ORACLE

Oracle[] Database
Security Guide

10g Release 1 (10.1)
Part No. B10773-01

December 2003

Oracle Database Security Guide, 10g Release 1 (10.1)

Part No. B10773-01

Copyright © 2003 Oracle Corporation. All rights reserved.
Primary Authors: Laurel P. Hale, Jeffrey Levinger

Contributing Authors: Ruth Baylis, Michele Cyran, John Russell
Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle8i, Oracle9i, PL/SQL, SQL*Net, and SQL*Plus
are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send US YOUTr COMMEBNLES ..ottt XXi
PIEIACEo xxiii
F NS Lo [T o (ot OO TTSTO XXV
OFGANIZATION ...ttt ettt h bt bbbt e bt e b e e b e b s e et et e neessen b e b e e bt ebesbenbenben XXV
Related DOCUMENTALIONoc.oiiiiiiiiceee ettt ettt sttt e seesbeee e eneeneas XXVii
CONVENTIONS ...ttt bbbt bbbtk stk se et e s b et e s b e b e e b e e e b et ebe e et e ebe e ebe e XXVili
Documentation ACCESSIDIIILYcoviiiiiiei e e e XXXIi
What's New in Oracle Database SECUTITY? ... XXXV
New Features in Virtual Private Database ..ot XXXVi
NeW Features iN AUAITINGcoiiiiie bbb XXXVii
New PL/SQL Encryption Package: DBMS CRYPTOccccceiiiveieisiese e XXXViii
Part1 Overview of Security Considerations and Requirements
1 Security Requirements, Threats, and Concepts
Identity Management: Security in Complex, High Volume Environments...........cc.cccceeveee. 1-4
Desired Benefits of Identity Managementcocooviiiiiininine e e 1-5
Components of Oracle's Identity Management Infrastructure...........ccocooceoevviiciicnencnnenn, 1-6

Security Checklists and Recommendations

Physical Access CoNrol CHECKIIST.........cciiiiie e 2-2
Personnel CHECKIIST..........ciiiiiee bbbttt 2-2
Secure Installation and Configuration Checklistcccoo i, 2-3
Networking Security CRHECKIISTS ..o e 2-7
SSL (Secure Sockets Layer) CheCKIiSt........ccoviiieieeieesese s 2-7
CHENT CRECKIIST ...ttt b e b b 2-8
LISTENEE CRECKIIST......uiiiiiei ittt ettt nbe e sbe e 2-9
NETWOIK CRECKIISTcviieieiecice ettt 2-9

Security Policies and Tips

Introduction to Database Security POLICIES..........ccccv i 3-1
Security Threats and COUNTENMEASUIESccveveiiieiiiieeieseesie e stesee e see e ae e seesreeneesreenes 3-1
What Information Security PoliciesS Can COVENccoeiiieiineiiieiineinese e 3-2

Recommended Application Design Practices to Reduce RisK.........ccccocevvrereiiivcvcivninse s 3-4

Tip 1: Enable and Disable ROIES PrompPtly ... 3-5
Tip 2: Encapsulate Privileges in Stored Procedurescccoeoiiiienniensienseneeseee 3-6
Tip 3: Use Role Passwords Unknown to the USEr ... 3-7
Tip 4: Use Proxy Authentication and a Secure Application Role............ccccooininnnne 3-7
Tip 5: Use Secure Application Role to Verify IP AdAressc.ccoooevieniennieneieneenns 3-8
Tip 6: Use Application Context and Fine-Grained Access Control.............ccccccevvevvnnnnne 3-9

Part Il Security Features, Concepts, and Alternatives

4 Authentication Methods

Authentication by the Operating SYStEM.........ccoiiiiiiieiec e 4-2
Authentication DY the NETWOIK ...t 4-2
Authentication by the Secure Socket Layer ProtoCol...........cccieiieiieniiensensesesee e 4-3
Authentication Using Third-Party SErVICESccoviveieieiieii s 4-3
DCE AULNENTICALION ...t et 4-4
Kerberos AUTNENTICAtIONccooiiiiiii e 4-4

Public Key Infrastructure-Based Authentication............cc.ccoevvievinienevcncicie e 4-4
Authentication With RADIUS ..o 4-6
Directory-based SEIVICES ..ot 4-7

Authentication by the Oracle Databaseccccovveiiiiie i 4-8

Password Encryption While CONNECTINGcccoueiiiiriiiriee e 4-8
Ao oto 18] | A 10T 2 T [4-9
Password Lifetime and EXPIration...........cccooiiiiiiiinine e 4-9
PaSSWOIT HISTOIY ..ottt bbb bbbttt 4-9
Password Complexity VEerifiCationcccouevirieiiiiiciciesn e 4-10
Multitier Authentication and AUthOrIZation ... 4-10
Clients, Application Servers, and Database SErVErS...........ccooviieieneneneneeeeseee e 4-11
Security Issues for Middle-Tier APPlICAtIONS..........coivii i 4-13
Identity Issues in a Multitier ENVIFONMENT..........cccoiiiiiii s 4-14
Restricted Privileges in a Multitier ENVIFONMENTccoiiiiiiiiicsceeeeeeeeeeens 4-14

(O 1=) o YT =T o TSP 4-14
APPLICation SErVer PrIVIIEOEScoooiiiiiice s 4-14
Authentication of Database AdMINISIratOrsSccccooiiiiiiiiiine e 4-14

Authorization: Privileges, Roles, Profiles, and Resource Limitations

INtrodUCLiON TO PrIVIIEOESc.oiiiiiiiice bbb 5-2
YA (=Y 0 T V71 1= 0 1= 5-3
Granting and Revoking System PriVIlEgesS.........cccveviiiiie i 5-3
Who Can Grant or Revoke System Privileges? ... 5-4
SChema OBJECT PriVIIEgES.civiiie ettt nre e e s 5-4
Granting and Revoking Schema Object Privileges.........cccovvviiieiciieiesie e 5-5
Who Can Grant Schema ODbject Privileges?........ccoviiiniinieeeee e 5-5
Using Privileges With SYNONYMSc.ccoiiiiiiiisire e e snens 5-6
I Lo 1 L3 o V1 =T =TSRSS 5-6
Data Manipulation Language (DML) OpPerations...........ccccceoeereineieneinensensesee s 5-6
Data Definition Language (DDL) OPErationS.........cccccvevvvrerirerereenieseeressesesesesesseseenns 5-7
VIBW PLIVIIEUES ...ttt ettt ettt et st e te s te e bente e beeneenteaneenteanes 5-7
Privileges Required t0 Create VIBWSccooirieirieiniee ettt 5-8
Increasing Table Security With VIEWScccccv i 5-8
ProCedUure PrIVIIEOES ..ottt sttt te e s te e teenaenreens 5-9
Procedure Execution and Security DOMAINS...........cccooiiriiniineineseseee e 5-10
System Privileges Needed to Create or Alter a Procedure..........cccceovreverieiveineeenniens 5-12
Packages and Package ODJECES ..o 5-12
TYPE PIIVIIEGES......eiecicee bbbttt 5-14

