
PL/SQL
User's Guide and Reference

10g Release 1 (10.1)

Part No. B10807-01

December 2003

PL/SQL User's Guide and Reference, 10g Release 1 (10.1)

Part No. B10807-01

Copyright © 1996, 2003 Oracle. All rights reserved.

Primary Author: John Russell

Contributors: Shashaanka Agrawal, Cailein Barclay, Dmitri Bronnikov, Sharon Castledine, Thomas
Chang, Ravindra Dani, Chandrasekharan Iyer, Susan Kotsovolos, Neil Le, Warren Li, Bryn Llewellyn, Chris
Racicot, Murali Vemulapati, Guhan Viswanathan, Minghui Yang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xv

Preface .. xvii

Audience.. xvii
How This Book Is Organized.. xvii
Related Documentation... xix
Conventions ... xx
Sample Database Tables .. xxi
Documentation Accessibility .. xxii
Reading the Syntax Diagrams .. xxii

What's New in PL/SQL?... xxiii

New Features in PL/SQL for Oracle Database 10g ... xxiii
New Features in PL/SQL for Oracle9i .. xxvi

1 Overview of PL/SQL

Advantages of PL/SQL .. 1-1
Tight Integration with SQL .. 1-1
Support for SQL.. 1-2
Better Performance... 1-2
Higher Productivity ... 1-3
Full Portability .. 1-3
Tight Security.. 1-3
Support for Object-Oriented Programming ... 1-3

Understanding the Main Features of PL/SQL .. 1-4
Block Structure.. 1-4
Variables and Constants.. 1-5
Processing Queries with PL/SQL.. 1-6
Declaring PL/SQL Variables.. 1-6
Control Structures .. 1-7
Writing Reusable PL/SQL Code.. 1-9
Data Abstraction.. 1-10
Error Handling .. 1-12

PL/SQL Architecture ... 1-12
In the Oracle Database Server ... 1-13

iv

In Oracle Tools... 1-14

2 Fundamentals of the PL/SQL Language

Character Set.. 2-1
Lexical Units .. 2-1

Delimiters .. 2-2
Identifiers... 2-3
Literals ... 2-4
Comments ... 2-7

Declarations... 2-8
Using DEFAULT .. 2-9
Using NOT NULL.. 2-9
Using the %TYPE Attribute .. 2-9
Using the %ROWTYPE Attribute ... 2-10
Restrictions on Declarations .. 2-12

PL/SQL Naming Conventions .. 2-12
Scope and Visibility of PL/SQL Identifiers .. 2-14
Assigning Values to Variables .. 2-16

Assigning Boolean Values ... 2-17
Assigning a SQL Query Result to a PL/SQL Variable .. 2-17

PL/SQL Expressions and Comparisons... 2-17
Logical Operators .. 2-18
Boolean Expressions ... 2-21
CASE Expressions ... 2-24
Handling Null Values in Comparisons and Conditional Statements 2-25

Summary of PL/SQL Built-In Functions... 2-28

3 PL/SQL Datatypes

Overview of Predefined PL/SQL Datatypes.. 3-1
PL/SQL Number Types .. 3-2
PL/SQL Character and String Types .. 3-4
PL/SQL National Character Types ... 3-8
PL/SQL LOB Types .. 3-10
PL/SQL Boolean Types.. 3-11
PL/SQL Date, Time, and Interval Types ... 3-12
Datetime and Interval Arithmetic... 3-15
Avoiding Truncation Problems Using Date and Time Subtypes... 3-16

Overview of PL/SQL Subtypes .. 3-16
Defining Subtypes .. 3-16
Using Subtypes ... 3-17

Converting PL/SQL Datatypes.. 3-18
Explicit Conversion... 3-18
Implicit Conversion .. 3-18
Choosing Between Implicit and Explicit Conversion .. 3-20
DATE Values.. 3-20
RAW and LONG RAW Values ... 3-20

v

4 Using PL/SQL Control Structures

Overview of PL/SQL Control Structures ... 4-1
Testing Conditions: IF and CASE Statements .. 4-2

Using the IF-THEN Statement ... 4-2
Using the IF-THEN-ELSE Statement... 4-2
Using the IF-THEN-ELSIF Statement.. 4-3
Using the CASE Statement ... 4-3
Guidelines for PL/SQL Conditional Statements... 4-5

Controlling Loop Iterations: LOOP and EXIT Statements... 4-6
Using the LOOP Statement... 4-6
Using the EXIT Statement ... 4-7
Using the EXIT-WHEN Statement... 4-7
Labeling a PL/SQL Loop .. 4-7
Using the WHILE-LOOP Statement.. 4-8
Using the FOR-LOOP Statement ... 4-9

Sequential Control: GOTO and NULL Statements .. 4-12
Using the GOTO Statement ... 4-12
Using the NULL Statement.. 4-13

5 Using PL/SQL Collections and Records

What Is a Collection? ... 5-1
Understanding Nested Tables.. 5-2
Understanding Varrays... 5-2
Understanding Associative Arrays (Index-By Tables) ... 5-3
How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays 5-4

Choosing Which PL/SQL Collection Types to Use .. 5-4
Choosing Between Nested Tables and Associative Arrays ... 5-5
Choosing Between Nested Tables and Varrays... 5-5

Defining Collection Types .. 5-6
Defining SQL Types Equivalent to PL/SQL Collection Types ... 5-7

Declaring PL/SQL Collection Variables... 5-8
Initializing and Referencing Collections ... 5-10

Referencing Collection Elements .. 5-12
Assigning Collections... 5-13
Comparing Collections... 5-16
Using PL/SQL Collections with SQL Statements ... 5-17

Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements 5-20
Manipulating Individual Collection Elements with SQL.. 5-21

Using Multilevel Collections .. 5-21
Using Collection Methods ... 5-23

Checking If a Collection Element Exists (EXISTS Method) .. 5-24
Counting the Elements in a Collection (COUNT Method) ... 5-24
Checking the Maximum Size of a Collection (LIMIT Method) .. 5-24
Finding the First or Last Collection Element (FIRST and LAST Methods) 5-25
Looping Through Collection Elements (PRIOR and NEXT Methods).................................... 5-26
Increasing the Size of a Collection (EXTEND Method) ... 5-27

vi

Decreasing the Size of a Collection (TRIM Method).. 5-28
Deleting Collection Elements (DELETE Method) .. 5-29
Applying Methods to Collection Parameters.. 5-30

Avoiding Collection Exceptions ... 5-30
What Is a PL/SQL Record? ... 5-32
Defining and Declaring Records .. 5-32

Using Records as Procedure Parameters and Function Return Values 5-33
Assigning Values to Records... 5-34

Comparing Records .. 5-35
Inserting PL/SQL Records into the Database... 5-36
Updating the Database with PL/SQL Record Values ... 5-36
Restrictions on Record Inserts/Updates.. 5-37
Querying Data into Collections of Records .. 5-38

6 Performing SQL Operations from PL/SQL

Overview of SQL Support in PL/SQL .. 6-1
Data Manipulation ... 6-1
Transaction Control ... 6-2
SQL Functions... 6-2
SQL Pseudocolumns.. 6-2
SQL Operators .. 6-4

Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)......................... 6-5
Overview of Implicit Cursor Attributes ... 6-6

Using PL/SQL Records in SQL INSERT and UPDATE Statements ... 6-7
Issuing Queries from PL/SQL.. 6-7

Selecting At Most One Row: SELECT INTO Statement ... 6-7
Selecting Multiple Rows: BULK COLLECT Clause .. 6-8
Looping Through Multiple Rows: Cursor FOR Loop... 6-8
Performing Complicated Query Processing: Explicit Cursors .. 6-8

Querying Data with PL/SQL .. 6-9
Querying Data with PL/SQL: Implicit Cursor FOR Loop... 6-9
Querying Data with PL/SQL: Explicit Cursor FOR Loops ... 6-9
Defining Aliases for Expression Values in a Cursor FOR Loop... 6-10
Overview of Explicit Cursors .. 6-10

Using Subqueries .. 6-13
Using Correlated Subqueries.. 6-15

Writing Maintainable PL/SQL Queries... 6-15
Using Cursor Attributes ... 6-16

Overview of Explicit Cursor Attributes... 6-16
Using Cursor Variables (REF CURSORs) ... 6-19

What Are Cursor Variables (REF CURSORs)?.. 6-19
Why Use Cursor Variables?... 6-19
Declaring REF CURSOR Types and Cursor Variables .. 6-20
Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE.. 6-22
Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL 6-26
Avoiding Errors with Cursor Variables... 6-26
Restrictions on Cursor Variables .. 6-27

vii

Using Cursor Expressions.. 6-27
Restrictions on Cursor Expressions .. 6-28
Example of Cursor Expressions .. 6-28
Constructing REF CURSORs with Cursor Subqueries .. 6-29

Overview of Transaction Processing in PL/SQL ... 6-29
Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL ... 6-29
How Oracle Does Implicit Rollbacks ... 6-31
Ending Transactions ... 6-31
Setting Transaction Properties with SET TRANSACTION .. 6-32
Overriding Default Locking .. 6-32

Doing Independent Units of Work with Autonomous Transactions .. 6-35
Advantages of Autonomous Transactions .. 6-35
Defining Autonomous Transactions .. 6-35
Controlling Autonomous Transactions ... 6-37
Using Autonomous Triggers ... 6-38
Calling Autonomous Functions from SQL.. 6-39

7 Performing SQL Operations with Native Dynamic SQL

What Is Dynamic SQL? ... 7-1
Why Use Dynamic SQL?... 7-2
Using the EXECUTE IMMEDIATE Statement ... 7-2

Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings 7-4
Building a Dynamic Query with Dynamic SQL .. 7-4
Examples of Dynamic SQL for Records, Objects, and Collections .. 7-5
Using Bulk Dynamic SQL .. 7-6

Using Dynamic SQL with Bulk SQL ... 7-6
Examples of Dynamic Bulk Binds.. 7-7

Guidelines for Dynamic SQL .. 7-8
When to Use or Omit the Semicolon with Dynamic SQL .. 7-8
Improving Performance of Dynamic SQL with Bind Variables.. 7-8
Passing Schema Object Names As Parameters .. 7-9
Using Duplicate Placeholders with Dynamic SQL ... 7-9
Using Cursor Attributes with Dynamic SQL.. 7-10
Passing Nulls to Dynamic SQL ... 7-10
Using Database Links with Dynamic SQL .. 7-10
Using Invoker Rights with Dynamic SQL ... 7-11
Using Pragma RESTRICT_REFERENCES with Dynamic SQL.. 7-11
Avoiding Deadlocks with Dynamic SQL .. 7-12
Backward Compatibility of the USING Clause .. 7-12

8 Using PL/SQL Subprograms

What Are Subprograms? ... 8-1
Advantages of PL/SQL Subprograms... 8-2
Understanding PL/SQL Procedures .. 8-3
Understanding PL/SQL Functions .. 8-3

Using the RETURN Statement ... 8-4

viii

Declaring Nested PL/SQL Subprograms ... 8-5
Passing Parameters to PL/SQL Subprograms ... 8-6

Actual Versus Formal Subprogram Parameters.. 8-6
Using Positional, Named, or Mixed Notation for Subprogram Parameters 8-7
Specifying Subprogram Parameter Modes... 8-7
Using Default Values for Subprogram Parameters... 8-9

Overloading Subprogram Names ... 8-9
Guidelines for Overloading with Numeric Types ... 8-11
Restrictions on Overloading .. 8-11

How Subprogram Calls Are Resolved .. 8-12
How Overloading Works with Inheritance... 8-13

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause) ... 8-15
Advantages of Invoker's Rights .. 8-15
Specifying the Privileges for a Subprogram with the AUTHID Clause.................................. 8-16
Who Is the Current User During Subprogram Execution? ... 8-16
How External References Are Resolved in Invoker's Rights Subprograms........................... 8-16
Overriding Default Name Resolution in Invoker's Rights Subprograms............................... 8-17
Granting Privileges on Invoker's Rights Subprograms ... 8-17
Using Roles with Invoker's Rights Subprograms... 8-18
Using Views and Database Triggers with Invoker's Rights Subprograms............................. 8-18
Using Database Links with Invoker's Rights Subprograms ... 8-18
Using Object Types with Invoker's Rights Subprograms ... 8-19

Using Recursion with PL/SQL .. 8-20
What Is a Recursive Subprogram?.. 8-20

Calling External Subprograms.. 8-21
Creating Dynamic Web Pages with PL/SQL Server Pages .. 8-22
Controlling Side Effects of PL/SQL Subprograms ... 8-22
Understanding Subprogram Parameter Aliasing ... 8-23

9 Using PL/SQL Packages

What Is a PL/SQL Package? .. 9-2
What Goes In a PL/SQL Package? .. 9-2
Example of a PL/SQL Package .. 9-3

Advantages of PL/SQL Packages... 9-3
Understanding The Package Specification .. 9-4

Referencing Package Contents ... 9-5
Understanding The Package Body.. 9-6
Some Examples of Package Features .. 9-7
Private Versus Public Items in Packages .. 9-11
Overloading Packaged Subprograms.. 9-11
How Package STANDARD Defines the PL/SQL Environment ... 9-12
Overview of Product-Specific Packages.. 9-12

About the DBMS_ALERT Package... 9-12
About the DBMS_OUTPUT Package ... 9-12
About the DBMS_PIPE Package ... 9-13
About the UTL_FILE Package... 9-13
About the UTL_HTTP Package... 9-13

ix

Guidelines for Writing Packages.. 9-13
Separating Cursor Specs and Bodies with Packages .. 9-14

10 Handling PL/SQL Errors

Overview of PL/SQL Runtime Error Handling ... 10-1
Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions............................... 10-3

Advantages of PL/SQL Exceptions... 10-3
Summary of Predefined PL/SQL Exceptions.. 10-4
Defining Your Own PL/SQL Exceptions ... 10-6

Declaring PL/SQL Exceptions .. 10-6
Scope Rules for PL/SQL Exceptions .. 10-6
Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT 10-7
Defining Your Own Error Messages: Procedure RAISE_APPLICATION_ERROR.............. 10-8
Redeclaring Predefined Exceptions.. 10-9

How PL/SQL Exceptions Are Raised ... 10-9
Raising Exceptions with the RAISE Statement ... 10-9

How PL/SQL Exceptions Propagate... 10-10
Reraising a PL/SQL Exception .. 10-12
Handling Raised PL/SQL Exceptions .. 10-12

Handling Exceptions Raised in Declarations.. 10-13
Handling Exceptions Raised in Handlers.. 10-14
Branching to or from an Exception Handler ... 10-14
Retrieving the Error Code and Error Message: SQLCODE and SQLERRM 10-14
Catching Unhandled Exceptions .. 10-15

Tips for Handling PL/SQL Errors... 10-15
Continuing after an Exception Is Raised ... 10-15
Retrying a Transaction ... 10-16
Using Locator Variables to Identify Exception Locations... 10-17

Overview of PL/SQL Compile-Time Warnings ... 10-17
PL/SQL Warning Categories .. 10-18
Controlling PL/SQL Warning Messages... 10-18
Using the DBMS_WARNING Package.. 10-19

11 Tuning PL/SQL Applications for Performance

How PL/SQL Optimizes Your Programs... 11-1
When to Tune PL/SQL Code.. 11-1
Guidelines for Avoiding PL/SQL Performance Problems .. 11-2

Avoiding CPU Overhead in PL/SQL Code .. 11-2
Avoiding Memory Overhead in PL/SQL Code ... 11-5

Profiling and Tracing PL/SQL Programs ... 11-6
Using The Profiler API: Package DBMS_PROFILER... 11-6
Using The Trace API: Package DBMS_TRACE .. 11-7

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT) . 11-7
Using the FORALL Statement... 11-8
Retrieving Query Results into Collections with the BULK COLLECT Clause 11-15

Writing Computation-Intensive Programs in PL/SQL ... 11-19

x

Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables........................... 11-19
Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint .. 11-20

Restrictions on NOCOPY... 11-21
Compiling PL/SQL Code for Native Execution... 11-22
Setting Up Transformation Pipelines with Table Functions ... 11-28

Overview of Table Functions .. 11-28
Using Pipelined Table Functions for Transformations.. 11-30
Writing a Pipelined Table Function.. 11-31
Returning Results from Table Functions ... 11-31
Pipelining Data Between PL/SQL Table Functions... 11-32
Querying Table Functions.. 11-32
Optimizing Multiple Calls to Table Functions ... 11-33
Fetching from the Results of Table Functions... 11-33
Passing Data with Cursor Variables... 11-33
Performing DML Operations Inside Table Functions ... 11-35
Performing DML Operations on Table Functions.. 11-35
Handling Exceptions in Table Functions... 11-36

12 Using PL/SQL Object Types

Overview of PL/SQL Object Types .. 12-1
What Is an Object Type? .. 12-2
Why Use Object Types?.. 12-3
Structure of an Object Type... 12-3
Components of an Object Type .. 12-5

What Languages can I Use for Methods of Object Types?.. 12-6
How Object Types Handle the SELF Parameter... 12-6
Overloading ... 12-7
Changing Attributes and Methods of an Existing Object Type (Type Evolution) 12-9

Defining Object Types.. 12-9
Overview of PL/SQL Type Inheritance... 12-10

Declaring and Initializing Objects .. 12-11
Declaring Objects .. 12-11
Initializing Objects .. 12-12
How PL/SQL Treats Uninitialized Objects... 12-12

Accessing Object Attributes .. 12-13
Defining Object Constructors ... 12-13
Calling Object Constructors .. 12-14
Calling Object Methods ... 12-15
Sharing Objects through the REF Modifier ... 12-16

Forward Type Definitions.. 12-17
Manipulating Objects through SQL.. 12-17

Selecting Objects.. 12-18
Inserting Objects.. 12-21
Updating Objects... 12-22
Deleting Objects... 12-22

xi

13 PL/SQL Language Elements

Assignment Statement ... 13-3
AUTONOMOUS_TRANSACTION Pragma ... 13-6
Blocks... 13-8
CASE Statement... 13-14
CLOSE Statement .. 13-16
Collection Methods... 13-17
Collections .. 13-21
Comments ... 13-26
COMMIT Statement ... 13-27
Constants and Variables... 13-28
Cursor Attributes... 13-31
Cursor Variables .. 13-34
Cursors... 13-38
DELETE Statement.. 13-41
EXCEPTION_INIT Pragma ... 13-44
Exceptions ... 13-45
EXECUTE IMMEDIATE Statement ... 13-47
EXIT Statement .. 13-50
Expressions ... 13-52
FETCH Statement .. 13-60
FORALL Statement ... 13-64
Functions ... 13-67
GOTO Statement... 13-71
IF Statement.. 13-72
INSERT Statement .. 13-74
Literals ... 13-76
LOCK TABLE Statement.. 13-78
LOOP Statements .. 13-79
MERGE Statement .. 13-84
NULL Statement .. 13-85
Object Types ... 13-86
OPEN Statement .. 13-93
OPEN-FOR Statement .. 13-95
OPEN-FOR-USING Statement ... 13-97
Packages .. 13-99
Procedures... 13-104
RAISE Statement ... 13-108
Records .. 13-110
RESTRICT_REFERENCES Pragma ... 13-113
RETURN Statement .. 13-115
ROLLBACK Statement... 13-117
%ROWTYPE Attribute ... 13-119
SAVEPOINT Statement.. 13-121
SCN_TO_TIMESTAMP Function .. 13-122
SELECT INTO Statement .. 13-123
SERIALLY_REUSABLE Pragma ... 13-127

xii

SET TRANSACTION Statement.. 13-129
SQL Cursor ... 13-131
SQLCODE Function ... 13-135
SQLERRM Function ... 13-136
TIMESTAMP_TO_SCN Function .. 13-138
%TYPE Attribute ... 13-139
UPDATE Statement... 13-141

A Sample PL/SQL Programs

Where to Find PL/SQL Sample Programs .. A-1
Exercises for the Reader ... A-1

B Understanding CHAR and VARCHAR2 Semantics in PL/SQL

Assigning Character Values .. B-1
Comparing Character Values .. B-2
Inserting Character Values .. B-2
Selecting Character Values .. B-3

C Obfuscating Source Code with the PL/SQL Wrap Utility

Advantages of Wrapping PL/SQL Procedures ... C-1
Running the PL/SQL Wrap Utility ... C-1

Input and Output Files for the PL/SQL Wrap Utility ... C-2
Limitations of the PL/SQL Wrap Utility ... C-3

D How PL/SQL Resolves Identifier Names

What Is Name Resolution? .. D-1
Examples of Qualified Names and Dot Notation.. D-2
Differences in Name Resolution Between SQL and PL/SQL ... D-3
Understanding Capture.. D-3

Inner Capture... D-3
Same-Scope Capture ... D-4
Outer Capture.. D-4

Avoiding Inner Capture in DML Statements .. D-4
Qualifying References to Object Attributes and Methods ... D-5
Calling Parameterless Subprograms and Methods .. D-5
Name Resolution for SQL Versus PL/SQL ... D-6

E PL/SQL Program Limits

F List of PL/SQL Reserved Words

G Frequently Asked Questions About PL/SQL

When Should I Use Bind Variables with PL/SQL?... G-1
When Do I Use or Omit the Semicolon with Dynamic SQL? .. G-1
How Can I Use Regular Expressions with PL/SQL?... G-1

xiii

How Do I Continue After a PL/SQL Exception? ... G-2
Does PL/SQL Have User-Defined Types or Abstract Data Types? .. G-2
How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?...................................... G-2
How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation? G-2
What Can I Do with Objects and Object Types in PL/SQL?... G-3
How Do I Create a PL/SQL Procedure?... G-3
How Do I Input or Output Data with PL/SQL? .. G-4
How Do I Perform a Case-Insensitive Query? .. G-4

Index

xiv

xv

Send Us Your Comments

PL/SQL User's Guide and Reference, 10g Release 1 (10.1)

Part No. B10807-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227. Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation
Server Technologies Documentation Manager
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xvi

xvii

Preface

This guide explains the concepts behind the PL/SQL language and shows, with
examples, how to use various language features.

This preface contains these topics:

■ Audience

■ How This Book Is Organized

■ Related Documentation

■ Conventions

■ Sample Database Tables

■ Documentation Accessibility

■ Reading the Syntax Diagrams

Audience
PL/SQL, Oracle's procedural extension of SQL, is an advanced fourth-generation
programming language (4GL). It offers software-engineering features such as data
encapsulation, overloading, collection types, exceptions, and information hiding.
PL/SQL also supports rapid prototyping and development through tight integration
with SQL and the Oracle database.

Anyone developing PL/SQL-based applications for Oracle should read this book. This
book is intended for programmers, systems analysts, project managers, database
administrators, and others who need to automate database operations. People
developing applications in other languages can also produce mixed-language
applications with parts written in PL/SQL.

To use this guide effectively, you need a working knowledge of the Oracle database,
the SQL language, and basic programming constructs such as IF-THEN comparisons,
loops, and procedures and functions.

How This Book Is Organized
The PL/SQL User's Guide and Reference contains:

Getting Started with PL/SQL
Chapter 1, "Overview of PL/SQL"

Summarizes the main features of PL/SQL and their advantages. Introduces the basic
concepts behind PL/SQL and the general appearance of PL/SQL programs.

xviii

Chapter 2, "Fundamentals of the PL/SQL Language"

Focuses on the small-scale aspects of PL/SQL: lexical units, scalar datatypes,
user-defined subtypes, data conversion, expressions, assignments, block structure,
declarations, and scope.

Chapter 3, "PL/SQL Datatypes"

Discusses PL/SQL's predefined datatypes, which include integer, floating-point,
character, Boolean, date, collection, reference, and LOB types. Also discusses
user-defined subtypes and data conversion.

Chapter 4, "Using PL/SQL Control Structures"

Shows how to control the flow of execution through a PL/SQL program. Describes
conditional, iterative, and sequential control, with control structures such as
IF-THEN-ELSE, CASE, and WHILE-LOOP.

Chapter 5, "Using PL/SQL Collections and Records"

Discusses the composite datatypes TABLE, VARRAY, and RECORD. You learn how to
reference and manipulate whole collections of data and group data of different types
together.

Database Programming with PL/SQL
Chapter 6, "Performing SQL Operations from PL/SQL"

Shows how PL/SQL supports the SQL commands, functions, and operators for
manipulating Oracle data. Also shows how to process queries and transactions.

Chapter 7, "Performing SQL Operations with Native Dynamic SQL"

Shows how to build SQL statements and queries at run time.

Software Engineering with PL/SQL
Chapter 8, "Using PL/SQL Subprograms"

Shows how to write and call procedures, functions. It discusses related topics such as
parameters, overloading, and different privilege models for subprograms.

Chapter 9, "Using PL/SQL Packages"

Shows how to bundle related PL/SQL types, items, and subprograms into a package.
Packages define APIs that can be reused by many applications.

Chapter 10, "Handling PL/SQL Errors"

Shows how to detect and handle PL/SQL errors using exceptions and handlers.

Chapter 11, "Tuning PL/SQL Applications for Performance"

Shows how to improve performance for PL/SQL-based applications.

Chapter 12, "Using PL/SQL Object Types"

Introduces object-oriented programming based on object types. You learn how to write
object methods and manipulate objects through PL/SQL.

PL/SQL Language Reference
Chapter 13, "PL/SQL Language Elements"

Shows the syntax of statements, parameters, and other PL/SQL language elements.
Also includes usage notes and short examples.

xix

Appendixes
Appendix A, "Sample PL/SQL Programs"

Provides several PL/SQL programs to guide you in writing your own. The sample
programs illustrate important concepts and features.

Appendix B, "Understanding CHAR and VARCHAR2 Semantics in PL/SQL"

Explains the subtle but important semantic differences between the CHAR and
VARCHAR2 base types.

Appendix C, "Obfuscating Source Code with the PL/SQL Wrap Utility"

Shows you how to run the Wrap Utility, a standalone programming utility that enables
you to deliver PL/SQL applications without exposing your source code.

Appendix D, "How PL/SQL Resolves Identifier Names"

Explains how PL/SQL resolves references to names in potentially ambiguous SQL and
procedural statements.

Appendix E, "PL/SQL Program Limits"

Explains the compile-time and runtime limits imposed by PL/SQL .

Appendix F, "List of PL/SQL Reserved Words"

Lists the words that are reserved for use by PL/SQL.

Appendix G, "Frequently Asked Questions About PL/SQL"

Provides tips and answers to some of the most common PL/SQL questions.

Related Documentation
For more information, see these Oracle resources:

Various aspects of PL/SQL programming, in particular details for triggers and stored
procedures, are covered in Oracle Database Application Developer's Guide - Fundamentals

For extensive information on object-oriented programming using both PL/SQL and
SQL features, see Oracle Database Application Developer's Guide - Object-Relational
Features

For information about programming with large objects (LOBs), see Oracle Database
Application Developer's Guide - Large Objects

For SQL information, see the Oracle Database SQL Reference and Oracle Database
Administrator's Guide. For basic Oracle concepts, see Oracle Database Concepts.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

xx

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

Thedepartment_id,department_name, and
location_id columns are in the
hr.departments table.

SettheQUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause.

RunUold_release.SQLwhereold_release
refers to the release you installed prior to
upgrading.

xxi

Sample Database Tables
Some programming examples in this guide use tables and other objects from the HR
schema of the sample database. These tables, such as EMPLOYEES and DEPARTMENTS,

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

-- A double hyphen begins a single-line
comment, which extends to the end of a
line.

--

/* */ A slash-asterisk and an asterisk-slash
delimit a multi-line comment, which can
span multiple lines.

/* */

xxii

are more extensive and realistic than the EMP and DEPT tables used in previous
releases.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Reading the Syntax Diagrams
To understand the syntax of a PL/SQL statement, trace through its syntax diagram,
reading from left to right and top to bottom.

The diagrams represent Backus-Naur Form (BNF) productions. Within the diagrams,
keywords are enclosed in boxes, delimiters in circles, and identifiers in ovals.

Each diagram defines a syntactic element. Every path through the diagram describes a
possible form of that element. Follow in the direction of the arrows. If a line loops back
on itself, you can repeat the element enclosed by the loop.

xxiii

What's New in PL/SQL?

This section describes new features of PL/SQL release 10g, and provides pointers to
additional information.

The following sections describe the new features in PL/SQL:

■ New Features in PL/SQL for Oracle Database 10g

■ New Features in PL/SQL for Oracle9i

New Features in PL/SQL for Oracle Database 10g

Release 1 (10.1)
Improved Performance

PL/SQL performance is improved across the board. Most improvements are
automatic, with no action required from you.

Global optimization of PL/SQL code is controlled by the PLSQL_OPTIMIZE_LEVEL
initialization parameter. The default optimization level improves performance for a
broad range of PL/SQL operations. Most users should never need to change the
default optimization level.

Performance improvements include better integer performance, reuse of expression
values, simplification of branching code, better performance for some library calls, and
elimination of dead code.

The new datatypes BINARY_FLOAT and BINARY_DOUBLE can improve performance
in number-crunching applications, such as processing scientific data.

Native compilation is easier and more integrated, with fewer initialization parameters
to set, less compiler configuration, the object code stored in the database, and
compatibility with Oracle Real Application Clusters environments.

The FORALL statement can handle associate arrays and nested tables with deleted
elements. You can now use this performance construct in more situations than before,
and avoid the need to copy elements from one collection to another.

Enhancements to PL/SQL Native Compilation

This feature now requires less setup and maintenance.

A package body and its spec do not need to be compiled with the same setting for
native compilation. For example, a package body can be compiled natively while the
package spec is compiled interpreted, or vice versa.

xxiv

Natively compiled subprograms are stored in the database, and the corresponding
shared libraries are extracted automatically as needed. You do not need to worry about
backing up the shared libraries, cleaning up old shared libraries, or what happens if a
shared library is deleted accidentally.

The initialization parameters and command setup for native compilation have been
simplified. The only required parameter is PLSQL_NATIVE_LIBRARY_DIR. The
parameters related to the compiler, linker, and make utility have been obsoleted. The
file that controls compilation is now a command file showing the commands and
options for compiling and linking, rather than a makefile. Any errors that occur during
native compilation are reflected in the USER_ERRORS dictionary view and by the
SQL*Plus command SHOW ERRORS.

Native compilation is turned on and off by a separate initialization parameter,
PLSQL_CODE_TYPE, rather than being one of several options in the
PLSQL_COMPILER_FLAGS parameter, which is now deprecated.

FORALL Support for Non-Consecutive Indexes

You can use the INDICES OF and VALUES OF clauses with the FORALL statement to
iterate over non-consecutive index values. For example, you can delete elements from
a nested table, and still use that nested table in a FORALL statement.

New IEEE Floating-Point Types

New datatypes BINARY_FLOAT and BINARY_DOUBLE represent floating-point
numbers in IEEE 754 format. These types are useful for scientific computation where
you exchange data with other programs and languages that use the IEEE 754 standard
for floating-point. Because many computer systems support IEEE 754 floating-point
operations through native processor instructions, these types are efficient for intensive
computations involving floating-point data.

Support for these types includes numeric literals such as 1.0f and 3.141d, arithmetic
operations including square root and remainder, exception handling, and special
values such as not-a-number (NaN) and infinity.

The rules for overloading subprograms are enhanced, so that you can write math
libraries with different versions of the same function operating on PLS_INTEGER,
NUMBER, BINARY_FLOAT, and BINARY_DOUBLE parameters.

Improved Overloading

You can now overload subprograms that accept different kinds of numeric arguments,
to write math libraries with specialized versions of each subprogram for different
datatypes.

See Also:

■ "Compiling PL/SQL Code for Native Execution" on page 11-22

See Also:

■ "Using the FORALL Statement" on page 11-8

See Also:

■ "PL/SQL Number Types" on page 3-2

See Also:

■ "Guidelines for Overloading with Numeric Types" on page 8-11

xxv

Nested Table Enhancements

Nested tables defined in PL/SQL have many more operations than previously. You
can compare nested tables for equality, test whether an element is a member of a
nested table, test whether one nested table is a subset of another, perform set
operations such as union and intersection, and much more.

Compile-Time Warnings

Oracle can issue warnings when you compile subprograms that produce ambiguous
results or use inefficient constructs. You can selectively enable and disable these
warnings through the PLSQL_WARNINGS initialization parameter and the
DBMS_WARNING package.

Quoting Mechanism for String Literals

Instead of doubling each single quote inside a string literal, you can specify your own
delimiter character for the literal, and then use single quotes inside the string.

Implicit Conversion Between CLOB and NCLOB

You can implicitly convert from CLOB to NCLOB or from NCLOB to CLOB. Because
this can be an expensive operation, it might help maintainability to continue using the
TO_CLOB and TO_NCLOB functions.

Regular Expressions

If you are familiar with UNIX-style regular expressions, you can use them while
performing queries and string manipulations. You use the REGEXP_LIKE operator in
SQL queries, and the REGEXP_INSTR, REGEXP_REPLACE, and REGEXP_SUBSTR
functions anywhere you would use INSTR, REPLACE, and SUBSTR.

Flashback Query Functions

The functions SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN let you translate
between a date and time, and the system change number that represents the database
state at a point in time.

See Also:

■ "Assigning Collections" on page 5-13

■ "Comparing Collections" on page 5-16

See Also:

■ "Overview of PL/SQL Compile-Time Warnings" on page 10-17

See Also:

■ "String Literals" on page 2-6

See Also:

■ "Summary of PL/SQL Built-In Functions" on page 2-28

■ "How Can I Use Regular Expressions with PL/SQL?" on
page G-1

xxvi

New Features in PL/SQL for Oracle9i

Release 2 (9.2)
■ Insert/update/select of entire PL/SQL records

You can now insert into or update a SQL table by specifying a PL/SQL record
variable, rather than specifying each record attribute separately. You can also select
entire rows into a PL/SQL table of records, rather than using a separate PL/SQL
table for each SQL column.

■ Associative arrays

You can create collections that are indexed by VARCHAR2 values, providing
features similar to hash tables in Perl and other languages.

■ User-defined constructors

You can now override the system default constructor for an object type with your
own function.

■ Enhancements to UTL_FILE package

UTL_FILE contains several new functions that let you perform general
file-management operations from PL/SQL.

■ TREAT function for object types

You can dynamically choose the level of type inheritance to use when calling
object methods. That is, you can reference an object type that inherits from several
levels of parent types, and call a method from a specific parent type. This function
is similar to the SQL function of the same name.

See Also:

■ "SCN_TO_TIMESTAMP Function" on page 13-122

■ "TIMESTAMP_TO_SCN Function" on page 13-138

See Also:

■ "Inserting PL/SQL Records into the Database" on page 5-36

■ "Updating the Database with PL/SQL Record Values" on
page 5-36

■ "Querying Data into Collections of Records" on page 5-38

See Also:

■ "Understanding Associative Arrays (Index-By Tables)" on
page 5-3

See Also:

■ "Defining Object Constructors" on page 12-13

See Also:

■ PL/SQL Packages and Types Reference

xxvii

■ Better linking in online documentation

Many of the cross-references from this book to other books have been made more
specific, so that they link to a particular place within another book rather than to
the table of contents. Because this is an ongoing project, not all links are improved
in this edition. If you are reading a printed copy of this book, you can find the
online equivalent at http://otn.oracle.com/documentation/, with full
search capability.

Release 1 (9.0.1)
■ Integration of SQL and PL/SQL parsers

PL/SQL now supports the complete range of syntax for SQL statements, such as
INSERT, UPDATE, DELETE, and so on. If you received errors for valid SQL syntax
in PL/SQL programs before, those statements should now work.

■ CASE statements and expressions

CASE statements and expressions are a shorthand way of representing IF/THEN
choices with multiple alternatives.

■ Inheritance and Dynamic Method Dispatch

Types can be declared in a supertype/subtype hierarchy, with subtypes inheriting
attributes and methods from their supertypes. The subtypes can also add new
attributes and methods, and override existing methods. A call to an object method
executes the appropriate version of the method, based on the type of the object.

■ Type Evolution

Attributes and methods can be added to and dropped from object types, without
the need to re-create the types and corresponding data. This feature lets the type
hierarchy adapt to changes in the application, rather than being planned out
entirely in advance.

See Also:

■ Oracle Database SQL Reference

See Also: Because of more consistent error-checking, you might
find that some invalid code is now found at compile time instead of
producing an error at runtime, or vice versa. You might need to
change the source code as part of the migration procedure. See
Oracle Database Upgrade Guide for details on the complete migration
procedure.

See Also:

■ "CASE Expressions" on page 2-24

■ "Using the CASE Statement" on page 4-3

■ "CASE Statement" on page 13-14

See Also:

■ "Overview of PL/SQL Type Inheritance" on page 12-10

■ "How Overloading Works with Inheritance" on page 8-13

xxviii

■ New Date/Time Types

The new datatype TIMESTAMP records time values including fractional seconds.
New datatypes TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE allow you to adjust date and time values to account for time zone
differences. You can specify whether the time zone observes daylight savings time,
to account for anomalies when clocks shift forward or backward. New datatypes
INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH represent
differences between two date and time values, simplifying date arithmetic.

■ Native Compilation of PL/SQL Code

Improve performance by compiling Oracle-supplied and user-written stored
procedures into native executables, using typical C development tools. This setting
is saved so that the procedure is compiled the same way if it is later invalidated.

■ Improved Globalization and National Language Support

Data can be stored in Unicode format using fixed-width or variable-width
character sets. String handling and storage declarations can be specified using byte
lengths, or character lengths where the number of bytes is computed for you. You
can set up the entire database to use the same length semantics for strings, or
specify the settings for individual procedures; this setting is remembered if a
procedure is invalidated.

■ Table Functions and Cursor Expressions

You can query a set of returned rows like a table. Result sets can be passed from
one function to another, letting you set up a sequence of transformations with no
table to hold intermediate results. Rows of the result set can be returned a few at a
time, reducing the memory overhead for producing large result sets within a
function.

See Also: "Changing Attributes and Methods of an Existing
Object Type (Type Evolution)" on page 12-9

See Also:

■ "PL/SQL Date, Time, and Interval Types" on page 3-12

■ "Datetime and Interval Arithmetic" on page 3-15

■ "Datetime Literals" on page 2-6

See Also: "Compiling PL/SQL Code for Native Execution" on
page 11-22

See Also:

■ "PL/SQL Character and String Types" on page 3-4

■ "PL/SQL National Character Types" on page 3-8

See Also:

■ "Setting Up Transformation Pipelines with Table Functions" on
page 11-28

■ "Using Cursor Expressions" on page 6-27

xxix

■ Multilevel Collections

You can nest the collection types, for example to create a VARRAY of PL/SQL
tables, a VARRAY of VARRAYs, or a PL/SQL table of PL/SQL tables. You can model
complex data structures such as multidimensional arrays in a natural way.

■ Better Integration for LOB Datatypes

You can operate on LOB types much like other similar types. You can use character
functions on CLOB and NCLOB types. You can treat BLOB types as RAWs.
Conversions between LOBs and other types are much simpler, particularly when
converting from LONG to LOB types.

■ Enhancements to Bulk Operations

You can now perform bulk SQL operations, such as bulk fetches, using native
dynamic SQL (the EXECUTE IMMEDIATE statement). You can perform bulk insert
or update operations that continue despite errors on some rows, then examine the
problems after the operation is complete.

■ MERGE Statement

This specialized statement combines insert and update into a single operation. It is
intended for data warehousing applications that perform particular patterns of
inserts and updates.

See Also: "Using Multilevel Collections" on page 5-21

See Also: "PL/SQL LOB Types" on page 3-10

See Also:

■ "Reducing Loop Overhead for DML Statements and Queries
(FORALL, BULK COLLECT)" on page 11-7

■ "Using Bulk Dynamic SQL" on page 7-6

■ "EXECUTE IMMEDIATE Statement" on page 13-47

See Also:

■ "MERGE Statement" on page 13-84 for a brief discussion and
example

■ Oracle Database SQL Reference for detailed information

xxx

Overview of PL/SQL 1-1

1
Overview of PL/SQL

The limits of my language mean the limits of my world. —Ludwig Wittgenstein

This chapter introduces the main features of the PL/SQL language. It shows how
PL/SQL deals with the challenges of database programming, and how you can reuse
techniques that you know from other programming languages.

This chapter contains these topics:

■ Advantages of PL/SQL on page 1-1

■ Understanding the Main Features of PL/SQL on page 1-4

■ PL/SQL Architecture on page 1-12

Advantages of PL/SQL
PL/SQL is a completely portable, high-performance transaction processing language
that offers the following advantages:

■ Support for SQL

■ Support for object-oriented programming

■ Better performance

■ Higher productivity

■ Full portability

■ Tight integration with Oracle

■ Tight security

Tight Integration with SQL
The PL/SQL language is tightly integrated with SQL. You do not have to translate
between SQL and PL/SQL datatypes: a NUMBER or VARCHAR2 column in the database
is stored in a NUMBER or VARCHAR2 variable in PL/SQL. This integration saves you
both learning time and processing time. Special PL/SQL language features let you
work with table columns and rows without specifying the datatypes, saving on
maintenance work when the table definitions change.

See Also: Access additional information and code samples for
PL/SQL on the Oracle Technology Network, at
http://otn.oracle.com/tech/pl_sql/ .

Advantages of PL/SQL

1-2 PL/SQL User's Guide and Reference

Running a SQL query and processing the result set is as easy in PL/SQL as opening a
text file and processing each line in popular scripting languages.

Using PL/SQL to access metadata about database objects and handle database error
conditions, you can write utility programs for database administration that are reliable
and produce readable output about the success of each operation.

Many database features, such as triggers and object types, make use of PL/SQL. You
can write the bodies of triggers and methods for object types in PL/SQL.

Support for SQL
SQL has become the standard database language because it is flexible, powerful, and
easy to learn. A few English-like commands such as SELECT, INSERT, UPDATE, and
DELETE make it easy to manipulate the data stored in a relational database.

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions, operators, and pseudocolumns.
This extensive SQL support lets you manipulate Oracle data flexibly and safely. Also,
PL/SQL fully supports SQL datatypes, reducing the need to convert data passed
between your applications and the database.

PL/SQL also supports dynamic SQL, a programming technique that makes your
applications more flexible and versatile. Your programs can build and process SQL
data definition, data control, and session control statements at run time, without
knowing details such as table names and WHERE clauses in advance.

Better Performance
Without PL/SQL, Oracle must process SQL statements one at a time. Programs that
issue many SQL statements require multiple calls to the database, resulting in
significant network and performance overhead.

With PL/SQL, an entire block of statements can be sent to Oracle at one time. This can
drastically reduce network traffic between the database and an application. As
Figure 1–1 shows, you can use PL/SQL blocks and subprograms to group SQL
statements before sending them to the database for execution. PL/SQL even has
language features to further speed up SQL statements that are issued inside a loop.

PL/SQL stored procedures are compiled once and stored in executable form, so
procedure calls are efficient. Because stored procedures execute in the database server,
a single call over the network can start a large job. This division of work reduces
network traffic and improves response times. Stored procedures are cached and shared
among users, which lowers memory requirements and invocation overhead.

Advantages of PL/SQL

Overview of PL/SQL 1-3

Figure 1–1 PL/SQL Boosts Performance

Higher Productivity
PL/SQL extends tools such as Oracle Forms and Oracle Reports. With PL/SQL in
these tools, you can use familiar language constructs to build applications. For
example, you can use an entire PL/SQL block in an Oracle Forms trigger, instead of
multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. Once you learn PL/SQL with one Oracle
tool, you can transfer your knowledge to other tools.

Full Portability
Applications written in PL/SQL can run on any operating system and platform where
the Oracle database runs. With PL/SQL, you can write portable program libraries and
reuse them in different environments.

Tight Security
PL/SQL stored procedures move application code from the client to the server, where
you can protect it from tampering, hide the internal details, and restrict who has
access. For example, you can grant users access to a procedure that updates a table, but
not grant them access to the table itself or to the text of the UPDATE statement.

Triggers written in PL/SQL can control or record changes to data, making sure that all
changes obey your business rules.

Support for Object-Oriented Programming
Object types are an ideal object-oriented modeling tool, which you can use to reduce
the cost and time required to build complex applications. Besides allowing you to
create software components that are modular, maintainable, and reusable, object types
allow different teams of programmers to develop software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance
code out of SQL scripts and PL/SQL blocks into methods. Also, object types hide

SQL
IF ... THEN

SQL
ELSE

SQL
END IF;
SQL

RPC

SQL

SQL

SQL

SQL

Application

Application

Application

Other DBMSs

Oracle
Database
with PL/SQL

Oracle
Database
with PL/SQL
and Stored
Procedures

Understanding the Main Features of PL/SQL

1-4 PL/SQL User's Guide and Reference

implementation details, so that you can change the details without affecting client
programs.

In addition, object types allow for realistic data modeling. Complex real-world entities
and relationships map directly into object types. This direct mapping helps your
programs better reflect the world they are trying to simulate.

Understanding the Main Features of PL/SQL
PL/SQL combines the data-manipulating power of SQL with the processing power of
procedural languages.

You can control program flow with statements like IF and LOOP. As with other
procedural programming languages, you can declare variables, define procedures and
functions, and trap runtime errors.

PL/SQL lets you break complex problems down into easily understandable
procedural code, and reuse this code across multiple applications. When a problem
can be solved through plain SQL, you can issue SQL commands directly inside your
PL/SQL programs, without learning new APIs. PL/SQL's data types correspond with
SQL's column types, making it easy to interchange PL/SQL variables with data inside
a table.

Block Structure
The basic units (procedures, functions, and anonymous blocks) that make up a
PL/SQL program are logical blocks, which can be nested inside one another.

A block groups related declarations and statements. You can place declarations close to
where they are used, even inside a large subprogram. The declarations are local to the
block and cease to exist when the block completes, helping to avoid cluttered
namespaces for variables and procedures.

As Figure 1–2 shows, a PL/SQL block has three parts: a declarative part, an executable
part, and an exception-handling part that deals with error conditions. Only the
executable part is required.

First comes the declarative part, where you define types, variables, and similar items.
These items are manipulated in the executable part. Exceptions raised during
execution can be dealt with in the exception-handling part.

Figure 1–2 Block Structure

You can nest blocks in the executable and exception-handling parts of a PL/SQL block
or subprogram but not in the declarative part. You can define local subprograms in the
declarative part of any block. You can call local subprograms only from the block in
which they are defined.

[DECLARE
 -- declarations]
BEGIN
 -- statements
[EXCEPTION
 -- handlers]
END;

Understanding the Main Features of PL/SQL

Overview of PL/SQL 1-5

Variables and Constants
PL/SQL lets you declare constants and variables, then use them in SQL and
procedural statements anywhere an expression can be used. You must declare a
constant or variable before referencing it in any other statements.

Declaring Variables
Variables can have any SQL datatype, such as CHAR, DATE, or NUMBER, or a
PL/SQL-only datatype, such as BOOLEAN or PLS_INTEGER. For example, assume that
you want to declare a variable named part_no to hold 4-digit numbers and a variable
named in_stock to hold the Boolean value TRUE or FALSE. You declare these
variables as follows:

part_no NUMBER(4);
in_stock BOOLEAN;

You can also declare nested tables, variable-size arrays (varrays for short), and records
using the TABLE, VARRAY, and RECORD composite datatypes.

Assigning Values to a Variable
You can assign values to a variable in three ways. The first way uses the assignment
operator (:=), a colon followed by an equal sign. You place the variable to the left of
the operator and an expression (which can include function calls) to the right. A few
examples follow:

tax := price * tax_rate;
valid_id := FALSE;
bonus := current_salary * 0.10;
wages := gross_pay(emp_id, st_hrs, ot_hrs) - deductions;

The second way to assign values to a variable is by selecting (or fetching) database
values into it. In the example below, you have Oracle compute a 10% bonus when you
select the salary of an employee. Now, you can use the variable bonus in another
computation or insert its value into a database table.

SELECT salary * 0.10 INTO bonus FROM employees WHERE employee_id = emp_id;

The third way to assign values to a variable is by passing it as an OUT or IN OUT
parameter to a subprogram, and doing the assignment inside the subprogram. The
following example passes a variable to a subprogram, and the subprogram updates
the variable:

DECLARE
 my_sal REAL(7,2);
 PROCEDURE adjust_salary (emp_id INT, salary IN OUT REAL) IS ...
BEGIN
 SELECT AVG(sal) INTO my_sal FROM emp;
 adjust_salary(7788, my_sal); -- assigns a new value to my_sal

Declaring Constants
Declaring a constant is like declaring a variable except that you must add the keyword
CONSTANT and immediately assign a value to the constant. No further assignments to
the constant are allowed. The following example declares a constant:

credit_limit CONSTANT NUMBER := 5000.00;

Understanding the Main Features of PL/SQL

1-6 PL/SQL User's Guide and Reference

Processing Queries with PL/SQL
Processing a SQL query with PL/SQL is like processing files with other languages. For
example, a Perl program opens a file, reads the file contents, processes each line, then
closes the file. In the same way, a PL/SQL program issues a query and processes the
rows from the result set:

FOR someone IN (SELECT * FROM employees)
LOOP
 DBMS_OUTPUT.PUT_LINE('First name = ' || someone.first_name);
 DBMS_OUTPUT.PUT_LINE('Last name = ' || someone.last_name);
END LOOP;

You can use a simple loop like the one shown here, or you can control the process
precisely by using individual statements to perform the query, retrieve data, and finish
processing.

Declaring PL/SQL Variables
As part of the declaration for each PL/SQL variable, you declare its datatype. Usually,
this datatype is one of the types shared between PL/SQL and SQL, such as NUMBER or
VARCHAR2(length). For easier maintenance of code that interacts with the database,
you can also use the special qualifiers %TYPE and %ROWTYPE to declare variables that
hold table columns or table rows.

%TYPE
The %TYPE attribute provides the datatype of a variable or database column. This is
particularly useful when declaring variables that will hold database values. For
example, assume there is a column named title in a table named books. To declare
a variable named my_title that has the same datatype as column title, use dot
notation and the %TYPE attribute, as follows:

my_title books.title%TYPE;

Declaring my_title with %TYPE has two advantages. First, you need not know the
exact datatype of title. Second, if you change the database definition of title
(make it a longer character string for example), the datatype of my_title changes
accordingly at run time.

%ROWTYPE
In PL/SQL, records are used to group data. A record consists of a number of related
fields in which data values can be stored. The %ROWTYPE attribute provides a record
type that represents a row in a table. The record can store an entire row of data
selected from the table or fetched from a cursor or cursor variable.

Columns in a row and corresponding fields in a record have the same names and
datatypes. In the example below, you declare a record named dept_rec. Its fields
have the same names and datatypes as the columns in the dept table.

DECLARE
 dept_rec dept%ROWTYPE; -- declare record variable

You use dot notation to reference fields, as the following example shows:

my_deptno := dept_rec.deptno;

Understanding the Main Features of PL/SQL

Overview of PL/SQL 1-7

If you declare a cursor that retrieves the last name, salary, hire date, and job title of an
employee, you can use %ROWTYPE to declare a record that stores the same information,
as follows:

DECLARE
 CURSOR c1 IS
 SELECT ename, sal, hiredate, job FROM emp;
 emp_rec c1%ROWTYPE; -- declare record variable that represents
 -- a row fetched from the emp table

When you execute the statement

FETCH c1 INTO emp_rec;

the value in the ename column of the emp table is assigned to the ename field of
emp_rec, the value in the sal column is assigned to the sal field, and so on.

Control Structures
Control structures are the most important PL/SQL extension to SQL. Not only does
PL/SQL let you manipulate Oracle data, it lets you process the data using conditional,
iterative, and sequential flow-of-control statements such as IF-THEN-ELSE, CASE,
FOR-LOOP, WHILE-LOOP, EXIT-WHEN, and GOTO.

Conditional Control
Often, it is necessary to take alternative actions depending on circumstances. The
IF-THEN-ELSE statement lets you execute a sequence of statements conditionally.
The IF clause checks a condition; the THEN clause defines what to do if the condition
is true; the ELSE clause defines what to do if the condition is false or null.

Consider the program below, which processes a bank transaction. Before allowing you
to withdraw $500 from account 3, it makes sure the account has sufficient funds to
cover the withdrawal. If the funds are available, the program debits the account.
Otherwise, the program inserts a record into an audit table.

-- available online in file 'examp2'
DECLARE
 acct_balance NUMBER(11,2);
 acct CONSTANT NUMBER(4) := 3;
 debit_amt CONSTANT NUMBER(5,2) := 500.00;
BEGIN
 SELECT bal INTO acct_balance FROM accounts
 WHERE account_id = acct
 FOR UPDATE OF bal;
 IF acct_balance >= debit_amt THEN
 UPDATE accounts SET bal = bal - debit_amt
 WHERE account_id = acct;
 ELSE
 INSERT INTO temp VALUES
 (acct, acct_balance, 'Insufficient funds');
 -- insert account, current balance, and message
 END IF;
 COMMIT;
END;

To choose among several values or courses of action, you can use CASE constructs. The
CASE expression evaluates a condition and returns a value for each case. The case
statement evaluates a condition and performs an action (which might be an entire
PL/SQL block) for each case.

Understanding the Main Features of PL/SQL

1-8 PL/SQL User's Guide and Reference

-- This CASE statement performs different actions based
-- on a set of conditional tests.
CASE
 WHEN shape = 'square' THEN area := side * side;
 WHEN shape = 'circle' THEN
 BEGIN
 area := pi * (radius * radius);
 DBMS_OUTPUT.PUT_LINE('Value is not exact because pi is irrational.');
 END;
 WHEN shape = 'rectangle' THEN area := length * width;
 ELSE
 BEGIN
 DBMS_OUTPUT.PUT_LINE('No formula to calculate area of a' || shape);
 RAISE PROGRAM_ERROR;
 END;
END CASE;

A sequence of statements that uses query results to select alternative actions is
common in database applications. Another common sequence inserts or deletes a row
only if an associated entry is found in another table. You can bundle these common
sequences into a PL/SQL block using conditional logic.

Iterative Control
LOOP statements let you execute a sequence of statements multiple times. You place
the keyword LOOP before the first statement in the sequence and the keywords END
LOOP after the last statement in the sequence. The following example shows the
simplest kind of loop, which repeats a sequence of statements continually:

LOOP
 -- sequence of statements
END LOOP;

The FOR-LOOP statement lets you specify a range of integers, then execute a sequence
of statements once for each integer in the range. For example, the following loop
inserts 500 numbers and their square roots into a database table:

FOR num IN 1..500 LOOP
 INSERT INTO roots VALUES (num, SQRT(num));
END LOOP;

The WHILE-LOOP statement associates a condition with a sequence of statements.
Before each iteration of the loop, the condition is evaluated. If the condition is true, the
sequence of statements is executed, then control resumes at the top of the loop. If the
condition is false or null, the loop is bypassed and control passes to the next statement.

In the following example, you find the first employee who has a salary over $2500 and
is higher in the chain of command than employee 7499:

-- available online in file 'examp3'
DECLARE
 salary emp.sal%TYPE := 0;
 mgr_num emp.mgr%TYPE;
 last_name emp.ename%TYPE;
 starting_empno emp.empno%TYPE := 7499;
BEGIN
 SELECT mgr INTO mgr_num FROM emp
 WHERE empno = starting_empno;
 WHILE salary <= 2500 LOOP
 SELECT sal, mgr, ename INTO salary, mgr_num, last_name
 FROM emp WHERE empno = mgr_num;

Understanding the Main Features of PL/SQL

Overview of PL/SQL 1-9

 END LOOP;
 INSERT INTO temp VALUES (NULL, salary, last_name);
 COMMIT;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO temp VALUES (NULL, NULL, 'Not found');
 COMMIT;
END;

The EXIT-WHEN statement lets you complete a loop if further processing is impossible
or undesirable. When the EXIT statement is encountered, the condition in the WHEN
clause is evaluated. If the condition is true, the loop completes and control passes to
the next statement. In the following example, the loop completes when the value of
total exceeds 25,000:

LOOP
 ...
 total := total + salary;
 EXIT WHEN total > 25000; -- exit loop if condition is true
END LOOP;
-- control resumes here

Sequential Control
The GOTO statement lets you branch to a label unconditionally. The label, an
undeclared identifier enclosed by double angle brackets, must precede an executable
statement or a PL/SQL block. When executed, the GOTO statement transfers control to
the labeled statement or block, as the following example shows:

IF rating > 90 THEN
 GOTO calc_raise; -- branch to label
END IF;
...
<<calc_raise>>
IF job_title = 'SALESMAN' THEN -- control resumes here
 amount := commission * 0.25;
ELSE
 amount := salary * 0.10;
END IF;

Writing Reusable PL/SQL Code
PL/SQL lets you break an application down into manageable, well-defined modules.
PL/SQL meets this need with program units, which include blocks, subprograms, and
packages. You can reuse program units by loading them into the database as triggers,
stored procedures, and stored functions.

Subprograms
PL/SQL has two types of subprograms called procedures and functions, which can take
parameters and be invoked (called). As the following example shows, a subprogram is
like a miniature program, beginning with a header followed by an optional declarative
part, an executable part, and an optional exception-handling part:

PROCEDURE award_bonus (emp_id NUMBER) IS
 bonus REAL;
 comm_missing EXCEPTION;
BEGIN -- executable part starts here
 SELECT comm * 0.15 INTO bonus FROM emp WHERE empno = emp_id;
 IF bonus IS NULL THEN

Understanding the Main Features of PL/SQL

1-10 PL/SQL User's Guide and Reference

 RAISE comm_missing;
 ELSE
 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;
 END IF;
EXCEPTION -- exception-handling part starts here
 WHEN comm_missing THEN
 ...
END award_bonus;

When called, this procedure accepts an employee number. It uses the number to select
the employee's commission from a database table and, at the same time, compute a
15% bonus. Then, it checks the bonus amount. If the bonus is null, an exception is
raised; otherwise, the employee's payroll record is updated.

Packages
PL/SQL lets you bundle logically related types, variables, cursors, and subprograms
into a package, a database object that is a step above regular stored procedures. The
packages defines a simple, clear, interface to a set of related procedures and types.

Packages usually have two parts: a specification and a body. The specification defines
the application programming interface; it declares the types, constants, variables,
exceptions, cursors, and subprograms. The body fills in the SQL queries for cursors and
the code for subprograms.

The following example packages two employment procedures:

CREATE PACKAGE emp_actions AS -- package specification
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

CREATE PACKAGE BODY emp_actions AS -- package body
 PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, ...);
 END hire_employee;
 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;

Applications that call these procedures only need to know the names and parameters
from the package spec. You can change the implementation details inside the package
body without affecting the calling applications.

Packages are stored in the database, where they can be shared by many applications.
Calling a packaged subprogram for the first time loads the whole package and caches
it in memory, saving on disk I/O for subsequent calls. Thus, packages enhance reuse
and improve performance in a multi-user, multi-application environment.

Data Abstraction
Data abstraction lets you work with the essential properties of data without being too
involved with details. Once you design a data structure, you can focus on designing
algorithms that manipulate the data structure.

Understanding the Main Features of PL/SQL

Overview of PL/SQL 1-11

Collections
PL/SQL collection types let you declare high-level datatypes similar to arrays, sets,
and hash tables found in other languages. In PL/SQL, array types are known as
varrays (short for variable-size arrays), set types are known as nested tables, and hash
table types are known as associative arrays. Each kind of collection is an ordered
group of elements, all of the same type. Each element has a unique subscript that
determines its position in the collection.

To reference an element, use subscript notation with parentheses. For example, the
following call references the fifth element in the nested table (of type Staff) returned
by function new_hires:

DECLARE
 TYPE Staff IS TABLE OF Employee;
 staffer Employee;
 FUNCTION new_hires (hiredate DATE) RETURN Staff IS
 BEGIN ... END;
BEGIN
 staffer := new_hires('10-NOV-98')(5);
END;

Collections can be passed as parameters, so that subprograms can process arbitrary
numbers of elements.You can use collections to move data into and out of database
tables using high-performance language features known as bulk SQL.

Records
Records are composite data structures whose fields can have different datatypes. You
can use records to hold related items and pass them to subprograms with a single
parameter.

You can use the %ROWTYPE attribute to declare a record that represents a row in a table
or a row from a query result set, without specifying the names and types for the fields.

Consider the following example:

DECLARE
 TYPE TimeRec IS RECORD (hours SMALLINT, minutes SMALLINT);
 TYPE MeetingTyp IS RECORD (
 date_held DATE,
 duration TimeRec, -- nested record
 location VARCHAR2(20),
 purpose VARCHAR2(50));

Object Types
PL/SQL supports object-oriented programming through object types. An object type
encapsulates a data structure along with the functions and procedures needed to
manipulate the data. The variables that form the data structure are known as
attributes. The functions and procedures that manipulate the attributes are known as
methods.

Object types reduce complexity by breaking down a large system into logical entities.
This lets you create software components that are modular, maintainable, and
reusable.

Object-type definitions, and the code for the methods, are stored in the database.
Instances of these object types can be stored in tables or used as variables inside
PL/SQL code.

PL/SQL Architecture

1-12 PL/SQL User's Guide and Reference

CREATE TYPE Bank_Account AS OBJECT (
 acct_number INTEGER(5),
 balance REAL,
 status VARCHAR2(10),
 MEMBER PROCEDURE open (amount IN REAL),
 MEMBER PROCEDURE verify_acct (num IN INTEGER),
 MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
 MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL),
 MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL),
 MEMBER FUNCTION curr_bal (num IN INTEGER) RETURN REAL
);

Error Handling
PL/SQL makes it easy to detect and process error conditions known as exceptions.
When an error occurs, an exception is raised: normal execution stops and control
transfers to special exception-handling code, which comes at the end of any PL/SQL
block. Each different exception is processed by a particular exception handler.

Predefined exceptions are raised automatically for certain common error conditions
involving variables or database operations. For example, if you try to divide a number
by zero, PL/SQL raises the predefined exception ZERO_DIVIDE automatically.

You can declare exceptions of your own, for conditions that you decide are errors, or to
correspond to database errors that normally result in ORA- error messages. When you
detect a user-defined error condition, you execute a RAISE statement. The following
example computes the bonus earned by a salesperson. The bonus is based on salary
and commission. If the commission is null, you raise the exception comm_missing.

DECLARE
 comm_missing EXCEPTION; -- declare exception
BEGIN
 IF commission IS NULL THEN
 RAISE comm_missing; -- raise exception
 END IF;
 bonus := (salary * 0.10) + (commission * 0.15);
EXCEPTION
 WHEN comm_missing THEN ... -- process the exception

PL/SQL Architecture
The PL/SQL compilation and run-time system is an engine that compiles and executes
PL/SQL blocks and subprograms. The engine can be installed in an Oracle server or in
an application development tool such as Oracle Forms or Oracle Reports.

In either environment, the PL/SQL engine accepts as input any valid PL/SQL block or
subprogram. Figure 1–3 shows the PL/SQL engine processing an anonymous block.
The PL/SQL engine executes procedural statements but sends SQL statements to the
SQL engine in the Oracle database.

PL/SQL Architecture

Overview of PL/SQL 1-13

Figure 1–3 PL/SQL Engine

In the Oracle Database Server
Typically, the Oracle database server processes PL/SQL blocks and subprograms.

Anonymous Blocks
Anonymous PL/SQL blocks can be submitted to interactive tools such as SQL*Plus
and Enterprise Manager, or embedded in an Oracle Precompiler or OCI program. At
run time, the program sends these blocks to the Oracle database, where they are
compiled and executed.

Stored Subprograms
Subprograms can be compiled and stored in an Oracle database, ready to be executed.
Once compiled, it is a schema object known as a stored procedure or stored function,
which can be referenced by any number of applications connected to that database.

Stored subprograms defined within a package are known as packaged subprograms.
Those defined independently are called standalone subprograms.

Subprograms nested inside other subprograms or within a PL/SQL block are known
as local subprograms, which cannot be referenced by other applications and exist only
inside the enclosing block.

Stored subprograms are the key to modular, reusable PL/SQL code. Wherever you
might use a JAR file in Java, a module in Perl, a shared library in C++, or a DLL in
Visual Basic, you should use PL/SQL stored procedures, stored functions, and
packages.

You can call stored subprograms from a database trigger, another stored subprogram,
an Oracle Precompiler or OCI application, or interactively from SQL*Plus or
Enterprise Manager. You can also configure a web server so that the HTML for a web
page is generated by a stored subprogram, making it simple to provide a web interface
for data entry and report generation.

For example, you might call the standalone procedure create_dept from SQL*Plus
as follows:

SQL> CALL create_dept('FINANCE', 'NEW YORK');

PL/SQL Engine

Oracle Server

SQL Statement Executor

PL/SQL
Block

Procedural
Statement
Executor

SQL

procedural
PL/SQL
Block

PL/SQL Architecture

1-14 PL/SQL User's Guide and Reference

Subprograms are stored in a compact compiled form. When called, they are loaded
and processed immediately. Subprograms take advantage of shared memory, so that
only one copy of a subprogram is loaded into memory for execution by multiple users.

Database Triggers
A database trigger is a stored subprogram associated with a database table, view, or
event. The trigger can be called once, when some event occurs, or many times, once for
each row affected by an INSERT, UPDATE, or DELETE statement. The trigger can be
called after the event, to record it or take some followup action. Or, the trigger can be
called before the event to prevent erroneous operations or fix new data so that it
conforms to business rules. For example, the following table-level trigger fires
whenever salaries in the emp table are updated:

CREATE TRIGGER audit_sal
 AFTER UPDATE OF sal ON emp
 FOR EACH ROW
BEGIN
 INSERT INTO emp_audit VALUES ...
END;

The executable part of a trigger can contain procedural statements as well as SQL data
manipulation statements. Besides table-level triggers, there are instead-of triggers for
views and system-event triggers for schemas. For more information, see Oracle Database
Application Developer's Guide - Fundamentals.

In Oracle Tools
An application development tool that contains the PL/SQL engine can process
PL/SQL blocks and subprograms. The tool passes the blocks to its local PL/SQL
engine. The engine executes all procedural statements inside the application and sends
only SQL statements to the database. Most of the work is done inside the application,
not on the database server. If the block contains no SQL statements, the application
executes the entire block. This is useful if your application can benefit from conditional
and iterative control.

Frequently, Oracle Forms applications use SQL statements to test the value of field
entries or to do simple computations. By using PL/SQL instead, you can avoid calls to
the database. You can also use PL/SQL functions to manipulate field entries.

Fundamentals of the PL/SQL Language 2-1

2
Fundamentals of the PL/SQL Language

There are six essentials in painting. The first is called spirit; the second, rhythm; the third,
thought; the fourth, scenery; the fifth, the brush; and the last is the ink. —Ching Hao

The previous chapter provided an overview of PL/SQL. This chapter focuses on the
detailed aspects of the language. Like other programming languages, PL/SQL has a
character set, reserved words, punctuation, datatypes, and fixed syntax rules.

This chapter contains these topics:

■ Character Set on page 2-1

■ Lexical Units on page 2-1

■ Declarations on page 2-8

■ PL/SQL Naming Conventions on page 2-12

■ Scope and Visibility of PL/SQL Identifiers on page 2-14

■ Assigning Values to Variables on page 2-16

■ PL/SQL Expressions and Comparisons on page 2-17

■ Summary of PL/SQL Built-In Functions on page 2-28

Character Set
You write a PL/SQL program as lines of text using a specific set of characters:

Upper- and lower-case letters A .. Z and a .. z
Numerals 0 .. 9
Symbols () + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? []
Tabs, spaces, and carriage returns

PL/SQL keywords are not case-sensitive, so lower-case letters are equivalent to
corresponding upper-case letters except within string and character literals.

Lexical Units
A line of PL/SQL text contains groups of characters known as lexical units:

delimiters (simple and compound symbols)
identifiers, which include reserved words
literals
comments

Lexical Units

2-2 PL/SQL User's Guide and Reference

To improve readability, you can separate lexical units by spaces. In fact, you must
separate adjacent identifiers by a space or punctuation. The following line is not
allowed because the reserved words END and IF are joined:

IF x > y THEN high := x; ENDIF; -- not allowed, must be END IF

You cannot embed spaces inside lexical units except for string literals and comments.
For example, the following line is not allowed because the compound symbol for
assignment (:=) is split:

count : = count + 1; -- not allowed, must be :=

To show structure, you can split lines using carriage returns, and indent lines using
spaces or tabs. The formatting makes the IF statement on the right more readable:

IF x>y THEN max:=x;ELSE max:=y;END IF; | IF x > y THEN
 | max := x;
 | ELSE
 | max := y;
 | END IF;

Delimiters
A delimiter is a simple or compound symbol that has a special meaning to PL/SQL. For
example, you use delimiters to represent arithmetic operations such as addition and
subtraction.

Symbol Meaning

+ addition operator

% attribute indicator

' character string delimiter

. component selector

/ division operator

(expression or list delimiter

) expression or list delimiter

: host variable indicator

, item separator

* multiplication operator

" quoted identifier delimiter

= relational operator

< relational operator

> relational operator

@ remote access indicator

; statement terminator

- subtraction/negation operator

Lexical Units

Fundamentals of the PL/SQL Language 2-3

Identifiers
You use identifiers to name PL/SQL program items and units, which include
constants, variables, exceptions, cursors, cursor variables, subprograms, and packages.
Some examples of identifiers follow:

X
t2
phone#
credit_limit
LastName
oracle$number

An identifier consists of a letter optionally followed by more letters, numerals, dollar
signs, underscores, and number signs. Other characters such as hyphens, slashes, and
spaces are not allowed, as the following examples show:

mine&yours -- not allowed because of ampersand
debit-amount -- not allowed because of hyphen
on/off -- not allowed because of slash
user id -- not allowed because of space

Adjoining and trailing dollar signs, underscores, and number signs are allowed:

money$$$tree
SN##
try_again_

You can use upper, lower, or mixed case to write identifiers. PL/SQL is not case
sensitive except within string and character literals. If the only difference between
identifiers is the case of corresponding letters, PL/SQL considers them the same:

lastname

Symbol Meaning

:= assignment operator

=> association operator

|| concatenation operator

** exponentiation operator

<< label delimiter (begin)

>> label delimiter (end)

/* multi-line comment delimiter (begin)

*/ multi-line comment delimiter (end)

.. range operator

<> relational operator

!= relational operator

~= relational operator

^= relational operator

<= relational operator

>= relational operator

-- single-line comment indicator

Lexical Units

2-4 PL/SQL User's Guide and Reference

LastName -- same as lastname
LASTNAME -- same as lastname and LastName

The size of an identifier cannot exceed 30 characters. Every character, including dollar
signs, underscores, and number signs, is significant. For example, PL/SQL considers
the following identifiers to be different:

lastname
last_name

Identifiers should be descriptive. Avoid obscure names such as cpm. Instead, use
meaningful names such as cost_per_thousand.

Reserved Words
Some identifiers, called reserved words, have a special syntactic meaning to PL/SQL.
For example, the words BEGIN and END are reserved. Trying to redefine a reserved
word causes a compilation error. Instead, you can embed reserved words as part of a
longer identifier:

DECLARE
 -- end BOOLEAN; -- not allowed; causes compilation error
 end_of_game BOOLEAN; -- allowed
BEGIN
 NULL;
END;
/

Often, reserved words are written in upper case for readability. For a list of reserved
words, see Appendix F.

Predefined Identifiers
Identifiers globally declared in package STANDARD, such as the exception
INVALID_NUMBER, can be redeclared. However, redeclaring predefined identifiers is
error prone because your local declaration overrides the global declaration.

Quoted Identifiers
For flexibility, PL/SQL lets you enclose identifiers within double quotes. Quoted
identifiers are seldom needed, but occasionally they can be useful. They can contain
any sequence of printable characters including spaces but excluding double quotes.
Thus, the following identifiers are valid:

"X+Y"
"last name"
"on/off switch"
"employee(s)"
"*** header info ***"

The maximum size of a quoted identifier is 30 characters not counting the double
quotes. Though allowed, using PL/SQL reserved words as quoted identifiers is a poor
programming practice.

Literals
A literal is an explicit numeric, character, string, or Boolean value not represented by
an identifier. The numeric literal 147 and the Boolean literal FALSE are examples.

Lexical Units

Fundamentals of the PL/SQL Language 2-5

Numeric Literals
Two kinds of numeric literals can be used in arithmetic expressions: integers and reals.
An integer literal is an optionally signed whole number without a decimal point. Some
examples follow:

030 6 -14 0 +32767

A real literal is an optionally signed whole or fractional number with a decimal point.
Several examples follow:

6.6667 0.0 -12.0 3.14159 +8300.00 .5 25.

PL/SQL considers numbers such as 12.0 and 25. to be reals even though they have
integral values.

Numeric literals cannot contain dollar signs or commas, but can be written using
scientific notation. Simply suffix the number with an E (or e) followed by an optionally
signed integer. A few examples follow:

2E5 1.0E-7 3.14159e0 -1E38 -9.5e-3

E stands for "times ten to the power of." As the next example shows, the number after
E is the power of ten by which the number before E is multiplied (the double asterisk
(**) is the exponentiation operator):

5E3 = 5 * 10**3 = 5 * 1000 = 5000

The number after E also corresponds to the number of places the decimal point shifts.
In the last example, the implicit decimal point shifted three places to the right. In this
example, it shifts three places to the left:

5E-3 = 5 * 10**-3 = 5 * 0.001 = 0.005

As the following example shows, if the value of a numeric literal falls outside the
range 1E-130 .. 10E125, you get a compilation error:

DECLARE
 n NUMBER;
BEGIN
 n := 10E127; -- causes a 'numeric overflow or underflow' error
END;
/

Real literals can also use the trailing letters f and d to specify the types
BINARY_FLOAT and BINARY_DOUBLE, respectively:

DECLARE
 x BINARY_FLOAT := sqrt(2.0f); -- Single-precision floating-point number
 y BINARY_DOUBLE := sqrt(2.0d); -- Double-precision floating-point number
BEGIN
 NULL;
END;
/

Character Literals
A character literal is an individual character enclosed by single quotes (apostrophes).
Character literals include all the printable characters in the PL/SQL character set:
letters, numerals, spaces, and special symbols. Some examples follow:

'Z' '%' '7' ' ' 'z' '('

Lexical Units

2-6 PL/SQL User's Guide and Reference

PL/SQL is case sensitive within character literals. For example, PL/SQL considers the
literals 'Z' and 'z' to be different. Also, the character literals '0'..'9' are not
equivalent to integer literals but can be used in arithmetic expressions because they are
implicitly convertible to integers.

String Literals
A character value can be represented by an identifier or explicitly written as a string
literal, which is a sequence of zero or more characters enclosed by single quotes.
Several examples follow:

'Hello, world!'
'XYZ Corporation'
'10-NOV-91'
'He said "Life is like licking honey from a thorn."'
'$1,000,000'

All string literals except the null string ('') have datatype CHAR.

To represent an apostrophe within a string, you can write two single quotes, which is
not the same as writing a double quote:

'I''m a string, you''re a string.'

Doubling the quotation marks within a complicated literal, particularly one that
represents a SQL statement, can be tricky. You can also use the following notation to
define your own delimiter characters for the literal. You choose a character that is not
present in the string, and then do not need to escape other single quotation marks
inside the literal:

-- q'!...!' notation lets us use single quotes inside the literal.
string_var := q'!I'm a string, you're a string.!';

-- To use delimiters [, {, <, and (, pair them with], }, >, and).
-- Here we pass a string literal representing a SQL statement
-- to a subprogram, without doubling the quotation marks around
-- 'INVALID'.
func_call(q'[select index_name from user_indexes where status = 'INVALID']');

-- For NCHAR and NVARCHAR2 literals, use the prefix nq instead of q.
where_clause := nq'#where col_value like '%é'#';

PL/SQL is case sensitive within string literals. For example, PL/SQL considers the
following literals to be different:

'baker'
'Baker'

Boolean Literals
Boolean literals are the predefined values TRUE, FALSE, and NULL (which stands for a
missing, unknown, or inapplicable value). Remember, Boolean literals are values, not
strings. For example, TRUE is no less a value than the number 25.

Datetime Literals
Datetime literals have various formats depending on the datatype. For example:

DECLARE
 d1 DATE := DATE ’1998-12-25’;
 t1 TIMESTAMP := TIMESTAMP ’1997-10-22 13:01:01’;

Lexical Units

Fundamentals of the PL/SQL Language 2-7

 t2 TIMESTAMP WITH TIME ZONE := TIMESTAMP ’1997-01-31 09:26:56.66 +02:00’;
-- Three years and two months
-- (For greater precision, we would use the day-to-second interval)
 i1 INTERVAL YEAR TO MONTH := INTERVAL ’3-2’ YEAR TO MONTH;
-- Five days, four hours, three minutes, two and 1/100 seconds
 i2 INTERVAL DAY TO SECOND := INTERVAL ’5 04:03:02.01’ DAY TO SECOND;

You can also specify whether a given interval value is YEAR TO MONTH or DAY TO
SECOND. For example, current_timestamp - current_timestamp produces a
value of type INTERVAL DAY TO SECOND by default. You can specify the type of the
interval using the formats:

■ (interval_expression) DAY TO SECOND

■ (interval_expression) YEAR TO MONTH

For details on the syntax for the date and time types, see the Oracle Database SQL
Reference. For examples of performing date/time arithmetic, see Oracle Database
Application Developer's Guide - Fundamentals.

Comments
The PL/SQL compiler ignores comments, but you should not. Adding comments to
your program promotes readability and aids understanding. Generally, you use
comments to describe the purpose and use of each code segment. PL/SQL supports
two comment styles: single-line and multi-line.

Single-Line Comments
Single-line comments begin with a double hyphen (--) anywhere on a line and extend
to the end of the line. A few examples follow:

DECLARE
 howmany NUMBER;
BEGIN
-- begin processing
 SELECT count(*) INTO howmany FROM user_objects
 WHERE object_type = 'TABLE'; -- Check number of tables
 howmany := howmany * 2; -- Compute some other value
END;
/

Notice that comments can appear within a statement at the end of a line.

While testing or debugging a program, you might want to disable a line of code. The
following example shows how you can "comment-out" the line:

-- DELETE FROM employees WHERE comm_pct IS NULL;

Multi-line Comments
Multi-line comments begin with a slash-asterisk (/*), end with an asterisk-slash (*/),
and can span multiple lines. Some examples follow:

DECLARE
 some_condition BOOLEAN;
 pi NUMBER := 3.1415926; radius NUMBER := 15; area NUMBER;
BEGIN
 /* Perform some simple tests and assignments */
 IF 2 + 2 = 4 THEN
 some_condition := TRUE; /* We expect this THEN to always be done */

Declarations

2-8 PL/SQL User's Guide and Reference

 END IF;
/*
 The following line computes the area of a
 circle using pi, which is the ratio between
 the circumference and diameter.
*/
 area := pi * radius**2;
END;
/

You can use multi-line comment delimiters to comment-out whole sections of code:

/*
LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 ...
END LOOP;
*/

Restrictions on Comments
You cannot nest comments.

You cannot use single-line comments in a PL/SQL block that will be processed by an
Oracle Precompiler program because end-of-line characters are ignored. As a result,
single-line comments extend to the end of the block, not just to the end of a line. In this
case, use the /* */ notation instead.

Declarations
Your program stores values in variables and constants. As the program executes, the
values of variables can change, but the values of constants cannot.

You can declare variables and constants in the declarative part of any PL/SQL block,
subprogram, or package. Declarations allocate storage space for a value, specify its
datatype, and name the storage location so that you can reference it.

 A couple of examples follow:

DECLARE
 birthday DATE;
 emp_count SMALLINT := 0;

The first declaration names a variable of type DATE. The second declaration names a
variable of type SMALLINT and uses the assignment operator to assign an initial value
of zero to the variable.

The next examples show that the expression following the assignment operator can be
arbitrarily complex and can refer to previously initialized variables:

DECLARE
 pi REAL := 3.14159;
 radius REAL := 1;
 area REAL := pi * radius**2;
BEGIN
 NULL;
END;
/

Declarations

Fundamentals of the PL/SQL Language 2-9

By default, variables are initialized to NULL, so it is redundant to include ":= NULL"
in a variable declaration.

To declare a constant, put the keyword CONSTANT before the type specifier:

DECLARE
 credit_limit CONSTANT REAL := 5000.00;
 max_days_in_year CONSTANT INTEGER := 366;
 urban_legend CONSTANT BOOLEAN := FALSE;
BEGIN
 NULL;
END;
/

This declaration names a constant of type REAL and assigns an unchangeable value of
5000 to the constant. A constant must be initialized in its declaration. Otherwise, you
get a compilation error.

Using DEFAULT
You can use the keyword DEFAULT instead of the assignment operator to initialize
variables. For example, the declaration

blood_type CHAR := 'O';

can be rewritten as follows:

blood_type CHAR DEFAULT 'O';

Use DEFAULT for variables that have a typical value. Use the assignment operator for
variables (such as counters and accumulators) that have no typical value. For example:

hours_worked INTEGER DEFAULT 40;
employee_count INTEGER := 0;

You can also use DEFAULT to initialize subprogram parameters, cursor parameters,
and fields in a user-defined record.

Using NOT NULL
Besides assigning an initial value, declarations can impose the NOT NULL constraint:

DECLARE
 acct_id INTEGER(4) NOT NULL := 9999;

You cannot assign nulls to a variable defined as NOT NULL. If you try, PL/SQL raises
the predefined exception VALUE_ERROR.

The NOT NULL constraint must be followed by an initialization clause.

PL/SQL provide subtypes NATURALN and POSITIVEN that are predefined as NOT
NULL. You can omit the NOT NULL constraint when declaring variables of these types,
and you must include an initialization clause.

Using the %TYPE Attribute
The %TYPE attribute provides the datatype of a variable or database column. In the
following example, %TYPE provides the datatype of a variable:

DECLARE
 credit NUMBER(7,2);
 debit credit%TYPE;

Declarations

2-10 PL/SQL User's Guide and Reference

 name VARCHAR2(20) := 'JoHn SmItH';
-- If we increase the length of NAME, the other variables
-- become longer too.
 upper_name name%TYPE := UPPER(name);
 lower_name name%TYPE := LOWER(name);
 init_name name%TYPE := INITCAP(name);
BEGIN
 NULL;
END;
/

Variables declared using %TYPE are treated like those declared using a datatype
specifier. For example, given the previous declarations, PL/SQL treats debit like a
REAL(7,2) variable. A %TYPE declaration can also include an initialization clause.

The %TYPE attribute is particularly useful when declaring variables that refer to
database columns. You can reference a table and column, or you can reference an
owner, table, and column, as in

DECLARE
-- If the length of the column ever changes, this code
-- will use the new length automatically.
 the_trigger user_triggers.trigger_name%TYPE;
BEGIN
 NULL;
END;
/

When you use table_name.column_name.TYPE to declare a variable, you do not
need to know the actual datatype, and attributes such as precision, scale, and length. If
the database definition of the column changes, the datatype of the variable changes
accordingly at run time.

%TYPE variables do not inherit the NOT NULL column constraint. In the next example,
even though the database column employee_id is defined as NOT NULL, you can
assign a null to the variable my_empno:

DECLARE
 my_empno employees.employee_id%TYPE;
BEGIN
 my_empno := NULL; -- this works
END;
/

Using the %ROWTYPE Attribute
The %ROWTYPE attribute provides a record type that represents a row in a table (or
view). The record can store an entire row of data selected from the table, or fetched
from a cursor or strongly typed cursor variable:

DECLARE
-- %ROWTYPE can include all the columns in a table...
 emp_rec employees%ROWTYPE;
-- ...or a subset of the columns, based on a cursor.
 CURSOR c1 IS
 SELECT department_id, department_name FROM departments;
 dept_rec c1%ROWTYPE;
-- Could even make a %ROWTYPE with columns from multiple tables.
 CURSOR c2 IS
 SELECT employee_id, email, employees.manager_id, location_id

Declarations

Fundamentals of the PL/SQL Language 2-11

 FROM employees, departments
 WHERE employees.department_id = departments.department_id;
 join_rec c2%ROWTYPE;
BEGIN
-- We know EMP_REC can hold a row from the EMPLOYEES table.
 SELECT * INTO emp_rec FROM employees WHERE ROWNUM < 2;
-- We can refer to the fields of EMP_REC using column names
-- from the EMPLOYEES table.
 IF emp_rec.department_id = 20 AND emp_rec.last_name = 'JOHNSON' THEN
 emp_rec.salary := emp_rec.salary * 1.15;
 END IF;
END;
/

Columns in a row and corresponding fields in a record have the same names and
datatypes. However, fields in a %ROWTYPE record do not inherit the NOT NULL column
constraint.

Aggregate Assignment
Although a %ROWTYPE declaration cannot include an initialization clause, there are
ways to assign values to all fields in a record at once. You can assign one record to
another if their declarations refer to the same table or cursor. For example, the
following assignment is allowed:

DECLARE
 dept_rec1 departments%ROWTYPE;
 dept_rec2 departments%ROWTYPE;
 CURSOR c1 IS SELECT department_id, location_id FROM departments;
 dept_rec3 c1%ROWTYPE;
BEGIN
 dept_rec1 := dept_rec2; -- allowed
-- dept_rec2 refers to a table, dept_rec3 refers to a cursor
-- dept_rec2 := dept_rec3; -- not allowed
END;
/

You can assign a list of column values to a record by using the SELECT or FETCH
statement, as the following example shows. The column names must appear in the
order in which they were defined by the CREATE TABLE or CREATE VIEW statement.

DECLARE
 dept_rec departments%ROWTYPE;
BEGIN
 SELECT * INTO dept_rec FROM departments
 WHERE department_id = 30 and ROWNUM < 2;
END;
/

However, there is no constructor for a record type, so you cannot assign a list of
column values to a record by using an assignment statement.

Using Aliases
Select-list items fetched from a cursor associated with %ROWTYPE must have simple
names or, if they are expressions, must have aliases. The following example uses an
alias called complete_name to represent the concatenation of two columns:

BEGIN
-- We assign an alias (COMPLETE_NAME) to the expression value, because
-- it has no column name.

PL/SQL Naming Conventions

2-12 PL/SQL User's Guide and Reference

 FOR item IN
 (
 SELECT first_name || ' ' || last_name complete_name
 FROM employees WHERE ROWNUM < 11
)
 LOOP
-- Now we can refer to the field in the record using this alias.
 dbms_output.put_line('Employee name: ' || item.complete_name);
 END LOOP;
END;
/

Restrictions on Declarations
PL/SQL does not allow forward references. You must declare a variable or constant
before referencing it in other statements, including other declarative statements.

PL/SQL does allow the forward declaration of subprograms. For more information,
see "Declaring Nested PL/SQL Subprograms" on page 8-5.

Some languages allow you to declare a list of variables that have the same datatype.
PL/SQL does not allow this. You must declare each variable separately:

DECLARE
-- Multiple declarations not allowed.
-- i, j, k, l SMALLINT;
-- Instead, declare each separately.
 i SMALLINT;
 j SMALLINT;
-- To save space, you can declare more than one on a line.
 k SMALLINT; l SMALLINT;
BEGIN
 NULL;
END;
/

PL/SQL Naming Conventions
The same naming conventions apply to all PL/SQL program items and units including
constants, variables, cursors, cursor variables, exceptions, procedures, functions, and
packages. Names can be simple, qualified, remote, or both qualified and remote. For
example, you might use the procedure name raise_salary in any of the following
ways:

raise_salary(...); -- simple
emp_actions.raise_salary(...); -- qualified
raise_salary@newyork(...); -- remote
emp_actions.raise_salary@newyork(...); -- qualified and remote

In the first case, you simply use the procedure name. In the second case, you must
qualify the name using dot notation because the procedure is stored in a package
called emp_actions. In the third case, using the remote access indicator (@), you
reference the database link newyork because the procedure is stored in a remote
database. In the fourth case, you qualify the procedure name and reference a database
link.

PL/SQL Naming Conventions

Fundamentals of the PL/SQL Language 2-13

Synonyms
You can create synonyms to provide location transparency for remote schema objects
such as tables, sequences, views, standalone subprograms, packages, and object types.
However, you cannot create synonyms for items declared within subprograms or
packages. That includes constants, variables, cursors, cursor variables, exceptions, and
packaged subprograms.

Scoping
Within the same scope, all declared identifiers must be unique; even if their datatypes
differ, variables and parameters cannot share the same name. In the following
example, the second declaration is not allowed:

DECLARE
 valid_id BOOLEAN;
 valid_id VARCHAR2(5); -- not allowed, duplicate identifier
BEGIN
-- The error occurs when the identifier is referenced, not
-- in the declaration part.
 valid_id := FALSE;
END;
/

For the scoping rules that apply to identifiers, see "Scope and Visibility of PL/SQL
Identifiers" on page 2-14.

Case Sensitivity
Like all identifiers, the names of constants, variables, and parameters are not case
sensitive. For instance, PL/SQL considers the following names to be the same:

DECLARE
 zip_code INTEGER;
 Zip_Code INTEGER; -- duplicate identifier, despite Z/z case difference
BEGIN
 zip_code := 90120; -- causes error because of duplicate identifiers
END;
/

Name Resolution
In potentially ambiguous SQL statements, the names of database columns take
precedence over the names of local variables and formal parameters. For example, if a
variable and a column with the same name are both used in a WHERE clause, SQL
considers that both cases refer to the column.

To avoid ambiguity, add a prefix to the names of local variables and formal
parameters, or use a block label to qualify references.

CREATE TABLE employees2 AS SELECT last_name FROM employees;

<<MAIN>>
DECLARE
 last_name VARCHAR2(10) := 'King';
 my_last_name VARCHAR2(10) := 'King';
BEGIN
-- Deletes everyone, because both LAST_NAMEs refer to the column
 DELETE FROM employees2 WHERE last_name = last_name;
 dbms_output.put_line('Deleted ' || SQL%ROWCOUNT || ' rows.');
 ROLLBACK;

Scope and Visibility of PL/SQL Identifiers

2-14 PL/SQL User's Guide and Reference

-- OK, column and variable have different names
 DELETE FROM employees2 WHERE last_name = my_last_name;
 dbms_output.put_line('Deleted ' || SQL%ROWCOUNT || ' rows.');
 ROLLBACK;
-- OK, block name specifies that 2nd LAST_NAME is a variable
 DELETE FROM employees2 WHERE last_name = main.last_name;
 dbms_output.put_line('Deleted ' || SQL%ROWCOUNT || ' rows.');
 ROLLBACK;
END;
/

DROP TABLE employees2;

The next example shows that you can use a subprogram name to qualify references to
local variables and formal parameters:

DECLARE
 FUNCTION dept_name (department_id IN NUMBER)
 RETURN departments.department_name%TYPE
 IS
 department_name departments.department_name%TYPE;
 BEGIN
-- DEPT_NAME.DEPARTMENT_NAME specifies the local variable
-- instead of the table column
 SELECT department_name INTO dept_name.department_name
 FROM departments
 WHERE department_id = dept_name.department_id;
 RETURN department_name;
 END;

BEGIN
 FOR item IN (SELECT department_id FROM departments)
 LOOP
 dbms_output.put_line('Department: ' || dept_name(item.department_id));
 END LOOP;
END;
/

For a full discussion of name resolution, see Appendix D.

Scope and Visibility of PL/SQL Identifiers
References to an identifier are resolved according to its scope and visibility. The scope
of an identifier is that region of a program unit (block, subprogram, or package) from
which you can reference the identifier. An identifier is visible only in the regions from
which you can reference the identifier using an unqualified name. Figure 2–1 shows
the scope and visibility of a variable named x, which is declared in an enclosing block,
then redeclared in a sub-block.

Identifiers declared in a PL/SQL block are considered local to that block and global to
all its sub-blocks. If a global identifier is redeclared in a sub-block, both identifiers
remain in scope. Within the sub-block, however, only the local identifier is visible
because you must use a qualified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you can declare the
same identifier in two different blocks. The two items represented by the identifier are
distinct, and any change in one does not affect the other. However, a block cannot
reference identifiers declared in other blocks at the same level because those identifiers
are neither local nor global to the block.

Scope and Visibility of PL/SQL Identifiers

Fundamentals of the PL/SQL Language 2-15

Figure 2–1 Scope and Visibility

The example below illustrates the scope rules. Notice that the identifiers declared in
one sub-block cannot be referenced in the other sub-block. That is because a block
cannot reference identifiers declared in other blocks nested at the same level.

DECLARE
 a CHAR;
 b REAL;
BEGIN
 -- identifiers available here: a (CHAR), b
 DECLARE
 a INTEGER;
 c REAL;
 BEGIN
 -- identifiers available here: a (INTEGER), b, c
 END;
 DECLARE
 d REAL;
 BEGIN
 -- identifiers available here: a (CHAR), b, d
 END;
 -- identifiers available here: a (CHAR), b
END;
/

Recall that global identifiers can be redeclared in a sub-block, in which case the local
declaration prevails and the sub-block cannot reference the global identifier unless you
use a qualified name. The qualifier can be the label of an enclosing block:

<<outer>>
DECLARE
 birthdate DATE;
BEGIN
 DECLARE
 birthdate DATE;

Scope Visibility

Outer x

Inner x

DECLARE
 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...

DECLARE

 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...
END;END;

DECLARE

 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...
END;

DECLARE

 X REAL;
BEGIN
 ...
 DECLARE
 X REAL;
 BEGIN
 ...
 END;
 ...
END;

Assigning Values to Variables

2-16 PL/SQL User's Guide and Reference

 BEGIN
 ...
 IF birthdate = outer.birthdate THEN ...
 END;
 ...
END;
/

As the next example shows, the qualifier can also be the name of an enclosing
subprogram:

PROCEDURE check_credit (...) IS
 rating NUMBER;
 FUNCTION valid (...) RETURN BOOLEAN IS
 rating NUMBER;
 BEGIN
 ...
 IF check_credit.rating < 3 THEN ...
 END;
BEGIN
 ...
END;
/

However, within the same scope, a label and a subprogram cannot have the same
name.

Assigning Values to Variables
You can use assignment statements to assign values to variables. For example, the
following statement assigns a new value to the variable bonus, overwriting its old
value:

bonus := salary * 0.15;

Unless you expressly initialize a variable, its value is undefined (NULL).

Variables and constants are initialized every time a block or subprogram is entered. By
default, variables are initialized to NULL:

DECLARE
 counter INTEGER;
BEGIN
-- COUNTER is initially NULL, so 'COUNTER + 1' is also null.
 counter := counter + 1;
 IF counter IS NULL THEN
 dbms_output.put_line('Sure enough, COUNTER is NULL not 1.');
 END IF;
END;
/

To avoid unexpected results, never reference a variable before you assign it a value.

The expression following the assignment operator can be arbitrarily complex, but it
must yield a datatype that is the same as or convertible to the datatype of the variable.

PL/SQL Expressions and Comparisons

Fundamentals of the PL/SQL Language 2-17

Assigning Boolean Values
Only the values TRUE, FALSE, and NULL can be assigned to a Boolean variable. You
can assign these literal values, or expressions such as comparisons using relational
operators.

DECLARE
 done BOOLEAN; -- DONE is initially NULL
 counter NUMBER := 0;
BEGIN
 done := FALSE; -- Assign a literal value
 WHILE done != TRUE -- Compare to a literal value
 LOOP
 counter := counter + 1;
 done := (counter > 500); -- If counter > 500, DONE = TRUE
 END LOOP;
END;
/

Assigning a SQL Query Result to a PL/SQL Variable
You can use the SELECT statement to have Oracle assign values to a variable. For each
item in the select list, there must be a corresponding, type-compatible variable in the
INTO list. For example:

DECLARE
 emp_id employees.employee_id%TYPE := 100;
 emp_name employees.last_name%TYPE;
 wages NUMBER(7,2);
BEGIN
 SELECT last_name, salary + (salary * nvl(commission_pct,0))
 INTO emp_name, wages FROM employees
 WHERE employee_id = emp_id;
 dbms_output.put_line('Employee ' || emp_name || ' might make ' || wages);
END;
/

Because SQL does not have a Boolean type, you cannot select column values into a
Boolean variable.

PL/SQL Expressions and Comparisons
Expressions are constructed using operands and operators. An operand is a variable,
constant, literal, or function call that contributes a value to an expression. An example
of a simple arithmetic expression follows:

-X / 2 + 3

Unary operators such as the negation operator (-) operate on one operand; binary
operators such as the division operator (/) operate on two operands. PL/SQL has no
ternary operators.

The simplest expressions consist of a single variable, which yields a value directly.
PL/SQL evaluates an expression by combining the values of the operands in ways
specified by the operators. An expression always returns a single value. PL/SQL
determines the datatype of this value by examining the expression and the context in
which it appears.

PL/SQL Expressions and Comparisons

2-18 PL/SQL User's Guide and Reference

Operator Precedence
The operations within an expression are done in a particular order depending on their
precedence (priority). Table 2–1 shows the default order of operations from first to last
(top to bottom).

Operators with higher precedence are applied first. In the example below, both
expressions yield 8 because division has a higher precedence than addition. Operators
with the same precedence are applied in no particular order.

5 + 12 / 4
12 / 4 + 5

You can use parentheses to control the order of evaluation. For example, the following
expression yields 7, not 11, because parentheses override the default operator
precedence:

(8 + 6) / 2

In the next example, the subtraction is done before the division because the most
deeply nested subexpression is always evaluated first:

100 + (20 / 5 + (7 - 3))

The following example shows that you can always use parentheses to improve
readability, even when they are not needed:

(salary * 0.05) + (commission * 0.25)

Logical Operators
The logical operators AND, OR, and NOT follow the tri-state logic shown in Table 2–2.
AND and OR are binary operators; NOT is a unary operator.

Table 2–1 Order of Operations

Operator Operation

** exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=,
IS NULL, LIKE, BETWEEN, IN

comparison

NOT logical negation

AND conjunction

OR inclusion

Table 2–2 Logic Truth Table

 x y x AND y x OR y NOT x

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE TRUE FALSE TRUE TRUE

PL/SQL Expressions and Comparisons

Fundamentals of the PL/SQL Language 2-19

As the truth table shows, AND returns TRUE only if both its operands are true. On the
other hand, OR returns TRUE if either of its operands is true. NOT returns the opposite
value (logical negation) of its operand. For example, NOT TRUE returns FALSE.

NOT NULL returns NULL, because nulls are indeterminate. Be careful to avoid
unexpected results in expressions involving nulls; see "Handling Null Values in
Comparisons and Conditional Statements" on page 2-25.

Order of Evaluation
When you do not use parentheses to specify the order of evaluation, operator
precedence determines the order. Compare the following expressions:

NOT (valid AND done) | NOT valid AND done

If the Boolean variables valid and done have the value FALSE, the first expression
yields TRUE. However, the second expression yields FALSE because NOT has a higher
precedence than AND. Therefore, the second expression is equivalent to:

(NOT valid) AND done

In the following example, notice that when valid has the value FALSE, the whole
expression yields FALSE regardless of the value of done:

valid AND done

Likewise, in the next example, when valid has the value TRUE, the whole expression
yields TRUE regardless of the value of done:

valid OR done

Short-Circuit Evaluation
When evaluating a logical expression, PL/SQL uses short-circuit evaluation. That is,
PL/SQL stops evaluating the expression as soon as the result can be determined. This
lets you write expressions that might otherwise cause an error. Consider the following
OR expression:

DECLARE
 on_hand INTEGER := 0;
 on_order INTEGER := 100;
BEGIN
-- Does not cause divide-by-zero error; evaluation stops after 1st expr.
 IF (on_hand = 0) OR ((on_order / on_hand) < 5) THEN
 dbms_output.put_line('There are no more widgets left!');
 END IF;
END;
/

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL TRUE NULL TRUE NULL

NULL FALSE FALSE NULL NULL

NULL NULL NULL NULL NULL

Table 2–2 (Cont.) Logic Truth Table

 x y x AND y x OR y NOT x

PL/SQL Expressions and Comparisons

2-20 PL/SQL User's Guide and Reference

When the value of on_hand is zero, the left operand yields TRUE, so PL/SQL does not
evaluate the right operand. If PL/SQL evaluated both operands before applying the
OR operator, the right operand would cause a division by zero error.

Comparison Operators
Comparison operators compare one expression to another. The result is always true,
false, or null. Typically, you use comparison operators in conditional control
statements and in the WHERE clause of SQL data manipulation statements. Here are
some examples of comparisons for different types:

DECLARE
 PROCEDURE assert(assertion VARCHAR2, truth BOOLEAN)
 IS
 BEGIN
 IF truth IS NULL THEN
 dbms_output.put_line('Assertion ' || assertion || ' is unknown (NULL)');
 ELSIF truth = TRUE THEN
 dbms_output.put_line('Assertion ' || assertion || ' is TRUE');
 ELSE
 dbms_output.put_line('Assertion ' || assertion || ' is FALSE');
 END IF;
 END;
BEGIN
 assert('2 + 2 = 4', 2 + 2 = 4);
 assert('10 > 1', 10 > 1);
 assert('10 <= 1', 10 <= 1);
 assert('5 BETWEEN 1 AND 10', 5 BETWEEN 1 AND 10);
 assert('NULL != 0', NULL != 0);
 assert('3 IN (1,3,5)', 3 IN (1,3,5));
 assert('''A'' < ''Z''', 'A' < 'Z');
 assert('''baseball'' LIKE ''%all%''', 'baseball' LIKE '%all%');
 assert('''suit'' || ''case'' = ''suitcase''', 'suit' || 'case' = 'suitcase');
END;
/

Relational Operators

IS NULL Operator
The IS NULL operator returns the Boolean value TRUE if its operand is null or FALSE
if it is not null. Comparisons involving nulls always yield NULL. Test whether a value
is null as follows:

IF variable IS NULL THEN ...

Operator Meaning

= equal to

<>, !=, ~=, ^= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

PL/SQL Expressions and Comparisons

Fundamentals of the PL/SQL Language 2-21

LIKE Operator
You use the LIKE operator to compare a character, string, or CLOB value to a pattern.
Case is significant. LIKE returns the Boolean value TRUE if the patterns match or
FALSE if they do not match.

The patterns matched by LIKE can include two special-purpose characters called
wildcards. An underscore (_) matches exactly one character; a percent sign (%)
matches zero or more characters. For example, if the value of ename is 'JOHNSON',
the following expression is true:

ename LIKE 'J%S_N'

To search for the percent sign and underscore characters, you define an escape
character and put that character before the percent sign or underscore. The following
example uses the backslash as the escape character, so that the percent sign in the
string does not act as a wildcard:

IF sale_sign LIKE '50\% off!' ESCAPE '\' THEN...

BETWEEN Operator
The BETWEEN operator tests whether a value lies in a specified range. It means "greater
than or equal to low value and less than or equal to high value." For example, the
following expression is false:

45 BETWEEN 38 AND 44

IN Operator
The IN operator tests set membership. It means "equal to any member of." The set can
contain nulls, but they are ignored. For example, the following expression tests
whether a value is part of a set of values:

letter IN ('a','b','c')

Be careful when inverting this condition. Expressions of the form:

value NOT IN set

yield FALSE if the set contains a null.

Concatenation Operator
Double vertical bars (||) serve as the concatenation operator, which appends one
string (CHAR, VARCHAR2, CLOB, or the equivalent Unicode-enabled type) to another.
For example, the expression

'suit' || 'case'

returns the following value:

'suitcase'

If both operands have datatype CHAR, the concatenation operator returns a CHAR
value. If either operand is a CLOB value, the operator returns a temporary CLOB.
Otherwise, it returns a VARCHAR2 value.

Boolean Expressions
PL/SQL lets you compare variables and constants in both SQL and procedural
statements. These comparisons, called Boolean expressions, consist of simple or complex

PL/SQL Expressions and Comparisons

2-22 PL/SQL User's Guide and Reference

expressions separated by relational operators. Often, Boolean expressions are
connected by the logical operators AND, OR, and NOT. A Boolean expression always
yields TRUE, FALSE, or NULL.

In a SQL statement, Boolean expressions let you specify the rows in a table that are
affected by the statement. In a procedural statement, Boolean expressions are the basis
for conditional control. There are three kinds of Boolean expressions: arithmetic,
character, and date.

Boolean Arithmetic Expressions
You can use the relational operators to compare numbers for equality or inequality.
Comparisons are quantitative; that is, one number is greater than another if it
represents a larger quantity. For example, given the assignments

number1 := 75;
number2 := 70;

the following expression is true:

number1 > number2

Boolean Character Expressions
You can compare character values for equality or inequality. By default, comparisons
are based on the binary values of each byte in the string.

For example, given the assignments

string1 := 'Kathy';
string2 := 'Kathleen';

the following expression is true:

string1 > string2

By setting the initialization parameter NLS_COMP=ANSI, you can make comparisons
use the collating sequence identified by the NLS_SORT initialization parameter. A
collating sequence is an internal ordering of the character set in which a range of
numeric codes represents the individual characters. One character value is greater than
another if its internal numeric value is larger. Each language might have different rules
about where such characters occur in the collating sequence. For example, an accented
letter might be sorted differently depending on the database character set, even
though the binary value is the same in each case.

Depending on the value of the NLS_SORT parameter, you can perform comparisons
that are case-insensitive and even accent-insensitive. A case-insensitive comparison
still returns true if the letters of the operands are different in terms of uppercase and
lowercase. An accent-insensitive comparison is case-insensitive, and also returns true
if the operands differ in accents or punctuation characters. For example, the character
values 'True' and 'TRUE' are considered identical by a case-insensitive comparison;
the character values 'Cooperate', 'Co-Operate', and 'coöperate' are all
considered the same. To make comparisons case-insensitive, add _CI to the end of
your usual value for the NLS_SORT parameter. To make comparisons
accent-insensitive, add _AI to the end of the NLS_SORT value.

There are semantic differences between the CHAR and VARCHAR2 base types that come
into play when you compare character values. For more information, see Appendix B.

Many types can be converted to character types. For example, you can compare,
assign, and do other character operations using CLOB variables. For details on the
possible conversions, see "PL/SQL Character and String Types" on page 3-4.

PL/SQL Expressions and Comparisons

Fundamentals of the PL/SQL Language 2-23

Boolean Date Expressions
You can also compare dates. Comparisons are chronological; that is, one date is greater
than another if it is more recent. For example, given the assignments

date1 := '01-JAN-91';
date2 := '31-DEC-90';

the following expression is true:

date1 > date2

Guidelines for PL/SQL Boolean Expressions
■ In general, do not compare real numbers for exact equality or inequality. Real

numbers are stored as approximate values. For example, the following IF
condition might not yield TRUE:

DECLARE
 fraction BINARY_FLOAT := 1/3;
BEGIN
 IF fraction = 11/33 THEN
 dbms_output.put_line('Fractions are equal (luckily!)');
 END IF;
END;
/

■ It is a good idea to use parentheses when doing comparisons. For example, the
following expression is not allowed because 100 < tax yields a Boolean value,
which cannot be compared with the number 500:

100 < tax < 500 -- not allowed

The debugged version follows:

(100 < tax) AND (tax < 500)

■ A Boolean variable is itself either true or false. You can just use the variable in a
conditional test, rather than comparing it to the literal values TRUE and FALSE.
For example, the following loops are all equivalent:

DECLARE
 done BOOLEAN ;
BEGIN
-- Each WHILE loop is equivalent
 done := FALSE;
 WHILE done = FALSE
 LOOP
 done := TRUE;
 END LOOP;

 done := FALSE;
 WHILE NOT (done = TRUE)
 LOOP
 done := TRUE;
 END LOOP;

 done := FALSE;
 WHILE NOT done
 LOOP
 done := TRUE;
 END LOOP;
END;

PL/SQL Expressions and Comparisons

2-24 PL/SQL User's Guide and Reference

/

■ Using CLOB values with comparison operators, or functions such as LIKE and
BETWEEN, can create temporary LOBs. You might need to make sure your
temporary tablespace is large enough to handle these temporary LOBs.

CASE Expressions
A CASE expression selects a result from one or more alternatives, and returns the
result. Although it contains a block that might stretch over several lines, it really is an
expression that forms part of a larger statement, such as an assignment or a procedure
call.

The CASE expression uses a selector, an expression whose value determines which
alternative to return. A CASE expression has the following form:

CASE selector
 WHEN expression1 THEN result1
 WHEN expression2 THEN result2
 ...
 WHEN expressionN THEN resultN
 [ELSE resultN+1]
END

The selector is followed by one or more WHEN clauses, which are checked sequentially.
The value of the selector determines which clause is evaluated. The first WHEN clause
that matches the value of the selector determines the result value, and subsequent
WHEN clauses are not evaluated. For example:

DECLARE
 grade CHAR(1) := 'B';
 appraisal VARCHAR2(20);
BEGIN
 appraisal :=
 CASE grade
 WHEN 'A' THEN 'Excellent'
 WHEN 'B' THEN 'Very Good'
 WHEN 'C' THEN 'Good'
 WHEN 'D' THEN 'Fair'
 WHEN 'F' THEN 'Poor'
 ELSE 'No such grade'
 END;
 dbms_output.put_line('Grade ' || grade || ' is ' || appraisal);
END;
/

The optional ELSE clause works similarly to the ELSE clause in an IF statement. If the
value of the selector is not one of the choices covered by a WHEN clause, the ELSE
clause is executed. If no ELSE clause is provided and none of the WHEN clauses are
matched, the expression returns NULL.

An alternative to the CASE expression is the CASE statement, where each WHEN clause
can be an entire PL/SQL block. For details, see "Using the CASE Statement" on
page 4-3.

Searched CASE Expression
PL/SQL also provides a searched CASE expression, which lets you test different
conditions instead of comparing a single expression to various values. It has the form:

CASE

PL/SQL Expressions and Comparisons

Fundamentals of the PL/SQL Language 2-25

 WHEN search_condition1 THEN result1
 WHEN search_condition2 THEN result2
 ...
 WHEN search_conditionN THEN resultN
 [ELSE resultN+1]
END;

A searched CASE expression has no selector. Each WHEN clause contains a search
condition that yields a Boolean value, so you can test different variables or multiple
conditions in a single WHEN clause. For example:

DECLARE
 grade CHAR(1) := 'B';
 appraisal VARCHAR2(120);
 id NUMBER := 8429862;
 attendance NUMBER := 150;
 min_days CONSTANT NUMBER := 200;
FUNCTION attends_this_school(id NUMBER) RETURN BOOLEAN IS
 BEGIN RETURN TRUE; END;
BEGIN
 appraisal :=
 CASE
 WHEN attends_this_school(id) = FALSE THEN 'N/A - Student not enrolled'
-- Have to put this condition early to detect
-- good students with bad attendance

WHEN grade = 'F' OR attendance < min_days THEN 'Poor (poor performance or
bad attendance)'
 WHEN grade = 'A' THEN 'Excellent'
 WHEN grade = 'B' THEN 'Very Good'
 WHEN grade = 'C' THEN 'Good'
 WHEN grade = 'D' THEN 'Fair'
 ELSE 'No such grade'
 END;
 dbms_output.put_line('Result for student ' || id ||
 ' is ' || appraisal);
END;
/

The search conditions are evaluated sequentially. The Boolean value of each search
condition determines which WHEN clause is executed. If a search condition yields
TRUE, its WHEN clause is executed. After any WHEN clause is executed, subsequent
search conditions are not evaluated. If none of the search conditions yields TRUE, the
optional ELSE clause is executed. If no WHEN clause is executed and no ELSE clause is
supplied, the value of the expression is NULL.

Handling Null Values in Comparisons and Conditional Statements
When working with nulls, you can avoid some common mistakes by keeping in mind
the following rules:

■ Comparisons involving nulls always yield NULL

■ Applying the logical operator NOT to a null yields NULL

■ In conditional control statements, if the condition yields NULL, its associated
sequence of statements is not executed

■ If the expression in a simple CASE statement or CASE expression yields NULL, it
cannot be matched by using WHEN NULL. In this case, you would need to use the
searched case syntax and test WHEN expression IS NULL.

PL/SQL Expressions and Comparisons

2-26 PL/SQL User's Guide and Reference

In the example below, you might expect the sequence of statements to execute because
x and y seem unequal. But, nulls are indeterminate. Whether or not x is equal to y is
unknown. Therefore, the IF condition yields NULL and the sequence of statements is
bypassed.

DECLARE
 x NUMBER := 5;
 y NUMBER := NULL;
BEGIN
 IF x != y THEN -- yields NULL, not TRUE
 dbms_output.put_line('x != y'); -- not executed
 ELSIF x = y THEN -- also yields NULL
 dbms_output.put_line('x = y');
 ELSE
 dbms_output.put_line('Can''t tell if x and y are equal or not...');
 END IF;
END;
/

In the next example, you might expect the sequence of statements to execute because a
and b seem equal. But, again, that is unknown, so the IF condition yields NULL and
the sequence of statements is bypassed.

DECLARE
 a NUMBER := NULL;
 b NUMBER := NULL;
BEGIN
 IF a = b THEN -- yields NULL, not TRUE
 dbms_output.put_line('a = b'); -- not executed
 ELSIF a != b THEN -- yields NULL, not TRUE
 dbms_output.put_line('a != b'); -- not executed
 ELSE
 dbms_output.put_line('Can''t tell if two NULLs are equal');
 END IF;
END;
/

NULLs and the NOT Operator
Recall that applying the logical operator NOT to a null yields NULL. Thus, the following
two statements are not always equivalent:

IF x > y THEN | IF NOT x > y THEN
 high := x; | high := y;
ELSE | ELSE
 high := y; | high := x;
END IF; | END IF;

The sequence of statements in the ELSE clause is executed when the IF condition
yields FALSE or NULL. If neither x nor y is null, both IF statements assign the same
value to high. However, if either x or y is null, the first IF statement assigns the value
of y to high, but the second IF statement assigns the value of x to high.

NULLs and Zero-Length Strings
PL/SQL treats any zero-length string like a null. This includes values returned by
character functions and Boolean expressions. For example, the following statements
assign nulls to the target variables:

DECLARE

PL/SQL Expressions and Comparisons

Fundamentals of the PL/SQL Language 2-27

 null_string VARCHAR2(80) := TO_CHAR('');
 address VARCHAR2(80);
 zip_code VARCHAR2(80) := SUBSTR(address, 25, 0);
 name VARCHAR2(80);
 valid BOOLEAN := (name != '');
BEGIN
 NULL;
END;
/

Use the IS NULL operator to test for null strings, as follows:

IF my_string IS NULL THEN ...

NULLs and the Concatenation Operator
The concatenation operator ignores null operands. For example, the expression

'apple' || NULL || NULL || 'sauce'

returns the following value:

'applesauce'

NULLs as Arguments to Built-In Functions
If a null argument is passed to a built-in function, a null is returned except in the
following cases.

