
Oracle® Application Server Containers for J2EE
Services Guide

10g (9.0.4)

Part No. B10326-01

September 2003

Oracle Application Server Containers for J2EE Services Guide, 10g (9.0.4)

Part No. B10326-01

Copyright © 2002, 2003, Oracle Corporation. All rights reserved.

Primary Authors: Peter Purich, Elizabeth Hanes Perry

Contributing Authors: Janis Greenberg, Mark Kennedy

Contributors: Anirruddha Thakur, Anthony Lai, Ashok Banerjee, Brian Wright, Cheuk Chau,
Debabrata Panda, Ellen Barnes, Erik Bergenholtz, Gary Gilchrist, Irene Zhang, J.J. Snyder, Jon Currey,
Jyotsna Laxminarayanan, Krishna Kunchithapadam, Kuassi Mensah, Lars Ewe, Lelia Yin, Mike
Lehmann, Mike Sanko, Min-Hank Ho, Nickolas Kavantzas, Rachel Chan, Rajkumar Irudayaraj,
Raymond Ng, Sastry Malladi, Sheryl Maring, Stella Li, Sunil Kunisetty, Thomas Van Raalte.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle9iAS Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

iii

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xix

Preface.. xxi

Audience .. xxii
Documentation Accessibility .. xxii
Organization .. xxiii
Related Documentation .. xxiv
Conventions.. xxvi

1 Introduction to OC4J Services

Java Naming and Directory Interface (JNDI).. 1-2
Java Message Service (JMS) .. 1-2
Remote Method Invocation (RMI) .. 1-2
Data Sources .. 1-3
Java Transaction API (JTA).. 1-3
J2EE Connector Architecture (JCA) ... 1-3
Java Object Cache ... 1-3

2 Java Naming and Directory Interface

Introduction ... 2-2
Initial Context.. 2-2

Constructing a JNDI Context.. 2-3
The JNDI Environment ... 2-4

iv

Creating the Initial Context in OC4J ... 2-5
From J2EE Application Clients ... 2-6

Environment Properties.. 2-6
Application Client Example... 2-8

From J2EE Application Components... 2-11
Objects in the Same Application.. 2-11
Objects Not in the Same Application.. 2-13

JNDI Clustering .. 2-14
Enabling JNDI Clustering.. 2-15
JNDI Clustering Limitations ... 2-15

Multiple Islands on a Given Subnet.. 2-15
Propagating Changes Across the Cluster .. 2-16
Binding a Remote Object .. 2-16

3 Java Message Service

Overview .. 3-2
Oracle Application Server JMS .. 3-2

Configuring OracleAS JMS Ports ... 3-3
Configuring OracleAS JMS Destination Objects .. 3-3

Default Destination Objects ... 3-6
Default Connection Factories... 3-7

Steps for Sending and Receiving a Message... 3-8
OracleAS JMS Utilities ... 3-11
OracleAS JMS File-Based Persistence .. 3-14

Overview... 3-14
Enabling Persistence.. 3-15
Recovery.. 3-16

Abnormal Termination .. 3-19
Predefined OracleAS JMS Exception Queue .. 3-20

Message Expiration ... 3-20
Message Paging... 3-21
OracleAS JMS Configuration File Elements for jms.xml .. 3-22

Examples ... 3-27
OracleAS JMS System Properties ... 3-29

Resource Providers ... 3-32

v

Configuring a Custom Resource Provider .. 3-32
Oracle JMS ... 3-33

Using OJMS as a Resource Provider.. 3-33
Install and Configure the JMS Provider... 3-34
Create User and Assign Privileges.. 3-34
Create JMS Destination Objects... 3-35
Define the OJMS Resource Provider... 3-36
Access the OJMS Resources ... 3-41

Using OJMS with Oracle Application Server and the Oracle Database 3-45
Error When Copying aqapi.jar .. 3-45
OJMS Certification Matrix.. 3-45

Map Logical Names in Resource References to JNDI Names ... 3-46
JNDI Naming for OracleAS JMS .. 3-48
JNDI Naming for OJMS... 3-49
JNDI Naming Property Setup for Java Application Clients... 3-49
Client Sends JMS Message Using Logical Names ... 3-50

Third-Party JMS Providers ... 3-52
Using WebSphere MQ as a Resource Provider.. 3-52

Configuring WebSphere MQ... 3-52
Using SonicMQ as a Resource Provider.. 3-53

Configuring SonicMQ... 3-54
Using SwiftMQ as a Resource Provider .. 3-55

Configuring SwiftMQ ... 3-55
Using Message-Driven Beans... 3-56
High Availability and Clustering for JMS... 3-56

Oracle Application Server JMS High Availability Configuration 3-57
Terminology... 3-57
OracleAS JMS Server Distributed Destinations .. 3-58
OracleAS Dedicated JMS Server ... 3-60
Modifying the OPMN Configuration... 3-62
Configuring OracleAS JMS .. 3-63
Queue Connection Factory Definition Example ... 3-63
Deploying Applications ... 3-64
High Availability ... 3-64

OJMS High Availability Configuration... 3-64

vi

Failover Scenarios When Using a RAC Database With OJMS ... 3-65
Using JMS with RAC Network Failover .. 3-65
Using OJMS With Transparent Application Failover (TAF)... 3-66

Server Side Sample Code for Failover for Both JMS Providers ... 3-67
Clustering Best Practices.. 3-68

4 Data Sources

Introduction ... 4-2
Types of Data Sources .. 4-2

Emulated Data Sources... 4-3
Non-emulated Data Sources .. 4-5
Native Data Sources .. 4-6

Mixing Data Sources .. 4-7
Defining Data Sources ... 4-8

Configuration Files ... 4-9
Defining Location of the Data Source XML Configuration File 4-10
Application-Specific Data Source XML Configuration File .. 4-10

Data Source Attributes ... 4-10
Defining Data Sources in Oracle Enterprise Manager .. 4-14
Defining Data Sources in the XML Configuration File ... 4-15
Password Indirection ... 4-15

Configuring an Indirect Password with Oracle Enterprise Manager 4-16
Configuring an Indirect Password Manually.. 4-17

Associating a Database Schema with a Data Source ... 4-18
The database-schema.xml File ... 4-18
Example Configuration... 4-19

Using Data Sources... 4-20
Portable Data Source Lookup ... 4-20
Retrieving a Connection from a Data Source ... 4-22
Retrieving Connections with a Non-emulated Data Source .. 4-23

Retrieving a Connection Outside a Global Transaction... 4-23
Retrieving a Connection Within a Global Transaction .. 4-23

Connection Retrieval Error Conditions ... 4-24
Using Different User Names for Two Connections to a Single Data Source.............. 4-24
Improperly configured OCI JDBC driver .. 4-25

vii

Using Two-Phase Commits and Data Sources .. 4-25
Using Oracle JDBC Extensions .. 4-27
Using Connection Caching Schemes .. 4-28
Using the OCI JDBC Drivers.. 4-29
Using DataDirect JDBC Drivers .. 4-30

Installing and Setting Up DataDirect JDBC Drivers ... 4-30
Example DataDirect Data Source Entries.. 4-31

SQLServer... 4-32
DB2 .. 4-32
Sybase.. 4-33

High Availability Support for Data Sources ... 4-33
Introduction... 4-33

Oracle Maximum Availability Architecture (MAA) .. 4-33
High Availability Support in OC4J... 4-35

Configuring Network Failover with OC4J ... 4-36
Configuring Transparent Application Failover (TAF) with OC4J 4-37
Configuring a TAF Descriptor (tnsnames.ora)... 4-38
Connection Pooling .. 4-39
Acknowledging TAF Exceptions.. 4-40
SQL Exception Handling... 4-41

5 Oracle Remote Method Invocation

Introduction to RMI/ORMI .. 5-2
ORMI Enhancements ... 5-2

Increased RMI Message Throughput ... 5-2
Enhanced Threading Support ... 5-2
Co-located Object Support ... 5-3

Client-Side Requirements.. 5-3
Configuring OC4J for RMI ... 5-3

Configuring RMI Using Oracle Enterprise Manager .. 5-4
Configuring RMI Manually .. 5-6

Editing server.xml ... 5-7
Editing rmi.xml.. 5-7
Editing opmn.xml.. 5-10

RMI Configuration Files .. 5-10

viii

JNDI Properties for RMI .. 5-11
Naming Provider URL.. 5-11
Context Factory Usage.. 5-14

Example Lookups ... 5-14
OC4J Standalone .. 5-15
OC4J in Oracle Application Server: Releases Before 10g (9.0.4) 5-15
OC4J in Oracle Application Server: 10g (9.0.4) Release ... 5-16

Configuring ORMI Tunneling through HTTP ... 5-16
Configuring an OC4J Mount Point .. 5-17

6 J2EE Interoperability

Introduction to RMI/IIOP ... 6-2
Transport.. 6-2
Naming... 6-2
Security... 6-3
Transactions... 6-3
Client-Side Requirements .. 6-3
The rmic.jar Compiler .. 6-4

Switching to Interoperable Transport ... 6-4
Simple Interoperability in a Standalone Environment.. 6-4
Advanced Interoperability in a Standalone Environment.. 6-5
Simple Interoperability in Oracle Application Server Environment 6-6

Configuring for Interoperability Using Oracle Enterprise Manager 6-6
Configuring for Interoperability Manually ... 6-9

Advanced Interoperability in Oracle Application Server Environment 6-10
Configuring for Interoperability Using Oracle Enterprise Manager 6-11
Configuring for Interoperability Manually ... 6-11

The corbaname URL... 6-13
The OPMN URL.. 6-14
Exception Mapping .. 6-15
Invoking OC4J-Hosted Beans from a Non-OC4J Container... 6-15

Configuring OC4J for Interoperability... 6-16
Interoperability OC4J Flags ... 6-16
Interoperability Configuration Files .. 6-16
EJB Server Security Properties (internal-settings.xml) .. 6-17

ix

CSIv2 Security Properties .. 6-19
CSIv2 Security Properties (internal-settings.xml).. 6-20
CSIv2 Security Properties (ejb_sec.properties)... 6-20

Trust Relationships ... 6-21
CSIv2 Security Properties (orion-ejb-jar.xml)... 6-22

The <transport-config> Element .. 6-22
The <as-context> element .. 6-23
The <sas-context> element... 6-23

EJB Client Security Properties (ejb_sec.properties) ... 6-24
JNDI Properties for Interoperability (jndi.properties) .. 6-25

Context Factory Usage.. 6-26

7 Java Transaction API

Introduction ... 7-2
Demarcating Transactions... 7-2
Enlisting Resources .. 7-2

Single-Phase Commit... 7-3
Enlisting a Single Resource ... 7-3

Configure the Data Source ... 7-3
Retrieve the Data Source Connection ... 7-4
Perform JNDI Lookup .. 7-4
Retrieve a Connection... 7-5

Demarcating the Transaction.. 7-6
Container-Managed Transactional Demarcation ... 7-7
Bean-Managed Transactions.. 7-8
JTA Transactions ... 7-9

 JDBC Transactions ... 7-9
Two-Phase Commit... 7-10

Configuring Two-Phase Commit Engine.. 7-11
Database Configuration Steps ... 7-11
OC4J Configuration Steps .. 7-12

Limitations of Two-Phase Commit Engine... 7-15
Configuring Timeouts.. 7-16
Recovery for CMP Beans When Database Instance Fails ... 7-16

Connection Recovery for CMP Beans That Use Container-Managed Transactions......... 7-17

x

Connection Recovery for CMP Beans That Use Bean-Managed Transactions 7-17
Using Transactions With MDBs ... 7-17

Transaction Behavior for MDBs using OC4J JMS .. 7-18
Transaction Behavior for MDBs using Oracle JMS.. 7-18

MDBs that Use Container-Managed Transactions ... 7-19
MDBs that Use Bean-Managed Transactions and JMS Clients..................................... 7-19

8 J2EE Connector Architecture

Introduction ... 8-2
Resource Adapters.. 8-2

Standalone Resource Adapters.. 8-2
Embedded Resource Adapters .. 8-3
Example of RAR File Structure.. 8-3
The ra.xml Descriptor ... 8-3

Application Interface.. 8-4
Quality of Service Contracts.. 8-4

Deploying and Undeploying Resource Adapters .. 8-5
Deployment Descriptors.. 8-5

The oc4j-ra.xml Descriptor ... 8-5
The oc4j-connectors.xml Descriptor.. 8-8

Standalone Resource Adapters ... 8-9
Deployment .. 8-10

Embedded Resource Adapters ... 8-11
Deployment .. 8-12

Locations of Relevant Files .. 8-12
Specifying Quality of Service Contracts .. 8-14

Configuring Connection Pooling ... 8-14
Managing EIS Sign-On... 8-15

Component-Managed Sign-On ... 8-16
Container-Managed Sign-On... 8-17

Declarative Container-Managed Sign-On... 8-19
Programmatic Container-Managed Sign-On.. 8-20

OC4J-Specific Authentication Classes .. 8-20
JAAS Pluggable Authentication Classes .. 8-25
Special Features Accessible Via Programmatic Interface .. 8-26

xi

9 Java Object Cache

Java Object Cache Concepts ... 9-2
Java Object Cache Basic Architecture .. 9-3

Distributed Object Management ... 9-4
How the Java Object Cache Works .. 9-5
Cache Organization.. 9-6
Java Object Cache Features ... 9-7

Java Object Cache Object Types .. 9-8
Memory Objects .. 9-8
Disk Objects ... 9-9
StreamAccess Objects... 9-9
Pool Objects ... 9-9

Java Object Cache Environment .. 9-10
Cache Regions ... 9-10
Cache Subregions ... 9-11
Cache Groups.. 9-11
Region and Group Size Control ... 9-11
Cache Object Attributes ... 9-13

Using Attributes Defined Before Object Loading... 9-13
Using Attributes Defined Before or After Object Loading.. 9-17

Developing Applications Using Java Object Cache .. 9-20
Importing Java Object Cache .. 9-20
Defining a Cache Region ... 9-20
Defining a Cache Group .. 9-21
Defining a Cache Subregion.. 9-22
Defining and Using Cache Objects .. 9-22
Implementing a CacheLoader Object .. 9-23

Using CacheLoader Helper Methods ... 9-24
Invalidating Cache Objects.. 9-25
Destroying Cache Objects.. 9-26
Multiple Object Loading and Invalidation ... 9-27
Java Object Cache Configuration ... 9-29

Examples... 9-32
Declarative Cache ... 9-34

Declarative Cache File Sample .. 9-36

xii

Declarative Cache File Format... 9-37
Examples ... 9-40
Declarable User-Defined Objects .. 9-42
Declarable CacheLoader, CacheEventListener, and CapacityPolicy 9-43
Initializing the Java Object Cache in a non-OC4J Container... 9-44

Capacity Control ... 9-45
Implementing a Cache Event Listener... 9-47
Restrictions and Programming Pointers ... 9-50

Working with Disk Objects .. 9-52
Local and Distributed Disk Cache Objects.. 9-52

Local Objects... 9-52
Distributed Objects.. 9-52

Adding Objects to the Disk Cache.. 9-53
Automatically Adding Objects .. 9-53
Explicitly Adding Objects... 9-53
Using Objects that Reside Only in Disk Cache ... 9-53

Working with StreamAccess Objects .. 9-55
Creating a StreamAccess Object ... 9-56

Working with Pool Objects ... 9-57
Creating Pool Objects ... 9-57
Using Objects from a Pool ... 9-58
Implementing a Pool Object Instance Factory .. 9-59
Pool Object Affinity .. 9-60

Running in Local Mode ... 9-61
Running in Distributed Mode ... 9-61

Configuring Properties for Distributed Mode.. 9-61
Setting the Distribute Configuration Property.. 9-62
Setting the discoveryAddress Configuration Property ... 9-62

Using Distributed Objects, Regions, Subregions, and Groups .. 9-62
Using the REPLY Attribute with Distributed Objects.. 9-63
Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT ... 9-64

Cached Object Consistency Levels ... 9-67
Using Local Objects ... 9-67
Propagating Changes Without Waiting for a Reply... 9-68
Propagating Changes and Waiting for a Reply .. 9-68

xiii

Serializing Changes Across Multiple Caches.. 9-68
Sharing Cached Objects in an OC4J Servlet.. 9-69

XML Schema for Cache Configuration .. 9-70
XML schema for attribute declaration.. 9-71

Index

xiv

xv

List of Examples

3–1 OracleAS JMS Client that Sends Messages to a Queue.. 3-9
3–2 OracleAS JMS Client That Receives Messages Off a Queue ... 3-10
3–3 Emulated DataSource With Thin JDBC Driver ... 3-40
3–4 OJMS Client That Sends Messages to an OJMS Queue ... 3-43
3–5 OJMS Client That Receives Messages Off of a Queue ... 3-44
3–6 JSP Client Sends Message to a Topic .. 3-51
4–1 The database-schema Element .. 4-18
4–2 Mapping Logical JNDI Name to Actual JNDI Name... 4-21
7–1 Retrieving a Connection Using Portable JNDI Lookup... 7-5
7–2 Session Bean Declared as Container-Managed Transactional .. 7-6
7–3 <container-transaction> in Deployment Descriptor .. 7-8
9–1 Setting the Name of a CacheLoader ... 9-21
9–2 Defining a Cache Group... 9-21
9–3 Defining a Cache Subregion .. 9-22
9–4 Setting Cache Attributes... 9-23
9–5 Implementing a CacheLoader ... 9-25
9–6 Sample CacheListLoader.. 9-28
9–7 Sample Usage... 9-28
9–8 Automatically Load Declarative Cache ... 9-36
9–9 Programmatically Read Declarative Cache File ... 9-36
9–10 Define An Object by Declaratively Passing in a Parameter .. 9-42
9–11 Declarable CacheLoader Implementation ... 9-43
9–12 Sample CapacityPolicy Based on Object Size.. 9-46
9–13 Sample CapacityPolicy Based on Access Time and Reference Count 9-47
9–14 Implementing a CacheEventListener ... 9-48
9–15 Setting a Cache Event Listener on an Object ... 9-49
9–16 Setting a Cache Event Listener on a Group ... 9-49
9–17 Creating a Disk Object in a CacheLoader .. 9-54
9–18 Application Code that Uses a Disk Object... 9-55
9–19 Creating a StreamAccess Object in a Cache Loader... 9-56
9–20 Creating a Pool Object .. 9-58
9–21 Using a PoolAccess Object ... 9-59
9–22 Implementing Pool Instance Factory Methods ... 9-60
9–23 Distributed Caching Using Reply ... 9-63
9–24 Distributed Caching Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT 9-65

xvi

List of Figures

3–1 JMS Ports... 3-3
3–2 Configuration Elements Hierarchy... 3-5
4–1 OC4JData Source Types.. 4-2
4–2 Choosing a Data Source Type.. 4-3
4–3 Edit Data Source Page... 4-17
5–1 Oracle Enterprise Manager System Components ... 5-4
5–2 Oracle Enterprise Manager Server Properties Port Configuration 5-5
5–3 Oracle Enterprise Manager Replication Properties .. 5-5
6–1 Oracle Enterprise Manager System Components ... 6-7
6–2 Oracle Enterprise Manager Server Properties... 6-7
6–3 Oracle Enterprise Manager Port Configuration.. 6-8
6–4 Oracle Enterprise Manager Stub Generation... 6-8
6–5 Oracle Enterprise Manager Port Specifications... 6-11
7–1 Two-Phase Commit Diagram .. 7-12
8–1 J2EE Connector Architecture ... 8-2
8–2 Component-Managed Sign-On ... 8-16
8–3 Container-Managed Sign-On... 8-18
9–1 Java Object Cache Basic Architecture ... 9-4
9–2 Java Object Cache Distributed Architecture.. 9-5
9–3 Java Object Cache Basic APIs... 9-6
9–4 Capacity Policy Example, Part 1.. 9-12
9–5 Capacity Policy Example, Part 2.. 9-13
9–6 Declarative Cache Architecture... 9-35
9–7 Declarative Cache Schema Attributes .. 9-39

xvii

List of Tables

2–1 InitialContext Properties .. 2-4
2–2 JNDI-Related Environment Properties .. 2-7
3–1 JMSUtils Options ... 3-12
3–2 OC4J JMS Utilities ... 3-12
3–3 JMSUtils Command Options ... 3-13
3–4 Connection Factory Configuration Attributes .. 3-26
3–5 OC4J JMS Administration Properties ... 3-29
3–6 OJMS Certification Matrix.. 3-46
3–7 High Availability Summary... 3-56
4–1 Data Source Configuration Summary .. 4-8
4–2 Data Source Characteristics ... 4-9
4–3 Data Source Attributes.. 4-11
4–4 database-schema.xml File Attributes ... 4-18
4–5 Database Caching Schemes.. 4-28
4–6 TAF Configuration Options... 4-38
4–7 OCI API Fail-Over Events .. 4-41
4–8 SQL Exceptions and Driver Type.. 4-42
5–1 RMI Configuration Files ... 5-10
5–2 Naming Provider URL.. 5-11
6–1 Java-CORBA Exception Mappings ... 6-15
6–2 Interoperability Configuration Files ... 6-16
6–3 EJB Server Security Properties... 6-17
6–4 EJB Client Security Properties ... 6-24
7–1 Transaction Attributes .. 7-7
8–1 Directory Locations ... 8-13
8–2 File Locations ... 8-13
8–3 Method Description for oracle.j2ee.connector.PrincipalMapping Interface............... 8-21
8–4 Method Description for oracle.j2ee.connector.AbstractPrincipalMapping Class...... 8-22
9–1 Cache Organizational Construct ... 9-6
9–2 Java Object Cache Attributes–Set at Object Creation... 9-14
9–3 Java Object Cache Attributes ... 9-17
9–4 CacheLoader Methods Used in load().. 9-24
9–5 Java Object Cache Configuration Properties ... 9-30
9–6 Description of Declarative Cache Schema (cache.xsd) .. 9-37

xviii

xix

Send Us Your Comments

Oracle Application Server Containers for J2EE Services Guide, 10g (9.0.4)

Part No. B10326-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What FEATUREs did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xx

xxi

Preface

Oracle Application Server 10g (9.0.4) includes a J2EE environment known as Oracle
Application Server Containers for J2EE (OC4J). This book describes the services
provided by OC4J.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

xxii

Audience
This book was written for developers familiar with the J2EE architecture who want
to understand Oracle’s implementation of J2EE Services.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at:

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

xxiii

Organization
This document contains the following chapters:

Chapter 1, “Introduction to OC4J Services”
Gives an overview of the service technologies included in OC4J.

Chapter 2, “Java Naming and Directory Interface”
Covers using the JNDI to look up objects.

Chapter 3, “Java Message Service”
Discusses plugging Resource Providers into the Java Message Service (JMS) and the
two JMS providers of its own that Oracle furnishes.

Chapter 4, “Data Sources”
Discusses data sources, vendor-independent encapsulations of a connection to a
database server.

Chapter 5, “Oracle Remote Method Invocation”
Describes OC4J support for Remote Method Invocation (RMI) over the proprietary
Oracle RMI (ORMI) protocol.

Chapter 6, “J2EE Interoperability”
Describes OC4J support for EJB2.0 interoperation using RMI over the standard
Internet Inter-Orb Protocol (IIOP) protocol.

Chapter 7, “Java Transaction API”
Documents Oracle’s implementation of the JTA.

Chapter 8, “J2EE Connector Architecture”
 Describes how to use the J2EE Connector Architecture in an OC4J application.

Chapter 9, “Java Object Cache”
Details the OC4J Java Object Cache, including its architecture and programming
features.

xxiv

Related Documentation
Refer to the following additional OC4J documents that are available from the Oracle
Java Platform Group:

■ Oracle Application Server Containers for J2EE User’s Guide

This book presents an overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference

This book discusses conceptual information and detailed syntax and usage
information for tag libraries, Java Beans, and other OC4J Java utilities.

■ Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This book includes information for servlet developers regarding use of servlets
and the servlet container in OC4J.

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

This book documents the EJB implementation and EJB container in OC4J.

The following documents are available from the Oracle Application Server group:

■ Oracle Application Server 10g Administrator’s Guide

■ Oracle Enterprise Manager Administrator’s Guide

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server 10g Performance Guide

■ Oracle Application Server 10g Globalization Guide

■ Oracle Application Server Web Cache Administrator’s Guide

■ Oracle Application Server 10g Upgrading to 10g (9.0.4)

xxv

The following are available from the JDeveloper group:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

For information about Oracle Application Server 10g Personalization, which is the
foundation of the Personalization tag library, refer to the following documents from
the Oracle Application Server 10g Personalization group:

■ Oracle Application Server Personalization Administrator’s Guide

■ Oracle Application Server Personalization API Reference

The following OTN resources are available for further information about OC4J:

■ OTN Web site for OC4J:

http://otn.oracle.com/tech/java/oc4j/content.html

■ OTN OC4J discussion forums, accessible through the following address:

http://www.oracle.com/forums/forum.jsp?id=486963

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/content.html

xxvi

Conventions
The following conventions are used in this manual:

Convention Meaning

. . . Horizontal ellipsis points in statements or commands mean that parts of
the statement or command not directly related to the example have been
omitted

Boldface text Boldface type in text indicates a GUI component such as a link or button
to click.

Italics Italic typeface indicates book titles or emphasis, or terms that are defined
in the text.

Monospace
(fixed-width)
font

Monospace typeface within text indicates items such as executables, file
names, directory names, Java class names, Java method names, variable
names, other programmatic elements (such as JSP tags or attributes, or
XML elements or attributes), or database SQL commands or elements
(such as schema names, table names, or column names).

Italic
monospace
(fixed-width)
font

Italic monospace font represents placeholders or variables.

[] Brackets enclose optional clauses from which you can choose one or
none.

| A vertical bar represents a choice of two or more options. Enter one of
the options. Do not enter the vertical bar.

Introduction to OC4J Services 1-1

1
Introduction to OC4J Services

Oracle Application Server Containers for J2EE (OC4J) supports the following
technologies, each of which has its own chapter in this book:

■ Java Naming and Directory Interface (JNDI)

■ Java Message Service (JMS)

■ Remote Method Invocation (RMI)

■ Data Sources

■ Java Transaction API (JTA)

■ J2EE Connector Architecture (JCA)

■ Java Object Cache

This chapter gives a brief overview of each technology in the preceding list.

Note: In addition to these technologies, OC4J supports the
JavaMail API, the JavaBeans Activation Framework (JAF), and the
Java API for XML Processing (JAXP). For information about these
technologies, see the Sun Microsystems J2EE documentation.

Java Naming and Directory Interface (JNDI)

1-2 Oracle Application Server Containers for J2EE Services Guide

Java Naming and Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) service that is implemented by
Oracle Application Server Containers for J2EE (OC4J) provides naming and
directory functionality for Java applications. JNDI is defined independently of any
specific naming or directory service implementation. As a result, JNDI enables Java
applications to access different, possibly multiple, naming and directory services
using a single API. Different naming and directory service provider interfaces (SPIs)
can be plugged in behind this common API to handle different naming services.

See Chapter 2, "Java Naming and Directory Interface", for details.

Java Message Service (JMS)
Java Message Service (JMS) provides a common way for Java programs to access
enterprise messaging products. JMS is a set of interfaces and associated semantics
that define how a JMS client accesses the facilities of an enterprise messaging
product.

See Chapter 3, "Java Message Service", for details.

Remote Method Invocation (RMI)
Remote Method Invocation (RMI) is one Java implementation of the remote
procedure call paradigm, in which distributed applications communicate by
invoking procedure calls and interpreting the return values.

OC4J supports both RMI over the Oracle Remote Method Invocation (ORMI)
protocol and over the Internet Inter-ORB Protocol (IIOP) protocol.

By default, OC4J uses RMI/ORMI. In addition to the benefits provided by
RMI/IIOP, RMI/ORMI provides additional features such as invoking RMI/ORMI
over HTTP, a technique known as "RMI tunneling."

See Chapter 5, "Oracle Remote Method Invocation", for details on RMI/ORMI.

Version 2.0 of the Enterprise Java Beans (EJB) specification uses RMI over the
Internet Inter-ORB Protocol (IIOP) protocol to make it easy for EJB-based
applications to invoke one another across different containers. You can make your
existing EJB interoperable without changing a line of code: simply edit the bean’s
properties and redeploy. J2EE uses RMI to provide interoperability between EJBs
running on different containers.

See Chapter 6, "J2EE Interoperability", for details on interoperability (RMI/IIOP).

Java Object Cache

Introduction to OC4J Services 1-3

Data Sources
A data source, which is the instantiation of an object that implements the
javax.sql.DataSource interface, enables you to retrieve a connection to a
database server.

See Chapter 4, "Data Sources", for details.

Java Transaction API (JTA)
EJBs use Java Transaction API (JTA) 1.0.1 for managing transactions. These
transactions involve single-phase and two-phase commits.

See Chapter 7, "Java Transaction API", for details.

J2EE Connector Architecture (JCA)
J2EE Connector Architecture (JCA) defines a standard architecture for connecting
the J2EE platform to heterogeneous Enterprise Information Systems (EISs).
Examples of EISs include ERP, mainframe transaction processing, database systems,
and legacy applications that are not written in the Java programming language.

See Chapter 8, "J2EE Connector Architecture", for details.

Java Object Cache
The Java Object Cache (formerly OCS4J) is a set of Java classes that manage Java
objects within a process, across processes, and on a local disk. The primary goal of
the Java Object Cache is to provide a powerful, flexible, easy-to-use service that
significantly improves server performance by managing local copies of objects that
are expensive to retrieve or create. There are no restrictions on the type of object that
can be cached or the original source of the object. The management of each object in
the cache is easily customized. Each object has a set of attributes that are associated
with it to control such things as how the object is loaded into the cache, where the
object is stored (in memory, on disk, or both), how it is invalidated (based on time
or by explicit request), and who should be notified when the object is invalidated.
Objects can be invalidated as a group or individually.

See Chapter 9, "Java Object Cache", for details.

Java Object Cache

1-4 Oracle Application Server Containers for J2EE Services Guide

Java Naming and Directory Interface 2-1

2
Java Naming and Directory Interface

This chapter describes the Java Naming and Directory Interface (JNDI) service that
is implemented by Oracle Application Server Containers for J2EE (OC4J)
applications. It covers the following topics:

■ Introduction

■ Constructing a JNDI Context

■ The JNDI Environment

■ Creating the Initial Context in OC4J

■ JNDI Clustering

Introduction

2-2 Oracle Application Server Containers for J2EE Services Guide

Introduction
JNDI, part of the J2EE specification, provides naming and directory functionality for
Java applications. Because JNDI is defined independently of any specific naming or
directory service implementation, it enables Java applications to access different
naming and directory services using a single API. Different naming and directory
service provider interfaces (SPIs) can be plugged in behind this common API to handle
different naming services.

Before reading this chapter, you should be familiar with the basics of JNDI and the
JNDI API. For basic information about JNDI, including tutorials and the API
documentation, visit the Sun Microsystems Web site at:

http://java.sun.com/products/jndi/index.html

A JAR file implementing JNDI, jndi.jar, is available with OC4J. Your application
can take advantage of the JNDI API without having to provide any other libraries or
JAR files. A J2EE-compatible application uses JNDI to obtain naming contexts that
enable the application to locate and retrieve objects such as data sources, Java
Message Service (JMS) services, local and remote Enterprise Java Beans (EJBs), and
many other J2EE objects and services.

Initial Context
The concept of the initial context is central to JNDI. Here are the two most frequently
used JNDI operations in J2EE applications:

■ Creating a new InitialContext object (in the javax.naming package)

■ Using the InitialContext, looking up a J2EE or other resource

When OC4J starts up, it constructs a JNDI initial context for each application by
reading each of the application’s configuration XML files that can contain resource
references.

Note: After the initial configuration, the JNDI tree for each
application is purely memory-based. Additions made to the context
at run time are not persisted. When OC4J is restarted, additional
bindings made by the application components to the JNDI name
space, such as making a Context.bind API call in application
code, are no longer available. However, anything that is bound
declaratively through the various XML files is reconstructed upon
startup.

Constructing a JNDI Context

Java Naming and Directory Interface 2-3

The following example shows two lines of Java code to use on the server side in a
typical Web or EJB application:

Context ctx = new InitialContext();
myEJBHome myhome =
 (HelloHome) ctx.lookup("java:comp/env/ejb/myEJB");

The first statement creates a new initial context object, using the default
environment. The second statement looks up an EJB home interface reference in the
application’s JNDI tree. In this case, myEJB might be the name of a session bean that
is declared in the web.xml (or orion-web.xml) configuration file, in an
<ejb-ref> tag. For example:

<ejb-ref>
 <ejb-ref-name>ejb/myEJB</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myEjb.HelloHome</home>
 <remote>myEjb.HelloRemote</remote>
</ejb-ref>

This chapter focuses on setting up the initial contexts for using JNDI and describing
how OC4J performs JNDI lookups. For more information about the other JNDI
classes and methods, see the Javadoc at:

http://java.sun.com/products/jndi/1.2/javadoc/index.html

Constructing a JNDI Context
When OC4J starts up, it constructs a JNDI context for each application that is
deployed in the server. There is always at least one application for an OC4J server,
the global application, which is the default parent for each application in a server
instance. User applications inherit properties from the global application and can
override property values defined in the global application, define new values for
properties, and define new properties as required.

For more information about configuring the OC4J server and its contained
applications, see the Oracle Application Server Containers for J2EE User’s Guide.

The JNDI Environment

2-4 Oracle Application Server Containers for J2EE Services Guide

The environment that OC4J uses to construct a JNDI initial context can be found in
three places:

■ System property values, as set either by the OC4J server or possibly by the
application container.

■ A jndi.properties file contained in the application EAR file (as part of
application-client.jar).

■ An environment specified explicitly in a java.util.Hashtable instance
passed to the JNDI initial context constructor. ("Application Client Example" on
page 2-8 shows a code example of this constructor.)

The JNDI Environment
The JNDI InitialContext has two constructors:

InitialContext()
InitialContext(Hashtable env)

The first constructor creates a Context object using the default context
environment. If you use this constructor in an OC4J server-side application, the
initial context is created by OC4J when the server is started, using the default
environment for that application. This constructor is the one that is typically used in
code that runs on the server side, such as in a JSP, EJB, or servlet.

The second constructor takes an environment parameter. The second form of the
InitialContext constructor is normally used in client applications, where it is
necessary to specify the JNDI environment. The env parameter in this constructor is
a java.util.Hashtable that contains properties that are required by JNDI.
These properties, defined in the javax.naming.Context interface, are listed in
Table 2–1.

Table 2–1 InitialContext Properties

Property Meaning

INITIAL_CONTEXT_FACTORY Value for the java.naming.factory.initial
property. This property specifies which initial context
factory to use when creating a new initial context object.

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-5

See "Application Client Example" on page 2-8 for a code example that sets these
properties and gets a new JNDI initial context.

Creating the Initial Context in OC4J
Application clients are defined in section 9.1 of the J2EE 1.3 specification as "first
tier client programs that execute in their own Java virtual machines. Application
clients follow the model for Java technology-based applications: they are invoked at
their main method and run until the virtual machine is terminated. However, like
other J2EE application components, application clients depend on a container to
provide system services. The application client container may be very light-weight
compared to other J2EE containers, providing only the security and deployment
services described [in this specification]."

JNDI initial contexts can be used in the following ways:

■ From J2EE Application Clients

■ From J2EE Application Components

PROVIDER_URL Value for the java.naming.provider.url property.
This property specifies the URL that the application client
code uses to look up objects on the server. Also used by
RMIInitialContextFactory and
ApplicationClientInitialContextFactory to
search for objects in different applications. See Table 2–2,
"JNDI-Related Environment Properties" on page 2-7
for details.

SECURITY_PRINCIPAL Value for the java.naming.security.principal
property. This property specifies the user name. Required
in application client code to authenticate the client. Not
required for server-side code, because the authentication
has already been performed.

SECURITY_CREDENTIAL Value for the java.naming.security.credential
property. This property specifies the password. Required in
application client code to authenticate the client. Not
required for server-side code, because the authentication
has already been performed.

Table 2–1 InitialContext Properties

Property Meaning

Creating the Initial Context in OC4J

2-6 Oracle Application Server Containers for J2EE Services Guide

From J2EE Application Clients
When an application client must look up a resource that is available in a J2EE server
application, the client uses ApplicationClientInitialContextFactory in
the com.evermind.server package to construct the initial context.

Consider an application client that consists of Java code running outside the OC4J
server, but that is part of a bundled J2EE application. For example, the client code is
running on a workstation and might connect to a server object, such as an EJB, to
perform some application task. In this case, the environment that is accessible to
JNDI must specify the value of the property java.naming.factory.initial as
ApplicationClientInitialContextFactory. This can be done in client code,
or it can be specified in the jndi.properties file that is part of the application’s
application-client.jar file that is included in the EAR file.

To have access to remote objects that are part of the application,
ApplicationClientInitialContextFactory reads the
META-INF/application-client.xml and
META-INF/orion-application-client.xml files in the
application-client.jar file.

When clients use the ApplicationClientInitialContextFactory to
construct JNDI initial contexts, they can look up local objects (objects that are
contained in the immediate application or in its parent application) using the
java:comp/env mechanism and RMIInitialContextFactory. They can then
use ORMI or IIOP to invoke methods on these objects. Note that objects and
resources have to be defined in deployment descriptors in order to be bound to an
application’s JNDI context.

Environment Properties
ApplicationClientInitialContextFactory reads the properties shown in
Table 2–2 from the environment if the ORMI protocol is being used.

Note: In deciding which JNDI initial context factory to use, if your
application is a J2EE client (that is, it has an
application-client.xml file), then you must always use
ApplicationClientInitialContextFactory regardless of
the protocol (ORMI or IIOP) being used by the client application.
The protocol itself is specified by the JNDI property
java.naming.provider.url. See Table 2–2, "JNDI-Related
Environment Properties" on page 2-7 for details.

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-7

Table 2–2 JNDI-Related Environment Properties

Property Meaning

dedicated.rmicontext This property replaces the deprecated
dedicated.connection setting. When two or
more clients in the same process retrieve an
InitialContext, OC4J returns a cached context.
Thus, each client receives the same
InitialContext, which is assigned to the process.
Server lookup, which results in server load
balancing, happens only if the client retrieves its
own InitialContext. If you set
dedicated.rmicontext=true, then each client
receives its own InitialContext instead of a
shared context. When each client has its own
InitialContext, then the clients can be load
balanced.

The dedicated.rmicontext property defaults to
false.

java.naming.provider.url This property specifies the URL to use when looking
for local or remote objects. The format is either
[http: | https:]ormi://hostname/appname
or corbaname:hostname:port. For details on the
corbaname URL, see "The corbaname URL" on
page 6-13.

Multiple hosts (for failover) can be supplied in a
comma-separated list.

java.naming.factory.url.pkgs Some versions of the JDK on some platforms
automatically set the system property
java.naming.factory.url.pkgs to include
com.sun.java.*. Check this property and remove
com.sun.java.* if it is present.

http.tunnel.path This property specifies an alternative
RMIHttpTunnelServlet path. The default path is
/servlet/rmi, as bound to the target site’s Web
application. For more information, see "Configuring
ORMI Tunneling through HTTP" on page 5-16.

Context.SECURITY_PRINCIPAL This property specifies the user name and is required
in client-side code to authenticate the client. It is not
required for server-side code because authentication
has already been performed. This property name is
also defined as
java.naming.security.principal.

Creating the Initial Context in OC4J

2-8 Oracle Application Server Containers for J2EE Services Guide

Application Client Example
This is an example of how to configure an application client to access an EJB
running inside an OC4J instance in the same machine.

First, the EJB is deployed into OC4J. Here are excerpts of the deployment
descriptors of the EJB.

The EJB is deployed with the name EmployeeBean. The name is defined this way
in ejb-jar.xml:

<ejb-jar>
 <display-name>bmpapp</display-name>
 <description>
 An EJB app containing only one Bean Managed Persistence Entity Bean
 </description>
 <enterprise-beans>
 <entity>
 <description>no description</description>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <home>bmpapp.EmployeeHome</home>
 <remote>bmpapp.Employee</remote>
 <ejb-class>bmpapp.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 ...
 </entity>
 </enterprise-beans>
..
</ejb-jar>

Context.SECURITY_CREDENTIAL This property specifies the password and is required
in client-side code to authenticate the client. It is not
required for server-side code because authentication
has already been performed. This property name is
also defined as
java.naming.security.credentials.

Table 2–2 JNDI-Related Environment Properties(Cont.)

Property Meaning

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-9

The EJB EmployeeBean is bound to the JNDI location
java:comp/env/bmpapp/EmployeeBean in orion-ejb-jar.xml:

orion-ejb-jar.xml file:
<orion-ejb-jar>
 <enterprise-beans>
 <entity-deployment name="EmployeeBean"
 location="bmpapp/EmployeeBean" table="EMP">
 ...
 </entity-deployment>
 ...
 </enterprise-beans>
 ...
</orion-ejb-jar>

The application client program uses the EmployeeBean EJB, and refers to it as
EmployeeBean. An excerpt from the application client program follows:

public static void main (String args[])
{
 ...
 Context context = new InitialContext();
 /**
 * Look up the EmployeeHome object. The reference is retrieved from the
 * application-local context (java:comp/env). The variable is
 * specified in the assembly descriptor (META-INF/application-client.xml).
 */
 Object homeObject =
 context.lookup("java:comp/env/EmployeeBean");
 // Narrow the reference to an EmployeeHome.
 EmployeeHome home =
 (EmployeeHome) PortableRemoteObject.narrow(homeObject,
 EmployeeHome.class);
 // Create a new record and narrow the reference.
 Employee rec =
 (Employee) PortableRemoteObject.narrow(home.create(empNo,
 empName,
 salary),
 Employee.class);
 // call method on the EJB
 rec.doSomething();
 ...
}

Note that we are not passing a hash table when creating a context in the line:

Context context = new InitialContext();

Creating the Initial Context in OC4J

2-10 Oracle Application Server Containers for J2EE Services Guide

This is because the context is created with values read from the jndi.properties
file, which in this example, contains:

java.naming.factory.initial=com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://localhost/bmpapp
java.naming.security.principal=SCOTT
java.naming.security.credentials=TIGER

Alternatively, we can pass a hash table to the constructor of InitialContext
instead of supplying a jndi.properties file. The code would look like this:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.evermind.server.ApplicationClientInitialContextFactory");
env.put("java.naming.factory.initial",
"com.evermind.server.ApplicationClientInitialContextFactory");
env.put("java.naming.provider.url","ormi://localhost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context initial = new InitialContext(env);

Since the application client code refers to the EmployeeBean EJB, this must be
declared in the <ejb-ref> element in the application-client.xml file:

<application-client>
 <display-name>EmployeeBean</display-name>
 <ejb-ref>
 <ejb-ref-name>EmployeeBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>bmpapp.EmployeeHome</home>
 <remote>bmpapp.Employee</remote>
 </ejb-ref>
</application-client>

Recall that the EmployeeBean EJB is bound to the JNDI location
java:comp/env/bmpapp/EmployeeBean as configured in the
orion-ejb-jar.xml file. The EJB name used in the application client program
must be mapped to the JNDI location where the EJB is actually bound to. This is
done in the orion-application-client.xml file:

orion-application-client.xml file:
<orion-application-client>
 <ejb-ref-mapping name="EmployeeBean" location="bmpapp/EmployeeBean" />
</orion-application-client>

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-11

From J2EE Application Components
Initial context factories can be used in OC4J to access the following objects from
J2EE application components:

■ Objects in the Same Application

■ Objects Not in the Same Application

Objects in the Same Application
To access objects in the same application from servlets, JSP pages, and EJB, you can
use J2EE application components.

When code is running in a server, it is, by definition, part of an application. Because
the code is part of an application, OC4J can establish defaults for properties that
JNDI uses. Application code does not need to provide any property values when
constructing a JNDI InitialContext object.

When this context factory is being used, the ApplicationContext is specific to
the current application, so all the references that are specified in files such as
web.xml, orion-web.xml, or ejb-jar.xml for that application are available.
This means that a lookup using java:comp/env works for any resource that the
application has specified. Lookups using this factory are performed locally in the
same virtual machine.

If your application must look up a remote reference, either a resource in another
J2EE application in the same JVM or perhaps a resource external to any J2EE
application, then you must use RMIInitialContextFactory or
IIOPInitialContextFactory. Also see "Objects Not in the Same Application" on
page 2-13.

Example As a concrete example, consider a servlet that must retrieve a data source
to perform a JDBC operation on a database.

The data source location is specified in data-sources.xml as:

<data-source
 class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 location="jdbc/pool/OracleCache"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@<hostname>:<TTC port>:<DB ID>"
/>

For more information on data source locations, see Chapter 4, "Data Sources".

Creating the Initial Context in OC4J

2-12 Oracle Application Server Containers for J2EE Services Guide

The servlet’s web.xml file defines the following resource:

<resource-ref>
 <description>
 A data source for the database in which
 the EmployeeService enterprise bean will
 record a log of all transactions.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

The corresponding orion-web.xml mapping is:

<resource-ref-mapping name="jdbc/EmployeeAppDB" location="jdbc/pool/OracleCache" />

The name value is the same as that specified in the <res-ref-name> element in
web.xml. The location value is the location or ejb-location in the
<data-source> element of data-sources.xml.

In this case, the following code in the servlet returns the correct reference to the data
source object:

...
try {
 InitialContext ic = new InitialContext();
 ds = (DataSource) ic.lookup("java:comp/env/jdbc/EmployeeAppDB");
 ...
}
catch (NamingException ne) {
 throw new ServletException(ne);
}
...

No initial context factory specification is necessary, because OC4J sets
ApplicationInitialContextFactory as the default value of the system
property java.naming.factory.initial when the application starts.

There is no need to supply a provider URL in this case, because no URL is required
to look up an object contained within the same application or under java:comp/.

Creating the Initial Context in OC4J

Java Naming and Directory Interface 2-13

An application can use the java:comp/env mechanism to look up resources that
are specified not only in its own name space, but also in the name spaces of any
declared parent applications, or in the global application (which is the default
parent if no specific parent application was declared).

Objects Not in the Same Application
You can access objects not in the same application using one of these context
factories:

■ RMIInitialContextFactory

■ IIOPInitialContextFactory

RMIInitialContextFactory Using either the default server-side
ApplicationInitialContextFactory or specifying
ApplicationClientInitialContextFactory works for most application
purposes. In some cases, however, an additional context factory must be used:

■ If your client application does not have an application-client.xml file,
then you must use the RMIInitialContextFactory property and not the
ApplicationClientInitialContextFactory property.

■ If your client application accesses the JNDI name space remotely—not in the
context of a specific application—then you must use
RMIInitialContextFactory.

The RMIInitialContextFactory uses the same environment properties
(described in detail in Table 2–2 on page 2-7) used by
ApplicationClientInitialContextFactory:

■ java.naming.provider.url

■ http.tunnel.path

■ Context.SECURITY_PRINCIPAL

■ Context.SECURITY_CREDENTIALS

Note: Some versions of the JDK on some platforms automatically
set the system property java.naming.factory.url.pkgs to
include com.sun.java.*. Check this property and remove
com.sun.java.* if it is present.

JNDI Clustering

2-14 Oracle Application Server Containers for J2EE Services Guide

Here is an example of a servlet that accesses an EJB running on another OC4J
instance on a different machine. The EJB in this example is the EmployeeBean that
is used by the "Application Client Example" on page 2-8.

Here is an excerpt of the servlet code.

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
"com.evermind.server.rmi.RMIInitialContextFactory");
env.put("java.naming.provider.url","ormi://remotehost/bmpapp");
env.put("java.naming.security.principal","SCOTT");
env.put("java.naming.security.credentials","TIGER");
Context context = new InitialContext(env);
Object homeObject =
context.lookup("java:comp/env/EmployeeBean");

As in the case of the application client, <ejb-ref> elements must be declared in
the web.xml file for this servlet:

<ejb-ref>
<ejb-ref-name>EmployeeBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>bmpapp.EmployeeHome</home>
<remote>bmpapp.Employee</remote>
</ejb-ref>

Also, a mapping from the logical name EmployeeBean to the actual JNDI name
where the EJB is bound must be provided in orion-web.xml:

<ejb-ref-mapping name="EmployeeBean" location="bmpapp/EmployeeBean" />

IIOPInitialContextFactory The conditions under which to use this factory are the same
as those for RMIInitialContextFactory except that the protocol being used is
IIOP instead of ORMI.

JNDI Clustering
JNDI clustering ensures that changes made to the context on one OC4J instance of
an OC4J cluster is replicated to the name space of every other OC4J instance.

When JNDI clustering is enabled, you can bind a serializable value into an
application context (via remote client, EJB, or servlet) on one server and read it on

Note: You can use this factory only for looking up EJBs.

JNDI Clustering

Java Naming and Directory Interface 2-15

another server. You can also create and destroy subcontexts in this way.

This section explains:

■ Enabling JNDI Clustering

■ JNDI Clustering Limitations

Enabling JNDI Clustering
JNDI clustering is enabled when EJB clustering is enabled.

To take advantage of JNDI clustering, you must enable EJB clustering even if you do
not specifically require EJB clustering (for example, when using JNDI to find startup
classes or data sources).

For information on enabling EJB clustering, see the EJB clustering chapter in the
Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

For information on OC4J clustering in general, see the clustering chapter in the
Oracle Application Server Containers for J2EE User’s Guide.

JNDI Clustering Limitations
Consider the following limitations when relying on JNDI clustering:

■ Multiple Islands on a Given Subnet

■ Propagating Changes Across the Cluster

■ Binding a Remote Object

Multiple Islands on a Given Subnet
As described in the clustering chapter in the Oracle Application Server Containers for
J2EE User’s Guide, although OC4J processes can be organized into groups (known as
islands) to improve state-replication performance, EJB applications replicate state
between all OC4J processes in the OC4J instance and do not use the island
sub-grouping.

Consequently, JNDI clustering is not limited to an island subnet. If there are
multiple islands on a single subnet, all islands on that subnet will share the global
JNDI context.

JNDI Clustering

2-16 Oracle Application Server Containers for J2EE Services Guide

Propagating Changes Across the Cluster
Re-binding (re-naming) and unbinding are not propagated: they apply locally but
are not shared across the cluster.

Bindings to values which are not serializable are also not propagated across the
cluster.

Binding a Remote Object
If you bind a remote object (typically a home or EJB object) in an application
context, that JNDI object will be shared across the cluster but there will be a single
point of failure if the first server it is bound to fails.

Java Message Service 3-1

3
Java Message Service

This chapter discusses the following topics:

■ Overview

■ Oracle Application Server JMS

■ Resource Providers

■ Oracle JMS

■ Map Logical Names in Resource References to JNDI Names

■ Third-Party JMS Providers

■ Using Message-Driven Beans

■ High Availability and Clustering for JMS

Download the JMS example used in this chapter from the OC4J sample code page at
http://otn.oracle.com/tech/java/oc4j/demos on the OTN Web site.

Overview

3-2 Oracle Application Server Containers for J2EE Services Guide

Overview
Java clients and Java middle-tier services must be capable of using enterprise
messaging systems. Java Message Service (JMS) offers a common way for Java
programs to access these systems. JMS is the standard messaging API for passing
data between application components and allowing business integration in
heterogeneous and legacy environments.

JMS provides two programming models:

■ Point-to-Point—Messages are sent to a single consumer using a JMS queue.

■ Publish and Subscribe—Messages are broadcast to all registered listeners
through JMS topics.

JMS queues and topics are bound in the JNDI environment and made available to
J2EE applications.

You can choose between a number of JMS providers, depending on their integration
and quality-of-service (QOS) requirements, as follows:

■ Oracle Application Server JMS—A JMS provider that is installed with OC4J and
executes in-memory.

■ Oracle JMS (OJMS)—A JMS provider that is a feature of the Oracle database
and is based on the Streams Advanced Queuing messaging system.

■ Third-Party JMS Providers—You can integrate with the following third-party
JMS providers: WebSphere MQ, SonicMQ, SwiftMQ.

Oracle Application Server JMS
Oracle Application Server JMS (OracleAS JMS) is a Java Message Service that
provides the following features:

■ Compliant with the JMS 1.0.2b specification.

■ Choice between in-memory or file-based message persistence.

■ Provides an exception queue for undeliverable messages.

This section covers the following:

■ Configuring OracleAS JMS Ports

■ Configuring OracleAS JMS Destination Objects

■ Steps for Sending and Receiving a Message

Oracle Application Server JMS

Java Message Service 3-3

■ OracleAS JMS Utilities

■ OracleAS JMS File-Based Persistence

■ Abnormal Termination

■ Predefined OracleAS JMS Exception Queue

■ Message Paging

■ OracleAS JMS Configuration File Elements for jms.xml

■ OracleAS JMS System Properties

Configuring OracleAS JMS Ports
Figure 3–1 demonstrates how you can configure the port range that OracleAS JMS
uses within the Oracle Enterprise Manager The default range is between 3201 and
3300. From the OC4J Home page, select the Administration page. Select Server
Properties in the instance Properties column. Then scroll down to the Multiple VM
Configuration section.

Figure 3–1 JMS Ports

Configuring OracleAS JMS Destination Objects
OracleAS JMS Destination objects, which can be either queues or topics, are
configured in the jms.xml file. OracleAS JMS is already installed with OC4J, so the
only configuration necessary is for the queues, topics, and their connection factories
that your applications use.

■ Oracle Enterprise Manager configuration—To edit the jms.xml file directly
through Oracle Enterprise Manager, select Advanced Properties under the
Instance Properties column on the Administration page. In this section, choose
jms.xml to modify the straight XML file.

Oracle Application Server JMS

3-4 Oracle Application Server Containers for J2EE Services Guide

■ Standalone OC4J configuration—You can configure the default jms.xml file in
J2EE_HOME/config/jms.xml. If you want, you can change the name and
location of this file. To modify the name and location of the JMS configuration
file, specify the new name and location in the OC4J server configuration file—
J2EE_HOME/config/server.xml. The server.xml file designates the
name and location of the JMS configuration file through the <jms-config>
element.

Figure 3–2 demonstrates the order in which the elements in the jms.xml file are
structured. "OracleAS JMS Configuration File Elements for jms.xml" on page 3-22
provides a complete description of all elements and their attributes in the jms.xml
file.

Note: Configuration changes made to OracleAS JMS (by
modifying jms.xml) take effect only on OC4J restart or shutdown
and start.

Oracle Application Server JMS

Java Message Service 3-5

Figure 3–2 Configuration Elements Hierarchy

The jms.xml file defines the topics and queues used. For each Destination
object (queue or topic)—you must specify its name (also known as its location) and
connection factory in the jms.xml file. The following jms.xml file example
configuration defines a queue that is used by the Oc4jjmsDemo demo.

The queue is defined as follows:

■ the name (location) of the queue is jms/demoQueue

■ its queue connection factory is defined as jms/QueueConnectionFactory

The topic is defined as follows:

queue

description

description

topic

connection-factory
queue-connection-factory
topic-connection-factory
xa-connection-factory
xa-queue-connection-factory
xa-topic-connection-factory

log

odl
file

Oracle Application Server JMS

3-6 Oracle Application Server Containers for J2EE Services Guide

■ the name (location) of the topic is jms/demoTopic

■ its topic connection factory is defined as jms/TopicConnectionFactory

<?xml version="1.0" ?>
<!DOCTYPE jms-server PUBLIC "OracleAS JMS server"
"http://xmlns.oracle.com/ias/dtds
/jms-server.dtd">

<jms-server port="9127">
 <queue location="jms/demoQueue"> </queue>
 <queue-connection-factory location="jms/QueueConnectionFactory">
 </queue-connection-factory>

 <topic location="jms/demoTopic"> </topic>
 <topic-connection-factory location="jms/TopicConnectionFactory">
 </topic-connection-factory>

 <!-- path to the log-file where JMS-events/errors are stored -->
 <log>
 <file path="../log/jms.log" />
 </log>
</jms-server>

See "OracleAS JMS Configuration File Elements for jms.xml" on page 3-22 for
descriptions of the elements in the jms.xml file.

Default Destination Objects
OracleAS JMS creates two default Destination objects, as follows:

■ The default queue is defined as jms/demoQueue.

■ The default topic is defined as jms/demoTopic.

You can use these Destination objects in your code without needing to add them
to the jms.xml configuration file.

Note: All of these values are defaults, so you do not have to
configure them. However, the configuration for the queue, topic,
and their connection factories are shown so you understand how to
configure your own Destination objects and connection
factories.

Oracle Application Server JMS

Java Message Service 3-7

The default connection factories that are automatically associated with these objects
are as follows:

■ jms/QueueConnectionFactory

■ jms/TopicConnectionFactory

Default Connection Factories
OracleAS JMS creates six default connection factories ranging over the XA/non-XA
and various JMS domains. You can use these connection factories in your code
without needing to add them to the jms.xml configuration file, rather than
defining new connection factories. The only reason to define a new connection
factory in the jms.xml file is if you need to specify non-default values for one or
more of the optional attributes of connection-factory elements.

The default connection factories are as follows:

■ jms/ConnectionFactory

■ jms/QueueConnectionFactory

■ jms/TopicConnectionFactory

■ jms/XAConnectionFactory

■ jms/XAQueueConnectionFactory

■ jms/XATopicConnectionFactory

Thus, if you used only the default connection factories, then you could define only
the topic and queues necessary in the jms.xml file. The following example defines
the jms/demoQueue and the jms/demoTopic. Both of these use their respective
default connection factories.

<?xml version="1.0" ?>
<!DOCTYPE jms-server PUBLIC "OracleAS JMS server"
"http://xmlns.oracle.com/ias/dtds
/jms-server.dtd">

<jms-server port="9127">
 <queue location="jms/demoQueue"> </queue>
 <topic location="jms/demoTopic"> </topic>
 <!-- path to the log-file where JMS-events/errors are stored -->
 <log>
 <file path="../log/jms.log" />
 </log>
</jms-server>

Oracle Application Server JMS

3-8 Oracle Application Server Containers for J2EE Services Guide

OracleAS JMS internally creates the default connection factory objects and binds
them to the default names within the OC4J server where the JMS connection is
created.

However, you can also redefine the default connection factories to have specific
attributes by configuring them in the jms.xml file.

Steps for Sending and Receiving a Message
A JMS client sends or receives a JMS message by doing the following:

1. Retrieve both the configured JMS Destination object (queue or topic) and its
connection factory using a JNDI lookup.

2. Create a connection from the connection factory.

3. If you are receiving messages, then start the connection.

4. Create a session using the connection.

If you are sending messages, then do the following:

5. Providing the retrieved JMS Destination, create a sender for a queue, or a
publisher for a topic.

6. Create the message.

7. Send out the message using either the queue sender or the topic publisher.

8. Close the queue session.

9. Close the connection for either JMS Destination types.

However, if you are receiving messages, then do the following:

5. Providing the retrieved JMS Destination, create a receiver for a queue or a
 topic subscriber.

6. Receive the message using the queue receiver or the topic subscriber.

7. Close the queue session.

8. Close the connection for either JMS Destination types.

Example 3–1 demonstrates these steps for sending a JMS message; Example 3–2
demonstrates these steps for receiving a JMS message. For the complete example,
download the JMS example used in this chapter from the OC4J sample code page at
http://otn.oracle.com/tech/java/oc4j/demos on the OTN Web site.