System Privileges for Named TYPES ..ot 5-14

ODJECE PHIVIIEOES ...t 5-15
Method EXECULION MOAELccoooiiiiiiie e e 5-15
Privileges Required to Create Types and Tables USing TYPESccoceeeervieinienenncns 5-15
Example of Privileges for Creating Types and Tables USing TYPeS........c.cccrvvereenas 5-16
Privileges on Type Access and ODJECt ACCESSucvevvvieiirieresesieseseesiesiereeseeeseseanens 5-17
TYPE DEPENUENCIES ...ttt ettt b et bbb b et s e et ebesbe b e 5-19
INTrOAUCTION 10 ROIES ittt e e re e 5-19
Properties OF ROIESccvii ittt e et snesrenns 5-20
CoMMON USES TOF ROIES.......oiiiiiiie ittt 5-21
APPHCATION ROIES ... 5-22
USEE ROIES ...ttt st ettt et ebe e 5-22
Granting and ReVOKING ROIES..........coiiiiiiicec e 5-22
Who Can Grant Or REVOKE ROIES?........coiiiiiiieices e 5-23
Security Domains 0f ROIES @aNd USEIS.......cccccieviirieieiecces e 5-23
PL/SQL BIOCKS @NA ROIESocveeiiciie ettt ettt 5-24
Named Blocks with Definer’s RIgNTS.........ccoeiiiiiiiiis e 5-24
Anonymous Blocks with INVOKer’s RIghtS ..o 5-24
Data Definition Language Statements and ROIES...........cccceviiiiiieiiec i 5-24
Predefined ROIESooi ettt ettt ettt neas 5-26
The Operating System and ROIES ... e 5-26
Roles in a Distributed ENVIFONMENT...........coiiiiiii e 5-26
Secure APPLICALION ROIES ..ot 5-27
Creation of Secure Application ROIES..........cocivivii i 5-27
USEI RESOUITE LIMIITS. ...ttt bbb bbb e ettt ebe e 5-28
Types of System Resources and LiMItSocoiiiiiiininieceseee s 5-29
SESSION LBV ...ttt bbbttt 5-29
CAILEVEL ...ttt 5-30
L@ T 0 T TR 5-30
(0T [Tor= 1 I = (=7 Lo [PPSR 5-30
Limiting Other RESOUICES........coiiieiieiee ittt sttt et e et e saeesae e e stesseesresreesreaneens 5-30
(0] 1 1= SRRSO 5-32

6 Access Controls on Tables, Views, Synonyms, or Rows

INTrOAUCTION 1O VIBWS ...ttt e st ettt e s be e be s ae e s be s aeesteesaesteeseenraens 6-2
Fine-Grained ACCESS CONTIOL.........coiiiiiiiee bbb 6-3
(DY Fo T Tl o = To = | (=SSR 6-5
APPHCATION CONTEXT ...ttt bbb bbb bbb bbbt 6-6
()Y T 1 g1 To3 O]] (=)t S 6-8
Security Followup: Auditing as well as Prevention ... 6-9

7 Security Policies

SYSEM SECUNILY POLICYiiiii ettt et e e e reenes 7-1
Database USer ManAgEMENTooeiiiiiiiiieisieesie ettt 7-2
USEr AULNENTICATION ...t bbbttt 7-2
OPErating SYSTEIM SECUTTLYoiviiiiieieiieie ettt bbbttt ettt et st sbe b e 7-2

Data SECUITLY POLICY ..ottt ettt 7-3

USEI SECUNILY POLICY .vviiiiiiiic ettt ne et nesne st snenrenns 7-4
GENEIAI USEE SECUTTLYveieeeiieiie sttt ettt e e et e st e st et e et e saeeaesneentenneas 7-4

PASSWOIT SECUTTLY ...vviiciiieciesiee et bbbttt ettt bbb 7-4
Privilege Management.........cccceieieieececese e e ne e e 7-5
g Lo RO LT ol U |) Y2 SRS 7-5
Using Roles for End-User Privilege Management..........ccoccoveiieiiennennensenseseee 7-5
Using a Directory Service for End-User Privilege Management...........ccccoovveivviniinnnnne 7-7
AdMINISTFAtOr SECUNILY ...vviiiiiie ittt te e te e be st e beene e b e eneenreenes 7-7
Protection for Connections as SYS and SYSTEM.......cccoceviiiiiiiiiceceeee e 7-7
Protection for Administrator CONNECLIONScccocvveiireiineie e 7-7
Using Roles for Administrator Privilege Management............ccccccoveviiievesecse e e, 7-8
APPLcation DEVEIOPET SECUTILYcviiiiiiiiiiiiteet ettt 7-9
Application Developers and Their Privileges ... 7-9
The Application Developer's Environment: Test and Production Databases............ 7-10
Free Versus Controlled Application Development ... 7-10
Roles and Privileges for Application DevelOpers.........ccocvvveievinciersieeeeese e 7-10
Space Restrictions Imposed on Application Developers..........ccocveieieicicinincicnenn 7-11
Application AdMINISTFAtOr SECUTTLYcoieiiiiiiiieiie et 7-11

Password Management POLICYcccooviiiiiiinie e 7-12
Yol oto] U] o o Tod 1] T SO PSRT 7-12
Password Aging and EXPIFation ...t 7-13

Vii

PaSSWOIA HISTOIYooiieiicicc ettt e be et e saeestesreestesraestenreen 7-15

Password Complexity VerifiCationccocoieiiiiiineiiciee e 7-16
Password Verification Routine Formatting GUIidelings..........cccccovvveveneiercricesieceanns 7-16

Sample Password Verification ROULINE. ..o 7-17
AUATTING POLICY ...ttt b bttt bbbttt 7-20
A SECUNILY CRECKIISTottt e sa et e n e e neerenre e 7-20

8 Database Auditing: Security Considerations

AUditing TYPES AN RECOIUS.......ociiiiiiiiieieeee e e re e eresresnesrenes 8-2
Audit Records and the AUdit TrailS.........ccoeiiiii s 8-3
Database Audit Trail (DBA_AUDIT_TRAIL)....cccootiiiiiiieeneeetneesee e 8-4
Operating System AUIT Trailccooeiierieicee e 8-5
Operating System AUIt RECOITS........cuoiiiiiiiiii e 8-6
Records Always in the Operating System Audit Trail..........cccoeviniiniiiiec 8-7

When Are Audit RECOIAS Createa?..........ccoiiiriiirieiiiee et 8-7

] = 1= 0 01T | 02N o T £ o o ST 8-9
Privilege AUGITINGccoiiiiiieie bbb bbbttt et 8-9
Schema ObBJECt AUAITING ...ocviiieiecece e re e neere e e 8-10
Schema Object Audit Options for Views, Procedures, and Other Elements 8-10
Focusing Statement, Privilege, and Schema Object AUdItiNgccccoviiienniensieneeseee 8-12
Auditing Statement Executions: Successful, Unsuccessful, or Both...........cccccocevvevvivennene 8-12
Number of Audit Records from Multiple Executions of a Statement..............cccccccevienene 8-13