The function DECODE compares its first argument to one or more search expressions,
which are paired with result expressions. Any search or result expression can be null.
If a search is successful, the corresponding result is returned. In the following example,
if the column rating is null, DECODE returns the value 1000:

DECLARE
 the_manager VARCHAR2(40);
 name employees.last_name%TYPE;
BEGIN
-- NULL is a valid argument to DECODE. In this case, manager_id is null
-- and the DECODE function returns 'nobody'.
 SELECT DECODE(manager_id, NULL, 'nobody', 'somebody'), last_name
 INTO the_manager, name FROM employees WHERE employee_id = 100;
 dbms_output.put_line(name || ' is managed by ' || the_manager);
END;
/

The function NVL returns the value of its second argument if its first argument is null.
In the following example, if the column specified in the query is null, the function
returns the value -1 to signify a non-existent employee in the output:

DECLARE
 the_manager employees.manager_id%TYPE;
 name employees.last_name%TYPE;
BEGIN
-- NULL is a valid argument to NVL. In this case, manager_id is null
-- and the NVL function returns -1.
 SELECT NVL(manager_id, -1), last_name
 INTO the_manager, name FROM employees WHERE employee_id = 100;
 dbms_output.put_line(name || ' is managed by employee #' || the_manager);
END;
/

Summary of PL/SQL Built-In Functions

2-28 PL/SQL User's Guide and Reference

The function REPLACE returns the value of its first argument if its second argument is
null, whether the optional third argument is present or not. For example, the following
call to REPLACE does not make any change to the value of OLD_STRING:

DECLARE
 string_type VARCHAR2(60);
 old_string string_type%TYPE := 'Apples and oranges';
 my_string string_type%TYPE := 'more apples';
-- NULL is a valid argument to REPLACE, but does not match
-- anything so no replacement is done.
 new_string string_type%TYPE := REPLACE(old_string, NULL, my_string);
BEGIN
 dbms_output.put_line('Old string = ' || old_string);
 dbms_output.put_line('New string = ' || new_string);
END;
/

If its third argument is null, REPLACE returns its first argument with every occurrence
of its second argument removed. For example, the following call to REPLACE removes
all the dashes from DASHED_STRING, instead of changing them to another character:

DECLARE
 string_type VARCHAR2(60);
 dashed string_type%TYPE := 'Gold-i-locks';
-- When the substitution text for REPLACE is NULL,
-- the text being replaced is deleted.
 name string_type%TYPE := REPLACE(dashed, '-', NULL);
BEGIN
 dbms_output.put_line('Dashed name = ' || dashed);
 dbms_output.put_line('Dashes removed = ' || name);
END;
/

If its second and third arguments are null, REPLACE just returns its first argument.

Summary of PL/SQL Built-In Functions
PL/SQL provides many powerful functions to help you manipulate data. These
built-in functions fall into the following categories:

error reporting
number
character
datatype conversion
date
object reference
miscellaneous

Table 2–3 shows the functions in each category. For descriptions of the error-reporting
functions, see Chapter 13. For descriptions of the other functions, see Oracle Database
SQL Reference.

Except for the error-reporting functions SQLCODE and SQLERRM, you can use all the
functions in SQL statements. Also, except for the object-reference functions DEREF,
REF, and VALUE and the miscellaneous functions DECODE, DUMP, and VSIZE, you can
use all the functions in procedural statements.

Summary of PL/SQL Built-In Functions

Fundamentals of the PL/SQL Language 2-29

Although the SQL aggregate functions (such as AVG and COUNT) and the SQL analytic
functions (such as CORR and LAG) are not built into PL/SQL, you can use them in SQL
statements (but not in procedural statements).

Summary of PL/SQL Built-In Functions

2-30 PL/SQL User's Guide and Reference

Table 2–3 Built-In Functions

Error Number Character Conversion Date Obj Ref Misc

SQLCODE

SQLERRM

ABS

ACOS

ASIN

ATAN

ATAN2

BITAND

CEIL

COS

COSH

EXP

FLOOR

LN

LOG

MOD

POWER

REMAIND
ER

ROUND

SIGN

SIN

SINH

SQRT

TAN

TANH

TRUNC

ASCII

ASCIISTR

CHR

COMPOSE

CONCAT

DECOMPOSE

INITCAP

INSTR

INSTR2

INSTR4

INSTRB

INSTRC

LENGTH

LENGTH2

LENGTH4

LENGTHB

LENGTHC

LOWER

LPAD

LTRIM

NCHR

NLS_INITCAP

NLS_LOWER

NLSSORT

NLS_UPPER

REGEXP_INSTR

REGEXP_LIKE

REGEXP_REPLACE

REGEXP_SUBSTR

REPLACE

RPAD

RTRIM

SOUNDEX

SUBSTR

SUBSTR2

SUBSTR4

SUBSTRB

SUBSTRC

TRANSLATE

TRIM

UNISTR

UPPER

CHARTOROWID

CONVERT

HEXTORAW

RAWTOHEX

RAWTONHEX

ROWIDTOCHAR

TO_BINARY_DOUBLE

TO_BLOB

TO_BINARY_FLOAT

TO_CHAR

TO_CLOB

TO_DATE

TO_MULTI_BYTE

TO_NCHAR

TO_NCLOB

TO_NUMBER

TO_SINGLE_BYTE

ADD_MONTHS

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

DBTIMEZONE

EXTRACT

FROM_TZ

LAST_DAY

LOCALTIMESTAMP

MONTHS_BETWEEN

NEW_TIME

NEXT_DAY

NUMTODSINTERVAL

NUMTOYMINTERVAL

ROUND

SESSIONTIMEZONE

SYS_EXTRACT_UTC

SYSDATE

SYSTIMESTAMP

TO_DSINTERVAL

TO_TIME

TO_TIME_TZ

TO_TIMESTAMP

TO_TIMESTAMP_TZ

TO_YMINTERVAL

TRUNC

TZ_OFFSET

DEREF

REF

TREAT

VALUE

BFILENAME

COALESCE

DECODE

DUMP

EMPTY_BLOB

EMPTY_CLOB

GREATEST

LEAST

NANVL

NLS_CHARSET_DECL_LEN

NLS_CHARSET_ID

NLS_CHARSET_NAME

NULLIF

NVL

SYS_CONTEXT

SYS_GUID

UID

USER

USERENV

VSIZE

PL/SQL Datatypes 3-1

3
PL/SQL Datatypes

Like—but oh how different! —William Wordsworth

Every constant, variable, and parameter has a datatype (or type), which specifies a
storage format, constraints, and valid range of values. PL/SQL provides many
predefined datatypes. For instance, you can choose from integer, floating point,
character, Boolean, date, collection, reference, and large object (LOB) types. PL/SQL
also lets you define your own subtypes. This chapter covers the basic types used
frequently in PL/SQL programs. Later chapters cover the more specialized types.

This chapter contains these topics:

■ Overview of Predefined PL/SQL Datatypes on page 3-1

■ Overview of PL/SQL Subtypes on page 3-16

■ Converting PL/SQL Datatypes on page 3-18

Overview of Predefined PL/SQL Datatypes
A scalar type has no internal components. It holds a single value, such as a number or
character string.

A composite type has internal components that can be manipulated individually, such
as the elements of an array.

A reference type holds values, called pointers, that designate other program items.

A LOB type holds values, called lob locators, that specify the location of large objects,
such as text blocks or graphic images, that are stored separately from other database
data.

Figure 3–1 shows the predefined PL/SQL datatypes. The scalar types fall into four
families, which store number, character, Boolean, and date/time data, respectively.

Overview of Predefined PL/SQL Datatypes

3-2 PL/SQL User's Guide and Reference

Figure 3–1 Built-in Datatypes

PL/SQL Number Types
Number types let you store numeric data (integers, real numbers, and floating-point
numbers), represent quantities, and do calculations.

BINARY_INTEGER
You use the BINARY_INTEGER datatype to store signed integers. Its magnitude range
is -2**31 .. 2**31.

BINARY_INTEGER values require less storage than NUMBER values. Arithmetic
operations on BINARY_INTEGER values are also faster than NUMBER arithmetic.
BINARY_INTEGER and PLS_INTEGER both have these advantages. Because PLS_
INTEGER was faster in earlier releases, you might use it instead of BINARY_INTEGER
in code that will run on older databases.

BINARY_INTEGER Subtypes A base type is the datatype from which a subtype is derived.
A subtype associates a base type with a constraint and so defines a subset of values. For
your convenience, PL/SQL predefines the following BINARY_INTEGER subtypes:

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

The subtypes NATURAL and POSITIVE let you restrict an integer variable to
non-negative or positive values, respectively. NATURALN and POSITIVEN prevent the
assigning of nulls to an integer variable. SIGNTYPE lets you restrict an integer variable
to the values -1, 0, and 1, which is useful in programming tri-state logic.

BINARY_DOUBLE
BINARY_FLOAT
BINARY_INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NATURALN
NUMBER
NUMERIC
PLS_INTEGER
POSITIVE
POSITIVEN
REAL
SIGNTYPE
SMALLINT

CHAR
CHARACTER
LONG
LONG RAW
NCHAR
NVARCHAR2
RAW
ROWID
STRING
UROWID
VARCHAR
VARCHAR2

BOOLEAN

DATE

Scalar Types

RECORD
TABLE
VARRAY

Composite Types

BFILE
BLOB
CLOB
NCLOB

LOB Types

REF CURSOR
REF object_type

Reference Types

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-3

BINARY_FLOAT and BINARY_DOUBLE
Single-precision and double-precision IEEE 754-format single-precision floating-point
numbers. These types are used primarily for high-speed scientific computation. For
usage information, see "Writing Computation-Intensive Programs in PL/SQL" on
page 11-19. For information about writing math libraries that accept different numeric
types, see "Guidelines for Overloading with Numeric Types" on page 8-11.

Literals of these types end with f (for BINARY_FLOAT) or d (for BINARY_DOUBLE).
For example, 2.07f or 3.000094d.

Computations involving these types produce special values that you need to check for,
rather than raising exceptions. To help deal with overflow, underflow, and other
conditions that can occur with these numbers, you can use several special predefined
constants: BINARY_FLOAT_NAN, BINARY_FLOAT_INFINITY, BINARY_FLOAT_MAX_
NORMAL, BINARY_FLOAT_MIN_NORMAL, BINARY_FLOAT_MAX_SUBNORMAL,
BINARY_FLOAT_MIN_SUBNORMAL, and corresponding names starting with BINARY_
DOUBLE. The constants for NaN ("not a number") and infinity are also defined by SQL;
the others are PL/SQL-only.

NUMBER
You use the NUMBER datatype to store fixed-point or floating-point numbers. Its
magnitude range is 1E-130 .. 10E125. If the value of an expression falls outside this
range, you get a numeric overflow or underflow error. You can specify precision, which is
the total number of digits, and scale, which is the number of digits to the right of the
decimal point. The syntax follows:

NUMBER[(precision,scale)]

To declare fixed-point numbers, for which you must specify scale, use the following
form:

NUMBER(precision,scale)

To declare floating-point numbers, for which you cannot specify precision or scale
because the decimal point can "float" to any position, use the following form:

NUMBER

To declare integers, which have no decimal point, use this form:

NUMBER(precision) -- same as NUMBER(precision,0)

You cannot use constants or variables to specify precision and scale; you must use
integer literals. The maximum precision of a NUMBER value is 38 decimal digits. If you
do not specify precision, it defaults to 38 or the maximum supported by your system,
whichever is less.

Scale, which can range from -84 to 127, determines where rounding occurs. For
instance, a scale of 2 rounds to the nearest hundredth (3.456 becomes 3.46). A negative
scale rounds to the left of the decimal point. For example, a scale of -3 rounds to the
nearest thousand (3456 becomes 3000). A scale of 0 rounds to the nearest whole
number. If you do not specify scale, it defaults to 0.

NUMBER Subtypes You can use the following NUMBER subtypes for compatibility with
ANSI/ISO and IBM types or when you want a more descriptive name:

DEC
DECIMAL
DOUBLE PRECISION

Overview of Predefined PL/SQL Datatypes

3-4 PL/SQL User's Guide and Reference

FLOAT
INTEGER
INT
NUMERIC
REAL
SMALLINT

Use the subtypes DEC, DECIMAL, and NUMERIC to declare fixed-point numbers with a
maximum precision of 38 decimal digits.

Use the subtypes DOUBLE PRECISION and FLOAT to declare floating-point numbers
with a maximum precision of 126 binary digits, which is roughly equivalent to 38
decimal digits. Or, use the subtype REAL to declare floating-point numbers with a
maximum precision of 63 binary digits, which is roughly equivalent to 18 decimal
digits.

Use the subtypes INTEGER, INT, and SMALLINT to declare integers with a maximum
precision of 38 decimal digits.

PLS_INTEGER
You use the PLS_INTEGER datatype to store signed integers. Its magnitude range is
-2**31 .. 2**31. PLS_INTEGER values require less storage than NUMBER values. Also,
PLS_INTEGER operations use machine arithmetic, so they are faster than NUMBER and
BINARY_INTEGER operations, which use library arithmetic. For efficiency, use PLS_
INTEGER for all calculations that fall within its magnitude range.

Although PLS_INTEGER and BINARY_INTEGER have the same magnitude range,
they are not fully compatible. When a PLS_INTEGER calculation overflows, an
exception is raised. However, when a BINARY_INTEGER calculation overflows, no
exception is raised if the result is assigned to a NUMBER variable.

Because of this small semantic difference, you might want to continue using BINARY_
INTEGER in old applications for compatibility. In new applications, always use PLS_
INTEGER for better performance.

PL/SQL Character and String Types
Character types let you store alphanumeric data, represent words and text, and
manipulate character strings.

 CHAR
You use the CHAR datatype to store fixed-length character data. How the data is
represented internally depends on the database character set. The CHAR datatype takes
an optional parameter that lets you specify a maximum size up to 32767 bytes. You can
specify the size in terms of bytes or characters, where each character contains one or
more bytes, depending on the character set encoding. The syntax follows:

CHAR[(maximum_size [CHAR | BYTE])]

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal in the range 1 .. 32767.

If you do not specify a maximum size, it defaults to 1. If you specify the maximum size
in bytes rather than characters, a CHAR(n) variable might be too small to hold n
multibyte characters. To avoid this possibility, use the notation CHAR(n CHAR)so that
the variable can hold n characters in the database character set, even if some of those
characters contain multiple bytes. When you specify the length in characters, the

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-5

upper limit is still 32767 bytes. So for double-byte and multibyte character sets, you
can only specify 1/2 or 1/3 as many characters as with a single-byte character set.

Although PL/SQL character variables can be relatively long, you cannot insert CHAR
values longer than 2000 bytes into a CHAR database column.

You can insert any CHAR(n) value into a LONG database column because the
maximum width of a LONG column is 2**31 bytes or two gigabytes. However, you
cannot retrieve a value longer than 32767 bytes from a LONG column into a CHAR(n)
variable.

When you do not use the CHAR or BYTE qualifiers, the default is determined by the
setting of the NLS_LENGTH_SEMANTICS initialization parameter. When a PL/SQL
procedure is compiled, the setting of this parameter is recorded, so that the same
setting is used when the procedure is recompiled after being invalidated.

Note: Semantic differences between the CHAR and VARCHAR2 base types are discussed
in Appendix B.

CHAR Subtype The CHAR subtype CHARACTER has the same range of values as its base
type. That is, CHARACTER is just another name for CHAR. You can use this subtype for
compatibility with ANSI/ISO and IBM types or when you want an identifier more
descriptive than CHAR.

LONG and LONG RAW
You use the LONG datatype to store variable-length character strings. The LONG
datatype is like the VARCHAR2 datatype, except that the maximum size of a LONG
value is 32760 bytes.

You use the LONG RAW datatype to store binary data or byte strings. LONG RAW data is
like LONG data, except that LONG RAW data is not interpreted by PL/SQL. The
maximum size of a LONG RAW value is 32760 bytes.

Starting in Oracle9i, LOB variables can be used interchangeably with LONG and LONG
RAW variables. Oracle recommends migrating any LONG data to the CLOB type, and
any LONG RAW data to the BLOB type. See "PL/SQL LOB Types" on page 3-10 for more
details.

You can insert any LONG value into a LONG database column because the maximum
width of a LONG column is 2**31 bytes. However, you cannot retrieve a value longer
than 32760 bytes from a LONG column into a LONG variable.

Likewise, you can insert any LONG RAW value into a LONG RAW database column
because the maximum width of a LONG RAW column is 2**31 bytes. However, you
cannot retrieve a value longer than 32760 bytes from a LONG RAW column into a LONG
RAW variable.

LONG columns can store text, arrays of characters, or even short documents. You can
reference LONG columns in UPDATE, INSERT, and (most) SELECT statements, but not
in expressions, SQL function calls, or certain SQL clauses such as WHERE, GROUP BY,
and CONNECT BY. For more information, see Oracle Database SQL Reference.

Note: In SQL statements, PL/SQL binds LONG values as VARCHAR2, not as LONG.
However, if the length of the bound VARCHAR2 exceeds the maximum width of a
VARCHAR2 column (4000 bytes), Oracle converts the bind type to LONG automatically,
then issues an error message because you cannot pass LONG values to a SQL function.

Overview of Predefined PL/SQL Datatypes

3-6 PL/SQL User's Guide and Reference

RAW
You use the RAW datatype to store binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or a digitized picture. Raw data
is like VARCHAR2 data, except that PL/SQL does not interpret raw data. Likewise,
Oracle Net does no character set conversions when you transmit raw data from one
system to another.

The RAW datatype takes a required parameter that lets you specify a maximum size up
to 32767 bytes. The syntax follows:

RAW(maximum_size)

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal in the range 1 .. 32767.

You cannot insert RAW values longer than 2000 bytes into a RAW column. You can insert
any RAW value into a LONG RAW database column because the maximum width of a
LONG RAW column is 2**31 bytes. However, you cannot retrieve a value longer than
32767 bytes from a LONG RAW column into a RAW variable.

ROWID and UROWID
Internally, every database table has a ROWID pseudocolumn, which stores binary
values called rowids. Each rowid represents the storage address of a row. A physical
rowid identifies a row in an ordinary table. A logical rowid identifies a row in an
index-organized table. The ROWID datatype can store only physical rowids. However,
the UROWID (universal rowid) datatype can store physical, logical, or foreign
(non-Oracle) rowids.

Suggestion: Use the ROWID datatype only for backward compatibility with old
applications. For new applications, use the UROWID datatype.

When you select or fetch a rowid into a ROWID variable, you can use the built-in
function ROWIDTOCHAR, which converts the binary value into an 18-byte character
string. Conversely, the function CHARTOROWID converts a ROWID character string into
a rowid. If the conversion fails because the character string does not represent a valid
rowid, PL/SQL raises the predefined exception SYS_INVALID_ROWID. This also
applies to implicit conversions.

To convert between UROWID variables and character strings, use regular assignment
statements without any function call. The values are implicitly converted between
UROWID and character types.

Physical Rowids Physical rowids provide fast access to particular rows. As long as the
row exists, its physical rowid does not change. Efficient and stable, physical rowids are
useful for selecting a set of rows, operating on the whole set, and then updating a
subset. For example, you can compare a UROWID variable with the ROWID
pseudocolumn in the WHERE clause of an UPDATE or DELETE statement to identify the
latest row fetched from a cursor. See "Fetching Across Commits" on page 6-34.

A physical rowid can have either of two formats. The 10-byte extended rowid format
supports tablespace-relative block addresses and can identify rows in partitioned and
non-partitioned tables. The 6-byte restricted rowid format is provided for backward
compatibility.

Extended rowids use a base-64 encoding of the physical address for each row selected.
For example, in SQL*Plus (which implicitly converts rowids into character strings), the
query

SQL> SELECT rowid, ename FROM emp WHERE empno = 7788;

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-7

might return the following row:

ROWID ENAME
------------------ ----------
AAAAqcAABAAADFNAAH SCOTT

The format, OOOOOOFFFBBBBBBRRR, has four parts:

■ OOOOOO: The data object number (AAAAqc in the example above) identifies the
database segment. Schema objects in the same segment, such as a cluster of tables,
have the same data object number.

■ FFF: The file number (AAB in the example) identifies the data file that contains the
row. File numbers are unique within a database.

■ BBBBBB: The block number (AAADFN in the example) identifies the data block that
contains the row. Because block numbers are relative to their data file, not their
tablespace, two rows in the same tablespace but in different data files can have the
same block number.

■ RRR: The row number (AAH in the example) identifies the row in the block.

Logical Rowids Logical rowids provide the fastest access to particular rows. Oracle uses
them to construct secondary indexes on index-organized tables. Having no permanent
physical address, a logical rowid can move across data blocks when new rows are
inserted. However, if the physical location of a row changes, its logical rowid remains
valid.

A logical rowid can include a guess, which identifies the block location of a row at the
time the guess is made. Instead of doing a full key search, Oracle uses the guess to
search the block directly. However, as new rows are inserted, guesses can become stale
and slow down access to rows. To obtain fresh guesses, you can rebuild the secondary
index.

You can use the ROWID pseudocolumn to select logical rowids (which are opaque
values) from an index-organized table. Also, you can insert logical rowids into a
column of type UROWID, which has a maximum size of 4000 bytes.

The ANALYZE statement helps you track the staleness of guesses. This is useful for
applications that store rowids with guesses in a UROWID column, then use the rowids
to fetch rows.

Note: To manipulate rowids, you can use the supplied package DBMS_ROWID. For
more information, see PL/SQL Packages and Types Reference.

VARCHAR2
You use the VARCHAR2 datatype to store variable-length character data. How the data
is represented internally depends on the database character set. The VARCHAR2
datatype takes a required parameter that specifies a maximum size up to 32767 bytes.
The syntax follows:

VARCHAR2(maximum_size [CHAR | BYTE])

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal in the range 1 .. 32767.

Small VARCHAR2 variables are optimized for performance, and larger ones are
optimized for efficient memory use. The cutoff point is 2000 bytes. For a VARCHAR2
that is 2000 bytes or longer, PL/SQL dynamically allocates only enough memory to
hold the actual value. For a VARCHAR2 variable that is shorter than 2000 bytes,

Overview of Predefined PL/SQL Datatypes

3-8 PL/SQL User's Guide and Reference

PL/SQL preallocates the full declared length of the variable. For example, if you
assign the same 500-byte value to a VARCHAR2(2000 BYTE) variable and to a
VARCHAR2(1999 BYTE) variable, the former takes up 500 bytes and the latter takes
up 1999 bytes.

If you specify the maximum size in bytes rather than characters, a VARCHAR2(n)
variable might be too small to hold n multibyte characters. To avoid this possibility,
use the notation VARCHAR2(n CHAR)so that the variable can hold n characters in the
database character set, even if some of those characters contain multiple bytes. When
you specify the length in characters, the upper limit is still 32767 bytes. So for
double-byte and multibyte character sets, you can only specify 1/2 or 1/3 as many
characters as with a single-byte character set.

Although PL/SQL character variables can be relatively long, you cannot insert
VARCHAR2 values longer than 4000 bytes into a VARCHAR2 database column.

You can insert any VARCHAR2(n) value into a LONG database column because the
maximum width of a LONG column is 2**31 bytes. However, you cannot retrieve a
value longer than 32767 bytes from a LONG column into a VARCHAR2(n) variable.

When you do not use the CHAR or BYTE qualifiers, the default is determined by the
setting of the NLS_LENGTH_SEMANTICS initialization parameter. When a PL/SQL
procedure is compiled, the setting of this parameter is recorded, so that the same
setting is used when the procedure is recompiled after being invalidated.

VARCHAR2 Subtypes The VARCHAR2 subtypes below have the same range of values as
their base type. For example, VARCHAR is just another name for VARCHAR2.

STRING
VARCHAR

You can use these subtypes for compatibility with ANSI/ISO and IBM types.

Note: Currently, VARCHAR is synonymous with VARCHAR2. However, in future
releases of PL/SQL, to accommodate emerging SQL standards, VARCHAR might
become a separate datatype with different comparison semantics. It is a good idea to
use VARCHAR2 rather than VARCHAR.

PL/SQL National Character Types
The widely used one-byte ASCII and EBCDIC character sets are adequate to represent
the Roman alphabet, but some Asian languages, such as Japanese, contain thousands
of characters. These languages require two or three bytes to represent each character.
To deal with such languages, Oracle provides globalization support, which lets you
process single-byte and multibyte character data and convert between character sets. It
also lets your applications run in different language environments.

With globalization support, number and date formats adapt automatically to the
language conventions specified for a user session. Thus, users around the world can
interact with Oracle in their native languages.

PL/SQL supports two character sets called the database character set, which is used for
identifiers and source code, and the national character set, which is used for national
language data. The datatypes NCHAR and NVARCHAR2 store character strings formed
from the national character set.

Note: When converting CHAR or VARCHAR2 data between databases with different
character sets, make sure the data consists of well-formed strings. For more
information, see Oracle Database Globalization Support Guide.

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-9

Comparing UTF8 and AL16UTF16 Encodings
The national character set represents data as Unicode, using either the UTF8 or
AL16UTF16 encoding.

Each character in the AL16UTF16 encoding takes up 2 bytes. This makes it simple to
calculate string lengths to avoid truncation errors when mixing different programming
languages, but requires extra storage overhead to store strings made up mostly of
ASCII characters.

Each character in the UTF8 encoding takes up 1, 2, or 3 bytes. This lets you fit more
characters into a variable or table column, but only if most characters can be
represented in a single byte. It introduces the possibility of truncation errors when
transferring the data to a buffer measured in bytes.

Oracle recommends that you use the default AL16UTF16 encoding wherever practical,
for maximum runtime reliability. If you need to determine how many bytes are
required to hold a Unicode string, use the LENGTHB function rather than LENGTH.

NCHAR
You use the NCHAR datatype to store fixed-length (blank-padded if necessary) national
character data. How the data is represented internally depends on the national
character set specified when the database was created, which might use a
variable-width encoding (UTF8) or a fixed-width encoding (AL16UTF16). Because this
type can always accommodate multibyte characters, you can use it to hold any
Unicode character data.

The NCHAR datatype takes an optional parameter that lets you specify a maximum size
in characters. The syntax follows:

NCHAR[(maximum_size)]

Because the physical limit is 32767 bytes, the maximum value you can specify for the
length is 32767/2 in the AL16UTF16 encoding, and 32767/3 in the UTF8 encoding.

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal.

If you do not specify a maximum size, it defaults to 1. The value always represents the
number of characters, unlike CHAR which can be specified in either characters or bytes.

my_string NCHAR(100); -- maximum size is 100 characters

You cannot insert NCHAR values longer than 2000 bytes into an NCHAR column.

If the NCHAR value is shorter than the defined width of the NCHAR column, Oracle
blank-pads the value to the defined width.

You can interchange CHAR and NCHAR values in statements and expressions. It is
always safe to turn a CHAR value into an NCHAR value, but turning an NCHAR value
into a CHAR value might cause data loss if the character set for the CHAR value cannot
represent all the characters in the NCHAR value. Such data loss can result in characters
that usually look like question marks (?).

NVARCHAR2
You use the NVARCHAR2 datatype to store variable-length Unicode character data.
How the data is represented internally depends on the national character set specified
when the database was created, which might use a variable-width encoding (UTF8) or
a fixed-width encoding (AL16UTF16). Because this type can always accommodate
multibyte characters, you can use it to hold any Unicode character data.

Overview of Predefined PL/SQL Datatypes

3-10 PL/SQL User's Guide and Reference

The NVARCHAR2 datatype takes a required parameter that specifies a maximum size in
characters. The syntax follows:

NVARCHAR2(maximum_size)

Because the physical limit is 32767 bytes, the maximum value you can specify for the
length is 32767/2 in the AL16UTF16 encoding, and 32767/3 in the UTF8 encoding.

You cannot use a symbolic constant or variable to specify the maximum size; you must
use an integer literal.

The maximum size always represents the number of characters, unlike VARCHAR2
which can be specified in either characters or bytes.

my_string NVARCHAR2(200); -- maximum size is 200 characters

The maximum width of a NVARCHAR2 database column is 4000 bytes. Therefore, you
cannot insert NVARCHAR2 values longer than 4000 bytes into a NVARCHAR2 column.

You can interchange VARCHAR2 and NVARCHAR2 values in statements and
expressions. It is always safe to turn a VARCHAR2 value into an NVARCHAR2 value, but
turning an NVARCHAR2 value into a VARCHAR2 value might cause data loss if the
character set for the VARCHAR2 value cannot represent all the characters in the
NVARCHAR2 value. Such data loss can result in characters that usually look like
question marks (?).

PL/SQL LOB Types
The LOB (large object) datatypes BFILE, BLOB, CLOB, and NCLOB let you store blocks
of unstructured data (such as text, graphic images, video clips, and sound waveforms)
up to four gigabytes in size. And, they allow efficient, random, piece-wise access to the
data.

The LOB types differ from the LONG and LONG RAW types in several ways. For example,
LOBs (except NCLOB) can be attributes of an object type, but LONGs cannot. The
maximum size of a LOB is four gigabytes, but the maximum size of a LONG is two
gigabytes. Also, LOBs support random access to data, but LONGs support only
sequential access.

LOB types store lob locators, which point to large objects stored in an external file, in-line
(inside the row) or out-of-line (outside the row). Database columns of type BLOB, CLOB,
NCLOB, or BFILE store the locators. BLOB, CLOB, and NCLOB data is stored in the
database, in or outside the row. BFILE data is stored in operating system files outside
the database.

PL/SQL operates on LOBs through the locators. For example, when you select a BLOB
column value, only a locator is returned. If you got it during a transaction, the LOB
locator includes a transaction ID, so you cannot use it to update that LOB in another
transaction. Likewise, you cannot save a LOB locator during one session, then use it in
another session.

Starting in Oracle9i, you can also convert CLOBs to CHAR and VARCHAR2 types and
vice versa, or BLOBs to RAW and vice versa, which lets you use LOB types in most SQL
and PL/SQL statements and functions. To read, write, and do piecewise operations on
LOBs, you can use the supplied package DBMS_LOB. For more information, see Oracle
Database Application Developer's Guide - Large Objects.

BFILE
You use the BFILE datatype to store large binary objects in operating system files
outside the database. Every BFILE variable stores a file locator, which points to a large

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-11

binary file on the server. The locator includes a directory alias, which specifies a full
path name (logical path names are not supported).

BFILEs are read-only, so you cannot modify them. The size of a BFILE is system
dependent but cannot exceed four gigabytes (2**32 - 1 bytes). Your DBA makes sure
that a given BFILE exists and that Oracle has read permissions on it. The underlying
operating system maintains file integrity.

BFILEs do not participate in transactions, are not recoverable, and cannot be
replicated. The maximum number of open BFILEs is set by the Oracle initialization
parameter SESSION_MAX_OPEN_FILES, which is system dependent.

BLOB
You use the BLOB datatype to store large binary objects in the database, in-line or
out-of-line. Every BLOB variable stores a locator, which points to a large binary object.
The size of a BLOB cannot exceed four gigabytes.

BLOBs participate fully in transactions, are recoverable, and can be replicated. Changes
made by package DBMS_LOB can be committed or rolled back. BLOB locators can span
transactions (for reads only), but they cannot span sessions.

CLOB
You use the CLOB datatype to store large blocks of character data in the database,
in-line or out-of-line. Both fixed-width and variable-width character sets are
supported. Every CLOB variable stores a locator, which points to a large block of
character data. The size of a CLOB cannot exceed four gigabytes.

CLOBs participate fully in transactions, are recoverable, and can be replicated. Changes
made by package DBMS_LOB can be committed or rolled back. CLOB locators can span
transactions (for reads only), but they cannot span sessions.

NCLOB
You use the NCLOB datatype to store large blocks of NCHAR data in the database, in-line
or out-of-line. Both fixed-width and variable-width character sets are supported. Every
NCLOB variable stores a locator, which points to a large block of NCHAR data. The size
of an NCLOB cannot exceed four gigabytes.

NCLOBs participate fully in transactions, are recoverable, and can be replicated.
Changes made by package DBMS_LOB can be committed or rolled back. NCLOB
locators can span transactions (for reads only), but they cannot span sessions.

PL/SQL Boolean Types
PL/SQL has a type for representing Boolean values (true and false). Because SQL does
not have an equivalent type, you can use BOOLEAN variables and parameters in
PL/SQL contexts but not inside SQL statements or queries.

BOOLEAN
You use the BOOLEAN datatype to store the logical values TRUE, FALSE, and NULL
(which stands for a missing, unknown, or inapplicable value). Only logic operations
are allowed on BOOLEAN variables.

The BOOLEAN datatype takes no parameters. Only the values TRUE, FALSE, and NULL
can be assigned to a BOOLEAN variable.

You cannot insert the values TRUE and FALSE into a database column. You cannot
select or fetch column values into a BOOLEAN variable. Functions called from a SQL

Overview of Predefined PL/SQL Datatypes

3-12 PL/SQL User's Guide and Reference

query cannot take any BOOLEAN parameters. Neither can built-in SQL functions such
as TO_CHAR; to represent BOOLEAN values in output, you must use IF-THEN or CASE
constructs to translate BOOLEAN values into some other type, such as 0 or 1, 'Y' or 'N',
'true' or 'false', and so on.

PL/SQL Date, Time, and Interval Types
The datatypes in this section let you store and manipulate dates, times, and intervals
(periods of time). A variable that has a date/time datatype holds values called
datetimes; a variable that has an interval datatype holds values called intervals. A
datetime or interval consists of fields, which determine its value. The following list
shows the valid values for each field:

Except for TIMESTAMP WITH LOCAL TIMEZONE, these types are all part of the
SQL92 standard. For information about datetime and interval format models, literals,
time-zone names, and SQL functions, see Oracle Database SQL Reference.

DATE
You use the DATE datatype to store fixed-length datetimes, which include the time of
day in seconds since midnight. The date portion defaults to the first day of the current
month; the time portion defaults to midnight. The date function SYSDATE returns the
current date and time.

Tips:

■ To compare dates for equality, regardless of the time portion of each date, use the
function result TRUNC(date_variable) in comparisons, GROUP BY operations,
and so on.

■ To find just the time portion of a DATE variable, subtract the date portion: date_
variable - TRUNC(date_variable).

Field Name Valid Datetime Values Valid Interval Values

YEAR -4712 to 9999 (excluding year 0) Any nonzero integer

MONTH 01 to 12 0 to 11

DAY 01 to 31 (limited by the values of
MONTH andYEAR, according to the
rules of the calendar for the
locale)

Any nonzero integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n), where 9(n) is the
precision of time fractional
seconds

0 to 59.9(n), where 9(n) is the
precision of interval fractional
seconds

TIMEZONE_HOUR -12 to 14 (range accommodates
daylight savings time changes)

Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable

TIMEZONE_REGION Found in the view V$TIMEZONE_
NAMES

Not applicable

TIMEZONE_ABBR Found in the view V$TIMEZONE_
NAMES

Not applicable

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-13

Valid dates range from January 1, 4712 BC to December 31, 9999 AD. A Julian date is
the number of days since January 1, 4712 BC. Julian dates allow continuous dating
from a common reference. You can use the date format model 'J' with the date
functions TO_DATE and TO_CHAR to convert between DATE values and their Julian
equivalents.

In date expressions, PL/SQL automatically converts character values in the default
date format to DATE values. The default date format is set by the Oracle initialization
parameter NLS_DATE_FORMAT. For example, the default might be 'DD-MON-YY',
which includes a two-digit number for the day of the month, an abbreviation of the
month name, and the last two digits of the year.

You can add and subtract dates. In arithmetic expressions, PL/SQL interprets integer
literals as days. For instance, SYSDATE + 1 signifies the same time tomorrow.

TIMESTAMP
The datatype TIMESTAMP, which extends the datatype DATE, stores the year, month,
day, hour, minute, and second. The syntax is:

TIMESTAMP[(precision)]

where the optional parameter precision specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range 0 .. 9. The default is 6.

The default timestamp format is set by the Oracle initialization parameter NLS_
TIMESTAMP_FORMAT.

In the following example, you declare a variable of type TIMESTAMP, then assign a
literal value to it:

DECLARE
 checkout TIMESTAMP(3);
BEGIN
 checkout := '1999-06-22 07:48:53.275';
 ...
END;

In this example, the fractional part of the seconds field is 0.275.

TIMESTAMP WITH TIME ZONE
The datatype TIMESTAMP WITH TIME ZONE, which extends the datatype TIMESTAMP,
includes a time-zone displacement. The time-zone displacement is the difference (in
hours and minutes) between local time and Coordinated Universal Time
(UTC)—formerly Greenwich Mean Time. The syntax is:

TIMESTAMP[(precision)] WITH TIME ZONE

where the optional parameter precision specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range 0 .. 9. The default is 6.

The default timestamp with time zone format is set by the Oracle initialization
parameter NLS_TIMESTAMP_TZ_FORMAT.

In the following example, you declare a variable of type TIMESTAMP WITH TIME
ZONE, then assign a literal value to it:

DECLARE
 logoff TIMESTAMP(3) WITH TIME ZONE;

Overview of Predefined PL/SQL Datatypes

3-14 PL/SQL User's Guide and Reference

BEGIN
 logoff := '1999-10-31 09:42:37.114 +02:00';
 ...
END;

In this example, the time-zone displacement is +02:00.

You can also specify the time zone by using a symbolic name. The specification can
include a long form such as 'US/Pacific', an abbreviation such as 'PDT', or a
combination. For example, the following literals all represent the same time. The third
form is most reliable because it specifies the rules to follow at the point when
switching to daylight savings time.

TIMESTAMP '1999-04-15 8:00:00 -8:00'
TIMESTAMP '1999-04-15 8:00:00 US/Pacific'
TIMESTAMP '1999-10-31 01:30:00 US/Pacific PDT'

You can find the available names for time zones in the TIMEZONE_REGION and
TIMEZONE_ABBR columns of the V$TIMEZONE_NAMES data dictionary view.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent
the same instant in UTC, regardless of their time-zone displacements. For example, the
following two values are considered identical because, in UTC, 8:00 AM Pacific
Standard Time is the same as 11:00 AM Eastern Standard Time:

'1999-08-29 08:00:00 -8:00'
'1999-08-29 11:00:00 -5:00'

TIMESTAMP WITH LOCAL TIME ZONE
The datatype TIMESTAMP WITH LOCAL TIME ZONE, which extends the datatype
TIMESTAMP, includes a time-zone displacement. The time-zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal Time
(UTC)—formerly Greenwich Mean Time. You can also use named time zones, as with
TIMESTAMP WITH TIME ZONE.

The syntax is

TIMESTAMP[(precision)] WITH LOCAL TIME ZONE

where the optional parameter precision specifies the number of digits in the
fractional part of the seconds field. You cannot use a symbolic constant or variable to
specify the precision; you must use an integer literal in the range 0 .. 9. The default is 6.

This datatype differs from TIMESTAMP WITH TIME ZONE in that when you insert a
value into a database column, the value is normalized to the database time zone, and
the time-zone displacement is not stored in the column. When you retrieve the value,
Oracle returns it in your local session time zone.

In the following example, you declare a variable of type TIMESTAMP WITH LOCAL
TIME ZONE:

DECLARE
 logoff TIMESTAMP(3) WITH LOCAL TIME ZONE;
BEGIN
 ...
END;

You cannot assign literal values to a variable of this type.

Overview of Predefined PL/SQL Datatypes

PL/SQL Datatypes 3-15

INTERVAL YEAR TO MONTH
You use the datatype INTERVAL YEAR TO MONTH to store and manipulate intervals of
years and months. The syntax is:

INTERVAL YEAR[(precision)] TO MONTH

where precision specifies the number of digits in the years field. You cannot use a
symbolic constant or variable to specify the precision; you must use an integer literal
in the range 0 .. 4. The default is 2.

In the following example, you declare a variable of type INTERVAL YEAR TO MONTH,
then assign a value of 101 years and 3 months to it:

DECLARE
 lifetime INTERVAL YEAR(3) TO MONTH;
BEGIN
 lifetime := INTERVAL '101-3' YEAR TO MONTH; -- interval literal
 lifetime := '101-3'; -- implicit conversion from character type
 lifetime := INTERVAL '101' YEAR; -- Can specify just the years
 lifetime := INTERVAL '3' MONTH; -- Can specify just the months
 ...
END;

INTERVAL DAY TO SECOND
You use the datatype INTERVAL DAY TO SECOND to store and manipulate intervals of
days, hours, minutes, and seconds. The syntax is:

INTERVAL DAY[(leading_precision)] TO SECOND[(fractional_seconds_precision)]

where leading_precision and fractional_seconds_precision specify the
number of digits in the days field and seconds field, respectively. In both cases, you
cannot use a symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 .. 9. The defaults are 2 and 6, respectively.

In the following example, you declare a variable of type INTERVAL DAY TO SECOND:

DECLARE
 lag_time INTERVAL DAY(3) TO SECOND(3);
BEGIN
 IF lag_time > INTERVAL '6' DAY THEN ...
 ...
END;

Datetime and Interval Arithmetic
PL/SQL lets you construct datetime and interval expressions. The following list shows
the operators that you can use in such expressions:

Operand 1 Operator Operand 2 Result Type

datetime + interval datetime

datetime - interval datetime

interval + datetime datetime

datetime - datetime interval

interval + interval interval

interval - interval interval

Overview of PL/SQL Subtypes

3-16 PL/SQL User's Guide and Reference

You can also manipulate datetime values using various functions, such as EXTRACT.
For a list of such functions, see Table 2–3, " Built-In Functions" on page 2-30.

For further information and examples of datetime arithmetic, see Oracle Database SQL
Reference and Oracle Database Application Developer's Guide - Fundamentals.

Avoiding Truncation Problems Using Date and Time Subtypes
The default precisions for some of the date and time types are less than the maximum
precision. For example, the default for DAY TO SECOND is DAY(2) TO SECOND(6),
while the highest precision is DAY(9) TO SECOND(9). To avoid truncation when
assigning variables and passing procedure parameters of these types, you can declare
variables and procedure parameters of the following subtypes, which use the
maximum values for precision:

TIMESTAMP_UNCONSTRAINED
TIMESTAMP_TZ_UNCONSTRAINED
TIMESTAMP_LTZ_UNCONSTRAINED
YMINTERVAL_UNCONSTRAINED
DSINTERVAL_UNCONSTRAINED

Overview of PL/SQL Subtypes
Each PL/SQL base type specifies a set of values and a set of operations applicable to
items of that type. Subtypes specify the same set of operations as their base type, but
only a subset of its values. A subtype does not introduce a new type; rather, it places an
optional constraint on its base type.

Subtypes can increase reliability, provide compatibility with ANSI/ISO types, and
improve readability by indicating the intended use of constants and variables.
PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL
predefines the subtypes CHARACTER and INTEGER as follows:

SUBTYPE CHARACTER IS CHAR;
SUBTYPE INTEGER IS NUMBER(38,0); -- allows only whole numbers

The subtype CHARACTER specifies the same set of values as its base type CHAR, so
CHARACTER is an unconstrained subtype. But, the subtype INTEGER specifies only a
subset of the values of its base type NUMBER, so INTEGER is a constrained subtype.

Defining Subtypes
You can define your own subtypes in the declarative part of any PL/SQL block,
subprogram, or package using the syntax

SUBTYPE subtype_name IS base_type[(constraint)] [NOT NULL];

where subtype_name is a type specifier used in subsequent declarations, base_type
is any scalar or user-defined PL/SQL datatype, and constraint applies only to base
types that can specify precision and scale or a maximum size.

interval * numeric interval

numeric * interval interval

interval / numeric interval

Operand 1 Operator Operand 2 Result Type

Overview of PL/SQL Subtypes

PL/SQL Datatypes 3-17

Some examples follow:

DECLARE
 SUBTYPE BirthDate IS DATE NOT NULL; -- based on DATE type
 SUBTYPE Counter IS NATURAL; -- based on NATURAL subtype
 TYPE NameList IS TABLE OF VARCHAR2(10);
 SUBTYPE DutyRoster IS NameList; -- based on TABLE type
 TYPE TimeRec IS RECORD (minutes INTEGER, hours INTEGER);
 SUBTYPE FinishTime IS TimeRec; -- based on RECORD type
 SUBTYPE ID_Num IS emp.empno%TYPE; -- based on column type

You can use %TYPE or %ROWTYPE to specify the base type. When %TYPE provides the
datatype of a database column, the subtype inherits the size constraint (if any) of the
column. The subtype does not inherit other kinds of constraints such as NOT NULL.

Using Subtypes
Once you define a subtype, you can declare items of that type. In the example below,
you declare a variable of type Counter. Notice how the subtype name indicates the
intended use of the variable.

DECLARE
 SUBTYPE Counter IS NATURAL;
 rows Counter;

You can constrain a user-defined subtype when declaring variables of that type:

DECLARE
 SUBTYPE Accumulator IS NUMBER;
 total Accumulator(7,2);

Subtypes can increase reliability by detecting out-of-range values. In the example
below, you restrict the subtype Numeral to storing integers in the range -9 .. 9. If your
program tries to store a number outside that range in a Numeral variable, PL/SQL
raises an exception.

DECLARE
 SUBTYPE Numeral IS NUMBER(1,0);
 x_axis Numeral; -- magnitude range is -9 .. 9
 y_axis Numeral;
BEGIN
 x_axis := 10; -- raises VALUE_ERROR
 ...
END;

Type Compatibility
An unconstrained subtype is interchangeable with its base type. For example, given
the following declarations, the value of amount can be assigned to total without
conversion:

DECLARE
 SUBTYPE Accumulator IS NUMBER;
 amount NUMBER(7,2);
 total Accumulator;
BEGIN
 ...
 total := amount;
 ...
END;
Different subtypes are interchangeable if they have the same base type:

Converting PL/SQL Datatypes

3-18 PL/SQL User's Guide and Reference

DECLARE
 SUBTYPE b1 IS BOOLEAN;
 SUBTYPE b2 IS BOOLEAN;
 finished b1; -- Different subtypes,
 debugging b2; -- both based on BOOLEAN.
BEGIN
 debugging := finished; -- They can be assigned to each other.
END;

Different subtypes are also interchangeable if their base types are in the same datatype
family. For example, given the following declarations, the value of verb can be
assigned to sentence:

DECLARE
 SUBTYPE Word IS CHAR(15);
 SUBTYPE Text IS VARCHAR2(1500);
 verb Word; -- Different subtypes
 sentence Text(150); -- of types from the same family
BEGIN
 sentence := verb; -- can be assigned, if not too long.
END;

Converting PL/SQL Datatypes
Sometimes it is necessary to convert a value from one datatype to another. For
example, to use a DATE value in a report, you must convert it to a character string.
PL/SQL supports both explicit and implicit (automatic) datatype conversion. To
ensure your program does exactly what you expect, use explicit conversions wherever
possible.

Explicit Conversion
To convert values from one datatype to another, you use built-in functions. For
example, to convert a CHAR value to a DATE or NUMBER value, you use the function
TO_DATE or TO_NUMBER, respectively. Conversely, to convert a DATE or NUMBER value
to a CHAR value, you use the function TO_CHAR. For more information about these
functions, see Oracle Database SQL Reference.

Using explicit conversions, particularly when passing parameters to subprograms, can
avoid unexpected errors or wrong results. For example, the TO_CHAR function lets you
specify the format for a DATE value, rather than relying on language settings in the
database. Including an arithmetic expression among strings being concatenated with
the || operator can produce an error unless you put parentheses or a call to TO_CHAR
around the entire arithmetic expression.

Implicit Conversion
When it makes sense, PL/SQL can convert the datatype of a value implicitly. This lets
you use literals, variables, and parameters of one type where another type is expected.
For example, you can pass a numeric literal to a subprogram that expects a string
value, and the subprogram receives the string representation of the number.

In the following example, the CHAR variables start_time and finish_time hold
string values representing the number of seconds past midnight. The difference
between those values must be assigned to the NUMBER variable elapsed_time.
PL/SQL converts the CHAR values to NUMBER values automatically.

DECLARE
 start_time CHAR(5);

Converting PL/SQL Datatypes

PL/SQL Datatypes 3-19

 finish_time CHAR(5);
 elapsed_time NUMBER(5);
BEGIN
 /* Get system time as seconds past midnight. */
 SELECT TO_CHAR(SYSDATE,'SSSSS') INTO start_time FROM sys.dual;
 -- do something
 /* Get system time again. */
 SELECT TO_CHAR(SYSDATE,'SSSSS') INTO finish_time FROM sys.dual;
 /* Compute elapsed time in seconds. */
 elapsed_time := finish_time - start_time;
 INSERT INTO results VALUES (elapsed_time, ...);
END;

Before assigning a selected column value to a variable, PL/SQL will, if necessary,
convert the value from the datatype of the source column to the datatype of the
variable. This happens, for example, when you select a DATE column value into a
VARCHAR2 variable.

Likewise, before assigning the value of a variable to a database column, PL/SQL will,
if necessary, convert the value from the datatype of the variable to the datatype of the
target column. If PL/SQL cannot determine which implicit conversion is needed, you
get a compilation error. In such cases, you must use a datatype conversion function.
Table 3–1 shows which implicit conversions PL/SQL can do.

Notes:

■ The labels PLS_INT and BIN_INT represent the types PLS_INTEGER and
BINARY_INTEGER in the table. You cannot use them as abbreviations in code.

■ The table lists only types that have different representations. Types that have the
same representation, such as CLOB and NCLOB, CHAR and NCHAR, and VARCHAR
and NVARCHAR2, can be substituted for each other.

■ You can implicitly convert between CLOB and NCLOB, but be careful because this
can be an expensive operation. To make clear that this conversion is intended, you
can use the conversion functions TO_CLOB and TO_NCLOB.

■ TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME
ZONE, INTERVAL DAY TO SECOND, and INTERVAL YEAR TO MONTH can all be
converted using the same rules as the DATE type. However, because of their
different internal representations, these types cannot always be converted to each
other. See Oracle Database SQL Reference for details on implicit conversions
between different date and time types.

Table 3–1 Implicit Conversions

BIN_INT BLOB CHAR CLOB DATE LONG NUMBER PLS_INT RAW UROWID VARCHAR2

BIN_INT X X X X X

BLOB X

CHAR X X X X X X X X X

CLOB X X

DATE X X X

LONG X X X

NUMBER X X X X X

PLS_INT X X X X X

Converting PL/SQL Datatypes

3-20 PL/SQL User's Guide and Reference

It is your responsibility to ensure that values are convertible. For instance, PL/SQL can
convert the CHAR value '02-JUN-92' to a DATE value but cannot convert the CHAR
value 'YESTERDAY' to a DATE value. Similarly, PL/SQL cannot convert a VARCHAR2
value containing alphabetic characters to a NUMBER value.

Choosing Between Implicit and Explicit Conversion
Relying on implicit datatype conversions is a poor programming practice because they
can be slower and the conversion rules might change in later software releases.
Implicit conversions are context-sensitive and not always predictable. For best
reliability and maintainability, use datatype conversion functions.

DATE Values
When you select a DATE column value into a CHAR or VARCHAR2 variable, PL/SQL
must convert the internal binary value to a character value. PL/SQL calls the function
TO_CHAR, which returns a character string in the default date format. To get other
information, such as the time or Julian date, call TO_CHAR with a format mask.

A conversion is also necessary when you insert a CHAR or VARCHAR2 value into a
DATE column. PL/SQL calls the function TO_DATE, which expects the default date
format. To insert dates in other formats, call TO_DATE with a format mask.

RAW and LONG RAW Values
When you select a RAW or LONG RAW column value into a CHAR or VARCHAR2 variable,
PL/SQL must convert the internal binary value to a character value. In this case,
PL/SQL returns each binary byte of RAW or LONG RAW data as a pair of characters.
Each character represents the hexadecimal equivalent of a nibble (half a byte). For
example, PL/SQL returns the binary byte 11111111 as the pair of characters 'FF'. The
function RAWTOHEX does the same conversion.

A conversion is also necessary when you insert a CHAR or VARCHAR2 value into a RAW
or LONG RAW column. Each pair of characters in the variable must represent the
hexadecimal equivalent of a binary byte. Otherwise, PL/SQL raises an exception.

RAW X X X X

UROWID X X

VARCHA
R2

X X X X X X X X X

Table 3–1 (Cont.) Implicit Conversions

BIN_INT BLOB CHAR CLOB DATE LONG NUMBER PLS_INT RAW UROWID VARCHAR2

Using PL/SQL Control Structures 4-1

4
Using PL/SQL Control Structures

One ship drives east and another drives west
With the selfsame winds that blow.
'Tis the set of the sails and not the gales
Which tells us the way to go. —Ella Wheeler Wilcox

This chapter shows you how to structure the flow of control through a PL/SQL
program. PL/SQL provides conditional tests, loops, and branches that let you produce
well-structured programs.

This chapter contains these topics:

■ Overview of PL/SQL Control Structures on page 4-1

■ Testing Conditions: IF and CASE Statements on page 4-2

■ Controlling Loop Iterations: LOOP and EXIT Statements on page 4-6

■ Sequential Control: GOTO and NULL Statements on page 4-12

Overview of PL/SQL Control Structures
Procedural computer programs use the basic control structures shown in Figure 4–1.

Figure 4–1 Control Structures

The selection structure tests a condition, then executes one sequence of statements
instead of another, depending on whether the condition is true or false. A condition is
any variable or expression that returns a Boolean value (TRUE or FALSE). The iteration

Selection Iteration Sequence

T F F

T

Testing Conditions: IF and CASE Statements

4-2 PL/SQL User's Guide and Reference

structure executes a sequence of statements repeatedly as long as a condition holds
true. The sequence structure simply executes a sequence of statements in the order in
which they occur.

Testing Conditions: IF and CASE Statements
The IF statement executes a sequence of statements depending on the value of a
condition. There are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and
IF-THEN-ELSIF.

The CASE statement is a compact way to evaluate a single condition and choose
between many alternative actions. It makes sense to use CASE when there are three or
more alternatives to choose from.

Using the IF-THEN Statement
The simplest form of IF statement associates a condition with a sequence of
statements enclosed by the keywords THEN and END IF (not ENDIF):

IF condition THEN
 sequence_of_statements
END IF;

The sequence of statements is executed only if the condition is true. If the condition is
false or null, the IF statement does nothing. In either case, control passes to the next
statement.

IF sales > quota THEN
 compute_bonus(empid);
 UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;
END IF;

You can place brief IF statements on a single line:

IF x > y THEN high := x; END IF;

Using the IF-THEN-ELSE Statement
The second form of IF statement adds the keyword ELSE followed by an alternative
sequence of statements:

IF condition THEN
 sequence_of_statements1
ELSE
 sequence_of_statements2
END IF;

The statements in the ELSE clause are executed only if the condition is false or null.
The IF-THEN-ELSE statement ensures that one or the other sequence of statements is
executed. In the following example, the first UPDATE statement is executed when the
condition is true, and the second UPDATE statement is executed when the condition is
false or null:

IF trans_type = 'CR' THEN
 UPDATE accounts SET balance = balance + credit WHERE ...
ELSE
 UPDATE accounts SET balance = balance - debit WHERE ...
END IF;

IF statements can be nested:

Testing Conditions: IF and CASE Statements

Using PL/SQL Control Structures 4-3

IF trans_type = 'CR' THEN
 UPDATE accounts SET balance = balance + credit WHERE ...
ELSE
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = balance - debit WHERE ...
 ELSE
 RAISE insufficient_funds;
 END IF;
END IF;

Using the IF-THEN-ELSIF Statement
Sometimes you want to choose between several alternatives. You can use the keyword
ELSIF (not ELSEIF or ELSE IF) to introduce additional conditions:

IF condition1 THEN
 sequence_of_statements1
ELSIF condition2 THEN
 sequence_of_statements2
ELSE
 sequence_of_statements3
END IF;

If the first condition is false or null, the ELSIF clause tests another condition. An IF
statement can have any number of ELSIF clauses; the final ELSE clause is optional.
Conditions are evaluated one by one from top to bottom. If any condition is true, its
associated sequence of statements is executed and control passes to the next statement.
If all conditions are false or null, the sequence in the ELSE clause is executed. Consider
the following example:

BEGIN
 IF sales > 50000 THEN
 bonus := 1500;
 ELSIF sales > 35000 THEN
 bonus := 500;
 ELSE
 bonus := 100;
 END IF;
 INSERT INTO payroll VALUES (emp_id, bonus, ...);
END;

If the value of sales is larger than 50000, the first and second conditions are true.
Nevertheless, bonus is assigned the proper value of 1500 because the second
condition is never tested. When the first condition is true, its associated statement is
executed and control passes to the INSERT statement.

Using the CASE Statement
Like the IF statement, the CASE statement selects one sequence of statements to
execute. However, to select the sequence, the CASE statement uses a selector rather
than multiple Boolean expressions. (Recall from Chapter 2 that a selector is an
expression whose value is used to select one of several alternatives.) To compare the
IF and CASE statements, consider the following code that outputs descriptions of
school grades:

IF grade = 'A' THEN
 dbms_output.put_line('Excellent');
ELSIF grade = 'B' THEN
 dbms_output.put_line('Very Good');
ELSIF grade = 'C' THEN

Testing Conditions: IF and CASE Statements

4-4 PL/SQL User's Guide and Reference

 dbms_output.put_line('Good');
ELSIF grade = 'D' THEN
 dbms_output. put_line('Fair');
ELSIF grade = 'F' THEN
 dbms_output.put_line('Poor');
ELSE
 dbms_output.put_line('No such grade');
END IF;

Notice the five Boolean expressions. In each instance, we test whether the same
variable, grade, is equal to one of five values: 'A', 'B', 'C', 'D', or 'F'. Let us
rewrite the preceding code using the CASE statement, as follows:

CASE grade
 WHEN 'A' THEN dbms_output.put_line('Excellent');
 WHEN 'B' THEN dbms_output.put_line('Very Good');
 WHEN 'C' THEN dbms_output.put_line('Good');
 WHEN 'D' THEN dbms_output.put_line('Fair');
 WHEN 'F' THEN dbms_output.put_line('Poor');
 ELSE dbms_output.put_line('No such grade');
END CASE;

The CASE statement is more readable and more efficient. When possible, rewrite
lengthy IF-THEN-ELSIF statements as CASE statements.

The CASE statement begins with the keyword CASE. The keyword is followed by a
selector, which is the variable grade in the last example. The selector expression can
be arbitrarily complex. For example, it can contain function calls. Usually, however, it
consists of a single variable. The selector expression is evaluated only once. The value
it yields can have any PL/SQL datatype other than BLOB, BFILE, an object type, a
PL/SQL record, an index-by-table, a varray, or a nested table.

The selector is followed by one or more WHEN clauses, which are checked sequentially.
The value of the selector determines which clause is executed. If the value of the
selector equals the value of a WHEN-clause expression, that WHEN clause is executed.
For instance, in the last example, if grade equals 'C', the program outputs 'Good'.
Execution never falls through; if any WHEN clause is executed, control passes to the
next statement.

The ELSE clause works similarly to the ELSE clause in an IF statement. In the last
example, if the grade is not one of the choices covered by a WHEN clause, the ELSE
clause is selected, and the phrase 'No such grade' is output. The ELSE clause is
optional. However, if you omit the ELSE clause, PL/SQL adds the following implicit
ELSE clause:

ELSE RAISE CASE_NOT_FOUND;

There is always a default action, even when you omit the ELSE clause. If the CASE
statement does not match any of the WHEN clauses and you omit the ELSE clause,
PL/SQL raises the predefined exception CASE_NOT_FOUND.

The keywords END CASE terminate the CASE statement. These two keywords must be
separated by a space. The CASE statement has the following form:

[<<label_name>>]
CASE selector
 WHEN expression1 THEN sequence_of_statements1;
 WHEN expression2 THEN sequence_of_statements2;
 ...
 WHEN expressionN THEN sequence_of_statementsN;
 [ELSE sequence_of_statementsN+1;]

Testing Conditions: IF and CASE Statements

Using PL/SQL Control Structures 4-5

END CASE [label_name];

Like PL/SQL blocks, CASE statements can be labeled. The label, an undeclared
identifier enclosed by double angle brackets, must appear at the beginning of the CASE
statement. Optionally, the label name can also appear at the end of the CASE
statement.

Exceptions raised during the execution of a CASE statement are handled in the usual
way. That is, normal execution stops and control transfers to the exception-handling
part of your PL/SQL block or subprogram.

An alternative to the CASEstatement is the CASE expression, where each WHEN clause
is an expression. For details, see "CASE Expressions" on page 2-24.

Searched CASE Statement
PL/SQL also provides a searched CASE statement, which has the form:

[<<label_name>>]
CASE
 WHEN search_condition1 THEN sequence_of_statements1;
 WHEN search_condition2 THEN sequence_of_statements2;
 ...
 WHEN search_conditionN THEN sequence_of_statementsN;
 [ELSE sequence_of_statementsN+1;]
END CASE [label_name];

The searched CASE statement has no selector. Also, its WHEN clauses contain search
conditions that yield a Boolean value, not expressions that can yield a value of any
type. An example follows:

CASE
 WHEN grade = 'A' THEN dbms_output.put_line('Excellent');
 WHEN grade = 'B' THEN dbms_output.put_line('Very Good');
 WHEN grade = 'C' THEN dbms_output.put_line('Good');
 WHEN grade = 'D' THEN dbms_output.put_line('Fair');
 WHEN grade = 'F' THEN dbms_output.put_line('Poor');
 ELSE dbms_output.put_line('No such grade');
END CASE;

The search conditions are evaluated sequentially. The Boolean value of each search
condition determines which WHEN clause is executed. If a search condition yields
TRUE, its WHEN clause is executed. If any WHEN clause is executed, control passes to the
next statement, so subsequent search conditions are not evaluated.

If none of the search conditions yields TRUE, the ELSE clause is executed. The ELSE
clause is optional. However, if you omit the ELSE clause, PL/SQL adds the following
implicit ELSE clause:

ELSE RAISE CASE_NOT_FOUND;

Exceptions raised during the execution of a searched CASE statement are handled in
the usual way. That is, normal execution stops and control transfers to the
exception-handling part of your PL/SQL block or subprogram.

Guidelines for PL/SQL Conditional Statements
Avoid clumsy IF statements like those in the following example:

IF new_balance < minimum_balance THEN
 overdrawn := TRUE;

Controlling Loop Iterations: LOOP and EXIT Statements

4-6 PL/SQL User's Guide and Reference

ELSE
 overdrawn := FALSE;
END IF;
...
IF overdrawn = TRUE THEN
 RAISE insufficient_funds;
END IF;

The value of a Boolean expression can be assigned directly to a Boolean variable. You
can replace the first IF statement with a simple assignment:

overdrawn := new_balance < minimum_balance;

A Boolean variable is itself either true or false. You can simplify the condition in the
second IF statement:

IF overdrawn THEN ...

When possible, use the ELSIF clause instead of nested IF statements. Your code will
be easier to read and understand. Compare the following IF statements:

IF condition1 THEN | IF condition1 THEN
 statement1; | statement1;
ELSE | ELSIF condition2 THEN
 IF condition2 THEN | statement2;
 statement2; | ELSIF condition3 THEN
 ELSE | statement3;
 IF condition3 THEN | END IF;
 statement3; |
 END IF; |
 END IF; |
END IF; |

These statements are logically equivalent, but the second statement makes the logic
clearer.

To compare a single expression to multiple values, you can simplify the logic by using
a single CASE statement instead of an IF with several ELSIF clauses.

Controlling Loop Iterations: LOOP and EXIT Statements
LOOP statements execute a sequence of statements multiple times. There are three
forms of LOOP statements: LOOP, WHILE-LOOP, and FOR-LOOP.

Using the LOOP Statement
The simplest form of LOOP statement is the basic loop, which encloses a sequence of
statements between the keywords LOOP and END LOOP, as follows:

LOOP
 sequence_of_statements
END LOOP;

With each iteration of the loop, the sequence of statements is executed, then control
resumes at the top of the loop. You use an EXIT statement to stop looping and prevent
an infinite loop. You can place one or more EXIT statements anywhere inside a loop,
but not outside a loop. There are two forms of EXIT statements: EXIT and
EXIT-WHEN.

Controlling Loop Iterations: LOOP and EXIT Statements

Using PL/SQL Control Structures 4-7

Using the EXIT Statement
The EXIT statement forces a loop to complete unconditionally. When an EXIT
statement is encountered, the loop completes immediately and control passes to the
next statement:

LOOP
 IF credit_rating < 3 THEN
 EXIT; -- exit loop immediately
 END IF;
END LOOP;
-- control resumes here

Remember, the EXIT statement must be placed inside a loop. To complete a PL/SQL
block before its normal end is reached, you can use the RETURN statement. For more
information, see "Using the RETURN Statement" on page 8-4.

Using the EXIT-WHEN Statement
The EXIT-WHEN statement lets a loop complete conditionally. When the EXIT
statement is encountered, the condition in the WHEN clause is evaluated. If the
condition is true, the loop completes and control passes to the next statement after the
loop:

LOOP
 FETCH c1 INTO ...
 EXIT WHEN c1%NOTFOUND; -- exit loop if condition is true
 ...
END LOOP;
CLOSE c1;

Until the condition is true, the loop cannot complete. A statement inside the loop must
change the value of the condition. In the previous example, if the FETCH statement
returns a row, the condition is false. When the FETCH statement fails to return a row,
the condition is true, the loop completes, and control passes to the CLOSE statement.

The EXIT-WHEN statement replaces a simple IF statement. For example, compare the
following statements:

IF count > 100 THEN | EXIT WHEN count > 100;
 EXIT; |
END IF; |

These statements are logically equivalent, but the EXIT-WHEN statement is easier to
read and understand.

Labeling a PL/SQL Loop
Like PL/SQL blocks, loops can be labeled. The label, an undeclared identifier enclosed
by double angle brackets, must appear at the beginning of the LOOP statement, as
follows:

<<label_name>>
LOOP
 sequence_of_statements
END LOOP;

Optionally, the label name can also appear at the end of the LOOP statement, as the
following example shows:

<<my_loop>>

Controlling Loop Iterations: LOOP and EXIT Statements

4-8 PL/SQL User's Guide and Reference

LOOP
 ...
END LOOP my_loop;

When you nest labeled loops, use ending label names to improve readability.

With either form of EXIT statement, you can complete not only the current loop, but
any enclosing loop. Simply label the enclosing loop that you want to complete. Then,
use the label in an EXIT statement, as follows:

<<outer>>
LOOP
 ...
 LOOP
 ...
 EXIT outer WHEN ... -- exit both loops
 END LOOP;
 ...
END LOOP outer;

Every enclosing loop up to and including the labeled loop is exited.

Using the WHILE-LOOP Statement
The WHILE-LOOP statement executes the statements in the loop body as long as a
condition is true:

WHILE condition LOOP
 sequence_of_statements
END LOOP;

Before each iteration of the loop, the condition is evaluated. If it is true, the sequence of
statements is executed, then control resumes at the top of the loop. If it is false or null,
the loop is skipped and control passes to the next statement:

WHILE total <= 25000 LOOP
 SELECT sal INTO salary FROM emp WHERE ...
 total := total + salary;
END LOOP;

The number of iterations depends on the condition and is unknown until the loop
completes. The condition is tested at the top of the loop, so the sequence might execute
zero times. In the last example, if the initial value of total is larger than 25000, the
condition is false and the loop is skipped.

Some languages have a LOOP UNTIL or REPEAT UNTIL structure, which tests the
condition at the bottom of the loop instead of at the top, so that the sequence of
statements is executed at least once. The equivalent in PL/SQL would be:

LOOP
 sequence_of_statements
 EXIT WHEN boolean_expression;
END LOOP;

To ensure that a WHILE loop executes at least once, use an initialized Boolean variable
in the condition, as follows:

done := FALSE;
WHILE NOT done LOOP
 sequence_of_statements
 done := boolean_expression;

Controlling Loop Iterations: LOOP and EXIT Statements

Using PL/SQL Control Structures 4-9

END LOOP;

A statement inside the loop must assign a new value to the Boolean variable to avoid
an infinite loop.

Using the FOR-LOOP Statement
Simple FOR loops iterate over a specified range of integers. The number of iterations is
known before the loop is entered. A double dot (..) serves as the range operator:

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP
 sequence_of_statements
END LOOP;

The range is evaluated when the FOR loop is first entered and is never re-evaluated.

As the next example shows, the sequence of statements is executed once for each
integer in the range. After each iteration, the loop counter is incremented.

FOR i IN 1..3 LOOP -- assign the values 1,2,3 to i
 sequence_of_statements -- executes three times
END LOOP;

If the lower bound equals the higher bound, the loop body is executed once:

FOR i IN 3..3 LOOP -- assign the value 3 to i
 sequence_of_statements -- executes one time
END LOOP;

By default, iteration proceeds upward from the lower bound to the higher bound. If
you use the keyword REVERSE, iteration proceeds downward from the higher bound
to the lower bound. After each iteration, the loop counter is decremented. You still
write the range bounds in ascending (not descending) order.

FOR i IN REVERSE 1..3 LOOP -- assign the values 3,2,1 to i
 sequence_of_statements -- executes three times
END LOOP;

Inside a FOR loop, the counter can be read but cannot be changed:

FOR ctr IN 1..10 LOOP
 IF NOT finished THEN
 INSERT INTO ... VALUES (ctr, ...); -- OK
 factor := ctr * 2; -- OK
 ELSE
 ctr := 10; -- not allowed
 END IF;
END LOOP;

Tip: A useful variation of the FOR loop uses a SQL query instead of a range of integers.
This technique lets you run a query and process all the rows of the result set with
straightforward syntax. For details, see "Querying Data with PL/SQL: Implicit Cursor
FOR Loop" on page 6-9.

How PL/SQL Loops Iterate
The bounds of a loop range can be literals, variables, or expressions but must evaluate
to numbers. Otherwise, PL/SQL raises the predefined exception VALUE_ERROR. The
lower bound need not be 1, but the loop counter increment or decrement must be 1.

j IN -5..5
k IN REVERSE first..last

Controlling Loop Iterations: LOOP and EXIT Statements

4-10 PL/SQL User's Guide and Reference

step IN 0..TRUNC(high/low) * 2

Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER
variables, and, if necessary, rounds the values to the nearest integer. The magnitude
range of a PLS_INTEGER is -2**31 .. 2**31. If a bound evaluates to a number outside
that range, you get a numeric overflow error when PL/SQL attempts the assignment.

Some languages provide a STEP clause, which lets you specify a different increment (5
instead of 1 for example). PL/SQL has no such structure, but you can easily build one.
Inside the FOR loop, simply multiply each reference to the loop counter by the new
increment. In the following example, you assign today's date to elements 5, 10, and 15
of an index-by table:

DECLARE
 TYPE DateList IS TABLE OF DATE INDEX BY BINARY_INTEGER;
 dates DateList;
 k CONSTANT INTEGER := 5; -- set new increment
BEGIN
 FOR j IN 1..3 LOOP
 dates(j*k) := SYSDATE; -- multiply loop counter by increment
 END LOOP;
 ...
END;

Dynamic Ranges for Loop Bounds
PL/SQL lets you specify the loop range at run time by using variables for bounds:

SELECT COUNT(empno) INTO emp_count FROM emp;
FOR i IN 1..emp_count LOOP
 ...
END LOOP;

If the lower bound of a loop range evaluates to a larger integer than the upper bound,
the loop body is not executed and control passes to the next statement:

-- limit becomes 1
FOR i IN 2..limit LOOP
 sequence_of_statements -- executes zero times
END LOOP;
-- control passes here

Scope of the Loop Counter Variable
The loop counter is defined only within the loop. You cannot reference that variable
name outside the loop. After the loop exits, the loop counter is undefined:

FOR ctr IN 1..10 LOOP
 ...
END LOOP;
sum := ctr - 1; -- not allowed

You do not need to declare the loop counter because it is implicitly declared as a local
variable of type INTEGER. It is safest not to use the name of an existing variable,
because the local declaration hides any global declaration:

DECLARE
 ctr INTEGER := 3;
BEGIN
 ...
 FOR ctr IN 1..25 LOOP
 ...

Controlling Loop Iterations: LOOP and EXIT Statements

Using PL/SQL Control Structures 4-11

 IF ctr > 10 THEN ... -- Refers to loop counter
 END LOOP;
-- After the loop, ctr refers to the original variable with value 3.
END;

To reference the global variable in this example, you must use a label and dot notation,
as follows:

<<main>>
DECLARE
 ctr INTEGER;
 ...
BEGIN
 ...
 FOR ctr IN 1..25 LOOP
 ...
 IF main.ctr > 10 THEN -- refers to global variable
 ...
 END IF;
 END LOOP;
END main;

The same scope rules apply to nested FOR loops. Consider the example below. Both
loop counters have the same name. To reference the outer loop counter from the inner
loop, you use a label and dot notation:

<<outer>>
FOR step IN 1..25 LOOP
 FOR step IN 1..10 LOOP
 ...
 IF outer.step > 15 THEN ...
 END LOOP;
END LOOP outer;

Using the EXIT Statement in a FOR Loop
The EXIT statement lets a FOR loop complete early. For example, the following loop
normally executes ten times, but as soon as the FETCH statement fails to return a row,
the loop completes no matter how many times it has executed:

FOR j IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 ...
END LOOP;

Suppose you must exit early from a nested FOR loop. To complete not only the current
loop, but also any enclosing loop, label the enclosing loop and use the label in an EXIT
statement:

<<outer>>
FOR i IN 1..5 LOOP
 ...
 FOR j IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT outer WHEN c1%NOTFOUND; -- exit both FOR loops
 ...
 END LOOP;
END LOOP outer;
-- control passes here

Sequential Control: GOTO and NULL Statements

4-12 PL/SQL User's Guide and Reference

Sequential Control: GOTO and NULL Statements
Unlike the IF and LOOP statements, the GOTO and NULL statements are not crucial to
PL/SQL programming. The GOTO statement is seldom needed. Occasionally, it can
simplify logic enough to warrant its use. The NULL statement can improve readability
by making the meaning and action of conditional statements clear.

Overuse of GOTO statements can result in code that is hard to understand and
maintain. Use GOTO statements sparingly. For example, to branch from a deeply nested
structure to an error-handling routine, raise an exception rather than use a GOTO
statement. PL/SQL's exception-handling mechanism is discussed in Chapter 10,
"Handling PL/SQL Errors".

Using the GOTO Statement
The GOTO statement branches to a label unconditionally. The label must be unique
within its scope and must precede an executable statement or a PL/SQL block. When
executed, the GOTO statement transfers control to the labeled statement or block. In the
following example, you go to an executable statement farther down in a sequence of
statements:

BEGIN
 ...
 GOTO insert_row;
 ...
 <<insert_row>>
 INSERT INTO emp VALUES ...
END;

In the next example, you go to a PL/SQL block farther up in a sequence of statements:

DECLARE
 x NUMBER := 0;
BEGIN
 <<increment_x>>
 BEGIN
 x := x + 1;
 END;
 IF x < 10 THEN
 GOTO increment_x;
 END IF;
END;

The label end_loop in the following example is not allowed because it does not
precede an executable statement:

DECLARE
 done BOOLEAN;
BEGIN
 FOR i IN 1..50 LOOP
 IF done THEN
 GOTO end_loop;
 END IF;
 <<end_loop>> -- not allowed
 END LOOP; -- not an executable statement
END;

To correct the previous example, add the NULL statement::

FOR i IN 1..50 LOOP
 IF done THEN

Sequential Control: GOTO and NULL Statements

Using PL/SQL Control Structures 4-13

 GOTO end_loop;
 END IF;
 ...
<<end_loop>>
NULL; -- an executable statement
END LOOP;

As the following example shows, a GOTO statement can branch to an enclosing block
from the current block:

DECLARE
 my_ename CHAR(10);
BEGIN
 <<get_name>>
 SELECT ename INTO my_ename FROM emp WHERE ...
 BEGIN
 GOTO get_name; -- branch to enclosing block
 END;
END;

The GOTO statement branches to the first enclosing block in which the referenced label
appears.

Restrictions on the GOTO Statement
Some possible destinations of a GOTO statement are not allowed. Specifically, a GOTO
statement cannot branch into an IF statement, CASE statement, LOOP statement, or
sub-block. For example, the following GOTO statement is not allowed:

BEGIN
 GOTO update_row; -- can't branch into IF statement
 IF valid THEN
 <<update_row>>
 UPDATE emp SET ...
 END IF;
END;

A GOTO statement cannot branch from one IF statement clause to another, or from one
CASE statement WHEN clause to another.

A GOTO statement cannot branch from an outer block into a sub-block (that is, an inner
BEGIN-END block).

A GOTO statement cannot branch out of a subprogram. To end a subprogram early, you
can use the RETURN statement or use GOTO to branch to a place right before the end of
the subprogram.

A GOTO statement cannot branch from an exception handler back into the current
BEGIN-END block. However, a GOTO statement can branch from an exception handler
into an enclosing block.

Using the NULL Statement
The NULL statement does nothing, and passes control to the next statement. (Some
languages refer to such an instruction as a no-op.)

You can use the NULL statement to indicate that you are aware of a possibility, but no
action is necessary. In the following example, the NULL statement shows that you have
chosen not to take any action for unnamed exceptions:

EXCEPTION

Sequential Control: GOTO and NULL Statements

4-14 PL/SQL User's Guide and Reference

 WHEN ZERO_DIVIDE THEN
 ROLLBACK;
 WHEN VALUE_ERROR THEN
 INSERT INTO errors VALUES ...
 COMMIT;
 WHEN OTHERS THEN
 NULL;
END;

The NULL statement is a handy way to create placeholders and stub procedures. In the
following example, the NULL statement lets you compile this procedure, then fill in the
real body later:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
BEGIN
 NULL;
END debit_account;

Using PL/SQL Collections and Records 5-1

5
Using PL/SQL Collections and Records

Knowledge is that area of ignorance that we arrange and classify. —Ambrose Bierce

Many programming techniques use collection types such as arrays, bags, lists, nested
tables, sets, and trees. You can model these types in database applications using the
PL/SQL datatypes TABLE and VARRAY, which allow you to declare nested tables,
associative arrays, and variable-size arrays. This chapter shows how to reference and
manipulate collections of data as local variables. You also learn how the RECORD
datatype lets you manipulate related values of different types as a logical unit.

This chapter contains these topics:

■ What Is a Collection? on page 5-1

■ Choosing Which PL/SQL Collection Types to Use on page 5-4

■ Defining Collection Types on page 5-6

■ Declaring PL/SQL Collection Variables on page 5-8

■ Initializing and Referencing Collections on page 5-10

■ Assigning Collections on page 5-13

■ Comparing Collections on page 5-16

■ Using PL/SQL Collections with SQL Statements on page 5-17

■ Using Collection Methods on page 5-23

■ Avoiding Collection Exceptions on page 5-30

■ What Is a PL/SQL Record? on page 5-32

■ Defining and Declaring Records on page 5-32

■ Assigning Values to Records on page 5-34

What Is a Collection?
A collection is an ordered group of elements, all of the same type. It is a general
concept that encompasses lists, arrays, and other datatypes used in classic
programming algorithms. Each element is addressed by a unique subscript.

PL/SQL offers these collection types:

■ Associative arrays, also known as index-by tables, let you look up elements using
arbitrary numbers and strings for subscript values. (They are similar to hash
tables in other programming languages.)

What Is a Collection?

5-2 PL/SQL User's Guide and Reference

■ Nested tables hold an arbitrary number of elements. They use sequential
numbers as subscripts. You can define equivalent SQL types, allowing nested
tables to be stored in database tables and manipulated through SQL.

■ Varrays (short for variable-size arrays) hold a fixed number of elements (although
you can change the number of elements at runtime). They use sequential numbers
as subscripts. You can define equivalent SQL types, allowing varrays to be stored
in database tables. They can be stored and retrieved through SQL, but with less
flexibility than nested tables.

Although collections have only one dimension, you can model multi-dimensional
arrays by creating collections whose elements are also collections.

To use collections in an application, you define one or more PL/SQL types, then define
variables of those types. You can define collection types in a procedure, function, or
package. You can pass collection variables as parameters to stored subprograms.

To look up data that is more complex than single values, you can store PL/SQL
records or SQL object types in collections. Nested tables and varrays can also be
attributes of object types.

Understanding Nested Tables
PL/SQL nested tables represent sets of values. You can think of them as
one-dimensional arrays with no upper bound. You can model multi-dimensional
arrays by creating nested tables whose elements are also nested tables.

Within the database, nested tables are column types that hold sets of values. Oracle
stores the rows of a nested table in no particular order. When you retrieve a nested
table from the database into a PL/SQL variable, the rows are given consecutive
subscripts starting at 1. That gives you array-like access to individual rows.

Nested tables differ from arrays in two important ways:

1. Nested tables are unbounded, while arrays have a fixed upper bound (see
Figure 5–1). The size of a nested table can increase dynamically.

2. Nested tables might not have consecutive subscripts, while arrays are always
dense (have consecutive subscripts). Initially, nested tables are dense, but they can
become sparse (have nonconsecutive subscripts). You can delete elements from a
nested table using the built-in procedure DELETE. The built-in function NEXT lets
you iterate over all the subscripts of a nested table, even if the sequence has gaps.

Figure 5–1 Array versus Nested Table

Understanding Varrays
Items of type VARRAY are called varrays. They let you reference individual elements for
array operations, or manipulate the collection as a whole. To reference an element, you

Array of Integers

321

x(1)

17

x(2)

99

x(3)

407

x(4)

83

x(5)

622

x(6)

105

x(7)

19

x(8)

67

x(9)

278

x(10)

Fixed
Upper
Bound

Nested Table after Deletions

321

x(1)

17 99

x(3)

407

x(4)

83 622

x(6)

105

x(7)

19

x(8)

67 278

x(10)

Unbounded

What Is a Collection?

Using PL/SQL Collections and Records 5-3

use standard subscripting syntax (see Figure 5–2). For example, Grade(3) references
the third element in varray Grades.

Figure 5–2 Varray of Size 10

A varray has a maximum size, which you specify in its type definition. Its index has a
fixed lower bound of 1 and an extensible upper bound. For example, the current upper
bound for varray Grades is 7, but you can increase its upper bound to maximum of
10. A varray can contain a varying number of elements, from zero (when empty) to the
maximum specified in its type definition.

Understanding Associative Arrays (Index-By Tables)
Associative arrays are sets of key-value pairs, where each key is unique and is used to
locate a corresponding value in the array. The key can be an integer or a string.

Assigning a value using a key for the first time adds that key to the associative array.
Subsequent assignments using the same key update the same entry. It is important to
choose a key that is unique. For example, key values might come from the primary key
of a database table, from a numeric hash function, or from concatenating strings to
form a unique string value.

For example, here is the declaration of an associative array type, and two arrays of that
type, using keys that are strings:

DECLARE
 TYPE population_type IS TABLE OF NUMBER INDEX BY VARCHAR2(64);
 country_population population_type;
 continent_population population_type;
 howmany NUMBER;
 which VARCHAR2(64);
BEGIN
 country_population('Greenland') := 100000; -- Creates new entry
 country_population('Iceland') := 750000; -- Creates new entry
-- Looks up value associated with a string
 howmany := country_population('Greenland');

 continent_population('Australia') := 30000000;
 continent_population('Antarctica') := 1000; -- Creates new entry
 continent_population('Antarctica') := 1001; -- Replaces previous value

-- Returns 'Antarctica' as that comes first alphabetically.
 which := continent_population.FIRST;
-- Returns 'Australia' as that comes last alphabetically.
 which := continent_population.LAST;
-- Returns the value corresponding to the last key, in this
-- case the population of Australia.
 howmany := continent_population(continent_population.LAST);
END;
/

Associative arrays help you represent data sets of arbitrary size, with fast lookup for
an individual element without knowing its position within the array and without
having to loop through all the array elements. It is like a simple version of a SQL table

Varray Grades

B

(1)

C

(2)

A

(3)

A

(4)

C

(5)

D

(6)

B

(7)

Maximum
Size = 10

Choosing Which PL/SQL Collection Types to Use

5-4 PL/SQL User's Guide and Reference

where you can retrieve values based on the primary key. For simple temporary storage
of lookup data, associative arrays let you avoid using the disk space and network
operations required for SQL tables.

Because associative arrays are intended for temporary data rather than storing
persistent data, you cannot use them with SQL statements such as INSERT and
SELECT INTO. You can make them persistent for the life of a database session by
declaring the type in a package and assigning the values in a package body.

How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays
If settings for national language or globalization change during a session that uses
associative arrays with VARCHAR2 key values, the program might encounter a runtime
error. For example, changing the NLS_COMP or NLS_SORT initialization parameters
within a session might cause methods such as NEXT and PRIOR to raise exceptions. If
you need to change these settings during the session, make sure to set them back to
their original values before performing further operations with these kinds of
associative arrays.

When you declare an associative array using a string as the key, the declaration must
use a VARCHAR2, STRING, or LONG type. You can use a different type, such as NCHAR
or NVARCHAR2, as the key value to reference an associative array. You can even use a
type such as DATE, as long as it can be converted to VARCHAR2 by the TO_CHAR
function.

However, you must be careful when using other types that the values used as keys are
consistent and unique. For example, the string value of SYSDATE might change if the
NLS_DATE_FORMAT initialization parameter changes, so that array_
element(SYSDATE) does not produce the same result as before. Two different
NVARCHAR2 values might turn into the same VARCHAR2 value (containing question
marks instead of certain national characters). In that case, array_
element(national_string1) and array_element(national_string2)
might refer to the same element. Two different CHAR or VARCHAR2 values that differ in
terms of case, accented characters, or punctuation characters might also be considered
the same if the value of the NLS_SORT initialization parameter ends in _CI
(case-insensitive comparisons) or _AI (accent- and case-insensitive comparisons).

When you pass an associative array as a parameter to a remote database using a
database link, the two databases can have different globalization settings. When the
remote database performs operations such as FIRST and NEXT, it uses its own
character order even if that is different from the order where the collection originated.
If character set differences mean that two keys that were unique are not unique on the
remote database, the program receives a VALUE_ERROR exception.

Choosing Which PL/SQL Collection Types to Use
If you already have code or business logic that uses some other language, you can
usually translate that language's array and set types directly to PL/SQL collection
types.

■ Arrays in other languages become varrays in PL/SQL.

■ Sets and bags in other languages become nested tables in PL/SQL.

■ Hash tables and other kinds of unordered lookup tables in other languages
become associative arrays in PL/SQL.

Choosing Which PL/SQL Collection Types to Use

Using PL/SQL Collections and Records 5-5

When you are writing original code or designing the business logic from the start, you
should consider the strengths of each collection type to decide which is appropriate for
each situation.

Choosing Between Nested Tables and Associative Arrays
Both nested tables and associative arrays (formerly known as index-by tables) use
similar subscript notation, but they have different characteristics when it comes to
persistence and ease of parameter passing.

Nested tables can be stored in a database column, but associative arrays cannot.
Nested tables can simplify SQL operations where you would normally join a
single-column table with a larger table.

Associative arrays are appropriate for relatively small lookup tables where the
collection can be constructed in memory each time a procedure is called or a package
is initialized. They are good for collecting information whose volume is unknown
beforehand, because there is no fixed limit on their size. Their index values are more
flexible, because associative array subscripts can be negative, can be nonsequential,
and can use string values instead of numbers.

PL/SQL automatically converts between host arrays and associative arrays that use
numeric key values. The most efficient way to pass collections to and from the
database server is to set up data values in associative arrays, then use those associative
arrays with bulk constructs (the FORALL statement or BULK COLLECT clause).

Choosing Between Nested Tables and Varrays
Varrays are a good choice when:

■ The number of elements is known in advance.

■ The elements are usually all accessed in sequence.

When stored in the database, varrays keep their ordering and subscripts.

Each varray is stored as a single object, either inside the table of which it is a column
(if the varray is less than 4KB) or outside the table but still in the same tablespace (if
the varray is greater than 4KB). You must update or retrieve all elements of the varray
at the same time, which is most appropriate when performing some operation on all
the elements at once. But you might find it impractical to store and retrieve large
numbers of elements this way.

Nested tables are a good choice when:

■ The index values are not consecutive.

■ There is no predefined upper bound for index values.

■ You need to delete or update some elements, but not all the elements at once.

■ You would usually create a separate lookup table, with multiple entries for each
row of the main table, and access it through join queries.

Nested tables can be sparse: you can delete arbitrary elements, rather than just
removing an item from the end.

Nested table data is stored in a separate store table, a system-generated database table
associated with the nested table. The database joins the tables for you when you access
the nested table. This makes nested tables suitable for queries and updates that only
affect some elements of the collection.

Defining Collection Types

5-6 PL/SQL User's Guide and Reference

You cannot rely on the order and subscripts of a nested table remaining stable as the
nested table is stored in and retrieved from the database, because the order and
subscripts are not preserved in the database.

Defining Collection Types
To create collections, you define a collection type, then declare variables of that type.
You can define TABLE and VARRAY types in the declarative part of any PL/SQL block,
subprogram, or package.

Collections follow the same scoping and instantiation rules as other types and
variables. Collections are instantiated when you enter a block or subprogram, and
cease to exist when you exit. In a package, collections are instantiated when you first
reference the package and cease to exist when you end the database session.

Nested Tables
To define a PL/SQL type for nested tables, use the syntax:

TYPE type_name IS TABLE OF element_type [NOT NULL];

type_name is a type specifier used later to declare collections. For nested tables
declared within PL/SQL, element_type is any PL/SQL datatype except:

REF CURSOR

Nested tables declared in SQL using the CREATE TYPE statement have additional
restrictions on the element type. They cannot use the following element types:

BINARY_INTEGER, PLS_INTEGER
BOOLEAN
LONG, LONG RAW
NATURAL, NATURALN
POSITIVE, POSITIVEN
REF CURSOR
SIGNTYPE
STRING

Varrays
To define a PL/SQL type for varrays, use the syntax:

TYPE type_name IS {VARRAY | VARYING ARRAY} (size_limit)
 OF element_type [NOT NULL];

The meanings of type_name and element_type are the same as for nested tables.

size_limit is a positive integer literal representing the maximum number of
elements in the array.

When defining a VARRAY type, you must specify its maximum size. In the following
example, you define a type that stores up to 366 dates:

DECLARE
 TYPE Calendar IS VARRAY(366) OF DATE;
BEGIN
 NULL;
END;
/

Defining Collection Types

Using PL/SQL Collections and Records 5-7

Associative Arrays
Associative arrays (also known as index-by tables) let you insert elements using
arbitrary key values. The keys do not have to be consecutive. They use the syntax:

TYPE type_name IS TABLE OF element_type [NOT NULL]
 INDEX BY [PLS_INTEGER | BINARY_INTEGER | VARCHAR2(size_limit)];
 INDEX BY key_type;

The key_type can be numeric, either PLS_INTEGER or BINARY_INTEGER. It can
also be VARCHAR2 or one of its subtypes VARCHAR, STRING, or LONG. You must
specify the length of a VARCHAR2-based key, except for LONG which is equivalent to
declaring a key type of VARCHAR2(32760). The types RAW, LONG RAW, ROWID, CHAR,
and CHARACTER are not allowed as keys for an associative array.

An initialization clause is not allowed. There is no constructor notation for associative
arrays.

When you reference an element of an associative array that uses a VARCHAR2-based
key, you can use other types, such as DATE or TIMESTAMP, as long as they can be
converted to VARCHAR2 with the TO_CHAR function.

Associative arrays can store data using a primary key value as the index, where the
key values are not sequential. The example below creates a single element in an
associative array, with a subscript of 100 rather than 1:

DECLARE
 TYPE EmpTabTyp IS TABLE OF employees%ROWTYPE
 INDEX BY PLS_INTEGER;
 emp_tab EmpTabTyp;
BEGIN
 /* Retrieve employee record. */
 SELECT * INTO emp_tab(100) FROM employees WHERE employee_id = 100;
END;
/

Defining SQL Types Equivalent to PL/SQL Collection Types
To store nested tables and varrays inside database tables, you must also declare SQL
types using the CREATE TYPE statement. The SQL types can be used as columns or as
attributes of SQL object types.

You can declare equivalent types within PL/SQL, or use the SQL type name in a
PL/SQL variable declaration.

Example 5–1 Declaring a Nested Table in SQL

The following SQL*Plus script shows how you might declare a nested table in SQL,
and use it as an attribute of an object type:

CREATE TYPE CourseList AS TABLE OF VARCHAR2(10) -- define type
/
CREATE TYPE Student AS OBJECT (-- create object
 id_num INTEGER(4),
 name VARCHAR2(25),
 address VARCHAR2(35),
 status CHAR(2),
 courses CourseList); -- declare nested table as attribute
/

DROP TYPE Student;

Declaring PL/SQL Collection Variables

5-8 PL/SQL User's Guide and Reference

DROP TYPE CourseList;

The identifier courses represents an entire nested table. Each element of courses
stores the name of a college course such as 'Math 1020'.

Example 5–2 Creating a Table with a Varray Column

The script below creates a database column that stores varrays. Each varray element
contains a VARCHAR2.

-- Each project has a 16-character code name.
-- We will store up to 50 projects at a time in a database column.
CREATE TYPE ProjectList AS VARRAY(50) OF VARCHAR2(16);
/
CREATE TABLE department (-- create database table
 dept_id NUMBER(2),
 name VARCHAR2(15),
 budget NUMBER(11,2),
-- Each department can have up to 50 projects.
 projects ProjectList);

DROP TABLE department;
DROP TYPE ProjectList;

Declaring PL/SQL Collection Variables
After defining a collection type, you declare variables of that type. You use the new
type name in the declaration, the same as with predefined types such as NUMBER.

Example 5–3 Declaring Nested Tables, Varrays, and Associative Arrays

DECLARE
 TYPE nested_type IS TABLE OF VARCHAR2(20);
 TYPE varray_type IS VARRAY(5) OF INTEGER;
 TYPE assoc_array_num_type IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 TYPE assoc_array_str_type IS TABLE OF VARCHAR2(32) INDEX BY PLS_INTEGER;
 TYPE assoc_array_str_type2 IS TABLE OF VARCHAR2(32) INDEX BY VARCHAR2(64);
 v1 nested_type;
 v2 varray_type;
 v3 assoc_array_num_type;
 v4 assoc_array_str_type;
 v5 assoc_array_str_type2;
BEGIN
 v1 := nested_type('Arbitrary','number','of','strings');
 v2 := varray_type(10, 20, 40, 80, 160); -- Up to 5 integers
 v3(99) := 10; -- Just start assigning to elements.
 v3(7) := 100; -- Subscripts can be any integer values.
 v4(42) := 'Cat'; -- Just start assigning to elements.
 v4(54) := 'Hat'; -- Subscripts can be any integer values.
 v5('Canada') := 'North America'; -- Just start assigning to elements.
 v5('Greece') := 'Europe'; -- Subscripts can be string values.
END;
/

Declaring PL/SQL Collection Variables

Using PL/SQL Collections and Records 5-9

Example 5–4 Declaring Collections with %TYPE

You can use %TYPE to specify the datatype of a previously declared collection, so that
changing the definition of the collection automatically updates other variables that
depend on the number of elements or the element type:

DECLARE
 TYPE Few_Colors IS VARRAY(10) OF VARCHAR2(20);
 TYPE Many_Colors IS VARRAY(100) OF VARCHAR2(64);
 some_colors Few_Colors;
-- If we change the type of SOME_COLORS from FEW_COLORS to MANY_COLORS,
-- RAINBOW and CRAYONS will use the same type when this block is recompiled.
 rainbow some_colors%TYPE;
 crayons some_colors%TYPE;
BEGIN
 NULL;
END;
/

Example 5–5 Declaring a Procedure Parameter as a Nested Table

You can declare collections as the formal parameters of functions and procedures. That
way, you can pass collections to stored subprograms and from one subprogram to
another. The following example declares a nested table as a parameter of a packaged
procedure:

CREATE PACKAGE personnel AS
 TYPE Staff_List IS TABLE OF employees.employee_id%TYPE;
 PROCEDURE award_bonuses (who_gets_em IN Staff_List);
END personnel;
/

DROP PACKAGE personnel;

To call PERSONNEL.AWARD_BONUSES from outside the package, you declare a
variable of type PERSONNEL.STAFF and pass that variable as the parameter.

You can also specify a collection type in the RETURN clause of a function specification.

Example 5–6 Specifying Collection Element Types with %TYPE and %ROWTYPE

To specify the element type, you can use %TYPE, which provides the datatype of a
variable or database column. Also, you can use %ROWTYPE, which provides the
rowtype of a cursor or database table. Two examples follow:

DECLARE
-- Nested table type that can hold an arbitrary number of
-- employee IDs. The element type is based on a column from
-- the EMPLOYEES table. We do not need to know whether the
-- ID is a number or a string.
 TYPE EmpList IS TABLE OF employees.employee_id%TYPE;

-- Array type that can hold information about 10 employees.
-- The element type is a record that contains all the same
-- fields as the EMPLOYEES table.
 TYPE Top_Salespeople IS VARRAY(10) OF employees%ROWTYPE;

-- Declare a cursor to select a subset of columns.
 CURSOR c1 IS SELECT first_name, last_name FROM employees;
-- Array type that can hold a list of names. The element type
-- is a record that contains the same fields as the cursor

Initializing and Referencing Collections

5-10 PL/SQL User's Guide and Reference

-- (that is, first_name and last_name).
 TYPE NameList IS VARRAY(20) OF c1%ROWTYPE;
BEGIN
 NULL;
END;
/

Example 5–7 VARRAY of Records

This example uses a RECORD type to specify the element type:

DECLARE
 TYPE GlossEntry IS RECORD (term VARCHAR2(20), meaning VARCHAR2(200));
 TYPE Glossary IS VARRAY(250) OF GlossEntry;
BEGIN
 NULL;
END;
/

Example 5–8 NOT NULL Constraint on Collection Elements

You can also impose a NOT NULL constraint on the element type:

DECLARE
 TYPE EmpList IS TABLE OF employees.employee_id%TYPE NOT NULL;
 my_employees EmpList := EmpList(100, 150, 160, 200);
BEGIN
 my_employees(3) := NULL; -- Assigning NULL raises an exception
END;
/

Initializing and Referencing Collections
Until you initialize it, a nested table or varray is atomically null: the collection itself is
null, not its elements. To initialize a nested table or varray, you use a constructor, a
system-defined function with the same name as the collection type. This function
"constructs" collections from the elements passed to it.

You must explicitly call a constructor for each varray and nested table variable.
(Associative arrays, the third kind of collection, do not use constructors.) Constructor
calls are allowed wherever function calls are allowed.

Example 5–9 Constructor for a Nested Table

The following example initializes a nested table using a constructor, which looks like a
function with the same name as the collection type:

DECLARE
 TYPE Colors IS TABLE OF VARCHAR2(16);
 rainbow Colors;
BEGIN
 rainbow := Colors('Red','Orange','Yellow','Green','Blue','Indigo','Violet');
END;
/

Because a nested table does not have a declared maximum size, you can put as many
elements in the constructor as necessary.

Initializing and Referencing Collections

Using PL/SQL Collections and Records 5-11

Example 5–10 Constructor for a Varray

This example initializes a varray using a constructor, which looks like a function with
the same name as the collection type:

DECLARE
-- In the varray, we put an upper limit on the number of elements.
 TYPE Colors IS VARRAY(10) OF VARCHAR2(16);
 rainbow Colors;
BEGIN
-- Since COLORS is declared as VARRAY(10), we can put up to 10
-- elements in the constructor.
 rainbow := Colors('Red','Orange','Yellow','Green','Blue','Indigo','Violet');
END;
/

Example 5–11 Collection Constructor Including Null Elements

Unless you impose the NOT NULL constraint in the type declaration, you can pass null
elements to a constructor:

DECLARE
 TYPE Colors IS TABLE OF VARCHAR2(20);
 my_colors Colors;
 TYPE ColorsNoNulls IS TABLE OF VARCHAR2(20) NOT NULL;
BEGIN
 my_colors := Colors('Sienna',NULL,'Teal','Umber',NULL);
-- If MY_COLORS was of type ColorsNoNulls, we could not include
-- null values in the constructor.
END;
/

Example 5–12 Combining Collection Declaration and Constructor

You can initialize a collection in its declaration, which is a good programming practice:

DECLARE
 TYPE Colors IS TABLE OF VARCHAR2(20);
 my_colors Colors := Colors('Brown','Gray','Beige');
BEGIN
 NULL;
END;
/

Example 5–13 Empty Varray Constructor

If you call a constructor without arguments, you get an empty but non-null collection:

DECLARE
 TYPE Colors IS VARRAY(100) OF VARCHAR2(20);
 my_colors Colors;
BEGIN
 IF my_colors IS NULL THEN
 dbms_output.put_line('Before initialization, the varray is null.');
-- While the varray is null, we can't check its COUNT attribute.
-- dbms_output.put_line('It has ' || my_colors.COUNT || ' elements.');
 ELSE
 dbms_output.put_line('Before initialization, the varray is not null.');
 END IF;
 my_colors := Colors(); -- initialize empty varray

Initializing and Referencing Collections

5-12 PL/SQL User's Guide and Reference

 IF my_colors IS NULL THEN
 dbms_output.put_line('After initialization, the varray is null.');
 ELSE
 dbms_output.put_line('After initialization, the varray is not null.');
 dbms_output.put_line('It has ' || my_colors.COUNT || ' elements.');
 END IF;
END;
/

In this case, you can call the collection's EXTEND method to add elements later.

Example 5–14 Nested Table Constructor Within a SQL Statement

In this example, you insert several scalar values and a CourseList nested table into
the SOPHOMORES table.

BEGIN
 INSERT INTO sophomores
 VALUES (5035, 'Janet Alvarez', '122 Broad St', 'FT',
 CourseList('Econ 2010', 'Acct 3401', 'Mgmt 3100'));

Example 5–15 Varray Constructor Within a SQL Statement

In this example, you insert a row into database table DEPARTMENT. The varray
constructor ProjectList() provides a value for column PROJECTS.

BEGIN
 INSERT INTO department
 VALUES(60, 'Security', 750400,
 ProjectList('New Badges', 'Track Computers', 'Check Exits'));

Referencing Collection Elements
Every reference to an element includes a collection name and a subscript enclosed in
parentheses. The subscript determines which element is processed. To reference an
element, you specify its subscript using the syntax

collection_name(subscript)

where subscript is an expression that yields an integer in most cases, or a
VARCHAR2 for associative arrays declared with strings as keys.

The allowed subscript ranges are:

■ For nested tables, 1 .. 2**31.

■ For varrays, 1 .. size_limit, where you specify the limit in the declaration.

■ For associative arrays with a numeric key, -2**31 .. 2**31.

■ For associative arrays with a string key, the length of the key and number of
possible values depends on the VARCHAR2 length limit in the type declaration, and
the database character set.

Example 5–16 Referencing a Nested Table Element By Subscript

This example shows how to reference an element in the nested table NAMES:

DECLARE
 TYPE Roster IS TABLE OF VARCHAR2(15);
 names Roster := Roster('J Hamil', 'D Caruso', 'R Singh');

Assigning Collections

Using PL/SQL Collections and Records 5-13

BEGIN
 FOR i IN names.FIRST .. names.LAST
 LOOP
 IF names(i) = 'J Hamil' THEN
 NULL;
 END IF;
 END LOOP;
END;
/

Example 5–17 Passing a Nested Table Element as a Parameter

This example shows that you can reference the elements of a collection in subprogram
calls:

DECLARE
 TYPE Roster IS TABLE OF VARCHAR2(15);
 names Roster := Roster('J Hamil', 'D Piro', 'R Singh');
 i BINARY_INTEGER := 2;
BEGIN
 verify_name(names(i)); -- call procedure
END;
/

Assigning Collections
One collection can be assigned to another by an INSERT, UPDATE, FETCH, or SELECT
statement, an assignment statement, or a subprogram call.

You can assign the value of an expression to a specific element in a collection using the
syntax:

collection_name(subscript) := expression;

where expression yields a value of the type specified for elements in the collection
type definition.

You can use operators such as SET, MULTISET UNION, MULTISET INTERSECT, and
MULTISET EXCEPT to transform nested tables as part of an assignment statement.

Example 5–18 Datatype Compatibility for Collection Assignment

This example shows that collections must have the same datatype for an assignment to
work. Having the same element type is not enough.

DECLARE
 TYPE last_name_typ IS VARRAY(3) OF VARCHAR2(64);
 TYPE surname_typ IS VARRAY(3) OF VARCHAR2(64);
-- These first two variables have the same datatype.
 group1 last_name_typ := last_name_typ('Jones','Wong','Marceau');
 group2 last_name_typ := last_name_typ('Klein','Patsos','Singh');
-- This third variable has a similar declaration, but is not the same type.
 group3 surname_typ := surname_typ('Trevisi','Macleod','Marquez');
BEGIN
-- Allowed because they have the same datatype
 group1 := group2;
-- Not allowed because they have different datatypes
-- group3 := group2;
END;

Assigning Collections

5-14 PL/SQL User's Guide and Reference

/

Example 5–19 Assigning a Null Value to a Nested Table

If you assign an atomically null nested table or varray to a second nested table or
varray, the second collection must be reinitialized:

DECLARE
 TYPE Colors IS TABLE OF VARCHAR2(64);
-- This nested table has some values.
 crayons Colors := Colors('Silver','Gold');
-- This nested table is not initialized ("atomically null").
 empty_set Colors;
BEGIN
-- At first, the initialized variable is not null.
 if crayons IS NOT NULL THEN
 dbms_output.put_line('OK, at first crayons is not null.');
 END IF;

-- Then we assign a null nested table to it.
 crayons := empty_set;

-- Now it is null.
 if crayons IS NULL THEN
 dbms_output.put_line('OK, now crayons has become null.');
 END IF;

-- We must use another constructor to give it some values.
 crayons := Colors('Yellow','Green','Blue');
END;
/

In the same way, assigning the value NULL to a collection makes it atomically null.

Example 5–20 Possible Exceptions for Collection Assignments

Assigning a value to a collection element can cause various exceptions:

■ If the subscript is null or is not convertible to the right datatype, PL/SQL raises
the predefined exception VALUE_ERROR. Usually, the subscript must be an integer.
Associative arrays can also be declared to have VARCHAR2 subscripts.

■ If the subscript refers to an uninitialized element, PL/SQL raises SUBSCRIPT_
BEYOND_COUNT.

■ If the collection is atomically null, PL/SQL raises COLLECTION_IS_NULL.

DECLARE
 TYPE WordList IS TABLE OF VARCHAR2(5);
 words WordList;
BEGIN
 /* Assume execution continues despite the raised exceptions. */
-- Raises COLLECTION_IS_NULL. We haven't used a constructor yet.
-- This exception applies to varrays and nested tables, but not to
-- associative arrays which don't need a constructor.
 words(1) := 10;
-- After using a constructor, we can assign values to the elements.
 words := WordList(10,20,30);
-- Any expression that returns a VARCHAR2(5) is OK.
 words(1) := 'yes';
 words(2) := words(1) || 'no';

Assigning Collections

Using PL/SQL Collections and Records 5-15

-- Raises VALUE_ERROR because the assigned value is too long.
 words(3) := 'longer than 5 characters';
-- Raises VALUE_ERROR because the subscript of a nested table must
-- be an integer.
 words('B') := 'dunno';
-- Raises SUBSCRIPT_BEYOND_COUNT because we only made 3 elements
-- in the constructor. To add new ones, we must call the EXTEND
-- method first.
 words(4) := 'maybe';
END;
/

Example 5–21 Assigning Nested Tables with Set Operators

This example shows some of the ANSI-standard operators that you can apply to
nested tables:

DECLARE
 TYPE nested_typ IS TABLE OF NUMBER;
 nt1 nested_typ := nested_typ(1,2,3);
 nt2 nested_typ := nested_typ(3,2,1);
 nt3 nested_typ := nested_typ(2,3,1,3);
 nt4 nested_typ := nested_typ(1,2,4);
 answer nested_typ;

-- The results might be in a different order than you expect.
-- (Remember, you should not rely on the order of elements in nested tables.)
 PROCEDURE print_nested_table(the_nt nested_typ) IS
 output VARCHAR2(128);
 BEGIN
 IF the_nt IS NULL THEN
 dbms_output.put_line('Results: <NULL>');
 RETURN;
 END IF;
 IF the_nt.COUNT = 0 THEN
 dbms_output.put_line('Results: empty set');
 RETURN;
 END IF;
 FOR i IN the_nt.FIRST .. the_nt.LAST
 LOOP
 output := output || the_nt(i) || ' ';
 END LOOP;
 dbms_output.put_line('Results: ' || output);
 END;
BEGIN
 answer := nt1 MULTISET UNION nt4; -- (1,2,3,1,2,4)
 print_nested_table(answer);
 answer := nt1 MULTISET UNION nt3; -- (1,2,3,2,3,1,3)
 print_nested_table(answer);
 answer := nt1 MULTISET UNION DISTINCT nt3; -- (1,2,3)
 print_nested_table(answer);

 answer := nt2 MULTISET INTERSECT nt3; -- (3,2,1)
 print_nested_table(answer);
 answer := nt2 MULTISET INTERSECT DISTINCT nt3; -- (3,2,1)
 print_nested_table(answer);

 answer := SET(nt3); -- (2,3,1)
 print_nested_table(answer);

Comparing Collections

5-16 PL/SQL User's Guide and Reference

 answer := nt3 MULTISET EXCEPT nt2; -- (3)
 print_nested_table(answer);
 answer := nt3 MULTISET EXCEPT DISTINCT nt2; -- ()
 print_nested_table(answer);

END;
/

Comparing Collections
You can check whether a collection is null, and whether two collections are the same.
Comparisons such as greater than, less than, and so on are not allowed.

This restriction also applies to implicit comparisons. For example, collections cannot
appear in a DISTINCT, GROUP BY, or ORDER BY list.

If you want to do such comparison operations, you must define your own notion of
what it means for collections to be greater than, less than, and so on, and write one or
more functions to examine the collections and their elements and return a true or false
value.

You can apply set operators (CARDINALITY, MEMBER OF, IS A SET, IS EMPTY) to
check certain conditions within a nested table or between two nested tables.

Example 5–22 Checking if a Collection Is Null

Nested tables and varrays can be atomically null, so they can be tested for nullity:

DECLARE
 TYPE Staff IS TABLE OF Employee;
 members Staff;
BEGIN
 -- Condition yields TRUE because we haven't used a constructor.
 IF members IS NULL THEN ...
END;

Example 5–23 Comparing Two Collections

Collections can be compared for equality or inequality. They cannot be ordered,
because there is no "greater than" or "less than" comparison.

DECLARE
 TYPE Colors IS TABLE OF VARCHAR2(64);
 primaries Colors := Colors('Blue','Green','Red');
 rgb Colors := Colors('Red','Green','Blue');
 traffic_light Colors := Colors('Red','Green','Amber');
BEGIN
-- We can use = or !=, but not < or >.
-- Notice that these 2 are equal even though the members are in different order.
 IF primaries = rgb THEN
 dbms_output.put_line('OK, PRIMARIES and RGB have the same members.');
 END IF;
 IF rgb != traffic_light THEN
 dbms_output.put_line('OK, RGB and TRAFFIC_LIGHT have different members.');
 END IF;
END;
/

Using PL/SQL Collections with SQL Statements

Using PL/SQL Collections and Records 5-17

Example 5–24 Comparing Nested Tables with Set Operators

You can test certain properties of a nested table, or compare two nested tables, using
ANSI-standard set operations:

DECLARE
 TYPE nested_typ IS TABLE OF NUMBER;
 nt1 nested_typ := nested_typ(1,2,3);
 nt2 nested_typ := nested_typ(3,2,1);
 nt3 nested_typ := nested_typ(2,3,1,3);
 nt4 nested_typ := nested_typ(1,2,4);
 answer BOOLEAN;
 howmany NUMBER;
 PROCEDURE testify(truth BOOLEAN DEFAULT NULL, quantity NUMBER DEFAULT NULL) IS
 BEGIN
 IF truth IS NOT NULL THEN
 dbms_output.put_line(CASE truth WHEN TRUE THEN 'True' WHEN FALSE THEN
'False' END);
 END IF;
 IF quantity IS NOT NULL THEN
 dbms_output.put_line(quantity);
 END IF;
 END;
BEGIN
 answer := nt1 IN (nt2,nt3,nt4); -- true, nt1 matches nt2
 testify(truth => answer);
 answer := nt1 SUBMULTISET OF nt3; -- true, all elements match
 testify(truth => answer);
 answer := nt1 NOT SUBMULTISET OF nt4; -- also true
 testify(truth => answer);

 howmany := CARDINALITY(nt3); -- number of elements in nt3
 testify(quantity => howmany);
 howmany := CARDINALITY(SET(nt3)); -- number of distinct elements
 testify(quantity => howmany);

 answer := 4 MEMBER OF nt1; -- false, no element matches
 testify(truth => answer);
 answer := nt3 IS A SET; -- false, nt3 has duplicates
 testify(truth => answer);
 answer := nt3 IS NOT A SET; -- true, nt3 has duplicates
 testify(truth => answer);
 answer := nt1 IS EMPTY; -- false, nt1 has some members
 testify(truth => answer);
END;
/

Using PL/SQL Collections with SQL Statements
Collections let you manipulate complex datatypes within PL/SQL. Your program can
compute subscripts to process specific elements in memory, and use SQL to store the
results in database tables.

Example 5–25 Creating a SQL Type Corresponding to a PL/SQL Nested Table

In SQL*Plus, you can create SQL types whose definitions correspond to PL/SQL
nested tables and varrays:

SQL> CREATE TYPE CourseList AS TABLE OF VARCHAR2(64);

Using PL/SQL Collections with SQL Statements

5-18 PL/SQL User's Guide and Reference

You can use these SQL types as columns in database tables:

SQL> CREATE TABLE department (
 2 name VARCHAR2(20),
 3 director VARCHAR2(20),
 4 office VARCHAR2(20),
 5 courses CourseList)
 6 NESTED TABLE courses STORE AS courses_tab;

Each item in column COURSES is a nested table that will store the courses offered by a
given department. The NESTED TABLE clause is required whenever a database table
has a nested table column. The clause identifies the nested table and names a
system-generated store table, in which Oracle stores the nested table data.

