifying a UserManager In orion-application.xml

	11 Oracle HTTPS for Client Connections
	Introduction
	Overview of SSL Keys and Certificates
	Creating Keys and Certificates With OC4J and Oracle HTTP Server
	Example: Creating an SSL Certificate and Generating Your Own Signature
	Requesting Client Authentication

	Oracle HTTPS And Clients
	HTTPConnection Class
	OracleSSLCredential Class (OracleSSL Only)

	Overview of Oracle HTTPS Features
	SSL Cipher Suites
	Choosing a Cipher Suite
	SSL Cipher Suites Supported by OracleSSL
	SSL Cipher Suites Supported by JSSE

	Access Information About Established SSL Connections
	Security-Aware Applications Support
	java.net.URL Framework Support

	Specifying Default System Properties
	javax.net.ssl.KeyStore
	javax.net.ssl.KeyStorePassword
	Potential Security Risk with Storing Passwords in System Properties

	Oracle.ssl.defaultCipherSuites (OracleSSL only)

	Oracle HTTPS Example
	Initializing SSL Credentials In OracleSSL
	Verifying Connection Information
	Transferring Data Using HTTPS

	Using HTTPClient with JSSE
	Configuring HTTPClient To Use JSSE

	Configuring Oracle HTTP Server and OC4J for SSL
	Oracle HTTP Server Configuration Steps for SSL
	OC4J Configuration Steps for SSL

	Configuring OC4J Standalone for SSL
	Requesting Client Authentication with OC4J Standalone

	HTTPS Common Problems and Solutions

	12 EJB Security
	EJB JNDI Security Properties
	JNDI Properties in jndi.properties
	JNDI Properties Within Implementation

	Configuring Security
	Granting Permissions in Browser
	Authenticating and Authorizing EJB Applications
	Specifying Users and Groups
	Specifying Logical Roles in the EJB Deployment Descriptor
	Specifying Unchecked Security for EJB Methods
	Specifying the runAs Security Identity
	Mapping Logical Roles to Users and Groups
	Specifying a Default Role Mapping for Undefined Methods
	Specifying Users and Groups by the Client

	Specifying Credentials in EJB Clients
	Credentials in JNDI Properties
	Credentials in the InitialContext

	13 J2EE Connector Architecture Security
	Deploying Resource Adapters
	The oc4j-ra.xml Descriptor
	The <security-config> Element

	The oc4j-connectors.xml Descriptor

	Specifying Container-Managed or Component-Managed Sign-On
	Authentication in Container-Managed Sign-On
	JAAS Pluggable Authentication
	The InitiatingPrincipal and InitiatingGroup Classes
	JAAS and the <connector-factory> Element

	User-Created Authentication Classes
	Extending AbstractPrincipalMapping

	Modifying oc4j-ra.xml

	14 Configuring CSIv2
	Introduction to CSIv2 Security Properties
	EJB Server Security Properties in internal-settings.xml
	CSIv2 Security Properties in internal-settings.xml
	CSIv2 Security Properties in ejb_sec.properties
	Trust Relationships

	CSIv2 Security Properties in orion-ejb-jar.xml
	The <transport-config> element
	The <as-context> element
	The <sas-context> element
	DTD

	EJB Client Security Properties in ejb_sec.properties

	15 Security Tips
	HTTPS
	Overall Security
	JAAS

	A JAAS Provider Standards and Samples
	Sample jazn-data.xml Code
	Supplemental Code Samples
	Supplementary Code Sample: Creating an Application Realm
	Supplementary Code Sample: Modifying User Permissions

	B JAAS Provider Schemas
	Schema for jazn-data.xml
	Schema for jazn.xml

	Index