BY SESSION ...ttt bbbttt bbbt s 8-13

BY ACCESS ...ttt bbb e bbb bbb 8-14

N B Lo T A =Y O LT SR T 8-15
Auditing in a Multitier ENVIFONMENT ..o 8-15
FINE-GraiNed AUITINGcooiiiiiiie sttt e e e e e eneeneaneerenrs 8-16

Part Il Security Implementation, Configuration, and Administration

9 Administering Authentication

User AUthentication MEHOASc.oooiiii e e st sre s sree s 9-1
[DEEN = 1o F 1S AN 0| 1 (=1 0 1 (o= L] o [N 9-1
Creating a User Who is Authenticated by the Database.............ccccooeoneinenniinneneeene 9-2

viii

Advantages of Database AUthentiCationccccceiiiieci s 9-3

External AULNENTICATIONot be e e e 9-3
Creating a User Who is Authenticated Externallyccccoovviviiniieiniccciesecc e 9-4
Operating System AUNENTICATIONcooiiiiiiii e 9-4
Network AUthENTICAtIONcc.oiiiee e 9-5
Advantages of External AUthentication............cccocii i 9-5

Global Authentication and AUthOFIZAtIONcooiiiiiii e 9-5
Creating a User Who is Authorized by a Directory SErviceccocveiveienciseninennns 9-6
Advantages of Global Authentication and Global Authorizationcc.cccvevvvnnee. 9-7

Proxy Authentication and AUthOrization ..o 9-8
Authorizing a Middle Tier to Proxy and Authenticate a USerc.ccccoevninnennennn. 9-9
Authorizing a Middle Tier to Proxy a User Authenticated by Other Means............... 9-9

10 Administering User Privileges, Roles, and Profiles

Y EoTaF Vo [e @] = Uod [T U EST=T S 10-1
(01 oL] Lo LU F=T SRS 10-2
SPECITYING & INAIMIE ...t 10-3

Setting a User's AULhENIiCAtIONcccoiiiiiieicccs e 10-3
Assigning a Default TableSPaCec.coeiiiiiiii s 10-3
AsSigning TableSPace QUOLAS..........ceiiiiiiiieiriee et 10-4
Assigning a Temporary TableSPaCE........covvveieieieireese e snens 10-5
SPECITYING @ PrOfile......cc.o i e 10-6

Setting Default ROIES. ..o e 10-6

F AN | =] T T T LT S 10-7
Changing a User's Authentication Mechanismc.cccooiiiiiiic e 10-7
Changing a User's Default ROIES............cccociiiiiiiicie e 10-8

[T 0] o] 0] [T U0 £ =T OSSP 10-8
Viewing Information About Database Users and Profiles..........cccccocviviiiiiiicciccccccecn 10-9
User and Profile Information in Data Dictionary VIEWSc.ccccceriinnineiineineineenens 10-9
Listing All Users and Associated INformation ..o 10-11
Listing All Tablespace QUOTASc.coiiiiiiiiie e 10-11
Listing All Profiles and AsSigned Limits ... 10-11
Viewing Memory Use for Each USEr SESSIONcccoveveiiviiiisese e eseaneas 10-12
Managing Resources With ProfileS ... 10-13
DIropPRINg PrOFIIEScc.oiiiiieice e 10-14

Understanding User Privileges and ROIES ... 10-15

SYSTEIM PrIVIIEOES ...ttt bbb 10-15
Restricting SYStemM PriVIlEgES.......ccccv i 10-15
Accessing Objects iN the SYS SCheMa@ ..o 10-16

ODJECE PrIVIIEOES. ...ttt bbb 10-17

USEE ROIES ...ttt bbbt bbbt nane 10-18

ManNagiNg USEI ROIESoci et te e beste e b e ene e 10-20

Creating @ ROIE ... 10-20

Specifying the Type of Role AUthOrization...........ccccovoieieiiicisi e 10-21
Role Authorization by the Database............ccccoviviieieiic e 10-21
Role Authorization by an AppliCation ... 10-22
Role Authorization by an EXternal SOUICE........cccoevevrviie e 10-22
Role Authorization by an Enterprise Directory SErviceccooveveieneneiencicenen 10-23

DIOPPING ROIES ...ttt b et 10-24

Granting User Privileges and ROIES ..o 10-24

Granting System Privileges and ROIES...........cccovviiiiiiiiicccr e 10-24
Granting the ADMIN OPTIONcoiiiiiiiiiieisiee ettt 10-25
Creating a New User with the GRANT Statement..........ccoccocvvevieievineneseeeseeeennns 10-26

Granting ODJECT PriVIIEJES.ccvoiiiee ettt et 10-26
Specifying the GRANT OPTIONcccciiiiiiieiiiei ettt 10-27
Granting Object Privileges on Behalf of the Object Ownerccocevevevvicicicenenns 10-27
Granting Privileges 0N COIUMNS ..ot 10-29
ROW-LeVel ACCESS CONIOLcoiiiiiieiiiee ettt 10-29

Revoking User Privileges and ROIES ... enen 10-29

Revoking System Privileges and ROIES...........c.ccoevi i 10-30

ReVOKING ODJECT PriVIIEOES.ciiiiiiiiriiies e 10-30
Revoking Object Privileges on Behalf of the Object Owner.........ccococvveveveviciceenen, 10-31
Revoking Column-Selective Object Privilegescccccoveieieciiiicccccse e 10-32
Revoking the REFERENCES ODbject Privilege ... 10-32

Cascading Effects of RevOKINg Privileges ... 10-32
YA =] 0 T o NV 1 =T o oSSR 10-33
ODJECE PHIVIIEOES ...ttt 10-33

Granting to and Revoking from the User Group PUBLICcccccocvivvivineienccee e 10-34
When Do Grants and Revokes Take Effect? ... 10-35

The SET ROLE STAtEIMENTveiiieiii ettt sttt st e st e e s s bt e e sbaa e s sate e s sabeeesabenessaens 10-35

SPeCifying Default ROIES........ccoiiiiiiie e 10-35

Restricting the Number of Roles that a User Can Enable............ccccooiiiiiiicics 10-36
Granting Roles Using the Operating System or NetWorkcccccoovvvvivnniercneiecieeecenes 10-36
Using Operating System Role Identification ... 10-37
Using Operating System Role Managementcccooeereireieneineeseeseese e 10-39
Granting and Revoking Roles When OS_ROLES=TRUEccccvcvriiiirvncrereereeeeesenns 10-39
Enabling and Disabling Roles When OS_ROLES=TRUEcccccovviiiiiiieiieie e 10-39
Using Network Connections with Operating System Role Management 10-40
Viewing Privilege and Role INfOrmation..........cccoceveiiiiicisie s 10-40
Listing All System Privilege GrantS..........ccccoeviiieiiiieiic et 10-42
LiSting Al ROIE GIantsccovoiiiiiiiiieie et 10-42
Listing Object Privileges Granted t0 @ USErccccveieireieieiie it anens 10-42
Listing the Current Privilege Domain of YOUr SESSION.........cccccvivieiiiie s 10-43
Listing RoIeS Of the DAtabasec.ceieiieiieiice e 10-44
Listing Information About the Privilege Domains of ROIES...........ccccvvevveveiciciccieieens 10-44