Oracle Application Server JMS

Java Message Service 3-9

Example 3–1 OracleAS JMS Client that Sends Messages to a Queue

The JNDI lookup for OracleAS JMS requires the OracleAS JMS Destination and
connection factory be defined within the jms.xml file, prepended with the
java:comp/env/ prefix.

The following method—dosend—sets up a queue to send messages. After creating
the queue sender, this example sends out several messages.

public static void dosend(int nmsgs)
{
 // 1a. Retrieve the queue connection factory
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/QueueConnectionFactory");
 // 1b. Retrieve the queue
 Queue q = (Queue) ctx.lookup("java:comp/env/jms/demoQueue");

 // 2. Create the JMS connection
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 //5. Create a sender on the JMS session to send messages.
 QueueSender snd = qs.createSender(q);

Note: For simplicity, most of the error code is removed in
Example 3–1 and Example 3–2. To see the error processing, see the
sample code available on the OTN Web site.

Note: Alternatively, you could use logical names in the JNDI
lookup. See "Map Logical Names in Resource References to JNDI
Names" on page 3-46 for directions. The only difference between an
OracleAS JMS client and an OJMS client is the name provided in
the JNDI lookup. To make your client independent of either JMS
provider, use logical names in the implementation, and change only
the OC4J-specific deployment descriptor.

Oracle Application Server JMS

3-10 Oracle Application Server Containers for J2EE Services Guide

 // Send out messages...
 for (int i = 0; i < nmsgs; ++i)
 {
 //6. Create the message using the createMessage method of the
 // JMS session

 Message msg = qs.createMessage();
 //7. Send the message out over the sender (snd) using the
 // send method
 snd.send(msg);
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 }

 //8,9 Close the sender, the JMS session and the JMS connection.
 snd.close();
 qs.close();
 qc.close();

}

Example 3–2 OracleAS JMS Client That Receives Messages Off a Queue

The following method—dorcv—sets up a queue to receive messages off of it. After
creating the queue receiver, it loops to receive all messages off of the queue and
compares it to the number of expected messages.

public static void dorcv(int nmsgs)
{
 Context ctx = new InitialContext();

 // 1a. Retrieve the queue connection factory
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/QueueConnectionFactory");
 // 1b. Retrieve the queue
 Queue q = (Queue) ctx.lookup("java:comp/env/jms/demoQueue");

 // 2. Create the JMS connection
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

Oracle Application Server JMS

Java Message Service 3-11

 // 5. Create a receiver, as we are receiving off of the queue.
 QueueReceiver rcv = qs.createReceiver(q);

 // 6. Receive the messages
 int count = 0;
 while (true)
 {
 Message msg = rcv.receiveNoWait();
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 ++count;
 }

 if (nmsgs != count)
 {
 System.out.println("expected: " + nmsgs + " found: " + count);
 }

 // 7,8 Close the receiver, the JMS session and the JMS connection.
 rcv.close();
 qs.close();
 qc.close();
}

OracleAS JMS Utilities
OC4J JMS comes with an OC4J-specific command-line utility,
com.evermind.server.jms.JMSUtils, that is used for debugging and
information access.

The J2EE_HOME/oc4j.jar must be in the CLASSPATH. Then execute JMSUtils,
as follows:

java com.evermind.server.jms.JMSUtils [gen_options] [command]
 [command_options]

The OracleAS JMS server must be running. Only the administrator can use
JMSUtils. You define a user within the administrator role in the security User
Manager. For information on defining users within security roles, see the Oracle
Application Server Containers for J2EE Security Guide.

The generic options for JMSUtils facilitate connecting to the OracleAS JMS server.
Table 3–1 describes these options.

Oracle Application Server JMS

3-12 Oracle Application Server Containers for J2EE Services Guide

The commands describe the action to be taken and are discussed in Table 3–2. Some
of these commands have their own options (command_options) to further
describe the action desired.

To display the syntax usage, issue the preceding command with no argument. To
display extensive information about the set of commands that are available, the
arguments’ options, and the behavior of each command, issue the following:

java com.evermind.server.jms.JMSUtils help

Table 3–1 JMSUtils Options

Option Description

-host <hostname> The (remote) host where the OracleAS JMS server is
installed. This is not required if the client exists on the same
node as the OracleAS JMS server.

-port <port> The (remote) port where the OracleAS JMS server is
installed. The default JMS port number is 9127.

-username <username> The username to access the OracleAS JMS server for
creating the JMS connection. This user is defined in the User
Manager security configuration within the administrative
roles.

-password <password> The password to access the OracleAS JMS server for
creating the JMS connection. This password is defined in the
User Manager security configuration within the
administrative roles.

-clientID <ID> Use this identifier for all JMS connections. This is only
required for identifying durable subscriptions on topics.

Table 3–2 OC4J JMS Utilities

Utility Command Description

help Print detailed help for all utilities commands.

check
[<other-selector>]

Check validity of a JMS message selector, identified by the
-selector command option. Optionally, check if two specified
selectors are treated as equivalent (useful for reactivating durable
subscriptions), where the second selector is identified in the
optional <other-selector>.

knobs Display all available system properties (shown in Table 3–5) and
their current settings on the OC4J JMS server.

Oracle Application Server JMS

Java Message Service 3-13

Table 3–3 describes the command options.

stats Display all available DMS statistics on the OC4J JMS server (this
will include non-JMS statistics as well). (For information on DMS,
see the Oracle Application Server 10g Performance Guide.)

destinations Print a list of all permanent Destination objects known to
OC4J JMS.

durables Print a list of all durable subscriptions known to OC4J JMS.

subscribe <topic> Create a new durable subscription on the <topic>, with a
specified name, message selector, whether it is local or not, and a
durable subscription client identifier. This replaces existing,
inactive durable subscriptions. The name is identified with the
-name command option. The message selector is identified by
the -selector command option. Whether the durable
subscription is local or not is identified by the -noLocal
command option. The client identifier is defined with the
-clientID generic option.

unsubscribe Drop an existing, inactive durable subscription. The durable
subscription is identified by a name (-name command option)
and the client identifier (-clientID generic option).

browse
<destination>

Browse messages on a given destination (queue or topic durable
subscription, defined in jms.xml).

drain
<destination>

Dequeue messages on a given destination (queue or topic durable
subscription).

copy
<from-destination>
<to-destination>

Copy messages from one destination (queue or topic durable
subscription) to a different destination. If the source and sink
destinations are the same, then the command is not executed,
generating an error instead.

move
<from-destination>
<to-destination>

Move messages from one destination (queue or topic durable
subscription) to a different destination. If the source and sink
destinations are the same, then the command is not executed,
generating an error instead.

Table 3–3 JMSUtils Command Options

Command Option Description

-selector <selector> Create queue receivers and durable subscribers with the
specified JMS message selector.

Table 3–2 OC4J JMS Utilities (Cont.)

Utility Command Description

Oracle Application Server JMS

3-14 Oracle Application Server Containers for J2EE Services Guide

An example for using JMSUtils to browse the exception queue is as follows:

java com.evermind.server.jms.JMSUtils -username admin -password welcome
browse jms/Oc4jJmsExceptionQueue

OracleAS JMS File-Based Persistence
OC4J JMS supports file-based persistence for JMS Destination objects (queues
and topics). File-based persistence is discussed more in the following sections:

■ Overview

■ Enabling Persistence

■ Recovery

Overview
If persistence is enabled, then OC4J automatically performs the following:

■ If a persistence file does not exist, OC4J automatically creates the file and
initializes it with the appropriate data.

■ If the persistence file exists and is empty, then OC4J initializes it with the
appropriate data.

-noLocal
[true|false]

If set to be true, the subscriber will not see the messages which
are published in the same connection. Use when creating a
durable subscriber. Default value is FALSE.

-name <name> Defines a name for a durable subscription, operating on a
topic. This option is mandatory for commands that read topics,
and is ignored for reading queues.

-silent Do not print messages while processing. Keeps a count of the
total number of messages processed, which is printed to
standard error.

-count <count> Do not process more than indicated number of messages
during the current operation. If the count is negative or zero,
all selected messages are processed.

Table 3–3 JMSUtils Command Options

Command Option Description

Oracle Application Server JMS

Java Message Service 3-15

Even if persistence is enabled, only certain messages are persisted to a file. For a
message to be persisted, all of the following must be true:

■ The Destination object is defined to be persistent within the
persistence-file attribute in the jms.xml file.

■ The message has a persistent delivery mode, which is the default. Messages
sent to persistent destinations that are defined with a non-persistent delivery
mode (defined as DeliveryMode.NON_PERSISTENT) are not persistent.

The complete semantics of which messages are persisted are documented within the
JMS specification.

Enabling Persistence
To enable file-based persistence for Destination objects, specify the
persistent-file attribute in the jms.xml file. For JMS objects within
standalone OC4J, this is all you have to do to enable persistence. The following
XML configuration demonstrates how the persistence-file attribute defines
the name of the file as pers. See "OracleAS JMS Configuration File Elements for
jms.xml" on page 3-22 for information on the path and naming conventions for the
persistence-file attribute.

<queue name="foo" location="jms/persist" persistence-file="pers">
</queue>

The path for the persistence-file attribute is either an absolute path of the file
or a path relative to the persistence directory defined in application.xml; the
default path is J2EE_HOME/persistence/<island> for Oracle Application
Server environments and J2EE_HOME/persistence for standalone
environments.

Oracle Application Server may have multiple OC4J instances writing to the same
file directory, even with the same persistence filename. Setting this attribute enables

Warning: A persistence file must not be moved, removed, or
modified when the OC4J server is active. Doing so can result in
data corruption and message loss. If OC4J is not active, removing a
persistence file is equivalent to deleting all messages and durable
subscriptions in the destination associated with that persistence file.
When OC4J starts up again, the JMS server reinitializes the file as
usual.

Oracle Application Server JMS

3-16 Oracle Application Server Containers for J2EE Services Guide

file-based persistence, but also allows the possibility that your persistence files be
overwritten by another OC4J instance.

Recovery
The file-based persistence of OC4J JMS provides recoverable and persistent storage
of messages. Each OC4J JMS Destination, which can be either a queue or topic,
can be associated with a relative or absolute path name that points to a file that
stores the messages sent to the Destination object. The file can reside anywhere
in the file system (and not necessarily inside a J2EE_HOME directory). Multiple
persistence files can be placed in the same directory; persistence files can be placed
on a remote network file system or can be part of a local file system.

The following sections discuss the various aspects of persistence recovery for
OracleAS JMS:

■ Scope of Recoverability

■ Persistence File Management

■ Reporting Errors to the JMS Client

■ OracleAS JMS Recovery Steps

Scope of Recoverability OC4J JMS cannot recover from all possible types of failures. If
any of the following failures occur, then OC4J JMS does not guarantee the
recoverability of the persistence file.

■ Media corruption—the disk system that is holding the persistence file fails
abnormally or gets corrupted.

■ External corruption—the persistence file is deleted, edited, modified, or
otherwise corrupted (by software). Only the OC4J JMS server should write into
a persistence file.

■ Silent failure or corruption—the I/O methods in the JDK fail silently or corrupt
data that are being read or written silently.

■ A java.io.FileDescriptor.sync() failure—the sync() call does not
properly and completely flush all file buffers that are associated with the given
descriptor to the underlying file system.

Persistence File Management When the OC4J JMS server is running, you must not
copy, delete, or rename persistence files currently in use. It is an unrecoverable error
to perform any of these actions on any of these files when they are being used by
OC4J JMS.

Oracle Application Server JMS

Java Message Service 3-17

However, when no OC4J JMS server is using a persistence file, you can perform the
following administrative and maintenance operations on these files:

■ deleting: deleting a persistence file removes all messages and, in the case of
topics, all durable subscriptions. On startup, OC4J JMS initializes a new (and
empty) persistence file.

■ copying: an existing persistence file can be copied for archival or backup
purposes. If an existing persistence file gets corrupted, an earlier version can be
used (as long as the association between the OC4J JMS Destination name
and the file is maintained), pointed to by any suitable path name, to go back to
the previous contents of the JMS Destination.

Persistence files cannot be concatenated, split up, rearranged, or merged.
Attempting any of these operations will lead to unrecoverable corruption of the
data in these files.

In addition to persistence files specified by a user and lock files, OC4J JMS uses a
special file, jms.state, for internal configuration and transaction state
management. OC4J JMS cleans up this file and its contents during normal
operations. You must never delete, move, copy, or otherwise modify this file, even
for archival purposes. Attempting to manipulate the jms.state file can lead to
message and transaction loss.

Reporting Errors to the JMS Client The sequence of operations when a JMS client
enqueues or dequeues a message or commits or rolls back a transaction is as
follows:

■ Client makes a function call

– pre-persistence operations

– persistence occurs

Note: The location of the jms.state file is different whether you
are operating OC4J in standalone or Oracle Application Server
mode, as follows:

■ Standalone: J2EE_HOME/persistence directory

■ Oracle Application Server:
J2EE_HOME/persistence/<island_name> directory

The location of the persistence directory is defined in the
application.xml file.

Oracle Application Server JMS

3-18 Oracle Application Server Containers for J2EE Services Guide

– post-persistence operations

■ Client function call returns

If a failure occurs during the pre-persistence or persistence phase, the client receives
a JMSException or some other type of error, but no changes are made to the
persistence file.

If a failure occurs in the post-persistence phase, the client may receive a
JMSException or some other type of error; however, the persistence file is still
updated and OC4J JMS recovers as if the operation succeeded.

OracleAS JMS Recovery Steps Lock files prevent multiple OC4J processes from
writing into the same persistence file. If multiple OC4J JVMs are configured to point
to the same file in the same persistence-file location, then they could
overwrite each other’s data and cause corruption or loss of persisted JMS messages.
To protect against these kinds of sharing violations, OracleAS JMS associates each
persistence file with a lock file Thus, each persistence file—for example,
/path/to/persistenceFile— is associated with a lock file named
/path/to/persistenceFile.lock. (See "Enabling Persistence" on page 3-15
for more information on persistence files.).

OC4J must have appropriate permissions to create and delete the lock file. If OC4J is
terminated normally, then the lock files will be cleaned up automatically. However,
if OC4J is terminated abnormally, the lock files continue to exist in the file system.
Since OC4J cannot distinguish left-over lock files from sharing violations, the user
must manually remove all lock files before restarting OC4J after abnormal
termination. OracleAS JMS will not attempt to create the relevant persistent JMS
destinations if it detects an existing lock file for it.

OC4J JMS never attempts to delete lock files automatically. Lock files must be
manually deleted for OC4J JMS to use a given persistence file. The remainder of the
discussion in this subsection assumes that all lock files in question have been
removed.

OC4J JMS performs recovery operations on all persistence files as configured in
OC4J JMS at the time of abnormal termination. In other words, if OC4J terminates
abnormally, the user modifies the JMS server configuration and restarts OC4J, the
JMS server still attempts to recover all the persistence files in the original

Note: This manual intervention is required only on abnormal
shutdown. See "Abnormal Termination" on page 3-19.

Oracle Application Server JMS

Java Message Service 3-19

configuration, and once recovery is successful, moves to using the new
configuration that is specified.

If recovery of the old configuration fails, the OC4J JMS server does not start. The
server must be shut down or restarted repeatedly to give recovery another chance,
until recovery is successful.

OC4J JMS caches its current persistence configuration in the jms.state file, which
is also used to maintain transaction state. If you wish to bypass all recovery of the
current configuration, you can remove the jms.state file, remove all lock files,
possibly change the OC4J JMS server configuration, and start the server in a
clean-slate mode. (We do not recommend doing this.) If the OC4J JMS server cannot
find a jms.state file, it creates a new one.

If, for some reason, the jms.state file itself is corrupted, the only recourse is to
delete it, with the attendant loss of all pending transactions—that is, transactions
that have been committed, but the commits not yet performed by all individual
Destination objects participating in the transactions.

If messaging activity was in progress during abnormal termination, OC4J JMS does
its best to recover its persistence files. Any data corruption (of the types mentioned
earlier) is handled by clearing out the corrupted data; this may lead to a loss of
messages and transactions.

If the headers of a persistence file are corrupted, OC4J JMS may not be able to
recover the file, because such a corrupted file is often indistinguishable from user
configuration errors. The oc4j.jms.forceRecovery administration property
(described in Table 3–5) instructs the OC4J JMS server to proceed with recovery,
clearing out all invalid data at the cost of losing messages or masking user
configuration errors.

Abnormal Termination
If OC4J terminates normally, the lock files are cleaned up automatically. However, if
OC4J terminates abnormally (for example, a kill -9 command), the lock files
remain in the file system. Because OC4J cannot distinguish leftover lock files from
sharing violations, you must manually remove all lock files before restarting OC4J
after abnormal termination. OC4J JMS does not attempt even to create the relevant
persistent JMS Destination objects if it detects already existing lock files for
them.

The default location of the lock files are in the persistence directory—
J2EE_HOME/persistence. (The persistence directory is defined in the

Oracle Application Server JMS

3-20 Oracle Application Server Containers for J2EE Services Guide

application.xml file.) Other locations can be set within the
persistence-file attribute of the Destination object.

Predefined OracleAS JMS Exception Queue
As an extension to the JMS specification, OC4J JMS comes with a predefined
exception queue for handling undeliverable messages. This is a single, persistent,
global exception queue to store undeliverable messages in all of its Destination
objects. The exception queue has a fixed name (jms/Oc4jJmsExceptionQueue),
a fixed JNDI location (jms/Oc4jJmsExceptionQueue), and a fixed persistence
file (Oc4jJmsExceptionQueue).

The exception queue is always available to OC4J JMS and its clients, and should not
be explicitly defined in the jms.xml configuration file; attempting to do so is an
error. The name, JNDI location, and persistence path name of the exception queue
must be considered reserved words in their respective name spaces; any attempt to
define other entities with these names is an error.

Messages can become undeliverable due to message expiration and listener errors.
The following subsection explains what happens to undeliverable messages in the
first case.

Message Expiration
By default, if a message that was sent to a persistent Destination expires, OC4J
JMS moves the message to the exception queue. The JMSXState of the expiring
message is set to the value 3 (for EXPIRED), but the message headers, properties,
and body are not otherwise modified. The message is wrapped in an
ObjectMessage (with appropriate property name and value copies performed as
described elsewhere in this chapter) and the wrapping message is sent to the
exception queue.

Note: The location of the Oc4jJmsExceptionQueue persistence
file is different whether you are operating OC4J in standalone or
Oracle Application Server mode, as follows:

■ Standalone: J2EE_HOME/persistence directory

■ Oracle Application Server:
J2EE_HOME/persistence/<island_name> directory

The location of the persistence directory is defined in the
application.xml file.

Oracle Application Server JMS

Java Message Service 3-21

To affect the behavior of what goes into the exception queue, use the
oc4j.jms.saveAllExpired property (described in Table 3–5).

The wrapping ObjectMessage has the same DeliveryMode as the original
message.

By default, messages expiring on nonpersistent or temporary Destination objects
are not moved to the exception queue. The messages sent to these Destination
objects are not worth persisting and neither should their expired versions be.

You can move all expired messages, regardless of whether or not they are sent to
persistent, nonpersistent, or temporary Destination objects, by setting the
oc4j.jms.saveAllExpired administration property (described in Table 3–5) to
true when starting the OC4J server. In this case, all expired messages are moved to
the exception queue.

Message Paging
The OracleAS JMS server supports paging in and out message bodies under the
following circumstances:

■ The message has a persistent delivery mode.

■ The message is sent to a persistent Destination object (see "OracleAS JMS
File-Based Persistence" on page 3-14).

■ The OC4J server JVM has insufficient memory.

Only message bodies are paged. Message headers and properties are never
considered for paging. You set the paging threshold through the OracleAS JMS
system property, oc4j.jms.pagingThreshold, which is a double value
(narrowed into the range [0,1]) that represents the memory usage fraction above
which the OracleAS JMS server will begin to consider message bodies for paging.
This value is an estimate of the fraction of memory in use by the JVM. This value
can range from 0.0 (the program uses no memory at all) to 1.0 (the program is using
all available memory).

The value ranges from somewhere above 0.0 to somewhere below 1.0: it is almost
impossible to write a Java program that uses no JVM memory, and programs almost
always die by running out of memory before the JVM heap gets full.

For example, if the paging threshold is 0.5, and the memory usage fraction of the
JVM rises to 0.6, OracleAS JMS will try to page out as many message bodies as it
possibly can until the memory usage fraction reduces below the threshold, or no
more message bodies can be paged out.

Oracle Application Server JMS

3-22 Oracle Application Server Containers for J2EE Services Guide

When a message that has been paged out is requested by a JMS client, the OracleAS
JMS server will automatically page in the message body (regardless of the memory
usage in the JVM) and deliver the correct message header/body to the client. Once
the message has been delivered to the client, it may once again be considered for
paging out depending on the memory usage in the server JVM.

If the memory usage fraction drops below the paging threshold, the OracleAS JMS
server will stop paging out message bodies. The bodies of messages already paged
out will not be automatically paged back in---the paging in of message bodies
happens only on demand (that is, when a message is dequeued or browsed by a
client).

By default, the paging threshold of the OracleAS JMS server is set to 1.0. In other
words, by default, the OracleAS JMS server never pages message bodies.

Depending on the JMS applications, and the sizes of the messages they
send/receive, and the results of experiments and memory usage monitoring on
real-life usage scenarios, the user should choose a suitable value for the paging
threshold.

No value of the paging threshold is ever incorrect. JMS semantics are always
preserved regardless of whether paging in enabled or disabled. Control of the
paging threshold does allow the OracleAS JMS server to handle more messages in
memory than it might have been able to without paging.

OracleAS JMS Configuration File Elements for jms.xml
This section describes the XML elements for OC4J JMS configuration in jms.xml.
The following is the element order structure within the XML file.

<jms-server>
<queue>

<description></description>
</queue>
<topic>

<description></description>
</topic>

Oracle Application Server JMS

Java Message Service 3-23

<connection-factory></connection-factory>
<queue-connection-factory></queue-connection-factory>
<topic-connection-factory></topic-connection-factory>
<xa-connection-factory></xa-connection-factory>
<xa-queue-connection-factory></xa-queue-connection-factory>
<xa-topic-connection-factory></xa-topic-connection-factory>
<log>

<file></file>
</log>

</jms-server>

The JMS configuration elements are defined below:

jms-server

The root element of the OC4J JMS server configuration.

Attributes:

■ host—The host name defined in a String (DNS or dot-notation host name)
that this OC4J JMS server should bind to. By default, the JMS server binds to
0.0.0.0 (also known as [ALL] in the configuration file). Optional attribute.

■ port—The port defined as an int (valid TCP/IP port number) to which this OC4J
JMS server should bind. The default setting is 9127. This setting applies only to
the standalone configuration of OC4J. In the Oracle Application Server, the port
setting in the configuration file is overridden by command line arguments that
are used (by, for example, OPMN, DCM, and others) when starting the OC4J
server. Optional attribute.

queue

This element configures OracleAS JMS queues. The queues are available when OC4J
JMS starts up, and are available for use until the server is restarted or reconfigured.
You can configure zero or more queues in any order. Any newly configured queue
is not available until OC4J is restarted.

Attributes:

■ name—This required attributes is the provider-specific name (String) for the
OC4J JMS queue. The name can be any valid nonempty string (with white space
and other special characters included, although this is not recommended). The
name specified here can be used in Session.createQueue() to convert the
provider-specific name to a JMS queue. It is invalid for both a queue and a topic
to specify the same name. However, multiple queues can specify the same name
and different locations. There is no default name.

Oracle Application Server JMS

3-24 Oracle Application Server Containers for J2EE Services Guide

■ location—This required attribute states the JNDI location (String) to which
the queue is bound. The value should follow the JNDI rules for valid names.
Within the OC4J JMS container, the location is bound and accessible as is. In
application clients, the name is part of the java:comp/env/ JNDI name space,
and should be appropriately declared in the relevant deployment descriptors.
The java:comp/env/ names can also be used within the container, assuming
that the relevant deployment descriptors have been appropriately specified.
The location should be unique across all Destination objects and connection
factory elements in jms.xml. There is no default.

■ persistence-file—An optional path and filename (String). The path for
the persistence-file attribute is either an absolute path of the file or a path
relative to the persistence directory defined in application.xml; the default
path is J2EE_HOME/persistence/<island> for Oracle Application Server
environments and J2EE_HOME/persistence for standalone environments.

See "Recovery" on page 3-16 for more details on the meaning of this attribute. If
multiple queue elements with the same name and different locations are
declared in jms.xml, then all of them should specify the same value for
persistence-file or should not specify the value at all—if at least one of
these multiple declarations specifies a persistence-file, that value is used
for this queue.

topic

This element configures OracleAS JMS topic. The topics are available when OC4J
JMS starts up, and are available for use until the server is restarted or reconfigured.
You can configure zero or more topics in any order. Any newly configured topic is
not available until OC4J is restarted.

Attributes:

■ name—This required attributes is the provider-specific name (String) for the
OC4J JMS topic. The name can be any valid nonempty string (with white space
and other special characters included, although this is not recommended). The
name specified here can be used in Session.createTopic() to convert the
provider-specific name to a JMS topic. It is invalid for both a queue and a topic
to specify the same name. However, multiple topics can specify the same name
and different locations. There is no default name.

■ location—This required attribute states the JNDI location (String) to which
the topic is bound. The value should follow the JNDI rules for valid names.
Within the OC4J JMS container, the location is bound and accessible as is. In
application clients, the name is part of the java:comp/env/ JNDI name space,
and should be appropriately declared in the relevant deployment descriptors.

Oracle Application Server JMS

Java Message Service 3-25

The java:comp/env/ names can also be used within the container, assuming
that the relevant deployment descriptors have been appropriately specified.
The location should be unique across all topics and connection factory elements
in jms.xml. There is no default.

■ persistence-file—An optional path and filename (String). The path for
the persistence-file attribute is either an absolute path of the file or a path
relative to the persistence directory defined in application.xml; the default
path is J2EE_HOME/persistence/<island> for Oracle Application Server
environments and J2EE_HOME/persistence for standalone environments.

See "Recovery" on page 3-16 for more details on the meaning of this attribute. If
multiple queue or topic elements with the same name and different locations
are declared in jms.xml, then all of them should specify the same value for
persistence-file or should not specify the value at all—if at least one of
these multiple declarations specifies a persistence-file, that value is used
for this topic.

description

A user-defined string to remind the user for what the queue or topic is used.

connection-factory

JMS domain connection factory configuration. Table 3–4 describes all of the
attributes for this element.

queue-connection-factory

JMS domain connection factory configuration. Table 3–4 describes all of the
attributes for this element.

topic-connection-factory

JMS domain connection factory configuration.Table 3–4 describes all of the
attributes for this element.

xa-connection-factory

XA variants of connection factory configuration. Table 3–4 describes all of the
attributes for this element.

xa-queue-connection-factory

XA variants of connection factory configuration. Table 3–4 describes all of the
attributes for this element.

xa-topic-connection-factory

Oracle Application Server JMS

3-26 Oracle Application Server Containers for J2EE Services Guide

XA variants of connection factory configuration. Table 3–4 describes all of the
attributes for this element.

log

Log configuration element. Enables logging of the JMS activity in either file or ODL
format. See the "Enabling OC4J Logging" section in the Oracle Application Server
Containers for J2EE User’s Guide for complete information on logging.

Table 3–4 describes all of the attributes for any connection factory definition.

Table 3–4 Connection Factory Configuration Attributes

Attribute Type Mandatory? Default Description

location String yes (n/a) The JNDI location that the connection factory is
bound to. The value should follow the JNDI rules
for valid names. Within the OC4J JMS container,
the location is bound and accessible as is. In
application clients, the name is part of the
java:comp/env/ JNDI name space, and should
be appropriately declared in the relevant
deployment descriptors. The java:comp/env/
names can also be used within the container,
assuming that the relevant deployment descriptors
have been appropriately specified. The location
should be unique across all Destination and
connection factory elements in jms.xml.

host String (DNS or
dot notation host
name)

no [ALL] The fixed OC4J JMS host this connection factory
will connect to. By default, a connection factory
uses the same host as configured for the jms-server
element. Nondefault values can be used to force all
JMS operations to be directed to a specific OC4J
Java virtual machine (JVM), bypassing any locally
available OC4J JMS servers and other Oracle
Application Server or clustered configurations.

port int (valid TCP/IP
port number)

no 9127 The fixed OC4J JMS port that this connection
factory connects to. By default, a connection
factory uses the same port as configured for the
jms-server element (or the value of the port that
was specified for Oracle Application Server or
clustered configurations on the command line).
Nondefault values can be used to force all JMS
operations to be directed to a specific OC4J JVM,
bypassing any locally available OC4J JMS servers
and other Oracle Application Server or
clustered configurations.

Oracle Application Server JMS

Java Message Service 3-27

Examples
The following code samples show connection factory configuration fragments:

The following configures a connection factory of jms/Cf, a queue connection
factory of jms/Qcf, an XA topic connection factory of jmx/xaTcf.

<connection-factory location="jms/Cf">
</connection-factory>

<queue-connection-factory location="jms/Qcf">
</queue-connection-factory>

<xa-topic-connection-factory location="jms/xaTcf"
 username="foo" password="bar" clientID="baz">
</xa-topic-connection-factory>

username String no (the empty
string)

The user name for the authentication of JMS
default connections that is created from this
connection factory. The user name itself must be
properly created and configured with other OC4J
facilities.

password String no (the empty
string)

The password for the authentication of JMS
default connections that are created from this
connection factory. The password itself must be
properly created and configured with other OC4J
facilities.

clientID String no (the empty
string)

The administratively configured, fixed JMS
clientID for connections that are created from
this connection factory. If no clientID is
specified, the default is an empty string, which can
also be programmatically overridden by client
programs, as per the JMS specification. The
clientID is used only for durable subscriptions
on topics; its value does not matter for queue and
nondurable topic operations.

Note: In Table 3–4, the property password supports password
indirection. For more information, refer to the Oracle Application
Server Containers for J2EE Security Guide.

Table 3–4 Connection Factory Configuration Attributes (Cont.)

Attribute Type Mandatory? Default Description

Oracle Application Server JMS

3-28 Oracle Application Server Containers for J2EE Services Guide

If you wanted to add a topic connection factory, you must use a unique name. For
example, you could not name it with the same name as the connection factory
(above) of jms/Cf. Thus, the following would be invalid.

<!-- Invalid: cannot reuse "location" -->
<topic-connection-factory location="jms/Cf">
</topic-connection-factory>

The following code samples show queue and topic configuration fragments. This
segment creates a queue foo and a topic bar.

<queue name="foo" location="jms/foo">
</queue>

<topic name="bar" location="jms/bar">
</topic>

There are certain locations that are reserved and cannot be redefined within the
jms.xml configuration file. The following shows how you cannot use the
jms/Oc4jJmsExceptionQueue when defining a queue location, as it is a
reserved location.

<!-- Invalid: cannot use a reserved "location" -->
<queue name="fubar" location="jms/Oc4jJmsExceptionQueue">
</queue>

When defining a persistence file for queues and topics, you can define the location
and the filename. In addition, you can specify multiple persistence files, as long as
the persistence filename is the same. Thus, the persistence file is simply written out
to two locations for the same queue.

<queue name="foo" location="jms/persist" persistence-file="pers">
</queue>

<!-- OK: multiple persistence file specification ok if consistent -->
<queue name="foo" location="jms/file" persistence-file="pers">
</queue>

<!-- Invalid: multiple persistence file specifications should be consistent -->
<queue name="foo" location="jms/file1" persistence-file="notpers">
</queue>

Alternatively, you cannot have two objects writing out to the same persistence file.
Each queue or topic must have their own persistence filename, even if the locations
are different.

Oracle Application Server JMS

Java Message Service 3-29

<topic name="demoTopic" location="jms/dada" persistence-file="/tmp/abcd">
</topic>

<!-- Invalid: cannot reuse persistence-file for multiple destinations -->
<topic name="demoTopic1" location="jms/dada1" persistence-file="/tmp/abcd">
</topic>

OracleAS JMS System Properties
OC4J JMS allows runtime configuration of the OC4J JMS server and JMS clients
through JVM system properties. None of these properties affects basic JMS
functionality—they pertain to OC4J JMS specific features, extensions, and
performance optimizations.

Table 3–5 provides a brief summary of these administration properties.

Table 3–5 OC4J JMS Administration Properties

JVM System Property
Property
Type

Defaul
t Value

Server/
Client Use

oc4j.jms.serverPoll long 15000 JMS
client

Interval (in milliseconds) that JMS
connections ping the OC4J server and
report communication exceptions to
exception listeners.

oc4j.jms.messagePoll long 1000 JMS
client

Maximum interval (in milliseconds)
that JMS asynchronous consumers
wait before checking the OC4J JMS
server for new messages.

oc4j.jms.listenerAttempts int 5 JMS
client

Number of listener delivery attempts,
before the message is declared
undeliverable.

oc4j.jms.maxOpenFiles int 64 OC4J
server

Maximum number of open file
descriptors (for persistence files) in
the OC4J JMS server; relevant if the
server is configured with more
persistent Destination objects than
the maximum number of open file
descriptors that are allowed by the
operating system.

oc4j.jms.saveAllExpired boolean false OC4J
server

Save all expired messages on all
Destination objects (persistent,
nonpersistent, and temporary) to the
OC4J JMS exception queue.

Oracle Application Server JMS

3-30 Oracle Application Server Containers for J2EE Services Guide

oc4j.jms.socketBufsize int 64 *
1024

JMS
client

When using TCP/IP sockets for
client-server communication, use the
specified buffer size for the socket
input/output streams. A minimum
buffer size of 8 KB is enforced. The
larger the size of messages being
transferred between the client and
server, the larger the buffer size
should be to provide reasonable
performance.

oc4j.jms.debug boolean false JMS
client

If true, enable tracing of NORMAL
events in JMS clients and the OC4J
JMS server. All log events (NORMAL,
WARNING, ERROR, and CRITICAL)
are sent to both stderr and, when
possible, either
J2EE_HOME/log/server.log or
J2EE_HOME/log/jms.log. Setting
this property to true typically
generates large amounts of tracing
information.

oc4j.jms.noDms boolean false JMS
client

If true, disable instrumentation.

Table 3–5 OC4J JMS Administration Properties (Cont.)

JVM System Property
Property
Type

Defaul
t Value

Server/
Client Use

Oracle Application Server JMS

Java Message Service 3-31

oc4j.jms.forceRecovery boolean false OC4J
server

If true, forcibly recover corrupted
persistence files. By default, the OC4J
JMS server does not perform
recovery of a persistence file if its
header is corrupted (because this
condition is, in general,
indistinguishable from configuration
errors). Forcible recovery allows the
OC4J JMS server almost always to
start up correctly and make
persistence files and Destination
objects available for use.

oc4j.jms.pagingThreshold double
value

1.0 OC4J
server

Represents the memory usage
fraction above which the OracleAS
JMS server will begin to consider
message bodies for paging. This
value is an estimate of the fraction of
memory in use by the JVM. This
value can range from 0.0 (the
program uses no memory at all) to
1.0 (the program is using all available
memory).

See "Message Paging" on page 3-21
for more information.

oc4j.jms.usePersistenceLockFiles boolean true OC4J
server

Control whether lock files should be
used to protect against OracleAS
JMS persistence files from being
overwritten by more than one OC4J
process. By default, lock files are used
to protect against accidental
overwrite by more than one OC4J
process. But this requires users to
manually remove lock files when
OC4J terminates abnormally. Setting
this system property to false does not
create lock files for persistent
destinations. Set this property to false
only if you can guarantee that only
one active process accesses each
persistence file. Set when starting the
OC4J server. It remains in effect for
all JMS clients until shutdown.

Table 3–5 OC4J JMS Administration Properties (Cont.)

JVM System Property
Property
Type

Defaul
t Value

Server/
Client Use

Resource Providers

3-32 Oracle Application Server Containers for J2EE Services Guide

Resource Providers
OC4J provides a ResourceProvider interface to transparently plug in JMS
providers.

The ResourceProvider interface of OC4J allows EJBs, servlets, and OC4J clients
to access many different JMS providers. The resources are available under
java:comp/resource/. Oracle JMS is accessed using the ResourceProvider
interface. See "Oracle JMS" on page 3-33 for more information on Oracle JMS.

Configuring a Custom Resource Provider
A custom resource provider can be configured in one of these ways:

■ If this is the resource provider for all applications (global), then configure the
global application.xml file.

■ If this is the resource provider for a single application (local), then configure the
orion-application.xml file of the application.

To add a custom resource provider, add the following to the chosen XML file (as
listed above):

<resource-provider class="providerClassName" name="JNDIname">
 <description>description </description>
 <property name="name" value="value" />
</resource-provider>

For the <resource-provider> attributes, configure the following:

■ class—The name of the resource provider class.

■ name—A name by which to identify the resource provider. This name is used in
finding the resource provider in the application’s JNDI as
"java:comp/resource/JNDIname/".

The sub-elements of the <resource-provider> are configured as follows:

■ description sub-element—A description of the specific resource provider.

■ property sub-element—The name and value attributes are used to identify
parameters provided to the resource provider. The name attribute identifies the
name of the parameter, and its value is provided in the value attribute.

When retrieving the resource provider, use the following syntax in the JNDI lookup:

java:comp/resource/JNDIname/resourceName

Oracle JMS

Java Message Service 3-33

where JNDIname is the name of the resource provider (as given in the name
attribute of the <resource-provider> element) and resourceName is the
resource name, which is defined in the application implementation. See "Using
OJMS as a Resource Provider" on page 3-33 for an example of Oracle JMS defined as
a resource provider.

Oracle JMS
Oracle JMS (OJMS) is the JMS interface to the Oracle Database Streams Advanced
Queuing (AQ) feature in the Oracle database. OJMS implements the JMS 1.0.2b
specification and is compatible with the J2EE 1.3 specification. OJMS access in OC4J
occurs through the resource provider interface. For more information about AQ and
OJMS, see the Oracle9i Application Developer's Guide—Advanced Queuing for Release 2
(9.2).

Oracle JMS is fully described in the following sections:

■ Using OJMS as a Resource Provider

■ Using OJMS with Oracle Application Server and the Oracle Database

Using OJMS as a Resource Provider
To access OJMS queues, do the following:

1. Install and configure OJMS on the database. See "Install and Configure the JMS
Provider" on page 3-34.

2. On the database, create an RDBMS user—which the JMS application will
connect to the back-end database—and assign privileges. The user must have
the necessary privileges to perform OJMS operations. OJMS allows any
database user to access queues in any schema, provided that the user has the
appropriate access privileges. See "Create User and Assign Privileges" on
page 3-34.

3. Create the JMS Destination objects in OJMS. "Create JMS Destination
Objects" on page 3-35.

4. In the OC4J XML configuration, define an OJMS resource provider in the
<resource-provider> element with information about the back-end
database. Create data sources or LDAP directory entries, if needed. See "Define
the OJMS Resource Provider" on page 3-36.

5. Access the resource in your implementation through a JNDI lookup. See
"Access the OJMS Resources" on page 3-41.

Oracle JMS

3-34 Oracle Application Server Containers for J2EE Services Guide

Install and Configure the JMS Provider
You or your DBA must install OJMS according to theOracle9i Application Developer's
Guide—Advanced Queuing for Release 2 (9.2) and generic database manuals. Once you
have installed and configured this JMS provider, you must apply additional
configuration. This includes the following:

1. You or your DBA should create an RDBMS user through which the JMS client
connects to the database. Grant this user appropriate access privileges to
perform OJMS operations. See "Create User and Assign Privileges" on
page 3-34.

2. You or your DBA should create the tables and queues to support the JMS
Destination objects. See "Create JMS Destination Objects" on page 3-35.

Create User and Assign Privileges
Create an RDBMS user through which the JMS client connects to the database.
Grant access privileges to this user to perform OJMS operations. The privileges that
you need depend on what functionality you are requesting. Refer to the Oracle9i
Application Developer's Guide—Advanced Queuing for Release 2 (9.2) for more
information on privileges necessary for each type of function.

The following example creates jmsuser, which must be created within its own
schema, with privileges required for OJMS operations. You must be a SYS DBA to
execute these statements.

DROP USER jmsuser CASCADE ;

GRANT connect,resource,AQ_ADMINISTRATOR_ROLE TO jmsuser
 IDENTIFIED BY jmsuser ;
GRANT execute ON sys.dbms_aqadm TO jmsuser;
GRANT execute ON sys.dbms_aq TO jmsuser;
GRANT execute ON sys.dbms_aqin TO jmsuser;
GRANT execute ON sys.dbms_aqjms TO jmsuser;

connect jmsuser/jmsuser;

Note: The following sections use SQL for creating queues, topics,
their tables, and assigning privileges that is provided within the
JMS demo on the OC4J sample code page at
http://otn.oracle.com/tech/java/oc4j/demos on the
OTN Web site.

Oracle JMS

Java Message Service 3-35

You may need to grant other privileges, such as two-phase commit or system
administration privileges, based on what the user needs. See the JTA chapter for the
two-phase commit privileges.

Create JMS Destination Objects
Each JMS provider requires its own method for creating the JMS Destination
object. Refer to the Oracle9i Application Developer's Guide—Advanced Queuing for
Release 2 (9.2) for more information on the DBMS_AQADM packages and OJMS
messages types. For our example, OJMS requires the following methods:

1. Create the tables that handle the JMS Destination (queue or topic).

In OJMS, both topics and queues use a queue table. The JMS example creates a
single table: demoTestQTab for a queue.

To create the queue table, execute the following SQL:

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’demoTestQTab’,
 Queue_payload_type => ’SYS.AQ$_JMS_MESSAGE’,
 sort_list => ’PRIORITY,ENQ_TIME’,
 multiple_consumers => false,
 compatible => ’8.1.5’);

The multiple_consumers parameter denotes whether there are multiple
consumers or not; thus, is always false for a queue and true for a topic.

2. Create the JMS Destination. If you are creating a topic, you must add each
subscriber for the topic. The JMS example requires a single queue—
demoQueue.

The following creates a queue called demoQueue within the queue table
demoTestQTab. After creation, the queue is started.

DBMS_AQADM.CREATE_QUEUE(
 Queue_name => ’demoQueue’,
 Queue_table => ’demoTestQTab’);

Note: The SQL for creating the tables for the OJMS example is
included in the JMS example available on the OC4J sample code
page at http://otn.oracle.com/tech/java/oc4j/demos
on the OTN Web site.

Oracle JMS

3-36 Oracle Application Server Containers for J2EE Services Guide

DBMS_AQADM.START_QUEUE(
 queue_name => ’demoQueue’);

If you wanted to add a topic, then the following example shows how you can
create a topic called demoTopic within the topic table demoTestTTab. After
creation, two durable subscribers are added to the topic. Finally, the topic is
started and a user is granted a privilege to it.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => ’demoTestTTab’,
 Queue_payload_type => ’SYS.AQ$_JMS_MESSAGE’,
 multiple_consumers => true,
 compatible => ’8.1.5’);
DBMS_AQADM.CREATE_QUEUE(’demoTopic’, ’demoTestTTab’);
DBMS_AQADM.ADD_SUBSCRIBER(’demoTopic’,
 sys.aq$_agent(’MDSUB’, null, null));
DBMS_AQADM.ADD_SUBSCRIBER(’demoTopic’,
 sys.aq$_agent(’MDSUB2’, null, null));
DBMS_AQADM.START_QUEUE(’demoTopic’);

Define the OJMS Resource Provider
You can define the OJMS resource provider through either the Oracle Enterprise
Manager or by hand-editing the XML files, as described in the following sections:

■ Configure the OJMS Provider Through the Oracle Enterprise Manager

■ Configure the OJMS Provider in the OC4J XML Files

Configure the OJMS Provider Through the Oracle Enterprise Manager The OJMS provider
can be configured using Application Server Console in the JMS section. To add an

Note: Oracle AQ uses the DBMS_AQADM.CREATE_QUEUE method
to create both queues and topics.

Note: The names defined here must be the same names used to
define the queue or topic in the application’s deployment
descriptors.

Oracle JMS

Java Message Service 3-37

OJMS provider, select JMS Providers under the Application Defaults column on the
Administration page. This brings you to the following page:

Click the Add new JMS Provider button to configure each JMS provider, which
brings up the following page:

Oracle JMS

3-38 Oracle Application Server Containers for J2EE Services Guide

This page enables you to configure either OJMS or a third-party JMS provider.
OracleAS JMS is always provided and preconfigured, except for the topics and
queues, with the OC4J installation.

Once you choose the type of JMS provider, you must provide the following:

■ OJMS: Provide the data source name and JNDI location for the database where
OJMS is installed and configured.

Note: This discussion also includes the directions for configuring
third-party JMS providers, as both OJMS and third-party providers
are configured in the same manner.

Oracle JMS

Java Message Service 3-39

■ Third-party JMS provider: Provide the name, JNDI initial context factory class,
and JNDI URL for the third-party provider. To add JNDI properties for this JMS
provider, such as java.naming.factory.initial and
java.naming.provider.url, click Add a property. A row is added where you
can add the name for each JNDI property and its value.

This only configures the providers; it does not configure the Destination objects
(topic, queue, and subscription).

To configure a JMS provider that is only for a specific application, select the
application from the Applications page, scroll down to the Resources column, and
select JMS Providers. The screens that appear are the same as for the default JMS
provider.

Configure the OJMS Provider in the OC4J XML Files Configure the OJMS provider within
the <resource-provider> element.

■ If this is to be the JMS provider for all applications (global), configure the global
application.xml file.

■ If this is to be the JMS provider for a single application (local), configure the
orion-application.xml file of the application.

The following code sample shows how to configure the JMS provider using XML
syntax for OJMS.

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
 <description> OJMS/AQ </description>
 <property name="datasource" value="jdbc/emulatedDS"></property>
</resource-provider>

where the attributes of the <resource-provider> element contain the following:

■ class attribute—The OJMS provider is implemented by the
oracle.jms.OjmsContext class, which is configured in the class attribute.

■ name attribute—The name of the OJMS resource provider is ojmsdemo.

In addition, the name/value attributes of the <property> element identifies the
data source used by OJMS. The topic or queue connects to this data source to access
the tables and queues that facilitate the messaging. In this example, a data source is
identified as jdbc/emulatedDS.

How you configure the attributes of the <property> element in the resource
provider configuration depends on where your application is running. With OJMS
and accessing AQ in the database, the resource provider must be configured using

Oracle JMS

3-40 Oracle Application Server Containers for J2EE Services Guide

either a data sources property or a URL property, as discussed in the following
sections:

■ Configuring the Resource Provider with a Data Sources Property

■ Configuring the Resource Provider with a URL Property

Configuring the Resource Provider with a Data Sources Property
Use a data source when the application runs within OC4J. To use a data source, first
you must configure it within the data-sources.xml file where the OJMS
provider is installed. The JMS topics and queues use database tables and queues to
facilitate messaging. The type of data source you use depends on the functionality
you want.

Example 3–3 Emulated DataSource With Thin JDBC Driver

The following example contains an emulated data source that uses the thin JDBC
driver. To support a two-phase commit transaction, use a non-emulated data source.
For differences between emulated and non-emulated data sources, see "Defining
Data Sources" on page 4-8.

The example is displayed in the format of an XML definition; see the Oracle
Application Server Containers for J2EE User’s Guide for directions on adding a new
data source to the configuration through Oracle Enterprise Manager.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/emulatedOracleCoreDS"
 xa-location="jdbc/xa/emulatedOracleXADS"
 ejb-location="jdbc/emulatedDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="jmsuser"
 password="jmsuser"
 url="jdbc:oracle:thin:@myhost.foo.com:1521:mydb"
/>

Note: For no transactions or single-phase transactions, you can
use either an emulated or non-emulated data sources. For
two-phase commit transaction support, you can use only a
non-emulated data source. See the JTA chapter for more
information.

Oracle JMS

Java Message Service 3-41

Customize this data source to match your environment. For example, substitute the
host name, port, and SID of your database for myhost:1521:orcl.

Next, configure the resource provider using the data source name. The following is
an example of how to configure the resource provider for OJMS using a data source
of jdbc/emulatedDS.

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
 <description> OJMS/AQ </description>
 <property name="datasource" value="jdbc/emulatedDS"></property>
</resource-provider>

For details on configuring data sources, see "Defining Data Sources" on page 4-8.

Configuring the Resource Provider with a URL Property
In this release, the data source is not serializable. Thus, application clients must use
a URL definition to access OJMS resources. When the application is a standalone
client (that is, when it runs outside of OC4J), configure the
<resource-provider> element with a URL property that has the URL of the
database where OJMS is installed and, if necessary, provides the username and
password for that database. The following demonstrates a URL configuration:

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
 <description> OJMS/AQ </description>
 <property name="url" value="jdbc:oracle:thin:@hostname:port number:SID">
 </property>
 <property name="username" value="user"></property>
 <property name="password" value="passwd"></property>

Access the OJMS Resources
The steps for accessing OJMS resources are the same as for OracleAS JMS resources,
as listed in "Steps for Sending and Receiving a Message" on page 3-8. The only
difference is the name of the resource provided in the JNDI lookup.

■ The OJMS syntax for the connection factory is "java:comp/resource" + JMS
provider name + "TopicConnectionFactories" or
"QueueConnectionFactories" + a user defined name. The user-defined

Note: Instead of providing the password in the clear, you can use
password indirection. For details, see the Oracle Application Server
Containers for J2EE Services Guide.

Oracle JMS

3-42 Oracle Application Server Containers for J2EE Services Guide

name can be anything and does not match any other configuration. The
xxxConnectionFactories details what type of factory is being defined. For
this example, the JMS provider name is defined in the <resource-provider>
element as ojmsdemo.

– For a queue connection factory: Since the JMS provider name is ojmsdemo
and you decide to use a name of myQCF, the connection factory name is
"java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF".

– For a topic connection factory: Since the JMS provider name is ojmsdemo
and you decide to use a name of myTCF, the connection factory name is
"java:comp/resource/ojmsdemo/TopicConnectionFactories/myTCF".

The user defined names, as shown above by myQCF and myTCF, are not used for
anything else in your logic. So, any name can be chosen.

■ The OJMS syntax for any Destination is "java:comp/resource" + JMS
provider name + "Topics" or "Queues" + Destination name. The Topic or
Queue details what type of Destination is being defined. The Destination
name is the actual queue or topic name defined in the database.

For this example, the JMS provider name is defined in the
<resource-provider> element as ojmsdemo. In the database, the queue
name is demoQueue.

– For a queue: If the JMS provider name is ojmsdemo and the queue name is
demoQueue, then the JNDI name for the topic as
"java:comp/resource/ojmsdemo/Queues/demoQueue."

– For a topic: If the JMS provider name is ojmsdemo and the topic name is
demoTopic, then the JNDI name for the topic as
"java:comp/resource/ojmsdemo/Topics/demoTopic."

Example 3–4 demonstrates the steps for sending a JMS message; Example 3–5
demonstrates the steps for receiving a JMS message. For the complete example,
download the JMS example used in this chapter from the OC4J sample code page at
http://otn.oracle.com/tech/java/oc4j/demos on the OTN Web site.

Note: For simplicity, most of the error handling is removed in
Example 3–4 and Example 3–5. To see the error processing, see the
sample code available on the OTN Web site.

Oracle JMS

Java Message Service 3-43

Example 3–4 OJMS Client That Sends Messages to an OJMS Queue

The following method—dosend—sets up a queue to send messages. After creating
the queue sender, this example sends out several messages. The steps necessary for
setting up the queue and sending out the message are delineated in "Steps for
Sending and Receiving a Message" on page 3-8.

public static void dosend(int nmsgs)
{
 // 1a. Retrieve the queue connection factory
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup(
 "java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF");
 // 1b. Retrieve the queue
 Queue q = (Queue)
 ctx.lookup("java:comp/resource/ojmsdemo/Queues/demoQueue");

 // 2. Create the JMS connection
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create a sender on the JMS session to send messages.
 QueueSender snd = qs.createSender(q);

 // Send out messages...
 for (int i = 0; i < nmsgs; ++i)
 {
 //Create the message using the createMessage method
 // of the JMS session
 Message msg = qs.createMessage();
 // Send the message out over the sender (snd) using the send method
 snd.send(msg);
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 }

 // Close the sender, the JMS session and the JMS connection.
 snd.close();
 qs.close();
 qc.close();

Oracle JMS

3-44 Oracle Application Server Containers for J2EE Services Guide

}

Example 3–5 OJMS Client That Receives Messages Off of a Queue

The following method—dorcv—sets up a queue to receive messages off of it. After
creating the queue receiver, it loops to receive all messages off of the queue and
compares it to the number of expected messages. The steps necessary for setting up
the queue and receiving messages are delineated in "Steps for Sending and
Receiving a Message" on page 3-8.

public static void dorcv(int nmsgs)
{
 Context ctx = new InitialContext();

 // 1a. Retrieve the queue connection factory
 QueueConnectionFactory qcf = (QueueConnectionFactory) ctx.lookup(
 "java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF");
 // 1b. Retrieve the queue
 Queue q = (Queue)
 ctx.lookup("java:comp/resource/ojmsdemo/Queues/demoQueue");

 // 2. Create the JMS connection
 QueueConnection qc = qcf.createQueueConnection();
 // 3. Start the queue connection.
 qc.start();
 // 4. Create the JMS session over the JMS connection
 QueueSession qs = qc.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Create a receiver, as we are receiving off of the queue.
 QueueReceiver rcv = qs.createReceiver(q);

 // Receive the messages
 int count = 0;
 while (true)
 {
 Message msg = rcv.receiveNoWait();
 System.out.println("msg:" + " id=" + msg.getJMSMessageID());
 ++count;
 }

 if (nmsgs != count)
 {

Oracle JMS

Java Message Service 3-45

 System.out.println("expected: " + nmsgs + " found: " + count);
 }

 // Close the receiver, the JMS session and the JMS connection.
 rcv.close();
 qs.close();
 qc.close();
}

Using OJMS with Oracle Application Server and the Oracle Database
This section addresses common issues encountered by users of OJMS (AQ/JMS)
with Oracle Application Server.

■ Error When Copying aqapi.jar

■ OJMS Certification Matrix

Error When Copying aqapi.jar
A common error condition seen when using OJMS with the Oracle Application
Server is:

PLS-00306 "wrong number or types of arguments"

If you receive this message, then the aqapi.jar file being used in Oracle
Application Server is not compatible with the version of the Oracle database being
used for AQ. A common mistake is to copy the aqapi.jar file from the Oracle
database installation into the Oracle Application Server installation, or vice versa,
under the assumption that they are interchangeable. The confusion is due to the
Oracle Application Server and the Oracle database both shipping the OJMS client
JAR file. Do not copy this file. Use the matrix in Table 3–6 to find the correct version
of the database and Oracle Application Server, then use the aqapi.jar file that
comes with the Oracle Application Server.

In an Oracle Application Server installation the OJMS client JAR file can be found at
ORACLE_HOME/rdbms/jlib/aqapi.jar and should be included in the
CLASSPATH.

OJMS Certification Matrix
Table 3–6 summarizes which version of the Oracle database to use with the Oracle
Application Server when the OJMS client is running in OC4J. An X indicates that
the Oracle database version and the Oracle Application Server version that intersect

Map Logical Names in Resource References to JNDI Names

3-46 Oracle Application Server Containers for J2EE Services Guide

at that cell are certified to work together. If the intersection has no X, then the
corresponding version of the Oracle database and Oracle Application Server should
not be used together.

Map Logical Names in Resource References to JNDI Names
The client sends and receives messages through a JMS Destination object. The
client can retrieve the JMS Destination object and connection factory either
through using its explicit name or by a logical name. The examples in "Oracle
Application Server JMS" on page 3-2 and "Oracle JMS" on page 3-33 used explicit
names within the JNDI lookup calls. This section describes how you can use logical
names in your client application; thus, limiting the JNDI names for the JMS
provider within the OC4J-specific deployment descriptors. With this indirection,
you can make your client implementation generic for any JMS provider.

If you want to use a logical name in your client application code, then define the
logical name in one of the following XML files:

■ A standalone Java client—in the application-client.xml file

■ An EJB that acts as a client—the ejb-jar.xml file

■ For JSPs and servlets that act as clients—the web.xml file

Map the logical name to the actual name of the topic or queue name in the OC4J
deployment descriptors.

You can create logical names for the connection factory and Destination objects,
as follows:

Note: NOTE: This is not a certification matrix for Oracle
Application Server and the Oracle database in general. It is only for
OJMS when used in the Oracle Application Server.

Table 3–6 OJMS Certification Matrix

OracleAS / Oracle database v9.0.1 v9.0.1.3 v9.0.1.4 v9.2.0.1 v9.2.0.2+

9.0.2 X X X

9.0.3 X X

10g (9.0.4) X X

Map Logical Names in Resource References to JNDI Names

Java Message Service 3-47

■ The connection factory is identified in the client’s XML deployment descriptor
file within a <resource-ref> element.

– The logical name that you want the connection factory to be identified as is
defined in the <res-ref-name> element.

– The connection factory class type is defined in the <res-type> element as
either javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory.

– The authentication responsibility (Container or Bean) is defined in the
<res-auth> element.

– The sharing scope (Shareable or Unshareable) is defined in the
<res-sharing-scope> element.

■ The JMS Destination—the topic or queue—is identified in a
<resource-env-ref> element.

– The logical name that you want the topic or queue to be identified as is
defined in the <resource-env-ref-name> element.

– The Destination class type is defined in the
<resource-env-ref-type> element as either javax.jms.Queue or
javax.jms.Topic.

The following shows an example of how to specify logical names for a queue.

<resource-ref>
 <res-ref-name>myQCF</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>myQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

Then, you map the logical names to actual names in the OC4J deployment
descriptors. The actual names, or JNDI names, are different in OracleAS JMS than in
OJMS. However, the mapping is defined in one of the following files:

■ For a standalone Java client—the orion-application-client.xml

■ For an EJB acting as a client—the orion-ejb-jar.xml

Map Logical Names in Resource References to JNDI Names

3-48 Oracle Application Server Containers for J2EE Services Guide

■ For JSPs and servlets acting as a client—the orion-web.xml file.

The logical names in the client’s deployment descriptor are mapped as follows:

■ The logical name for the connection factory defined in the <resource-ref>
element is mapped to its JNDI name in the <resource-ref-mapping>
element.

■ The logical name for the JMS Destination defined in the
<resource-env-ref> element is mapped to its JNDI name in the
<resource-env-ref-mapping> element.

See the following sections for how the mapping occurs for both OracleAS JMS and
OJMS and how clients use this naming convention:

■ JNDI Naming for OracleAS JMS

■ JNDI Naming for OJMS

■ JNDI Naming Property Setup for Java Application Clients

■ Client Sends JMS Message Using Logical Names

JNDI Naming for OracleAS JMS
The JNDI name for the OracleAS JMS Destination and connection factory are
defined within the jms.xml file. As shown in Example 3–1, the JNDI names for the
queue and the queue connection factory are as follows:

■ The JNDI name for the topic is "jms/demoQueue."