Example 5–26 Inserting a Nested Table into a Database Table

Now, you can populate the database table. The table constructor provides values that
all go into the single column COURSES:

BEGIN
 INSERT INTO department
 VALUES('English', 'Lynn Saunders', 'Breakstone Hall 205',
 CourseList('Expository Writing',
 'Film and Literature',
 'Modern Science Fiction',
 'Discursive Writing',
 'Modern English Grammar',
 'Introduction to Shakespeare',
 'Modern Drama',
 'The Short Story',
 'The American Novel'));
END;

Example 5–27 Using PL/SQL Nested Tables with INSERT, UPDATE, DELETE, and
SELECT Statements

You can retrieve all the courses offered by the English department into a PL/SQL
nested table:

CREATE TYPE ColorList AS TABLE OF VARCHAR2(64);
/
CREATE TABLE flowers (name VARCHAR2(20), colors ColorList) NESTED TABLE colors
STORE AS colors_tab;

BEGIN
 INSERT INTO flowers VALUES('Rose', ColorList('Red','Yellow','White'));
 INSERT INTO flowers VALUES('Tulip', ColorList('Red','White','Yellow', 'Blue'));
 INSERT INTO flowers VALUES('Iris', ColorList('White','Purple'));
 COMMIT;
END;
/

DECLARE
-- This type declaration is not needed, because PL/SQL can see the SQL type.
-- TYPE ColorList IS TABLE OF VARCHAR2(64);
-- Declare a variable that can hold a set of colors.
 my_colors ColorList;
-- Declare a record that can hold a row from the table.
-- One of the record fields is a set of colors.
 my_flower flowers%ROWTYPE;

Using PL/SQL Collections with SQL Statements

Using PL/SQL Collections and Records 5-19

 new_colors ColorList;
BEGIN
-- Look up a name and query just the associated colors.
 SELECT colors INTO my_colors FROM flowers WHERE name = 'Rose';
 FOR i IN my_colors.FIRST .. my_colors.LAST
 LOOP
 dbms_output.put_line('Rose color = ' || my_colors(i));
 END LOOP;

-- Look up a name and query the entire row.
 SELECT * INTO my_flower FROM flowers WHERE name = 'Iris';
-- Now COLORS is a field in a record, so we access it with dot notation.
 FOR i IN my_flower.colors.FIRST .. my_flower.colors.LAST
 LOOP
-- Because we have all the table columns in the record, we can refer to NAME also.
 dbms_output.put_line(my_flower.name || ' color = ' || my_flower.colors(i));
 END LOOP;

-- We can replace a set of colors by making a new collection and using it
-- in an UPDATE statement.
 new_colors := ColorList('Red','Yellow','White','Pink');
 UPDATE flowers SET colors = new_colors WHERE name = 'Rose';

-- Or we can modify the original collection and use it in the UPDATE.
-- We'll add a new final element and fill in a value.
 my_flower.colors.EXTEND(1);
 my_flower.colors(my_flower.colors.COUNT) := 'Yellow';
 UPDATE flowers SET colors = my_flower.colors WHERE name = my_flower.name;

-- We can even treat the nested table column like a real table and
-- insert, update, or delete elements.
-- The TABLE operator makes the statement apply to the nested table produced by
the subquery.

 INSERT INTO TABLE(SELECT colors FROM flowers WHERE name = 'Rose')
VALUES('Black');
 DELETE FROM TABLE(SELECT colors FROM flowers WHERE name = 'Rose') WHERE column_
value = 'Yellow';
 UPDATE TABLE(SELECT colors FROM flowers WHERE name = 'Iris')
 SET column_value = 'Indigo' WHERE column_value = 'Purple';

 COMMIT;
END;
/

DROP TABLE flowers;
DROP TYPE ColorList;

Within PL/SQL, you can manipulate the nested table by looping through its elements,
using methods such as TRIM or EXTEND, and updating some or all of the elements.
Afterwards, you can store the updated table in the database again.

Example 5–28 Updating a Nested Table within a Database Table

You can revise the list of courses offered by the English Department:

DECLARE
 new_courses CourseList :=
 CourseList('Expository Writing',
 'Film and Literature',
 'Discursive Writing',

Using PL/SQL Collections with SQL Statements

5-20 PL/SQL User's Guide and Reference

 'Modern English Grammar',
 'Realism and Naturalism',
 'Introduction to Shakespeare',
 'Modern Drama',
 'The Short Story',
 'The American Novel',
 '20th-Century Poetry',
 'Advanced Workshop in Poetry');
BEGIN
 UPDATE department
 SET courses = new_courses WHERE name = 'English';
END;

Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements
This example shows how you can transfer varrays between PL/SQL variables and
SQL tables. You can insert table rows containing varrays, update a row to replace its
varray, and select varrays into PL/SQL variables. You cannot update or delete
individual varray elements directly with SQL; you have to select the varray from the
table, change it in PL/SQL, then update the table to include the new varray.

-- By using a varray, we put an upper limit on the number of elements
-- and ensure they always come back in the same order.
CREATE TYPE RainbowTyp AS VARRAY(7) OF VARCHAR2(64);
/

CREATE TABLE rainbows (language VARCHAR2(64), colors RainbowTyp);

BEGIN
 INSERT INTO rainbows VALUES('English',
RainbowTyp('Red','Orange','Yellow','Green','Blue','Indigo','Violet'));
 INSERT INTO rainbows VALUES('Francais',
RainbowTyp('Rouge','Orange','Jaune','Vert','Bleu','Indigo','Violet'));
 COMMIT;
END;
/

DECLARE
 new_colors RainbowTyp :=
RainbowTyp('Crimson','Orange','Amber','Forest','Azure','Indigo','Violet');
 some_colors RainbowTyp;
BEGIN
 UPDATE rainbows SET colors = new_colors WHERE language = 'English';
 COMMIT;
 SELECT colors INTO some_colors FROM rainbows WHERE language = 'Francais';
 FOR i IN some_colors.FIRST .. some_colors.LAST
 LOOP
 dbms_output.put_line('Color = ' || some_colors(i));
 END LOOP;
END;
/

DROP TABLE rainbows;
DROP TYPE RainbowTyp;

Using Multilevel Collections

Using PL/SQL Collections and Records 5-21

Manipulating Individual Collection Elements with SQL
By default, SQL operations store and retrieve whole collections rather than individual
elements. To manipulate the individual elements of a collection with SQL, use the
TABLE operator. The TABLE operator uses a subquery to extract the varray or nested
table, so that the INSERT, UPDATE, or DELETE statement applies to the nested table
rather than the top-level table.

Example 5–29 Performing INSERT, UPDATE, and DELETE Operations on PL/SQL Nested
Tables

To perform DML operations on a PL/SQL nested table, use the operators TABLE and
CAST. This way, you can do set operations on nested tables using SQL notation,
without actually storing the nested tables in the database.

The operands of CAST are PL/SQL collection variable and a SQL collection type
(created by the CREATE TYPE statement). CAST converts the PL/SQL collection to the
SQL type.

DECLARE
 revised CourseList :=
 CourseList(Course(1002, 'Expository Writing', 3),
 Course(2020, 'Film and Literature', 4),
 Course(4210, '20th-Century Poetry', 4),
 Course(4725, 'Advanced Workshop in Poetry', 5));
 num_changed INTEGER;
BEGIN
 SELECT COUNT(*) INTO num_changed
 FROM TABLE(CAST(revised AS CourseList)) new,
 TABLE(SELECT courses FROM department
 WHERE name = 'English') AS old
 WHERE new.course_no = old.course_no AND
 (new.title != old.title OR new.credits != old.credits);
 dbms_output.put_line(num_changed);
END;

Using Multilevel Collections
In addition to collections of scalar or object types, you can also create collections
whose elements are collections. For example, you can create a nested table of varrays,
a varray of varrays, a varray of nested tables, and so on.

When creating a nested table of nested tables as a column in SQL, check the syntax of
the CREATE TABLE statement to see how to define the storage table.

Here are some examples showing the syntax and possibilities for multilevel
collections.

Example 5–30 Multilevel VARRAY

declare
 type t1 is varray(10) of integer;
 type nt1 is varray(10) of t1; -- multilevel varray type
 va t1 := t1(2,3,5);
-- initialize multilevel varray
 nva nt1 := nt1(va, t1(55,6,73), t1(2,4), va);
 i integer;
 va1 t1;
begin
 -- multilevel access

Using Multilevel Collections

5-22 PL/SQL User's Guide and Reference

 i := nva(2)(3); -- i will get value 73
 dbms_output.put_line('I = ' || i);
 -- add a new varray element to nva
 nva.extend;

-- replace inner varray elements
 nva(5) := t1(56, 32);
 nva(4) := t1(45,43,67,43345);
-- replace an inner integer element
 nva(4)(4) := 1; -- replaces 43345 with 1
-- add a new element to the 4th varray element
-- and store integer 89 into it.
 nva(4).extend;
 nva(4)(5) := 89;
end;
/

Example 5–31 Multilevel Nested Table

declare
 type tb1 is table of varchar2(20);
 type ntb1 is table of tb1; -- table of table elements
 type tv1 is varray(10) of integer;
 type ntb2 is table of tv1; -- table of varray elements

 vtb1 tb1 := tb1('one', 'three');
 vntb1 ntb1 := ntb1(vtb1);
 vntb2 ntb2 := ntb2(tv1(3,5), tv1(5,7,3)); -- table of varray elements
begin
 vntb1.extend;
 vntb1(2) := vntb1(1);
-- delete the first element in vntb1
 vntb1.delete(1);
-- delete the first string from the second table in the nested table
 vntb1(2).delete(1);
end;
/

Example 5–32 Multilevel Associative Array

declare
 type tb1 is table of integer index by binary_integer;
-- the following is index-by table of index-by tables
 type ntb1 is table of tb1 index by binary_integer;
 type va1 is varray(10) of varchar2(20);
-- the following is index-by table of varray elements
 type ntb2 is table of va1 index by binary_integer;

 v1 va1 := va1('hello', 'world');
 v2 ntb1;
 v3 ntb2;
 v4 tb1;
 v5 tb1; -- empty table
begin
 v4(1) := 34;
 v4(2) := 46456;
 v4(456) := 343;
 v2(23) := v4;
 v3(34) := va1(33, 456, 656, 343);

Using Collection Methods

Using PL/SQL Collections and Records 5-23

-- assign an empty table to v2(35) and try again
 v2(35) := v5;
 v2(35)(2) := 78; -- it works now
end;
/

Example 5–33 Multilevel Collections and Bulk SQL

create type t1 is varray(10) of integer;
/
create table tab1 (c1 t1);

insert into tab1 values (t1(2,3,5));
insert into tab1 values (t1(9345, 5634, 432453));

declare
 type t2 is table of t1;
 v2 t2;
begin
 select c1 BULK COLLECT INTO v2 from tab1;
 dbms_output.put_line(v2.count); -- prints 2
end;
/

drop table tab1;
drop type t1;

Using Collection Methods
These collection methods make collections easier to use, and make your applications
easier to maintain:

EXISTS
COUNT
LIMIT
FIRST and LAST
PRIOR and NEXT
EXTEND
TRIM
DELETE

A collection method is a built-in function or procedure that operates on collections
and is called using dot notation.

Collection methods cannot be called from SQL statements.

EXTEND and TRIM cannot be used with associative arrays.

EXISTS, COUNT, LIMIT, FIRST, LAST, PRIOR, and NEXT are functions; EXTEND,
TRIM, and DELETE are procedures.

EXISTS, PRIOR, NEXT, TRIM, EXTEND, and DELETE take parameters corresponding to
collection subscripts, which are usually integers but can also be strings for associative
arrays.

Only EXISTS can be applied to atomically null collections. If you apply another
method to such collections, PL/SQL raises COLLECTION_IS_NULL.

Using Collection Methods

5-24 PL/SQL User's Guide and Reference

Checking If a Collection Element Exists (EXISTS Method)
EXISTS(n) returns TRUE if the nth element in a collection exists. Otherwise,
EXISTS(n) returns FALSE. By combining EXISTS with DELETE, you can work with
sparse nested tables. You can also use EXISTS to avoid referencing a nonexistent
element, which raises an exception. When passed an out-of-range subscript, EXISTS
returns FALSE instead of raising SUBSCRIPT_OUTSIDE_LIMIT.

DECLARE
 TYPE NumList IS TABLE OF INTEGER;
 n NumList := NumList(1,3,5,7);
BEGIN
 n.DELETE(2); -- Delete the second element
 IF n.EXISTS(1) THEN
 dbms_output.put_line('OK, element #1 exists.');
 END IF;
 IF n.EXISTS(2) = FALSE THEN
 dbms_output.put_line('OK, element #2 has been deleted.');
 END IF;
 IF n.EXISTS(99) = FALSE THEN
 dbms_output.put_line('OK, element #99 does not exist at all.');
 END IF;
END;
/

Counting the Elements in a Collection (COUNT Method)
COUNT returns the number of elements that a collection currently contains:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 n NumList := NumList(2,4,6,8); -- Collection starts with 4 elements.
BEGIN
 dbms_output.put_line('There are ' || n.COUNT || ' elements in N.');
 n.EXTEND(3); -- Add 3 new elements at the end.
 dbms_output.put_line('Now there are ' || n.COUNT || ' elements in N.');
 n := NumList(86,99); -- Assign a completely new value with 2 elements.
 dbms_output.put_line('Now there are ' || n.COUNT || ' elements in N.');
 n.TRIM(2); -- Remove the last 2 elements, leaving none.
 dbms_output.put_line('Now there are ' || n.COUNT || ' elements in N.');
END;
/

COUNT is useful because the current size of a collection is not always known. For
example, you can fetch a column of Oracle data into a nested table, where the number
of elements depends on the size of the result set.

For varrays, COUNT always equals LAST. You can increase or decrease the size of a
varray using the EXTEND and TRIM methods, so the value of COUNT can change, up to
the value of the LIMIT method.

For nested tables, COUNT normally equals LAST. But, if you delete elements from the
middle of a nested table, COUNT becomes smaller than LAST. When tallying elements,
COUNT ignores deleted elements.

Checking the Maximum Size of a Collection (LIMIT Method)
For nested tables and associative arrays, which have no maximum size, LIMIT returns
NULL. For varrays, LIMIT returns the maximum number of elements that a varray can

Using Collection Methods

Using PL/SQL Collections and Records 5-25

contain/ You specify this limit in the type definition, and can change it later with the
TRIM and EXTEND methods. For instance, if the maximum size of varray PROJECTS is
25 elements, the following IF condition is true:

DECLARE
 TYPE Colors IS VARRAY(7) OF VARCHAR2(64);
 c Colors := Colors('Gold','Silver');
BEGIN
 dbms_output.put_line('C has ' || c.COUNT || ' elements now.');
 dbms_output.put_line('C''s type can hold a maximum of ' || c.LIMIT || '
elements.');
 dbms_output.put_line('The maximum number you can use with C.EXTEND() is ' ||
(c.LIMIT - c.COUNT));
END;
/

Finding the First or Last Collection Element (FIRST and LAST Methods)
FIRST and LAST return the first and last (smallest and largest) index numbers in a
collection that uses integer subscripts.

For an associative array with VARCHAR2 key values, the lowest and highest key values
are returned. By default, the order is based on the binary values of the characters in the
string. If the NLS_COMP initialization parameter is set to ANSI, the order is based on
the locale-specific sort order specified by the NLS_SORT initialization parameter.

If the collection is empty, FIRST and LAST return NULL.

If the collection contains only one element, FIRST and LAST return the same index
value.

The following example shows how to use FIRST and LAST to iterate through the
elements in a collection that has consecutive subscripts:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 n NumList := NumList(1,3,5,7);
 counter INTEGER;
BEGIN
 dbms_output.put_line('N''s first subscript is ' || n.FIRST);
 dbms_output.put_line('N''s last subscript is ' || n.LAST);

-- When the subscripts are consecutive starting at 1, it's simple to loop through
them.
 FOR i IN n.FIRST .. n.LAST
 LOOP
 dbms_output.put_line('Element #' || i || ' = ' || n(i));
 END LOOP;

 n.DELETE(2); -- Delete second element.
-- When the subscripts have gaps or the collection might be uninitialized,
-- the loop logic is more extensive. We start at the first element, and
-- keep looking for the next element until there are no more.
 IF n IS NOT NULL THEN
 counter := n.FIRST;
 WHILE counter IS NOT NULL
 LOOP
 dbms_output.put_line('Element #' || counter || ' = ' || n(counter));
 counter := n.NEXT(counter);
 END LOOP;

Using Collection Methods

5-26 PL/SQL User's Guide and Reference

 ELSE
 dbms_output.put_line('N is null, nothing to do.');
 END IF;
END;
/

For varrays, FIRST always returns 1 and LAST always equals COUNT.

For nested tables, normally FIRST returns 1 and LAST equals COUNT. But if you delete
elements from the beginning of a nested table, FIRST returns a number larger than 1.
If you delete elements from the middle of a nested table, LAST becomes larger than
COUNT.

When scanning elements, FIRST and LAST ignore deleted elements.

Looping Through Collection Elements (PRIOR and NEXT Methods)
PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n)
returns the index number that succeeds index n. If n has no predecessor, PRIOR(n)
returns NULL. If n has no successor, NEXT(n) returns NULL.

For associative arrays with VARCHAR2 keys, these methods return the appropriate key
value; ordering is based on the binary values of the characters in the string, unless the
NLS_COMP initialization parameter is set to ANSI, in which case the ordering is based
on the locale-specific sort order specified by the NLS_SORT initialization parameter.

These methods are more reliable than looping through a fixed set of subscript values,
because elements might be inserted or deleted from the collection during the loop.
This is especially true for associative arrays, where the subscripts might not be in
consecutive order and so the sequence of subscripts might be (1,2,4,8,16) or
('A','E','I','O','U').

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 n NumList := NumList(1966,1971,1984,1989,1999);
BEGIN
 dbms_output.put_line('The element after #2 is #' || n.NEXT(2));
 dbms_output.put_line('The element before #2 is #' || n.PRIOR(2));
 n.DELETE(3); -- Delete an element to show how NEXT can handle gaps.
 dbms_output.put_line('Now the element after #2 is #' || n.NEXT(2));
 IF n.PRIOR(n.FIRST) IS NULL THEN
 dbms_output.put_line('Can''t get PRIOR of the first element or NEXT of the
last.');
 END IF;
END;
/

You can use PRIOR or NEXT to traverse collections indexed by any series of subscripts.
The following example uses NEXT to traverse a nested table from which some elements
have been deleted:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 n NumList := NumList(1,3,5,7);
 counter INTEGER;
BEGIN
 n.DELETE(2); -- Delete second element.
-- When the subscripts have gaps, the loop logic is more extensive. We start at
the
-- first element, and keep looking for the next element until there are no more.
 counter := n.FIRST;

Using Collection Methods

Using PL/SQL Collections and Records 5-27

 WHILE counter IS NOT NULL
 LOOP
 dbms_output.put_line('Counting up: Element #' || counter || ' = ' ||
n(counter));
 counter := n.NEXT(counter);
 END LOOP;

-- Run the same loop in reverse order.
 counter := n.LAST;
 WHILE counter IS NOT NULL
 LOOP
 dbms_output.put_line('Counting down: Element #' || counter || ' = ' ||
n(counter));
 counter := n.PRIOR(counter);
 END LOOP;
END;
/

When traversing elements, PRIOR and NEXT skip over deleted elements.

Increasing the Size of a Collection (EXTEND Method)
To increase the size of a nested table or varray, use EXTEND.

You cannot use EXTEND with index-by tables.

This procedure has three forms:

■ EXTEND appends one null element to a collection.

■ EXTEND(n) appends n null elements to a collection.

■ EXTEND(n,i) appends n copies of the ith element to a collection.

You cannot use EXTEND to add elements to an uninitialized.

If you impose the NOT NULL constraint on a TABLE or VARRAY type, you cannot apply
the first two forms of EXTEND to collections of that type.

EXTEND operates on the internal size of a collection, which includes any deleted
elements. If EXTEND encounters deleted elements, it includes them in its tally. PL/SQL
keeps placeholders for deleted elements so that you can re-create them by assigning
new values.

DECLARE
 TYPE NumList IS TABLE OF INTEGER;
 n NumList := NumList(2,4,6,8);
 x NumList := NumList(1,3);
 PROCEDURE print_numlist(the_list NumList) IS
 output VARCHAR2(128);
 BEGIN
 FOR i IN the_list.FIRST .. the_list.LAST
 LOOP
 output := output || NVL(TO_CHAR(the_list(i)),'NULL') || ' ';
 END LOOP;
 dbms_output.put_line(output);
 END;
BEGIN
 dbms_output.put_line('At first, N has ' || n.COUNT || ' elements.');
 n.EXTEND(5); -- Add 5 elements at the end.
 dbms_output.put_line('Now N has ' || n.COUNT || ' elements.');
-- Elements 5, 6, 7, 8, and 9 are all NULL.
 print_numlist(n);

Using Collection Methods

5-28 PL/SQL User's Guide and Reference

 dbms_output.put_line('At first, X has ' || x.COUNT || ' elements.');
 x.EXTEND(4,2); -- Add 4 elements at the end.
 dbms_output.put_line('Now X has ' || x.COUNT || ' elements.');
-- Elements 3, 4, 5, and 6 are copies of element #2.
 print_numlist(x);
END;
/

When it includes deleted elements, the internal size of a nested table differs from the
values returned by COUNT and LAST. For instance, if you initialize a nested table with
five elements, then delete elements 2 and 5, the internal size is 5, COUNT returns 3, and
LAST returns 4. All deleted elements, regardless of position, are treated alike.

Decreasing the Size of a Collection (TRIM Method)
This procedure has two forms:

■ TRIM removes one element from the end of a collection.

■ TRIM(n) removes n elements from the end of a collection.

For example, this statement removes the last three elements from nested table
courses:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 n NumList := NumList(1,2,3,5,7,11);
 PROCEDURE print_numlist(the_list NumList) IS
 output VARCHAR2(128);
 BEGIN
 IF n.COUNT = 0 THEN
 dbms_output.put_line('No elements in collection.');
 ELSE
 FOR i IN the_list.FIRST .. the_list.LAST
 LOOP
 output := output || NVL(TO_CHAR(the_list(i)),'NULL') || ' ';
 END LOOP;
 dbms_output.put_line(output);
 END IF;
 END;
BEGIN
 print_numlist(n);
 n.TRIM(2); -- Remove last 2 elements.
 print_numlist(n);
 n.TRIM; -- Remove last element.
 print_numlist(n);
 n.TRIM(n.COUNT); -- Remove all remaining elements.
 print_numlist(n);

-- If too many elements are specified, TRIM raises the exception SUBSCRIPT_BEYOND_
COUNT.
 BEGIN
 n := NumList(1,2,3);
 n.TRIM(100);
 EXCEPTION
 WHEN SUBSCRIPT_BEYOND_COUNT THEN
 dbms_output.put_line('I guess there weren''t 100 elements that could
be trimmed.');
 END;

Using Collection Methods

Using PL/SQL Collections and Records 5-29

-- When elements are removed by DELETE, placeholders are left behind. TRIM counts
these
-- placeholders as it removes elements from the end.

 n := NumList(1,2,3,4);
 n.DELETE(3); -- delete element 3
-- At this point, n contains elements (1,2,4).
-- TRIMming the last 2 elements removes the 4 and the placeholder, not 4 and 2.
 n.TRIM(2);
 print_numlist(n);
END;
/
END;
/

If n is too large, TRIM(n) raises SUBSCRIPT_BEYOND_COUNT.

TRIM operates on the internal size of a collection. If TRIM encounters deleted elements,
it includes them in its tally. Consider the following example:

DECLARE
 TYPE CourseList IS TABLE OF VARCHAR2(10);
 courses CourseList;
BEGIN
 courses := CourseList('Biol 4412', 'Psyc 3112', 'Anth 3001');
 courses.DELETE(courses.LAST); -- delete element 3
 /* At this point, COUNT equals 2, the number of valid
 elements remaining. So, you might expect the next
 statement to empty the nested table by trimming
 elements 1 and 2. Instead, it trims valid element 2
 and deleted element 3 because TRIM includes deleted
 elements in its tally. */
 courses.TRIM(courses.COUNT);
 dbms_output.put_line(courses(1)); -- prints 'Biol 4412'
END;
/

In general, do not depend on the interaction between TRIM and DELETE. It is better to
treat nested tables like fixed-size arrays and use only DELETE, or to treat them like
stacks and use only TRIM and EXTEND.

Because PL/SQL does not keep placeholders for trimmed elements, you cannot
replace a trimmed element simply by assigning it a new value.

Deleting Collection Elements (DELETE Method)
This procedure has various forms:

■ DELETE removes all elements from a collection.

■ DELETE(n) removes the nth element from an associative array with a numeric
key or a nested table. If the associative array has a string key, the element
corresponding to the key value is deleted. If n is null, DELETE(n) does nothing.

■ DELETE(m,n) removes all elements in the range m..n from an associative array
or nested table. If m is larger than n or if m or n is null, DELETE(m,n) does
nothing.

For example:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;

Avoiding Collection Exceptions

5-30 PL/SQL User's Guide and Reference

 n NumList := NumList(10,20,30,40,50,60,70,80,90,100);
 TYPE NickList IS TABLE OF VARCHAR2(64) INDEX BY VARCHAR2(32);
 nicknames NickList;
BEGIN
 n.DELETE(2); -- deletes element 2
 n.DELETE(3,6); -- deletes elements 3 through 6
 n.DELETE(7,7); -- deletes element 7
 n.DELETE(6,3); -- does nothing since 6 > 3

 n.DELETE; -- deletes all elements

 nicknames('Bob') := 'Robert';
 nicknames('Buffy') := 'Esmerelda';
 nicknames('Chip') := 'Charles';
 nicknames('Dan') := 'Daniel';
 nicknames('Fluffy') := 'Ernestina';
 nicknames('Rob') := 'Robert';

 nicknames.DELETE('Chip'); -- deletes element denoted by this key
 nicknames.DELETE('Buffy','Fluffy'); -- deletes elements with keys in this
alphabetic range
END;
/

Varrays always have consecutive subscripts, so you cannot delete individual elements
except from the end (by using the TRIM method).

If an element to be deleted does not exist, DELETE simply skips it; no exception is
raised. PL/SQL keeps placeholders for deleted elements, so you can replace a deleted
element by assigning it a new value.

DELETE lets you maintain sparse nested tables. You can store sparse nested tables in
the database, just like any other nested tables.

The amount of memory allocated to a nested table can increase or decrease
dynamically. As you delete elements, memory is freed page by page. If you delete the
entire table, all the memory is freed.

Applying Methods to Collection Parameters
Within a subprogram, a collection parameter assumes the properties of the argument
bound to it. You can apply the built-in collection methods (FIRST, LAST, COUNT, and
so on) to such parameters. You can create general-purpose subprograms that take
collection parameters and iterate through their elements, add or delete elements, and
so on.

Note: For varray parameters, the value of LIMIT is always derived from the
parameter type definition, regardless of the parameter mode.

Avoiding Collection Exceptions
In most cases, if you reference a nonexistent collection element, PL/SQL raises a
predefined exception. Consider the following example:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 nums NumList; -- atomically null
BEGIN
 /* Assume execution continues despite the raised exceptions. */
 nums(1) := 1; -- raises COLLECTION_IS_NULL (1)

Avoiding Collection Exceptions

Using PL/SQL Collections and Records 5-31

 nums := NumList(1,2); -- initialize nested table
 nums(NULL) := 3; -- raises VALUE_ERROR (2)
 nums(0) := 3; -- raises SUBSCRIPT_OUTSIDE_LIMIT (3)
 nums(3) := 3; -- raises SUBSCRIPT_BEYOND_COUNT (4)
 nums.DELETE(1); -- delete element 1
 IF nums(1) = 1 THEN NULL; END IF; -- raises NO_DATA_FOUND (5)
END;
/

In the first case, the nested table is atomically null. In the second case, the subscript is
null. In the third case, the subscript is outside the allowed range. In the fourth case, the
subscript exceeds the number of elements in the table. In the fifth case, the subscript
designates a deleted element.

The following list shows when a given exception is raised:

In some cases, you can pass invalid subscripts to a method without raising an
exception. For instance, when you pass a null subscript to procedure DELETE, it does
nothing. You can replace deleted elements by assigning values to them, without
raising NO_DATA_FOUND:

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 nums NumList := NumList(10,20,30); -- initialize table
BEGIN
 nums.DELETE(-1); -- does not raise SUBSCRIPT_OUTSIDE_LIMIT
 nums.DELETE(3); -- delete 3rd element
 dbms_output.put_line(nums.COUNT); -- prints 2
 nums(3) := 30; -- allowed; does not raise NO_DATA_FOUND
 dbms_output.put_line(nums.COUNT); -- prints 3
END;
/

Packaged collection types and local collection types are never compatible. For
example, suppose you want to call the following packaged procedure:

CREATE PACKAGE pkg AS
 TYPE NumList IS TABLE OF NUMBER;
 PROCEDURE print_numlist (nums NumList);
END pkg;
/

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 n1 pkg.NumList := pkg.NumList(2,4); -- Type from the package.
 n2 NumList := NumList(6,8); -- Local type.

Collection Exception Raised when...

COLLECTION_IS_NULL you try to operate on an atomically null collection.

NO_DATA_FOUND a subscript designates an element that was deleted, or a
nonexistent element of an associative array.

SUBSCRIPT_BEYOND_COUNT a subscript exceeds the number of elements in a
collection.

SUBSCRIPT_OUTSIDE_LIMIT a subscript is outside the allowed range.

VALUE_ERROR a subscript is null or not convertible to the key type. This
exception might occur if the key is defined as a PLS_
INTEGER range, and the subscript is outside this range.

What Is a PL/SQL Record?

5-32 PL/SQL User's Guide and Reference

BEGIN
 pkg.print_numlist(n1);
-- The packaged procedure can't accept a value of the local type.
 pkg.print_numlist(n2); -- Causes a compilation error.
END;
/

DROP PACKAGE pkg;

The second procedure call fails, because the packaged and local VARRAY types are
incompatible despite their identical definitions.

What Is a PL/SQL Record?
A record is a group of related data items stored in fields, each with its own name and
datatype. You can think of a record as a variable that can hold a table row, or some
columns from a table row. The fields correspond to table columns.

The %ROWTYPE attribute lets you declare a record that represents a row in a database
table, without listing all the columns. Your code keeps working even after columns are
added to the table. If you want to represent a subset of columns in a table, or columns
from different tables, you can define a view or declare a cursor to select the right
columns and do any necessary joins, and then apply %ROWTYPE to the view or cursor.

Defining and Declaring Records
To create records, you define a RECORD type, then declare records of that type. You can
also create or find a table, view, or PL/SQL cursor with the values you want, and use
the %ROWTYPE attribute to create a matching record.

You can define RECORD types in the declarative part of any PL/SQL block,
subprogram, or package. When you define your own RECORD type, you can specify a
NOT NULL constraint on fields, or give them default values.

DECLARE
-- Declare a record type with 3 fields.
 TYPE rec1_t IS RECORD (field1 VARCHAR2(16), field2 NUMBER, field3 DATE);
-- For any fields declared NOT NULL, we must supply a default value.
 TYPE rec2_t IS RECORD (id INTEGER NOT NULL := -1, name VARCHAR2(64) NOT NULL :=
'[anonymous]');

-- Declare record variables of the types declared above.
 rec1 rec1_t;
 rec2 rec2_t;

-- Declare a record variable that can hold a row from the EMPLOYEES table.
-- The fields of the record automatically match the names and types of the
columns.
-- Don't need a TYPE declaration in this case.
 rec3 employees%ROWTYPE;

-- Or we can mix fields that are table columns with user-defined fields.
 TYPE rec4_t IS RECORD (first_name employees.first_name%TYPE, last_name
employees.last_name%TYPE, rating NUMBER);
 rec4 rec4_t;

BEGIN
-- Read and write fields using dot notation
 rec1.field1 := 'Yesterday';

Defining and Declaring Records

Using PL/SQL Collections and Records 5-33

 rec1.field2 := 65;
 rec1.field3 := TRUNC(SYSDATE-1);

-- We didn't fill in the NAME field, so it takes the default value declared above.
 dbms_output.put_line(rec2.name);
END;
/

To store a record in the database, you can specify it in an INSERT or UPDATE
statement, if its fields match the columns in the table:

...

You can use %TYPE to specify a field type corresponding to a table column type. Your
code keeps working even if the column type is changed (for example, to increase the
length of a VARCHAR2 or the precision of a NUMBER). The following example defines
RECORD types to hold information about a department:

DECLARE
-- Best: use %ROWTYPE instead of specifying each column.
-- Using <cursor>%ROWTYPE instead of <table>%ROWTYPE since we only want some
columns.
-- Declaring the cursor doesn't run the query, so no performance hit.
 CURSOR c1 IS SELECT department_id, department_name, location_id FROM
departments;
 rec1 c1%ROWTYPE;

-- Use <column>%TYPE in field declarations to avoid problems if the column types
change.
 TYPE DeptRec2 IS RECORD (dept_id departments.department_id%TYPE, dept_name
departments.department_name%TYPE, dept_loc departments.location_id%TYPE);
 rec2 DeptRec2;

-- Final technique, writing out each field name and specifying the type directly,
is
-- clumsy and unmaintainable for working with table data. Use only for all-PL/SQL
code.
 TYPE DeptRec3 IS RECORD (dept_id NUMBER, dept_name VARCHAR2(14), dept_loc
VARCHAR2(13));
 rec3 DeptRec3;
BEGIN
 NULL;
END;
/

PL/SQL lets you define records that contain objects, collections, and other records
(called nested records). However, records cannot be attributes of object types.

Using Records as Procedure Parameters and Function Return Values
Records are easy to process using stored procedures because you can pass just one
parameter, instead of a separate parameter for each field. For example, you might fetch
a table row from the EMPLOYEES table into a record, then pass that row as a parameter
to a function that computed that employee's vacation allowance or some other abstract
value. The function could access all the information about that employee by referring
to the fields in the record.

The next example shows how to return a record from a function. To make the record
type visible across multiple stored functions and stored procedures, declare the record
type in a package specification.

Assigning Values to Records

5-34 PL/SQL User's Guide and Reference

DECLARE
 TYPE EmpRec IS RECORD (
 emp_id NUMBER(4)
 last_name VARCHAR2(10),
 dept_num NUMBER(2),
 job_title VARCHAR2(9),
 salary NUMBER(7,2));
 FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRec IS ...
BEGIN
 NULL;
END;
/

Like scalar variables, user-defined records can be declared as the formal parameters of
procedures and functions:

DECLARE
 TYPE EmpRec IS RECORD (
 emp_id emp.empno%TYPE,
 last_name VARCHAR2(10),
 job_title VARCHAR2(9),
 salary NUMBER(7,2));
 ...
 PROCEDURE raise_salary (emp_info EmpRec);
BEGIN
 ...
END;
/

Assigning Values to Records
To set all the fields in a record to default values, assign to it an uninitialized record of
the same type:

DECLARE
 TYPE RecordTyp IS RECORD (field1 NUMBER, field2 VARCHAR2(32) DEFAULT
'something');
 rec1 RecordTyp;
 rec2 RecordTyp;
BEGIN
-- At first, rec1 has the values we assign.
 rec1.field1 := 100; rec1.field2 := 'something else';
-- Assigning an empty record to rec1 resets fields to their default values.
-- Field1 is NULL and field2 is 'something' (because of the DEFAULT clause above).
 rec1 := rec2;
 dbms_output.put_line('Field1 = ' || NVL(TO_CHAR(rec1.field1),'<NULL>') || ',
field2 = ' || rec1.field2);
END;
/

You can assign a value to a field in a record using an assignment statement with dot
notation:

emp_info.last_name := 'Fields';

Instead of assigning values separately to each field in a record, you can assign values
to all fields at once.

You can assign one user-defined record to another if they have the same datatype.
Having fields that match exactly is not enough. Consider the following example:

Assigning Values to Records

Using PL/SQL Collections and Records 5-35

DECLARE
-- Two identical type declarations.
 TYPE DeptRec1 IS RECORD (dept_num NUMBER(2), dept_name VARCHAR2(14));
 TYPE DeptRec2 IS RECORD (dept_num NUMBER(2), dept_name VARCHAR2(14));
 dept1_info DeptRec1;
 dept2_info DeptRec2;
 dept3_info DeptRec2;
BEGIN
-- Not allowed; different datatypes, even though fields are the same.
-- dept1_info := dept2_info;
-- This assignment is OK because the records have the same type.
 dept2_info := dept3_info;
END;
/

You can assign a %ROWTYPE record to a user-defined record if their fields match in
number and order, and corresponding fields have the same datatypes:

DECLARE
 TYPE RecordTyp IS RECORD (last employees.last_name%TYPE, id employees.employee_
id%TYPE);
 CURSOR c1 IS SELECT last_name, employee_id FROM employees;

-- Rec1 and rec2 have different types. But because rec2 is based on a %ROWTYPE, we
can
-- assign is to rec1 as long as they have the right number of fields and the
fields
-- have the right datatypes.
 rec1 RecordTyp;
 rec2 c1%ROWTYPE;
BEGIN
 SELECT last_name, employee_id INTO rec2 FROM employees WHERE ROWNUM < 2;
 rec1 := rec2;
 dbms_output.put_line('Employee #' || rec1.id || ' = ' || rec1.last);
END;
/

You can also use the SELECT or FETCH statement to fetch column values into a record.
The columns in the select-list must appear in the same order as the fields in your
record.

DECLARE
 TYPE RecordTyp IS RECORD (last employees.last_name%TYPE, id employees.employee_
id%TYPE);
 rec1 RecordTyp;
BEGIN
 SELECT last_name, employee_id INTO rec1 FROM employees WHERE ROWNUM < 2;
 dbms_output.put_line('Employee #' || rec1.id || ' = ' || rec1.last);
END;
/

You cannot assign a list of values to a record using an assignment statement. There is
no constructor-like notation for records.

Comparing Records
Records cannot be tested for nullity, or compared for equality, or inequality.

Assigning Values to Records

5-36 PL/SQL User's Guide and Reference

If you want to make such comparisons, write your own function that accepts two
records as parameters and does the appropriate checks or comparisons on the
corresponding fields.

Inserting PL/SQL Records into the Database
A PL/SQL-only extension of the INSERT statement lets you insert records into
database rows, using a single variable of type RECORD or %ROWTYPE in the VALUES
clause instead of a list of fields. That makes your code more readable and
maintainable.

If you issue the INSERT through the FORALL statement, you can insert values from an
entire collection of records.

The number of fields in the record must equal the number of columns listed in the
INTO clause, and corresponding fields and columns must have compatible datatypes.
To make sure the record is compatible with the table, you might find it most
convenient to declare the variable as the type table_name%ROWTYPE.

Example 5–34 Inserting a PL/SQL Record Using %ROWTYPE

This example declares a record variable using a %ROWTYPE qualifier. You can insert
this variable without specifying a column list. The %ROWTYPE declaration ensures that
the record attributes have exactly the same names and types as the table columns.

DECLARE
 dept_info dept%ROWTYPE;
BEGIN
-- deptno, dname, and loc are the table columns.
-- The record picks up these names from the %ROWTYPE.
 dept_info.deptno := 70;
 dept_info.dname := 'PERSONNEL';
 dept_info.loc := 'DALLAS';
-- Using the %ROWTYPE means we can leave out the column list
-- (deptno, dname, loc) from the INSERT statement.
 INSERT INTO dept VALUES dept_info;
END;
/

Updating the Database with PL/SQL Record Values
A PL/SQL-only extension of the UPDATE statement lets you update database rows
using a single variable of type RECORD or %ROWTYPE on the right side of the SET
clause, instead of a list of fields.

If you issue the UPDATE through the FORALL statement, you can update a set of rows
using values from an entire collection of records.

Also with an UPDATE statement, you can specify a record in the RETURNING clause to
retrieve new values into a record. If you issue the UPDATE through the FORALL
statement, you can retrieve new values from a set of updated rows into a collection of
records.

The number of fields in the record must equal the number of columns listed in the SET
clause, and corresponding fields and columns must have compatible datatypes.

Example 5–35 Updating a Row Using a Record

You can use the keyword ROW to represent an entire row:

Assigning Values to Records

Using PL/SQL Collections and Records 5-37

DECLARE
 dept_info dept%ROWTYPE;
BEGIN
 dept_info.deptno := 30;
 dept_info.dname := 'MARKETING';
 dept_info.loc := 'ATLANTA';
-- The row will have values for the filled-in columns, and null
-- for any other columns.
 UPDATE dept SET ROW = dept_info WHERE deptno = 30;
END;
/

The keyword ROW is allowed only on the left side of a SET clause.

The argument to SET ROW must be a real PL/SQL record, not a subquery that returns
a single row.

The record can also contain collections or objects.

Example 5–36 Using the RETURNING Clause with a Record

The INSERT, UPDATE, and DELETE statements can include a RETURNING clause,
which returns column values from the affected row into a PL/SQL record variable.
This eliminates the need to SELECT the row after an insert or update, or before a
delete.

By default, you can use this clause only when operating on exactly one row. When you
use bulk SQL, you can use the form RETURNING BULK COLLECT INTO to store the
results in one or more collections.

The following example updates the salary of an employee and retrieves the employee's
name, job title, and new salary into a record variable:

DECLARE
 TYPE EmpRec IS RECORD (last_name employees.last_name%TYPE, salary
employees.salary%TYPE);
 emp_info EmpRec;
 emp_id NUMBER := 100;
BEGIN
 UPDATE employees SET salary = salary * 1.1 WHERE employee_id = emp_id
 RETURNING last_name, salary INTO emp_info;
 dbms_output.put_line('Just gave a raise to ' || emp_info.last_name ||
 ', who now makes ' || emp_info.salary);
 ROLLBACK;
END;
/

Restrictions on Record Inserts/Updates
Currently, the following restrictions apply to record inserts/updates:

■ Record variables are allowed only in the following places:

■ On the right side of the SET clause in an UPDATE statement

■ In the VALUES clause of an INSERT statement

■ In the INTO subclause of a RETURNING clause

Record variables are not allowed in a SELECT list, WHERE clause, GROUP BY clause,
or ORDER BY clause.

Assigning Values to Records

5-38 PL/SQL User's Guide and Reference

■ The keyword ROW is allowed only on the left side of a SET clause. Also, you cannot
use ROW with a subquery.

■ In an UPDATE statement, only one SET clause is allowed if ROW is used.

■ If the VALUES clause of an INSERT statement contains a record variable, no other
variable or value is allowed in the clause.

■ If the INTO subclause of a RETURNING clause contains a record variable, no other
variable or value is allowed in the subclause.

■ The following are not supported:

■ Nested record types

■ Functions that return a record

■ Record inserts/updates using the EXECUTE IMMEDIATE statement.

Querying Data into Collections of Records
You can use the BULK COLLECT clause with a SELECT INTO or FETCH statement to
retrieve a set of rows into a collection of records.

DECLARE
 TYPE EmployeeSet IS TABLE OF employees%ROWTYPE;
 underpaid EmployeeSet; -- Holds set of rows from EMPLOYEES table.

 CURSOR c1 IS SELECT first_name, last_name FROM employees;
 TYPE NameSet IS TABLE OF c1%ROWTYPE;
 some_names NameSet; -- Holds set of partial rows from EMPLOYEES table.

BEGIN
-- With one query, we bring all the relevant data into the collection of records.
 SELECT * BULK COLLECT INTO underpaid FROM employees
 WHERE salary < 2500 ORDER BY salary DESC;

-- Now we can process the data by examining the collection, or passing it to
-- a separate procedure, instead of writing a loop to FETCH each row.
 dbms_output.put_line(underpaid.COUNT || ' people make less than 2500.');
 FOR i IN underpaid.FIRST .. underpaid.LAST
 LOOP
 dbms_output.put_line(underpaid(i).last_name || ' makes ' ||
underpaid(i).salary);
 END LOOP;

-- We can also bring in just some of the table columns.
-- Here we get the first and last names of 10 arbitrary employees.
 SELECT first_name, last_name BULK COLLECT INTO some_names FROM employees
 WHERE ROWNUM < 11;
 FOR i IN some_names.FIRST .. some_names.LAST
 LOOP
 dbms_output.put_line('Employee = ' || some_names(i).first_name || ' ' ||
some_names(i).last_name);
 END LOOP;
END;
/

Performing SQL Operations from PL/SQL 6-1

6
Performing SQL Operations from PL/SQL

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find
information upon it. —Samuel Johnson

This chapter shows how PL/SQL supports the SQL commands, functions, and
operators that let you manipulate Oracle data.

This chapter contains these topics:

■ Overview of SQL Support in PL/SQL on page 6-1

■ Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE) on
page 6-5

■ Issuing Queries from PL/SQL on page 6-7

■ Querying Data with PL/SQL on page 6-9

■ Querying Data with PL/SQL: Explicit Cursor FOR Loops on page 6-9

■ Using Cursor Variables (REF CURSORs) on page 6-19

■ Using Cursor Expressions on page 6-27

■ Overview of Transaction Processing in PL/SQL on page 6-29

■ Doing Independent Units of Work with Autonomous Transactions on page 6-35

Overview of SQL Support in PL/SQL
By extending SQL, PL/SQL offers a unique combination of power and ease of use. You
can manipulate Oracle data flexibly and safely because PL/SQL fully supports all SQL
data manipulation statements (except EXPLAIN PLAN), transaction control statements,
functions, pseudocolumns, and operators. PL/SQL also supports dynamic SQL, which
enables you to execute SQL data definition, data control, and session control
statements dynamically. In addition, PL/SQL conforms to the current ANSI/ISO SQL
standard.

Data Manipulation
To manipulate Oracle data, you use the INSERT, UPDATE, DELETE, SELECT, and LOCK
TABLE commands. INSERT adds new rows of data to database tables; UPDATE
modifies rows; DELETE removes unwanted rows; SELECT retrieves rows that meet
your search criteria; and LOCK TABLE temporarily limits access to a table.

Overview of SQL Support in PL/SQL

6-2 PL/SQL User's Guide and Reference

Transaction Control
Oracle is transaction oriented; that is, Oracle uses transactions to ensure data integrity.
A transaction is a series of SQL data manipulation statements that does a logical unit of
work. For example, two UPDATE statements might credit one bank account and debit
another. It is important not to allow one operation to succeed while the other fails.

At the end of a transaction that makes database changes, Oracle makes all the changes
permanent or undoes them all. If your program fails in the middle of a transaction,
Oracle detects the error and rolls back the transaction, restoring the database to its
former state.

You use the COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION commands to
control transactions. COMMIT makes permanent any database changes made during
the current transaction. ROLLBACK ends the current transaction and undoes any
changes made since the transaction began. SAVEPOINT marks the current point in the
processing of a transaction. Used with ROLLBACK, SAVEPOINT undoes part of a
transaction. SET TRANSACTION sets transaction properties such as read-write access
and isolation level.

SQL Functions
For example, the following example shows some queries that call SQL functions:

DECLARE
 job_count NUMBER;
 emp_count NUMBER;
BEGIN
 SELECT COUNT(DISTINCT job_id) INTO job_count FROM employees;
 SELECT COUNT(*) INTO emp_count FROM employees;
END;
/

SQL Pseudocolumns
PL/SQL recognizes the SQL pseudocolumns: CURRVAL, LEVEL, NEXTVAL, ROWID, and
ROWNUM. In PL/SQL, pseudocolumns are only allowed in SQL queries, not in INSERT
/ UPDATE / DELETE statements, or in other PL/SQL statements such as assignments
or conditional tests.

CURRVAL and NEXTVAL
A sequence is a schema object that generates sequential numbers. When you create a
sequence, you can specify its initial value and an increment. CURRVAL returns the
current value in a specified sequence.

Before you can reference CURRVAL in a session, you must use NEXTVAL to generate a
number. A reference to NEXTVAL stores the current sequence number in CURRVAL.
NEXTVAL increments the sequence and returns the next value. To get the current or
next value in a sequence, use dot notation:

sequence_name.CURRVAL
sequence_name.NEXTVAL

After creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. You can use CURRVAL and NEXTVAL only in a SELECT list, the
VALUES clause, and the SET clause. The following example shows how to generate a
new sequence number and refer to that same number in more than one statement:

Overview of SQL Support in PL/SQL

Performing SQL Operations from PL/SQL 6-3

CREATE TABLE employees_temp AS SELECT employee_id, first_name FROM employees;
CREATE TABLE employees_temp2 AS SELECT employee_id, first_name FROM employees;

DECLARE
 next_value NUMBER;
BEGIN
-- The NEXTVAL value is the same no matter what table you select from.
 SELECT employees_seq.NEXTVAL INTO next_value FROM dual;
-- You usually use NEXTVAL to create unique numbers when inserting data.
 INSERT INTO employees_temp VALUES (employees_seq.NEXTVAL, 'value 1');
-- If you need to store the same value somewhere else, you use CURRVAL.
 INSERT INTO employees_temp2 VALUES (employees_seq.CURRVAL, 'value 1');
-- Because NEXTVAL values might be referenced by different users and
-- applications, and some NEXTVAL values might not be stored in the
-- database, there might be gaps in the sequence.
END;
/

DROP TABLE employees_temp;
DROP TABLE employees_temp2;

Each time you reference the NEXTVAL value of a sequence, the sequence is
incremented immediately and permanently, whether you commit or roll back the
transaction.

LEVEL
You use LEVEL with the SELECT CONNECT BY statement to organize rows from a
database table into a tree structure. You might use sequence numbers to give each row
a unique identifier, and refer to those identifiers from other rows to set up parent-child
relationships.

LEVEL returns the level number of a node in a tree structure. The root is level 1,
children of the root are level 2, grandchildren are level 3, and so on.

 In the START WITH clause, you specify a condition that identifies the root of the tree.
You specify the direction in which the query traverses the tree (down from the root or
up from the branches) with the PRIOR operator.

ROWID
ROWID returns the rowid (binary address) of a row in a database table. You can use
variables of type UROWID to store rowids in a readable format.

When you select or fetch a physical rowid into a UROWID variable, you can use the
function ROWIDTOCHAR, which converts the binary value to a character string. You can
compare the UROWID variable to the ROWID pseudocolumn in the WHERE clause of an
UPDATE or DELETE statement to identify the latest row fetched from a cursor. For an
example, see "Fetching Across Commits" on page 6-34.

ROWNUM
ROWNUM returns a number indicating the order in which a row was selected from a
table. The first row selected has a ROWNUM of 1, the second row has a ROWNUM of 2, and
so on. If a SELECT statement includes an ORDER BY clause, ROWNUMs are assigned to
the retrieved rows before the sort is done; use a subselect (shown in the following
example) to get the first n sorted rows.

You can use ROWNUM in an UPDATE statement to assign unique values to each row in a
table, or in the WHERE clause of a SELECT statement to limit the number of rows
retrieved:

Overview of SQL Support in PL/SQL

6-4 PL/SQL User's Guide and Reference

CREATE TABLE employees_temp AS SELECT * FROM employees;

DECLARE
 CURSOR c1 IS SELECT employee_id, salary FROM employees_temp
 WHERE salary > 2000 AND ROWNUM <= 10; -- 10 arbitrary rows
 CURSOR c2 IS SELECT * FROM
 (SELECT employee_id, salary FROM employees_temp
 WHERE salary > 2000 ORDER BY salary DESC)
 WHERE ROWNUM < 5; -- first 5 rows, in sorted order
BEGIN
-- Each row gets assigned a different number
 UPDATE employees_temp SET employee_id = ROWNUM;
END;
/

DROP TABLE employees_temp;

The value of ROWNUM increases only when a row is retrieved, so the only meaningful
uses of ROWNUM in a WHERE clause are

... WHERE ROWNUM < constant;

... WHERE ROWNUM <= constant;

SQL Operators
PL/SQL lets you use all the SQL comparison, set, and row operators in SQL
statements. This section briefly describes some of these operators. For more
information, see Oracle Database SQL Reference.

Comparison Operators
Typically, you use comparison operators in the WHERE clause of a data manipulation
statement to form predicates, which compare one expression to another and yield
TRUE, FALSE, or NULL. You can use the comparison operators listed below to form
predicates. You can combine predicates using the logical operators AND, OR, and NOT.

Set Operators
Set operators combine the results of two queries into one result. INTERSECT returns
all distinct rows selected by both queries. MINUS returns all distinct rows selected by
the first query but not by the second. UNION returns all distinct rows selected by either
query. UNION ALL returns all rows selected by either query, including all duplicates.

Operator Description

ALL Compares a value to each value in a list or returned
by a subquery and yields TRUE if all of the
individual comparisons yield TRUE.

ANY, SOME Compares a value to each value in a list or returned
by a subquery and yields TRUE if any of the
individual comparisons yields TRUE.

BETWEEN Tests whether a value lies in a specified range.

EXISTS Returns TRUE if a subquery returns at least one row.

IN Tests for set membership.

IS NULL Tests for nulls.

LIKE Tests whether a character string matches a specified
pattern, which can include wildcards.

Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)

Performing SQL Operations from PL/SQL 6-5

Row Operators
Row operators return or reference particular rows. ALL retains duplicate rows in the
result of a query or in an aggregate expression. DISTINCT eliminates duplicate rows
from the result of a query or from an aggregate expression. PRIOR refers to the parent
row of the current row returned by a tree-structured query.

Performing DML Operations from PL/SQL (INSERT, UPDATE, and
DELETE)

You can write INSERT, UPDATE, and DELETE statements directly in PL/SQL
programs, without any special notation:

CREATE table1 AS SELECT object_name, object_type FROM user_objects;

BEGIN
 INSERT INTO table1(col1, col2) VALUES('value1','value2');
 UPDATE table1 SET col1 = 'another value' WHERE col2 IS NULL;
 DELETE FROM table1 WHERE col1 = col2;
 COMMIT;
END;
/

DROP table1;

To find out how many rows are affected by these statements, you can check the value
of SQL%ROWCOUNT:

SET SERVEROUTPUT ON;
BEGIN
 UPDATE employees SET salary = salary * 1.05 WHERE ...;
 dbms_output.put_line('Updated ' || SQL%ROWCOUNT || ' salaries.');
END;
/

Wherever you would use literal values, or bind variables in some other programming
language, you can directly substitute PL/SQL variables:

CREATE table1 AS SELECT object_name, object_type FROM user_objects;

DECLARE
 x VARCHAR2(128) := 'value1';
 y NUMBER := 10;
BEGIN
 INSERT INTO table1(col1, col2) VALUES(x, x);
 UPDATE table1 SET col1 = x WHERE col3 < y;
 DELETE FROM table1 WHERE col1 = x;
 COMMIT;
END;
/

DROP table1;

With this notation, you can use variables in place of values in the WHERE clause. To use
variables in place of table names, column names, and so on, requires the EXECUTE
IMMEDIATE statement that is explained in ...

Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)

6-6 PL/SQL User's Guide and Reference

Overview of Implicit Cursor Attributes
Implicit cursor attributes return information about the execution of an INSERT,
UPDATE, DELETE, or SELECT INTO statement. The values of the cursor attributes
always refer to the most recently executed SQL statement. Before Oracle opens the SQL
cursor, the implicit cursor attributes yield NULL.

Note: The SQL cursor has another attribute, %BULK_ROWCOUNT, designed for use with
the FORALL statement. For more information, see "Counting Rows Affected by
FORALL with the %BULK_ROWCOUNT Attribute" on page 11-12.

%FOUND Attribute: Has a DML Statement Changed Rows?
Until a SQL data manipulation statement is executed, %FOUND yields NULL. Thereafter,
%FOUND yields TRUE if an INSERT, UPDATE, or DELETE statement affected one or
more rows, or a SELECT INTO statement returned one or more rows. Otherwise,
%FOUND yields FALSE. In the following example, you use %FOUND to insert a row if a
delete succeeds:

DELETE FROM emp WHERE empno = my_empno;
IF SQL%FOUND THEN -- delete succeeded
 INSERT INTO new_emp VALUES (my_empno, my_ename, ...);

%ISOPEN Attribute: Always FALSE for Implicit Cursors
Oracle closes the SQL cursor automatically after executing its associated SQL
statement. As a result, %ISOPEN always yields FALSE.

%NOTFOUND Attribute: Has a DML Statement Failed to Change Rows?
%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND yields TRUE if an INSERT,
UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement returned
no rows. Otherwise, %NOTFOUND yields FALSE.

%ROWCOUNT Attribute: How Many Rows Affected So Far?
%ROWCOUNT yields the number of rows affected by an INSERT, UPDATE, or DELETE
statement, or returned by a SELECT INTO statement. %ROWCOUNT yields 0 if an
INSERT, UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement
returned no rows. In the following example, you use %ROWCOUNT to take action if
more than ten rows have been deleted:

DELETE FROM emp WHERE ...
IF SQL%ROWCOUNT > 10 THEN -- more than 10 rows were deleted
 ...
END IF;

If a SELECT INTO statement returns more than one row, PL/SQL raises the predefined
exception TOO_MANY_ROWS and %ROWCOUNT yields 1, not the actual number of rows
that satisfy the query.

Guidelines for Using Implicit Cursor Attributes
The values of the cursor attributes always refer to the most recently executed SQL
statement, wherever that statement is. It might be in a different scope (for example, in
a sub-block). To save an attribute value for later use, assign it to a Boolean variable
immediately. Doing other operations, such as procedure calls, might change the value
of %NOTFOUND before you can test it.

The %NOTFOUND attribute is not useful in combination with the SELECT INTO
statement:

Issuing Queries from PL/SQL

Performing SQL Operations from PL/SQL 6-7

If a SELECT INTO statement fails to return a row, PL/SQL raises the predefined
exception NO_DATA_FOUND immediately, interrupting the flow of control before you
can check %NOTFOUND.

A SELECT INTO statement that calls a SQL aggregate function always returns a value
or a null. After such a statement, the %NOTFOUND attribute is always FALSE, so
checking it is unnecessary.

Using PL/SQL Records in SQL INSERT and UPDATE Statements
Instead of listing each field of a PL/SQL record in INSERT and UPDATE statements,
you can use PL/SQL records directly. The most convenient technique is to declare the
record using a %ROWTYPE attribute, so that it has exactly the same fields as the SQL
table:

DECLARE
 emp_rec emp%ROWTYPE;
BEGIN
 emp_rec.eno := 1500;
 emp_rec.ename := 'Steven Hill';
 emp_rec.sal := '40000';
-- A %ROWTYPE value can fill in all the row fields.
 INSERT INTO emp VALUES emp_rec;

-- The fields of a %ROWTYPE can completely replace the table columns.
 UPDATE emp SET ROW = emp_rec WHERE eno = 100;
END;
/

Although this technique integrates PL/SQL variables and types with SQL DML
statements, you cannot use PL/SQL records as bind variables in dynamic SQL
statements.

Issuing Queries from PL/SQL
PL/SQL lets you perform queries (SELECT statements in SQL) and access individual
fields or entire rows from the result set. Depending on the complexity of the
processing that you want to do on the query results, you can use various notations.

Selecting At Most One Row: SELECT INTO Statement
If you expect a query to only return one row, you can write a regular SQL SELECT
statement with an additional INTO clause specifying the PL/SQL variable to hold the
result:

If the query might return more than one row, but you do not care about values after
the first, you can restrict any result set to a single row by comparing the ROWNUM value:

If the query might return no rows at all, use an exception handler to specify any
actions to take when no data is found:

If you just want to check whether a condition exists in your data, you might be able to
code the query with the COUNT(*) operator, which always returns a number and
never raises the NO_DATA_FOUND exception:

See Also: "What Is a PL/SQL Record?" on page 5-32 for more
information about PL/SQL records.

Issuing Queries from PL/SQL

6-8 PL/SQL User's Guide and Reference

Selecting Multiple Rows: BULK COLLECT Clause
If you need to bring a large quantity of data into local PL/SQL variables, rather than
looping through a result set one row at a time, you can use the BULK COLLECT clause.
When you query only certain columns, you can store all the results for each column in
a separate collection variable:

SELECT employee_id, last_name, salary FROM employees
 BULK COLLECT INTO all_employee_ids, all_last_names, all_salaries;

When you query all the columns of a table, you can store the entire result set in a
collection of records, which makes it convenient to loop through the results and refer
to different columns:

SELECT * FROM employees BULK COLLECT INTO all_employees;
FOR i IN all_employees.FIRST .. all_employees.LAST
LOOP
 ...
END LOOP;

This technique can be very fast, but also very memory-intensive. If you use it often,
you might be able to improve your code by doing more of the work in SQL:

■ If you only need to loop once through the result set, use a FOR loop as described in
the following sections. This technique avoids the memory overhead of storing a
copy of the result set.

■ If you are looping through the result set to scan for certain values or filter the
results into a smaller set, do this scanning or filtering in the original query instead.
You can add more WHERE clauses in simple cases, or use set operators such as
INTERSECT and MINUS if you are comparing two or more sets of results.

■ If you are looping through the result set and running another query or a DML
statement for each result row, you can probably find a more efficient technique.
For queries, look at including subqueries or EXISTS or NOT EXISTS clauses in
the original query. For DML statements, look at the FORALL statement, which is
much faster than coding these statements inside a regular loop.

Looping Through Multiple Rows: Cursor FOR Loop
Perhaps the most common case of a query is one where you issue the SELECT
statement, then immediately loop once through the rows of the result set. PL/SQL lets
you use a simple FOR loop for this kind of query:

The iterator variable for the FOR loop does not need to be declared in advance. It is a
%ROWTYPE record whose field names match the column names from the query, and
that exists only during the loop. When you use expressions rather than explicit column
names, use column aliases so that you can refer to the corresponding values inside the
loop:

Performing Complicated Query Processing: Explicit Cursors
For full control over query processing, you can use explicit cursors in combination
with the OPEN, FETCH, and CLOSE statements.

You might want to specify a query in one place but retrieve the rows somewhere else,
even in another subprogram. Or you might want to choose very different query
parameters, such as ORDER BY or GROUP BY clauses, depending on the situation. Or
you might want to process some rows differently than others, and so need more than a
simple loop.

Querying Data with PL/SQL

Performing SQL Operations from PL/SQL 6-9

Because explicit cursors are so flexible, you can choose from different notations
depending on your needs. The following sections describe all the query-processing
features that explicit cursors provide.

Querying Data with PL/SQL
In traditional database programming, you process query results using an internal data
structure called a cursor. In most situations, PL/SQL can manage the cursor for you,
so that code to process query results is straightforward and compact. This section
discusses how to process both simple queries where PL/SQL manages everything, and
complex queries where you interact with the cursor.

Querying Data with PL/SQL: Implicit Cursor FOR Loop
With PL/SQL, it is very simple to issue a query, retrieve each row of the result into a
%ROWTYPE record, and process each row in a loop:

■ You include the text of the query directly in the FOR loop.

■ PL/SQL creates a record variable with fields corresponding to the columns of the
result set.

■ You refer to the fields of this record variable inside the loop. You can perform tests
and calculations, display output, or store the results somewhere else.

Here is an example that you can run in SQL*Plus. It does a query to get the name and
status of every index that you can access.

BEGIN
 FOR item IN
 (
 SELECT object_name, status FROM user_objects WHERE object_type = 'INDEX'
 AND object_name NOT LIKE '%$%'
)
 LOOP
 dbms_output.put_line('Index = ' || item.object_name ||
 ', Status = ' || item.status);
 END LOOP;
END;
/

Before each iteration of the FOR loop, PL/SQL fetches into the implicitly declared
record.

The sequence of statements inside the loop is executed once for each row that satisfies
the query. When you leave the loop, the cursor is closed automatically. The cursor is
closed even if you use an EXIT or GOTO statement to leave the loop before all rows are
fetched, or an exception is raised inside the loop.

See also: LOOP Statements on page 13-79

Querying Data with PL/SQL: Explicit Cursor FOR Loops
IIf you need to reference the same query from different parts of the same procedure,
you can declare a cursor that specifies the query, and process the results using a FOR
loop.

The following PL/SQ block runs two variations of the same query, first finding all the
tables you can access, then all the indexes you can access:

DECLARE

Querying Data with PL/SQL

6-10 PL/SQL User's Guide and Reference

 CURSOR c1 IS
 SELECT object_name, status FROM user_objects WHERE object_type = 'TABLE'
 AND object_name NOT LIKE '%$%';
BEGIN
 FOR item IN c1 LOOP
 dbms_output.put_line('Table = ' || item.object_name ||
 ', Status = ' || item.status);
 END LOOP;
END;
/

See also: LOOP Statements on page 13-79

Defining Aliases for Expression Values in a Cursor FOR Loop
In a cursor FOR loop, PL/SQL creates a %ROWTYPE record with fields corresponding to
columns in the result set. The fields have the same names as corresponding columns in
the SELECT list.

The select list might contain an expression, such as a column plus a constant, or two
columns concatenated together. If so, use a column alias to give unique names to the
appropriate columns.

In the following example, full_name and dream_salary are aliases for expressions
in the query:

SET SERVEROUTPUT ON;

BEGIN
 FOR item IN
 (
 SELECT
 first_name || ' ' || last_name AS full_name,
 salary * 10 AS dream_salary
 FROM employees
 WHERE ROWNUM <= 5
)
 LOOP
 dbms_output.put_line(item.full_name || ' dreams of making ' ||
 item.dream_salary);
 END LOOP;
END;
/

Overview of Explicit Cursors
When you need precise control over query processing, you can explicitly declare a
cursor in the declarative part of any PL/SQL block, subprogram, or package.

You use three commands to control a cursor: OPEN, FETCH, and CLOSE. First, you
initialize the cursor with the OPEN statement, which identifies the result set. Then, you
can execute FETCH repeatedly until all rows have been retrieved, or you can use the
BULK COLLECT clause to fetch all rows at once. When the last row has been processed,
you release the cursor with the CLOSE statement.

This technique requires more code than other techniques such as the implicit cursor
FOR loop. Its advantage is flexibility. You can:

■ Process several queries in parallel by declaring and opening multiple cursors.

Querying Data with PL/SQL

Performing SQL Operations from PL/SQL 6-11

■ Process multiple rows in a single loop iteration, skip rows, or split the processing
into more than one loop.

Declaring a Cursor
You must declare a cursor before referencing it in other statements. You give the cursor
a name and associate it with a specific query. You can optionally declare a return type
for the cursor (such as table_name%ROWTYPE). You can optionally specify
parameters that you use in the WHERE clause instead of referring to local variables.
These parameters can have default values.

For example, you might declare cursors like these:

DECLARE
 CURSOR c1 IS SELECT empno, ename, job, sal FROM emp
 WHERE sal > 2000;
 CURSOR c2 RETURN dept%ROWTYPE IS
 SELECT * FROM dept WHERE deptno = 10;

The cursor is not a PL/SQL variable: you cannot assign values to a cursor or use it in
an expression. Cursors and variables follow the same scoping rules. Naming cursors
after database tables is possible but not recommended.

A cursor can take parameters, which can appear in the associated query wherever
constants can appear. The formal parameters of a cursor must be IN parameters; they
supply values in the query, but do not return any values from the query. You cannot
impose the constraint NOT NULL on a cursor parameter.

As the example below shows, you can initialize cursor parameters to default values.
You can pass different numbers of actual parameters to a cursor, accepting or
overriding the default values as you please. Also, you can add new formal parameters
without having to change existing references to the cursor.

DECLARE
 CURSOR c1 (low INTEGER DEFAULT 0,
 high INTEGER DEFAULT 99) IS SELECT ...

Cursor parameters can be referenced only within the query specified in the cursor
declaration. The parameter values are used by the associated query when the cursor is
opened.

Opening a Cursor
Opening the cursor executes the query and identifies the result set, which consists of
all rows that meet the query search criteria. For cursors declared using the FOR
UPDATE clause, the OPEN statement also locks those rows. An example of the OPEN
statement follows:

DECLARE
 CURSOR c1 IS SELECT ename, job FROM emp WHERE sal < 3000;
 ...
BEGIN
 OPEN c1;
 ...
END;

Rows in the result set are retrieved by the FETCH statement, not when the OPEN
statement is executed.

Querying Data with PL/SQL

6-12 PL/SQL User's Guide and Reference

Fetching with a Cursor
Unless you use the BULK COLLECT clause (discussed in the next section), the FETCH
statement retrieves the rows in the result set one at a time. Each fetch retrieves the
current row and advances the cursor to the next row in the result set.

You can store each column in a separate variable, or store the entire row in a record
that has the appropriate fields (usually declared using %ROWTYPE):

-- This cursor queries 3 columns.
-- Each column is fetched into a separate variable.
FETCH c1 INTO my_empno, my_ename, my_deptno;
-- This cursor was declared as SELECT * FROM employees.
-- An entire row is fetched into the my_employees record, which
-- is declared with the type employees%ROWTYPE.
FETCH c2 INTO my_employees;

For each column value returned by the query associated with the cursor, there must be
a corresponding, type-compatible variable in the INTO list. Typically, you use the
FETCH statement in the following way:

LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 -- process data record
END LOOP;

The query can reference PL/SQL variables within its scope. Any variables in the query
are evaluated only when the cursor is opened. In the following example, each
retrieved salary is multiplied by 2, even though factor is incremented after every
fetch:

DECLARE
 my_sal employees.salary%TYPE;
 my_job employees.job_id%TYPE;
 factor INTEGER := 2;
 CURSOR c1 IS
 SELECT factor*salary FROM employees WHERE job_id = my_job;
BEGIN
 OPEN c1; -- here factor equals 2
 LOOP
 FETCH c1 INTO my_sal;
 EXIT WHEN c1%NOTFOUND;
 factor := factor + 1; -- does not affect FETCH
 END LOOP;
END;
/

To change the result set or the values of variables in the query, you must close and
reopen the cursor with the input variables set to their new values.

However, you can use a different INTO list on separate fetches with the same cursor.
Each fetch retrieves another row and assigns values to the target variables, as the
following example shows:

DECLARE
 CURSOR c1 IS SELECT last_name FROM employees ORDER BY last_name;
 name1 employees.last_name%TYPE;
 name2 employees.last_name%TYPE;
 name3 employees.last_name%TYPE;
BEGIN
 OPEN c1;

Using Subqueries

Performing SQL Operations from PL/SQL 6-13

 FETCH c1 INTO name1; -- this fetches first row
 FETCH c1 INTO name2; -- this fetches second row
 FETCH c1 INTO name3; -- this fetches third row
 CLOSE c1;
END;
/

If you fetch past the last row in the result set, the values of the target variables are
undefined.

Note: Eventually, the FETCH statement fails to return a row. When that happens, no
exception is raised. To detect the failure, use the cursor attribute %FOUND or
%NOTFOUND. For more information, see "Using Cursor Expressions" on page 6-27.

Fetching Bulk Data with a Cursor
The BULK COLLECT clause lets you fetch all rows from the result set at once (see
"Retrieving Query Results into Collections with the BULK COLLECT Clause" on
page 11-15). In the following example, you bulk-fetch from a cursor into two
collections:

DECLARE
 TYPE NumTab IS TABLE OF employees.employee_id%TYPE;
 TYPE NameTab IS TABLE OF employees.last_name%TYPE;
 nums NumTab;
 names NameTab;
 CURSOR c1 IS
 SELECT employee_id, last_name
 FROM employees
 WHERE job_id = 'ST_CLERK';
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO nums, names;
-- Here is where you iterate through the elements in the NUMS and
-- NAMES collections.
 NULL;
 CLOSE c1;
END;
/

Closing a Cursor
The CLOSE statement disables the cursor, and the result set becomes undefined. Once a
cursor is closed, you can reopen it, which runs the query again with the latest values of
any cursor parameters and variables referenced in the WHERE clause. Any other
operation on a closed cursor raises the predefined exception INVALID_CURSOR.

Using Subqueries
A subquery is a query (usually enclosed by parentheses) that appears within another
SQL data manipulation statement. The statement acts upon the single value or set of
values returned by the subquery. For example:

■ You can use a subquery to find the MAX(), MIN(), or AVG() value for a column,
and use that single value in a comparison in a WHERE clause.

■ You can use a subquery to find a set of values, and use this values in an IN or NOT
IN comparison in a WHERE clause. This technique can avoid joins.

Using Subqueries

6-14 PL/SQL User's Guide and Reference

■ You can filter a set of values with a subquery, and apply other operations like
ORDER BY and GROUP BY in the outer query.

■ You can use a subquery in place of a table name, in the FROM clause of a query.
This technique lets you join a table with a small set of rows from another table,
instead of joining the entire tables.

■ You can create a table or insert into a table, using a set of rows defined by a
subquery.

DECLARE
 CURSOR c1 IS
-- The main query returns only rows where the salary is greater than the average
salary.
 SELECT employee_id, last_name FROM employees WHERE salary > (SELECT
AVG(salary) FROM employees);

 CURSOR c2 IS
-- The subquery returns all the rows in descending order of salary.
-- The main query returns just the top 10 highest-paid employees.
 SELECT * FROM
 (SELECT last_name, salary FROM employees ORDER BY salary DESC, last_name)
 WHERE ROWNUM < 11;
BEGIN
 FOR person IN c1
 LOOP
 dbms_output.put_line('Above-average salary: ' || person.last_name);
 END LOOP;
 FOR person IN c2
 LOOP
 dbms_output.put_line('Highest paid: ' || person.last_name || ' $' ||
person.salary);
 END LOOP;
-- The subquery identifies a set of rows to use with CREATE TABLE or INSERT.
 EXECUTE IMMEDIATE
 'CREATE TABLE temp AS (SELECT * FROM employees WHERE salary > 5000)';
 EXECUTE IMMEDIATE 'DROP TABLE temp';
END;
/

Using a subquery in the FROM clause, the following query returns the number and
name of each department with five or more employees:

DECLARE
 CURSOR c1 IS
 SELECT t1.department_id, department_name, staff
 FROM departments t1,
 (
 SELECT department_id, COUNT(*) as staff
 FROM employees
 GROUP BY department_id
) t2
 WHERE
 t1.department_id = t2.department_id
 AND staff >= 5;
BEGIN
 FOR dept IN c1
 LOOP
 dbms_output.put_line('Department = ' || dept.department_name ||
 ', staff = ' || dept.staff);
 END LOOP;

Using Correlated Subqueries

Performing SQL Operations from PL/SQL 6-15

END;
/

Using Correlated Subqueries
While a subquery is evaluated only once for each table, a correlated subquery is
evaluated once for each row. The following example returns the name and salary of
each employee whose salary exceeds the departmental average. For each row in the
table, the correlated subquery computes the average salary for the corresponding
epartment.

DECLARE
-- For each department, we find the average salary.
-- Then we find all the employees in that department making
-- more than that average salary.
 CURSOR c1 IS
 SELECT department_id, last_name, salary
 FROM employees t
 WHERE
 salary >
 (
 SELECT AVG(salary)
 FROM employees
 WHERE
 t.department_id = department_id
)
 ORDER BY department_id;
BEGIN
 FOR person IN c1
 LOOP
 dbms_output.put_line('Making above-average salary = ' ||
 person.last_name);
 END LOOP;
END;
/

Writing Maintainable PL/SQL Queries
Instead of referring to local variables, you can declare a cursor that accepts parameters,
and pass values for those parameters when you open the cursor. If the query is usually
issued with certain values, you can make those values the defaults. You can use either
positional notation or named notation to pass the parameter values.

Example 6–1 Passing Parameters to a Cursor FOR Loop

The following example computes the total wages paid to employees in a specified
department.

DECLARE
 CURSOR c1 (name VARCHAR2, max_wage NUMBER) IS
 SELECT * FROM employees WHERE last_name = name and salary < max_wage;
BEGIN
 FOR person IN c1('Austin', 30000)
 LOOP
 -- process data record
 dbms_output.put_line('Name = ' || person.last_name ||
 ', salary = ' || person.salary);

Using Cursor Attributes

6-16 PL/SQL User's Guide and Reference

 END LOOP;
END;
/

Example 6–2 Passing Parameters to Explicit Cursors

For example, here are several ways to open a cursor:

DECLARE
 emp_name employees.last_name%TYPE := 'Austin';
 emp_salary employees.salary%TYPE := 30000;
 my_record employees%ROWTYPE;
 CURSOR c1 (name VARCHAR2, max_wage NUMBER) IS
 SELECT * FROM employees WHERE last_name = name and salary < max_wage;
BEGIN
-- Any of the following statements opens the cursor:
-- OPEN c1('Austin', 3000);
-- OPEN c1('Austin', emp_salary);
-- OPEN c1(emp_name, 3000);
-- OPEN c1(emp_name, emp_salary);

 OPEN c1(emp_name, emp_salary);
 LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 -- process data record
 dbms_output.put_line('Name = ' || my_record.last_name ||
 ', salary = ' || my_record.salary);
 END LOOP;
END;
/

To avoid confusion, use different names for cursor parameters and the PL/SQL
variables that you pass into those parameters.

Formal parameters declared with a default value do not need a corresponding actual
parameter. If you omit them, they assume their default values when the OPEN
statement is executed.

Using Cursor Attributes
Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN
%NOTFOUND, and %ROWCOUNT. When appended to the cursor or cursor variable, these
attributes return useful information about the execution of a data manipulation
statement. You can use cursor attributes in procedural statements but not in SQL
statements.

Overview of Explicit Cursor Attributes
Explicit cursor attributes return information about the execution of a multi-row query.
When an explicit cursor or a cursor variable is opened, the rows that satisfy the
associated query are identified and form the result set. Rows are fetched from the
result set.

Using Cursor Attributes

Performing SQL Operations from PL/SQL 6-17

%FOUND Attribute: Has a Row Been Fetched?
After a cursor or cursor variable is opened but before the first fetch, %FOUND returns
NULL. After any fetches, it returns TRUE if the last fetch returned a row, or FALSE if the
last fetch did not return a row. The following example uses %FOUND to select an action:

DECLARE
 CURSOR c1 IS SELECT last_name, salary FROM employees WHERE ROWNUM < 11;
 my_ename employees.last_name%TYPE;
 my_salary employees.salary%TYPE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO my_ename, my_salary;
 IF c1%FOUND THEN -- fetch succeeded
 dbms_output.put_line('Name = ' || my_ename || ', salary = ' ||
 my_salary);
 ELSE -- fetch failed, so exit loop
 EXIT;
 END IF;
 END LOOP;
END;
/

If a cursor or cursor variable is not open, referencing it with %FOUND raises the
predefined exception INVALID_CURSOR.

%ISOPEN Attribute: Is the Cursor Open?
%ISOPEN returns TRUE if its cursor or cursor variable is open; otherwise, %ISOPEN
returns FALSE. The following example uses %ISOPEN to select an action:

DECLARE
 CURSOR c1 IS SELECT last_name, salary FROM employees WHERE ROWNUM < 11;
 the_name employees.last_name%TYPE;
 the_salary employees.salary%TYPE;
BEGIN
 IF c1%ISOPEN = FALSE THEN -- cursor was not already open
 OPEN c1;
 END IF;
 FETCH c1 INTO the_name, the_salary;
 CLOSE c1;
END;
/

%NOTFOUND Attribute: Has a Fetch Failed?
%NOTFOUND is the logical opposite of %FOUND. %NOTFOUND yields FALSE if the last
fetch returned a row, or TRUE if the last fetch failed to return a row. In the following
example, you use %NOTFOUND to exit a loop when FETCH fails to return a row:

DECLARE
 CURSOR c1 IS SELECT last_name, salary FROM employees WHERE ROWNUM < 11;
 my_ename employees.last_name%TYPE;
 my_salary employees.salary%TYPE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO my_ename, my_salary;
 IF c1%NOTFOUND THEN -- fetch failed, so exit loop
-- A shorter form of this test is "EXIT WHEN c1%NOTFOUND;"

Using Cursor Attributes

6-18 PL/SQL User's Guide and Reference

 EXIT;
 ELSE -- fetch succeeded
 dbms_output.put_line('Name = ' || my_ename || ', salary = ' ||
 my_salary);
 END IF;
 END LOOP;
END;
/

Before the first fetch, %NOTFOUND returns NULL. If FETCH never executes successfully,
the loop is never exited, because the EXIT WHEN statement executes only if its WHEN
condition is true. To be safe, you might want to use the following EXIT statement
instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

If a cursor or cursor variable is not open, referencing it with %NOTFOUND raises an
INVALID_CURSOR exception.

%ROWCOUNT Attribute: How Many Rows Fetched So Far?
When its cursor or cursor variable is opened, %ROWCOUNT is zeroed. Before the first
fetch, %ROWCOUNT yields 0. Thereafter, it yields the number of rows fetched so far. The
number is incremented if the last fetch returned a row. The following example uses
%ROWCOUNT to test if more than ten rows have been fetched:

DECLARE
 CURSOR c1 IS SELECT last_name FROM employees WHERE ROWNUM < 11;
 name employees.last_name%TYPE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO name;
 EXIT WHEN c1%NOTFOUND;
 dbms_output.put_line(c1%ROWCOUNT || '. ' || name);
 IF c1%ROWCOUNT = 5 THEN
 dbms_output.put_line('--- Fetched 5th record ---');
 END IF;
 END LOOP;
 CLOSE c1;
END;
/

If a cursor or cursor variable is not open, referencing it with %ROWCOUNT raises
INVALID_CURSOR.

Table 6–1 shows what each cursor attribute returns before and after you execute an
OPEN, FETCH, or CLOSE statement.

Table 6–1 Cursor Attribute Values

%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

OPEN before exception FALSE exception exception

after NULL TRUE NULL 0

First FETCH before NULL TRUE NULL 0

after TRUE TRUE FALSE 1

Next FETCH(es) before TRUE TRUE FALSE 1

Using Cursor Variables (REF CURSORs)

Performing SQL Operations from PL/SQL 6-19

Using Cursor Variables (REF CURSORs)
Like a cursor, a cursor variable points to the current row in the result set of a multi-row
query. A cursor variable is more flexible because it is not tied to a specific query. You
can open a cursor variable for any query that returns the right set of columns.

You pass a cursor variable as a parameter to local and stored subprograms. Opening
the cursor variable in one subprogram, and processing it in a different subprogram,
helps to centralize data retrieval. This technique is also useful for multi-language
applications, where a PL/SQL subprogram might return a result set to a subprogram
written in a different language.

Cursor variables are available to every PL/SQL client. For example, you can declare a
cursor variable in a PL/SQL host environment such as an OCI or Pro*C program, then
pass it as an input host variable (bind variable) to PL/SQL. Application development
tools such as Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use
cursor variables entirely on the client side. Or, you can pass cursor variables back and
forth between a client and the database server through remote procedure calls.

What Are Cursor Variables (REF CURSORs)?
Cursor variables are like pointers to result sets. You use them when you want to
perform a query in one subprogram, and process the results in a different subprogram
(possibly one written in a different language). A cursor variable has datatype REF
CURSOR, and you might see them referred to informally as REF CURSORs.

Unlike an explicit cursor, which always refers to the same query work area, a cursor
variable can refer to different work areas. You cannot use a cursor variable where a
cursor is expected, or vice versa.

Why Use Cursor Variables?
You use cursor variables to pass query result sets between PL/SQL stored
subprograms and various clients. PL/SQL and its clients share a pointer to the query
work area in which the result set is stored. For example, an OCI client, Oracle Forms
application, and Oracle database server can all refer to the same work area.

A query work area remains accessible as long as any cursor variable points to it, as you
pass the value of a cursor variable from one scope to another. For example, if you pass
a host cursor variable to a PL/SQL block embedded in a Pro*C program, the work area
to which the cursor variable points remains accessible after the block completes.

after TRUE TRUE FALSE data dependent

Last FETCH before TRUE TRUE FALSE data dependent

after FALSE TRUE TRUE data dependent

CLOSE before FALSE TRUE TRUE data dependent

after exception FALSE exception exception

Notes:

1. Referencing %FOUND, %NOTFOUND, or %ROWCOUNT before a cursor is opened or after it
is closed raises INVALID_CURSOR.

2. After the first FETCH, if the result set was empty, %FOUND yields FALSE, %NOTFOUND
yields TRUE, and %ROWCOUNT yields 0.

Table 6–1 (Cont.) Cursor Attribute Values

%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

Using Cursor Variables (REF CURSORs)

6-20 PL/SQL User's Guide and Reference

If you have a PL/SQL engine on the client side, calls from client to server impose no
restrictions. For example, you can declare a cursor variable on the client side, open and
fetch from it on the server side, then continue to fetch from it back on the client side.
You can also reduce network traffic by having a PL/SQL block open or close several
host cursor variables in a single round trip.

Declaring REF CURSOR Types and Cursor Variables
To create cursor variables, you define a REF CURSOR type, then declare cursor
variables of that type. You can define REF CURSOR types in any PL/SQL block,
subprogram, or package. In the following example, you declare a REF CURSOR type
that represents a result set from the DEPARTMENTS table:

DECLARE
 TYPE DeptCurTyp IS REF CURSOR RETURN departments%ROWTYPE;

REF CURSOR types can be strong (with a return type) or weak (with no return type).

Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you
associate a strongly typed cursor variable only with queries that return the right set of
columns. Weak REF CURSOR types are more flexible because the compiler lets you
associate a weakly typed cursor variable with any query.

Because there is no type checking with a weak REF CURSOR, all such types are
interchangeable. Instead of creating a new type, you can use the predefined type
SYS_REFCURSOR.

Once you define a REF CURSOR type, you can declare cursor variables of that type in
any PL/SQL block or subprogram.

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE; -- strong
 TYPE GenericCurTyp IS REF CURSOR; -- weak
 cursor1 EmpCurTyp;
 cursor2 GenericCurTyp;
 my_cursor SYS_REFCURSOR; -- didn't need to declare a new type above

 The following example declares the cursor variable dept_cv:

DECLARE
 TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;
 dept_cv DeptCurTyp; -- declare cursor variable

To avoid declaring the same REF CURSOR type in each subprogram that uses it, you
can put the REF CURSOR declaration in a package spec. You can declare cursor
variables of that type in the corresponding package body, or within your own
procedure or function.

Example 6–3 Cursor Variable Returning %ROWTYPE

In the RETURN clause of a REF CURSOR type definition, you can use %ROWTYPE to refer
to a strongly typed cursor variable:

DECLARE
 TYPE TmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
 tmp_cv TmpCurTyp; -- declare cursor variable
 TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;
 emp_cv EmpCurTyp; -- declare cursor variable
BEGIN
 NULL;
END;

Using Cursor Variables (REF CURSORs)

Performing SQL Operations from PL/SQL 6-21

/

Example 6–4 Cursor Variable Returning %TYPE

You can also use %TYPE to provide the datatype of a record variable:

DECLARE
 dept_rec departments%ROWTYPE; -- declare record variable
 TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;
 dept_cv DeptCurTyp; -- declare cursor variable
BEGIN
 NULL;
END;
/

Example 6–5 Cursor Variable Returning Record Type

This example specifies a user-defined RECORD type in the RETURN clause:

DECLARE
 TYPE EmpRecTyp IS RECORD (
 employee_id NUMBER,
 last_name VARCHAR2(30),
 salary NUMBER(7,2));
 TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
 emp_cv EmpCurTyp; -- declare cursor variable
BEGIN
 NULL;
END;
/

Passing Cursor Variables As Parameters
You can declare cursor variables as the formal parameters of functions and procedures.
The following example defines a REF CURSOR type, then declares a cursor variable of
that type as a formal parameter:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
 emp EmpCurTyp;

-- Once we have a result set, we can process all the rows
-- inside a single procedure rather than calling a procedure
-- for each row.
 PROCEDURE process_emp_cv (emp_cv IN EmpCurTyp) IS
 person employees%ROWTYPE;
 BEGIN
 dbms_output.put_line('-----');
 dbms_output.put_line('Here are the names from the result set:');
 LOOP
 FETCH emp_cv INTO person;
 EXIT WHEN emp_cv%NOTFOUND;
 dbms_output.put_line('Name = ' || person.first_name ||
 ' ' || person.last_name);
 END LOOP;
 END;

BEGIN
-- First find 10 arbitrary employees.

Using Cursor Variables (REF CURSORs)

6-22 PL/SQL User's Guide and Reference

 OPEN emp FOR SELECT * FROM employees WHERE ROWNUM < 11;
 process_emp_cv(emp);
 CLOSE emp;
-- Then find employees matching a condition.
 OPEN emp FOR SELECT * FROM employees WHERE last_name LIKE 'R%';
 process_emp_cv(emp);
 CLOSE emp;
END;
/

Note: Like all pointers, cursor variables increase the possibility of parameter aliasing.
See "Overloading Subprogram Names" on page 8-9.

Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE
You use three statements to control a cursor variable: OPEN-FOR, FETCH, and CLOSE.
First, you OPEN a cursor variable FOR a multi-row query. Then, you FETCH rows from
the result set. When all the rows are processed, you CLOSE the cursor variable.

Opening a Cursor Variable
The OPEN-FOR statement associates a cursor variable with a multi-row query, executes
the query, and identifies the result set.

OPEN {cursor_variable | :host_cursor_variable} FOR
{ select_statement
 | dynamic_string [USING bind_argument[, bind_argument]...] };

The cursor variable can be declared directly in PL/SQL, or in a PL/SQL host
environment such as an OCI program.

The SELECT statement for the query can be coded directly in the statement, or can be a
string variable or string literal. When you use a string as the query, it can include
placeholders for bind variables, and you specify the corresponding values with a
USING clause.

Note: This section discusses the static SQL case, in which select_statement is
used. For the dynamic SQL case, in which dynamic_string is used, see
"OPEN-FOR-USING Statement" on page 13-97.

Unlike cursors, cursor variables take no parameters. Instead, you can pass whole
queries (not just parameters) to a cursor variable. The query can reference host
variables and PL/SQL variables, parameters, and functions.

The example below opens a cursor variable. Notice that you can apply cursor
attributes (%FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT) to a cursor variable.

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
 emp_cv EmpCurTyp;
BEGIN
 IF NOT emp_cv%ISOPEN THEN
 /* Open cursor variable. */
 OPEN emp_cv FOR SELECT * FROM employees;
 END IF;
 CLOSE emp_cv;
END;
/

Other OPEN-FOR statements can open the same cursor variable for different queries.
You need not close a cursor variable before reopening it. (Recall that consecutive

Using Cursor Variables (REF CURSORs)

Performing SQL Operations from PL/SQL 6-23

OPENs of a static cursor raise the predefined exception CURSOR_ALREADY_OPEN.)
When you reopen a cursor variable for a different query, the previous query is lost.

Example 6–6 Stored Procedure to Open a Ref Cursor

Typically, you open a cursor variable by passing it to a stored procedure that declares
an IN OUT parameter that is a cursor variable. For example, the following procedure
opens a cursor variable:

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp);
END emp_data;
/

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS
 BEGIN
 OPEN emp_cv FOR SELECT * FROM employees;
 END open_emp_cv;
END emp_data;
/

DROP PACKAGE emp_data;

You can also use a standalone stored procedure to open the cursor variable. Define the
REF CURSOR type in a package, then reference that type in the parameter declaration
for the stored procedure.

Example 6–7 Stored Procedure to Open Ref Cursors with Different Queries

To centralize data retrieval, you can group type-compatible queries in a stored
procedure. In the example below, the packaged procedure declares a selector as one of
its formal parameters. When called, the procedure opens the cursor variable emp_cv
for the chosen query.

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice INT);
END emp_data;

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
 ELSIF choice = 2 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;
 ELSIF choice = 3 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;
 END IF;
 END;
END emp_data;

Example 6–8 Cursor Variable with Different Return Types

For more flexibility, a stored procedure can execute queries with different return types:

CREATE PACKAGE admin_data AS
 TYPE GenCurTyp IS REF CURSOR;

Using Cursor Variables (REF CURSORs)

6-24 PL/SQL User's Guide and Reference

 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT);
END admin_data;

CREATE PACKAGE BODY admin_data AS
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN generic_cv FOR SELECT * FROM emp;
 ELSIF choice = 2 THEN
 OPEN generic_cv FOR SELECT * FROM dept;
 ELSIF choice = 3 THEN
 OPEN generic_cv FOR SELECT * FROM salgrade;
 END IF;
 END;
END admin_data;

Using a Cursor Variable as a Host Variable
You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To use the cursor variable, you must pass it as a host variable to
PL/SQL. In the following Pro*C example, you pass a host cursor variable and selector
to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION;
 ...
 /* Declare host cursor variable. */
 SQL_CURSOR generic_cv;
 int choice;
EXEC SQL END DECLARE SECTION;
...
/* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic_cv;
...
/* Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE
BEGIN
 IF :choice = 1 THEN
 OPEN :generic_cv FOR SELECT * FROM emp;
 ELSIF :choice = 2 THEN
 OPEN :generic_cv FOR SELECT * FROM dept;
 ELSIF :choice = 3 THEN
 OPEN :generic_cv FOR SELECT * FROM salgrade;
 END IF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They behave just like
weakly typed PL/SQL cursor variables.

Fetching from a Cursor Variable
The FETCH statement retrieves rows from the result set of a multi-row query. It works
the same with cursor variables as with explicit cursors.

Example 6–9 Fetching from a Cursor Variable into a Record

The following example fetches rows one at a time from a cursor variable into a record:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
 emp_cv EmpCurTyp;

Using Cursor Variables (REF CURSORs)

Performing SQL Operations from PL/SQL 6-25

 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cv FOR SELECT * FROM employees WHERE salary < 3000;
 LOOP
 /* Fetch from cursor variable. */
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND; -- exit when last row is fetched
 -- process data record
 dbms_output.put_line('Name = ' || emp_rec.first_name || ' ' ||
 emp_rec.last_name);
 END LOOP;
 CLOSE emp_cv;
END;
/

Example 6–10 Fetching from a Cursor Variable into Collections

Using the BULK COLLECT clause, you can bulk fetch rows from a cursor variable into
one or more collections:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 TYPE NameList IS TABLE OF employees.last_name%TYPE;
 TYPE SalList IS TABLE OF employees.salary%TYPE;
 emp_cv EmpCurTyp;
 names NameList;
 sals SalList;
BEGIN
 OPEN emp_cv FOR SELECT last_name, salary FROM employees WHERE salary < 3000;
 FETCH emp_cv BULK COLLECT INTO names, sals;
 CLOSE emp_cv;
-- Now loop through the NAMES and SALS collections.
 FOR i IN names.FIRST .. names.LAST
 LOOP
 dbms_output.put_line('Name = ' || names(i) || ', salary = ' ||
 sals(i));
 END LOOP;
END;
/

Any variables in the associated query are evaluated only when the cursor variable is
opened. To change the result set or the values of variables in the query, reopen the
cursor variable with the variables set to new values. You can use a different INTO
clause on separate fetches with the same cursor variable. Each fetch retrieves another
row from the same result set.

PL/SQL makes sure the return type of the cursor variable is compatible with the INTO
clause of the FETCH statement. If there is a mismatch, an error occurs at compile time if
the cursor variable is strongly typed, or at run time if it is weakly typed. At run time,
PL/SQL raises the predefined exception ROWTYPE_MISMATCH before the first fetch. If
you trap the error and execute the FETCH statement using a different (compatible)
INTO clause, no rows are lost.

When you declare a cursor variable as the formal parameter of a subprogram that
fetches from the cursor variable, you must specify the IN or IN OUT mode. If the
subprogram also opens the cursor variable, you must specify the IN OUT mode.

If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the
predefined exception INVALID_CURSOR.

Using Cursor Variables (REF CURSORs)

6-26 PL/SQL User's Guide and Reference

Closing a Cursor Variable
The CLOSE statement disables a cursor variable and makes the associated result set
undefined. Close the cursor variable after the last row is processed.

When declaring a cursor variable as the formal parameter of a subprogram that closes
the cursor variable, you must specify the IN or IN OUT mode.

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
the predefined exception INVALID_CURSOR.

Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL
When passing host cursor variables to PL/SQL, you can reduce network traffic by
grouping OPEN-FOR statements. For example, the following PL/SQL block opens
multiple cursor variables in a single round trip:

/* anonymous PL/SQL block in host environment */
BEGIN
 OPEN :emp_cv FOR SELECT * FROM employees;
 OPEN :dept_cv FOR SELECT * FROM departments;
 OPEN :loc_cv FOR SELECT * FROM locations;
END;

This technique might be useful in Oracle Forms, for instance, when you want to
populate a multi-block form.

When you pass host cursor variables to a PL/SQL block for opening, the query work
areas to which they point remain accessible after the block completes, so your OCI or
Pro*C program can use these work areas for ordinary cursor operations. In the
following example, you open several such work areas in a single round trip:

BEGIN
 OPEN :c1 FOR SELECT 1 FROM dual;
 OPEN :c2 FOR SELECT 1 FROM dual;
 OPEN :c3 FOR SELECT 1 FROM dual;
END;

The cursors assigned to c1, c2, and c3 behave normally, and you can use them for any
purpose. When finished, release the cursors as follows:

BEGIN
 CLOSE :c1;
 CLOSE :c2;
 CLOSE :c3;
END;

Avoiding Errors with Cursor Variables
If both cursor variables involved in an assignment are strongly typed, they must have
exactly the same datatype (not just the same return type). If one or both cursor
variables are weakly typed, they can have different datatypes.

If you try to fetch from, close, or refer to cursor attributes of a cursor variable that does
not point to a query work area, PL/SQL raises the INVALID_CURSOR exception. You
can make a cursor variable (or parameter) point to a query work area in two ways:

■ OPEN the cursor variable FOR the query.

■ Assign to the cursor variable the value of an already OPENed host cursor variable
or PL/SQL cursor variable.

Using Cursor Expressions

Performing SQL Operations from PL/SQL 6-27

If you assign an unopened cursor variable to another cursor variable, the second one
remains invalid even after you open the first one.

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises
ROWTYPE_MISMATCH if the return types of the actual and formal parameters are
incompatible.

Restrictions on Cursor Variables
Currently, cursor variables are subject to the following restrictions:

■ You cannot declare cursor variables in a package spec. For example, the following
declaration is not allowed:

CREATE PACKAGE emp_stuff AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 emp_cv EmpCurTyp; -- not allowed
END emp_stuff;

■ You cannot pass cursor variables to a procedure that is called through a database
link.

■ If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the
server side unless you also open it there on the same server call.

■ You cannot use comparison operators to test cursor variables for equality,
inequality, or nullity.

■ You cannot assign nulls to a cursor variable.

■ Database columns cannot store the values of cursor variables. There is no
equivalent type to use in a CREATE TABLE statement.

■ You cannot store cursor variables in an associative array, nested table, or varray.

■ Cursors and cursor variables are not interoperable; that is, you cannot use one
where the other is expected. For example, you cannot reference a cursor variable in
a cursor FOR loop.

Using Cursor Expressions
A cursor expression returns a nested cursor. Each row in the result set can contain
values as usual, plus cursors produced by subqueries involving the other values in the
row. A single query can return a large set of related values retrieved from multiple
tables. You can process the result set with nested loops that fetch first from the rows of
the result set, then from any nested cursors within those rows.

PL/SQL supports queries with cursor expressions as part of cursor declarations, REF
CURSOR declarations and ref cursor variables. You can also use cursor expressions in
dynamic SQL queries. Here is the syntax:

CURSOR(subquery)

A nested cursor is implicitly opened when the containing row is fetched from the
parent cursor. The nested cursor is closed only when:

■ The nested cursor is explicitly closed by the user

■ The parent cursor is reexecuted

■ The parent cursor is closed

■ The parent cursor is canceled

Using Cursor Expressions

6-28 PL/SQL User's Guide and Reference

■ An error arises during a fetch on one of its parent cursors. The nested cursor is
closed as part of the clean-up.

Restrictions on Cursor Expressions
■ You cannot use a cursor expression with an implicit cursor.

■ Cursor expressions can appear only:

■ In a SELECT statement that is not nested in any other query expression, except
when it is a subquery of the cursor expression itself.

■ As arguments to table functions, in the FROM clause of a SELECT statement.

■ Cursor expressions can appear only in the outermost SELECT list of the query
specification.

■ Cursor expressions cannot appear in view declarations.

■ You cannot perform BIND and EXECUTE operations on cursor expressions.

Example of Cursor Expressions
In this example, we find a specified location ID, and a cursor from which we can fetch
all the departments in that location. As we fetch each department's name, we also get
another cursor that lets us fetch their associated employee details from another table.

DECLARE
 TYPE emp_cur_typ IS REF CURSOR;
 emp_cur emp_cur_typ;
 dept_name departments.department_name%TYPE;
 emp_name employees.last_name%TYPE;
 CURSOR c1 IS SELECT
 department_name,
-- The 2nd item in the result set is another result set,
-- which is represented as a ref cursor and labelled "employees".
 CURSOR
 (
 SELECT e.last_name FROM employees e
 WHERE e.department_id = d.department_id
) employees
 FROM departments d
 WHERE department_name like 'A%';

BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO dept_name, emp_cur;
 EXIT WHEN c1%NOTFOUND;
 dbms_output.put_line('Department: ' || dept_name);
-- For each row in the result set, we can process the result
-- set from a subquery. We could pass the ref cursor to a procedure
-- instead of processing it here in the loop.
 LOOP
 FETCH emp_cur INTO emp_name;
 EXIT WHEN emp_cur%NOTFOUND;
 dbms_output.put_line(' Employee: ' || emp_name);
 END LOOP;
 END LOOP;
 CLOSE c1;
END;
/

Overview of Transaction Processing in PL/SQL

Performing SQL Operations from PL/SQL 6-29

Constructing REF CURSORs with Cursor Subqueries
You can use cursor subqueries, also know as cursor expressions, to pass sets of rows as
parameters to functions. For example, this statement passes a parameter to the
StockPivot function consisting of a REF CURSOR that represents the rows returned by
the cursor subquery:

SELECT * FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable)));

Cursor subqueries are often used with table functions, which are explained in "Setting
Up Transformation Pipelines with Table Functions" on page 11-28.

Overview of Transaction Processing in PL/SQL
This section explains how to do transaction processing with PL/SQL.

You should already be familiar with the idea of transactions, and how to ensure the
consistency of a database, such as the COMMIT, SAVEPOINT, and ROLLBACK
statements. These are Oracle features, available through all programming languages,
that let multiple users work on the database concurrently, and ensure that each user
sees a consistent version of data and that all changes are applied in the right order.

You usually do not need to write extra code to prevent problems with multiple users
accessing data concurrently. Oracle uses locks to control concurrent access to data, and
locks only the minimum amount of data necessary, for as little time as possible. You
can request locks on tables or rows if you really do need this level of control. You can
choose from several modes of locking such as row share and exclusive.

Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL
You can include COMMIT, SAVEPOINT, and ROLLBACK statements directly in your
PL/SQL programs.

The COMMIT statement ends the current transaction, making any changes made during
that transaction permanent, and visible to other users.

The ROLLBACK statement ends the current transaction and undoes any changes made
during that transaction. If you make a mistake, such as deleting the wrong row from a
table, a rollback restores the original data. If you cannot finish a transaction because an
exception is raised or a SQL statement fails, a rollback lets you take corrective action
and perhaps start over.

SAVEPOINT names and marks the current point in the processing of a transaction.
Savepoints let you roll back part of a transaction instead of the whole transaction.

Consider a transaction that transfers money from one bank account to another. It is
important that the money come out of one account, and into the other, at exactly the
same moment. Otherwise, a problem partway through might make the money be lost
from both accounts or be duplicated in both accounts.

BEGIN
 UPDATE accts SET bal = my_bal - debit
 WHERE acctno = 7715;
 UPDATE accts SET bal = my_bal + credit
 WHERE acctno = 7720;
 COMMIT WORK;
END;

Overview of Transaction Processing in PL/SQL

6-30 PL/SQL User's Guide and Reference

Transactions are not tied to PL/SQL BEGIN-END blocks. A block can contain multiple
transactions, and a transaction can span multiple blocks.

The optional COMMENT clause lets you specify a comment to be associated with a
distributed transaction. If a network or machine fails during the commit, the state of
the distributed transaction might be unknown or in doubt. In that case, Oracle stores
the text specified by COMMENT in the data dictionary along with the transaction ID. The
text must be a quoted literal up to 50 characters long:

COMMIT COMMENT 'In-doubt order transaction; notify Order Entry';

PL/SQL does not support the FORCE clause of SQL, which manually commits an
in-doubt distributed transaction.

The following example inserts information about an employee into three different
database tables. If an INSERT statement tries to store a duplicate employee number,
the predefined exception DUP_VAL_ON_INDEX is raised. To make sure that changes to
all three tables are undone, the exception handler executes a ROLLBACK.

DECLARE
 emp_id INTEGER;
BEGIN
 SELECT empno, ... INTO emp_id, ... FROM new_emp WHERE ...
 INSERT INTO emp VALUES (emp_id, ...);
 INSERT INTO tax VALUES (emp_id, ...);
 INSERT INTO pay VALUES (emp_id, ...);
EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK;
END;

Statement-Level Rollbacks
Before executing a SQL statement, Oracle marks an implicit savepoint. Then, if the
statement fails, Oracle rolls it back automatically. For example, if an INSERT statement
raises an exception by trying to insert a duplicate value in a unique index, the
statement is rolled back. Only work started by the failed SQL statement is lost. Work
done before that statement in the current transaction is kept.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals an
error to one of the participating transactions and rolls back the current statement in
that transaction.

Before executing a SQL statement, Oracle must parse it, that is, examine it to make sure
it follows syntax rules and refers to valid schema objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

The following example marks a savepoint before doing an insert. If the INSERT
statement tries to store a duplicate value in the empno column, the predefined
exception DUP_VAL_ON_INDEX is raised. In that case, you roll back to the savepoint,
undoing just the insert.

DECLARE
 emp_id emp.empno%TYPE;
BEGIN
 UPDATE emp SET ... WHERE empno = emp_id;
 DELETE FROM emp WHERE ...
 SAVEPOINT do_insert;
 INSERT INTO emp VALUES (emp_id, ...);

Overview of Transaction Processing in PL/SQL

Performing SQL Operations from PL/SQL 6-31

EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK TO do_insert;
END;

When you roll back to a savepoint, any savepoints marked after that savepoint are
erased. The savepoint to which you roll back is not erased. A simple rollback or
commit erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances of the
SAVEPOINT statement are executed at each level in the recursive descent, but you can
only roll back to the most recently marked savepoint.

Savepoint names are undeclared identifiers. Reusing a savepoint name within a
transaction moves the savepoint from its old position to the current point in the
transaction. Thus, a rollback to the savepoint affects only the current part of your
transaction:

BEGIN
 SAVEPOINT my_point;
 UPDATE emp SET ... WHERE empno = emp_id;
 SAVEPOINT my_point; -- move my_point to current point
 INSERT INTO emp VALUES (emp_id, ...);
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK TO my_point;
END;

The number of active savepoints for each session is unlimited.

How Oracle Does Implicit Rollbacks
Before executing an INSERT, UPDATE, or DELETE statement, Oracle marks an implicit
savepoint (unavailable to you). If the statement fails, Oracle rolls back to the savepoint.
Normally, just the failed SQL statement is rolled back, not the whole transaction. If the
statement raises an unhandled exception, the host environment determines what is
rolled back.

If you exit a stored subprogram with an unhandled exception, PL/SQL does not
assign values to OUT parameters, and does not do any rollback.

Ending Transactions
You should explicitly commit or roll back every transaction. Whether you issue the
commit or rollback in your PL/SQL program or from a client program depends on the
application logic. If you do not commit or roll back a transaction explicitly, the client
environment determines its final state.

For example, in the SQL*Plus environment, if your PL/SQL block does not include a
COMMIT or ROLLBACK statement, the final state of your transaction depends on what
you do after running the block. If you execute a data definition, data control, or
COMMIT statement or if you issue the EXIT, DISCONNECT, or QUIT command, Oracle
commits the transaction. If you execute a ROLLBACK statement or abort the SQL*Plus
session, Oracle rolls back the transaction.

Oracle precompiler programs roll back the transaction unless the program explicitly
commits or rolls back work, and disconnects using the RELEASE parameter:

EXEC SQL COMMIT WORK RELEASE;

Overview of Transaction Processing in PL/SQL

6-32 PL/SQL User's Guide and Reference

Setting Transaction Properties with SET TRANSACTION
You use the SET TRANSACTION statement to begin a read-only or read-write
transaction, establish an isolation level, or assign your current transaction to a
specified rollback segment. Read-only transactions are useful for running multiple
queries while other users update the same tables.

During a read-only transaction, all queries refer to the same snapshot of the database,
providing a multi-table, multi-query, read-consistent view. Other users can continue to
query or update data as usual. A commit or rollback ends the transaction. In the
example below a store manager uses a read-only transaction to gather sales figures for
the day, the past week, and the past month. The figures are unaffected by other users
updating the database during the transaction.

DECLARE
 daily_sales REAL;
 weekly_sales REAL;
 monthly_sales REAL;
BEGIN
 COMMIT; -- ends previous transaction
 SET TRANSACTION READ ONLY NAME 'Calculate sales figures';
 SELECT SUM(amt) INTO daily_sales FROM sales
 WHERE dte = SYSDATE;
 SELECT SUM(amt) INTO weekly_sales FROM sales
 WHERE dte > SYSDATE - 7;
 SELECT SUM(amt) INTO monthly_sales FROM sales
 WHERE dte > SYSDATE - 30;
 COMMIT; -- ends read-only transaction
END;

The SET TRANSACTION statement must be the first SQL statement in a read-only
transaction and can only appear once in a transaction. If you set a transaction to READ
ONLY, subsequent queries see only changes committed before the transaction began.
The use of READ ONLY does not affect other users or transactions.

Restrictions on SET TRANSACTION
Only the SELECT INTO, OPEN, FETCH, CLOSE, LOCK TABLE, COMMIT, and ROLLBACK
statements are allowed in a read-only transaction. Queries cannot be FOR UPDATE.

Overriding Default Locking
By default, Oracle locks data structures for you automatically, which is a major
strength of the Oracle database: different applications can read and write to the same
data without harming each other's data or coordinating with each other.

You can request data locks on specific rows or entire tables if you need to override
default locking. Explicit locking lets you deny access to data for the duration of a
transaction.:

■ With the LOCK TABLE statement, you can explicitly lock entire tables.

■ With the SELECT FOR UPDATE statement, you can explicitly lock specific rows of a
table to make sure they do not change after you have read them. That way, you
can check which or how many rows will be affected by an UPDATE or DELETE
statement before issuing the statement, and no other application can change the
rows in the meantime.

Overview of Transaction Processing in PL/SQL

Performing SQL Operations from PL/SQL 6-33

Using FOR UPDATE
When you declare a cursor that will be referenced in the CURRENT OF clause of an
UPDATE or DELETE statement, you must use the FOR UPDATE clause to acquire
exclusive row locks. An example follows:

DECLARE
 CURSOR c1 IS SELECT empno, sal FROM emp
 WHERE job = 'SALESMAN' AND comm > sal
 FOR UPDATE NOWAIT;

The SELECT ... FOR UPDATE statement identifies the rows that will be updated or
deleted, then locks each row in the result set. This is useful when you want to base an
update on the existing values in a row. In that case, you must make sure the row is not
changed by another user before the update.

The optional keyword NOWAIT tells Oracle not to wait if requested rows have been
locked by another user. Control is immediately returned to your program so that it can
do other work before trying again to acquire the lock. If you omit the keyword
NOWAIT, Oracle waits until the rows are available.

All rows are locked when you open the cursor, not as they are fetched. The rows are
unlocked when you commit or roll back the transaction. Since the rows are no longer
locked, you cannot fetch from a FOR UPDATE cursor after a commit. (For a
workaround, see "Fetching Across Commits" on page 6-34.)

When querying multiple tables, you can use the FOR UPDATE clause to confine row
locking to particular tables. Rows in a table are locked only if the FOR UPDATE OF
clause refers to a column in that table. For example, the following query locks rows in
the emp table but not in the dept table:

DECLARE
 CURSOR c1 IS SELECT ename, dname FROM emp, dept
 WHERE emp.deptno = dept.deptno AND job = 'MANAGER'
 FOR UPDATE OF sal;

As the next example shows, you use the CURRENT OF clause in an UPDATE or DELETE
statement to refer to the latest row fetched from a cursor:

DECLARE
 CURSOR c1 IS SELECT empno, job, sal FROM emp FOR UPDATE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO ...
 UPDATE emp SET sal = new_sal WHERE CURRENT OF c1;
 END LOOP;

Using LOCK TABLE
You use the LOCK TABLE statement to lock entire database tables in a specified lock
mode so that you can share or deny access to them.. Row share locks allow concurrent
access to a table; they prevent other users from locking the entire table for exclusive
use. Table locks are released when your transaction issues a commit or rollback.

LOCK TABLE emp IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For example,
many users can acquire row share locks on a table at the same time, but only one user
at a time can acquire an exclusive lock. While one user has an exclusive lock on a table,
no other users can insert, delete, or update rows in that table. For more information

Overview of Transaction Processing in PL/SQL

6-34 PL/SQL User's Guide and Reference

about lock modes, see Oracle Database Application Developer's Guide -
Fundamentals.

A table lock never keeps other users from querying a table, and a query never acquires
a table lock. Only if two different transactions try to modify the same row will one
transaction wait for the other to complete.

Fetching Across Commits
PL/SQL raises an exception if you try to fetch from a FOR UPDATE cursor after doing a
commit. The FOR UPDATE clause locks the rows when you open the cursor, and
unlocks them when you commit.

DECLARE
 CURSOR c1 IS SELECT ename FROM emp FOR UPDATE OF sal;
BEGIN
 FOR emp_rec IN c1 LOOP -- FETCH fails on the second iteration
 INSERT INTO temp VALUES ('still going');
 COMMIT; -- releases locks
 END LOOP;
END;

If you want to fetch across commits, use the ROWID pseudocolumn to mimic the
CURRENT OF clause. Select the rowid of each row into a UROWID variable, then use the
rowid to identify the current row during subsequent updates and deletes:

DECLARE
 CURSOR c1 IS SELECT ename, job, rowid FROM emp;
 my_ename emp.ename%TYPE;
 my_job emp.job%TYPE;
 my_rowid UROWID;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO my_ename, my_job, my_rowid;
 EXIT WHEN c1%NOTFOUND;
 UPDATE emp SET sal = sal * 1.05 WHERE rowid = my_rowid;
 -- this mimics WHERE CURRENT OF c1
 COMMIT;
 END LOOP;
 CLOSE c1;
END;

Because the fetched rows are not locked by a FOR UPDATE clause, other users might
unintentionally overwrite your changes. The extra space needed for read consistency
is not released until the cursor is closed, which can slow down processing for large
updates.

The next example shows that you can use the %ROWTYPE attribute with cursors that
reference the ROWID pseudocolumn:

DECLARE
 CURSOR c1 IS SELECT ename, sal, rowid FROM emp;
 emp_rec c1%ROWTYPE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 IF ... THEN
 DELETE FROM emp WHERE rowid = emp_rec.rowid;

Doing Independent Units of Work with Autonomous Transactions

Performing SQL Operations from PL/SQL 6-35

 END IF;
 END LOOP;
 CLOSE c1;
END;

Doing Independent Units of Work with Autonomous Transactions
An autonomous transaction is an independent transaction started by another
transaction, the main transaction. Autonomous transactions do SQL operations and
commit or roll back, without committing or rolling back the main transaction. For
example, if you write auditing data to a log table, you want to commit the audit data
even if the operation you are auditing later fails; if something goes wrong recording
the audit data, you do not want the main operation to be rolled back.

Figure 6–1 shows how control flows from the main transaction (MT) to an
autonomous transaction (AT) and back again.

Figure 6–1 Transaction Control Flow

Advantages of Autonomous Transactions
Once started, an autonomous transaction is fully independent. It shares no locks,
resources, or commit-dependencies with the main transaction. You can log events,
increment retry counters, and so on, even if the main transaction rolls back.

More important, autonomous transactions help you build modular, reusable software
components. You can encapsulate autonomous transactions within stored procedures.
A calling application does not need to know whether operations done by that stored
procedure succeeded or failed.