11 Configuring and Administering Auditing

Actions Audited by Default...........coo i 11-1
GUIAElINES TOr AUAITINGcoiiiie ettt e b e aaeesae e e sreanees 11-2
Keep Audited Information Manageable ... 11-3
Auditing Normal Database ACHIVILYcccccveviiiiiiiecie s 11-3
Auditing Suspicious Database ACHIVILY ..o 11-4
AUuditing AdMINISIFAtIVE USEIS........ciiiiiiieiiieiiieiiese sttt 11-4
LS [o T I o o =T S 11-6
Decide Whether to Use the Database or Operating System Audit Trailccccooeee. 11-7
What Information is Contained in the Audit Trail?.........cc.ccooiviiiiinni e 11-7
Database Audit Trail CONTENTScciviiiriiieiie e ere e 11-8
Audit Information Stored in an Operating System File.........ccccooiiiiininciiicee, 11-9
Managing the Standard Audit Trail ... 11-10
Enabling and Disabling Standard AUditingcccccoveivriviiinininne e 11-10
Setting the AUDIT_TRAIL Initialization Parameter.........c.cccccooeviieiiesieesn e 11-11

Setting the AUDIT_FILE_DEST Initialization Parametercccccoceveveieieincennnn, 11-12
Standard Auditing in a Multitier ENVIrONMENtccoviviviienienenene e 11-13
Setting Standard Auditing OPLIONScc.ooiiiiiiiiic e 11-13
Specifying Statement AUITINGcccoeiiiii e 11-15

Xi

Specifying Privilege AUitiNg........c.cooeiiiiiiiiiiee e 11-15

SPecifying ODJECt AUAITINGcoviiiiiiiieiee e 11-16
Turning Off Standard Audit OPLIONSccceveieieceee e 11-17
Turning Off Statement and Privilege Auditingcccooce v 11-17
Turning Off ObJect AUAITINGcociiiiiiiic s 11-18
Controlling the Growth and Size of the Standard Audit Trailccocoevviiviicicicnenns 11-18
Purging Audit Records from the Audit Trail ... 11-19
Archiving Audit Trail INformation ... 11-20
Reducing the Size of the Audit Trail........cccoooeieiiiicc e 11-20
Protecting the Standard Audit Trail...........cccoooi i 11-21
Auditing the Standard Audit Trail...........cccooioiiii s 11-21
Viewing Database Audit Trail INformation..........c.ccccooeveeiei e 11-22
AUAIE TFAIH VIBWS.....iiiiiiii bbb bbb bbb ettt b e 11-22
Using Audit Trail Views to Investigate Suspicious ACHIVItIESc.covirviieinciineicnne, 11-23
Listing Active Statement Audit OPLioNS........ccccveieieeiccec s 11-25
Listing Active Privilege Audit OPLiONS........cccooiiiiiiiiiin s 11-25
Listing Active Object Audit Options for Specific ObJects..........cccoviiviieiniiiee, 11-25
Listing Default Object AUit OPLIONS........cceveiieicieeee e 11-26
LiSting AUAIT RECOIUSooiiiii ettt e ene e 11-26
Listing Audit Records for the AUDIT SESSION OpPtionccccocevvenieneienecnecnnens 11-26
Deleting the AUdit Trail VIBWS.......ccoovie et 11-26
Example of Auditing Table SYSLAUDS ... 11-27
FINe-GraiNed AUITINGccoviuiiiiiiii et se et 11-29
Policies in Fine-Grained AUAITiNgG......c..cooviiviiiieiirireeseee s 11-30
Advantages of Fine-Grained Auditing OVer Triggers.......ccccovvvevevieeiesieeseseese e 11-30
Extensible Interface Using Event Handler FUNCLIONS ... 11-31
Functions and Relevant Columns in Fine-Grained Auditingccoccecvvevevcriceennn, 11-31
Audit Records in Fine-Grained AUditingcccooveiiiiiiii i 11-32
NULL AUIt CONITIONS.......iiiiiiiieiiiie ettt s ens 11-32
DefiNiNG FGA POHCIES......c..cviicici ettt naeneens 11-32

An Added Benefit to Fine-Grained AUditingcccoov i 11-33
The DBMS_FGA PACKAGEc.ccviiiiiiieiiieit ettt bbbt 11-35
ADD _POLICY PrOCEAUIEcovie ettt ettt ste st s sa e ae e s enee e enaenenns 11-35
SYNITAX ettt E b bR b e R e e Rae et raeebe e 11-35
PAFAMELEIS ...ttt bbbt st b e et bt ettt e sbe st sreenee s 11-36

Xii

L0 S7-To (oI N L0 (L TP UPPURRRI 11-36

DROP_POLICY PrOCEAULIE........coiiiiitiiiiiie ettt sttt sttt e s e se e eneesesnesneas 11-38
Y11= PSR 11-38
PAAMELEIS ... et b bbbt r e 11-38
USBGE INOTES. ... ene s 11-39

ENABLE_POLICY PrOCEAUIE.......ccviteitirieieiteieieeeieeeeese e ste e stesteste s ssesesaesasnsesaesesnsssenses 11-39
)Y 2= SO SPOTRUPPRIN 11-39
PAIAIMIEBLEIS ...t e e e b e a e aeenreean 11-39

DISABLE_POLICY PrOCEAUIEcceiviiiriieciiseiie ettt sttt s ae e s enaenasneanens 11-39
)Y 2= SO SPOTRUPPRIN 11-39
PAIAIMIEBLEIS ...t e e e b e a e aeenreean 11-40

12 Introducing Database Security for Application Developers

About Application SECUNItY POLICIES. ..o e 12-2
Considerations for Using Application-Based SECUTNItYccocvivvviieviniesn e e 12-2
Are Application Users AlISO Database USEIS? ... 12-2
Is Security Enforced in the Application or in the Database?............cccccovvvieneinciencene, 12-4
Managing AppPlication PriVIlEgES. ... 12-4
Creating Secure APPlICAtiON ROIESccoiiiiiiiiee e 12-5
Example of Creating a Secure Application ROIEccoiiriiiiiiiie s 12-6
Associating Privileges with the User's Database ROleccoccooviviiciencccceccee e 12-8
Using the SET ROLE StatemMent..........cc.ooi ittt 12-9
Using the SET_ROLE ProCeaUIEccoiiiiiiiieees s 12-9
Examples of Assigning Roles with Static and Dynamic SQLcccccecvvvvevercrveiecinennn, 12-10
Protecting Database Objects Through the Use of Schemascccccoovviviiiiici e, 12-12
UNIQUE SCREIMAS.......ceiieice bbbt b et ene e 12-12
SHArEd SCNEIMAS ... bbbttt neenes 12-13
Managing ObjJECt PriVIIEUESocvi i 12-13
What Application Developers Need to Know About Object Privilegescccceovenens 12-13
SQL Statements Permitted by Object Privilegesccccovvivviviiiniiievene e 12-15