■ The JNDI name for the topic connection factory is
"jms/QueueConnectionFactory."

Prepend both of these names with "java:comp/env/" and you have the mapping
in the orion-ejb-jar.xml file as follows:

<resource-ref-mapping
 name="myQCF"
 location="java:comp/env/jms/QueueConnectionFactory">
</resource-ref-mapping>

<resource-env-ref-mapping
 name="myQueue"
 location="java:comp/env/jms/demoQueue">
</resource-env-ref-mapping>

Map Logical Names in Resource References to JNDI Names

Java Message Service 3-49

JNDI Naming for OJMS
The JNDI naming for OJMS Destination and connection factory objects is the
same name that was specified in the orion-ejb-jar.xml file as described in
"Access the OJMS Resources" on page 3-41.

The following example maps the logical names for the connection factory and
queue to their actual JNDI names. Specifically, the queue defined logically as
"myQueue" in the application-client.xml file is mapped to its JNDI name of
"java:comp/resource/ojmsdemo/Queues/demoQueue."

<resource-ref-mapping
 name="myQCF"
 location="java:comp/resource/ojmsdemo/QueueConnectionFactories/myQF">
</resource-ref-mapping>

<resource-env-ref-mapping
 name="myQueue"
 location="java:comp/resource/ojmsdemo/Queues/demoQueue">
</resource-env-ref-mapping>

JNDI Naming Property Setup for Java Application Clients
In the Oracle Application Server, a Java application client would access a JMS
Destination object by providing the following in the JNDI properties:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://$HOST:$OPMN_REQUEST_PORT:$OC4J_INSTANCE/
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Where:

■ Use the ApplicationClientInitialContextFactory as your initial
context factory object.

■ Supply the OPMN host and port and the OC4J instance in the provider URL.

In an OC4J standalone environment, a Java application client would access a JMS
Destination object by providing the following in the JNDI properties:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=ormi://myhost/
java.naming.security.principal=admin

Map Logical Names in Resource References to JNDI Names

3-50 Oracle Application Server Containers for J2EE Services Guide

java.naming.security.credentials=welcome

Where:

■ Use the ApplicationClientInitialContextFactory as your initial
context factory object.

■ Supply the standalone OC4J host and port in the provider URL.

Client Sends JMS Message Using Logical Names
Once the resources have been defined and the JNDI properties configured, the client
sends a JMS message by doing the following:

1. Retrieve both the configured JMS Destination and its connection factory
using a JNDI lookup.

2. Create a connection from the connection factory. If you are receiving messages
for a queue, start the connection.

3. Create a session over the connection.

4. Providing the retrieved JMS Destination, create a sender for a queue, or a
publisher for a topic.

5. Create the message.

6. Send out the message using either the queue sender or the topic publisher.

7. Close the queue session.

8. Close the connection for either JMS Destination types.

Map Logical Names in Resource References to JNDI Names

Java Message Service 3-51

Example 3–6 JSP Client Sends Message to a Topic

The method of sending a message to a topic is almost the same. Instead of creating a
queue, you create a topic. Instead of creating a sender, you create publishers.

The following JSP client code sends a message to a topic. The code uses logical
names, which should be mapped in the OC4J deployment descriptor.

<%@ page import="javax.jms.*, javax.naming.*, java.util.*" %>
<%

//1a. Lookup the topic
jndiContext = new InitialContext();
topic = (Topic)jndiContext.lookup("demoTopic");

//1b. Lookup the Connection factory
topicConnectionFactory = (TopicConnectionFactory)
 jndiContext.lookup("myTCF");

//2 & 3. Retrieve a connection and a session on top of the connection
topicConnection = topicConnectionFactory.createTopicConnection();
topicSession = topicConnection.createTopicSession(true,
 Session.AUTO_ACKNOWLEDGE);

//4. Create the publisher for any messages destined for the topic
topicPublisher = topicSession.createPublisher(topic);

//5 & 6. Create and send out the message
for (int ii = 0; ii < numMsgs; ii++)
{
 message = topicSession.createBytesMessage();
 String sndstr = "1::This is message " + (ii + 1) + " " + item;
 byte[] msgdata = sndstr.getBytes();
 message.writeBytes(msgdata);

 topicPublisher.publish(message);
 System.out.println("--->Sent message: " + sndstr);
}

//7,8. Close publisher, session, and connection for topic
topicPublisher.close();
topicSession.close();
topicConnection.close();
%>

Third-Party JMS Providers

3-52 Oracle Application Server Containers for J2EE Services Guide

Third-Party JMS Providers
This section discusses the following third-party JMS providers and how they
integrate with OC4J using the resource provider interface:

■ Using WebSphere MQ as a Resource Provider

■ Using SonicMQ as a Resource Provider

■ Using SwiftMQ as a Resource Provider

Here are the operations that the resource provider interface supports:

■ Look up queue and topic with
java:comp/resource/providerName/resourceName

■ Send a message in EJB

■ Receive a message synchronously in EJB

The context-scanning resource provider class is a generic resource provider class
that is shipped with OCJ for use with third-party message providers.

Using WebSphere MQ as a Resource Provider
WebSphere MQ is an IBM messaging provider. This example demonstrates how to
make WebSphere MQ the default resource provider for JMS connections. The
WebSphere MQ resources are available in OC4J under
java:comp/resource/MQSeries/.

Configuring WebSphere MQ
To configure WebSphere MQ, perform the following steps:

1. Install and configure WebSphere MQ on your system, then verify the
installation by running any examples or tools that are supplied by the vendor.
(See the documentation that is supplied with your software for instructions.)

2. Configure the resource provider. You can either configure the resource provider
through Oracle Enterprise Manager (as shown in "Define the OJMS Resource
Provider" on page 3-36) or configure the <resource-provider> element in
orion-application.xml. Use either method to add WebSphere MQ as a

Note: Oracle supports only single-phase commit semantics for
resource providers other than OJMS.

Third-Party JMS Providers

Java Message Service 3-53

custom resource provider. The following demonstrates an example of
configuring WebSphere MQ through the <resource-provider> element.
You could use the same information to configure through Oracle Enterprise
Manager.

<resource-provider

class="com.evermind.server.deployment.ContextScanningResourceProvide
r"
 name="MQSeries">
 <description> MQSeries resource provider </description>
 <property
 name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory">
 </property>
 <property
 name="java.naming.provider.url"
 value="file:/var/mqm/JNDI-Directory">
 </property>
</resource-provider>

3. Add the following WebSphere MQ JMS client jar files to J2EE_HOME/lib:

com.ibm.mq.jar
com.ibm.mqbind.jar
com.ibm.mqjms.jar
mqji.properties

4. Add the file system JNDI JAR files fscontext.jar and providerutil.jar
to J2EE_HOME/lib.

Using SonicMQ as a Resource Provider
SonicMQ is a messaging provider from Sonic Software Corporation. The resource
provider interface furnishes support for plugging in third-party JMS
implementations. This example describes how to make SonicMQ the default
resource provider for JMS connections. The SonicMQ resources are available in
OC4J under java:comp/resource/SonicMQ.

Third-Party JMS Providers

3-54 Oracle Application Server Containers for J2EE Services Guide

Configuring SonicMQ
To configure SonicMQ, perform the following steps:

1. Install and configure SonicMQ on your system, then verify the installation by
running any examples or tools supplied by the vendor. (See the documentation
supplied with your software for instructions.)

2. Configure the resource provider. You can either configure the resource provider
through Oracle Enterprise Manager (as shown in "Define the OJMS Resource
Provider" on page 3-36) or configure the <resource-provider> element in
orion-application.xml. Use either method to add SonicMQ as a custom
resource provider as the message provider and the file system as the JNDI store.
The following demonstrates an example of configuring SonicMQ through the
<resource-provider> element. You could use the same information to
configure through Oracle Enterprise Manager.

<resource-provider

class="com.evermind.server.deloyment.ContextScanningResourceProvider
"
 name="SonicJMS">
 <description>
 SonicJMS resource provider.
 </description>
 <property name="java.naming.factory.initial"
 value="com.sun.jndi.fscontext.RefFSContextFactory">
 <property name="java.naming.provider.url"
 value="file:/private/jndi-directory/">
</resource-provider>

3. Add the following SonicMQ JMS client jar files to J2EE_HOME/lib:

Sonic_client.jar

Note: SonicMQ broker does not embed a JNDI service. Instead, it
relies on an external directory server to register the administered
objects. Administered objects, such as queues, are created by an
administrator—either using SonicMQ Explorer or
programmatically—using the Sonic Management API. Oracle
registers the administered objects from SonicMQ Explorer using the
file system JNDI.

Third-Party JMS Providers

Java Message Service 3-55

Sonic_XA.jar

Using SwiftMQ as a Resource Provider
SwiftMQ is a messaging provider from IIT Software. This example describes how to
make SwiftMQ the default resource provider for JMS connections. The SwiftMQ
resources are available in OC4J under java:comp/resource/SwiftMQ.

Configuring SwiftMQ
To configure SwiftMQ, perform the following steps:

1. Install and configure SwiftMQ on your system, then verify the installation by
running any examples or tools that are supplied by the vendor. (See the
documentation that is supplied with your software for instructions.)

2. Configure the resource provider. You can either configure the resource provider
through Oracle Enterprise Manager (as shown in "Define the OJMS Resource
Provider" on page 3-36) or configure the <resource-provider> element in
orion-application.xml. Use either method to add SwiftMQ as a custom
resource provider. The following demonstrates an example of configuring
SwiftMQ through the <resource-provider> element. You could use the
same information to configure through Oracle Enterprise Manager.

<resource-provider

class="com.evermind.server.deloyment.ContextScanningResourceProvider
"
 name="SwiftMQ">
 <description>
 SwiftMQ resource provider.
 </description>
 <property name="java.naming.factory.initial"
 value="com.swiftmq.jndi.InitialContextFactoryImpl">
 <property name="java.naming.provider.url"
 value="smqp://localhost:4001">
</resource-provider>

3. Add the following SwiftMQ JMS client jar files to J2EE_HOME/lib:

swiftmq.jar

Using Message-Driven Beans

3-56 Oracle Application Server Containers for J2EE Services Guide

Using Message-Driven Beans
See the MDB chapter of the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for details on deploying an MDB that accesses OracleAS
JMS or OJMS.

High Availability and Clustering for JMS
A highly available JMS server provides a guarantee that JMS requests will be
serviced with no interruptions because of software or hardware failures. One way to
achieve high availability is through fail-over; if one instance of the server fails, a
combination of software, hardware and infrastructure mechanisms make sure that
another instance of the server takes over the servicing of requests.

Table 3–7 summarizes the support for high availability in OracleAS JMS and
OracleAS JMS.

Table 3–7 High Availability Summary

JMS clustering provides an environment wherein JMS applications deployed in this
type of environment are able to load balance JMS requests across multiple OC4J
instances or processes. Clustering of stateless applications is trivial; the application
is deployed on multiple servers and user requests are routed to one of them.

JMS is a stateful API; both the JMS client and the JMS server contain state about
each other, which includes informations about connections, sessions and durable
subscriptions. Users can configure their environment and use a few simple
techniques when writing their applications to make them cluster-friendly.

The following sections discuss how both OJMS and OracleAS JMS use high
availability and clustering:

■ Oracle Application Server JMS High Availability Configuration

Feature OJMS OracleAS JMS

High availability RAC + OPMN OPMN

Configuration RAC configuration, resource
provider configuration

 Dedicated JMS server, jms.xml configuration,
opmn.xml configuration

 Message store On RAC database In dedicated JMS server/persistence files

 Failover Same or different machine
(depending on RAC)

 Same machine only (different machine failover
achievable through DNS and shared file system)

High Availability and Clustering for JMS

Java Message Service 3-57

■ OJMS High Availability Configuration

■ Failover Scenarios When Using a RAC Database With OJMS

■ Server Side Sample Code for Failover for Both JMS Providers

■ Clustering Best Practices

Oracle Application Server JMS High Availability Configuration
Oracle Application Server JMS (OracleAS JMS) clustering normally implies that an
application deployed in this type of environment is able to load balance messages
across multiple instances of OC4J. There is also a degree of high availability in this
environment since the container processes can be spread across multiple
nodes/machines. If any of the processes or machines goes down, then the other
processes on an alternate machine continue to service messages.

In this section two JMS clustering scenarios are described:

■ OracleAS JMS Server Distributed Destinations

In this configuration, all factories and destinations are defined on all OC4J
instances. Each OC4J instance has a separate copy of each of the destinations.
Each copy of the destinations is unique and is not replicated or synchronized
across OC4J instances. Destinations can be persistent or in-memory. A message
enqueued to one OC4J instance can be dequeued only from that OC4J instance.

This configuration is ideal for high throughput applications where requests
need to be load balanced across OC4J instances. No configuration changes are
required for this scenario.

■ OracleAS Dedicated JMS Server

In this configuration, a single JVM within a single OC4J instance is dedicated as
the JMS server. All other OC4J instances that are hosting JMS clients forward
their JMS requests to the dedicated JMS server.

This configuration is the easiest to maintain and troubleshoot and should be
suitable for the majority of OracleAS JMS applications, especially those where
message ordering is a requirement.

Terminology
The terms being introduced here are explained in much more detail in the Oracle
Application Server 10g High Availability Guide and the Oracle Process Manager and
Notification Server Administrator’s Guide.

High Availability and Clustering for JMS

3-58 Oracle Application Server Containers for J2EE Services Guide

■ OHS—Oracle HTTP Server

■ OracleAS Cluster—A grouping of similarly configured Oracle Application
Server instances

■ Oracle Application Server Instance—Represents an installation of Oracle
Application Server (that is, an ORACLE_HOME)

■ OC4J Instance—Within an Oracle Application Server instance there can be
multiple OC4J instances, where each OC4J instance has 1 to n number of
identically configured JVMs

■ Factory—Denotes a JMS connection factory

■ Destination —Denotes a JMS destination

OracleAS JMS Server Distributed Destinations
In this configuration OHS services HTTP requests and load balances them across
the two Oracle Application Server instances that are in an Oracle Application Server
cluster. This of course can scale to more than two Oracle Application Server
instances. There are a number of advantages to this type of deployment:

■ Since applications and the JMS server are both running inside the same JVM
and no inter-process communication is necessary, high throughput is achieved.

■ Load balancing promotes high throughput as well as high availability.

■ No single point of failure—As long as one OC4J process is available, then
requests can be processed.

■ Oracle Application Server instances can be clustered without impacting JMS
operations.

■ Destination objects can be persistent or in-memory.

High Availability and Clustering for JMS

Java Message Service 3-59

Within each Oracle Application Server instance two OC4J instances have been
defined. Each of these OC4J instances is running a separate application. In other
words, OC4J instance #1 (Home1) is running Application #1 while OC4J instance #2
(Home2) is running Application #2. Remember, each OC4J instance can be
configured to run multiple JVMs allowing the application to scale across these
multiple JVMs.

Within an Oracle Application Server cluster, the configuration information for each
Oracle Application Server instance is identical (except for the instance-specific
information like host name, port numbers, and so on). This means that Application
#1 deployed to OC4J instance #1 in Oracle Application Server instance #1 is also
deployed on OC4J instance #1 in Oracle Application Server instance #2. This type of
architecture allows for load balancing of messages across multiple Oracle
Application Server instances—as well as high availability of the JMS application,
especially if Oracle Application Server instance #2 is deployed to another node to
ensure against hardware failure.

O
_1

08
7

myQueue1

JMS Server

Application #1

JMS Server

Application #1myQueue1

myQueue2

JMS Server

Application #2

JMS Server

Application #2myQueue2

OC4J
Instance

Home1

OC4J
Instance

Home2

OC4J
Instance
Home1

OracleAS Instance 1 OracleAS Instance 2

OracleAS Cluster

OC4J
Instance
Home2

Oracle
HTTP Server

High Availability and Clustering for JMS

3-60 Oracle Application Server Containers for J2EE Services Guide

The sender and receiver of each application must be deployed together on an OC4J
instance. In other words, a message enqueued to the JMS Server in one OC4J
process can be dequeued only from that OC4J process.

All factories and destinations are defined on all OC4J processes. Each OC4J process
has a separate copy of each of the destinations. The copies of destinations are not
replicated or synchronized. So in the diagram, Application #1 is writing to a
destination called myQueue1. This destination physically exists in two locations
(Oracle Application Server instance #1 and #2) and is managed by the respective
JMS servers in each OC4J instance.

It must be noted that this type of JMS deployment is only suited for specific types of
JMS applications. Assuming that message order is not a concern messages are
enqueued onto distributed queues of the same name. Given the semantics of JMS
point-to-point messaging, messages must not be duplicated across multiple queues.
In the case above, messages are sent to whatever queue the load balancing
algorithm determines and the MDB’s dequeue them as they arrive.

OracleAS Dedicated JMS Server
In this configuration a single OC4J instance is configured as the dedicated JMS
server within an Oracle Application Server clustered environment. This OC4J
instance handles all messages, thus message ordering is always maintained. All JMS
applications use this dedicated server to host their connection factories,
destinations, and service their enqueue and dequeue requests.

Only one OC4J JVM is acting as the dedicated JMS provider for all JMS applications
within the cluster. This is achieved by limiting the JMS port range in the opmn.xml
file to only one port for the dedicated OC4J instance.

While this diagram shows the active JMS server in the OC4J Home instance, it is
recommended that the JMS provider be hosted in its own OC4J instance. For
example, while Home is the default OC4J instance running after an Oracle
Application Server install, you should create a second OC4J instance with the
Oracle Enterprise Manager. In the opmn.xml file example below, you can see that
we have created an OC4J instance called JMSserver.

High Availability and Clustering for JMS

Java Message Service 3-61

Once we create an OC4J instance called JMSserver, we need to make the following
two changes to the opmn.xml file for this Oracle Application Server instance:

1. Make sure only one JVM is being started for this OC4J instance (JMSserver).

2. Narrow the jms port range for this instance to one value.

The single JVM in the OC4J instance ensures that other JVMs will not attempt to use
the same set of persistent files.

The single port value is necessary to ensure that OPMN always assigns this value to
the dedicated JMS server. This port value is used to define the connection factory in
the jms.xml file that other OC4J instances will use to connect to the dedicated JMS
server.

For more information on OPMN and dynamic port assignments, see the Oracle
Process Manager and Notification Server Administrator’s Guide.

O
_1

08
8

JMS Server

Application #1

Application #2 Application #2

JMS Server
(disabled)

Application #1

App1
Queue

App2
Queue

OC4J
Instance

Home

OC4J
Instance
Home

Oracle
HTTP Server

OracleAS Instance 1 OracleAS Instance 2

OracleAS Cluster

High Availability and Clustering for JMS

3-62 Oracle Application Server Containers for J2EE Services Guide

Modifying the OPMN Configuration

The following XML from the opmn.xml file shows what changes need to be
made and how to find where to make these changes.

1. Assuming an OC4J instance has been created through Oracle Enterprise
Manager called JMSserver, then the line denoted by (1) demonstrates where to
locate the start of the JMSserver definition.

2. The line denoted by (2) is the JMS port range that OPMN works with when
assigning JMS ports to OC4J JVMs. For the desired dedicated OC4J instance that
acts as your JMS provider, narrow this range down to one value. In this
example, the original range was from 3701-3800. In our connection factory
definitions, we know the port to use by configuring this value as 3701-3701.

3. The line denoted by (3) defines the number of JVMs that will be in the
JMSserver default island. By default, this value is set to 1. This value must
always be 1.

<ias-component id="OC4J">
(1) <process-type id="JMSserver" module-id="OC4J" status="enabled">

<module-data>
<category id="start-parameters">

<data id="java-options" value="-server
-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
-Djava.awt.headless=true

"/>
</category>
<category id="stop-parameters">

<data id="java-options"
value="-Djava.security.policy=

$ORACLE_HOME/j2ee/home/config/java2.policy
-Djava.awt.headless=true"/>

</category>
</module-data>

Note: When editing any configuration file by hand (that is, not
using Oracle Enterprise Manager), the following Distributed
Configuration Management (DCM) command should be run:

dcmctl updateConfig

See the Distributed Configuration Management Reference Guide for
more information.

High Availability and Clustering for JMS

Java Message Service 3-63

<start timeout="600" retry="2"/>
<stop timeout="120"/>
<restart timeout="720" retry="2"/>
<port id="ajp" range="3000-3100"/>
<port id="rmi" range="3201-3300"/>
(2) <port id="jms" range="3701-3701"/>
(3) <process-set id="default_island" numprocs="1"/>

</process-type>
</ias-component>

Configuring OracleAS JMS
As already described in this scenario, one of the OC4J instances is dedicated as the
JMS server. Other OC4J instances and standalone JMS clients running outside of
OC4J will have to be setup to forward JMS requests to the dedicated JMS server. All
connection factories and destinations are defined in the JMS server instance's
jms.xml file. This jms.xml file should then be copied to all the other OC4J
instances that will be communicating with the JMS server.

The connection factories configured in the jms.xml file on the dedicated JMS
server should specify, explicitly, the host name and the port number of the server.
These values, in particular the port number, should also use the single port number
defined by OPMN for the dedicated server as discussed above. The same
connection factory configuration should also be used in all of the other OC4J
instances so that they all point to the dedicated JMS server for their operations.

Thus, if the dedicated JMS server runs on host1, port 3701, then all connection
factories defined within the jms.xml file for each OC4J instance in the cluster
should point to host1, port 3701—where this port is the single port available in the
opmn.xml file used in the dedicated OC4J instance (in our example, JMSserver)
used for the dedicated JMS server.

The destinations configured in the jms.xml file on the dedicated JMS server should
also be configured on all of the other OC4J instances; the physical store for these
destinations, however, is on the dedicated JMS server.

Queue Connection Factory Definition Example
The following is an example for defining a queue connection factory in the jms.xml
file of the dedicated OracleAS JMS server.

<!-- Queue connection factory -->
<queue-connection-factory name="jms/MyQueueConnectionFactory"

host="host1" port="3701"
location="jms/MyQueueConnectionFactory"/>

High Availability and Clustering for JMS

3-64 Oracle Application Server Containers for J2EE Services Guide

Administrative changes (that is, add a new Destination object) should be made
to the dedicated JMS server’s jms.xml file. These changes should then be made in
the jms.xml files of all other OC4J instances running JMS applications. Changes
can be made either by hand or by copying the dedicated JMS server’s jms.xml file
to the other OC4J instances.

Deploying Applications
It is up to the user to decide where the JMS application(s) will actually be deployed.
While the dedicated JMS server services JMS requests, it can also execute deployed
JMS applications. JMS applications can also be deployed to other OC4J instances
(that is, Home).

Remember, the jms.xml file from the dedicated JMS server must be propagated to
all OC4J instances where JMS applications are to be deployed. JMS applications can
also be deployed to standalone JMS clients running in separate JVM’s.

High Availability
OPMN provides the failover mechanism to make sure the dedicated JMS server is
up and running. If for some reason the JMS server fails, OPMN will detect this and
restart the JVM. If there is a hardware failure then the only way to recover messages
is to make sure the persisted destinations are hosted on a network file system. An
OC4J instance can then be brought up and configured to point to these persisted
files.

See the Oracle Process Manager and Notification Server Administrator’s Guide for more
information on how OPMN manages Oracle Application Server processes.

OJMS High Availability Configuration
High availability is achieved with OJMS by running the following:

■ An Oracle database that contains the AQ queues/topics in RAC-mode, which
ensures that the database is highly available

■ Oracle Application Server in OPMN-mode, which ensures that the application
servers (and applications deployed on them) are highly available

Each application instance in an Oracle Application Server cluster uses OC4J
resource providers to point to the backend Oracle database, which is operating in
RAC-mode. JMS operations invoked on objects derived from these resource
providers are directed to the RAC database.

High Availability and Clustering for JMS

Java Message Service 3-65

If a failure of the application occurs, state information in the application is lost (that
is, state of connections, sessions, and messages not yet committed). As the
application server is restarted, the applications should recreate their JMS state
appropriately and resume operations.

If network failover of a backend database occurs, where the database is a non-RAC
database, state information in the server is lost (that is, state of transactions not yet
committed). Additionally, the JMS objects (connection factories, Destination
objects, connections, sessions, and so on) inside the application may also become
invalid. The application code can see exceptions if it attempts to use these objects
after the failure of the database occurs. The code should throw a JMSException
until it gets to the point where it can lookup, through JNDI, all JMS administered
objects, and proceed from there.

Failover Scenarios When Using a RAC Database With OJMS
An application that uses an RAC (real application clusters) database must handle
database failover scenarios. There are two types of failover scenarios, which is
detailed fully in Chapter 4, "Data Sources". The following sections demonstrate how to
handle each failover scenario:

■ Using JMS with RAC Network Failover

■ Using OJMS With Transparent Application Failover (TAF)

Using JMS with RAC Network Failover
A standalone OJMS client running against an RAC database must write code to
obtain the connection again, by invoking the API
com.evermind.sql.DbUtil.oracleFatalError(), to determine if the
connection object is invalid. It must then reestablish the database connection if
necessary. The oracleFatalError() method detects if the SQL error that was
thrown by the database during network failover is a fatal error. This method takes
in the SQL error and the database connection and returns true if the error is a fatal
error. If true, you may wish to aggressively rollback transactions and recreate the
JMS state (such as connections, session, and messages that were lost).

The following example outlines the logic:

Note: The RAC-enabled attribute of a data source is discussed in
Chapter 4, "Data Sources". For more information on using this flag
with an infrastructure database, see the Oracle Application Server 10g
High Availability Guide.

High Availability and Clustering for JMS

3-66 Oracle Application Server Containers for J2EE Services Guide

getMessage(QueueSesssion session)
{
 try
 {
 QueueReceiver rcvr;
 Message msgRec = null;
 QueueReceiver rcvr = session.createReceiver(rcvrQueue);
 msgRec = rcvr.receive();
 }
 catch(Exception e)
 {
 if (exc instanceof JMSException)
 {
 JMSException jmsexc = (JMSException) exc;
 sql_ex = (SQLException)(jmsexc.getLinkedException());

 db_conn =
 (oracle.jms.AQjmsSession)session.getDBConnection();

 if ((DbUtil.oracleFatalError(sql_ex, db_conn))
 {
 // failover logic
 }
 }
 }
}

Using OJMS With Transparent Application Failover (TAF)

In most cases where TAF is configured, the application does not notice that failover
to another database instance has occurred. So, for the most part, you will not have
to do anything to recover from failure.

However, in some cases, an ORA error is thrown when a failure occurs. OJMS
passes these errors through to the user as a JMSException with a linked SQL
exception. In this case, do one or more of the following:

■ As described in "Using JMS with RAC Network Failover" on page 3-65, you can
check to see if the error returned is a fatal error or not through the

Note: Transparent application failover (TAF) is discussed fully in
Chapter 4, "Data Sources".

High Availability and Clustering for JMS

Java Message Service 3-67

DbUtil.oracleFatalError method. If it is not a fatal error, the client
recovers by sleeping for a short time and then retrying the current operation.

■ You can recover from failback and transient errors, which are caused by
incomplete failover, by retrying the use of the JMS connection after a short
elapse of time. By waiting, the database failover can complete from the failure
and reinstate itself.

■ In the case of transaction exceptions—that is, exceptions such as "Transaction
must roll back" (ORA-25402) or "Transaction status unknown" (ORA-25405)—
you must rollback the current operation and retry all operations past the last
commit. The connection is not usable until the cause of the exception is dealt
with. If this retry fails, then close and recreate all connections and retry all
non-committed operations.

Server Side Sample Code for Failover for Both JMS Providers
The following shows JMS application code for a queue that is tolerant to server-side
failover. This example is valid for both OJMS and OracleAS JMS.

while (notShutdown)
{
 Context ctx = new InitialContext();

 /* create the queue connection factory */
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup(QCF_NAME);
 /* create the queue */
 Queue q = (Queue) ctx.lookup(Q_NAME);
 ctx.close();

 try
 {
 /*Create a queue connection, session, sender and receiver */
 QueueConnection qc = qcf.createQueueConnection();
 QueueSession qs = qc.createQueueSession(true, 0);
 QueueSender snd = qs.createSender(q);
 QueueReceiver rcv = qs.createReceiver(q);

 /* start the queue */
 qc.start();

 /* receive requests on the queue receiver and send out
 replies on the queue sender.
 while (notDone)

High Availability and Clustering for JMS

3-68 Oracle Application Server Containers for J2EE Services Guide

 {
 Message request = rcv.receive();
 Message reply = qs.createMessage();

 /* put code here to process request and construct reply */

 snd.send(reply);
 qs.commit();
 }
 /* stop the queue */
 qc.stop();
 }
 catch (JMSException ex)
 {
 if (transientServerFailure)
 { // retry }
 else {
 notShutdown = false;
 }
}

Clustering Best Practices
1. Minimize JMS client-side state.

a. Perform work in transacted sessions.

b. Save/checkpoint intermediate program state in JMS queues/topics for full
recoverability.

c. Do not depend on J2EE application state to be serializable or recoverable
across JVM boundaries. Always use transient member variables for JMS
objects, and write passivate/activate and serialize/deserialize functions
that save and recover JMS state appropriately.

2. Do not use non-durable subscriptions on topics.

a. Non-durable topic subscriptions duplicate messages per active subscriber.
clustering/load-balancing creates multiple application instances. If the
application creates a non-durable subscriber, it causes the duplication of
each message published to the topic: which is either inefficient or
semantically invalid.

b. Use only durable subscriptions for topics. Use queues whenever possible.

3. Do not keep durable subscriptions alive for extended periods of time.

High Availability and Clustering for JMS

Java Message Service 3-69

a. Only one instance of a durable subscription can be active at any given time.
clustering/load-balancing creates multiple application instances. If the
application creates a durable subscription, only one instance of the
application in the cluster will succeed—all others will fail with a
JMSException.

b. Create, use, and close a durable subscription in small time/code windows,
minimizing the duration when the subscription is active.

c. Write application code to be aware of the fact that durable subscription
creation can fail due to clustering (that is, some other instance of the
application running in a cluster in currently in the same block of code), and
program appropriate back-off strategies. Do not always treat the failure to
create a durable subscription as a fatal error.

High Availability and Clustering for JMS

3-70 Oracle Application Server Containers for J2EE Services Guide

Data Sources 4-1

4
Data Sources

This chapter describes how to configure and use data sources in your Oracle
Application Server Containers for J2EE (OC4J) application. A data source is a
vendor-independent encapsulation of a connection to a database server. A data
source instantiates an object that implements the javax.sql.DataSource
interface.

 This chapter covers the following topics:

■ Introduction

■ Defining Data Sources

■ Using Data Sources

■ Using Two-Phase Commits and Data Sources

■ Using Oracle JDBC Extensions

■ Using Connection Caching Schemes

■ Using the OCI JDBC Drivers

■ Using DataDirect JDBC Drivers

■ High Availability Support for Data Sources

Introduction

4-2 Oracle Application Server Containers for J2EE Services Guide

Introduction
A data source is a Java object that implements the javax.sql.DataSource
interface. Data sources offer a portable, vendor-independent method for creating
JDBC connections. Data sources are factories that return JDBC connections to a
database. J2EE applications use JNDI to look up DataSource objects. Each JDBC
2.0 driver provides its own implementation of a DataSource object, which can be
bound into the JNDI name space. After this data source object has been bound, you
can retrieve it through a JNDI lookup. Because data sources are
vendor-independent, we recommend that J2EE applications retrieve connections to
data servers using data sources.

Types of Data Sources
In OC4J, Data Sources are classified as follows:

■ Emulated Data Sources

■ Non-emulated Data Sources

■ Native Data Sources

Figure 4–1 summarizes the key differences between each data source type.

Figure 4–1 OC4JData Source Types

Native Data Source
vendor extensions
vendor JDBC pool/cache
no JTA

Non-Emulated Data Source
full transactions
two-phase commit
Oracle JDBC pool/cache

Emulated Data Source
lightweight transactions
one-phase commit
OC4J pool/cache

Not EmulatedEmulated

No JTA

JTA

Introduction

Data Sources 4-3

Note that if you access a non-emulated data source by the ejb-location, then
you are using the OC4J pool and cache. If you use
OracleConnectionCacheImpl, you have access to both OC4J and Oracle JDBC
pool and cache.

Figure 4–2 summarizes the decision making tree that should guide you when
choosing a data source type.

Figure 4–2 Choosing a Data Source Type

The following sections describe each data source type in detail.

Emulated Data Sources
Emulated data sources are data sources that emulate the XA protocol for JTA
transactions. Emulated data sources offer OC4J caching, pooling and Oracle JDBC
extensions for Oracle data sources. Historically, emulated data sources were

Note: If you access a non-emulated data source by the
ejb-location, then you are using the OC4J pool and cache. If
you use OracleConnectionCacheImpl, you can access both
OC4J and Oracle JDBC pool and cache.

Use Emulated data source Use Non-emulated data source Use Native data source

Require two-phase commit?

Require JTA (for example, EJB)?

Yes No

No Yes

Introduction

4-4 Oracle Application Server Containers for J2EE Services Guide

necessary because many JDBC drivers did not provide XA capabilities. Today even
though most JDBC drivers do provide XA capabilities, there are still cases where
emulated XA is preferred (such as transactions that don't require two-phase
commit.)

Connections that are obtained from emulated data sources are extremely fast,
because the connections emulate the XA API without providing full XA global
transactional support. In particular, emulated data sources do not support
two-phase commit. We recommend that you use emulated data sources for local
transactions or when your application uses global transactions without requiring
two-phase commit (For information on the limitations of two-phase commit, see
Chapter 7, "Java Transaction API").

The following is a data-sources.xml configuration entry for an emulated data
source:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name=”OracleDS”
location="jdbc/OracleCoreDS"
xa-location="OracleDS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@localhost:5521:oracle"
inactivity-timeout=”30”

/>

When defining an emulated data source in data-sources.xml you must provide
values for the location, ejb-location, and xa-location attributes. However,
when looking up an emulated data source via JNDI you should look it up by the
value that was specified with the ejb-location attribute. For example:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
// This lookup could also be done as
// DataSource ds = (DataSource) ic.lookup("java:comp/env/jdbc/OracleDS");
Connection con = ds.getConnection();

This connection opens a database session for scott/tiger.

Introduction

Data Sources 4-5

If you use an emulated data source inside a global transaction you must exercise
caution. Because the XAResource that you enlist with the transaction manager is
an emulated XAResource, the transaction will not be a true two-phase commit
transaction. If you want true two-phase commit semantics in global transactions,
then you must use a non-emulated data source. (For information on the limitations
of two-phase commit, see Chapter 7, "Java Transaction API".)

Retrieving multiple connections from a data source using the same user name and
password within a single global transaction causes the logical connections to share a
single physical connection. The following code shows two connections—conn1 and
conn2—that share a single physical connection. They are both retrieved from the
same data source object. They also authenticate with the same user name and
password.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
Connection conn1 = ds.getConnection("scott", "tiger");
Connection conn2 = ds.getConnection("scott", "tiger");

Non-emulated Data Sources
Non-emulated data sources provide full (non-emulated) JTA services, including
two-phase commit capabilities for global transactions. Non-emulated data sources
offer pooling, caching, distributed transactions capabilities, and vendor JDBC
extensions (currently only Oracle JDBC extensions).

For information on the limitations of two-phase commit, see Chapter 7, "Java
Transaction API".

We recommend that you use these data sources for distributed database
communications, recovery, and reliability. Non-emulated data sources share
physical connections for logical connections to the same database for the same user.

The following is a data-sources.xml configuration entry for a non-emulated
data source:

Note: Previous releases supported the location and
xa-location attributes for retrieving data source objects. These
attributes are now strongly deprecated; applications, EJBs, servlets,
and JSPs should use only the JNDI name ejb-location in
emulated data source definitions for retrieving the data source. All
three values must be specified for emulated data sources, but only
ejb-location is actually used.

Introduction

4-6 Oracle Application Server Containers for J2EE Services Guide

<data-source
class="com.evermind.sql.OrionCMTDataSource"
location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@localhost:5521:oracle

</data-source>

JNDI lookups should be done using the value of the location attribute.

Here are the expected attribute definitions:

■ location is the JNDI name that this data source is bound to within the JNDI
name space. Use location in the JNDI lookup for retrieving this data source.

■ url, username, and password identify the database and default user name
and password to use when connections are retrieved with this data source.

■ class defines what type of data source class to bind in the name space.

Native Data Sources
Native data sources are JDBC-vendor supplied implementations of the DataSource.
They expose vendor’s JDBC driver capabilities including caching, pooling and
vendor specific extensions. One must exercise caution when using native data
sources because OC4J cannot enlist them inside global transactions and they can be
used by EJBs or other components requiring global transaction semantics.

Native data source implementations can be used directly without an emulator. OC4J
supports the use of native data sources directly and benefits from their
vendor-specific pooling, caching, extensions, and properties. However, native data
sources do not provide JTA services (such as begin, commit, and rollback)

The following is a data-sources.xml configuration entry for a native data
source:

<data-source
class="com.my.DataSourceImplementationClass"
name=”NativeDS”
location="jdbc/NativeDS"
username="user"
password="pswd"
url="jdbc:myDataSourceURL"

</data-source>

JNDI lookups can only be performed via the value of the location attribute.

Introduction

Data Sources 4-7

Mixing Data Sources
A single application can use several different types of data sources.

If your application mixes data sources, be aware of the following issues:

■ Only emulated and non-emulated data sources support JTA transactions.

You cannot enlist connections that are obtained from Native data sources in a
JTA transaction.

■ Only non-emulated data sources support true two-phase commit (emulated
data sources emulate two-phase commit).

To enlist multiple connections in a two-phase commit transaction, all the
connections must use non-emulated data sources. (For information on the
limitations of two-phase commit, see Chapter 7, "Java Transaction API".)

■ If you have opened a JTA transaction and want to obtain a connection that does
not participate in the transaction, then use a native data source to obtain the
connection.

■ If your application does not use JTA transactions, you can obtain connections
from any data source.

■ If your application has opened a javax.transaction.UserTransaction,
all future transaction work must be performed through that object.

If you try to invoke the connection’s rollback() or commit() methods, you
will receive the SQLException "calling commit() [or rollback()]
is not allowed on a container-managed transactions
Connection".

The following example explains what happens:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("JDBC/OracleCMTDS1"); // Using JTA DataSources
Connection conn1 = ds.getConnection("scott", "tiger");
javax.transaction.UserTransaction ut =

(javax.transaction.UserTransaction)ic.lookup("java:comp/UserTransaction");
ut.begin();
conn1.query();
conn1.commit(); // not allowed, returns error: calling commit[or rollback] is not allowed

// on a container-managed transaction connection

Defining Data Sources

4-8 Oracle Application Server Containers for J2EE Services Guide

Defining Data Sources
You define OC4J data sources in an XML file known as data-sources.xml.

The data-sources.xml file installed with OC4J includes predefined, default data
sources that may be sufficient for your needs. If not, you must define your own.

Table 4–1 summarizes the configuration requirements for each type of data source.

Table 4–1 Data Source Configuration Summary

Configuration Non-emulated Emulated Native

Data source class OrionCMTDataSource DriverManagerData
Source

OracleConnection-
CacheImpl

Connection-driver N/A vendor specific

OracleDriver for
Oracle extensions

N/A

JNDI Context
specification

location location

ejb-location

xa-location

location

JNDI Context
lookup

location ejb-location location

URL Oracle driver URL vendor specific

Oracle: thin or OCI
(TAF with OCI)

vendor specific

Oracle: thin or OCI
(TAF with OCI)

Additional
configuration

Oracle database
commit coordinator

Database link for
two-phase commit
coordinator

None Cache scheme

Defining Data Sources

Data Sources 4-9

Table 4–2 summarizes the characteristics for each type of data source.

To define a new data source object:

1. Decide on a location for the data-sources.xml file (see "Configuration Files"
on page 4-9)

2. Familiarize yourself with data source attributes (see "Data Source Attributes" on
page 4-10)

3. Define a data source either by using the Oracle Enterprise Manager (see
"Defining Data Sources in Oracle Enterprise Manager" on page 4-14) or by
manually editing configuration files see "Defining Data Sources in the XML
Configuration File" on page 4-15)

Configuration Files
One main configuration file establishes data sources at the OC4J server level:
J2EE_HOME/config/data-sources.xml.

Each application also has a separate JNDI name space. The files web.xml,
ejb-jar.xml, orion-ejb-jar.xml, and orion-web.xml contain entries that

Table 4–2 Data Source Characteristics

Characteristic Non-emulated Emulated Native

Pool and cache
support

Oracle JDBC driver
pool

OC4J connection
pool

vendor specific

Oracle

Vendor extension
support

Oracle only Oracle only vendor specific

Oracle

JTA support Full XA (one or
two-phase commit)

Emulated XA
(one-phase commit)

Not supported

JCA support No Yes Yes

Note: If you access a non-emulated data source by the
ejb-location, then you are using the OC4J pool and cache. If
you use OracleConnectionCacheImpl, you can access both
OC4J and Oracle JDBC pool and cache.

Defining Data Sources

4-10 Oracle Application Server Containers for J2EE Services Guide

you can use to map application JNDI names to data sources, as the next section
describes.

Defining Location of the Data Source XML Configuration File
Your application can know about the data sources defined in this file only if the
application.xml file knows about it. The path attribute in the
<data-sources> tag in the application.xml file must contain the name and
path to your data-sources.xml file, as follows:

<data-sources path="data-sources.xml"/>

The path attribute of the <data-sources> tag contains a full path name for the
data-sources.xml file. The path can be absolute, or it can be relative to where
the application.xml is located. Both the application.xml and
data-sources.xml files are located in the
J2EE_HOME/config/application.xml directory. Thus, the path contains only
the name of the data-sources.xml file.

Application-Specific Data Source XML Configuration File
Each application can define its own data-sources.xml file in its EAR file. This is
done by having the reference to the data-sources.xml file in the
orion-application.xml file packaged in the EAR file.

To configure this:

1. Locate the data-sources.xml and orion-application.xml file in your
application’s META-INF directory.

2. Edit the orion-application.xml file to add a <data-sources> tag as
follows:

<orion-application>
<data-sources path="./data-sources.xml"/>

</orion-application>

Data Source Attributes
A data source can take many attributes. Some are required, but most are optional.
The required attributes are marked below. The attributes are specified in a
<data-source> tag.

Table 4–3 lists the attributes and their meanings.

Defining Data Sources

Data Sources 4-11

In addition to the data-source attributes described in Table 4–3, you can also add
property sub-nodes to a data-source. These are used to configure generic
properties on a data source object (following Java Bean conventions.) A property
node has a name and value attribute used to specify the name and value of a data
source bean property.

All OC4J data source attributes are applicable to the infrastructure database as well.
For more information on the infrastructure database, see Oracle High Availability
Architecture and Best Practices.)

Table 4–3 Data Source Attributes

Attribute Name Meaning of Value Default Value

class Names the class that implements the data source. For
non-emulated, this can be
com.evermind.sql.OrionCMTDataSource. For emulated, this
should be com.evermind.sql.DriverManagerDataSource.
(This value is required.)

N/A

location The JNDI logical name for the data source object. OC4J binds the
class instance into the application JNDI name space with this
name. This JNDI lookup name is used for non-emulated data
sources. See also Table 4–1, "Data Source Configuration Summary"
on page 4-8

N/A

name The data source name. Must be unique within the application. None

connection-driver The JDBC-driver class name for this data source, some data
sources that deal with java.sql.Connection need. For most
data sources, the driver should be
oracle.jdbc.driver.OracleDriver. Applicable only for
emulated data sources where the class attribute is
com.evermind.sql.DriverManagerDataSource.

None

username Default user name used when getting data source connections. None

password Default password used when getting data source connections. See
also "Password Indirection" on page 4-15

None

URL The URL for database connections. None

xa-location The logical name of an XA data source.Emulated data sources only.
See also Table 4–1, "Data Source Configuration Summary" on
page 4-8

None

Defining Data Sources

4-12 Oracle Application Server Containers for J2EE Services Guide

ejb-location Use this for JTA single-phase commit transactions or looking up
emulated data sources. If you use it to retrieve the data source, you
can map the returned connection to
oracle.jdbc.OracleConnection. See also Table 4–1, "Data
Source Configuration Summary" on page 4-8

None

stmt-cache-size A performance tuning attribute set to a non-zero value to enable
JDBC statement caching and to define the maximum number of
statements cached. Enabled to avoid the overhead of repeated
cursor creation and statement parsing and creation. Applicable
only for emulated data sources where connection-driver is
oracle.jdbc.driver.OracleDriver and class is
com.evermind.sql.DriverManagerDataSource.

0 (disabled)

inactivity-timeout Time (in seconds) to cache an unused connection before closing it. 60 seconds

connection-retry-
interval

Time (in seconds) to wait before retrying a failed connection
attempt.

1 second

max-connections The maximum number of open connections for a pooled data
source.

Depends on the
data source type

min-connections The minimum number of open connections for a pooled data
source. OC4J does not open these connections until the
DataSource.getConnection method is invoked.

0

wait-timeout The number of seconds to wait for a free connection if the pool has
reached max-connections used.

60

max-connect-
attempts

The number of times to retry making a connection. Useful when
the network or environment is unstable for any reason that makes
connection attempts fail.

3

Table 4–3 Data Source Attributes

Attribute Name Meaning of Value Default Value

Defining Data Sources

Data Sources 4-13

The following example shows the use of the
clean-available-connections-threshold and rac-enabled attributes:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="NEDS1"
 location="jdbc/NELoc1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 min-connections="5"
 max-connections="10"
 clean-available-connections-threshold="35"
 rac-enabled="true"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@jsnyder-us:1521:jsnyder"
 inactivity-timeout="30"
 max-connect-attempts="5"
/>

clean-available-
connections-
threshold

This optional attribute specifies the threshold (in seconds) for
when a cleanup of available connections will occur. For example, if
a connection is bad, the available connections are cleaned up. If
another connection is bad (that is, it throws an exception), and if
the threshold time has elapsed, then the available connections are
cleaned up again. If the threshold time has not elapsed, then the
available connections are not cleaned up again.

30

rac-enabled This optional attribute specifies whether or not the system is
enabled for Real Application Clusters (RAC). For information on
using this flag with an infrastructure database, see Oracle High
Availability Architecture and Best Practices.) and with a user
database, see "Using DataDirect JDBC Drivers" on page 4-30 and
"High Availability Support for Data Sources" on page 4-33

If the data source points to an RAC database, you should set this
property to true. This lets OC4J manage its connection pool in a
way that performs better during RAC instance failures.

false

schema This optional attribute specifies the database-schema associated
with a data source. It is especially useful when using CMP with
additional data types or third-party databases. For information on
using this attribute, see "Associating a Database Schema with a
Data Source" on page 4-18.

None

Table 4–3 Data Source Attributes

Attribute Name Meaning of Value Default Value

Defining Data Sources

4-14 Oracle Application Server Containers for J2EE Services Guide

For each data source you define, OC4J may create and bind within JNDI up to four
data sources: one each for location, ejb-location, xa-location, and
pool-location. The type of data source selected is determined by the values
associated with data-sources.xml attributes class, connection-driver, and
url and the JNDI context in which the data source object is created and looked-up.
For more information about data source types, see "Types of Data Sources" on
page 4-2.

Defining Data Sources in Oracle Enterprise Manager
You can define any type of data source with the Oracle Enterprise Manager.

How to define data sources is explained in detail in the Data Sources Primer chapter
of the Oracle Application Server Containers for J2EE User’s Guide.

See the Oracle Application Server Containers for J2EE User’s Guide to find out how to
use the Administrative tools. See the Oracle Enterprise Manager Administrator’s Guide
for Oracle Enterprise Manager information.

This section provides a brief overview of these procedures.

Use the Oracle Enterprise Manager and drill down to the Data Source page. OC4J
parses the data-sources.xml file when it starts, instantiates data source objects,
and binds them into the server JNDI name space. When you add a new data source
specification, you must restart the OC4J server to make the new data source
available for lookup.

To define emulated data sources, follow the same steps as for defining
non-emulated data sources, until the step in which you define the JNDI location.
There the screen shot shows one field, Location, to be filled out. That is for a
non-emulated data source. For an emulated data source, fill out the three fields
Location, XA-Location, and EJB-Location.

Note: Previous releases supported the location and
xa-location attributes for retrieving data source objects. These
attributes are now strongly deprecated; applications, EJBs, servlets,
and JSPs should use only the JNDI name ejb-location in
emulated data source definitions for retrieving the data source. All
three values must be specified for emulated data sources, but only
ejb-location is actually used.

Defining Data Sources

Data Sources 4-15

Defining Data Sources in the XML Configuration File
The $J2EE_HOME/config/data-sources.xml file is preinstalled with a default
data source. For most uses, this default is all you need. However, you can also add
your own customized data source definitions.

The default data source is an emulated data source.

For more information about data source types, see "Types of Data Sources" on
page 4-2.

The following is a simple emulated data source definition that you can modify for
most applications:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="OracleDS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:oracle"
 inactivity-timeout="30"
/>

See "Data Source Attributes" on page 4-10 for details on all data source attributes.

Password Indirection
The data-sources.xml file requires passwords for authentication. Embedding
these passwords into deployment and configuration files poses a security risk,
especially if the permissions on this file allows it to be read by any user. To avoid
this problem, OC4J supports password indirection.

An indirect password is made up of a special indirection symbol (->) and a user
name (or user name and realm). When OC4J encounters an indirect password, it
uses its privileged access to retrieve the password associated with the specified user
from the security store provided by a user manager.

For more information on creating users and passwords and working with a user
manager, see the section on password management in the Oracle Application Server
Containers for J2EE Security Guide.

Defining Data Sources

4-16 Oracle Application Server Containers for J2EE Services Guide

For example, the sample code under "Emulated Data Sources" on page 4-3 contains
the following line:

password="tiger"

You could replace that with the indirection symbol (->) and a user name (scott) as
follows:

password="->scott"

This assumes that a user named scott with the password tiger has been created
in a user manager.

Because OC4J has privileged access to the security store, it can retrieve the
password (tiger) associated with this user (scott).

There are two ways to configure password indirection:

■ Configuring an Indirect Password with Oracle Enterprise Manager

■ Configuring an Indirect Password Manually

Configuring an Indirect Password with Oracle Enterprise Manager
To configure an indirect password using the Oracle Enterprise Manager:

1. Log into the Oracle Enterprise Manager

2. Select a target of type OC4J.

3. Select Administer.

The Oracle Enterprise Manager for Oracle Application Server home page is
displayed.

4. Select Administration.

5. Select Data Sources.

A list of data sources is displayed.

6. Click in the Select column to select a data source.

7. Click Edit.

The Edit Data Source page is displayed as shown in Figure 4–3.

Defining Data Sources

Data Sources 4-17

Figure 4–3 Edit Data Source Page

8. In the Datasource Username and Password area, click on Use Indirect
Password and enter the appropriate value in the Indirect Password field.

9. Click Apply.

Configuring an Indirect Password Manually
To configure an indirect password for a data source manually:

1. Edit the appropriate OC4J XML configuration or deployment file:

■ data-sources.xml—password attribute of <data-source> element

■ ra.xml — <res-password> element

■ rmi.xml— password attribute of <cluster> element

■ application.xml— password attributes of <resource-provider> and
<commit-coordinator> elements

■ jms.xml— <password> element

■ internal-settings.xml— <sep-property> element, attributes name="
keystore-password" and name=" truststore-password"

2. To make any of these passwords indirect, replace the literal password string
with a string containing "->" followed by either the username or by the realm
and username separated by a slash ("/").

For example: <data-source password="->Scott">

This will cause the User Manager to look up the user name "Scott" and use
the password stored for that user.

Defining Data Sources

4-18 Oracle Application Server Containers for J2EE Services Guide

Associating a Database Schema with a Data Source
The data source identifies a database instance. The data source schema attribute
allows you to associate a data source with a database-schema.xml file that you
can customize for its particular database.

When using CMP, the container is responsible for creating the database schema
necessary to persist a bean. Associating a data source with a
database-schema.xml file allows you to influence what SQL is ultimately
generated by the container. This can help you solve problems such as
accommodating additional data types supported in your application (like
java.math.BigDecimal) but not in your database.

The database-schema.xml File
A database-schema.xml file contains a database-schema element as shown
in Example 4–1. It is made up of the attributes listed in Table 4–4.

Example 4–1 The database-schema Element

<database-schema case-sensitive="true" max-table-name-length="30"
name="MyDatabase" not-null="not null" null="null" primary-key="primary key">

<type-mapping type="java.math.BigDecimal" name="number(20,8)" />
<disallowed-field name="order" />

</database-schema>

Table 4–4 database-schema.xml File Attributes

Attribute Description

case-sensitive Specifies whether or not this database treats names as case
sensitive (true) or not (false). This applies to names
specified by disallowed-field sub-elements.

max-table-name-length This optional attribute specifies the maximum length for table
names for this database. Names longer than this value will be
truncated.

name The name of this database.

not-null Specifies the keyword used by this database to indicate a
not-null constraint.

null Specifies the keyword used by this database to indicate a null
constraint.

primary-key Specifies the keyword used by this database to indicate a
primary key constraint.

Defining Data Sources

Data Sources 4-19

The database-schema element may contain any number of the following
sub-elements:

■ type-mapping

■ disallowed-field

type-mapping This sub-element is used to map a Java type to the corresponding type
appropriate for this database instance. It contains two attributes:

■ name: the name of the database type

■ type: the name of the Java type

disallowed-field This sub-element identifies a name that must not be used because it
is a reserved word in this database instance. It contains one attribute:

■ name: the name of the reserved word

Example Configuration
This example shows how to map a data type supported in your application
(java.math.BigDecimal) to a data type supported by the underlying database.

1. Define the mapping for java.math.BigDecimal in your
database-schemas/oracle.xml file as follows:

<type-mapping type="java.math.BigDecimal" name="number(20,8)" />

2. Use this schema in your data-source as follows:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
ejb-location="jdbc/OracleDS"
schema="database-schemas/oracle.xml"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@localhost:1521:DEBU"
clean-available-connections-threshold="30"
rac-enabled="false"
inactivity-timeout="30"

/>

Using Data Sources

4-20 Oracle Application Server Containers for J2EE Services Guide

3. Use this data-source for your ejbs:

<orion-ejb-jar>
<enterprise-beans>

<entity-deployment name="BigDecimalTest" data-source="jdbc/OracleDS" />
</enterprise-beans>

4. Deploy your ejb and the appropriate tables will be created properly.

Using Data Sources
The following sections describe how to use data sources in your application can:

■ Portable Data Source Lookup

■ Retrieving a Connection from a Data Source

■ Retrieving Connections with a Non-emulated Data Source

■ Connection Retrieval Error Conditions

For information on data source methods, refer to your J2EE API documentation.

Portable Data Source Lookup
When the OC4J server starts, the data sources in the data-sources.xml file in the
j2ee/home/config directory are added to the OC4J JNDI tree. When you look up
a data source using JNDI, specify the JNDI lookup as follows:

DataSource ds = ic.lookup("jdbc/OracleCMTDS1");

The OC4J server looks in its own internal JNDI tree for this data source.

However, we recommend—and it is much more portable—for an application to
look up a data source in the application JNDI tree, using the portable
java:comp/env mechanism. Place an entry pointing to the data source in the
application web.xml or ejb-jar.xml files, using the <resource-ref> tag. For
example:

<resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Using Data Sources

Data Sources 4-21

where <res-ref-name> can be one of the following:

■ The actual JNDI name—such as jdbc/OracleDS—that is defined in the
data-sources.xml file. In this situation, no mapping is necessary. The
preceding code example demonstrates this. The <res-ref-name> is the same
as the JNDI name bound in the data-sources.xml file.

Retrieve this data source without using java:comp/env, as shown by the
following JNDI lookup:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("jdbc/OracleDS");

■ A logical name that is mapped to the actual JNDI name in the OC4J-specific
files, orion-web.xml or orion-ejb-jar.xml. The OC4J-specific XML files
then define a mapping from the logical name in the web.xml or ejb-jar.xml
file to the actual JNDI name that is defined in the data-sources.xml file.

Example 4–2 Mapping Logical JNDI Name to Actual JNDI Name

The following code demonstrates the second of the two preceding options. If you
want to choose a logical name of "jdbc/OracleMappedDS" to be used within your
code for the JNDI retrieval, then place the following in your web.xml or
ejb-jar.xml files:

<resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

For the actual JNDI name to be found, you must have a
<resource-ref-mapping> element that maps the jdbc/OracleMappedDS to
the actual JNDI name in the data-sources.xml file. If you are using the default
emulated data source, then the ejb-location will be defined with
jdbc/OracleDS as the actual JNDI name. For example:

<resource-ref-mapping name="jdbc/OracleMappedDS" location="jdbc/OracleDS" />

You can then look up the data source in the application JNDI name space using the
Java statements:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("jdbc/OracleMappedDS");

Using Data Sources

4-22 Oracle Application Server Containers for J2EE Services Guide

Retrieving a Connection from a Data Source
One way to modify data in your database is to retrieve a JDBC connection and use
JDBC or SQLJ statements. We recommend that you, instead, use data source objects
in your JDBC operations.

Perform the following steps to modify data within your database:

1. Retrieve the DataSource object through a JNDI lookup on the data source
definition in the data-sources.xml file.

The lookup is performed on the logical name of the default data source, which
is an emulated data source that is defined in the ejb-location tag in the
data-sources.xml file.

You must always cast or narrow the object that JNDI returns to the
DataSource, because the JNDI lookup() method returns a Java object.

2. Create a connection to the database that is represented by the DataSource
object.

After you have the connection, you can construct and execute JDBC statements
against this database that is specified by the data source.

The following code represents the preceding steps:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Use the following methods of the DataSource object in your application code to
retrieve a connection to your database:

■ getConnection();

The user name and password are those that are defined in the data source
definition.

■ getConnection(String username, String password);

This user name and password overrides the user name and password that are
defined in the data source definition.

If the data source refers to an Oracle database, then you can cast the connection
object that is returned on the getConnection method to

Note: Data sources always return logical connections.

Using Data Sources

Data Sources 4-23

oracle.jdbc.OracleConnection and use all the Oracle extensions. See "Using
Oracle JDBC Extensions" on page 4-27 for details.

The following example illustrates this:

oracle.jdbc.OracleConnection conn =
 (oracle.jdbc.OracleConnection) ds.getConnection();

After you retrieve a connection, you can execute SQL statements against the
database through either SQLJ or JDBC.

Refer to Retrieving Connections with a Non-emulated Data Source on page 4-23 for
information on handling common connection retrieval error conditions.

Retrieving Connections with a Non-emulated Data Source
The physical behavior of a non-emulated data source object changes depending on
whether you retrieve a connection from the data source that is outside of or within a
global transaction. The following sections discuss these differences:

■ Retrieving a Connection Outside a Global Transaction

■ Retrieving a Connection Within a Global Transaction

Retrieving a Connection Outside a Global Transaction
If you retrieve a connection from a non-emulated data source and you are not
involved in a global transaction, then every getConnection method returns a
logical handle. When the connection is used for work, a physical connection is
created for each connection that is created. Thus, if you create two connections
outside of a global transaction, then both connections use a separate physical
connection. When you close each connection, it is returned to a pool to be used by
the next connection retrieval.