Defining Autonomous Transactions
To define autonomous transactions, you use the pragma (compiler directive)
AUTONOMOUS_TRANSACTION. The pragma instructs the PL/SQL compiler to mark a
routine as autonomous (independent). In this context, the term routine includes

■ Top-level (not nested) anonymous PL/SQL blocks

■ Local, standalone, and packaged functions and procedures

■ Methods of a SQL object type

■ Database triggers

You can code the pragma anywhere in the declarative section of a routine. But, for
readability, code the pragma at the top of the section. The syntax follows:

PROCEDURE proc1 IS
 emp_id NUMBER;
BEGIN
 emp_id := 7788;
 INSERT ... MT begins
 SELECT ...
 proc2;
 DELETE ...
 COMMIT; MT ends
END;

PROCEDURE proc2 IS
 PRAGMA AUTON...
 dept_id NUMBER;
BEGIN MT suspends
 dept_id := 20;
 UPDATE ... AT begins
 INSERT ...
 UPDATE ...
 COMMIT; AT ends
END; MT resumes

Main Transaction Autonomous Transaction

Doing Independent Units of Work with Autonomous Transactions

6-36 PL/SQL User's Guide and Reference

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE PACKAGE banking AS
 ...
 FUNCTION balance (acct_id INTEGER) RETURN REAL;
END banking;

CREATE PACKAGE BODY banking AS
 ...
 FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
 BEGIN
 ...
 END;
END banking;

Restriction: You cannot use the pragma to mark all subprograms in a package (or all
methods in an object type) as autonomous. Only individual routines can be marked
autonomous.

The next example marks a standalone procedure as autonomous:

CREATE PROCEDURE close_account (acct_id INTEGER, OUT balance) AS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
BEGIN ... END;

The following example marks a PL/SQL block as autonomous:

DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_empno NUMBER(4);
BEGIN ... END;

Restriction: You cannot mark a nested PL/SQL block as autonomous.

The example below marks a database trigger as autonomous. Unlike regular triggers,
autonomous triggers can contain transaction control statements such as COMMIT and
ROLLBACK.

CREATE TRIGGER parts_trigger
BEFORE INSERT ON parts FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO parts_log VALUES(:new.pnum, :new.pname);
 COMMIT; -- allowed only in autonomous triggers
END;

Comparison of Autonomous Transactions and Nested Transactions
Although an autonomous transaction is started by another transaction, it is not a
nested transaction:

■ It does not share transactional resources (such as locks) with the main transaction.

■ It does not depend on the main transaction. For example, if the main transaction
rolls back, nested transactions roll back, but autonomous transactions do not.

Doing Independent Units of Work with Autonomous Transactions

Performing SQL Operations from PL/SQL 6-37

■ Its committed changes are visible to other transactions immediately. (A nested
transaction's committed changes are not visible to other transactions until the
main transaction commits.)

■ Exceptions raised in an autonomous transaction cause a transaction-level rollback,
not a statement-level rollback.

Transaction Context
The main transaction shares its context with nested routines, but not with autonomous
transactions. When one autonomous routine calls another (or itself recursively), the
routines share no transaction context. When an autonomous routine calls a
non-autonomous routine, the routines share the same transaction context.

Transaction Visibility
Changes made by an autonomous transaction become visible to other transactions
when the autonomous transaction commits. These changes become visible to the main
transaction when it resumes, if its isolation level is set to READ COMMITTED (the
default).

If you set the isolation level of the main transaction to SERIALIZABLE, changes made
by its autonomous transactions are not visible to the main transaction when it resumes:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Controlling Autonomous Transactions
The first SQL statement in an autonomous routine begins a transaction. When one
transaction ends, the next SQL statement begins another transaction. All SQL
statements executed since the last commit or rollback make up the current transaction.
To control autonomous transactions, use the following statements, which apply only to
the current (active) transaction:

■ COMMIT

■ ROLLBACK [TO savepoint_name]

■ SAVEPOINT savepoint_name

■ SET TRANSACTION

Note: Transaction properties set in the main transaction apply only to that transaction,
not to its autonomous transactions, and vice versa.

Entering and Exiting
When you enter the executable section of an autonomous routine, the main transaction
suspends. When you exit the routine, the main transaction resumes.

To exit normally, you must explicitly commit or roll back all autonomous transactions.
If the routine (or any routine called by it) has pending transactions, an exception is
raised, and the pending transactions are rolled back.

Committing and Rolling Back
COMMIT and ROLLBACK end the active autonomous transaction but do not exit the
autonomous routine. When one transaction ends, the next SQL statement begins
another transaction. A single autonomous routine could contain several autonomous
transactions, if it issued several COMMIT statements.

Doing Independent Units of Work with Autonomous Transactions

6-38 PL/SQL User's Guide and Reference

Using Savepoints
The scope of a savepoint is the transaction in which it is defined. Savepoints defined in
the main transaction are unrelated to savepoints defined in its autonomous
transactions. In fact, the main transaction and an autonomous transaction can use the
same savepoint names.

You can roll back only to savepoints marked in the current transaction. In an
autonomous transaction, you cannot roll back to a savepoint marked in the main
transaction. To do so, you must resume the main transaction by exiting the
autonomous routine.

When in the main transaction, rolling back to a savepoint marked before you started
an autonomous transaction does not roll back the autonomous transaction. Remember,
autonomous transactions are fully independent of the main transaction.

Avoiding Errors with Autonomous Transactions
To avoid some common errors, keep the following points in mind:

■ If an autonomous transaction attempts to access a resource held by the main
transaction, a deadlock can occur. Oracle raises an exception in the autonomous
transaction, which is rolled back if the exception goes unhandled.

■ The Oracle initialization parameter TRANSACTIONS specifies the maximum
number of concurrent transactions. That number might be exceeded because an
autonomous transaction runs concurrently with the main transaction.

■ If you try to exit an active autonomous transaction without committing or rolling
back, Oracle raises an exception. If the exception goes unhandled, the transaction
is rolled back.

Using Autonomous Triggers
Among other things, you can use database triggers to log events transparently.
Suppose you want to track all inserts into a table, even those that roll back. In the
example below, you use a trigger to insert duplicate rows into a shadow table. Because
it is autonomous, the trigger can commit changes to the shadow table whether or not
you commit changes to the main table.

-- create a main table and its shadow table
CREATE TABLE parts (pnum NUMBER(4), pname VARCHAR2(15));
CREATE TABLE parts_log (pnum NUMBER(4), pname VARCHAR2(15));

-- create an autonomous trigger that inserts into the
-- shadow table before each insert into the main table
CREATE TRIGGER parts_trig
BEFORE INSERT ON parts FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO parts_log VALUES(:new.pnum, :new.pname);
 COMMIT;
END;

-- insert a row into the main table, and then commit the insert
INSERT INTO parts VALUES (1040, 'Head Gasket');
COMMIT;

-- insert another row, but then roll back the insert
INSERT INTO parts VALUES (2075, 'Oil Pan');

Doing Independent Units of Work with Autonomous Transactions

Performing SQL Operations from PL/SQL 6-39

ROLLBACK;

-- show that only committed inserts add rows to the main table
SELECT * FROM parts ORDER BY pnum;
 PNUM PNAME
------- ---------------
 1040 Head Gasket

-- show that both committed and rolled-back inserts add rows
-- to the shadow table
SELECT * FROM parts_log ORDER BY pnum;
 PNUM PNAME
------- ---------------
 1040 Head Gasket
 2075 Oil Pan

Unlike regular triggers, autonomous triggers can execute DDL statements using native
dynamic SQL (discussed in Chapter 7, "Performing SQL Operations with Native
Dynamic SQL"). In the following example, trigger bonus_trig drops a temporary
database table after table bonus is updated:

CREATE TRIGGER bonus_trig
AFTER UPDATE ON bonus
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION; -- enables trigger to perform DDL
BEGIN
 EXECUTE IMMEDIATE 'DROP TABLE temp_bonus';
END;

For more information about database triggers, see Oracle Database Application
Developer's Guide - Fundamentals.

Calling Autonomous Functions from SQL
A function called from SQL statements must obey certain rules meant to control side
effects. (See "Controlling Side Effects of PL/SQL Subprograms" on page 8-22.) To check
for violations of the rules, you can use the pragma RESTRICT_REFERENCES. The
pragma asserts that a function does not read or write database tables or package
variables. (For more information, See Oracle Database Application Developer's Guide -
Fundamentals.)

However, by definition, autonomous routines never violate the rules "read no database
state" (RNDS) and "write no database state" (WNDS) no matter what they do. This can be
useful, as the example below shows. When you call the packaged function log_msg
from a query, it inserts a message into database table debug_output without
violating the rule "write no database state."

-- create the debug table
CREATE TABLE debug_output (msg VARCHAR2(200));

-- create the package spec
CREATE PACKAGE debugging AS
 FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(log_msg, WNDS, RNDS);
END debugging;

-- create the package body
CREATE PACKAGE BODYq debugging AS
 FUNCTION log_msg (msg VARCHAR2) RETURN VARCHAR2 IS
 PRAGMA AUTONOMOUS_TRANSACTION;

Doing Independent Units of Work with Autonomous Transactions

6-40 PL/SQL User's Guide and Reference

 BEGIN
 -- the following insert does not violate the constraint
 -- WNDS because this is an autonomous routine
 INSERT INTO debug_output VALUES (msg);
 COMMIT;
 RETURN msg;
 END;
END debugging;

-- call the packaged function from a query
DECLARE
 my_empno NUMBER(4);
 my_ename VARCHAR2(15);
BEGIN
 ...
 SELECT debugging.log_msg(ename) INTO my_ename FROM emp
 WHERE empno = my_empno;
 -- even if you roll back in this scope, the insert
 -- into 'debug_output' remains committed because
 -- it is part of an autonomous transaction
 IF ... THEN
 ROLLBACK;
 END IF;
END;

Performing SQL Operations with Native Dynamic SQL 7-1

7
Performing SQL Operations with Native

Dynamic SQL

A happy and gracious flexibility ... — Matthew Arnold

This chapter shows you how to use native dynamic SQL (dynamic SQL for short), a
PL/SQL interface that makes your programs more flexible, by building and processing
SQL statements at run time.

With dynamic SQL, you can directly execute any kind of SQL statement (even data
definition and data control statements). You can build statements where you do not
know table names, WHERE clauses, and other information in advance.

This chapter contains these topics:

■ What Is Dynamic SQL? on page 7-1

■ Why Use Dynamic SQL? on page 7-2

■ Using the EXECUTE IMMEDIATE Statement on page 7-2

■ Building a Dynamic Query with Dynamic SQL on page 7-4

■ Using Bulk Dynamic SQL on page 7-6

■ Guidelines for Dynamic SQL on page 7-8

What Is Dynamic SQL?
 Some programs must build and process SQL statements where some information is
not known in advance. A reporting application might build different SELECT
statements for the various reports it generates, substituting new table and column
names and ordering or grouping by different columns. Database management
applications might issue statements such as CREATE, DROP, and GRANT that cannot be
coded directly in a PL/SQL program. These statements are called dynamic SQL
statements.

Dynamic SQL statements built as character strings built at run time. The strings
contain the text of a SQL statement or PL/SQL block. They can also contain
placeholders for bind arguments. Placeholder names are prefixed by a colon, and the
names themselves do not matter. For example, PL/SQL makes no distinction between
the following strings:

'DELETE FROM emp WHERE sal > :my_sal AND comm < :my_comm'
'DELETE FROM emp WHERE sal > :s AND comm < :c'

Why Use Dynamic SQL?

7-2 PL/SQL User's Guide and Reference

To process most dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. To process a multi-row query (SELECT statement), you use the OPEN-FOR,
FETCH, and CLOSE statements.

Why Use Dynamic SQL?
You need dynamic SQL in the following situations:

■ You want to execute a SQL data definition statement (such as CREATE), a data
control statement (such as GRANT), or a session control statement (such as ALTER
SESSION). Unlike INSERT, UPDATE, and DELETE statements, these statements
cannot be included directly in a PL/SQL program.

■ You want more flexibility. For example, you might want to pass the name of a
schema object as a parameter to a procedure. You might want to build different
search conditions for the WHERE clause of a SELECT statement.

■ You want to issue a query where you do not know the number, names, or
datatypes of the columns in advance. In this case, you use the DBMS_SQL package
rather than the OPEN-FOR statement.

If you have older code that uses the DBMS_SQL package, the techniques described in
this chapter using EXECUTE IMMEDIATE and OPEN-FOR generally provide better
performance, more readable code, and extra features such as support for objects and
collections. (For a comparison with DBMS_SQL, see Oracle Database Application
Developer's Guide - Fundamentals.)

Using the EXECUTE IMMEDIATE Statement
The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes a
dynamic SQL statement or an anonymous PL/SQL block.

The main argument to EXECUTE IMMEDIATE is the string containing the SQL
statement to execute. You can build up the string using concatenation, or use a
predefined string.

Except for multi-row queries, the dynamic string can contain any SQL statement
(without the final semicolon) or any PL/SQL block (with the final semicolon). The
string can also contain placeholders, arbitrary names preceded by a colon, for bind
arguments. In this case, you specify which PL/SQL variables correspond to the
placeholders with the INTO, USING, and RETURNING INTO clauses.

You can only use placeholders in places where you can substitute variables in the SQL
statement, such as conditional tests in WHERE clauses. You cannot use placeholders for
the names of schema objects. For the right way, see "Passing Schema Object Names As
Parameters" on page 7-9.

Used only for single-row queries, the INTO clause specifies the variables or record into
which column values are retrieved. For each value retrieved by the query, there must
be a corresponding, type-compatible variable or field in the INTO clause.

Used only for DML statements that have a RETURNING clause (without a BULK
COLLECT clause), the RETURNING INTO clause specifies the variables into which
column values are returned. For each value returned by the DML statement, there
must be a corresponding, type-compatible variable in the RETURNING INTO clause.

You can place all bind arguments in the USING clause. The default parameter mode is
IN. For DML statements that have a RETURNING clause, you can place OUT arguments
in the RETURNING INTO clause without specifying the parameter mode. If you use

Using the EXECUTE IMMEDIATE Statement

Performing SQL Operations with Native Dynamic SQL 7-3

both the USING clause and the RETURNING INTO clause, the USING clause can contain
only IN arguments.

At run time, bind arguments replace corresponding placeholders in the dynamic
string. Every placeholder must be associated with a bind argument in the USING
clause and/or RETURNING INTO clause. You can use numeric, character, and string
literals as bind arguments, but you cannot use Boolean literals (TRUE, FALSE, and
NULL). To pass nulls to the dynamic string, you must use a workaround. See "Passing
Nulls to Dynamic SQL" on page 7-10.

Dynamic SQL supports all the SQL datatypes. For example, define variables and bind
arguments can be collections, LOBs, instances of an object type, and refs.

As a rule, dynamic SQL does not support PL/SQL-specific types. For example, define
variables and bind arguments cannot be Booleans or associative arrays. The only
exception is that a PL/SQL record can appear in the INTO clause.

You can execute a dynamic SQL statement repeatedly using new values for the bind
arguments. However, you incur some overhead because EXECUTE IMMEDIATE
re-prepares the dynamic string before every execution.

Example 7–1 Some Examples of Dynamic SQL

The following PL/SQL block contains several examples of dynamic SQL:

DECLARE
 sql_stmt VARCHAR2(200);
 plsql_block VARCHAR2(500);
 emp_id NUMBER(4) := 7566;
 salary NUMBER(7,2);
 dept_id NUMBER(2) := 50;
 dept_name VARCHAR2(14) := ’PERSONNEL’;
 location VARCHAR2(13) := ’DALLAS’;
 emp_rec emp%ROWTYPE;
BEGIN
 EXECUTE IMMEDIATE ’CREATE TABLE bonus (id NUMBER, amt NUMBER)’;
 sql_stmt := ’INSERT INTO dept VALUES (:1, :2, :3)’;
 EXECUTE IMMEDIATE sql_stmt USING dept_id, dept_name, location;
 sql_stmt := ’SELECT * FROM emp WHERE empno = :id’;
 EXECUTE IMMEDIATE sql_stmt INTO emp_rec USING emp_id;
 plsql_block := ’BEGIN emp_pkg.raise_salary(:id, :amt); END;’;
 EXECUTE IMMEDIATE plsql_block USING 7788, 500;
 sql_stmt := ’UPDATE emp SET sal = 2000 WHERE empno = :1
 RETURNING sal INTO :2’;
 EXECUTE IMMEDIATE sql_stmt USING emp_id RETURNING INTO salary;
 EXECUTE IMMEDIATE ’DELETE FROM dept WHERE deptno = :num’
 USING dept_id;
 EXECUTE IMMEDIATE ’ALTER SESSION SET SQL_TRACE TRUE’;
END;
/

Example 7–2 Dynamic SQL Procedure that Accepts Table Name and WHERE Clause

In the example below, a standalone procedure accepts the name of a database table
and an optional WHERE-clause condition. If you omit the condition, the procedure
deletes all rows from the table. Otherwise, the procedure deletes only those rows that
meet the condition.

CREATE OR REPLACE PROCEDURE delete_rows (
 table_name IN VARCHAR2,

Building a Dynamic Query with Dynamic SQL

7-4 PL/SQL User's Guide and Reference

 condition IN VARCHAR2 DEFAULT NULL) AS
 where_clause VARCHAR2(100) := ' WHERE ' || condition;
BEGIN
 IF condition IS NULL THEN where_clause := NULL; END IF;
 EXECUTE IMMEDIATE 'DELETE FROM ' || table_name || where_clause;
END;
/

Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings
With the USING clause, the mode defaults to IN, so you do not need to specify a
parameter mode for input bind arguments.

With the RETURNING INTO clause, the mode is OUT, so you cannot specify a parameter
mode for output bind arguments.

You must specify the parameter mode in more complicated cases, such as this one
where you call a procedure from a dynamic PL/SQL block:

CREATE PROCEDURE create_dept (
 deptno IN OUT NUMBER,
 dname IN VARCHAR2,
 loc IN VARCHAR2) AS
BEGIN
 SELECT deptno_seq.NEXTVAL INTO deptno FROM dual;
 INSERT INTO dept VALUES (deptno, dname, loc);
END;
/

To call the procedure from a dynamic PL/SQL block, you must specify the IN OUT
mode for the bind argument associated with formal parameter deptno, as follows:

DECLARE
 plsql_block VARCHAR2(500);
 new_deptno NUMBER(2);
 new_dname VARCHAR2(14) := 'ADVERTISING';
 new_loc VARCHAR2(13) := 'NEW YORK';
BEGIN
 plsql_block := 'BEGIN create_dept(:a, :b, :c); END;';
 EXECUTE IMMEDIATE plsql_block
 USING IN OUT new_deptno, new_dname, new_loc;
 IF new_deptno > 90 THEN ...
END;
/

Building a Dynamic Query with Dynamic SQL
You use three statements to process a dynamic multi-row query: OPEN-FOR, FETCH,
and CLOSE. First, you OPEN a cursor variable FOR a multi-row query. Then, you FETCH
rows from the result set one at a time. When all the rows are processed, you CLOSE the
cursor variable. (For more information about cursor variables, see "Using Cursor
Variables (REF CURSORs)" on page 6-19.)

Examples of Dynamic SQL for Records, Objects, and Collections

Performing SQL Operations with Native Dynamic SQL 7-5

Examples of Dynamic SQL for Records, Objects, and Collections

Example 7–3 Dynamic SQL Fetching into a Record

As the following example shows, you can fetch rows from the result set of a dynamic
multi-row query into a record:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 emp_cv EmpCurTyp;
 emp_rec emp%ROWTYPE;
 sql_stmt VARCHAR2(200);
 my_job VARCHAR2(15) := 'CLERK';
BEGIN
 sql_stmt := 'SELECT * FROM emp WHERE job = :j';
 OPEN emp_cv FOR sql_stmt USING my_job;
 LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 -- process record
 END LOOP;
 CLOSE emp_cv;
END;
/

Example 7–4 Dynamic SQL for Object Types and Collections

The next example illustrates the use of objects and collections. Suppose you define
object type Person and VARRAY type Hobbies, as follows:

CREATE TYPE Person AS OBJECT (name VARCHAR2(25), age NUMBER);
CREATE TYPE Hobbies IS VARRAY(10) OF VARCHAR2(25);

Using dynamic SQL, you can write a package that uses these types:

CREATE OR REPLACE PACKAGE teams AS
 PROCEDURE create_table (tab_name VARCHAR2);
 PROCEDURE insert_row (tab_name VARCHAR2, p Person, h Hobbies);
 PROCEDURE print_table (tab_name VARCHAR2);
END;
/

CREATE OR REPLACE PACKAGE BODY teams AS
 PROCEDURE create_table (tab_name VARCHAR2) IS
 BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE ' || tab_name ||
 ' (pers Person, hobbs Hobbies)';
 END;

 PROCEDURE insert_row (
 tab_name VARCHAR2,
 p Person,
 h Hobbies) IS
 BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO ' || tab_name ||
 ' VALUES (:1, :2)' USING p, h;
 END;

 PROCEDURE print_table (tab_name VARCHAR2) IS
 TYPE RefCurTyp IS REF CURSOR;

Using Bulk Dynamic SQL

7-6 PL/SQL User's Guide and Reference

 cv RefCurTyp;
 p Person;
 h Hobbies;
 BEGIN
 OPEN cv FOR 'SELECT pers, hobbs FROM ' || tab_name;
 LOOP
 FETCH cv INTO p, h;
 EXIT WHEN cv%NOTFOUND;
 -- print attributes of 'p' and elements of 'h'
 END LOOP;
 CLOSE cv;
 END;
END;
/

From an anonymous block, you might call the procedures in package TEAMS:

DECLARE
 team_name VARCHAR2(15);
BEGIN
 team_name := 'Notables';
 teams.create_table(team_name);
 teams.insert_row(team_name, Person('John', 31),
 Hobbies('skiing', 'coin collecting', 'tennis'));
 teams.insert_row(team_name, Person('Mary', 28),
 Hobbies('golf', 'quilting', 'rock climbing'));
 teams.print_table(team_name);
END;
/

Using Bulk Dynamic SQL
Bulk SQL passes entire collections back and forth, not just individual elements. This
technique improves performance by minimizing the number of context switches
between the PL/SQL and SQL engines. You can use a single statement instead of a
loop that issues a SQL statement in every iteration.

Using the following commands, clauses, and cursor attribute, your applications can
construct bulk SQL statements, then execute them dynamically at run time:

BULK FETCH statement
BULK EXECUTE IMMEDIATE statement
FORALL statement
COLLECT INTO clause
RETURNING INTO clause
%BULK_ROWCOUNT cursor attribute

The static versions of these statements, clauses, and cursor attribute are discussed in
"Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK
COLLECT)" on page 11-7. Refer to that section for background information.

Using Dynamic SQL with Bulk SQL
Bulk binding lets Oracle bind a variable in a SQL statement to a collection of values.
The collection type can be any PL/SQL collection type (index-by table, nested table, or
varray). The collection elements must have a SQL datatype such as CHAR, DATE, or
NUMBER. Three statements support dynamic bulk binds: EXECUTE IMMEDIATE,
FETCH, and FORALL.

Using Bulk Dynamic SQL

Performing SQL Operations with Native Dynamic SQL 7-7

EXECUTE IMMEDIATE
You can use the BULK COLLECT INTO clause with the EXECUTE IMMEDIATE
statement to store values from each column of a query's result set in a separate
collection.

You can use the RETURNING BULK COLLECT INTO clause with the EXECUTE
IMMEDIATE statement to store the results of an INSERT, UPDATE, or DELETE
statement in a set of collections.

FETCH
You can use the BULK COLLECT INTO clause with the FETCH statement to store
values from each column of a cursor in a separate collection.

FORALL
You can put an EXECUTE IMMEDIATE statement with the RETURNING BULK
COLLECT INTO inside a FORALL statement. You can store the results of all the
INSERT, UPDATE, or DELETE statements in a set of collections.

You can pass subscripted collection elements to the EXECUTE IMMEDIATE statement
through the USING clause. You cannot concatenate the subscripted elements directly
into the string argument to EXECUTE IMMEDIATE; for example, you cannot build a
collection of table names and write a FORALL statement where each iteration applies to
a different table.

Examples of Dynamic Bulk Binds

Example 7–5 Dynamic SQL with BULK COLLECT INTO Clause

You can bind define variables in a dynamic query using the BULK COLLECT INTO
clause. As the following example shows, you can use that clause in a bulk FETCH or
bulk EXECUTE IMMEDIATE statement:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 TYPE NumList IS TABLE OF NUMBER;
 TYPE NameList IS TABLE OF VARCHAR2(15);
 emp_cv EmpCurTyp;
 empnos NumList;
 enames NameList;
 sals NumList;
BEGIN
 OPEN emp_cv FOR 'SELECT empno, ename FROM emp';
 FETCH emp_cv BULK COLLECT INTO empnos, enames;
 CLOSE emp_cv;

 EXECUTE IMMEDIATE 'SELECT sal FROM emp'
 BULK COLLECT INTO sals;
END;
/

Example 7–6 Dynamic SQL with RETURNING BULK COLLECT INTO Clause

Only INSERT, UPDATE, and DELETE statements can have output bind variables. You
bulk-bind them with the RETURNING BULK COLLECT INTO clause of EXECUTE
IMMEDIATE:

DECLARE

Guidelines for Dynamic SQL

7-8 PL/SQL User's Guide and Reference

 TYPE NameList IS TABLE OF VARCHAR2(15);
 enames NameList;
 bonus_amt NUMBER := 500;
 sql_stmt VARCHAR(200);
BEGIN
 sql_stmt := 'UPDATE emp SET bonus = :1 RETURNING ename INTO :2';
 EXECUTE IMMEDIATE sql_stmt
 USING bonus_amt RETURNING BULK COLLECT INTO enames;
END;
/

Example 7–7 Dynamic SQL Inside FORALL Statement

To bind the input variables in a SQL statement, you can use the FORALL statement and
USING clause, as shown below. The SQL statement cannot be a query.

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 TYPE NameList IS TABLE OF VARCHAR2(15);
 empnos NumList;
 enames NameList;
BEGIN
 empnos := NumList(1,2,3,4,5);
 FORALL i IN 1..5
 EXECUTE IMMEDIATE
 'UPDATE emp SET sal = sal * 1.1 WHERE empno = :1
 RETURNING ename INTO :2'
 USING empnos(i) RETURNING BULK COLLECT INTO enames;
 ...
END;
/

Guidelines for Dynamic SQL
This section shows you how to take full advantage of dynamic SQL and how to avoid
some common pitfalls.

When to Use or Omit the Semicolon with Dynamic SQL
When building up a single SQL statement in a string, do not include any semicolon at
the end.

When building up a PL/SQL anonymous block, include the semicolon at the end of
each PL/SQL statement and at the end of the anonymous block.

For example:

BEGIN
 EXECUTE IMMEDIATE 'dbms_output.put_line(''No semicolon'')';
 EXECUTE IMMEDIATE 'BEGIN dbms_output.put_line(''semicolons''); END;';
END;

Improving Performance of Dynamic SQL with Bind Variables
When you code INSERT, UPDATE, DELETE, and SELECT statements directly in
PL/SQL, PL/SQL turns the variables into bind variables automatically, to make the

Guidelines for Dynamic SQL

Performing SQL Operations with Native Dynamic SQL 7-9

statements work efficiently with SQL. When you build up such statements in dynamic
SQL, you need to specify the bind variables yourself to get the same performance.

In the example below, Oracle opens a different cursor for each distinct value of
emp_id. This can lead to resource contention and poor performance as each statement
is parsed and cached.

CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
BEGIN
 EXECUTE IMMEDIATE
 'DELETE FROM emp WHERE empno = ' || TO_CHAR(emp_id);
END;
/

You can improve performance by using a bind variable, which allows Oracle to reuse
the same cursor for different values of emp_id:

CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
BEGIN
 EXECUTE IMMEDIATE
 'DELETE FROM emp WHERE empno = :num' USING emp_id;
END;
/

Passing Schema Object Names As Parameters
Suppose you need a procedure that accepts the name of any database table, then drops
that table from your schema. You must build a string with a statement that includes
the object names, then use EXECUTE IMMEDIATE to execute the statement:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
BEGIN
 EXECUTE IMMEDIATE 'DROP TABLE ' || table_name;
END;
/

Use concatenation to build the string, rather than trying to pass the table name as a
bind variable through the USING clause.

Using Duplicate Placeholders with Dynamic SQL
Placeholders in a dynamic SQL statement are associated with bind arguments in the
USING clause by position, not by name. If you specify a sequence of placeholders like
:a, :a, :b, :b, you must include four items in the USING clause. For example,
given the dynamic string

sql_stmt := 'INSERT INTO payroll VALUES (:x, :x, :y, :x)';

the fact that the name X is repeated is not significant. You can code the corresponding
USING clause with four different bind variables:

EXECUTE IMMEDIATE sql_stmt USING a, a, b, a;

If the dynamic statement represents a PL/SQL block, the rules for duplicate
placeholders are different. Each unique placeholder maps to a single item in the USING
clause. If the same placeholder appears two or more times, all references to that name
correspond to one bind argument in the USING clause. In the following example, all
references to the placeholder X are associated with the first bind argument A, and the
second unique placeholder Y is associated with the second bind argument B.

Guidelines for Dynamic SQL

7-10 PL/SQL User's Guide and Reference

DECLARE
 a NUMBER := 4;
 b NUMBER := 7;
BEGIN
 plsql_block := 'BEGIN calc_stats(:x, :x, :y, :x); END;'
 EXECUTE IMMEDIATE plsql_block USING a, b;
END;
/

Using Cursor Attributes with Dynamic SQL
The SQL cursor attributes %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT work
when you issue an INSERT, UPDATE, DELETE, or single-row SELECT statement in
dynamic SQL:

EXECUTE IMMEDIATE 'DELETE FROM employees WHERE employee_id > 1000';
rows_deleted := SQL%ROWCOUNT;

Likewise, when appended to a cursor variable name, the cursor attributes return
information about the execution of a multi-row query:

OPEN c1 FOR 'SELECT * FROM employees';
FETCH c1 BULK COLLECT INTO rec_tab;
rows_fetched := c1%ROWCOUNT;

For more information about cursor attributes, see "Using Cursor Expressions" on
page 6-27.

Passing Nulls to Dynamic SQL
The literal NULL is not allowed in the USING clause. To work around this restriction,
replace the keyword NULL with an uninitialized variable:

DECLARE
 a_null CHAR(1); -- set to NULL automatically at run time
BEGIN
 EXECUTE IMMEDIATE 'UPDATE emp SET comm = :x' USING a_null;
END;
/

Using Database Links with Dynamic SQL
PL/SQL subprograms can execute dynamic SQL statements that use database links to
refer to objects on remote databases:

PROCEDURE delete_dept (db_link VARCHAR2, dept_id INTEGER) IS
BEGIN
 EXECUTE IMMEDIATE 'DELETE FROM departments@' || db_link ||
 ' WHERE deptno = :num' USING dept_id;
END;
/

The targets of remote procedure calls (RPCs) can contain dynamic SQL statements. For
example, suppose the following standalone function, which returns the number of
rows in a table, resides on the Chicago database:

CREATE FUNCTION row_count (tab_name VARCHAR2) RETURN INTEGER AS
 rows INTEGER;
BEGIN

Guidelines for Dynamic SQL

Performing SQL Operations with Native Dynamic SQL 7-11

 EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM ' || tab_name INTO rows;
 RETURN rows;
END;
/

From an anonymous block, you might call the function remotely, as follows:

DECLARE
 emp_count INTEGER;
BEGIN
 emp_count := row_count@chicago('employees');
END;
/

Using Invoker Rights with Dynamic SQL
Dynamic SQL lets you write schema-management procedures that can be centralized
in one schema, and can be called from other schemas and operate on the objects in
those schemas.

For example, this procedure can drop any kind of database object:

CREATE OR REPLACE PROCEDURE drop_it (kind IN VARCHAR2, name IN
VARCHAR2)
AUTHID CURRENT_USER
AS
BEGIN
 EXECUTE IMMEDIATE 'DROP ' || kind || ' ' || name;
END;
/

Let's say that this procedure is part of the HR schema. Without the AUTHID clause, the
procedure would always drop objects in the HR schema, regardless of who calls it.
Even if you pass a fully qualified object name, this procedure would not have the
privileges to make changes in other schemas.

The AUTHID clause lifts both of these restrictions. It lets the procedure run with the
privileges of the user that invokes it, and makes unqualified references refer to objects
in that user's schema.

For details, see "Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on
page 8-15.

Using Pragma RESTRICT_REFERENCES with Dynamic SQL
A function called from SQL statements must obey certain rules meant to control side
effects. (See "Controlling Side Effects of PL/SQL Subprograms" on page 8-22.) To check
for violations of the rules, you can use the pragma RESTRICT_REFERENCES. The
pragma asserts that a function does not read or write database tables or package
variables. (For more information, See Oracle Database Application Developer's Guide -
Fundamentals.)

If the function body contains a dynamic INSERT, UPDATE, or DELETE statement, the
function always violates the rules "write no database state" (WNDS) and "read no
database state" (RNDS). PL/SQL cannot detect those side-effects automatically, because
dynamic SQL statements are checked at run time, not at compile time. In an EXECUTE
IMMEDIATE statement, only the INTO clause can be checked at compile time for
violations of RNDS.

Guidelines for Dynamic SQL

7-12 PL/SQL User's Guide and Reference

Avoiding Deadlocks with Dynamic SQL
In a few situations, executing a SQL data definition statement results in a deadlock.
For example, the procedure below causes a deadlock because it attempts to drop itself.
To avoid deadlocks, never try to ALTER or DROP a subprogram or package while you
are still using it.

CREATE OR REPLACE PROCEDURE calc_bonus (emp_id NUMBER) AS
BEGIN
 EXECUTE IMMEDIATE 'DROP PROCEDURE calc_bonus'; -- deadlock!
END;
/

Backward Compatibility of the USING Clause
When a dynamic INSERT, UPDATE, or DELETE statement has a RETURNING clause,
output bind arguments can go in the RETURNING INTO clause or the USING clause. In
new applications, use the RETURNING INTO clause. In old applications, you can
continue to use the USING clause.

Using PL/SQL Subprograms 8-1

8
Using PL/SQL Subprograms

Civilization advances by extending the number of important operations that we can perform
without thinking about them. —Alfred North Whitehead

This chapter shows you how to turn sets of statements into reusable subprograms.
Subprograms are like building blocks for modular, maintainable applications.

This chapter contains these topics:

■ What Are Subprograms? on page 8-1

■ Advantages of PL/SQL Subprograms on page 8-2

■ Understanding PL/SQL Procedures on page 8-3

■ Understanding PL/SQL Functions on page 8-3

■ Declaring Nested PL/SQL Subprograms on page 8-5

■ Passing Parameters to PL/SQL Subprograms on page 8-6

■ Overloading Subprogram Names on page 8-9

■ How Subprogram Calls Are Resolved on page 8-12

■ Using Invoker's Rights Versus Definer's Rights (AUTHID Clause) on page 8-15

■ Using Recursion with PL/SQL on page 8-20

■ Calling External Subprograms on page 8-21

■ Creating Dynamic Web Pages with PL/SQL Server Pages on page 8-22

What Are Subprograms?
Subprograms are named PL/SQL blocks that can be called with a set of parameters.
PL/SQL has two types of subprograms, procedures and functions. Generally, you use a
procedure to perform an action and a function to compute a value.

Like anonymous blocks, subprograms have:

■ A declarative part, with declarations of types, cursors, constants, variables,
exceptions, and nested subprograms. These items are local and cease to exist when
the subprogram ends.

■ An executable part, with statements that assign values, control execution, and
manipulate Oracle data.

■ An optional exception-handling part, which deals with runtime error conditions.

Advantages of PL/SQL Subprograms

8-2 PL/SQL User's Guide and Reference

Example 8–1 Simple PL/SQL Procedure

The following example shows a string-manipulation procedure that accepts both input
and output parameters, and handles potential errors:

CREATE OR REPLACE PROCEDURE double
(
 original IN VARCHAR2, new_string OUT VARCHAR2
)
AS
BEGIN
 new_string := original || original;
 EXCEPTION
 WHEN VALUE_ERROR THEN
 dbms_output.put_line('Output buffer not long enough.');
END;
/

Example 8–2 Simple PL/SQL Function

The following example shows a numeric function that declares a local variable to hold
temporary results, and returns a value when finished:

CREATE OR REPLACE FUNCTION square(original NUMBER)
RETURN NUMBER
AS
 original_squared NUMBER;
BEGIN
 original_squared := original * original;
 RETURN original_squared;
END;
/

Advantages of PL/SQL Subprograms
Subprograms let you extend the PL/SQL language. Procedures act like new
statements. Functions act like new expressions and operators.

Subprograms let you break a program down into manageable, well-defined modules.
You can use top-down design and the stepwise refinement approach to problem
solving.

Subprograms promote reusability. Once tested, a subprogram can be reused in any
number of applications. You can call PL/SQL subprograms from many different
environments, so that you do not have to reinvent the wheel each time you use a new
language or API to access the database.

Subprograms promote maintainability. You can change the internals of a subprogram
without changing other subprograms that call it. Subprograms play a big part in other
maintainability features, such as packages and object types.

 Dummy subprograms (stubs) let you defer the definition of procedures and functions
until after testing the main program. You can design applications from the top down,
thinking abstractly, without worrying about implementation details.

When you use PL/SQL subprograms to define an API, you can make your code even
more reusable and maintainable by grouping the subprograms into a PL/SQL
package. For more information about packages, see Chapter 9, "Using PL/SQL
Packages".

Understanding PL/SQL Functions

Using PL/SQL Subprograms 8-3

Understanding PL/SQL Procedures
A procedure is a subprogram that performs a specific action. You write procedures
using the SQL CREATE PROCEDURE statement. You specify the name of the procedure,
its parameters, its local variables, and the BEGIN-END block that contains its code and
handles any exceptions.

For each parameter, you specify:

■ Its name.

■ Its parameter mode (IN, OUT, or IN OUT). If you omit the mode, the default is IN.
The optional NOCOPY keyword speeds up processing of large OUT or IN OUT
parameters.

■ Its datatype. You specify only the type, not any length or precision constraints.

■ Optionally, its default value.

You can specify whether the procedure executes using the schema and permissions of
the user who defined it, or the user who calls it. For more information, see "Using
Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on page 8-15.

You can specify whether it should be part of the current transaction, or execute in its
own transaction where it can COMMIT or ROLLBACK without ending the transaction of
the caller. For more information, see "Doing Independent Units of Work with
Autonomous Transactions" on page 6-35.

Procedures created this way are stored in the database. You can execute the CREATE
PROCEDURE statement interactively from SQL*Plus, or from a program using native
dynamic SQL (see Chapter 7, "Performing SQL Operations with Native Dynamic
SQL").

A procedure has two parts: the specification (spec for short) and the body. The procedure
spec begins with the keyword PROCEDURE and ends with the procedure name or a
parameter list. Parameter declarations are optional. Procedures that take no
parameters are written without parentheses.

The procedure body begins with the keyword IS (or AS) and ends with the keyword
END followed by an optional procedure name. The procedure body has three parts: a
declarative part, an executable part, and an optional exception-handling part.

The declarative part contains local declarations. The keyword DECLARE is used for
anonymous PL/SQL blocks, but not procedures. The executable part contains
statements, which are placed between the keywords BEGIN and EXCEPTION (or END).
At least one statement must appear in the executable part of a procedure. You can use
the NULL statement to define a placeholder procedure or specify that the procedure
does nothing. The exception-handling part contains exception handlers, which are
placed between the keywords EXCEPTION and END.

A procedure is called as a PL/SQL statement. For example, you might call the
procedure raise_salary as follows:

raise_salary(emp_id, amount);

Understanding PL/SQL Functions
A function is a subprogram that computes a value. Functions and procedures are
structured alike, except that functions have a RETURN clause.

Understanding PL/SQL Functions

8-4 PL/SQL User's Guide and Reference

Functions have a number of optional keywords, used to declare a special class of
functions known as table functions. They are typically used for transforming large
amounts of data in data warehousing applications.

The CREATE clause lets you create standalone functions, which are stored in an Oracle
database. You can execute the CREATE FUNCTION statement interactively from
SQL*Plus or from a program using native dynamic SQL.

The AUTHID clause determines whether a stored function executes with the privileges
of its owner (the default) or current user and whether its unqualified references to
schema objects are resolved in the schema of the owner or current user. You can
override the default behavior by specifying CURRENT_USER.

The PARALLEL_ENABLE option declares that a stored function can be used safely in
the slave sessions of parallel DML evaluations. The state of a main (logon) session is
never shared with slave sessions. Each slave session has its own state, which is
initialized when the session begins. The function result should not depend on the state
of session (static) variables. Otherwise, results might vary across sessions.

The hint DETERMINISTIC helps the optimizer avoid redundant function calls. If a
stored function was called previously with the same arguments, the optimizer can
elect to use the previous result. The function result should not depend on the state of
session variables or schema objects. Otherwise, results might vary across calls. Only
DETERMINISTIC functions can be called from a function-based index or a
materialized view that has query-rewrite enabled. For more information, see Oracle
Database SQL Reference.

The pragma AUTONOMOUS_TRANSACTION instructs the PL/SQL compiler to mark a
function as autonomous (independent). Autonomous transactions let you suspend the
main transaction, do SQL operations, commit or roll back those operations, then
resume the main transaction.

You cannot constrain (with NOT NULL for example) the datatype of a parameter or a
function return value. However, you can use a workaround to size-constrain them
indirectly. See "Understanding PL/SQL Procedures" on page 8-3.

Like a procedure, a function has two parts: the spec and the body. The function spec
begins with the keyword FUNCTION and ends with the RETURN clause, which specifies
the datatype of the return value. Parameter declarations are optional. Functions that
take no parameters are written without parentheses.

The function body begins with the keyword IS (or AS) and ends with the keyword
END followed by an optional function name. The function body has three parts: a
declarative part, an executable part, and an optional exception-handling part.

The declarative part contains local declarations, which are placed between the
keywords IS and BEGIN. The keyword DECLARE is not used. The executable part
contains statements, which are placed between the keywords BEGIN and EXCEPTION
(or END). One or more RETURN statements must appear in the executable part of a
function. The exception-handling part contains exception handlers, which are placed
between the keywords EXCEPTION and END.

A function is called as part of an expression:

IF sal_ok(new_sal, new_title) THEN ...

Using the RETURN Statement
The RETURN statement immediately ends the execution of a subprogram and returns
control to the caller. Execution continues with the statement following the subprogram

Declaring Nested PL/SQL Subprograms

Using PL/SQL Subprograms 8-5

call. (Do not confuse the RETURN statement with the RETURN clause in a function spec,
which specifies the datatype of the return value.)

A subprogram can contain several RETURN statements. The subprogram does not have
to conclude with a RETURN statement. Executing any RETURN statement completes the
subprogram immediately.

In procedures, a RETURN statement does not return a value and so cannot contain an
expression. The statement returns control to the caller before the end of the procedure.

In functions, a RETURN statement must contain an expression, which is evaluated when
the RETURN statement is executed. The resulting value is assigned to the function
identifier, which acts like a variable of the type specified in the RETURN clause.
Observe how the function balance returns the balance of a specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 acct_bal REAL;
BEGIN
 SELECT bal INTO acct_bal FROM accts
 WHERE acct_no = acct_id;
 RETURN acct_bal;
END balance;
/

The following example shows that the expression in a function RETURN statement can
be arbitrarily complex:

FUNCTION compound (
 years NUMBER,
 amount NUMBER,
 rate NUMBER) RETURN NUMBER IS
BEGIN
 RETURN amount * POWER((rate / 100) + 1, years);
END compound;
/

In a function, there must be at least one execution path that leads to a RETURN
statement. Otherwise, you get a function returned without value error at run time.

Declaring Nested PL/SQL Subprograms
You can declare subprograms in any PL/SQL block, subprogram, or package. The
subprograms must go at the end of the declarative section, after all other items.

You must declare a subprogram before calling it. This requirement can make it difficult
to declare several nested subprograms that call each other.

You can declare interrelated nested subprograms using a forward declaration: a
subprogram spec terminated by a semicolon, with no body.

Although the formal parameter list appears in the forward declaration, it must also
appear in the subprogram body. You can place the subprogram body anywhere after
the forward declaration, but they must appear in the same program unit.

Example 8–3 Forward Declaration for a Nested Subprogram

DECLARE
 PROCEDURE proc1(arg_list); -- forward declaration
 PROCEDURE proc2(arg_list); -- calls proc1
 PROCEDURE proc1(arg_list) IS BEGIN proc2; END; -- calls proc2
BEGIN

Passing Parameters to PL/SQL Subprograms

8-6 PL/SQL User's Guide and Reference

 NULL;
END;
/

Passing Parameters to PL/SQL Subprograms
This section explains how to pass information in and out of PL/SQL subprograms
using parameters:

■ Actual Versus Formal Subprogram Parameters on page 8-6

■ Using Positional, Named, or Mixed Notation for Subprogram Parameters on
page 8-7

■ Specifying Subprogram Parameter Modes on page 8-7

■ Using Default Values for Subprogram Parameters on page 8-9

Actual Versus Formal Subprogram Parameters
Subprograms pass information using parameters:

■ The variables declared in a subprogram spec and referenced in the subprogram
body are formal parameters.

■ The variables or expressions passed from the calling subprogram are actual
parameters.

A good programming practice is to use different names for actual and formal
parameters.

When you call a procedure, the actual parameters are evaluated and the results are
assigned to the corresponding formal parameters. If necessary, before assigning the
value of an actual parameter to a formal parameter, PL/SQL converts the datatype of
the value. For example, if you pass a number when the procedure expects a string,
PL/SQL converts the parameter so that the procedure receives a string.

The actual parameter and its corresponding formal parameter must have compatible
datatypes. For instance, PL/SQL cannot convert between the DATE and REAL
datatypes, or convert a string to a number if the string contains extra characters such
as dollar signs.

Example 8–4 Formal Parameters and Actual Parameters

The following procedure declares two formal parameters named emp_id and amount:

PROCEDURE raise_salary (emp_id INTEGER, amount REAL) IS
BEGIN
 UPDATE emp SET sal = sal + amount WHERE empno = emp_id;
END raise_salary;
/

This procedure call specifies the actual parameters emp_num and amount:

raise_salary(emp_num, amount);

Expressions can be used as actual parameters:

raise_salary(emp_num, merit + cola);

Passing Parameters to PL/SQL Subprograms

Using PL/SQL Subprograms 8-7

Using Positional, Named, or Mixed Notation for Subprogram Parameters
When calling a subprogram, you can write the actual parameters using either:

■ Positional notation. You specify the same parameters in the same order as they are
declared in the procedure.

This notation is compact, but if you specify the parameters (especially literals) in
the wrong order, the bug can be hard to detect. You must change your code if the
procedure's parameter list changes.

■ Named notation. You specify the name of each parameter along with its value. An
arrow (=>) serves as the association operator. The order of the parameters is not
significant.

This notation is more verbose, but makes your code easier to read and maintain.
You can sometimes avoid changing your code if the procedure's parameter list
changes, for example if the parameters are reordered or a new optional parameter
is added. Named notation is a good practice to use for any code that calls someone
else's API, or defines an API for someone else to use.

■ Mixed notation. You specify the first parameters with positional notation, then
switch to named notation for the last parameters.

You can use this notation to call procedures that have some required parameters,
followed by some optional parameters.

Example 8–5 Subprogram Calls Using Positional, Named, and Mixed Notation

DECLARE
 acct INTEGER := 12345;
 amt REAL := 500.00;
 PROCEDURE credit_acct (acct_no INTEGER, amount REAL) IS
 BEGIN NULL; END;
BEGIN
-- The following calls are all equivalent.
 credit_acct(acct, amt); -- positional
 credit_acct(amount => amt, acct_no => acct); -- named
 credit_acct(acct_no => acct, amount => amt); -- named
 credit_acct(acct, amount => amt); -- mixed
END;
/

Specifying Subprogram Parameter Modes
You use parameter modes to define the behavior of formal parameters. The three
parameter modes are IN (the default), OUT, and IN OUT.

Any parameter mode can be used with any subprogram. Avoid using the OUT and IN
OUT modes with functions. To have a function return multiple values is a poor
programming practice. Also, functions should be free from side effects, which change
the values of variables not local to the subprogram.

Using the IN Mode
An IN parameter lets you pass values to the subprogram being called. Inside the
subprogram, an IN parameter acts like a constant. It cannot be assigned a value.

You can pass a constant, literal, initialized variable, or expression as an IN parameter.

Passing Parameters to PL/SQL Subprograms

8-8 PL/SQL User's Guide and Reference

IN parameters can be initialized to default values, which are used if those parameters
are omitted from the subprogram call. For more information, see "Using Default
Values for Subprogram Parameters" on page 8-9.

Using the OUT Mode
An OUT parameter returns a value to the caller of a subprogram. Inside the
subprogram, an OUT parameter acts like a variable. You can change its value, and
reference the value after assigning it:

PROCEDURE split_name
(
 phrase IN VARCHAR2, first OUT VARCHAR2, last OUT VARCHAR2
)
IS
 first := SUBSTR(phrase, 1, INSTR(phrase, ' ')-1);
 last := SUBSTR(phrase, INSTR(phrase, ' ')+1);
 IF first = 'John' THEN
 DBMS_OUTPUT.PUT_LINE('That is a common first name.');
 END IF;
END;
/

You must pass a variable, not a constant or an expression, to an OUT parameter. Its
previous value is lost unless you specify the NOCOPY keyword (see "Using Default
Values for Subprogram Parameters" on page 8-9) or the subprogram exits with an
unhandled exception.

Like variables, OUT formal parameters are initialized to NULL. The datatype of an OUT
formal parameter cannot be a subtype defined as NOT NULL, such as the built-in
subtypes NATURALN and POSITIVEN. Otherwise, when you call the subprogram,
PL/SQL raises VALUE_ERROR.

Before exiting a subprogram, assign values to all OUT formal parameters. Otherwise,
the corresponding actual parameters will be null. If you exit successfully, PL/SQL
assigns values to the actual parameters. If you exit with an unhandled exception,
PL/SQL does not assign values to the actual parameters.

Using the IN OUT Mode
An IN OUT parameter passes initial values to a subprogram and returns updated
values to the caller. It can be assigned a value and its value can be read. Typically, an
IN OUT parameter is a string buffer or numeric accumulator, that is read inside the
subprogram and then updated.

The actual parameter that corresponds to an IN OUT formal parameter must be a
variable; it cannot be a constant or an expression.

If you exit a subprogram successfully, PL/SQL assigns values to the actual parameters.
If you exit with an unhandled exception, PL/SQL does not assign values to the actual
parameters.

Summary of Subprogram Parameter Modes
Table 8–1 summarizes all you need to know about the parameter modes.

Table 8–1 Parameter Modes

IN OUT IN OUT

The default Must be specified Must be specified

Overloading Subprogram Names

Using PL/SQL Subprograms 8-9

Using Default Values for Subprogram Parameters
By initializing IN parameters to default values, you can pass different numbers of
actual parameters to a subprogram, accepting the default values for any parameters
you omit. You can also add new formal parameters without having to change every
call to the subprogram.

Example 8–6 Procedure with Default Parameter Values

PROCEDURE create_dept (
 new_dname VARCHAR2 DEFAULT 'TEMP',
 new_loc VARCHAR2 DEFAULT 'TEMP') IS
BEGIN
 NULL;
END;
/

If a parameter is omitted, the default value of its corresponding formal parameter is
used. Consider the following calls to create_dept:

create_dept; -- Same as create_dept('TEMP','TEMP');
create_dept('SALES'); -- Same as create_dept('SALES','TEMP');
create_dept('SALES', 'NY');

You cannot skip a formal parameter by leaving out its actual parameter. To omit the
first parameter and specify the second, use named notation:

create_dept(new_loc => 'NEW YORK');

You cannot assign a null to an uninitialized formal parameter by leaving out its actual
parameter. You must pass the null explicitly, or you can specify a default value of
NULL in the declaration.

Overloading Subprogram Names
PL/SQL lets you overload subprogram names and type methods. You can use the
same name for several different subprograms as long as their formal parameters differ
in number, order, or datatype family.

Passes values to a
subprogram

Returns values to the caller Passes initial values to a
subprogram and returns
updated values to the caller

Formal parameter acts like a
constant

Formal parameter acts like
an uninitialized variable

Formal parameter acts like
an initialized variable

Formal parameter cannot be
assigned a value

Formal parameter must be
assigned a value

Formal parameter should be
assigned a value

Actual parameter can be a
constant, initialized variable,
literal, or expression

Actual parameter must be a
variable

Actual parameter must be a
variable

Actual parameter is passed
by reference (a pointer to the
value is passed in)

Actual parameter is passed
by value (a copy of the
value is passed out) unless
NOCOPY is specified

Actual parameter is passed
by value (a copy of the
value is passed in and out)
unless NOCOPY is specified

Table 8–1 (Cont.) Parameter Modes

IN OUT IN OUT

Overloading Subprogram Names

8-10 PL/SQL User's Guide and Reference

Suppose you want to initialize the first n rows in two index-by tables that were
declared as follows:

DECLARE
 TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER;
 TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
 hiredate_tab DateTabTyp;
 sal_tab RealTabTyp;
BEGIN
 NULL;
END;
/

You might write a procedure to initialize one kind of collection:

PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
BEGIN
 FOR i IN 1..n LOOP
 tab(i) := SYSDATE;
 END LOOP;
END initialize;
/

You might also write a procedure to initialize another kind of collection:

PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
BEGIN
 FOR i IN 1..n LOOP
 tab(i) := 0.0;
 END LOOP;
END initialize;
/

Because the processing in these two procedures is the same, it is logical to give them
the same name.

You can place the two overloaded initialize procedures in the same block,
subprogram, package, or object type. PL/SQL determines which procedure to call by
checking their formal parameters. In the following example, the version of
initialize that PL/SQL uses depends on whether you call the procedure with a
DateTabTyp or RealTabTyp parameter:

DECLARE
 TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER;
 TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
 hiredate_tab DateTabTyp;
 comm_tab RealTabTyp;
 indx BINARY_INTEGER;
 PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
 BEGIN
 NULL;
 END;
 PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
 BEGIN
 NULL;
 END;
BEGIN
 indx := 50;
 initialize(hiredate_tab, indx); -- calls first version
 initialize(comm_tab, indx); -- calls second version
END;
/

Overloading Subprogram Names

Using PL/SQL Subprograms 8-11

Guidelines for Overloading with Numeric Types
You can overload two subprograms if their formal parameters differ only in numeric
datatype. This technique might be useful in writing mathematical APIs, where several
versions of a function could use the same name, each accepting a different numeric
type. For example, a function accepting BINARY_FLOAT might be faster, while a
function accepting BINARY_DOUBLE might provide more precision.

To avoid problems or unexpected results passing parameters to such overloaded
subprograms:

■ Make sure to test that the expected version of a subprogram is called for each set
of expected parameters. For example, if you have overloaded functions that accept
BINARY_FLOAT and BINARY_DOUBLE, which is called if you pass a VARCHAR2
literal such as '5.0'?

■ Qualify numeric literals and use conversion functions to make clear what the
intended parameter types are. For example, use literals such as 5.0f (for
BINARY_FLOAT), 5.0d (for BINARY_DOUBLE), or conversion functions such as
TO_BINARY_FLOAT(), TO_BINARY_DOUBLE(), and TO_NUMBER().

PL/SQL looks for matching numeric parameters starting with PLS_INTEGER or
BINARY_INTEGER, then NUMBER, then BINARY_FLOAT, then BINARY_DOUBLE. The
first overloaded subprogram that matches the supplied parameters is used. A
VARCHAR2 value can match a NUMBER, BINARY_FLOAT, or BINARY_DOUBLE
parameter.

For example, consider the SQRT function, which takes a single parameter. There are
overloaded versions that accept a NUMBER, a BINARY_FLOAT, or a BINARY_DOUBLE
parameter. If you pass a PLS_INTEGER parameter, the first matching overload (using
the order given in the preceding paragraph) is the one with a NUMBER parameter,
which is likely to be the slowest. To use one of the faster versions, use the
TO_BINARY_FLOAT or TO_BINARY_DOUBLE functions to convert the parameter to the
right datatype.

For another example, consider the ATAN2 function, which takes two parameters of the
same type. If you pass two parameters of the same type, you can predict which
overloaded version is used through the same rules as before. If you pass parameters of
different types, for example one PLS_INTEGER and one BINARY_FLOAT, PL/SQL
tries to find a match where both parameters use the "higher" type. In this case, that is
the version of ATAN2 that takes two BINARY_FLOAT parameters; the PLS_INTEGER
parameter is converted "upwards".

The preference for converting "upwards" holds in more complicated situations. For
example, you might have a complex function that takes two parameters of different
types. One overloaded version might take a PLS_INTEGER and a BINARY_FLOAT
parameter. Another overloaded version might take a NUMBER and a BINARY_DOUBLE
parameter. What happens if you call this procedure name and pass two NUMBER
parameters? PL/SQL looks "upward" first to find the overloaded version where the
second parameter is BINARY_FLOAT. Because this parameter is a closer match than
the BINARY_DOUBLE parameter in the other overload, PL/SQL then looks
"downward" and converts the first NUMBER parameter to PLS_INTEGER.

Restrictions on Overloading
Only local or packaged subprograms, or type methods, can be overloaded. You cannot
overload standalone subprograms.

How Subprogram Calls Are Resolved

8-12 PL/SQL User's Guide and Reference

You cannot overload two subprograms if their formal parameters differ only in name
or parameter mode. For example, you cannot overload the following two procedures:

DECLARE
 PROCEDURE reconcile (acct_no IN INTEGER) IS
 BEGIN NULL; END;
 PROCEDURE reconcile (acct_no OUT INTEGER) IS
 BEGIN NULL; END;
/

You cannot overload subprograms whose parameters differ only in subtype. For
example, you cannot overload procedures where one accepts an INTEGER parameter
and the other accepts a REAL parameter, even though INTEGER and REAL are both
subtypes of NUMBER and so are in the same family.

You cannot overload two functions that differ only in the datatype of the return value,
even if the types are in different families. For example, you cannot overload two
functions where one returns BOOLEAN and the other returns INTEGER.

How Subprogram Calls Are Resolved
Figure 8–1 shows how the PL/SQL compiler resolves subprogram calls. When the
compiler encounters a procedure or function call, it tries to find a declaration that
matches the call. The compiler searches first in the current scope and then, if necessary,
in successive enclosing scopes. The compiler looks more closely when it finds one or
more subprogram declarations in which the subprogram name matches the name of
the called subprogram.

To resolve a call among possibly like-named subprograms at the same level of scope,
the compiler must find an exact match between the actual and formal parameters. They
must match in number, order, and datatype (unless some formal parameters were
assigned default values). If no match is found or if multiple matches are found, the
compiler generates a semantic error.

The following example calls the enclosing procedure swap from the function
reconcile, generating an error because neither declaration of swap within the
current scope matches the procedure call:

PROCEDURE swap (n1 NUMBER, n2 NUMBER) IS
 num1 NUMBER;
 num2 NUMBER;
 FUNCTION balance (...) RETURN REAL IS
 PROCEDURE swap (d1 DATE, d2 DATE) IS BEGIN NULL; END;
 PROCEDURE swap (b1 BOOLEAN, b2 BOOLEAN) IS BEGIN NULL; END;
 BEGIN
 swap(num1, num2);
 RETURN ...
 END balance;
BEGIN NULL; END;
/

How Subprogram Calls Are Resolved

Using PL/SQL Subprograms 8-13

Figure 8–1 How the PL/SQL Compiler Resolves Calls

How Overloading Works with Inheritance
The overloading algorithm allows substituting a subtype value for a formal parameter
that is a supertype. This capability is known as substitutability. If more than one
instance of an overloaded procedure matches the procedure call, the following rules
apply to determine which procedure is called:

If the only difference in the signatures of the overloaded procedures is that some
parameters are object types from the same supertype-subtype hierarchy, the closest
match is used. The closest match is one where all the parameters are at least as close as
any other overloaded instance, as determined by the depth of inheritance between the
subtype and supertype, and at least one parameter is closer.

A semantic error occurs when two overloaded instances match, and some argument
types are closer in one overloaded procedure to the actual arguments than in any other
instance.

generate semantic error resolve call

multiple matches?

match(es) found?

match(es) found? enclosing scope?

go to enclosing scope

encounter
subprogram call

compare name of
called subprogram with
names of any
subprograms declared
in current scope

Yes

Yes

Yes

Yes

No

No

No

No

compare actual
parameter list in
subprogram call with
formal parameter list in
subprogram declaration(s)

How Subprogram Calls Are Resolved

8-14 PL/SQL User's Guide and Reference

A semantic error also occurs if some parameters are different in their position within
the object type hierarchy, and other parameters are of different datatypes so that an
implicit conversion would be necessary.

For example, here we create a type hierarchy with 3 levels:

CREATE TYPE super_t AS object
 (n NUMBER) NOT final;
CREATE OR replace TYPE sub_t under super_t
 (n2 NUMBER) NOT final;
CREATE OR replace TYPE final_t under sub_t
 (n3 NUMBER);

We declare two overloaded instances of a function, where the only difference in
argument types is their position in this type hierarchy:

CREATE PACKAGE p IS
 FUNCTION foo (arg super_t) RETURN NUMBER;
 FUNCTION foo (arg sub_t) RETURN NUMBER;
END;
/
CREATE PACKAGE BODY p IS
 FUNCTION foo (arg super_t) RETURN NUMBER IS BEGIN RETURN 1; END;
 FUNCTION foo (arg sub_t) RETURN NUMBER IS BEGIN RETURN 2; END;
END;
/

We declare a variable of type final_t, then call the overloaded function. The instance
of the function that is executed is the one that accepts a sub_t parameter, because that
type is closer to final_t in the hierarchy than super_t is.

set serveroutput on
declare
v final_t := final_t(1,2,3);
begin
 dbms_output.put_line(p.foo(v));
end;
/

In the previous example, the choice of which instance to call is made at compile time.
In the following example, this choice is made dynamically.

CREATE TYPE super_t2 AS object
 (n NUMBER, MEMBER FUNCTION foo RETURN NUMBER) NOT final;
/
CREATE TYPE BODY super_t2 AS
 MEMBER FUNCTION foo RETURN NUMBER IS BEGIN RETURN 1; END; END;
/
CREATE OR replace TYPE sub_t2 under super_t2
 (n2 NUMBER,
 OVERRIDING MEMBER FUNCTION foo RETURN NUMBER) NOT final;
/
CREATE TYPE BODY sub_t2 AS
 OVERRIDING MEMBER FUNCTION foo RETURN NUMBER IS BEGIN RETURN 2;
END;
END;
/
CREATE OR replace TYPE final_t2 under sub_t2
 (n3 NUMBER);
/

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

Using PL/SQL Subprograms 8-15

We declare v as an instance of super_t2, but because we assign a value of sub_t2 to
it, the appropriate instance of the function is called. This feature is known as dynamic
dispatch.

set serveroutput on
declare
 v super_t2 := final_t2(1,2,3);
begin
 dbms_output.put_line(v.foo);
end;
/

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)
By default, stored procedures and SQL methods execute with the privileges of their
owner, not their current user. Such definer's rights subprograms are bound to the
schema in which they reside, allowing you to refer to objects in the same schema
without qualifying their names. For example, if schemas SCOTT and BLAKE both have
a table called dept, a procedure owned by SCOTT can refer to dept rather than
SCOTT.DEPT. If user BLAKE calls SCOTT's procedure, the procedure still accesses the
dept table owned by SCOTT.

If you compile the same procedure in both schemas, you can define the schema name
as a variable in SQL*Plus and refer to the table like &schema..dept. The code is
portable, but if you change it, you must recompile it in each schema.

A more maintainable way is to use the AUTHID clause, which makes stored procedures
and SQL methods execute with the privileges and schema context of the calling user.
You can create one instance of the procedure, and many users can call it to access their
own data.

Such invoker's rights subprograms are not bound to a particular schema. The following
version of procedure create_dept executes with the privileges of the calling user
and inserts rows into that user's dept table:

CREATE PROCEDURE create_dept (
 my_deptno NUMBER,
 my_dname VARCHAR2,
 my_loc VARCHAR2) AUTHID CURRENT_USER AS
BEGIN
 INSERT INTO dept VALUES (my_deptno, my_dname, my_loc);
END;
/

Advantages of Invoker's Rights
Invoker's rights subprograms let you reuse code and centralize application logic. They
are especially useful in applications that store data using identical tables in different
schemas. All the schemas in one instance can call procedures owned by a central
schema. You can even have schemas in different instances call centralized procedures
using a database link.

Consider a company that uses a stored procedure to analyze sales. If the company has
several schemas, each with a similar SALES table, normally it would also need several
copies of the stored procedure, one in each schema.

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

8-16 PL/SQL User's Guide and Reference

To solve the problem, the company installs an invoker's rights version of the stored
procedure in a central schema. Now, all the other schemas can call the same procedure,
which queries the appropriate to SALES table in each case.

You can restrict access to sensitive data by calling from an invoker's rights subprogram
to a definer's rights subprogram that queries or updates the table containing the
sensitive data. Although multiple users can call the invoker's rights subprogram, they
do not have direct access to the sensitive data.

Specifying the Privileges for a Subprogram with the AUTHID Clause
To implement invoker's rights, use the AUTHID clause, which specifies whether a
subprogram executes with the privileges of its owner or its current user. It also
specifies whether external references (that is, references to objects outside the
subprogram) are resolved in the schema of the owner or the current user.

The AUTHID clause is allowed only in the header of a standalone subprogram, a
package spec, or an object type spec. In the CREATE FUNCTION, CREATE
PROCEDURE, CREATE PACKAGE, or CREATE TYPE statement, you can include either
AUTHID CURRENT_USER or AUTHID DEFINER immediately before the IS or AS
keyword that begins the declaration section.

DEFINER is the default option. In a package or object type, the AUTHID clause applies
to all subprograms.

Note: Most supplied PL/SQL packages (such as DBMS_LOB, DBMS_PIPE,
DBMS_ROWID, DBMS_SQL, and UTL_REF) are invoker's rights packages.

Who Is the Current User During Subprogram Execution?
In a sequence of calls, whenever control is inside an invoker's rights subprogram, the
current user is the session user. When a definer's rights subprogram is called, the
owner of that subprogram becomes the current user. The current user might change as
new subprograms are called or as subprograms exit.

To verify who the current user is at any time, you can check the USER_USERS data
dictionary view. Inside an invoker's rights subprogram, the value from this view might
be different from the value of the USER built-in function, which always returns the
name of the session user.

How External References Are Resolved in Invoker's Rights Subprograms
If you specify AUTHID CURRENT_USER, the privileges of the current user are checked
at run time, and external references are resolved in the schema of the current user.
However, this applies only to external references in:

■ SELECT, INSERT, UPDATE, and DELETE data manipulation statements

■ The LOCK TABLE transaction control statement

■ OPEN and OPEN-FOR cursor control statements

■ EXECUTE IMMEDIATE and OPEN-FOR-USING dynamic SQL statements

■ SQL statements parsed using DBMS_SQL.PARSE()

For all other statements, the privileges of the owner are checked at compile time, and
external references are resolved in the schema of the owner. For example, the
assignment statement below refers to the packaged function balance. This external
reference is resolved in the schema of the owner of procedure reconcile.

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

Using PL/SQL Subprograms 8-17

CREATE PROCEDURE reconcile (acc_id IN INTEGER)
 AUTHID CURRENT_USER AS
 bal NUMBER;
BEGIN
 bal := bank_ops.balance(acct_id);
 ...
END;
/

The Need for Template Objects in Invoker's Rights Subprograms
The PL/SQL compiler must resolve all references to tables and other objects at compile
time. The owner of an invoker's rights subprogram must have objects in the same
schema with the right names and columns, even if they do not contain any data. At
run time, the corresponding objects in the caller's schema must have matching
definitions. Otherwise, you get an error or unexpected results, such as ignoring table
columns that exist in the caller's schema but not in the schema that contains the
subprogram.

Overriding Default Name Resolution in Invoker's Rights Subprograms
Occasionally, you might want an unqualified name to refer to some particular schema,
not the schema of the caller. In the same schema as the invoker's rights subprogram,
create a public synonym for the table, procedure, function, or other object using the
CREATE SYNONYM statement:

CREATE PUBLIC SYNONYM emp FOR hr.employees;

When the invoker's rights subprogram refers to this name, it will match the synonym
in its own schema, which resolves to the object in the specified schema. This technique
does not work if the calling schema already has a schema object or private synonym
with the same name. In that case, the invoker's rights subprogram must fully qualify
the reference.

Granting Privileges on Invoker's Rights Subprograms
To call a subprogram directly, users must have the EXECUTE privilege on that
subprogram. By granting the privilege, you allow a user to:

■ Call the subprogram directly

■ Compile functions and procedures that call the subprogram

For external references resolved in the current user's schema (such as those in DML
statements), the current user must have the privileges needed to access schema objects
referenced by the subprogram. For all other external references (such as function calls),
the owner's privileges are checked at compile time, and no run-time check is done.

A definer's rights subprogram operates under the security domain of its owner, no
matter who is executing it. The owner must have the privileges needed to access
schema objects referenced by the subprogram.

You can write a program consisting of multiple subprograms, some with definer's
rights and others with invoker's rights. Then, you can use the EXECUTE privilege to
restrict program entry points. That way, users of an entry-point subprogram can
execute the other subprograms indirectly but not directly.

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

8-18 PL/SQL User's Guide and Reference

Granting Privileges on an Invoker's Rights Subprogram: Example
Suppose user UTIL grants the EXECUTE privilege on subprogram FFT to user APP:

GRANT EXECUTE ON util.fft TO app;

Now, user APP can compile functions and procedures that call subprogram FFT. At
run time, no privilege checks on the calls are done. As Figure 8–2 shows, user UTIL
need not grant the EXECUTE privilege to every user who might call FFT indirectly.

Since subprogram util.fft is called directly only from invoker's rights subprogram
app.entry, user util must grant the EXECUTE privilege only to user APP. When
UTIL.FFT is executed, its current user could be APP, SCOTT, or BLAKE even though
SCOTT and BLAKE were not granted the EXECUTE privilege.

Figure 8–2 Indirect Calls to an Invoker's Rights Subprogram

Using Roles with Invoker's Rights Subprograms
The use of roles in a subprogram depends on whether it executes with definer's rights
or invoker's rights. Within a definer's rights subprogram, all roles are disabled. Roles
are not used for privilege checking, and you cannot set roles.

Within an invoker's rights subprogram, roles are enabled (unless the subprogram was
called directly or indirectly by a definer's rights subprogram). Roles are used for
privilege checking, and you can use native dynamic SQL to set roles for the session.
However, you cannot use roles to grant privileges on template objects because roles
apply at run time, not at compile time.

Using Views and Database Triggers with Invoker's Rights Subprograms
For invoker's rights subprograms executed within a view expression, the schema that
created the view, not the schema that is querying the view, is considered to be the
current user.

This rule also applies to database triggers.

Using Database Links with Invoker's Rights Subprograms
You can create a database link to use invoker's rights:

Schema SCOTT

Schema BLAKE

Schema APP

fft

Schema UTIL
proc1

proc2

entry
(IR)

Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)

Using PL/SQL Subprograms 8-19

CREATE DATABASE LINK link_name CONNECT TO CURRENT_USER
 USING connect_string;

A current-user link lets you connect to a remote database as another user, with that
user's privileges. To connect, Oracle uses the username of the current user (who must
be a global user). Suppose an invoker's rights subprogram owned by user BLAKE
references the database link below. If global user SCOTT calls the subprogram, it
connects to the Dallas database as user SCOTT, who is the current user.

CREATE DATABASE LINK dallas CONNECT TO CURRENT_USER USING ...

If it were a definer's rights subprogram, the current user would be BLAKE, and the
subprogram would connect to the Dallas database as global user BLAKE.

Using Object Types with Invoker's Rights Subprograms
To define object types for use in any schema, specify the AUTHID CURRENT_USER
clause. (For more information about object types, see Chapter 12, "Using PL/SQL
Object Types".) Suppose user BLAKE creates the following object type:

CREATE TYPE Num AUTHID CURRENT_USER AS OBJECT (
 x NUMBER,
 STATIC PROCEDURE new_num (
 n NUMBER, schema_name VARCHAR2, table_name VARCHAR2)
);
/

CREATE TYPE BODY Num AS
 STATIC PROCEDURE new_num (
 n NUMBER, schema_name VARCHAR2, table_name VARCHAR2) IS
 sql_stmt VARCHAR2(200);
 BEGIN
 sql_stmt := 'INSERT INTO ' || schema_name || '.'
 || table_name || ' VALUES (blake.Num(:1))';
 EXECUTE IMMEDIATE sql_stmt USING n;
 END;
END;
/

Then, user BLAKE grants the EXECUTE privilege on object type Num to user SCOTT:

GRANT EXECUTE ON Num TO scott;

Finally, user SCOTT creates an object table to store objects of type Num, then calls
procedure new_num to populate the table:

CONNECT scott/tiger;
CREATE TABLE num_tab OF blake.Num;
/
BEGIN
 blake.Num.new_num(1001, 'scott', 'num_tab');
 blake.Num.new_num(1002, 'scott', 'num_tab');
 blake.Num.new_num(1003, 'scott', 'num_tab');
END;
/

The calls succeed because the procedure executes with the privileges of its current user
(SCOTT), not its owner (BLAKE).

For subtypes in an object type hierarchy, the following rules apply:

Using Recursion with PL/SQL

8-20 PL/SQL User's Guide and Reference

■ If a subtype does not explicitly specify an AUTHID clause, it inherits the AUTHID of
its supertype.

■ If a subtype does specify an AUTHID clause, its AUTHID must match the AUTHID of
its supertype. Also, if the AUTHID is DEFINER, both the supertype and subtype
must have been created in the same schema.

Calling Invoker's Rights Instance Methods
An invoker's rights instance method executes with the privileges of the invoker, not
the creator of the instance. Suppose that Person is an invoker's rights object type, and
that user SCOTT creates p1, an object of type Person. If user BLAKE calls instance
method change_job to operate on object p1, the current user of the method is
BLAKE, not SCOTT. Consider the following example:

-- user blake creates a definer-rights procedure
CREATE PROCEDURE reassign (p Person, new_job VARCHAR2) AS
BEGIN
 -- user blake calls method change_job, so the
 -- method executes with the privileges of blake
 p.change_job(new_job);
 ...
END;
/

-- user scott passes a Person object to the procedure
DECLARE
 p1 Person;
BEGIN
 p1 := Person(...);
 blake.reassign(p1, 'CLERK');
 ...
END;
/

Using Recursion with PL/SQL
Recursion is a powerful technique for simplifying the design of algorithms. Basically,
recursion means self-reference. In a recursive mathematical sequence, each term is
derived by applying a formula to preceding terms. The Fibonacci sequence (0, 1, 1, 2, 3,
5, 8, 13, 21, ...), is an example. Each term in the sequence (after the second) is the sum
of the two terms that immediately precede it.

In a recursive definition, something is defined as simpler versions of itself. Consider
the definition of n factorial (n!), the product of all integers from 1 to n:

n! = n * (n - 1)!

What Is a Recursive Subprogram?
A recursive subprogram is one that calls itself. Each recursive call creates a new
instance of any items declared in the subprogram, including parameters, variables,
cursors, and exceptions. Likewise, new instances of SQL statements are created at each
level in the recursive descent.

Be careful where you place a recursive call. If you place it inside a cursor FOR loop or
between OPEN and CLOSE statements, another cursor is opened at each call, which
might exceed the limit set by the Oracle initialization parameter OPEN_CURSORS.

Calling External Subprograms

Using PL/SQL Subprograms 8-21

There must be at least two paths through a recursive subprogram: one that leads to the
recursive call and one that does not. At least one path must lead to a terminating
condition. Otherwise, the recursion would go on until PL/SQL runs out of memory
and raises the predefined exception STORAGE_ERROR.

Calling External Subprograms
Although PL/SQL is a powerful, flexible language, some tasks are more easily done in
another language. Low-level languages such as C are very fast. Widely used languages
such as Java have reusable libraries for common design patterns.

You can use PL/SQL call specs to invoke external subprograms written in other
languages, making their capabilities and libraries available from PL/SQL.

For example, you can call Java stored procedures from any PL/SQL block,
subprogram, or package. Suppose you store the following Java class in the database:

import java.sql.*;
import oracle.jdbc.driver.*;
public class Adjuster {
 public static void raiseSalary (int empNo, float percent)
 throws SQLException {
 Connection conn = new OracleDriver().defaultConnection();
 String sql = "UPDATE emp SET sal = sal * ? WHERE empno = ?";
 try {
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setFloat(1, (1 + percent / 100));
 pstmt.setInt(2, empNo);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The class Adjuster has one method, which raises the salary of an employee by a
given percentage. Because raiseSalary is a void method, you publish it as a
procedure using this call spec:

CREATE PROCEDURE raise_salary (empno NUMBER, pct NUMBER)
AS LANGUAGE JAVA
NAME 'Adjuster.raiseSalary(int, float)';

You might call procedure raise_salary from an anonymous PL/SQL block:

DECLARE
 emp_id NUMBER;
 percent NUMBER;
BEGIN
 -- get values for emp_id and percent
 raise_salary(emp_id, percent); -- call external subprogram
END;
/

External C subprograms are used to interface with embedded systems, solve
engineering problems, analyze data, or control real-time devices and processes.
External C subprograms extend the functionality of the database server, and move
computation-bound programs from client to server, where they execute faster.

Creating Dynamic Web Pages with PL/SQL Server Pages

8-22 PL/SQL User's Guide and Reference

For more information about Java stored procedures, see Oracle Database Java
Developer's Guide. For more information about external C subprograms, see Oracle
Database Application Developer's Guide - Fundamentals.

Creating Dynamic Web Pages with PL/SQL Server Pages
PL/SQL Server Pages (PSPs) enable you to develop Web pages with dynamic content.
They are an alternative to coding a stored procedure that writes out the HTML code
for a web page, one line at a time.

Using special tags, you can embed PL/SQL scripts into HTML source code. The scripts
are executed when the pages are requested by Web clients such as browsers. A script
can accept parameters, query or update the database, then display a customized page
showing the results.

During development, PSPs can act like templates with a static part for page layout and
a dynamic part for content. You can design the layouts using your favorite HTML
authoring tools, leaving placeholders for the dynamic content. Then, you can write the
PL/SQL scripts that generate the content. When finished, you simply load the
resulting PSP files into the database as stored procedures.

For more information about creating and using PSPs, see Oracle Database Application
Developer's Guide - Fundamentals.

Controlling Side Effects of PL/SQL Subprograms
To be callable from SQL statements, a stored function (and any subprograms called by
that function) must obey certain "purity" rules, which are meant to control side effects:

■ When called from a SELECT statement or a parallelized INSERT, UPDATE, or
DELETE statement, the function cannot modify any database tables.

■ When called from an INSERT, UPDATE, or DELETE statement, the function cannot
query or modify any database tables modified by that statement.

■ When called from a SELECT, INSERT, UPDATE, or DELETE statement, the function
cannot execute SQL transaction control statements (such as COMMIT), session
control statements (such as SET ROLE), or system control statements (such as
ALTER SYSTEM). Also, it cannot execute DDL statements (such as CREATE)
because they are followed by an automatic commit.

If any SQL statement inside the function body violates a rule, you get an error at run
time (when the statement is parsed).

To check for violations of the rules, you can use the pragma (compiler directive)
RESTRICT_REFERENCES. The pragma asserts that a function does not read or write
database tables or package variables. For example, the following pragma asserts that
packaged function credit_ok writes no database state (WNDS) and reads no package
state (RNPS):

CREATE PACKAGE loans AS
 FUNCTION credit_ok RETURN BOOLEAN;
 PRAGMA RESTRICT_REFERENCES (credit_ok, WNDS, RNPS);
END loans;
/

Note: A static INSERT, UPDATE, or DELETE statement always violates WNDS. It also
violates RNDS (reads no database state) if it reads any columns. A dynamic INSERT,
UPDATE, or DELETE statement always violates WNDS and RNDS.

Understanding Subprogram Parameter Aliasing

Using PL/SQL Subprograms 8-23

For full syntax details, see "RESTRICT_REFERENCES Pragma" on page 13-113. For
more information about the purity rules, see Oracle Database Application Developer's
Guide - Fundamentals.

Understanding Subprogram Parameter Aliasing
To optimize a subprogram call, the PL/SQL compiler can choose between two
methods of parameter passing. With the by-value method, the value of an actual
parameter is passed to the subprogram. With the by-reference method, only a pointer to
the value is passed; the actual and formal parameters reference the same item.

The NOCOPY compiler hint increases the possibility of aliasing (that is, having two
different names refer to the same memory location). This can occur when a global
variable appears as an actual parameter in a subprogram call and then is referenced
within the subprogram. The result is indeterminate because it depends on the method
of parameter passing chosen by the compiler.

Example 8–7 Aliasing from Passing Global Variable with NOCOPY Hint

In the example below, procedure ADD_ENTRY refers to varray LEXICON both as a
parameter and as a global variable. When ADD_ENTRY is called, the identifiers
WORD_LIST and LEXICON point to the same varray.

DECLARE
 TYPE Definition IS RECORD (
 word VARCHAR2(20),
 meaning VARCHAR2(200));
 TYPE Dictionary IS VARRAY(2000) OF Definition;
 lexicon Dictionary := Dictionary();
 PROCEDURE add_entry (word_list IN OUT NOCOPY Dictionary) IS
 BEGIN
 word_list(1).word := 'aardvark';
 lexicon(1).word := 'aardwolf';
 END;
BEGIN
 lexicon.EXTEND;
 add_entry(lexicon);
 dbms_output.put_line(lexicon(1).word);
END;
/

The program prints aardwolf if the compiler obeys the NOCOPY hint. The assignment
to WORD_LIST is done immediately through a pointer, then is overwritten by the
assignment to LEXICON.

The program prints aardvark if the NOCOPY hint is omitted, or if the compiler does
not obey the hint. The assignment to WORD_LIST uses an internal copy of the varray,
which is copied back to the actual parameter (overwriting the contents of LEXICON)
when the procedure ends.

Example 8–8 Aliasing Passing Same Parameter Multiple Times

Aliasing can also occur when the same actual parameter appears more than once in a
subprogram call. In the example below, n2 is an IN OUT parameter, so the value of the
actual parameter is not updated until the procedure exits. That is why the first
put_line prints 10 (the initial value of n) and the third put_line prints 20.
However, n3 is a NOCOPY parameter, so the value of the actual parameter is updated
immediately. That is why the second put_line prints 30.

Understanding Subprogram Parameter Aliasing

8-24 PL/SQL User's Guide and Reference

 DECLARE
 n NUMBER := 10;
 PROCEDURE do_something (
 n1 IN NUMBER,
 n2 IN OUT NUMBER,
 n3 IN OUT NOCOPY NUMBER) IS
 BEGIN
 n2 := 20;
 dbms_output.put_line(n1); -- prints 10
 n3 := 30;
 dbms_output.put_line(n1); -- prints 30
 END;
BEGIN
 do_something(n, n, n);
 dbms_output.put_line(n); -- prints 20
END;
/

Example 8–9 Aliasing from Assigning Cursor Variables to Same Work Area

Because they are pointers, cursor variables also increase the possibility of aliasing. In
the following example, after the assignment, emp_cv2 is an alias of emp_cv1; both
point to the same query work area. The first fetch from emp_cv2 fetches the third row,
not the first, because the first two rows were already fetched from emp_cv1. The
second fetch from emp_cv2 fails because emp_cv1 is closed.

PROCEDURE get_emp_data (
 emp_cv1 IN OUT EmpCurTyp,
 emp_cv2 IN OUT EmpCurTyp) IS
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cv1 FOR SELECT * FROM employees;
 emp_cv2 := emp_cv1;
 FETCH emp_cv1 INTO emp_rec; -- fetches first row
 FETCH emp_cv1 INTO emp_rec; -- fetches second row
 FETCH emp_cv2 INTO emp_rec; -- fetches third row
 CLOSE emp_cv1;
 FETCH emp_cv2 INTO emp_rec; -- raises INVALID_CURSOR
END;
/

Using PL/SQL Packages 9-1

9
Using PL/SQL Packages

Goods which are not shared are not goods. —Fernando de Rojas

This chapter shows how to bundle related PL/SQL code and data into a package. The
package might include a set of procedures that forms an API, or a pool of type
definitions and variable declarations. The package is compiled and stored in the
database, where its contents can be shared by many applications.

This chapter contains these topics:

■ What Is a PL/SQL Package? on page 9-2

■ Advantages of PL/SQL Packages on page 9-3

■ Understanding The Package Specification on page 9-4

■ Understanding The Package Body on page 9-6

■ Some Examples of Package Features on page 9-7

■ Private Versus Public Items in Packages on page 9-11

■ Overloading Packaged Subprograms on page 9-11

■ How Package STANDARD Defines the PL/SQL Environment on page 9-12

■ Overview of Product-Specific Packages on page 9-12

■ Guidelines for Writing Packages on page 9-13

■ Separating Cursor Specs and Bodies with Packages on page 9-14

What Is a PL/SQL Package?

9-2 PL/SQL User's Guide and Reference

What Is a PL/SQL Package?
A package is a schema object that groups logically related PL/SQL types, variables,
and subprograms. Packages usually have two parts, a specification and a body;
sometimes the body is unnecessary. The specification (spec for short) is the interface to
the package. It declares the types, variables, constants, exceptions, cursors, and
subprograms that can be referenced from outside the package. The body defines the
queries for the cursors and the code for the subprograms.

You can think of the spec as an interface and of the body as a "black box." You can
debug, enhance, or replace a package body without changing the package spec.

To create package specs, use the SQL statement CREATE PACKAGE. If necessary, a
CREATE PACKAGE BODY statement defines the package body.

The spec holds public declarations, which are visible to stored procedures and other
code outside the package. You must declare subprograms at the end of the spec after
all other items (except pragmas that name a specific function; such pragmas must
follow the function spec).

The body holds implementation details and private declarations, which are hidden
from code outside the package. Following the declarative part of the package body is
the optional initialization part, which holds statements that initialize package variables
and do any other one-time setup steps.

The AUTHID clause determines whether all the packaged subprograms execute with
the privileges of their definer (the default) or invoker, and whether their unqualified
references to schema objects are resolved in the schema of the definer or invoker. For
more information, see "Using Invoker's Rights Versus Definer's Rights (AUTHID
Clause)" on page 8-15.

A call spec lets you map a package subprogram to a Java method or external C
function. The call spec maps the Java or C name, parameter types, and return type to
their SQL counterparts. To learn how to write Java call specs, see Oracle Database Java
Developer's Guide. To learn how to write C call specs, see Oracle Database Application
Developer's Guide - Fundamentals.

What Goes In a PL/SQL Package?
■ "Get" and "Set" methods for the package variables, if you want to avoid letting

other procedures read and write them directly.

■ Cursor declarations with the text of SQL queries. Reusing exactly the same query
text in multiple locations is faster than retyping the same query each time with
slight differences. It is also easier to maintain if you need to change a query that is
used in many places.

■ Declarations for exceptions. Typically, you need to be able to reference these from
different procedures, so that you can handle exceptions within called
subprograms.

■ Declarations for procedures and functions that call each other. You do not need to
worry about compilation order for packaged procedures and functions, making
them more convenient than standalone stored procedures and functions when
they call back and forth to each other.

■ Declarations for overloaded procedures and functions. You can create multiple
variations of a procedure or function, using the same names but different sets of
parameters.

Advantages of PL/SQL Packages

Using PL/SQL Packages 9-3

■ Variables that you want to remain available between procedure calls in the same
session. You can treat variables in a package like global variables.

■ Type declarations for PL/SQL collection types. To pass a collection as a parameter
between stored procedures or functions, you must declare the type in a package so
that both the calling and called subprogram can refer to it.

Example of a PL/SQL Package
The example below packages a record type, a cursor, and two employment
procedures. The procedure hire_employee uses the sequence empno_seq and the
function SYSDATE to insert a new employee number and hire date.

CREATE OR REPLACE PACKAGE emp_actions AS -- spec
 TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);
 CURSOR desc_salary RETURN EmpRecTyp;
 PROCEDURE hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER);
 PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;
/

CREATE OR REPLACE PACKAGE BODY emp_actions AS -- body
 CURSOR desc_salary RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp ORDER BY sal DESC;
 PROCEDURE hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr NUMBER,
 sal NUMBER,
 comm NUMBER,
 deptno NUMBER) IS
 BEGIN
 INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,
 mgr, SYSDATE, sal, comm, deptno);
 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;
END emp_actions;
/

Only the declarations in the package spec are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible. You can
change the body (implementation) without having to recompile calling programs.

Advantages of PL/SQL Packages
Packages have a long history in software engineering, offering important features for
reliable, maintainable, reusable code, often in team development efforts for large
systems.

Understanding The Package Specification

9-4 PL/SQL User's Guide and Reference

Modularity
Packages let you encapsulate logically related types, items, and subprograms in a
named PL/SQL module. Each package is easy to understand, and the interfaces
between packages are simple, clear, and well defined. This aids application
development.

Easier Application Design
When designing an application, all you need initially is the interface information in the
package specs. You can code and compile a spec without its body. Then, stored
subprograms that reference the package can be compiled as well. You need not define
the package bodies fully until you are ready to complete the application.

Information Hiding
With packages, you can specify which types, items, and subprograms are public
(visible and accessible) or private (hidden and inaccessible). For example, if a package
contains four subprograms, three might be public and one private. The package hides
the implementation of the private subprogram so that only the package (not your
application) is affected if the implementation changes. This simplifies maintenance
and enhancement. Also, by hiding implementation details from users, you protect the
integrity of the package.

Added Functionality
Packaged public variables and cursors persist for the duration of a session. They can
be shared by all subprograms that execute in the environment. They let you maintain
data across transactions without storing it in the database.

Better Performance
When you call a packaged subprogram for the first time, the whole package is loaded
into memory. Later calls to related subprograms in the package require no disk I/O.

Packages stop cascading dependencies and avoid unnecessary recompiling. For
example, if you change the body of a packaged function, Oracle does not recompile
other subprograms that call the function; these subprograms only depend on the
parameters and return value that are declared in the spec, so they are only recompiled
if the spec changes.

Understanding The Package Specification
The package specification contains public declarations. The declared items are
accessible from anywhere in the package and to any other subprograms in the same
schema. Figure 9–1 illustrates the scoping.

Understanding The Package Specification

Using PL/SQL Packages 9-5

Figure 9–1 Package Scope

The spec lists the package resources available to applications. All the information your
application needs to use the resources is in the spec. For example, the following
declaration shows that the function named fac takes one argument of type INTEGER
and returns a value of type INTEGER:

FUNCTION fac (n INTEGER) RETURN INTEGER; -- returns n!

That is all the information you need to call the function. You need not consider its
underlying implementation (whether it is iterative or recursive for example).

If a spec declares only types, constants, variables, exceptions, and call specs, the
package body is unnecessary. Only subprograms and cursors have an underlying
implementation. In the following example, the package needs no body because it
declares types, exceptions, and variables, but no subprograms or cursors. Such
packages let you define global variables—usable by stored procedures and functions
and triggers—that persist throughout a session.

CREATE PACKAGE trans_data AS -- bodiless package
 TYPE TimeRec IS RECORD (
 minutes SMALLINT,
 hours SMALLINT);
 TYPE TransRec IS RECORD (
 category VARCHAR2,
 account INT,
 amount REAL,
 time_of TimeRec);
 minimum_balance CONSTANT REAL := 10.00;
 number_processed INT;
 insufficient_funds EXCEPTION;
END trans_data;
/

Referencing Package Contents
To reference the types, items, subprograms, and call specs declared within a package
spec, use dot notation:

package_name.type_name
package_name.item_name
package_name.subprogram_name
package_name.call_spec_name

schema

package spec

package spec

other objects

package body

package body

procedure
function
procedure

function
function
procedure

Understanding The Package Body

9-6 PL/SQL User's Guide and Reference

You can reference package contents from database triggers, stored subprograms, 3GL
application programs, and various Oracle tools. For example, you might call the
packaged procedure hire_employee from SQL*Plus, as follows:

CALL emp_actions.hire_employee('TATE', 'CLERK', ...);

The following example calls the same procedure from an anonymous block in a Pro*C
program. The actual parameters emp_name and job_title are host variables.

EXEC SQL EXECUTE
 BEGIN
 emp_actions.hire_employee(:emp_name, :job_title, ...);

Restrictions
You cannot reference remote packaged variables, either directly or indirectly. For
example, you cannot call the a procedure through a database link if the procedure
refers to a packaged variable.

Inside a package, you cannot reference host variables.

Understanding The Package Body
The package body contains the implementation of every cursor and subprogram
declared in the package spec. Subprograms defined in a package body are accessible
outside the package only if their specs also appear in the package spec. If a
subprogram spec is not included in the package spec, that subprogram can only be
called by other subprograms in the same package.

To match subprogram specs and bodies, PL/SQL does a token-by-token comparison of
their headers. Except for white space, the headers must match word for word.
Otherwise, PL/SQL raises an exception, as the following example shows:

CREATE PACKAGE emp_actions AS
 ...
 PROCEDURE calc_bonus (date_hired emp.hiredate%TYPE, ...);
END emp_actions;
/

CREATE PACKAGE BODY emp_actions AS
 ...
 PROCEDURE calc_bonus (date_hired DATE, ...) IS
 -- parameter declaration raises an exception because 'DATE'
 -- does not match 'emp.hiredate%TYPE' word for word
 BEGIN ... END;
END emp_actions;
/

The package body can also contain private declarations, which define types and items
necessary for the internal workings of the package. The scope of these declarations is
local to the package body. Therefore, the declared types and items are inaccessible
except from within the package body. Unlike a package spec, the declarative part of a
package body can contain subprogram bodies.

Following the declarative part of a package body is the optional initialization part,
which typically holds statements that initialize some of the variables previously
declared in the package.

Some Examples of Package Features

Using PL/SQL Packages 9-7

The initialization part of a package plays a minor role because, unlike subprograms, a
package cannot be called or passed parameters. As a result, the initialization part of a
package is run only once, the first time you reference the package.

Remember, if a package spec declares only types, constants, variables, exceptions, and
call specs, the package body is unnecessary. However, the body can still be used to
initialize items declared in the package spec.

Some Examples of Package Features
Consider the following package, named emp_actions. The package spec declares the
following types, items, and subprograms:

■ Types EmpRecTyp and DeptRecTyp

■ Cursor desc_salary

■ Exception invalid_salary

■ Functions hire_employee and nth_highest_salary

■ Procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference its types, call its
subprograms, use its cursor, and raise its exception. When you create the package, it is
stored in an Oracle database for use by any application that has execute privilege on
the package.

CREATE PACKAGE emp_actions AS
 /* Declare externally visible types, cursor, exception. */
 TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);
 TYPE DeptRecTyp IS RECORD (dept_id INT, location VARCHAR2);
 CURSOR desc_salary RETURN EmpRecTyp;
 invalid_salary EXCEPTION;

 /* Declare externally callable subprograms. */
 FUNCTION hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr REAL,
 sal REAL,
 comm REAL,
 deptno REAL) RETURN INT;
 PROCEDURE fire_employee (emp_id INT);
 PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL);
 FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp;
END emp_actions;
/

CREATE PACKAGE BODY emp_actions AS
 number_hired INT; -- visible only in this package

 /* Fully define cursor specified in package. */
 CURSOR desc_salary RETURN EmpRecTyp IS
 SELECT empno, sal FROM emp ORDER BY sal DESC;

 /* Fully define subprograms specified in package. */
 FUNCTION hire_employee (
 ename VARCHAR2,
 job VARCHAR2,
 mgr REAL,
 sal REAL,

Some Examples of Package Features

9-8 PL/SQL User's Guide and Reference

 comm REAL,
 deptno REAL) RETURN INT IS
 new_empno INT;
 BEGIN
 SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, ename, job,
 mgr, SYSDATE, sal, comm, deptno);
 number_hired := number_hired + 1;
 RETURN new_empno;
 END hire_employee;

 PROCEDURE fire_employee (emp_id INT) IS
 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 END fire_employee;

 /* Define local function, available only inside package. */
 FUNCTION sal_ok (rank INT, salary REAL) RETURN BOOLEAN IS
 min_sal REAL;
 max_sal REAL;
 BEGIN
 SELECT losal, hisal INTO min_sal, max_sal FROM salgrade
 WHERE grade = rank;
 RETURN (salary >= min_sal) AND (salary <= max_sal);
 END sal_ok;

 PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL) IS
 salary REAL;
 BEGIN
 SELECT sal INTO salary FROM emp WHERE empno = emp_id;
 IF sal_ok(grade, salary + amount) THEN
 UPDATE emp SET sal = sal + amount WHERE empno = emp_id;
 ELSE
 RAISE invalid_salary;
 END IF;
 END raise_salary;

 FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp IS
 emp_rec EmpRecTyp;
 BEGIN
 OPEN desc_salary;
 FOR i IN 1..n LOOP
 FETCH desc_salary INTO emp_rec;
 END LOOP;
 CLOSE desc_salary;
 RETURN emp_rec;
 END nth_highest_salary;

BEGIN -- initialization part starts here
 INSERT INTO emp_audit VALUES (SYSDATE, USER, 'EMP_ACTIONS');
 number_hired := 0;
END emp_actions;
/

Remember, the initialization part of a package is run just once, the first time you
reference the package. In the last example, only one row is inserted into the database
table emp_audit, and the variable number_hired is initialized only once.

Every time the procedure hire_employee is called, the variable number_hired is
updated. However, the count kept by number_hired is session specific. That is, the

Some Examples of Package Features

Using PL/SQL Packages 9-9

count reflects the number of new employees processed by one user, not the number
processed by all users.

The following example is a package that handles typical bank transactions. Assume
that debit and credit transactions are entered after business hours through automatic
teller machines, then applied to accounts the next morning.

CREATE PACKAGE bank_transactions AS
 /* Declare externally visible constant. */
 minimum_balance CONSTANT REAL := 100.00;
 /* Declare externally callable procedures. */
 PROCEDURE apply_transactions;
 PROCEDURE enter_transaction (
 acct INT,
 kind CHAR,
 amount REAL);
END bank_transactions;
/

CREATE PACKAGE BODY bank_transactions AS
 /* Declare global variable to hold transaction status. */
 new_status VARCHAR2(70) := 'Unknown';

 /* Use forward declarations because apply_transactions
 calls credit_account and debit_account, which are not
 yet declared when the calls are made. */
 PROCEDURE credit_account (acct INT, credit REAL);
 PROCEDURE debit_account (acct INT, debit REAL);

 /* Fully define procedures specified in package. */
 PROCEDURE apply_transactions IS
 /* Apply pending transactions in transactions table
 to accounts table. Use cursor to fetch rows. */
 CURSOR trans_cursor IS
 SELECT acct_id, kind, amount FROM transactions
 WHERE status = 'Pending'
 ORDER BY time_tag
 FOR UPDATE OF status; -- to lock rows
 BEGIN
 FOR trans IN trans_cursor LOOP
 IF trans.kind = 'D' THEN
 debit_account(trans.acct_id, trans.amount);
 ELSIF trans.kind = 'C' THEN
 credit_account(trans.acct_id, trans.amount);
 ELSE
 new_status := 'Rejected';
 END IF;
 UPDATE transactions SET status = new_status
 WHERE CURRENT OF trans_cursor;
 END LOOP;
 END apply_transactions;

 PROCEDURE enter_transaction (
 /* Add a transaction to transactions table. */
 acct INT,
 kind CHAR,
 amount REAL) IS
 BEGIN
 INSERT INTO transactions
 VALUES (acct, kind, amount, 'Pending', SYSDATE);
 END enter_transaction;

Some Examples of Package Features

9-10 PL/SQL User's Guide and Reference

 /* Define local procedures, available only in package. */
 PROCEDURE do_journal_entry (
 /* Record transaction in journal. */
 acct INT,
 kind CHAR,
 new_bal REAL) IS
 BEGIN
 INSERT INTO journal
 VALUES (acct, kind, new_bal, sysdate);
 IF kind = 'D' THEN
 new_status := 'Debit applied';
 ELSE
 new_status := 'Credit applied';
 END IF;
 END do_journal_entry;

 PROCEDURE credit_account (acct INT, credit REAL) IS
 /* Credit account unless account number is bad. */
 old_balance REAL;
 new_balance REAL;
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance; -- to lock the row
 new_balance := old_balance + credit;
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 do_journal_entry(acct, 'C', new_balance);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 new_status := 'Bad account number';
 WHEN OTHERS THEN
 new_status := SUBSTR(SQLERRM,1,70);
 END credit_account;

 PROCEDURE debit_account (acct INT, debit REAL) IS
 /* Debit account unless account number is bad or
 account has insufficient funds. */
 old_balance REAL;
 new_balance REAL;
 insufficient_funds EXCEPTION;
 BEGIN
 SELECT balance INTO old_balance FROM accounts
 WHERE acct_id = acct
 FOR UPDATE OF balance; -- to lock the row
 new_balance := old_balance - debit;
 IF new_balance >= minimum_balance THEN
 UPDATE accounts SET balance = new_balance
 WHERE acct_id = acct;
 do_journal_entry(acct, 'D', new_balance);
 ELSE
 RAISE insufficient_funds;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 new_status := 'Bad account number';
 WHEN insufficient_funds THEN
 new_status := 'Insufficient funds';
 WHEN OTHERS THEN

Overloading Packaged Subprograms

Using PL/SQL Packages 9-11

 new_status := SUBSTR(SQLERRM,1,70);
 END debit_account;
END bank_transactions;
/

In this package, the initialization part is not used.

Private Versus Public Items in Packages
In the package emp_actions, the package body declares a variable named number_
hired, which is initialized to zero. Items declared in the body are restricted to use
within the package. PL/SQL code outside the package cannot reference the variable
number_hired. Such items are called private.

Items declared in the spec of emp_actions, such as the exception invalid_salary,
are visible outside the package. Any PL/SQL code can reference the exception
invalid_salary. Such items are called public.

To maintain items throughout a session or across transactions, place them in the
declarative part of the package body. For example, the value of number_hired is kept
between calls to hire_employee within the same session. The value is lost when the
session ends.

To make the items public, place them in the package spec. For example, the constant
minimum_balance declared in the spec of the package bank_transactions is
available for general use.

Overloading Packaged Subprograms
PL/SQL allows two or more packaged subprograms to have the same name. This
option is useful when you want a subprogram to accept similar sets of parameters that
have different datatypes. For example, the following package defines two procedures
named journalize:

CREATE PACKAGE journal_entries AS
 ...
 PROCEDURE journalize (amount REAL, trans_date VARCHAR2);
 PROCEDURE journalize (amount REAL, trans_date INT);
END journal_entries;
/

CREATE PACKAGE BODY journal_entries AS
 ...
 PROCEDURE journalize (amount REAL, trans_date VARCHAR2) IS
 BEGIN
 INSERT INTO journal
 VALUES (amount, TO_DATE(trans_date, 'DD-MON-YYYY'));
 END journalize;

 PROCEDURE journalize (amount REAL, trans_date INT) IS
 BEGIN
 INSERT INTO journal
 VALUES (amount, TO_DATE(trans_date, 'J'));
 END journalize;
END journal_entries;
/

The first procedure accepts trans_date as a character string, while the second
procedure accepts it as a number (the Julian day). Each procedure handles the data

How Package STANDARD Defines the PL/SQL Environment

9-12 PL/SQL User's Guide and Reference

appropriately. For the rules that apply to overloaded subprograms, see "Overloading
Subprogram Names" on page 8-9.

How Package STANDARD Defines the PL/SQL Environment
A package named STANDARD defines the PL/SQL environment. The package spec
globally declares types, exceptions, and subprograms, which are available
automatically to PL/SQL programs. For example, package STANDARD declares
function ABS, which returns the absolute value of its argument, as follows:

FUNCTION ABS (n NUMBER) RETURN NUMBER;

The contents of package STANDARD are directly visible to applications. You do not
need to qualify references to its contents by prefixing the package name. For example,
you might call ABS from a database trigger, stored subprogram, Oracle tool, or 3GL
application, as follows:

abs_diff := ABS(x - y);

If you declare your own version of ABS, your local declaration overrides the global
declaration. You can still call the built-in function by specifying its full name:

abs_diff := STANDARD.ABS(x - y);

Most built-in functions are overloaded. For example, package STANDARD contains the
following declarations:

FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN VARCHAR2;
FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR2;

PL/SQL resolves a call to TO_CHAR by matching the number and datatypes of the
formal and actual parameters.

Overview of Product-Specific Packages
Oracle and various Oracle tools are supplied with product-specific packages that
define APIs you can call from PL/SQL, SQL, Java, or other programming
environments. Here we mention a few of the more widely used ones. For more
information, see PL/SQL Packages and Types Reference.

About the DBMS_ALERT Package
Package DBMS_ALERT lets you use database triggers to alert an application when
specific database values change. The alerts are transaction based and asynchronous
(that is, they operate independently of any timing mechanism). For example, a
company might use this package to update the value of its investment portfolio as new
stock and bond quotes arrive.

About the DBMS_OUTPUT Package
Package DBMS_OUTPUT enables you to display output from PL/SQL blocks and
subprograms, which makes it easier to test and debug them. The procedure put_line
outputs information to a buffer in the SGA. You display the information by calling the
procedure get_line or by setting SERVEROUTPUT ON in SQL*Plus. For example,
suppose you create the following stored procedure:

Guidelines for Writing Packages

Using PL/SQL Packages 9-13

CREATE OR REPLACE PROCEDURE list_tables AS
BEGIN
 dbms_output.put_line('These are the tables you own:');
 FOR item IN (SELECT table_name FROM user_tables)
 LOOP
 dbms_output.put_line(item.table_name);
 END LOOP;
END;
/

When you issue the following commands, SQL*Plus displays the output from the
procedure:

SQL> SET SERVEROUTPUT ON
SQL> EXEC list_tables;

If the output is long, you might need to issue SET SERVEROUTPUT ON SIZE
1000000 to use a bigger output buffer.

About the DBMS_PIPE Package
Package DBMS_PIPE allows different sessions to communicate over named pipes. (A
pipe is an area of memory used by one process to pass information to another.) You can
use the procedures pack_message and send_message to pack a message into a
pipe, then send it to another session in the same instance or to a waiting application
such as a UNIX program.

At the other end of the pipe, you can use the procedures receive_message and
unpack_message to receive and unpack (read) the message. Named pipes are useful
in many ways. For example, you can write a C program to collect data, then send it
through pipes to stored procedures in an Oracle database.

About the UTL_FILE Package
Package UTL_FILE lets PL/SQL programs read and write operating system (OS) text
files. It provides a restricted version of standard OS stream file I/O, including open,
put, get, and close operations.

When you want to read or write a text file, you call the function fopen, which returns
a file handle for use in subsequent procedure calls. For example, the procedure put_
line writes a text string and line terminator to an open file, and the procedure get_
line reads a line of text from an open file into an output buffer.

About the UTL_HTTP Package
Package UTL_HTTP allows your PL/SQL programs to make hypertext transfer
protocol (HTTP) callouts. It can retrieve data from the Internet or call Oracle Web
Server cartridges. The package has two entry points, each of which accepts a URL
(uniform resource locator) string, contacts the specified site, and returns the requested
data, which is usually in hypertext markup language (HTML) format.

Guidelines for Writing Packages
When writing packages, keep them general so they can be reused in future
applications. Become familiar with the Oracle-supplied packages, and avoid writing
packages that duplicate features already provided by Oracle.

Separating Cursor Specs and Bodies with Packages

9-14 PL/SQL User's Guide and Reference

Design and define package specs before the package bodies. Place in a spec only those
things that must be visible to calling programs. That way, other developers cannot
build unsafe dependencies on your implementation details.

To reduce the need for recompiling when code is changed, place as few items as
possible in a package spec. Changes to a package body do not require recompiling
calling procedures. Changes to a package spec require Oracle to recompile every
stored subprogram that references the package.

Separating Cursor Specs and Bodies with Packages
You can separate a cursor specification (spec for short) from its body for placement in a
package. That way, you can change the cursor body without having to change the
cursor spec. You code the cursor spec in the package spec using this syntax:

CURSOR cursor_name [(parameter[, parameter]...)] RETURN return_type;

In the following example, you use the %ROWTYPE attribute to provide a record type
that represents a row in the database table emp:

CREATE PACKAGE emp_stuff AS
 CURSOR c1 RETURN emp%ROWTYPE; -- declare cursor spec
 ...
END emp_stuff;
/

CREATE PACKAGE BODY emp_stuff AS
 CURSOR c1 RETURN emp%ROWTYPE IS
 SELECT * FROM emp WHERE sal > 2500; -- define cursor body
 ...
END emp_stuff;
/

The cursor spec has no SELECT statement because the RETURN clause specifies the
datatype of the return value. However, the cursor body must have a SELECT
statement and the same RETURN clause as the cursor spec. Also, the number and
datatypes of items in the SELECT list and the RETURN clause must match.

Packaged cursors increase flexibility. For example, you can change the cursor body in
the last example, without having to change the cursor spec.

From a PL/SQL block or subprogram, you use dot notation to reference a packaged
cursor, as the following example shows:

DECLARE
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_stuff.c1;
 LOOP
 FETCH emp_stuff.c1 INTO emp_rec; /* Do more processing here... */
 EXIT WHEN emp_suff.c1%NOTFOUND;
 END LOOP;
 CLOSE emp_stuff.c1;
END;
/

The scope of a packaged cursor is not limited to a PL/SQL block. When you open a
packaged cursor, it remains open until you close it or you disconnect from the session.

Handling PL/SQL Errors 10-1

10
Handling PL/SQL Errors

There is nothing more exhilarating than to be shot at without result. —Winston Churchill

Run-time errors arise from design faults, coding mistakes, hardware failures, and
many other sources. Although you cannot anticipate all possible errors, you can plan
to handle certain kinds of errors meaningful to your PL/SQL program.

With many programming languages, unless you disable error checking, a run-time
error such as stack overflow or division by zero stops normal processing and returns
control to the operating system. With PL/SQL, a mechanism called exception handling
lets you "bulletproof" your program so that it can continue operating in the presence of
errors.

This chapter contains these topics:

■ Overview of PL/SQL Runtime Error Handling on page 10-1

■ Advantages of PL/SQL Exceptions on page 10-3

■ Summary of Predefined PL/SQL Exceptions on page 10-4

■ Defining Your Own PL/SQL Exceptions on page 10-6

■ How PL/SQL Exceptions Are Raised on page 10-9

■ How PL/SQL Exceptions Propagate on page 10-10

■ Reraising a PL/SQL Exception on page 10-12

■ Handling Raised PL/SQL Exceptions on page 10-12

■ Tips for Handling PL/SQL Errors on page 10-15

■ Overview of PL/SQL Compile-Time Warnings on page 10-17

Overview of PL/SQL Runtime Error Handling
In PL/SQL, an error condition is called an exception. Exceptions can be internally
defined (by the runtime system) or user defined. Examples of internally defined
exceptions include division by zero and out of memory. Some common internal
exceptions have predefined names, such as ZERO_DIVIDE and STORAGE_ERROR. The
other internal exceptions can be given names.

You can define exceptions of your own in the declarative part of any PL/SQL block,
subprogram, or package. For example, you might define an exception named
insufficient_funds to flag overdrawn bank accounts. Unlike internal exceptions,
user-defined exceptions must be given names.

Overview of PL/SQL Runtime Error Handling

10-2 PL/SQL User's Guide and Reference

When an error occurs, an exception is raised. That is, normal execution stops and
control transfers to the exception-handling part of your PL/SQL block or subprogram.
Internal exceptions are raised implicitly (automatically) by the run-time system.
User-defined exceptions must be raised explicitly by RAISE statements, which can also
raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers. After
an exception handler runs, the current block stops executing and the enclosing block
resumes with the next statement. If there is no enclosing block, control returns to the
host environment.

The following example calculates a price-to-earnings ratio for a company. If the
company has zero earnings, the division operation raises the predefined exception
ZERO_DIVIDE, the execution of the block is interrupted, and control is transferred to
the exception handlers. The optional OTHERS handler catches all exceptions that the
block does not name specifically.

SET SERVEROUTPUT ON;

DECLARE
 stock_price NUMBER := 9.73;
 net_earnings NUMBER := 0;
 pe_ratio NUMBER;
BEGIN
-- Calculation might cause division-by-zero error.
 pe_ratio := stock_price / net_earnings;
 dbms_output.put_line('Price/earnings ratio = ' || pe_ratio);

EXCEPTION -- exception handlers begin

-- Only one of the WHEN blocks is executed.

 WHEN ZERO_DIVIDE THEN -- handles 'division by zero' error
 dbms_output.put_line('Company must have had zero earnings.');
 pe_ratio := null;

 WHEN OTHERS THEN -- handles all other errors
 dbms_output.put_line('Some other kind of error occurred.');
 pe_ratio := null;

END; -- exception handlers and block end here
/

The last example illustrates exception handling. With some better error checking, we
could have avoided the exception entirely, by substituting a null for the answer if the
denominator was zero:

DECLARE
 stock_price NUMBER := 9.73;
 net_earnings NUMBER := 0;
 pe_ratio NUMBER;
BEGIN
 pe_ratio :=
 case net_earnings
 when 0 then null
 else stock_price / net_earnings
 end;
END;
/

Advantages of PL/SQL Exceptions

Handling PL/SQL Errors 10-3

Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
Because reliability is crucial for database programs, use both error checking and
exception handling to ensure your program can handle all possibilities:

■ Add exception handlers whenever there is any possibility of an error occurring.
Errors are especially likely during arithmetic calculations, string manipulation,
and database operations. Errors could also occur at other times, for example if a
hardware failure with disk storage or memory causes a problem that has nothing
to do with your code; but your code still needs to take corrective action.

■ Add error-checking code whenever you can predict that an error might occur if
your code gets bad input data. Expect that at some time, your code will be passed
incorrect or null parameters, that your queries will return no rows or more rows
than you expect.

■ Make your programs robust enough to work even if the database is not in the state
you expect. For example, perhaps a table you query will have columns added or
deleted, or their types changed. You can avoid such problems by declaring
individual variables with %TYPE qualifiers, and declaring records to hold query
results with %ROWTYPE qualifiers.

■ Handle named exceptions whenever possible, instead of using WHEN OTHERS in
exception handlers. Learn the names and causes of the predefined exceptions. If
your database operations might cause particular ORA- errors, associate names
with these errors so you can write handlers for them. (You will learn how to do
that later in this chapter.)

■ Test your code with different combinations of bad data to see what potential errors
arise.

■ Write out debugging information in your exception handlers. You might store
such information in a separate table. If so, do it by making a call to a procedure
declared with the PRAGMA AUTONOMOUS_TRANSACTION, so that you can commit
your debugging information, even if you roll back the work that the main
procedure was doing.