13 Using Virtual Private Database to Implement Application Security Policies

About Virtual Private Database, Fine-Grained Access Control, and Application Context 13-2
INTFOAUCTION 10 WPD ...t bbb bbbttt sb b b 13-2
COlUMNEIEVEI VPD ...ttt ettt s re et s ae et s ta e sresraesreereens 13-4

Xiii

Column-level VPD with Column Masking Behavior............ccccccoovviiieiiiieenesieceen 13-4

VPD Security Policies and APPlICALIONScccoeriiriiiiiieeese e 13-4
Introduction to Fine-Grained ACCeSS CONTIOLccoiiiiiiiei e 13-6
Features of Fine-Grained AcCCeSS CONLIOL.........c.coiiiiiiiiii i 13-6
Table-, View-, or Synonym-Based Security POlICIES..........ccccecieiiinineniieeee 13-6
Multiple Policies for Each Table, View, 0r SYNnONyMc..ccocvvivviivenieiencnereeiece e 13-7
Grouping Of SECUNItY POLICIESccuoiviiiieiiicce s 13-7
High PErfOrMENCEcoiviiiiiie e 13-8
Default SECUNILY POHCIESccv et re e 13-8
About Creating a Virtual Private Database Policy with Oracle Policy Manager 13-9
Introduction to APPlICAtION CONTEXL ..ot 13-10
Features of Application CONEXL.........ccovviviiiiiii e 13-10
Specifying Attributes for Each Application ... 13-10
Providing Access to Predefined Attributes through the USERENV Namespace.... 13-11
Externalized Application CONTEXTSccvieiiiricieieeeceee e 13-15
Ways to Use Application Context with Fine-Grained Access Controlcccccceenee 13-16
Using Application Context as a Secure Data Cache.............ccoovoeviiiieneneience 13-16
Using Application Context to Return a Specific Predicate (Security Policy)............ 13-16

Using Application Context to Provide Attributes Similar to Bind Variables in a
PrEAICALE ...ttt bbb bbbttt n bbb 13-17
Introduction to Global Application CONTEXTcoviiiiiiiieice e 13-17
Enforcing APpPliCation SECUIITYccciviiiiiiirise et ene e eneenens 13-18
Use of Ad Hoc Tools a Potential Security Problemcccooco i, 13-18
Restricting SQL*Plus Users from Using Database ROIES ..o 13-19
Limit Roles Through PRODUCT _USER_PROFILE.......c..cccccovviviiiiiiin e 13-19
Use Stored Procedures to Encapsulate Business LOGIC.........cocooevereiineieienicice 13-20
Use Virtual Private Database for Highest SECUrity ..o 13-20
Virtual Private Database and Oracle Label Security Exceptions and Exemptions.......... 13-20
User Models and Virtual Private Database............ccoeiiiiiinieiiiiine e 13-22

14 Implementing Application Context and Fine-Grained Access Control

About Implementing Application CONTEXT.........cccooiiiiiiiiiiirre e 14-2
How to Use APPLICALION CONTEXLcoiiiiiiiiiiitiietieee et 14-3
Task 1: Create a PL/SQL Package that Sets the Context for Your Application 14-3
SYS_CONTEXT EXAMPIE ..ot 14-3

Xiv

SYS_CONTEXT SYNTAX.....ciiiiiiiiiiiiii i e 14-4

Using Dynamic SQL With SYS_CONTEXTccooiiiiiiiniinee e 14-5
Using SYS_CONTEXT in a Parallel QUENY ..o 14-5
Using SYS_CONTEXT with Database LINKS.........cccccviveiiiiiiicicse e 14-6
Task 2: Create a Unique Context and Associate It with the PL/SQL Package.................. 14-6
Task 3: Set the Context Before the User Retrieves Data.........cccocovvevveneeneeneie e 14-7
Task 4. Use the Context in a VPD Policy FUNCLIONcooiviiiiiccce e 14-7
Examples: Application Context Within a Fine-Grained Access Control Function.............. 14-7
Example 1: Implementing the POIICY ..o 14-7
Step 1. Create a PL/SQL Package Which Sets the Context for the Application 14-8
Step 2. Create an APPlICatioN CONTEXTcoociiiiiiiicee e 14-9
Step 3. Access the Application Context Inside the Package...........ccccovvveveiiivcncnnnnnn, 14-9
Step 4. Create the New Security POICY ... 14-10
Example 2: Controlling User Access by Way of an Applicationc.ccccocnvineinennne 14-11
Step 1. Create a PL/SQL Package to Set the Context..........ccccvvvveevvrieievenerieresnenens 14-12
Step 2. Create the Context and Associate It with the Package.............ccoccoeiiiinnne, 14-13
Step 3. Create the Initialization Script for the Applicationccccovviiiiiinennne. 14-13
Example 3: Event Triggers, Application Context, Fine-Grained Access Control, and
ENncapsulation Of PrivIlEgES ... 14-13
Initializing Application Context EXternally ... 14-18
Obtaining Default Values from USEISccoiiiriiiiiiiiee s 14-18
Obtaining Values from Other External RESOUICES...........c.ccvvvvrierevinienie e 14-19
Initializing Application Context GIODallY ... 14-19
Application Context UtIliZING LDAPccoiiiiiiiiieie e 14-20
How Globally Initialized Application Context WOIKSccccvovvivvieievineneneenieeiesinannns 14-22
Example: Initializing Application Context Globallyccccoiiininnie, 14-22
How to Use Global Application CONTEXTcccoiviiiiiiiiicee e 14-24
Using the DBMS_SESSION Interface to Manage Application Context in Client Sessions
... 14-25
Examples: Global Application CONTEXTccoiiiiiirieireiniee e 14-25
Example 1: Global Application CONEXL.........cccoverieieiiiicrcere e 14-25
Example 2: Global Application Context for Lightweight USers..........cccoceveiviinenns 14-27
How Fine-Grained Access CONtrOl WOFKSccociiiiiiiiii s 14-29
How t0 Establish POLICY GrOUPSccceiiriiieieiecees ettt enenns 14-30
The Default Policy Group: SYS_DEFAULT ..ot 14-30
NEW POLICY GFOUDS ...ttt bbbttt et 14-31

XV

How to Implement POIICY GrOUPScoo it 14-32

Step 1: Set Up @ DriviNg CONTEXT.......coviiiiiiiiiiieie ettt 14-32

Step 2: Add a Policy to the Default POliCY Group........ccccvivvivnenieienineseseeieseeeeneas 14-33