Retrieving a Connection Within a Global Transaction
If you retrieve a connection from a non-emulated data source and you are involved
in a global JTA transaction, all physical connections that are retrieved from the same
DataSource object by the same user within the transaction share the same physical
connection.

For example, if you start a transaction and retrieve two connections from the
jdbc/OracleCMTDS1 DataSource with the scott user, then both connections
share the physical connection. In the following example, both conn1 and conn2
share the same physical connection.

Using Data Sources

4-24 Oracle Application Server Containers for J2EE Services Guide

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
txn.begin(); //start txn
Connection conn1 = ds.getConnection("scott", "tiger");
Connection conn2 = ds.getConnection("scott", "tiger");

However, separate physical connections are retrieved for connections that are
retrieved from separate DataSource objects. The following example shows both
conn1 and conn2 are retrieved from different DataSource objects:
jdbc/OracleCMTDS1 and jdbc/OracleCMTDS2. Both conn1 and conn2 will
exist upon a separate physical connection.

Context ic = new InitialContext();
DataSource ds1 = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
DataSource ds2 = (DataSource) ic.lookup("jdbc/OracleCMTDS2");
txn.begin; //start txn
Connection conn1 = ds1.getConnection();
Connection conn2 = ds2.getConnection();

Connection Retrieval Error Conditions
The following mistakes can create an error condition:

■ Using Different User Names for Two Connections to a Single Data Source

■ Improperly configured OCI JDBC driver

Using Different User Names for Two Connections to a Single Data Source
When you retrieve a connection from a DataSource object with a user name and
password, this user name and password are used on all subsequent connection
retrievals within the same transaction. This is true for all data source types.

For example, suppose an application retrieves a connection from the
jdbc/OracleCMTDS1 data source with the scott user name. When the
application retrieves a second connection from the same data source with a different
user name, such as adams, the user name that is provided is ignored. Instead, the
scott user is used.

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
txn.begin(); //start txn
Connection conn1 = ds.getConnection("scott", "tiger"); //uses scott/tiger
Connection conn2 = ds.getConnection("adams", "woods"); //uses scott/tiger also

Using Two-Phase Commits and Data Sources

Data Sources 4-25

Thus, you cannot authenticate using two different users to the same data source. If
you try to access the tables as "adams/woods", you enter into an error condition.

Improperly configured OCI JDBC driver
If you are using the OCI JDBC driver, ensure that you have configured it according
to the recommendations in "Using the OCI JDBC Drivers".

Using Two-Phase Commits and Data Sources
The Oracle two-phase commit coordinator is a DTC (distributed transaction
coordinator) engine that performs two phase commits with appropriate recovery.
The two-phase commit engine is responsible for ensuring that when the transaction
ends, all changes to all databases are either totally committed or fully rolled back.
The two-phase commit engine can be one of the databases that participates in the
global transaction, or it can be a separate database. If multiple databases or multiple
sessions in the same database participate in a transaction, then you must specify a
two-phase commit coordinator. Otherwise, you cannot commit the transaction.

Specify a commit coordinator in one of the following ways:

■ Specify one commit coordinator for all applications using the global
application.xml in the J2EE_HOME/config directory.

■ Override this commit coordinator for an individual application in the
application's orion-application.xml file.

For example:

<commit-coordinator>
 <commit-class class="com.evermind.server.OracleTwoPhaseCommitDriver" />
 <property name="datasource" value="jdbc/OracleCommitDS" />
 <property name="username" value="system" />
 <property name="password" value="manager" />
</commit-coordinator>

Note: The password attribute of the <commit-coordinator>
element supports password indirection. For more information, see
the section on password management in the Oracle Application
Server Containers for J2EE Security Guide.

Using Two-Phase Commits and Data Sources

4-26 Oracle Application Server Containers for J2EE Services Guide

If you specify a user name and password in the global application.xml file, then
these values override the values in the datasource.xml file. If these values are
null, then the user name and password in the datasource.xml file are used to
connect to the commit coordinator.

The user name and password used to connect to the commit coordinator (for
example, System) must have "force any transaction" privilege. By default, during
installation, the commit-coordinator is specified in the global
application.xml file with the user name and password set as null.

Each data source that is participating in a two-phase commit should specify
dblink information in the OrionCMTDatasource data source. file This dblink
should be the name of the dblink that was created in the commit coordinator
database to connect to this database.

For example, if db1 is the database for the commit coordinator and db2 and db3 are
participating in the global transactions, then you create link2 and link3 in the
db1 database as shown in the following example.

connect commit_user/commit_user
create database link link2 using "inst1_db2"; // link from db1 to db2
create database link link3 using "inst1_db3"; // link from db1 to db3;

Next, define a data source called jdbc/OracleCommitDS in the
application.xml file:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCommitDS"
 location="jdbc/OracleCommitDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="system"
 password="manager"
 url="jdbc:oracle:thin:@localhost:5521:db1"
 inactivity-timeout="30"/>

Note: Two-phase commit may only be configured for
non-emulated data sources. For more information on data source
types, see "Types of Data Sources" on page 4-2.

Using Oracle JDBC Extensions

Data Sources 4-27

Here is the data source description of db2 that participates in the global transaction.
Note that link2, which was created in db1, is specified as a property here:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDB2"
 location="jdbc/OracleDB2"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:db2"
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK2.REGRESS.RDBMS.EXAMPLE.COM"/>
</data-source>

Here is the data source description of db3 that participates in the global transaction.
Note that link3, which is created in db1, is specified as a property here:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDB3"
 location="jdbc/OracleDB3"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:db3"
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK3.REGRESS.RDBMS.EXAMPLE.COM"/>
</data-source>

For information on the limitations of two-phase commit, see Chapter 7, "Java
Transaction API".

Using Oracle JDBC Extensions
To use Oracle JDBC extensions, cast the returned connection to
oracle.jdbc.OracleConnection, as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleCMTDS1");
oracle.jdbc.OracleConnection conn =
 (oracle.jdbc.OracleConnection) ds.getConnection();

Using Connection Caching Schemes

4-28 Oracle Application Server Containers for J2EE Services Guide

You can use any of the Oracle extensions on the returned connection, conn.

// you can create oracle.jdbc.* objects using this connection
oracle.jdbc.Statement orclStmt =
 (oracle.jdbc.OracleStatement)conn.createStatement();
// assume table is varray_table
oracle.jdbc.OracleResultSet rs =
 orclStmt.executeQuery("SELECT * FROM " + tableName);
while (rs.next())
{
 oracle.sql.ARRAY array = rs.getARRAY(1);
...
}

Using Connection Caching Schemes
You can define the database caching scheme to use within the data source
definition. There are three types of caching schemes: DYNAMIC_SCHEME,
FIXED_WAIT_SCHEME, and FIXED_RETURN_NULL_SCHEME. The Connection
Pooling and Caching chapter of the Oracle9i JDBC Developer’s Guide and Reference,
found on OTN at the following location, describe these schemes:

http://st-doc.us.oracle.com/9.0/920/java.920/a96654/toc.htm

To specify a caching scheme, specify an integer or string value for a <property>
element named cacheScheme. Table 4–5 shows the supported values.

Table 4–5 Database Caching Schemes

Value Cache Scheme

1 DYNAMIC_SCHEME

2 FIXED_WAIT_SCHEME

3 FIXED_RETURN_NULL_SCHEME

Note: The cache scheme discussion in this section applies only to
native data sources. It does not apply to any other data source.

Using the OCI JDBC Drivers

Data Sources 4-29

The following example is a data source using the DYNAMIC_SCHEME.

<data-source
 class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 name="OracleDS"
 location="jdbc/pool/OracleCache"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@hostname:TTC port number:DB SID
 inactivity-timeout="30">
 <property name="cacheScheme" value="1" />
</data-source>

In the preceding, for the <property name> element, you could also specify
value="DYNAMIC_SCHEME".

When you create a data source in data-sources.xml, be aware of the following:
when class is set to oracle.jdbc.pool.OracleConnectionCacheImpl, the
ejb-location, xa-location, and pooled-location attributes must not be
specified. Only the location attribute should be specified. Accessing the data
source using any other attribute with JNDI will cause unpredictable cleanup of
cached connections in the event that the database goes down.

Using the OCI JDBC Drivers
The examples of Oracle data source definitions in this chapter use the Oracle JDBC
thin driver. However, you can use the Oracle JDBC OCI (thick) driver as well. Do
the following before you start the OC4J server:

■ Install the Oracle Client on the same system on which OC4J is installed.

■ Set the ORACLE_HOME variable.

■ Set LD_LIBRARY_PATH (or the equivalent environment variable for your OS) to
$ORACLE_HOME/lib.

■ Set TNS_ADMIN to a valid Oracle administration directory with a valid
tnsnames.ora file.

Using DataDirect JDBC Drivers

4-30 Oracle Application Server Containers for J2EE Services Guide

The URL to use in the url attribute of the <data-source> element definition can
have any of these forms:

■ jdbc:oracle:oci8:@

This TNS entry is for a database on the same system as the client, and the client
connects to the database in IPC mode.

■ jdbc:oracle:oci8:@TNS service name

The TNS service name is an entry in the instance tnsnames.ora file.

■ jdbc:oracle:oci8:@full_TNS_listener_description

For more TNS information, see the Oracle Net Administrator's Guide.

Using DataDirect JDBC Drivers
When your application must connect to heterogeneous databases, use DataDirect
JDBC drivers. DataDirect JDBC drivers are not meant to be used with an Oracle
database but for connecting to non-Oracle databases, such as Microsoft, SQLServer,
Sybase, and DB2. If you want to use DataDirect drivers with OC4J, then add
corresponding entries for each database in the data-sources.xml file.

Installing and Setting Up DataDirect JDBC Drivers
Install the DataDirect JDBC drivers as described in the DataDirect Connect for JDBC
User's Guide and Reference.

Once you have installed the drivers, follow these instructions to set them up.

Note: In the following instructions, note these definitions:

OC4J_INSTALL: in a standalone OC4J environment, the directory
into which you unzip the file oc4j_extended.zip. In an Oracle
Application Server, OC4J_INSTALL is ORACLE_HOME.

In both a standalone OC4J environment and an Oracle Application
Server , DDJD_INSTALL is the directory into which you unzip the
content of the DataDirect JDBC drivers.

In a standalone OC4J environment, INSTANCE_NAME is home.

In an Oracle Application Server, INSTANCE_NAME is the OC4J
instance into which you install the DataDirect JDBC drivers.

Using DataDirect JDBC Drivers

Data Sources 4-31

1. Unzip the content of the DataDirect JDBC drivers to the directory
DDJD_INSTALL.

2. Create the directory OC4J_INSTALL/j2ee/INSTANCE_NAME/applib if it
does not already exist.

3. Copy the DataDirect JDBC drivers in DDJD_INSTALL/lib to the
OC4J_INSTALL/j2ee/INSTANCE_NAME/applib directory.

4. Verify that the file application.xml contains a library entry that references
the j2ee/home/applib location, as follows:

<library path="../../INSTANCE_NAME/applib" />

5. Add data sources to the file data-source.xml as described in "Example
DataDirect Data Source Entries" on page 4-31.

Example DataDirect Data Source Entries
This section shows an example data source entry for each of the following
non-Oracle databases:

■ SQLServer

■ DB2

■ Sybase

You can also use vendor-specific data sources in the class attribute directly. That is,
it is not necessary to use an OC4J-specific data source in the class attribute.

For more detailed information, refer to the DataDirect Connect for JDBC User's Guide
and Reference.

Note: OC4J version 9.04 does not work with non-Oracle data
sources in the non-emulated case. That is, you cannot use a
non-Oracle data source in a two-phase commit transaction.

Using DataDirect JDBC Drivers

4-32 Oracle Application Server Containers for J2EE Services Guide

SQLServer
The following is an example of a data source entry for SQLServer.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreSSDS"
 xa-location="jdbc/xa/MerantSSXADS"
 ejb-location="jdbc/MerantSSDS"
 connection-driver="com.oracle.ias.jdbc.sqlserver.SQLServerDriver"
 username="test"
 password="secret"
 url="jdbc:sqlserver//hostname:port;User=test;Password=secret"
 inactivity-timeout="30"
 />

DB2
For a DB2 database, here is a data source configuration sample:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantDB2DS"
 xa-location="jdbc/xa/MerantDB2XADS"
 ejb-location="jdbc/MerantDB2DS"
 connection-driver="com.oracle.ias.jdbc.db2.DB2Driver"
 username="test"
 password="secret"
 url="jdbc:db2://hostname:port;LocationName=jdbc;CollectionId=default;"
 inactivity-timeout="30"
/>

High Availability Support for Data Sources

Data Sources 4-33

Sybase
For a Sybase database, here is a data source configuration sample:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="MerantDS"
 location="jdbc/MerantCoreSybaseDS"
 xa-location="jdbc/xa/MerantSybaseXADS"
 ejb-location="jdbc/MerantSybaseDS"
 connection-driver="com.oracle.ias.jdbc.sybase.SybaseDriver"
 username="test"
 password="secret"
 url="jdbc:sybase://hostname:port;User=test;Password=secret"
 inactivity-timeout="30"
/>

High Availability Support for Data Sources

Introduction
A high availability (HA) architecture must encompass redundancy across all
components, achieve fast client failover for all types of outages, provide consistent
high performance, and provide protection from user errors, corruptions, and site
disasters, while being easy to deploy, manage, and scale.

Oracle Maximum Availability Architecture (MAA)
The Oracle Maximum Availability Architecture (MAA) provides recommendations
and configuration instructions to help you choose and implement an Oracle
platform availability architecture that best fits your availability requirements.

The main MAA recommendations are:

■ Redundant middle-tier or application tier (Oracle Application Server), network,
and storage infrastructure.

■ Oracle Data Guard to protect from human errors and data failures and recover
from site failures.

■ Real Application Clusters (RAC) at each site to protect from host and instance
failures.

■ Sound operational best practices (such as using fast-start check pointing to
control the amount of time required to recover from an instance failure).

High Availability Support for Data Sources

4-34 Oracle Application Server Containers for J2EE Services Guide

For more information about MAA, see
http://otn.oracle.com/deploy/availability/htdocs/maa.htm.

Oracle Data Guard Oracle Data Guard is software integrated with the Oracle database
that maintains a real-time copy of a production database, called a standby database,
and keeps this instance synchronized with its redundant mate. Oracle Data Guard
manages the two databases by providing log transport services, managed recovery,
switchover, and failover features.

Real Application Clusters (RAC) RAC uses two or more nodes or machines, each
running an Oracle instance that accesses a single database residing on shared-disk
storage. In a RAC environment, all active instances can concurrently execute
transactions against the shared database. RAC automatically coordinates each
instance’s access to the shared data to provide data consistency and data integrity.

RAC depends on two types of failover mechanisms:

■ Network failover: implemented in the network layer.

■ Transparent Application Failover (TAF): implemented on top of the network
layer.

Network Failover Network failover is the default failover and is the only type of
failover available when using the JDBC thin driver. Network failure ensures that
newer database connections created after a database instance in a RAC cluster goes
down are created against a backup or surviving database instance in that cluster
even though the tns alias that was used to create the newer database connection
was for the database instance that went down. When network failover is the only
available failover mechanism then existing connections are not automatically
reconnected to surviving RAC instances. These existing connections are no longer
usable and you will get ORA-03113 exceptions if you try to use them. On-going
database operations (including AQ operations) can fail with a wide variety of
exceptions when failover occurs in a RAC cluster configured to perform only
network failover.

TAF Failover TAF failover is only available when using the thick JDBC driver. To
enable it, you must set the FAILOVER_MODE as part of the CONNECT_DATA
portion of the tns alias used to create the JDBC connection.

TAF is a runtime failover for high-availability environments, such as RAC and Data
Guard, that refers to the failover and re-establishment of application-to-service
connections. It enables client applications to automatically reconnect to the database
if the connection fails, and optionally resume a SELECT statement that was in

High Availability Support for Data Sources

Data Sources 4-35

progress. This reconnect happens automatically from within the Oracle Call
Interface (OCI) library.

TAF provides a best effort failover mechanism for on-going operations on a
database connection created against a database instance which is part of a RAC
cluster. It also attempts to ensure that existing connections (which are not in use at
failover time) are reconnected to a backup or surviving database instance. However
TAF is not always able to replay transactional operations which occur past the last
committed transaction. When this happens it usually throws an ORA-25408
("cannot safely replay call") error. It is then your application’s responsibility to
explicitly rollback the current transaction before the database connection can be
used again. Your application will also need to replay all the operations past the last
committed transaction to get into the same state as that before the failover occurred.

TAF protects or fails-over:

■ database connections

■ user session states

■ prepared statements

■ active cursors (SELECT statements) that began returning results at the time of
failure

TAF neither protects nor fails-over:

■ applications not using OCI8 or higher

■ server-side program variables, such as PL/SQL package states

■ Active Update transactions (see "Acknowledging TAF Exceptions" on
page 4-40)

High Availability Support in OC4J
Oracle Application Server Containers for J2EE can be integrated with RAC, Data
Guard, and TAF as part of your HA architecture.

The remainder of this section describes configuration issues specific to Oracle
Application Server Containers for J2EE that relate directly to HA. Use this
information in conjunction with MAA recommendations and procedures.

High Availability Support for Data Sources

4-36 Oracle Application Server Containers for J2EE Services Guide

Oracle Application Server Containers for J2EE HA configuration issues include:

■ Configuring Network Failover with OC4J

■ Configuring Transparent Application Failover (TAF) with OC4J

■ Connection Pooling

■ Acknowledging TAF Exceptions

■ SQL Exception Handling

Configuring Network Failover with OC4J
To configure OC4J to use network failover:

1. Configure a network failover-enabled data source in data-sources.xml. For
example:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
location="jdbc/OracleCoreDS"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:thin:@(DESCRIPTION=

(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP) (HOST=host1) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=host2) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=service_name)))"

inactivity-timeout="300"
connection-retry-interval="2"
max-connect-attempts="60"
max-connections="60"
min-connections="12"

/>

In this example, note the url element. As long as two or more hosts are
specified, the JDBC client will randomly choose one of the alternatives if the
current host is unreachable.

For details on data source configuration, see "Defining Data Sources" on
page 4-8.

High Availability Support for Data Sources

Data Sources 4-37

Configuring Transparent Application Failover (TAF) with OC4J
To configure OC4J for use with TAF:

1. Configure a TAF descriptor as described in "Configuring a TAF Descriptor
(tnsnames.ora)" on page 4-38.

2. Configure a TAF-enabled data source in data-sources.xml. For example:

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="OracleDS"
location="jdbc/OracleCoreDS"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
url="jdbc:oracle:oci8:@(description=(load_balance=on)(failover=on)

(address=(protocol=tcp)(host=db-node1)(port=1521))
(address=(protocol=tcp)(host=db-node2)(port=1521))
(address=(protocol=tcp)(host=db-node3)(port=1521))
(address=(protocol=tcp)(host=db-node4)(port=1521))
(connect_data=

(service_name=db.us.oracle.com)
(failover_mode=(type=select)(method=basic)(retries=20)(delay=15))))"

rac-enabled="true"
inactivity-timeout="300"
connection-retry-interval="2"
max-connect-attempts="60"
max-connections="60"
min-connections="12"

/>

In this example, note the url element failover is on and failover_mode is
defined. As long as two or more hosts are specified, the JDBC client will
randomly choose one of the alternatives if the current host is unreachable. For a
description of failover_mode options, see Table 4–6, "TAF Configuration
Options" on page 4-38.

For details on data source configuration, see "Defining Data Sources" on
page 4-8.

Note: Only data sources configured to use the thick JDBC client
can be configured for use with TAF.

High Availability Support for Data Sources

4-38 Oracle Application Server Containers for J2EE Services Guide

3. Configure Oracle JMS as the Resource Provider for JMS in the
orion-application.xml file. For example:

<resource-provider
class="oracle.jms.OjmsContext" name="cartojms1">
<description> OJMS/AQ </description>
<property name="datasource" value="jdbc/CartEmulatedDS"></property>

</resource-provider>

Configuring a TAF Descriptor (tnsnames.ora)
TAF is configured using Net8 parameters in the tnsnames.ora file.

TAF can be configured by including a FAILOVER_MODE parameter under the
CONNECT_DATA section of a connect descriptor. TAF supports the
sub-parameters described in Table 4–6.

Table 4–6 TAF Configuration Options

Subparameter Description

BACKUP Specify a different net service name for backup connections. A backup
should be specified when using the PRECONNECT METHOD to
pre-establish connections.

TYPE Specify the type of failover. Three types of Oracle Net failover functionality
are available by default to Oracle Call Interface (OCI) applications:

■ SESSION: Set to failover the session. If a user's connection is lost, a
new session is automatically created for the user on the backup. This
type of failover does not attempt to recover selects.

■ SELECT: Set to enable users with open cursors to continue fetching on
them after failure. However, this mode involves overhead on the client
side in normal select operations.

■ NONE: This is the default. No failover functionality is used. This can
also be explicitly specified to prevent failover from happening.

METHOD Determines how fast failover occurs from the primary node to the backup
node:

■ BASIC: Set to establish connections at failover time. This option
requires almost no work on the backup server until failover time.

■ PRECONNECT: Set to pre-established connections. This provides
faster failover but requires that the backup instance be able to support
all connections from every supported instance.

High Availability Support for Data Sources

Data Sources 4-39

In the following example, Oracle Net connects randomly to one of the protocol
addresses on sales1-server or sales2-server. If the instance fails after the connection,
then the TAF application fails over to the listener on another node.

sales.us.acme.com=
(DESCRIPTION=

(LOAD_BALANCE=on)
(FAILOVER=on)
(ADDRESS=(PROTOCOL=tcp)(HOST=sales1-server)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp)(HOST=sales2-server)(PORT=1521))
(CONNECT_DATA=

(SERVICE_NAME=sales.us.acme.com)
(FAILOVER_MODE=

(TYPE=session)
(METHOD=basic)
(RETRIES=20)
(DELAY=15))))

For more information on configuring TAF, refer to the Oracle10i Net Services
Administrator’s Guide.

Connection Pooling
If you have a transaction spanning two beans and each bean gets a JDBC connection
to the same database but different instances, then on commit, OC4j will issue a
simple commit (instead of Two-Phase Commit) which will make the transaction
suspect. If your application will encounter such transactions, use either TAF or
connection pooling, but not both.

In case of an instance failure, dead connections are cleaned from both the OC4J
connection pool and from the JDBC type 2 connection pool.

RETRIES Specify the number of times to attempt to connect after a failover. If DELAY
is specified, RETRIES defaults to five retry attempts.

Note: If a callback function is registered, then this subparameter is ignored.

DELAY Specify the amount of time in seconds to wait between connect attempts. If
RETRIES is specified, DELAY defaults to one second.

Note: If a callback function is registered, then this subparameter is ignored.

Table 4–6 TAF Configuration Options

Subparameter Description

High Availability Support for Data Sources

4-40 Oracle Application Server Containers for J2EE Services Guide

If a database goes down and getConnection() is called, and if connection
pooling is used, the pool is cleaned up. The caller must catch the exception on the
getConnection() call and retry. In some cases, the OC4J container does the
retries.

OC4J cleans up a connection pool when the connection is detected to be bad. That
is, if getConnection() throws an SQLException with error code of 3113 or
3114.

When an exception occurs while using a user connection handle, it is useful for
OC4J to detect if the exception is due to a database connection error or to a database
operational error. The most common error codes thrown by the database when a
connection error occurs are 3113 and 3114. These are returned typically for in-flight
connections that get dropped. In addition, new connection attempts may receive
error codes 1033, 1034, 1089 and 1090.

Fast-connection cleanup is implemented in both non-RAC and RAC environments.

In a non-RAC environment, when ajava.sql.SQLException is thrown, all
un-allocated connections are removed from the pool.

In a RAC environment, when ajava.sql.SQLException is thrown, first the
states of all un-allocated connections are checked. If they are alive, they are left
alone. Otherwise, they are removed from the pool.

Acknowledging TAF Exceptions
Active Update transactions are rolled back at the time of failure because TAF cannot
preserve active transactions after failover. TAF requires an acknowledgement from
the application that a failure has occurred via a rollback command (in other words,
the application receives an error message until a ROLLBACK is submitted).

A common failure scenario is as follows:

1. JDBC Connection failed/switched over by TAF.

2. TAF issues an exception.

3. TAF waits for an acknowledgement from the application in the form of a
ROLLBACK.

4. The application rolls back the transaction and replays it.

Using Oracle Call Interface (OCI) call backs and failover events, your application
can customize TAF operation to automatically provide the required
acknowledgement.

High Availability Support for Data Sources

Data Sources 4-41

Your application (J2EE components) can capture the failure status of an Oracle
instance and customize TAF by providing a function that the OCI library will
automatically call during fail-over using OCI callback capabilities. Table 4–7
describes the fail-over events defined in the OCI API.

For more information, see the Oracle Call Interface Programmer’s Guide.

SQL Exception Handling
Depending on the driver type used, SQLExceptions will have different error codes
and transaction replay may or may not be supported.

These error codes are obtained by making a getErrorCode() call on the
java.sql.SQLException that is thrown to the caller.

Table 4–8 summarizes these issues by driver type.

Table 4–7 OCI API Fail-Over Events

Symbol Value Meaning

FO_BEGIN 1 A lost connection has been detected and fail over is
starting.

FO_END 2 A successful completion of fail-over.

FO_ABORT 3 An unsuccessful fail-over with no option of
retrying.

FO_REAUTH 4 A user handle has been re-authenticated.

FO_ERROR 5 A fail-over was temporarily unsuccessful but the
application has the opportunity to handle the error
and retry.

FO_RETRY 6 Retry fail-over.

FO_EVENT_UNKNOWN 7 A bad/unknown fail-over event.

High Availability Support for Data Sources

4-42 Oracle Application Server Containers for J2EE Services Guide

Table 4–8 SQL Exceptions and Driver Type

Driver Error Code Servlet Layer Session Bean (CMT, BMT) Entity Bean (CMP)

Thin JDBC 17410 Replay works. Replay works (ignore "No
_activetransaction" error).

Replay not supported.

OCI 3113, 3114 Replay works. Replay not supported. Replay not supported.

OCI/TAF After application sends
acknowledgement to TAF
(see "Acknowledging TAF
Exceptions" on page 4-40),
replay on surviving node
works.

After application sends
acknowledgement to TAF (see
"Acknowledging TAF
Exceptions" on page 4-40),
replay on surviving node works.

If application sends
acknowledgement to
TAF (see
"Acknowledging TAF
Exceptions" on
page 4-40), then OC4J
proceeds
transparently.

Oracle Remote Method Invocation 5-1

5
Oracle Remote Method Invocation

This chapter describes Oracle Application Server Containers for J2EE (OC4J)
support for allowing EJBs to invoke one another across OC4J containers using the
proprietary Remote Method Invocation (RMI)/Oracle RMI (ORMI) protocol.

 This chapter covers the following topics:

■ Introduction to RMI/ORMI

■ Configuring OC4J for RMI

■ Configuring ORMI Tunneling through HTTP

Introduction to RMI/ORMI

5-2 Oracle Application Server Containers for J2EE Services Guide

Introduction to RMI/ORMI
Java Remote Method Invocation (RMI) enables you to create distributed Java-based
to Java-based applications, in which the methods of remote Java objects can be
invoked from other Java virtual machines (JVMs), possibly on different hosts.

By default, OC4J EJBs exchange RMI calls over the Oracle Remote Method
Invocation (ORMI) protocol, an Oracle proprietary protocol optimized for use with
OC4J.

Alternatively, you can convert an EJB to use RMI/IIOP, making it possible for EJBs
to invoke one another across different EJB containers as described in Chapter 6,
"J2EE Interoperability".

ORMI Enhancements
ORMI is enhanced for OC4J and provides the following features:

■ Increased RMI Message Throughput

■ Enhanced Threading Support

■ Co-located Object Support

Increased RMI Message Throughput
Using ORMI, OC4J can process at a very high transaction rate. This is reflected in
Oracle's SpecJ Application Server benchmarks at http://www.spec.org/.

One way ORMI achieves this performance is by using messages that are much
smaller than IIOP messages. Smaller messages take less bandwidth to send and
receive and less processing time to encode and decode. ORMI message size is
further reduced by optimizing how much state information is exchanged between
client and server. Using ORMI, some state is cached on the server so it does not
need to be transmitted in every RMI call. This does not violate the RMI requirement
to be stateless because in the event of a failover, the client code will resend all the
state information required by the new server.

Enhanced Threading Support
ORMI is tightly coupled with the OC4J threading model to take full advantage of its
queuing, pooling, and staging capabilities.

Note: For the OC4J 10g (9.0.4) implementation, load balancing and
failover are supported only for ORMI, not IIOP.

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-3

ORMI uses one thread per client. For multi-threaded clients, OC4J multiplexes each
call through one connection (however, OC4J does not serialize them, so multiple
threads do not block each other).

This ensures that each client (single- or multi-threaded) will have one connection to
the remote server.

Co-located Object Support
For co-located objects, RMI/ORMI will detect the co-located scenario and avoid the
extra, unnecessary socket call.

The same is true when the JNDI registry is co located.

Client-Side Requirements
In order to access EJBs, you must do the following on the client-side:

1. Download the oc4j_client.zip file from
http://otn.oracle.com/software/products/ias/devuse.html

2. Unzip it into a client-side directory (for example, d:\oc4jclient)

3. Add d:\oc4jclient\oc4jclient.jar to your CLASSPATH

The oc4j_client.zip file contains all the JAR files required by the client (including
oc4jclient.jar and optic.jar). These JARs contain the classes necessary for
client interaction. You only need to add oc4jclient.jar to your CLASSPATH
because all other JAR files required by the client are referenced in the
oc4jclient.jar manifest classpath.

If you download this file into a browser, you must grant certain permissions as
described in the "Granting Permissions" section of the Security chapter in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Configuring OC4J for RMI
You can configure OC4J for RMI in one of two ways:

■ Configuring RMI Using Oracle Enterprise Manager

■ Configuring RMI Manually

Oracle recommends that you configure OC4J using the Oracle Enterprise Manager.

Once OC4J is configured for RMI, you must specify RMI properties as described in
"RMI Configuration Files" on page 5-10.

Configuring OC4J for RMI

5-4 Oracle Application Server Containers for J2EE Services Guide

Configuring RMI Using Oracle Enterprise Manager
Oracle recommends that you configure OC4J to use RMI by using Oracle Enterprise
Manager as follows:

1. Navigate to an OC4J instance in which you want to allow access to applications
through RMI.

Figure 5–1 shows an OC4J instance called home.

Figure 5–1 Oracle Enterprise Manager System Components

2. Click the OC4J instance name.

3. Click the Administration tab.

4. Click Server Properties.

5. By default, RMI is disabled in an Oracle Application Server environment. To
enable RMI, set a unique RMI port (or port range) for each OC4J instance by
entering the value in the RMI Ports field, as shown in Figure 5–2.

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-5

Figure 5–2 Oracle Enterprise Manager Server Properties Port Configuration

6. Click Apply.

7. Click the Back button on your browser.

8. Click Replication Properties.

9. Check the Replicate State field as shown in Figure 5–3.

The remaining attributes on the EJB Applications screen are ignored if
Replicate State is not checked.

Figure 5–3 Oracle Enterprise Manager Replication Properties

10. Configure the RMI Server Host field as shown in Figure 5–3.

Configuring OC4J for RMI

5-6 Oracle Application Server Containers for J2EE Services Guide

Enter a particular host name or IP address from which your server will accept RMI
requests. The OC4J server accepts only RMI requests from this particular host.

11. Click Apply.

Configuring RMI Manually
Oracle recommends that you configure OC4J using the Oracle Enterprise Manager
as described in "Configuring RMI Using Oracle Enterprise Manager" on page 5-4. If
you choose to manually configure RMI, you must:

1. Edit property file server.xml (see "Editing server.xml" on page 5-7).

2. Choose the configuration files appropriate for your environment:

■ In an OC4J standalone environment, edit the rmi.xml file (see "Editing
rmi.xml" on page 5-7) only.

■ In an Oracle Application Server environment, edit both the rmi.xml file
(see "Editing rmi.xml" on page 5-7) and the opmn.xml file (see "Editing
opmn.xml" on page 5-10).

Note: The other attributes on the Replication Properties window
apply only to EJB clustering. For details, see the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide
section "Configure the Multicast Address for EJB Clustering".

Note: In an Oracle Application Server environment, opmn selects
an RMI port for each OC4J instance from the range of RMI ports
defined in the opmn.xml file (see "Editing opmn.xml" on
page 5-10); the rmi.xml file rmi-server element port attribute
is ignored.

Manual changes to configuration files in an Oracle Application
Server environment are not applied until you synchronize the
configuration repository by running the following on the Oracle
Application Server command line: dcmctl updateConfig

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-7

Editing server.xml
Your server.xml file must specify the path name of the RMI configuration file in
the <rmi-config> element. Here is the syntax:

<rmi-config path="RMI_PATH" />

The usual RMI_PATH is ./rmi.xml; you can name the file whatever you like.

In an Oracle Application Server environment only, apply changes by running the
following on the Oracle Application Server command line:

dcmctl updateConfig

Editing rmi.xml
Edit the rmi.xml file to specify which host, port, and user name and password to
use to connect to (and accept connections from) remote RMI servers by configuring
an rmi-server element.

To configure the rmi.xml file:

1. Add an rmi-server element for this local RMI server.

For example:

<rmi-server host="hostname" port="port">
</rmi-server>

The user-replaceable attributes of the <rmi-server> element are:

■ hostname: the host name or IP address from which the RMI server accepts
RMI requests. If you omit this attribute, the RMI server will accept RMI
requests from any host.

■ port: the port number on which the RMI server listens for RMI requests.

Note: In an OC4J standalone environment, if you omit this
attribute, it defaults to 23791.

In an Oracle Application Server environment, opmn selects an RMI
port for each OC4J instance from the range of RMI ports defined in
the opmn.xml file (see "Editing opmn.xml" on page 5-10); the
rmi-server element port attribute is ignored.

Configuring OC4J for RMI

5-8 Oracle Application Server Containers for J2EE Services Guide

2. Configure the rmi-server element with zero or more server elements that
each specify a remote (point-to-point) RMI server that your application can
contact over RMI.

For example:

<rmi-server host="hostname" port="port">
<server host="serverhostname" username="username" port="serverport"
password="password"/>

</rmi-server>

The host attribute is required; the remaining attributes are optional. The
user-replaceable attributes of the server element are:

■ serverhostname: the host name or IP address on which the remote RMI
server listens for RMI requests

■ username: the user name of a valid principal on the remote RMI server

■ serverport: the port number on which the remote RMI server listens for
RMI requests

■ password: the password used by the principal username

3. Configure the rmi-server element with zero or more log elements that each
specify a file to which RMI-specific notifications are written.

For example, using the file element:

<rmi-server host="hostname" port="port">
<log>

<file path="logfilepathname" />
</log>

</rmi-server>

Or using the odl element:

<rmi-server host="hostname" port="port">
<log>

<odl path="odlpathname" max-file-size="size" max-num-files="num"/>
</log>

</rmi-server>

You can use either the file element or the odl element (but not both).

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-9

The user-replaceable attributes of the log element are:

■ odlpathname—is the path and folder name of the log folder for this area.
You can use an absolute path or a path relative to the J2EE_HOME/config
directory. This denotes where the RMI log files will reside.

■ size—is the maximum size in bytes of each individual log file.

■ num—is the maximum number of log files.

■ logfilepathname—is the path name of a log file (logfilepathname) to
which the server writes all RMI requests.

The <odl> element is new in the OC4J 10g (9.0.4) implementation. The ODL log
entries are each written out in XML format in its respective log file. The log files
have a maximum limit. When the limit is reached, the log files are overwritten.

When you enable ODL logging, each message goes into its respective log file,
named logN.xml, where N is a number starting at 1. The first log message
starts the log file log1.xml. When the log file size maximum is reached, the
second log file is opened to continue the logging, log2.xml. When the last log
file is full, the first log file, log1.xml, is erased and a new one is opened for the
new messages. Thus, your log files are constantly rolling over and do not
encroach on your disk space.

For more information about ODL logging, see the Oracle Application Server
Containers for J2EE User’s Guide.

4. In an Oracle Application Server environment only, apply changes by running
the following on the Oracle Application Server command line:

dcmctl updateConfig

Configuring OC4J for RMI

5-10 Oracle Application Server Containers for J2EE Services Guide

Editing opmn.xml
In an Oracle Application Server environment, edit the opmn.xml file to specify the
port range on which this local RMI server listens for RMI requests.

To configure the opmn.xml file:

1. Configure the rmi port range using the port id="rmi" element as shown in
the following example opmn.xml file excerpt:

<ias-component id="OC4J">
<process-type id="home" module-id="OC4J">

<port id="ajp" range="3301-3400" />
<port id="rmi" range="3101-3200" />
<port id="jms" range="3201-3300" />
<process-set id="default-island" numprocs="1"/>

</process-type>
</ias-component>

For more information on configuring the opmn.xml file, see the Oracle
Application Server 10g Administrator’s Guide.

2. Apply changes by running the following on the Oracle Application Server
command line:

dcmctl updateConfig

RMI Configuration Files
Before EJBs can communicate, you must configure the parameters in the
configuration files listed in Table 5–1.

Table 5–1 RMI Configuration Files

Context File Description

Server server.xml The <sep-config> element in this file specifies the
path name, normally internal-settings.xml, for
the server extension provider properties. Example:

<sep-config path="./internal-settings.xml">

Application jndi.properties This file specifies the URL of the initial naming
context used by the client. See "JNDI Properties for
RMI" on page 5-11

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-11

JNDI Properties for RMI
This section summarizes JNDI properties specific to RMI/ORMI. For details, see
"Accessing the EJB" in the EJB Primer chapter in Oracle Application Server Containers
for J2EE Enterprise JavaBeans Developer’s Guide.

The following RMI/ORMI properties are controlled by the jndi.properties file:

■ java.naming.provider.url (see "Naming Provider URL" on page 5-11)

■ java.naming.factory.initial (see "Context Factory Usage" on page 5-14)

Naming Provider URL
Set thejava.naming.provider.url using the following syntax:

<prefix>://<host>:<port>:<oc4j_instance>/<application-name>

Table 5–2 describes arguments used in this syntax.

Table 5–2 Naming Provider URL

Variable Description

prefix Use opmn:ormi for Oracle Application Server applications.

Use ormi for standalone OC4J applications.

Use http:ormi for applications that use HTTP tunneling (see
"Configuring ORMI Tunneling through HTTP" on page 5-16).

Use corbaname for applications that must interoperate with non-OC4J
containers (see "The corbaname URL" on page 6-13).

host For Oracle Application Server applications, the name of the OPMN
host as defined in the opmn.xml file. Although OPMN is often located
on the same machine as the OC4J instance. Specify the host name in
case it is located on another machine.

For standalone OC4J applications, the port number defined by the
rmi.xml file rmi-server element host attribute.

Configuring OC4J for RMI

5-12 Oracle Application Server Containers for J2EE Services Guide

For example:

java.naming.provider.url=opmn:ormi://localhost:oc4j_inst1/ejbsamples

Using the opmn Request Port In Oracle Application Server release 10g (9.0.4), you can
specify the port defined for the request attribute of the notification-server
element’s port element configured in the opmn.xml file (default: 6003). When
opmn receives an RMI request on its request port, it will forward the RMI request
to the RMI port that it selected for the appropriate OC4J instance.

port In Oracle Application Server release 10g (9.0.4) when the opmn:ormi
prefix is used, specify the request port on which the opmn process is
listening and the opmn process will forward RMI requests to the RMI
port that it selected for the appropriate OC4J instance (see "Using the
opmn Request Port" on page 5-12). If omitted, the default request
port value 6003 is used.

In Oracle Application Server releases before 10g (9.0.4) when the ormi
prefix is used, you must specify the RMI port that opmn selected for
your OC4J instance (see "Using opmnctl to Show the Selected RMI
Port" on page 5-13).

For standalone OC4J applications when the ormi prefix is used, you
must specify the port number defined by the rmi.xml file
rmi-server element port attribute.

For applications that use HTTP tunneling and use the http:ormi
prefix, see "Configuring ORMI Tunneling through HTTP" on page 5-16
for information on what port to specify.

For applications that must interoperate with non-OC4J containers and
use the corbaname prefix, see "The corbaname URL" on page 6-13 for
information on what port to specify.

oc4j_instance For Oracle Application Server applications, the name of the OC4J
instance as defined in the Enterprise Manager.

For standalone OC4J applications, this is not applicable.

application-name The name of your application.

Table 5–2 Naming Provider URL

Variable Description

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-13

For example, consider the following opmn.xml file excerpt:

<notification-server>
<port local="6100" remote="6200" request="6004"/>
<log-file path="$ORACLE_HOME/opmn/logs/ons.log" level="4"

rotation-size="1500000"/>
<ssl enabled="true" wallet-file="$ORACLE_HOME/opmn/conf/ssl.wlt/default"/>

</notification-server>

In this example, the port defined for the request attribute of the
notification-server element’s port element is 6004 and so you would use
6004 as the port in your JNDI naming provider URL.

For an example of how this URL is used, see "OC4J in Oracle Application Server:
10g (9.0.4) Release" on page 5-16.

Using opmnctl to Show the Selected RMI Port To determine what RMI port has been
selected by opmn for each OC4J instance, use the following command on the host on
which opmn is running:

opmnctl status -l

This outputs a table of data with one row per OC4J instance.

For example (some columns are omitted for clarity):

Processes in Instance: core817.dsunrdb22.us.oracle.com
-------------------+--------------------+-------+ ... +------
ias-component | process-type | pid | ... | ports
-------------------+--------------------+-------+ ... +------
WebCache | WebCacheAdmin | 28821 | ... | administration:4000
WebCache | WebCache | 28820 | ... | statistics:4002,invalidation:4001,http:7777
OC4J | home | 2012 | ... | iiop:3401,jms:3701,rmi:3201,ajp:3000
HTTP_Server | HTTP_Server | 28818 | ... | http2:7200,http1:7778,http:7200
dcm-daemon | dcm-daemon | 28811 | ... | N/A
LogLoader | logloaderd | N/A | ... | N/A

The ports column of this table lists the ports selected by opmn. For example:

iiop:3401,jms:3701,rmi:3201,ajp:3000

In this example, opmn has selected port 3201 for RMI on the OC4J instance with
process id 2012 and so you would use 3201 as the port in your JNDI naming
provider URL for this OC4J instance.

Configuring OC4J for RMI

5-14 Oracle Application Server Containers for J2EE Services Guide

Context Factory Usage
The initial context factory creates the initial context class for the client.

Set thejava.naming.factory.initial property to one of the following:

■ com.evermind.server.ApplicationClientInitialContextFactory

■ com.evermind.server.ApplicationInitialContextFactory

■ com.evermind.server.RMIInitialContextFactory.

The ApplicationClientInitialContextFactory is used when looking up
remote objects from stand-alone application clients. It uses the refs and
ref-mappings found in application-client.xml and
orion-application-client.xml. It is the default initial context factory when
the initial context is instantiated in a Java application.

The RMIInitialContextFactory is used when looking up remote objects
between different containers using the ORMI protocol.

The type of initial context factory that you use depends on who the client is:

■ If the client is a pure Java client outside of the OC4J container, use the
ApplicationClientInitialContextFactory class.

■ If the client is an EJB or servlet client within the OC4J container, use the
ApplicationInitialContextFactory class. This is the default class; thus,
each time you create a new InitialContext without specifying an initial
context factory class, your client uses the
ApplicationInitialContextFactory class.

■ If the client is an administrative class that is going to manipulate or traverse the
JNDI tree, use the RMIInitialContextFactory class.

■ If the client is going to use DNS load balancing, use the
RMIInitialContextFactory class.

Example Lookups
This section provides examples that show how to lookup an EJB in:

■ OC4J Standalone

■ OC4J in Oracle Application Server: Releases Before 10g (9.0.4)

■ OC4J in Oracle Application Server: 10g (9.0.4) Release

Configuring OC4J for RMI

Oracle Remote Method Invocation 5-15

OC4J Standalone
The following example shows how to lookup an EJB called MyCart in the J2EE
application ejbsamples deployed in a standalone OC4J instance. The application
is located on a machine named localhost configured to listen on RMI port 23792:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL, "ormi://localhost:23792/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

OC4J in Oracle Application Server: Releases Before 10g (9.0.4)
In an OC4J instance in an Oracle Application Server environment, RMI ports are
assigned dynamically and JAZNUserManager is the default user manager.

In Oracle Application Server releases before 10g (9.0.4), if you are accessing an EJB
in Oracle Application Server, you have to know the RMI ports assigned by opmn. If
you have only one JVM for your OC4J instance, you have to limit the port ranges
for RMIs to a specific number, for example: 3101-3101.

The following example shows how to lookup an EJB called MyCart in the J2EE
application ejbsamples in an Oracle Application Server environment in releases
before 10g (9.0.4). The application is located on a machine named localhost
configured to listen on RMI port 3101:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL, "ormi://localhost:3101/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

Configuring ORMI Tunneling through HTTP

5-16 Oracle Application Server Containers for J2EE Services Guide

OC4J in Oracle Application Server: 10g (9.0.4) Release
In Oracle Application Server release 10g (9.0.4), you can use the following type of
lookup in the URL to lookup an EJB in an Oracle Application Server environment
without needing to know the RMI port assigned to your OC4J instance.

The following example shows how to lookup EJB called MyCart in the J2EE
application ejbsamples in an Oracle Application Server environment in release
10g (9.0.4). The EJB application is located on a machine named localhost. The
differences between this invocation and the stand-alone invocation are: the opmn
prefix to ormi, the specification of the OC4J instance name oc4j_inst1 to which
the EJB application is deployed, and no requirement to specify the RMI port:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"com.evermind.server.rmi.RMIInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "jazn.com/admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.PROVIDER_URL,"opmn:ormi://localhost:oc4j_inst1/ejbsamples");

Context context = new InitialContext(env);
Object homeObject = context.lookup("MyCart");
CartHome home = (CartHome)PortableRemoteObject.narrow(homeObject,CartHome.class);

Configuring ORMI Tunneling through HTTP
When EJBs communicate across firewalls, they can use tunneling to transmit RMI
across HTTP. This tunneling is supported only with RMI/ORMI; you cannot
perform HTTP tunneling with RMI/IIOP.

To configure OC4J to support RMI tunneling, do the following:

1. Verify that the following entries are in global-web-application.xml (the
default installation has these entries preconfigured):

<servlet>
<servlet-name>rmi</servlet-name>
<servlet-class>com.evermind.server.rmi.RMIHttpTunnelServlet
</servlet-class>

</servlet>
<servlet>

<servlet-name>rmip</servlet-name>
<servlet-class>com.evermind.server.rmi.RMIHttpTunnelProxyServlet
</servlet-class>

</servlet>

Configuring ORMI Tunneling through HTTP

Oracle Remote Method Invocation 5-17

2. Modify the JNDI provider URL (see "JNDI Properties for RMI" on page 5-11).
The JNDI provider URL for accessing the OC4J EJB server takes the form:

ormi://hostname:ormi_port/appName

■ To direct tunneling requests to the home instance of OC4J in an Oracle
Application Server or standalone environment, set the URL to:

http:ormi://hostname:http_port/appName

■ To direct tunneling requests to an instance mapped in an OC4J mount point
in an Oracle Application Server environment only, configure oc4j_mount
(see "Configuring an OC4J Mount Point" on page 5-17) and set the URL to:

http:ormi://hostname:http_port/appName@oc4j_mount

3. If your HTTP traffic goes through a proxy server, specify the proxyHost and
(optionally) proxyPort in the command line used to start the EJB client:

-Dhttp.proxyHost=proxy_host -Dhttp.proxyPort=proxy_port

Configuring an OC4J Mount Point
An OC4J mount point maps an OC4J instance to URLs that start with a specified
path name. This mapping is specified in the OC4J mod-oc4j.conf file by Oracle
Enterprise Manager at deployment time. This is an example of such a mapping:

Oc4jMount /xyz inst1
Oc4jMount /xyz/* inst1

In this example, the OC4J instance inst1 receives all requests with URLs that start
with /xyz.

An OC4J mount point is used to direct tunneling requests to an OC4J instance other
than the home instance of OC4J.

Note: http_port is the HTTP port, not the ORMI port (if omitted, it
defaults to 80) and appName is the name of the application, not the
application context defined in web-site.xml.

Note: If omitted, proxy_port defaults to 80.

Configuring ORMI Tunneling through HTTP

5-18 Oracle Application Server Containers for J2EE Services Guide

The first part of "Configuring ORMI Tunneling through HTTP" on page 5-16
showed the following URL:

http:ormi://hostname:http_port/appName@oc4j_mount

In this URL, appName is the name of the application (defined by
default-web-site.xml attribute name), not the application context (defined by
default-web-site.xml attribute application).

Make sure that the context root for appName in the default-web-site.xml file is
the same as that in the mod-oc4j.conf file. In this example, the application name
is demoApp and its context root is /xyz: the actual line in the
default-web-site.xml file for this application would be:

<default-web-app application="default" name="demoApp" root="/xyz" />

Therefor, in this example, to direct tunneling requests from defaultWebApp to
OC4J instance inst1, the URL would be:

http:ormi://hostname:http_port/defaultWebApp@xyz

The mod-oc4j.conf file is a component of the Oracle HTTP server. For more
information, see the Oracle HTTP Server Administrator’s Guide.

The default-web-site.xml file is an OC4J configuration file. For more
information, see the Oracle Application Server Containers for J2EE Servlet Developer’s
Guide.

Warning. Do not manually modify these configuration files. The
Oracle Enterprise Manager internally makes these changes when an
application is deployed. Manual modification of these files may
risk putting the repository out of synchronization.

J2EE Interoperability 6-1

6
J2EE Interoperability

This chapter describes Oracle Application Server Containers for J2EE (OC4J)
support for allowing EJBs to invoke one another across different containers using
the standard Remote Method Invocation (RMI)/Internet Inter-Orb Protocol (IIOP)
protocol.

This chapter covers the following topics:

■ Introduction to RMI/IIOP

■ Switching to Interoperable Transport

■ Configuring OC4J for Interoperability

Introduction to RMI/IIOP

6-2 Oracle Application Server Containers for J2EE Services Guide

Introduction to RMI/IIOP
Java Remote Method Invocation (RMI) enables you to create distributed Java-based
to Java-based applications, in which the methods of remote Java objects can be
invoked from other Java virtual machines (JVMs), possibly on different hosts.

Version 2.0 of the EJB specification adds features that make it easy for EJB-based
applications to invoke one another across different containers. You can make your
existing EJB interoperable without changing a line of code: simply edit the bean’s
properties and redeploy. "Switching to Interoperable Transport" on page 6-4
discusses redeployment details.

EJB interoperability consists of the following:

■ Transport interoperability through CORBA IIOP (Internet Inter-ORB Protocol,
where ORB is Object Request Broker)

■ Naming interoperability through the CORBA CosNaming Service (CORBA
Object Service Naming, part of the OMG CORBA Object Service specification)

■ Security interoperability through Common Secure Interoperability Version 2
(CSIv2)

■ Transaction interoperability through the CORBA Transaction Service (OTS)

OC4J furnishes the first three of these features.

Transport
By default, OC4J EJBs use RMI/Oracle Remote Method Invocation (ORMI), a
proprietary protocol, to communicate as described in Chapter 5, "Oracle Remote
Method Invocation".

In OC4J, you can easily convert an EJB to use RMI/IIOP, making it possible for EJBs
to invoke one another across different EJB containers. This chapter describes
configuring and using RMI/IIOP.

Naming
OC4J supports the CORBA CosNaming service. OC4J can publish EJBHome object
references in a CosNaming service and provides a JNDI CosNaming

Note: For the OC4J 10g (9.0.4) implementation, load balancing and
failover are supported only for ORMI, not IIOP.

Introduction to RMI/IIOP

J2EE Interoperability 6-3

implementation that allows applications to look up JNDI names using CORBA. You
can write your applications using either the JNDI or CosNaming APIs.

Security
OC4J supports Common Secure Interoperability Version 2 (CSIv2), which specifies
different conformance levels; OC4J complies with the EJB specification, which
requires conformance level 0.

Transactions
The EJB2.0 specification stipulates an optional transactional interoperability feature.
Conforming implementations must choose one of the following:

■ Transactionally interoperable: transactions are supported between beans that
are hosted in different J2EE containers.

■ Transactionally noninteroperable: transactions are supported only among beans
in the same container.

The current release of OC4J is transactionally noninteroperable, so, when a
transaction spans EJB containers, OC4J raises a specified exception.

Client-Side Requirements
In order to access EJBs, you must do the following on the client-side:

1. Download the oc4j_client.zip file from
http://otn.oracle.com/software/products/ias/devuse.html

2. Unzip it into a client-side directory (for example, d:\oc4jclient)

3. Add d:\oc4jclient\oc4jclient.jar to your CLASSPATH

The oc4j_client.zip file contains all the JAR files required by the client (including
oc4jclient.jar and optic.jar). These JARs contain the classes necessary for
client interaction. You only need to add oc4jclient.jar to your CLASSPATH
because all other JAR files required by the client are referenced in the
oc4jclient.jar manifest classpath.

If you download this file into a browser, you must grant certain permissions as
described in the "Granting Permissions" section of the Security chapter in the Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Switching to Interoperable Transport

6-4 Oracle Application Server Containers for J2EE Services Guide

The rmic.jar Compiler
To invoke or be invoked by CORBA objects, RMI objects must have corresponding
stubs, skeletons, and IDL. Use the rmic.jar compiler to generate stubs and
skeletons from Java classes or to generate IDL, as described in "Configuring OC4J
for RMI" on page 5-3.

For use with RMI/IIOP, be sure to compile using the -iiop option.

Switching to Interoperable Transport
In OC4J, EJBs use RMI/ORMI, a proprietary protocol, to communicate (as described
in Chapter 5, "Oracle Remote Method Invocation"). You can convert an EJB to use
RMI/IIOP, making it possible for EJBs to invoke one another across EJB containers.

The following four sections provide details on making the conversions.

Simple Interoperability in a Standalone Environment
Follow these steps to convert an EJB to use RMI/IIOP in a standalone environment:

1. Restart OC4J with the -DGenerateIIOP=true flag.

2. Deploy your application using admin.jar. You must obtain the client's stub
JAR file using the -iiopClientJar switch. Here is an example:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome -deploy -file filename
 -deployment_name application_name -iiopClientJar stub_jar_filename

3. Change the client’s classpath to include the stub JAR file that was obtained
during deployment by running admin.jar with the -iiopClientJar
switch.

Note: RMI/IIOP support is based on the CORBA 2.3.1
specification. Applications that were compiled using earlier
releases of CORBA may not work correctly.

Note: You must use the -iiopClientJar switch to enable
interoperability (IIOP) for the application you are deploying. In
OC4J, interoperability is enabled on a per-application basis.

Switching to Interoperable Transport

J2EE Interoperability 6-5

A copy of the stub JAR file that were generated by OC4J can also be found in
the server's deployment directory at:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

4. Edit the client’s JNDI property java.naming.provider.url to use a
corbaname URL instead of an ormi URL. For details on the corbaname URL,
see "The corbaname URL" on page 6-13.

5. (Optional) To make the bean accessible to CORBA applications, run rmic.jar
to generate IDL (the Interface Description Language) describing its interfaces.
See "Configuring OC4J for Interoperability" on page 6-16 for a discussion of
command-line options.

Advanced Interoperability in a Standalone Environment
This section expands upon the preceding section, describing how to convert an EJB
to use RMI/IIOP in a standalone environment.

1. Specify CSIv2 security policies for the bean in orion_ejb_jar.xml and in
internal_settings.xml. See "CSIv2 Security Properties (orion-ejb-jar.xml)"
on page 6-22 and "EJB Server Security Properties (internal-settings.xml)" on
page 6-17 for details.

2. Restart OC4J with the -DGenerateIIOP=true flag.

3. Deploy your application using admin.jar. You must obtain the client's stub
JAR file using the -iiopClientJar switch. Here is an example:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome -deploy -file filename
 -deployment_name application_name -iiopClientJar stub_jar_filename

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Note: You must use the -iiopClientJar switch to enable
interoperability (IIOP) for the application that you are deploying. In
OC4J, interoperability is enabled on a per-application basis.

Switching to Interoperable Transport

6-6 Oracle Application Server Containers for J2EE Services Guide

4. Change the client’s classpath to include the stub JAR file that was obtained
during deployment by running admin.jar with the -iiopClientJar
switch.

A copy of the stub JAR file that was generated by OC4J can also be found in the
server's deployment directory at:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

5. Edit the client’s JNDI property java.naming.provider.url to use a
corbaname URL instead of an ormi URL. For details on the corbaname URL,
see "The corbaname URL" on page 6-13.

6. (Optional) To make the bean accessible to CORBA applications, run rmic.jar
to generate IDL (the Interface Description Language), describing its interfaces.
See "Configuring OC4J for Interoperability" on page 6-16 for a discussion of
command-line options.

Simple Interoperability in Oracle Application Server Environment
You can access an EJB using RMI/IIOP in an Oracle Application Server
environment in two ways:

■ Configuring for Interoperability Using Oracle Enterprise Manager

■ Configuring for Interoperability Manually

Configuring for Interoperability Using Oracle Enterprise Manager
You can configure an EJB to be accessible by means of RMI/IIOP in an Oracle
Application Server environment by using Oracle Enterprise Manager. Follow these
steps:

1. Navigate to an OC4J instance in which you want to allow access to applications
through RMI/IIOP. Figure 6–1 shows an OC4J instance called home.

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

J2EE Interoperability 6-7

Figure 6–1 Oracle Enterprise Manager System Components

2. Click on Server Properties in the Administration section for this OC4J instance.
This is shown in Figure 6–2.

Figure 6–2 Oracle Enterprise Manager Server Properties

By default, RMI/IIOP is disabled in an Oracle Application Server environment.
To enable RMI/IIOP, ensure that a unique IIOP port (or port range) exists for
each OC4J instance by entering the value in the IIOP ports field, as shown in
Figure 6–3. Click Apply.

Switching to Interoperable Transport

6-8 Oracle Application Server Containers for J2EE Services Guide

Figure 6–3 Oracle Enterprise Manager Port Configuration

Deploy your application following the Oracle Enterprise Manager deployment
wizard.

Enable generation of client IIOP stubs for this application by selecting Generate
IIOP stubs, as shown in Figure 6–4.

Figure 6–4 Oracle Enterprise Manager Stub Generation

Finish deploying your application following the Oracle Enterprise Manager
deployment wizard.

Switching to Interoperable Transport

J2EE Interoperability 6-9

Configuring for Interoperability Manually
Follow these steps to manually configure an EJB for remote access by RMI/IIOP in
an Oracle Application Server environment:

1. By default, RMI/IIOP is disabled in an Oracle Application Server environment.
To enable RMI/IIOP, confirm in OPMN's configuration file,
J2EE_HOME/opmn/conf/opmn.xml, that a unique IIOP port (or port range)
exists for each OC4J instance to be managed by OPMN.