■ Carefully consider whether each exception handler should commit the transaction,
roll it back, or let it continue. Remember, no matter how severe the error is, you
want to leave the database in a consistent state and avoid storing any bad data.

Advantages of PL/SQL Exceptions
Using exceptions for error handling has several advantages.

With exceptions, you can reliably handle potential errors from many statements with a
single exception handler:

BEGIN
 SELECT ...
 SELECT ...
 procedure_that_performs_select();
 ...
EXCEPTION
 WHEN NO_DATA_FOUND THEN -- catches all 'no data found' errors

Instead of checking for an error at every point it might occur, just add an exception
handler to your PL/SQL block. If the exception is ever raised in that block (or any
sub-block), you can be sure it will be handled.

Summary of Predefined PL/SQL Exceptions

10-4 PL/SQL User's Guide and Reference

Sometimes the error is not immediately obvious, and could not be detected until later
when you perform calculations using bad data. Again, a single exception handler can
trap all division-by-zero errors, bad array subscripts, and so on.

If you need to check for errors at a specific spot, you can enclose a single statement or
a group of statements inside its own BEGIN-END block with its own exception
handler. You can make the checking as general or as precise as you like.

Isolating error-handling routines makes the rest of the program easier to read and
understand.

Summary of Predefined PL/SQL Exceptions
An internal exception is raised automatically if your PL/SQL program violates an
Oracle rule or exceeds a system-dependent limit. PL/SQL predefines some common
Oracle errors as exceptions. For example, PL/SQL raises the predefined exception
NO_DATA_FOUND if a SELECT INTO statement returns no rows.

You can use the pragma EXCEPTION_INIT to associate exception names with other
Oracle error codes that you can anticipate. To handle unexpected Oracle errors, you
can use the OTHERS handler. Within this handler, you can call the functions SQLCODE
and SQLERRM to return the Oracle error code and message text. Once you know the
error code, you can use it with pragma EXCEPTION_INIT and write a handler
specifically for that error.

PL/SQL declares predefined exceptions globally in package STANDARD. You need not
declare them yourself. You can write handlers for predefined exceptions using the
names in the following list:

Exception Oracle Error SQLCODE Value

ACCESS_INTO_NULL ORA-06530 -6530

CASE_NOT_FOUND ORA-06592 -6592

COLLECTION_IS_NULL ORA-06531 -6531

CURSOR_ALREADY_OPEN ORA-06511 -6511

DUP_VAL_ON_INDEX ORA-00001 -1

INVALID_CURSOR ORA-01001 -1001

INVALID_NUMBER ORA-01722 -1722

LOGIN_DENIED ORA-01017 -1017

NO_DATA_FOUND ORA-01403 +100

NOT_LOGGED_ON ORA-01012 -1012

PROGRAM_ERROR ORA-06501 -6501

ROWTYPE_MISMATCH ORA-06504 -6504

SELF_IS_NULL ORA-30625 -30625

STORAGE_ERROR ORA-06500 -6500

SUBSCRIPT_BEYOND_COUNT ORA-06533 -6533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 -6532

SYS_INVALID_ROWID ORA-01410 -1410

TIMEOUT_ON_RESOURCE ORA-00051 -51

Summary of Predefined PL/SQL Exceptions

Handling PL/SQL Errors 10-5

Brief descriptions of the predefined exceptions follow:

TOO_MANY_ROWS ORA-01422 -1422

VALUE_ERROR ORA-06502 -6502

ZERO_DIVIDE ORA-01476 -1476

Exception Raised when ...

ACCESS_INTO_NULL A program attempts to assign values to the attributes of
an uninitialized object.

CASE_NOT_FOUND None of the choices in the WHEN clauses of a CASE
statement is selected, and there is no ELSE clause.

COLLECTION_IS_NULL A program attempts to apply collection methods other
than EXISTS to an uninitialized nested table or varray,
or the program attempts to assign values to the
elements of an uninitialized nested table or varray.

CURSOR_ALREADY_OPEN A program attempts to open an already open cursor. A
cursor must be closed before it can be reopened. A
cursor FOR loop automatically opens the cursor to
which it refers, so your program cannot open that
cursor inside the loop.

DUP_VAL_ON_INDEX A program attempts to store duplicate values in a
database column that is constrained by a unique index.

INVALID_CURSOR A program attempts a cursor operation that is not
allowed, such as closing an unopened cursor.

INVALID_NUMBER In a SQL statement, the conversion of a character string
into a number fails because the string does not
represent a valid number. (In procedural statements,
VALUE_ERROR is raised.) This exception is also raised
when the LIMIT-clause expression in a bulk FETCH
statement does not evaluate to a positive number.

LOGIN_DENIED A program attempts to log on to Oracle with an invalid
username or password.

NO_DATA_FOUND A SELECT INTO statement returns no rows, or your
program references a deleted element in a nested table
or an uninitialized element in an index-by table.

Because this exception is used internally by some SQL
functions to signal that they are finished, you should
not rely on this exception being propagated if you raise
it within a function that is called as part of a query.

NOT_LOGGED_ON A program issues a database call without being
connected to Oracle.

PROGRAM_ERROR PL/SQL has an internal problem.

ROWTYPE_MISMATCH The host cursor variable and PL/SQL cursor variable
involved in an assignment have incompatible return
types. For example, when an open host cursor variable
is passed to a stored subprogram, the return types of
the actual and formal parameters must be compatible.

SELF_IS_NULL A program attempts to call a MEMBER method, but the
instance of the object type has not been initialized. The
built-in parameter SELF points to the object, and is
always the first parameter passed to a MEMBER method.

Exception Oracle Error SQLCODE Value

Defining Your Own PL/SQL Exceptions

10-6 PL/SQL User's Guide and Reference

Defining Your Own PL/SQL Exceptions
PL/SQL lets you define exceptions of your own. Unlike predefined exceptions,
user-defined exceptions must be declared and must be raised explicitly by RAISE
statements.

Declaring PL/SQL Exceptions
Exceptions can be declared only in the declarative part of a PL/SQL block,
subprogram, or package. You declare an exception by introducing its name, followed
by the keyword EXCEPTION. In the following example, you declare an exception
named past_due:

DECLARE
 past_due EXCEPTION;

Exception and variable declarations are similar. But remember, an exception is an error
condition, not a data item. Unlike variables, exceptions cannot appear in assignment
statements or SQL statements. However, the same scope rules apply to variables and
exceptions.

Scope Rules for PL/SQL Exceptions
You cannot declare an exception twice in the same block. You can, however, declare
the same exception in two different blocks.

Exceptions declared in a block are considered local to that block and global to all its
sub-blocks. Because a block can reference only local or global exceptions, enclosing
blocks cannot reference exceptions declared in a sub-block.

STORAGE_ERROR PL/SQL runs out of memory or memory has been
corrupted.

SUBSCRIPT_BEYOND_COUNT A program references a nested table or varray element
using an index number larger than the number of
elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT A program references a nested table or varray element
using an index number (-1 for example) that is outside
the legal range.

SYS_INVALID_ROWID The conversion of a character string into a universal
rowid fails because the character string does not
represent a valid rowid.

TIMEOUT_ON_RESOURCE A time-out occurs while Oracle is waiting for a
resource.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR An arithmetic, conversion, truncation, or
size-constraint error occurs. For example, when your
program selects a column value into a character
variable, if the value is longer than the declared length
of the variable, PL/SQL aborts the assignment and
raises VALUE_ERROR. In procedural statements,
VALUE_ERROR is raised if the conversion of a character
string into a number fails. (In SQL statements,
INVALID_NUMBER is raised.)

ZERO_DIVIDE A program attempts to divide a number by zero.

Exception Raised when ...

Defining Your Own PL/SQL Exceptions

Handling PL/SQL Errors 10-7

If you redeclare a global exception in a sub-block, the local declaration prevails. The
sub-block cannot reference the global exception, unless the exception is declared in a
labeled block and you qualify its name with the block label:

block_label.exception_name

The following example illustrates the scope rules:

DECLARE
 past_due EXCEPTION;
 acct_num NUMBER;
BEGIN
 DECLARE ---------- sub-block begins
 past_due EXCEPTION; -- this declaration prevails
 acct_num NUMBER;
 due_date DATE := SYSDATE - 1;
 todays_date DATE := SYSDATE;
 BEGIN
 IF due_date < todays_date THEN
 RAISE past_due; -- this is not handled
 END IF;
 END; ------------- sub-block ends
EXCEPTION
 WHEN past_due THEN -- does not handle RAISEd exception
 dbms_output.put_line('Handling PAST_DUE exception.');
 WHEN OTHERS THEN
 dbms_output.put_line('Could not recognize PAST_DUE_EXCEPTION in this
scope.');
END;
/

The enclosing block does not handle the raised exception because the declaration of
past_due in the sub-block prevails. Though they share the same name, the two
past_due exceptions are different, just as the two acct_num variables share the same
name but are different variables. Thus, the RAISE statement and the WHEN clause refer
to different exceptions. To have the enclosing block handle the raised exception, you
must remove its declaration from the sub-block or define an OTHERS handler.

Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT
To handle error conditions (typically ORA- messages) that have no predefined name,
you must use the OTHERS handler or the pragma EXCEPTION_INIT. A pragma is a
compiler directive that is processed at compile time, not at run time.

In PL/SQL, the pragma EXCEPTION_INIT tells the compiler to associate an exception
name with an Oracle error number. That lets you refer to any internal exception by
name and to write a specific handler for it. When you see an error stack, or sequence
of error messages, the one on top is the one that you can trap and handle.

You code the pragma EXCEPTION_INIT in the declarative part of a PL/SQL block,
subprogram, or package using the syntax

PRAGMA EXCEPTION_INIT(exception_name, -Oracle_error_number);

where exception_name is the name of a previously declared exception and the
number is a negative value corresponding to an ORA- error number. The pragma must
appear somewhere after the exception declaration in the same declarative section, as
shown in the following example:

DECLARE
 deadlock_detected EXCEPTION;

Defining Your Own PL/SQL Exceptions

10-8 PL/SQL User's Guide and Reference

 PRAGMA EXCEPTION_INIT(deadlock_detected, -60);
BEGIN
 null; -- Some operation that causes an ORA-00060 error
EXCEPTION
 WHEN deadlock_detected THEN
 null; -- handle the error
END;
/

Defining Your Own Error Messages: Procedure RAISE_APPLICATION_ERROR
The procedure RAISE_APPLICATION_ERROR lets you issue user-defined ORA- error
messages from stored subprograms. That way, you can report errors to your
application and avoid returning unhandled exceptions.

To call RAISE_APPLICATION_ERROR, use the syntax

raise_application_error(error_number, message[, {TRUE | FALSE}]);

where error_number is a negative integer in the range -20000 .. -20999 and message
is a character string up to 2048 bytes long. If the optional third parameter is TRUE, the
error is placed on the stack of previous errors. If the parameter is FALSE (the default),
the error replaces all previous errors. RAISE_APPLICATION_ERROR is part of package
DBMS_STANDARD, and as with package STANDARD, you do not need to qualify
references to it.

An application can call raise_application_error only from an executing stored
subprogram (or method). When called, raise_application_error ends the
subprogram and returns a user-defined error number and message to the application.
The error number and message can be trapped like any Oracle error.

In the following example, you call raise_application_error if an error condition
of your choosing happens (in this case, if the current schema owns less than 1000
tables):

DECLARE
 num_tables NUMBER;
BEGIN
 SELECT COUNT(*) INTO num_tables FROM USER_TABLES;
 IF num_tables < 1000 THEN
 /* Issue your own error code (ORA-20101) with your own error message. */
 raise_application_error(-20101, 'Expecting at least 1000 tables');
 ELSE
 NULL; -- Do the rest of the processing (for the non-error case).
 END IF;
END;
/

The calling application gets a PL/SQL exception, which it can process using the
error-reporting functions SQLCODE and SQLERRM in an OTHERS handler. Also, it can
use the pragma EXCEPTION_INIT to map specific error numbers returned by
raise_application_error to exceptions of its own, as the following Pro*C
example shows:

EXEC SQL EXECUTE
 /* Execute embedded PL/SQL block using host
 variables my_emp_id and my_amount, which were
 assigned values in the host environment. */
 DECLARE
 null_salary EXCEPTION;

How PL/SQL Exceptions Are Raised

Handling PL/SQL Errors 10-9

 /* Map error number returned by raise_application_error
 to user-defined exception. */
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
 BEGIN
 raise_salary(:my_emp_id, :my_amount);
 EXCEPTION
 WHEN null_salary THEN
 INSERT INTO emp_audit VALUES (:my_emp_id, ...);
 END;
END-EXEC;

This technique allows the calling application to handle error conditions in specific
exception handlers.

Redeclaring Predefined Exceptions
Remember, PL/SQL declares predefined exceptions globally in package STANDARD, so
you need not declare them yourself. Redeclaring predefined exceptions is error prone
because your local declaration overrides the global declaration. For example, if you
declare an exception named invalid_number and then PL/SQL raises the predefined
exception INVALID_NUMBER internally, a handler written for INVALID_NUMBER will
not catch the internal exception. In such cases, you must use dot notation to specify the
predefined exception, as follows:

EXCEPTION
 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN
 -- handle the error
END;

How PL/SQL Exceptions Are Raised
Internal exceptions are raised implicitly by the run-time system, as are user-defined
exceptions that you have associated with an Oracle error number using
EXCEPTION_INIT. However, other user-defined exceptions must be raised explicitly
by RAISE statements.

Raising Exceptions with the RAISE Statement
PL/SQL blocks and subprograms should raise an exception only when an error makes
it undesirable or impossible to finish processing. You can place RAISE statements for a
given exception anywhere within the scope of that exception. In the following
example, you alert your PL/SQL block to a user-defined exception named
out_of_stock:

DECLARE
 out_of_stock EXCEPTION;
 number_on_hand NUMBER := 0;
BEGIN
 IF number_on_hand < 1 THEN
 RAISE out_of_stock; -- raise an exception that we defined
 END IF;
EXCEPTION
 WHEN out_of_stock THEN
 -- handle the error
 dbms_output.put_line('Encountered out-of-stock error.');
END;
/

How PL/SQL Exceptions Propagate

10-10 PL/SQL User's Guide and Reference

You can also raise a predefined exception explicitly. That way, an exception handler
written for the predefined exception can process other errors, as the following example
shows:

DECLARE
 acct_type INTEGER := 7;
BEGIN
 IF acct_type NOT IN (1, 2, 3) THEN
 RAISE INVALID_NUMBER; -- raise predefined exception
 END IF;
EXCEPTION
 WHEN INVALID_NUMBER THEN
 dbms_output.put_line('Handling invalid input by rolling back.');
 ROLLBACK;
END;
/

How PL/SQL Exceptions Propagate
When an exception is raised, if PL/SQL cannot find a handler for it in the current
block or subprogram, the exception propagates. That is, the exception reproduces itself
in successive enclosing blocks until a handler is found or there are no more blocks to
search. If no handler is found, PL/SQL returns an unhandled exception error to the host
environment.

Exceptions cannot propagate across remote procedure calls done through database
links. A PL/SQL block cannot catch an exception raised by a remote subprogram. For
a workaround, see "Defining Your Own Error Messages: Procedure
RAISE_APPLICATION_ERROR" on page 10-8.

Figure 10–1, Figure 10–2, and Figure 10–3 illustrate the basic propagation rules.

Figure 10–1 Propagation Rules: Example 1

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...

EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Exception A is handled
locally, then execution resumes
in the enclosing block

How PL/SQL Exceptions Propagate

Handling PL/SQL Errors 10-11

Figure 10–2 Propagation Rules: Example 2

Figure 10–3 Propagation Rules: Example 3

An exception can propagate beyond its scope, that is, beyond the block in which it was
declared. Consider the following example:

BEGIN
 DECLARE ---------- sub-block begins
 past_due EXCEPTION;
 due_date DATE := trunc(SYSDATE) - 1;
 todays_date DATE := trunc(SYSDATE);
 BEGIN
 IF due_date < todays_date THEN
 RAISE past_due;
 END IF;
 END; ------------- sub-block ends
EXCEPTION

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...

EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Exception B is handled,
then control passes to the
host environment

Exception B propagates to
the first enclosing block with
an appropriate handler

BEGIN
 IF X = 1 THEN
 RAISE A;
 ELSIF X = 2 THEN
 RAISE B;
 ELSE
 RAISE C;
 END IF;
 ...

EXCEPTION
 WHEN A THEN
 ...
END;

BEGIN

EXCEPTION
 WHEN B THEN
 ...
END;

Exception C has no
handler, so an unhandled
exception is returned to the
host environment

Reraising a PL/SQL Exception

10-12 PL/SQL User's Guide and Reference

 WHEN OTHERS THEN
 ROLLBACK;
END;
/

Because the block that declares the exception past_due has no handler for it, the
exception propagates to the enclosing block. But the enclosing block cannot reference
the name PAST_DUE, because the scope where it was declared no longer exists. Once
the exception name is lost, only an OTHERS handler can catch the exception. If there is
no handler for a user-defined exception, the calling application gets this error:

ORA-06510: PL/SQL: unhandled user-defined exception

Reraising a PL/SQL Exception
Sometimes, you want to reraise an exception, that is, handle it locally, then pass it to an
enclosing block. For example, you might want to roll back a transaction in the current
block, then log the error in an enclosing block.

To reraise an exception, use a RAISE statement without an exception name, which is
allowed only in an exception handler:

DECLARE
 salary_too_high EXCEPTION;
 current_salary NUMBER := 20000;
 max_salary NUMBER := 10000;
 erroneous_salary NUMBER;
BEGIN
 BEGIN ---------- sub-block begins
 IF current_salary > max_salary THEN
 RAISE salary_too_high; -- raise the exception
 END IF;
 EXCEPTION
 WHEN salary_too_high THEN
 -- first step in handling the error
 dbms_output.put_line('Salary ' || erroneous_salary ||
 ' is out of range.');
 dbms_output.put_line('Maximum salary is ' || max_salary || '.');
 RAISE; -- reraise the current exception
 END; ------------ sub-block ends
EXCEPTION
 WHEN salary_too_high THEN
 -- handle the error more thoroughly
 erroneous_salary := current_salary;
 current_salary := max_salary;
 dbms_output.put_line('Revising salary from ' || erroneous_salary ||
 'to ' || current_salary || '.');
END;
/

Handling Raised PL/SQL Exceptions
When an exception is raised, normal execution of your PL/SQL block or subprogram
stops and control transfers to its exception-handling part, which is formatted as
follows:

EXCEPTION
 WHEN exception_name1 THEN -- handler
 sequence_of_statements1

Handling Raised PL/SQL Exceptions

Handling PL/SQL Errors 10-13

 WHEN exception_name2 THEN -- another handler
 sequence_of_statements2
 ...
 WHEN OTHERS THEN -- optional handler
 sequence_of_statements3
END;

To catch raised exceptions, you write exception handlers. Each handler consists of a
WHEN clause, which specifies an exception, followed by a sequence of statements to be
executed when that exception is raised. These statements complete execution of the
block or subprogram; control does not return to where the exception was raised. In
other words, you cannot resume processing where you left off.

The optional OTHERS exception handler, which is always the last handler in a block or
subprogram, acts as the handler for all exceptions not named specifically. Thus, a block
or subprogram can have only one OTHERS handler.

As the following example shows, use of the OTHERS handler guarantees that no
exception will go unhandled:

EXCEPTION
 WHEN ... THEN
 -- handle the error
 WHEN ... THEN
 -- handle the error
 WHEN OTHERS THEN
 -- handle all other errors
END;

If you want two or more exceptions to execute the same sequence of statements, list
the exception names in the WHEN clause, separating them by the keyword OR, as
follows:

EXCEPTION
 WHEN over_limit OR under_limit OR VALUE_ERROR THEN
 -- handle the error

If any of the exceptions in the list is raised, the associated sequence of statements is
executed. The keyword OTHERS cannot appear in the list of exception names; it must
appear by itself. You can have any number of exception handlers, and each handler
can associate a list of exceptions with a sequence of statements. However, an exception
name can appear only once in the exception-handling part of a PL/SQL block or
subprogram.

The usual scoping rules for PL/SQL variables apply, so you can reference local and
global variables in an exception handler. However, when an exception is raised inside
a cursor FOR loop, the cursor is closed implicitly before the handler is invoked.
Therefore, the values of explicit cursor attributes are not available in the handler.

Handling Exceptions Raised in Declarations
Exceptions can be raised in declarations by faulty initialization expressions. For
example, the following declaration raises an exception because the constant
credit_limit cannot store numbers larger than 999:

DECLARE
 credit_limit CONSTANT NUMBER(3) := 5000; -- raises an exception
BEGIN
 NULL;
EXCEPTION

Handling Raised PL/SQL Exceptions

10-14 PL/SQL User's Guide and Reference

 WHEN OTHERS THEN
 -- Cannot catch the exception. This handler is never called.
 dbms_output.put_line('Can''t handle an exception in a declaration.');
END;
/

Handlers in the current block cannot catch the raised exception because an exception
raised in a declaration propagates immediately to the enclosing block.

Handling Exceptions Raised in Handlers
When an exception occurs within an exception handler, that same handler cannot
catch the exception. An exception raised inside a handler propagates immediately to
the enclosing block, which is searched to find a handler for this new exception. From
there on, the exception propagates normally. For example:

EXCEPTION
 WHEN INVALID_NUMBER THEN
 INSERT INTO ... -- might raise DUP_VAL_ON_INDEX
 WHEN DUP_VAL_ON_INDEX THEN ... -- cannot catch the exception
END;

Branching to or from an Exception Handler
A GOTO statement can branch from an exception handler into an enclosing block.

A GOTO statement cannot branch into an exception handler, or from an exception
handler into the current block.

Retrieving the Error Code and Error Message: SQLCODE and SQLERRM
In an exception handler, you can use the built-in functions SQLCODE and SQLERRM to
find out which error occurred and to get the associated error message. For internal
exceptions, SQLCODE returns the number of the Oracle error. The number that
SQLCODE returns is negative unless the Oracle error is no data found, in which case
SQLCODE returns +100. SQLERRM returns the corresponding error message. The
message begins with the Oracle error code.

For user-defined exceptions, SQLCODE returns +1 and SQLERRM returns the message:
User-Defined Exception.

unless you used the pragma EXCEPTION_INIT to associate the exception name with
an Oracle error number, in which case SQLCODE returns that error number and
SQLERRM returns the corresponding error message. The maximum length of an Oracle
error message is 512 characters including the error code, nested messages, and
message inserts such as table and column names.

If no exception has been raised, SQLCODE returns zero and SQLERRM returns the
message: ORA-0000: normal, successful completion.

You can pass an error number to SQLERRM, in which case SQLERRM returns the
message associated with that error number. Make sure you pass negative error
numbers to SQLERRM.

Passing a positive number to SQLERRM always returns the message user-defined
exception unless you pass +100, in which case SQLERRM returns the message no data
found. Passing a zero to SQLERRM always returns the message normal, successful
completion.

Tips for Handling PL/SQL Errors

Handling PL/SQL Errors 10-15

You cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you must
assign their values to local variables, then use the variables in the SQL statement, as
shown in the following example:

DECLARE
 err_msg VARCHAR2(100);
BEGIN
 /* Get a few Oracle error messages. */
 FOR err_num IN 1..3 LOOP
 err_msg := SUBSTR(SQLERRM(-err_num),1,100);
 dbms_output.put_line('Error number = ' || err_num);
 dbms_output.put_line('Error message = ' || err_msg);
 END LOOP;
END;
/

The string function SUBSTR ensures that a VALUE_ERROR exception (for truncation) is
not raised when you assign the value of SQLERRM to err_msg. The functions
SQLCODE and SQLERRM are especially useful in the OTHERS exception handler because
they tell you which internal exception was raised.

Note: When using pragma RESTRICT_REFERENCES to assert the purity of a stored
function, you cannot specify the constraints WNPS and RNPS if the function calls
SQLCODE or SQLERRM.

Catching Unhandled Exceptions
Remember, if it cannot find a handler for a raised exception, PL/SQL returns an
unhandled exception error to the host environment, which determines the outcome.
For example, in the Oracle Precompilers environment, any database changes made by
a failed SQL statement or PL/SQL block are rolled back.

Unhandled exceptions can also affect subprograms. If you exit a subprogram
successfully, PL/SQL assigns values to OUT parameters. However, if you exit with an
unhandled exception, PL/SQL does not assign values to OUT parameters (unless they
are NOCOPY parameters). Also, if a stored subprogram fails with an unhandled
exception, PL/SQL does not roll back database work done by the subprogram.

You can avoid unhandled exceptions by coding an OTHERS handler at the topmost
level of every PL/SQL program.

Tips for Handling PL/SQL Errors
In this section, you learn three techniques that increase flexibility.

Continuing after an Exception Is Raised
An exception handler lets you recover from an otherwise fatal error before exiting a
block. But when the handler completes, the block is terminated. You cannot return to
the current block from an exception handler. In the following example, if the SELECT
INTO statement raises ZERO_DIVIDE, you cannot resume with the INSERT statement:

DECLARE
 pe_ratio NUMBER(3,1);
BEGIN
 DELETE FROM stats WHERE symbol = 'XYZ';
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks
 WHERE symbol = 'XYZ';
 INSERT INTO stats (symbol, ratio) VALUES ('XYZ', pe_ratio);

Tips for Handling PL/SQL Errors

10-16 PL/SQL User's Guide and Reference

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 NULL;
END;
/

You can still handle an exception for a statement, then continue with the next
statement. Place the statement in its own sub-block with its own exception handlers. If
an error occurs in the sub-block, a local handler can catch the exception. When the
sub-block ends, the enclosing block continues to execute at the point where the
sub-block ends. Consider the following example:

DECLARE
 pe_ratio NUMBER(3,1);
BEGIN
 DELETE FROM stats WHERE symbol = 'XYZ';
 BEGIN ---------- sub-block begins
 SELECT price / NVL(earnings, 0) INTO pe_ratio FROM stocks
 WHERE symbol = 'XYZ';
 EXCEPTION
 WHEN ZERO_DIVIDE THEN
 pe_ratio := 0;
 END; ---------- sub-block ends
 INSERT INTO stats (symbol, ratio) VALUES ('XYZ', pe_ratio);
EXCEPTION
 WHEN OTHERS THEN
 NULL;
END;
/

In this example, if the SELECT INTO statement raises a ZERO_DIVIDE exception, the
local handler catches it and sets pe_ratio to zero. Execution of the handler is
complete, so the sub-block terminates, and execution continues with the INSERT
statement.

You can also perform a sequence of DML operations where some might fail, and
process the exceptions only after the entire operation is complete, as described in
"Handling FORALL Exceptions with the %BULK_EXCEPTIONS Attribute" on
page 11-13.

Retrying a Transaction
After an exception is raised, rather than abandon your transaction, you might want to
retry it. The technique is:

1. Encase the transaction in a sub-block.

2. Place the sub-block inside a loop that repeats the transaction.

3. Before starting the transaction, mark a savepoint. If the transaction succeeds,
commit, then exit from the loop. If the transaction fails, control transfers to the
exception handler, where you roll back to the savepoint undoing any changes,
then try to fix the problem.

In the following example, the INSERT statement might raise an exception because of a
duplicate value in a unique column. In that case, we change the value that needs to be
unique and continue with the next loop iteration. If the INSERT succeeds, we exit from
the loop immediately. With this technique, you should use a FOR or WHILE loop to
limit the number of attempts.

DECLARE

Overview of PL/SQL Compile-Time Warnings

Handling PL/SQL Errors 10-17

 name VARCHAR2(20);
 ans1 VARCHAR2(3);
 ans2 VARCHAR2(3);
 ans3 VARCHAR2(3);
 suffix NUMBER := 1;
BEGIN
 FOR i IN 1..10 LOOP -- try 10 times
 BEGIN -- sub-block begins
 SAVEPOINT start_transaction; -- mark a savepoint
 /* Remove rows from a table of survey results. */
 DELETE FROM results WHERE answer1 = 'NO';
 /* Add a survey respondent's name and answers. */
 INSERT INTO results VALUES (name, ans1, ans2, ans3);
 -- raises DUP_VAL_ON_INDEX if two respondents have the same name
 COMMIT;
 EXIT;
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX THEN
 ROLLBACK TO start_transaction; -- undo changes
 suffix := suffix + 1; -- try to fix problem
 name := name || TO_CHAR(suffix);
 END; -- sub-block ends
 END LOOP;
END;
/

Using Locator Variables to Identify Exception Locations
Using one exception handler for a sequence of statements, such as INSERT, DELETE,
or UPDATE statements, can mask the statement that caused an error. If you need to
know which statement failed, you can use a locator variable:

DECLARE
 stmt INTEGER;
 name VARCHAR2(100);
BEGIN
 stmt := 1; -- designates 1st SELECT statement
 SELECT table_name INTO name FROM user_tables WHERE table_name LIKE 'ABC%';
 stmt := 2; -- designates 2nd SELECT statement
 SELECT table_name INTO name FROM user_tables WHERE table_name LIKE 'XYZ%';
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 dbms_output.put_line('Table name not found in query ' || stmt);
END;
/

Overview of PL/SQL Compile-Time Warnings
To make your programs more robust and avoid problems at run time, you can turn on
checking for certain warning conditions. These conditions are not serious enough to
produce an error and keep you from compiling a subprogram. They might point out
something in the subprogram that produces an undefined result or might create a
performance problem.

To work with PL/SQL warning messages, you use the PLSQL_WARNINGS
initialization parameter, the DBMS_WARNING package, and the
USER/DBA/ALL_PLSQL_OBJECT_SETTINGS views.

Overview of PL/SQL Compile-Time Warnings

10-18 PL/SQL User's Guide and Reference

PL/SQL Warning Categories
PL/SQL warning messages are divided into categories, so that you can suppress or
display groups of similar warnings during compilation. The categories are:

Severe: Messages for conditions that might cause unexpected behavior or wrong
results, such as aliasing problems with parameters.

Performance: Messages for conditions that might cause performance problems, such
as passing a VARCHAR2 value to a NUMBER column in an INSERT statement.

Informational: Messages for conditions that do not have an effect on performance or
correctness, but that you might want to change to make the code more maintainable,
such as dead code that can never be executed.

The keyword All is a shorthand way to refer to all warning messages.

You can also treat particular messages as errors instead of warnings. For example, if
you know that the warning message PLW-05003 represents a serious problem in your
code, including 'ERROR:05003' in the PLSQL_WARNINGS setting makes that
condition trigger an error message (PLS_05003) instead of a warning message. An
error message causes the compilation to fail.

Controlling PL/SQL Warning Messages
To let the database issue warning messages during PL/SQL compilation, you set the
initialization parameter PLSQL_WARNINGS. You can enable and disable entire
categories of warnings (ALL, SEVERE, INFORMATIONAL, PERFORMANCE), enable and
disable specific message numbers, and make the database treat certain warnings as
compilation errors so that those conditions must be corrected.

This parameter can be set at the system level or the session level. You can also set it for
a single compilation by including it as part of the ALTER PROCEDURE statement. You
might turn on all warnings during development, turn off all warnings when deploying
for production, or turn on some warnings when working on a particular subprogram
where you are concerned with some aspect, such as unnecessary code or performance.

ALTER SYSTEM SET PLSQL_WARNINGS='ENABLE:ALL'; -- For debugging during development.
ALTER SESSION SET PLSQL_WARNINGS='ENABLE:PERFORMANCE'; -- To focus on one aspect.
ALTER PROCEDURE hello COMPILE PLSQL_WARNINGS='ENABLE:PERFORMANCE'; -- Recompile
with extra checking.
ALTER SESSION SET PLSQL_WARNINGS='DISABLE:ALL'; -- To turn off all warnings.
-- We want to hear about 'severe' warnings, don't want to hear about 'performance'
-- warnings, and want PLW-06002 warnings to produce errors that halt compilation.
ALTER SESSION SET
PLSQL_WARNINGS='ENABLE:SEVERE','DISABLE:PERFORMANCE','ERROR:06002';

Warning messages can be issued during compilation of PL/SQL subprograms;
anonymous blocks do not produce any warnings.

The settings for the PLSQL_WARNINGS parameter are stored along with each compiled
subprogram. If you recompile the subprogram with a CREATE OR REPLACE
statement, the current settings for that session are used. If you recompile the
subprogram with an ALTER ... COMPILE statement, the current session setting
might be used, or the original setting that was stored with the subprogram, depending
on whether you include the REUSE SETTINGS clause in the statement.

To see any warnings generated during compilation, you use the SQL*Plus SHOW
ERRORS command or query the USER_ERRORS data dictionary view. PL/SQL
warning messages all use the prefix PLW.

Overview of PL/SQL Compile-Time Warnings

Handling PL/SQL Errors 10-19

Using the DBMS_WARNING Package
If you are writing a development environment that compiles PL/SQL subprograms,
you can control PL/SQL warning messages by calling subprograms in the
DBMS_WARNING package. You might also use this package when compiling a complex
application, made up of several nested SQL*Plus scripts, where different warning
settings apply to different subprograms. You can save the current state of the
PLSQL_WARNINGS parameter with one call to the package, change the parameter to
compile a particular set of subprograms, then restore the original parameter value.

For example, here is a procedure with unnecessary code that could be removed. It
could represent a mistake, or it could be intentionally hidden by a debug flag, so you
might or might not want a warning message for it.

CREATE OR REPLACE PROCEDURE dead_code
AS
 x number := 10;
BEGIN
 if x = 10 then
 x := 20;
 else
 x := 100; -- dead code (never reached)
 end if;
END dead_code;
/
-- By default, the preceding procedure compiles with no errors or warnings.

-- Now enable all warning messages, just for this session.
CALL DBMS_WARNING.SET_WARNING_SETTING_STRING('ENABLE:ALL' ,'SESSION');

-- Check the current warning setting.
select dbms_warning.get_warning_setting_string() from dual;

-- When we recompile the procedure, we will see a warning about the dead code.
ALTER PROCEDURE dead_code COMPILE;

See Also: ALTER PROCEDURE, DBMS_WARNING package in the PL/SQL Packages and
Types Reference, PLW- messages in the Oracle Database Error Messages

Overview of PL/SQL Compile-Time Warnings

10-20 PL/SQL User's Guide and Reference

Tuning PL/SQL Applications for Performance 11-1

11
Tuning PL/SQL Applications for Performance

Every day, in every way, I am getting better and better. —Émile Coué

This chapter shows you how to write efficient PL/SQL code, and speed up existing
code.

This chapter contains these topics:

■ How PL/SQL Optimizes Your Programs on page 11-1

■ Guidelines for Avoiding PL/SQL Performance Problems on page 11-2

■ Profiling and Tracing PL/SQL Programs on page 11-6

■ Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK
COLLECT) on page 11-7

■ Writing Computation-Intensive Programs in PL/SQL on page 11-19

■ Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables on
page 11-19

■ Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint on page 11-20

■ Compiling PL/SQL Code for Native Execution on page 11-22

■ Overview of Table Functions on page 11-28

How PL/SQL Optimizes Your Programs
In releases prior to 10g, the PL/SQL compiler translated your code to machine code
without applying many changes for performance. Now, PL/SQL uses an optimizing
compiler that can rearrange code for better performance.

You do not need to do anything to get the benefits of this new optimizer. It is enabled
by default. In rare cases, if the overhead of the optimizer makes compilation of very
large applications take too long, you might lower the optimization by setting the
initialization parameter PLSQL_OPTIMIZE_LEVEL=1 instead of its default value 2. In
even rarer cases, you might see a change in exception behavior, either an exception
that is not raised at all, or one that is raised earlier than expected. Setting
PL_SQL_OPTIMIZE_LEVEL=0 prevents the code from being rearranged at all.

When to Tune PL/SQL Code
The information in this chapter is especially valuable if you are responsible for:

Guidelines for Avoiding PL/SQL Performance Problems

11-2 PL/SQL User's Guide and Reference

■ Programs that do a lot of mathematical calculations. You will want to investigate
the datatypes PLS_INTEGER, BINARY_FLOAT, and BINARY_DOUBLE.

■ Functions that are called from PL/SQL queries, where the functions might be
executed millions of times. You will want to look at all performance features to
make the function as efficient as possible, and perhaps a function-based index to
precompute the results for each row and save on query time.

■ Programs that spend a lot of time processing INSERT, UPDATE, or DELETE
statements, or looping through query results. You will want to investigate the
FORALL statement for issuing DML, and the BULK COLLECT INTO and
RETURNING BULK COLLECT INTO clauses for queries.

■ Older code that does not take advantage of recent PL/SQL language features.
(With the many performance improvements in Oracle Database 10g, any code
from earlier releases is a candidate for tuning.)

■ Any program that spends a lot of time doing PL/SQL processing, as opposed to
issuing DDL statements like CREATE TABLE that are just passed directly to SQL.
You will want to investigate native compilation. Because many built-in database
features use PL/SQL, you can apply this tuning feature to an entire database to
improve performance in many areas, not just your own code.

Before starting any tuning effort, benchmark the current system and measure how
long particular subprograms take. PL/SQL in Oracle Database 10g includes many
automatic optimizations, so you might see performance improvements without doing
any tuning.

Guidelines for Avoiding PL/SQL Performance Problems
When a PL/SQL-based application performs poorly, it is often due to badly written
SQL statements, poor programming practices, inattention to PL/SQL basics, or misuse
of shared memory.

Avoiding CPU Overhead in PL/SQL Code

Make SQL Statements as Efficient as Possible
PL/SQL programs look relatively simple because most of the work is done by SQL
statements. Slow SQL statements are the main reason for slow execution.

If SQL statements are slowing down your program:

■ Make sure you have appropriate indexes. There are different kinds of indexes for
different situations. Your index strategy might be different depending on the sizes
of various tables in a query, the distribution of data in each query, and the columns
used in the WHERE clauses.

■ Make sure you have up-to-date statistics on all the tables, using the subprograms
in the DBMS_STATS package.

■ Analyze the execution plans and performance of the SQL statements, using:

■ EXPLAIN PLAN statement

■ SQL Trace facility with TKPROF utility

■ Oracle Trace facility

■ Rewrite the SQL statements if necessary. For example, query hints can avoid
problems such as unnecessary full-table scans.

Guidelines for Avoiding PL/SQL Performance Problems

Tuning PL/SQL Applications for Performance 11-3

For more information about these methods, see Oracle Database Performance Tuning
Guide.

Some PL/SQL features also help improve the performance of SQL statements:

■ If you are running SQL statements inside a PL/SQL loop, look at the FORALL
statement as a way to replace loops of INSERT, UPDATE, and DELETE statements.

■ If you are looping through the result set of a query, look at the BULK COLLECT
clause of the SELECT INTO statement as a way to bring the entire result set into
memory in a single operation.

Make Function Calls as Efficient as Possible
Badly written subprograms (for example, a slow sort or search function) can harm
performance. Avoid unnecessary calls to subprograms, and optimize their code:

■ If a function is called within a SQL query, you can cache the function value for
each row by creating a function-based index on the table in the query. The CREATE
INDEX statement might take a while, but queries can be much faster.

■ If a column is passed to a function within an SQL query, the query cannot use
regular indexes on that column, and the function might be called for every row in
a (potentially very large) table. Consider nesting the query so that the inner query
filters the results to a small number of rows, and the outer query calls the function
only a few times:

BEGIN
-- Inefficient, calls my_function for every row.
 FOR item IN (SELECT DISTINCT(SQRT(department_id)) col_alias FROM employees)
 LOOP
 dbms_output.put_line(item.col_alias);
 END LOOP;

-- Efficient, only calls function once for each distinct value.
 FOR item IN
 (SELECT SQRT(department_id) col_alias FROM
 (SELECT DISTINCT department_id FROM employees)
)
 LOOP
 dbms_output.put_line(item.col_alias);
 END LOOP;
END;
/

If you use OUT or IN OUT parameters, PL/SQL adds some performance overhead to
ensure correct behavior in case of exceptions (assigning a value to the OUT parameter,
then exiting the subprogram because of an unhandled exception, so that the OUT
parameter keeps its original value).

If your program does not depend on OUT parameters keeping their values in such
situations, you can add the NOCOPY keyword to the parameter declarations, so the
parameters are declared OUT NOCOPY or IN OUT NOCOPY.

This technique can give significant speedup if you are passing back large amounts of
data in OUT parameters, such as collections, big VARCHAR2 values, or LOBs.

This technique also applies to member subprograms of object types. If these
subprograms modify attributes of the object type, all the attributes are copied when
the subprogram ends. To avoid this overhead, you can explicitly declare the first
parameter of the member subprogram as SELF IN OUT NOCOPY, instead of relying
on PL/SQL's implicit declaration SELF IN OUT.

Guidelines for Avoiding PL/SQL Performance Problems

11-4 PL/SQL User's Guide and Reference

Make Loops as Efficient as Possible
Because PL/SQL applications are often built around loops, it is important to optimize
the loop itself and the code inside the loop:

■ Move initializations or computations outside the loop if possible.

■ To issue a series of DML statements, replace loop constructs with FORALL
statements.

■ To loop through a result set and store the values, use the BULK COLLECT clause
on the query to bring the query results into memory in one operation.

■ If you have to loop through a result set more than once, or issue other queries as
you loop through a result set, you can probably enhance the original query to give
you exactly the results you want. Some query operators to explore include UNION,
INTERSECT, MINUS, and CONNECT BY.

■ You can also nest one query inside another (known as a subselect) to do the
filtering and sorting in multiple stages. For example, instead of calling a PL/SQL
function in the inner WHERE clause (which might call the function once for each
row of the table), you can filter the result set to a small set of rows in the inner
query, and call the function in the outer query.

Don't Duplicate Built-in String Functions
PL/SQL provides many highly optimized string functions such as REPLACE,
TRANSLATE, SUBSTR, INSTR, RPAD, and LTRIM. The built-in functions use low-level
code that is more efficient than regular PL/SQL.

If you use PL/SQL string functions to search for regular expressions, consider using
the built-in regular expression functions, such as REGEXP_SUBSTR.

Reorder Conditional Tests to Put the Least Expensive First
PL/SQL stops evaluating a logical expression as soon as the result can be determined
(known as short-circuit evaluation).

When evaluating multiple conditions separated by AND or OR, put the least expensive
ones first. For example, check the values of PL/SQL variables before testing function
return values, because PL/SQL might be able to skip calling the functions.

Minimize Datatype Conversions
At run time, PL/SQL converts between different datatypes automatically. For
example, assigning a PLS_INTEGER variable to a NUMBER variable results in a
conversion because their internal representations are different.

Avoiding implicit conversions can improve performance. Use literals of the
appropriate types: character literals in character expressions, decimal numbers in
number expressions, and so on.

In the example below, the integer literal 15 must be converted to an Oracle NUMBER
before the addition. The floating-point literal 15.0 is represented as a NUMBER,
avoiding the need for a conversion.

DECLARE
 n NUMBER;
 c CHAR(5);
BEGIN
 n := n + 15; -- converted implicitly; slow
 n := n + 15.0; -- not converted; fast
 c := 25; -- converted implicitly; slow

Guidelines for Avoiding PL/SQL Performance Problems

Tuning PL/SQL Applications for Performance 11-5

 c := TO_CHAR(25); -- converted explicitly; still slow
 c := '25'; -- not converted; fast
END;
/

Minimizing conversions might mean changing the types of your variables, or even
working backward and designing your tables with different datatypes. Or, you might
convert data once (such as from an INTEGER column to a PLS_INTEGER variable) and
use the PL/SQL type consistently after that.

Use PLS_INTEGER or BINARY_INTEGER for Integer Arithmetic
When you need to declare a local integer variable, use the datatype PLS_INTEGER,
which is the most efficient integer type. PLS_INTEGER values require less storage than
INTEGER or NUMBER values, and PLS_INTEGER operations use machine arithmetic.

The BINARY_INTEGER datatype is just as efficient as PLS_INTEGER for any new code,
but if you are running the same code on Oracle9i or Oracle8i databases, PLS_INTEGER
is faster.

The datatype NUMBER and its subtypes are represented in a special internal format,
designed for portability and arbitrary scale and precision, not performance. Even the
subtype INTEGER is treated as a floating-point number with nothing after the decimal
point. Operations on NUMBER or INTEGER variables require calls to library routines.

Avoid constrained subtypes such as INTEGER, NATURAL, NATURALN, POSITIVE,
POSITIVEN, and SIGNTYPE in performance-critical code. Variables of these types
require extra checking at run time, each time they are used in a calculation.

Use BINARY_FLOAT and BINARY_DOUBLE for Floating-Point Arithmetic
The datatype NUMBER and its subtypes are represented in a special internal format,
designed for portability and arbitrary scale and precision, not performance.
Operations on NUMBER or INTEGER variables require calls to library routines.

The BINARY_FLOAT and BINARY_DOUBLE types can use native machine arithmetic
instructions, and are more efficient for number-crunching applications such as
scientific processing. They also require less space in the database.

These types do not always represent fractional values precisely, and handle rounding
differently than the NUMBER types. These types are less suitable for financial code
where accuracy is critical.

Avoiding Memory Overhead in PL/SQL Code

Be Generous When Declaring Sizes for VARCHAR2 Variables
You might need to allocate large VARCHAR2 variables when you are not sure how big
an expression result will be. You can actually conserve memory by declaring
VARCHAR2 variables with large sizes, such as 32000, rather than estimating just a little
on the high side, such as by specifying a size such as 256 or 1000. PL/SQL has an
optimization that makes it easy to avoid overflow problems and still conserve
memory. Specify a size of 2000 or more characters for the VARCHAR2 variable; PL/SQL
waits until you assign the variable, then only allocates as much storage as needed.

Group Related Subprograms into Packages
When you call a packaged subprogram for the first time, the whole package is loaded
into the shared memory pool. Subsequent calls to related subprograms in the package

Profiling and Tracing PL/SQL Programs

11-6 PL/SQL User's Guide and Reference

require no disk I/O, and your code executes faster. If the package is aged out of
memory, it must be reloaded if you reference it again.

You can improve performance by sizing the shared memory pool correctly. Make sure
it is large enough to hold all frequently used packages but not so large that memory is
wasted.

Pin Packages in the Shared Memory Pool
You can "pin" frequently accessed packages in the shared memory pool, using the
supplied package DBMS_SHARED_POOL. When a package is pinned, it is not aged out
by the least recently used (LRU) algorithm that Oracle normally uses. The package
remains in memory no matter how full the pool gets or how frequently you access the
package.

For more information on the DBMS_SHARED_POOL package, see PL/SQL Packages and
Types Reference.

Improve Your Code to Avoid Compiler Warnings
The PL/SQL compiler issues warnings about things that do not make a program
incorrect, but might lead to poor performance. If you receive such a warning, and the
performance of this code is important, follow the suggestions in the warning and
change the code to be more efficient.

Profiling and Tracing PL/SQL Programs
As you develop larger and larger PL/SQL applications, it becomes more difficult to
isolate performance problems. PL/SQL provides a Profiler API to profile run-time
behavior and to help you identify performance bottlenecks. PL/SQL also provides a
Trace API for tracing the execution of programs on the server. You can use Trace to
trace the execution by subprogram or exception.

Using The Profiler API: Package DBMS_PROFILER
The Profiler API is implemented as PL/SQL package DBMS_PROFILER, which
provides services for gathering and saving run-time statistics. The information is
stored in database tables, which you can query later. For example, you can learn how
much time was spent executing each PL/SQL line and subprogram.

To use the Profiler, you start the profiling session, run your application long enough to
get adequate code coverage, flush the collected data to the database, then stop the
profiling session.

The Profiler traces the execution of your program, computing the time spent at each
line and in each subprogram. You can use the collected data to improve performance.
For instance, you might focus on subprograms that run slowly.

For information about the DBMS_PROFILER subprograms, see PL/SQL Packages and
Types Reference.

Analyzing the Collected Performance Data
The next step is to determine why more time was spent executing certain code
segments or accessing certain data structures. Find the problem areas by querying the
performance data. Focus on the subprograms and packages that use up the most
execution time, inspecting possible performance bottlenecks such as SQL statements,
loops, and recursive functions.

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

Tuning PL/SQL Applications for Performance 11-7

Using Trace Data to Improve Performance
Use the results of your analysis to rework slow algorithms. For example, due to an
exponential growth in data, you might need to replace a linear search with a binary
search. Also, look for inefficiencies caused by inappropriate data structures, and, if
necessary, replace those data structures.

Using The Trace API: Package DBMS_TRACE
With large, complex applications, it becomes difficult to keep track of calls between
subprograms. By tracing your code with the Trace API, you can see the order in which
subprograms execute. The Trace API is implemented as PL/SQL package
DBMS_TRACE, which provides services for tracing execution by subprogram or
exception.

To use Trace, you start the tracing session, run your application, then stop the tracing
session. As the program executes, trace data is collected and stored in database tables.

For information about the DBMS_TRACE subprograms, see PL/SQL Packages and Types
Reference.

Controlling the Trace
Tracing large applications can produce huge amounts of data that are difficult to
manage. Before starting Trace, you can optionally limit the volume of data collected by
selecting specific subprograms for trace data collection.

In addition, you can choose a tracing level. For example, you can choose to trace all
subprograms and exceptions, or you can choose to trace selected subprograms and
exceptions.

Reducing Loop Overhead for DML Statements and Queries (FORALL,
BULK COLLECT)

PL/SQL sends SQL statements such as DML and queries to the SQL engine for
execution, and SQL returns the result data to PL/SQL. You can minimize the
performance overhead of this communication between PL/SQL and SQL by using the
PL/SQL language features known collectively as bulk SQL. The FORALL statement
sends INSERT, UPDATE, or DELETE statements in batches, rather than one at a time.
The BULK COLLECT clause brings back batches of results from SQL. If the DML
statement affects four or more database rows, the use of bulk SQL can improve
performance considerably.

The assigning of values to PL/SQL variables in SQL statements is called binding.
PL/SQL binding operations fall into three categories:

■ in-bind When a PL/SQL variable or host variable is stored in the database by an
INSERT or UPDATE statement.

■ out-bind When a database value is assigned to a PL/SQL variable or a host
variable by the RETURNING clause of an INSERT, UPDATE, or DELETE statement.

■ define When a database value is assigned to a PL/SQL variable or a host variable
by a SELECT or FETCH statement.

Bulk SQL uses PL/SQL collections, such as varrays or nested tables, to pass large
amounts of data back and forth in a single operation. This process is known as bulk
binding. If the collection has 20 elements, bulk binding lets you perform the
equivalent of 20 SELECT, INSERT, UPDATE, or DELETE statements using a single

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

11-8 PL/SQL User's Guide and Reference

operation. Queries can pass back any number of results, without requiring a FETCH
statement for each row.

To speed up INSERT, UPDATE, and DELETE statements, enclose the SQL statement
within a PL/SQL FORALL statement instead of a loop construct.

To speed up SELECT statements, include the BULK COLLECT INTO clause in the
SELECT statement instead of using INTO.

For full details of the syntax and restrictions for these statements, see "FORALL
Statement" on page 13-64 and "SELECT INTO Statement" on page 13-123.

Using the FORALL Statement
The keyword FORALL lets you run multiple DML statements very efficiently. It can
only repeat a single DML statement, unlike a general-purpose FOR loop.

For full syntax and restrictions, see "FORALL Statement" on page 13-64.

The SQL statement can reference more than one collection, but FORALL only improves
performance where the index value is used as a subscript.

Usually, the bounds specify a range of consecutive index numbers. If the index
numbers are not consecutive, such as after you delete collection elements, you can use
the INDICES OF or VALUES OF clause to iterate over just those index values that
really exist.

The INDICES OF clause iterates over all of the index values in the specified collection,
or only those between a lower and upper bound.

The VALUES OF clause refers to a collection that is indexed by BINARY_INTEGER or
PLS_INTEGER and whose elements are of type BINARY_INTEGER or PLS_INTEGER.
The FORALL statement iterates over the index values specified by the elements of this
collection.

Example 11–1 Issuing DELETE Statements in a Loop

This FORALL statement sends all three DELETE statements to the SQL engine at once:

CREATE TABLE employees2 AS SELECT * FROM employees;
DECLARE
 TYPE NumList IS VARRAY(20) OF NUMBER;
 depts NumList := NumList(10, 30, 70); -- department numbers
BEGIN
 FORALL i IN depts.FIRST..depts.LAST
 DELETE FROM employees2 WHERE department_id = depts(i);
 COMMIT;
END;
/
DROP TABLE employees2;

Example 11–2 Issuing INSERT Statements in a Loop

The following example loads some data into PL/SQL collections. Then it inserts the
collection elements into a database table twice: first using a FOR loop, then using a
FORALL statement. The FORALL version is much faster.

CREATE TABLE parts1 (pnum INTEGER, pname VARCHAR2(15));
CREATE TABLE parts2 (pnum INTEGER, pname VARCHAR2(15));
DECLARE
 TYPE NumTab IS TABLE OF parts1.pnum%TYPE INDEX BY PLS_INTEGER;

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

Tuning PL/SQL Applications for Performance 11-9

 TYPE NameTab IS TABLE OF parts1.pname%TYPE INDEX BY PLS_INTEGER;
 pnums NumTab;
 pnames NameTab;
 iterations CONSTANT PLS_INTEGER := 500;
 t1 INTEGER; t2 INTEGER; t3 INTEGER;
BEGIN
 FOR j IN 1..iterations LOOP -- load index-by tables
 pnums(j) := j;
 pnames(j) := 'Part No. ' || TO_CHAR(j);
 END LOOP;
 t1 := dbms_utility.get_time;
 FOR i IN 1..iterations LOOP -- use FOR loop
 INSERT INTO parts1 VALUES (pnums(i), pnames(i));
 END LOOP;
 t2 := dbms_utility.get_time;
 FORALL i IN 1..iterations -- use FORALL statement
 INSERT INTO parts2 VALUES (pnums(i), pnames(i));
 t3 := dbms_utility.get_time;
 dbms_output.put_line('Execution Time (secs)');
 dbms_output.put_line('---------------------');
 dbms_output.put_line('FOR loop: ' || TO_CHAR((t2 - t1)/100));
 dbms_output.put_line('FORALL: ' || TO_CHAR((t3 - t2)/100));
 COMMIT;
END;
/
DROP TABLE parts1;
DROP TABLE parts2;

Executing this block should show that the loop using FORALL is much faster.

Example 11–3 Using FORALL with Part of a Collection

The bounds of the FORALL loop can apply to part of a collection, not necessarily all the
elements:

CREATE TABLE employees2 AS SELECT * FROM employees;
DECLARE
 TYPE NumList IS VARRAY(10) OF NUMBER;
 depts NumList := NumList(5,10,20,30,50,55,57,60,70,75);
BEGIN
 FORALL j IN 4..7 -- use only part of varray
 DELETE FROM employees2 WHERE department_id = depts(j);
 COMMIT;
END;
/
DROP TABLE employees2;

Example 11–4 Using FORALL with Non-Consecutive Index Values

You might need to delete some elements from a collection before using the collection
in a FORALL statement. The INDICES OF clause processes sparse collections by
iterating through only the remaining elements.

You might also want to leave the original collection alone, but process only some
elements, process the elements in a different order, or process some elements more
than once. Instead of copying the entire elements into new collections, which might
use up substantial amounts of memory, the VALUES OF clause lets you set up simple
collections whose elements serve as "pointers" to elements in the original collection.

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

11-10 PL/SQL User's Guide and Reference

The following example creates a collection holding some arbitrary data, a set of table
names. Deleting some of the elements makes it a sparse collection that would not
work in a default FORALL statement. The program uses a FORALL statement with the
INDICES OF clause to insert the data into a table. It then sets up two more collections,
pointing to certain elements from the original collection. The program stores each set
of names in a different database table using FORALL statements with the VALUES OF
clause.

-- Create empty tables to hold order details
CREATE TABLE valid_orders (cust_name VARCHAR2(32), amount NUMBER(10,2));
CREATE TABLE big_orders AS SELECT * FROM valid_orders WHERE 1 = 0;
CREATE TABLE rejected_orders AS SELECT * FROM valid_orders WHERE 1 = 0;

DECLARE
-- Make collections to hold a set of customer names and order amounts.

 SUBTYPE cust_name IS valid_orders.cust_name%TYPE;
 TYPE cust_typ IS TABLe OF cust_name;
 cust_tab cust_typ;

 SUBTYPE order_amount IS valid_orders.amount%TYPE;
 TYPE amount_typ IS TABLE OF NUMBER;
 amount_tab amount_typ;

-- Make other collections to point into the CUST_TAB collection.
 TYPE index_pointer_t IS TABLE OF PLS_INTEGER;
 big_order_tab index_pointer_t := index_pointer_t();
 rejected_order_tab index_pointer_t := index_pointer_t();

 PROCEDURE setup_data IS BEGIN
 -- Set up sample order data, including some invalid orders and some 'big'
orders.
 cust_tab := cust_typ('Company 1','Company 2','Company 3','Company 4',
'Company 5');
 amount_tab := amount_typ(5000.01, 0, 150.25, 4000.00, NULL);
 END;

BEGIN
 setup_data();

 dbms_output.put_line('--- Original order data ---');
 FOR i IN 1..cust_tab.LAST LOOP
 dbms_output.put_line('Customer #' || i || ', ' || cust_tab(i) || ': $' ||
amount_tab(i));
 END LOOP;

-- Delete invalid orders (where amount is null or 0).
 FOR i IN 1..cust_tab.LAST LOOP
 IF amount_tab(i) is null or amount_tab(i) = 0 THEN
 cust_tab.delete(i);
 amount_tab.delete(i);
 END IF;
 END LOOP;

 dbms_output.put_line('--- Data with invalid orders deleted ---');
 FOR i IN 1..cust_tab.LAST LOOP
 IF cust_tab.EXISTS(i) THEN

dbms_output.put_line('Customer #' || i || ', ' || cust_tab(i) || ': $' ||
amount_tab(i));
 END IF;

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

Tuning PL/SQL Applications for Performance 11-11

 END LOOP;

-- Since the subscripts of our collections are not consecutive, we use
-- FORALL...INDICES OF to iterate through the actual subscripts, rather than
1..COUNT.
 FORALL i IN INDICES OF cust_tab
 INSERT INTO valid_orders(cust_name, amount) VALUES(cust_tab(i),
amount_tab(i));

-- Now let's process the order data differently. We'll extract 2 subsets
-- and store each subset in a different table.

 setup_data(); -- Initialize the CUST_TAB and AMOUNT_TAB collections again.

 FOR i IN cust_tab.FIRST .. cust_tab.LAST LOOP
 IF amount_tab(i) IS NULL OR amount_tab(i) = 0 THEN
 rejected_order_tab.EXTEND; -- Add a new element to this collection.
 rejected_order_tab(rejected_order_tab.LAST) := i; -- And record the
subscript from the original collection.
 END IF;
 IF amount_tab(i) > 2000 THEN
 big_order_tab.EXTEND; -- Add a new element to this collection.
 big_order_tab(big_order_tab.LAST) := i; -- And record the subscript from
the original collection.
 END IF;
 END LOOP;

-- Now it's easy to run one DML statement on one subset of elements, and another
DML statement on a different subset.

 FORALL i IN VALUES OF rejected_order_tab
 INSERT INTO rejected_orders VALUES (cust_tab(i), amount_tab(i));

 FORALL i IN VALUES OF big_order_tab
 INSERT INTO big_orders VALUES (cust_tab(i), amount_tab(i));

 COMMIT;
END;
/
-- Verify that the correct order details were stored.
SELECT cust_name "Customer", amount "Valid order amount" FROM valid_orders;
SELECT cust_name "Customer", amount "Big order amount" FROM big_orders;
SELECT cust_name "Customer", amount "Rejected order amount" FROM rejected_orders;

DROP TABLE valid_orders;
DROP TABLE big_orders;
DROP TABLE rejected_orders;

How FORALL Affects Rollbacks
In a FORALL statement, if any execution of the SQL statement raises an unhandled
exception, all database changes made during previous executions are rolled back.
However, if a raised exception is caught and handled, changes are rolled back to an
implicit savepoint marked before each execution of the SQL statement. Changes made
during previous executions are not rolled back. For example, suppose you create a
database table that stores department numbers and job titles, as follows. Then, you
change the job titles so that they are longer. The second UPDATE fails because the new
value is too long for the column. Because we handle the exception, the first UPDATE is
not rolled back and we can commit that change.

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

11-12 PL/SQL User's Guide and Reference

CREATE TABLE emp2 (deptno NUMBER(2), job VARCHAR2(18));
DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(10, 20, 30);
BEGIN
 INSERT INTO emp2 VALUES(10, 'Clerk');
 INSERT INTO emp2 VALUES(20, 'Bookkeeper'); -- Lengthening this job title
causes an exception.
 INSERT INTO emp2 VALUES(30, 'Analyst');
 COMMIT;

 FORALL j IN depts.FIRST..depts.LAST -- Run 3 UPDATE statements.
 UPDATE emp2 SET job = job || ' (Senior)' WHERE deptno = depts(j);
 -- raises a "value too large" exception
EXCEPTION
 WHEN OTHERS THEN
 dbms_output.put_line('Problem in the FORALL statement.');
 COMMIT; -- Commit results of successful updates.
END;
/
DROP TABLE emp2;

Counting Rows Affected by FORALL with the %BULK_ROWCOUNT Attribute
The cursor attributes SQL%FOUND, SQL%ISOPEN, SQL%NOTFOUND, and
SQL%ROWCOUNT, return useful information about the most recently executed DML
statement.

The SQL cursor has one composite attribute, %BULK_ROWCOUNT, for use with the
FORALL statement. This attribute works like an associative array:
SQL%BULK_ROWCOUNT(i) stores the number of rows processed by the ith execution
of an INSERT, UPDATE or DELETE statement. For example:

CREATE TABLE emp2 AS SELECT * FROM employees;
DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(30, 50, 60);
BEGIN
 FORALL j IN depts.FIRST..depts.LAST
 DELETE FROM emp2 WHERE department_id = depts(j);
-- How many rows were affected by each DELETE statement?
 FOR i IN depts.FIRST..depts.LAST
 LOOP
 dbms_output.put_line('Iteration #' || i || ' deleted ' ||
 SQL%BULK_ROWCOUNT(i) || ' rows.');
 END LOOP;
END;
/
DROP TABLE emp2;

The FORALL statement and %BULK_ROWCOUNT attribute use the same subscripts. For
example, if FORALL uses the range 5..10, so does %BULK_ROWCOUNT. If the FORALL
tatement uses the INDICES OF clause to process a sparse collection,
%BULK_ROWCOUNT has corresponding sparse subscripts. If the FORALL statement uses
the VALUES OF clause to process a subset of elements, %BULK_ROWCOUNT has
subscripts corresponding to the values of the elements in the index collection. If the
index collection contains duplicate elements, so that some DML statements are issued
multiple times using the same subscript, then the corresponding elements of
%BULK_ROWCOUNT represent the sum of all rows affected by the DML statement using

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

Tuning PL/SQL Applications for Performance 11-13

that subscript. (For examples showing how to interpret %BULK_ROWCOUNT when using
the INDICES OF and VALUES OF clauses, see the PL/SQL sample programs at
http://otn.oracle.com/tech/pl_sql/.)

%BULK_ROWCOUNT is usually equal to 1 for inserts, because a typical insert operation
affects only a single row. For the INSERT ... SELECT construct, %BULK_ROWCOUNT
might be greater than 1. For example, the FORALL statement below inserts an arbitrary
number of rows for each iteration. After each iteration, %BULK_ROWCOUNT returns the
number of items inserted:

CREATE TABLE emp_by_dept AS SELECT employee_id, department_id
 FROM employees WHERE 1 = 0;
DECLARE
 TYPE dept_tab IS TABLE OF departments.department_id%TYPE;
 deptnums dept_tab;
BEGIN
 SELECT department_id BULK COLLECT INTO deptnums FROM departments;

 FORALL i IN 1..deptnums.COUNT
 INSERT INTO emp_by_dept
 SELECT employee_id, department_id FROM employees
 WHERE department_id = deptnums(i);

 FOR i IN 1..deptnums.COUNT LOOP
-- Count how many rows were inserted for each department; that is,
-- how many employees are in each department.
 dbms_output.put_line('Dept '||deptnums(i)||': inserted '||
 SQL%BULK_ROWCOUNT(i)||' records');
 END LOOP;

 dbms_output.put_line('Total records inserted =' || SQL%ROWCOUNT);
END;
/
DROP TABLE emp_by_dept;

You can also use the scalar attributes %FOUND, %NOTFOUND, and %ROWCOUNT after
running a FORALL statement. For example, %ROWCOUNT returns the total number of
rows processed by all executions of the SQL statement.

%FOUND and %NOTFOUND refer only to the last execution of the SQL statement. You can
use %BULK_ROWCOUNT to infer their values for individual executions. For example,
when %BULK_ROWCOUNT(i) is zero, %FOUND and %NOTFOUND are FALSE and TRUE,
respectively.

Handling FORALL Exceptions with the %BULK_EXCEPTIONS Attribute
PL/SQL provides a mechanism to handle exceptions raised during the execution of a
FORALL statement. This mechanism enables a bulk-bind operation to save information
about exceptions and continue processing.

To have a bulk bind complete despite errors, add the keywords SAVE EXCEPTIONS to
your FORALL statement after the bounds, before the DML statement.

All exceptions raised during the execution are saved in the cursor attribute
%BULK_EXCEPTIONS, which stores a collection of records. Each record has two fields:

■ %BULK_EXCEPTIONS(i).ERROR_INDEX holds the "iteration" of the FORALL
statement during which the exception was raised.

■ %BULK_EXCEPTIONS(i).ERROR_CODE holds the corresponding Oracle error
code.

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

11-14 PL/SQL User's Guide and Reference

The values stored by %BULK_EXCEPTIONS always refer to the most recently executed
FORALL statement. The number of exceptions is saved in
%BULK_EXCEPTIONS.COUNT. Its subscripts range from 1 to COUNT.

You might need to work backward to determine which collection element was used in
the iteration that caused an exception. For example, if you use the INDICES OF clause
to process a sparse collection, you must step through the elements one by one to find
the one corresponding to %BULK_EXCEPTIONS(i).ERROR_INDEX. If you use the
VALUES OF clause to process a subset of elements, you must find the element in the
index collection whose subscript matches %BULK_EXCEPTIONS(i).ERROR_INDEX,
and then use that element's value as the subscript to find the erroneous element in the
original collection. (For examples showing how to find the erroneous elements when
using the INDICES OF and VALUES OF clauses, see the PL/SQL sample programs at
http://otn.oracle.com/tech/pl_sql/.)

If you omit the keywords SAVE EXCEPTIONS, execution of the FORALL statement
stops when an exception is raised. In that case, SQL%BULK_EXCEPTIONS.COUNT
returns 1, and SQL%BULK_EXCEPTIONS contains just one record. If no exception is
raised during execution, SQL%BULK_EXCEPTIONS.COUNT returns 0.

Example 11–5 Bulk Operation That Continues Despite Exceptions

The following example shows how you can perform a number of DML operations,
without stopping if some operations encounter errors:

CREATE TABLE emp2 AS SELECT * FROM employees;
DECLARE
 TYPE NumList IS TABLE OF NUMBER;
-- The zeros in this list will cause divide-by-zero errors.
 num_tab NumList := NumList(10,0,11,12,30,0,20,199,2,0,9,1);
 errors NUMBER;
 dml_errors EXCEPTION;
 PRAGMA exception_init(dml_errors, -24381);
BEGIN
-- SAVE EXCEPTIONS means don't stop if some DELETEs fail.
 FORALL i IN num_tab.FIRST..num_tab.LAST SAVE EXCEPTIONS
 DELETE FROM emp2 WHERE salary > 500000/num_tab(i);
-- If any errors occurred during the FORALL SAVE EXCEPTIONS,
-- a single exception is raised when the statement completes.
EXCEPTION
 WHEN dml_errors THEN -- Now we figure out what failed and why.
 errors := SQL%BULK_EXCEPTIONS.COUNT;
 dbms_output.put_line('Number of DELETE statements that failed: ' || errors);
 FOR i IN 1..errors LOOP
 dbms_output.put_line('Error #' || i || ' occurred during '||
 'iteration #' || SQL%BULK_EXCEPTIONS(i).ERROR_INDEX);
 dbms_output.put_line('Error message is ' ||
 SQLERRM(-SQL%BULK_EXCEPTIONS(i).ERROR_CODE));
 END LOOP;
END;
/
DROP TABLE emp2;

In this example, PL/SQL raised the predefined exception ZERO_DIVIDE when i
equaled 2, 6, 10. After the FORALL statement, SQL%BULK_EXCEPTIONS.COUNT
returned 3, and the contents of SQL%BULK_EXCEPTIONS were (2,1476), (6,1476), and
(10,1476). To get the Oracle error message (which includes the code), we negated the
value of SQL%BULK_EXCEPTIONS(i).ERROR_CODE and passed the result to the

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

Tuning PL/SQL Applications for Performance 11-15

error-reporting function SQLERRM, which expects a negative number. Here is the
output:

Number of errors is 3
Error 1 occurred during iteration 2
Oracle error is ORA-01476: divisor is equal to zero
Error 2 occurred during iteration 6
Oracle error is ORA-01476: divisor is equal to zero
Error 3 occurred during iteration 10
Oracle error is ORA-01476: divisor is equal to zero

Retrieving Query Results into Collections with the BULK COLLECT Clause
Using the keywords BULK COLLECT with a query is a very efficient way to retrieve the
result set. Instead of looping through each row, you store the results in one or more
collections, in a single operation. You can use these keywords in the SELECT INTO and
FETCH INTO statements, and the RETURNING INTO clause.

With the BULK COLLECT clause, all the variables in the INTO list must be collections.
The table columns can hold scalar or composite values, including object types. The
following example loads two entire database columns into nested tables:

DECLARE
 TYPE NumTab IS TABLE OF employees.employee_id%TYPE;
 TYPE NameTab IS TABLE OF employees.last_name%TYPE;
 enums NumTab; -- No need to initialize the collections.
 names NameTab; -- Values will be filled in by the SELECT INTO.
 PROCEDURE print_results IS
 BEGIN
 dbms_output.put_line('Results:');
 FOR i IN enums.FIRST .. enums.LAST
 LOOP
 dbms_output.put_line(' Employee #' || enums(i) || ': ' ||
 names(i));
 END LOOP;
 END;
BEGIN
 SELECT employee_id, last_name -- Retrieve data for 10 arbitrary employees.
 BULK COLLECT INTO enums, names
 FROM employees WHERE ROWNUM < 11;
-- The data has all been brought into memory by BULK COLLECT.
-- No need to FETCH each row from the result set.
 print_results;

 SELECT employee_id, last_name -- Retrieve approximately 20% of all rows
 BULK COLLECT INTO enums, names
 FROM employees SAMPLE (20);
 print_results;
END;
/

The collections are initialized automatically. Nested tables and associative arrays are
extended to hold as many elements as needed. If you use varrays, all the return values
must fit in the varray's declared size. Elements are inserted starting at index 1,
overwriting any existing elements.

Since the processing of the BULK COLLECT INTO clause is similar to a FETCH loop, it
does not raise a NO_DATA_FOUND exception if no rows match the query. You must
check whether the resulting nested table or varray is null, or if the resulting associative
array has no elements.

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

11-16 PL/SQL User's Guide and Reference

To prevent the resulting collections from expanding without limit, you can use the
pseudocolumn ROWNUM to limit the number of rows processed. Or, you can use the
SAMPLE clause to retrieve a random sample of rows.

DECLARE
 TYPE SalList IS TABLE OF emp.sal%TYPE;
 sals SalList;
BEGIN
-- Limit the number of rows to 100.
 SELECT sal BULK COLLECT INTO sals FROM emp
 WHERE ROWNUM <= 100;
-- Retrieve 10% (approximately) of the rows in the table.
 SELECT sal BULK COLLECT INTO sals FROM emp SAMPLE 10;

END;
/

You can process very large result sets by fetching a specified number of rows at a time
from a cursor, as shown in the following sections.

Examples of Bulk-Fetching from a Cursor

Example 11–6 Bulk-Fetching from a Cursor Into One or More Collections

You can fetch from a cursor into one or more collections:

DECLARE
 TYPE NameList IS TABLE OF employees.last_name%TYPE;
 TYPE SalList IS TABLE OF employees.salary%TYPE;
 CURSOR c1 IS SELECT last_name, salary FROM employees WHERE salary > 10000;
 names NameList;
 sals SalList;
 TYPE RecList IS TABLE OF c1%ROWTYPE;
 recs RecList;

 PROCEDURE print_results IS
 BEGIN
 dbms_output.put_line('Results:');
 IF names IS NULL OR names.COUNT = 0 THEN
 RETURN; -- Don't print anything if collections are empty.
 END IF;
 FOR i IN names.FIRST .. names.LAST
 LOOP
 dbms_output.put_line(' Employee ' || names(i) || ': $' ||
 sals(i));
 END LOOP;
 END;
BEGIN
 dbms_output.put_line('--- Processing all results at once ---');
 OPEN c1;
 FETCH c1 BULK COLLECT INTO names, sals;
 CLOSE c1;
 print_results;

 dbms_output.put_line('--- Processing 7 rows at a time ---');
 OPEN c1;
 LOOP
 FETCH c1 BULK COLLECT INTO names, sals LIMIT 7;
 EXIT WHEN c1%NOTFOUND;
 print_results;

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

Tuning PL/SQL Applications for Performance 11-17

 END LOOP;
-- Loop exits when fewer than 7 rows are fetched. Have to
-- process the last few. Need extra checking inside PRINT_RESULTS
-- in case it is called when the collection is empty.
 print_results;
 CLOSE c1;

 dbms_output.put_line('--- Fetching records rather than columns ---');
 OPEN c1;
 FETCH c1 BULK COLLECT INTO recs;
 FOR i IN recs.FIRST .. recs.LAST
 LOOP
-- Now all the columns from the result set come from a single record.
 dbms_output.put_line(' Employee ' || recs(i).last_name || ': $'
 || recs(i).salary);
 END LOOP;
END;
/

Example 11–7 Bulk-Fetching from a Cursor Into a Collection of Records

You can fetch from a cursor into a collection of records:

DECLARE
 TYPE DeptRecTab IS TABLE OF dept%ROWTYPE;
 dept_recs DeptRecTab;
 CURSOR c1 IS
 SELECT deptno, dname, loc FROM dept WHERE deptno > 10;
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO dept_recs;
END;
/

Limiting the Rows for a Bulk FETCH Operation with the LIMIT Clause
The optional LIMIT clause, allowed only in bulk FETCH statements, limits the number
of rows fetched from the database.

In the example below, with each iteration of the loop, the FETCH statement fetches ten
rows (or less) into index-by table empnos. The previous values are overwritten.

DECLARE
 TYPE NumTab IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 CURSOR c1 IS SELECT empno FROM emp;
 empnos NumTab;
 rows NATURAL := 10;
BEGIN
 OPEN c1;
 LOOP
 /* The following statement fetches 10 rows (or less). */
 FETCH c1 BULK COLLECT INTO empnos LIMIT rows;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;
 CLOSE c1;
END;
/

Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)

11-18 PL/SQL User's Guide and Reference

Retrieving DML Results into a Collection with the RETURNING INTO Clause
You can use the BULK COLLECT clause in the RETURNING INTO clause of an INSERT,
UPDATE, or DELETE statement:

CREATE TABLE emp2 AS SELECT * FROM employees;
DECLARE
 TYPE NumList IS TABLE OF employees.employee_id%TYPE;
 enums NumList;
 TYPE NameList IS TABLE OF employees.last_name%TYPE;
 names NameList;
BEGIN
 DELETE FROM emp2 WHERE department_id = 30
 RETURNING employee_id, last_name BULK COLLECT INTO enums, names;
 dbms_output.put_line('Deleted ' || SQL%ROWCOUNT || ' rows:');
 FOR i IN enums.FIRST .. enums.LAST
 LOOP
 dbms_output.put_line('Employee #' || enums(i) || ': ' || names(i));
 END LOOP;
END;
/
DROP TABLE emp2;

Using FORALL and BULK COLLECT Together
You can combine the BULK COLLECT clause with a FORALL statement. The output
collections are built up as the FORALL statement iterates.

In the following example, the EMPNO value of each deleted row is stored in the
collection ENUMS. The collection DEPTS has 3 elements, so the FORALL statement
iterates 3 times. If each DELETE issued by the FORALL statement deletes 5 rows, then
the collection ENUMS, which stores values from the deleted rows, has 15 elements
when the statement completes:

CREATE TABLE emp2 AS SELECT * FROM employees;
DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 depts NumList := NumList(10,20,30);
 TYPE enum_t IS TABLE OF employees.employee_id%TYPE;
 TYPE dept_t IS TABLE OF employees.department_id%TYPE;
 e_ids enum_t;
 d_ids dept_t;
BEGIN
 FORALL j IN depts.FIRST..depts.LAST
 DELETE FROM emp2 WHERE department_id = depts(j)
 RETURNING employee_id, department_id BULK COLLECT INTO e_ids, d_ids;
 dbms_output.put_line('Deleted ' || SQL%ROWCOUNT || ' rows:');
 FOR i IN e_ids.FIRST .. e_ids.LAST
 LOOP
 dbms_output.put_line('Employee #' || e_ids(i) || ' from dept #' ||
d_ids(i));
 END LOOP;
END;
/
DROP TABLE emp2;

The column values returned by each execution are added to the values returned
previously. If you use a FOR loop instead of the FORALL statement, the set of returned
values is overwritten by each DELETE statement.

You cannot use the SELECT ... BULK COLLECT statement in a FORALL statement.

Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables

Tuning PL/SQL Applications for Performance 11-19

Using Host Arrays with Bulk Binds
Client-side programs can use anonymous PL/SQL blocks to bulk-bind input and
output host arrays. This is the most efficient way to pass collections to and from the
database server.

Host arrays are declared in a host environment such as an OCI or a Pro*C program
and must be prefixed with a colon to distinguish them from PL/SQL collections. In the
example below, an input host array is used in a DELETE statement. At run time, the
anonymous PL/SQL block is sent to the database server for execution.

DECLARE
 ...
BEGIN
 -- assume that values were assigned to the host array
 -- and host variables in the host environment
 FORALL i IN :lower..:upper
 DELETE FROM employees WHERE department_id = :depts(i);
 COMMIT;
END;
/

Writing Computation-Intensive Programs in PL/SQL
The BINARY_FLOAT and BINARY_DOUBLE datatypes make it practical to write
PL/SQL programs to do number-crunching, for scientific applications involving
floating-point calculations. These datatypes behave much like the native floating-point
types on many hardware systems, with semantics derived from the IEEE-754
floating-point standard.

The way these datatypes represent decimal data make them less suitable for financial
applications, where precise representation of fractional amounts is more important
than pure performance.

The PLS_INTEGER and BINARY_INTEGER datatypes are PL/SQL-only datatypes that
are more efficient than the SQL datatypes NUMBER or INTEGER for integer arithmetic.
You can use PLS_INTEGER to write pure PL/SQL code for integer arithmetic, or
convert NUMBER or INTEGER values to PLS_INTEGER for manipulation by PL/SQL.

In previous releases, PLS_INTEGER was more efficient than BINARY_INTEGER. Now,
they have similar performance, but you might still prefer PLS_INTEGER if your code
might be run under older database releases.

Within a package, you can write overloaded versions of procedures and functions that
accept different numeric parameters. The math routines can be optimized for each
kind of parameter (BINARY_FLOAT, BINARY_DOUBLE, NUMBER, PLS_INTEGER),
avoiding unnecessary conversions.

The built-in math functions such as SQRT, SIN, COS, and so on already have fast
overloaded versions that accept BINARY_FLOAT and BINARY_DOUBLE parameters.
You can speed up math-intensive code by passing variables of these types to such
functions, and by calling the TO_BINARY_FLOAT or TO_BINARY_DOUBLE functions
when passing expressions to such functions.

Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables
Some programs (a general-purpose report writer for example) must build and process
a variety of SQL statements, where the exact text of the statement is unknown until

Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint

11-20 PL/SQL User's Guide and Reference

run time. Such statements probably change from execution to execution. They are
called dynamic SQL statements.

Formerly, to execute dynamic SQL statements, you had to use the supplied package
DBMS_SQL. Now, within PL/SQL, you can execute any kind of dynamic SQL
statement using an interface called native dynamic SQL. The main PL/SQL features
involved are the EXECUTE IMMEDIATE statement and cursor variables (also known as
REF CURSORs).

Native dynamic SQL code is more compact and much faster than calling the
DBMS_SQL package. The following example declares a cursor variable, then associates
it with a dynamic SELECT statement:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR;
 emp_cv EmpCurTyp;
 my_ename VARCHAR2(15);
 my_sal NUMBER := 1000;
 table_name VARCHAR2(30) := 'employees';
BEGIN
 OPEN emp_cv FOR 'SELECT last_name, salary FROM ' || table_name ||
 ' WHERE salary > :s' USING my_sal;
 CLOSE emp_cv;
END;
/

For more information, see Chapter 7.

Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint
By default, OUT and IN OUT parameters are passed by value. The values of any IN
OUT parameters are copied before the subprogram is executed. During subprogram
execution, temporary variables hold the output parameter values. If the subprogram
exits normally, these values are copied to the actual parameters. If the subprogram
exits with an unhandled exception, the original parameters are unchanged.

When the parameters represent large data structures such as collections, records, and
instances of object types, this copying slows down execution and uses up memory. In
particular, this overhead applies to each call to an object method: temporary copies are
made of all the attributes, so that any changes made by the method are only applied if
the method exits normally.

To avoid this overhead, you can specify the NOCOPY hint, which allows the PL/SQL
compiler to pass OUT and IN OUT parameters by reference. If the subprogram exits
normally, the behavior is the same as normal. If the subprogram exits early with an
exception, the values of OUT and IN OUT parameters (or object attributes) might still
change. To use this technique, ensure that the subprogram handles all exceptions.

The following example asks the compiler to pass IN OUT parameter MY_STAFF by
reference, to avoid copying the varray on entry to and exit from the subprogram:

DECLARE
 TYPE Staff IS VARRAY(200) OF Employee;
 PROCEDURE reorganize (my_staff IN OUT NOCOPY Staff) IS ...
BEGIN
 NULL;
END;
/

Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint

Tuning PL/SQL Applications for Performance 11-21

The following example loads 25,000 records into a local nested table, which is passed
to two local procedures that do nothing. A call to the procedure that uses NOCOPY
takes much less time.

DECLARE
 TYPE EmpTabTyp IS TABLE OF employees%ROWTYPE;
 emp_tab EmpTabTyp := EmpTabTyp(NULL); -- initialize
 t1 NUMBER;
 t2 NUMBER;
 t3 NUMBER;
 PROCEDURE get_time (t OUT NUMBER) IS
 BEGIN t := dbms_utility.get_time; END;
 PROCEDURE do_nothing1 (tab IN OUT EmpTabTyp) IS
 BEGIN NULL; END;
 PROCEDURE do_nothing2 (tab IN OUT NOCOPY EmpTabTyp) IS
 BEGIN NULL; END;
BEGIN
 SELECT * INTO emp_tab(1) FROM employees WHERE employee_id = 100;
 emp_tab.EXTEND(49999, 1); -- copy element 1 into 2..50000
 get_time(t1);
 do_nothing1(emp_tab); -- pass IN OUT parameter
 get_time(t2);
 do_nothing2(emp_tab); -- pass IN OUT NOCOPY parameter
 get_time(t3);
 dbms_output.put_line('Call Duration (secs)');
 dbms_output.put_line('--------------------');
 dbms_output.put_line('Just IN OUT: ' || TO_CHAR((t2 - t1)/100.0));
 dbms_output.put_line('With NOCOPY: ' || TO_CHAR((t3 - t2))/100.0);
END;
/

Restrictions on NOCOPY
The use of NOCOPY increases the likelihood of parameter aliasing. For more
information, see "Understanding Subprogram Parameter Aliasing".

Remember, NOCOPY is a hint, not a directive. In the following cases, the PL/SQL
compiler ignores the NOCOPY hint and uses the by-value parameter-passing method;
no error is generated:

■ The actual parameter is an element of an associative array. This restriction does
not apply if the parameter is an entire associative array.

■ The actual parameter is constrained, such as by scale or NOT NULL. This restriction
does not apply to size-constrained character strings. This restriction does not
extend to constrained elements or attributes of composite types.

■ The actual and formal parameters are records, one or both records were declared
using %ROWTYPE or %TYPE, and constraints on corresponding fields in the records
differ.

■ The actual and formal parameters are records, the actual parameter was declared
(implicitly) as the index of a cursor FOR loop, and constraints on corresponding
fields in the records differ.

■ Passing the actual parameter requires an implicit datatype conversion.

■ The subprogram is called through a database link or as an external procedure.

Compiling PL/SQL Code for Native Execution

11-22 PL/SQL User's Guide and Reference

Compiling PL/SQL Code for Native Execution
You can speed up PL/SQL procedures by compiling them into native code residing in
shared libraries. The procedures are translated into C code, then compiled with your
usual C compiler and linked into the Oracle process.

You can use this technique with both the supplied Oracle packages, and procedures
you write yourself. Procedures compiled this way work in all server environments,
such as the shared server configuration (formerly known as multi-threaded server)
and Oracle Real Application Clusters.

Before You Begin
If you are a first-time user of native PL/SQL compilation, try it first with a test
database, before proceeding to a production environment.

Always back up your database before configuring the database for PL/SQL native
compilation. If you find that the performance benefit is outweighed by extra
compilation time, it might be faster to restore from a backup than to recompile
everything in interpreted mode.

Some of the setup steps require DBA authority. You must change the values of some
initialization parameters, and create a new directory on the database server, preferably
near the data files for the instance. The database server also needs a C compiler; on a
cluster, the compiler is needed on each node. Even if you can test out these steps
yourself on a development machine, you will generally need to consult with a DBA
and enlist their help to use native compilation on a production server.

Contact your system administrator to ensure that you have the required C compiler on
your operating system, and find the path for its location. Use a text editor such as vi to
open the file $ORACLE_HOME/plsql/spnc_commands, and make sure the command
templates are correct. Generally, you should not need to make any changes here, just
confirm that the setup is correct.

Determining Whether to Use PL/SQL Native Compilation
PL/SQL native compilation provides the greatest performance gains for
computation-intensive procedural operations. Examples of such operations are data
warehouse applications, and applications with extensive server-side transformations
of data for display. In such cases, expect speed increases of up to 30%.

Because this technique cannot do much to speed up SQL statements called from
PL/SQL, it is most effective for compute-intensive PL/SQL procedures that do not
spend most of their time executing SQL. You can test to see how much performance
gain you can get by enabling PL/SQL native compilation.

It takes longer to compile program units with native compilation than to use the
default interpreted mode. You might turn off native compilation during the busiest
parts of the development cycle, where code is being frequently recompiled.

When you have decided that you will have significant performance gains in database
operations using PL/SQL native compilation, Oracle Corporation recommends that
you compile the whole database using the NATIVE setting. Compiling all the PL/SQL
code in the database means you see the speedup in your own code, and in calls to all
the built-in PL/SQL packages.

How PL/SQL Native Compilation Works
If you do not use native compilation, each PL/SQL program unit is compiled into an
intermediate form, machine-readable code (m-code). The m-code is stored in the
database dictionary and interpreted at run time.

Compiling PL/SQL Code for Native Execution

Tuning PL/SQL Applications for Performance 11-23

With PL/SQL native compilation, the PL/SQL statements are turned into C code that
bypasses all the runtime interpretation, giving faster runtime performance.

PL/SQL uses the command file $ORACLE_HOME/plsql/spnc_commands, and the
supported operating system C compiler and linker, to compile and link the resulting C
code into shared libraries. The shared libraries are stored inside the data dictionary, so
that they can be backed up automatically and are protected from being deleted. These
shared library files are copied to the filesystem and are loaded and run when the
PL/SQL subprogram is invoked. If the files are deleted from the filesystem while the
database is shut down, or if you change the directory that holds the libraries, they are
extracted again automatically.

Although PL/SQL program units that just call SQL statements might see little or no
speedup, natively compiled PL/SQL is always at least as fast as the corresponding
interpreted code. The compiled code makes the same library calls as the interpreted
code would, so its behavior is exactly the same.

Format of the spnc_commands File
The spnc_commands file, in the $ORACLE_HOME/plsql directory, contains the
templates for the commands to compile and link each program. Some special names
such as %(src) are predefined, and are replaced by the corresponding filename. The
variable $(ORACLE_HOME) is replaced by the location of the Oracle home directory.
You can include comment lines, starting with a # character. The file contains comments
that explain all the special notation.

The spnc_commands file contains a predefined path for the C compiler, depending on
the particular operating system. (One specific compiler is supported on each operating
system.) In most cases, you should not need to change this path, but you might if you
the system administrator has installed it in another location.

System-Level Initialization Parameters for PL/SQL Native Compilation
The following table lists the initialization parameters you must set before using
PL/SQL native compilation. They can be set only at the system level, not by an ALTER
SESSION command. You cannot use variables such as ORACLE_HOME in the values;
use the full path instead.

Note: The examples in this section for setting system parameters
for PL/SQL native compilation assume a system using a server
parameter file (SPFILE).

If you use a text initialization parameter file (PFILE, or
initsid.ora), ensure that you change parameters in your
initialization parameter file, as indicated in the following table.

Parameter Characteristics

PLSQL_NATIVE_LIBRARY_DIR The full path and directory name used to store the shared
libraries that contain natively compiled PL/SQL code.

In accordance with optimal flexible architecture (OFA)
rules, Oracle Corporation recommends that you create the
shared library directory as a subdirectory where the data
files are located.

For security reasons, only the users oracle and root
should have write privileges for this directory.

Compiling PL/SQL Code for Native Execution

11-24 PL/SQL User's Guide and Reference

Session-Level Initialization Parameter for PL/SQL Native Compilation
The parameter PLSQL_CODE_TYPE determines whether PL/SQL code is natively
compiled or interpreted. The default setting is INTERPRETED. To enable PL/SQL
native compilation, set the value of PLSQL_CODE_TYPE to NATIVE.

If you compile the whole database as NATIVE, Oracle Corporation recommends that
you set PLSQL_CODE_TYPE at the system level.

Use the following syntax to set this parameter:

alter session set plsql_code_type='NATIVE';
alter session set plsql_code_type='INTERPRETED';
alter system set plsql_code_type='NATIVE';
alter system set plsql_code_type='INTERPRETED';

Setting Up and Using PL/SQL Native Compilation
To speed up one or more subprograms through native compilation:

1. Set up the PLSQL_NATIVE_LIBRARY_DIR initialization parameter, and
optionally the PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT initialization
parameter, as described above.

2. Use the ALTER SYSTEM or ALTER SESSION command, or update your
initialization file, to set the parameter PLSQL_CODE_TYPE to the value NATIVE.

3. Compile one or more subprograms, using one of these methods:

■ Use CREATE OR REPLACE to create or recompile the subprogram.

■ Use the ALTER PROCEDURE, ALTER FUNCTION, or ALTER PACKAGE
command with the COMPILE option to recompile the subprogram or the entire
package. (You can also use the clause PLSQL_CODE_TYPE = NATIVE with
the ALTER statements to affect specific subprograms without changing the
initialization parameter for the whole session.)

■ Drop the subprogram and create it again.

■ Run one of the SQL*Plus scripts that creates a set of Oracle-supplied packages.

■ Create a database using a preconfigured initialization file with
PLSQL_CODE_TYPE=NATIVE. During database creation, the UTLIRP script is
run to compile all the Oracle-supplied packages.

4. To be sure that the process worked, you can query the data dictionary to see that a
procedure is compiled for native execution. To check whether an existing
procedure is compiled for native execution or not, you can query the data
dictionary views USER_PLSQL_OBJECT_SETTINGS,

PLSQL_NATIVE_LIBRARY_SU
BDIR_COUNT

The number of subdirectories in the directory specified by
the parameter PLSQL_NATIVE_LIBRARY_DIR.

Optional; use if the number of natively compiled program
units exceeds 15000. If you need to set this option, refer to
the section "Setting Up PL/SQL Native Library
Subdirectories" on page 11-27.

See Also: Oracle Database Reference for complete details about the
initialization parameters and data dictionary views.

Parameter Characteristics

Compiling PL/SQL Code for Native Execution

Tuning PL/SQL Applications for Performance 11-25

DBA_PLSQL_OBJECT_SETTINGS, and ALL_PLSQL_OBJECT_SETTINGS. For
example, to check the status of the procedure MY_PROC, you could enter:

CREATE OR REPLACE PROCEDURE my_proc AS BEGIN NULL; END;
/
SELECT plsql_code_type FROM user_plsql_object_settings WHERE name = 'MY_PROC';
DROP PROCEDURE my_proc;

The CODE_TYPE column has a value of NATIVE for procedures that are compiled
for native execution, and INTERPRETED otherwise.

After the procedures are compiled and turned into shared libraries, they are
automatically linked into the Oracle process. You do not need to restart the database,
or move the shared libraries to a different location. You can call back and forth
between stored procedures, whether they are all interpreted, all compiled for native
execution, or a mixture of both.

Dependencies, Invalidation and Revalidation
 This recompilation happens automatically invalidated, such as when a table that it
depends on is re-created.

If an object on which a natively compiled PL/SQL subprogram depends changes, the
subprogram is invalidated. The next time the same subprogram is called, the database
recompiles the subprogram automatically. Because the PLSQL_CODE_TYPE setting is
stored inside the library unit for each subprogram, the automatic recompilation uses
this stored setting for code type.

The stored settings are only used when recompiling as part of revalidation. If a
PL/SQL subprogram is explicitly compiled through the SQL commands "create or
replace" or "alter...compile", the current session setting is used.

The generated shared libraries are stored in the database, in the SYSTEM tablespace.
The first time a natively compiled procedure is executed, the corresponding shared
library is copied from the database to the directory specified by the initialization
parameter PLSQL_NATIVE_LIBRARY_DIR.

Setting Up Databases for PL/SQL Native Compilation
Use the procedures in this section to set up an entire database for PL/SQL native
compilation. The performance benefits apply to all the built-in PL/SQL packages,
which are used for many database operations.

Creating a New Database for PL/SQL Native Compilation
If you use Database Configuration Assistant, use it to set the initialization parameters
required for PL/SQL native compilation, as described in the preceding section,
"System-Level Initialization Parameters for PL/SQL Native Compilation".

To find the supported C compiler on your operating system. refer to the table
"Precompilers and Tools Restrictions and Requirements" in the installation guide for
your operating system. Determine from your system administrator where it is located
on your system. You will need to check that this path is correct in the
spnc_commands file.

Determine if you have so many PL/SQL program units that you need to set the
initialization parameter PLSQL_NATIVE_DIR_SUBDIR_COUNT, and create PL/SQL
native library subdirectories if necessary. By default, PL/SQL program units are kept
in one directory. If the number of program units exceeds 15,000, the operating system
begins to impose performance limits. To work around this problem, Oracle

Compiling PL/SQL Code for Native Execution

11-26 PL/SQL User's Guide and Reference

Corporation recommends that you spread the PL/SQL program units among
subdirectories.

If you have set up a test database, use this SQL query to determine how many PL/SQL
program units you are using:

select count (*) from DBA_PLSQL_OBJECTS;

If the count returned by this query is greater than 15,000, complete the procedure
described in the section "Setting Up PL/SQL Native Library Subdirectories".

Modifying an Existing Database for PL/SQL Native Compilation
To natively compile an existing database, complete the following procedure:

1. Contact your system administrator to ensure that you have the required C
compiler on your operating system, and find the path for its location. Use a text
editor such as vi to open the file spnc_commands, and make sure the command
templates are correct.

2. As the oracle user, create the PL/SQL native library directory for each Oracle
database.

3. Using SQL, set the initialization parameter PLSQL_NATIVE_LIBRARY_DIR to the
full path to the PL/SQL native library.

For example, if the path to the PL/SQL native library directory is
/oracle/oradata/mydb/natlib, enter the following:

alter system set plsql_native_library_dir='/oracle/oradata/mydb/natlib'

4. Determine if you need to set the initialization parameter
PLSQL_NATIVE_DIR_SUBDIR_COUNT, and create PL/SQL native library
subdirectories if necessary.

By default, PL/SQL program units are kept in one directory. However, if the
number of program units exceeds 15000, then the operating system begins to
impose performance limits. To work around this problem, Oracle Corporation
recommends that you spread the PL/SQL program units in subdirectories.

If you have an existing database that you will migrate to the new installation, or if
you have set up a test database, use the following SQL query to determine how
many PL/SQL program units you are using:

select count (*) from DBA_PLSQL_OBJECTS;

Note: You must set up PL/SQL libraries for each Oracle database.
Shared libraries (.so and .dll files) are logically connected to the
database. They cannot be shared between databases. If you set up
PL/SQL libraries to be shared, the databases will be corrupted.

Create a directory in a secure place, in accordance with OFA rules,
to prevent .so and .dll files from unauthorized access.

In addition, ensure that the compiler executables used for PL/SQL
native compilation are writable only by a properly secured user.

The original copies of the shared libraries are stored inside the
database, so they are backed up automatically with the database.

Compiling PL/SQL Code for Native Execution

Tuning PL/SQL Applications for Performance 11-27

If the count returned by this query is greater than 15,000, complete the procedure
described in the following section, "Setting Up PL/SQL Native Library
Subdirectories".

5. Set the remaining required initialization parameters as listed in the table in the
preceding section "System-Level Initialization Parameters for PL/SQL Native
Compilation".

6. Create the following stored procedure to confirm that PL/SQL native compilation
is enabled:

CREATE OR REPLACE PROCEDURE Hello AS
BEGIN

dbms_output.put_line ('This output is from a natively compiled procedure.'
);
END Hello;
/

7. Run the stored procedure:

CALL Hello();

If the program does not return the expected output, contact Oracle Support for
assistance. (Remember to SET SERVEROUTPUT ON in SQL*Plus before running
the procedure.)

8. Recompile all the PL/SQL subprograms in the database. The script
$ORACLE_HOME/admin/utlirp.sql is typically used here.

Setting Up PL/SQL Native Library Subdirectories
If you need to set up PL/SQL native library subdirectories, use the following
procedure:

1. Create subdirectories sequentially in the form of d0, d1, d2, d3...dx, where x is the
total number of directories. Oracle Corporation recommends that you use a script
for this task. For example, you might run a PL/SQL block like the following, save
its output to a file, then run that file as a shell script:

BEGIN
 FOR j IN 0..999
 LOOP
 dbms_output.put_line ('mkdir d' || TO_CHAR(j));
 END LOOP;
END;
/

2. Set the initialization parameter PLSQL_NATIVE_DIR_COUNT to the number of
subdirectories you have created. For example, if you created 1000 subdirectories,
enter the following SQL statement in SQL*Plus:

alter system set plsql_native_library_subdir_count=1000;

Example 11–8 Compiling a PL/SQL Procedure for Native Execution

alter session set plsql_code_type='NATIVE';
CREATE OR REPLACE PROCEDURE hello_native
AS
BEGIN
 dbms_output.put_line('Hello world.');
 dbms_output.put_line('Today is ' || TO_CHAR(SYSDATE) || '.');

Setting Up Transformation Pipelines with Table Functions

11-28 PL/SQL User's Guide and Reference

END;
/
select plsql_code_type from user_plsql_object_settings
 where name = 'HELLO_NATIVE';
alter session set plsql_code_type='INTERPRETED';

The procedure is immediately available to call, and runs as a shared library directly
within the Oracle process. If any errors occur during compilation, you can see them
using the USER_ERRORS view or the SHOW ERRORS command in SQL*Plus.

Limitations of Native Compilation
■ Debugging tools for PL/SQL do not handle procedures compiled for native

execution.

■ When many procedures and packages (typically, over 15000) are compiled for
native execution, the large number of shared objects in a single directory might
affect system performance. See "Setting Up PL/SQL Native Library
Subdirectories" on page 11-27 for a workaround.

Real Application Clusters and PL/SQL Native Compilation
Because any node might need to compile a PL/SQL subprogram, each node in the
cluster needs a C compiler and correct settings and paths in the
$ORACLE_HOME/plsql/spnc_commands file.

When you use PLSQL native compilation in a Real Application Clusters (RAC)
environment, the original copies of the shared library files are stored in the databases,
and these files are automatically propagated to all nodes in the cluster. You do not
need to do any copying of libraries for this feature to work.

The reason for using a server parameter file (SPFILE) in the examples in this section, is
to make sure that all nodes of a RAC cluster use the same settings for the parameters
that control PL/SQL native compilation.

Setting Up Transformation Pipelines with Table Functions
This section describes how to chain together special kinds of functions known as table
functions. These functions are used in situations such as data warehousing to apply
multiple transformations to data.

Major topics covered are:

■ Overview of Table Functions

■ Writing a Pipelined Table Function

Overview of Table Functions
Table functions are functions that produce a collection of rows (either a nested table or
a varray) that can be queried like a physical database table or assigned to a PL/SQL
collection variable. You can use a table function like the name of a database table, in
the FROM clause of a query, or like a column name in the SELECT list of a query.

A table function can take a collection of rows as input. An input collection parameter
can be either a collection type (such as a VARRAY or a PL/SQL table) or a REF
CURSOR.

Execution of a table function can be parallelized, and returned rows can be streamed
directly to the next process without intermediate staging. Rows from a collection
returned by a table function can also be pipelined—that is, iteratively returned as they

Setting Up Transformation Pipelines with Table Functions

Tuning PL/SQL Applications for Performance 11-29

are produced instead of in a batch after all processing of the table function's input is
completed.

Streaming, pipelining, and parallel execution of table functions can improve
performance:

■ By enabling multi-threaded, concurrent execution of table functions

■ By eliminating intermediate staging between processes

■ By improving query response time: With non-pipelined table functions, the entire
collection returned by a table function must be constructed and returned to the
server before the query can return a single result row. Pipelining enables rows to
be returned iteratively, as they are produced. This also reduces the memory that a
table function requires, as the object cache does not need to materialize the entire
collection.

■ By iteratively providing result rows from the collection returned by a table
function as the rows are produced instead of waiting until the entire collection is
staged in tables or memory and then returning the entire collection.

Example 11–9 Example: Querying a Table Function

The following example shows a table function GetBooks that takes a CLOB as input
and returns an instance of the collection type BookSet_t. The CLOB column stores a
catalog listing of books in some format (either proprietary or following a standard
such as XML). The table function returns all the catalogs and their corresponding book
listings.

The collection type BookSet_t is defined as:

CREATE TYPE Book_t AS OBJECT (name VARCHAR2(100), author VARCHAR2(30), abstract
VARCHAR2(1000));
/
CREATE TYPE BookSet_t AS TABLE OF Book_t;
/
-- The CLOBs are stored in a table Catalogs:
CREATE TABLE Catalogs (name VARCHAR2(30), cat CLOB);

Function GetBooks is defined as follows:

CREATE FUNCTION GetBooks(a CLOB) RETURN BookSet_t;
/

The query below returns all the catalogs and their corresponding book listings.

SELECT c.name, Book.name, Book.author, Book.abstract
 FROM Catalogs c, TABLE(GetBooks(c.cat)) Book;

Example 11–10 Example: Assigning the Result of a Table Function

The following example shows how you can assign the result of a table function to a
PL/SQL collection variable. Because the table function is called from the SELECT list
of the query, you do not need the TABLE keyword.

CREATE TYPE numset_t AS TABLE OF NUMBER;
/

CREATE FUNCTION f1(x number) RETURN numset_t PIPELINED IS
BEGIN
 FOR i IN 1..x LOOP
 PIPE ROW(i);

Setting Up Transformation Pipelines with Table Functions

11-30 PL/SQL User's Guide and Reference

 END LOOP;
 RETURN;
END;
/

-- pipelined function in from clause
select * from table(f1(3));

Using Pipelined Table Functions for Transformations
A pipelined table function can accept any argument that regular functions accept. A
table function that accepts a REF CURSOR as an argument can serve as a
transformation function. That is, it can use the REF CURSOR to fetch the input rows,
perform some transformation on them, and then pipeline the results out.

For example, the following code sketches the declarations that define a StockPivot
function. This function converts a row of the type (Ticker, OpenPrice,
ClosePrice) into two rows of the form (Ticker, PriceType, Price). Calling
StockPivot for the row ("ORCL", 41, 42) generates two rows: ("ORCL", "O",
41) and ("ORCL", "C", 42).

Input data for the table function might come from a source such as table StockTable:

CREATE TABLE StockTable (
 ticker VARCHAR(4),
 open_price NUMBER,
 close_price NUMBER
);

Here are the declarations. See "Returning Results from Table Functions" on page 11-31
for the function bodies.

-- Create the types for the table function's output collection
-- and collection elements
CREATE TYPE TickerType AS OBJECT
(
 ticker VARCHAR2(4),
 PriceType VARCHAR2(1),
 price NUMBER
);
/

CREATE TYPE TickerTypeSet AS TABLE OF TickerType;
/

-- Define the ref cursor type

CREATE PACKAGE refcur_pkg IS
 TYPE refcur_t IS REF CURSOR RETURN StockTable%ROWTYPE;
END refcur_pkg;
/

-- Create the table function

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet
PIPELINED ... ;
/

Here is an example of a query that uses the StockPivot table function:

Setting Up Transformation Pipelines with Table Functions

Tuning PL/SQL Applications for Performance 11-31

SELECT * FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable)));

In the query above, the pipelined table function StockPivot fetches rows from the
CURSOR subquery SELECT * FROM StockTable, performs the transformation, and
pipelines the results back to the user as a table. The function produces two output
rows (collection elements) for each input row.

Note that when a CURSOR subquery is passed from SQL to a REF CURSOR function
argument as in the example above, the referenced cursor is already open when the
function begins executing.

Writing a Pipelined Table Function
You declare a pipelined table function by specifying the PIPELINED keyword. This
keyword indicates that the function returns rows iteratively. The return type of the
pipelined table function must be a collection type, such as a nested table or a varray.
You can declare this collection at the schema level or inside a package. Inside the
function, you return individual elements of the collection type.

For example, here are declarations for two pipelined table functions. (The function
bodies are shown in later examples.)

CREATE FUNCTION GetBooks(cat CLOB) RETURN BookSet_t
 PIPELINED IS ...;
/

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet
 PIPELINED IS...;
/

Returning Results from Table Functions
In PL/SQL, the PIPE ROW statement causes a table function to pipe a row and
continue processing. The statement enables a PL/SQL table function to return rows as
soon as they are produced. (For performance, the PL/SQL runtime system provides
the rows to the consumer in batches.) For example:

CREATE FUNCTION StockPivot(p refcur_pkg.refcur_t) RETURN TickerTypeSet
PIPELINED IS
 out_rec TickerType := TickerType(NULL,NULL,NULL);
 in_rec p%ROWTYPE;
BEGIN
 LOOP
 FETCH p INTO in_rec;
 EXIT WHEN p%NOTFOUND;
 -- first row
 out_rec.ticker := in_rec.Ticker;
 out_rec.PriceType := 'O';
 out_rec.price := in_rec.OpenPrice;
 PIPE ROW(out_rec);
 -- second row
 out_rec.PriceType := 'C';
 out_rec.Price := in_rec.ClosePrice;
 PIPE ROW(out_rec);
 END LOOP;
 CLOSE p;
 RETURN;
END;
/

Setting Up Transformation Pipelines with Table Functions

11-32 PL/SQL User's Guide and Reference

In the example, the PIPE ROW(out_rec) statement pipelines data out of the
PL/SQL table function. out_rec is a record, and its type matches the type of an
element of the output collection.

The PIPE ROW statement may be used only in the body of pipelined table functions;
an error is raised if it is used anywhere else. The PIPE ROW statement can be omitted
for a pipelined table function that returns no rows.

A pipelined table function must have a RETURN statement that does not return a value.
The RETURN statement transfers the control back to the consumer and ensures that the
next fetch gets a NO_DATA_FOUND exception.

Because table functions pass control back and forth to a calling routine as rows
areproduced, there is a restriction on combining table functions and PRAGMA
AUTONOMOUS_TRANSACTION. If a table function is part of an autonomous transaction,
it must COMMIT or ROLLBACK before each PIPE ROW statement, to avoid an error in
the calling subprogram.

Oracle has three special SQL datatypes that enable you to dynamically encapsulate
and access type descriptions, data instances, and sets of data instances of any other
SQL type, including object and collection types. You can also use these three special
types to create anonymous (that is, unnamed) types, including anonymous collection
types. The types are SYS.ANYTYPE, SYS.ANYDATA, and SYS.ANYDATASET. The
SYS.ANYDATA type can be useful in some situations as a return value from table
functions.

Pipelining Data Between PL/SQL Table Functions
With serial execution, results are pipelined from one PL/SQL table function to another
using an approach similar to co-routine execution. For example, the following
statement pipelines results from function g to function f:

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM TABLE(g()))));

Parallel execution works similarly except that each function executes in a different
process (or set of processes).

Querying Table Functions
Pipelined table functions are used in the FROM clause of SELECT statements. The result
rows are retrieved by Oracle iteratively from the table function implementation. For
example:

SELECT x.Ticker, x.Price
FROM TABLE(StockPivot(CURSOR(SELECT * FROM StockTable))) x
WHERE x.PriceType='C';

See Also: PL/SQL Packages and Types Reference for information
about the interfaces to the ANYTYPE, ANYDATA, and ANYDATASET
types and about the DBMS_TYPES package for use with these types.

Note: A table function returns a collection. In some cases, such as
when the top-level query uses SELECT * and the query refers to a
PL/SQL variable or a bind variable, you may need a CAST operator
around the table function to specify the exact return type.

Setting Up Transformation Pipelines with Table Functions

Tuning PL/SQL Applications for Performance 11-33

Optimizing Multiple Calls to Table Functions
Multiple invocations of a table function, either within the same query or in separate
queries result in multiple executions of the underlying implementation. By default,
there is no buffering or reuse of rows.

For example,

SELECT * FROM TABLE(f(...)) t1, TABLE(f(...)) t2
 WHERE t1.id = t2.id;

SELECT * FROM TABLE(f());
SELECT * FROM TABLE(f());

If the function always produces the same result value for each combination of values
passed in, you can declare the function DETERMINISTIC, and Oracle automatically
buffers rows for it. If the function is not really deterministic, results are unpredictable.

Fetching from the Results of Table Functions
PL/SQL cursors and ref cursors can be defined for queries over table functions. For
example:

OPEN c FOR SELECT * FROM TABLE(f(...));

Cursors over table functions have the same fetch semantics as ordinary cursors. REF
CURSOR assignments based on table functions do not have any special semantics.

However, the SQL optimizer will not optimize across PL/SQL statements. For
example:

DECLARE
 r SYS_REFCURSOR;
BEGIN
 OPEN r FOR SELECT * FROM TABLE(f(CURSOR(SELECT * FROM tab)));
 SELECT * BULK COLLECT INTO rec_tab FROM TABLE(g(r));
END;
/

does not execute as well as:

SELECT * FROM TABLE(g(CURSOR(SELECT * FROM
 TABLE(f(CURSOR(SELECT * FROM tab))))));

This is so even ignoring the overhead associated with executing two SQL statements
and assuming that the results can be pipelined between the two statements.

Passing Data with Cursor Variables
You can pass a set of rows to a PL/SQL function in a REF CURSOR parameter. For
example, this function is declared to accept an argument of the predefined weakly
typed REF CURSOR type SYS_REFCURSOR:

FUNCTION f(p1 IN SYS_REFCURSOR) RETURN ... ;

Results of a subquery can be passed to a function directly:

SELECT * FROM TABLE(f(CURSOR(SELECT empno FROM tab)));

In the example above, the CURSOR keyword is required to indicate that the results of a
subquery should be passed as a REF CURSOR parameter.

Setting Up Transformation Pipelines with Table Functions

11-34 PL/SQL User's Guide and Reference

A predefined weak REF CURSOR type SYS_REFCURSOR is also supported. With
SYS_REFCURSOR, you do not need to first create a REF CURSOR type in a package
before you can use it.

To use a strong REF CURSOR type, you still must create a PL/SQL package and
declare a strong REF CURSOR type in it. Also, if you are using a strong REF CURSOR
type as an argument to a table function, then the actual type of the REF CURSOR
argument must match the column type, or an error is generated. Weak REF CURSOR
arguments to table functions can only be partitioned using the PARTITION BY ANY
clause. You cannot use range or hash partitioning for weak REF CURSOR arguments.

Example 11–11 Example: Using Multiple REF CURSOR Input Variables

PL/SQL functions can accept multiple REF CURSOR input variables:

CREATE FUNCTION g(p1 pkg.refcur_t1, p2 pkg.refcur_t2) RETURN...
 PIPELINED ... ;
/

Function g can be invoked as follows:

SELECT * FROM TABLE(g(CURSOR(SELECT employee_id FROM tab),
 CURSOR(SELECT * FROM employees));

You can pass table function return values to other table functions by creating a REF
CURSOR that iterates over the returned data:

SELECT * FROM TABLE(f(CURSOR(SELECT * FROM TABLE(g(...)))));

Example 11–12 Example: Explicitly Opening a REF CURSOR for a Query

You can explicitly open a REF CURSOR for a query and pass it as a parameter to a
table function:

DECLARE
 r SYS_REFCURSOR;
 rec ...;
BEGIN
 OPEN r FOR SELECT * FROM TABLE(f(...));
 -- Must return a single row result set.
 SELECT * INTO rec FROM TABLE(g(r));
END;
/

In this case, the table function closes the cursor when it completes, so your program
should not explicitly try to close the cursor.

Example 11–13 Example: Using a Pipelined Table Function as an Aggregate Function

A table function can compute aggregate results using the input ref cursor. The
following example computes a weighted average by iterating over a set of input rows.

DROP TABLE gradereport;
CREATE TABLE gradereport (student VARCHAR2(30), subject VARCHAR2(30), weight
NUMBER, grade NUMBER);

INSERT INTO gradereport VALUES('Mark', 'Physics', 4, 4);
INSERT INTO gradereport VALUES('Mark','Chemistry', 4,3);
INSERT INTO gradereport VALUES('Mark','Maths', 3,3);
INSERT INTO gradereport VALUES('Mark','Economics', 3,4);

Setting Up Transformation Pipelines with Table Functions

Tuning PL/SQL Applications for Performance 11-35

CREATE OR replace TYPE gpa AS TABLE OF NUMBER;
/

CREATE OR replace FUNCTION weighted_average(input_values
sys_refcursor)
RETURN gpa PIPELINED IS
 grade NUMBER;
 total NUMBER := 0;
 total_weight NUMBER := 0;
 weight NUMBER := 0;
BEGIN
-- The function accepts a ref cursor and loops through all the input rows.
 LOOP
 FETCH input_values INTO weight, grade;
 EXIT WHEN input_values%NOTFOUND;
-- Accumulate the weighted average.
 total_weight := total_weight + weight;
 total := total + grade*weight;
 END LOOP;
 PIPE ROW (total / total_weight);
-- The function returns a single result.
 RETURN;
END;
/
show errors;

-- The result comes back as a nested table with a single row.
-- COLUMN_VALUE is a keyword that returns the contents of a nested table.
select weighted_result.column_value from
 table(weighted_average(cursor(select weight,grade from gradereport)))
weighted_result;

Performing DML Operations Inside Table Functions
To execute DML statements, declare a table function with the
AUTONOMOUS_TRANSACTION pragma, which causes the function to execute in a new
transaction not shared by other processes:

CREATE FUNCTION f(p SYS_REFCURSOR) return CollType PIPELINED IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN NULL; END;
/

During parallel execution, each instance of the table function creates an independent
transaction.