Step 3: Add a Policy to the HR POlICY GFOUPccccoiiiiiiieieree e 14-33

Step 4: Add a Policy to the FINANCE POlIiCY GrOUPcoovviiieiieiiensie e 14-34
Validation of the Application Used t0 CONNECLcccvcvviiiiviirinne e 14-34
How to Add a Policy to a Table, View, OF SYNONYM........ccccoiiiiiiieiie e 14-35
DBMS_RLS.ADD_POLICY Procedure POlICY TYPES......ccoviriiriirieirieiniecsiesiesieesies 14-36
Optimizing Performance by Enabling Static and Context Sensitive Policies................... 14-38
ADOUL STALIC POIICIES ... e 14-39

About Context SENSITIVE POIICIES.ccoi it 14-39
Adding Policies for Column-Level VPD ... 14-40
DEfaUlt BENAVIOK ..ot e 14-41
Column Masking BENAVIOKcccuiiiiiiiiiie et 14-42
Enforcing VPD Policies on Specific SQL Statement TYPES.....cccovivvivrivrievenene e 14-44
Enforcing Policies on Index MainteNancCe............ccocveieiieiie i 14-44

How to Check for Policies Applied to a SQL Statement...........ccccoeoeveineiicincnee e 14-44
Users Who Are Exempt from VPD POLICIESccooveiciicr e 14-45
SYS User Exempted from VPD POLICIES........cooo i 14-45
EXEMPT ACCESS POLICY SyStem PrivilEgeccvvviiieiieiiiiseeiee e 14-46
YN0} (0] 4 T Aol =T o T - S SSSSS 14-46
VPD Policies and FIashback QUETNY ..o 14-47

15 Preserving User Identity in Multitiered Environments

Security Challenges of Three-tier COMPULINGoooiiiiiiiiiiii e 15-2
WHO IS ThE REAI USEI? ..ttt ettt n e re s ane s 15-2
Does the Middle Tier Have Too MUcCh Privilege?........coovviviiiiiiiiiinece e 15-2
How to Audit? WHhom 10 AUAIT? ..o 15-3
What Are the Authentication Requirements for Three-tier SysStems?ccocecvvviieennn. 15-3

Client to Middle Tier AUtheNtICAtioNcccoiiiriiriie s 15-3
Middle Tier to Database AULNENTICATION..........ccooveiiiiiiii e 15-3
Client Re-Authentication Through Middle Tier to Database............ccccccovvniiniinenn. 15-4

Oracle Database Solutions for Preserving User 1dentityccccoovvivvevevineiciecceeseee e 15-5

ProxXy AULNENTICALIONocieiicce ettt et ae et s re e sre e e srenraens 15-5
Passing Through the Identity of the Real User by Using Proxy Authentication 15-5

XVi

Limiting the Privilege of the Middle TIercccocveviiiieii e 15-7

Re-authenticating The User through the Middle Tier to the Database 15-8
Auditing Actions Taken on Behalf of the Real Usercccccoovvvvie i, 15-10
Advantages of Proxy AUthenticationcccccvovivii i 15-10
ClIENT TABNTITIEIS ...ttt eene st e e e 15-11
Support for Application User Models by Using Client Identifiers............ccccceevennne. 15-11
Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity 15-12
Using CLIENT_IDENTIFIER Independent of Global Application Context............. 15-12

16 Developing Applications Using Data Encryption

Securing Sensitive INTOrMATION ..o 16-2
Principles of Data ENCIrYPLION ...t nre s 16-3
Principle 1: Encryption Does Not Solve Access Control Problems............cccccoeiiiinnn 16-3
Principle 2: Encryption Does Not Protect Against a Malicious DBAccccoceevvinene, 16-4
Principle 3: Encrypting Everything Does Not Make Data Secure...........ccocevvevveivevevennenns 16-5
Solutions For Stored Data Encryption in Oracle Databasec.ccoooveveiiieiciiiiiicnenee 16-6
Oracle Database Data Encryption Capabilities ... 16-6
Data ENCryption ChallenNgES........ccoiieieieecee s sne e s 16-8
ENcrypting INAEXed Dataccooeiiiiiiiiieie et e 16-9
KEY MANAGRIMENT. ...ttt et arens 16-9
GV I = L0] 1 TS oo PSPPSR 16-10
(NG (0] - To [2 PP UP PP 16-10
Storing the Keys in the Database ... 16-10

Storing the Keys in the Operating SYStemMcccovvviiiciciecie s 16-12

Users Managing Their OWN KEYS.......cccuciiiiiiiieece ettt 16-12
Changing ENCryPioN KBYScoiiiiiiitieire st 16-12
Binary Large ODjJECtS (BLOBS)ccioiiirireierieieee e e sttt esaeeenesnenns 16-13
Example of a Data Encryption PL/SQL Program ... 16-13
Example of Encrypt/Decrypt Procedures for BLOB Datac.cccooveiiinneneenee e 16-15

Glossary
Index

XVii

List of Figures

1-1 Realms Needing Protection in an Internet World ... 1-2
4-1 Oracle PUblic Key INTrastrUCTUIE...........cccoiiiiiiiiieisese e 4-6
4-2 Multitier AUTNENTICALION..........cciiiiiie e 4-13
4-3 Database Administrator Authentication Methods ... 4-15
5-1 CommMON USES TOF ROIES ..ottt 5-22
6-1 AN EXAMPIE OF 8 VIBW ...t 6-3
7-1 USEE ROIE ...ttt bbb ettt 7-6
7-2 Chronology of Password Lifetime and Grace Period ..o 7-14
14-1 Location of Application Context in LDAP Directory Information Tree (DIT)......... 14-21

Xviii

List of Tables

HOOOOOO\I\I(PU‘IU‘IU‘IOOOOH
WNEFPNPFPPFPWONRPEPNPRPPRP

e
TTT
NP

=
i
w

11-4
12-1
12-2
13-1
14-1
14-2
14-3
14-4
16-1

Security ISSUES DY CatBOOIYccucii ettt re e e e teeaesreens 1-3
Issues and Actions for Policies t0 AAAIESS.........ccciiiiiiiiiie e 3-2
References Terms and Chapters for Oracle Features and Products..............cc.ccoccvenene 3-4
System Privileges for Named TYPES.cooi i 5-15
Privileges for ODJeCt TabIES........cccvciiiieiece e 5-17
Topics and Sections iN ThiS SECHIONcouiiiiiiiiiei s 5-20
Policy Types and RuN-Time EffiCIENCIES..........ccooiiiiiiiiie e 6-9
Parameters Controlling Re-Use of an Old Password............ccccevveviiieniciene e, 7-15
Default Accounts and Their Status (Standard Installation)ccccceeevvieiiieinnnne 7-22
Auditing Types and DeSCHIPLIONScc.oiueiiieieiiieeeee et 8-3
Columns Shown in the Database Audit Trail (DBA_AUDIT_TRAIL)......cccccoevevvrinnns 8-4
Auditing Actions Newly Enabled by Oracle Database 109c...cccccovevvevieiicniennnne, 8-11
Predefined ROIES ..o ettt 10-18
ADD_POLICY Procedure Parameters..........ccoiveveieeresiee e seesiesie st eee e esesre e sneenes 11-36
DROP_POLICY Procedure Parameters..........cccccveveiieieieese e sesee e ssae e e ssae e 11-38
ENABLE_POLICY Procedure Parameters.........ccccvvveeeieeie e e sie e 11-39
DISABLE_POLICY Procedure Parameters........ccccovveeieene e 11-40
How Privileges Relate to Schema ODbJECScccoviveiiiii e 12-14
SQL Statements Permitted by Database Object Privileges........c.cccccccvvivivviiiicinnnens 12-15
Key to Predefined Attributes in USERENYV Namespace..........ccccoererenieiceeeneeenn. 13-12
Types of APPLICAtION CONTEXESciiiiriiriiieieeeee e 14-2
DBMS_RLS PrOCEAUIESooitieie ettt sttt te e sttt benne e 14-35
DBMS_RLS.ADD_POLICY Policy Types At a GlanCe........c.ccoceverenenenencecceee, 14-37
VEVPD _POLICY ..ottt ettt nes 14-45
DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison..... 16-7