Here is an example:

<ias-component id="OC4J">
 <process-type id="home" module-id="OC4J">
 <port id="ajp" range="3000-3100"/>
 <port id="rmi" range="23791-23799"/>
 <port id="jms" range="3201-3300"/>
 <port id="iiop" range="3401-3500"/>
 <process-set id="default_island" numprocs="1"/>
 </process-type>
 </ias-component>

2. If you modify any configuration file manually, you must update the
configuration with dcmctl. Use the following command:

dcmctl updateConfig

3. Using opmnctl or Oracle Enterprise Manager, restart all OC4J instances that
are managed by OPMN.

For information on opmnctl, use the following command:

opmnctl help

To stop and restart OPMN and all OPMN-managed processes, first use the
following command:

opmnctl stopall

Note: You must specify an IIOP port (or port range) for each OC4J
instance in which interoperability is to be enabled. Failure to do so
causes OC4J to not configure an IIOP listener, thus automatically
disabling interoperability, regardless of the configuration in the
internal-settings.xm file of OC4J.

Switching to Interoperable Transport

6-10 Oracle Application Server Containers for J2EE Services Guide

and then:

opmnctl startall

For information on Oracle Enterprise Manager, see the Oracle Application Server
Containers for J2EE User’s Guide.

4. Deploy your application using dcmctl, specifying the -enableIIOP option.
Here is an example:

dcmctl deployApplication -f filename -a application_name -enableIIOP

5. Change the client’s classpath to include the stub JAR file that was generated
by OC4J. This file is normally found in the server's deployment directory:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

6. Edit the client’s JNDI property java.naming.provider.url to use an OPMN
or corbaname URL instead of an ormi URL. For details on the corbaname
URL, see "The corbaname URL" on page 6-13. For details on the OPMN URL,
see "The OPMN URL" on page 6-14.

7. (Optional) To make the bean accessible to CORBA applications, run rmic.jar
to generate IDL (the Interface Description Language), describing its interfaces.
See "Configuring OC4J for Interoperability" on page 6-16 for a discussion of
command-line options.

Advanced Interoperability in Oracle Application Server Environment
You can access an EJB using RMI/IIOP in an Oracle Application Server
environment in two ways:

■ Configuring for Interoperability Using Oracle Enterprise Manager

■ Configuring for Interoperability Manually

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

J2EE Interoperability 6-11

Configuring for Interoperability Using Oracle Enterprise Manager
The advanced configuring for interoperability using Oracle Enterprise Manager
differs from the simple configuring described under "Configuring for
Interoperability Using Oracle Enterprise Manager" on page 6-6 only in the
specification of ports. That is, you must specify an iiop, iiops1, and iiops2 port
(or port range) for each OC4J instance in which interoperability with CSIv2 is to be
enabled. Failure to do so causes OC4J to not configure an IIOP listener, thus
automatically disabling interoperability, regardless of the configuration in the
internal-settings.xm file of OC4J. This is shown in Figure 6–5.

Figure 6–5 Oracle Enterprise Manager Port Specifications

Configuring for Interoperability Manually
This section expands upon the preceding section, describing how to convert an EJB
to use RMI/IIOP in an Oracle Application Server environment.

1. Specify CSIv2 security policies for the bean in orion_ejb_jar.xml and in
internal_settings.xml. See "CSIv2 Security Properties (orion-ejb-jar.xml)"
on page 6-22 and "EJB Server Security Properties (internal-settings.xml)" on
page 6-17 for details.

2. By default, RMI/IIOP is disabled in an Oracle Application Server environment.
To enable RMI/IIOP, confirm in the OPMN configuration file,
J2EE_HOME/opmn/conf/opmn.xml, that a unique iiop, iiops1, and

Switching to Interoperable Transport

6-12 Oracle Application Server Containers for J2EE Services Guide

iiops2 port (or port range) exists for each OC4J instance to be managed by
OPMN. These are the port meanings:

iiop—standard IIOP port

iiops1—IIOP/SSL port used for server-side authentication only

iiops2—IIOP/SSL port used for both client and server authentication

Here is an example:

<ias-component id="OC4J">
<process-type id="home" module-id="OC4J">

<port id="ajp" range="3000-3100"/>
<port id="rmi" range="23791-23799"/>
<port id="jms" range="3201-3300"/>
<port id="iiop" range="3401-3500"/>
<port id="iiops1" range="3501-3600"/>
<port id="iiops2" range="3601-3700"/>
<process-set id="default_island" numprocs="1"/>

</process-type>
</ias-component>

3. Using opmnctl or Oracle Enterprise Manager, restart all OC4J instances that
are managed by OPMN.

For information on opmnctl, use the following command:

opmnctl help

Note: You must specify an iiop, iiops1, and iiops2 port (or
port range) for each OC4J instance in which interoperability with
CSIv2 is to be enabled. Failure to do so causes OC4J to not
configure an IIOP listener, thus automatically disabling
interoperability, regardless of the configuration in the
internal-settings.xml file of OC4J.

Note: If you choose to configure your client’s JNDI property
java.naming.provider.url to use an OPMN URL, your client
cannot connect to iiops1 or iiops2 ports because
OPMN-allocated ports are not reported to OC4J.

Switching to Interoperable Transport

J2EE Interoperability 6-13

To stop and restart OPMN and all OPMN-managed processes, first use the
following command:

opmnctl stopall

and then:

opmnctl startall

For information on Oracle Enterprise Manager, see the Oracle Application Server
Containers for J2EE User’s Guide.

4. Deploy your application using dcmctl, specifying the -enableIIOP option.
Here is an example:

dcmctl deployApplication -f filename -a application_name -enableIIOP

5. Change the client’s classpath to include the stub JAR file that was generated
by OC4J. This is normally found in the server's deployment directory:

application_deployment_directory/appname/ejb_module/module_iiopClient.jar

6. Edit the client’s JNDI property java.naming.provider.url to use an OPMN
or corbaname URL instead of an ormi URL. For details on the corbaname
URL, see "The corbaname URL" on page 6-13. For details on the OPMN URL,
see "The OPMN URL" on page 6-14.

7. (Optional) To make the bean accessible to CORBA applications, run rmic.jar
to generate IDL (the Interface Description Language), describing its interfaces.
See "Configuring OC4J for Interoperability" on page 6-16 for a discussion of
command-line options.

The corbaname URL
To interoperate, an EJB must look up other beans using CosNaming. This means
that the URL for looking up the root NamingContext must use the corbaname
URL scheme instead of the ormi URL scheme. This section discusses the

Note: IIOP stub and tie class code generation occurs at
deployment time, unlike ORMI stub generation, which occurs at
runtime. This is why you must add the JAR file to the classpath
yourself. If you run in the server, a list of generated classes required
by the server and IIOP stubs is made available automatically.

Switching to Interoperable Transport

6-14 Oracle Application Server Containers for J2EE Services Guide

corbaname subset that is most used by EJB developers. For a full discussion of the
corbaname scheme, see section 2.5.3 of the CORBA Naming Service Specification.
The corbaname scheme is based on the corbaloc scheme, which section 13.6.10.1
of the CORBA specification discusses.

The most common form of the corbaname URL scheme is:

corbaname::host[:port]

This corbaname URL specifies a conventional DNS host name or IP address and a
port number. For example,

corbaname::example.com:8000

A corbaname URL can also specify a naming context by following the host and
port by # and NamingContext in string representation. The CosNaming service on
the specified host is responsible for interpreting the naming context.

corbaname::host[:port]#namingcontext

For example:

corbaname::example.com:8000#Myapp

The OPMN URL
This section describes OPMN URL details specific to RMI/IIOP. For general
information about the OPMN URL, see "JNDI Properties for RMI" on page 5-11.

In an Oracle Application Server environment, IIOP ports for all OC4J processes
within each Oracle Application Server instance are dynamically managed by
OPMN. Because the ports are dynamically allocated by OPMN, it might not be
possible for clients to know the ports on which OC4J processes are actively listening
for IIOP requests. To enable clients to successfully make RMI/IIOP requests in an
Oracle Application Server environment without having to know the IIOP ports for
all active OC4J processes, modify the jndi.naming.provider.url property (in
the client’s jndi.properties file) with a URL of the following format:

opmn:corbaname::opmn_host[:opmn_port]:]:OC4J_instance_name#naming_context

For example:

opmn:corbaname::dlsun74:6003:home#stateless

Switching to Interoperable Transport

J2EE Interoperability 6-15

Exception Mapping
When EJBs are invoked over IIOP, OC4J must map system exceptions to CORBA
exceptions. Table 6–1 lists the exception mappings.

Invoking OC4J-Hosted Beans from a Non-OC4J Container
EJBs that are not hosted in OC4J must add the file oc4j_interop.jar to the
classpath to invoke OC4J-hosted EJBs. OC4J expects the other container to make
the HandleDelegate object available in the JNDI name space at
java:comp/HandleDelegate.The oc4j_interop.jar file contains the
standard portable implementations of home and remote handles, and metadata
objects.

Note: NOTE: For the OC4J 10g (9.0.4) implementation, load
balancing and failover are supported only for ORMI, not IIOP.

Note: If you choose to use an OPMN URL, your client cannot
connect to iiops1 or iiops2 (ssl-port or
ssl-client-server-auth-port) ports.

Table 6–1 Java-CORBA Exception Mappings

OC4J System Exception CORBA System Exception

javax.transaction.
 TransactionRolledbackException

TRANSACTION_ROLLEDBACK

javax.transaction.

TransactionRequiredException

TRANSACTION_REQUIRED

javax.transaction.

InvalidTransactionException

INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN

Configuring OC4J for Interoperability

6-16 Oracle Application Server Containers for J2EE Services Guide

Configuring OC4J for Interoperability
To add interoperability support to your EJB, you must specify interoperability
properties. Some of these properties are specified when starting OC4J and others in
bean properties that are specified in deployment files.

Interoperability OC4J Flags
The following OC4J startup flags support RMI interoperability:

■ -DGenerateIIOP=true: generates new stubs and skeletons whenever you
redeploy an application.

■ -Diiop.debug=true: generates deployment-time debugging messages, most
of which have to do with code generation.

■ -Diiop.runtime.debug=true: generates runtime debugging messages.

Interoperability Configuration Files
Before EJBs can communicate, you must configure the parameters in the
configuration files listed in Table 6–2.

Table 6–2 Interoperability Configuration Files

Context File Description

Server server.xml The <sep-config> element in this file
specifies the path name, normally
internal-settings.xml, for the server
extension provider properties. For example:

<sep-config path="./internal-settings.xml">

internal-settings.xml This file specifies server extension provider
properties that are specific to RMI/IIOP.
See "EJB Server Security Properties
(internal-settings.xml)" on page 6-17 for
details.

Application orion-ejb-jar.xml The <ior-security-config> subentity of
the <session-deployment> and
<entity-deployment> entities specifies
Common Secure Interoperability Version 2
(CSIv2) security properties for the server. See
"CSIv2 Security Properties" on page 6-19
for details.

Configuring OC4J for Interoperability

J2EE Interoperability 6-17

EJB Server Security Properties (internal-settings.xml)
You specify server security properties in the internal-settings.xml file.

This file specifies certain properties as values within <sep-property> entities.
Table 6–3 contains a list of properties.

The table refers to keystore and truststore files, which use the Java Key Store (JKS), a
JDK-specified format, to store keys and certificates. A keystore stores a map of
private keys and certificates. A truststore stores trusted certificates for the certificate
authorities (CAs, such as VeriSign and Thawte).

ejb_sec.properties This file specifies client-side security
properties for an EJB. See "EJB Client
Security Properties (ejb_sec.properties)" on
page 6-24 for details.

jndi.properties This file specifies the URL of the initial
naming context used by the client. See
"JNDI Properties for Interoperability
(jndi.properties)" on page 6-25 for details.

Note: You cannot edit internal-settings.xml with the
Oracle Enterprise Manager.

Note: If you choose to configure your client’s JNDI property
java.naming.provider.url to use an OPMN URL, your client
cannot connect to ssl-port and ssl-client-server-auth-port
ports because OPMN-allocated ports are not reported to OC4J.

Table 6–3 EJB Server Security Properties

Property Meaning

port IIOP port number (defaults to 5555).

ssl true if IIOP/SSL is supported, false
otherwise.

Table 6–2 Interoperability Configuration Files

Context File Description

Configuring OC4J for Interoperability

6-18 Oracle Application Server Containers for J2EE Services Guide

If OC4J is started by the Oracle Process Management Notification service (OPMN)
in an Oracle Application Server (as opposed to standalone) environment, then ports
specified in internal-settings.xml are ignored. If OPMN is configured to
disable IIOP for a particular OC4J instance, then, even though IIOP may be enabled

ssl-port IIOP/SSL port number (defaults to 5556). This
port is used for server-side authentication only. If
your application uses client and server
authentication, you also must set
ssl-client-server-auth-port.

ssl-client-server-auth-port Port used for client and server authentication
(defaults to 5557). This is the port on which
OC4J listens for SSL connections that require
both client and server authentication. If not set,
OC4J will listen on ssl-port + 1 for client-side
authentication.

keystore Name of keystore (used only if ssl is true).

keystore-password The keystore password (used only if ssl is
true).

trusted-clients Comma-separated list of hosts whose identity
assertions can be trusted. Each entry in the list
can be an IP address, a host name, a host name
pattern (for instance, *.example.com), or *.
An * alone means that all clients are trusted. The
default is to trust no clients.

truststore Name of truststore. If you do not specify a
truststore for a server, OC4J uses the keystore as
the truststore (used only if ssl is true).

truststore-password Truststore password (can be set only if ssl is
true).

Note: In Table 6–3, the properties keystore-password
andtruststore-password support password indirection. For
more information, refer to the Oracle Application Server Containers for
J2EE Security Guide.

Table 6–3 EJB Server Security Properties (Cont.)

Property Meaning

Configuring OC4J for Interoperability

J2EE Interoperability 6-19

through internal-settings.xml (as pointed to by server.xml), IIOP is not
enabled.

The following example shows a typical internal-settings.xml file:

<server-extension-provider name="IIOP"
 class="com.oracle.iiop.server.IIOPServerExtensionProvider">
 <sep-property name="port" value="5555" />
 <sep-property name="host" value="localhost" />
 <sep-property name="ssl" value="false" />
 <sep-property name="ssl-port" value="5556" />
 <sep-property name="ssl-client-server-auth-port" value="5557" />
 <sep-property name="keystore" value="keystore.jks" />
 <sep-property name="keystore-password" value="123456" />
 <sep-property name="truststore" value="truststore.jks" />
 <sep-property name="truststore-password" value="123456" />
 <sep-property name="trusted-clients" value="*" />
</server-extension-provider>

Here is the DTD for internal-settings.xml:

<!-- A server extension provider that is to be plugged in to the server.
-->
<!ELEMENT server-extension-provider (sep-property*) (#PCDATA)>
<!ATTLIST server-extension-provider name class CDATA #IMPLIED>
<!ELEMENT sep-property (#PCDATA)>
<!ATTLIST sep-property name value CDATA #IMPLIED>
<!-- This file contains internal server configuration settings. -->
<!ELEMENT internal-settings (server-extension-provider*)>

CSIv2 Security Properties
CSIv2 is an Object Management Group (OMG) standard for a secure interoperable
wire protocol that supports authorization and identity delegation. You configure
CSIv2 properties in three different locations:

■ internal_settings.xml

■ orion-ejb-jar.xml

■ ejb_sec.properties

Note: Although the default value of port is one less than the
default value for ssl-port, this relationship is not required.

Configuring OC4J for Interoperability

6-20 Oracle Application Server Containers for J2EE Services Guide

"CSIv2 Security Properties (internal-settings.xml)" on page 6-20, "CSIv2 Security
Properties (orion-ejb-jar.xml)" on page 6-22, and "EJB Client Security Properties
(ejb_sec.properties)" on page 6-22 discusses these configuration files.

CSIv2 Security Properties (internal-settings.xml)
This section discusses the semantics of the values you set within the
<sep-property> element in internal_settings.xml. For details of syntax,
see "EJB Server Security Properties (internal-settings.xml)" on page 6-17.

To use the CSIv2 protocol with OC4J, you must both set ssl to true and specify an
IIOP/SSL port (ssl-port).

■ If you do not set ssl to true, then CSIv2 is not enabled. Setting ssl to true
permits clients and servers to use CSIv2, but does not require them to
communicate using SSL.

■ If you do not specify an ssl-port, then no CSIv2 component tag is inserted by
the server into the IOR, even if you configure an <ior-security-config>
entity in orion-ejb-jar.xml.

When IIOP/SSL is enabled on the server, OC4J listens on two different sockets—one
for server authentication alone, and one for server and client authentication. You
specify the server authentication port within the <sep-property> element. The
server and client authentication listener uses the port number immediately
following.

For SSL clients using server authentication alone, you can specify:

■ Truststore only

■ Both keystore and truststore.

■ Neither

If you specify neither keystore nor truststore, then the handshake may fail if there
are no default truststores established by the security provider.

SSL clients using client-side authentication must specify both a keystore and a
truststore. The certificate from the keystore is used for client authentication.

CSIv2 Security Properties (ejb_sec.properties)
If the client does not use client-side SSL authentication, you must set
client.sendpassword in the ejb_sec.properties file for the client runtime

Configuring OC4J for Interoperability

J2EE Interoperability 6-21

to insert a security context and send the user name and password. You must also set
server.trustedhosts to include your server.

If the client does use client-side SSL authentication, the server extracts the
DistinguishedName from the client's certificate and then looks it up in the
corresponding user manager. It does not perform password authentication.

Trust Relationships
Two types of trust relationships exist:

■ Clients trusting servers to transmit user names and passwords using non-SSL
connections

■ Servers trusting clients to send identity assertions, which delegate an originating
client’s identity

Clients list trusted servers in the EJB property oc4j.iiop.trustedServers. See
Table 6–4, "EJB Client Security Properties" on page 6-24 for details. Servers list
trusted clients in the trusted-client property of the <sep-property> element
in internal-settings.xml. See "EJB Server Security Properties
(internal-settings.xml)" on page 6-17 for details.

Conformance level 0 of the EJB standard defines two ways of handling trust
relationships:

■ presumed trust, in which the server presumes that the logical client is
trustworthy, even if the logical client has not authenticated itself to the server,
and even if the connection is not secure

■ authenticated trust, in which the target trusts the intermediate server, based on
authentication either at the transport level, or in the trusted-client list, or
both

Note: Server-side authentication takes precedence over a user
name and password.

Note: You can also configure the server to both require SSL
client-side authentication and also specify a list of trusted client (or
intermediate) hosts that are allowed to insert identity assertions.

Configuring OC4J for Interoperability

6-22 Oracle Application Server Containers for J2EE Services Guide

OC4J offers both kinds of trust. You configure trust using the bean’s
<ior-security-config> element in orion-ejb-jar.xml. See "CSIv2 Security
Properties (orion-ejb-jar.xml)" on page 6-22 for details.

CSIv2 Security Properties (orion-ejb-jar.xml)
This section discusses the CSIv2 security properties for an EJB. You configure each
individual bean’s CSIv2 security policies in its orion-ejb-jar.xml. The CSIv2
security properties are specified within <ior-security-config> elements. Each
element contains a <transport-config> element, an <as-context> element,
and an <sas-context> element.

The <transport-config> Element
This element specifies the transport security level. Each element within
<transport-config> must be set to supported, required, or none. None
means that the bean neither supports nor uses that feature; supports means that
the bean permits the client to use the feature; required means that the bean insists
that the client use the feature. The elements are:

■ <integrity>: Is there a guarantee that all transmissions are received exactly
as they were transmitted?

■ <confidentiality>: Is there a guarantee that no third party was able to read
transmissions?

■ <establish-trust-in-target>: Does the server authenticate itself to the
client?

■ <establish-trust-in-client>: Does the client authenticate itself to the
server?

Notes: If you set <establish-trust-in-client> to
required, this overrides specifying username_password in
<as-context>. If you do this, you must also set the <required>
node value in the <as-context> section to false; otherwise,
access permission issues will arise.

Setting any of the <transport-config> properties to required
means that the bean will use RMI/IIOP/SSL to communicate.

Configuring OC4J for Interoperability

J2EE Interoperability 6-23

The <as-context> element
This element specifies the message-level authentication properties.

■ <auth-method>: must be set to either username_password or none. If set to
username_password, beans use user names and passwords to authenticate
the caller.

■ <realm>: must be set to default at the current release.

■ <required>: if set to true, the bean requires the caller to specify a user name
and password.

The <sas-context> element
This element specifies the identity delegation properties. It has one element,
<caller-propagation>, which can be set to supported, required, or none. If
the <caller-propagation> element is set to supported, then this bean accepts
delegated identities from intermediate servers. If it is set to required, then this
bean requires all other beans to transmit delegated identities. If set to none, this
bean does not support identity delegation.

An example:

<ior-security-config>
 <transport-config>
 <integrity>supported</integrity>
 <confidentiality>supported</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>supported</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

DTD The DTD for the <ior-security-config> element is:

<!ELEMENT ior-security-config (transport-config?, as-context?
sas-context?) >
<!ELEMENT transport-config (integrity, confidentiality,
establish-trust-in-target, establish-trust-in-client) >

Configuring OC4J for Interoperability

6-24 Oracle Application Server Containers for J2EE Services Guide

<!ELEMENT as-context (auth-method, realm, required) >
<!ELEMENT sas-context (caller-propagation) >
<!ELEMENT integrity (#PCDATA) >
<!ELEMENT confidentiality (#PCDATA)>
<!ELEMENT establish-trust-in-target (#PCDATA) >
<!ELEMENT establish-trust-in-client (#PCDATA) >
<!ELEMENT auth-method (#PCDATA) >
<!ELEMENT realm (#PCDATA) >
<!ELEMENT required (#PCDATA)> <!-- Must be true or false -->
<!ELEMENT caller-propagation (#PCDATA) >

EJB Client Security Properties (ejb_sec.properties)
Any client, whether running inside a server or not, has EJB security properties.
Table 6–4 lists the EJB client security properties controlled by the
ejb_sec.properties file. By default, OC4J searches for this file in the current
directory when running as a client or in J2EE_HOME/config when running in the
server. You can specify this file’s location explicitly with
-Dejb_sec_properties_location=pathname.

Table 6–4 EJB Client Security Properties

Property Meaning

oc4j.iiop.keyStoreLoc The path name for the keystore.

oc4j.iiop.keyStorePass The password for the keystore.

oc4j.iiop.trustStoreLoc The path name for the truststore.

oc4j.iiop.trustStorePass The password for the truststore.

oc4j.iiop.enable.clientauth Whether the client supports client-side
authentication. If this property is set to true, you
must specify a keystore location and password.

oc4j.iiop.ciphersuites Which cipher suites are to be enabled. Here are the
valid cipher suites:

TLS_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_MD5
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Configuring OC4J for Interoperability

J2EE Interoperability 6-25

JNDI Properties for Interoperability (jndi.properties)
The following RMI/IIOP properties are controlled by the client’s
jndi.properties file:

■ java.naming.provider.url may be an OPMN or a corbaname URL for the
bean to be interoperable. For details on corbaname URLs, see "The corbaname
URL" on page 6-13. For details on the OPMN URL, see "The OPMN URL" on
page 6-14.

■ contextFactory can be either
ApplicationClientInitialContextFactory or the class
IIOPInitialContextFactory.

If your application has an application-client.xml, then leave
contextFactory set to ApplicationClientInitialContextFactory.
If your application does not have an application-client.xml, then
change contextFactory to IIOPInitialContextFactory.

nameservice.useSSL Whether to use SSL when making the initial
connection to the server.

client.sendpassword Whether to send user name and password in clear
form (unencrypted) in the service context when
not using SSL. If this property is set to true, the
user name and password are sent only to servers
listed in the trustedServer list.

oc4j.iiop.trustedServers A list of servers that can be trusted to receive
passwords sent in clear form. Has no effect if
client.sendpassword is set to false. The list
is comma-separated. Each entry in the list can be
an IP address, a host name, a host name pattern
(for instance, *.example.com), or *. An * alone
means that all servers are trusted.

Note: The properties marked with a # can be set either in
ejb_sec.properties or as system properties. The settings in
ejb_sec.properties always override settings that are specified
as system properties.

Table 6–4 EJB Client Security Properties (Cont.)

Property Meaning

Configuring OC4J for Interoperability

6-26 Oracle Application Server Containers for J2EE Services Guide

Context Factory Usage
com.evermind.server.ApplicationClientInitialContextFactory is
used when looking up remote objects from stand-alone application clients. It uses
the refs and ref-mappings found in application-client.xml and
orion-application-client.xml. It is the default initial context factory when
the initial context is instantiated in a Java application.

com.oracle.iiop.server.IIOPInitialContextFactory is used when
looking up remote objects between different containers using the IIOP protocol.

Java Transaction API 7-1

7
Java Transaction API

This chapter describes the Oracle Application Server Containers for J2EE (OC4J)
Java Transaction API (JTA). This chapter covers the following topics:

■ Introduction

■ Single-Phase Commit

■ Two-Phase Commit

Introduction

7-2 Oracle Application Server Containers for J2EE Services Guide

Introduction
Applications deployed in the application server can demarcate transactions using
Java Transaction API (JTA) 10.1.

For example, Enterprise Java Beans (EJBs) with bean-managed transactions,
servlets, or Java objects that are deployed in the OC4J container can begin and end
(demarcate) a transaction.

This chapter discusses the method for using JTA in OC4J. It does not cover JTA
concepts—you must understand how to use and program global transactions before
reading this chapter. See the Sun Microsystems Web site for more information.

Code examples are available for download from the OTN OC4J sample code site:

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

JTA involves demarcating transactions and enlisting resources.

Demarcating Transactions
Your application demarcates transactions. Enterprise Java Beans use JTA 1.0.1 for
managing transactions through either bean-managed or container-managed
transactions.

■ Bean-managed transactions are programmatically demarcated within your bean
implementation. The transaction boundaries are completely controlled by the
application.

■ Container-managed transactions are controlled by the container. That is, the
container either joins an existing transaction or starts a new transaction for the
application—as defined within the deployment descriptor—and ends the newly
created transaction when the bean method completes. It is not necessary for
your implementation to provide code for managing the transaction.

Enlisting Resources
The complexity of your transaction is determined by how many resources your
application enlists with the transaction.

Note: Not all data sources support JTA transactions. (See "Using
Data Sources" on page 4-20 for details.)

Single-Phase Commit

Java Transaction API 7-3

■ Single-Phase Commit (1pc): If only a single resource (database) is enlisted in the
transaction, you can use single-phase commit.

■ Two-Phase Commit (2pc): If more than one resource is enlisted, you must use
two-phase commit, which is more difficult to configure.

Single-Phase Commit
Single-phase commit (1pc) is a transaction that involves only a single resource. JTA
transactions consist of enlisting resources and demarcating transactions.

Enlisting a Single Resource
To enlist the single resource in the single-phase commit, perform the following two
steps:

■ Configure the Data Source

■ Retrieve the Data Source Connection

Configure the Data Source
Use an emulated data source for a single phase commit. Refer to Chapter 4, "Data
Sources", for information on emulated and nonemulated data source types.

Use the default data source (data-sources.xml) that comes with a standard
OC4J installation if you can for the single-phase commit JTA transaction. After
modifying this data source url attribute with your database URL information,
retrieve the data source in your code using a JNDI lookup with the JNDI name
configured in the ejb-location attribute. Configure a data source for each
database involved in the transaction.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@myhost:myport:mySID"
 inactivity-timeout="30"
/>

Single-Phase Commit

7-4 Oracle Application Server Containers for J2EE Services Guide

In the preceding code, myhost, myport, and mySID are entries that you must
change. The values that actually appear likely are not valid for your installation.

For information about the expected attribute definitions, see Chapter 4, "Data
Sources".

Retrieve the Data Source Connection
Before executing any SQL statements against tables in the database, you must
retrieve a connection to that database. For these updates to be included in the JTA
transaction, perform the following two steps:

■ Perform JNDI Lookup

■ Retrieve a Connection

Perform JNDI Lookup
After the transaction has begun, look up the data source from the JNDI name space.
Here are the two methods for retrieving the data source:

■ Perform JNDI Lookup on Data Source Definition

■ Perform JNDI Lookup Using Environment

Perform JNDI Lookup on Data Source Definition You can perform a lookup on the JNDI
name bound to the data source definition in the data-sources.xml file and
retrieve a connection, as follows:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Perform JNDI Lookup Using Environment You can perform a lookup on a logical name
that is defined in the environment of the bean container. For more information, see
Chapter 4, "Data Sources". Basically, define the logical name in the J2EE deployment
descriptor in ejb-jar.xml or web.xml as follows:

<resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

Map the <res-ref-name> in the OC4J-specific deployment descriptor (for
example, orion-ejb-jar.xml) to the JNDI name that is bound in the

Single-Phase Commit

Java Transaction API 7-5

data-sources.xml file as follows, where "jdbc/OracleDS" is the JNDI name
defined in the data-sources.xml file:

<resource-ref-mapping name="jdbc/OracleMappedDS" location="jdbc/OracleDS" />

Then retrieve the data source using the environment JNDI lookup and create a
connection, as shown in the following:

InitialContext ic = new InitialContext();
DataSource ds = ic.lookup("java:comp/env/jdbc/OracleMappedDS");
Connection conn = ds.getConnection();

If you are using JDBC, you can start preparing and executing statements against the
database. If you are using SQLJ, create a default context to specify in the #sql
statement.

Retrieve a Connection
Retrieve a connection off this data source object using the getConnection
method. You can do this in one of two ways:

■ Use ds.getConnection()—that is, use the method with no arguments.

■ Use ds.getConnection(username, password)—that is, use the method
supplying a user name and password.

Use the method with no arguments when the data source definition contains the
user name and password that you want.

Use the other method when the data source definition does not contain a user name
and password or when you want to use a user name and password that is different
from what is specified in the data source.

Example 7–1 shows a small portion of an employee session bean that uses
container-managed transactions (CMTs) and uses SQLJ for updating the database.

Example 7–1 Retrieving a Connection Using Portable JNDI Lookup

int empno = 0;
double salary = 0.0;
DataSource remoteDS;
Context ic;

//Retrieve the initial context. No JNDI properties are necessary here
ic = new InitialContext ();

//Look up the DataSource using the <resource-ref> definition

Single-Phase Commit

7-6 Oracle Application Server Containers for J2EE Services Guide

remoteDS = (DataSource)ic.lookup ("java:comp/env/jdbc/OracleMappedDS");

//Retrieve a connection to the database represented by this DataSource
Connection remoteConn = remoteDS.getConnection ("SCOTT", "TIGER");
// Use remoteDS.getConnection () if the data source definition contains
// the user name and password that you want

//Since this implementation uses SQLJ, create a default context for this
//connection.
DefaultContext dc = new DefaultContext (remoteConn);

//Perform the SQL statement against the database, specifying the default
//context for the database in brackets after the #sql statement.
#sql [dc] { select empno, sal from emp where ename = :name };

Demarcating the Transaction
With JTA, you can demarcate the transaction yourself by specifying that the bean is
bean-managed transactional, or designate that the container should demarcate the
transaction by specifying that the bean is container-managed transactional.
Container-managed transaction is available to all EJBs. However, the bean-managed
transactions are available for session beans and MDBs.

Specify the type of demarcation in the bean deployment descriptor. Example 7–2
shows a session bean that is declared as container-managed transactional by
defining the <transaction-type> element as Container. To configure the bean
to use bean-managed transactional demarcation, define this element to be Bean.

Example 7–2 Session Bean Declared as Container-Managed Transactional

</session>
 <description>no description</description>
 <ejb-name>myEmployee</ejb-name>
 <home>cmtxn.ejb.EmployeeHome</home>
 <remote>cmtxn.ejb.Employee</remote>
 <ejb-class>cmtxn.ejb.EmployeeBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

Note: The client cannot demarcate the transaction. Propagation of
the transaction context cannot cross OC4J instances. Thus, neither a
remote client nor a remote EJB can initiate or join the transaction.

Single-Phase Commit

Java Transaction API 7-7

 <resource-ref>
 <res-ref-name>jdbc/OracleMappedDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
</session>

Container-Managed Transactional Demarcation
If you define your bean to use CMTs, then you must specify how the container
manages the JTA transaction for this bean in the <trans-attribute> element in
the deployment descriptor (shown in Example 7–1). Table 7–1 briefly describes the
transaction attribute types that you should specify in the deployment descriptor.

Table 7–1 Transaction Attributes

Transaction Attribute Description

NotSupported The bean is not involved in a transaction. If the bean invoker
calls the bean while involved in a transaction, then the invoker’s
transaction is suspended, the bean executes, and when the bean
returns, the invoker’s transaction is resumed.

Required The bean must be involved in a transaction. If the invoker is
involved in a transaction, the bean uses the invoker’s
transaction. If the invoker is not involved in a transaction, the
container starts a new transaction for the bean. This attribute is
the default.

Supports Whatever transactional state that the invoker is involved in is
used for the bean. If the invoker has begun a transaction, the
invoker’s transaction context is used by the bean. If the invoker
is not involved in a transaction, neither is the bean.

RequiresNew Whether or not the invoker is involved in a transaction, this
bean starts a new transaction that exists only for itself. If the
invoker calls while involved in a transaction, then the invoker’s
transaction is suspended until the bean completes.

Mandatory The invoker must be involved in a transaction before invoking
this bean. The bean uses the invoker’s transaction context.

Never The bean is not involved in a transaction. Furthermore, the
invoker cannot be involved in a transaction when calling the
bean. If the invoker is involved in a transaction, then a
RemoteException is thrown.

Single-Phase Commit

7-8 Oracle Application Server Containers for J2EE Services Guide

Example 7–3 shows the <container-transaction> portion of the deployment
descriptor; it demonstrates how this bean specifies the RequiresNew transaction
attribute for all (*) methods of the myEmployee EJB.

Example 7–3 <container-transaction> in Deployment Descriptor

 <assembly-descriptor>
 <container-transaction>
 <description>no description</description>
 <method>
 <ejb-name>myEmployee</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>RequiresNew</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

No bean implementation is necessary to start, commit, or roll back the transaction.
The container handles all of these functions based on the transaction attribute that is
specified in the deployment descriptor.

Bean-Managed Transactions
If you declare the bean as bean-managed transactional (BMT) within the
<transaction-type>, then the bean implementation must demarcate the start,
commit, or rollback for the global transaction. In addition, you must be careful to
retrieve the data source connection after you start the transaction and not before.

Programmatic Transaction Demarcation For programmatic transaction demarcation,
the bean developer can use either the JTA user transaction interface or the JDBC
connection interface methods. The bean developer must explicitly start and commit
or roll back transactions within the timeout interval.

Note: The default transaction attribute (<trans-attribute>
element) for each type of entity bean is as follows:

■ For CMP 2.0 entity beans, the default is Required.

■ For MDBs, the default is NotSupported.

■ For all other entity beans, the default is Supports.

Single-Phase Commit

Java Transaction API 7-9

Web components (JSP, servlets) can use programmatic transaction demarcation.
Stateless and stateful session beans can use it; entity beans cannot, and thus must
use declarative transaction demarcation.

Client-side Transaction Demarcation This form of transaction demarcation is not
required by the J2EE specification, and is not recommended for performance and
latency reasons. OC4J does not support client-side transaction demarcation.

JTA Transactions
The Web component or bean writer must explicitly issue begin, commit, and
rollback methods of the UserTransaction interface as follows:

Context initCtx = new Initial Context();
ut = (UserTransaction) initCtx.lookup("java:comp/UserTransaction");
…
ut.begin();
// Commit the transaction started in ejbCreate.
Try {
 ut.commit();
} catch (Exception ex) { …..}

 JDBC Transactions
The java.sql.Connection class provides commit and rollback methods. JDBC
transactions implicitly begin with the first SQL statement that follows the most
recent commit, rollback, or connect statement.

The following code example assumes that there are no errors. You can download
this example from the OC4J sample code OTN site:

http://otn.oracle.com/sample_code/tech/java/oc4j/htdocs/oc4jsamplecode/oc4j-demo-ejb.html

This example demonstrates the combination of demarcating a transaction and
enlisting the database resources in the following manner:

1. It retrieves the UserTransaction object from the bean context.

2. It starts the transaction with the begin method.

3. It enlists the database.

This example is the same as in Example 7–1 on page 7-5, but it is surrounded by
UserTransaction begin() and commit() methods.

DataSource remoteDS;
Context ic;

Two-Phase Commit

7-10 Oracle Application Server Containers for J2EE Services Guide

int empno = 0;
double salary = 0.0;
//Retrieve the UserTransaction object. Its methods are used for txn demarcation
UserTransaction ut = ctx.getUserTransaction ();

//Start the transaction
ut.begin();

//Retrieve the initial context. No JNDI properties are necessary here
ic = new InitialContext ();

//Lookup the OrionCMTDataSource that was specified in the data-sources.xml
remoteDS = (DataSource)ic.lookup ("java:comp/env/jdbc/OracleCMTDS");

//Retrieve a connection to the database represented by this DataSource
Connection remoteConn = remoteDS.getConnection ("SCOTT", "TIGER");

//Since this implementation uses SQLJ, create a default context for this
//connection.
DefaultContext dc = new DefaultContext (remoteConn);

//Perform the SQL statement against the database, specifying the default
//context for the database in brackets after the #sql statement.
#sql [dc] { select empno, sal from emp where ename = :name };

//Assuming everything went well, commit the transaction.
ut.commit();

Two-Phase Commit
The main focus of JTA is to declaratively or programmatically start and end simple
and global transactions. When a global transaction is completed, all changes are
either committed or rolled back. The difficulty in implementing a two-phase
commit transaction is in the configuration details. For two-phase commit, you must
use only a nonemulated data source. For more information on nonemulated data
sources, refer to "Non-emulated Data Sources" on page 4-5.

Figure 7–1 contains an example of a two-phase commit
engine—jdbc/OracleCommitDS—coordinating two databases in the global
transaction—jdbc/OracleDS1 and jdbc/OracleDS2. Refer to this example
when going through the steps for configuring your JTA two-phase commit
environment.

Two-Phase Commit

Java Transaction API 7-11

Configuring Two-Phase Commit Engine
When a global transaction involves multiple databases, the changes to these
resources must all be committed or rolled back at the same time. That is, when the
transaction ends, the transaction manager contacts a coordinator—also known as a
two-phase commit engine—to either commit or roll back all changes to all included
databases. The two-phase commit engine is an Oracle9i Database Server database
that you must configure with the following:

■ Fully-qualified database links from itself to each of the databases involved in
the transaction. When the transaction ends, the two-phase commit engine
communicates with the included databases over their fully qualified database
links.

■ A user that is designated to create sessions to each database involved and is
given the responsibility of performing the commit or rollback. The user that
performs the communication must be created on all involved databases and be
given the appropriate privileges.

To facilitate this coordination, perform the following database and OC4J
configuration steps shown in the next two subsections.

Database Configuration Steps
Designate and configure an Oracle9i Database Server database as the two-phase
commit engine with the following steps:

1. Create the user (for example, COORDUSR) on the two-phase commit engine that
facilitates the transaction and perform the following three actions:

a. The user opens a session from the two-phase commit engine to each of the
involved databases.

b. Grant the user the CONNECT, RESOURCE, CREATE SESSION privileges to be
able to connect to each of these databases. The FORCE ANY TRANSACTION
privilege allows the user to commit or roll back the transaction.

c. Create this user and grant these permissions on all databases involved in
the transaction.

For example, if the user that is needed for completing the transaction is
COORDUSR, do the following on the two-phase commit engine and each
database involved in the transaction:

CONNECT SYSTEM/MANAGER;
CREATE USER COORDUSR IDENTIFIED BY COORDUSR;
GRANT CONNECT, RESOURCE, CREATE SESSION TO COORDUSR;

Two-Phase Commit

7-12 Oracle Application Server Containers for J2EE Services Guide

GRANT FORCE ANY TRANSACTION TO COORDUSR;

2. Configure fully-qualified public database links (using the CREATE PUBLIC
DATABASE LINK command) from the two-phase commit engine to each
database that can be involved in the global transaction. This is necessary for the
two-phase commit engine to communicate with each database at the end of the
transaction. The COORDUSR must be able to connect to all participating
databases using these links.

Figure 7–1 shows two databases involved in the transaction. The database link
from the two-phase commit engine to each database is provided on each
OrionCMTDataSource definition in a <property> element in the
data-sources.xml file. See the next step for the "dblink" <property>
element.

Figure 7–1 Two-Phase Commit Diagram

OC4J Configuration Steps
1. To configure two-phase commit coordination, when you have defined the

database that is to act as the two-phase commit engine, configure it as follows:

a. Define a nonemulated data source, using OrionCMTDataSource, for the
two-phase commit engine database in the data-sources.xml file. The
following code defines the two-phase commit engine
OrionCMTDataSource in the data-sources.xml file.

SID1

JTA database 1
OracleDS1

SID2

user: COORDUSR

user: COORDUSR

JTA database 2
OracleDS2

LINK2. machine2.com

LINK1. machine1.com

SID0

two-phase commit
engine:

OracleCommitDS

user: COORDUSR
O

_1
00

0

Two-Phase Commit

Java Transaction API 7-13

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCommitDS"
 location="jdbc/OracleCommitDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="coordusr"
 password="coordpwd"
 url="jdbc:oracle:thin:@machine0:port0:SID0"
 inactivity-timeout="30"
/>

b. Refer to the two-phase commit engine data source in either the global
application.xml file or local orion-application.xml file. The
global XML file exists in the config directory. The local XML file exists in
the application EAR file.

Configure the two-phase commit engine in the orion-application.xml
file as follows:

<commit-coordinator>
 <commit-class class="com.evermind.server.OracleTwoPhaseCommitDriver" />
 <property name="datasource" value="jdbc/OracleCommitDS" />
 <property name="username" value="coordusr" />
 <property name="password" value="coordpwd" />
</commit-coordinator>

The parameters are as follows:

* Specify the JNDI name of "jdbc/OracleCommitDS" for the
OrionCMTDataSource that is defined in the data-sources.xml
file. This identifies the data source to use as the two-phase commit
engine.

* Specify the two-phase commit engine user name and password. This
step is optional, because you could also specify it in the data source
configuration. These are the user name and password to use as the
login authorization to the two-phase commit engine. This user must

Note: The password attribute of the <commit-coordinator>
element supports password indirection. For more information,
refer to the Oracle Application Server Containers for J2EE Security
Guide.

Two-Phase Commit

7-14 Oracle Application Server Containers for J2EE Services Guide

have the FORCE ANY TRANSACTION database privilege, or all session
users must be identical to the user that is the commit coordinator.

* Specify the <commit-class>. This class is always
OracleTwoPhaseCommitDriver for two-phase commit engines.

The two-phase commit coordinator can be specified at the application level
by defining the <commit-coordinator> element in the
application.xml file.

* The OracleTwoPhaseCommitDriver class is defined in the
<commit-class> element.

* The JNDI name for the OrionCMTDataSource is identified in the
<property> element whose name is "datasource".

* The user name is identified in the <property> element "username".

* The password is identified in the <property> element "password".

2. To configure databases that will participate in a global transaction, configure
nonemulated data source objects of type OrionCMTDataSource for each
database involved in the transaction with the following information:

a. The JNDI bound name for the object.

b. The URL for creating a connection to the database.

c. The fully-qualified database link from the two-phase commit engine to this
database (for example, LINK1.machine1.COM). This is provided in a
<property> element within the data source definition in the
data-sources.xml file.

The following OrionCMTDataSource objects specify the two databases
involved in the global transaction. Notice that each of them has a <property>
element named "dblink" that denotes the database link from the two-phase
commit engine to itself.

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCMTDS1"

Note: The container prioritizes the user name and password that
is defined in the orion-application.xml file over the user
name and password that is defined in the data-sources.xml
file.

Two-Phase Commit

Java Transaction API 7-15

 location="jdbc/OracleDS1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@machine1:port1:SID1""
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK1.machine1.COM"/>
</data-source>

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleCMTDS2"
 location="jdbc/OracleDS2"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@machine2:port2:SID2""
 inactivity-timeout="30">
 <property name="dblink"
 value="LINK2.machine2.COM"/>
</data-source>

After the two-phase commit engine and all the databases involved in the
transaction are configured, you can start and stop a transaction in the same manner
as the single-phase commit. See "Single-Phase Commit" on page 7-3 for more
information.

Limitations of Two-Phase Commit Engine
The following data-sources.xml configuration is supported for two-phase
commit in the Oracle Application Server Containers for J2EE (OC4J) release:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"

Note: If you change the two-phase commit engine, you must
update all database links—both within the new two-phase commit
engine as well as within the OrionCMTDataSource <property>
definitions.

Configuring Timeouts

7-16 Oracle Application Server Containers for J2EE Services Guide

 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@hostname:port number:SID"
/>

Two-phase commit works only with a nonemulated data source configuration, as
shown in the preceding. The URLs of all participating nonemulated data sources
must point to an Oracle database instance. Only multiple Oracle resources
participating in a global transaction will have ACID (atomicity, consistency,
isolation, durability) semantics after the commit. In summary, two-phase commit is
supported only with Oracle database resources, but full recovery is always
supported.

In the emulated configuration, two-phase commit may seem to work, but is not
supported, as there is no recovery. The ACID properties of the transaction will not
be guaranteed and may cause problems for an application.

Configuring Timeouts
You can configure timeouts in the server.xml file in the
<transaction-config> element, which has a timeout attribute. This attribute
specifies the maximum amount of time (in milliseconds) that a transaction can take
to finish before it is rolled back due to a timeout. The default value is 30000. This
timeout is a default timeout for all transactions that are started in OC4J. You can
change the value by using the dynamic API
UserTransaction.setTransactionTimeout(milliseconds).

The server DTD defines the <transaction-config> element as follows:

<!ELEMENT transaction-config (#PCDATA)>
<!ATTLIST transaction-config timeout CDATA #IMPLIED>

Recovery for CMP Beans When Database Instance Fails
You should be aware of any failure of the back-end database—especially if the CMP
bean is acting within a transaction. If the database instance fails, then you may have
to retry the operations that you were trying to accomplish during the moment of
failure. The following sections detail how to implement recovery whether the CMP
bean is within a container-managed transaction or a bean-managed transaction:

■ Connection Recovery for CMP Beans That Use Container-Managed
Transactions

■ Connection Recovery for CMP Beans That Use Bean-Managed Transactions

Using Transactions With MDBs

Java Transaction API 7-17

Connection Recovery for CMP Beans That Use Container-Managed Transactions
If you define your CMP bean with container-managed transactions, you can set a
retry count and interval for re-establishing the transaction. Then, if the database
instance fails and your connection goes down while interacting within a
transaction, the EJB container automatically retrieves a new connection to the
database (within the specified interval) until the count is reached and re-executes
the operations within the TRY block where the failure occurred.

To set the automatic retry count and interval, set the following optional attributes in
the <entity-deployment> element in the CMP bean orion-ejb-jar.xml file:

■ max-tx-retries—This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures. The default is 0.

■ tx-retry-wait—This parameter specifies the time to wait in seconds
between retrying the transaction. The default is 60 seconds.

Connection Recovery for CMP Beans That Use Bean-Managed Transactions
The EJB container does not manage bean-managed transactional CMP beans or EJB
clients. Thus, when they receive and exception denoting that the JDBC connection
has failed, each must understand if this is a scenario where the method within the
transaction can be retried.

To determine if this is a retry scenario, provide the database connection and the
SQL exception as parameters in the DbUtil.oracleFatalError() method,
which determines if you can get a new connection and retry your operations. If this
method returns true, then you should create a new connection to continue the
transaction.

The following code demonstrates how to execute the DbUtil.oracleFatalError
method.

if ((DbUtil.oracleFatalError(sql_ex, db_conn))
{
 //retrieve the database connection again.
 //re-execute operations in the try block where the failure occurred.
}

Using Transactions With MDBs
Transactions, both BMT and CMT are supported within MDBs. The default
transaction attribute (trans-attribute) for MDBs is NOT_SUPPORTED.

Using Transactions With MDBs

7-18 Oracle Application Server Containers for J2EE Services Guide

In accordance with the specification, MDBs support only REQUIRED and
NOT_SUPPORTED. If you specify another attribute, such as SUPPORTS, then the
default of NOT_SUPPORTED is used. An error is not thrown in this situation.

You can define a transaction timeout, as defined in the transaction-timeout
attribute, in the <message-driven-deployment> element of the ejb-jar.xml
file. This attribute controls the transaction timeout interval (in seconds) for any
container-managed transactional MDB. The default is one day or 86,400 seconds. If
the transaction has not completed in this time frame, the transaction is rolled back.

Transaction Behavior for MDBs using OC4J JMS
If you have heterogeneous or multiple resources involved in a single transaction,
then two-phase commit is not supported. For example, if a MDB communicates to a
CMP bean, which uses the database for persistence, and receives messages from a
client through OC4J JMS, then this MDB includes two resources, the database and
OC4J JMS. In this case, two-phase commit it not supported.

If you have no two-phase commit support, then there is no guarantee that when a
transaction commits, that all systems committed correctly. The same is true for
rollbacks. You are not guaranteed ACID-quality global transactions without a
two-phase commit engine.

Transaction Behavior for MDBs using Oracle JMS
Oracle JMS uses a back-end Oracle database as the queue and topic facilitator. Since
Oracle JMS uses database tables for the queues and topics, you may need to grant
two-phase commit database privileges for your user.

OC4J optimizes one-phase commit for you, so that it is not necessary to use
two-phase commit unless you have two databases (or more than one data source)
involved in the transaction. If you do use two-phase commit, it is fully supported
within Oracle JMS.

You should be aware of any failure of the back-end database—especially if the MDB
bean is acting within a transaction. If the database instance fails, then you may have
to retry the operations that you were trying to accomplish during the moment of
failure. The following sections detail how to implement recovery whether the MDB
bean is within a container-managed transaction or a bean-managed transaction:

■ Connection Recovery for CMP Beans That Use Container-Managed
Transactions

■ Connection Recovery for CMP Beans That Use Bean-Managed Transactions

Using Transactions With MDBs

Java Transaction API 7-19

MDBs that Use Container-Managed Transactions
If you define your MDB with container-managed transactions, you can set a retry
count and interval for re-establishing the JMS session. Then, if your transaction fails
while interacting with a database, the container automatically retries (within the
specified interval) until the count is reached. To set the automatic retry count and
interval, set the following optional attributes in the
<message-driven-deployment> element in the MDB orion-ejb-jar.xml
file:

■ dequeue-retry-count—Specifies how often the listener thread tries to
re-acquire the JMS session over a new database connection once database
failover has incurred. The default is "0."

■ dequeue-retry-interval—Specifies the interval between retries. The
default is 60 seconds.

MDBs that Use Bean-Managed Transactions and JMS Clients
The container does not manage bean-managed transactional MDBs or JMS clients.
Thus, when they receive an exception denoting that the JDBC connection has failed,
each must understand if this is a scenario where the method within the transaction
can be retried. To determine if this is a retry scenario, input the database connection
and the SQL exception as parameters in the DbUtil.oracleFatalError()
method.

You must retrieve the database connection from the JMS session object and the SQL
exception from the returned JMS exception, as follows:

1. Retrieve the underlying SQL exception from the JMS exception.

2. Retrieve the underlying database connection from the JMS session.

3. Execute the DbUtil.oracleFatalError() method to find out if the
exception indicates an error that you can retry. If this method returns true, then
you should create a new JMS connection, session, and possible sender to
continue the JMS activity.

The following code demonstrates how to process the JMS exception, jmsexc, to
pull out the SQL exception, sql_ex. Also, the database connection, db_conn, is
retrieved from the JMS session, session. The SQL exception and database
connection are input parameters for the DbUtil.oracleFatalError method.

try
{
 ..
}

Using Transactions With MDBs

7-20 Oracle Application Server Containers for J2EE Services Guide

catch(Exception e)
{
 if (exc instanceof JMSException)
 {
 JMSException jmsexc = (JMSException) exc;
 sql_ex = (SQLException)(jmsexc.getLinkedException());
 db_conn = (oracle.jms.AQjmsSession)session.getDBConnection();

 if ((DbUtil.oracleFatalError(sql_ex, db_conn))
 {
 // Since the DBUtil function returned true, regain the JMS objects
 // 1a. Look up the Queue Connection Factory
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup ("java:comp/resource/" + resProvider +
 "/QueueConnectionFactories/myQCF");
 // 1b. Lookup the Queue
 Queue queue = (Queue) ctx.lookup ("java:comp/resource/" + resProvider +
 "/Queues/rpTestQueue");

 //2 & 3. Retrieve a connection and a session on top of the connection
 //2a. Create queue connection using the connection factory.
 QueueConnection qconn = qcf.createQueueConnection();
 //2a. We’re receiving msgs, so start the connection.
 qconn.start();

 // 3. create a session over the queue connection.
 QueueSession qsess = qconn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

 //4. Since this is for a queue, create a sender on top of the session.
 //This is used to send out the message over the queue.
 QueueSender snd = sess.createSender (q);

 }
 }
}

J2EE Connector Architecture 8-1

8
J2EE Connector Architecture

This chapter describes how to use the J2EE Connector Architecture (JCA) 1.0 in an
Oracle Application Server Containers for J2EE (OC4J) application. This chapter
covers the following topics:

■ Introduction

■ Deploying and Undeploying Resource Adapters

■ Quality of Service Contracts

Introduction

8-2 Oracle Application Server Containers for J2EE Services Guide

Introduction
The J2EE Connector Architecture defines a standard architecture for connecting the
J2EE platform to heterogeneous Enterprise Information Systems (EISs). Typical EISs
include Enterprise Resource Planning (ERP), database systems, mainframe
transaction processing, and legacy applications that are not written in the Java
programming language. Figure 8–1 shows the J2EE Connector Architecture.

Figure 8–1 J2EE Connector Architecture

Resource Adapters
A resource adapter is a driver that an application server or an application client uses
to connect to a specific EIS. Examples of resource adapters are a JDBC driver to
connect to a relational database, an ERP resource adapter to connect to an ERP
system, and a transaction processing (TP) resource adapter to connect to a TP
monitor. The J2EE 1.3 specification requires application servers to support both
standalone and embedded resource adapters.

Standalone Resource Adapters
A resource adapter module that can be deployed directly into an application server
independent of other applications is called a standalone resource adapter. These
adapters, which are stored in standalone resource adapter archive (RAR) files, are
available to all applications that are deployed in the application server instance. See
"Example of RAR File Structure" on page 8-3 for an example of the contents and
structure of an RAR archive.

O
_1

03
5

J2EE Application
Component Enterprise

Information
Systems

System Contracts

(Quality of Service)

OC4J
Application

Contract
(Client API:

CCI, specific)

NetworkResource
Adapter

Introduction

J2EE Connector Architecture 8-3

Embedded Resource Adapters
A resource adapter module that is deployed as part of a J2EE application that also
contains one or more J2EE modules, is called an embedded resource adapter. These
adapters are available only to the J2EE applications with which they are bundled in
an enterprise application archive (EAR) file.

Example of RAR File Structure
Here is an example of the contents and structure of an RAR archive:

/META-INF/ra.xml
/META-INF/oc4j-ra.xml
/howto.html
/images/icon.jpg
/ra.jar
/cci.jar
/win.dll
/solaris.so

Depending on the resource adapter, applications or application modules might
need to access adapter-specific classes that are bundled with the RAR. In the case of
standalone resource adapters, these custom classes are available to all applications
that are deployed within OC4J. In the case of embedded resource adapters, they are
available only to modules that are part of the same application as the embedded
adapter.

The ra.xml Descriptor
The ra.xml descriptor is the standard J2EE deployment descriptor for resource
adapters. For details, see the J2EE Connector Architecture 1.0 specification.

Note: The JAR files that are referred to in the RAR file can be
located in any directory within the archive.

Note: The file /META-INF/oc4j-ra.xml is not generally part of
the RAR archive provided by the RAR vendor, and is typically
generated by OC4J during deployment. But a deployer can choose
to add the file oc4j-ra.xml to the RAR archive before
deployment. Alternatively, the deployer can edit the generated file.

Introduction

8-4 Oracle Application Server Containers for J2EE Services Guide

Application Interface
The client API furnished by a resource adapter can be either a client API that is
specific to the type of a resource adapter and its underlying EIS, or the standard
Common Client Interface (CCI). For more information on CCI, see the J2EE
Connector 1.0 Specification. An example of a client API is JDBC, the client API that
is specific to relational database accesses.

You can determine what client interface a resource adapter supports. The client
interface is specified in the <connection-interface> element in the ra.xml
file bundled in the RAR archive.

Quality of Service Contracts
J2EE Connector Architecture also defines three Quality of Service (QoS) contracts
between an application server and an EIS.

■ Connection Management enables application components to connect to an EIS
and leverage any connection pooling provided by the application server. Also
see "Configuring Connection Pooling" on page 8-14.

■ Transaction Management enables an application server to use a transaction
manager to manage transactions across multiple resource managers.

Transaction management does not require any deployment-time configuration.
For more information, see the J2EE Connector 1.0 Specification.

Support for optional features:

■ OC4J does not support the optional connection sharing (section 6.9 in the
J2EE Connector Architecture 1.0 specification) and local transaction
optimization (section 6.12) features.

■ OC4J does not support two-phase commit for J2EE Connector Architecture
resource adapters. (For information on the limitations of two-phase commit,
see Chapter 7, "Java Transaction API".)

Note: The J2EE Connector connection pooling interface differs
from the JDBC interface. J2EE Connector connection pools are not
shared with JDBC connection pools, nor do properties set for one
connection pool affect the other.

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture 8-5

■ Security management provides authentication, authorization, and secure
communication between the J2EE server and the EIS. Also see "Managing EIS
Sign-On" on page 8-15.

All resource adapters must support their side of the QoS contracts to be pluggable
into application servers.

Deploying and Undeploying Resource Adapters
This section discusses the details of deploying and undeploying resource adapters.

Deployment Descriptors
OC4J supports three deployment descriptors: ra.xml, oc4j-ra.xml, and
oc4j-connectors.xml. The ra.xml descriptor is always supplied with the
resource adapter. Whenever you deploy a resource adapter, OC4J generates
oc4j-ra.xml if the file doesn’t already exist in the archive. In addition, for an
embedded resource adapter, OC4J generates oc4j-connectors.xml if it doesn’t
exist in the archive.

The oc4j-ra.xml Descriptor
The oc4j-ra.xml descriptor provides OC4J-specific deployment information for
resource adapters. The file contains one or more <connector-factory>
elements.

You can do the following using oc4j-ra.xml:

■ Configure and bind instances of connection factories.

Connection factories are used by application components to obtain connections
to the EIS. The name of the connection factory class is specified in the
connectionfactory-impl-class element, defined in ra.xml. OC4J allows
the deployer to configure instances of this class and to bind them to the Java
Naming and Directory Interface (JNDI) name space.

The deployer can do this by creating <connector-factory> elements and
assigning a JNDI location to each using the location attribute. The deployer
can also configure each instance using <config-property> elements.

The list of configurable properties is specified in ra.xml, as
<config-property> elements. The deployer can either specify or override
values for these properties in oc4j-ra.xml, using <config-property>
elements.