Performing DML Operations on Table Functions
Table functions cannot be the target table in UPDATE, INSERT, or DELETE statements.
For example, the following statements will raise an error:

UPDATE F(CURSOR(SELECT * FROM tab)) SET col = value;
INSERT INTO f(...) VALUES ('any', 'thing');

However, you can create a view over a table function and use INSTEAD OF triggers to
update it. For example:

CREATE VIEW BookTable AS
 SELECT x.Name, x.Author

Setting Up Transformation Pipelines with Table Functions

11-36 PL/SQL User's Guide and Reference

 FROM TABLE(GetBooks('data.txt')) x;

The following INSTEAD OF trigger is fired when the user inserts a row into the
BookTable view:

CREATE TRIGGER BookTable_insert
INSTEAD OF INSERT ON BookTable
REFERENCING NEW AS n
FOR EACH ROW
BEGIN
 ...
END;
/
INSERT INTO BookTable VALUES (...);

INSTEAD OF triggers can be defined for all DML operations on a view built on a table
function.

Handling Exceptions in Table Functions
Exception handling in table functions works just as it does with regular functions.

Some languages, such as C and Java, provide a mechanism for user-supplied exception
handling. If an exception raised within a table function is handled, the table function
executes the exception handler and continues processing. Exiting the exception
handler takes control to the enclosing scope. If the exception is cleared, execution
proceeds normally.

An unhandled exception in a table function causes the parent transaction to roll back.

Using PL/SQL Object Types 12-1

12
Using PL/SQL Object Types

... It next will be right
To describe each particular batch:
Distinguishing those that have feathers, and bite,
From those that have whiskers, and scratch. —Lewis Carroll

Object-oriented programming is especially suited for building reusable components
and complex applications. In PL/SQL, object-oriented programming is based on object
types. They let you model real-world objects, separate interfaces and implementation
details, and store object-oriented data persistently in the database. You might find
object types helpful when writing programs that interoperate with Java or other
object-oriented languages.

This chapter contains these topics:

■ Overview of PL/SQL Object Types on page 12-1

■ What Is an Object Type? on page 12-2

■ Why Use Object Types? on page 12-3

■ Structure of an Object Type on page 12-3

■ Components of an Object Type on page 12-5

■ Defining Object Types on page 12-9

■ Declaring and Initializing Objects on page 12-11

■ Accessing Object Attributes on page 12-13

■ Defining Object Constructors on page 12-13

■ Calling Object Constructors on page 12-14

■ Calling Object Methods on page 12-15

■ Sharing Objects through the REF Modifier on page 12-16

■ Manipulating Objects through SQL on page 12-17

Overview of PL/SQL Object Types
Before reading this chapter, you should be familiar with some backgroup topics:

Object-oriented programming, including the idea of abstraction.

The ideas of attributes and methods. In other languages, these are part of classes. In
SQL and PL/SQL, they are part of object types.

What Is an Object Type?

12-2 PL/SQL User's Guide and Reference

The SQL statement CREATE TYPE.

The best place to read about all of Oracle's object-oriented features is... The remainder
of this chapter focuses on issues that are specific to PL/SQL.

What Is an Object Type?
An object type is a user-defined composite datatype representing a data structure and
functions and procedures to manipulate the data. With scalar datatypes, each variable
holds a single value. With collections, all the elements have the same type. Only object
types let you associate code with the data.

The variables within the data structure are called attributes. The functions and
procedures of the object type are called methods.

We usually think of an object as having attributes and actions. For example, a baby has
the attributes gender, age, and weight, and the actions eat, drink, and sleep. Object
types let you represent such real-world behavior in an application.

When you define an object type using the CREATE TYPE statement, you create an
abstract template for some real-world object. The template specifies the attributes and
behaviors the object needs in the application environment.

Figure 12–1 Each Application Uses a Subset of Object Attributes

Although the attributes are public (visible to client programs), well-behaved programs
manipulate the data only through methodsthat you provide, not by assigning or
reading values directly. Because the methods can do extra checking, the data is kept in
a proper state.

At run time, you create instances of an abstract type, real objects with filled-in
attributes.

name
id_number
ss_number
salary
commission
benefits_choices
dependents

Payroll App

Space Planning App

Employee Attributes

id_number
job_title
department
office_location
office_size

name
address
phone_number
date_born
sex
marital_status
education_level
military_service
hobbies
id_number
ss_number
user_id
phone_extension

date_hired
status
department
job_title
salary
commission
rank
work_history
office_location
office_size
benefits_choices
dependents
beneficiaries

Structure of an Object Type

Using PL/SQL Object Types 12-3

Figure 12–2 Object Type and Objects (Instances) of that Type

Why Use Object Types?
Object types let you break down a large system into logical entities. This lets you
create software components that are modular, maintainable, and reusable across
projects and teams.

By associating code with data, object types move maintenance code out of SQL scripts
and PL/SQL blocks into methods. Instead of writing a long procedure that does
different things based on some parameter value, you can define different object types
and make each operate slightly differently. By declaring an object of the correct type,
you ensure that it can only perform the operations for that type.

Object types allow for realistic data modeling. Complex real-world entities and
relationships map directly into object types. Object types map directly into classes
defined in object-oriented languages such as Java and C++.

Structure of an Object Type
Like a package, an object type has a specification and a body (refer to Figure 12–3). The
specification (or spec for short) defines the programming interface; it declares a set of
attributes along with the operations (methods) to manipulate the data. The body
defines the code for the methods.

name
id_number
department
job_title
salary
rank

Object Type Employee

Attributes Methods
calculate_bonus
change_dept
change_job_title
change_salary
change_rank

name:
id_number:
department:
job_title:
salary:
rank:

Ann Polk
8835
Marketing
Analyst
3200
3

Object

name:
id_number:
department:
job_title:
salary:
rank:

Hart Bell
8022
Accounting
Clerk
1750
4

Object

Structure of an Object Type

12-4 PL/SQL User's Guide and Reference

Figure 12–3 Object Type Structure

All the information a program needs to use the methods is in the spec. You can change
the body without changing the spec, and without affecting client programs.

In an object type spec, all attributes must be declared before any methods. If an object
type spec declares only attributes, the object type body is unnecessary. You cannot
declare attributes in the body. All declarations in the object type spec are public (visible
outside the object type).

The following example defines an object type for complex numbers, with a real part,
an imaginary part, and arithmetic operations.

CREATE TYPE Complex AS OBJECT (
 rpart REAL, -- "real" attribute
 ipart REAL, -- "imaginary" attribute
 MEMBER FUNCTION plus (x Complex) RETURN Complex, -- method
 MEMBER FUNCTION less (x Complex) RETURN Complex,
 MEMBER FUNCTION times (x Complex) RETURN Complex,
 MEMBER FUNCTION divby (x Complex) RETURN Complex
);

CREATE TYPE BODY Complex AS
 MEMBER FUNCTION plus (x Complex) RETURN Complex IS
 BEGIN
 RETURN Complex(rpart + x.rpart, ipart + x.ipart);
 END plus;

 MEMBER FUNCTION less (x Complex) RETURN Complex IS
 BEGIN
 RETURN Complex(rpart - x.rpart, ipart - x.ipart);
 END less;

 MEMBER FUNCTION times (x Complex) RETURN Complex IS
 BEGIN
 RETURN Complex(rpart * x.rpart - ipart * x.ipart,
 rpart * x.ipart + ipart * x.rpart);
 END times;

 MEMBER FUNCTION divby (x Complex) RETURN Complex IS
 z REAL := x.rpart**2 + x.ipart**2;
 BEGIN
 RETURN Complex((rpart * x.rpart + ipart * x.ipart) / z,
 (ipart * x.rpart - rpart * x.ipart) / z);
 END divby;
END;
/

attribute declarations

spec

method specs

public interface

method bodies

body
private implementation

Components of an Object Type

Using PL/SQL Object Types 12-5

Components of an Object Type
An object type encapsulates data and operations. You can declare attributes and
methods in an object type spec, but not constants, exceptions, cursors, or types. You
must declare at least one attribute (the maximum is 1000). Methods are optional.

Attributes
Like a variable, an attribute is declared with a name and datatype. The name must be
unique within the object type (but can be reused in other object types). The datatype
can be any Oracle type except:

■ LONG and LONG RAW

■ ROWID and UROWID

■ The PL/SQL-specific types BINARY_INTEGER (and its subtypes), BOOLEAN, PLS_
INTEGER, RECORD, REF CURSOR, %TYPE, and %ROWTYPE

■ Types defined inside a PL/SQL package

You cannot initialize an attribute in its declaration using the assignment operator or
DEFAULT clause. Also, you cannot impose the NOT NULL constraint on an attribute.
However, objects can be stored in database tables on which you can impose
constraints.

The kind of data structure formed by a set of attributes depends on the real-world
object being modeled. For example, to represent a rational number, which has a
numerator and a denominator, you need only two INTEGER variables. On the other
hand, to represent a college student, you need several VARCHAR2 variables to hold a
name, address, phone number, status, and so on, plus a VARRAY variable to hold
courses and grades.

The data structure can be very complex. For example, the datatype of an attribute can
be another object type (called a nested object type). That lets you build a complex
object type from simpler object types. Some object types such as queues, lists, and trees
are dynamic, meaning that they can grow as they are used. Recursive object types,
which contain direct or indirect references to themselves, allow for highly
sophisticated data models.

Methods
In general, a method is a subprogram declared in an object type spec using the
keyword MEMBER or STATIC. The method cannot have the same name as the object
type or any of its attributes. MEMBER methods are invoked on instances, as in

instance_expression.method()

However, STATIC methods are invoked on the object type, not its instances, as in

object_type_name.method()

Like packaged subprograms, methods have two parts: a specification and a body. The
specification (spec for short) consists of a method name, an optional parameter list,
and, for functions, a return type. The body is the code that executes to perform a
specific task.

For each method spec in an object type spec, there must either be a corresponding
method body in the object type body, or the method must be declared NOT
INSTANTIABLE to indicate that the body is only present in subtypes of this type. To
match method specs and bodies, the PL/SQL compiler does a token-by-token
comparison of their headers. The headers must match exactly.

Components of an Object Type

12-6 PL/SQL User's Guide and Reference

Like an attribute, a formal parameter is declared with a name and datatype. However,
the datatype of a parameter cannot be size-constrained. The datatype can be any
Oracle type except those disallowed for attributes. (See "Attributes" on page 12-5.) The
same restrictions apply to return types.

What Languages can I Use for Methods of Object Types?
Oracle lets you implement object methods in PL/SQL, Java or C. You can implement
type methods in Java or C by providing a call specification in your type. A call spec
publishes a Java method or external C function in the Oracle data dictionary. It
publishes the routine by mapping its name, parameter types, and return type to their
SQL counterparts. To learn how to write Java call specs, see Oracle Database Java
Developer's Guide. To learn how to write C call specs, see Oracle Database Application
Developer's Guide - Fundamentals.

How Object Types Handle the SELF Parameter
MEMBER methods accept a built-in parameter named SELF, which is an instance of the
object type. It is always the first parameter passed to a MEMBER method. If you do not
declare it, it declared automatically.

For example, the transform method declares SELF as an IN OUT parameter:

CREATE TYPE Complex AS OBJECT (
 MEMBER FUNCTION transform (SELF IN OUT Complex) ...

You must specify the same datatype for SELF as the original object.

In MEMBER functions, if SELF is not declared, its parameter mode defaults to IN.

In MEMBER procedures, if SELF is not declared, its parameter mode defaults to IN OUT.

You cannot specify the OUT parameter mode for SELF.

STATIC methods cannot accept or reference SELF.

In the method body, SELF denotes the object whose method was invoked. You can
refer to SELF.attribute_name or SELF.member_name, to make clear that you are
referring to that object rather than something in a supertype. As the following example
shows, methods can reference the attributes of SELF without a qualifier:

CREATE FUNCTION gcd (x INTEGER, y INTEGER) RETURN INTEGER AS
-- find greatest common divisor of x and y
 ans INTEGER;
BEGIN
 IF (y <= x) AND (x MOD y = 0) THEN ans := y;
 ELSIF x < y THEN ans := gcd(y, x);
 ELSE ans := gcd(y, x MOD y);
 END IF;
 RETURN ans;
END;

CREATE TYPE Rational AS OBJECT (
 num INTEGER,
 den INTEGER,
 MEMBER PROCEDURE normalize,
 ...
);

CREATE TYPE BODY Rational AS
 MEMBER PROCEDURE normalize IS

Components of an Object Type

Using PL/SQL Object Types 12-7

 g INTEGER;
 BEGIN
 g := gcd(SELF.num, SELF.den);
 g := gcd(num, den); -- equivalent to previous statement
 num := num / g;
 den := den / g;
 END normalize;
 ...
END;

From a SQL statement, if you call a MEMBER method on a null instance (that is, SELF is
null), the method is not invoked and a null is returned. From a procedural statement, if
you call a MEMBER method on a null instance, PL/SQL raises the predefined exception
SELF_IS_NULL before the method is invoked.

Overloading
Like packaged subprograms, methods of the same kind (functions or procedures) can
be overloaded. You can use the same name for different methods if their formal
parameters are different enough to tell apart. When you call one of the methods,
PL/SQL finds it by comparing the actual parameters with each list of formal
parameters.

A subtype can also overload methods it inherits from its supertype. In this case, the
methods can have exactly the same formal parameters.

You cannot overload two methods whose formal parameters differ only in their mode.
You cannot overload two member functions that differ only in return type. For more
information, see "Overloading Subprogram Names" on page 8-9.

MAP and ORDER Methods
Instances of an object type have no predefined order. To put them in order for
comparisons or sorting, PL/SQL calls a MAP method supplied by you. In the
following example, the keyword MAP indicates that method convert() orders
Rational objects by mapping them to REAL values:

CREATE TYPE Rational AS OBJECT (
 num INTEGER,
 den INTEGER,
 MAP MEMBER FUNCTION convert RETURN REAL,
);

CREATE TYPE BODY Rational AS
 MAP MEMBER FUNCTION convert RETURN REAL IS
 BEGIN
 RETURN num / den;
 END convert;
END;

PL/SQL uses the map method to evaluate Boolean expressions such as x > y, and to
do comparisons implied by the DISTINCT, GROUP BY, and ORDER BY clauses. MAP
method convert() returns the relative position of an object in the ordering of all
Rational objects.

An object type can contain only one MAP method. It accepts the built-in parameter
SELF and returns one of the following scalar types: DATE, NUMBER, VARCHAR2, or an
ANSI SQL type such as CHARACTER or REAL.

Components of an Object Type

12-8 PL/SQL User's Guide and Reference

Alternatively, you can supply PL/SQL with an ORDER method. An object type can
contain only one ORDER method, which must be a function that returns a numeric
result. In the following example, the keyword ORDER indicates that method match()
compares two objects:

CREATE TYPE Customer AS OBJECT (
 id NUMBER,
 name VARCHAR2(20),
 addr VARCHAR2(30),
 ORDER MEMBER FUNCTION match (c Customer) RETURN INTEGER
);

CREATE TYPE BODY Customer AS
 ORDER MEMBER FUNCTION match (c Customer) RETURN INTEGER IS
 BEGIN
 IF id < c.id THEN
 RETURN -1; -- any negative number will do
 ELSIF id > c.id THEN
 RETURN 1; -- any positive number will do
 ELSE
 RETURN 0;
 END IF;
 END;
END;

Every ORDER method takes two parameters: the built-in parameter SELF and another
object of the same type. If c1 and c2 are Customer objects, a comparison such as c1
> c2 calls match() automatically. The method returns a negative number, zero, or a
positive number signifying that SELF is less than, equal to, or greater than the other
parameter. If either parameter passed to an ORDER method is null, the method returns
a null.

Guidelines
A MAP method, acting like a hash function, maps object values into scalar values,
which are then compared using operators such as <, =, and so on. An ORDER method
simply compares one object value to another.

You can declare a MAP method or an ORDER method but not both. If you declare either
method, you can compare objects in SQL and procedural statements. If you declare
neither method, you can compare objects only in SQL statements and only for equality
or inequality. (Two objects of the same type are equal only if the values of their
corresponding attributes are equal.)

When sorting or merging a large number of objects, use a MAP method. One call maps
all the objects into scalars, then sorts the scalars. An ORDER method is less efficient
because it must be called repeatedly (it can compare only two objects at a time). You
must use a MAP method for hash joins because PL/SQL hashes on the object value.

Constructor Methods
Every object type has a constructor method, a function with the same name as the
object type that initializes and returns a new instance of that object type.

Oracle generates a default constructor for every object type, with formal parameters
that match the order, names, and datatypes of the object attributes.

You can define your own constructor methods, either overriding a system-defined
constructor, or defining a new function with a different signature.

PL/SQL never calls a constructor implicitly. You must call it explicitly.

Defining Object Types

Using PL/SQL Object Types 12-9

For more information, see "Defining Object Constructors" on page 12-13.

Changing Attributes and Methods of an Existing Object Type (Type Evolution)
You can use the ALTER TYPE statement to add, modify, or drop attributes, and add or
drop methods of an existing object type:

CREATE TYPE Person_typ AS OBJECT
(name CHAR(20),
ssn CHAR(12),
address VARCHAR2(100));
CREATE TYPE Person_nt IS TABLE OF Person_typ;
CREATE TYPE dept_typ AS OBJECT
(mgr Person_typ,
emps Person_nt);
CREATE TABLE dept OF dept_typ;

-- Add new attributes to Person_typ and propagate the change
-- to Person_nt and dept_typ
ALTER TYPE Person_typ ADD ATTRIBUTE (picture BLOB, dob DATE)
CASCADE NOT INCLUDING TABLE DATA;

CREATE TYPE mytype AS OBJECT (attr1 NUMBER, attr2 NUMBER);
ALTER TYPE mytype ADD ATTRIBUTE (attr3 NUMBER),
DROP ATTRIBUTE attr2,
ADD ATTRIBUTE attr4 NUMBER CASCADE;

When a procedure is compiled, it always uses the current version of any object types it
references. Existing procedures on the server that reference an object type are
invalidated when the type is altered, and are automatically recompiled the next time
the procedure is called. You must manually recompile any procedures on the client
side that reference types that are altered.

If you drop a method from a supertype, you might have to make changes to subtypes
that override that method. You can find if any subtypes are affected by using the
CASCADE option of ALTER TYPE; the statement is rolled back if any subtypes override
the method. To successfully drop the method from the supertype, you can:

■ Drop the method permanently from the subtype first.

■ Drop the method in the subtype, then add it back later using ALTER TYPE
without the OVERRIDING keyword.

For more information about the ALTER TYPE statement, see Oracle Database SQL
Reference. For guidelines about using type evolution in your applications, and options
for changing other types and data that rely on those types, see Oracle Database
Application Developer's Guide - Object-Relational Features.

Defining Object Types
An object type can represent any real-world entity. For example, an object type can
represent a student, bank account, computer screen, rational number, or data structure
such as a queue, stack, or list. This section gives several complete examples, which
teach you a lot about the design of object types and prepare you to start writing your
own.

Currently, you cannot define object types in a PL/SQL block, subprogram, or package.
You can define them interactively in SQL*Plus using the SQL statement CREATE
TYPE.

Defining Object Types

12-10 PL/SQL User's Guide and Reference

Overview of PL/SQL Type Inheritance
PL/SQL supports a single-inheritance model. You can define subtypes of object types.
These subtypes contain all the attributes and methods of the parent type (or
supertype). The subtypes can also contain additional attributes and additional
methods, and can override methods from the supertype.

You can define whether or not subtypes can be derived from a particular type. You can
also define types and methods that cannot be instantiated directly, only by declaring
subtypes that instantiate them.

Some of the type properties can be changed dynamically with the ALTER TYPE
statement. When changes are made to the supertype, either through ALTER TYPE or
by redefining the supertype, the subtypes automatically reflect those changes.

You can use the TREAT operator to return only those objects that are of a specified
subtype.

The values from the REF and DEREF functions can represent either the declared type of
the table or view, or one or more of its subtypes.

See the Oracle Database Application Developer's Guide - Object-Relational Features for
more detail on all these object-relational features.

Examples of PL/SQL Type Inheritance
-- Create a supertype from which several subtypes will be derived.
CREATE TYPE Person_typ AS OBJECT (ssn NUMBER, name VARCHAR2(30), address
VARCHAR2(100)) NOT FINAL;

-- Derive a subtype that has all the attributes of the supertype,
-- plus some additional attributes.
CREATE TYPE Student_typ UNDER Person_typ (deptid NUMBER, major VARCHAR2(30)) NOT
FINAL;

-- Because Student_typ is declared NOT FINAL, you can derive
-- further subtypes from it.
CREATE TYPE PartTimeStudent_typ UNDER Student_typ(numhours NUMBER);

-- Derive another subtype. Because it has the default attribute
-- FINAL, you cannot use Employee_typ as a supertype and derive
-- subtypes from it.
CREATE TYPE Employee_typ UNDER Person_typ(empid NUMBER, mgr VARCHAR2(30));

-- Define an object type that can be a supertype. Because the
-- member function is FINAL, it cannot be overridden in any
-- subtypes.

CREATE TYPE T AS OBJECT (..., MEMBER PROCEDURE Print(), FINAL MEMBER
FUNCTION foo(x NUMBER)...) NOT FINAL;

-- We never want to create an object of this supertype. By using
-- NOT INSTANTIABLE, we force all objects to use one of the subtypes
-- instead, with specific implementations for the member functions.
CREATE TYPE Address_typ AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;

-- These subtypes can provide their own implementations of
-- member functions, such as for validating phone numbers and
-- postal codes. Because there is no "generic" way of doing these
-- things, only objects of these subtypes can be instantiated.
CREATE TYPE USAddress_typ UNDER Address_typ(...);

Declaring and Initializing Objects

Using PL/SQL Object Types 12-11

CREATE TYPE IntlAddress_typ UNDER Address_typ(...);

-- Return REFs for those Person_typ objects that are instances of
-- the Student_typ subtype, and NULL REFs otherwise.
SELECT TREAT(REF(p) AS REF Student_typ) FROM Person_v p;

-- Example of using TREAT for assignment...

-- Return REFs for those Person_type objects that are instances of
-- Employee_type or Student_typ, or any of their subtypes.
SELECT REF(p) FROM Person_v P WHERE VALUE(p) IS OF (Employee_typ, Student_typ);

-- Similar to above, but do not allow any subtypes of Student_typ.
SELECT REF(p) FROM Person_v p WHERE VALUE(p) IS OF(ONLY Student_typ);

-- The results of REF and DEREF can include objects of Person_typ
-- and its subtypes such as Employee_typ and Student_typ.
SELECT REF(p) FROM Person_v p;
SELECT DEREF(REF(p)) FROM Person_v p;

Declaring and Initializing Objects
Once an object type is defined and installed in the schema, you can use it to declare
objects in any PL/SQL block, subprogram, or package. For example, you can use the
object type to specify the datatype of an attribute, column, variable, bind variable,
record field, table element, formal parameter, or function result. At run time, instances
of the object type are created; that is, objects of that type are instantiated. Each object
can hold different values.

Such objects follow the usual scope and instantiation rules. In a block or subprogram,
local objects are instantiated when you enter the block or subprogram and cease to
exist when you exit. In a package, objects are instantiated when you first reference the
package and cease to exist when you end the database session.

Declaring Objects
You can use object types wherever built-in types such as CHAR or NUMBER can be used.
In the block below, you declare object r of type Rational. Then, you call the
constructor for object type Rational to initialize the object. The call assigns the
values 6 and 8 to attributes num and den, respectively.

DECLARE
 r Rational;
BEGIN
 r := Rational(6, 8);
 dbms_output.put_line(r.num); -- prints 6

You can declare objects as the formal parameters of functions and procedures. That
way, you can pass objects to stored subprograms and from one subprogram to another.
In the next example, you use object type Account to specify the datatype of a formal
parameter:

DECLARE
 ...
 PROCEDURE open_acct (new_acct IN OUT Account) IS ...

In the following example, you use object type Account to specify the return type of a
function:

Declaring and Initializing Objects

12-12 PL/SQL User's Guide and Reference

DECLARE
 ...
 FUNCTION get_acct (acct_id IN INTEGER) RETURN Account IS ...

Initializing Objects
Until you initialize an object by calling the constructor for its object type, the object is
atomically null. That is, the object itself is null, not just its attributes. Consider the
following example:

DECLARE
 r Rational; -- r becomes atomically null
BEGIN
 r := Rational(2,3); -- r becomes 2/3

A null object is never equal to another object. In fact, comparing a null object with any
other object always yields NULL. Also, if you assign an atomically null object to
another object, the other object becomes atomically null (and must be reinitialized).
Likewise, if you assign the non-value NULL to an object, the object becomes atomically
null, as the following example shows:

DECLARE
 r Rational;
BEGIN
 r Rational := Rational(1,2); -- r becomes 1/2
 r := NULL; -- r becomes atomically null
 IF r IS NULL THEN ... -- condition yields TRUE

A good programming practice is to initialize an object in its declaration, as shown in
the following example:

DECLARE
 r Rational := Rational(2,3); -- r becomes 2/3

How PL/SQL Treats Uninitialized Objects
In an expression, attributes of an uninitialized object evaluate to NULL. Trying to
assign values to attributes of an uninitialized object raises the predefined exception
ACCESS_INTO_NULL. When applied to an uninitialized object or its attributes, the IS
NULL comparison operator yields TRUE.

The following example illustrates the difference between null objects and objects with
null attributes:

DECLARE
 r Rational; -- r is atomically null
BEGIN
 IF r IS NULL THEN ... -- yields TRUE
 IF r.num IS NULL THEN ... -- yields TRUE
 r := Rational(NULL, NULL); -- initializes r
 r.num := 4; -- succeeds because r is no longer atomically null
 -- even though all its attributes are null
 r := NULL; -- r becomes atomically null again
 r.num := 4; -- raises ACCESS_INTO_NULL
EXCEPTION
 WHEN ACCESS_INTO_NULL THEN
 ...
END;

Defining Object Constructors

Using PL/SQL Object Types 12-13

Calls to methods of an uninitialized object raise the predefined exception NULL_
SELF_DISPATCH. When passed as arguments to IN parameters, attributes of an
uninitialized object evaluate to NULL. When passed as arguments to OUT or IN OUT
parameters, they raise an exception if you try to write to them.

Accessing Object Attributes
You refer to an attribute by name. To access or change the value of an attribute, you
use dot notation:

DECLARE
 r Rational := Rational(NULL, NULL);
 numerator INTEGER;
 denominator INTEGER;
BEGIN
 denominator := r.den; -- Read value of attribute
 r.num := numerator; -- Assign value to attribute

Attribute names can be chained, which lets you access the attributes of a nested object
type. For example, suppose you define object types Address and Student, as
follows:

CREATE TYPE Address AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip_code VARCHAR2(5)
);

CREATE TYPE Student AS OBJECT (
 name VARCHAR2(20),
 home_address Address,
 phone_number VARCHAR2(10),
 status VARCHAR2(10),
 advisor_name VARCHAR2(20),
 ...
);

The Address attribute is an object type that has a zip_code attribute. If s is a
Student object, you access the value of its zip_code attribute as follows:

s.home_address.zip_code

Defining Object Constructors
By default, you do not need to define a constructor for an object type. The system
supplies a default constructor that accepts a parameter corresponding to each
attribute.

You might also want to define your own constructor:

■ To supply default values for some attributes. You can ensure the values are correct
instead of relying on the caller to supply every attribute value.

■ To avoid many special-purpose procedures that just initialize different parts of an
object.

■ To avoid code changes in applications that call the constructor, when new
attributes are added to the type. The constructor might need some new code, for

Calling Object Constructors

12-14 PL/SQL User's Guide and Reference

example to set the attribute to null, but its signature could remain the same so that
existing calls to the constructor would continue to work.

For example:

CREATE OR REPLACE TYPE rectangle AS OBJECT
(
-- The type has 3 attributes.
 length NUMBER,
 width NUMBER,
 area NUMBER,
-- Define a constructor that has only 2 parameters.
 CONSTRUCTOR FUNCTION rectangle(length NUMBER, width NUMBER)
 RETURN SELF AS RESULT
);
/

CREATE OR REPLACE TYPE BODY rectangle AS
 CONSTRUCTOR FUNCTION rectangle(length NUMBER, width NUMBER)
 RETURN SELF AS RESULT
 AS
 BEGIN
 SELF.length := length;
 SELF.width := width;
-- We compute the area rather than accepting it as a parameter.
 SELF.area := length * width;
 RETURN;
 END;
END;
/

DECLARE
 r1 rectangle;
 r2 rectangle;
BEGIN
-- We can still call the default constructor, with all 3 parameters.
 r1 := NEW rectangle(10,20,200);
-- But it is more robust to call our constructor, which computes
-- the AREA attribute. This guarantees that the initial value is OK.
 r2 := NEW rectangle(10,20);
END;
/

Calling Object Constructors
Calls to a constructor are allowed wherever function calls are allowed. Like all
functions, a constructor is called as part of an expression, as the following example
shows:

DECLARE
 r1 Rational := Rational(2, 3);
 FUNCTION average (x Rational, y Rational) RETURN Rational IS
 BEGIN
 ...
 END;
BEGIN
 r1 := average(Rational(3, 4), Rational(7, 11));
 IF (Rational(5, 8) > r1) THEN
 ...
 END IF;

Calling Object Methods

Using PL/SQL Object Types 12-15

END;

When you pass parameters to a constructor, the call assigns initial values to the
attributes of the object being instantiated. When you call the default constructor to fill
in all attribute values, you must supply a parameter for every attribute; unlike
constants and variables, attributes cannot have default values. As the following
example shows, the nth parameter assigns a value to the nth attribute:

DECLARE
 r Rational;
BEGIN
 r := Rational(5, 6); -- assign 5 to num, 6 to den
 -- now r is 5/6

The next example shows that you can call a constructor using named notation instead
of positional notation:

BEGIN
 r := Rational(den => 6, num => 5); -- assign 5 to num, 6 to den

Calling Object Methods
Like packaged subprograms, methods are called using dot notation. In the following
example, you call method normalize(), which divides attributes num and den (for
"numerator" and "denominator") by their greatest common divisor:

DECLARE
 r Rational;
BEGIN
 r := Rational(6, 8);
 r.normalize;
 dbms_output.put_line(r.num); -- prints 3
END;

As the example below shows, you can chain method calls. Execution proceeds from
left to right. First, member function reciprocal() is called, then member procedure
normalize() is called.

DECLARE
 r Rational := Rational(6, 8);
BEGIN
 r.reciprocal().normalize;
 dbms_output.put_line(r.num); -- prints 4
END;

In SQL statements, calls to a parameterless method require an empty parameter list. In
procedural statements, an empty parameter list is optional unless you chain calls, in
which case it is required for all but the last call.

You cannot chain additional method calls to the right of a procedure call because a
procedure is called as a statement, not as part of an expression. For example, the
following statement is not allowed:

r.normalize().reciprocal; -- not allowed

Also, if you chain two function calls, the first function must return an object that can
be passed to the second function.

For static methods, calls use the notation type_name.method_name rather than
specifying an instance of the type.

Sharing Objects through the REF Modifier

12-16 PL/SQL User's Guide and Reference

When you call a method using an instance of a subtype, the actual method that is
executed depends on the exact declarations in the type hierarchy. If the subtype
overrides the method that it inherits from its supertype, the call uses the subtype's
implementation. Or, if the subtype does not override the method, the call uses the
supertype's implementation. This capability is known as dynamic method dispatch.

Sharing Objects through the REF Modifier
It is inefficient to pass copies of large objects from subprogram to subprogram. It
makes more sense to pass a pointer instead. A ref is a pointer to an object.

Sharing means that data is not replicated unnecessarily. When a shared object is
updated, the change occurs in only one place, and any ref can retrieve the updated
values instantly.

CREATE TYPE Home AS OBJECT (
 address VARCHAR2(35),
 owner VARCHAR2(25),
 age INTEGER,
 style VARCHAR(15),
 floor plan BLOB,
 price REAL(9,2),
 ...
);
/
CREATE TABLE homes OF Home;

By revising object type Person, you can model families, where several people share
the same home. You use the type modifier REF to declare refs, which hold pointers to
objects.

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(10),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address REF Home, -- can be shared by family
 phone_number VARCHAR2(15),
 ss_number INTEGER,
 mother REF Person, -- family members refer to each other
 father REF Person,
 ...
);

Notice how references from persons to homes and between persons model real-world
relationships.

You can declare refs as variables, parameters, fields, or attributes. You can use refs as
input or output variables in SQL data manipulation statements.

You cannot navigate through refs. Given an expression such as x.attribute, where
x is a ref, PL/SQL cannot navigate to the table in which the referenced object is stored.
For example, the following assignment is not allowed:

DECLARE
 p_ref REF Person;
 phone_no VARCHAR2(15);
BEGIN
 phone_no := p_ref.phone_number; -- not allowed

Manipulating Objects through SQL

Using PL/SQL Object Types 12-17

You must use the function DEREF or make calls to the package UTL_REF to access the
object. For some examples, see "Using Function DEREF" on page 12-20.

Forward Type Definitions
You can refer only to schema objects that already exist. In the following example, the
first CREATE TYPE statement is not allowed because it refers to object type
Department, which does not yet exist:

CREATE TYPE Employee AS OBJECT (
 name VARCHAR2(20),
 dept REF Department, -- not allowed
 ...
);

CREATE TYPE Department AS OBJECT (
 number INTEGER,
 manager Employee,
 ...
);

Switching the CREATE TYPE statements does not help because the object types are
mutually dependent. Object type Employee has an attribute that refers to object type
Department, and object type Department has an attribute of type Employee. To
solve this problem, you use a special CREATE TYPE statement called a forward type
definition, which lets you define mutually dependent object types.

To debug the last example, simply precede it with the following statement:

CREATE TYPE Department; -- forward type definition
 -- at this point, Department is an incomplete object type

The object type created by a forward type definition is called an incomplete object
type because (until it is defined fully) it has no attributes or methods.

An impure incomplete object type has attributes but causes compilation errors because
it refers to an undefined type. For example, the following CREATE TYPE statement
causes an error because object type Address is undefined:

CREATE TYPE Customer AS OBJECT (
 id NUMBER,
 name VARCHAR2(20),
 addr Address, -- not yet defined
 phone VARCHAR2(15)
);

This lets you defer the definition of object type Address. The incomplete type
Customer can be made available to other application developers for use in refs.

Manipulating Objects through SQL
You can use an object type in the CREATE TABLE statement to specify the datatype of a
column. Once the table is created, you can use SQL statements to insert an object,
select its attributes, call its methods, and update its state.

Note: Access to remote or distributed objects is not allowed.

In the SQL*Plus script below, the INSERT statement calls the constructor for object
type Rational, then inserts the resulting object. The SELECT statement retrieves the
value of attribute num. The UPDATE statement calls member method reciprocal(),

Manipulating Objects through SQL

12-18 PL/SQL User's Guide and Reference

which returns a Rational value after swapping attributes num and den. Notice that a
table alias is required when you reference an attribute or method. (For an explanation,
see Appendix D.)

CREATE TABLE numbers (rn Rational, ...)
/
INSERT INTO numbers (rn) VALUES (Rational(3, 62)) -- inserts 3/62
/
SELECT n.rn.num INTO my_num FROM numbers n ... -- returns 3
/
UPDATE numbers n SET n.rn = n.rn.reciprocal() ... -- yields 62/3

When you instantiate an object this way, it has no identity outside the database table.
However, the object type exists independently of any table, and can be used to create
objects in other ways.

In the next example, you create a table that stores objects of type Rational in its
rows. Such tables, having rows of objects, are called object tables. Each column in a
row corresponds to an attribute of the object type. Rows can have different column
values.

CREATE TABLE rational_nums OF Rational;

Each row in an object table has an object identifier, which uniquely identifies the
object stored in that row and serves as a reference to the object.

Selecting Objects
Assume that you have run the following SQL*Plus script, which creates object type
Person and object table persons, and that you have populated the table:

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address Address,
 phone_number VARCHAR2(15))
/
CREATE TABLE persons OF Person
/

The following subquery produces a result set of rows containing only the attributes of
Person objects:

BEGIN
 INSERT INTO employees -- another object table of type Person
 SELECT * FROM persons p WHERE p.last_name LIKE '%Smith';

To return a result set of objects, you must use the function VALUE, which is discussed
in the next section.

Using Function VALUE
As you might expect, the function VALUE returns the value of an object. VALUE takes
as its argument a correlation variable. (In this context, a correlation variable is a row
variable or table alias associated with a row in an object table.) For example, to return a
result set of Person objects, use VALUE as follows:

BEGIN
 INSERT INTO employees
 SELECT VALUE(p) FROM persons p

Manipulating Objects through SQL

Using PL/SQL Object Types 12-19

 WHERE p.last_name LIKE '%Smith';

In the next example, you use VALUE to return a specific Person object:

DECLARE
 p1 Person;
 p2 Person;
 ...
BEGIN
 SELECT VALUE(p) INTO p1 FROM persons p
 WHERE p.last_name = 'Kroll';
 p2 := p1;
 ...
END;

At this point, p1 holds a local Person object, which is a copy of the stored object
whose last name is 'Kroll', and p2 holds another local Person object, which is a
copy of p1. As the following example shows, you can use these variables to access and
update the objects they hold:

BEGIN
 p1.last_name := p1.last_name || ' Jr';

Now, the local Person object held by p1 has the last name 'Kroll Jr'.

Using Function REF
You can retrieve refs using the function REF, which, like VALUE, takes as its argument
a correlation variable. In the following example, you retrieve one or more refs to
Person objects, then insert the refs into table person_refs:

BEGIN
 INSERT INTO person_refs
 SELECT REF(p) FROM persons p
 WHERE p.last_name LIKE '%Smith';

The next example retrieves a ref and attribute at the same time:

DECLARE
 p_ref REF Person;
 taxpayer_id VARCHAR2(9);
BEGIN
 SELECT REF(p), p.ss_number INTO p_ref, taxpayer_id
 FROM persons p
 WHERE p.last_name = 'Parker'; -- must return one row
END;

This example, updates the attributes of a Person object:

DECLARE
 p_ref REF Person;
 my_last_name VARCHAR2(15);
BEGIN
 SELECT REF(p) INTO p_ref FROM persons p
 WHERE p.last_name = my_last_name;
 UPDATE persons p
 SET p = Person('Jill', 'Anders', '11-NOV-67', ...)
 WHERE REF(p) = p_ref;
END;

Manipulating Objects through SQL

12-20 PL/SQL User's Guide and Reference

Testing for Dangling Refs
If the object to which a ref points is deleted, the ref is left dangling, pointing to a
nonexistent object. To test for this condition, you can use the SQL predicate IS
DANGLING. For example, suppose column manager in relational table department
holds refs to Employee objects stored in an object table. You can use the following
UPDATE statement to convert any dangling refs into nulls:

 UPDATE department SET manager = NULL WHERE manager IS DANGLING;

Using Function DEREF
You cannot navigate through refs within PL/SQL procedural statements. Instead, you
must use the function DEREF in a SQL statement to dereference a pointer, and get the
value to which it points. DEREF takes a reference to an object, and returns the value of
that object. If the ref is dangling, DEREF returns a null object.

The following example dereferences a ref to a Person object. You can select from the
dummy table DUAL because each object stored in an object table has a unique object
identifier, which is part of every ref to that object.

DECLARE
 p1 Person;
 p_ref REF Person;
 name VARCHAR2(15);
BEGIN
 /* Assume that p_ref holds a valid reference
 to an object stored in an object table. */
 SELECT DEREF(p_ref) INTO p1 FROM dual;
 name := p1.last_name;

You can use DEREF in successive SQL statements to dereference refs:

CREATE TYPE PersonRef AS OBJECT (p_ref REF Person)
/
DECLARE
 name VARCHAR2(15);
 pr_ref REF PersonRef;
 pr PersonRef;
 p Person;
BEGIN
 /* Assume pr_ref holds a valid reference. */
 SELECT DEREF(pr_ref) INTO pr FROM dual;
 SELECT DEREF(pr.p_ref) INTO p FROM dual;
 name := p.last_name;
END
/
The next example shows that you cannot use function DEREF within procedural
statements:

BEGIN
 p1 := DEREF(p_ref); -- not allowed

Within SQL statements, you can use dot notation to navigate through object columns
to ref attributes and through one ref attribute to another. You can also navigate
through ref columns to attributes by using a table alias. For example, the following
syntax is valid:

table_alias.object_column.ref_attribute
table_alias.object_column.ref_attribute.attribute
table_alias.ref_column.attribute

Manipulating Objects through SQL

Using PL/SQL Object Types 12-21

Assume that you have run the following SQL*Plus script, which creates object types
Address and Person and object table persons:

CREATE TYPE Address AS OBJECT (
 street VARCHAR2(35),
 city VARCHAR2(15),
 state CHAR(2),
 zip_code INTEGER)
/
CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address REF Address, -- shared with other Person objects
 phone_number VARCHAR2(15))
/
CREATE TABLE persons OF Person
/

Ref attribute home_address corresponds to a column in object table persons that
holds refs to Address objects stored in some other table. After populating the tables,
you can select a particular address by dereferencing its ref:

DECLARE
 addr1 Address,
 addr2 Address,
BEGIN
 SELECT DEREF(home_address) INTO addr1 FROM persons p
 WHERE p.last_name = 'Derringer';

In the example below, you navigate through ref column home_address to attribute
street. In this case, a table alias is required.

DECLARE
 my_street VARCHAR2(25),
BEGIN
 SELECT p.home_address.street INTO my_street FROM persons p
 WHERE p.last_name = 'Lucas';

Inserting Objects
You use the INSERT statement to add objects to an object table. In the following
example, you insert a Person object into object table persons:

BEGIN
 INSERT INTO persons
 VALUES ('Jenifer', 'Lapidus', ...);

Alternatively, you can use the constructor for object type Person to insert an object
into object table persons:

BEGIN
 INSERT INTO persons
 VALUES (Person('Albert', 'Brooker', ...));

In the next example, you use the RETURNING clause to store Person refs in local
variables. Notice how the clause mimics a SELECT statement.You can also use the
RETURNING clause in UPDATE and DELETE statements.

DECLARE
 p1_ref REF Person;

Manipulating Objects through SQL

12-22 PL/SQL User's Guide and Reference

 p2_ref REF Person;
BEGIN
 INSERT INTO persons p
 VALUES (Person('Paul', 'Chang', ...))
 RETURNING REF(p) INTO p1_ref;
 INSERT INTO persons p
 VALUES (Person('Ana', 'Thorne', ...))
 RETURNING REF(p) INTO p2_ref;

To insert objects into an object table, you can use a subquery that returns objects of the
same type. An example follows:

BEGIN
 INSERT INTO persons2
 SELECT VALUE(p) FROM persons p
 WHERE p.last_name LIKE '%Jones';

The rows copied to object table persons2 are given new object identifiers. No object
identifiers are copied from object table persons.

The script below creates a relational table named department, which has a column of
type Person, then inserts a row into the table. Notice how constructor Person()
provides a value for column manager.

CREATE TABLE department (
 dept_name VARCHAR2(20),
 manager Person,
 location VARCHAR2(20))
/
INSERT INTO department
 VALUES ('Payroll', Person('Alan', 'Tsai', ...), 'Los Angeles')
/

The new Person object stored in column manager cannot be referenced because it is
stored in a column (not a row) and therefore has no object identifier.

Updating Objects
To modify the attributes of objects in an object table, you use the UPDATE statement, as
the following example shows:

BEGIN
 UPDATE persons p SET p.home_address = '341 Oakdene Ave'
 WHERE p.last_name = 'Brody';
 UPDATE persons p SET p = Person('Beth', 'Steinberg', ...)
 WHERE p.last_name = 'Steinway';
 END;

Deleting Objects
You use the DELETE statement to remove objects (rows) from an object table. To
remove objects selectively, use the WHERE clause:

BEGIN
 DELETE FROM persons p
 WHERE p.home_address = '108 Palm Dr';
END;

PL/SQL Language Elements 13-1

13
PL/SQL Language Elements

Grammar, which knows how to control even kings. —Molière

This chapter is a quick reference guide to PL/SQL syntax and semantics. It shows you
how commands, parameters, and other language elements are combined to form
PL/SQL statements. It also provides usage notes and short examples.

This chapter contains these topics:

■ Assignment Statement

■ AUTONOMOUS_TRANSACTION Pragma

■ Blocks

■ CASE Statement

■ CLOSE Statement

■ Collection Methods

■ Collections

■ Comments

■ COMMIT Statement

■ Constants and Variables

■ Cursor Attributes

■ Cursor Variables

■ Cursors

■ DELETE Statement

■ EXCEPTION_INIT Pragma

■ Exceptions

■ EXECUTE IMMEDIATE Statement

■ EXIT Statement

■ Expressions

■ FETCH Statement

■ FORALL Statement

■ Functions

■ GOTO Statement

13-2 PL/SQL User's Guide and Reference

■ IF Statement

■ INSERT Statement

■ Literals

■ LOCK TABLE Statement

■ LOOP Statements

■ MERGE Statement

■ NULL Statement

■ Object Types

■ OPEN Statement

■ OPEN-FOR Statement

■ OPEN-FOR-USING Statement

■ Packages

■ Procedures

■ RAISE Statement

■ Records

■ RESTRICT_REFERENCES Pragma

■ RETURN Statement

■ ROLLBACK Statement

■ %ROWTYPE Attribute

■ SAVEPOINT Statement

■ SCN_TO_TIMESTAMP Function

■ SQLCODE Function

■ SELECT INTO Statement

■ SERIALLY_REUSABLE Pragma

■ SET TRANSACTION Statement

■ SQL Cursor

■ SQLCODE Function

■ SQLERRM Function

■ TIMESTAMP_TO_SCN Function

■ %TYPE Attribute

■ UPDATE Statement

Assignment Statement

PL/SQL Language Elements 13-3

Assignment Statement

An assignment statement sets the current value of a variable, field, parameter, or
element. The statement consists of an assignment target followed by the assignment
operator and an expression. When the statement is executed, the expression is
evaluated and the resulting value is stored in the target. For more information, see
"Assigning Values to Variables" on page 2-16.

Syntax

Keyword and Parameter Description

attribute_name
An attribute of an object type. The name must be unique within the object type (but
can be reused in other object types). You cannot initialize an attribute in its declaration
using the assignment operator or DEFAULT clause. Also, you cannot impose the NOT
NULL constraint on an attribute.

collection_name
A nested table, index-by table, or varray previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope. Only the
value of another cursor variable can be assigned to a cursor variable.

expression
A combination of variables, constants, literals, operators, and function calls. The
simplest expression consists of a single variable. For the syntax of expression, see
"Expressions" on page 13-52. When the assignment statement is executed, the
expression is evaluated and the resulting value is stored in the assignment target. The
value and target must have compatible datatypes.

collection_name
(index)

cursor_variable_name

: host_cursor_variable_name

: host_variable_name
: indicator_name

object_name
. attribute_name

parameter_name

record_name
. field_name

variable_name

:= expression ;

assignment_statement

Assignment Statement

13-4 PL/SQL User's Guide and Reference

field_name
A field in a user-defined or %ROWTYPE record.

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a
bind variable. The datatype of the host cursor variable is compatible with the return
type of any PL/SQL cursor variable. Host variables must be prefixed with a colon.

host_variable_name
A variable declared in a PL/SQL host environment and passed to PL/SQL as a bind
variable. Host variables must be prefixed with a colon.

index
A numeric expression that must return a value of type BINARY_INTEGER or a value
implicitly convertible to that datatype.

indicator_name
An indicator variable declared in a PL/SQL host environment and passed to PL/SQL.
Indicator variables must be prefixed with a colon. An indicator variable "indicates" the
value or condition of its associated host variable. For example, in the Oracle
Precompiler environment, indicator variables let you detect nulls or truncated values
in output host variables.

object_name
An instance of an object type previously declared within the current scope.

parameter_name
A formal OUT or IN OUT parameter of the subprogram in which the assignment
statement appears.

record_name
A user-defined or %ROWTYPE record previously declared within the current scope.

variable_name
A PL/SQL variable previously declared within the current scope.

Usage Notes
By default, unless a variable is initialized in its declaration, it is initialized to NULL
every time a block or subprogram is entered. Always assign a value to a variable
before using that variable in an expression.

You cannot assign nulls to a variable defined as NOT NULL. If you try, PL/SQL raises
the predefined exception VALUE_ERROR.

Only the values TRUE, FALSE, and NULL can be assigned to a Boolean variable.

You can assign the result of a comparison or other test to a Boolean variable.

You can assign the value of an expression to a specific field in a record.

You can assign values to all fields in a record at once. PL/SQL allows aggregate
assignment between entire records if their declarations refer to the same cursor or
table. The following example copies values from all the fields of one record to another:

Assignment Statement

PL/SQL Language Elements 13-5

DECLARE
 emp_rec1 emp%ROWTYPE;
 emp_rec2 emp%ROWTYPE;
 dept_rec dept%ROWTYPE;
BEGIN
 ...
 emp_rec1 := emp_rec2;

You can assign the value of an expression to a specific element in a collection, by
subscripting the collection name.

Examples
DECLARE
 wages NUMBER; hours_worked NUMBER; hourly_salary NUMBER; bonus NUMBER;
 country VARCHAR2(128);
 counter NUMBER := 0;
 done BOOLEAN;
 emp_rec employees%ROWTYPE;
 TYPE commissions IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 comm_tab commissions;
BEGIN
 wages := (hours_worked * hourly_salary) + bonus;
 country := 'France';
 country := UPPER('Canada');
 done := (counter > 100);
 emp_rec.first_name := 'Antonio';
 comm_tab(5) := 20000 * 0.15;
END;
/

Related Topics
Constants and Variables, Expressions, SELECT INTO Statement

AUTONOMOUS_TRANSACTION Pragma

13-6 PL/SQL User's Guide and Reference

AUTONOMOUS_TRANSACTION Pragma

The AUTONOMOUS_TRANSACTION pragma changes the way a subprogram works
within a transaction. A subprogram marked with this pragma can do SQL operations
and commit or roll back those operations, without committing or rolling back the data
in the main transaction. For more information, see "Doing Independent Units of Work
with Autonomous Transactions" on page 6-35.

Syntax

Keyword and Parameter Description

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at
compile time, not at run time. They pass information to the compiler.

Usage Notes
You can apply this pragma to:

■ Top-level (not nested) anonymous PL/SQL blocks

■ Local, standalone, and packaged functions and procedures

■ Methods of a SQL object type

■ Database triggers

You cannot apply this pragma to an entire package or an entire an object type. Instead,
you can apply the pragma to each packaged subprogram or object method.

You can code the pragma anywhere in the declarative section. For readability, code the
pragma at the top of the section.

Once started, an autonomous transaction is fully independent. It shares no locks,
resources, or commit-dependencies with the main transaction. You can log events,
increment retry counters, and so on, even if the main transaction rolls back.

Unlike regular triggers, autonomous triggers can contain transaction control
statements such as COMMIT and ROLLBACK, and can issue DDL statements (such as
CREATE and DROP) through the EXECUTE IMMEDIATE statement.

Changes made by an autonomous transaction become visible to other transactions
when the autonomous transaction commits. The changes also become visible to the
main transaction when it resumes, but only if its isolation level is set to READ
COMMITTED (the default). If you set the isolation level of the main transaction to
SERIALIZABLE, changes made by its autonomous transactions are not visible to the
main transaction when it resumes.

In the main transaction, rolling back to a savepoint located before the call to the
autonomous subprogram does not roll back the autonomous transaction. Remember,
autonomous transactions are fully independent of the main transaction.

If an autonomous transaction attempts to access a resource held by the main
transaction (which cannot resume until the autonomous routine exits), a deadlock can

PRAGMA AUTONOMOUS_TRANSACTION ;

autonomous_transaction_pragma

AUTONOMOUS_TRANSACTION Pragma

PL/SQL Language Elements 13-7

occur. Oracle raises an exception in the autonomous transaction, which is rolled back if
the exception goes unhandled.

If you try to exit an active autonomous transaction without committing or rolling back,
Oracle raises an exception. If the exception goes unhandled, or if the transaction ends
because of some other unhandled exception, the transaction is rolled back.

Examples
The following example marks a packaged function as autonomous:

CREATE PACKAGE banking AS
 FUNCTION balance (acct_id INTEGER) RETURN REAL;
END banking;
/

CREATE PACKAGE BODY banking AS
 FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 my_bal REAL;
 BEGIN
 NULL;
 END;
END banking;
/

DROP PACKAGE banking;

The following example lets a trigger issue transaction control statements:

CREATE TABLE anniversaries AS
 SELECT DISTINCT TRUNC(hire_date) anniversary FROM employees;
ALTER TABLE anniversaries ADD PRIMARY KEY (anniversary);

CREATE TRIGGER anniversary_trigger
 BEFORE INSERT ON employees FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO anniversaries VALUES(TRUNC(:new.hire_date));
-- Only commits the preceding INSERT, not the INSERT that fired
-- the trigger.
 COMMIT;
 EXCEPTION
-- If someone else was hired on the same day, we get an exception
-- because of duplicate values. That's OK, no action needed.
 WHEN OTHERS THEN NULL;
END;
/

DROP TRIGGER anniversary_trigger;
DROP TABLE anniversaries;

Related Topics
EXCEPTION_INIT Pragma, RESTRICT_REFERENCES Pragma,
SERIALLY_REUSABLE Pragma

Blocks

13-8 PL/SQL User's Guide and Reference

Blocks

The basic program unit in PL/SQL is the block. A PL/SQL block is defined by the
keywords DECLARE, BEGIN, EXCEPTION, and END. These keywords partition the
block into a declarative part, an executable part, and an exception-handling part. Only
the executable part is required. You can nest a block within another block wherever
you can place an executable statement. For more information, see "Block Structure" on
page 1-4 and "Scope and Visibility of PL/SQL Identifiers" on page 2-14.

Syntax

<< label_name >> DECLARE

plsql_block

BEGIN statement

EXCEPTION exception_handler
END

label_name
;

record_type_definition

ref_cursor_type_definition

table_type_definition

subtype_definition

varray_type_definition

type_definition

type_definition

item_declaration

function_declaration

procedure_declaration

SUBTYPE subtype_name IS base_type
(constraint) NOT NULL

;

subtype_definition

Blocks

PL/SQL Language Elements 13-9

collection_declaration

constant_declaration

cursor_declaration

cursor_variable_declaration

exception_declaration

object_declaration

object_ref_declaration

record_declaration

variable_declaration

item_declaration

commit_statement

delete_statement

insert_statement

lock_table_statement

rollback_statement

savepoint_statement

select_statement

set_transaction_statement

update_statement

sql_statement

Blocks

13-10 PL/SQL User's Guide and Reference

Keyword and Parameter Description

base_type
Any scalar or user-defined PL/SQL datatype specifier such as CHAR, DATE, or
RECORD.

BEGIN
Signals the start of the executable part of a PL/SQL block, which contains executable
statements. A PL/SQL block must contain at least one executable statement (even just
the NULL statement).

collection_declaration
Declares a collection (index-by table, nested table, or varray). For the syntax of
collection_declaration, see "Collections" on page 13-21.

constant_declaration
Declares a constant. For the syntax of constant_declaration, see "Constants and
Variables" on page 13-28.

constraint
Applies only to datatypes that can be constrained such as CHAR and NUMBER. For
character datatypes, this specifies a maximum size in bytes. For numeric datatypes,
this specifies a maximum precision and scale.

cursor_declaration
Declares an explicit cursor. For the syntax of cursor_declaration, see "Cursors" on
page 13-38.

<< label_name >>

assignment_statement

close_statement

execute_immediate_statement

exit_statement

fetch_statement

forall_statement

goto_statement

if_statement

loop_statement

null_statement

open_statement

open_for_statement

plsql_block

raise_statement

return_statement

sql_statement

statement

Blocks

PL/SQL Language Elements 13-11

cursor_variable_declaration
Declares a cursor variable. For the syntax of cursor_variable_declaration, see
"Cursor Variables" on page 13-34.

DECLARE
Signals the start of the declarative part of a PL/SQL block, which contains local
declarations. Items declared locally exist only within the current block and all its
sub-blocks and are not visible to enclosing blocks. The declarative part of a PL/SQL
block is optional. It is terminated implicitly by the keyword BEGIN, which introduces
the executable part of the block.

PL/SQL does not allow forward references. You must declare an item before
referencing it in any other statements. Also, you must declare subprograms at the end
of a declarative section after all other program items.

END
Signals the end of a PL/SQL block. It must be the last keyword in a block. Remember,
END does not signal the end of a transaction. Just as a block can span multiple
transactions, a transaction can span multiple blocks.

EXCEPTION
Signals the start of the exception-handling part of a PL/SQL block. When an exception
is raised, normal execution of the block stops and control transfers to the appropriate
exception handler. After the exception handler completes, execution proceeds with the
statement following the block.

If there is no exception handler for the raised exception in the current block, control
passes to the enclosing block. This process repeats until an exception handler is found
or there are no more enclosing blocks. If PL/SQL can find no exception handler for the
exception, execution stops and an unhandled exception error is returned to the host
environment. For more information, see Chapter 10.

exception_declaration
Declares an exception. For the syntax of exception_declaration, see "Exceptions"
on page 13-45.

exception_handler
Associates an exception with a sequence of statements, which is executed when that
exception is raised. For the syntax of exception_handler, see "Exceptions" on
page 13-45.

function_declaration
Declares a function. For the syntax of function_declaration, see "Functions" on
page 13-67.

label_name
An undeclared identifier that optionally labels a PL/SQL block. If used, label_name
must be enclosed by double angle brackets and must appear at the beginning of the
block. Optionally, label_name (not enclosed by angle brackets) can also appear at the
end of the block.

A global identifier declared in an enclosing block can be redeclared in a sub-block, in
which case the local declaration prevails and the sub-block cannot reference the global

Blocks

13-12 PL/SQL User's Guide and Reference

identifier unless you use a block label to qualify the reference, as the following
example shows:

<<outer>>
DECLARE
 x INTEGER;
BEGIN
 DECLARE
 x INTEGER;
 BEGIN
 IF x = outer.x THEN -- refers to global x
 NULL;
 END IF;
 END;
END outer;
/

object_declaration
Declares an instance of an object type. For the syntax of object_declaration, see
"Object Types" on page 13-86.

procedure_declaration
Declares a procedure. For the syntax of procedure_declaration, see "Procedures"
on page 13-104.

record_declaration
Declares a user-defined record. For the syntax of record_declaration, see
"Records" on page 13-110.

statement
An executable (not declarative) statement that. A sequence of statements can include
procedural statements such as RAISE, SQL statements such as UPDATE, and PL/SQL
blocks.

PL/SQL statements are free format. That is, they can continue from line to line if you
do not split keywords, delimiters, or literals across lines. A semicolon (;) serves as the
statement terminator.

subtype_name
A user-defined subtype that was defined using any scalar or user-defined PL/SQL
datatype specifier such as CHAR, DATE, or RECORD.

variable_declaration
Declares a variable. For the syntax of variable_declaration, see "Constants and
Variables" on page 13-28.

PL/SQL supports a subset of SQL statements that includes data manipulation, cursor
control, and transaction control statements but excludes data definition and data
control statements such as ALTER, CREATE, GRANT, and REVOKE.

Example
The following PL/SQL block declares some variables, executes statements with
calculations and function calls, and handles errors that might occur:

Blocks

PL/SQL Language Elements 13-13

DECLARE
 numerator NUMBER := 22;
 denominator NUMBER := 7;
 the_ratio NUMBER;
BEGIN
 the_ratio := numerator/denominator;
 dbms_output.put_line('Ratio = ' || the_ratio);
EXCEPTION
 WHEN ZERO_DIVIDE THEN
 dbms_output.put_line('Divide-by-zero error: can''t divide ' ||
 numerator || ' by ' || denominator);
 WHEN OTHERS THEN
 dbms_output.put_line('Unexpected error.');
END;
/

Related Topics
Constants and Variables, Exceptions, Functions, Procedures

CASE Statement

13-14 PL/SQL User's Guide and Reference

CASE Statement

The CASE statement chooses from a sequence of conditions, and executes a
corresponding statement. The CASE statement evaluates a single expression and
compares it against several potential values, or evaluates multiple Boolean expressions
and chooses the first one that is TRUE.

Syntax
searched_case_statement ::=

[<<label_name>>]
CASE { WHEN boolean_expression THEN {statement;} ... }...
[ELSE {statement;}...]
END CASE [label_name];

simple_case_statement ::=

[<<label_name>>]
CASE case_operand
{ WHEN when_operand THEN {statement;} ... }...
[ELSE {statement;}...]
END CASE [label_name];

Keyword and Parameter Description
The value of the CASE operand and WHEN operands in a simple CASE statement can be
any PL/SQL type other than BLOB, BFILE, an object type, a PL/SQL record, an
index-by table, a varray, or a nested table.

If the ELSE clause is omitted, the system substitutes a default action. For a CASE
statement, the default when none of the conditions matches is to raise a
CASE_NOT_FOUND exception. For a CASE expression, the default is to return NULL.

Usage Notes
The WHEN clauses are executed in order.

Each WHEN clause is executed only once.

After a matching WHEN clause is found, subsequent WHEN clauses are not executed.

The statements in a WHEN clause can modify the database and call non-deterministic
functions.

There is no "fall-through" as in the C switch statement. Once a WHEN clause is
matched and its statements are executed, the CASE statement ends.

The CASE statement is appropriate when there is some different action to be taken for
each alternative. If you just need to choose among several values to assign to a
variable, you can code an assignment statement using a CASE expression instead.

You can include CASE expressions inside SQL queries, for example instead of a call to
the DECODE function or some other function that translates from one value to another.

CASE Statement

PL/SQL Language Elements 13-15

Examples
The following example shows a simple CASE statement. Notice that you can use
multiple statements after a WHEN clause, and that the expression in the WHEN clause can
be a literal, variable, function call, or any other kind of expression.

DECLARE
 n number := 2;
BEGIN
 CASE n
 WHEN 1 THEN dbms_output.put_line('n = 1');
 WHEN 2 THEN
 dbms_output.put_line('n = 2');
 dbms_output.put_line('That implies n > 1');
 WHEN 2+2 THEN
 dbms_output.put_line('n = 4');
 ELSE dbms_output.put_line('n is some other value.');
 END CASE;
END;
/

The following example shows a searched CASE statement. Notice that the WHEN
clauses can use different conditions rather than all testing the same variable or using
the same operator. Because this example does not use an ELSE clause, an exception is
raised if none of the WHEN conditions are met.

DECLARE
 quantity NUMBER := 100;
 projected NUMBER := 30;
 needed NUMBER := 999;
BEGIN
<<here>>
 CASE
 WHEN quantity is null THEN
 dbms_output.put_line('Quantity not available');
 WHEN quantity + projected >= needed THEN
 dbms_output.put_line('Quantity ' || quantity ||
 ' should be enough if projections are met.');
 WHEN quantity >= 0 THEN
 dbms_output.put_line('Quantity ' || quantity || ' is probably not enough.');
 END CASE here;
 EXCEPTION
 WHEN CASE_NOT_FOUND THEN
 dbms_output.put_line('Somehow quantity is less than 0.');
END;
/

Related Topics
"Testing Conditions: IF and CASE Statements" on page 4-2, CASE Expressions on
page 2-24, NULLIF and COALESCE expressions in Oracle Database SQL Reference

CLOSE Statement

13-16 PL/SQL User's Guide and Reference

CLOSE Statement

The CLOSE statement indicates that you are finished fetching from a cursor or cursor
variable, and that the resources held by the cursor can be reused.

Syntax

Keyword and Parameter Description

cursor_name, cursor_variable_name, host_cursor_variable_name
When you close the cursor, you can specify an explicit cursor or a PL/SQL cursor
variable, previously declared within the current scope and currently open.

You can also specify a cursor variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. The datatype of the host cursor variable is
compatible with the return type of any PL/SQL cursor variable. Host variables must
be prefixed with a colon.

Usage Notes
Once a cursor or cursor variable is closed, you can reopen it using the OPEN or
OPEN-FOR statement, respectively. You must close a cursor before opening it again,
otherwise PL/SQL raises the predefined exception CURSOR_ALREADY_OPEN. You do
not need to close a cursor variable before opening it again.

If you try to close an already-closed or never-opened cursor or cursor variable,
PL/SQL raises the predefined exception INVALID_CURSOR.

Example
DECLARE
 CURSOR emp_cv IS SELECT * FROM employees WHERE first_name = 'John';
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cv;
 LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 END LOOP;
 CLOSE emp_cv; /* Close cursor variable after last row is processed. */
END;
/

Related Topics
FETCH Statement, OPEN Statement, OPEN-FOR Statement, "Querying Data with
PL/SQL" on page 6-9.

CLOSE

cursor_name

cursor_variable_name

: host_cursor_variable_name

;

close_statement

Collection Methods

PL/SQL Language Elements 13-17

Collection Methods

A collection method is a built-in function or procedure that operates on collections and
is called using dot notation. You can use the methods EXISTS, COUNT, LIMIT, FIRST,
LAST, PRIOR, NEXT, EXTEND, TRIM, and DELETE to manage collections whose size is
unknown or varies.

EXISTS, COUNT, LIMIT, FIRST, LAST, PRIOR, and NEXT are functions that check the
properties of a collection or individual collection elements. EXTEND, TRIM, and
DELETE are procedures that modify a collection.

EXISTS, PRIOR, NEXT, TRIM, EXTEND, and DELETE take integer parameters. EXISTS,
PRIOR, NEXT, and DELETE can also take VARCHAR2 parameters for associative arrays
with string keys. EXTEND and TRIM cannot be used with index-by tables.

For more information, see "Using Collection Methods" on page 5-23.

Syntax

Keyword and Parameter Description

collection_name
An associative array, nested table, or varray previously declared within the current
scope.

COUNT
Returns the number of elements that a collection currently contains, which is useful
because the current size of a collection is not always known. You can use COUNT
wherever an integer expression is allowed.

collection_name .

COUNT

DELETE
(index

, index
)

EXISTS (index)

EXTEND
(number

, index
)

FIRST

LAST

LIMIT

NEXT (index)

PRIOR (index)

TRIM
(number)

collection_method_call

Collection Methods

13-18 PL/SQL User's Guide and Reference

For varrays, COUNT always equals LAST. For nested tables, normally, COUNT equals
LAST. But, if you delete elements from the middle of a nested table, COUNT is smaller
than LAST.

DELETE
This procedure has three forms. DELETE removes all elements from a collection.
DELETE(n) removes the nth element from an associative array or nested table. If n is
null, DELETE(n) does nothing. DELETE(m,n) removes all elements in the range
m..n from an associative array or nested table. If m is larger than n or if m or n is null,
DELETE(m,n) does nothing.

EXISTS
EXISTS(n) returns TRUE if the nth element in a collection exists. Otherwise,
EXISTS(n) returns FALSE. Mainly, you use EXISTS with DELETE to maintain sparse
nested tables. You can also use EXISTS to avoid raising an exception when you
reference a nonexistent element. When passed an out-of-range subscript, EXISTS
returns FALSE instead of raising SUBSCRIPT_OUTSIDE_LIMIT.

EXTEND
This procedure has three forms. EXTEND appends one null element to a collection.
EXTEND(n) appends n null elements to a collection. EXTEND(n,i) appends n copies
of the ith element to a collection.

EXTEND operates on the internal size of a collection. If EXTEND encounters deleted
elements, it includes them in its tally.

You cannot use EXTEND with associative arrays.

FIRST, LAST
FIRST and LAST return the first and last (smallest and largest) subscript values in a
collection. The subscript values are usually integers, but can also be strings for
associative arrays. If the collection is empty, FIRST and LAST return NULL. If the
collection contains only one element, FIRST and LAST return the same subscript
value.

For varrays, FIRST always returns 1 and LAST always equals COUNT. For nested
tables, normally, LAST equals COUNT. But, if you delete elements from the middle of a
nested table, LAST is larger than COUNT.

index
An expression that must return (or convert implicitly to) an integer in most cases, or a
string for an associative array declared with string keys.

LIMIT
For nested tables, which have no maximum size, LIMIT returns NULL. For varrays,
LIMIT returns the maximum number of elements that a varray can contain (which
you must specify in its type definition).

NEXT, PRIOR
PRIOR(n) returns the subscript that precedes index n in a collection. NEXT(n) returns
the subscript that succeeds index n. If n has no predecessor, PRIOR(n) returns NULL.
Likewise, if n has no successor, NEXT(n) returns NULL.

Collection Methods

PL/SQL Language Elements 13-19

TRIM
This procedure has two forms. TRIM removes one element from the end of a collection.
TRIM(n) removes n elements from the end of a collection. If n is greater than COUNT,
TRIM(n) raises SUBSCRIPT_BEYOND_COUNT. You cannot use TRIM with index-by
tables.

TRIM operates on the internal size of a collection. If TRIM encounters deleted elements,
it includes them in its tally.

Usage Notes
You cannot use collection methods in a SQL statement. If you try, you get a
compilation error.

Only EXISTS can be applied to atomically null collections. If you apply another
method to such collections, PL/SQL raises COLLECTION_IS_NULL.

If the collection elements have sequential subscripts, you can use
collection.FIRST .. collection.LAST in a FOR loop to iterate through all the
elements.

You can use PRIOR or NEXT to traverse collections indexed by any series of subscripts.
For example, you can use PRIOR or NEXT to traverse a nested table from which some
elements have been deleted, or an associative array where the subscripts are string
values.

EXTEND operates on the internal size of a collection, which includes deleted elements.
You cannot use EXTEND to initialize an atomically null collection. Also, if you impose
the NOT NULL constraint on a TABLE or VARRAY type, you cannot apply the first two
forms of EXTEND to collections of that type.

If an element to be deleted does not exist, DELETE simply skips it; no exception is
raised. Varrays are dense, so you cannot delete their individual elements.

Because PL/SQL keeps placeholders for deleted elements, you can replace a deleted
element by assigning it a new value. However, PL/SQL does not keep placeholders for
trimmed elements.

The amount of memory allocated to a nested table can increase or decrease
dynamically. As you delete elements, memory is freed page by page. If you delete the
entire table, all the memory is freed.

In general, do not depend on the interaction between TRIM and DELETE. It is better to
treat nested tables like fixed-size arrays and use only DELETE, or to treat them like
stacks and use only TRIM and EXTEND.

Within a subprogram, a collection parameter assumes the properties of the argument
bound to it. You can apply methods FIRST, LAST, COUNT, and so on to such
parameters. For varray parameters, the value of LIMIT is always derived from the
parameter type definition, regardless of the parameter mode.

Examples
The following example shows all the collection methods in action:

DECLARE
 TYPE color_typ IS TABLE OF VARCHAR2(32);
 colors color_typ;
 i INTEGER;
BEGIN
 colors := color_typ('red','orange','yellow','green','blue','indigo','violet');

Collection Methods

13-20 PL/SQL User's Guide and Reference

-- Using NEXT is the most reliable way to loop through all elements.
 i := colors.FIRST; -- get subscript of first element
 WHILE i IS NOT NULL LOOP
 colors(i) := INITCAP(colors(i));
 dbms_output.put_line('COLORS(' || i || ') = ' || colors(i));
 i := colors.NEXT(i); -- get subscript of next element
 END LOOP;

 dbms_output.put_line('Deleting yellow...');

 colors.DELETE(3); -- Remove item 3. Now the subscripts are 1,2,4,5,6,7.

-- Loop goes from 1 to 7, even though item 3 has been deleted.
 FOR i IN colors.FIRST..colors.LAST
 LOOP
 IF colors.EXISTS(i) THEN
 dbms_output.put_line('COLORS(' || i || ') still exists.');
 ELSE
 dbms_output.put_line('COLORS(' || i || ') no longer exists.');
 END IF;
 END LOOP;

 dbms_output.put_line('Deleting blue, indigo, violet...');
 colors.DELETE(5,7); -- Delete items 5 through 7.

-- Loop now goes from 1 to 4, because 4 is the highest ("last") subscript.
 FOR i IN colors.FIRST..colors.LAST LOOP
 IF colors.EXISTS(i) THEN
 dbms_output.put_line('COLORS(' || i || ') still exists.');
 ELSE
 dbms_output.put_line('COLORS(' || i || ') no longer exists.');
 END IF;
 END LOOP;
END;
/

The following example uses the LIMIT method to check whether some elements can
be added to a varray:

DECLARE
 TYPE chores_typ is VARRAY(4) OF VARCHAR2(32);
 chores chores_typ;
BEGIN
 chores := chores_typ('Mow lawn','Wash dishes','Buy groceries');
 IF (chores.COUNT + 5) <= chores.LIMIT THEN
 -- Add 5 more to-do items
 dbms_output.put_line('Adding 5 more items to CHORES.');
 chores.EXTEND(5);
 ELSE
 dbms_output.put_line('Can''t extend CHORES, it can hold a maximum of ' ||
 chores.LIMIT || ' items.');
 END IF;
END;
/

Related Topics
Collections, Functions, Procedures

Collections

PL/SQL Language Elements 13-21

Collections

A collection is an ordered group of elements, all of the same type (for example, the
grades for a class of students). Each element has a unique subscript that determines its
position in the collection. PL/SQL offers three kinds of collections: associative arrays,
nested tables, and varrays (short for variable-size arrays). Nested tables extend the
functionality of associative arrays (formerly called "PL/SQL tables" or "index-by
tables").

Collections work like the arrays found in most third-generation programming
languages. Collections can have only one dimension. Most collections are indexed by
integers, although associative arrays can also be indexed by strings. To model
multi-dimensional arrays, you can declare collections whose items are other
collections.

Nested tables and varrays can store instances of an object type and, conversely, can be
attributes of an object type. Collections can also be passed as parameters. You can use
them to move columns of data into and out of database tables or between client-side
applications and stored subprograms.

For more information, see "Defining Collection Types" on page 5-6.

Syntax

TYPE type_name IS TABLE OF element_type
NOT NULL

table_type_definition

TYPE type_name IS
VARRAY

VARRYING ARRAY
(size_limit)

varray_type_definition

OF element_type
NOT NULL

;

collection_name type_name ;

collection_declaration

INDEX BY BINARY_INTEGER
;

Collections

13-22 PL/SQL User's Guide and Reference

Keyword and Parameter Description

element_type
Any PL/SQL datatype except BINARY_INTEGER, BOOLEAN, LONG, LONG RAW,
NATURAL, NATURALN, PLS_INTEGER, POSITIVE, POSITIVEN, REF CURSOR,
SIGNTYPE, or STRING. Also, with varrays, element_type cannot be BLOB, CLOB, or
an object type with BLOB or CLOB attributes.

INDEX BY type_name
Optional. Defines an associative array, where you specify the subscript values to use
rather than the system defining them in sequence.

type_name can be BINARY_INTEGER, PLS_INTEGER, or a string type such as
VARCHAR2.

size_limit
A positive integer literal that specifies the maximum size of a varray, which is the
maximum number of elements the varray can contain.

type_name
A user-defined collection type that was defined using the datatype specifier TABLE or
VARRAY.

Usage Notes
Nested tables extend the functionality of index-by tables, so they differ in several
ways. See "Choosing Between Nested Tables and Associative Arrays" on page 5-5.

Every element reference includes the collection name and one or more subscripts
enclosed in parentheses; the subscripts determine which element is processed. Except
for associative arrays, which can have negative subscripts, collection subscripts have a
fixed lower bound of 1. Subscripts for multilevel collections are evaluated in any
order; if a subscript includes an expression that modifies the value of a different
subscript, the result is undefined.

cursor_name % ROWTYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name
. field_name

% TYPE

record_type_name

scalar_datatype_name

variable_name % TYPE

element_type

Collections

PL/SQL Language Elements 13-23

You can define all three collection types in the declarative part of any PL/SQL block,
subprogram, or package. But, only nested table and varray types can be CREATEd and
stored in an Oracle database.

Associative arrays and nested tables can be sparse (have non-consecutive subscripts),
but varrays are always dense (have consecutive subscripts). Unlike nested tables,
varrays retain their ordering and subscripts when stored in the database.

Initially, associative arrays are sparse. That enables you, for example, to store reference
data in a temporary variable using a primary key (account numbers or employee
numbers for example) as the index.

Collections follow the usual scoping and instantiation rules. In a package, collections
are instantiated when you first reference the package and cease to exist when you end
the database session. In a block or subprogram, local collections are instantiated when
you enter the block or subprogram and cease to exist when you exit.

Until you initialize it, a nested table or varray is atomically null (that is, the collection
itself is null, not its elements). To initialize a nested table or varray, you use a
constructor, which is a system-defined function with the same name as the collection
type. This function "constructs" a collection from the elements passed to it.

Because nested tables and varrays can be atomically null, they can be tested for nullity.
However, they cannot be compared for equality or inequality. This restriction also
applies to implicit comparisons. For example, collections cannot appear in a
DISTINCT, GROUP BY, or ORDER BY list.

Collections can store instances of an object type and, conversely, can be attributes of an
object type. Collections can also be passed as parameters. You can use them to move
columns of data into and out of database tables or between client-side applications
and stored subprograms.

When calling a function that returns a collection, you use the following syntax to
reference elements in the collection:

collection_name(parameter_list)(subscript)

With the Oracle Call Interface (OCI) or the Oracle Precompilers, you can bind host
arrays to index-by tables declared as the formal parameters of a subprogram. That lets
you pass host arrays to stored functions and procedures.

Examples
To specify the element type of a collection, you can use %TYPE or %ROWTYPE:

DECLARE
 TYPE JobList IS VARRAY(10) OF employees.job_id%TYPE; -- based on column
 TYPE EmpFile IS VARRAY(150) OF employees%ROWTYPE; -- based on database table
 CURSOR c1 IS SELECT * FROM departments;
 TYPE DeptFile IS TABLE OF c1%ROWTYPE; -- based on cursor
BEGIN
 NULL;
END;
/

You can use a RECORD type to specify the element type of a collection:

DECLARE
 TYPE Entry IS RECORD (
 term VARCHAR2(20),
 meaning VARCHAR2(200));
 TYPE Glossary IS VARRAY(250) OF Entry;

Collections

13-24 PL/SQL User's Guide and Reference

BEGIN
 NULL;
END;
/

The following example declares an associative array of records. Each element of the
table stores a row from a database table.

DECLARE
 TYPE EmpTabTyp IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 emp_tab EmpTabTyp;
BEGIN
 /* Retrieve employee record. */
 SELECT * INTO emp_tab(100) FROM employees WHERE employee_id = 100;
END;
/

When defining a VARRAY type, you must specify its maximum size. The following
example defines a type that stores up to 366 dates:

DECLARE
 TYPE Calendar IS VARRAY(366) OF DATE;
BEGIN
 NULL;
END;
/

Once you define a collection type, you can declare collections of that type, as the
following SQL*Plus script shows:

CREATE TYPE Project AS OBJECT(
 project_no NUMBER(2),
 title VARCHAR2(35),
 cost NUMBER(7,2));
/

CREATE TYPE ProjectList AS VARRAY(50) OF Project; -- VARRAY type
/

CREATE TABLE temp_department (
 idnum NUMBER(2),
 name VARCHAR2(15),
 budget NUMBER(11,2),
 projects ProjectList);

DROP TABLE temp_department;
DROP TYPE ProjectList;
DROP TYPE Project;

The identifier projects represents an entire varray. Each element of projects stores
a Project object.

The following example declares a nested table as the parameter of a packaged
procedure:

CREATE PACKAGE personnel AS
 TYPE Staff IS TABLE OF Employee;
 PROCEDURE award_bonuses (members IN Staff);
END personnel;
/

Collections

PL/SQL Language Elements 13-25

DROP PACKAGE personnel;

You can specify a collection type in the RETURN clause of a function spec:

DECLARE
 TYPE SalesForce IS VARRAY(20) OF employees%ROWTYPE;
 FUNCTION top_performers (n INTEGER) RETURN SalesForce IS
 BEGIN RETURN NULL; END;
BEGIN
 NULL;
END;
/

The following example updates the list of projects assigned to one department:

-- Needs to be simplified...

DECLARE
 new_projects ProjectList :=
 ProjectList(Project(1, 'Issue New Employee Badges', 13500),
 Project(2, 'Inspect Emergency Exits', 1900),
 Project(3, 'Upgrade Alarm System', 3350),
 Project(4, 'Analyze Local Crime Stats', 825));
BEGIN
 UPDATE department
 SET projects = new_projects WHERE name = 'Security';
END;
/

The next example retrieves a varray in a database table and stores it in a local varray:

-- Needs to be simplified...

DECLARE
 my_projects ProjectList;
BEGIN
 SELECT projects INTO my_projects FROM department
 WHERE name = 'Accounting';
END;
/

Related Topics
Collection Methods, Object Types, Records

Comments

13-26 PL/SQL User's Guide and Reference

Comments

Comments let you include arbitrary text within your code to explain what the code
does. You can also disable obsolete or unfinished pieces of code by turning them into
comments.

PL/SQL supports two comment styles: single-line and multi-line. A double hyphen
(--) anywhere on a line (except within a character literal) turns the rest of the line into
a comment. Multi-line comments begin with a slash-asterisk (/*) and end with an
asterisk-slash (*/). For more information, see "Comments" on page 2-7.

Syntax

Usage Notes
Single-line comments can appear within a statement at the end of a line.

You can include single-line comments inside multi-line comments, but you cannot nest
multi-line comments.

You cannot use single-line comments in a PL/SQL block that will be processed
dynamically by an Oracle Precompiler program. End-of-line characters are ignored,
making the single-line comments extend to the end of the block. Instead, use multi-line
comments.

While testing or debugging a program, you might want to disable a line of code. The
following example shows how you can "comment-out" the line:

-- UPDATE department SET location_id = my_loc WHERE department_id = my_deptno;

You can use multi-line comment delimiters to comment-out whole sections of code.

Examples
The following examples show various comment styles:

DECLARE
 area NUMBER; pi NUMBER; radius NUMBER;
BEGIN
 -- Compute the area of a circle
 area := pi * radius**2; -- pi is approx. 3.14159

 /*
 Compute the area
 of a circle.
 */
 area := pi /* pi is approx. 3.14159 */ * radius**2;
END;
/

- - text

/* text */

comment

COMMIT Statement

PL/SQL Language Elements 13-27

COMMIT Statement

The COMMIT statement makes permanent any changes made to the database during
the current transaction. A commit also makes the changes visible to other users. For
more information, see "Overview of Transaction Processing in PL/SQL" on page 6-29.

Syntax

Keyword and Parameter Description

COMMENT
Specifies a comment to be associated with the current transaction. Typically used with
distributed transactions. The text must be a quoted literal no more than 50 characters
long.

WORK
Optional, for readability only.

Usage Notes
The COMMIT statement releases all row and table locks, and erases any savepoints you
marked since the last commit or rollback. Until your changes are committed:

■ You can see the changes when you query the tables you modified, but other users
cannot see the changes.

■ If you change your mind or need to correct a mistake, you can use the ROLLBACK
statement to roll back (undo) the changes.

If you commit while a FOR UPDATE cursor is open, a subsequent fetch on that cursor
raises an exception. The cursor remains open, so you should still close it. For more
information, see "Using FOR UPDATE" on page 6-33.

When a distributed transaction fails, the text specified by COMMENT helps you diagnose
the problem. If a distributed transaction is ever in doubt, Oracle stores the text in the
data dictionary along with the transaction ID. For more information about distributed
transactions, see Oracle Database Concepts.

In SQL, the FORCE clause manually commits an in-doubt distributed transaction.
PL/SQL does not support this clause:

COMMIT WORK FORCE '23.51.54'; -- not allowed

In embedded SQL, the RELEASE option frees all ocks and cursors held by a program
and disconnects from the database. PL/SQL does not support this option:

COMMIT WORK RELEASE; -- not allowed

Related Topics
ROLLBACK Statement, SAVEPOINT Statement

COMMIT
WORK COMMENT ’ text ’

;

commit_statement

Constants and Variables

13-28 PL/SQL User's Guide and Reference

Constants and Variables

You can declare constants and variables in the declarative part of any PL/SQL block,
subprogram, or package. Declarations allocate storage for a value, specify its datatype,
and specify a name that you can reference. Declarations can also assign an initial value
and impose the NOT NULL constraint. For more information, see Declarations on
page 2-8.

Syntax

Keyword and Parameter Description

collection_name
A collection (associative array, nested table, or varray) previously declared within the
current scope.

variable_name datatype

NOT NULL :=

DEFAULT
expression

;

variable_declaration

collection_name % TYPE

collection_type_name

cursor_name % ROWTYPE

cursor_variable_name % TYPE

db_table_name
% ROWTYPE

. column_name % TYPE

object_name % TYPE

REF
object_type_name

record_name % TYPE

record_type_name

ref_cursor_type_name

scalar_datatype_name

variable_name % TYPE

datatype

NOT NULL :=

DEFAULT
expression ;constant_name CONSTANT datatype

constant_declaration

Constants and Variables

PL/SQL Language Elements 13-29

collection_type_name
A user-defined collection type defined using the datatype specifier TABLE or VARRAY.

CONSTANT
Denotes the declaration of a constant. You must initialize a constant in its declaration.
Once initialized, the value of a constant cannot be changed.

constant_name
A program constant. For naming conventions, see "Identifiers" on page 2-3.

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope.

db_table_name
A database table or view that must be accessible when the declaration is elaborated.

db_table_name.column_name
A database table and column that must be accessible when the declaration is
elaborated.

expression
A combination of variables, constants, literals, operators, and function calls. The
simplest expression consists of a single variable. When the declaration is elaborated,
the value of expression is assigned to the constant or variable. The value and the
constant or variable must have compatible datatypes.

NOT NULL
A constraint that prevents the program from assigning a null value to a variable or
constant. Assigning a null to a variable defined as NOT NULL raises the predefined
exception VALUE_ERROR. The constraint NOT NULL must be followed by an
initialization clause.

object_name
An instance of an object type previously declared within the current scope.

record_name
A user-defined or %ROWTYPE record previously declared within the current scope.

record_name.field_name
A field in a user-defined or %ROWTYPE record previously declared within the current
scope.

record_type_name
A user-defined record type that is defined using the datatype specifier RECORD.

ref_cursor_type_name
A user-defined cursor variable type, defined using the datatype specifier REF CURSOR.

Constants and Variables

13-30 PL/SQL User's Guide and Reference

%ROWTYPE
Represents a record that can hold a row from a database table or a cursor. Fields in the
record have the same names and datatypes as columns in the row.

scalar_datatype_name
A predefined scalar datatype such as BOOLEAN, NUMBER, or VARCHAR2. Includes any
qualifiers for size, precision, or character versus byte semantics.

%TYPE
Represents the datatype of a previously declared collection, cursor variable, field,
object, record, database column, or variable.

variable_name
A program variable.

Usage Notes
Constants and variables are initialized every time a block or subprogram is entered. By
default, variables are initialized to NULL.

Whether public or private, constants and variables declared in a package spec are
initialized only once for each session.

An initialization clause is required when declaring NOT NULL variables and when
declaring constants. If you use %ROWTYPE to declare a variable, initialization is not
allowed.

You can define constants of complex types that have no literal values or predefined
constructors, by calling a function that returns a filled-in value. For example, you can
make a constant associative array this way.

Examples
Several examples of variable and constant declarations follow:

credit_limit CONSTANT NUMBER := 5000;
invalid BOOLEAN := FALSE;
acct_id INTEGER(4) NOT NULL DEFAULT 9999;
pi CONSTANT REAL := 3.14159;
postal_code VARCHAR2(20);
last_name VARCHAR2(20 CHAR);
my_ename emp.ename%TYPE;

Related Topics
"Declarations" on page 2-8, "Overview of Predefined PL/SQL Datatypes" on page 3-1,
Assignment Statement, Expressions, %ROWTYPE Attribute, %TYPE Attribute

Cursor Attributes

PL/SQL Language Elements 13-31

Cursor Attributes

Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN
%NOTFOUND, and %ROWCOUNT. When appended to the cursor or cursor variable, these
attributes return useful information about the execution of a data manipulation
statement. For more information, see "Using Cursor Expressions" on page 6-27.

The implicit cursor SQL has additional attributes, %BULK_ROWCOUNT and
%BULK_EXCEPTIONS. For more information, see "SQL Cursor" on page 13-131.

Syntax

Keyword and Parameter Description

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable (or parameter) previously declared within the current
scope.

%FOUND Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable.
Before the first fetch from an open cursor, cursor_name%FOUND returns NULL.
Afterward, it returns TRUE if the last fetch returned a row, or FALSE if the last fetch
failed to return a row.

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a
bind variable. The datatype of the host cursor variable is compatible with the return
type of any PL/SQL cursor variable. Host variables must be prefixed with a colon.

%ISOPEN Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable. If a
cursor is open, cursor_name%ISOPEN returns TRUE; otherwise, it returns FALSE.

%NOTFOUND Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable.
Before the first fetch from an open cursor, cursor_name%NOTFOUND returns NULL.
Thereafter, it returns FALSE if the last fetch returned a row, or TRUE if the last fetch
failed to return a row.

cursor_name

cursor_variable_name

: host_cursor_variable_name

%

FOUND

ISOPEN

NOTFOUND

ROWCOUNT

cursor_attribute

Cursor Attributes

13-32 PL/SQL User's Guide and Reference

%ROWCOUNT Attribute
A cursor attribute that can be appended to the name of a cursor or cursor variable.
When a cursor is opened, %ROWCOUNT is zeroed. Before the first fetch,
cursor_name%ROWCOUNT returns 0. Thereafter, it returns the number of rows fetched
so far. The number is incremented if the latest fetch returned a row.

Usage Notes
The cursor attributes apply to every cursor or cursor variable. For example, you can
open multiple cursors, then use %FOUND or %NOTFOUND to tell which cursors have
rows left to fetch. Likewise, you can use %ROWCOUNT to tell how many rows have been
fetched so far.

If a cursor or cursor variable is not open, referencing it with %FOUND, %NOTFOUND, or
%ROWCOUNT raises the predefined exception INVALID_CURSOR.

When a cursor or cursor variable is opened, the rows that satisfy the associated query
are identified and form the result set. Rows are fetched from the result set one at a
time.

If a SELECT INTO statement returns more than one row, PL/SQL raises the predefined
exception TOO_MANY_ROWS and sets %ROWCOUNT to 1, not the actual number of rows
that satisfy the query.

Before the first fetch, %NOTFOUND evaluates to NULL. If FETCH never executes
successfully, the EXIT WHEN condition is never TRUE and the loop is never exited. To
be safe, you might want to use the following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c1%NOTFOUND IS NULL;

You can use the cursor attributes in procedural statements but not in SQL statements.

Examples
This PL/SQL block uses %FOUND to select an action.

DECLARE
 CURSOR emp_cur IS SELECT * FROM employees ORDER BY employee_id;
 emp_rec employees%ROWTYPE;
BEGIN
 OPEN emp_cur;
 LOOP -- loop through the table and get each employee
 FETCH emp_cur INTO emp_rec;
 IF emp_cur%FOUND THEN
 dbms_output.put_line('Employee #' || emp_rec.employee_id ||
 ' is ' || emp_rec.last_name);
 ELSE
 dbms_output.put_line('--- Finished processing employees ---');
 EXIT;
 END IF;
 END LOOP;
 CLOSE emp_cur;
END;
/

Instead of using %FOUND in an IF statement, the next example uses %NOTFOUND in an
EXIT WHEN statement.

DECLARE
 CURSOR emp_cur IS SELECT * FROM employees ORDER BY employee_id;
 emp_rec employees%ROWTYPE;

Cursor Attributes

PL/SQL Language Elements 13-33

BEGIN
 OPEN emp_cur;
 LOOP -- loop through the table and get each employee
 FETCH emp_cur INTO emp_rec;
 EXIT WHEN emp_cur%NOTFOUND;
 dbms_output.put_line('Employee #' || emp_rec.employee_id ||
 ' is ' || emp_rec.last_name);
 END LOOP;
 CLOSE emp_cur;
END;
/

The following example uses %ISOPEN to make a decision:

IF NOT (emp_cur%ISOPEN) THEN
 OPEN emp_cur;
END IF;
FETCH emp_cur INTO emp_rec;

The following PL/SQL block uses %ROWCOUNT to fetch the names and salaries of the
five highest-paid employees:

DECLARE
 CURSOR c1 is
 SELECT last_name, employee_id, salary FROM employees
 ORDER BY salary DESC; -- start with highest-paid employee
 my_name employees.last_name%TYPE;
 my_empno employees.employee_id%TYPE;
 my_sal employees.salary%TYPE;
BEGIN
 OPEN c1;
 LOOP
 FETCH c1 INTO my_name, my_empno, my_sal;
 EXIT WHEN (c1%ROWCOUNT > 5) OR (c1%NOTFOUND);
 dbms_output.put_line('Employee ' || my_name || ' (' || my_empno || ') makes
' || my_sal);
 END LOOP;
 CLOSE c1;
END;
/

The following example raises an exception if many rows are deleted:

DELETE FROM accts WHERE status = 'BAD DEBT';
IF SQL%ROWCOUNT > 10 THEN
 RAISE out_of_bounds;

END IF;

Related Topics
Cursors, Cursor Variables

Cursor Variables

13-34 PL/SQL User's Guide and Reference

Cursor Variables

To execute a multi-row query, Oracle opens an unnamed work area that stores
processing information. You can access this area through an explicit cursor, which
names the work area, or through a cursor variable, which points to the work area. To
create cursor variables, you define a REF CURSOR type, then declare cursor variables of
that type.

Cursor variables are like C or Pascal pointers, which hold the address of some item
instead of the item itself. Declaring a cursor variable creates a pointer, not an item.

For more information, see "Using Cursor Variables (REF CURSORs)" on page 6-19.

Syntax

Keyword and Parameter Description

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope.

db_table_name
A database table or view, which must be accessible when the declaration is elaborated.

record_name
A user-defined record previously declared within the current scope.

record_type_name
A user-defined record type that was defined using the datatype specifier RECORD.

TYPE type_name IS REF CURSOR

ref_cursor_type_definition

cursor_variable_name type_name ;

cursor_variable_declaration

RETURN

db_table_name

cursor_name

cursor_variable_name

% ROWTYPE

record_name % TYPE

record_type_name

ref_cursor_type_name
;

Cursor Variables

PL/SQL Language Elements 13-35

REF CURSOR
Cursor variables all have the datatype REF CURSOR.

RETURN
Specifies the datatype of a cursor variable return value. You can use the %ROWTYPE
attribute in the RETURN clause to provide a record type that represents a row in a
database table, or a row from a cursor or strongly typed cursor variable. You can use
the %TYPE attribute to provide the datatype of a previously declared record.

%ROWTYPE
A record type that represents a row in a database table or a row fetched from a cursor
or strongly typed cursor variable. Fields in the record and corresponding columns in
the row have the same names and datatypes.

%TYPE
Provides the datatype of a previously declared user-defined record.

type_name
A user-defined cursor variable type that was defined as a REF CURSOR.

Usage Notes
Cursor variables are available to every PL/SQL client. For example, you can declare a
cursor variable in a PL/SQL host environment such as an OCI or Pro*C program, then
pass it as a bind variable to PL/SQL. Application development tools that have a
PL/SQL engine can use cursor variables entirely on the client side.

You can pass cursor variables back and forth between an application and the database
server through remote procedure calls using a database link. If you have a PL/SQL
engine on the client side, you can use the cursor variable in either location. For
example, you can declare a cursor variable on the client side, open and fetch from it on
the server side, then continue to fetch from it back on the client side.

You use cursor variables to pass query result sets between PL/SQL stored
subprograms and client programs. Neither PL/SQL nor any client program owns a
result set; they share a pointer to the work area where the result set is stored. For
example, an OCI program, Oracle Forms application, and the database can all refer to
the same work area.

REF CURSOR types can be strong or weak. A strong REF CURSOR type definition
specifies a return type, but a weak definition does not. Strong REF CURSOR types are
less error-prone because PL/SQL lets you associate a strongly typed cursor variable
only with type-compatible queries. Weak REF CURSOR types are more flexible because
you can associate a weakly typed cursor variable with any query.

Once you define a REF CURSOR type, you can declare cursor variables of that type. You
can use %TYPE to provide the datatype of a record variable. Also, in the RETURN clause
of a REF CURSOR type definition, you can use %ROWTYPE to specify a record type that
represents a row returned by a strongly (not weakly) typed cursor variable.

Currently, cursor variables are subject to several restrictions. See "Restrictions on
Cursor Variables" on page 6-27.

You use three statements to control a cursor variable: OPEN-FOR, FETCH, and CLOSE.
First, you OPEN a cursor variable FOR a multi-row query. Then, you FETCH rows from
the result set. When all the rows are processed, you CLOSE the cursor variable.

Cursor Variables

13-36 PL/SQL User's Guide and Reference

Other OPEN-FOR statements can open the same cursor variable for different queries.
You need not close a cursor variable before reopening it. When you reopen a cursor
variable for a different query, the previous query is lost.

PL/SQL makes sure the return type of the cursor variable is compatible with the INTO
clause of the FETCH statement. For each column value returned by the query
associated with the cursor variable, there must be a corresponding, type-compatible
field or variable in the INTO clause. Also, the number of fields or variables must equal
the number of column values. Otherwise, you get an error.

If both cursor variables involved in an assignment are strongly typed, they must have
the same datatype. However, if one or both cursor variables are weakly typed, they
need not have the same datatype.

When declaring a cursor variable as the formal parameter of a subprogram that fetches
from or closes the cursor variable, you must specify the IN or IN OUT mode. If the
subprogram opens the cursor variable, you must specify the IN OUT mode.

Be careful when passing cursor variables as parameters. At run time, PL/SQL raises
ROWTYPE_MISMATCH if the return types of the actual and formal parameters are
incompatible.

You can apply the cursor attributes %FOUND, %NOTFOUND, %ISOPEN, and %ROWCOUNT
to a cursor variable.

If you try to fetch from, close, or apply cursor attributes to a cursor variable that does
not point to a query work area, PL/SQL raises the predefined exception
INVALID_CURSOR. You can make a cursor variable (or parameter) point to a query
work area in two ways:

■ OPEN the cursor variable FOR the query.

■ Assign to the cursor variable the value of an already OPENed host cursor variable
or PL/SQL cursor variable.

A query work area remains accessible as long as any cursor variable points to it.
Therefore, you can pass the value of a cursor variable freely from one scope to another.
For example, if you pass a host cursor variable to a PL/SQL block embedded in a
Pro*C program, the work area to which the cursor variable points remains accessible
after the block completes.

Examples
You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To use the host cursor variable, you must pass it as a bind variable to
PL/SQL. In the following Pro*C example, you pass a host cursor variable and a
selector to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION;
 /* Declare host cursor variable. */
 SQL_CURSOR generic_cv;
 int choice;
EXEC SQL END DECLARE SECTION;
/* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic_cv;
/* Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE
BEGIN
 IF :choice = 1 THEN
 OPEN :generic_cv FOR SELECT * FROM emp;
 ELSIF :choice = 2 THEN
 OPEN :generic_cv FOR SELECT * FROM dept;

Cursor Variables

PL/SQL Language Elements 13-37

 ELSIF :choice = 3 THEN
 OPEN :generic_cv FOR SELECT * FROM salgrade;
 END IF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They behave just like
weakly typed PL/SQL cursor variables.

When passing host cursor variables to PL/SQL, you can reduce network traffic by
grouping OPEN-FOR statements. For example, the following PL/SQL block opens
three cursor variables in a single round-trip:

/* anonymous PL/SQL block in host environment */
BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 OPEN :dept_cv FOR SELECT * FROM dept;
 OPEN :grade_cv FOR SELECT * FROM salgrade;
END;

You can also pass a cursor variable to PL/SQL by calling a stored procedure that
declares a cursor variable as one of its formal parameters. To centralize data retrieval,
you can group type-compatible queries in a packaged procedure, as the following
example shows:

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,
 choice IN NUMBER);
END emp_data;
/
CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice IN NUMBER)
 IS
 BEGIN
 IF choice = 1 THEN
 OPEN emp_cv FOR SELECT * FROM employees WHERE commission_pct IS NOT NULL;
 ELSIF choice = 2 THEN
 OPEN emp_cv FOR SELECT * FROM employees WHERE salary > 2500;
 ELSIF choice = 3 THEN
 OPEN emp_cv FOR SELECT * FROM employees WHERE department_id = 20;
 END IF;
 END open_emp_cv;
END emp_data;
/
DROP PACKAGE emp_data;

You can also use a standalone procedure to open the cursor variable. Define the REF
CURSOR type in a package, as above, then reference that type in the standalone
procedure.

Related Topics
CLOSE Statement, Cursor Attributes, Cursors, FETCH Statement, OPEN-FOR
Statement

Cursors

13-38 PL/SQL User's Guide and Reference

Cursors

To execute a multi-row query, Oracle opens an unnamed work area that stores
processing information. A cursor lets you name the work area, access the information,
and process the rows individually. For more information, see "Querying Data with
PL/SQL" on page 6-9.

Syntax

CURSOR cursor_name
(cursor_parameter_declaration

,

)

cursor_body

RETURN rowtype IS select_statement ;

CURSOR cursor_name
(cursor_parameter_declaration

,

)

cursor_spec

RETURN rowtype ;

CURSOR cursor_name
(cursor_parameter_declaration

,

)

cursor_declaration

RETURN rowtype
IS select_statement ;

parameter_name
IN

datatype

:=

DEFAULT
expression

cursor_parameter_declaration

db_table_name

cursor_name

cursor_variable_name

% ROWTYPE

record_name % TYPE

record_type_name

rowtype

Cursors

PL/SQL Language Elements 13-39

Keyword and Parameter Description

cursor_name
An explicit cursor previously declared within the current scope.

datatype
A type specifier. For the syntax of datatype, see "Constants and Variables" on
page 13-28.

db_table_name
A database table or view that must be accessible when the declaration is elaborated.

expression
A combination of variables, constants, literals, operators, and function calls. The
simplest expression consists of a single variable. When the declaration is elaborated,
the value of expression is assigned to the parameter. The value and the parameter
must have compatible datatypes.

parameter_name
A variable declared as the formal parameter of a cursor. A cursor parameter can
appear in a query wherever a constant can appear. The formal parameters of a cursor
must be IN parameters. The query can also reference other PL/SQL variables within
its scope.

record_name
A user-defined record previously declared within the current scope.

record_type_name
A user-defined record type that was defined using the datatype specifier RECORD.

RETURN
Specifies the datatype of a cursor return value. You can use the %ROWTYPE attribute in
the RETURN clause to provide a record type that represents a row in a database table or
a row returned by a previously declared cursor. Also, you can use the %TYPE attribute
to provide the datatype of a previously declared record.

A cursor body must have a SELECT statement and the same RETURN clause as its
corresponding cursor spec. Also, the number, order, and datatypes of select items in
the SELECT clause must match the RETURN clause.

%ROWTYPE
A record type that represents a row in a database table or a row fetched from a
previously declared cursor or cursor variable. Fields in the record and corresponding
columns in the row have the same names and datatypes.

select_statement
A query that returns a result set of rows. Its syntax is like that of
select_into_statement without the INTO clause. See "SELECT INTO Statement"
on page 13-123. If the cursor declaration declares parameters, each parameter must be
used in the query.

Cursors

13-40 PL/SQL User's Guide and Reference

%TYPE
Provides the datatype of a previously declared user-defined record.

Usage Notes
You must declare a cursor before referencing it in an OPEN, FETCH, or CLOSE
statement. You must declare a variable before referencing it in a cursor declaration.
The word SQL is reserved by PL/SQL as the default name for implicit cursors, and
cannot be used in a cursor declaration.

You cannot assign values to a cursor name or use it in an expression. However, cursors
and variables follow the same scoping rules. For more information, see "Scope and
Visibility of PL/SQL Identifiers" on page 2-14.

You retrieve data from a cursor by opening it, then fetching from it. Because the FETCH
statement specifies the target variables, using an INTO clause in the SELECT statement
of a cursor_declaration is redundant and invalid.

The scope of cursor parameters is local to the cursor, meaning that they can be
referenced only within the query used in the cursor declaration. The values of cursor
parameters are used by the associated query when the cursor is opened. The query can
also reference other PL/SQL variables within its scope.

The datatype of a cursor parameter must be specified without constraints, that is,
without precision and scale for numbers, and without length for strings.

Examples
Some examples of cursor declarations follow:

CURSOR c1 IS SELECT empno, ename, job, sal FROM emp
 WHERE sal > 2000;
CURSOR c2 RETURN dept%ROWTYPE IS
 SELECT * FROM dept WHERE deptno = 10;
CURSOR c3 (start_date DATE) IS
 SELECT empno, sal FROM emp WHERE hiredate > start_date;

Related Topics
CLOSE Statement, FETCH Statement, OPEN Statement, SELECT INTO Statement

DELETE Statement

PL/SQL Language Elements 13-41

DELETE Statement

The DELETE statement removes entire rows of data from a specified table or view. For
a full description of the DELETE statement, see Oracle Database SQL Reference.

Syntax

Keyword and Parameter Description

alias
Another (usually short) name for the referenced table or view. Typically referred to
later in the WHERE clause.

BULK COLLECT
Returns columns from the deleted rows into PL/SQL collections, as specified by the
RETURNING INTO list. The corresponding columns must store scalar (not composite)
values. For more information, see "Reducing Loop Overhead for DML Statements and
Queries (FORALL, BULK COLLECT)" on page 11-7.

returning_clause
Returns values from the deleted rows, eliminating the need to SELECT the rows first.
You can retrieve the column values into individual variables or into collections. You
cannot use the RETURNING clause for remote or parallel deletes. If the statement does
not affect any rows, the values of the variables specified in the RETURNING clause are
undefined.

WHERE
search_condition

CURRENT OF cursor_name returning_clause
;

schema_name . db_table_name

view_name

@ dblink_name

table_reference

RETURNING

single_row_expression

,

INTO
variable_name

: host_variable_name

,

multiple_row_expression

,
BULK COLLECT

INTO
collection_name

: host_array_name

,

returning_clause

delete_statement

DELETE
FROM

(subquery

TABLE (subquery2)

alias
table_reference

)

DELETE Statement

13-42 PL/SQL User's Guide and Reference

subquery
A SELECT statement that provides a set of rows for processing. Its syntax is like the
select_into_statement without the INTO clause. See "SELECT INTO Statement"
on page 13-123.

table_reference
A table or view, which must be accessible when you execute the DELETE statement,
and for which you must have DELETE privileges.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,
which must be a nested table. Operator TABLE informs Oracle that the value is a
collection, not a scalar value.

WHERE CURRENT OF cursor_name
Refers to the latest row processed by the FETCH statement associated with the cursor
identified by cursor_name. The cursor must be FOR UPDATE and must be open and
positioned on a row. If the cursor is not open, the CURRENT OF clause causes an error.

If the cursor is open, but no rows have been fetched or the last fetch returned no rows,
PL/SQL raises the predefined exception NO_DATA_FOUND.

WHERE search_condition
Conditionally chooses rows to be deleted from the referenced table or view. Only rows
that meet the search condition are deleted. If you omit the WHERE clause, all rows in
the table or view are deleted.

Usage Notes
You can use the DELETE WHERE CURRENT OF statement after a fetch from an open
cursor (this includes implicit fetches executed in a cursor FOR loop), provided the
associated query is FOR UPDATE. This statement deletes the current row; that is, the
one just fetched.

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND, and
%ROWCOUNT let you access useful information about the execution of a DELETE
statement.

Examples
The following statement deletes the rows that match a condition:

DELETE FROM bonus WHERE sales_amt < quota;

The following statement returns two column values from a deleted row into local
variables:

DECLARE
 my_empno emp.empno%TYPE;
 my_ename emp.ename%TYPE;
 my_job emp.job%TYPE;
BEGIN
 ...
 DELETE FROM emp WHERE empno = my_empno
 RETURNING ename, job INTO my_ename, my_job;
END;

DELETE Statement

PL/SQL Language Elements 13-43

You can combine the BULK COLLECT clause with a FORALL statement, in which case,
the SQL engine bulk-binds column values incrementally. In the following example, if
collection depts has 3 elements, each of which causes 5 rows to be deleted, then
collection enums has 15 elements when the statement completes:

FORALL j IN depts.FIRST..depts.LAST
 DELETE FROM emp WHERE deptno = depts(j)
 RETURNING empno BULK COLLECT INTO enums;

The column values returned by each execution are added to the values returned
previously.

Related Topics
FETCH Statement, INSERT Statement, SELECT INTO Statement, UPDATE Statement

EXCEPTION_INIT Pragma

13-44 PL/SQL User's Guide and Reference

EXCEPTION_INIT Pragma

The pragma EXCEPTION_INIT associates an exception name with an Oracle error
number. You can intercept any ORA- error and write a specific handler for it instead of
using the OTHERS handler. For more information, see "Associating a PL/SQL
Exception with a Number: Pragma EXCEPTION_INIT" on page 10-7.

Syntax

Keyword and Parameter Description

error_number
Any valid Oracle error number. These are the same error numbers (always negative)
returned by the function SQLCODE.

exception_name
A user-defined exception declared within the current scope.

PRAGMA
Signifies that the statement is a compiler directive.

Usage Notes
You can use EXCEPTION_INIT in the declarative part of any PL/SQL block,
subprogram, or package. The pragma must appear in the same declarative part as its
associated exception, somewhere after the exception declaration.

Be sure to assign only one exception name to an error number.

Example
The following pragma associates the exception deadlock_detected with Oracle
error 60:

DECLARE
 deadlock_detected EXCEPTION;
 PRAGMA EXCEPTION_INIT(deadlock_detected, -60);
BEGIN
 ...
EXCEPTION
 WHEN deadlock_detected THEN
 -- handle the error
 ...
END;

Related Topics
AUTONOMOUS_TRANSACTION Pragma, Exceptions, SQLCODE Function

PRAGMA EXCEPTION_INIT (exception_name , error_number) ;

exception_init_pragma

Exceptions

PL/SQL Language Elements 13-45

Exceptions

An exception is a runtime error or warning condition, which can be predefined or
user-defined. Predefined exceptions are raised implicitly (automatically) by the
runtime system. User-defined exceptions must be raised explicitly by RAISE
statements. To handle raised exceptions, you write separate routines called exception
handlers. For more information, see Chapter 10.

Syntax

Keyword and Parameter Description

exception_name
A predefined exception such as ZERO_DIVIDE, or a user-defined exception previously
declared within the current scope.

OTHERS
Stands for all the exceptions not explicitly named in the exception-handling part of the
block. The use of OTHERS is optional and is allowed only as the last exception handler.
You cannot include OTHERS in a list of exceptions following the keyword WHEN.

statement
An executable statement. For the syntax of statement, see "Blocks" on page 13-8.

WHEN
Introduces an exception handler. You can have multiple exceptions execute the same
sequence of statements by following the keyword WHEN with a list of the exceptions,
separating them by the keyword OR. If any exception in the list is raised, the associated
statements are executed.

Usage Notes
An exception declaration can appear only in the declarative part of a block,
subprogram, or package. The scope rules for exceptions and variables are the same.
But, unlike variables, exceptions cannot be passed as parameters to subprograms.

Some exceptions are predefined by PL/SQL. For a list of these exceptions, see
"Summary of Predefined PL/SQL Exceptions" on page 10-4. PL/SQL declares
predefined exceptions globally in package STANDARD, so you need not declare them
yourself.

exception_name EXCEPTION ;

exception_declaration

WHEN
exception_name

OR exception_name

OTHERS
THEN statement

exception_handler

Exceptions

13-46 PL/SQL User's Guide and Reference

Redeclaring predefined exceptions is error prone because your local declaration
overrides the global declaration. In such cases, you must use dot notation to specify
the predefined exception, as follows:

EXCEPTION
 WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN ...

The exception-handling part of a PL/SQL block is optional. Exception handlers must
come at the end of the block. They are introduced by the keyword EXCEPTION. The
exception-handling part of the block is terminated by the same keyword END that
terminates the entire block. An exception handler can reference only those variables
that the current block can reference.

An exception should be raised only when an error occurs that makes it undesirable or
impossible to continue processing. If there is no exception handler in the current block
for a raised exception, the exception propagates according to the following rules:

■ If there is an enclosing block for the current block, the exception is passed on to
that block. The enclosing block then becomes the current block. If a handler for the
raised exception is not found, the process repeats.

■ If there is no enclosing block for the current block, an unhandled exception error is
passed back to the host environment.

Only one exception at a time can be active in the exception-handling part of a block.
Therefore, if an exception is raised inside a handler, the block that encloses the current
block is the first block searched to find a handler for the newly raised exception. From
there on, the exception propagates normally.

Example
The following PL/SQL block has two exception handlers:

DECLARE
 bad_emp_id EXCEPTION;
 bad_acct_no EXCEPTION;
 ...
BEGIN
 ...
EXCEPTION
 WHEN bad_emp_id OR bad_acct_no THEN -- user-defined
 ROLLBACK;
 WHEN ZERO_DIVIDE THEN -- predefined
 INSERT INTO inventory VALUES (part_number, quantity);
 COMMIT;
END;

Related Topics
Blocks, EXCEPTION_INIT Pragma, RAISE Statement

EXECUTE IMMEDIATE Statement

PL/SQL Language Elements 13-47

EXECUTE IMMEDIATE Statement

The EXECUTE IMMEDIATE statement executes a dynamic SQL statement or
anonymous PL/SQL block. You can use it to issue SQL statements that cannot be
represented directly in PL/SQL, or to build up statements where you do not know all
the table names, WHERE clauses, and so on in advance. For more information, see
Chapter 7.

Syntax

Keyword and Parameter Description

bind_argument
An expression whose value is passed to the dynamic SQL statement, or a variable that
stores a value returned by the dynamic SQL statement.

define_variable_name
A variable that stores a selected column value.

dynamic_string
A string literal, variable, or expression that represents a single SQL statement or a
PL/SQL block. It must be of type CHAR or VARCHAR2, not NCHAR or NVARCHAR2.

INTO ...
Used only for single-row queries, this clause specifies the variables or record into
which column values are retrieved. For each value retrieved by the query, there must
be a corresponding, type-compatible variable or field in the INTO clause.