Xix

XX

Send Us Your Comments

Oracle Database Security Guide, 10g Release 1 (10.1)
Part No. B10773-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXi

XXii

Preface

This document provides a comprehensive overview of security for Oracle Database.
It includes conceptual information about security requirements and threats,
descriptions of Oracle Database security features, and procedural information that
explains how to use those features to secure your database.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

XXili

Audience

The Oracle Database Security Guide is intended for database administrators
(DBASs), security administrators, application developers, and others tasked with
performing the following operations securely and efficiently:

Designing and implementing security policies to protect the organization's data,
users, and applications from accidental, inappropriate, or unauthorized actions

Creating and enforcing policies and practices of auditing and accountability for
any such inappropriate or unauthorized actions

Creating, maintaining, and terminating user accounts, passwords, roles, and
privileges

Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize
both efficiency and client ease of use

To use this document, you need a basic understanding of how and why a database
is used, as well as at least basic familiarity with SQL queries or programming.

Organization

This document contains:

Part I, "Overview of Security Considerations and Requirements"

Part | presents fundamental concepts of data security, and offers checklists and
policies to aid in securing your site's data, operations, and users.

Chapter 1, "Security Requirements, Threats, and Concepts"

This chapter presents fundamental concepts of data security requirements and
threats.

Chapter 2, "Security Checklists and Recommendations”

This chapter presents checklists, with brief explanations, for policies and practices
that reduce your installation's vulnerabilities.

Chapter 3, "Security Policies and Tips"

This chapter presents basic general security policies, with specific chapter
references, that apply to every site. These you must understand and apply to the

XXiV

unique considerations of your own site. The chapter also introduces general
application design practices regarding roles and privileges.

Part Il, " Security Features, Concepts, and Alternatives”

Part Il presents methods and features that address the security requirements,
threats, and concepts described in Part I.

Chapter 4, "Authentication Methods"

This chapter deals with verifying the identity of anyone who wants to use data,
resources, or applications. Authentication establishes a trust relationship for further
interactions as well as accountability linking access and actions to a specific identity.

Chapter 5, "Authorization: Privileges, Roles, Profiles, and Resource
Limitations"

This chapter describes standard authorization processes that allow an entity to have
certain levels of access and action, but which also limit the access, actions, and
resources permitted to that entity.

Chapter 6, "Access Controls on Tables, Views, Synonyms, or Rows"

This chapter discusses protecting objects by using object-level privileges and views,
as well as by designing and using policies to restrict access to specific tables, views,
synonyms, or rows. Such policies invoke functions that you design to specify
dynamic predicates establishing the restrictions.

Chapter 7, "Security Policies"

This chapter discusses security policies in separate sections dealing with system
security, data security, user security, password management, and auditing. It
concludes with a more detailed version of the checklist first presented in Chapter 2.

Chapter 8, "Database Auditing: Security Considerations"

This chapter presents auditing as the monitoring and recording of selected user
database actions. Auditing can be based either on individual actions, such as the
type of SQL statement executed, or on combinations of factors that can include user
name, application, time, and so on. Security policies can trigger auditing when
specified elements in an Oracle database are accessed or altered, including the
contents within a specified object.

XXV

XXVi

Part Ill, " Security Implementation, Configuration, and Administration”

Part 11l presents the details of setting up, configuring, and administering Oracle
Database security features.

Chapter 9, "Administering Authentication"

This chapter describes the methods for creating and administering authentication
by defining users and how they are to be identified and verified before access is
granted. Chapter 9 discusses the four primary methods as database, external,
global, and proxy authentication.

Chapter 10, "Administering User Privileges, Roles, and Profiles"

This chapter presents the interwoven tasks and considerations involved in granting,
viewing, and revoking database user privileges and roles, and the profiles that
contain them.

Chapter 11, "Configuring and Administering Auditing”

This chapter describes auditing and accountability to protect and preserve privacy
for the information stored in databases, detect suspicious activities, and enable
finely-tuned security responses.

Chapter 12, "Introducing Database Security for Application Developers"

This chapter provides an introduction to the security challenges that face
application developers and includes an overview of Oracle Database features they
can use to develop secure applications.

Chapter 13, "Using Virtual Private Database to Implement Application Security
Policies"

This chapter discusses developing secure applications by using application context,
fine-grained access control, or virtual private database to implement security
policies.

Chapter 14, "Implementing Application Context and Fine-Grained Access
Control"

This chapter provides several examples of applications developed using application
context, fine-grained access control, and virtual private database. It includes code
examples and their corresponding explanations.

Chapter 15, "Preserving User Identity in Multitiered Environments"
This chapter discusses developing secure multiple tier applications.

Chapter 16, "Developing Applications Using Data Encryption”

This chapter discusses how you can use data encryption to develop secure
applications, and the strengths and weaknesses of using this feature.

Glossary

Index

Related Documentation
For more information, see these Oracle resources:
« Oracle Database Concepts
= Oracle Database Administrator's Guide
« Oracle Data Warehousing Guide
« Oracle Streams Advanced Queuing Java API Reference
« Oracle Streams Advanced Queuing User's Guide and Reference

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database
Sample Schemas for information on how these schemas were created and how you
can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. com

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com menber shi p/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.con docs/index. htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.cont

XXVil

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
« Conventions in Code Examples

« Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
nmonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

XXViii

elements include parameters, privileges, .
datatypes, RMAN keywords, SQL You can back up the database by using the

keywords, SQL*Plus or utility commands, BACKUP command.
packages and methods, as well as Query the TABLE_NAME column in the USER _
system-supplied column names, database TABLES data dictionary view.

(r)ct))IJ:;:ts and structures, usernames, and Use the DBVS_STATS.GENERATE_STATS
' procedure.

Convention Meaning Example
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names,

(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-w dth)
f ont

and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nment _i d, depar t ment _narne,
and | ocati on_i d columns are in the
hr . depart nent s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these
methods.

You can specify the par al | el _cl ause.