Deploying and Undeploying Resource Adapters

8-6 Oracle Application Server Containers for J2EE Services Guide

Example: Consider a resource adapter with a connection factory
implementation of com.example.eis.ConnectionFactoryImpl. Assume
that this adapter has been deployed standalone with one configured connection
factory, whose JNDI location is myEIS/connFctry1. The
<connector-factory> has been configured to connect to host myMc123 on
port 1999. Also assume there is an EJB application that looks up and use this
connection factory, using a logical name of eis/myEIS.

The following are the files that are relevant to this example.

ra.xml: Specification of connection factory implementation (as provided by
the resource adapter vendor).

<resourceadapter>
...
<config-property>

<config-property-name>HostName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
<config-property>

<config-property-name>Port</config-property-name>
<config-property-type>java.lang.Integer</config-property-type>
<config-property-value>2345</config-property-value>

</config-property>
<connectionfactory-impl-class>

com.example.eis.ConnectionFactoryImpl
</connectionfactory-impl-class>
...

</resourceadapter>

oc4j-ra.xml: Specification of connection factory implementation with
properties myMc123 (host) and 1999 (port), to be bound to JNDI location
myEIS/connFctry1 (likely generated by OC4J and edited by deployer).

<connector-factory location="myEIS/connFctry1">
...
<config-property>

<config-property-name>HostName</config-property-name>
<config-property-value>myMc123</config-property-value>

</config-property>
<config-property>

<config-property-name>Port</config-property-name>
<config-property-value>1999</config-property-value>

</config-property>
...

</connector-factory>

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture 8-7

ejb-jar.xml: Specification of resource reference (that is, connection factory)
accessed by EJB (as provided by the application vendor).

<resource-ref>
 <res-ref-name>eis/myEIS</res-ref-name>
 <res-type>javax.resource.cci.ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

orion-ejb-jar.xml: Mapping of the logical reference name to the real JNDI
name (likely generated by OC4J and edited by deployer).

<resource-ref-mapping name ="eis/myEIS" location ="myEIS/connFctry1"/>

EJB class: Usage of the connection factory (created by developer).

try
{
 Context ic = new InitialContext();
 cf = (ConnectionFactory) ic.lookup("java:comp/env/eis/myEIS");
} catch (NamingException ex) {
 ex.printStackTrace();
}

■ Customize connection pooling

The deployer can configure connection pooling for each instance of a
connection factory using the <connection-pooling> element. This element
is discussed under "Configuring Connection Pooling" on page 8-14.

■ Manage authentication

The deployer can use the <security-config> element to configure an
authentication scheme for each instance of a connection factory. This element is
applicable only if application components use container-managed sign-on. Also
see "Managing EIS Sign-On" on page 8-15.

■ Set up logging

The deployer can set up logging, per connection factory instance, using the
<log> element. Here is an example:

Note: The <config-property-type> element does not appear
in the oc4j-ra.xml file because the type cannot be changed.

Deploying and Undeploying Resource Adapters

8-8 Oracle Application Server Containers for J2EE Services Guide

 <connector-factory location="myEIS/connFctry1">
 <log>
 <file path="./logConnFctry1.log" />
 </log>
 </connector-factory>

If the path name is not specified or if the directory does not exist, logging is not
enabled and OC4J prints out a warning message. If the directory exists but the
file does not, OC4J creates the file and enables logging. Because there is no
default location for the log file, if the <log> element is not specified, logging is
not enabled.

Additionally, the deployer can also add a <description> element to each
<connector-factory> element. The element contains a description of the
connection factory and is not interpreted by OC4J.

The oc4j-connectors.xml Descriptor
The resource adapters that are deployed to OC4J can be configured through the
oc4j-connectors.xml descriptor. There is one oc4j-connectors.xml file for
all of the standalone adapters (as a group) as well as one per application.

The root element is <oc4j-connectors>. Each individual connector is
represented by a <connector> element that specifies the name and path name for
the connector. Each <connector> element contains the following elements:

■ <description>: text description of the connector. It is not interpreted by
OC4J. This element is optional.

■ <native-library path="pathname">: directory containing native
libraries. If you do not specify this element, OC4J expects the libraries to be
located in the directory containing the decompressed RAR directory. OC4J
interprets the pathname attribute relative to the decompressed RAR directory.
This element is optional.

Note: The file /META-INF/oc4j-connectors.xml is not
generally part of the EAR archive provided by the EAR vendor,
and is typically generated by OC4J during deployment. But a
deployer can choose to add the file oc4j-connectors.xml to the
EAR archive before deployment. Alternatively, the deployer can
edit the generated file.

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture 8-9

■ <security-permission enabled="booleanvalue">: permissions to be
granted to each resource adapter. Each <security-permission> contains a
<security-permission-spec> that conforms to the Java 2 Security policy
file syntax.

OC4J automatically generates a <security-permission> element in
oc4j-connectors.xml for each <security-permission> element in
ra.xml. Each generated element has the enabled attribute set to false.
Setting the enabled attribute to true grants the named permission. That is,
the deployer has to explicitly grant the permissions requested by the resource
adapter. The default behavior of OC4J is to not grant those permissions during
deployment.

Example:

<oc4j-connectors>
 <connector name="myEIS" path="eis.rar">
 <native-library> path="lib"</native-library>
 <security-permission>
 <security-permission-spec enabled="false">
 grant {permission java.lang.RuntimePermission "LoadLibrary.*"};
 </security-permission-spec>
 </security-permission>
 </connector>
</oc4j-connectors>

Standalone Resource Adapters
During deployment of standalone resource adapters, give each a unique name for
future operations, such as undeployment of the resource adapter. OC4J does not
permit deployment of two standalone resource adapters that have the same name.

Note: The path attribute of the <native-library> element
should point to the directory in which the .dll or .so files are
located. For the preceding example, here is a possible RAR
structure:

/META-INF/ra.xml
/ra.jar
/lib/win.dll
/lib/solaris.so

Deploying and Undeploying Resource Adapters

8-10 Oracle Application Server Containers for J2EE Services Guide

The deployment descriptors and decompressed RAR files are located as shown in
Table 8–2.

Deployment
During deployment, OC4J decompresses the RAR file and creates OC4J-specific
deployment descriptor files if they do not exist already. The deployment process
automatically adds <connector> entries in the oc4j-connectors.xml file.
Skeleton entries for <connector-factory> elements are created as well in
oc4j-ra.xml. The deployer can edit these two files for further configuration. For
more information, see the Oracle Application Server 10g Administrator’s Guide.

You deploy standalone resource adapters in one of the following ways:

■ Deploying and Undeploying Using dcmctl

■ Deploying and Undeploying Using admin.jar

Deploying and Undeploying Using dcmctl To deploy a standalone resource adapter to an
Oracle Application Server instance, use the command-line tool dcmctl with the
deployApplication option. Here is the syntax:

dcmctl deployApplication -f example.rar -a example

The deployApplication switch is supported by additional command-line
switches:

■ -f myRA.rar: path name of the resource adapter’s RAR file. This switch is
required.

■ -a myRA: resource adapter’s name. This switch is required.

To remove a deployed resource adapter, dcmctl with the
undeployApplication option. Here is the syntax:

dcmctl undeployApplication -a example

The required -a argument specifies which adapter is being removed.

dcmctl supports RAR files, as well as WAR and EAR files. For more information,
see the Oracle Application Server 10g Administrator’s Guide.

Deploying and Undeploying Using admin.jar To deploy a standalone resource adapter to
an OC4J standalone instance, use the command-line tool admin.jar with the
-deployconnector switch. Here is the syntax:

-deployconnector -file mypath.rar -name myname -nativeLibPath libpathname

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture 8-11

-grantAllPermissions

The -deployconnector switch is supported by additional command-line
switches:

■ -file myRA.rar: path name of the resource adapter’s RAR file. This switch is
required.

■ -name myRA: resource adapter’s name. This switch is required.

■ -nativeLibPath libpathname : path name for native libraries within the
RAR file (see also the <native-library> element in "The
oc4j-connectors.xml Descriptor" on page 8-8).

■ -grantAllPermissions: grants all runtime permissions requested within the
RAR file (see also the <security-permission> element in "The
oc4j-connectors.xml Descriptor" on page 8-8).

Example:

java -jar admin.jar ormi://localhost admin welcome -deployconnector -file
./myRA.rar -name myRA

To remove a deployed resource adapter, use the -undeployconnector switch of
admin.jar. Here is the syntax:

-undeployconnector -name myname

The required -name argument specifies which adapter is being removed. This
command removes all <connector> entries that use the specified resource adapter
from oc4j-connectors.xml and deletes the directories and files that were
created during deployment.

Embedded Resource Adapters
Embedded resource adapters cannot be deployed or undeployed independent of
the application of which they are a part. The name of the adapter can be specified in
the oc4j-connectors.xml file; if not specified in this file, the name used for the
adapter is that of the RAR archive.

Note: For more information about admin.jar, see the Oracle
Application Server Containers for J2EE Stand Alone User’s Guide. You
can download this document when you download the OC4J
standalone product from OTN.

Deploying and Undeploying Resource Adapters

8-12 Oracle Application Server Containers for J2EE Services Guide

The deployment descriptors and decompressed RAR files are located as shown in
Table 8–2.

Deployment
As part of deploying the EAR file that contains the embedded resource adapter,
OC4J decompresses the RAR file and creates OC4J-specific deployment descriptor
files if they do not exist already. The deployment process automatically adds
<connector> entries in the oc4j-connectors.xml file. Skeleton entries for
<connector-factory> elements are created as well in oc4j-ra.xml. The
deployer can edit these two files for further configuration.

Deploy applications that include embedded resource adapters in one of the
following ways:

■ Deploying Using dcmctl

■ Deploying Using admin.jar

Deploying Using dcmctl For information on using dcmctl, see the Oracle Application
Server 10g Administrator’s Guide.

Deploying Using admin.jar For more information about admin.jar, see the Oracle
Application Server Containers for J2EE Stand Alone User’s Guide.

Locations of Relevant Files
Table 8–1 shows the paths to various deployment directories that OC4J creates
during deployment that are referenced throughout the guide. The paths are relative
to the root directory of your OC4J installation. The deployment directories can be
customized within server.xml by setting the attributes shown in the table. These
attributes belong to the <application-server> element.

Deploying and Undeploying Resource Adapters

J2EE Connector Architecture 8-13

Table 8–2 shows the paths to various files produced during deployment that are
referenced throughout the guide. The paths are relative to the root directory of your
OC4J installation. In Table 8–2, appname is the name under which the application is
deployed.

Table 8–1 Directory Locations

Attribute
Description of
Attribute Default Value

connectors_dir connector-directory The root directory for
all standalone
resource adapters.

connectors

applications_dir applications-directory The root directory for
all applications.

applications

application_
deployments_dir

deployment-directory The root directory for
all files generated at
deployment.

application-deployments

Table 8–2 File Locations

Standalone Resource Adapter Embedded Resource Adapter

Location of decompressed
RAR archive

connectors_dir/deployment_name applications_
dir/appname/rar_name

oc4j-connectors.xml config

or

as defined in the <connectors> tag in
application.xml.

application_deployments_
dir/appname/META-INF

or

as defined in the <connectors> tag
in orion-application.xml.

oc4j-ra.xml application_deployments_
dir/default/deployment_name

application_deployments_
dir/appname/rar_name

or

application_deployments_
dir/appname/connector_name if
an oc4j-connectors.xml file is included
in the EAR and you have specified a
connector element with a name
attribute.

Specifying Quality of Service Contracts

8-14 Oracle Application Server Containers for J2EE Services Guide

Specifying Quality of Service Contracts
You can configure connection pooling and authentication mechanisms on a
per-connection basis at deployment time. This section describes the different ways
to accomplish this.

Configuring Connection Pooling
Connection pooling is a J2EE 1.3 feature that allows a set of connections to be
reused within an application. Because the J2EE Connector 1.0 specification is
intended to be general rather than database-specific, the J2EE Connector
connection-pooling interface differs significantly from the JDBC interface.

To set a connection pooling property in oc4j-ra.xml, specify a <property>
element within the optional <connection-pooling> element. If you don’t
specify this element, whenever the application requests a connection, a new
connection is created. Here is the syntax:

 <property name="propname" value="propvalue" />.

The value for propname must be one of:

■ maxConnections: maximum number of connections permitted within a pool.
If no value is specified, there is no limit on the number of connections.

■ minConnections: minimum number of connections. If minConnections is
greater than 0, the specified number of connections are opened when OC4J is
initialized. OC4J may not be able to open the connections if necessary
information is unavailable at initialization time. For instance, if the connection
requires a JNDI lookup, it cannot be created, because JNDI information is not
available until initialization is complete. The default value is 0.

■ scheme: specifies how OC4J handles connection requests after the maximum
permitted number of connections is reached. You must specify one of the
following values:

■ dynamic: OC4J always creates a new connection and returns it to the
application, even if this violates the maximum limit. When these
limit-violating connections are closed, they are destroyed instead of being
returned to the connection pool.

Note: OC4J does not destroy pooled connections upon close
unless the pool size is above the maximum specified in the
maxConnections property.

Specifying Quality of Service Contracts

J2EE Connector Architecture 8-15

■ fixed: OC4J raises an exception when the application requests a
connection and the maximum limit has been reached.

■ fixed_wait: OC4J blocks the application's connection request until an
in-use connection is returned to the pool. If waitTimeout is specified,
OC4J throws an exception if no connection becomes available within the
specified time limit.

■ waitTimeout: Maximum number of seconds that OC4J waits for an available
connection if maxConnections has been exceeded and the fixed_wait
scheme is in effect. In all other cases, this property is ignored.

Here is an example of a <connection-pooling> element configuration:

<connection-pooling>
 <description>my pooling configuration </description>
 <property name="waitTimeout" value="60" />
 <property name="scheme" value="fixed_wait" />
 <property name="maxConnections" value="3" />
 <property name="minConnections" value="1" />
</connection-pooling>

The example defines a connection pool with a minimum of one connection (OC4J
tries to create one connection during start up) and a maximum of three connections.
When all three connections are in use and a request for connection is issued, the
pool with a fixed_wait scheme tries to wait a maximum of 60 seconds for a
connection to be returned to the pool. If there is still no connection available after 60
seconds, an exception is thrown to the caller of the API that requested a new
connection.

Managing EIS Sign-On
As part of extending the end-to-end security of the J2EE mode to cover integration
to EISs, J2EE Connector architecture allows application components to associate a
security context with connections established to the EIS.

Application components can either sign on to the EIS by themselves, or have OC4J
manage the sign-on. Component-managed sign-on must be implemented
programmatically, while container-managed sign-on can be specified either

Note: If you make no waitTimeout specification, the default
behavior is not to time out.

Specifying Quality of Service Contracts

8-16 Oracle Application Server Containers for J2EE Services Guide

declaratively or programmatically. Specify the type of sign-on using the
<res-auth> deployment descriptor element for EJB or Web components.

Component-Managed Sign-On
When deploying applications that manage EIS sign-on by themselves, set
<res-auth> to Application. The application component is responsible for
providing explicit security information for the sign-on.

Figure 8–2 shows the steps involved in component-managed sign-on. The steps are
detailed following the diagram.

Figure 8–2 Component-Managed Sign-On

1. The client makes a request, which is associated with an incoming security
context.

2. As part of servicing the request, the application component maps the incoming
security context to an outgoing security context and then uses the outgoing
security context to request a connection to the EIS.

Note: The remainder of this section assumes that you are familiar
with chapter 7 of the J2EE Connector Architecture 1.0 specification.
The specification uses the terms initiating principal, caller principal,
and resource principal. As used in this section, the incoming security
context refers to either initiating principal or caller principal, and
the outgoing security context refers to resource principal.

1. Request with
incoming
security
context

4. Interact with EIS
under explicit
outgoing security
context

OC4J

Application
component

Resource
adapter

2. Get connection
without explicit
outgoing security
context determined
by component

3. Logon to
EIS with
outgoing
security
context

Client

EIS

O
_1

07
8

Specifying Quality of Service Contracts

J2EE Connector Architecture 8-17

3. As part of the connection acquisition, the resource adapter logs on to the EIS
using the outgoing security context provided by the application component.

4. Once the connection is acquired, the application component can interact with
the EIS under the established outgoing security context.

The following example is an excerpt from an application that performs
component-managed sign-on.

Example:

Context initctx = new InitialContext();
// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");

// If component-managed sign-on is specified, the code
// should instead provide explicit security
// information in the getConnection call

// We need to get a new ConnectionSpec implementation
// instance for setting login attributes
com.myeis.ConnectionSpecImpl connSpec = ...
connSpec.setUserName("EISuser");
connSpec.setPassword("EISpassword");
javax.resource.cci.Connection cx = cxf.getConnection(connSpec);

Container-Managed Sign-On
When deploying applications that depend on the container for EIS sign-on, set
<res-auth> to Container. The container is responsible for providing security
information for the sign-on. Additionally, the container uses deployment
descriptors or pluggable authentication classes to determine outgoing security
context.

Figure 8–3 shows the steps involved in container-managed sign-on. The steps are
detailed following the diagram.

Specifying Quality of Service Contracts

8-18 Oracle Application Server Containers for J2EE Services Guide

Figure 8–3 Container-Managed Sign-On

1. The client makes a request, which is associated with an incoming security
context.

2. As part of servicing the request, the application component requests a
connection to the EIS.

3. As part of the connection acquisition, the container (the OC4J security context
manager shown in Figure 8–3) maps the incoming security context to outgoing
security context, based on deployment descriptor elements (not shown in the
figure) or authentication class provided.

4. The resource adapter logs on to the EIS using the outgoing security context
provided by the container.

Client

1. Request with
incoming
security
context

3. Map incoming security
context to outgoing
security context

5. Interact with EIS
under explicit
outgoing security
context

OC4J

Application
component

Custom
authentication
class

Resource
adapter EIS

2. Get connection
without explicit
outgoing security
context

4. Logon to
EIS with
outgoing
security
context

OCJ4 security
context
manager
for JCA

O
_1

07
9

Specifying Quality of Service Contracts

J2EE Connector Architecture 8-19

5. Once the connection is acquired, the application component can interact with
the EIS under the established outgoing security context.

The following example is an excerpt from an application that depends on
container-managed sign-on.

Example:

Context initctx = new InitialContext();

// perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup("java:com/env/eis/MyEIS");

// For container-managed sign-on, no security information is passed in the
// getConnection call
javax.resource.cci.Connection cx = cxf.getConnection();

Declarative Container-Managed Sign-On
You can create principal mappings in the oc4j-ra.xml file. To employ the
principal mappings mechanism, use the <principal-mapping-entries>
subelement under the <security-config> element.

Each <principal-mapping-entry> element contains a mapping from initiating
principal to resource principal and password.

Use the <default-mapping> element to specify the user name and password for
the default resource principal. This principal is used to log on to the EIS if there is
no <principal-mapping-entry> element whose initiating user corresponds to
the current initiating principal. If the element <principal-mapping-entries>
is not specified, OC4J may not be able to log in to the EIS.

For example, if the OC4J principal scott should be logged in to the EIS as user
name scott and password tiger, while all other OC4J users should be logged in
to the EIS using user name guest with password guestpw, the
<connector-factory> element in oc4j-ra.xml should look like this:

<connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-entries>
 <default-mapping>
 <res-user>guest</res-user>
 <res-password>guestpw</res-password>
 </default-mapping>
 <principal-mapping-entry>

Specifying Quality of Service Contracts

8-20 Oracle Application Server Containers for J2EE Services Guide

 <initiating-user>scott</initiating-user>
 <res-user>scott</res-user>
 <res-password>tiger</res-password>
 </principal-mapping-entry>
 </principal-mapping-entries>
 </security-config>
 ...
</connector-factory>

Programmatic Container-Managed Sign-On
OC4J supports the use of programmatic authentication—either through the use of
an OC4J-specific mechanism or a standard mechanism like the Java Authentication
and Authorization Service (JAAS). See the Sun JAAS specification for more
information.

OC4J-Specific Authentication Classes
OC4J provides the oracle.j2ee.connector.PrincipalMapping interface for
principal mapping. Its methods appear in Table 8–3.

To use OC4J-specific programmatic container-managed sign-on, an implementation
of this interface must be provided.

Note: The <res-password> element supports password
indirection. For more information, refer to the Oracle Application
Server Containers for J2EE Security Guide.

Specifying Quality of Service Contracts

J2EE Connector Architecture 8-21

When a connection to the EIS is created, OC4J invokes the mapping method with
the initiating user as the initiatingPrincipal. The mapping method must
return a Subject containing the resource principal and credential. The Subject
that is returned must adhere to either option A or option B in section 8.2.6 of the
Connector Architecture 1.0 specification.

OC4J also provides the abstract class
oracle.j2ee.connector.AbstractPrincipalMapping. This class furnishes
a default implementation of the setManagedConnectionFactory() and
setAuthenticationMechanism() methods, as well as utility methods to
determine whether the resource adapter supports the BasicPassword or Kerberos
version 5 (Kerbv5) authentication mechanisms, and a method for extracting the
Principal from the application server user Subject. By extending the

Table 8–3 Method Description for oracle.j2ee.connector.PrincipalMapping Interface

Method Signature Description

public void
init(java.util.Properties prop)

Called by OC4J to initialize the settings for the
PrincipalMapping implementation class. OC4J passes the
properties specified in the <config-property> elements in
oc4j-ra.xml to this method. The implementation class can
use the properties for setting default user name and password,
LDAP connection information, or default mapping.

public void
setManagedConnectionFactory
(ManagedConnectionFactory mcf)

Used by OC4J to provide the implementation class with the
ManagedConnectionFactory instance that is needed to
create a PasswordCredential.

public void
setAuthenticationMechanisms
(java.util.Map authMechanisms)

Called by OC4J to pass the authentication mechanisms
supported by the resource adapter to the PrincipalMapping
implementation class. The key of the map passed is a string
containing the supported mechanism type, such as
BasicPassword or Kerbv5. The value is a string containing
the corresponding credentials interface as declared in ra.xml,
such as
javax.resource.spi.security.PasswordCredential.
The map can contain multiple elements if the resource adapter
supports multiple authentication mechanisms.

public javax.security.auth.Subject
mapping
(javax.security.auth.Subject
initiatingSubject)

Used by OC4J to allow the implementation class to perform
the principal mapping. An application user subject is passed,
and the implementation of this method should return a subject
for use by the resource adapter to log in to the EIS resource per
the JCA 1.0 specifications. The implementation may return null
if the proper resource principal cannot be determined.

Specifying Quality of Service Contracts

8-22 Oracle Application Server Containers for J2EE Services Guide

oracle.j2ee.connector.AbstractPrincipalMapping class, developers
need only implement the init and mapping methods.

The methods exposed by the
oracle.j2ee.connector.AbstractPrincipalMapping class appear in
Table 8–4.

Table 8–4 Method Description for oracle.j2ee.connector.AbstractPrincipalMapping Class

Method Signature Description

public abstract void init
(java.util.Properties prop)

This method must be implemented by the subclasses. See
PrincipalMapping interface, described in Table 8–3, for
details.

public void
setManagedConnectionFactory
(ManagedConnectionFactory mcf)

Stores the ManagedConnectionFactory instance that is
passed in. Subclasses need not implement this method, and can
make use of the getManagedConnectionFactory object
saved by this method.

public void
setAuthenticationMechanisms
(java.util.Map authMechanisms)

Stores the map of authentication mechanisms. Subclasses need
not implement this mechanism. Instead, they can make use of
the isBasicPasswordSupported or isKerbv5Supported
methods to determine which authentication mechanism is
supported by the resource adapter. The method
getAuthenticationMechanisms can be used to retrieve the
authentication mechanisms as well.

public javax.security.auth.Subject
mapping (javax.security.auth.
Subject initiatingSubject)

Used by OC4J to allow the implementation class to perform
the principal mapping. An application user subject is passed,
and the implementation of this method should return a subject
for use by the resource adapter to log in to the EIS resource per
the J2EE Connector Architecture specifications. The
implementation may return null if the proper resource
principal cannot be determined.

public abstract
javax.security.auth.Subject
mapping (javax.security.auth.
Subject initiatingSubject)

This method must be implemented by the subclasses. See
PrincipalMapping interface, described in Table 8–3, for
details.

public ManagedConnectionFactory
getManagedConnectionFactory()

Utility method provided by this abstract class to return the
ManagedConnectionFactory instance that might be
required to create a PasswordCredentials object.

Specifying Quality of Service Contracts

J2EE Connector Architecture 8-23

Extending AbstractPrincipalMapping This simple example demonstrates how to extend
the oracle.j2ee.connector.AbstractPrincipalMapping abstract class to
provide a principal mapping that always maps the user to the default user and
password. Specify the default user and password by using properties under the
<principal-mapping-interface> element in oc4j-ra.xml.

The PrincipalMapping class is called MyMapping. It is defined as follows:

package com.acme.app;

import java.util.*;
import javax.resource.spi.*;
import javax.resource.spi.security.*;
import oracle.j2ee.connector.AbstractPrincipalMapping;
import javax.security.auth.*;
import java.security.*;

public class MyMapping extends AbstractPrincipalMapping
{
 String m_defaultUser;
 String m_defaultPassword;

 public void init(Properties prop)
 {

public java.util.Map
getAuthenticationMechanisms()

Utility method to return the map of all authentication
mechanisms supported by this resource adapter, as provided
by OC4J. The key of the map returned is a string containing
the supported mechanism type, such as BasicPassword or
Kerbv5. The value is a string containing the corresponding
credentials interface as declared in ra.xml, such as
javax.resource.spi.security.PasswordCredential.

public boolean
isBasicPasswordSupported()

Utility method to allow subclass to determine whether the
BasicPassword authentication mechanism is supported by
this resource adapter.

public boolean isKerbv5Supported() Utility method to allow subclass to determine whether the
Kerbv5 authentication mechanism is supported by this
resource adapter.

public java.security.Principal
getPrincipal (javax.security.auth.
Subject subject)

Utility method provided to extract the Principal object from
the given application server user subject passed from OC4J.

Table 8–4 Method Description for oracle.j2ee.connector.AbstractPrincipalMapping Class

Method Signature Description

Specifying Quality of Service Contracts

8-24 Oracle Application Server Containers for J2EE Services Guide

 if (prop != null)
 {
 // Retrieves the default user and password from the properties
 m_defaultUser = prop.getProperty("user");
 m_defaultPassword = prop.getProperty("password");
 }
 }
 public Subject mapping(Subject initiatingSubject)
 {
 // This implementation only supports BasicPassword authentication
 // mechanism. Return if the resource adapter does not support it.
 if (!isBasicPasswordSupported())
 return null;
 // Use the utility method to retrieve the Principal from the
 // OC4J user. This code is included here only as an example.
 // The principal obtained is not being used in this method.
 Principal principal = getPrincipal(initiatingSubject);
 char[] resPasswordArray = null;
 if (m_defaultPassword != null)
 resPasswordArray = m_defaultPassword.toCharArray();
 // Create a PasswordCredential using the default user name and
 // password, and add it to the Subject per option A in section
 // 8.2.6 in the Connector 1.0 spec.
 PasswordCredential cred =
 new PasswordCredential(m_defaultUser, resPasswordArray);
 cred.setManagedConnectionFactory(getManagedConnectionFactory());
 initiatingSubject.getPrivateCredentials().add(cred);
 return initiatingSubject;
 }
}

After you create your implementation class, copy a JAR file containing the class into
the directory containing the decompressed RAR file. See Table 8–2 for the location
of the RAR file. After copying the file, edit oc4j-ra.xml to contain a
<principal-mapping-interface> element for the new class.

For example:

<connector-factory name="..." location="...">
 ...
 <security-config>
 <principal-mapping-interface>
 <impl-class>com.acme.app.MyMapping</impl-class>
 <property name="user" value="scott" />
 <property name="password" value="tiger" />

Specifying Quality of Service Contracts

J2EE Connector Architecture 8-25

 </principal-mapping-interface>
 </security-config>
 ...
</connector-factory>

JAAS Pluggable Authentication Classes
You can also manage sign-on to the EIS programmatically with JAAS. OC4J
furnishes a JAAS pluggable authentication framework that conforms to Appendix C
in the Connector Architecture 1.0 specification. With this framework, an application
server and its underlying authentication services remain independent from each
other, and new authentication services can be plugged in without requiring
modifications to the application server.

Some examples of authentication modules are:

■ Principal Mapping JAAS module

■ Credential Mapping JAAS module

■ Kerberos JAAS module (for Caller Impersonation)

The JAAS login modules can be furnished by the customer, the EIS vendors, or the
resource adapter vendors. Login modules must implement the
javax.security.auth.spi.LoginModule interface, as documented in the Sun
JAAS specification.

OC4J provides initiating user subjects to login modules by passing an instance of
javax.security.auth.Subject containing any public certificates and an
instance of an implementation of java.security.Principal representing the
OC4J user. OC4J can pass a null Subject if there is no authenticated user (that is,
an anonymous user). The initiating user subject is passed to the initialize
method of the JAAS login module.

The JAAS login module’s login method must, based on the initiating user, find the
corresponding resource principal and create new PasswordCredential or
GenericCredential instances for the resource principal. The resource principal
and credential objects are then added to the initiating Subject in the commit
method. The resource credential is passed to the createManagedConnection
method in the javax.resource.spi.ManagedConnectionFactory
implementation that is provided by the resource adapter.

If a null Subject is passed, the JAAS login module is responsible for creating a
new javax.security.auth.Subject containing the resource principal and the
appropriate credential.

Specifying Quality of Service Contracts

8-26 Oracle Application Server Containers for J2EE Services Guide

JAAS and the <connector-factory> Element Each <connector-factory> element in
oc4j-ra.xml can specify a different JAAS login module. Specify a name for the
connector factory configuration in the <jaas-module> element. Here is an
example of a <connector-factory> element in oc4j-ra.xml that uses JAAS
login modules for container-managed sign-on:

 <connector-factory connector-name="myBlackbox" location="eis/myEIS1">
 <description>Connection to my EIS</description>
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:5521:orcl" />
 <security-config>
 <jaas-module>
 <jaas-application-name>JAASModuleDemo</jaas-application-name>
 </jaas-module>
 </security-config>
 </connector-factory>

In JAAS, you must specify which LoginModule to use for a particular application,
and in what order to invoke the LoginModules. JAAS uses the value that are
specified in the <jaas-application-name> element to look up LoginModules.
See the Oracle Application Server Containers for J2EE Security Guide for more
information.

Special Features Accessible Via Programmatic Interface
In addition to mapping from OC4J users to EIS users, login modules and
OC4J-specific authentication classes can also map from OC4J groups to EIS users.

The the oracle.j2ee.connector package contains the
InitiatingPrincipal class that represents OC4J users and the
InitiatingGroup class that represents OC4J groups. OC4J creates instances of
InitiatingPrincipal and incorporates them into the Subject that is passed to
the initialize method of the login modules as well as to the mapping method of
the OC4J-specific authentication class.

The the oracle.j2ee.connector package also contains the
InitiatingPrincipal class that implements the java.security.Principal
interface and adds the method getGroups(). The getGroups method returns a
java.util.Set of oracle.j2ee.connector.InitiatingGroup objects,
representing the OC4J groups or JAZN roles that this OC4J user belongs to. The
group membership is defined in OC4J-specific descriptor files such as
principals.xml or jazn-data.xml, depending on the user manager. The
oracle.j2ee.connector.InitiatingGroup class implements but does not
extend the functionality of the java.security.Principal interface.

Java Object Cache 9-1

9
Java Object Cache

This chapter describes the Oracle Application Server Containers for J2EE (OC4J)
Java Object Cache, including its architecture and programming features.

This chapter covers the following topics:

■ Java Object Cache Concepts

■ Java Object Cache Object Types

■ Java Object Cache Environment

■ Developing Applications Using Java Object Cache

■ Working with Disk Objects

■ Working with StreamAccess Objects

■ Working with Pool Objects

■ Running in Local Mode

■ Running in Distributed Mode

Java Object Cache Concepts

9-2 Oracle Application Server Containers for J2EE Services Guide

Java Object Cache Concepts
Oracle Application Server 10g offers the Java Object Cache to help e-businesses
manage Web site performance issues for dynamically generated content. The Java
Object Cache improves the performance, scalability, and availability of Web sites
running on Oracle Application Server 10g.

By storing frequently accessed or expensive-to-create objects in memory or on disk,
the Java Object Cache eliminates the need to repeatedly create and load information
within a Java program. The Java Object Cache retrieves content faster and greatly
reduces the load on application servers.

The Oracle Application Server 10g cache architecture includes the following cache
components:

■ Oracle Application Server Web Cache. The Web Cache sits in front of the
application servers (Web servers), caching their content and providing that
content to Web browsers that request it. When browsers access the Web site,
they send HTTP requests to the Web Cache. The Web Cache, in turn, acts as a
virtual server to the application servers. If the requested content has changed,
the Web Cache retrieves the new content from the application servers.

The Web Cache is an HTTP-level cache, maintained outside the application,
providing fast cache operations. It is a pure, content-based cache, capable of
caching static data (such as HTML, GIF, or JPEG files) or dynamic data (such as
servlet or JSP results). Given that it exists as a flat content-based cache outside
the application, it cannot cache objects (such as Java objects or XML
DOM—Document Object Model—objects) in a structured format. In addition, it
offers relatively limited postprocessing abilities on cached data.

■ Java Object Cache. The Java Object Cache provides caching for expensive or
frequently used Java objects when the application servers use a Java program to
supply their content. Cached Java objects can contain generated pages or can
provide support objects within the program to assist in creating new content.
The Java Object Cache automatically loads and updates objects as specified by
the Java application.

■ Web Object Cache. The Web Object Cache is a Web-application-level caching
facility. It is an application-level cache, embedded and maintained within a Java
Web application. The Web Object Cache is a hybrid cache, both Web-based and
object-based. Using the Web Object Cache, applications can cache
programmatically using application programming interface (API) calls (for
servlets) or custom tag libraries (for JSPs). The Web Object Cache is generally

Java Object Cache Concepts

Java Object Cache 9-3

used as a complement to the Web cache. By default, the Web Object Cache uses
the Java Object Cache as its repository.

A custom tag library or API enables you to define page fragment boundaries
and to capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The cached objects can be HTML or
XML text fragments, XML DOM objects, or Java serializable objects. These
objects can be cached conveniently in association with HTTP semantics.
Alternatively, they can be reused outside HTTP, such as in outputting cached
XML objects through Simple Mail Transfer Protocol (SMTP), Java Message
Service (JMS), Advanced Queueing (AQ), or Simple Object Access Protocol
(SOAP).

Java Object Cache Basic Architecture
Figure 9–1 shows the basic architecture for the Java Object Cache. The cache
delivers information to a user process. The process could be a servlet application
that generates HTML pages, or any other Java application.

The Java Object Cache is an in-process, process-wide caching service for general
application use. That is, objects are cached within the process memory space and
the Java Object Cache is a single service that is shared by all threads running in the
process, as opposed to a service that runs in another process. The Java Object Cache
can manage any Java object. To facilitate sharing of cached objects, all objects within
the cache are accessed by name. The caching service doesn’t impose a structure on
objects being cached. The name, structure, type and original source of the object are
all defined by the application.

To maximize system resources, all objects within the cache are shared. However,
access to cached objects is not serialized by access locks, allowing for a high level of
concurrent access. When an object is invalidated or updated, the invalid version of
the object remains in the cache as long as there are references to that particular
version of the object. It is thus possible to have multiple versions of an object in the
cache at the same time; however, there is never more than one valid version of the
object. The old or invalid versions of an object are visible only to applications that
had references to the version before it was invalidated. If an object is updated, a

Note: This chapter focuses on the Java Object Cache. For a full
discussion of all three caches and their differences, see the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Java Object Cache Concepts

9-4 Oracle Application Server Containers for J2EE Services Guide

new copy of the object is created in the cache and the old version is marked as
invalid.

Objects are loaded into the cache with a user-provided CacheLoader object. This
loader object is called by the Java Object Cache when a user application requests an
object from the cache and it is not already present. Figure 9–1 is a graphical
representation of the architecture. The application interacts with the cache to
retrieve objects, the cache interacts via the CacheLoader with the data source. This
gives a clean division between object creation and object use.

Figure 9–1 Java Object Cache Basic Architecture

Distributed Object Management
The Java Object Cache can be used in an environment in which multiple Java
processes are running the same application or working on behalf of the same
application. In this environment, it is useful to have identical objects cached in
different process. For simplicity, availability and performance, the Java Object
Cache is specific to each process. There is no centralized control of which objects are
loaded into a process. However, the Java Object Cache coordinates object updating
and invalidation between processes. If an object is updated or invalidated in one
process, it is also updated on invalidated in all other associated processes. This
distributed management allows a system of processes to stay synchronized without
the overhead of centralized control.

Figure 9–2 is a graphical representation of the following:

■ How the application interacts with the Java Object Cache to retrieve objects

■ How the Java Object Cache interacts with the data source

■ How the caches of the Java Object Cache coordinate cache events through the
cache messaging system

UserUser User

Cache

O
_1

03
4

Data Source Data Source

Java Object Cache Concepts

Java Object Cache 9-5

Figure 9–2 Java Object Cache Distributed Architecture

How the Java Object Cache Works
The Java Object Cache manages Java objects within a process, across processes, and
on a local disk. The Java Object Cache provides a powerful, flexible, and easy-to-use
service that significantly improves Java performance by managing local copies of
Java objects. There are very few restrictions on the types of Java objects that can be
cached or on the original source of the objects. Programmers use the Java Object
Cache to manage objects that, without cache access, are expensive to retrieve or to
create.

The Java Object Cache is easy to integrate into new and existing applications.
Objects can be loaded into the object cache, using a user-defined object, the
CacheLoader, and can be accessed through a CacheAccess object. The
CacheAccess object supports local and distributed object management. Most of
the functionality of the Java Object Cache does not require administration or
configuration. Advanced features support configuration using administration APIs
in the Cache class. Administration includes setting configuration options, such as
naming local disk space or defining network ports. The administration features
allow applications to fully integrate the Java Object Cache.

Each cached Java object has a set of associated attributes that control how the object
is loaded into the cache, where the object is stored, and how the object is
invalidated. Cached objects are invalidated based on time or an explicit request.
(Notification can be provided when the object is invalidated.) Objects can be
invalidated by group or individually.

Figure 9–3 shows the basic Java Object Cache APIs. Figure 9–3 does not show
distributed cache management.

Message Layer

UserUser User

Cache Cache

O
_1

03
3

Data Source Data Source

Java Object Cache Concepts

9-6 Oracle Application Server Containers for J2EE Services Guide

Figure 9–3 Java Object Cache Basic APIs

Cache Organization
The Java Object Cache is organized as follows:

■ Cache Environment. The cache environment includes cache regions,
subregions, groups, and attributes. Cache regions, subregions, and groups
associate objects and collections of objects. Attributes are associated with cache
regions, subregions, groups, and individual objects. Attributes affect how the
Java Object Cache manages objects.

■ Cache Object Types. The cache object types include memory objects, disk
objects, pooled objects, and StreamAccess objects.

Table 9–1 contains a summary of the constructs in the cache environment and the
cache object types.

Table 9–1 Cache Organizational Construct

Cache Construct Description

Attributes Functionality associated with cache regions, groups, and individual
objects. Attributes affect how the Java Object Cache manages objects.

Cache region An organizational name space for holding collections of cache objects
within the Java Object Cache.

User Admin

CacheAccess.class

CacheAccess.class

CacheLoader.class

Cache.class

Attributes.class

Data Source

Cache

O
_1

03
2

Java Object Cache Concepts

Java Object Cache 9-7

Java Object Cache Features
The Java Object Cache provides the following features:

■ Objects can be updated or invalidated

■ Objects can be invalidated either explicitly or with an attribute specifying the
expiration time or the idle time

■ Objects can be coordinated between processes

■ Object loading and creation can be automatic

■ Object loading can be coordinated between processes

■ Objects can be associated in cache regions or groups with similar characteristics

■ Cache event notification provides for event handling and special processing

■ Cache management attributes can be specified for each object or applied to
cache regions or groups

Cache subregion An organizational name space for holding collections of cache objects
within a parent region, subregion, or group.

Cache group An organizational construct used to define an association between
objects. The objects within a region can be invalidated as a group.
Common attributes can be associated with objects within a group.

Memory object An object that is stored and accessed from memory.

Disk object An object that is stored and accessed from disk.

Pooled object A set of identical objects that the Java Object Cache manages. The
objects are checked out of the pool, used, and then returned.

StreamAccess
object

An object that is loaded using a Java OutputStream and accessed
using a Java InputStream. The object is accessed from memory or
disk, depending on the size of the object and the cache capacity.

Table 9–1 Cache Organizational Construct (Cont.)

Cache Construct Description

Java Object Cache Object Types

9-8 Oracle Application Server Containers for J2EE Services Guide

Java Object Cache Object Types
This section describes the object types that the Java Object Cache manages,
including:

■ Memory Objects

■ Disk Objects

■ StreamAccess Objects

■ Pool Objects

Memory Objects
Memory objects are Java objects that the Java Object Cache manages. Memory
objects are stored in the Java virtual machine (JVM) heap space as Java objects.
Memory objects can hold HTML pages, the results of a database query, or any
information that can be stored as a Java object.

Memory objects are usually loaded into the Java Object Cache with an
application-supplied loader. The source of the memory object can be external (for
example, using data in a table on the Oracle9i Database Server). The application
supplied loader accesses the source and either creates or updates the memory
object. Without the Java Object Cache, the application would be responsible for
accessing the source directly, rather than using the loader.

You can update a memory object by obtaining a private copy of the memory object,
applying the changes to the copy, and then placing the updated object back in the
cache (using the CacheAccess.replace() method). This replaces the original
memory object.

The CacheAccess.defineObject() method associates attributes with an object.
If attributes are not defined, then the object inherits the default attributes from its
associated region, subregion, or group.

An application can request that a memory object be spooled to a local disk (using
the SPOOL attribute). Setting this attribute allows the Java Object Cache to handle

Note: Objects are identified by a name that can be any Java object.
The Java object used for the identifying name must override the
default Java object equals method and the default Java object
hashcode method. If the object is distributed, and can be updated
or saved to disk, the Serializable interface must be
implemented.

Java Object Cache Object Types

Java Object Cache 9-9

memory objects that are large, or costly to re-create and seldom updated. When the
disk cache is set up to be significantly larger than the memory cache, objects on disk
stay in the disk cache longer than objects in memory.

Combining memory objects that are spooled to a local disk with the distributed
feature from the DISTRIBUTE attribute provides object persistence (when the Java
Object Cache is running in distributed mode). Object persistence allows objects to
survive the restarting of the JVM.

Disk Objects
Disk objects are stored on a local disk and are accessed directly from the disk by the
application using the Java Object Cache. Disk objects can be shared across Java
Object Cache processes, or they can be local to a particular process, depending on
disk location specified and the setting for the DISTRIBUTE attribute (and whether
the Java Object Cache is running in distributed or local mode).

Disk objects can be invalidated explicitly or by setting the TimeToLive or
IdleTime attributes. When the Java Object Cache requires additional space, disk
objects that are not being referenced can be removed from the cache.

StreamAccess Objects
A StreamAccess object is a special cache object set up to be accessed using the
Java InputStream and OutputStream classes. The Java Object Cache determines
how to access the StreamAccess object based on the size of the object and the
capacity of the cache. Smaller objects are accessed from memory; larger objects are
streamed directly from disk. All streamAccess objects are stored on disk.

The cache user’s access to the StreamAccess object is through an InputStream.
All the attributes that apply to memory objects and disk objects also apply to
StreamAccess objects. A StreamAccess object does not supply a mechanism to
manage a stream—for example, StreamAccess objects cannot manage socket
endpoints. InputStream and OutputStream objects are available to access
fixed-sized, potentially large objects.

Pool Objects
A pool object is a special class of object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object; the objects within the pool are private objects. Individual objects within the
pool can be checked out to be used and then returned to the pool when they are no
longer needed.

Java Object Cache Environment

9-10 Oracle Application Server Containers for J2EE Services Guide

Attributes, including TimeToLive or IdleTime can be associated with a pool
object. These attributes apply to the pool object as a whole.

The Java Object Cache instantiates objects within a pool using an
application-defined factory object. The size of a pool decreases or increases based on
demand and on the values of the TimeToLive or IdleTime attributes. A
minimum size for the pool is specified when the pool is created. The minimum size
value is interpreted as a request rather than a guaranteed minimum value. Objects
within a pool object are subject to removal from the cache due to lack of space, so
the pool can decrease below the requested minimum value. A maximum pool size
value can be set by putting a hard limit on the number of objects available in the
pool.

Java Object Cache Environment
The Java Object Cache environment includes the following:

■ Cache Regions

■ Cache Subregions

■ Cache Groups

■ Region and Group Size Control

■ Cache Object Attributes

This section describes these Java Object Cache environment constructs.

Cache Regions
The Java Object Cache manages objects within a cache region. A cache region defines
a name space within the cache. Each object within a cache region must be uniquely
named, and the combination of the cache region name and the object name must
uniquely identify an object. Thus, cache region names must be unique from other
region names, and all objects within a region must be uniquely named relative to
the region. (Multiple objects can have the same name if they are within different
regions or subregions.)

You can define as many regions as you need to support your application. However,
most applications require only one region. The Java Object Cache provides a default
region; when a region is not specified, objects are placed in the default region.

Attributes can be defined for a region and are then inherited by the objects,
subregions, and groups within the region.

Java Object Cache Environment

Java Object Cache 9-11

Cache Subregions
The Java Object Cache manages objects within a cache region. Specifying a
subregion within a cache region defines a child hierarchy. A cache subregion defines a
name space within a cache region or within a higher cache subregion. Each object
within a cache subregion must be uniquely named, and the combination of the
cache region name, the cache subregion name, and the object name must uniquely
identify an object.

You can define as many subregions as you need to support your application.

A subregion inherits its attributes from its parent region or subregion unless the
attributes are defined when the subregion is defined. A subregion’s attributes are
inherited by the objects within the subregion. If a subregion’s parent region is
invalidated or destroyed, the subregion is also invalidated or destroyed.

Cache Groups
A cache group creates an association between objects within a region. Cache groups
allow related objects to be manipulated together. Objects are typically associated in
a cache group because they need to be invalidated together or they use common
attributes. Any set of cache objects within the same region or subregion can be
associated using a cache group, which can, in turn, include other cache groups.

A Java Object Cache object can belong to only one group at any given time. Before
an object can be associated with a group, the group must be explicitly created. A
group is defined with a name. A group can have its own attributes, or it can inherit
its attributes from its parent region, subregion, or group.

Group names are not used to identify individual objects. A group defines a set or
collection of objects that have something in common. A group does not define a
hierarchical name space. Object type does not distinguish objects for naming
purposes; therefore, a region cannot include a group and a memory object with the
same name. Use subregions to define a hierarchical name space within a region.

Groups can contain groups, with the groups having a parent and child relationship.
The child group inherits attributes from the parent group.

Region and Group Size Control
With the 10g (9.0.4) version of the Java Object Cache, the maximum size of a region
or group can be specified as either the number of objects in the region or group or
the maximum number of bytes allowed. If the number of bytes controls the region
capacity, then set the size attribute for all objects in the region. This can be set either

Java Object Cache Environment

9-12 Oracle Application Server Containers for J2EE Services Guide

directly by the user when the object is created, or automatically by setting the
Attributes.MEASURE attribute flag. The size of a region or group can be set at
multiple levels in the naming hierarchy—that is, at the region and subregion level
or at the group level within a region or another group.

When the capacity of a region or group is reached, the CapacityPolicy object
associated with that region or group, if defined, is called. If no capacity policy has
been specified, the default policy is used. The default policy follows: If a
nonreferenced object of lesser or equal priority is found, it is invalidated in favor of
the new object. If the priority attribute has not been set for an object, the priority is
assumed to be Integer.MAX_VALUE. When searching for an object to remove, all
objects in the immediate region or group and all subregions and subgroups are
searched. The first object that can be removed, based on the capacity policy, is
removed. So, for example, this may not be the object of lowest priority in the search
area.

Figure 9–4 and Figure 9–5 give examples. In each illustration, the grayed portions
indicate the search area.

The capacity of region A is set to 50 objects, with subregion B and subregion C set to
30 objects each. If the object count of region A reaches 50, with 10 directly in region
A and 20 each in subregions B and C, the capacity policy for region A is called. The
object that is removed can come from region A or from one of its subregions.
Figure 9–4 shows this situation.

If subregion B reaches 30 before the capacity of region A is reached, the capacity
policy for subregion B is called and only objects within subregion B are considered
for removal. Figure 9–5 shows this situation.

Figure 9–4 Capacity Policy Example, Part 1

O
–1

00
1

Region A

Contains 10 objects

Subregion B

Contains 20
objects

Subregion C

Contains 20
objects

Java Object Cache Environment

Java Object Cache 9-13

Figure 9–5 Capacity Policy Example, Part 2

Cache Object Attributes
Cache object attributes affect how the Java Object Cache manages objects. Each
object, region, subregion, and group has a set of associated attributes. An object’s
applicable attributes contain either the default attribute values; the attribute values
inherited from the object’s parent region, subregion, or group; or the attribute
values that you select for the object.

Attributes fall into two categories:

■ The first category is attributes that must be defined before an object is loaded
into the cache. Table 9–2 summarizes these attributes. None of the attributes
shown in Table 9–2 has a corresponding set or get method, except the
LOADER attribute. Use the Attributes.setFlags() method to set these
attributes.

■ The second category is attributes that can be modified after an object is stored in
the cache. Table 9–3 summarizes these attributes.

Using Attributes Defined Before Object Loading
The attributes shown in Table 9–2 must be defined for an object before the object is
loaded. These attributes determine an object’s basic management characteristics.

Note: Some attributes do not apply to certain types of objects. See
the "Object Types" sections in the descriptions in Table 9–2 and
Table 9–3.

O
_1

00
2

Region A

Contains 5 objects

Subregion B

Contains 30
objects

Subregion C

Contains 10
objects

Java Object Cache Environment

9-14 Oracle Application Server Containers for J2EE Services Guide

The following list shows the methods that you can use to set the attributes shown in
Table 9–2 (by setting the values of an Attributes object argument).

■ CacheAccess.defineRegion()

■ CacheAccess.defineSubRegion()

■ CacheAccess.defineGroup()

■ CacheAccess.defineObject()

■ CacheAccess.put()

■ CacheAccess.createPool()

■ CacheLoader.createDiskObject()

■ CacheLoader.createStream()

■ CacheLoader.SetAttributes()

Note: You cannot reset the attributes shown in Table 9–2 by using
the CacheAccess.resetAttributes()method.

Table 9–2 Java Object Cache Attributes–Set at Object Creation

Attribute Name Description

DISTRIBUTE Specifies whether an object is local or distributed. When using the Java Object
Cache distributed-caching feature, an object is set as a local object so that updates
and invalidations are not propagated to other caches in the site.

Object Types: When set on a region, subregion, or a group, this attribute sets the
default value for the DISTRIBUTE attribute for the objects within the region,
subregion, or group, unless the objects explicitly set their own DISTRIBUTE
attribute. Because pool objects are always local, this attribute does not apply to pool
objects.

Default Value: All objects are local.

GROUP_TTL_DESTROY Indicates that the associated object, group, or region should be destroyed when the
TimeToLive expires.

Object Types: When set on a region or a group, all the objects within the region or
group, and the region, subregion, or group itself are destroyed when the
TimeToLive expires.

Default Value: Only group member objects are invalidated when the TimeToLive
expires.

Java Object Cache Environment

Java Object Cache 9-15

LOADER Specifies the CacheLoader associated with the object.

Object Types: When set on a region or group, the specified CacheLoader becomes
the default loader for the region, subregion, or group. The LOADER attribute is
specified for each object within the region or the group.

Default Value: Not set.

ORIGINAL Indicates that the object was created in the cache, rather than loaded from an
external source. ORIGINAL objects are not removed from the cache when the
reference count goes to zero. ORIGINAL objects must be explicitly invalidated when
they are no longer useful.

Object Types: When set on a region or group, this attribute sets the default value
for the ORIGINAL attribute for the objects within the region, subregion, or group,
unless the objects set their own ORIGINAL attribute.

Default Value: Not set.

REPLY Specifies that a reply message will be sent from remote caches after a request for an
object update or invalidation has completed. Set this attribute when a high level of
consistency is required between caches. If the DISTRIBUTE attribute is not set or
the cache is started in non-distributed mode, REPLY is ignored.

Object Types: When set on a region or group, this attribute sets the default value
for the REPLY attribute for the objects within the region, subregion, or group, unless
the objects explicitly set their own REPLY attribute. For memory, StreamAccess,
and disk objects, this attribute applies only when the DISTRIBUTE attribute is set to
the value DISTRIBUTE. Because pool objects are always local, this attribute does
not apply for pool objects.

Default Value: No reply is sent. When DISTRIBUTE is set to local the REPLY
attribute is ignored.

SPOOL Specifies that a memory object should be stored on disk rather than being lost when
the cache system removes it from memory to regain space. This attribute applies
only to memory objects. If the object is also distributed, the object can survive the
death of the process that spooled it. Local objects are accessible only by the process
that spools them, so if the Java Object Cache is not running in distributed mode, the
spooled object is lost when the process dies.

Note: An object must be serializable to be spooled.

Object Types: When set on a region, subregion, or group, this attribute sets the
default value for the SPOOL attribute for the objects within the region, subregion, or
group, unless the objects set their own SPOOL attribute.

Default Value: Memory objects are not stored to disk.

Table 9–2 Java Object Cache Attributes–Set at Object Creation (Cont.)

Attribute Name Description

Java Object Cache Environment

9-16 Oracle Application Server Containers for J2EE Services Guide

SYNCHRONIZE This attribute indicates that updates to this object must be synchronized. If this flag
is set, only the "owner" of an object can load or replace the object. Ownership is
obtained using the CacheAccess.getOwnership() method. The "owner" of an
object is the CacheAccess object. Setting the SYNCHRONIZE attribute does not
prevent a user from reading or invalidating the object.

Object Types: When set on a region, subregion, or group, the ownership restriction
is applied to the region, subregion, or group as a whole. Pool objects do not use this
attribute.

Default Value: Updates are not synchronized.

SYNCHRONIZE_DEFAULT Indicates that all objects in a region, subregion, or group should be synchronized.
Each user object in the region, subregion, or group is marked with the
SYNCHRONIZE attribute. Ownership of the object must be obtained before the object
can be loaded or updated.

Setting the SYNCHRONIZE_DEFAULT attribute does not prevent a user from reading
or invalidating objects. Thus, ownership is not required for reads or invalidation of
objects that have the SYNCHRONIZE attribute set.

Object Types: When set on a region, subregion, or group, ownership is applied to
individual objects within the region, subregion, or group. Pool objects do not use
this attribute.

Default Value: Updates are not synchronized.

ALLOWNULL Specifies that the cache accepts null as a valid value for the affected objects. Null
objects that are returned by a cacheLoader object are cached, rather than
generating an ObjectNotFoundException.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool,
unless explicitly set for the object.

Default Value: OFF. (Nulls are not allowed.)

MEASURE Indicates the size attribute of the cached object is calculated, automatically, when
the object is loaded or replaced in the cache. The capacity of the cache or region can
then be accurately controlled based on object size, rather than object count.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool,
unless explicitly set for the object.

Default Value: OFF. (The size of an object is not automatically calculated.)

Table 9–2 Java Object Cache Attributes–Set at Object Creation (Cont.)

Attribute Name Description

Java Object Cache Environment

Java Object Cache 9-17

Using Attributes Defined Before or After Object Loading
A set of Java Object Cache attributes can be modified either before or after object
loading. Table 9–3 lists these attributes. These attributes can be set using the
methods in the list under "Using Attributes Defined Before Object Loading" on
page 9-13, and can be reset using the CacheAccess.resetAttributes()
method.

CapacityPolicy Specifies the CapacityPolicy object to be used to control the size of the region or
group. This attribute is ignored if set for an individual object.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: OFF. (No capacity policy is defined for a region or group. If the
region or group reaches capacity, the first nonreferenced object in the region or
group is invalidated.)

Table 9–3 Java Object Cache Attributes

Attribute Name Description

DefaultTimeToLive Establishes a default value for the TimeToLive attribute that is applied to all
objects individually within the region, subregion, or group. This attribute applies
only to regions, subregions, and groups. This value can be overridden by setting
the TimeToLive on individual objects.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies to all the objects within the region, subregion, group, or pool, unless the
objects explicitly set their own TimeToLive.

Default Value: No automatic invalidation.

IdleTime Specifies the amount of time an object can remain idle, with a reference count of 0,
in the cache before being invalidated. If the TimeToLive or
DefaultTimeToLive attribute is set, the IdleTime attribute is ignored.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool,
unless the object explicitly sets IdleTime.

Default Value: No automatic IdleTime invalidation.

Table 9–2 Java Object Cache Attributes–Set at Object Creation (Cont.)

Attribute Name Description

Java Object Cache Environment

9-18 Oracle Application Server Containers for J2EE Services Guide

CacheEventListener Specifies the CacheEventListener associated with the object.

Object Types: When set on a region, subregion, or a group, the specified
CacheEventListener becomes the default CacheEventListener for the
region, subregion, or group, unless a CacheEventListener is specified
individually on objects within the region, subregion, or group.

Default Value: No CacheEventListener is set.

TimeToLive Establishes the maximum amount of time that an object remains in the cache
before being invalidated. If associated with a region, subregion, or group, all
objects in the region, subregion, or group are invalidated when the time expires. If
the region, subregion, or group is not destroyed (that is, if GROUP_TTL_DESTROY
is not set), the TimeToLive value is reset.

Object Types: When set for a region, subregion, group, or pool, this attribute
applies to the region, subregion, group, or pool, as a whole, unless the objects
explicitly set their own TimeToLive.

Default Value: No automatic invalidation.

Version An application can set a Version for each instance of an object in the cache. The
Version is available for application convenience and verification. The caching
system does not use this attribute.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies to all the objects within the region, subregion, group, or pool, unless the
objects explicitly set their own Version.

Default Value: The default Version is 0.

Priority Controls which objects are removed from the cache or region when its capacity
has been reached. This attribute, an integer, is made available to the
CapacityPolicy object used to control the size of the cache, region, or group.
The larger the number that is, the higher the priority. For region and group
capacity control, when an object is removed to make room, specifically for another
object, an object of higher priority is never removed to allow an object of lower
priority to be cached. For the cache capacity control, lower priority objects are
chosen for eviction over higher priority.

Object Types: When set on a region, subregion, group, or pool, this attribute
applies individually to each object within the region, subregion, group, or pool,
unless explicitly set for the object.

Default Value: integer.MAX_VALUE.

Table 9–3 Java Object Cache Attributes (Cont.)

Attribute Name Description

Java Object Cache Environment

Java Object Cache 9-19

MaxSize Specifies the maximum number of bytes available for a region or group. If this
attribute is specified for an object, it is ignored.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: No limit.

MaxCount Specifies the maximum number of objects that can be stored in a region or group.
If this attribute is specified for an object, it is ignored.