EXECUTE IMMEDIATE dynamic_string

execute_immediate_statement

INTO
define_variable

,

record_name

RETURNING

RETURN
INTO bind_argument

,

;

USING

IN

OUT

IN OUT
bind_argument

,

EXECUTE IMMEDIATE Statement

13-48 PL/SQL User's Guide and Reference

record_name
A user-defined or %ROWTYPE record that stores a selected row.

RETURNING INTO ...
Used only for DML statements that have a RETURNING clause (without a BULK
COLLECT clause), this clause specifies the bind variables into which column values are
returned. For each value returned by the DML statement, there must be a
corresponding, type-compatible variable in the RETURNING INTO clause.

USING ...
Specifies a list of input and/or output bind arguments. The parameter mode defaults
to IN.

Usage Notes
Except for multi-row queries, the dynamic string can contain any SQL statement
(without the final semicolon) or any PL/SQL block (with the final semicolon). The
string can also contain placeholders for bind arguments. You cannot use bind
arguments to pass the names of schema objects to a dynamic SQL statement.

You can place all bind arguments in the USING clause. The default parameter mode is
IN. For DML statements that have a RETURNING clause, you can place OUT arguments
in the RETURNING INTO clause without specifying the parameter mode, which, by
definition, is OUT. If you use both the USING clause and the RETURNING INTO clause,
the USING clause can contain only IN arguments.

At run time, bind arguments replace corresponding placeholders in the dynamic
string. Every placeholder must be associated with a bind argument in the USING
clause and/or RETURNING INTO clause. You can use numeric, character, and string
literals as bind arguments, but you cannot use Boolean literals (TRUE, FALSE, and
NULL). To pass nulls to the dynamic string, you must use a workaround. See "Passing
Nulls to Dynamic SQL" on page 7-10.

Dynamic SQL supports all the SQL datatypes. For example, define variables and bind
arguments can be collections, LOBs, instances of an object type, and refs. Dynamic SQL
does not support PL/SQL-specific types. For example, define variables and bind
arguments cannot be Booleans or index-by tables. The only exception is that a PL/SQL
record can appear in the INTO clause.

You can execute a dynamic SQL statement repeatedly using new values for the bind
arguments. You still incur some overhead, because EXECUTE IMMEDIATE re-prepares
the dynamic string before every execution.

The string argument to the EXECUTE IMMEDIATE command cannot be one of the
national character types, such as NCHAR or NVARCHAR2.

Examples
The following PL/SQL block contains several examples of dynamic SQL:

DECLARE
 sql_stmt VARCHAR2(200);
 plsql_block VARCHAR2(500);
 emp_id NUMBER(4) := 7566;
 salary NUMBER(7,2);
 dept_id NUMBER(2) := 50;
 dept_name VARCHAR2(14) := 'PERSONNEL';
 location VARCHAR2(13) := 'DALLAS';
 emp_rec emp%ROWTYPE;

EXECUTE IMMEDIATE Statement

PL/SQL Language Elements 13-49

BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE bonus (id NUMBER, amt NUMBER)';
 sql_stmt := 'INSERT INTO dept VALUES (:1, :2, :3)';
 EXECUTE IMMEDIATE sql_stmt USING dept_id, dept_name, location;
 sql_stmt := 'SELECT * FROM emp WHERE empno = :id';
 EXECUTE IMMEDIATE sql_stmt INTO emp_rec USING emp_id;
 plsql_block := 'BEGIN emp_pkg.raise_salary(:id, :amt); END;';
 EXECUTE IMMEDIATE plsql_block USING 7788, 500;
 sql_stmt := 'UPDATE emp SET sal = 2000 WHERE empno = :1
 RETURNING sal INTO :2';
 EXECUTE IMMEDIATE sql_stmt USING emp_id RETURNING INTO salary;
 EXECUTE IMMEDIATE 'DELETE FROM dept WHERE deptno = :num'
 USING dept_id;
 EXECUTE IMMEDIATE 'ALTER SESSION SET SQL_TRACE TRUE';
END;

Related Topics
OPEN-FOR-USING Statement

EXIT Statement

13-50 PL/SQL User's Guide and Reference

EXIT Statement

The EXIT statement breaks out of a loop. The EXIT statement has two forms: the
unconditional EXIT and the conditional EXIT WHEN. With either form, you can name
the loop to be exited. For more information, see "Controlling Loop Iterations: LOOP
and EXIT Statements" on page 4-6.

Syntax

Keyword and Parameter Description

boolean_expression
An expression that returns the Boolean value TRUE, FALSE, or NULL. It is evaluated
with each iteration of the loop. If the expression returns TRUE, the current loop (or the
loop labeled by label_name) is exited immediately. For the syntax of
boolean_expression, see "Expressions" on page 13-52.

EXIT
An unconditional EXIT statement (that is, one without a WHEN clause) exits the current
loop immediately. Execution resumes with the statement following the loop.

label_name
Identifies the loop exit from: either the current loop, or any enclosing labeled loop.

Usage Notes
The EXIT statement can be used only inside a loop. PL/SQL lets you code an infinite
loop. For example, the following loop will never terminate normally:

WHILE TRUE LOOP ... END LOOP;

In such cases, you must use an EXIT statement to exit the loop.

If you use an EXIT statement to exit a cursor FOR loop prematurely, the cursor is
closed automatically. The cursor is also closed automatically if an exception is raised
inside the loop.

Examples
The EXIT statement in the following example is not allowed because you cannot exit
from a block directly; you can exit only from a loop:

DECLARE
 amount NUMBER;
 maximum NUMBER;
BEGIN
 ...
 BEGIN
 ...
 IF amount >= maximum THEN

EXIT
label_name WHEN boolean_expression

;

exit_statement

EXIT Statement

PL/SQL Language Elements 13-51

 EXIT; -- not allowed; use RETURN instead
 END IF;
 END;

The following loop normally executes ten times, but it will exit prematurely if there are
less than ten rows to fetch:

FOR i IN 1..10 LOOP
 FETCH c1 INTO emp_rec;
 EXIT WHEN c1%NOTFOUND;
 total_comm := total_comm + emp_rec.comm;
END LOOP;

The following example illustrates the use of loop labels:

<<outer>>
FOR i IN 1..10 LOOP
 ...
 <<inner>>
 FOR j IN 1..100 LOOP
 ...
 EXIT outer WHEN ... -- exits both loops
 END LOOP inner;
END LOOP outer;

Related Topics
Expressions, LOOP Statements

Expressions

13-52 PL/SQL User's Guide and Reference

Expressions

An expression is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression is a single variable.

The PL/SQL compiler determines the datatype of an expression from the types of the
variables, constants, literals, and operators that comprise the expression. Every time
the expression is evaluated, a single value of that type results. For more information,
see "PL/SQL Expressions and Comparisons" on page 2-17.

Syntax

(

boolean_expression

character_expression

date_expression

numeric_expression

)

expression

AND

OR

NOT

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

other_boolean_form

NOT

boolean_constant_name

boolean_function_call

boolean_literal

boolean_variable_name

other_boolean_form

boolean_expression

Expressions

PL/SQL Language Elements 13-53

character_constant_name

character_function_call

character_literal

character_variable_name

: host_variable_name
: indicator_name

character_expression

||

character_constant_name

character_function_call

character_literal

character_variable_name

: host_variable_name
: indicator_name

collection_name . EXISTS (index)

cursor_name

cursor_variable_name

: host_cursor_variable_name

SQL

%

FOUND

ISOPEN

NOTFOUND

expression

relational_operator expression

IS
NOT

NULL

NOT

LIKE pattern

BETWEEN expression AND expression

IN (expression

,

)

other_boolean_form

Expressions

13-54 PL/SQL User's Guide and Reference

cursor_name

cursor_variable_name

: host_cursor_variable_name

SQL

% ROWCOUNT

SQL % BULK_ROWCOUNT (index)

: host_variable_name
: indicator_name

numeric_constant_name

numeric_function_call

numeric_literal

numeric_variable_name

collection_name .

COUNT

FIRST

LAST

LIMIT

NEXT

PRIOR
(index)

** exponent

numeric_subexpression

date_constant_name

date_function_call

date_literal

date_variable_name

: host_variable_name
: indicator_name

date_expression

+

_
numeric_expression

numeric_subexpression

+

–

*

/

numeric_subexpression

numeric_expression

Expressions

PL/SQL Language Elements 13-55

Keyword and Parameter Description

BETWEEN
This comparison operator tests whether a value lies in a specified range. It means
"greater than or equal to low value and less than or equal to high value."

boolean_constant_name
A constant of type BOOLEAN, which must be initialized to the value TRUE, FALSE, or
NULL. Arithmetic operations on Boolean constants are not allowed.

boolean_expression
An expression that returns the Boolean value TRUE, FALSE, or NULL.

boolean_function_call
Any function call that returns a Boolean value.

boolean_literal
The predefined values TRUE, FALSE, or NULL (which stands for a missing, unknown,
or inapplicable value). You cannot insert the value TRUE or FALSE into a database
column.

boolean_variable_name
A variable of type BOOLEAN. Only the values TRUE, FALSE, and NULL can be assigned
to a BOOLEAN variable. You cannot select or fetch column values into a BOOLEAN
variable. Also, arithmetic operations on BOOLEAN variables are not allowed.

%BULK_ROWCOUNT
Designed for use with the FORALL statement, this is a composite attribute of the
implicit cursor SQL. For more information, see "SQL Cursor" on page 13-131.

character_constant_name
A previously declared constant that stores a character value. It must be initialized to a
character value or a value implicitly convertible to a character value.

character_expression
An expression that returns a character or character string.

character_function_call
A function call that returns a character value or a value implicitly convertible to a
character value.

character_literal
A literal that represents a character value or a value implicitly convertible to a
character value.

character_variable_name
A previously declared variable that stores a character value.

Expressions

13-56 PL/SQL User's Guide and Reference

collection_name
A collection (nested table, index-by table, or varray) previously declared within the
current scope.

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope.

date_constant_name
A previously declared constant that stores a date value. It must be initialized to a date
value or a value implicitly convertible to a date value.

date_expression
An expression that returns a date/time value.

date_function_call
A function call that returns a date value or a value implicitly convertible to a date
value.

date_literal
A literal representing a date value or a value implicitly convertible to a date value.

date_variable_name
A previously declared variable that stores a date value.

EXISTS, COUNT, FIRST, LAST, LIMIT, NEXT, PRIOR
Collection methods. When appended to the name of a collection, these methods return
useful information. For example, EXISTS(n) returns TRUE if the nth element of a
collection exists. Otherwise, EXISTS(n) returns FALSE. For more information, see
"Collection Methods" on page 13-17.

exponent
An expression that must return a numeric value.

%FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT
Cursor attributes. When appended to the name of a cursor or cursor variable, these
attributes return useful information about the execution of a multi-row query. You can
also append them to the implicit cursor SQL.

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a
bind variable. Host cursor variables must be prefixed with a colon.

host_variable_name
A variable declared in a PL/SQL host environment and passed to PL/SQL as a bind
variable. The datatype of the host variable must be implicitly convertible to the
appropriate PL/SQL datatype. Also, host variables must be prefixed with a colon.

Expressions

PL/SQL Language Elements 13-57

IN
Comparison operator that tests set membership. It means "equal to any member of."
The set can contain nulls, but they are ignored. Also, expressions of the form

value NOT IN set

return FALSE if the set contains a null.

index
A numeric expression that must return a value of type BINARY_INTEGER or a value
implicitly convertible to that datatype.

indicator_name
An indicator variable declared in a PL/SQL host environment and passed to PL/SQL.
Indicator variables must be prefixed with a colon. An indicator variable "indicates" the
value or condition of its associated host variable. For example, in the Oracle
Precompiler environment, indicator variables can detect nulls or truncated values in
output host variables.

IS NULL
Comparison operator that returns the Boolean value TRUE if its operand is null, or
FALSE if its operand is not null.

LIKE
Comparison operator that compares a character value to a pattern. Case is significant.
LIKE returns the Boolean value TRUE if the character patterns match, or FALSE if they
do not match.

NOT, AND, OR
Logical operators, which follow the tri-state logic of Table 2–2 on page 2-18. AND
returns the value TRUE only if both its operands are true. OR returns the value TRUE if
either of its operands is true. NOT returns the opposite value (logical negation) of its
operand. For more information, see "Logical Operators" on page 2-18.

NULL
Keyword that represents a null. It stands for a missing, unknown, or inapplicable
value. When NULL is used in a numeric or date expression, the result is a null.

numeric_constant_name
A previously declared constant that stores a numeric value. It must be initialized to a
numeric value or a value implicitly convertible to a numeric value.

numeric_expression
An expression that returns an integer or real value.

numeric_function_call
A function call that returns a numeric value or a value implicitly convertible to a
numeric value.

numeric_literal
A literal that represents a number or a value implicitly convertible to a number.

Expressions

13-58 PL/SQL User's Guide and Reference

numeric_variable_name
A previously declared variable that stores a numeric value.

pattern
A character string compared by the LIKE operator to a specified string value. It can
include two special-purpose characters called wildcards. An underscore (_) matches
exactly one character; a percent sign (%) matches zero or more characters. The pattern
can be followed by ESCAPE 'character_literal', which turns off wildcard
expansion wherever the escape character appears in the string followed by a percent
sign or underscore.

relational_operator
Operator that compares expressions. For the meaning of each operator, see
"Comparison Operators" on page 2-20.

SQL
A cursor opened implicitly by Oracle to process a SQL data manipulation statement.
The implicit cursor SQL always refers to the most recently executed SQL statement.

+, -, /, *, **
Symbols for the addition, subtraction, division, multiplication, and exponentiation
operators.

||
The concatenation operator. As the following example shows, the result of
concatenating string1 with string2 is a character string that contains string1 followed by
string2:

'Good' || ' morning!' = 'Good morning!'

The next example shows that nulls have no effect on the result of a concatenation:

'suit' || NULL || 'case' = 'suitcase'

A null string (''), which is zero characters in length, is treated like a null.

Usage Notes
In a Boolean expression, you can only compare values that have compatible datatypes.
For more information, see "Converting PL/SQL Datatypes" on page 3-18.

In conditional control statements, if a Boolean expression returns TRUE, its associated
sequence of statements is executed. But, if the expression returns FALSE or NULL, its
associated sequence of statements is not executed.

The relational operators can be applied to operands of type BOOLEAN. By definition,
TRUE is greater than FALSE. Comparisons involving nulls always return a null. The
value of a Boolean expression can be assigned only to Boolean variables, not to host
variables or database columns. Also, datatype conversion to or from type BOOLEAN is
not supported.

You can use the addition and subtraction operators to increment or decrement a date
value, as the following examples show:

hire_date := '10-MAY-95';
hire_date := hire_date + 1; -- makes hire_date '11-MAY-95'
hire_date := hire_date - 5; -- makes hire_date '06-MAY-95'

Expressions

PL/SQL Language Elements 13-59

When PL/SQL evaluates a boolean expression, NOT has the highest precedence, AND
has the next-highest precedence, and OR has the lowest precedence. However, you can
use parentheses to override the default operator precedence.

Within an expression, operations occur in their predefined order of precedence. From
first to last (top to bottom), the default order of operations is

parentheses
exponents
unary operators
multiplication and division
addition, subtraction, and concatenation

PL/SQL evaluates operators of equal precedence in no particular order. When
parentheses enclose an expression that is part of a larger expression, PL/SQL
evaluates the parenthesized expression first, then uses the result in the larger
expression. When parenthesized expressions are nested, PL/SQL evaluates the
innermost expression first and the outermost expression last.

Examples
Several examples of expressions follow:

(a + b) > c -- Boolean expression
NOT finished -- Boolean expression
TO_CHAR(acct_no) -- character expression
'Fat ' || 'cats' -- character expression
'15-NOV-95' -- date expression
MONTHS_BETWEEN(d1, d2) -- date expression
pi * r**2 -- numeric expression
emp_cv%ROWCOUNT -- numeric expression

Related Topics
Assignment Statement, Constants and Variables, EXIT Statement, IF Statement, LOOP
Statements

FETCH Statement

13-60 PL/SQL User's Guide and Reference

FETCH Statement

The FETCH statement retrieves rows of data from the result set of a multi-row query.
You can fetch rows one at a time, several at a time, or all at once. The data is stored in
variables or fields that correspond to the columns selected by the query. For more
information, see "Querying Data with PL/SQL" on page 6-9.

Syntax

Keyword and Parameter Description

BULK COLLECT
Instructs the SQL engine to bulk-bind output collections before returning them to the
PL/SQL engine. The SQL engine bulk-binds all collections referenced in the INTO list.

collection_name
A declared collection into which column values are bulk fetched. For each query
select_item, there must be a corresponding, type-compatible collection in the list.

cursor_name
An explicit cursor declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable (or parameter) declared within the current scope.

host_array_name
An array (declared in a PL/SQL host environment and passed to PL/SQL as a bind
variable) into which column values are bulk fetched. For each query select_item,
there must be a corresponding, type-compatible array in the list. Host arrays must be
prefixed with a colon.

FETCH

cursor_name

cursor_variable_name

: host_cursor_variable_name

fetch_statement

INTO
variable_name

,

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,

LIMIT numeric_expression

;

FETCH Statement

PL/SQL Language Elements 13-61

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a
bind variable. The datatype of the host cursor variable is compatible with the return
type of any PL/SQL cursor variable. Host variables must be prefixed with a colon.

LIMIT
This optional clause, allowed only in bulk (not scalar) FETCH statements, lets you bulk
fetch several rows at a time, rather than the entire result set.

record_name
A user-defined or %ROWTYPE record into which rows of values are fetched. For each
column value returned by the query associated with the cursor or cursor variable,
there must be a corresponding, type-compatible field in the record.

variable_name
A variable into which a column value is fetched. For each column value returned by
the query associated with the cursor or cursor variable, there must be a corresponding,
type-compatible variable in the list.

Usage Notes
You must use either a cursor FOR loop or the FETCH statement to process a multi-row
query.

Any variables in the WHERE clause of the query are evaluated only when the cursor or
cursor variable is opened. To change the result set or the values of variables in the
query, you must reopen the cursor or cursor variable with the variables set to their
new values.

To reopen a cursor, you must close it first. However, you need not close a cursor
variable before reopening it.

You can use different INTO lists on separate fetches with the same cursor or cursor
variable. Each fetch retrieves another row and assigns values to the target variables.

If you FETCH past the last row in the result set, the values of the target fields or
variables are indeterminate and the %NOTFOUND attribute returns TRUE.

PL/SQL makes sure the return type of a cursor variable is compatible with the INTO
clause of the FETCH statement. For each column value returned by the query
associated with the cursor variable, there must be a corresponding, type-compatible
field or variable in the INTO clause. Also, the number of fields or variables must equal
the number of column values.

When you declare a cursor variable as the formal parameter of a subprogram that
fetches from the cursor variable, you must specify the IN or IN OUT mode. However, if
the subprogram also opens the cursor variable, you must specify the IN OUT mode.

Because a sequence of FETCH statements always runs out of data to retrieve, no
exception is raised when a FETCH returns no data. To detect this condition, you must
use the cursor attribute %FOUND or %NOTFOUND.

PL/SQL raises the predefined exception INVALID_CURSOR if you try to fetch from a
closed or never-opened cursor or cursor variable.

Restrictions on BULK COLLECT

13-62 PL/SQL User's Guide and Reference

Restrictions on BULK COLLECT

[Moved from Collections and Tuning chapters -- might have to move it once more! --
John]

The following restrictions apply to the BULK COLLECT clause:

■ You cannot bulk collect into an associative array that has a string type for the key.

■ You can use the BULK COLLECT clause only in server-side programs (not in
client-side programs). Otherwise, you get the error this feature is not supported in
client-side programs.

■ All target variables listed in a BULK COLLECT INTO clause must be collections.

■ Composite targets (such as objects) cannot be used in the RETURNING INTO
clause. Otherwise, you get the error unsupported feature with RETURNING clause.

■ When implicit datatype conversions are needed, multiple composite targets cannot
be used in the BULK COLLECT INTO clause.

■ When an implicit datatype conversion is needed, a collection of a composite target
(such as a collection of objects) cannot be used in the BULK COLLECT INTO clause.

Examples
The following example shows that any variables in the query associated with a cursor
are evaluated only when the cursor is opened:

DECLARE
 my_sal NUMBER(7,2);
 n INTEGER(2) := 2;
 CURSOR emp_cur IS SELECT n*sal FROM emp;
BEGIN
 OPEN emp_cur; -- n equals 2 here
 LOOP
 FETCH emp_cur INTO my_sal;
 EXIT WHEN emp_cur%NOTFOUND;
 -- process the data
 n := n + 1; -- does not affect next FETCH; sal will be multiplied by 2
 END LOOP;

The following example fetches rows one at a time from the cursor variable emp_cv
into the user-defined record emp_rec:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 emp_cv EmpCurTyp;
 emp_rec emp%ROWTYPE;
BEGIN
 LOOP
 FETCH emp_cv INTO emp_rec;
 EXIT WHEN emp_cv%NOTFOUND;
 ...
 END LOOP;
END;

The BULK COLLECT clause lets you fetch entire columns from the result set, or the
entire result set at once. The following example, retrieves columns from a cursor into a
collection:

DECLARE

FETCH Statement

PL/SQL Language Elements 13-63

 TYPE NameList IS TABLE OF emp.ename%TYPE;
 names NameList;
 CURSOR c1 IS SELECT ename FROM emp WHERE job = 'CLERK';
BEGIN
 OPEN c1;
 FETCH c1 BULK COLLECT INTO names;
 ...
 CLOSE c1;
END;

The following example uses the LIMIT clause. With each iteration of the loop, the
FETCH statement fetches 100 rows (or less) into index-by table acct_ids. The
previous values are overwritten.

DECLARE
 TYPE NumList IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 CURSOR c1 IS SELECT acct_id FROM accounts;
 acct_ids NumList;
 rows NATURAL := 100; -- set limit
BEGIN
 OPEN c1;
 LOOP
 /* The following statement fetches 100 rows (or less). */
 FETCH c1 BULK COLLECT INTO acct_ids LIMIT rows;
 EXIT WHEN c1%NOTFOUND;
 ...
 END LOOP;
 CLOSE c1;
END;

Related Topics
CLOSE Statement, Cursors, Cursor Variables, LOOP Statements, OPEN Statement,
OPEN-FOR Statement

FORALL Statement

13-64 PL/SQL User's Guide and Reference

FORALL Statement

The FORALL statement issues a series of INSERT, UPDATE, or DELETE statements,
usually much faster than an equivalent FOR loop. It requires some setup code, because
each iteration of the loop must use values from one or more collections in its VALUES
or WHERE clauses. For more information, see "Reducing Loop Overhead for DML
Statements and Queries (FORALL, BULK COLLECT)" on page 11-7.

Syntax

bounds_clause

Keyword and Parameter Description

INDICES OF collection_name
A clause specifying that the values of the index variable correspond to the subscripts
of the elements of the specified collection. With this clause, you can use FORALL with
nested tables where some elements have been deleted, or with associative arrays that
have numeric subscripts.

BETWEEN lower_bound AND upper_bound
Limits the range of subscripts in the INDICES OF clause. If a subscript in the range
does not exist in the collection, that subscript is skipped.

VALUES OF index_collection_name
A clause specifying that the subscripts for the FORALL index variable are taken from
the values of the elements in another collection, specified by
index_collection_name. This other collection acts as a set of pointers; FORALL can
iterate through subscripts in arbitrary order, even using the same subscript more than
once, depending on what elements you include in index_collection_name.

The index collection must be a nested table, or an associative array indexed by
PLS_INTEGER or BINARY_INTEGER, whose elements are also PLS_INTEGER or
BINARY_INTEGER. If the index collection is empty, an exception is raised and the
FORALL statement is not executed.

index_name
An undeclared identifier that can be referenced only within the FORALL statement and
only as a collection subscript.

FORALL index_name IN bounds_clause sql_statement
SAVE EXCEPTIONS

;

lower_bound .. upper_bound

INDICES OF collection
BETWEEN lower_bound AND upper_bound

VALUES OF index_collection

FORALL Statement

PL/SQL Language Elements 13-65

The implicit declaration of index_name overrides any other declaration outside the
loop. You cannot refer to another variable with the same name inside the statement.
Inside a FORALL statement, index_name cannot appear in expressions and cannot be
assigned a value.

lower_bound .. upper_bound
Numeric expressions that specify a valid range of consecutive index numbers.
PL/SQL rounds them to the nearest integer, if necessary. The SQL engine executes the
SQL statement once for each index number in the range. The expressions are evaluated
once, when the FORALL statement is entered.

SAVE EXCEPTIONS
Optional keywords that cause the FORALL loop to continue even if some DML
operations fail. Instead of raising an exception immediately, the program raises a
single exception after the FORALL statement finishes. The details of the errors are
available after the loop in SQL%BULK_EXCEPTIONS. The program can report or clean
up all the errors after the FORALL loop, rather than handling each exception as it
happens.

sql_statement
An INSERT, UPDATE, or DELETE statement that references collection elements in the
VALUES or WHERE clauses.

Usage Notes
Although the SQL statement can reference more than one collection, the performance
benefits apply only to subscripted collections.

If a FORALL statement fails, database changes are rolled back to an implicit savepoint
marked before each execution of the SQL statement. Changes made during previous
iterations of the FORALL loop are not rolled back.

Restrictions
The following restrictions apply to the FORALL statement:

■ You cannot loop through the elements of an associative array that has a string type
for the key.

■ Within a FORALL loop, you cannot refer to the same collection in both the SET
clause and the WHERE clause of an UPDATE statement. You might need to make a
second copy of the collection and refer to the new name in the WHERE clause.

■ You can use the FORALL statement only in server-side programs, not in client-side
programs.

■ The INSERT, UPDATE, or DELETE statement must reference at least one collection.
For example, a FORALL statement that inserts a set of constant values in a loop
raises an exception.

■ When you specify an explicit range, all collection elements in that range must
exist. If an element is missing or was deleted, you get an error.

■ When you use the INDICES OF or VALUES OF clauses, all the collections
referenced in the DML statement must have subscripts matching the values of the
index variable. Make sure that any DELETE, EXTEND, and so on operations are
applied to all the collections so that they have the same set of subscripts. If any of
the collections is missing a referenced element, you get an error. If you use the

FORALL Statement

13-66 PL/SQL User's Guide and Reference

SAVE EXCEPTIONS clause, this error is treated like any other error and does not
stop the FORALL statement.

■ You cannot refer to individual record fields within DML statements called by a
FORALL statement. Instead, you can specify the entire record with the SET ROW
clause in an UPDATE statement, or the VALUES clause in an INSERT statement.

■ Collection subscripts must be just the index variable rather than an expression,
such as i rather than i+1.

■ The cursor attribute %BULK_ROWCOUNT cannot be assigned to other collections, or
be passed as a parameter to subprograms.

Example
You can use the lower and upper bounds to bulk-bind arbitrary slices of a collection:

DECLARE
 TYPE NumList IS VARRAY(15) OF NUMBER;
 depts NumList := NumList();
BEGIN
 -- fill varray here
 ...
 FORALL j IN 6..10 -- bulk-bind middle third of varray
 UPDATE emp SET sal = sal * 1.10 WHERE deptno = depts(j);
END;

Bulk binds apply only to subscripted collections. In the following example, the
collection sals, which is passed to the function median, is not bulk-bound:

FORALL i IN 1..20
 INSERT INTO emp2 VALUES (enums(i), names(i), median(sals), ...);

Related Topics
"Retrieving Query Results into Collections with the BULK COLLECT Clause" on
page 11-15

Functions

PL/SQL Language Elements 13-67

Functions

A function is a subprogram that can take parameters and return a single value. A
function has two parts: the specification and the body. The specification (spec for
short) begins with the keyword FUNCTION and ends with the RETURN clause, which
specifies the datatype of the return value. Parameter declarations are optional.
Functions that take no parameters are written without parentheses. The function body
begins with the keyword IS (or AS) and ends with the keyword END followed by an
optional function name.

The function body has three parts: an optional declarative part, an executable part, and
an optional exception-handling part. The declarative part contains declarations of
types, cursors, constants, variables, exceptions, and subprograms. These items are
local and cease to exist when you exit the function. The executable part contains
statements that assign values, control execution, and manipulate data. The
exception-handling part contains handlers that deal with exceptions raised during
execution. For more information, see "Understanding PL/SQL Functions" on page 8-3.

Syntax

ffunction_declaration | function body

FUNCTION function_name
(parameter_declaration

,

)
RETURN datatype ;

function_spec

CREATE
OR REPLACE

FUNCTION function_name

(parameter_declaration

,

)
RETURN datatype

AUTHID
CURRENT_USER

DEFINER PARALLEL_ENABLE DETERMINISTIC IS

AS

Functions

13-68 PL/SQL User's Guide and Reference

Keyword and Parameter Description

AUTHID
Determines whether a stored function executes with the privileges of its owner (the
default) or current user and whether its unqualified references to schema objects are
resolved in the schema of the owner or current user. You can override the default
behavior by specifying AUTHID CURRENT_USER. For more information, see "Using
Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on page 8-15.

CREATE
The optional CREATE clause creates standalone functions, which are stored in the
Oracle database. You can execute the CREATE statement interactively from SQL*Plus
or from a program using native dynamic SQL.

datatype
A type specifier. For the syntax of datatype, see "Constants and Variables" on
page 13-28.

DETERMINISTIC
A hint that helps the optimizer avoid redundant function calls. If a stored function was
called previously with the same arguments, the optimizer can elect to use the previous
result. The function result should not depend on the state of session variables or
schema objects. Otherwise, results might vary across calls. Only DETERMINISTIC
functions can be called from a function-based index or a materialized view that has
query-rewrite enabled. For more information, see the statements CREATE INDEX and
CREATE MATERIALIZED VIEW in Oracle Database SQL Reference.

EXCEPTION exception_handler
END

function_name
;

parameter_name

IN

OUT

IN OUT

NOCOPY

datatype

parameter_declaration

:=

DEFAULT
expression

type_definition

item_declaration

function_declaration

procedure_declaration
BEGIN statement

PRAGMA AUTONOMOUS_TRANSACTION ;

Functions

PL/SQL Language Elements 13-69

exception_handler
Associates an exception with a sequence of statements, which is executed when that
exception is raised. For the syntax of exception_handler, see "Exceptions" on
page 13-45.

expression
An arbitrarily complex combination of variables, constants, literals, operators, and
function calls. The simplest expression consists of a single variable. When the
declaration is elaborated, the value of expression is assigned to the parameter. The
value and the parameter must have compatible datatypes.

function_name
Specifies the name you choose for the function.

IN, OUT, IN OUT
Parameter modes that define the behavior of formal parameters. An IN parameter
passes values to the subprogram being called. An OUT parameter returns values to the
caller of the subprogram. An IN OUT parameter passes initial values to the
subprogram being called, and returns updated values to the caller.

item_declaration
Declares a program object. For its syntax, see "Blocks" on page 13-8.

NOCOPY
A compiler hint (not directive) that allows the PL/SQL compiler to pass OUT and IN
OUT parameters by reference instead of by value (the default). The function can run
faster, because it does not have to make temporary copies of these parameters, but the
results can be different if the function ends with an unhandled exception. For more
information, see "Using Default Values for Subprogram Parameters" on page 8-9.

PARALLEL_ENABLE
Declares that a stored function can be used safely in the slave sessions of parallel DML
evaluations. The state of a main (logon) session is never shared with slave sessions.
Each slave session has its own state, which is initialized when the session begins. The
function result should not depend on the state of session (static) variables.
Otherwise, results might vary across sessions.

parameter_name
A formal parameter, a variable declared in a function spec and referenced in the
function body.

PRAGMA AUTONOMOUS_TRANSACTION
Marks a function as autonomous. An autonomous transaction is an independent
transaction started by the main transaction. Autonomous transactions let you suspend
the main transaction, do SQL operations, commit or roll back those operations, then
resume the main transaction. For more information, see "Doing Independent Units of
Work with Autonomous Transactions" on page 6-35.

procedure_declaration
Declares a procedure. For the syntax of procedure_declaration, see "Procedures"
on page 13-104.

Functions

13-70 PL/SQL User's Guide and Reference

RETURN
Introduces the RETURN clause, which specifies the datatype of the return value.

type_definition
Specifies a user-defined datatype. For its syntax, see "Blocks" on page 13-8.

:= | DEFAULT
Initializes IN parameters to default values.

Usage Notes
A function is called as part of an expression:

promotable := sal_ok(new_sal, new_title) AND (rating > 3);

To be callable from SQL statements, a stored function must obey certain rules that
control side effects. See "Controlling Side Effects of PL/SQL Subprograms" on
page 8-22.

In a function, at least one execution path must lead to a RETURN statement. Otherwise,
you get a function returned without value error at run time. The RETURN statement must
contain an expression, which is evaluated when the RETURN statement is executed.
The resulting value is assigned to the function identifier, which acts like a variable.

You can write the function spec and body as a unit. Or, you can separate the function
spec from its body. That way, you can hide implementation details by placing the
function in a package. You can define functions in a package body without declaring
their specs in the package spec. However, such functions can be called only from
inside the package.

Inside a function, an IN parameter acts like a constant; you cannot assign it a value. An
OUT parameter acts like a local variable; you can change its value and reference the
value in any way. An IN OUT parameter acts like an initialized variable; you can assign
it a value, which can be assigned to another variable. For information about the
parameter modes, see Table 8–1 on page 8-8.

Avoid using the OUT and IN OUT modes with functions. The purpose of a function is to
take zero or more parameters and return a single value. Functions should be free from
side effects, which change the values of variables not local to the subprogram.

Example
The following function returns the balance of a specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
 acct_bal REAL;
BEGIN
 SELECT bal INTO acct_bal FROM accts WHERE acctno = acct_id;
 RETURN acct_bal;
END balance;

Related Topics
Collection Methods, Packages, Procedures

GOTO Statement

PL/SQL Language Elements 13-71

GOTO Statement

The GOTO statement branches unconditionally to a statement label or block label. The
label must be unique within its scope and must precede an executable statement or a
PL/SQL block. The GOTO statement transfers control to the labelled statement or
block. For more information, see "Using the GOTO Statement" on page 4-12.

Syntax

Keyword and Parameter Description

label_name
A label that you assigned to an executable statement or a PL/SQL block. A GOTO
statement transfers control to the statement or block following <<label_name>>.

Usage Notes
Some possible destinations of a GOTO statement are not allowed. In particular, a GOTO
statement cannot branch into an IF statement, LOOP statement, or sub-block.

From the current block, a GOTO statement can branch to another place in the block or
into an enclosing block, but not into an exception handler. From an exception handler,
a GOTO statement can branch into an enclosing block, but not into the current block.

If you use the GOTO statement to exit a cursor FOR loop prematurely, the cursor is
closed automatically. The cursor is also closed automatically if an exception is raised
inside the loop.

A given label can appear only once in a block. However, the label can appear in other
blocks including enclosing blocks and sub-blocks. If a GOTO statement cannot find its
target label in the current block, it branches to the first enclosing block in which the
label appears.

Examples
A GOTO label cannot precede just any keyword. It must precede an executable
statement or a PL/SQL block. To branch to a place that does not have an executable
statement, add the NULL statement:

FOR ctr IN 1..50 LOOP
 DELETE FROM emp WHERE ...
 IF SQL%FOUND THEN
 GOTO end_loop;
 END IF;
 ...
<<end_loop>>
NULL; -- an executable statement that specifies inaction
END LOOP;

<< label_name >>

label_declaration

GOTO label_name ;

goto_statement

IF Statement

13-72 PL/SQL User's Guide and Reference

IF Statement

The IF statement executes or skips a sequence of statements, depending on the value
of a Boolean expression. For more information, see "Testing Conditions: IF and CASE
Statements" on page 4-2.

Syntax

Keyword and Parameter Description

boolean_expression
An expression that returns the Boolean value TRUE, FALSE, or NULL. Examples are
comparisons for equality, greater-than, or less-than. The sequence following the THEN
keyword is executed only if the expression returns TRUE.

ELSE
If control reaches this keyword, the sequence of statements that follows it is executed.
This occurs when none of the previous conditional tests returned TRUE.

ELSIF
Introduces a Boolean expression that is evaluated if none of the preceding conditions
returned TRUE.

THEN
If the expression returns TRUE, the statements after the THEN keyword are executed.

Usage Notes
There are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and
IF-THEN-ELSIF. The simplest form of IF statement associates a Boolean expression
with a sequence of statements enclosed by the keywords THEN and END IF. The
sequence of statements is executed only if the expression returns TRUE. If the
expression returns FALSE or NULL, the IF statement does nothing. In either case,
control passes to the next statement.

The second form of IF statement adds the keyword ELSE followed by an alternative
sequence of statements. The sequence of statements in the ELSE clause is executed
only if the Boolean expression returns FALSE or NULL. Thus, the ELSE clause ensures
that a sequence of statements is executed.

The third form of IF statement uses the keyword ELSIF to introduce additional
Boolean expressions. If the first expression returns FALSE or NULL, the ELSIF clause

IF boolean_expression THEN statement

if_statement

ELSIF boolean_expression THEN statement

ELSE statement
END IF ;

IF Statement

PL/SQL Language Elements 13-73

evaluates another expression. An IF statement can have any number of ELSIF
clauses; the final ELSE clause is optional. Boolean expressions are evaluated one by
one from top to bottom. If any expression returns TRUE, its associated sequence of
statements is executed and control passes to the next statement. If all expressions
return FALSE or NULL, the sequence in the ELSE clause is executed.

An IF statement never executes more than one sequence of statements because
processing is complete after any sequence of statements is executed. However, the
THEN and ELSE clauses can include more IF statements. That is, IF statements can be
nested.

Examples
In the example below, if shoe_count has a value of 10, both the first and second
Boolean expressions return TRUE. Nevertheless, order_quantity is assigned the
proper value of 50 because processing of an IF statement stops after an expression
returns TRUE and its associated sequence of statements is executed. The expression
associated with ELSIF is never evaluated and control passes to the INSERT statement.

IF shoe_count < 20 THEN
 order_quantity := 50;
ELSIF shoe_count < 30 THEN
 order_quantity := 20;
ELSE
 order_quantity := 10;
END IF;

INSERT INTO purchase_order VALUES (shoe_type, order_quantity);

In the following example, depending on the value of score, one of two status
messages is inserted into the grades table:

IF score < 70 THEN
 fail := fail + 1;
 INSERT INTO grades VALUES (student_id, 'Failed');
ELSE
 pass := pass + 1;
 INSERT INTO grades VALUES (student_id, 'Passed');
END IF;

Related Topics
CASE Statement, Expressions

INSERT Statement

13-74 PL/SQL User's Guide and Reference

INSERT Statement

The INSERT statement adds one or more new rows of data to a database table. For a
full description of the INSERT statement, see Oracle Database SQL Reference.

Syntax

Keyword and Parameter Description

alias
Another (usually short) name for the referenced table or view.

column_name[, column_name]...
A list of columns in a database table or view. The columns can be listed in any order, as
long as the expressions in the VALUES clause are listed in the same order. Each column
name can only be listed once. If the list does not include all the columns in a table,
each missing columns is set to NULL or to a default value specified in the CREATE
TABLE statement.

returning_clause
Returns values from inserted rows, eliminating the need to SELECT the rows
afterward. You can retrieve the column values into variables or into collections. You
cannot use the RETURNING clause for remote or parallel inserts. If the statement does
not affect any rows, the values of the variables specified in the RETURNING clause are
undefined. For the syntax of returning_clause, see "DELETE Statement" on
page 13-41.

sql_expression
Any expression valid in SQL. For example, it could be a literal, a PL/SQL variable, or a
SQL query that returns a single value. For more information, see Oracle Database SQL
Reference. PL/SQL also lets you use a record variable here.

subquery
A SELECT statement that provides a set of rows for processing. Its syntax is like that of
select_into_statement without the INTO clause. See "SELECT INTO Statement"
on page 13-123.

insert_statement

(column_name

,

)

INSERT INTO (subquery

TABLE (subquery2)

alias
table_reference

)

VALUES (sql_expression

,

)
returning_clause

subquery3
;

INSERT Statement

PL/SQL Language Elements 13-75

subquery3
A SELECT statement that returns a set of rows. Each row returned by the select
statement is inserted into the table. The subquery must return a value for every
column in the column list, or for every column in the table if there is no column list.

table_reference
A table or view that must be accessible when you execute the INSERT statement, and
for which you must have INSERT privileges. For the syntax of table_reference,
see "DELETE Statement" on page 13-41.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value
representing a nested table. This operator specifies that the value is a collection, not a
scalar value.

VALUES (...)
Assigns the values of expressions to corresponding columns in the column list. If there
is no column list, the first value is inserted into the first column defined by the CREATE
TABLE statement, the second value is inserted into the second column, and so on.
There must be one value for each column in the column list. The datatypes of the
values being inserted must be compatible with the datatypes of corresponding
columns in the column list.

Usage Notes
Character and date literals in the VALUES list must be enclosed by single quotes (').
Numeric literals are not enclosed by quotes.

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND, %ROWCOUNT,
and %ISOPEN let you access useful information about the execution of an INSERT
statement.

Examples
The following examples show various forms of INSERT statement:

INSERT INTO bonus SELECT ename, job, sal, comm FROM emp
 WHERE comm > sal * 0.25;
...
INSERT INTO emp (empno, ename, job, sal, comm, deptno)
 VALUES (4160, 'STURDEVIN', 'SECURITY GUARD', 2045, NULL, 30);
...
INSERT INTO dept
 VALUES (my_deptno, UPPER(my_dname), 'CHICAGO');

Related Topics
DELETE Statement, SELECT INTO Statement, UPDATE Statement

Literals

13-76 PL/SQL User's Guide and Reference

Literals

A literal is an explicit numeric, character, string, or Boolean value not represented by
an identifier. The numeric literal 135 and the string literal 'hello world' are
examples. For more information, see "Literals" on page 2-4.

Syntax

Keyword and Parameter Description

character
A member of the PL/SQL character set. For more information, see "Character Set" on
page 2-1.

+

_
integer

real_number

numeric_literal

digit

integer

integer

. integer

.

. integer

E

e

+

_

integer

real_number

’ character ’

’ ’

character_literal

’ character ’

’ ’

string_literal

TRUE

FALSE

NULL

boolean_literal

Literals

PL/SQL Language Elements 13-77

digit
One of the numerals 0 .. 9.

TRUE, FALSE, NULL
A predefined Boolean value.

Usage Notes
Two kinds of numeric literals can be used in arithmetic expressions: integers and reals.
Numeric literals must be separated by punctuation. Spaces can be used in addition to
the punctuation.

A character literal is an individual character enclosed by single quotes (apostrophes).
Character literals include all the printable characters in the PL/SQL character set:
letters, numerals, spaces, and special symbols.

PL/SQL is case sensitive within character literals. For example, PL/SQL considers the
literals 'Q' and 'q' to be different.

A string literal is a sequence of zero or more characters enclosed by single quotes. The
null string ('') contains zero characters. A string literal can hold up to 32,767
characters.

To represent an apostrophe within a string, enter two single quotes instead of one. For
literals where doubling the quotes is inconvenient or hard to read, you can designate
an escape character using the notation q'esc_char ... esc_char'. This escape
character must not occur anywhere else inside the string.

PL/SQL is case sensitive within string literals. For example, PL/SQL considers the
literals 'white' and 'White' to be different.

Trailing blanks are significant within string literals, so 'abc' and 'abc ' are
different. Trailing blanks in a string literal are not trimmed during PL/SQL processing,
although they are trimmed if you insert that value into a table column of type CHAR.

The Boolean values TRUE and FALSE cannot be inserted into a database column.

Examples
Several examples of numeric literals are:

25 6.34 7E2 25e-03 .1 1. +17 -4.4 -4.5D -4.6F

Several examples of character literals are:

'H' '&' ' ' '9' ']' 'g'

Several examples of string literals are:

'$5,000'
'02-AUG-87'
'Don''t leave until you''re ready and I''m ready.'
q'#Don't leave until you're ready and I'm ready.#'

Related Topics
Constants and Variables, Expressions

LOCK TABLE Statement

13-78 PL/SQL User's Guide and Reference

LOCK TABLE Statement

The LOCK TABLE statement locks entire database tables in a specified lock mode. That
enables you to share or deny access to tables while maintaining their integrity. For
more information, see "Using LOCK TABLE" on page 6-33.

Oracle has extensive automatic features that allow multiple programs to read and
write data simultaneously, while each program sees a consistent view of the data; you
should rarely, if ever, need to lock tables yourself.

Syntax

Keyword and Parameter Description

table_reference
A table or view that must be accessible when you execute the LOCK TABLE statement.
For the syntax of table_reference, see "DELETE Statement" on page 13-41.

lock_mode
The type of lock. It must be one of the following: ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE, SHARE, SHARE ROW EXCLUSIVE, or EXCLUSIVE.

NOWAIT
This optional keyword tells Oracle not to wait if the table has been locked by another
user. Control is immediately returned to your program, so it can do other work before
trying again to acquire the lock.

Usage Notes
If you omit the keyword NOWAIT, Oracle waits until the table is available; the wait has
no set limit. Table locks are released when your transaction issues a commit or
rollback.

A table lock never keeps other users from querying a table, and a query never acquires
a table lock.

If your program includes SQL locking statements, make sure the Oracle users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock any
table. Other users can lock tables they own or tables for which they have a privilege,
such as SELECT, INSERT, UPDATE, or DELETE.

Example
The following statement locks the accts table in shared mode:

LOCK TABLE accts IN SHARE MODE;

Related Topics
COMMIT Statement, ROLLBACK Statement

LOCK TABLE table_reference

,

IN lock_mode MODE
NOWAIT

;

lock_table_statement

LOOP Statements

PL/SQL Language Elements 13-79

LOOP Statements

LOOP statements execute a sequence of statements multiple times. The LOOP and
END LOOP keywords enclose the statements. PL/SQL provides four kinds of loop
statements: basic loop, WHILE loop, FOR loop, and cursor FOR loop. For usage
information, see "Controlling Loop Iterations: LOOP and EXIT Statements" on
page 4-6.

Syntax

<< label_name >>
LOOP statement END LOOP

label_name
;

basic_loop_statement

<< label_name >>
WHILE boolean_expression

while_loop_statement

<< label_name >>
FOR index_name IN

for_loop_statement

REVERSE
lower_bound .. upper_bound

LOOP statement END LOOP
label_name

;

LOOP statement END LOOP
label_name

;

<< label_name >>
FOR record_name IN

cursor_for_loop_statement

cursor_name
(cursor_parameter_name

,

)

(select_statement)

LOOP statement END LOOP
label_name

;

LOOP Statements

13-80 PL/SQL User's Guide and Reference

Keyword and Parameter Description

basic_loop_statement
A loop that executes an unlimited number of times. It encloses a sequence of
statements between the keywords LOOP and END LOOP. With each iteration, the
sequence of statements is executed, then control resumes at the top of the loop. An
EXIT, GOTO, or RAISE statement branches out of the loop. A raised exception also
ends the loop.

boolean_expression
An expression that returns the Boolean value TRUE, FALSE, or NULL. It is associated
with a sequence of statements, which is executed only if the expression returns TRUE.
For the syntax of boolean_expression, see "Expressions" on page 13-52.

cursor_for_loop_statement
Issues a SQL query and loops through the rows in the result set. This is a convenient
technique that makes processing a query as simple as reading lines of text in other
programming languages.

A cursor FOR loop implicitly declares its loop index as a %ROWTYPE record, opens a
cursor, repeatedly fetches rows of values from the result set into fields in the record,
and closes the cursor when all rows have been processed.

cursor_name
An explicit cursor previously declared within the current scope. When the cursor FOR
loop is entered, cursor_name cannot refer to a cursor already opened by an OPEN
statement or an enclosing cursor FOR loop.

cursor_parameter_name
A variable declared as the formal parameter of a cursor. (For the syntax of
cursor_parameter_declaration, see "Cursors" on page 13-38.) A cursor
parameter can appear in a query wherever a constant can appear. The formal
parameters of a cursor must be IN parameters.

for_loop_statement
Numeric FOR loops iterate over a specified range of integers. The range is part of an
iteration scheme, which is enclosed by the keywords FOR and LOOP.

The range is evaluated when the FOR loop is first entered and is never re-evaluated.
The loop body is executed once for each integer in the range defined by
lower_bound..upper_bound. After each iteration, the loop index is incremented.

index_name
An undeclared identifier that names the loop index (sometimes called a loop counter).
Its scope is the loop itself; you cannot reference the index outside the loop.

The implicit declaration of index_name overrides any other declaration outside the
loop. To refer to another variable with the same name, use a label:

<<main>>
DECLARE
 num NUMBER;
BEGIN
 ...
 FOR num IN 1..10 LOOP

LOOP Statements

PL/SQL Language Elements 13-81

 IF main.num > 5 THEN -- refers to the variable num,
 ... -- not to the loop index
 END IF;
 END LOOP;
END main;

Inside a loop, the index is treated like a constant: it can appear in expressions, but
cannot be assigned a value.

label_name
An optional undeclared identifier that labels a loop. label_name must be enclosed by
double angle brackets and must appear at the beginning of the loop. Optionally,
label_name (not enclosed in angle brackets) can also appear at the end of the loop.

You can use label_name in an EXIT statement to exit the loop labelled by
label_name. You can exit not only the current loop, but any enclosing loop.

You cannot reference the index of a FOR loop from a nested FOR loop if both indexes
have the same name, unless the outer loop is labeled by label_name and you use dot
notation:

label_name.index_name

The following example compares two loop indexes that have the same name, one used
by an enclosing loop, the other by a nested loop:

<<outer>>
FOR ctr IN 1..20 LOOP
 ...
 <<inner>>
 FOR ctr IN 1..10 LOOP
 IF outer.ctr > ctr THEN ...
 END LOOP inner;
END LOOP outer;

lower_bound .. upper_bound
Expressions that return numbers. (Otherwise, PL/SQL raises the predefined exception
VALUE_ERROR.) The expressions are evaluated only when the loop is first entered. The
lower bound need not be 1, as the example below shows. The loop counter increment
(or decrement) must be 1.

FOR i IN -5..10 LOOP
 ...
END LOOP;

Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER
variables, and, if necessary, rounds the values to the nearest integer. The magnitude
range of a PLS_INTEGER is +/- 2**31. If a bound evaluates to a number outside that
range, you get a numeric overflow error when PL/SQL attempts the assignment.

By default, the loop index is assigned the value of lower_bound. If that value is not
greater than the value of upper_bound, the sequence of statements in the loop is
executed, then the index is incremented. If the value of the index is still not greater
than the value of upper_bound, the sequence of statements is executed again. This
process repeats until the value of the index is greater than the value of upper_bound.
At that point, the loop completes.

LOOP Statements

13-82 PL/SQL User's Guide and Reference

record_name
An implicitly declared record. The record has the same structure as a row retrieved by
cursor_name or select_statement.

The record is defined only inside the loop. You cannot refer to its fields outside the
loop. The implicit declaration of record_name overrides any other declaration
outside the loop. You cannot refer to another record with the same name inside the
loop unless you qualify the reference using a block label.

Fields in the record store column values from the implicitly fetched row. The fields
have the same names and datatypes as their corresponding columns. To access field
values, you use dot notation, as follows:

record_name.field_name

Select-items fetched from the FOR loop cursor must have simple names or, if they are
expressions, must have aliases. In the following example, wages is an alias for the
select item sal+NVL(comm,0):

CURSOR c1 IS SELECT empno, sal+comm wages, job ...

REVERSE
By default, iteration proceeds upward from the lower bound to the upper bound. If
you use the keyword REVERSE, iteration proceeds downward from the upper bound
to the lower bound.

An example follows:

FOR i IN REVERSE 1..10 LOOP -- i starts at 10, ends at 1
 -- statements here execute 10 times
END LOOP;

The loop index is assigned the value of upper_bound. If that value is not less than the
value of lower_bound, the sequence of statements in the loop is executed, then the
index is decremented. If the value of the index is still not less than the value of
lower_bound, the sequence of statements is executed again. This process repeats
until the value of the index is less than the value of lower_bound. At that point, the
loop completes.

select_statement
A query associated with an internal cursor unavailable to you. Its syntax is like that of
select_into_statement without the INTO clause. See "SELECT INTO Statement"
on page 13-123. PL/SQL automatically declares, opens, fetches from, and closes the
internal cursor. Because select_statement is not an independent statement, the
implicit cursor SQL does not apply to it.

while_loop_statement
The WHILE-LOOP statement associates a Boolean expression with a sequence of
statements enclosed by the keywords LOOP and END LOOP. Before each iteration of the
loop, the expression is evaluated. If the expression returns TRUE, the sequence of
statements is executed, then control resumes at the top of the loop. If the expression
returns FALSE or NULL, the loop is bypassed and control passes to the next statement.

Usage Notes
You can use the EXIT WHEN statement to exit any loop prematurely. If the Boolean
expression in the WHEN clause returns TRUE, the loop is exited immediately.

LOOP Statements

PL/SQL Language Elements 13-83

When you exit a cursor FOR loop, the cursor is closed automatically even if you use an
EXIT or GOTO statement to exit the loop prematurely. The cursor is also closed
automatically if an exception is raised inside the loop.

Example
The following cursor FOR loop calculates a bonus, then inserts the result into a
database table:

DECLARE
 bonus REAL;
 CURSOR c1 IS SELECT empno, sal, comm FROM emp;
BEGIN
 FOR c1rec IN c1 LOOP
 bonus := (c1rec.sal * 0.05) + (c1rec.comm * 0.25);
 INSERT INTO bonuses VALUES (c1rec.empno, bonus);
 END LOOP;
 COMMIT;
END;

Related Topics
Cursors, EXIT Statement, FETCH Statement, OPEN Statement, %ROWTYPE Attribute

MERGE Statement

13-84 PL/SQL User's Guide and Reference

MERGE Statement

The MERGE statement inserts some rows and updates others in a single operation. The
decision about whether to update or insert into the target table is based upon a join
condition: rows already in the target table that match the join condition are updated;
otherwise, a row is inserted using values from a separate subquery.

For a full description and examples of the MERGE statement, see Oracle Database SQL
Reference.

Usage Notes
This statement is primarily useful in data warehousing situations where large amounts
of data are commonly inserted and updated. If you only need to insert or update a
single row, it is more efficient to do that with the regular PL/SQL techniques: try to
update the row, and do an insert instead if the update affects zero rows; or try to insert
the row, and do an update instead if the insert raises an exception because the table
already contains that primary key.

NULL Statement

PL/SQL Language Elements 13-85

NULL Statement

The NULL statement is a no-op: it passes control to the next statement without doing
anything. In the body of an IF-THEN clause, a loop, or a procedure, the NULL
statement serves as a placeholder. For more information, see "Using the NULL
Statement" on page 4-13.

Syntax

Usage Notes
The NULL statement improves readability by making the meaning and action of
conditional statements clear. It tells readers that the associated alternative has not been
overlooked: you have decided that no action is necessary.

Certain clauses in PL/SQL, such as in an IF statement or an exception handler, must
contain at least one executable statement. You can use the NULL statement to make
these constructs compile, while not taking any action.

You might not be able to branch to certain places with the GOTO statement because the
next statement is END, END IF, and so on, which are not executable statements. In
these cases, you can put a NULL statement where you want to branch.

The NULL statement and Boolean value NULL are not related.

Examples
In the following example, the NULL statement emphasizes that only salespeople
receive commissions:

IF job_title = 'SALESPERSON' THEN
 compute_commission(emp_id);
ELSE
 NULL;
END IF;

In the next example, the NULL statement shows that no action is taken for unnamed
exceptions:

EXCEPTION
 ...
 WHEN OTHERS THEN
 NULL;

NULL ;

null_statement

Object Types

13-86 PL/SQL User's Guide and Reference

Object Types

An object type is a user-defined composite datatype that encapsulates a data structure
along with the functions and procedures needed to manipulate the data. The variables
that form the data structure are called attributes. The functions and procedures that
characterize the behavior of the object type are called methods. A special kind of
method called the constructor creates a new instance of the object type and fills in its
attributes.

Object types must be created through SQL and stored in an Oracle database, where
they can be shared by many programs. When you define an object type using the
CREATE TYPE statement, you create an abstract template for some real-world object.
The template specifies the attributes and behaviors the object needs in the application
environment.

The data structure formed by the set of attributes is public (visible to client programs).
However, well-behaved programs do not manipulate it directly. Instead, they use the
set of methods provided, so that the data is kept in a proper state.

For information on using object types, see Chapter 12, "Using PL/SQL Object Types".

Syntax

CREATE
OR REPLACE

TYPE
schema_name .

type_name

object_type_declaration | object_type_spec

AUTHID
CURRENT_USER

DEFINER IS

AS
OBJECT (member_list) ;

attribute_name attribute_type

,

member_list

Object Types

PL/SQL Language Elements 13-87

Keyword and Parameter Description

attribute_datatype
Any Oracle datatype except LONG, LONG RAW, ROWID, UROWID, the PL/SQL-specific
types BINARY_INTEGER (and its subtypes), BOOLEAN, PLS_INTEGER, RECORD, REF
CURSOR, %TYPE, and %ROWTYPE, and types defined inside a PL/SQL package.

attribute_name
An object attribute. The name must be unique within the object type (but can be
reused in other object types). You cannot initialize an attribute in its declaration using
the assignment operator or DEFAULT clause. You cannot impose the NOT NULL
constraint on an attribute.

AUTHID Clause
Determines whether all member methods execute with the privileges of their definer
(the default) or invoker, and whether their unqualified references to schema objects are
resolved in the schema of the definer or invoker. For more information, see "Using
Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on page 8-15.

call_spec
Publishes a Java method or external C function in the Oracle data dictionary. It
publishes the routine by mapping its name, parameter types, and return type to their
SQL counterparts. To learn how to write Java call specs, see Oracle Database Java
Developer's Guide. To learn how to write C call specs Oracle Database Application
Developer's Guide - Fundamentals.

,
MAP

ORDER
MEMBER function_spec

CREATE
OR REPLACE

TYPE BODY
schema_name .

type_name

object_type_body

MAP

ORDER
MEMBER function_body ;

END ;

IS

AS

MEMBER

CONSTRUCTOR

STATIC

subprogram_body

call_spec
 ;

,

MEMBER

CONSTRUCTOR

STATIC

subprogram_spec

call_spec

, PRAGMA_RESTRICT_REFERENCES

Object Types

13-88 PL/SQL User's Guide and Reference

function_body
Implements a CONSTRUCTOR, MEMBER, or STATIC function. For the syntax of
function_body, see "Functions" on page 13-67.

MAP
Indicates that a method orders objects by mapping them to values of a scalar datatype
such as CHAR or REAL, which have a predefined order. PL/SQL uses the ordering to
evaluate Boolean expressions such as x > y, and to do comparisons implied by the
DISTINCT, GROUP BY, and ORDER BY clauses. A map method returns the relative
position of an object in the ordering of all such objects.

An object type can contain only one map method, which must be a parameterless
function having the return type DATE, NUMBER, VARCHAR2, or an ANSI SQL type such
as CHARACTER, INTEGER, or REAL.

MEMBER | CONSTRUCTOR | STATIC
Declares a subprogram or call spec as a method in an object type spec. A constructor
method must have the same name as the object type, while member and static
methods must have names that are different from the object type or any of its
attributes.

MEMBER methods are invoked on instances of objects, and read or change the attributes
of that particular instance:

object_instance.method();

CONSTRUCTOR methods create new instances of objects, and fill in some or all of the
attributes:

object_instance := new object_type_name(attr1 => attr1_value,
 attr2 => attr2_value);

The system defines a default constructor method with one parameter for each object
attribute, so you only need to define your own constructor methods if you want to
construct the object based on a different set of parameters.

STATIC methods are invoked on the object type, not any specific object instance, and
thus must limit themselves to "global" operations that do not involve the object
attributes:

object_type.method()

For each subprogram spec in an object type spec, there must be a corresponding
subprogram body in the object type body. To match specs and bodies, the compiler
does a token-by-token comparison of their headers. The headers must match word for
word. Differences in whitespace are allowed.

CONSTRUCTOR and MEMBER methods accept a built-in parameter named SELF, which
is an instance of the object type. Whether declared implicitly or explicitly, it is always
the first parameter passed to a MEMBER method. However, STATIC methods cannot
accept or reference SELF.

In the method body, SELF denotes the object whose method was invoked. For
example, method transform declares SELF as an IN OUT parameter:

CREATE TYPE Complex AS OBJECT (
 MEMBER FUNCTION transform (SELF IN OUT Complex) ...

Object Types

PL/SQL Language Elements 13-89

You cannot specify a different datatype for SELF. In constructor functions, SELF
always has the parameter mode IN OUT. In MEMBER functions, if SELF is not declared,
its parameter mode defaults to IN. In MEMBER procedures, if SELF is not declared, its
parameter mode defaults to IN OUT. You cannot specify the OUT parameter mode for
SELF.

ORDER
Indicates that a method compares two objects. An object type can contain only one
order method, which must be a function that returns a numeric result.

Every order method takes just two parameters: the built-in parameter SELF and
another object of the same type. If c1 and c2 are Customer objects, a comparison
such as c1 > c2 calls method match automatically. The method returns a negative
number, zero, or a positive number signifying that SELF is respectively less than,
equal to, or greater than the other parameter. If either parameter passed to an order
method is null, the method returns a null.

pragma_restrict_refs
Pragma RESTRICT_REFERENCES, which checks for violations of "purity" rules. To be
callable from SQL statements, a member function must obey those rules, which are
meant to control side effects. If any SQL statement inside the function body violates a
rule, you get an error at run time (when the statement is parsed). For the syntax of the
pragma, see "RESTRICT_REFERENCES Pragma" on page 13-113 (in this context, omit
the pragma terminator).

The pragma asserts that a member function does not read or write database tables or
package variables. For more information about the purity rules and pragma
RESTRICT_REFERENCES, see Oracle Database Application Developer's Guide -
Fundamentals.

schema_name
The schema containing the object type. If you omit schema_name, Oracle assumes the
object type is in your schema.

subprogram_body
Implements a MEMBER or STATIC function or procedure. Its syntax is like that of
function_body or procedure_body without the terminator. See "Functions" on
page 13-67 and/or "Procedures" on page 13-104.

subprogram_spec
Declares the interface to a CONSTRUCTOR, MEMBER or STATIC function or procedure.
Its syntax is like that of function_spec or procedure_spec without the
terminator. See "Functions" on page 13-67 and/or "Procedures" on page 13-104.

type_name
A user-defined object type that was defined using the datatype specifier OBJECT.

Usage Notes
Once an object type is created in your schema, you can use it to declare objects in any
PL/SQL block, subprogram, or package. For example, you can use the object type to
specify the datatype of an object attribute, table column, PL/SQL variable, bind
variable, record field, collection element, formal procedure parameter, or function
result.

Object Types

13-90 PL/SQL User's Guide and Reference

Like a package, an object type has two parts: a specification and a body. The
specification (spec for short) is the interface to your applications; it declares a data
structure (set of attributes) along with the operations (methods) needed to manipulate
the data. The body fully defines the methods, and so implements the spec.

All the information a client program needs to use the methods is in the spec. Think of
the spec as an operational interface and of the body as a black box. You can debug,
enhance, or replace the body without changing the spec.

An object type encapsulates data and operations. You can declare attributes and
methods in an object type spec, but not constants, exceptions, cursors, or types. At least
one attribute is required (the maximum is 1000); methods are optional.

In an object type spec, all attributes must be declared before any methods. Only
subprograms have an underlying implementation. If an object type spec declares only
attributes and/or call specs, the object type body is unnecessary. You cannot declare
attributes in the body. All declarations in the object type spec are public (visible
outside the object type).

You can refer to an attribute only by name (not by its position in the object type). To
access or change the value of an attribute, you use dot notation. Attribute names can
be chained, which lets you access the attributes of a nested object type.

In an object type, methods can reference attributes and other methods without a
qualifier. In SQL statements, calls to a parameterless method require an empty
parameter list. In procedural statements, an empty parameter list is optional unless
you chain calls, in which case it is required for all but the last call.

From a SQL statement, if you call a MEMBER method on a null instance (that is, SELF is
null), the method is not invoked and a null is returned. From a procedural statement, if
you call a MEMBER method on a null instance, PL/SQL raises the predefined exception
SELF_IS_NULL before the method is invoked.

You can declare a map method or an order method but not both. If you declare either
method, you can compare objects in SQL and procedural statements. However, if you
declare neither method, you can compare objects only in SQL statements and only for
equality or inequality. Two objects of the same type are equal only if the values of their
corresponding attributes are equal.

Like packaged subprograms, methods of the same kind (functions or procedures) can
be overloaded. That is, you can use the same name for different methods if their
formal parameters differ in number, order, or datatype family.

Every object type has a default constructor method (constructor for short), which is a
system-defined function with the same name as the object type. You use the
constructor to initialize and return an instance of that object type. You can also define
your own constructor methods that accept different sets of parameters. PL/SQL never
calls a constructor implicitly, so you must call it explicitly. Constructor calls are
allowed wherever function calls are allowed.

Examples
This SQL*Plus script defines an object type for a stack. The last item added to a stack is
the first item removed. The operations push and pop update the stack while preserving
last in, first out (LIFO) behavior. The simplest implementation of a stack uses an
integer array. Integers are stored in array elements, with one end of the array
representing the top of the stack.

CREATE TYPE IntArray AS VARRAY(25) OF INTEGER;

CREATE TYPE Stack AS OBJECT (

Object Types

PL/SQL Language Elements 13-91

 max_size INTEGER,
 top INTEGER,
 position IntArray,
 MEMBER PROCEDURE initialize,
 MEMBER FUNCTION full RETURN BOOLEAN,
 MEMBER FUNCTION empty RETURN BOOLEAN,
 MEMBER PROCEDURE push (n IN INTEGER),
 MEMBER PROCEDURE pop (n OUT INTEGER)
);

CREATE TYPE BODY Stack AS
 MEMBER PROCEDURE initialize IS
 -- fill stack with nulls
 BEGIN
 top := 0;
 -- call constructor for varray and set element 1 to NULL
 position := IntArray(NULL);
 max_size := position.LIMIT; -- use size constraint (25)
 position.EXTEND(max_size - 1, 1); -- copy element 1
 END initialize;

 MEMBER FUNCTION full RETURN BOOLEAN IS
 -- return TRUE if stack is full
 BEGIN
 RETURN (top = max_size);
 END full;

 MEMBER FUNCTION empty RETURN BOOLEAN IS
 -- return TRUE if stack is empty
 BEGIN
 RETURN (top = 0);
 END empty;

 MEMBER PROCEDURE push (n IN INTEGER) IS
 -- push integer onto stack
 BEGIN
 IF NOT full THEN
 top := top + 1;
 position(top) := n;
 ELSE -- stack is full
 RAISE_APPLICATION_ERROR(-20101, 'stack overflow');
 END IF;
 END push;

 MEMBER PROCEDURE pop (n OUT INTEGER) IS
 -- pop integer off stack and return its value
 BEGIN
 IF NOT empty THEN
 n := position(top);
 top := top - 1;
 ELSE -- stack is empty
 RAISE_APPLICATION_ERROR(-20102, 'stack underflow');
 END IF;
 END pop;
END;

In methods push and pop, the built-in procedure raise_application_error
issues user-defined error messages. That way, you can report errors to the client
program and avoid returning unhandled exceptions to the host environment. In an
object type, methods can reference attributes and other methods without a qualifier:

Object Types

13-92 PL/SQL User's Guide and Reference

CREATE TYPE Stack AS OBJECT (
 top INTEGER,
 MEMBER FUNCTION full RETURN BOOLEAN,
 MEMBER PROCEDURE push (n IN INTEGER),
 ...
);

CREATE TYPE BODY Stack AS
 ...
 MEMBER PROCEDURE push (n IN INTEGER) IS
 BEGIN
 IF NOT full THEN
 top := top + 1;
 ...
 END push;
END;

The following example shows that you can nest object types:

CREATE TYPE Address AS OBJECT (
 street_address VARCHAR2(35),
 city VARCHAR2(15),
 state CHAR(2),
 zip_code INTEGER
);

CREATE TYPE Person AS OBJECT (
 first_name VARCHAR2(15),
 last_name VARCHAR2(15),
 birthday DATE,
 home_address Address, -- nested object type
 phone_number VARCHAR2(15),
 ss_number INTEGER,
);

Related Topics
Functions, Packages, Procedures

OPEN Statement

PL/SQL Language Elements 13-93

OPEN Statement

The OPEN statement executes the query associated with a cursor. It allocates database
resources to process the query and identifies the result set -- the rows that match the
query conditions. The cursor is positioned before the first row in the result set. For
more information, see "Querying Data with PL/SQL" on page 6-9.

Syntax

Keyword and Parameter Description

cursor_name
An explicit cursor previously declared within the current scope and not currently
open.

cursor_parameter_name
A variable declared as the formal parameter of a cursor. (For the syntax of
cursor_parameter_declaration, see "Cursors" on page 13-38.) A cursor
parameter can appear in a query wherever a constant can appear.

Usage Notes
Generally, PL/SQL parses an explicit cursor only the first time it is opened and parses
a SQL statement (creating an implicit cursor) only the first time the statement is
executed. All the parsed SQL statements are cached. A SQL statement is reparsed only
if it is aged out of the cache by a new SQL statement. Although you must close a
cursor before you can reopen it, PL/SQL need not reparse the associated SELECT
statement. If you close, then immediately reopen the cursor, a reparse is definitely not
needed.

Rows in the result set are not retrieved when the OPEN statement is executed. The
FETCH statement retrieves the rows. With a FOR UPDATE cursor, the rows are locked
when the cursor is opened.

If formal parameters are declared, actual parameters must be passed to the cursor. The
formal parameters of a cursor must be IN parameters; they cannot return values to
actual parameters. The values of actual parameters are used when the cursor is
opened. The datatypes of the formal and actual parameters must be compatible. The
query can also reference PL/SQL variables declared within its scope.

Unless you want to accept default values, each formal parameter in the cursor
declaration must have a corresponding actual parameter in the OPEN statement.
Formal parameters declared with a default value do not need a corresponding actual
parameter. They assume their default values when the OPEN statement is executed.

You can associate the actual parameters in an OPEN statement with the formal
parameters in a cursor declaration using positional or named notation.

If a cursor is currently open, you cannot use its name in a cursor FOR loop.

OPEN cursor_name
(cursor_parameter_name

,

)
;

open_statement

OPEN Statement

13-94 PL/SQL User's Guide and Reference

Examples
Given the cursor declaration:

CURSOR parts_cur IS SELECT part_num, part_price FROM parts;

the following statement opens the cursor:

OPEN parts_cur;

Given the cursor declaration:

CURSOR emp_cur(my_ename VARCHAR2, my_comm NUMBER DEFAULT 0)
 IS SELECT * FROM emp WHERE ...

any of the following statements opens the cursor:

OPEN emp_cur('LEE');
OPEN emp_cur('BLAKE', 300);
OPEN emp_cur(employee_name, 150);

Related Topics
CLOSE Statement, Cursors, FETCH Statement, LOOP Statements

OPEN-FOR Statement

PL/SQL Language Elements 13-95

OPEN-FOR Statement

The OPEN-FOR statement executes the query associated with a cursor variable. It
allocates database resources to process the query and identifies the result set -- the
rows that meet the query conditions. The cursor variable is positioned before the first
row in the result set. For more information, see "Using Cursor Variables (REF
CURSORs)" on page 6-19.

Syntax

Keyword and Parameter Description

cursor_variable_name
A cursor variable (or parameter) previously declared within the current scope.

host_cursor_variable_name
A cursor variable previously declared in a PL/SQL host environment and passed to
PL/SQL as a bind variable. The datatype of the host cursor variable is compatible with
the return type of any PL/SQL cursor variable. Host variables must be prefixed with a
colon.

select_statement
A query associated with cursor_variable, which returns a set of values. The query
can reference bind variables and PL/SQL variables, parameters, and functions. The
syntax of select_statement is similar to the syntax for
select_into_statement defined in "SELECT INTO Statement" on page 13-123,
except that the cursor select_statement cannot have an INTO clause.

Usage Notes
You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To open the host cursor variable, you can pass it as a bind variable to
an anonymous PL/SQL block. You can reduce network traffic by grouping OPEN-FOR
statements. For example, the following PL/SQL block opens five cursor variables in a
single round-trip:

/* anonymous PL/SQL block in host environment */
BEGIN
 OPEN :emp_cv FOR SELECT * FROM emp;
 OPEN :dept_cv FOR SELECT * FROM dept;
 OPEN :grade_cv FOR SELECT * FROM salgrade;
 OPEN :pay_cv FOR SELECT * FROM payroll;
 OPEN :ins_cv FOR SELECT * FROM insurance;
END;

Other OPEN-FOR statements can open the same cursor variable for different queries.
You do not need to close a cursor variable before reopening it. When you reopen a
cursor variable for a different query, the previous query is lost.

OPEN
cursor_variable_name

: host_cursor_variable_name
FOR select_statement ;

open_for_statement

OPEN-FOR Statement

13-96 PL/SQL User's Guide and Reference

Unlike cursors, cursor variables do not take parameters. Instead, you can pass whole
queries (not just parameters) to a cursor variable.

Although a PL/SQL stored procedure or function can open a cursor variable and pass
it back to a calling subprogram, the calling and called subprograms must be in the
same instance. You cannot pass or return cursor variables to procedures and functions
called through database links.

When you declare a cursor variable as the formal parameter of a subprogram that
opens the cursor variable, you must specify the IN OUT mode. That way, the
subprogram can pass an open cursor back to the caller.

Examples
To centralize data retrieval, you can group type-compatible queries in a stored
procedure. When called, the following packaged procedure opens the cursor variable
emp_cv for the chosen query:

CREATE PACKAGE emp_data AS
 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice IN INT);
END emp_data;

CREATE PACKAGE BODY emp_data AS
 PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp, choice IN INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
 ELSIF choice = 2 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;
 ELSIF choice = 3 THEN
 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;
 END IF;
 END;
END emp_data;

For more flexibility, you can pass a cursor variable and a selector to a stored procedure
that executes queries with different return types:

CREATE PACKAGE admin_data AS
 TYPE GenCurTyp IS REF CURSOR;
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT);
END admin_data;

CREATE PACKAGE BODY admin_data AS
 PROCEDURE open_cv (generic_cv IN OUT GenCurTyp, choice INT) IS
 BEGIN
 IF choice = 1 THEN
 OPEN generic_cv FOR SELECT * FROM emp;
 ELSIF choice = 2 THEN
 OPEN generic_cv FOR SELECT * FROM dept;
 ELSIF choice = 3 THEN
 OPEN generic_cv FOR SELECT * FROM salgrade;
 END IF;
 END;
END admin_data;

Related Topics
CLOSE Statement, Cursor Variables, FETCH Statement, LOOP Statements

OPEN-FOR-USING Statement

PL/SQL Language Elements 13-97

OPEN-FOR-USING Statement

The OPEN-FOR-USING statement associates a cursor variable with a query, executes
the query, identifies the result set, positions the cursor before the first row in the result
set, then zeroes the rows-processed count kept by %ROWCOUNT. For more information,
see "Building a Dynamic Query with Dynamic SQL" on page 7-4.

Because this statement can use bind variables to make the SQL processing more
efficient, use the OPEN-FOR-USING statement when building a query where you
know the WHERE clauses in advance. Use the OPEN-FOR statement when you need the
flexibility to process a dynamic query with an unknown number of WHERE clauses.

Syntax

Keyword and Parameter Description

cursor_variable_name
A weakly typed cursor variable (one without a return type) previously declared within
the current scope.

bind_argument
An expression whose value is passed to the dynamic SELECT statement.

dynamic_string
A string literal, variable, or expression that represents a multi-row SELECT statement.

host_cursor_variable_name
A cursor variable declared in a PL/SQL host environment and passed to PL/SQL as a
bind variable. The datatype of the host cursor variable is compatible with the return
type of any PL/SQL cursor variable. Host variables must be prefixed with a colon.

USING ...
This optional clause specifies a list of bind arguments. At run time, bind arguments in
the USING clause replace corresponding placeholders in the dynamic SELECT
statement.

Usage Notes
You use three statements to process a dynamic multi-row query: OPEN-FOR-USING,
FETCH, and CLOSE. First, you OPEN a cursor variable FOR a multi-row query. Then,
you FETCH rows from the result set. When all the rows are processed, you CLOSE the
cursor variable.

OPEN
cursor_variable_name

: host_cursor_variable_name
FOR dynamic_string

open_for_using_statement

USING bind_argument

,

;

OPEN-FOR-USING Statement

13-98 PL/SQL User's Guide and Reference

The dynamic string can contain any multi-row SELECT statement (without the
terminator). The string can also contain placeholders for bind arguments. However,
you cannot use bind arguments to pass the names of schema objects to a dynamic SQL
statement.

Every placeholder in the dynamic string must be associated with a bind argument in
the USING clause. Numeric, character, and string literals are allowed in the USING
clause, but Boolean literals (TRUE, FALSE, NULL) are not. To pass nulls to the dynamic
string, you must use a workaround. See "Passing Nulls to Dynamic SQL" on page 7-10.

Any bind arguments in the query are evaluated only when the cursor variable is
opened. To fetch from the cursor using different bind values, you must reopen the
cursor variable with the bind arguments set to their new values.

Dynamic SQL supports all the SQL datatypes. For example, bind arguments can be
collections, LOBs, instances of an object type, and refs. As a rule, dynamic SQL does
not support PL/SQL-specific types. For instance, bind arguments cannot be Booleans
or index-by tables.

Example
The following example declares a cursor variable, then associates it with a dynamic
SELECT statement:

DECLARE
 TYPE EmpCurTyp IS REF CURSOR; -- define weak REF CURSOR type
 emp_cv EmpCurTyp; -- declare cursor variable
 my_ename VARCHAR2(15);
 my_sal NUMBER := 1000;
BEGIN
 OPEN emp_cv FOR -- open cursor variable
 'SELECT ename, sal FROM emp WHERE sal > :s' USING my_sal;
 ...
END;

Related Topics
EXECUTE IMMEDIATE Statement, OPEN-FOR Statement

Packages

PL/SQL Language Elements 13-99

Packages

A package is a schema object that groups logically related PL/SQL types, items, and
subprograms. Use packages when writing a set of related subprograms that form an
application programming interface (API) that you or others might reuse. Packages
have two parts: a specification (spec for short) and a body. For more information, see
Chapter 9, "Using PL/SQL Packages".

Syntax

CREATE
OR REPLACE

PACKAGE
schema_name .

package_name

package_declaration | package_spec

collection_type_definition

record_type_definition

subtype_definition

collection_declaration

constant_declaration

exception_declaration

object_declaration

record_declaration

variable_declaration

cursor_spec

function_spec

procedure_spec

call spec

pragma_restrict_refs

END
package_name

;

AUTHID
CURRENT_USER

DEFINER IS

AS

PRAGMA SERIALLY_REUSABLE ;

Packages

13-100 PL/SQL User's Guide and Reference

Keyword and Parameter Description

AUTHID
Determines whether all the packaged subprograms execute with the privileges of their
definer (the default) or invoker, and whether their unqualified references to schema
objects are resolved in the schema of the definer or invoker. For more information, see
"Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)" on page 8-15.

call_spec
Publishes a Java method or external C function in the Oracle data dictionary. It
publishes the routine by mapping its name, parameter types, and return type to their
SQL counterparts. For more information, see Oracle Database Java Developer's Guide and
Oracle Database Application Developer's Guide - Fundamentals.

collection_declaration
Declares a collection (nested table, index-by table, or varray). For the syntax of
collection_declaration, see "Collections" on page 13-21.

collection_type_definition
Defines a collection type using the datatype specifier TABLE or VARRAY.

CREATE
OR REPLACE

PACKAGE BODY
schema_name .

package_name

package_body

collection_type_definition

record_type_definition

subtype_definition

collection_declaration

constant_declaration

exception_declaration

object_declaration

record_declaration

variable_declaration

cursor_body

function_body

procedure_body

call spec

BEGIN statement
END

package_name
;

IS

AS

PRAGMA SERIALLY_REUSABLE ;

Packages

PL/SQL Language Elements 13-101

constant_declaration
Declares a constant. For the syntax of constant_declaration, see "Constants and
Variables" on page 13-28.

cursor_body
Defines the underlying implementation of an explicit cursor. For the syntax of
cursor_body, see "Cursors" on page 13-38.

cursor_spec
Declares the interface to an explicit cursor. For the syntax of cursor_spec, see
"Cursors" on page 13-38.

exception_declaration
Declares an exception. For the syntax of exception_declaration, see "Exceptions"
on page 13-45.

function_body
Implements a function. For the syntax of function_body, see "Functions" on
page 13-67.

function_spec
Declares the interface to a function. For the syntax of function_spec, see
"Functions" on page 13-67.

object_declaration
Declares an object (instance of an object type). For the syntax of
object_declaration, see "Object Types" on page 13-86.

package_name
A package stored in the database. For naming conventions, see "Identifiers" on
page 2-3.

pragma_restrict_refs
Pragma RESTRICT_REFERENCES, which checks for violations of "purity" rules. To be
callable from SQL statements, a function must obey rules that control side effects. If
any SQL statement inside the function body violates a rule, you get an error at run
time (when the statement is parsed). For the syntax of the pragma, see
"RESTRICT_REFERENCES Pragma" on page 13-113.

The pragma asserts that a function does not read and/or write database tables and/or
package variables. For more information about the purity rules and pragma
RESTRICT_REFERENCES, see Oracle Database Application Developer's Guide -
Fundamentals.

PRAGMA SERIALLY_REUSABLE
Marks a package as serially reusable, if its state is needed only for the duration of one
call to the server (for example, an OCI call to the server or a server-to-server remote
procedure call). For more information, see Oracle Database Application Developer's Guide
- Fundamentals.

Packages

13-102 PL/SQL User's Guide and Reference

procedure_body
Implements a procedure. For the syntax of procedure_body, see "Procedures" on
page 13-104.

procedure_spec
Declares the interface to a procedure. For the syntax of procedure_spec, see
"Procedures" on page 13-104.

record_declaration
Declares a user-defined record. For the syntax of record_declaration, see
"Records" on page 13-110.

record_type_definition
Defines a record type using the datatype specifier RECORD or the attribute %ROWTYPE.

schema_name
The schema containing the package. If you omit schema_name, Oracle assumes the
package is in your schema.

variable_declaration
Declares a variable. For the syntax of variable_declaration, see "Constants and
Variables" on page 13-28.

Usage Notes
You can use any Oracle tool that supports PL/SQL to create and store packages in an
Oracle database. You can issue the CREATE PACKAGE and CREATE PACKAGE BODY
statements interactively from SQL*Plus, or from an Oracle Precompiler or OCI host
program.

You cannot define packages in a PL/SQL block or subprogram.

Most packages have a spec and a body. The spec is the interface to your applications; it
declares the types, variables, constants, exceptions, cursors, and subprograms
available for use. The body fully defines cursors and subprograms, and so implements
the spec.

Only subprograms and cursors have an underlying implementation. If a spec declares
only types, constants, variables, exceptions, and call specs, the package body is
unnecessary. The body can still be used to initialize items declared in the spec:

CREATE PACKAGE emp_actions AS
 ...
 number_hired INTEGER;
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
BEGIN
 number_hired := 0;
END emp_actions;

You can code and compile a spec without its body. Once the spec has been compiled,
stored subprograms that reference the package can be compiled as well. You do not
need to define the package bodies fully until you are ready to complete the
application. You can debug, enhance, or replace a package body without changing the
package spec, which saves you from recompiling subprograms that call the package.

Packages

PL/SQL Language Elements 13-103

Cursors and subprograms declared in a package spec must be defined in the package
body. Other program items declared in the package spec cannot be redeclared in the
package body.

To match subprogram specs and bodies, PL/SQL does a token-by-token comparison of
their headers. Except for white space, the headers must match word for word.
Otherwise, PL/SQL raises an exception.

Variables declared in a package keep their values throughout a session, so you can set
the value of a package variable in one procedure, and retrieve the same value in a
different procedure.

Related Topics
Collections, Cursors, Exceptions, Functions, Procedures, Records

Procedures

13-104 PL/SQL User's Guide and Reference

Procedures

A procedure is a subprogram that can take parameters and be called. Generally, you
use a procedure to perform an action. A procedure has two parts: the specification and
the body. The specification (spec for short) begins with the keyword PROCEDURE and
ends with the procedure name or a parameter list. Parameter declarations are optional.
Procedures that take no parameters are written without parentheses. The procedure
body begins with the keyword IS (or AS) and ends with the keyword END followed by
an optional procedure name.

The procedure body has three parts: an optional declarative part, an executable part,
and an optional exception-handling part. The declarative part contains declarations of
types, cursors, constants, variables, exceptions, and subprograms. These items are
local and cease to exist when you exit the procedure. The executable part contains
statements that assign values, control execution, and manipulate Oracle data. The
exception-handling part contains handlers that deal with exceptions raised during
execution. For more information, see "Understanding PL/SQL Procedures" on
page 8-3.

Syntax

PROCEDURE procedure_name
(parameter_declaration

,

)
;

procedure_spec

procedure_declaration | procedure body

(parameter_declaration

,

)
AUTHID

CURRENT_USER

DEFINER IS

AS

CREATE
OR REPLACE

PROCEDURE procedure_name

Procedures

PL/SQL Language Elements 13-105

Keyword and Parameter Description

AUTHID
Determines whether a stored procedure executes with the privileges of its owner (the
default) or current user and whether its unqualified references to schema objects are
resolved in the schema of the owner or current user. You can override the default
behavior by specifying CURRENT_USER. For more information, see "Using Invoker's
Rights Versus Definer's Rights (AUTHID Clause)" on page 8-15.

CREATE
The optional CREATE clause creates stored procedures, which are stored in the Oracle
database and can be called from other applications. You can execute the CREATE
statement interactively from SQL*Plus or from a program using native dynamic SQL.

 datatype
A type specifier. For the syntax of datatype, see "Constants and Variables" on
page 13-28.

exception_handler
Associates an exception with a sequence of statements, which is executed when that
exception is raised. For the syntax of exception_handler, see "Exceptions" on
page 13-45.

expression
A combination of variables, constants, literals, operators, and function calls. The
simplest expression consists of a single variable. When the declaration is elaborated,
the value of expression is assigned to the parameter. The value and the parameter
must have compatible datatypes.

EXCEPTION exception_handler
END

procedure_name
;

parameter_name

IN

OUT

IN OUT

NOCOPY

datatype

parameter_declaration

:=

DEFAULT
expression

type_definition

item_declaration

function_declaration

procedure_declaration
BEGIN statement

PRAGMA AUTONOMOUS_TRANSACTION ;

Procedures

13-106 PL/SQL User's Guide and Reference

function_declaration
Declares a function. For the syntax of function_declaration, see "Functions" on
page 13-67.

IN, OUT, IN OUT
Parameter modes that define the behavior of formal parameters. An IN parameter
passes values to the subprogram being called. An OUT parameter returns values to the
caller of the subprogram. An IN OUT parameter lets passes initial values to the
subprogram being called and returns updated values to the caller.

item_declaration
Declares a program object. For the syntax of item_declaration, see "Blocks" on
page 13-8.

NOCOPY
A compiler hint (not directive) that allows the PL/SQL compiler to pass OUT and IN
OUT parameters by reference instead of by value (the default). For more information,
see "Specifying Subprogram Parameter Modes" on page 8-7.

parameter_name
A formal parameter, which is a variable declared in a procedure spec and referenced in
the procedure body.

PRAGMA AUTONOMOUS_TRANSACTION
Marks a function as autonomous. An autonomous transaction is an independent
transaction started by the main transaction. Autonomous transactions let you suspend
the main transaction, do SQL operations, commit or roll back those operations, then
resume the main transaction. For more information, see "Doing Independent Units of
Work with Autonomous Transactions" on page 6-35.

procedure_name
A user-defined procedure.

type_definition
Specifies a user-defined datatype. For the syntax of type_definition, see "Blocks"
on page 13-8.

:= | DEFAULT
Initializes IN parameters to default values, if they are not specified when the
procedure is called.

Usage Notes
A procedure is called as a PL/SQL statement. For example, the procedure
raise_salary might be called as follows:

raise_salary(emp_num, amount);

Inside a procedure, an IN parameter acts like a constant; you cannot assign it a value.
An OUT parameter acts like a local variable; you can change its value and reference the
value in any way. An IN OUT parameter acts like an initialized variable; you can assign
it a value, which can be assigned to another variable. For summary information about
the parameter modes, see Table 8–1 on page 8-8.

Procedures

PL/SQL Language Elements 13-107

Unlike OUT and IN OUT parameters, IN parameters can be initialized to default values.
For more information, see "Using Default Values for Subprogram Parameters" on
page 8-9.

Before exiting a procedure, explicitly assign values to all OUT formal parameters. An
OUT actual parameter can have a value before the subprogram is called. However,
when you call the subprogram, the value is lost unless you specify the compiler hint
NOCOPY or the subprogram exits with an unhandled exception.

You can write the procedure spec and body as a unit. Or, you can separate the
procedure spec from its body. That way, you can hide implementation details by
placing the procedure in a package. You can define procedures in a package body
without declaring their specs in the package spec. However, such procedures can be
called only from inside the package.

At least one statement must appear in the executable part of a procedure. The NULL
statement meets this requirement.

Examples
The following procedure debits a bank account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
 old_balance REAL;
 new_balance REAL;
 overdrawn EXCEPTION;
BEGIN
 SELECT bal INTO old_balance FROM accts WHERE acctno = acct_id;
 new_balance := old_balance - amount;
 IF new_balance < 0 THEN
 RAISE overdrawn;
 ELSE
 UPDATE accts SET bal = new_balance WHERE acctno = acct_id;
 END IF;
EXCEPTION
 WHEN overdrawn THEN
 ...
END debit_account;

The following example calls the procedure using named notation:

debit_account(amount => 500, acct_id => 10261);

Related Topics
Collection Methods, Functions, Packages

RAISE Statement

13-108 PL/SQL User's Guide and Reference

RAISE Statement

The RAISE statement stops normal execution of a PL/SQL block or subprogram and
transfers control to an exception handler.

RAISE statements can raise predefined exceptions, such as ZERO_DIVIDE or
NO_DATA_FOUND, or user-defined exceptions whose names you decide. For more
information, see "Defining Your Own PL/SQL Exceptions" on page 10-6.

Syntax

Keyword and Parameter Description

exception_name
A predefined or user-defined exception. For a list of the predefined exceptions, see
"Summary of Predefined PL/SQL Exceptions" on page 10-4.

Usage Notes
PL/SQL blocks and subprograms should RAISE an exception only when an error
makes it impractical to continue processing. You can code a RAISE statement for a
given exception anywhere within the scope of that exception.

When an exception is raised, if PL/SQL cannot find a handler for it in the current
block, the exception propagates to successive enclosing blocks, until a handler is found
or there are no more blocks to search. If no handler is found, PL/SQL returns an
unhandled exception error to the host environment.

In an exception handler, you can omit the exception name in a RAISE statement,
which raises the current exception again. This technique allows you to take some
initial corrective action (perhaps just logging the problem), then pass control to
another handler that does more extensive correction. When an exception is reraised,
the first block searched is the enclosing block, not the current block.

Example
The following example raises an exception when an inventoried part is out of stock, or
when a divide-by-zero situation is about to occur:

DECLARE
 out_of_stock EXCEPTION;
 quantity_on_hand NUMBER := 0;
 denominator NUMBER := 0;
BEGIN
 IF quantity_on_hand = 0 THEN
 RAISE out_of_stock;
 END IF;

 IF denominator = 0 THEN
 raise ZERO_DIVIDE;
 END IF;

RAISE
exception_name

;

raise_statement

RAISE Statement

PL/SQL Language Elements 13-109

 EXCEPTION
 WHEN out_of_stock THEN
 dbms_output.put_line('No more parts in stock.');
 WHEN ZERO_DIVIDE THEN
 dbms_output.put_line('Attempt to divide by zero.');
 WHEN OTHERS THEN
 dbms_output.put_line('Some other kind of problem...');
END;
/

Related Topics
Exceptions

Records

13-110 PL/SQL User's Guide and Reference

Records

Records are composite variables that can store data values of different types, similar to
a struct type in C, C++, or Java. For more information, see "What Is a PL/SQL
Record?" on page 5-32.

In PL/SQL records are useful for holding data from table rows, or certain columns
from table rows. For ease of maintenance, you can declare variables as
table%ROWTYPE or cursor%ROWTYPE instead of creating new record types.

Syntax

Keyword and Parameter Description

datatype
A datatype specifier. For the syntax of datatype, see "Constants and Variables" on
page 13-28.

expression
A combination of variables, constants, literals, operators, and function calls. The
simplest expression consists of a single variable. For the syntax of expression, see
"Expressions" on page 13-52. When the declaration is elaborated, the value of
expression is assigned to the field. The value and the field must have compatible
datatypes.

field_name
A field in a user-defined record.

NOT NULL
At run time, trying to assign a null to a field defined as NOT NULL raises the predefined
exception VALUE_ERROR. The constraint NOT NULL must be followed by an
initialization clause.

record_name
A user-defined record.

TYPE type_name IS RECORD (field_declaration

,

) ;

record_type_definition

field_name datatype

NOT NULL :=

DEFAULT
expressionfield_declaration

record_name type_name ;

record_declaration

Records

PL/SQL Language Elements 13-111

type_name
A user-defined record type that was defined using the datatype specifier RECORD.

:= | DEFAULT
Initializes fields to default values.

Usage Notes
You can define RECORD types and declare user-defined records in the declarative part
of any block, subprogram, or package.

A record can be initialized in its declaration:

DECLARE
 TYPE TimeTyp IS RECORD (seconds SMALLINT := 0, minutes SMALLINT := 0,
 hours SMALLINT := 0);

You can use the %TYPE attribute to specify the datatype of a field. You can add the NOT
NULL constraint to any field declaration to prevent the assigning of nulls to that field.
Fields declared as NOT NULL must be initialized.

DECLARE
 TYPE DeptRecTyp IS RECORD
 (
 deptno NUMBER(2) NOT NULL := 99,
 dname departments.department_name%TYPE,
 loc departments.location_id%TYPE,
 region regions%ROWTYPE
);
 dept_rec DeptRecTyp;
BEGIN
 dept_rec.dname := 'PURCHASING';
END;
/

To reference individual fields in a record, you use dot notation. For example, you
might assign a value to the field dname in the record dept_rec as follows:

dept_rec.dname := 'PURCHASING';

Instead of assigning values separately to each field in a record, you can assign values
to all fields at once:

■ You can assign one user-defined record to another if they have the same datatype.
(Having fields that match exactly is not enough.) You can assign a %ROWTYPE
record to a user-defined record if their fields match in number and order, and
corresponding fields have compatible datatypes.

■ You can use the SELECT or FETCH statement to fetch column values into a record.
The columns in the select-list must appear in the same order as the fields in your
record.

You can declare and reference nested records. That is, a record can be the component
of another record:

DECLARE
 TYPE TimeTyp IS RECORD (minutes SMALLINT, hours SMALLINT);
 TYPE MeetingTyp IS RECORD (
 day DATE,
 time_of TimeTyp, -- nested record
 dept departments%ROWTYPE, -- nested record representing a table row

Records

13-112 PL/SQL User's Guide and Reference

 place VARCHAR2(20),
 purpose VARCHAR2(50));
 meeting MeetingTyp;
 seminar MeetingTyp;
BEGIN
 seminar.time_of := meeting.time_of;
END;
/

You can assign one nested record to another if they have the same datatype:

seminar.time_of := meeting.time_of;

Such assignments are allowed even if the containing records have different datatypes.

User-defined records follow the usual scoping and instantiation rules. In a package,
they are instantiated when you first reference the package and cease to exist when you
end the database session. In a block or subprogram, they are instantiated when you
enter the block or subprogram and cease to exist when you exit the block or
subprogram.

Like scalar variables, user-defined records can be declared as the formal parameters of
procedures and functions. The restrictions that apply to scalar parameters also apply
to user-defined records.

You can specify a RECORD type in the RETURN clause of a function spec. That allows
the function to return a user-defined record of the same type. When calling a function
that returns a user-defined record, use the following syntax to reference fields in the
record:

function_name(parameter_list).field_name

To reference nested fields, use this syntax:

function_name(parameter_list).field_name.nested_field_name

If the function takes no parameters, code an empty parameter list. The syntax follows:

function_name().field_name

Example
The following example defines a RECORD type named DeptRecTyp, declares a record
named dept_rec, then selects a row of values into the record:

DECLARE
 TYPE DeptRecTyp IS RECORD (
 deptno departments.department_id%TYPE,
 dname departments.department_name%TYPE,
 loc departments.location_id%TYPE);
 dept_rec DeptRecTyp;
BEGIN
 SELECT department_id, department_name, location_id INTO dept_rec
 FROM departments WHERE department_id = 20;
END;
/

Related Topics
Collections, Functions, Packages, Procedures

RESTRICT_REFERENCES Pragma

PL/SQL Language Elements 13-113

RESTRICT_REFERENCES Pragma

To be callable from SQL statements, a stored function must obey certain "purity" rules,
which control side-effects. (See "Controlling Side Effects of PL/SQL Subprograms" on
page 8-22.) The fewer side-effects a function has, the better it can be optimized within
a query, particular when the PARALLEL_ENABLE or DETERMINISTIC hints are used.
The same rules that apply to the function itself also apply to any functions or
procedures that it calls.

If any SQL statement inside the function body violates a rule, you get an error at run
time (when the statement is parsed). To check for violations of the rules at compile
time, you can use the compiler directive PRAGMA RESTRICT_REFERENCES. This
pragma asserts that a function does not read and/or write database tables and/or
package variables. Functions that do any of these read or write operations are difficult
to optimize, because any call might produce different results or encounter errors.

For more information, see Oracle Database Application Developer's Guide - Fundamentals.

Syntax

Keyword and Parameter Description

DEFAULT
Specifies that the pragma applies to all subprograms in the package spec or object type
spec. You can still declare the pragma for individual subprograms. Such pragmas
override the default pragma.

function_name
A user-defined function or procedure.

PRAGMA
Signifies that the statement is a compiler directive. Pragmas are processed at compile
time, not at run time. They do not affect the meaning of a program; they convey
information to the compiler.

RNDS
Asserts that the subprogram reads no database state (does not query database tables).

RNPS
Asserts that the subprogram reads no package state (does not reference the values of
packaged variables)

PRAGMA RESTRICT_REFERENCES (
function_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

) ;

pragma_restrict_refs

RESTRICT_REFERENCES Pragma

13-114 PL/SQL User's Guide and Reference

TRUST
Asserts that the subprogram can be trusted not to violate one or more rules. This value
is needed for functions written in C or Java that are called from PL/SQL, since
PL/SQL cannot verify them at run time.

WNDS
Asserts that the subprogram writes no database state (does not modify database
tables).

WNPS
Asserts that the subprogram writes no package state (does not change the values of
packaged variables).

Usage Notes
You can declare the pragma RESTRICT_REFERENCES only in a package spec or object
type spec. You can specify up to four constraints (RNDS, RNPS, WNDS, WNPS) in any
order. To call a function from parallel queries, you must specify all four constraints. No
constraint implies another.

When you specify TRUST, the function body is not checked for violations of the
constraints listed in the pragma. The function is trusted not to violate them. Skipping
these checks can improve performance.

If you specify DEFAULT instead of a subprogram name, the pragma applies to all
subprograms in the package spec or object type spec (including the system-defined
constructor for object types). You can still declare the pragma for individual
subprograms, overriding the default pragma.

A RESTRICT_REFERENCES pragma can apply to only one subprogram declaration. A
pragma that references the name of overloaded subprograms always applies to the
most recent subprogram declaration.

Typically, you only specify this pragma for functions. If a function calls procedures,
then you need to specify the pragma for those procedures as well.

Examples
This example asserts that the function BALANCE writes no database state (WNDS) and
reads no package state (RNPS). That is, it does not issue any DDL or DML statements,
and does not refer to any package variables, and neither do any procedures or
functions that it calls. It might issue queries or assign values to package variables.

CREATE PACKAGE loans AS
 FUNCTION balance(account NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (balance, WNDS, RNPS);
END loans;
/

DROP PACKAGE loans;

Related Topics
AUTONOMOUS_TRANSACTION Pragma, EXCEPTION_INIT Pragma,
SERIALLY_REUSABLE Pragma

RETURN Statement

PL/SQL Language Elements 13-115

RETURN Statement

The RETURN statement immediately completes the execution of a subprogram and
returns control to the caller. Execution resumes with the statement following the
subprogram call. In a function, the RETURN statement also sets the function identifier
to the return value. For more information, see "Using the RETURN Statement" on
page 8-4.

Syntax

Keyword and Parameter Description

expression
A combination of variables, constants, literals, operators, and function calls. The
simplest expression consists of a single variable. When the RETURN statement is
executed, the value of expression is assigned to the function identifier.

Usage Notes
Do not confuse the RETURN statement with the RETURN clause in a function spec,
which specifies the datatype of the return value.

A subprogram can contain several RETURN statements. Executing any of them
completes the subprogram immediately. The RETURN statement might not be
positioned as the last statement in the subprogram.

In procedures, a RETURN statement cannot contain an expression. The statement just
returns control to the caller before the normal end of the procedure is reached.

In functions, a RETURN statement must contain an expression, which is evaluated when
the RETURN statement is executed. The resulting value is assigned to the function
identifier. In functions, there must be at least one execution path that leads to a
RETURN statement. Otherwise, PL/SQL raises an exception at run time.

The RETURN statement can be used in an anonymous block to exit the block (and all
enclosing blocks), but the RETURN statement cannot contain an expression.

Example
The following example demonstrates the RETURN statement using a variable, an
expression, or no argument at all:

DECLARE
 FUNCTION num_rows (table_name VARCHAR2) RETURN user_tables.num_rows%TYPE
 IS
 howmany user_tables.num_rows%TYPE;
 BEGIN
 EXECUTE IMMEDIATE 'SELECT num_rows FROM user_tables ' ||

 'WHERE table_name = ''' || UPPER(table_name) || ''''
 INTO howmany;
-- A function can compute a value, then return that value.

RETURN

(
expression

)

;

return_statement

RETURN Statement

13-116 PL/SQL User's Guide and Reference

 RETURN howmany;
 END num_rows;

 FUNCTION double_it(n NUMBER) RETURN NUMBER
 IS
 BEGIN
-- A function can also return an expression.
 RETURN n * 2;
 END double_it;

 PROCEDURE print_something
 IS
 BEGIN
 dbms_output.put_line('Message 1.');
-- A procedure can end early by issuing RETURN with no value.
 RETURN;
 dbms_output.put_line('Message 2 (never printed).');
 END;
BEGIN
 dbms_output.put_line('EMPLOYEES has ' || num_rows('employees') || ' rows.');
 dbms_output.put_line('Twice 100 is ' || double_it(n => 100) || '.');
 print_something;
END;
/

Related Topics
Functions, Procedures

ROLLBACK Statement

PL/SQL Language Elements 13-117

ROLLBACK Statement

The ROLLBACK statement is the inverse of the COMMIT statement. It undoes some or all
database changes made during the current transaction. For more information, see
"Overview of Transaction Processing in PL/SQL" on page 6-29.

Syntax

Keyword and Parameter Description

ROLLBACK
When a parameterless ROLLBACK statement is executed, all database changes made
during the current transaction are undone.

ROLLBACK TO
Undoes all database changes (and releases all locks acquired) since the savepoint
identified by savepoint_name was marked.

SAVEPOINT
Optional, for readability only.

savepoint_name
An undeclared identifier, which marks the current point in the processing of a
transaction. For naming conventions, see "Identifiers" on page 2-3.

WORK
Optional, for readability only.

Usage Notes
All savepoints marked after the savepoint to which you roll back are erased. The
savepoint to which you roll back is not erased. For example, if you mark savepoints A,
B, C, and D in that order, then roll back to savepoint B, only savepoints C and D are
erased.

An implicit savepoint is marked before executing an INSERT, UPDATE, or DELETE
statement. If the statement fails, a rollback to this implicit savepoint is done. Normally,
just the failed SQL statement is rolled back, not the whole transaction. If the statement
raises an unhandled exception, the host environment determines what is rolled back.

In SQL, the FORCE clause manually rolls back an in-doubt distributed transaction.
PL/SQL does not support this clause. For example, the following statement is not
allowed:

ROLLBACK WORK FORCE '24.37.85'; -- not allowed

ROLLBACK
WORK TO

SAVEPOINT
savepoint_name

;

rollback_statement

ROLLBACK Statement

13-118 PL/SQL User's Guide and Reference

In embedded SQL, the RELEASE option frees all Oracle resources (locks and cursors)
held by a program and disconnects from the database. PL/SQL does not support this
option. For example, the following statement is not allowed:

ROLLBACK WORK RELEASE; -- not allowed

Related Topics
COMMIT Statement, SAVEPOINT Statement

%ROWTYPE Attribute

PL/SQL Language Elements 13-119

%ROWTYPE Attribute

The %ROWTYPE attribute provides a record type that represents a row in a database
table. The record can store an entire row of data selected from the table or fetched from
a cursor or cursor variable. Fields in a record and corresponding columns in a row
have the same names and datatypes.

You can use the %ROWTYPE attribute in variable declarations as a datatype specifier.
Variables declared using %ROWTYPE are treated like those declared using a datatype
name. For more information, see "Using the %ROWTYPE Attribute" on page 2-10.

Syntax

Keyword and Parameter Description

cursor_name
An explicit cursor previously declared within the current scope.

cursor_variable_name
A PL/SQL strongly typed cursor variable, previously declared within the current
scope.

table_name
A database table or view that must be accessible when the declaration is elaborated.

Usage Notes
Declaring variables as the type table_name%ROWTYPE is a convenient way to transfer
data between database tables and PL/SQL. You create a single variable rather than a
separate variable for each column. You do not need to know the name of every
column. You refer to the columns using their real names instead of made-up variable
names. If columns are later added to or dropped from the table, your code can keep
working without changes.

To reference a field in the record, use dot notation (record_name.field_name). You
can read or write one field at a time this way.

There are two ways to assign values to all fields in a record at once:

■ First, PL/SQL allows aggregate assignment between entire records if their
declarations refer to the same table or cursor.

■ You can assign a list of column values to a record by using the SELECT or FETCH
statement. The column names must appear in the order in which they were
declared. Select-items fetched from a cursor associated with %ROWTYPE must have
simple names or, if they are expressions, must have aliases.

cursor_name

cursor_variable_name

table_name

% ROWTYPE

rowtype_attribute

%ROWTYPE Attribute

13-120 PL/SQL User's Guide and Reference

Examples
The following example uses %ROWTYPE to declare two records. The first record stores
an entire row selected from a table. The second record stores a row fetched from the c1
cursor, which queries a subset of the columns from the table. The example retrieves a
single row from the table and stores it in the record, then checks the values of some
table columns.

DECLARE
 emp_rec employees%ROWTYPE;
 my_empno employees.employee_id%TYPE := 100;
 CURSOR c1 IS
 SELECT department_id, department_name, location_id FROM departments;
 dept_rec c1%ROWTYPE;
BEGIN
 SELECT * INTO emp_rec FROM employees WHERE employee_id = my_empno;
 IF (emp_rec.department_id = 20) AND (emp_rec.salary > 2000) THEN
 NULL;
 END IF;
END;
/

Related Topics
Constants and Variables, Cursors, Cursor Variables, FETCH Statement

SAVEPOINT Statement

PL/SQL Language Elements 13-121

SAVEPOINT Statement

The SAVEPOINT statement names and marks the current point in the processing of a
transaction. With the ROLLBACK TO statement, savepoints undo parts of a transaction
instead of the whole transaction. For more information, see "Overview of Transaction
Processing in PL/SQL" on page 6-29.

Syntax

Keyword and Parameter Description

savepoint_name
An undeclared identifier, which marks the current point in the processing of a
transaction.

Usage Notes
A simple rollback or commit erases all savepoints. When you roll back to a savepoint,
any savepoints marked after that savepoint are erased. The savepoint to which you
roll back remains.

You can reuse savepoint names within a transaction. The savepoint moves from its old
position to the current point in the transaction.

If you mark a savepoint within a recursive subprogram, new instances of the
SAVEPOINT statement are executed at each level in the recursive descent. You can only
roll back to the most recently marked savepoint.

An implicit savepoint is marked before executing an INSERT, UPDATE, or DELETE
statement. If the statement fails, a rollback to the implicit savepoint is done. Normally,
just the failed SQL statement is rolled back, not the whole transaction; if the statement
raises an unhandled exception, the host environment (such as SQL*Plus) determines
what is rolled back.

Related Topics
COMMIT Statement, ROLLBACK Statement

SAVEPOINT savepoint_name ;

savepoint_statement

SCN_TO_TIMESTAMP Function

13-122 PL/SQL User's Guide and Reference

SCN_TO_TIMESTAMP Function

Syntax
return_value := SCN_TO_TIMESTAMP(number);

Purpose
SCN_TO_TIMESTAMP takes an argument that represents a system change number
(SCN) and returns the timestamp associated with that SCN. The returned value has
the datatype TIMESTAMP.

Usage Notes
This function is part of the flashback query feature. System change numbers provide a
precise way to specify the database state at a moment in time, so that you can see the
data as it was at that moment.

Call this function to find out the date and time associated with an SCN that you have
stored to use with flashback query.

Examples
DECLARE
 right_now TIMESTAMP; yesterday TIMESTAMP; sometime TIMESTAMP;
 scn1 INTEGER; scn2 INTEGER; scn3 INTEGER;
BEGIN
-- Get the current SCN.
 right_now := SYSTIMESTAMP;
 scn1 := TIMESTAMP_TO_SCN(right_now);
 dbms_output.put_line('Current SCN is ' || scn1);

-- Get the SCN from exactly 1 day ago.
 yesterday := right_now - 1;
 scn2 := TIMESTAMP_TO_SCN(yesterday);
 dbms_output.put_line('SCN from yesterday is ' || scn2);

-- Find an arbitrary SCN somewhere between yesterday and today.
-- (In a real program we would have stored the SCN at some significant moment.)
 scn3 := (scn1 + scn2) / 2;
-- Find out what time that SCN was in effect.
 sometime := SCN_TO_TIMESTAMP(scn3);
 dbms_output.put_line('SCN ' || scn3 || ' was in effect at ' ||
TO_CHAR(sometime));
END;
/

Related Topics
TIMESTAMP_TO_SCN Function

SELECT INTO Statement

PL/SQL Language Elements 13-123

SELECT INTO Statement

The SELECT INTO statement retrieves data from one or more database tables, and
assigns the selected values to variables or collections. For a full description of the
SELECT statement, see Oracle Database SQL Reference.

In its default usage (SELECT ... INTO), this statement retrieves one or more
columns from a single row. In its bulk usage (SELECT ... BULK COLLECT INTO),
this statement retrieves an entire result set at once.

Syntax

SELECT

*

select_item

,

select_into_statement

INTO
variable_name

,

record_name

BULK COLLECT INTO
collection_name

: host_array_name

,

FROM
alias

,

rest_of_statement ;(subquery

TABLE (subquery2)

table_reference

)

DISTINCT

UNIQUE

ALL

SELECT INTO Statement

13-124 PL/SQL User's Guide and Reference

Keyword and Parameter Description

alias
Another (usually short) name for the referenced column, table, or view.

BULK COLLECT
Stores result values in one or more collections, for faster queries than loops with
FETCH statements. For more information, see "Reducing Loop Overhead for DML
Statements and Queries (FORALL, BULK COLLECT)" on page 11-7.

collection_name
A declared collection into which select_item values are fetched. For each
select_item, there must be a corresponding, type-compatible collection in the list.

function_name
A user-defined function.

host_array_name
An array (declared in a PL/SQL host environment and passed to PL/SQL as a bind
variable) into which select_item values are fetched. For each select_item, there
must be a corresponding, type-compatible array in the list. Host arrays must be
prefixed with a colon.

numeric_literal
A literal that represents a number or a value implicitly convertible to a number.

parameter_name
A formal parameter of a user-defined function.

function_name
(parameter_name

,

)

NULL

numeric_literal

schema_name . table_name

view_name
. *

schema_name . table_name

view_name
.

column_name

sequence_name .
CURRVAL

NEXTVAL

' text '

AS
alias

select_item

SELECT INTO Statement

PL/SQL Language Elements 13-125

record_name
A user-defined or %ROWTYPE record into which rows of values are fetched. For each
select_item value returned by the query, there must be a corresponding,
type-compatible field in the record.

rest_of_statement
Anything that can follow the FROM clause in a SQL SELECT statement (except the
SAMPLE clause).

schema_name
The schema containing the table or view. If you omit schema_name, Oracle assumes
the table or view is in your schema.

subquery
A SELECT statement that provides a set of rows for processing. Its syntax is like that of
select_into_statement without the INTO clause. See "SELECT INTO Statement"
on page 13-123.

table_reference
A table or view that must be accessible when you execute the SELECT statement, and
for which you must have SELECT privileges. For the syntax of table_reference,
see "DELETE Statement" on page 13-41.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,
which must be a nested table or a varray. Operator TABLE informs Oracle that the
value is a collection, not a scalar value.

variable_name
A previously declared variable into which a select_item value is fetched. For each
select_item value returned by the query, there must be a corresponding,
type-compatible variable in the list.

Usage Notes
By default, a SELECT INTO statement must return only one row. Otherwise, PL/SQL
raises the predefined exception TOO_MANY_ROWS and the values of the variables in the
INTO clause are undefined. Make sure your WHERE clause is specific enough to only
match one row

If no rows are returned, PL/SQL raises NO_DATA_FOUND. You can guard against this
exception by selecting the result of an aggregate function, such as COUNT(*) or
AVG(), where practical. These functions are guaranteed to return a single value, even
if no rows match the condition.

A SELECT ... BULK COLLECT INTO statement can return multiple rows. You must
set up collection variables to hold the results. You can declare associative arrays or
nested tables that grow as needed to hold the entire result set.

The implicit cursor SQL and its attributes %NOTFOUND, %FOUND, %ROWCOUNT, and
%ISOPEN provide information about the execution of a SELECT INTO statement.

SELECT INTO Statement

13-126 PL/SQL User's Guide and Reference

Examples
The following example demonstrates using the SELECT INTO statement to query a
single value into a PL/SQL variable, entire columns into PL/SQL collections, or entire
rows into a PL/SQL collection of records:

DECLARE
 howmany NUMBER;
 some_first employees.first_name%TYPE;
 some_last employees.last_name%TYPE;
 some_employee employees%ROWTYPE;
 TYPE first_typ IS TABLE OF employees.first_name%TYPE INDEX BY PLS_INTEGER;
 TYPE last_typ IS TABLE OF employees.first_name%TYPE INDEX BY PLS_INTEGER;
 first_names first_typ;
 last_names last_typ;
 CURSOR c1 IS SELECT first_name, last_name FROM employees;
 TYPE name_typ IS TABLE OF c1%ROWTYPE INDEX BY PLS_INTEGER;
 all_names name_typ;
 TYPE emp_typ IS TABLE OF employees%ROWTYPE INDEX BY PLS_INTEGER;
 all_employees emp_typ;
BEGIN
-- Query a single value and store it in a variable.
 SELECT COUNT(*) INTO howmany FROM user_tables;
 dbms_output.put_line('This schema owns ' || howmany || ' tables.');

-- Query multiple columns from one row, and store them in variables.
 SELECT first_name, last_name INTO some_first, some_last
 FROM employees WHERE ROWNUM < 2;
 dbms_output.put_line('Random employee: ' || some_first ||
 ' ' || some_last);

-- Query a single row and store it in a record.
 SELECT * INTO some_employee FROM employees WHERE ROWNUM < 2;

-- Query multiple columns from multiple rows, and store them in a collection
-- of records.
 SELECT first_name, last_name BULK COLLECT INTO all_names FROM EMPLOYEES;

-- Query multiple columns from multiple rows, and store them in separate
-- collections. (Generally less useful than a single collection of records.)
 SELECT first_name, last_name
 BULK COLLECT INTO first_names, last_names
 FROM EMPLOYEES;

-- Query an entire (small!) table and store the rows
-- in a collection of records. Now you can manipulate the data
-- in-memory without any more I/O.
 SELECT * BULK COLLECT INTO all_employees FROM employees;
END;
/

Related Topics
Assignment Statement, FETCH Statement, %ROWTYPE Attribute

SERIALLY_REUSABLE Pragma

PL/SQL Language Elements 13-127

SERIALLY_REUSABLE Pragma

The pragma SERIALLY_REUSABLE indicates that the package state is needed only for
the duration of one call to the server (for example, a PL/SQL anonymous block, an
OCI call to the database or a stored procedure call through a database link). After this
call, the storage for the package variables can be reused, reducing the memory
overhead for long-running sessions. For more information, see Oracle Database
Application Developer's Guide - Fundamentals.

Syntax

Keyword and Parameter Description

PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at
compile time, not at run time. They do not affect the meaning of a program; they
simply convey information to the compiler.

Usage Notes
This pragma is appropriate for packages that declare large temporary work areas that
are used once and not needed during subsequent database calls in the same session.

You can mark a bodiless package as serially reusable. If a package has a spec and body,
you must mark both. You cannot mark only the body.

The global memory for serially reusable packages is pooled in the System Global Area
(SGA), not allocated to individual users in the User Global Area (UGA). That way, the
package work area can be reused. When the call to the server ends, the memory is
returned to the pool. Each time the package is reused, its public variables are
initialized to their default values or to NULL.

Serially reusable packages cannot be accessed from database triggers or other PL/SQL
subprograms that are called from SQL statements. If you try, Oracle generates an error.

Examples
The following example creates a serially reusable package:

CREATE PACKAGE pkg1 IS
 PRAGMA SERIALLY_REUSABLE;
 num NUMBER := 0;
 PROCEDURE init_pkg_state(n NUMBER);
 PROCEDURE print_pkg_state;
END pkg1;
/

CREATE PACKAGE BODY pkg1 IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE init_pkg_state (n NUMBER) IS
 BEGIN
 pkg1.num := n;
 END;

PRAGMA SERIALLY_REUSABLE ;

serially_reusable_pragma

SERIALLY_REUSABLE Pragma

13-128 PL/SQL User's Guide and Reference

 PROCEDURE print_pkg_state IS
 BEGIN
 dbms_output.put_line('Num: ' || pkg1.num);
 END;
END pkg1;
/

DROP PACKAGE pkg1;

Related Topics
AUTONOMOUS_TRANSACTION Pragma, EXCEPTION_INIT Pragma,
RESTRICT_REFERENCES Pragma

SET TRANSACTION Statement

PL/SQL Language Elements 13-129

SET TRANSACTION Statement

The SET TRANSACTION statement begins a read-only or read-write transaction,
establishes an isolation level, or assigns the current transaction to a specified rollback
segment. Read-only transactions are useful for running multiple queries against one or
more tables while other users update the same tables. For more information, see
"Setting Transaction Properties with SET TRANSACTION" on page 6-32.

Syntax

Keyword and Parameter Description

READ ONLY
Establishes the current transaction as read-only, so that subsequent queries see only
changes committed before the transaction began. The use of READ ONLY does not affect
other users or transactions.

READ WRITE
Establishes the current transaction as read-write. The use of READ WRITE does not
affect other users or transactions. If the transaction executes a data manipulation
statement, Oracle assigns the transaction to a rollback segment.

ISOLATION LEVEL
Specifies how to handle transactions that modify the database.

SERIALIZABLE: If a serializable transaction tries to execute a SQL data manipulation
statement that modifies any table already modified by an uncommitted transaction,
the statement fails.

To enable SERIALIZABLE mode, your DBA must set the Oracle initialization
parameter COMPATIBLE to 7.3.0 or higher.

READ COMMITTED: If a transaction includes SQL data manipulation statements that
require row locks held by another transaction, the statement waits until the row locks
are released.

USE ROLLBACK SEGMENT
Assigns the current transaction to the specified rollback segment and establishes the
transaction as read-write. You cannot use this parameter with the READ ONLY
parameter in the same transaction because read-only transactions do not generate
rollback information.

SET TRANSACTION

READ ONLY

READ WRITE

ISOLATION LEVEL
SERIALIZABLE

READ COMMITTED

USE ROLLBACK SEGMENT rollback_segment

NAME ’text’
;

SET TRANSACTION Statement

13-130 PL/SQL User's Guide and Reference

NAME
Specifies a name or comment text for the transaction. This is better than using the
COMMIT COMMENT feature because the name is available while the transaction is
running, making it easier to monitor long-running and in-doubt transactions.

Usage Notes
The SET TRANSACTION statement must be the first SQL statement in the transaction
and can appear only once in the transaction.

Example
The following example establishes a read-only transaction:

BEGIN
 COMMIT; -- end previous transaction
 SET TRANSACTION READ ONLY;
 FOR person IN (SELECT last_name FROM employees WHERE ROWNUM < 10)
 LOOP
 dbms_output.put_line(person.last_name);
 END LOOP;
 dbms_output.put_line('------------------');
 FOR dept IN (SELECT department_name FROM departments WHERE ROWNUM < 10)
 LOOP
 dbms_output.put_line(dept.department_name);
 END LOOP;
 COMMIT; -- end read-only transaction
END;
/

Related Topics
COMMIT Statement, ROLLBACK Statement, SAVEPOINT Statement

SQL Cursor

PL/SQL Language Elements 13-131

SQL Cursor

Oracle implicitly opens a cursor to process each SQL statement not associated with an
explicit cursor. In PL/SQL, you can refer to the most recent implicit cursor as the SQL
cursor, which always has the attributes %FOUND, %ISOPEN, %NOTFOUND, and
%ROWCOUNT. They provide information about the execution of data manipulation
statements. The SQL cursor has additional attributes, %BULK_ROWCOUNT and
%BULK_EXCEPTIONS, designed for use with the FORALL statement. For more
information, see "Querying Data with PL/SQL" on page 6-9.

Syntax

Keyword and Parameter Description

%BULK_ROWCOUNT
A composite attribute designed for use with the FORALL statement. This attribute acts
like an index-by table. Its ith element stores the number of rows processed by the ith
execution of an UPDATE or DELETE statement. If the ith execution affects no rows,
%BULK_ROWCOUNT(i) returns zero.

%BULK_EXCEPTIONS
An associative array that stores information about any exceptions encountered by a
FORALL statement that uses the SAVE EXCEPTIONS clause. You must loop through its
elements to determine where the exceptions occurred and what they were. For each
index value i between 1 and SQL%BULK_EXCEPTIONS.COUNT,
SQL%BULK_EXCEPTIONS(i).ERROR_INDEX specifies which iteration of the FORALL
loop caused an exception. SQL%BULK_EXCEPTIONS(i).ERROR_CODE specifies the
Oracle error code that corresponds to the exception.

%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows
or a SELECT INTO statement returned one or more rows. Otherwise, it returns FALSE.

%ISOPEN
Always returns FALSE, because Oracle closes the SQL cursor automatically after
executing its associated SQL statement.

SQL %

FOUND

ISOPEN

NOTFOUND

ROWCOUNT

BULK_ROWCOUNT (index)

BULK_EXCEPTIONS (index) .
ERROR_INDEX

ERROR_CODE

SQL Cursor

13-132 PL/SQL User's Guide and Reference

%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE
statement affected no rows, or a SELECT INTO statement returned no rows. Otherwise,
it returns FALSE.

%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or
returned by a SELECT INTO statement.

SQL
The name of the Oracle implicit cursor.

Usage Notes
You can use cursor attributes in procedural statements but not in SQL statements.
Before Oracle opens the SQL cursor automatically, the implicit cursor attributes return
NULL.

The values of cursor attributes always refer to the most recently executed SQL
statement, wherever that statement appears. It might be in a different scope. If you
want to save an attribute value for later use, assign it to a Boolean variable
immediately.

If a SELECT INTO statement fails to return a row, PL/SQL raises the predefined
exception NO_DATA_FOUND, whether you check SQL%NOTFOUND on the next line or
not. A SELECT INTO statement that calls a SQL aggregate function never raises
NO_DATA_FOUND, because those functions always return a value or a null. In such
cases, SQL%NOTFOUND returns FALSE.

%BULK_ROWCOUNT is not maintained for bulk inserts; that would be redundant. For
example, the following FORALL statement inserts one row per iteration. After each
iteration, %BULK_ROWCOUNT returns 1:

CREATE TABLE num_table (n NUMBER);

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 nums NumList := NumList(1,3,5,7,11,13,17);
BEGIN
 FORALL i IN nums.FIRST .. nums.LAST
 INSERT INTO num_table (n) VALUES (nums(i));

 FOR i IN nums.FIRST .. nums.LAST
 LOOP
 dbms_output.put_line('Inserted ' || SQL%BULK_ROWCOUNT(i) || ' row(s)'
 || ' on iteration ' || i);
 END LOOP;
END;
/

DROP TABLE num_table;

You can use the scalar attributes %FOUND, %NOTFOUND, and %ROWCOUNT with bulk
binds. For example, %ROWCOUNT returns the total number of rows processed by all
executions of the SQL statement.

Although %FOUND and %NOTFOUND refer only to the last execution of the SQL
statement, you can use %BULK_ROWCOUNT to infer their values for individual

SQL Cursor

PL/SQL Language Elements 13-133

executions. For example, when %BULK_ROWCOUNT(i) is zero, %FOUND and
%NOTFOUND are FALSE and TRUE, respectively.

Examples
The following example inserts a new row only if an update affects no rows:

CREATE TABLE visitors (email VARCHAR2(128), pages_visited INTEGER DEFAULT 1);

CREATE OR REPLACE PROCEDURE someone_visited (visitor_email visitors.email%TYPE)
AS
BEGIN
 UPDATE visitors SET pages_visited = pages_visited + 1
 WHERE email = visitor_email;
 IF SQL%NOTFOUND THEN
 INSERT INTO visitors (email) VALUES (visitor_email);
 dbms_output.put_line('Adding ' || visitor_email || ' to the table.');
 ELSE
 dbms_output.put_line('Incremented counter for ' || visitor_email || '.');
 END IF;
END;
/

DECLARE
 visitor_email visitors.email%TYPE := 'fred@fictional_domain.com';
BEGIN
 someone_visited(visitor_email);
 someone_visited(visitor_email);
END;
/

DROP TABLE visitors;
DROP PROCEDURE someone_visited;

The following example raises an exception if more than 10 rows are deleted:

CREATE TABLE temp AS SELECT object_name name FROM user_objects;

DECLARE
 large_deletion EXCEPTION;
 rows_deleted NUMBER;
BEGIN
 DELETE FROM temp WHERE name LIKE '%A%';
 rows_deleted := SQL%ROWCOUNT;
 COMMIT;
 IF rows_deleted > 10 THEN
 RAISE large_deletion;
 END IF;

 dbms_output.put_line('Nothing unusual detected.');

 EXCEPTION
 WHEN large_deletion THEN
 dbms_output.put_line('Recording deletion of ' ||
 rows_deleted || ' rows in case of error.');
END;
/

DROP TABLE temp;

SQL Cursor

13-134 PL/SQL User's Guide and Reference

The following example uses %BULK_ROWCOUNT. After the FORALL statement
completes, the program checks how many rows were updated by the third UPDATE:

CREATE TABLE num_table (n NUMBER);

DECLARE
 TYPE NumList IS TABLE OF NUMBER;
 nums NumList := NumList(1,3,5,5,11,5,5);
BEGIN
 FORALL i IN nums.FIRST .. nums.LAST
 INSERT INTO num_table (n) VALUES (nums(i));

-- All the numbers in the table will be squared.
-- Some updates will affect more rows than others.
 FORALL j IN nums.FIRST .. nums.LAST
 UPDATE num_table SET n = n * n
 WHERE n = nums(j);

 FOR k IN nums.FIRST .. nums.LAST
 LOOP
 dbms_output.put_line('Update #' || k || ' affected ' ||
 SQL%BULK_ROWCOUNT(k) || ' rows.');
 END LOOP;
END;
/

DROP TABLE num_table;

Related Topics
Cursors, Cursor Attributes, FORALL Statement, "Handling FORALL Exceptions with
the %BULK_EXCEPTIONS Attribute" on page 11-13

SQLCODE Function

PL/SQL Language Elements 13-135

SQLCODE Function

The function SQLCODE returns the number code of the most recent exception.

For internal exceptions, SQLCODE returns the number of the associated Oracle error.
The number that SQLCODE returns is negative unless the Oracle error is no data found,
in which case SQLCODE returns +100.

For user-defined exceptions, SQLCODE returns +1, or a value you assign if the
exception is associated with an Oracle error number through pragma
EXCEPTION_INIT.

Syntax

Usage Notes
SQLCODE is only useful in an exception handler. Outside a handler, SQLCODE always
returns 0. SQLCODE is especially useful in the OTHERS exception handler, because it
lets you identify which internal exception was raised.

You cannot use SQLCODE directly in a SQL statement. Assign the value of SQLCODE to
a local variable first.

When using pragma RESTRICT_REFERENCES to assert the purity of a stored function,
you cannot specify the constraints WNPS and RNPS if the function calls SQLCODE.

Example
The following example inserts the value of SQLCODE into an audit table:

CREATE TABLE errors (code NUMBER, message VARCHAR2(128), happened TIMESTAMP);
DECLARE
 name employees.last_name%TYPE;
 my_code NUMBER;
 my_errm VARCHAR2(32000);
BEGIN
 SELECT last_name INTO name FROM employees WHERE employee_id = -1;
 EXCEPTION
 WHEN OTHERS THEN
 my_code := SQLCODE;
 my_errm := SQLERRM;
 dbms_output.put_line('Error code ' || my_code || ': ' || my_errm);
-- Normally we would call another procedure, declared with PRAGMA
-- AUTONOMOUS_TRANSACTION, to insert information about errors.
 INSERT INTO errors VALUES (my_code, my_errm, SYSTIMESTAMP);
END;
/
DROP TABLE errors;

Related Topics
Exceptions, SQLERRM Function, "Retrieving the Error Code and Error Message:
SQLCODE and SQLERRM" on page 10-14.

SQLCODE

sqlcode_function

SQLERRM Function

13-136 PL/SQL User's Guide and Reference

SQLERRM Function

The function SQLERRM returns the error message associated with its error-number
argument. If the argument is omitted, it returns the error message associated with the
current value of SQLCODE. SQLERRM with no argument is useful only in an exception
handler. Outside a handler, SQLERRM with no argument always returns the message
normal, successful completion.

For internal exceptions, SQLERRM returns the message associated with the Oracle error
that occurred. The message begins with the Oracle error code.

For user-defined exceptions, SQLERRM returns the message user-defined exception,
unless you used the pragma EXCEPTION_INIT to associate the exception with an
Oracle error number, in which case SQLERRM returns the corresponding error message.
For more information, see "Retrieving the Error Code and Error Message: SQLCODE
and SQLERRM" on page 10-14.

Syntax

Keyword and Parameter Description

error_number
A valid Oracle error number. For a list of Oracle errors (ones prefixed by ORA-), see
Oracle Database Error Messages.

Usage Notes
SQLERRM is especially useful in the OTHERS exception handler, where it lets you
identify which internal exception was raised.

The error number passed to SQLERRM should be negative. Passing a zero to SQLERRM
always returns the following message:

ORA-0000: normal, successful completion

Passing a positive number to SQLERRM always returns the message

User-Defined Exception

unless you pass +100, in which case SQLERRM returns the following message:

ORA-01403: no data found

You cannot use SQLERRM directly in a SQL statement. Assign the value of SQLERRM to
a local variable first:

my_sqlerrm := SQLERRM;
...
INSERT INTO errors VALUES (my_sqlerrm, ...);

When using pragma RESTRICT_REFERENCES to assert the purity of a stored function,
you cannot specify the constraints WNPS and RNPS if the function calls SQLERRM.

SQLERRM
(error_number)

sqlerrm_function

SQLERRM Function

PL/SQL Language Elements 13-137

Example
The following example retrieves the error message associated with an unhandled
exception, and stores it in an audit table. The SUBSTR function truncates the message if
it is too long to fit in the table.

CREATE TABLE errors (code NUMBER, message VARCHAR2(128), happened TIMESTAMP);
DECLARE
 name employees.last_name%TYPE;
 my_code NUMBER;
 my_errm VARCHAR2(32000);
BEGIN
 SELECT last_name INTO name FROM employees WHERE employee_id = -1;
 EXCEPTION
 WHEN OTHERS THEN
 my_code := SQLCODE;
 my_errm := SQLERRM;
 dbms_output.put_line('Error code ' || my_code || ': ' || my_errm);
-- Normally we would call another procedure, declared with PRAGMA
-- AUTONOMOUS_TRANSACTION, to insert information about errors.
 INSERT INTO errors VALUES (my_code, my_errm, SYSTIMESTAMP);
END;
/
DROP TABLE errors;

Related Topics
Exceptions, SQLCODE Function

TIMESTAMP_TO_SCN Function

13-138 PL/SQL User's Guide and Reference

TIMESTAMP_TO_SCN Function

Syntax
return_value := TIMESTAMP_TO_SCN(timestamp);

Purpose
TIMESTAMP_TO_SCN takes an argument that represents a precise time, and returns the
system change number (SCN) of the database at that moment in time. The returned
value has the datatype NUMBER.

Usage Notes
This function is part of the flashback query feature. System change numbers provide a
precise way to specify the database state at a moment in time, so that you can see the
data as it was at that moment.

Call this function to find out the system change number associated with the date and
time to which you want to "flash back".

Examples
DECLARE
 right_now TIMESTAMP; yesterday TIMESTAMP; sometime TIMESTAMP;
 scn1 INTEGER; scn2 INTEGER; scn3 INTEGER;
BEGIN
-- Get the current SCN.
 right_now := SYSTIMESTAMP;
 scn1 := TIMESTAMP_TO_SCN(right_now);
 dbms_output.put_line('Current SCN is ' || scn1);

-- Get the SCN from exactly 1 day ago.
 yesterday := right_now - 1;
 scn2 := TIMESTAMP_TO_SCN(yesterday);
 dbms_output.put_line('SCN from yesterday is ' || scn2);

-- Find an arbitrary SCN somewhere between yesterday and today.
-- (In a real program we would have stored the SCN at some significant moment.)
 scn3 := (scn1 + scn2) / 2;
-- Find out what time that SCN was in effect.
 sometime := SCN_TO_TIMESTAMP(scn3);
 dbms_output.put_line('SCN ' || scn3 || ' was in effect at ' ||
TO_CHAR(sometime));
END;
/

Related Topics
SCN_TO_TIMESTAMP Function

%TYPE Attribute

PL/SQL Language Elements 13-139

%TYPE Attribute

The %TYPE attribute lets use the datatype of a field, record, nested table, database
column, or variable in your own declarations, instead of hardcoding the type names.
You can use the %TYPE attribute as a datatype specifier when declaring constants,
variables, fields, and parameters. If the types that you reference change, your
declarations are automatically updated. This technique saves you from making code
changes when, for example, the length of a VARCHAR2 column is increased. For more
information, see "Using the %TYPE Attribute" on page 2-9.

Syntax

Keyword and Parameter Description

collection_name
A nested table, index-by table, or varray previously declared within the current scope.

cursor_variable_name
A PL/SQL cursor variable previously declared within the current scope. Only the
value of another cursor variable can be assigned to a cursor variable.

db_table_name.column_name
A table and column that must be accessible when the declaration is elaborated.

object_name
An instance of an object type, previously declared within the current scope.

record_name
A user-defined or %ROWTYPE record, previously declared within the current scope.

record_name.field_name
A field in a user-defined or %ROWTYPE record, previously declared within the current
scope.

variable_name
A variable, previously declared in the same scope.

collection_name

cursor_variable_name

object_name

record_name
. field_name

db_table_name . column_name

variable_name

% TYPE

type_attribute

%TYPE Attribute

13-140 PL/SQL User's Guide and Reference

Usage Notes
The %TYPE attribute is particularly useful when declaring variables, fields, and
parameters that refer to database columns. Your code can keep working even when the
lengths or types of the columns change.

The NOT NULL column constraint is not inherited by items declared using %TYPE.

Examples
DECLARE
-- We know that BUFFER2 and BUFFER3 will be big enough to hold
-- the answers. If we have to increase the size of BUFFER1, the
-- other variables will change size as well.
 buffer1 VARCHAR2(13) := 'abCdefGhiJklm';
 buffer2 buffer1%TYPE := UPPER(buffer1);
 buffer3 buffer1%TYPE := LOWER(buffer1);

-- We know that this variable will be able to hold the contents
-- of this table column. If the table is altered to make the
-- column longer or shorter, this variable will change size as well.
 tname user_tables.table_name%TYPE;

-- %TYPE is great for subprogram parameters too, no need to
-- recompile the subprogram if the table column changes.
 PROCEDURE print_table_name(the_name user_tables.table_name%TYPE)
 IS
 BEGIN
 dbms_output.put_line('Table = ' || the_name);
 END;
BEGIN
 SELECT table_name INTO tname FROM user_tables WHERE ROWNUM < 2;
 print_table_name(tname);
END;
/

Constants and Variables, %ROWTYPE Attribute

UPDATE Statement

PL/SQL Language Elements 13-141

UPDATE Statement

The UPDATE statement changes the values of specified columns in one or more rows in
a table or view. For a full description of the UPDATE statement, see Oracle Database SQL
Reference.

Syntax

Keyword and Parameter Description

alias
Another (usually short) name for the referenced table or view, typically used in the
WHERE clause.

column_name
The column (or one of the columns) to be updated. It must be the name of a column in
the referenced table or view. A column name cannot be repeated in the column_name
list. Column names need not appear in the UPDATE statement in the same order that
they appear in the table or view.

returning_clause
Returns values from updated rows, eliminating the need to SELECT the rows
afterward. You can retrieve the column values into variables or host variables, or into
collections or host arrays. You cannot use the RETURNING clause for remote or parallel
updates. If the statement does not affect any rows, the values of the variables specified
in the RETURNING clause are undefined. For the syntax of returning_clause, see
"DELETE Statement" on page 13-41.

SET column_name = sql_expression
This clause assigns the value of sql_expression to the column identified by
column_name. If sql_expression contains references to columns in the table being

UPDATE (subquery

TABLE ()subquery2

alias
table_reference

)

SET

column_name =
sql_expression

()

(column_name

,

) = ()

,

WHERE
search_condition

CURRENT OF cursor_name returning_clause
;

subquery3

subquery4

update_statement

SET

column_name =
sql_expression

(subque)

(column_name

,

) = (sub)

,

WHERE
search_condition

CURRENT OF cursor_name returning_clause
;

UPDATE Statement

13-142 PL/SQL User's Guide and Reference

updated, the references are resolved in the context of the current row. The old column
values are used on the right side of the equal sign.

SET column_name = (subquery3)
Assigns the value retrieved from the database by subquery3 to the column identified
by column_name. The subquery must return exactly one row and one column.

SET (column_name, column_name, ...) = (subquery4)
Assigns the values retrieved from the database by subquery4 to the columns in the
column_name list. The subquery must return exactly one row that includes all the
columns listed.

The column values returned by the subquery are assigned to the columns in the
column list in order. The first value is assigned to the first column in the list, the
second value is assigned to the second column in the list, and so on.

The following example creates a table with correct employee IDs but garbled names.
Then it runs an UPDATE statement with a correlated query, to retrieve the correct
names from the EMPLOYEES table and fix the names in the new table.

-- Create a table with all the right IDs, but messed-up names.
CREATE TABLE e1 AS
 SELECT employee_id,
 UPPER(first_name) first_name,
 TRANSLATE(last_name,'aeiou','12345') last_name
 FROM employees;

BEGIN
-- Display the first 5 names to show they're messed up.
 FOR person IN (SELECT * FROM e1 WHERE ROWNUM < 6)
 LOOP
 dbms_output.put_line(person.first_name || ' ' || person.last_name);
 END LOOP;
 UPDATE e1 SET (first_name, last_name) =
 (SELECT first_name, last_name FROM employees
 WHERE employee_id = e1.employee_id);
 dbms_output.put_line('*** Updated ' || SQL%ROWCOUNT || ' rows. ***');
-- Display the first 5 names to show they've been fixed up.
 FOR person IN (SELECT * FROM e1 WHERE ROWNUM < 6)
 LOOP
 dbms_output.put_line(person.first_name || ' ' || person.last_name);
 END LOOP;
END;
/

DROP TABLE e1;

sql_expression
Any valid SQL expression. For more information, see Oracle Database SQL Reference.

subquery
A SELECT statement that provides a set of rows for processing. Its syntax is like that of
select_into_statement without the INTO clause. See "SELECT INTO Statement"
on page 13-123.

UPDATE Statement

PL/SQL Language Elements 13-143

table_reference
A table or view that must be accessible when you execute the UPDATE statement, and
for which you must have UPDATE privileges. For the syntax of table_reference,
see "DELETE Statement" on page 13-41.

TABLE (subquery2)
The operand of TABLE is a SELECT statement that returns a single column value,
which must be a nested table or a varray. Operator TABLE informs Oracle that the
value is a collection, not a scalar value.

WHERE CURRENT OF cursor_name
Refers to the latest row processed by the FETCH statement associated with the
specified cursor. The cursor must be FOR UPDATE and must be open and positioned on
a row.

If the cursor is not open, the CURRENT OF clause causes an error. If the cursor is open,
but no rows have been fetched or the last fetch returned no rows, PL/SQL raises the
predefined exception NO_DATA_FOUND.

WHERE search_condition
Chooses which rows to update in the database table. Only rows that meet the search
condition are updated. If you omit this clause, all rows in the table are updated.

Usage Notes
You can use the UPDATE WHERE CURRENT OF statement after a fetch from an open
cursor (including fetches done by a cursor FOR loop), provided the associated query is
FOR UPDATE. This statement updates the row that was just fetched.

The implicit cursor SQL and the cursor attributes %NOTFOUND, %FOUND, %ROWCOUNT,
and %ISOPEN let you access useful information about the execution of an UPDATE
statement.

Examples
The following example demonstrates how to update table rows based on conditions,
and how to store the updated values, columns, or entire rows in PL/SQL variables:

-- Create some rows with values in all caps like (EMPLOYEES,TABLE)
-- and (EMP_JOB_IX,INDEX).
CREATE TABLE my_objects AS SELECT object_name, object_type FROM user_objects;

DECLARE
 my_name my_objects.object_name%TYPE;
 my_type my_objects.object_type%TYPE;
 TYPE name_typ IS TABLE OF my_objects.object_name%TYPE INDEX BY PLS_INTEGER;
 TYPE type_typ IS TABLE OF my_objects.object_type%TYPE INDEX BY PLS_INTEGER;
 all_names name_typ;
 all_types type_typ;
 TYPE table_typ IS TABLE OF my_objects%ROWTYPE INDEX BY PLS_INTEGER;
 all_rows table_typ;
BEGIN
-- Show the first 10 rows as they originally were.
 FOR obj IN (SELECT * FROM my_objects WHERE ROWNUM < 11)
 LOOP
 dbms_output.put_line('Name = ' || obj.object_name || ', type = ' ||
 obj.object_type);
 END LOOP;

UPDATE Statement

13-144 PL/SQL User's Guide and Reference

 UPDATE my_objects SET object_name = LOWER(object_name)
 WHERE object_type = 'TABLE';
 dbms_output.put_line('*** Updated ' || SQL%ROWCOUNT || ' rows. ***');
-- Show the first 10 rows after the update.
-- Only some of the names (the table names) have been changed to lowercase.
 FOR obj IN (SELECT * FROM my_objects WHERE ROWNUM < 11)
 LOOP
 dbms_output.put_line('Name = ' || obj.object_name || ', type = ' ||
 obj.object_type);
 END LOOP;

-- Update a single row, and store the values of updated (or unchanged)
-- columns in variables.
 UPDATE my_objects SET object_name = INITCAP(object_name)
 WHERE object_name = 'employees'
 RETURNING object_name, object_type INTO my_name, my_type;

 dbms_output.put_line('*** Updated ' || SQL%ROWCOUNT || ' rows. ***');
 dbms_output.put_line('Affected this row: ' || my_name || ', ' || my_type);

-- Update many rows, storing the values of updated (or unchanged)
-- columns in collections of records. Can't use 'RETURNING *', have
-- to list the columns individually.
 UPDATE my_objects SET object_name = INITCAP(object_name)
 WHERE object_type IN ('TRIGGER','VIEW','SEQUENCE')
 RETURNING object_name, object_type BULK COLLECT INTO all_rows;

 dbms_output.put_line('*** Updated ' || SQL%ROWCOUNT || ' rows. ***');
 FOR i IN all_rows.FIRST .. all_rows.LAST
 LOOP
 dbms_output.put_line('Affected this row: ' || all_rows(i).object_name || ',
' || all_rows(i).object_type);
 END LOOP;

-- Update many rows, storing the values of updated (or unchanged)
-- columns in separate collections. (Generally less useful than using
-- collections of records as above.)
 UPDATE my_objects SET object_name = INITCAP(object_name)
 WHERE object_type IN ('INDEX','PROCEDURE')
 RETURNING object_name, object_type BULK COLLECT INTO all_names, all_types;

 dbms_output.put_line('*** Updated ' || SQL%ROWCOUNT || ' rows. ***');
 FOR i IN all_names.FIRST .. all_names.LAST
 LOOP
 dbms_output.put_line('Affected this row: ' || all_names(i) || ', ' ||
all_types(i));
 END LOOP;

END;
/

DROP TABLE my_objects;

Related Topics
DELETE Statement, FETCH Statement, INSERT Statement

Sample PL/SQL Programs A-1

A
Sample PL/SQL Programs

This appendix tells you where to find collections of sample PL/SQL programs, for
your own study and testing.

Where to Find PL/SQL Sample Programs
You can find some sample programs in the PL/SQL demo directory. For the location of
the directory, see the Oracle installation guide for your system. These samples are
typically older ones based on the SCOTT schema, with its EMP and DEPT tables.

Most examples in this book have been made into complete programs that you can run
under the HR sample schema, with its EMPLOYEES and DEPARTMENTS tables.

The Oracle Technology Network web site has a PL/SQL section with many sample
programs to download, at http://otn.oracle.com/tech/pl_sql/. These
programs demonstrate many language features, particularly the most recent ones. You
can use some of the programs to compare performance of PL/SQL across database
releases.

For examples of calling PL/SQL from other languages, see Oracle Database Java
Developer's Guide and Pro*C/C++ Programmer's Guide.

Exercises for the Reader
Here are some PL/SQL programming constructs that are helpful to know. After
learning from the sample programs in this book and on the web, check to see that you
are familiar with writing each of these constructs.

■ An anonymous PL/SQL block.

■ A PL/SQL stored procedure.

■ A SQL CALL statement that invokes a stored procedure. An anonymous block that
invokes the stored procedure.

■ A PL/SQL stored function.

■ A SQL query that calls the stored function.

■ A PL/SQL package.

■ An anonymous block or a stored procedure that calls a packaged procedure. A
SQL query that calls a packaged function.

■ A SQL*Plus script, or a set of scripts called from a master script, that creates a set
of procedures, functions, and packages.

Exercises for the Reader

A-2 PL/SQL User's Guide and Reference

■ A FORALL statement (instead of a regular loop) to issue multiple INSERT,
UPDATE, or DELETE statements.

Understanding CHAR and VARCHAR2 Semantics in PL/SQL B-1

B
Understanding CHAR and VARCHAR2

Semantics in PL/SQL

This appendix explains the semantic differences between the CHAR and VARCHAR2
base types. These subtle but important differences come into play when you assign,
compare, insert, update, select, or fetch character values.

This appendix contains these topics:

■ Assigning Character Values on page B-1

■ Comparing Character Values on page B-2

■ Inserting Character Values on page B-2

■ Selecting Character Values on page B-3

Assigning Character Values
When you assign a character value to a CHAR variable, if the value is shorter than the
declared length of the variable, PL/SQL blank-pads the value to the declared length.
Information about trailing blanks in the original value is lost. In the following
example, the value assigned to last_name includes six trailing blanks, not just one:

last_name CHAR(10) := 'CHEN '; -- note trailing blank

If the character value is longer than the declared length of the CHAR variable, PL/SQL
aborts the assignment and raises the predefined exception VALUE_ERROR. PL/SQL
neither truncates the value nor tries to trim trailing blanks. For example, given the
declaration

acronym CHAR(4);

the following assignment raises VALUE_ERROR:

acronym := 'SPCA
'; -- note trailing blank

When you assign a character value to a VARCHAR2 variable, if the value is shorter than
the declared length of the variable, PL/SQL neither blank-pads the value nor strips
trailing blanks. Character values are assigned intact, so no information is lost. If the
character value is longer than the declared length of the VARCHAR2 variable, PL/SQL
aborts the assignment and raises VALUE_ERROR. PL/SQL neither truncates the value
nor tries to trim trailing blanks.

Comparing Character Values

B-2 PL/SQL User's Guide and Reference

Comparing Character Values
You can use the relational operators to compare character values for equality or
inequality. Comparisons are based on the collating sequence used for the database
character set. One character value is greater than another if it follows it in the collating
sequence. For example, given the declarations

last_name1 VARCHAR2(10) := 'COLES';
last_name2 VARCHAR2(10) := 'COLEMAN';

the following IF condition is true:

IF last_name1 > last_name2 THEN ...

The SQL standard requires that two character values being compared have equal
lengths. If both values in a comparison have datatype CHAR, blank-padding semantics
are used: before comparing character values of unequal length, PL/SQL blank-pads
the shorter value to the length of the longer value. For example, given the declarations

last_name1 CHAR(5) := 'BELLO';
last_name2 CHAR(10) := 'BELLO '; -- note trailing blanks

the following IF condition is true:

IF last_name1 = last_name2 THEN ...

If either value in a comparison has datatype VARCHAR2, non-blank-padding semantics
are used: when comparing character values of unequal length, PL/SQL makes no
adjustments and uses the exact lengths. For example, given the declarations

last_name1 VARCHAR2(10) := 'DOW';
last_name2 VARCHAR2(10) := 'DOW '; -- note trailing blanks

the following IF condition is false:

IF last_name1 = last_name2 THEN ...

If a VARCHAR2 value is compared to a CHAR value, non-blank-padding semantics are
used. But, remember, when you assign a character value to a CHAR variable, if the
value is shorter than the declared length of the variable, PL/SQL blank-pads the value
to the declared length. Given the declarations

last_name1 VARCHAR2(10) := 'STAUB';
last_name2 CHAR(10) := 'STAUB'; -- PL/SQL blank-pads value

the following IF condition is false because the value of last_name2 includes five
trailing blanks:

IF last_name1 = last_name2 THEN ...

All string literals have datatype CHAR. If both values in a comparison are literals,
blank-padding semantics are used. If one value is a literal, blank-padding semantics
are used only if the other value has datatype CHAR.

Inserting Character Values
When you insert the value of a PL/SQL character variable into an Oracle database
column, whether the value is blank-padded or not depends on the column type, not on
the variable type.

Selecting Character Values

Understanding CHAR and VARCHAR2 Semantics in PL/SQL B-3

When you insert a character value into a CHAR database column, Oracle does not strip
trailing blanks. If the value is shorter than the defined width of the column, Oracle
blank-pads the value to the defined width. As a result, information about trailing
blanks is lost. If the character value is longer than the defined width of the column,
Oracle aborts the insert and generates an error.

When you insert a character value into a VARCHAR2 database column, Oracle does not
strip trailing blanks. If the value is shorter than the defined width of the column,
Oracle does not blank-pad the value. Character values are stored intact, so no
information is lost. If the character value is longer than the defined width of the
column, Oracle aborts the insert and generates an error.

Note: The same rules apply when updating.

When inserting character values, to ensure that no trailing blanks are stored, use the
function RTRIM, which trims trailing blanks. An example follows:

DECLARE
 ...
 my_name VARCHAR2(15);
BEGIN
 ...
 my_ename := 'LEE '; -- note trailing blanks
 INSERT INTO emp
 VALUES (my_empno, RTRIM(my_ename), ...); -- inserts 'LEE'
END;

Selecting Character Values
When you select a value from an Oracle database column into a PL/SQL character
variable, whether the value is blank-padded or not depends on the variable type, not
on the column type.

When you select a column value into a CHAR variable, if the value is shorter than the
declared length of the variable, PL/SQL blank-pads the value to the declared length.
As a result, information about trailing blanks is lost. If the character value is longer
than the declared length of the variable, PL/SQL aborts the assignment and raises
VALUE_ERROR.

When you select a column value into a VARCHAR2 variable, if the value is shorter than
the declared length of the variable, PL/SQL neither blank-pads the value nor strips
trailing blanks. Character values are stored intact, so no information is lost.

For example, when you select a blank-padded CHAR column value into a VARCHAR2
variable, the trailing blanks are not stripped. If the character value is longer than the
declared length of the VARCHAR2 variable, PL/SQL aborts the assignment and raises
VALUE_ERROR.

Note: The same rules apply when fetching.

Selecting Character Values

B-4 PL/SQL User's Guide and Reference

Obfuscating Source Code with the PL/SQL Wrap Utility C-1

C
Obfuscating Source Code with the PL/SQL

Wrap Utility

This appendix shows you how to run the wrap utility. wrap is a standalone program
that obfuscates PL/SQL source code, so that you can deliver PL/SQL applications
without exposing your source code.

This appendix contains these topics:

■ Advantages of Wrapping PL/SQL Procedures on page C-1

■ Running the PL/SQL Wrap Utility on page C-1

■ Limitations of the PL/SQL Wrap Utility on page C-3

Advantages of Wrapping PL/SQL Procedures
■ By hiding application internals, the wrap utility makes it difficult for other

developers to misuse your application, or business competitors to see your
algorithms.

■ Your code is not visible through the USER_SOURCE, ALL_SOURCE, or DBA_
SOURCE data dictionary views.

■ SQL*Plus can process wrapped files. You can obfuscate source files that create
PL/SQL procedures and packages.

■ The Import and Export utilities accept wrapped files. You can back up or move
wrapped procedures.

Running the PL/SQL Wrap Utility
To run the wrap utility, enter the wrap command at your operating system prompt
using the following syntax:

wrap iname=input_file [oname=output_file]

Note: Do not use any spaces around the equal signs.

input_file is the name of a file containing SQL statements, that you typically run
using SQL*Plus. If you omit the file extension, an extension of .sql is assumed. For
example, the following commands are equivalent:

wrap iname=/mydir/myfile
wrap iname=/mydir/myfile.sql

You can also specify a different file extension:

Running the PL/SQL Wrap Utility

C-2 PL/SQL User's Guide and Reference

wrap iname=/mydir/myfile.src

output_file is the name of the obfuscated file that is created. The oname option is
optional, because the output file name defaults to that of the input file and its
extension defaults to .plb. For example, the following commands are equivalent:

wrap iname=/mydir/myfile
wrap iname=/mydir/myfile.sql oname=/mydir/myfile.plb

You can use the option oname to specify a different file name and extension:

wrap iname=/mydir/myfile oname=/yourdir/yourfile.out

Input and Output Files for the PL/SQL Wrap Utility
The input file can contain any combination of SQL statements. Most statements are
passed through unchanged. CREATE statements that define subprograms, packages, or
object types are obfuscated; their bodies are replaced by a scrambled form that the
PL/SQL compiler understands.

The following CREATE statements are obfuscated:

CREATE [OR REPLACE] FUNCTION function_name
CREATE [OR REPLACE] PROCEDURE procedure_name
CREATE [OR REPLACE] PACKAGE package_name
CREATE [OR REPLACE] PACKAGE BODY package_name
CREATE [OR REPLACE] TYPE type_name AS OBJECT
CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

Note: The CREATE [OR REPLACE] TRIGGER statement, and BEGIN..END
anonymous blocks, are not obfuscated.

All other SQL statements are passed unchanged to the output file. Most comment lines
are deleted. C-style comments (delimited by /* */) are preserved when they occur in
the middle of a SQL statement. Comments are also preserved when they occur
immediately after the CREATE statement, before the obfuscated body starts.

The output file is a text file, which you can run in SQL*Plus to set up your PL/SQL
procedures, functions, and packages:

SQL> @wrapped_file_name.plb;

Tips:

■ When wrapping a package or object type, wrap only the body, not the spec. That
way, other developers see the information they need to use the package or type,
but they do not see its implementation.

■ PL/SQL source inside wrapped files cannot be edited. To change wrapped
PL/SQL code, edit the original source file and wrap it again. You can either hold
off on wrapping your code until it is ready for shipment to end-users, or include
the wrapping operation as part of your build environment.

■ To be sure that all the important parts of your source code are obfuscated, view the
wrapped file in a text editor before distributing it.

Limitations of the PL/SQL Wrap Utility

Obfuscating Source Code with the PL/SQL Wrap Utility C-3

Limitations of the PL/SQL Wrap Utility
■ Although wrapping a compilation unit helps to hide the algorithm and makes

reverse-engineering hard, Oracle Corporation does not recommend it as a secure
method for hiding passwords or table names.

■ Because the source code is parsed by the PL/SQL compiler, not by SQL*Plus, you
cannot include substitution variables using the SQL*Plus DEFINE notation inside
the PL/SQL code. You can use substitution variables in other SQL statements that
are not obfuscated.

■ The wrap utility does not obfuscate the source code for triggers. To hide the
workings of a trigger, you can write a one-line trigger that calls a wrapped
procedure.

■ Some, but not all, comments are removed in wrapped files.

■ If your PL/SQL compilation units contain syntax errors, the wrap utility detects
and reports them. The wrap utility does not detect semantic errors, such as tables
or views that do not exist. Those errors are detected when you run the output file
in SQL*Plus.

■ The Wrap Utility is upward-compatible between Oracle releases, but is not
downward-compatible. For example, you can load files processed by the V8.1.5
wrap utility into a V8.1.6 Oracle database, but you cannot load files processed by
the V8.1.6 wrap utility into a V8.1.5 Oracle database.

Limitations of the PL/SQL Wrap Utility

C-4 PL/SQL User's Guide and Reference

How PL/SQL Resolves Identifier Names D-1

D
How PL/SQL Resolves Identifier Names

This appendix explains how PL/SQL resolves references to names in potentially
ambiguous SQL and procedural statements.

This appendix contains these topics:

■ What Is Name Resolution? on page D-1

■ Examples of Qualified Names and Dot Notation on page D-2

■ Differences in Name Resolution Between SQL and PL/SQL on page D-3

■ Understanding Capture on page D-3

■ Avoiding Inner Capture in DML Statements on page D-4

■ Qualifying References to Object Attributes and Methods on page D-5

■ Calling Parameterless Subprograms and Methods on page D-5

■ Name Resolution for SQL Versus PL/SQL on page D-6

What Is Name Resolution?
During compilation, the PL/SQL compiler determines which objects are associated
with each name in a PL/SQL subprogram. A name might refer to a local variable, a
table, a package, a procedure, a schema, and so on. When a subprogram is recompiled,
that association might change if objects have been created or deleted.

A declaration or definition in an inner scope can hide another in an outer scope. In the
following example, the declaration of variable client hides the definition of datatype
Client because PL/SQL names are not case sensitive:

BEGIN
 <<block1>>
 DECLARE
 TYPE Client IS RECORD (...);
 TYPE Customer IS RECORD (...);
 BEGIN
 DECLARE
 client Customer; -- hides definition of type Client
 -- in outer scope
 lead1 Client; -- not allowed; Client resolves to the
 -- variable client
 lead2 block1.Client; -- OK; refers to type Client
 BEGIN
 NULL;
 END;

Examples of Qualified Names and Dot Notation

D-2 PL/SQL User's Guide and Reference

 END;
END;

You can still refer to datatype Client by qualifying the reference with block label
block1.

In the following set of CREATE TYPE statements, the second statement generates an
error. Creating an attribute named MANAGER hides the type named MANAGER, so the
declaration of the second attribute does not work.

CREATE TYPE manager AS OBJECT (dept NUMBER);
/
CREATE TYPE person AS OBJECT (manager NUMBER, mgr manager);
/

Examples of Qualified Names and Dot Notation
During name resolution, the compiler can encounter various forms of references
including simple unqualified names, dot-separated chains of identifiers, indexed
components of a collection, and so on. For example:

CREATE PACKAGE pkg1 AS
 m NUMBER;
 TYPE t1 IS RECORD (a NUMBER);
 v1 t1;
 TYPE t2 IS TABLE OF t1 INDEX BY BINARY_INTEGER;
 v2 t2;
 FUNCTION f1 (p1 NUMBER) RETURN t1;
 FUNCTION f2 (q1 NUMBER) RETURN t2;
END pkg1;

CREATE PACKAGE BODY pkg1 AS
 FUNCTION f1 (p1 NUMBER) RETURN t1 IS
 n NUMBER;
 BEGIN
 n := m; -- (1) unqualified name
 n := pkg1.m; -- (2) dot-separated chain of identifiers
 -- (package name used as scope
 -- qualifier followed by variable name)
 n := pkg1.f1.p1; -- (3) dot-separated chain of identifiers
 -- (package name used as scope
 -- qualifier followed by function name
 -- also used as scope qualifier
 -- followed by parameter name)
 n := v1.a; -- (4) dot-separated chain of identifiers
 -- (variable name followed by
 -- component selector)
 n := pkg1.v1.a; -- (5) dot-separated chain of identifiers
 -- (package name used as scope
 -- qualifier followed by
 -- variable name followed by component
 -- selector)
 n := v2(10).a; -- (6) indexed name followed by component
 -- selector
 n := f1(10).a; -- (7) function call followed by component
 -- selector
 n := f2(10)(10).a; -- (8) function call followed by indexing
 -- followed by component selector
 n := scott.pkg1.f2(10)(10).a;
 -- (9) function call (which is a dot-

Understanding Capture

How PL/SQL Resolves Identifier Names D-3

 -- separated chain of identifiers,
 -- including schema name used as
 -- scope qualifier followed by package
 -- name used as scope qualifier
 -- followed by function name)
 -- followed by component selector
 -- of the returned result followed
 -- by indexing followed by component
 -- selector
 n := scott.pkg1.f1.n;
 -- (10) dot-separated chain of identifiers
 -- (schema name used as scope qualifier
 -- followed by package name also used
 -- as scope qualifier followed by
 -- function name also used as scope
 -- qualifier followed by local
 -- variable name)
 ...
 END f1;

 FUNCTION f2 (q1 NUMBER) RETURN t2 IS
 BEGIN
 ...
 END f2;
END pkg1;

Differences in Name Resolution Between SQL and PL/SQL
When the PL/SQL compiler processes a SQL statement, such as a DML statement, it
uses the same name-resolution rules as SQL. For example, for a name such as
SCOTT.FOO, SQL matches objects in the SCOTT schema first, then packages, types,
tables, and views in the current schema.

PL/SQL uses a different order to resolve names in PL/SQL statements such as
assignments and procedure calls. In the case of a name SCOTT.FOO, PL/SQL searches
first for packages, types, tables, and views named SCOTT in the current schema, then
for objects in the SCOTT schema.

Understanding Capture
When a declaration or type definition in another scope prevents the compiler from
resolving a reference correctly, that declaration or definition is said to "capture" the
reference. Usually this is the result of migration or schema evolution. There are three
kinds of capture: inner, same-scope, and outer. Inner and same-scope capture apply
only in SQL scope.

Inner Capture
An inner capture occurs when a name in an inner scope no longer refers to an entity in
an outer scope:

■ The name might now resolve to an entity in an inner scope.

■ The program might cause an error, if some part of the identifier is captured in an
inner scope and the complete reference cannot be resolved.

If the reference points to a different but valid name, you might not know why the
program is acting differently.

Avoiding Inner Capture in DML Statements

D-4 PL/SQL User's Guide and Reference

In the following example, the reference to col2 in the inner SELECT statement binds
to column col2 in table tab1 because table tab2 has no column named col2:

CREATE TABLE tab1 (col1 NUMBER, col2 NUMBER);
CREATE TABLE tab2 (col1 NUMBER);
CREATE PROCEDURE proc AS
 CURSOR c1 IS SELECT * FROM tab1
 WHERE EXISTS (SELECT * FROM tab2 WHERE col2 = 10);
BEGIN
 ...
END;

In the preceding example, if you add a column named col2 to table tab2:

ALTER TABLE tab2 ADD (col2 NUMBER);

then procedure proc is invalidated and recompiled automatically upon next use.
However, upon recompilation, the col2 in the inner SELECT statement binds to
column col2 in table tab2 because tab2 is in the inner scope. Thus, the reference to
col2 is captured by the addition of column col2 to table tab2.

Using collections and object types can cause more inner capture situations. In the
following example, the reference to s.tab2.a resolves to attribute a of column tab2
in table tab1 through table alias s, which is visible in the outer scope of the query:

CREATE TYPE type1 AS OBJECT (a NUMBER);
CREATE TABLE tab1 (tab2 type1);
CREATE TABLE tab2 (x NUMBER);
SELECT * FROM tab1 s -- alias with same name as schema name
 WHERE EXISTS (SELECT * FROM s.tab2 WHERE x = s.tab2.a);
 -- note lack of alias

In the preceding example, you might add a column named a to table s.tab2, which
appears in the inner subquery. When the query is processed, an inner capture occurs
because the reference to s.tab2.a resolves to column a of table tab2 in schema s.
You can avoid inner captures by following the rules given in "Avoiding Inner Capture
in DML Statements" on page D-4. According to those rules, you should revise the
query as follows:

SELECT * FROM s.tab1 p1
 WHERE EXISTS (SELECT * FROM s.tab2 p2 WHERE p2.x = p1.tab2.a);

Same-Scope Capture
In SQL scope, a same-scope capture occurs when a column is added to one of two
tables used in a join, so that the same column name exists in both tables. Previously,
you could refer to that column name in a join query. To avoid an error, now you must
qualify the column name with the table name.

Outer Capture
An outer capture occurs when a name in an inner scope, which once resolved to an
entity in an inner scope, is resolved to an entity in an outer scope. SQL and PL/SQL
are designed to prevent outer captures. You do not need to take any action to avoid
this condition.

Avoiding Inner Capture in DML Statements
You can avoid inner capture in DML statements by following these rules:

Calling Parameterless Subprograms and Methods

How PL/SQL Resolves Identifier Names D-5

■ Specify an alias for each table in the DML statement.

■ Keep table aliases unique throughout the DML statement.

■ Avoid table aliases that match schema names used in the query.

■ Qualify each column reference with the table alias.

Qualifying a reference with schema_name.table_name does not prevent inner
capture if the statement refers to tables with columns of a user-defined object type.

Qualifying References to Object Attributes and Methods
Columns of a user-defined object type allow for more inner capture situations. To
minimize problems, the name-resolution algorithm includes the following rules:

■ All references to attributes and methods must be qualified by a table alias. When
referencing a table, if you reference the attributes or methods of an object stored in
that table, the table name must be accompanied by an alias. As the following
examples show, column-qualified references to an attribute or method are not
allowed if they are prefixed with a table name:

CREATE TYPE t1 AS OBJECT (x NUMBER);
CREATE TABLE tb1 (col t1);
SELECT col.x FROM tb1; -- not allowed
SELECT tb1.col.x FROM tb1; -- not allowed
SELECT scott.tb1.col.x FROM scott.tb1; -- not allowed
SELECT t.col.x FROM tb1 t;
UPDATE tb1 SET col.x = 10; -- not allowed
UPDATE scott.tb1 SET scott.tb1.col.x=10; -- not allowed
UPDATE tb1 t set t.col.x = 1;
DELETE FROM tb1 WHERE tb1.col.x = 10; -- not allowed
DELETE FROM tb1 t WHERE t.col.x = 10;

■ Row expressions must resolve as references to table aliases. You can pass row
expressions to operators REF and VALUE, and you can use row expressions in the
SET clause of an UPDATE statement. Some examples follow:

CREATE TYPE t1 AS OBJECT (x number);
CREATE TABLE ot1 OF t1; -- object table
SELECT REF(ot1) FROM ot1; -- not allowed
SELECT REF(o) FROM ot1 o;
SELECT VALUE(ot1) FROM ot1; -- not allowed
SELECT VALUE(o) FROM ot1 o;
DELETE FROM ot1 WHERE VALUE(ot1) = (t1(10)); -- not allowed
DELETE FROM ot1 o WHERE VALUE(o) = (t1(10));
UPDATE ot1 SET ot1 = ... -- not allowed
UPDATE ot1 o SET o =

The following ways to insert into an object table are allowed and do not require an
alias because there is no column list:

INSERT INTO ot1 VALUES (t1(10)); -- no row expression
INSERT INTO ot1 VALUES (10); -- no row expression

Calling Parameterless Subprograms and Methods
If a subprogram does not take any parameters, you can include an empty set of
parentheses or omit the parentheses, both in PL/SQL and in functions called from SQL
queries.

Name Resolution for SQL Versus PL/SQL

D-6 PL/SQL User's Guide and Reference

For calls to a method that takes no parameters, an empty set of parentheses is optional
within PL/SQL scopes but required within SQL scopes.

Name Resolution for SQL Versus PL/SQL
The name-resolution rules for SQL and PL/SQL are similar. You can avoid the few
minor differences if you follow the capture avoidance rules.

For compatibility, the SQL rules are more permissive than the PL/SQL rules. That is,
the SQL rules, which are mostly context sensitive, recognize as legal more situations
and DML statements than the PL/SQL rules do.

PL/SQL Program Limits E-1

E
PL/SQL Program Limits

This appendix discusses the program limits that are imposed by the PL/SQL
language.

PL/SQL is based on the programming language Ada. As a result, PL/SQL uses a
variant of Descriptive Intermediate Attributed Notation for Ada (DIANA), a
tree-structured intermediate language. It is defined using a meta-notation called
Interface Definition Language (IDL). DIANA is used internally by compilers and other
tools.

At compile time, PL/SQL source code is translated into machine-readable m-code.
Both the DIANA and m-code for a procedure or package are stored in the database. At
run time, they are loaded into the shared memory pool. The DIANA is used to compile
dependent procedures; the m-code is simply executed.

In the shared memory pool, a package spec, object type spec, standalone subprogram,
or anonymous block is limited to 2**26 DIANA nodes (which correspond to tokens
such as identifiers, keywords, operators, and so on). This allows for ~6,000,000 lines of
code unless you exceed limits imposed by the PL/SQL compiler, some of which are
given in Table E–1.

Table E–1 PL/SQL Compiler Limits

Item Limit

bind variables passed to a program unit 32K

exception handlers in a program unit 64K

fields in a record 64K

levels of block nesting 255

levels of record nesting 32

levels of subquery nesting 254

levels of label nesting 98

magnitude of a BINARY_INTEGER value 2G

magnitude of a PLS_INTEGER value 2G

objects referenced by a program unit 64K

parameters passed to an explicit cursor 64K

parameters passed to a function or procedure 64K

precision of a FLOAT value (binary digits) 126

precision of a NUMBER value (decimal digits) 38

E-2 PL/SQL User's Guide and Reference

To estimate how much memory a program unit requires, you can query the data
dictionary view user_object_size. The column parsed_size returns the size (in
bytes) of the "flattened" DIANA. For example:

SQL> SELECT * FROM user_object_size WHERE name = 'PKG1';

NAME TYPE SOURCE_SIZE PARSED_SIZE CODE_SIZE ERROR_SIZE
--
PKG1 PACKAGE 46 165 119 0
PKG1 PACKAGE BODY 82 0 139 0

Unfortunately, you cannot estimate the number of DIANA nodes from the parsed size.
Two program units with the same parsed size might require 1500 and 2000 DIANA
nodes, respectively (because, for example, the second unit contains more complex SQL
statements).

When a PL/SQL block, subprogram, package, or object type exceeds a size limit, you
get an error such as program too large. Typically, this problem occurs with packages or
anonymous blocks. With a package, the best solution is to divide it into smaller
packages. With an anonymous block, the best solution is to redefine it as a group of
subprograms, which can be stored in the database.

precision of a REAL value (binary digits) 63

size of an identifier (characters) 30

size of a string literal (bytes) 32K

size of a CHAR value (bytes) 32K

size of a LONG value (bytes) 32K-7

size of a LONG RAW value (bytes) 32K-7

size of a RAW value (bytes) 32K

size of a VARCHAR2 value (bytes) 32K

size of an NCHAR value (bytes) 32K

size of an NVARCHAR2 value (bytes) 32K

size of a BFILE value (bytes) 4G * value of DB_BLOCK_SIZE
parameter

size of a BLOB value (bytes) 4G * value of DB_BLOCK_SIZE
parameter

size of a CLOB value (bytes) 4G * value of DB_BLOCK_SIZE
parameter

size of an NCLOB value (bytes) 4G * value of DB_BLOCK_SIZE
parameter

Table E–1 (Cont.) PL/SQL Compiler Limits

Item Limit

List of PL/SQL Reserved Words F-1

F
List of PL/SQL Reserved Words

The words listed in this appendix are reserved by PL/SQL. You should not use them
to name program objects such as constants, variables, or cursors. Some of these words
(marked by an asterisk) are also reserved by SQL. You should not use them to name
schema objects such as columns, tables, or indexes.

F-2 PL/SQL User's Guide and Reference

ALL*
ALTER*
AND*
ANY*
ARRAY
AS*
ASC*
AT
AUTHID
AVG
BEGIN
BETWEEN*
BINARY_INTEGER
BODY
BOOLEAN
BULK
BY*
CASE
CHAR*
CHAR_BASE
CHECK*
CLOSE
CLUSTER*
COALESCE
COLLECT
COMMENT*
COMMIT
COMPRESS*
CONNECT*
CONSTANT
CREATE*
CURRENT*
CURRVAL
CURSOR
DATE*
DAY
DECLARE
DECIMAL*
DEFAULT*
DELETE*
DESC*
DISTINCT*
DO
DROP*
ELSE*
ELSIF
END
EXCEPTION
EXCLUSIVE*
EXECUTE
EXISTS*
EXIT
EXTENDS
EXTRACT
FALSE
FETCH
FLOAT*
FOR*
FORALL
FROM*

FUNCTION
GOTO
GROUP*
HAVING*
HEAP
HOUR
IF
IMMEDIATE*
IN*
INDEX*
INDICATOR
INSERT*
INTEGER*
INTERFACE
INTERSECT*
INTERVAL
INTO*
IS*
ISOLATION
JAVA
LEVEL*
LIKE*
LIMITED
LOCK*
LONG*
LOOP
MAX
MIN
MINUS*
MINUTE
MLSLABEL*
MOD
MODE*
MONTH
NATURAL
NATURALN
NEW
NEXTVAL
NOCOPY
NOT*
NOWAIT*
NULL*
NULLIF
NUMBER*
NUMBER_BASE
OCIROWID
OF*
ON*
OPAQUE
OPEN
OPERATOR
OPTION*
OR*
ORDER*
ORGANIZATION
OTHERS
OUT
PACKAGE
PARTITION
PCTFREE*

PLS_INTEGER
POSITIVE
POSITIVEN
PRAGMA
PRIOR*
PRIVATE
PROCEDURE
PUBLIC*
RAISE
RANGE
RAW*
REAL
RECORD
REF
RELEASE
RETURN
REVERSE
ROLLBACK
ROW*
ROWID*
ROWNUM*
ROWTYPE
SAVEPOINT
SECOND
SELECT*
SEPARATE
SET*
SHARE*
SMALLINT*
SPACE
SQL
SQLCODE
SQLERRM
START*
STDDEV
SUBTYPE
SUCCESSFUL*
SUM
SYNONYM*
SYSDATE*
TABLE*
THEN*
TIME
TIMESTAMP
TIMEZONE_REGION
TIMEZONE_ABBR
TIMEZONE_MINUTE
TIMEZONE_HOUR
TO*
TRIGGER*
TRUE
TYPE
UID*
UNION*
UNIQUE*
UPDATE*
USE
USER*
VALIDATE*
VALUES*

VARCHAR*
VARCHAR2*
VARIANCE
VIEW*
WHEN
WHENEVER*
WHERE*
WHILE
WITH*
WORK
WRITE
YEAR
ZONE

Frequently Asked Questions About PL/SQL G-1

G
Frequently Asked Questions About PL/SQL

Questions are a burden to others, answers a prison to oneself. —The Prisoner

This appendix contains some frequently asked questions about PL/SQL, and their
answers. Where appropriate, the answers link to detailed explanations elsewhere in
this book.

Another good source of questions and answers about PL/SQL is the Web site
http://asktom.oracle.com/. A good source of examples that illustrate the
detailed workings of PL/SQL is the PL/SQL area of the Oracle Technology Network
site at http://otn.oracle.com/tech/pl_sql/.

When Should I Use Bind Variables with PL/SQL?
When you imbed an INSERT, UPDATE, DELETE, or SELECT SQL statement directly in
your PL/SQL code, PL/SQL turns the variables in the WHERE and VALUES clauses into
bind variables automatically. Oracle can reuse these SQL statement each time the same
code is executed. To run similar statements with different variable values, you can save
parsing overhead by calling a stored procedure that accepts parameters, then issues
the statements with the parameters substituted in the right places.

You do need to specify bind variables with dynamic SQL, in clauses like WHERE and
VALUES where you normally use variables. Instead of concatenating literals and
variable values into a single string, replace the variables with the names of bind
variables (prefixed by a colon) and specify the corresponding PL/SQL variables with
the USING clause. Using the USING clause, instead of concatenating the variables into
the string, reduces parsing overhead and lets Oracle reuse the SQL statements.

When Do I Use or Omit the Semicolon with Dynamic SQL?
When building up a single SQL statement in a string, do not include any semicolon at
the end (inside the quotation marks).

When building up a PL/SQL anonymous block, include the semicolon at the end of
each PL/SQL statement and at the end of the anonymous block. You will have a
semicolon right before the end of the string literal, and another right after the closing
single quotation mark.

How Can I Use Regular Expressions with PL/SQL?
You can search for regular expressions using the SQL operator REGEXP_LIKE.

How Do I Continue After a PL/SQL Exception?

G-2 PL/SQL User's Guide and Reference

You can test or manipulate strings using the built-in functions REGEXP_INSTR,
REGEXP_REPLACE, and REGEXP_SUBSTR.

Oracle's regular expression features use characters like '.', '*', '^', and '$' that you might
be familiar with from UNIX or Perl programming. For multi-language programming,
there are also extensions such as '[:lower:]' to match a lowercase letter, instead of '[a-z]'
which does not match lowercase accented letters.

How Do I Continue After a PL/SQL Exception?
By default, you put an exception handler at the end of a subprogram to handle
exceptions that are raised anywhere inside the subprogram. To continue executing
from the spot where an exception happens, enclose the code that might raise an
exception inside another BEGIN-END block with its own exception handler. For
example, you might put separate BEGIN-END blocks around groups of SQL
statements that might raise NO_DATA_FOUND, or around arithmetic operations that
might raise DIVIDE_BY_ZERO. By putting a BEGIN-END block with an exception
handler inside a loop, you can continue executing the loop even if some loop iterations
raise exceptions.

Does PL/SQL Have User-Defined Types or Abstract Data Types?
The PL/SQL term for these things is "object types". To do object-oriented
programming, you use a mix of SQL and PL/SQL. You create the types themselves
and the tables to hold them using SQL. You write the bodies of the methods in
PL/SQL, and you can also manipulate tables of objects and call object methods
through PL/SQL.

The best source of information for object-oriented programming with PL/SQL is the
book Oracle Database Application Developer's Guide - Object-Relational Features.

How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?
PL/SQL lets you issue a query and return a result set using a cursor variable, also
known as a REF CURSOR. See "Using Cursor Variables (REF CURSORs)" on page 6-19.

How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation?
Dot notation is used for identifying record fields, object attributes, and things inside
packages or other schemas. When you combine these things, you might need to use
expressions with multiple levels of dots, where it isn't always clear what each dot
refers to. Here are some of the combinations.

Field or Attribute of a Function Return Value
func_name().field_name
func_name().attribute_name

Schema Object Owned by Another Schema
schema_name.table_name
schema_name.procedure_name()
schema_name.type_name.member_name()

Packaged Object Owned by Another User
schema_name.package_name.procedure_name()

How Do I Create a PL/SQL Procedure?

Frequently Asked Questions About PL/SQL G-3

schema_name.package_name.record_name.field_name

Record Containing an Object Type
record_name.field_name.attribute_name
record_name.field_name.member_name()

What Can I Do with Objects and Object Types in PL/SQL?
You can create object types by issuing the SQL statement CREATE TYPE using
dynamic SQL (the EXECUTE IMMEDIATE statement).

You can use objects to group related values, as you would do with records, with the
added advantage that you can store objects directly in the database. You can also
create varrays, nested tables, and associative arrays of objects.

You can write PL/SQL procedures and functions that accept objects as parameters.
You can pass objects as parameters to these procedures and functions. You can also
return objects from functions.

You can write member procedures and functions for an object type in PL/SQL.

You can create overloaded PL/SQL procedures and functions by defining different
versions that accept different subtypes of the same supertypes as parameters.

You can write a PL/SQL application in a completely object-oriented way.

You can write a PL/SQL application in a mostly procedural way, using objects and
object types to work around limitations on PL/SQL variables and parameters.

How Do I Create a PL/SQL Procedure?
There are several ways to create different kinds of PL/SQL procedures and functions:

CREATE PROCEDURE and CREATE FUNCTION statements in SQL.

CREATE TRIGGER statement in SQL.

CREATE PACKAGE and CREATE PACKAGE BODY statements in SQL. The package
body can contain both procedures and functions.

CREATE TYPE and CREATE TYPE BODY statements in SQL. The type body can
contain both procedures and functions.

Tip: When using these SQL statements, you might find the CREATE OR REPLACE
forms more convenient to allow frequent updates without having to drop the original
versions.

PROCEDURE procedure_name IS... or FUNCTION function_name RETURN
return_type IS... within the DECLARE section of an anonymous block. These
procedures and functions only exist for the life of the anonymous block, and are only
visible within the block. This technique makes sense if you have a long-running or
extensive anonymous block.

PROCEDURE procedure_name IS... or FUNCTION function_name RETURN
return_type IS... within the declarative section of another procedure or
function. These procedures and functions are only visible within the outer procedure,
so you can use this technique to avoid cluttering up the namespace and prevent
unwanted calls from other subprograms.

How Do I Input or Output Data with PL/SQL?

G-4 PL/SQL User's Guide and Reference

How Do I Input or Output Data with PL/SQL?
Most PL/SQL I/O is through SQL statements, to store data in database tables or query
those tables.

All other PL/SQL I/O is done through APIs that interact with other programs. For
example, the DBMS_OUTPUT package has procedures such as PUT_LINE. To see the
result outside of PL/SQL requires another program, such as SQL*Plus, to read and
display the data passed to DBMS_OUTPUT. (SQL*Plus does not display DBMS_OUTPUT
data unless you issue the command SET SERVEROUTPUT ON first.)

Other PL/SQL APIs for doing I/O are HTP (for displaying output on a web page),
DBMS_PIPE (for passing information back and forth between PL/SQL and
operating-system commands), UTL_FILE (for reading and writing operating-system
files), UTL_HTTP (for communicating with web servers), UTL_SMTP (for
communicating with mail servers), and TEXT_IO (for displaying text from Oracle
Forms).

Although some of these APIs can accept input as well as output, there is no built-in
language facility for accepting data directly from the keyboard. For that, you can use
the PROMPT and ACCEPT commands in SQL*Plus:

How Do I Perform a Case-Insensitive Query?
You may be familiar with workarounds that allow a query to match VARCHAR2 values
regardless of uppercase and lowercase. For example, you can use the UPPER() or
LOWER() function on the column value, and build a function-based index on the
column. Or you can add another column to the table, with a trigger to store an
all-uppercase or all-lowercase copy of another column value, and then query this new
column.

Now you can make queries case-insensitive (or even accent-insensitive) without any
code changes at all. Add _CI to the usual value of the NLS_SORT initialization
parameter, and queries are case-insensitive. Add _CI to the usual value of the
NLS_SORT parameter, and queries are accent-insensitive.

Index-1

Index

Symbols
%BULK_EXCEPTIONS cursor attribute, 11-13
%BULK_ROWCOUNT cursor attribute, 11-12
%FOUND cursor attribute, 6-6, 6-17
%ISOPEN cursor attribute, 6-6, 6-17
%NOTFOUND cursor attribute, 6-17
%ROWCOUNT cursor attribute, 6-6, 6-18
:= assignment operator, 1-5
|| concatenation operator, 2-21
. item separator, 2-2
<< label delimiter, 2-2
.. range operator, 2-2, 4-9
=, !=, , and ~= relational operators, 2-20
<, >, <=, and >= relational operators, 2-20
, 2-20
@ remote access indicator, 2-2, 2-12
-- single-line comment delimiter, 2-2
; statement terminator, 2-2, 13-12
- subtraction/negation operator, 2-2

A
ACCESS_INTO_NULL exception, 10-5
actual parameters, 6-16
address, 6-19
aggregate assignment, 2-11
aggregate functions

and PL/SQL, 6-2
AL16UTF16 character encoding, 3-9
aliasing, 8-23
ALL row operator, 6-2
ALTER TYPE statement

for type evolution, 12-9
anonymous blocks, 1-4
apostrophes, 2-6
assignment operator, 1-5
assignment statement

syntax, 13-3
assignments

aggregate, 2-11
character string, B-1
collection, 5-13
cursor variable, 6-26
field, 5-34
record, 5-34

semantics, B-1
associative arrays, 5-3

syntax, 13-21
versus nested tables, 5-5

asynchronous operations, 9-12
atomically null, 12-12
attributes

%ROWTYPE, 2-10
%TYPE, 2-9
cursor, 6-16
object, 12-2, 12-5

AUTHID clause, 8-3, 8-4, 8-16
autonomous transactions

in PL/SQL, 6-35
autonomous triggers, 6-38
AUTONOMOUS_TRANSACTION pragma, 6-35

syntax, 13-6

B
base types, 3-2, 3-16
basic loops, 4-6
BETWEEN comparison operator, 2-21
BFILE datatype, 3-10
binary operators, 2-17
BINARY_FLOAT and BINARY_DOUBLE

datatypes, 3-3
for computation-intensive programs, 11-19

BINARY_INTEGER datatype, 3-2
binding, 11-7
blank-padding semantics, B-2
BLOB datatype, 3-11
blocks

label, 2-15
PL/SQL, 13-8
structure, 1-4

body
cursor, 9-14
function, 8-4
method, 12-5
object, 12-3
package, 9-6
procedure, 8-3

BOOLEAN datatype, 3-11
Boolean expressions, 2-21
Boolean literals, 2-6

Index-2

built-in functions, 2-28
bulk binds, 11-7
BULK COLLECT clause, 11-15
bulk fetches, 11-16
bulk returns, 11-18
%BULK_EXCEPTIONS cursor attribute, 11-13
%BULK_ROWCOUNT cursor attribute, 11-12
by-reference parameter passing, 8-23
by-value parameter passing, 8-23

C
call specification, 9-2
calls

inter-language, 8-21
subprogram, 8-7

CARDINALITY operator, 5-16
carriage returns, 2-2
CASE expressions, 2-24
case sensitivity

identifier, 2-3
string literal, 2-6

CASE statement, 4-3
syntax, 13-14

CASE_NOT_FOUND exception, 10-5
case-insensitive queries, G-4
CHAR datatype, 3-4

semantics, B-1
character literals, 2-5
character sets, 2-1
CHARACTER subtype, 3-5
character values

assigning, B-1
comparing, B-2
inserting, B-2
selecting, B-3

clauses
AUTHID, 8-3, 8-4, 8-16
BULK COLLECT, 11-15
LIMIT, 11-17

CLOB datatype, 3-11
CLOSE statement, 6-13, 6-26

syntax, 13-16
collating sequence, 2-22
collection exceptions

when raised, 5-31
collection methods

applying to parameters, 5-30
syntax, 13-17
usage, 5-23

COLLECTION_IS_NULL exception, 10-5
collections, 5-1

assigning, 5-13
bulk binding, 5-38, 11-7
comparing, 5-16
constructors, 5-10
declaring variables, 5-8
defining types, 5-6
element types, 5-6
initializing, 5-10

kinds, 5-1
multilevel, 5-21
referencing, 5-12
scope, 5-6
syntax, 13-21

column alias, 6-10
when needed, 2-11

COMMENT clause, 6-30
comments, 2-7

restrictions, 2-8
syntax, 13-26

COMMIT statement, 6-29
syntax, 13-27

comparison operators, 2-20, 6-4
comparisons

of character values, B-2
of collections, 5-16
of expressions, 2-21

compiling PL/SQL procedures for native
execution, 11-22

composite types, 3-1
concatenation operator, 2-21

treatment of nulls, 2-27
conditional control, 4-2
constants

declaring, 2-9
syntax, 13-28

constraints
NOT NULL, 2-9

constructors
collection, 5-10
defining, 12-13
object, 12-8

context
transaction, 6-37

control structures, 4-1
conditional, 4-2
iterative, 4-6
sequential, 4-12

conversion
functions, 3-19

conversion, datatype, 3-18
correlated subquery, 6-15
COUNT collection method, 5-24
CURRENT OF clause, 6-33
CURRVAL pseudocolumn, 6-2
cursor attributes

%BULK_EXCEPTIONS, 11-13
%BULK_ROWCOUNT, 11-12
%FOUND, 6-6, 6-17
%ISOPEN, 6-6, 6-17
%NOTFOUND, 6-17
%ROWCOUNT, 6-6, 6-18
implicit, 6-6
syntax, 13-31
values, 6-18

cursor expressions, 6-27
cursor FOR loops, 6-9

passing parameters to, 6-15
cursor subqueries, 6-27

Index-3

cursor variables, 6-19
as parameters to table functions, 11-33
assignment, 6-26
closing, 6-26
declaring, 6-20
fetching from, 6-24
opening, 6-22
restrictions, 6-27
syntax, 13-34

CURSOR_ALREADY_OPEN exception, 10-5
cursors

closing, 6-13
declaring, 6-11
explicit, 6-10
fetching from, 6-12
opening, 6-11
packaged, 9-14
parameterized, 6-16
RETURN clause, 9-14
scope rules, 6-11
syntax, 13-38

D
dangling refs, 12-20
database character set, 3-8
database triggers, 1-14

autonomous, 6-38
datatypes, 3-1

BFILE, 3-10
BINARY_INTEGER, 3-2
BLOB, 3-11
BOOLEAN, 3-11
CHAR, 3-4
CLOB, 3-11
DATE, 3-12
families, 3-1
implicit conversion, 3-18
INTERVAL DAY TO SECOND, 3-15
INTERVAL YEAR TO MONTH, 3-15
LONG, 3-5
LONG RAW, 3-5
national character, 3-8
NCHAR, 3-9
NCLOB, 3-11
NUMBER, 3-3
NVARCHAR2, 3-9
PLS_INTEGER, 3-4
RAW, 3-6
RECORD, 5-32
REF CURSOR, 6-19
ROWID, 3-6
scalar versus composite, 3-1
TABLE, 5-2
TIMESTAMP, 3-13
TIMESTAMP WITH LOCAL TIME ZONE, 3-14
TIMESTAMP WITH TIME ZONE, 3-13
UROWID, 3-6
VARCHAR2, 3-7
VARRAY, 5-2

DATE datatype, 3-12
dates

converting, 3-20
TO_CHAR default format, 3-20

datetime literals, 2-6
DBMS_ALERT package, 9-12
DBMS_OUTPUT package, 9-12
DBMS_PIPE package, 9-13
DBMS_WARNING package, 10-19
deadlocks

how handled by PL/SQL, 6-30
DEC and DECIMAL subtypes, 3-3
declarations

collection, 5-8
constant, 2-9
cursor, 6-11
cursor variable, 6-20
exception, 10-6
object, 12-11
subprogram, 8-5
variable, 2-8

declarative part
of function, 8-4
of PL/SQL block, 1-4
of procedure, 8-3

DECODE function
treatment of nulls, 2-27

DEFAULT keyword, 2-9
default parameter values, 8-9
definer’s rights, 8-15
DELETE collection method, 5-29
DELETE statement

syntax, 13-41
delimiters, 2-2
dense collections, 5-2
DEPARTMENTS sample table, iii-xxi
DEREF function, 12-20
DETERMINISTIC hint, 8-4
digits of precision, 3-3
DISTINCT row operator, 6-2, 6-5
dot notation, 1-6

for collection methods, 5-23
for global variables, 4-11
for object attributes, 12-13
for object methods, 12-15
for package contents, 9-5

DUP_VAL_ON_INDEX exception, 10-5
dynamic SQL, 7-1

tips and traps, 7-8
using EXECUTE IMMEDIATE statement, 7-2

E
element types, collection, 5-6
ELSE clause, 4-2
ELSIF clause, 4-3
EMPLOYEES sample table, iii-xxi
END IF reserved words, 4-2
END LOOP reserved words, 4-8
entended rowids, 3-6

Index-4

error messages
maximum length, 10-14

evaluation
short-circuit, 2-19

exception handlers, 10-13
OTHERS handler, 10-2
using RAISE statement in, 10-12
using SQLCODE function in, 10-14
using SQLERRM function in, 10-14

EXCEPTION_INIT pragma, 10-7
syntax, 13-44
using with RAISE_APPLICATION_ERROR, 10-8

exception-handling part
of function, 8-4
of PL/SQL block, 1-4
of procedure, 8-3

exceptions, 10-1
declaring, 10-6
predefined, 10-4
propagation, 10-10
raised in declaration, 10-13
raised in handler, 10-14
raising with RAISE statement, 10-9
reraising, 10-12
scope rules, 10-6
syntax, 13-45
user-defined, 10-6
WHEN clause, 10-13

executable part
of function, 8-4
of PL/SQL block, 1-4
of procedure, 8-3

EXECUTE IMMEDIATE statement, 7-2
EXECUTE privilege, 8-17
EXISTS collection method, 5-24
EXIT statement, 4-6, 4-11

syntax, 13-50
WHEN clause, 4-7
where allowed, 4-6

explicit cursors, 6-10
expressions, 2-17

Boolean, 2-21
CASE, 2-24
syntax, 13-52

EXTEND collection method, 5-27
external references, 8-16
external routines, 8-21

F
FALSE value, 2-6
features, new, iv-xxiii
FETCH statement, 6-12, 6-24

syntax, 13-60
fetching

across commits, 6-34
bulk, 11-16

fields, 5-32
file I/O, 9-13
FIRST collection method, 5-25

FLOAT subtype, 3-3
FOR loops, 4-9

cursor, 6-9
nested, 4-11

FOR UPDATE clause, 6-11
restriction on, 6-22
when to use, 6-33

FORALL statement, 11-8
syntax, 13-64
using with BULK COLLECT clause, 11-18

formal parameters, 6-16
format

masks, 3-20
forward declarations, 8-5
forward references, 2-12
forward type definitions, 12-17
%FOUND cursor attribute, 6-6, 6-17
functions, 8-1

body, 8-4
built-in, 2-28
call, 8-4
parameters, 8-3
parts, 8-4
RETURN clause, 8-4
specification, 8-4
syntax, 13-67

G
GOTO statement, 4-12

branching into or out of exception handler, 10-14
label, 4-12
syntax, 13-71

GROUP BY clause, 6-2

H
handlers, exception, 10-2
handling exceptions, 10-1

raised in declaration, 10-13
raised in handler, 10-14
using OTHERS handler, 10-13

handling of nulls, 2-25
hash tables

simulating with associative arrays, 5-4
hidden declarations, 9-2
hint, DETERMINISTIC, 8-4
host arrays

bulk binds, 11-19
HR sample schema, iii-xxi
hypertext markup language (HTML), 9-13
hypertext transfer protocol (HTTP), 9-13

I
identifiers

forming, 2-3
maximum length, 2-4
quoted, 2-4
scope rules, 2-14

IF statement, 4-2

Index-5

ELSE clause, 4-2
ELSIF clause, 4-3
syntax, 13-72
THEN clause, 4-2

implicit cursors
attributes, 6-6

implicit datatype conversion, 3-18
effect on performance, 11-4

implicit declarations
cursor FOR loop record, 6-9
FOR loop counter, 4-10

IN comparison operator, 2-21
IN OUT parameter mode, 8-8
IN parameter mode, 8-7
incomplete object types, 12-17
index-by tables

See associative arrays
INDICES OF clause, 11-8
infinite loops, 4-6
inheritance, 12-10

and overloading, 8-13
initialization

collection, 5-10
object, 12-12
package, 9-6
using DEFAULT, 2-9
variable, 2-16
when required, 2-9

INSERT statement
syntax, 13-74
with a record variable, 5-36

instances, 12-2
inter-language calls, 8-21
INTERSECT set operator, 6-4
INTERVAL DAY TO SECOND datatype, 3-15
INTERVAL YEAR TO MONTH datatype, 3-15
INTO clause, 6-25
INTO list, 6-12
INVALID_CURSOR exception, 10-5
INVALID_NUMBER exception, 10-5
invoker’s rights, 8-15
IS A SET operator, 5-16
IS DANGLING predicate, 12-20
IS EMPTY operator, 5-16
IS NULL comparison operator, 2-20
IS OF predicate, 12-10
%ISOPEN cursor attribute, 6-6, 6-17

L
labels

block, 2-15
GOTO statement, 4-12
loop, 4-7

large object (LOB) datatypes, 3-10
LAST collection method, 5-25
LEVEL pseudocolumn, 6-3
lexical units, 2-1
LIKE comparison operator, 2-21
LIMIT clause, 11-17

LIMIT collection method, 5-24
limitations, PL/SQL, E-1
literals, 2-4

Boolean, 2-6
character, 2-5
datetime, 2-6
numeric, 2-5
string, 2-6
syntax, 13-76

LOB (large object) datatypes, 3-10
lob locators, 3-10
local subprograms, 1-13
locator variables, 10-17
LOCK TABLE statement, 6-33

syntax, 13-78
locks, 6-29

modes, 6-29
overriding, 6-32
using FOR UPDATE clause, 6-33

logical rowids, 3-6
LOGIN_DENIED exception, 10-5
LONG datatype, 3-5

maximum length, 3-5
restrictions, 3-5

LONG RAW datatype, 3-5
converting, 3-20
maximum length, 3-5

LOOP statement, 4-6
syntax, 13-79

loops
counters, 4-9
labels, 4-7

M
map methods, 12-7
maximum precision, 3-3
maximum size

CHAR value, 3-4
identifier, 2-4
LOB, 3-10
LONG RAW value, 3-5
LONG value, 3-5
NCHAR value, 3-9
NVARCHAR2 value, 3-10
Oracle error message, 10-14
RAW value, 3-6
VARCHAR2 value, 3-7

MEMBER OF operator, 5-16
membership test, 2-21
MERGE statement

syntax, 13-84
method calls, chaining, 12-15
methods

collection, 5-23
map, 12-7
object, 12-2, 12-5
order, 12-7

MINUS set operator, 6-4
modes, parameter

Index-6

IN, 8-7
IN OUT, 8-8
OUT, 8-8

modularity, 1-9, 9-4
multilevel collections, 5-21
multi-line comments, 2-7
MULTISET EXCEPT operator, 5-13
MULTISET INTERSECT operator, 5-13
MULTISET UNION operator, 5-13

N
name resolution, 2-13, D-1
names

cursor, 6-11
qualified, 2-12
savepoint, 6-31
variable, 2-13

naming conventions, 2-12
national character datatypes, 3-8
national character set, 3-8
National Language Support (NLS), 3-8
native dynamic SQL. See dynamic SQL
native execution

compiling PL/SQL procedures for, 11-22
NATURAL and NATURALN subtypes, 3-2
NCHAR datatype, 3-9
NCLOB datatype, 3-11
nested collections, 5-21
nested cursors, 6-27
nested tables

manipulating, 5-17
syntax, 13-21
versus associative arrays, 5-5

nesting
block, 1-4
FOR loop, 4-11
object, 12-5
record, 5-33

new features, iv-xxiii
NEXT collection method, 5-26
NEXTVAL pseudocolumn, 6-2
nibble, 3-20
NLS (National Language Support), 3-8
NO_DATA_FOUND exception, 10-5
NOCOPY compiler hint

restrictions on, 11-21
non-blank-padding semantics, B-2
NOT logical operator

treatment of nulls, 2-26
NOT NULL constraint

effect on %TYPE declaration, 2-10
restriction, 6-11
using in collection declaration, 5-10
using in variable declaration, 2-9

NOT_LOGGED_ON exception, 10-5
notation

positional versus named, 8-7
%NOTFOUND cursor attribute, 6-17
NOWAIT parameter, 6-33

NVARCHAR2 datatype, 3-9
NVL function

treatment of nulls, 2-27
null handling, 2-25

in dynamic SQL, 7-10
NULL statement, 4-13

syntax, 13-85
using in a procedure, 8-3

NUMBER datatype, 3-3
numeric literals, 2-5

O
object attributes, 12-2, 12-5

allowed datatypes, 12-5
maximum number, 12-5

object constructors
calling, 12-14
passing parameters to, 12-15

object methods, 12-2, 12-5
calling, 12-15

object tables, 12-18
object types, 12-1, 12-2

advantages, 12-3
defining, 12-9
examples, 12-9
structure, 12-3
syntax, 13-86

object-oriented programming, 12-1
objects

declaring, 12-11
initializing, 12-12
manipulating, 12-17
sharing, 12-16

OPEN statement, 6-11
syntax, 13-93

OPEN-FOR statement, 6-22
syntax, 13-95

OPEN-FOR-USING statement
syntax, 13-97

operators
comparison, 2-20
precedence, 2-18
relational, 2-20

option, PARALLEL_ENABLE, 8-4
OR keyword, 10-13
order methods, 12-7
order of evaluation, 2-18, 2-19
OTHERS exception handler, 10-2, 10-13
OUT parameter mode, 8-8
overloading, 8-9

and inheritance, 8-13
object method, 12-7
packaged subprogram, 9-11
restrictions, 8-11

overriding methods, 12-10

P
packaged cursors, 9-14

Index-7

packaged subprograms, 1-13
calling, 9-6
overloading, 9-11

packages, 9-1, 9-2
advantages, 9-3
bodiless, 9-5
body, 9-2
initializing, 9-6
private versus public objects, 9-11
product-specific, 9-12
referencing, 9-5
scope, 9-4
specification, 9-2
syntax, 13-99

PARALLEL_ENABLE option, 8-4
parameter aliasing, 8-23
parameter passing

by reference, 8-23
by value, 8-23
in dynamic SQL, 7-4

parameters
actual versus formal, 8-6
cursor, 6-16
default values, 8-9
modes, 8-7
SELF, 12-6

parentheses, 2-18
pattern matching, 2-21
performance, 1-2
physical rowids, 3-6
pipe, 9-13
PIPE ROW statement

for returning rows incrementally, 11-31
pipelining

definition, 11-28
placeholders, 7-1

duplicate, 7-9
PLS_INTEGER datatype, 3-4
PL/SQL

advantages, 1-1
anonymous blocks, 1-4
architecture, 1-12
block structure, 1-4
blocks

syntax, 13-8
engine, 1-12
limitations, E-1
performance, 1-2
portability, 1-3
procedural aspects, 1-4
reserved words, F-1
sample programs, A-1
Server Pages (PSPs), 8-22
syntax of language elements, 13-1

PLSQL_CODE_TYPE initialization parameter, 11-24
PLSQL_NATIVE_LIBRARY_DIR initialization

parameter, 11-23
PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT

initialization parameter, 11-24
PLSQL_OPTIMIZE_LEVEL initialization

parameter, 11-1
PLSQL_WARNINGS initialization parameter, 10-18
pointers, 6-19
portability, 1-3
POSITIVE and POSITIVEN subtypes, 3-2
pragmas, 10-7

AUTONOMOUS_TRANSACTION, 6-35
EXCEPTION_INIT, 10-7
RESTRICT_REFERENCES, 6-39, 7-11, 8-22

precedence, operator, 2-18
precision of digits

specifying, 3-3
predefined exceptions

list of, 10-4
raising explicitly, 10-10
redeclaring, 10-9

predicates, 6-4
PRIOR collection method, 5-26
PRIOR row operator, 6-3, 6-5
private objects, 9-11
procedures, 8-1

body, 8-3
calling, 8-3
parameters, 8-3
parts, 8-3
specification, 8-3
syntax, 13-104

productivity, 1-3
program units, 1-9
PROGRAM_ERROR exception, 10-5
propagation, exception, 10-10
pseudocolumns, 6-2

CURRVAL, 6-2
LEVEL, 6-3
NEXTVAL, 6-2
ROWID, 6-3
ROWNUM, 6-3

public objects, 9-11
purity rules, 8-22

Q
qualifiers

using subprogram names as, 2-14
when needed, 2-12, 2-15

queries
case-insensitive, G-4

query work areas, 6-19
quoted identifiers, 2-4

R
RAISE statement, 10-9

syntax, 13-108
using in exception handler, 10-12

raise_application_error procedure, 10-8
raising an exception, 10-9
range operator, 4-9
RAW datatype, 3-6

converting, 3-20

Index-8

maximum length, 3-6
READ ONLY parameter, 6-32
readability, 2-2, 4-13
read-only transaction, 6-32
RECORD datatype, 5-32
records, 5-32

%ROWTYPE, 6-10
assigning, 5-34
bulk-binding collections of, 5-38
comparing, 5-35
defining, 5-32
implicit declaration, 6-10
in SQL INSERT and UPDATE statements, 6-7
inserting, 5-36
manipulating, 5-33
nesting, 5-33
restrictions on inserts/updates of, 5-37
returning into, 5-37
syntax, 13-110
updating, 5-36

recursion, 8-20
REF CURSOR datatype, 6-19

defining, 6-20
REF CURSOR variables

as parameters to table functions, 11-33
predefined SYS_REFCURSOR type, 11-33

REF function, 12-19
REF type modifier, 12-16
reference datatypes, 3-1
references, external, 8-16
refs, 12-16

dangling, 12-20
declaring, 12-16
dereferencing, 12-20

REGEXP_INSTR function, G-1
REGEXP_LIKE function, G-1
REGEXP_REPLACE function, G-1
REGEXP_SUBSTR function, G-1
regular expressions, G-1
relational operators, 2-20
remote access indicator, 2-12
REPEAT UNTIL structure

PL/SQL equivalent, 4-8
REPLACE function

treatment of nulls, 2-28
reraising an exception, 10-12
reserved words, 2-4, F-1
resolution, name, 2-13, D-1
RESTRICT_REFERENCES pragma, 8-22

syntax, 13-113
using with autonomous functions, 6-39
using with dynamic SQL, 7-11

restricted rowids, 3-6
result set, 6-11
RETURN clause

cursor, 9-14
function, 8-4

RETURN statement, 8-4
syntax, 13-115

return type, 6-20, 8-12

return value, function, 8-4
RETURNING clause, 12-21

with a record variable, 5-37
REVERSE reserved word, 4-9
ROLLBACK statement, 6-29

effect on savepoints, 6-31
syntax, 13-117

rollbacks
implicit, 6-31
of FORALL statement, 11-11
statement-level, 6-30

routines, external, 8-21
row locks, 6-33
row operators, 6-5
%ROWCOUNT cursor attribute, 6-6, 6-18
ROWID datatype, 3-6
ROWID pseudocolumn, 6-3
rowids, 3-6
ROWIDTOCHAR function, 6-3
ROWNUM pseudocolumn, 6-3
%ROWTYPE attribute, 2-10

syntax, 13-119
ROWTYPE_MISMATCH exception, 10-5
RPC (remote procedure call), 10-10
rules, purity, 8-22
run-time errors, 10-1

S
sample programs, A-1
savepoint names

reusing, 6-31
SAVEPOINT statement, 6-29

syntax, 13-121
scalar datatypes, 3-1
scale

specifying, 3-3
scientific notation, 2-5
SCN_TO_TIMESTAMP function, 13-122
scope, 2-14

collection, 5-6
cursor, 6-11
cursor parameter, 6-11
definition, 2-14
exception, 10-6
identifier, 2-14
loop counter, 4-10
package, 9-4

searched CASE expression, 2-24
SELECT INTO statement

syntax, 13-123
selector, 2-24
SELF parameter, 12-6
semantics

assignment, B-1
blank-padding, B-2
non-blank-padding, B-2
string comparison, B-2

separators, 2-2
sequence, 6-2

Index-9

SERIALLY_REUSABLE pragma
syntax, 13-127

Server Pages, PL/SQL, 8-22
SET operator, 5-13
set operators, 6-4
SET TRANSACTION statement, 6-32

syntax, 13-129
short-circuit evaluation, 2-19
side effects, 8-7

controlling, 8-22
SIGNTYPE subtype, 3-2
single-line comments, 2-7
size limit, varray, 5-6
spaces

where allowed, 2-2
sparse collections, 5-2
specification

call, 9-2
cursor, 9-14
function, 8-4
method, 12-5
object, 12-3
package, 9-4
procedure, 8-3

SQL
comparison operators, 6-4
data manipulation statements, 6-1
dynamic, 7-1
issuing from PL/SQL, 6-1
pseudocolumns, 6-2

SQL cursor
syntax, 13-131

SQLCODE function, 10-14
syntax, 13-135

SQLERRM function, 10-14
syntax, 13-136

standalone subprograms, 1-13
START WITH clause, 6-3
statement terminator, 13-12
statement-level rollbacks, 6-30
statements, PL/SQL

assignment, 13-3
CASE, 13-14
CLOSE, 6-13, 6-26, 13-16
COMMIT, 13-27
DELETE, 13-41
dynamic SQL, 7-1
EXECUTE IMMEDIATE, 7-2
EXIT, 13-50
FETCH, 6-12, 6-24, 13-60
FORALL, 11-8
GOTO, 13-71
IF, 13-72
INSERT, 13-74
LOCK TABLE, 13-78
LOOP, 13-79
MERGE, 13-84
NULL, 13-85
OPEN, 6-11, 13-93
OPEN-FOR, 6-22, 13-95

RAISE, 13-108
RETURN, 13-115
ROLLBACK, 13-117
SAVEPOINT, 13-121
SELECT INTO, 13-123
SET TRANSACTION, 13-129
UPDATE, 13-141

STEP clause
equivalent in PL/SQL, 4-10

STORAGE_ERROR exception, 10-6
when raised, 8-21

store tables, 5-5
stored subprograms, 1-13
string comparison semantics, B-2
string literals, 2-6
STRING subtype, 3-8
subprograms, 8-1

declaring, 8-5
how calls are resolved, 8-12
local, 1-13
overloading, 8-9
packaged, 1-13
procedure versus function, 8-3
recursive, 8-20
standalone, 1-13
stored, 1-13

subquery, 6-13
SUBSCRIPT_BEYOND_COUNT exception, 10-6
SUBSCRIPT_OUTSIDE_LIMIT exception, 10-6
substitutability of object types, 8-13
SUBSTR function, 10-15
subtypes, 3-2, 3-16, 12-10

CHARACTER, 3-5
compatibility, 3-17
constrained versus unconstrained, 3-16
DEC and DECIMAL, 3-3
defining, 3-16
FLOAT, 3-3
NATURAL and NATUARALN, 3-2
POSITIVE and POSITIVEN, 3-2
SIGNTYPE, 3-2
STRING, 3-8
VARCHAR, 3-8

supertypes, 12-10
syntax

diagram reading, iii-xxii
of PL/SQL language elements, 13-1

SYS_REFCURSOR type, 11-33

T
TABLE datatype, 5-2
table functions, 11-28

querying, 11-32
TABLE operator, 5-21
tabs, 2-2
terminator, statement, 2-2
ternary operators, 2-17
THEN clause, 4-2
TIMEOUT_ON_RESOURCE exception, 10-6

Index-10

TIMESTAMP datatype, 3-13
TIMESTAMP WITH LOCAL TIME ZONE

datatype, 3-14
TIMESTAMP WITH TIME ZONE datatype, 3-13
TIMESTAMP_TO_SCN function, 13-138
TOO_MANY_ROWS exception, 10-6
trailing blanks, B-3
transactions, 6-2

autonomous
in PL/SQL, 6-35

committing, 6-29
context, 6-37
ending properly, 6-31
processing, 6-2, 6-29
read-only, 6-32
rolling back, 6-29
visibility, 6-37

TREAT operator, 12-10
triggers, 1-14

autonomous, 6-38
TRIM collection method, 5-28
TRUE value, 2-6
%TYPE attribute, 2-9

syntax, 13-139
type definitions

collection, 5-6
forward, 12-17
RECORD, 5-32
REF CURSOR, 6-20

type evolution, 12-9
type inheritance, 12-10

U
unary operators, 2-17
underscores, 2-3
unhandled exceptions, 10-10, 10-15
uninitialized object

how treated, 12-12
UNION and UNION ALL set operators, 6-4
universal rowids, 3-6
UPDATE statement

syntax, 13-141
with a record variable, 5-36

URL (uniform resource locator), 9-13
UROWID datatype, 3-6
user-defined exceptions, 10-6
user-defined records, 5-32
user-defined subtypes, 3-16
USING clause, 7-2, 13-48
UTF8 character encoding, 3-9
UTL_FILE package, 9-13
UTL_HTTP package, 9-13

V
VALUE function, 12-18
VALUE_ERROR exception, 10-6
VALUES OF clause, 11-8
VARCHAR subtype, 3-8

VARCHAR2 datatype, 3-7
semantics, B-1

variables
assigning values, 2-16
declaring, 2-8
global, 9-8
initializing, 2-16
syntax, 13-28

VARRAY datatype, 5-2
varrays

size limit, 5-6
syntax, 13-21

visibility
of package contents, 9-2
transaction, 6-37
versus scope, 2-14

W
warning messages, 10-18
WHEN clause, 4-7, 10-13
WHILE loop, 4-8
wildcards, 2-21
words, reserved, F-1
work areas, query, 6-19
Wrap Utility, C-1

Z
ZERO_DIVIDE exception, 10-6

	Contents
	Send Us Your Comments
	Preface
	What's New in PL/SQL?
	1 Overview of PL/SQL
	Advantages of PL/SQL
	Tight Integration with SQL
	Support for SQL
	Better Performance
	Higher Productivity
	Full Portability
	Tight Security
	Support for Object-Oriented Programming

	Understanding the Main Features of PL/SQL
	Block Structure
	Variables and Constants
	Processing Queries with PL/SQL
	Declaring PL/SQL Variables
	Control Structures
	Writing Reusable PL/SQL Code
	Data Abstraction
	Error Handling

	PL/SQL Architecture
	In the Oracle Database Server
	In Oracle Tools

	2 Fundamentals of the PL/SQL Language
	Character Set
	Lexical Units
	Delimiters
	Identifiers
	Literals
	Comments

	Declarations
	Using DEFAULT
	Using NOT NULL
	Using the %TYPE Attribute
	Using the %ROWTYPE Attribute
	Restrictions on Declarations

	PL/SQL Naming Conventions
	Scope and Visibility of PL/SQL Identifiers
	Assigning Values to Variables
	Assigning Boolean Values
	Assigning a SQL Query Result to a PL/SQL Variable

	PL/SQL Expressions and Comparisons
	Logical Operators
	Boolean Expressions
	CASE Expressions
	Handling Null Values in Comparisons and Conditional Statements

	Summary of PL/SQL Built-In Functions

	3 PL/SQL Datatypes
	Overview of Predefined PL/SQL Datatypes
	PL/SQL Number Types
	PL/SQL Character and String Types
	PL/SQL National Character Types
	PL/SQL LOB Types
	PL/SQL Boolean Types
	PL/SQL Date, Time, and Interval Types
	Datetime and Interval Arithmetic
	Avoiding Truncation Problems Using Date and Time Subtypes

	Overview of PL/SQL Subtypes
	Defining Subtypes
	Using Subtypes

	Converting PL/SQL Datatypes
	Explicit Conversion
	Implicit Conversion
	Choosing Between Implicit and Explicit Conversion
	DATE Values
	RAW and LONG RAW Values

	4 Using PL/SQL Control Structures
	Overview of PL/SQL Control Structures
	Testing Conditions: IF and CASE Statements
	Using the IF-THEN Statement
	Using the IF-THEN-ELSE Statement
	Using the IF-THEN-ELSIF Statement
	Using the CASE Statement
	Guidelines for PL/SQL Conditional Statements

	Controlling Loop Iterations: LOOP and EXIT Statements
	Using the LOOP Statement
	Using the EXIT Statement
	Using the EXIT-WHEN Statement
	Labeling a PL/SQL Loop
	Using the WHILE-LOOP Statement
	Using the FOR-LOOP Statement

	Sequential Control: GOTO and NULL Statements
	Using the GOTO Statement
	Using the NULL Statement

	5 Using PL/SQL Collections and Records
	What Is a Collection?
	Understanding Nested Tables
	Understanding Varrays
	Understanding Associative Arrays (Index-By Tables)
	How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays

	Choosing Which PL/SQL Collection Types to Use
	Choosing Between Nested Tables and Associative Arrays
	Choosing Between Nested Tables and Varrays

	Defining Collection Types
	Defining SQL Types Equivalent to PL/SQL Collection Types

	Declaring PL/SQL Collection Variables
	Initializing and Referencing Collections
	Referencing Collection Elements

	Assigning Collections
	Comparing Collections
	Using PL/SQL Collections with SQL Statements
	Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements
	Manipulating Individual Collection Elements with SQL

	Using Multilevel Collections
	Using Collection Methods
	Checking If a Collection Element Exists (EXISTS Method)
	Counting the Elements in a Collection (COUNT Method)
	Checking the Maximum Size of a Collection (LIMIT Method)
	Finding the First or Last Collection Element (FIRST and LAST Methods)
	Looping Through Collection Elements (PRIOR and NEXT Methods)
	Increasing the Size of a Collection (EXTEND Method)
	Decreasing the Size of a Collection (TRIM Method)
	Deleting Collection Elements (DELETE Method)
	Applying Methods to Collection Parameters

	Avoiding Collection Exceptions
	What Is a PL/SQL Record?
	Defining and Declaring Records
	Using Records as Procedure Parameters and Function Return Values

	Assigning Values to Records
	Comparing Records
	Inserting PL/SQL Records into the Database
	Updating the Database with PL/SQL Record Values
	Restrictions on Record Inserts/Updates
	Querying Data into Collections of Records

	6 Performing SQL Operations from PL/SQL
	Overview of SQL Support in PL/SQL
	Data Manipulation
	Transaction Control
	SQL Functions
	SQL Pseudocolumns
	SQL Operators

	Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)
	Overview of Implicit Cursor Attributes

	Using PL/SQL Records in SQL INSERT and UPDATE Statements
	Issuing Queries from PL/SQL
	Selecting At Most One Row: SELECT INTO Statement
	Selecting Multiple Rows: BULK COLLECT Clause
	Looping Through Multiple Rows: Cursor FOR Loop
	Performing Complicated Query Processing: Explicit Cursors

	Querying Data with PL/SQL
	Querying Data with PL/SQL: Implicit Cursor FOR Loop
	Querying Data with PL/SQL: Explicit Cursor FOR Loops
	Defining Aliases for Expression Values in a Cursor FOR Loop
	Overview of Explicit Cursors

	Using Subqueries
	Using Correlated Subqueries
	Writing Maintainable PL/SQL Queries

	Using Cursor Attributes
	Overview of Explicit Cursor Attributes

	Using Cursor Variables (REF CURSORs)
	What Are Cursor Variables (REF CURSORs)?
	Why Use Cursor Variables?
	Declaring REF CURSOR Types and Cursor Variables
	Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE
	Reducing Network Traffic When Passing Host Cursor Variables to PL/SQL
	Avoiding Errors with Cursor Variables
	Restrictions on Cursor Variables

	Using Cursor Expressions
	Restrictions on Cursor Expressions
	Example of Cursor Expressions
	Constructing REF CURSORs with Cursor Subqueries

	Overview of Transaction Processing in PL/SQL
	Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL
	How Oracle Does Implicit Rollbacks
	Ending Transactions
	Setting Transaction Properties with SET TRANSACTION
	Overriding Default Locking

	Doing Independent Units of Work with Autonomous Transactions
	Advantages of Autonomous Transactions
	Defining Autonomous Transactions
	Controlling Autonomous Transactions
	Using Autonomous Triggers
	Calling Autonomous Functions from SQL

	7 Performing SQL Operations with Native Dynamic SQL
	What Is Dynamic SQL?
	Why Use Dynamic SQL?
	Using the EXECUTE IMMEDIATE Statement
	Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings

	Building a Dynamic Query with Dynamic SQL
	Examples of Dynamic SQL for Records, Objects, and Collections
	Using Bulk Dynamic SQL
	Using Dynamic SQL with Bulk SQL
	Examples of Dynamic Bulk Binds

	Guidelines for Dynamic SQL
	When to Use or Omit the Semicolon with Dynamic SQL
	Improving Performance of Dynamic SQL with Bind Variables
	Passing Schema Object Names As Parameters
	Using Duplicate Placeholders with Dynamic SQL
	Using Cursor Attributes with Dynamic SQL
	Passing Nulls to Dynamic SQL
	Using Database Links with Dynamic SQL
	Using Invoker Rights with Dynamic SQL
	Using Pragma RESTRICT_REFERENCES with Dynamic SQL
	Avoiding Deadlocks with Dynamic SQL
	Backward Compatibility of the USING Clause

	8 Using PL/SQL Subprograms
	What Are Subprograms?
	Advantages of PL/SQL Subprograms
	Understanding PL/SQL Procedures
	Understanding PL/SQL Functions
	Using the RETURN Statement

	Declaring Nested PL/SQL Subprograms
	Passing Parameters to PL/SQL Subprograms
	Actual Versus Formal Subprogram Parameters
	Using Positional, Named, or Mixed Notation for Subprogram Parameters
	Specifying Subprogram Parameter Modes
	Using Default Values for Subprogram Parameters

	Overloading Subprogram Names
	Guidelines for Overloading with Numeric Types
	Restrictions on Overloading

	How Subprogram Calls Are Resolved
	How Overloading Works with Inheritance

	Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)
	Advantages of Invoker's Rights
	Specifying the Privileges for a Subprogram with the AUTHID Clause
	Who Is the Current User During Subprogram Execution?
	How External References Are Resolved in Invoker's Rights Subprograms
	Overriding Default Name Resolution in Invoker's Rights Subprograms
	Granting Privileges on Invoker's Rights Subprograms
	Using Roles with Invoker's Rights Subprograms
	Using Views and Database Triggers with Invoker's Rights Subprograms
	Using Database Links with Invoker's Rights Subprograms
	Using Object Types with Invoker's Rights Subprograms

	Using Recursion with PL/SQL
	What Is a Recursive Subprogram?

	Calling External Subprograms
	Creating Dynamic Web Pages with PL/SQL Server Pages
	Controlling Side Effects of PL/SQL Subprograms
	Understanding Subprogram Parameter Aliasing

	9 Using PL/SQL Packages
	What Is a PL/SQL Package?
	What Goes In a PL/SQL Package?
	Example of a PL/SQL Package

	Advantages of PL/SQL Packages
	Understanding The Package Specification
	Referencing Package Contents

	Understanding The Package Body
	Some Examples of Package Features
	Private Versus Public Items in Packages
	Overloading Packaged Subprograms
	How Package STANDARD Defines the PL/SQL Environment
	Overview of Product-Specific Packages
	About the DBMS_ALERT Package
	About the DBMS_OUTPUT Package
	About the DBMS_PIPE Package
	About the UTL_FILE Package
	About the UTL_HTTP Package

	Guidelines for Writing Packages
	Separating Cursor Specs and Bodies with Packages

	10 Handling PL/SQL Errors
	Overview of PL/SQL Runtime Error Handling
	Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions

	Advantages of PL/SQL Exceptions
	Summary of Predefined PL/SQL Exceptions
	Defining Your Own PL/SQL Exceptions
	Declaring PL/SQL Exceptions
	Scope Rules for PL/SQL Exceptions
	Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT
	Defining Your Own Error Messages: Procedure RAISE_APPLICATION_ERROR
	Redeclaring Predefined Exceptions

	How PL/SQL Exceptions Are Raised
	Raising Exceptions with the RAISE Statement

	How PL/SQL Exceptions Propagate
	Reraising a PL/SQL Exception
	Handling Raised PL/SQL Exceptions
	Handling Exceptions Raised in Declarations
	Handling Exceptions Raised in Handlers
	Branching to or from an Exception Handler
	Retrieving the Error Code and Error Message: SQLCODE and SQLERRM
	Catching Unhandled Exceptions

	Tips for Handling PL/SQL Errors
	Continuing after an Exception Is Raised
	Retrying a Transaction
	Using Locator Variables to Identify Exception Locations

	Overview of PL/SQL Compile-Time Warnings
	PL/SQL Warning Categories
	Controlling PL/SQL Warning Messages
	Using the DBMS_WARNING Package

	11 Tuning PL/SQL Applications for Performance
	How PL/SQL Optimizes Your Programs
	When to Tune PL/SQL Code
	Guidelines for Avoiding PL/SQL Performance Problems
	Avoiding CPU Overhead in PL/SQL Code
	Avoiding Memory Overhead in PL/SQL Code

	Profiling and Tracing PL/SQL Programs
	Using The Profiler API: Package DBMS_PROFILER
	Using The Trace API: Package DBMS_TRACE

	Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)
	Using the FORALL Statement
	Retrieving Query Results into Collections with the BULK COLLECT Clause

	Writing Computation-Intensive Programs in PL/SQL
	Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables
	Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint
	Restrictions on NOCOPY

	Compiling PL/SQL Code for Native Execution
	Setting Up Transformation Pipelines with Table Functions
	Overview of Table Functions
	Using Pipelined Table Functions for Transformations
	Writing a Pipelined Table Function
	Returning Results from Table Functions
	Pipelining Data Between PL/SQL Table Functions
	Querying Table Functions
	Optimizing Multiple Calls to Table Functions
	Fetching from the Results of Table Functions
	Passing Data with Cursor Variables
	Performing DML Operations Inside Table Functions
	Performing DML Operations on Table Functions
	Handling Exceptions in Table Functions

	12 Using PL/SQL Object Types
	Overview of PL/SQL Object Types
	What Is an Object Type?
	Why Use Object Types?
	Structure of an Object Type
	Components of an Object Type
	What Languages can I Use for Methods of Object Types?
	How Object Types Handle the SELF Parameter
	Overloading
	Changing Attributes and Methods of an Existing Object Type (Type Evolution)

	Defining Object Types
	Overview of PL/SQL Type Inheritance

	Declaring and Initializing Objects
	Declaring Objects
	Initializing Objects
	How PL/SQL Treats Uninitialized Objects

	Accessing Object Attributes
	Defining Object Constructors
	Calling Object Constructors
	Calling Object Methods
	Sharing Objects through the REF Modifier
	Forward Type Definitions

	Manipulating Objects through SQL
	Selecting Objects
	Inserting Objects
	Updating Objects
	Deleting Objects

	13 PL/SQL Language Elements
	Assignment Statement
	AUTONOMOUS_TRANSACTION Pragma
	Blocks
	CASE Statement
	CLOSE Statement
	Collection Methods
	Collections
	Comments
	COMMIT Statement
	Constants and Variables
	Cursor Attributes
	Cursor Variables
	Cursors
	DELETE Statement
	EXCEPTION_INIT Pragma
	Exceptions
	EXECUTE IMMEDIATE Statement
	EXIT Statement
	Expressions
	FETCH Statement
	FORALL Statement
	Functions
	GOTO Statement
	IF Statement
	INSERT Statement
	Literals
	LOCK TABLE Statement
	LOOP Statements
	MERGE Statement
	NULL Statement
	Object Types
	OPEN Statement
	OPEN-FOR Statement
	OPEN-FOR-USING Statement
	Packages
	Procedures
	RAISE Statement
	Records
	RESTRICT_REFERENCES Pragma
	RETURN Statement
	ROLLBACK Statement
	%ROWTYPE Attribute
	SAVEPOINT Statement
	SCN_TO_TIMESTAMP Function
	SELECT INTO Statement
	SERIALLY_REUSABLE Pragma
	SET TRANSACTION Statement
	SQL Cursor
	SQLCODE Function
	SQLERRM Function
	TIMESTAMP_TO_SCN Function
	%TYPE Attribute
	UPDATE Statement

	A Sample PL/SQL Programs
	Where to Find PL/SQL Sample Programs
	Exercises for the Reader

	B Understanding CHAR and VARCHAR2 Semantics in PL/SQL
	Assigning Character Values
	Comparing Character Values
	Inserting Character Values
	Selecting Character Values

	C Obfuscating Source Code with the PL/SQL Wrap Utility
	Advantages of Wrapping PL/SQL Procedures
	Running the PL/SQL Wrap Utility
	Input and Output Files for the PL/SQL Wrap Utility

	Limitations of the PL/SQL Wrap Utility

	D How PL/SQL Resolves Identifier Names
	What Is Name Resolution?
	Examples of Qualified Names and Dot Notation
	Differences in Name Resolution Between SQL and PL/SQL
	Understanding Capture
	Inner Capture
	Same-Scope Capture
	Outer Capture

	Avoiding Inner Capture in DML Statements
	Qualifying References to Object Attributes and Methods
	Calling Parameterless Subprograms and Methods
	Name Resolution for SQL Versus PL/SQL

	E PL/SQL Program Limits
	F List of PL/SQL Reserved Words
	G Frequently Asked Questions About PL/SQL
	When Should I Use Bind Variables with PL/SQL?
	When Do I Use or Omit the Semicolon with Dynamic SQL?
	How Can I Use Regular Expressions with PL/SQL?
	How Do I Continue After a PL/SQL Exception?
	Does PL/SQL Have User-Defined Types or Abstract Data Types?
	How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?
	How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation?
	What Can I Do with Objects and Object Types in PL/SQL?
	How Do I Create a PL/SQL Procedure?
	How Do I Input or Output Data with PL/SQL?
	How Do I Perform a Case-Insensitive Query?

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