Object Types: When set on a region, subregion, or group, this attribute applies to
the entire region or group. This attribute is not applicable to individual objects or
pools.

Default Value: No limit.

User-defined attributes Attributes can be defined by the user. These are name-value pairs that are
associated with the object, group, or region. They are intended to be used in
conjunction with a CapacityPolicy object, although they can be defined as
needed by the cache user.

Object Types: When set on a region, subregion, group, or pool, these attributes
are available to each object within the region, subregion, group, or pool, unless
explicitly reset for the object.

Default Value: No user-defined attributes are set by default.

Table 9–3 Java Object Cache Attributes (Cont.)

Attribute Name Description

Developing Applications Using Java Object Cache

9-20 Oracle Application Server Containers for J2EE Services Guide

Developing Applications Using Java Object Cache
This section describes how to develop applications that use the Java Object Cache.
This section covers the following topics:

■ Importing Java Object Cache

■ Defining a Cache Region

■ Defining a Cache Group

■ Defining a Cache Subregion

■ Defining and Using Cache Objects

■ Implementing a CacheLoader Object

■ Invalidating Cache Objects

■ Destroying Cache Objects

■ Multiple Object Loading and Invalidation

■ Java Object Cache Configuration

■ Declarative Cache

■ Capacity Control

■ Implementing a Cache Event Listener

■ Restrictions and Programming Pointers

Importing Java Object Cache
The Oracle installer installs the Java Object Cache JAR file cache.jar in the
directory $ORACLE_HOME/javacache/lib on UNIX or in
%ORACLE_HOME%\javacache\lib on Windows.

To use the Java Object Cache, import oracle.ias.cache, as follows:

import oracle.ias.cache.*;

Defining a Cache Region
All access to the Java Object Cache is through a CacheAccess object. A
CacheAccess object is associated with a cache region. You define a cache region,
usually associated with the name of an application, using the
CacheAccess.defineRegion()static method. If the cache has not been
initialized, then defineRegion() initializes the Java Object Cache.

Developing Applications Using Java Object Cache

Java Object Cache 9-21

When you define the region, you can also set attributes. Attributes specify how the
Java Object Cache manages objects. The Attributes.setLoader() method sets
the name of a cache loader. Example 9–1 shows this.

Example 9–1 Setting the Name of a CacheLoader

Attributes attr = new Attributes();
MyLoader mloader = new MyLoader;
attr.setLoader(mloader);
attr.setDefaultTimeToLive(10);

final static String APP_NAME_ = "Test Application";
CacheAccess.defineRegion(APP_NAME_, attr);

The first argument for defineRegion uses a String to set the region name. This
static method creates a private region name within the Java Object Cache. The
second argument defines the attributes for the new region.

Defining a Cache Group
Create a cache group when you want to create an association between two or more
objects within the cache. Objects are typically associated in a cache group because
they must be invalidated together or because they have a common set of attributes.

Any set of cache objects within the same region or subregion can be associated
using a cache group, including other cache groups. Before an object can be
associated with a cache group, the cache group must be defined. A cache group is
defined with a name and can use its own attributes, or it can inherit attributes from
its parent cache group, subregion, or region. The code in Example 9–2 defines a
cache group within the region named Test Application:

Example 9–2 Defining a Cache Group

final static String APP_NAME_ = "Test Application";
final static String GROUP_NAME_ = "Test Group";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a group
caccess.defineGroup(GROUP_NAME_);
// Close the CacheAccess object
caccess.close();

Developing Applications Using Java Object Cache

9-22 Oracle Application Server Containers for J2EE Services Guide

Defining a Cache Subregion
Define a subregion when you want to create a private name space within a region
or within a previously defined subregion. The name space of a subregion is
independent of the parent name space. A region can contain two objects with the
same name, as long as the objects are within different subregions.

A subregion can contain anything that a region can contain, including cache objects,
groups, or additional subregions. Before an object can be associated with a
subregion, the subregion must be defined. A cache subregion is defined with a
name and can use its own attributes, or it can inherit attributes from its parent cache
region or subregion. Use the getParent() method to obtain the parent of a
subregion.

The code in Example 9–3 defines a cache subregion within the region named
Test Application.

Example 9–3 Defining a Cache Subregion

final static String APP_NAME_ = "Test Application";
final static String SUBREGION_NAME_ = "Test SubRegion";
// obtain an instance of CacheAccess object to a named region
CacheAccess caccess = CacheAccess.getAccess(APP_NAME_);
// Create a SubRegion
caccess.defineSubRegion(SUBREGION_NAME_);
// Close the CacheAccess object
caccess.close();

Defining and Using Cache Objects
You may sometimes want to describe to the Java Object Cache how an individual
object should be managed within the cache before the object is loaded. You can
specify management options when the object is loaded, by setting attributes within
the CacheLoader.load() method. However, you can also associate attributes
with an object by using the CacheAccess.defineObject() method. If attributes
are not defined for an object, then the Java Object Cache uses the default attributes
set for the region, subregion, or group with which the object is associated.

Example 9–4 shows how to set attributes for a cache object. The example assumes
the region APP_NAME_ has already been defined.

Developing Applications Using Java Object Cache

Java Object Cache 9-23

Example 9–4 Setting Cache Attributes

import oracle.ias.cache.*;
final static String APP_NAME_ = "Test Application";
CacheAccess cacc = null;
try
{
 cacc = CacheAccess.getAccess(APP_NAME_);
// set the default IdleTime for an object using attributes
 Attributes attr = new Attributes();
// set IdleTime to 2 minutes
 attr.setIdleTime(120);

// define an object and set its attributes
 cacc.defineObject("Test Object", attr);

// object is loaded using the loader previously defined on the region
// if not already in the cache.
 result = (String)cacc.get("Test Object");
} catch (CacheException ex){
 // handle exception
 } finally {
 if (cacc!= null)
 cacc.close();
}

Implementing a CacheLoader Object
The Java Object Cache has two mechanisms for loading an object into the cache. The
object can be put into the cache directly by the application using the
CacheAccess.put() method or you can implement a CacheLoader object. In
most cases, implementing the CacheLoader is the preferred method. With a cache
loader, the Java Object Cache automatically determines if an object needs to be
loaded into the cache when the object is request. And the Java Object Cache
coordinates the load if multiple users request the object at the same time.

A CacheLoader object can be associated with a region, subregion, group, or object.
Using a CacheLoader allows the Java Object Cache to schedule and manage object
loading and handle the logic for "if the object is not in cache then load."

If an object is not in the cache, then when an application calls the
CacheAccess.get() or CacheAccess.preLoad() method, the cache executes
the CacheLoader.load method. When the load method returns, the Java Object
Cache inserts the returned object into the cache. Using CacheAccess.get(), if the
cache is full, the object is returned from the loader and the object is immediately

Developing Applications Using Java Object Cache

9-24 Oracle Application Server Containers for J2EE Services Guide

invalidated in the cache. (Therefore, using the CacheAccess.get() method with
a full cache does not generate a CacheFullException.)

When a CacheLoader is defined for a region, subregion, or group, it is taken to be
the default loader for all objects associated with the region, subregion, or group. A
CacheLoader object that is defined for an individual object is used only to load the
object.

Using CacheLoader Helper Methods
The CacheLoader cache provides several helper methods that you can use from
within the load() method implementation. Table 9–4 summarizes the available
CacheLoader methods.

Example 9–5 shows a CacheLoader object using the
cacheLoader.netSearch() method to check if the object being loaded is
available in distributed Java Object Cache caches. If the object is not found using
netSearch(), then the load method uses a more expensive call to retrieve the

Note: A CacheLoader object that is defined for a region,
subregion, or group or for more than one cache object must be
written with concurrent access in mind. The implementation
should be thread-safe, because the CacheLoader object is shared.

Table 9–4 CacheLoader Methods Used in load()

Method Description

setAttributes() Sets the attributes for the object being loaded.

netSearch() Searches other available caches for the object to load. Objects are
uniquely identified by the region name, subregion name, and
the object name.

getName() Returns the name of the object being loaded.

getRegion() Returns the name of the region associated with the object being
loaded.

createStream() Creates a StreamAccess object.

createDiskObject() Creates a disk object.

exceptionHandler() Converts noncache exceptions into CacheExceptions, with
the base set to the original exception.

log() Records messages in the cache service log.

Developing Applications Using Java Object Cache

Java Object Cache 9-25

object. (An expensive call might involve an HTTP connection to a remote Web site
or a connection to the Oracle9i Database Server.) For this example, the Java Object
Cache stores the result as a String.

Example 9–5 Implementing a CacheLoader

import oracle.ias.cache.*;
class YourObjectLoader extends CacheLoader{
 public YourObjectLoader () {
 }
 public Object load(Object handle, Object args) throws CacheException
 {
 String contents;
 // check if this object is loaded in another cache
 try {
 contents = (String)netSearch(handle, 5000);// wait for up to 5 scnds
 return new String(contents);
 } catch(ObjectNotFoundException ex){}

 try {
 contents = expensiveCall(args);
 return new String(contents);
 } catch (Exception ex) {throw exceptionHandler("Loadfailed", ex);}
 }

 private String expensiveCall(Object args) {
 String str = null;
 // your implementation to retrieve the information.
 // str = ...
 return str;
 }
 }

Invalidating Cache Objects
An object can be removed from the cache either by setting the TimeToLive
attribute for the object, group, subregion, or region or by explicitly invalidating or
destroying the object.

Invalidating an object marks the object for removal from the cache. Invalidating a
region, subregion, or group invalidates all the individual objects from the region,
subregion, or group, leaving the environment—including all groups, loaders, and
attributes—available in the cache. Invalidating an object does not undefine the

Developing Applications Using Java Object Cache

9-26 Oracle Application Server Containers for J2EE Services Guide

object. The object loader remains associated with the name. To completely remove
an object from the cache, use the CacheAccess.destroy() method.

An object can be invalidated automatically based on the TimeToLive or IdleTime
attribute. When the TimeToLive or IdleTime expires, objects are, by default,
invalidated and not destroyed.

If an object, group, subregion, or region is defined as distributed, the invalidate
request is propagated to all caches in the distributed environment.

To invalidate an object, group, subregion, or region, use the
CacheAccess.invalidate() method as follows:

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.invalidate("Test Object"); // invalidate an individual object
cacc.invalidate("Test Group"); // invalidate all objects associated with a group
cacc.invalidate(); // invalidate all objects associated with the region cacc
cacc.close(); // close the CacheAccess handle

Destroying Cache Objects
An object can be removed from the cache either by setting the TimeToLive
attribute for the object, group, subregion, or region or by explicitly invalidating or
destroying the object.

Destroying an object marks the object and the associated environment, including
any associated loaders, event handlers, and attributes for removal from the cache.
Destroying a region, subregion, or a group marks all objects associated with the
region, subregion, or group for removal, including the associated environment.

An object can be destroyed automatically based on the TimeToLive or IdleTime
attributes. By default, objects are invalidated and are not destroyed. If the objects
must be destroyed, set the attribute GROUP_TTL_DESTROY. Destroying a region
also closes the CacheAccess object used to access the region.

To destroy an object, group, subregion, or region, use the
CacheAccess.destroy() method as follows:

CacheAccess cacc = CacheAccess.getAccess("Test Application");
cacc.destroy("Test Object"); // destroy an individual object
cacc.destroy("Test Group"); // destroy all objects associated with
 // the group "Test Group"

cacc.destroy(); // destroy all objects associated with the region
 // including groups and loaders

Developing Applications Using Java Object Cache

Java Object Cache 9-27

Multiple Object Loading and Invalidation
In most cases, objects are loaded into the cache individually; in some cases,
however, multiple objects can be loaded into the cache as a set. The primary
example of this is when multiple cached objects can be created from a single read
from a database. In this case, it is much more efficient to create multiple objects
from a single call to the CacheLoader.load method.

To support this scenario, the abstract class CacheListLoader and the method
CacheAccess.loadList have been added. The CacheListLoader object
extends the CacheLoader object defining the abstract method loadList and the
helper methods getNextObject, getList, getNamedObject, and
saveObject. The cache user implements the CacheListLoader.loadList
method. Employing the helper methods, the user can iterate through the list of
objects, creating each one and saving it to the cache. If the helper methods defined
in CacheLoader are used from the CacheListLoader method, getNextObject
or getNamedObject should be called first to set the correct context.

 The CacheAccess.loadList method takes as an argument an array of object
names to be loaded. The cache processes this array of objects. Any objects that are
not currently in the cache are added to a list that is passed to the
CacheListLoader object that is defined for the cached objects. If a
CacheListLoader object is not defined for the objects or the objects have different
CacheListLoader objects defined, then each object is loaded individually using
the CacheLoader.load method defined.

It is always best to implement both the CacheListLoader.loadList method
and the CacheListLoader.load method. Which method is called depends on the
order of the user requests to the cache. For example, if the CacheAccess.get
method is called before the CacheAccess.loadList method, the
CacheListLoader.load method is used rather than the
CacheAccess.loadList method.

As a convenience, the invalidate and destroy methods have been overloaded to also
handle an array of objects.

Example 9–6 shows a sample CacheListLoader and Example 9–7 shows sample
usage.

Developing Applications Using Java Object Cache

9-28 Oracle Application Server Containers for J2EE Services Guide

Example 9–6 Sample CacheListLoader

Public class ListLoader extends CacheListLoader
{
 public void loadList(Object handle, Object args) throws CacheException
 {
 while(getNextObject(handle) != null)
 {
 // create the cached object based on the name of the object
 Object cacheObject = myCreateObject(getName(handle));
 saveObject(handle, cacheObject);
 }
 }

 public Object load(Object handle, Object args) throws CacheException
 {
 return myCreateObject(getName(handle));
 }

 private Object myCreateObject(Object name)
 {
 // do whatever to create the object
 }
}

Example 9–7 Sample Usage

// Assumes the cache has already been initialized

CacheAccess cacc;
Attributes attr;
ListLoader loader = new
ListLoader();
String objList[];
Object obj;

// set the CacheListLoader for the region
attr = new Attributes();
attr.setLoader(loader);

//define the region and get access to the cache
CacheAccess.defineRegion(“region name”, attr);
cacc = CacheAccess.getAccess(“region name”);

Developing Applications Using Java Object Cache

Java Object Cache 9-29

// create the array of object names
objList = new String[3];
for (int j = 0; j < 3; j++)
 objList[j] = “object “ + j;

// load the objects in the cache via the CacheListLoader.loadList method
cacc.loadList(objList);

// retrieve the already loaded object from the cache
obj = cacc.get(objList[0]);

// do something useful with the object

// load an object using the CacheListLoader.load method
obj = cache.get(“another object”)

// do something useful with the object

Java Object Cache Configuration
By default, the Java Object Cache is initialized automatically upon OC4J startup.
The OC4J runtime automatically initializes the Java Object Cache using
configuration settings defined in the file javacache.xml. The file path is specified
in the <javacache-config> tag of the OC4J server.xml file. The default
relative path values of javacache.xml in server.xml are the following:

<javacache-config path="../../../javacache/admin/javacache.xml"/>

The rules for writing javacache.xml and the default configuration values are
specified in an XML schema. The XML schema file ora-cache.xsd and the
default javacache.xml are in the directory $ORACLE_HOME/javacache/admin
on UNIX and in %ORACLE_HOME%\javacache\admin on Windows.

In previous versions of Java Object Cache, configuration was done through the file
javacache.properties; the 10g (9.0.4) release uses javacache.xml.

Note: If you install both a 10g (9.0.4) release and a pre-10g (9.0.4)
release on the same host, you must ensure that the javacache.xml
discovery-port attribute and javacache.properties
discoveryAddress attribute are not configured to the same port. If
they are, you must manually change the value in one or the other to
a different port number. The default range is 7000-7099.

Developing Applications Using Java Object Cache

9-30 Oracle Application Server Containers for J2EE Services Guide

A sample configuration follows:

<?xml version="1.0" encoding="UTF-8"?>
<cache-configuration
xmlns=http://www.oracle.com/oracle/ias/cache/configuration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/oracle/ias/cache/configuration
ora-cache.xsd">
 <logging>
 <location>javacache.log</location>
 <level>ERROR</level>
 </logging>
 <communication>
 <isDistributed>true</isDistributed>
 <coordinator discovery-port="7000"/>
 </communication>
 <persistence>
 <location>diskcache</location>
 <disksize>32</disksize>
 </persistence>
 <max-objects>1000</max-objects>
 <max-size>48</max-size>
 <clean-interval>30</clean-interval>
</cache-configuration>

Table 9–5 contains the valid property names and the valid types for each property.

Table 9–5 Java Object Cache Configuration Properties

Configuration XML
Element

Description Type

clean-interval Specifies the time, in seconds, between each cache cleaning. At
the cache-cleaning interval, the Java Object Cache checks for
objects that have been invalidated by the TimeToLive or
IdleTime attributes that are associated with the object.
(Table 9–3 describes these attributes are described.)

Default value: 60

positive
integer

ping-interval Specifies the time, in seconds, between each cache death
detection for determining the availability of the remote cache
systems.

Default value: 60

positive
integer

Developing Applications Using Java Object Cache

Java Object Cache 9-31

max-size Specifies the maximum size of the memory, in megabytes,
available to the Java Object Cache.

Default value: 10

positive
integer

max-objects Specifies the maximum number of in-memory objects that are
allowed in the cache. The count does not include group objects or
objects that have been spooled to disk and are not currently in
memory.

Default value: 5000

positive
integer

region-name-separator Specifies the separator between a parent region and a child
region name. See "Examples" on page 9-32.

Default value: /

String

preload-file Specifies the full path to the declarative cache configuration file.
The format of the file must conform to the declarative cache
schema (cache.xsd). The declarative cache configuration
allows the system to predefine cache regions, groups, objects,
attributes, and policies upon Java Object Cache service
initialization. For more information about the declarative cache,
see "Declarative Cache" on page 9-34. Also see "Examples" on
page 9-32.
Note: The file path of the declarative cache XML schema is
ORACLE_HOME/javacache/admin/cache.xsd. Refer to the
XML schema when writing a declarative cache file.

Default value: Not use a declarative cache.

String

communication Indicates whether the cache is distributed. Specifies the IP
address and port that the Java Object Cache initially contacts to
join the caching system, when using distributed caching.
Updates and invalidation for objects that have the distribute
property set are propagated to other caches known to the Java
Object Cache. If the isDistributed subelement of the
communication element is set to false, all objects are treated
as local, even when the attributes set on objects are set to
distribute. See "Examples" on page 9-32.

Default value: Cache is not distributed (isDistributed
subelement set to false).

complex (has
subelements)

Table 9–5 Java Object Cache Configuration Properties (Cont.)

Configuration XML
Element

Description Type

Developing Applications Using Java Object Cache

9-32 Oracle Application Server Containers for J2EE Services Guide

Examples
The following example shows the use of the <region-name-separator>
element:

■ Set the separator to be _S_:

<region-name-separator>_S_</region-name-separator>

The following example shows the use of the <preload-file> element:

■ Specify a declarative cache configuration file:

<preload-file>/app/oracle/javacache/admin/decl.xml</preload-file>

logging Specifies the logger attributes such as log file name and log level.
The available options of the log level are OFF, FATAL, ERROR,
DEFAULT, WARNING, TRACE, INFO, and DEBUG. See "Examples"
on page 9-32.

Default values:
Log file name:
$ORACLE_HOME/javacache/admin/logs/javacache.log
on UNIX or
%ORACLE_HOME%\javacache\admin\logs\javacache.log
on Windows
Log level: DEFAULT

complex (has
subelements)

persistence Specifies the disk cache configuration, such as absolute path to
the disk cache root and maximum size for the disk cache. If a root
path is specified, the default maximum size of the disk cache is
10MB. The unit of the disk cache size is megabytes. See
"Examples" on page 9-32.

Default value: Disk caching is not available.

complex (has
subelements)

Note: Configuration properties are distinct from the Java Object
Cache attributes that you specify using the Attributes class.

Table 9–5 Java Object Cache Configuration Properties (Cont.)

Configuration XML
Element

Description Type

Developing Applications Using Java Object Cache

Java Object Cache 9-33

The following examples show the use of the <communication> element:

■ Turn off distributed cache:

<communication>
 <isDistributed>false</isDistributed>
</communication>

■ Distribute cache among multiple JVMs in local machine:

<communication>
 <isDistributed>true</isDistributed>
</communication>

■ Specify the initial discovery port that the Java Object Cache initially contacts to
join the caching system in the local machine:

<communication>
 <isDistributed>true</isDistributed>
 <coordinator discovery-port="7000">
</communication>

■ Specify the IP address and initial discovery port that the Java Object Cache
initially contacts to join the caching system.

<communication>
<isDistributed>true</isDistributed>
<coordinator ip="192.10.10.10" discovery-port="7000">
</communication>

■ Specify multiple IP addresses and the initial discovery port that the Java Object
Cache initially contacts to join the caching system. If the first specified address
is not reachable, it contacts the next specified address:

<communication>
 <isDistributed>true</isDistributed>
 <coordinator ip="192.10.10.10" discovery-port="7000">
 <coordinator ip="192.11.11.11" discovery-port="7000">
 <coordinator ip="192.22.22.22" discovery-port="7000">
 <coordinator ip="192.22.22.22" discovery-port="8000">
</communication>

Developing Applications Using Java Object Cache

9-34 Oracle Application Server Containers for J2EE Services Guide

The following examples show the use of the <persistence> element:

■ Specify a root path for the disk cache using the default disk size:

<persistence>
 <location>/app/9iAS/javacache/admin/diskcache</location>
</persistence>

■ Specify a root path for the disk cache with a disk size of 20MB:

<persistence>
 <location>/app/9iAS/javacache/admin/diskcache</location>
 <disksize>20</disksize>
</persistence>

The following examples show the use of the <logging> element:

■ Specify a log file name:

<logging>
<location>/app/9iAS/javacache/admin/logs/my_javacache.log</location>
</logging>

■ Specify log level as INFO:

<logging>
<location>/app/9iAS/javacache/admin/logs/my_javacache.log</location>
<level>INFO</level>
</logging>

Declarative Cache
With the 10g (9.0.4) release of the Java Object Cache, object, group, and region, as
well as cache attributes, can be defined declaratively. You do not need to write any
Java code to define cache objects and attributes in your applications when using
declarative cache.

A declarative cache file can be read automatically during Java Object Cache
initialization. Specify the location of the declarative cache file in the
<preload-file> element of the cache configuration file. (See "Sharing Cached
Objects in an OC4J Servlet" on page 9-69 for cache configuration file syntax.) In
addition, the declarative cache file can be loaded programmatically or explicitly
with the public methods in oracle.ias.cache.Configurator.class.
Multiple declarative cache files are also permitted.

Figure 9–6 shows the declarative cache.

Developing Applications Using Java Object Cache

Java Object Cache 9-35

Figure 9–6 Declarative Cache Architecture

You can set up the Java Object Cache for automatically loading a declarative cache
file during system initialization. Example 9–8 shows this. Example 9–9 shows how
to programmatically read the declarative cache file.

nameType

-
string-name

userDefinedObjectType

-
classname

string-name

object-name

0..

parameter

attributes

attributes

attributes

regionType --

regionType

-

groupType

cached-objectType

-

-name

-object

0..

cached-object

0..

group

0..

cached-object

0..

group

0..

region

-

-

Developing Applications Using Java Object Cache

9-36 Oracle Application Server Containers for J2EE Services Guide

Example 9–8 Automatically Load Declarative Cache

<!-- Specify declarative cache file:my_decl.xml in javacache.xml -->
<cache-configuration>
 …
<preload-file>/app/9iAS/javacache/admin/my_decl.xml</preload-file>
 …
</cache-configuration>

Example 9–9 Programmatically Read Declarative Cache File

try {
 String filename = "/app/9iAS/javacache/admin/my_decl.xml";
Configurator config = new Configurator(filename);
Config.defineDeclarable();
} catch (Exception ex) {
}

Declarative Cache File Sample
<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://www.javasoft.com/javax/cache"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/javax/cache">
 <region name="fruit">
 <attributes>
 <time-to-live>3000</time-to-live>
 <max-count>200</max-count>
 <capacity-policy>
 <classname>com.acme.MyPolicy</classname>
 </capacity-policy>
 </attributes>
 <group name="apple">
 <attributes>
 <flag>spool</flag>
 <flag>distribute</flag>
 <cache-loader>
 <classname>com.acme.MyLoader</classname>
 <parameter name="color">red</parameter>
 </cache-loader>
 </attributes>
 </group>

Developing Applications Using Java Object Cache

Java Object Cache 9-37

 <cached-object>
 <name>
 <string-name>theme</string-name>
 </name>
 <object>
 <classname>com.acme.DialogHandler</classname>
 <parameter name="prompt">Welcome</parameter>
 </object>
 </cached-object>
 </region>
</cache>

Declarative Cache File Format
The declarative cache file is in XML format. The file contents should conform to the
declarative cache XML schema that is shipped with Oracle Application Server 10g.
The file path of the XML schema is
ORACLE_HOME/javacache/admin/cache.xsd.

Table 9–6 lists the elements of the declarative cache schema, their children, and the
valid types for each element. See "Examples" on page 9-40 for code that shows
usage for most elements.

Table 9–6 Description of Declarative Cache Schema (cache.xsd)

Element Description Children Type

region Declare a cache region or
subregions.

<attributes>
<region>
<group>
<cached-object>

regionType

group Declare a cache group or
subgroup.

<attributes>
<group>
<cached-object>

groupType

cached-object Declare a cache object. <attributes>
<name>
<object>

objectType

name Declare the name for a cached
object. The name can use a simple
string type or it can be a type of a
specified Java object.

<string-name>
<object-name>

nameType

Developing Applications Using Java Object Cache

9-38 Oracle Application Server Containers for J2EE Services Guide

Figure 9–7 shows the attributes of the declarative cache schema.

object Declare a user-defined Java object.
The class of the specified object
must implement the declarable
interface of the
oracle.ias.cache package.

<classname>
<parameter>

userDefinedObjectType

attributes Declare an attributes object for a
cache region, group, or cache
object. Each child element
corresponds to each field in the
attributes class of the
oracle.ias.cache package.
See the Javadoc of
Attributes.class for more
details.

<time-to-live>
<default-ttl>
<idle-time>
<version>
<max-count>
<priority>
<size>
<flag>
<event-listener>
<cache-loader>
<capacity-policy>
<user-defined>

attributesType

event-listener Declare a CacheEventListener
object.

<classname> event-listenerType

cache-loader Declare a CacheLoader object. <classname>
<parameter>

userDefinedObjectType

capacity-policy Declare a CapacityPolicy
object.

<classname>
<parameter>

userDefinedObjectType

user-defined Declare user-defined string type
attributes.

<key>
<value>

element

Table 9–6 Description of Declarative Cache Schema (cache.xsd) (Cont.)

Element Description Children Type

Developing Applications Using Java Object Cache

Java Object Cache 9-39

Figure 9–7 Declarative Cache Schema Attributes

time-to-live

default-ttl

idle-time

version

max-count

priority

size

flag

attributes Type --

event-listener Type

event-listener --

--

userDefinedObjectType

userDefinedObjectType

classname

classname
cache-loader

0..∞
parameter

--
classname

capacity-policy

0..∞
parameter

-

0..∞

0..∞

user-defined
key

value
-

O
_1

00
5

Developing Applications Using Java Object Cache

9-40 Oracle Application Server Containers for J2EE Services Guide

Examples
The following examples show use of elements in Table 9–6:

■ Declare cache region and subregions with the <region> element:

<region name=”themes”>
 <region name=”cartoon”>
 <!-- sub region definition -->
 </region>
 <group name=”colors”>
 <!-- group definition -->
 </group>
</region>

■ Declare cache group and subgroups with the <group> element:

<group name=”colors”>
 <group name=”dark”>
 <!-- sub group definition -->
 </group>
</group>

■ Declare a cached object with the <cached-object> element:

<cached-object>
 <name>
 <string-name>DialogHandler</string-name>
 </name>
 <object>
 <classname>com.acme.ConfigManager</classname>
 <parameter name=”color”>blue</parameter>
 </object>
</cached-object>

Developing Applications Using Java Object Cache

Java Object Cache 9-41

■ Declare the name for a cached object with the <name> element using a string:

<name>
 <string-name>DialogHandler</string-name>
</name>

Declare the name for a cached object with the <name> element using an object:

<name>
 <object-name>
 <classname>DialogHandler</classname>
 <parameter name="color">green</parameter>
 </object-name>
</name>

■ Declare a user-defined Java object with the <object> element:

<object>
 <classname>com.acme.CustomConfigManager</classname>
 <parameter name=”color”>blue</parameter>
</object>

// Implementation of CustomConfigManager.java
package com.acme;
import oracle.ias.cache.Declarable;
public class CustomConfigManager implements Declarable {
}

■ Declare an attributes object for a cache region, group, or cache object with the
<attributes> element:

<attributes>
 <time-to-live>4500</time-to-live>
 <default-ttl>6000</default-ttl>
 <version>99</version>
 <max-count>8000</max-count>
 <priority>50</priority>
 <flag>spool</flag>
 <flag>allownull</flag>
 <flag>distribute</flag>
 <flag>reply</flag>
 <cache-loader>
 <classname>MyLoader</classname>
 <parameter name="debug">false</parameter>
 </cache-loader>
</attributes>

Developing Applications Using Java Object Cache

9-42 Oracle Application Server Containers for J2EE Services Guide

■ Declare user-defined string type attributes with the <user-defined> element:

<attributes>
 <user-defined>
 <key>color</key>
 <value>red</value>
 </user-defined>
</attributes>

Declarable User-Defined Objects
The topology of the cache objects, object attributes, and user-defined objects can all
be described in the declarative cache file. For the system to load and instantiate a
user-defined Java object (including CacheLoader, CacheEventListener, and
CapacityPolicy) declared in the declarative cache file, such object must be an
instance of the oracle.ias.cache.Declarable interface. That is, you must
implement the oracle.ias.cache.Declarable interface for any Java objects
declared in the declarative cache file. You must be aware that all user-defined Java
objects are loaded by the JVM’s default class loader instead of the application’s class
loaders. After the declarable object is instantiated, the system implicitly invokes its
init(Properties props) method. The method uses the user-supplied
parameters (name-value pair) defined in the declarative cache file to perform any
necessary initialization task. Example 9–10 shows how to define an object by
declaratively passing in a parameter (color = yellow).

Example 9–10 Define An Object by Declaratively Passing in a Parameter

In the declarative XML file:

<cached-object>
 <name>
 <string-name>Foo</string-name>
 </name>
 <object>
 <classname>com.acme.MyCacheObject</classname>
 <parameter name="color">yellow</parameter>
 </object>
</cached-object>

Developing Applications Using Java Object Cache

Java Object Cache 9-43

Declarable object implementation:

package com.acme;

import oracle.ias.cache.*;
import java.util.Properties;

public class MyCacheObject implements Declarable {

 private String color_;

 /**
 * Object initialization
 */
 public void init(Properties prop) {
 color_ = prop.getProperty(“color”);
 }
}

Declarable CacheLoader, CacheEventListener, and CapacityPolicy
When you specify a CacheLoader, CacheEventListener, or CapacityPolicy
object in the declarative cache file, the object itself must also be an instance of
oracle.ias.cache.Declarable. This requirement is similar to that of the
user-defined object. You must implement a declarable interface for each specified
object in addition to extending the required abstract class. Example 9–11 shows a
declarable CacheLoader implementation.

Example 9–11 Declarable CacheLoader Implementation

import oracle.ias.cache.*;
import java.util.Properties;

public class MyCacheLoader extends CacheLoader implements Declarable {

 public Object load(Object handle, Object argument) {
 // should return meaningful object based on argument
 return null;
 }

 public void init(Properties prop) {
 }
}

Developing Applications Using Java Object Cache

9-44 Oracle Application Server Containers for J2EE Services Guide

Initializing the Java Object Cache in a non-OC4J Container
To use the Java Object Cache in any Java application but run it in a non-OC4J
runtime, insert the following reference to where the application (Java class) is
initialized:

Cache.open(/path-to-ocnfig-file/javacache.xml);

If you invoke Cache.open() without any parameter in your code, then the Java
Object Cache uses its internal default configuration parameter. You can also
initialize the Java Object Cache by invoking Cache.init(CacheAttributes).
This allows you to derive the configuration parameters from your own
configuration file or generate them programmatically.

If the Java Object Cache is not used in the OC4J runtime, you must include
cache.jar in the classpath where the JVM is launched. You must also initialize
the Java Object Cache explicitly by invoking Cache.open(String
config_filename), where config_filename is the full path to a valid
javacache.xml file, or by invoking Cache.init(CacheAttributes).

Use any of the following method invocations to initialize the Java Object Cache
explicitly in a non-OC4J container:

■ Cache.open();

Use the default Java Object Cache configuration stored in cache.jar

■ Cache.open(/path-to-oracle-home/javacache/admin/javacache.xml);

Use the configuration defined in the javacache.xml file

■ Cache.open(/path-to-user’s-own-javacache.xml);

Use the configuration defined in the specific javacache.xml

■ Cache.init(CacheAttributes);

Use the configuration that is set in a CacheAttributes object

For J2EE applications running in an OC4J container, the path to the javacache.xml
file can be configured in the OC4J server.xml configuration file. The cache can be
initialized automatically when the OC4J process is started. See OC4J configuration
for details.

In a non-OC4J container, if you do not use any of the preceding method invocations,
the Java Object Cache is initialized implicitly (using default configuration settings
stored in cache.jar) when you invoke Cache.getAccess() or
Cache.defineRegion().

Developing Applications Using Java Object Cache

Java Object Cache 9-45

Capacity Control
The new capacity control feature allows the cache user to specify the policy to
employ when determining which objects should be removed from the cache when
the capacity of the cache, region, or group has been reached. To specify the policy,
extend the abstract class CapacityPolicy and set the instantiated object as an
attribute of the cache, region, or group.

For regions and groups, the CapacityPolicy object is called when the region or
group has reached its capacity and a new object is being loaded. An object in the
region or group must be found to invalidate, or the new object is not saved in the
cache. (It is returned to the user but is immediately invalidated.)

The CapacityPolicy object that is associated with the cache as a whole is called
when capacity of the cache reaches some "high water mark," some percentage of the
configured maximum. When the high water mark is reach, the cache attempts to
remove objects to reduce the load in the cache to 3% below the high water mark.
The high water mark is specified by the capacityBuffer cache attribute. If the
capacityBuffer is set to 5, then the cache begins removing objects from the cache
when it is 95% full (100% -5%) and continues until the cache is 92% full (95% - 3%).
The default value for capacityBuffer is 15.

The capacity policy used for the cache can be different from those used for specific
regions or groups.

By default, the capacity policy for groups and regions is to remove a nonreferenced
object of equal or lesser priority when a new object is added and capacity has been
reached. For the cache, the default policy is to remove objects that have not been
referenced in the last two clean intervals with preference to objects of priority—that
is, low priority objects that have not been referenced recently are removed first.

To help create a capacity policy, many statistics are kept for objects in the cache and
aggregated across the cache, regions, and groups. The statistics are available to the
CapacityPolicy object. For cache objects, the following statistics are maintained:

■ Priority

■ Access count—the number of times the object has been referenced

■ Size—the size of the object in bytes (if available)

■ Last access time—the time in milliseconds that the object was last accessed

■ Create time—the time in milliseconds when the object was created

■ Load time—the number of milliseconds required to load the object (if the object
was added to the cache with CacheAccess.put, this value is 0)

Developing Applications Using Java Object Cache

9-46 Oracle Application Server Containers for J2EE Services Guide

Along with these statistics, all attributes associated with the object are available to
the CapacityPolicy object.

The following aggregated statistics are maintained for the cache, regions, and
groups. For each of these statistics, the low, high and average value is maintained.
These statistics are recalculated at each clean interval or when
Cache.updateStats() is called.

■ Priority

■ Access count—the number of times that the object has been referenced

■ Size—the size of the object in bytes (if available)

■ Last access time—the time in milliseconds that the object was last accessed

■ Load time—the number of milliseconds required to load the object (if the object
was added to the cache with CacheAccess.put, this value is 0)

Example 9–12 is a sample CapacityPolicy object for a region, based on object
size.

Example 9–12 Sample CapacityPolicy Based on Object Size

class SizePolicy extends CapacityPolicy
{
 public boolean policy (Object victimHandle, AggregateStatus aggStatus,
 long currentTime , Object newObjectHandle) throws CacheException
 {
 int newSize;
 int oldSize;

 oldSize = getAttributes(victimHandle).getSize();
 newSize = getAttributes(newObjectHandle).getSize();
 if (newSize >= oldSize)
 return true;
 return false;
 }

Example 9–13 is a sample CapacityPolicy for the cache based, on access time
and reference count. If an object has below-average references and has not been
accessed in the last 30 seconds, then it is removed from the cache.

Developing Applications Using Java Object Cache

Java Object Cache 9-47

Example 9–13 Sample CapacityPolicy Based on Access Time and Reference Count

class SizePolicy extends CapacityPolicy
{
public boolean policy (Object victimHandle, AggregateStatus aggStatus, long
 currentTime , Object newObjectHandle) throws CacheException
{
 long lastAccess;
 int accessCount;
 int avgAccCnt;

 lastAccess = getStatus(victimHandle).getLastAccess();
 accessCount = getStatus(victimHandle).getAccessCount();
 avgAccCnt = aggStatus.getAccessCount(AggregateStatus.AVG);

 if (lastAccess + 30000 < currentTime && accessCount < avgAccCnt)
 return true;
 }

}

Implementing a Cache Event Listener
Many events can occur in the life cycle of a cached object, including object creation
and object invalidation. This section shows how an application can be notified
when cache events occur.

To receive notification of the creation of an object, implement event notification as
part of the cacheLoader. For notification of invalidation or updates, implement a
CacheEventListener, and associate the CacheEventListener with an object,
group, region, or subregion using Attributes.setCacheEventListener().

CacheEventListener is an interface that extends java.util.EventListener.
The cache event listener provides a mechanism to establish a callback method that
is registered and then executes when the event occurs. In the Java Object Cache, the
event listener executes when a cached object is invalidated or updated.

An event listener is associated with a cached object, group, region, or subregion. If
an event listener is associated with a group, region, or subregion, by default, the
listener runs only when the group, region, or subregion itself is invalidated.
Invalidating a member does not trigger the event. The
Attributes.setCacheEventListener() call takes a boolean argument that, if
true, applies the event listener to each member of the region, subregion, or group,
rather than to the region, subregion, or group itself. In this case, the invalidation of
an object within the region, subregion, or group triggers the event.

Developing Applications Using Java Object Cache

9-48 Oracle Application Server Containers for J2EE Services Guide

The CacheEventListener interface has one method, handleEvent(). This
method takes a single argument, a CacheEvent object that extends
java.util.EventObject. This object has two methods, getID(), which returns
the type of event (OBJECT_INVALIDATION or OBJECT_UPDATED), and
getSource(), which returns the object being invalidated. For groups and regions,
the getSource() method returns the name of the group or region.

The handleEvent() method is executed in the context of a background thread
that the Java Object Cache manages. Avoid using Java Native Interface (JNI) code in
this method, as the expected thread context may not be available.

Example 9–14 illustrates how a CacheEventListener is implemented and
associated with an object or a group.

Example 9–14 Implementing a CacheEventListener

import oracle.ias.cache.*;
 // A CacheEventListener for a cache object
 class MyEventListener implements
 CacheEventListener {

 public void handleEvent(CacheEvent ev)
 {
 MyObject obj = (MyObject)ev.getSource();
 obj.cleanup();
 }

 // A CacheEventListener for a group object
 class MyGroupEventListener implements CacheEventListener {
 public void handleEvent(CacheEvent ev)
 {
 String groupName = (String)ev.getSource();
 app.notify("group " + groupName + " has been invalidated");

 }
 }

Use the Attributes.listener attribute to specify the CacheEventListener
for a region, subregion, group, or object.

Example 9–15 illustrates how to set a cache event listener on an object.
Example 9–16 illustrates how to set a cache event listener on a group.

Developing Applications Using Java Object Cache

Java Object Cache 9-49

Example 9–15 Setting a Cache Event Listener on an Object

import oracle.ias.cache.*;

 class YourObjectLoader extends CacheLoader
 {
 public YourObjectLoader () {
 }

 public Object load(Object handle, Object args) {
 Object obj = null;
 Attributes attr = new Attributes();
 MyEventListener el = new MyEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, el);

 // your implementation to retrieve or create your object

 setAttributes(handle, attr);
 return obj;
 }
}

Example 9–16 Setting a Cache Event Listener on a Group

import oracle.ias.cache.*;
try
{
 CacheAccess cacc = CacheAccess.getAccess(myRegion);
 Attributes attr = new Attributes ();

 MyGroupEventListener listener = new MyGroupEventListener();
 attr.setCacheEventListener(CacheEvent.OBJECT_INVALIDATED, listener);

 cacc.defineGroup("myGroup", attr);
 //....
 cacc.close();

}catch(CacheException ex)
{
 // handle exception
}

Developing Applications Using Java Object Cache

9-50 Oracle Application Server Containers for J2EE Services Guide

Restrictions and Programming Pointers
This section covers restrictions and programming pointers to keep in mind when
using the Java Object Cache.

■ The CacheAccess object should not be shared between threads. This object
represents a user to the caching system. The CacheAccess object contains the
current state of the user's access to the cache: what object is currently being
accessed, what objects are currently owned, and so on. Trying to share the
CacheAccess object is unnecessary and can result in nondeterministic
behavior.

■ A CacheAccess object holds a reference to only one cached object at a time. If
multiple cached objects are being accessed concurrently, then multiple
CacheAccess objects should be used. For objects that are stored in memory,
the consequences of not doing this are minor, because Java prevents the cached
object from being garbage collected, even if the cache believes it is not being
referenced. For disk objects, if the cache reference is not maintained, the
underlying file could be removed by another user or by time-based
invalidation, causing unexpected exceptions. To optimize resource
management, you should keep the cache reference open as long as the cached
object is being used.

■ A CacheAccess object should always be closed when it is no longer being
used. The CacheAccess objects are pooled. They acquire cache resources on
behalf of the user. If the access object is not closed when it is not being used,
then these resources are not returned to the pool and are not cleaned up until
they are garbage collected by the JVM. If CacheAccess objects are continually
allocated and not closed, then degradation in performance can occur.

■ When local objects (objects that do not set the Attributes.DISTRIBUTE
attribute) are saved to disk using the CacheAccess.save() method, they do
not survive the termination of the process. By definition, local objects are visible
only to the cache instance where they were loaded. If that cache instance goes
away for any reason, then the objects it manages, including on disk, are lost. If
an object must survive process termination, then both the object and the cache
must be defined DISTRIBUTE.

■ The cache configuration, also called the cache environment, is local to a cache;
this includes the region, subregion, group, and object definitions. The cache
configuration is not saved to disk or propagated to other caches. The cache
configuration should be defined during the initialization of the application.

Developing Applications Using Java Object Cache

Java Object Cache 9-51

■ If a CacheAccess.waitForResponse() or
CacheAccess.releaseOwnership() method call times out, then it must be
called again until it returns successfully. If
CacheAccess.waitForResponse() doesn't succeed, then
CacheAccess.cancelResponse must be called to free resources. If
CacheAccess.releaseOwnership() doesn't succeed, then
CacheAccess.releaseOwnership with a timeout value of -1 must be called
to free resources.

■ When a group or region is destroyed or invalidated, distributed definitions take
precedence over local definitions. That is, if the group is distributed, all objects
in the group or region are invalidated or destroyed across the entire cache
system, even if the individual objects or associated groups are defined as local.
If the group or region is defined as local, local objects within the group are
invalidated locally; distributed objects are invalidated throughout the entire
cache system.

■ When an object or group is defined with the SYNCHRONIZE attribute set,
ownership is required to load or replace the object. However, ownership is not
required for general access to the object or to invalidate the object.

■ In general, objects that are stored in the cache should be loaded by the system
class loader that is defined in the classpath when the JVM is initialized,
rather than by a user-defined class loader. Specifically, any objects that are
shared between applications or can be saved or spooled to disk need to be
defined in the system classpath. Failure to do so can result in a
ClassNotFoundException or a ClassCastException.

■ On some systems, the open file descriptors can be limited by default. On these
systems, you may need to change system parameters to improve performance.
On UNIX systems, for example, a value of 1024 or greater can be an
appropriate value for the number of open file descriptors.

■ When configured in either local or distributed mode, at startup, one active Java
Object Cache cache is created in a JVM process (that is, in the program running
in the JVM that uses the Java Object Cache API).

Working with Disk Objects

9-52 Oracle Application Server Containers for J2EE Services Guide

Working with Disk Objects
The Java Object Cache can manage objects on disk as well as in memory.

This section covers the following topics:

■ Local and Distributed Disk Cache Objects

■ Adding Objects to the Disk Cache

Local and Distributed Disk Cache Objects
This section covers the following topics:

■ Local Objects

■ Distributed Objects

Local Objects
When operating in local mode, the cache attribute isDistributed is not set and
all objects are treated as local objects (even when the DISTRIBUTE attribute is set
for an object). In local mode, all objects in the disk cache are visible only to the Java
Object Cache cache that loaded them, and they do not survive after process
termination. In local mode, objects stored in the disk cache are lost when the process
using the cache terminates.

Distributed Objects
If the cache attribute isDistributed is set to true, the cache will operate in
distributed mode. Disk cache objects can be shared by all caches that have access to
the file system hosting the disk cache. This is determined by the disk cache location
configured. This configuration allows for better utilization of disk resources and
allows disk objects to persist beyond the life of the Java Object Cache process.

Objects that are stored in the disk cache are identified using the concatenation of the
path that is specified in the diskPath configuration property and an internally
generated String representing the remaining path to the file. Thus, caches that
share a disk cache can have a different directory structure, as long as the diskPath
represents the same directory on the physical disk and is accessible to the Java
Object Cache processes.

If a memory object that is saved to disk is also distributed, the memory object can
survive the death of the process that spooled it.

Working with Disk Objects

Java Object Cache 9-53

Adding Objects to the Disk Cache
There are several ways to use the disk cache with the Java Object Cache, including:

■ Automatically Adding Objects

■ Explicitly Adding Objects

■ Using Objects that Reside Only in Disk Cache

Automatically Adding Objects
The Java Object Cache automatically adds certain objects to the disk cache. Such
objects can reside either in the memory cache or in the disk cache. If an object in the
disk cache is needed, it is copied back to the memory cache. The action of spooling
to disk occurs when the Java Object Cache determines that it requires free space in
the memory cache. Spooling of an object occurs only if the SPOOL attribute is set for
the object.

Explicitly Adding Objects
In some situations, you may want to force one or more objects to be written to the
Java Object Cache disk cache. Using the CacheAccess.save() method, a region,
subregion, group, or object is written to the disk cache. (If the object or objects are
already in the disk cache, they are not written again.)

Calling CacheAccess.save() on a region, subregion, or group saves all the
objects within the region, subregion, or group to the disk cache. During a
CacheAccess.save() method call, if an object is encountered that cannot be
written to disk, either because it is not serializable or for other reasons, then the
event is recorded in the Java Object Cache log and the save operation continues
with the next object. When individual objects are written to disk, the write is
synchronous. If a group or region is saved, the write is done as an asynchronous
background task.

Using Objects that Reside Only in Disk Cache
Objects that you access only directly from disk cache are loaded into the disk cache
by calling CacheLoader.createDiskObject() from the
CacheLoader.load() method. The createDiskObject() method returns a

Note: Using CacheAccess.save() saves an object to disk even
when the SPOOL attribute is not set for the object.

Working with Disk Objects

9-54 Oracle Application Server Containers for J2EE Services Guide

File object that the application can use to load the disk object. If the attributes of
the disk object are not defined for the disk object, then set them using the
createDiskObject() method. The system manages local and distributed disk
objects differently; the system determines if the object is local or distributed when it
creates the object, based on the specified attributes.

When CacheAccess.get() is called on a disk object, the full path name to the file
is returned, and the application can open the file, as needed.

Disk objects are stored on a local disk and accessed directly from the disk by the
application using the Java Object Cache. Disk objects can be shared by all Java
Object Cache processes, or they can be local to a particular process, depending on
the setting for the DISTRIBUTE attribute (and the mode the Java Object Cache is
running in, either distributed or local).

Example 9–17 shows a loader object that loads a disk object into the cache.

Example 9–17 Creating a Disk Object in a CacheLoader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 File file;
 FileOutputStream = out;
 Attributes attr = new Attributes();

 attr.setFlags(Attributes.DISTRIBUTE);
 try
 // The distribute attribute must be set on the createDiskObject method
 {
 file = createDiskObject(handle, attr);
 out = new FileOutputStream(file);

 out.write((byte[])getInfofromsomewhere());
 out.close();
 }

Note: If you want to share a disk cache object between distributed
caches in the same cache system, then you must define the
DISTRIBUTE attribute when the disk cache object is created. This
attribute cannot be changed after the object is created.

Working with StreamAccess Objects

Java Object Cache 9-55

 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in file handling", ex)
 }
 return file;
 }
 }

Example 9–18 illustrates application code that uses a Java Object Cache disk object.
This example assumes that the region named Stock-Market is already defined
with the YourObjectLoader loader that was set up in Example 9–17 as the
default loader for the region.

Example 9–18 Application Code that Uses a Disk Object

import oracle.ias.cache.*;

try
{
 FileInputStream in;
 File file;
 String filePath;
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");

 filePath = (String)cacc.get("file object");
 file = new File(filePath);
 in = new FileInputStream(filePath);
 in.read(buf);

// do something interesting with the data
 in.close();
 cacc.close();
}
catch (Exception ex)
{
// handle exception
}

Working with StreamAccess Objects
A StreamAccess object is accessed as a stream and automatically loaded to the
disk cache. The object is loaded as an OutputStream and read as an

Working with StreamAccess Objects

9-56 Oracle Application Server Containers for J2EE Services Guide

InputStream. Smaller StreamAccess objects can be accessed from memory or
from the disk cache; larger StreamAccess objects are streamed directly from disk.
The Java Object Cache automatically determines where to access the
StreamAccess object based on the size of the object and the capacity of the cache.

The user is always presented with a stream object, an InputStream for reading
and an OutputStream for writing, regardless of whether the object is in a file or in
memory. The StreamAccess object allows the Java Object Cache user to always
access the object in a uniform manner, without regard to object size or resource
availability.

Creating a StreamAccess Object
To create a StreamAccess object, call the CacheLoader.createStream()
method from the CacheLoader.load() method when the object is loaded into
the cache. The createStream() method returns an OutputStream object. Use
the OutputStream object to load the object into the cache.

If the attributes have not already been defined for the object, then set them using
the createStream() method. The system manages local and distributed disk
objects differently; the determination of local or distributed is made when the
system creates the object, based on the attributes.

Example 9–19 shows a loader object that loads a StreamAccess object into the
cache.

Example 9–19 Creating a StreamAccess Object in a Cache Loader

import oracle.ias.cache.*;

class YourObjectLoader extends CacheLoader
{
 public Object load(Object handle, Object args) {
 OutputStream = out;
 Attributes attr = new Attributes();
 attr.setFlags(Attributes.DISTRIBUTE);

Note: If you want to share a StreamAccess object between
distributed caches in the same cache system, you must define the
DISTRIBUTE attribute when the StreamAccess object is created.
You cannot change this attribute after the object is created.

Working with Pool Objects

Java Object Cache 9-57

 try
 {
 out = createStream(handle, attr);
 out.write((byte[])getInfofromsomewhere());
 }
 catch (Exception ex) {
 // translate exception to CacheException, and log exception
 throw exceptionHandler("exception in write", ex)
 }
 return out;
 }
}

Working with Pool Objects
A pool object is a special cache object that the Java Object Cache manages. A pool
object contains a set of identical object instances. The pool object itself is a shared
object; the objects within the pool are private objects that the Java Object Cache
manages. Users access individual objects within the pool with a check out, using a
pool access object, and then return the objects to the pool when they are no longer
needed.

This section covers the following topics:

■ Creating Pool Objects

■ Using Objects from a Pool

■ Implementing a Pool Object Instance Factory

Creating Pool Objects
To create a pool object, use CacheAccess.createPool(). The CreatePool()
method takes as arguments a PoolInstanceFactory, and an Attributes
object, plus two integer arguments. The integer arguments specify the maximum
pool size and the minimum pool size. By supplying a group name as an argument
to CreatePool(), a pool object is associated with a group.

Attributes, including TimeToLive or IdleTime can be associated with a pool
object. These attributes can be applied to the pool object itself, when specified in the
attributes set with CacheAccess.createPool(), or they can be applied to the
objects within the pool individually.

Using CacheAccess.createPool(), specify minimum and maximum sizes with
the integer arguments. Specify the minimum first. It sets the minimum number of

Working with Pool Objects

9-58 Oracle Application Server Containers for J2EE Services Guide

objects to create within the pool. The minimum size is interpreted as a request
rather than a guaranteed minimum. Objects within a pool object are subject to
removal from the cache due to lack of resources, so the pool can decrease the
number of objects below the requested minimum value. The maximum pool size
puts a hard limit on the number of objects available in the pool.

Example 9–20 shows how to create a pool object.

Example 9–20 Creating a Pool Object

import oracle.ias.cache.*;

 try
 {
 CacheAccess cacc = CacheAccess.getAccess("Stock-Market");
 Attributes attr = new Attributes();
 QuoteFactory poolFac = new QuoteFactory();

 // set IdleTime for an object in the pool to three minutes
 attr.setIdleTime(180);
 // create a pool in the "Stock-Market" region with a minimum of
 // 5 and a maximum of 10 object instances in the pool
 cacc.createPool("get Quote", poolFac, attr, 5, 10);
 cacc.close();
 }
 catch(CacheException ex)
 {
 // handle exception
 }
}

Using Objects from a Pool
To access objects in a pool, use a PoolAccess object. The
PoolAccess.getPool() static method returns a handle to a specified pool. The
PoolAccess.get() method returns an instance of an object from within the pool
(this checks out an object from the pool). When an object is no longer needed, return
it to the pool, using the PoolAccess.returnToPool() method, which checks the

Note: Pool objects and the objects within a pool object are always
treated as local objects.

Working with Pool Objects

Java Object Cache 9-59

object back into the pool. Finally, call the PoolAccess.close() method when the
pool handle is no longer needed.

Example 9–21 describes the calls that are required to create a PoolAccess object,
check an object out of the pool, and then check the object back in and close the
PoolAccess object.

Example 9–21 Using a PoolAccess Object

PoolAccess pacc = PoolAccess.getPool("Stock-Market", "get Quote");
//get an object from the pool
GetQuote gq = (GetQuote)pacc.get();
// do something useful with the gq object
// return the object to the pool
pacc.returnToPool(gq);
pacc.close();

Implementing a Pool Object Instance Factory
The Java Object Cache instantiates and removes objects within a pool, using an
application-defined factory object—a PoolInstanceFactory. The
PoolInstanceFactory is an abstract class with two methods that you must
implement: createInstance() and destroyInstance().

The Java Object Cache calls createInstance() to create instances of objects that
are being accumulated within the pool. The Java Object Cache calls
destroyInstance() when an instance of an object is being removed from the
pool. (Object instances from within the pool are passed into
destroyInstance().)

The size of a pool object, that is the number of objects within the pool, is managed
using these PoolInstanceFactory() methods. The system decreases or
increases the size and number of objects in the pool, based on demand, and based
on the values of the TimeToLive or IdleTime attributes.

Example 9–22 shows the calls required when implementing a
PoolInstanceFactory.

Working with Pool Objects

9-60 Oracle Application Server Containers for J2EE Services Guide

Example 9–22 Implementing Pool Instance Factory Methods

import oracle.ias.cache.*;
 public class MyPoolFactory implements PoolInstanceFactory
 {
 public Object createInstance()
 {
 MyObject obj = new MyObject();
 obj.init();
 return obj;
 }
 public void destroyInstance(Object obj)
 {
 ((MyObject)obj).cleanup();
 }
 }

Pool Object Affinity
Object pools are a collection of serially reusable objects. A user "checks out" an
object from the pool to perform a function, then "checks in" the object back to the
pool when done. During the time the object is checked out, the user has exclusive
use of that object instance. After the object is checked in, the user gives up all access
to the object. While the object is checked out, the user can apply temporary
modifications to the pool object (add state) to allow it to execute the current task.
Since some cost is incurred to add these modifications, it would be beneficial to
allow the user to, whenever possible, get the same object from the pool with the
modifications already in place. Since the 9.0.2 version of the Java Object Cache, the
only way to do this was never to check in the object, which would then defeat the
purpose of the pool. To support the pool requirement described in this paragraph,
the functionality described in the following two paragraphs has been added to the
pool management of the Java Object Cache.

Objects checked into the pool using the returnToPool method of the
PoolAccess object maintain an association with the last PoolAccess object that
referenced the object. When the PoolAccess handle requests an object instance,
the same object it had previously is returned. This association will be terminated if
the PoolAccess handle is closed, the PoolAccess.release method is called, or
the object is given to another user. Before the object is given to another user, a
callback is made to determine if the user is willing to give up the association with
the object. If the user is not willing to dissolve the association, the new user is not
given access to the object. The interface PoolAffinityFactory extends the
interface PoolInstanceFactory, adding the callback method

Running in Distributed Mode

Java Object Cache 9-61

affinityRelease. This method should return true if the association can be
broken, and false otherwise.

If the entire pool is invalidated, the affinityRelease method is not called.
Object instance cleanup should then be done with the
PoolInstanceFactory.instanceDestroy method.

Running in Local Mode
When running in local mode, the Java Object Cache does not share objects or
communicate with any other caches running locally on the same system or remotely
across the network. Object persistence across system shutdowns or program
failures is not supported when running in local mode.

By default, the Java Object Cache runs in local mode, and all objects in the cache are
treated as local objects. When the Java Object Cache is configured in local mode, the
cache ignores the DISTRIBUTE attribute for all objects.

Running in Distributed Mode
In distributed mode, the Java Object Cache can share objects and communicate with
other caches running either locally on the same system or remotely across the
network. Object updates and invalidations are propagated between communicating
caches. Distributed mode supports object persistence across system shutdowns and
program failures.

This section covers the following topics:

■ Configuring Properties for Distributed Mode

■ Using Distributed Objects, Regions, Subregions, and Groups

■ Cached Object Consistency Levels

Configuring Properties for Distributed Mode
To configure the Java Object Cache to run in distributed mode, set the value of the
distribute and discoveryAddress configuration properties in the
javacache.xml file.

Running in Distributed Mode

9-62 Oracle Application Server Containers for J2EE Services Guide

Setting the Distribute Configuration Property
To start the Java Object Cache in distributed mode, set the isDistributed
attribute to true in the configuration file. "Java Object Cache Configuration" on
page 9-29 describes how to do this.

Setting the discoveryAddress Configuration Property
In distributed mode, invalidations, destroys, and replaces are propagated through
the messaging system of the cache. The messaging system requires a known host
name and port address to allow a cache to join the cache system when it is first
initialized. Use the coordinator attribute in the communication section in the
javacache.xml file to specify a list of host name and port addresses.

By default, the Java Object Cache sets the coordinator to the value :12345 (this
is equivalent to localhost:12345). To eliminate conflicts with other software on
the site, have your system administrator set the discoveryAddress.

If the Java Object Cache spans systems, then configure multiple coordinator entries,
with one hostname:port pair specified for each node. Doing this avoids any
dependency on a particular system being available or on the order the processes are
started. Also see "Java Object Cache Configuration" on page 9-29.

Using Distributed Objects, Regions, Subregions, and Groups
When the Java Object Cache runs in distributed mode, individual regions,
subregions, groups, and objects can be either local or distributed. By default,
objects, regions, subregions, and groups are defined as local. To change the default
local value, set the DISTRIBUTE attribute when the object, region, or group is
defined.

A distributed cache can contain both local and distributed objects.

Several attributes and methods in the Java Object Cache allow you to work with
distributed objects and control the level of consistency of object data across the
caches. Also see "Cached Object Consistency Levels" on page 9-67.

Note: All caches cooperating in the same cache system must
specify the same set of host name and port addresses. The address
list, set with the coordinator attributes, defines the caches that make
up a particular cache system. If the address lists vary, then the
cache system could be partitioned into distinct groups, resulting in
inconsistencies between caches.

Running in Distributed Mode

Java Object Cache 9-63

Using the REPLY Attribute with Distributed Objects
When updating, invalidating, or destroying objects across multiple caches, it might
be useful to know when the action has completed at all the participating sites.
Setting the REPLY attribute causes all participating caches to send a reply to the
originator when a requested action has completed for the object. The
CacheAccess.waitForResponse() method allows the user to block until all
remote operations have completed.

To wait for a distributed action to complete across multiple caches, use
CacheAccess.waitForResponse(). To ignore responses, use the
CacheAccess.cancelResponse() method, which frees the cache resources used
to collect the responses.

Both CacheAccess.waitForResponse() and
CacheAccess.cancelResponse() apply to all objects that are accessed by the
CacheAccess object. This allows the application to update a number of objects,
then wait for all the replies.

Example 9–23 illustrates how to set an object as distributed and handle replies when
the REPLY attribute is set. In this example, you can also set the attributes for the
entire region. Additionally, you can also set attributes for a group or individual
object, as appropriate for your application.

Example 9–23 Distributed Caching Using Reply

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and have a reply generated
// by the remote caches when the change is completed

attr.setFlags(Attributes.DISTRIBUTE|Attributes.REPLY);
attr.setLoader(loader);

CacheAccess.defineRegion("testRegion",attr);
cacc = CacheAccess.getAccess("testRegion"); // create region with
 //distributed attributes

Running in Distributed Mode

9-64 Oracle Application Server Containers for J2EE Services Guide

obj = (String)cacc.get("testObject");
cacc.replace("testObject", obj + "new version"); // change will be
 // propagated to other caches

cacc.invalidate("invalidObject"); // invalidation is propagated to other caches

try
{
// wait for up to a second,1000 milliseconds, for both the update
// and the invalidate to complete
 cacc.waitForResponse(1000);

catch (TimeoutException ex)
{
 // tired of waiting so cancel the response
 cacc.cancelResponse();
}
cacc.close();
}

Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT
When updating objects across multiple caches, or when multiple threads access a
single object, you can coordinate the update action. Setting the SYNCHRONIZE
attribute enables synchronized updates and requires an application to obtain
ownership of an object before the object is loaded or updated.

The SYNCHRONIZE attribute also applies to regions, subregions, and groups. When
the SYNCHRONIZE attribute is applied to a region, subregion, or group, ownership
of the region, subregion, or group must be obtained before an object can be loaded
or replaced in the region, subregion, or group.

Setting the SYNCHRONIZE_DEFAULT attribute on a region, subregion, or group
applies the SYNCHRONIZE attribute to all of the objects within the region,
subregion, or group. Ownership must be obtained for the individual objects within
the region, subregion, or group before they can be loaded or replaced.

To obtain ownership of an object, use CacheAccess.getOwnership(). After
ownership is obtained, no other CacheAccess instance is allowed to load or
replace the object. Reads and invalidation of objects are not affected by
synchronization.

After ownership has been obtained and the modification to the object is completed,
call CacheAccess.releaseOwnership() to release the object.
CacheAccess.releaseOwnership() waits up to the specified time for the

Running in Distributed Mode

Java Object Cache 9-65

updates to complete at the remote caches. If the updates complete within the
specified time, ownership is released; otherwise, a TimeoutException is thrown.
If the method times out, call CacheAccess.releaseOwnership() again.
CacheAccess.releaseOwnership()must return successfully for ownership to
be released. If the timeout value is -1, then ownership is released immediately,
without waiting for the responses from the other caches.

Example 9–24 illustrates distributed caching using SYNCHRONIZE and
SYNCHRONIZE_DEFAULT.

Example 9–24 Distributed Caching Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

import oracle.ias.cache.*;

CacheAccess cacc;
String obj;
Attributes attr = new Attributes ();
MyLoader loader = new MyLoader();

// mark the object for distribution and set synchronize attribute
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE);
attr.setLoader(loader);

//create region
CacheAccess.defineRegion("testRegion");
cacc = CacheAccess.getAccess("testRegion");
cacc.defineGroup("syncGroup", attr); //define a distributed synchronized group
cacc.defineObject("syncObject", attr); // define a distributed synchronized object
attr.setFlagsToDefaults() // reset attribute flags

// define a group where SYNCHRONIZE is the default for all objects in the group
attr.setFlags(Attributes.DISTRIBUTE|Attributes.SYNCHRONIZE_DEFAULT);
cacc.defineGroup("syncGroup2", attr);
try
{
// try to get the ownership for the group don't wait more than 5 seconds
 cacc.getOwnership("syncGroup", 5000);
 obj = (String)cacc.get("testObject", "syncGroup"); // get latest object
 // replace the object with a new version
 cacc.replace("testObject", "syncGroup", obj + "new version");
 obj = (String)cacc.get("testObject2", "syncGroup"); // get a second object
 // replace the object with a new version
 cacc.replace("testObject2", "syncGroup", obj + "new version");
}

Running in Distributed Mode

9-66 Oracle Application Server Containers for J2EE Services Guide

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for group");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncGroup",5000);
}
catch (TimeoutException ex)
{
 // tired of waiting so just release ownership
 cacc.releaseOwnership("syncGroup", -1));
}
try
{
 cacc.getOwnership("syncObject", 5000); // try to get the ownership for the object
 // don't wait more than 5 seconds
 obj = (String)cacc.get("syncObject"); // get latest object
 cacc.replace("syncObject", obj + "new version"); // replace the object with a new version
}
catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("syncObject", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("syncObject", -1)); // tired of waiting so just release ownership
}
try
{
 cacc.getOwnership("Object2", "syncGroup2", 5000); // try to get the ownership for the object
 // where the ownership is defined as the default for the group don't wait more than 5 seconds
 obj = (String)cacc.get("Object2", "syncGroup2"); // get latest object
 // replace the object with new version
 cacc.replace("Object2", "syncGroup2", obj + "new version");
}

Running in Distributed Mode

Java Object Cache 9-67

catch (TimeoutException ex)
{
 System.out.println("unable to acquire ownership for object");
 cacc.close();
 return;
}
try
{
 cacc.releaseOwnership("Object2", 5000);
}
catch (TimeoutException ex)
{
 cacc.releaseOwnership("Object2", -1)); // tired of waiting so just release ownership
}
 cacc.close();
}

Cached Object Consistency Levels
Within the Java Object Cache, each cache manages its own objects locally within its
JVM process. In distributed mode, when using multiple processes or when the
system is running on multiple sites, a copy of an object can exist in more than one
cache.

The Java Object Cache allows you to specify the consistency level that is required
between copies of objects that are available in multiple caches. The consistency level
that you specify depends on the application and the objects being cached. The
supported levels of consistency vary, from none to all copies of objects being
consistent across all communicating caches.

Setting object attributes specifies the level of consistency. The consistency between
objects in different caches is categorized into the following four levels:

■ Using Local Objects (No consistency requirements)

■ Propagating Changes Without Waiting for a Reply

■ Propagating Changes and Waiting for a Reply

■ Serializing Changes Across Multiple Caches

Using Local Objects
If there are no consistency requirements between objects in distributed caches, then
define an object as a local object. (When Attributes.DISTRIBUTE is unset, this

Running in Distributed Mode

9-68 Oracle Application Server Containers for J2EE Services Guide

specifies a local object.) Local is the default setting for objects. For local objects, all
updates and invalidation are visible to only the local cache.

Propagating Changes Without Waiting for a Reply
To distribute object updates across distributed caches, define an object as
distributed by setting the DISTRIBUTE attribute. All modifications to distributed
objects are broadcast to other caches in the system. Using this level of consistency
does not control or specify when an object is loaded into the cache or updated, and
does not provide notification as to when the modification has completed in all
caches.

Propagating Changes and Waiting for a Reply
To distribute object updates across distributed caches and wait for the change to
complete before continuing, set the object’s DISTRIBUTE and REPLY attributes.
When you set these attributes, notification occurs when a modification has
completed in all caches. When you set Attributes.REPLY for an object, replies
are sent back to the modifying cache when the modification has been completed at
the remote site. These replies are returned asynchronously—that is, the
CacheAccess.replace() and CacheAccess.invalidate() methods do not
block. Use the CacheAccess.waitForResponse() method to wait for replies
and block.

Serializing Changes Across Multiple Caches
To use the highest level of consistency of the Java Object Cache, set the appropriate
attributes on the region, subregion, group, or object to make objects act as
synchronized objects.

When you set Attributes.SYNCHRONIZE_DEFAULT on a region, subregion, or
group, it sets the SYNCHRONIZE attribute for all the objects within the region,
subregion, or group.

When you set Attributes.SYNCHRONIZE on an object, it forces applications to
obtain ownership of the object before the object can be loaded or modified. Setting
this attribute effectively serializes write access to objects. To obtain ownership of an
object, use the CacheAccess.getOwnership() method. When you set the
Attributes.SYNCHRONIZE attribute, notification is sent to the owner when the
update is completed. Use CacheAccess.releaseOwnership() to block until
any outstanding updates have completed and the replies are received. This releases
ownership of the object so that other caches can update or load the object.

Running in Distributed Mode

Java Object Cache 9-69

When using this level of consistency, with Attributes.SYNCHRONIZE, the
CacheLoader.load() method should call CacheLoader.netSearch() before
loading the object from an external source. Calling CacheLoader.netSearch()
in the load method tells the Java Object Cache to search all other caches for a copy
of the object. This prevents different versions of the object from being loaded into
the cache from an external source. Proper use of the SYNCHRONIZE attribute, along
with the REPLY attribute and the invalidate method, should guarantee consistency
of objects across the cache system

Sharing Cached Objects in an OC4J Servlet
To take advantage of the distributed functionality of the Java Object Cache or to
share a cached object among servlets, some minor modification to an applications
deployment may be necessary. Any user-defined objects that will be shared among
servlets or distributed among JVMs must be loaded by the system class loader. By
default, objects that are loaded by a servlet are loaded by the context class loader.
These objects are visible to only the servlets within the context that loaded them.
The object definition is not available to other servlets or to the cache in another
JVM. If the object is loaded by the system class loader, the object definition is
available to other servlets and to the cache on other JVMs.

With the Apache JServ servlet environment (JServ), the preceding functionality was
accomplished by including the cached object in the classpath definition available
when the JServ process was started.

With OC4J, the system classpath is derived from the manifest of the oc4j.jar
file and any associated JAR files, including cache.jar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J,
copy the class file to ORACLE_HOME/javacache/sharedobjects/classes or
add it to the JAR file ORACLE_HOME/javacache/cachedobjects/share.jar.
Both the classes directory and the share.jar file have been included in the
manifest for cache.jar.

Note: Setting Attributes.SYNCHRONIZE for an object is not the
same as setting synchronized on a Java method. With
Attributes.SYNCHRONIZE set, the Java Object Cache forces the
cache to serialize creates and updates of the object, but does not
prevent the Java programmer from obtaining a reference to the
object and then modifying the object.

Running in Distributed Mode

9-70 Oracle Application Server Containers for J2EE Services Guide

XML Schema for Cache Configuration
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="http://www.oracle.com/oracle/ias/cache/configuration"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.oracle.com/oracle/ias/cache/configuration"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="cache-configuration" type="CacheConfigurationType">
 <xs:annotation>
 <xs:documentation>Oracle JavaCache implementation</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="CacheConfigurationType">
 <xs:sequence>
 <xs:element name="logging" type="loggingType" minOccurs="0"/>
 <xs:element name="communication" type="communicationType" minOccurs="0"/>
 <xs:element name="persistence" type="persistenceType" minOccurs="0"/>
 <xs:element name="region-name-separator" type="xs:string" minOccurs="0"/>
 <xs:element name="preload-file" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="max-objects" type="xs:positiveInteger" default="1000"
 minOccurs="0"/>
 <xs:element name="max-size" type="xs:positiveInteger" default="1000"
minOccurs="0"/>
 <xs:element name="clean-interval" type="xs:positiveInteger" default="60"
minOccurs="0"/>
 <xs:element name="ping-interval" type="xs:positiveInteger" default="60"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="loggingType">
 <xs:sequence>
 <xs:element name="location" type="xs:string" minOccurs="0"/>
 <xs:element name="level" type="loglevelType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="communicationType">
 <xs:sequence>
 <xs:element name="isDistributed" type="xs:boolean" default="false"
minOccurs="0"/>
 <xs:element name="coordinator" type="coordinatorType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="coordinatorType">

Running in Distributed Mode

Java Object Cache 9-71

 <xs:attribute name="ip" type="xs:string"/>
 <xs:attribute name="discovery-port" type="xs:positiveInteger"
use="required"/>
 </xs:complexType>
 <xs:complexType name="persistenceType">
 <xs:sequence>
 <xs:element name="location" type="xs:string"/>
 <xs:element name="disksize" type="xs:positiveInteger" default="30"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="loglevelType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="OFF"/>
 <xs:enumeration value="FATAL"/>
 <xs:enumeration value="ERROR"/>
 <xs:enumeration value="DEFAULT"/>
 <xs:enumeration value="WARNING"/>
 <xs:enumeration value="TRACE"/>
 <xs:enumeration value="INFO"/>
 <xs:enumeration value="DEBUG"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

XML schema for attribute declaration
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
targetNamespace="http://www.oracle.com/oracle/ias/cache/configuration/declarativ
e" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.oracle.com/oracle/ias/cache/configuration/declarative"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:complexType name="CacheType">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="region" type="regionType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="regionType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="region" type="regionType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="group" type="groupType" minOccurs="0"
maxOccurs="unbounded"/>

Running in Distributed Mode

9-72 Oracle Application Server Containers for J2EE Services Guide

 <xs:element name="cached-object" type="cached-objectType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="attributesType">
 <xs:sequence>
 <xs:element name="time-to-live" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="default-ttl" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="idle-time" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="version" type="xs:string" minOccurs="0"/>
 <xs:element name="max-count" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="priority" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="size" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="flag" minOccurs="0" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="flagType">
 <xs:enumeration value="distribute"/>
 <xs:enumeration value="reply"/>
 <xs:enumeration value="synchronize"/>
 <xs:enumeration value="spool"/>
 <xs:enumeration value="group_ttl_destroy"/>
 <xs:enumeration value="original"/>
 <xs:enumeration value="synchronize-default"/>
 <xs:enumeration value="allownull"/>
 <xs:enumeration value="measure"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="event-listener" type="event-listenerType"
minOccurs="0"/>
 <xs:element name="cache-loader" type="userDefinedObjectType"
minOccurs="0"/>
 <xs:element name="capacity-policy" type="userDefinedObjectType"
minOccurs="0"/>
 <xs:element name="user-defined" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

Running in Distributed Mode

Java Object Cache 9-73

 <xs:simpleType name="flagType">
 <xs:list itemType="xs:token"/>
 </xs:simpleType>
 <xs:complexType name="userDefinedObjectType">
 <xs:sequence>
 <xs:element name="classname" type="xs:string"/>
 <xs:element name="parameter" type="propertyType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="event-listenerType">
 <xs:sequence>
 <xs:element name="classname" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="handle-event" type="handle-eventType" use="required"/>
 <xs:attribute name="default" type="xs:boolean"/>
 </xs:complexType>
 <xs:simpleType name="handle-eventType">
 <xs:restriction>
 <xs:simpleType>
 <xs:list itemType="xs:token"/>
 </xs:simpleType>
 <xs:enumeration value="object-invalidated"/>
 <xs:enumeration value="object-updated"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="groupType">
 <xs:sequence>
 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="group" type="groupType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="cached-object" type="cached-objectType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="cached-objectType">
 <xs:sequence>

Running in Distributed Mode

9-74 Oracle Application Server Containers for J2EE Services Guide

 <xs:element name="attributes" type="attributesType" minOccurs="0"/>
 <xs:element name="name" type="nameType" minOccurs="0"/>
 <xs:element name="object" type="userDefinedObjectType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="nameType">
 <xs:choice>
 <xs:element name="string-name" type="xs:string"/>
 <xs:element name="object-name" type="userDefinedObjectType"/>
 </xs:choice>
 </xs:complexType>
</xs:schema>

Index-1

Index
Numerics
1pc

see single-phase commit

A
abnormal termination

OC4J JMS, 3-19
AbstractPrincipalMapping

extending, 8-23
administration

OracleAS JMS, 3-29
administration properties

OracleAS JMS, 3-29
admin.jar

resource adapters, deploying, 8-10
resource adaptors, undeploying, 8-10

admin.jar tool, 6-4, 6-6
ALLOWNULL Java Object Cache attribute, 9-16
application client example

JNDI, 2-8
ApplicationClientInitialContextFactory, 2-6
application-client.jar

JNDI, 2-4, 2-6
application-client.xml, 6-25

JNDI, 2-6
<application-server> element, 8-12
application.xml, 7-13

<data-sources> tag, 4-10
designating data-sources.xml, 4-10
location, 4-10

AQ, 3-33
<as-context> element, 6-23

Attributes.setCacheEventListener() method, 9-47
authentication classes

OC4J-specific, 8-20

B
bean-managed transactions

MDBs, and JMS clients, 7-19
between, 8-4
BMT

recovery, 7-16, 7-17
browse

JMS utility, 3-13

C
cache

concepts, 9-2
cache region, 9-10
CacheAccess

createPool() method, 9-57
CacheAccess.getOwnership() method, 9-64
CacheAccess.releaseOwnership() method, 9-64
CacheAccess.save() method, 9-53
CacheEventListener

Java Object Cache attribute, 9-18
CacheEventListener interface, 9-47
CacheLoader.createStream() method, 9-56
caching scheme, 4-28
CapacityPolicy

Java Object Cache attribute, 9-17
check

JMS utility, 3-12
class

Index-2

<data-source> attribute, 4-11
clean-available-connections-threshold

<data-source> attribute, 4-13
clean-interval configuration XML element, 9-30
client.sendpassword, 6-20
client.sendpassword property, 6-25
client-side installation requirements

RMI/IIOP, 6-3
RMI/ORMI, 5-3

client-side transaction demarcation, 7-9
clustering

issues, JMS and OracleAS JMS, 3-68
JNDI

enabling, 2-15
limitations, 2-15
overview, 2-14

CMP
connection recovery, 7-16
retry count, 7-17

CMT
recovery, 7-16
retry count, 7-17

com.evermind.server package
ApplicationClientInitialContextFactory, 5-14,

6-26
ApplicationInitialContextFactory, 5-14
JNDI, 2-6
RMIInitialContextFactory, 5-14

<commit-class> element, 7-14
<commit-coordinator> element, 7-14
Common Secure Interoperability Version 2

see CSIv2
com.oracle.iiop.server package

IIOPInitialContextFactory, 6-26
component-managed sign-on, 8-16
<confidentiality> element, 6-22
configuration

two-phase commit transaction, 7-11
configuration elements

OracleAS JMS hierarchical tree, 3-5
configuration files

data sources, 4-9
configuring

connection pooling, 8-14
high availability, 3-64

high availability, OJMS, 3-64
high availability, OracleAS JMS, 3-57
JMS provider, 3-34
OC4J for interoperability, 6-16
OC4J mount point in RMI/IIOP, 5-17
OC4J to support RMI tunneling, 5-16
Oracle JMS, 3-36
Oracle JMS provider in OC4J XML files, 3-39
OracleAS JMS, 3-3
OracleAS JMS ports, 3-3
resource provider with data sources

property, 3-40
single-phase commit, 7-3
timeouts in server.xml, 7-16
timeouts JTA, 7-16

configuring custom resource provider
JMS, 3-32

configuring resource provider
OJMS, 3-40, 3-41

connection, 4-12
connection factories

default, in JMS, 3-7
connection factory

configuration examples, 3-27
connection pooling

configuring, 8-14
connection-driver

<data-source> attribute, 4-11
ConnectionFactory

JMS, 3-7
connection-factory element, 3-25
connection-retry-interval

<data-source> attribute, 4-12
Consider, 2-15
constructing

JNDI contexts, 2-3
JNDI InitialContext, 2-4

container-managed sign-on, 8-17
container-managed transactions

MDBs, 7-19
<container-transaction> element, 7-8
context factory

usage, 5-14, 6-26
Context.bind API call, 2-2
contextFactory

Index-3

ApplicationClientInitialContextFactory, 6-25
IIOPInitialContextFactory, 6-25

contextFactory property, 6-25
context.SECURITY_CREDENTIAL

JNDI-related environment properties, 2-8
context.SECURITY_PRINCIPAL

JNDI-related environment properties, 2-7
copy

JMS utility, 3-13
CORBA Object Service Naming

see CosNaming
CORBA Transaction Service

see OTS
corbaname URL, 6-13
CosNaming, 6-2, 6-13
createDiskObject() method, 9-24, 9-53
createInstance() method, 9-59
CreatePool() method, 9-57
createStream() method, 9-24
CSIv2, 6-2

and EJBs, 6-20
internal-settings.xml, 6-20
introduction, 6-19
properties in orion-ejb-jar.xml, 6-22
security properties, 6-20, 6-22

D
Data Guard, 4-34
data source

configuration, 4-8
configuration file, 4-9
connection sharing, 4-23
default, 4-15
definition, 4-2
emulated, 4-15
error conditions, 4-24

JDBC driver, 4-25
user name, 4-24

JDBC connections, 4-2
JNDI, 4-2
location of XML file, 4-10
non-emulated, 4-5

behavior, 4-23
JTA transaction, 4-23

Oracle JDBC extensions, 4-27
portable, lookup, 4-20
retrieving connection, 4-20
using DataDirect driver, 4-30
using OCI driver, 4-29

<data-source> attribute
min-connections, 4-12

data source entry
SQLServer, with DataDirect, 4-31

data sources
configuration files, 4-9
defining, 4-8
defining in Enterprise Manager, 4-14
emulated, 4-3
introduction, 4-1
mixing, 4-7
native, 4-6
non-emulated, 4-5
summary, 1-3
two-phase commit, 4-25
types, 4-2
using, 4-20

data sources property
configuring resource provider, 3-40

database
caching scheme, 4-28

database configuration, 7-11
database-schema, 4-13, 4-18
DataDirect driver, 4-30
DataDirect JDBC drivers

installing, 4-30
<data-source>

attributes, 4-10
<data-source> attribute

class, 4-11
clean-available-connections-threshold, 4-13
connection-driver, 4-11
connection-retry-interval, 4-12
ejb-location, 4-12
inactivity-timeout, 4-12
location, 4-11
max-connect-attempts, 4-12
max-connections, 4-12
name, 4-11
password, 4-11

Index-4

rac-enabled, 4-13
schema, 4-13, 4-18
stmt-cache-size, 4-12
URL, 4-11
username, 4-11
wait-timeout, 4-12
xa-location, 4-11

DataSource object
look-up, 4-22, 7-4
retrieving, 7-4
types, 4-2

<data-source> tag, 4-10
data-sources.xml, 4-8, 7-13, 7-14

about, 4-9
designating location, 4-10
EAR file, 4-10
location, 4-10
preinstalled definitions, 4-15
use in JTA, 7-3

DBMS_AQADM package, 3-35
DBMS_AQADM.CREATE_QUEUE, 3-36
DbUtil

oracleFatalError method, 7-17
dcmctl

resource adaptors, deploying, 8-10
resource adaptors, undeploying, 8-10

declarative container-managed sign-on, 8-19
dedicated.rmicontext

JNDI-related environment properties, 2-7
DefaultTimeToLive

Java Object Cache attribute, 9-17
default-web-site.xml, 5-18
defineGroup() method, 9-21, 9-22
defineObject() method, 9-22
defineRegion() method, 9-20
deployment

and interoperability, 6-16
deployment descriptor

J2EE Connector, 8-5
JTA, 7-7
JTA attribute

Mandatory, 7-7
Never, 7-7
NotSupported transaction attribute type, 7-7
Required, 7-7

RequiresNew, 7-7
Supports, 7-7

dequeue-retry-count, 7-19
dequeue-retry-interval, 7-19
destinations

JMS utility, 3-13
destroy() method, 9-26
destroyInstance() method, 9-59
disallowed-field, 4-19
discoveryAddress property, 9-62
DISTRIBUTE

Java Object Cache attribute, 9-14, 9-61
distributed transaction coordinator, 4-25
drain

JMS utility, 3-13
DTC, 4-25
DTDs

internal-settings.xml, 6-19
<ior-security-config> element, 6-23

durables
JMS utility, 3-13

E
EJB

CSIv2, 6-20
interoperability, 6-1
making interoperable, 6-4, 6-9
server security properties table, 6-17

EJB interoperability
introduction, 6-2

ejb_sec.properties, 6-20, 6-24
ejb-jar.xml, 8-7

<message-driven-deployment> element, 7-18
ejb-location

<data-source> attribute, 4-12
emulated data sources, 4-3
Enterprise Information Systems (EISs), 8-2
Enterprise Manager

defining data sources, 4-14
<entity-deployment> element, 6-16
environment properties

JNDI-related, 2-7
<establish-trust-in-client> element, 6-22
<establish-trust-in-target> element, 6-22

Index-5

example
JNDI, servlet retrieves data source, 2-11

examples
connection factory configuration, 3-27

exception queue, predefined
OracleAS JMS, 3-20

exceptionHandler() method, 9-24

F
file-based persistence

OracleAS JMS, 3-14
files

interoperability deployment, 6-16
flags

OC4J, starting interoperably, 6-16

G
generated stub JAR file, 6-4, 6-6
getConnection method, 7-4
getConnection method, 4-22, 7-5
getID() method, 9-47
getName() method, 9-24
getOwnership() method, 9-64
getOwnsership() method, 9-68
getParent() method, 9-22
getRegion() method, 9-24
getSource() method, 9-47
global-web-application.xml, 5-16
GROUP_TTL_DESTROY

Java Object Cache attribute, 9-14
GROUP_TTL_DESTROY attribute, 9-25, 9-26

H
handleEvent() method, 9-47
help

JMS utility, 3-12
HiAvailability

and clustering, JMS, 3-56
hierarchical tree

OracleAS JMS configuration elements, 3-5
High Availability

Data Guard, 4-34

network failover, 4-34
Oracle Maximum Availability

Architecture, 4-33
Real Application Clusters, 4-34
SQL exceptions, 4-41
TAF, 4-34

high availability, 3-57, 3-64
configuring, 3-64

http.tunnel.path
JNDI-related environment properties, 2-7

I
identifying objects, 9-8
IdleTime

Java Object Cache attribute, 9-17
IIOP, 1-2, 6-2
iiopClientJar switch, 6-4, 6-6
IIOPInitialContextFactory, 2-14
import

oracle.ias.cache, 9-20
inactivity-timeout

<data-source> attribute, 4-12
initial context

creating in OC4J, 2-5
JNDI, 2-2

initial context factories
accessing objects in same application, 2-11
accessing objects not in same application, 2-13
JNDI, 2-6

INITIAL_CONTEXT_FACTORY
InitialContext property, 2-4

InitialContext
constructing in JNDI, 2-4
constructors, 2-4

InitialContext object, 2-2
InitialContext properties

INITIAL_CONTEXT_FACTORY, 2-4
PROVIDER_URL, 2-5
SECURITY_CREDENTIAL, 2-5
SECURITY_PRINCIPAL, 2-5

installing
client-side, RMI/IIOP, 6-3
client-side, RMI/ORMI, 5-3
JMS provider, 3-34

Index-6

OC4J client JAR files, 5-3, 6-3
<integrity> element, 6-22
internal-settings.xml

CSIv2 entities, 6-20
DTD, 6-19
EJB server security properties, 6-17
<sep-property> element, 6-17, 6-20

Internet Inter-ORB Protocol
see IIOP

interoperability
adding to EJB, 6-4, 6-9
advanced, configuring manually, 6-11
advanced, configuring with Oracle Enterprise

Manager, 6-11
advanced, in OracleAS environment, 6-10
configuring OC4J for, 6-16
files configuring, 6-16
naming, 6-2
OC4J flags, 6-16
overview, 1-2, 6-1
security, 6-2
simple, configuring manually, 6-9
simple, configuring with Oracle Enterprise

Manager, 6-6
simple, in OracleAS environment, 6-6
transaction, 6-2
transport, 6-2

interoperability, advanced
in standalone environment, 6-5

interoperability, simple
in standalone environment, 6-4

interoperable transport, 6-4
introduction to data sources, 4-1
introduction to OC4J services, 1-1
invalidate() method, 9-25
<ior-security-config> element, 6-16

DTD, 6-23

J
J2EE application clients

JNDI initial contexts, 2-6
J2EE application components

JNDI initial contexts, 2-11
J2EE Connector, 8-1

deployment descriptor, 8-5
resource adapters, 8-2

J2EE Connector Architecture
deployment directory locations, 8-13
file locations, 8-13
summary, 1-3

JAAS
pluggable authentication classes, 8-25

Java Key Store (JKS), 6-17
Java Message Service, see JMS
Java Naming and Directory Interface

 see JNDI
Java Object Cache, 9-2

attributes, 9-13
basic architecture, 9-3
basic interfaces, 9-5
cache consistency levels, 9-67
cache environment, 9-10
classes, 9-5
configuration

clean-interval XML element, 9-30
maxObjects property, 9-31
maxSize property, 9-31
ping-interval XML element, 9-30

consistency levels
distributed with reply, 9-68
distributed without reply, 9-68
local, 9-67
synchronized, 9-68

default region, 9-10
defining a group, 9-21, 9-22
defining a region, 9-20
defining an object, 9-22
destroy object, 9-26
disk cache

adding objects to, 9-53
disk objects, 9-52

definition of, 9-9
distributed, 9-53
local, 9-53
using, 9-53

distribute property, 9-62
distributed disk objects, 9-52
distributed groups, 9-62
distributed mode, 9-61

Index-7

distributed objects, 9-62
distributed regions, 9-62
features, 9-7
group, 9-11
identifying objects, 9-8
invalidating objects, 9-25
local disk objects, 9-52
local mode, 9-61
memory objects

definition of, 9-8
local memory object, 9-8
spooled memory object, 9-8
updating, 9-8

naming objects, 9-8
object types, 9-6, 9-8
pool objects

accessing, 9-58
creating, 9-57
definition of, 9-9
using, 9-57

programming restrictions, 9-50
region, 9-10
StreamAccess object, 9-9
subregion, 9-11
summary, 1-3

Java Object Cache attributes
ALLOWNULL, 9-16
CacheEventListener, 9-18
CapacityPolicy, 9-17
DefaultTimeToLive, 9-17
DISTRIBUTE, 9-14, 9-61
GROUP_TTL_DESTROY, 9-14
IdleTime, 9-17
LOADER, 9-15
maxCount, 9-19
MaxSize, 9-19
MEASURE, 9-16
ORIGINAL, 9-15
Priority, 9-18
REPLY, 9-15
SPOOL, 9-15
SYNCHRONIZE, 9-16
SYNCHRONIZE_DEFAULT, 9-16
TimeToLive, 9-18
User-defined, 9-19

Version, 9-18
Java Transaction API

 see JTA
Java-CORBA exception mapping, 6-15
java.naming.factory.initial property, 2-6, 5-11
java.naming.provider.url

JNDI-related environment properties, 2-7
property, 5-11, 6-25

java.util.Hashtable
JNDI, 2-4

javax.naming package, 2-2
javax.naming.Context interface

JNDI, 2-4
javax.sql.DataSource, 4-1, 4-2
JDBC

Oracle extensions, 4-27
transactions, 7-9

JMD
default connection factories, 3-7

JMS, 3-1
configuring custom resource provider, 3-32
configuring provider, 3-34
ConnectionFactory, 3-7
Destination, 3-35
example, where to download, 3-1
HiAvailability and clustering, 3-56
installing provider, 3-34
OracleAS, 3-2
overview, 3-1
programming models, 3-2
queue connection factory, 3-5
QueueConnectionFactory, 3-7
resource providers, 3-32
sending a message, JMS steps, 3-8
summary, 1-2
system properties, 3-29
topic connection factory, 3-6
TopicConnectionFactory, 3-7
XAConnectionFactory, 3-7
XAQueueConnectionFactory, 3-7
XATopicConnectionFactory, 3-7

JMS provider
configuring, 3-34
installing, 3-34

JMS utility

Index-8

browse, 3-13
check, 3-12
copy, 3-13
destinations, 3-13
drain, 3-13
durables, 3-13
help, 3-12
knobs, 3-12
move, 3-13
stats, 3-13
subscribe, 3-13
unsubscribe, 3-13

<jms-config> element, 3-4
jms/ConnectionFactory, 3-7
jms/QueueConnectionFactory, 3-7
jms-server element, 3-23
jms/TopicConnectionFactory, 3-7
jms/XAConnectionFactory, 3-7
jms/XAQueueConnectionFactory, 3-7
jms/XATopicConnectionFactory, 3-7
jms.xml

persistent-file attribute, 3-15
jms.xml, 3-3

modifying with Oracle Enterprise Manager, 3-3
JNDI, 2-1, 2-14

application client example, 2-8
application-client.jar, 2-4, 2-6
application-client.xml, 2-6
clustering

enabling, 2-15
limitations, 2-15
overview, 2-14

com.evermind.server package, 2-6
constructing contexts, 2-3
environment, 2-4
example, servlet retrieves data source, 2-11
initial context, 2-2
initial context factories, 2-6
InitialContext constructors, 2-4
java.util.Hashtable, 2-4
javax.naming.Context interface, 2-4
jndi.propertiesfile, 2-4
orion-application-client.xml, 2-6
overview, 2-1
summary, 1-2

JNDI initial components
from J2EE application clients, 2-11

JNDI initial contexts
from J2EE application clients, 2-6

JNDI lookup
properties in orion-ejb-jar.xml, 7-4

jndi.jar file, 2-2
jndi.properties file, 5-11, 6-25

JNDI, 2-4
JNDI-related environment properties, 2-7

context.SECURITY_CREDENTIAL, 2-8
context.SECURITY_PRINCIPAL, 2-7
dedicated.rmicontext, 2-7
http.tunnel.path, 2-7
java.naming.provider.url, 2-7

JTA
bean-managed transaction, 7-2, 7-8
client-side transaction demarcation, 7-9
code download site, 7-2
configuring timeouts, 7-16
container-managed transaction, 7-2, 7-7
demarcation, 7-2, 7-6
deployment descriptor, 7-7
MDBs, 7-17, 7-18
programmatic transaction demarcation, 7-8
resource enlistment, 7-2, 7-3
retrieving data source, 7-4
retry count, 7-17
single-phase commit

definition, 7-3
single-phase commit, configuring, 7-3
specification web site, 7-2
summary, 1-3
transaction attribute types, 7-7
transactions, 7-9
two-phase commit, 7-10
two-phase commit, configuration, 7-11
two-phase commit, definition, 7-3

K
keystore

definition, 6-17
knobs

JMS utility, 3-12

Index-9

L
LOADER

Java Object Cache attribute, 9-15
location

<data-source> attribute, 4-11
locations

deployment directories, 8-13
J2EE Connector Architecture, 8-13
J2EE Connector Architecture files, 8-13

log element, 3-26
log() method, 9-24

M
MAA, 4-33
Mandatory, 7-7
max-connect-attempts

<data-source> attribute, 4-12
max-connections

<data-source> attribute, 4-12
maxCount

Java Object Cache attribute, 9-19
maxObjects property, 9-31
MaxSize

Java Object Cache attribute, 9-19
maxSize property, 9-31
max-tx-retries attribute, 7-17
MDBs

and OJMS, 3-56
JTA, 7-17, 7-18
transaction timeout, 7-18
transactions, 7-17
transactions with OC4J JMS, 7-18
transactions with Oracle JMS, 7-18
with bean-managed transactions and JMS

clients, 7-19
with container-managed transactions, 7-19

MEASURE
Java Object Cache attribute, 9-16

message
sending in JMS, steps, 3-8

message expiration
OracleAS JMS, 3-20

message paging

OracleAS JMS, 3-21
message-driven beans, see MDBs
<message-driven-deployment> element, 7-18
min-connections

<data-source> attribute, 4-12
move

JMS utility, 3-13

N
name

<data-source> attribute, 4-11
nameservice.useSSL property, 6-25
naming interoperability, 6-2
naming objects, 9-8
native data sources, 4-6
netSearch() method, 9-24, 9-68
network failover, 4-34
Never transaction attribute type, 7-7
non-emulated data sources, 4-5

object, behavior, 4-23
NotSupported transaction attribute type, 7-7

O
OBJECT_INVALIDATION event, 9-48
OBJECT_UPDATED event, 9-48
OC4J

configuring to support RMI tunneling, 5-16
sample code page, 3-35

OC4J client JAR files, 5-3, 6-3
OC4J JMS

abnormal termination, 3-19
persistence file management, 3-16

OC4J mount point
configuring, 5-17

OC4J sample code page, 3-1, 3-35
oc4j-connectors.xml, 8-8
OC4J-hosted beans

invoking from non-OC4J container, 6-15
oc4j.iiop.ciphersuites property, 6-24
oc4j.iiop.enable.clientauth property, 6-24
oc4j.iiop.keyStoreLoc property, 6-24
oc4j.iiop.keyStorePass property property, 6-24
oc4j.iiop.trustedServers property, 6-25

Index-10

oc4j.iiop.trustStoreLoc property, 6-24
oc4j.iiop.trustStorePass property, 6-24
oc4j.jms.debug OracleAS JMS control knob, 3-30
oc4j.jms.forceRecovery OracleAS JMS control

knob, 3-31
oc4j.jms.listenerAttempts OracleAS JMS control

knob, 3-29
oc4j.jms.maxOpenFiles OracleAS JMS control

knob, 3-29
oc4j.jms.messagePoll OracleAS JMS control

knob, 3-29
oc4j.jms.noDms OracleAS JMS control knob, 3-30
oc4j.jms.pagingThreshold, 3-31
oc4j.jms.saveAllExpired OracleAS JMS control

knob, 3-29
oc4j.jms.saveAllExpired property, 3-21
oc4j.jms.serverPoll OracleAS JMS control

knob, 3-29
oc4j.jms.socketBufsize OracleAS JMS control

knob, 3-30
oc4j-ra.xml, 8-5, 8-6
OCI driver, 4-29
OJMS

as resource provider, 3-33
configure resource provider with Enterprise

Manager, 3-36
configuring resource provider, 3-40, 3-41
define resource provider, 3-36
resource provider, 3-33
using as a resource provider, 3-33
using as resource provider, 3-33

OJMS configuring, 3-64
OPMN, 6-18
OPMN URL, 6-14
opmn.xml file

editing, 5-10
Oracle Application Server Containers for J2EE

(OC4J)
interoperability, 6-1
interoperability flags, 6-16

Oracle Enterprise Manager
configuring JMS ports, 3-3
modifying jms.xml, 3-3

Oracle JMS
configuring, 3-36

Oracle JMS provider
configuring in OC4J XML files, 3-39

Oracle JMS, see OJMS
Oracle Maximum Availability Architecture, 4-33
Oracle Process Management Notification

service, 6-18
OracleAS JMS, 3-2

administration, 3-29
administration properties, table, 3-29
configuration elements hierarchical tree, 3-5
configuring, 3-3
control knob oc4j.jms.debug, 3-30
control knob oc4j.jms.forceRecovery, 3-31
control knob oc4j.jms.listenerAttempts, 3-29
control knob oc4j.jms.maxOpenFiles, 3-29
control knob oc4j.jms.messagePoll, 3-29
control knob oc4j.jms.noDms, 3-30
control knob oc4j.jms.saveAllExpired, 3-29
control knob oc4j.jms.serverPoll, 3-29
control knob oc4j.jms.socketBufsize, 3-30
exception queue, predefined, 3-20
file-based persistence, 3-14
message expiration, 3-20
message paging, 3-21
port,

configuring, 3-3
predefined exception queue, 3-20
utilities, 3-11
utilities, table, 3-12

OracleAS JMS configuring, 3-57
OracleAS JMS ports

configuring, 3-3
OracleAS Web Cache, 9-2
oracleFatalError method, 7-17
oracle.ias.cache package, 9-20
oracle.j2ee.connector package

AbstractPrincipalMapping, 8-23
OracleTwoPhaseCommitDriver, 7-14
ORIGINAL

Java Object Cache attribute, 9-15
orion-application-client.xml

JNDI, 2-6
orion-application.xml file

<resource-provider>, 3-52, 3-54, 3-55
orion-application.xml file, 7-13, 7-14

Index-11

and JNDI resource provider, 3-32
EAR file, 4-10

OrionCMTDataSource, 7-14
orion-ejb.jar file

<as-context> element, 6-23
/ element, 6-23
<transport-config> element, 6-22

orion-ejb-jar.xml file
<session-deployment> element, 6-16

, 6-22, 7-4, 8-7
<confidentiality> element, 6-22
<entity-deployment> element, 6-16
<establish-trust-in-client> element, 6-22
<establish-trust-in-target> element, 6-22
<integrity> element, 6-22
<ior-security-config> element, 6-16
security properties, 6-22

ORMI, 5-2
ORMI tunneling, 5-16
OTS, 6-2
overview of JMS, 3-1
overview of OC4J services, 1-1

P
password

<data-source> attribute, 4-11
indirection, 4-15
obfuscation, 4-15

persistence file management
OC4J JMS, 3-16

persistent-file attribute, 3-15
ping-interval configuration XML element, 9-30
pluggable authentication classes, 8-25
PoolAccess

close() method, 9-58
get() method, 9-58
getPool() method, 9-58
object, 9-58
returnToPool() method, 9-58

PoolInstanceFactory
implementing, 9-59

predefined exception queue
OracleAS JMS, 3-20

Priority

Java Object Cache attribute, 9-18
programmatic container-managed sign-on, 8-20
programmatic transaction demarcation, 7-8
programming models

JMS, 3-2
PROVIDER_URL

InitialContext property, 2-5

Q
QoS

see Quality of Service
Quality of Service

contracts, specifying, 8-14
JCA types, 8-4

queue connection factory
JMS, 3-5

queue element, 3-23
QueueConnectionFactory

JMS, 3-7
queue-connection-factory element, 3-25

R
RAC, 4-34
rac-enabled

<data-source> attribute, 4-13
RAR file, 8-2
ra.xml file, 8-6
release_Ownsership() method, 9-68
releaseOwnership() method, 9-64
Remote Method Invocation

see RMI
REPLY

Java Object Cache attributes, 9-15
REPLY attribute, 9-63
Required, 7-7
RequiresNew, 7-7
resource adapter archive

see RAR file
resource adapters

deploying, 8-5
embedded, 8-3, 8-11
introduction, 8-2
standalone, 8-9

Index-12

undeploying, 8-5
with admin.jar, 8-10

resource provider
configuring with data sources property, 3-40
OJMS, 3-33
OJMS, configure with Enterprise Manager, 3-36
OJMS, define, 3-36

resource providers
JMS, 3-32

<resource-env-ref> element, 3-47
<resource-provider> element, 3-52, 3-54, 3-55
<resource-provider> element, 3-39
ResourceProvider interface

JMS, 3-32
ResourceProvider interface

OJMS, 3-33
<resource-ref> element, 3-47, 4-20
<res-ref-name> element, 4-21
returnToPool() method, 9-58
RMI

IIOP, 6-2
introduction, 5-2
ORMI, 5-2
overview, 1-2, 5-1

RMI tunneling
configuring OC4J to support, 5-16

<rmi-config> element, 5-7
RMI/IIOP

advanced interoperability in OracleAS
environment, 6-10

advanced interoperability in standalone
environment, 6-5

configuring for advanced interoperability
manually, 6-11

configuring for advanced interoperability with
Oracle Enterprise Manager, 6-11

configuring for simple interoperability
manually, 6-9

configuring for simple interoperability with
Oracle Enterprise Manager, 6-6

configuring OC4J mount point, 5-17
contextFactory property, 6-25
Java-CORBA exception mapping, 6-15
java.naming.factory.initial property, 5-11
java.naming.provider.url property, 5-11, 6-25

jndi.properties file, 5-11, 6-25
simple interoperability in OracleAS

environment, 6-6
simple interoperability in standalone

environment, 6-4
RMIInitialContextFactory, 2-13
<rmi-server> element, 5-7
rmi.xml

editing, 5-7

S
sample code page, OC4J, 3-1
<sas-context> element, 6-23
save() method, 9-53
schema

<data-source> attribute, 4-13, 4-18
security interoperability, 6-2
security properties, 6-19
SECURITY_CREDENTIAL

InitialContext property, 2-5
SECURITY_PRINCIPAL

InitialContext property, 2-5
sending a message

JMS steps, 3-8
<sep-config> element, 5-10, 6-16
<sep-property> element, 6-17, 6-20
server.xml

<application-server> element, 8-12
and RMI, 5-7
configuring timeouts, 7-16
<sep-config> element, 5-10, 6-16

service provider interfaces, 2-2
<session-deployment> element, 6-16
setAttributes() method, 9-24
setCacheEventListener() method, 9-47
single-phase commit

configuring, 7-3
SPIs, 2-2
SPOOL

Java Object Cache attribute, 9-15, 9-53
SQLServer

data source entry with DataDirect, 4-31
standalone resource adapters, 8-2
stats

Index-13

JMS utility, 3-13
stmt-cache-size

<data-source> attribute, 4-12
StreamAccess object, 9-9

InputStream, 9-55
OutputStream, 9-55
using, 9-55

Streams Advanced Queuing (AQ), 3-33
subscribe

JMS utility, 3-13
Supports, 7-7
SYNCHRONIZE

Java Object Cache attribute, 9-16, 9-64
SYNCHRONIZE_DEFAULT

Java Object Cache attribute, 9-16, 9-64

T
TAF

configuration options, 4-38
configuring, 4-36, 4-37
descriptor, 4-38
exceptions, 4-40

timeouts
configuring, JTA, 7-16

TimeToLive
Java Object Cache attribute, 9-18

topic connection factory
JMS, 3-6

topic element, 3-24
TopicConnectionFactory

JMS, 3-7
topic-connection-factory element, 3-25
transaction

bean managed, 7-2
container-managed, 7-2
demarcation, 7-2, 7-6
resource enlistment, 7-2, 7-3
two-phase commit, 7-11
UserTransaction object, 7-9

transaction attribute types, 7-7
transaction demarcation

client-side, JTA, 7-9
programmatic, JTA, 7-8

transaction interoperability, 6-2

transactions
JDBC, 7-9
JTA, 7-9
MDBs, 7-17
MDBs with OC4J JMS, 7-18
MDBs with Oracle JMS, 7-18

transaction-timeout attribute, 7-18
<transaction-type> element, 7-6, 7-8
trans-attribute attribute, 7-17
<trans-attribute> element, 7-7, 7-8
Transparent Application Failover

see TAF
transport interoperability, 6-2
<transport-config> element, 6-22
trust relationships, 6-21
truststore

definition, 6-17
tunneling

ORMI, 5-16
two-phase commit

data sources, 4-25
definition, 7-3
engine limitations, 7-15
OracleTwoPhaseCommitDriver, 7-14
overview, 7-10

tx-retry-wait attribute, 7-17
type-mapping, 4-19

U
unsubscribe

JMS utility, 3-13
URL

<data-source> attribute, 4-11
corbaname, 6-13
OPMN, 6-14

User-defined
Java Object Cache attribute, 9-19

username
<data-source> attribute, 4-11

UserTransaction object
use in JTA, 7-9

using resource provider
OJMS, 3-33

utilities

Index-14

OracleAS JMS, 3-11
OracleAS JMS, table, 3-12

V
Version

Java Object Cache attribute, 9-18

W
wait-timeout

<data-source> attribute, 4-12
Web Cache, 9-2
Web Object Cache, 9-2

X
XAConnectionFactory

JMS, 3-7
xa-connection-factory element, 3-25
xa-location

<data-source> attribute, 4-11
XAQueueConnectionFactory

JMS, 3-7
xa-queue-connection-factory element, 3-25
XATopicConnectionFactory

JMS, 3-7
xa-topic-connection-factory element, 3-25

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Introduction to OC4J Services
	Java Naming and Directory Interface (JNDI)
	Java Message Service (JMS)
	Remote Method Invocation (RMI)
	Data Sources
	Java Transaction API (JTA)
	J2EE Connector Architecture (JCA)
	Java Object Cache

	2 Java Naming and Directory Interface
	Introduction
	Initial Context

	Constructing a JNDI Context
	The JNDI Environment
	Creating the Initial Context in OC4J
	From J2EE Application Clients
	Environment Properties
	Application Client Example

	From J2EE Application Components
	Objects in the Same Application
	Objects Not in the Same Application

	JNDI Clustering
	Enabling JNDI Clustering
	JNDI Clustering Limitations
	Multiple Islands on a Given Subnet
	Propagating Changes Across the Cluster
	Binding a Remote Object

	3 Java Message Service
	Overview
	Oracle Application Server JMS
	Configuring OracleAS JMS Ports
	Configuring OracleAS JMS Destination Objects
	Steps for Sending and Receiving a Message
	OracleAS JMS Utilities
	OracleAS JMS File-Based Persistence
	Abnormal Termination
	Predefined OracleAS JMS Exception Queue
	Message Paging
	OracleAS JMS Configuration File Elements for jms.xml
	OracleAS JMS System Properties

	Resource Providers
	Oracle JMS
	Using OJMS as a Resource Provider
	Using OJMS with Oracle Application Server and the Oracle Database

	Map Logical Names in Resource References to JNDI Names
	JNDI Naming for OracleAS JMS
	JNDI Naming for OJMS
	JNDI Naming Property Setup for Java Application Clients
	Client Sends JMS Message Using Logical Names

	Third-Party JMS Providers
	Using WebSphere MQ as a Resource Provider
	Using SonicMQ as a Resource Provider
	Using SwiftMQ as a Resource Provider

	Using Message-Driven Beans
	High Availability and Clustering for JMS
	Oracle Application Server JMS High Availability Configuration
	OJMS High Availability Configuration
	Failover Scenarios When Using a RAC Database With OJMS
	Server Side Sample Code for Failover for Both JMS Providers
	Clustering Best Practices

	4 Data Sources
	Introduction
	Types of Data Sources
	Emulated Data Sources
	Non-emulated Data Sources
	Native Data Sources

	Mixing Data Sources

	Defining Data Sources
	Configuration Files
	Defining Location of the Data Source XML Configuration File
	Application-Specific Data Source XML Configuration File

	Data Source Attributes
	Defining Data Sources in Oracle Enterprise Manager
	Defining Data Sources in the XML Configuration File
	Password Indirection
	Configuring an Indirect Password with Oracle Enterprise Manager
	Configuring an Indirect Password Manually

	Associating a Database Schema with a Data Source
	The database-schema.xml File
	Example Configuration

	Using Data Sources
	Portable Data Source Lookup
	Retrieving a Connection from a Data Source
	Retrieving Connections with a Non-emulated Data Source
	Retrieving a Connection Outside a Global Transaction
	Retrieving a Connection Within a Global Transaction

	Connection Retrieval Error Conditions
	Using Different User Names for Two Connections to a Single Data Source
	Improperly configured OCI JDBC driver

	Using Two-Phase Commits and Data Sources
	Using Oracle JDBC Extensions
	Using Connection Caching Schemes
	Using the OCI JDBC Drivers
	Using DataDirect JDBC Drivers
	Installing and Setting Up DataDirect JDBC Drivers
	Example DataDirect Data Source Entries
	SQLServer
	DB2
	Sybase

	High Availability Support for Data Sources
	Introduction
	Oracle Maximum Availability Architecture (MAA)
	High Availability Support in OC4J

	Configuring Network Failover with OC4J
	Configuring Transparent Application Failover (TAF) with OC4J
	Configuring a TAF Descriptor (tnsnames.ora)
	Connection Pooling
	Acknowledging TAF Exceptions
	SQL Exception Handling

	5 5 Oracle Remote Method Invocation
	Introduction to RMI/ORMI
	ORMI Enhancements
	Increased RMI Message Throughput
	Enhanced Threading Support
	Co-located Object Support

	Client-Side Requirements

	Configuring OC4J for RMI
	Configuring RMI Using Oracle Enterprise Manager
	Configuring RMI Manually
	Editing server.xml
	Editing rmi.xml
	Editing opmn.xml

	RMI Configuration Files
	JNDI Properties for RMI
	Naming Provider URL
	Context Factory Usage

	Example Lookups
	OC4J Standalone
	OC4J in Oracle Application Server: Releases Before 10g (9.0.4)
	OC4J in Oracle Application Server: 10g (9.0.4) Release

	Configuring ORMI Tunneling through HTTP
	Configuring an OC4J Mount Point

	6 6 J2EE Interoperability
	Introduction to RMI/IIOP
	Transport
	Naming
	Security
	Transactions
	Client-Side Requirements
	The rmic.jar Compiler

	Switching to Interoperable Transport
	Simple Interoperability in a Standalone Environment
	Advanced Interoperability in a Standalone Environment
	Simple Interoperability in Oracle Application Server Environment
	Configuring for Interoperability Using Oracle Enterprise Manager
	Configuring for Interoperability Manually

	Advanced Interoperability in Oracle Application Server Environment
	Configuring for Interoperability Using Oracle Enterprise Manager
	Configuring for Interoperability Manually

	The corbaname URL
	The OPMN URL
	Exception Mapping
	Invoking OC4J-Hosted Beans from a Non-OC4J Container

	Configuring OC4J for Interoperability
	Interoperability OC4J Flags
	Interoperability Configuration Files
	EJB Server Security Properties (internal-settings.xml)
	CSIv2 Security Properties
	CSIv2 Security Properties (internal-settings.xml)
	CSIv2 Security Properties (ejb_sec.properties)
	Trust Relationships

	CSIv2 Security Properties (orion-ejb-jar.xml)
	The <transport-config> Element
	The <as-context> element
	The <sas-context> element

	EJB Client Security Properties (ejb_sec.properties)
	JNDI Properties for Interoperability (jndi.properties)
	Context Factory Usage

	7 Java Transaction API
	Introduction
	Demarcating Transactions
	Enlisting Resources

	Single-Phase Commit
	Enlisting a Single Resource
	Configure the Data Source
	Retrieve the Data Source Connection
	Perform JNDI Lookup
	Retrieve a Connection

	Demarcating the Transaction
	Container-Managed Transactional Demarcation
	Bean-Managed Transactions
	JTA Transactions

	JDBC Transactions

	Two-Phase Commit
	Configuring Two-Phase Commit Engine
	Database Configuration Steps
	OC4J Configuration Steps

	Limitations of Two-Phase Commit Engine

	Configuring Timeouts
	Recovery for CMP Beans When Database Instance Fails
	Connection Recovery for CMP Beans That Use Container-Managed Transactions
	Connection Recovery for CMP Beans That Use Bean-Managed Transactions

	Using Transactions With MDBs
	Transaction Behavior for MDBs using OC4J JMS
	Transaction Behavior for MDBs using Oracle JMS
	MDBs that Use Container-Managed Transactions
	MDBs that Use Bean-Managed Transactions and JMS Clients

	8 8 J2EE Connector Architecture
	Introduction
	Resource Adapters
	Standalone Resource Adapters
	Embedded Resource Adapters
	Example of RAR File Structure
	The ra.xml Descriptor

	Application Interface
	Quality of Service Contracts

	Deploying and Undeploying Resource Adapters
	Deployment Descriptors
	The oc4j-ra.xml Descriptor
	The oc4j-connectors.xml Descriptor

	Standalone Resource Adapters
	Deployment

	Embedded Resource Adapters
	Deployment

	Locations of Relevant Files

	Specifying Quality of Service Contracts
	Configuring Connection Pooling
	Managing EIS Sign-On
	Component-Managed Sign-On
	Container-Managed Sign-On

	Declarative Container-Managed Sign-On
	Programmatic Container-Managed Sign-On
	OC4J-Specific Authentication Classes
	JAAS Pluggable Authentication Classes
	Special Features Accessible Via Programmatic Interface

	9 Java Object Cache
	Java Object Cache Concepts
	Java Object Cache Basic Architecture
	Distributed Object Management

	How the Java Object Cache Works
	Cache Organization
	Java Object Cache Features

	Java Object Cache Object Types
	Memory Objects
	Disk Objects
	StreamAccess Objects
	Pool Objects

	Java Object Cache Environment
	Cache Regions
	Cache Subregions
	Cache Groups
	Region and Group Size Control
	Cache Object Attributes
	Using Attributes Defined Before Object Loading
	Using Attributes Defined Before or After Object Loading

	Developing Applications Using Java Object Cache
	Importing Java Object Cache
	Defining a Cache Region
	Defining a Cache Group
	Defining a Cache Subregion
	Defining and Using Cache Objects
	Implementing a CacheLoader Object
	Using CacheLoader Helper Methods

	Invalidating Cache Objects
	Destroying Cache Objects
	Multiple Object Loading and Invalidation
	Java Object Cache Configuration
	Examples

	Declarative Cache
	Declarative Cache File Sample
	Declarative Cache File Format
	Examples
	Declarable User-Defined Objects
	Declarable CacheLoader, CacheEventListener, and CapacityPolicy
	Initializing the Java Object Cache in a non-OC4J Container

	Capacity Control
	Implementing a Cache Event Listener
	Restrictions and Programming Pointers

	Working with Disk Objects
	Local and Distributed Disk Cache Objects
	Local Objects
	Distributed Objects

	Adding Objects to the Disk Cache
	Automatically Adding Objects
	Explicitly Adding Objects
	Using Objects that Reside Only in Disk Cache

	Working with StreamAccess Objects
	Creating a StreamAccess Object

	Working with Pool Objects
	Creating Pool Objects
	Using Objects from a Pool
	Implementing a Pool Object Instance Factory
	Pool Object Affinity

	Running in Local Mode
	Running in Distributed Mode
	Configuring Properties for Distributed Mode
	Setting the Distribute Configuration Property
	Setting the discoveryAddress Configuration Property

	Using Distributed Objects, Regions, Subregions, and Groups
	Using the REPLY Attribute with Distributed Objects
	Using SYNCHRONIZE and SYNCHRONIZE_DEFAULT

	Cached Object Consistency Levels
	Using Local Objects
	Propagating Changes Without Waiting for a Reply
	Propagating Changes and Waiting for a Reply
	Serializing Changes Across Multiple Caches

	Sharing Cached Objects in an OC4J Servlet
	XML Schema for Cache Configuration
	XML schema for attribute declaration

	Index