Run Uol d_r el ease. SQL where ol d_
r el ease refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT user nane FROM dba_users WHERE usernane = ' M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional DEAQMAL (digits [, precision])
items. Do not enter the brackets.

{1} Braces enclose two or more items, one of {ENABLE | DO SABLE}

which is required. Do not enter the
braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DI SABLE}
[COMPRESS | NOOOMPRESS)]

XXiX

Convention

Meaning

Example

Other notation

Italics

| ower case

Horizontal ellipsis points indicate either:

« That we have omitted parts of the
code that are not directly related to
the example

« That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

CREATE TABLE ... AS subquery;

SHECT coll, col2, ...,
enpl oyees;

coln FRQM

SQ> SHECT NAME FROM VBDATAH LE,
NAME

/fsl/dbs/tbs_01. dbf

/fs1/ dbs/ t bs_02. dbf

/fsl/dbs/tbs_09. dbf
9 rows sel ect ed.

acctbal NUMBER(11, 2);
acct QONSTANT NMBER(4) @ = 3;

QO\NECT SYSTEM syst em passwor d
DB NAME = dat abase nane

SELECT | ast_nane, enpl oyee id FROM
enpl oyees;

SH ECT * FROM USER TABLES,

DRCP TABLE hr. enpl oyees;

SELECT | ast_nane, enpl oyee id FROM
enpl oyees;
sql plus hr/hr

CREATE USER njones | DENTI Fl ED BY t y3MB;

XXX

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory File and directory names are not case c:\wnnt"\"systenB2 is the same as
names sensitive. The following special characters C \ WNN\T\ SYSTEVB2

are not allowed: left angle bracket (<),

right angle bracket (>), colon (:), double

quotation marks (), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

C\> Represents the Windows command C\oracl e\ or adat a>
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (*). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

Special characters The backslash (\) special character is C\>exp scott/tiger TABLES=enp
sometimes required as an escape QUERY=\ "WHERE j ob=" SALESMAN and
character for the double quotation mark gz1 <1600\ "

(") special character at the Windows C\>i np SYSTEM passwor d FROMUSER=scot t

command prompt. Parentheses and the -

single quotation mark (') do not require TABLES=(enp, - dept)
an escape character. Refer to your

Windows operating system

documentation for more information on

escape and special characters.

HOME_NAME Represents the Oracle home name. The C\> net start O acl eHOME_ NAMETNSLI st ener
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

XXXi

Convention Meaning Example

ORACLE_HOVE In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASE\ ORACLE_
and ORACLE when you installed Oracle components, HOVE\ r dbns\ admi n directory.
BASE all subdirectories were located under a

top level ORACLE_HOVE directory that by

default used one of the following names:

. C.\ orant for Windows NT
« C:\oraw n98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HQOME directory. There is a
top level directory called ORACLE_BASE
that by defaultis C: \ or acl e. If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:.\ or acl e\ or ann, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Windows for additional information about
OFA compliances and for information
about installing Oracle products in
non-OFA compliant directories.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at

ht t p: // waw or acl e. cond accessi bi i ty/

XXX

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

XXxiii

XXXIV

What's New in Oracle Database Security?

The Oracle Database 10g Release 1 (10.1) security features and enhancements
described in this section comprise the overall effort to provide superior access
control and accountability (privacy) with this release of the database.

The following sections describe new security features of Oracle Database 10g
Release 1 (10.1) and provide pointers to additional information:

« New Features in Virtual Private Database
« New Features in Auditing
« New PL/SQL Encryption Package: DBMS_CRYPTO

XXXV

New Features in Virtual Private Database

To provide enhanced access control, privacy, and performance, the following
enhancements have been added to Virtual Private Database (VPD), a feature of the
Enterprise Edition:

XXXVI

Column-level VPD and Column Masking

Column-level VPD policies provides more fine-grained access controls on data.
With column-level VPD, security policies can be applied only where a
particular column or columns are accessed in the user's query. This means that
when a user has rights to access the object itself, VPD can limit the individual
rows returned only if the columns the user accesses contain sensitive
information, such as salaries, or national identity numbers.

The default behavior of column-level VPD restricts the number of rows
returned when a query addresses columns containing sensitive data. In
contrast, column masking behavior allows all rows to be returned for a query
against data protected by column-level VPD, but the columns that contain
sensitive information are returned as NULL values. With column masking, users
see all the data they are supposed to see, but privacy is not compromised.

See Also:

« "Column-level VPD" on page 13-4 for conceptual information
about these new features

« "Adding Policies for Column-Level VPD" on page 14-40 for
information about how to add column-level VPD to your
applications

Static, Context-Sensitive, and Shared VPD Policy Types

Static and context-sensitive policy types optimize VPD for significant
performance improvements because the policy function does not execute for
every SQL query. Static policies maintain the same predicate for queries,
updates, inserts, and deletes throughout a session. (However application
context or attributes such as SYSDATE can change the value returned by the
predicate.) They are particularly useful for hosting environments where you
always need to apply the same predicate. With context-sensitive policies, the
predicate can change after statement parse time, but VPD re-executes the policy
function only if the application context changes. This ensures that any changes
to the predicate since the initial parsing are captured. Context-sensitive policies

are useful when VPD policies must enforce two or more different predicates for
different users or groups.

Both static and context-sensitive policies can be shared across multiple database
objects, so that queries on another database object can use the same cached
predicate. Shared policies enable you to further decrease the overhead of
re-executing policy functions for every query, reducing any performance
impact.

See Also: "DBMS_RLS.ADD_POLICY Procedure Policy Types" on
page 14-36 for more information about these new policy types and
how to use them in applications.

Application context support for parallel queries
In this release, if you use SYS_CONTEXT inside a SQL function which is
embedded in a parallel query, the function picks up the application context.

See Also: "Using SYS_CONTEXT in a Parallel Query" on
page 14-5 for information about using this enhancement.

New Features in Auditing

Oracle Database 10g Release 1 (10.1) expands upon standard and fine-grained
auditing for enhanced user accountability, providing the following new features:

Fine-grained Auditing Support for DML

In the previous release, fine-grained auditing support was only available for
SELECT statements. In this release, fine-grained auditing support is expanded
to include DMLs (I NSERT, UPDATE, DELETE).

See Also: "Fine-Grained Auditing" on page 11-29 for more
information about this new feature
Uniform Audit Trail

In this release the DBA_ COVMMON_AUDI T_TRAI L view has been added, which
presents both the standard and the fine-grained audit log records in a single
view.

See Also: "Database Audit Trail Contents" on page 11-8 for more
information about this new view.

XXXVii

Extensions to Standard Audit and Fine-Grained Auditing

Fields have been added to the standard and the fine-grained audit trails in this
release. New fields capture the exact SQL text of audited statements, the date
and time stamp in UTC (Coordinated Universal Time) format, and enhanced
auditing for enterprise users. Enterprise users are global database users, who
are stored in and LDAP directory. In this release, the audit trail includes
enterprise users' full distinguished names (DNs) and global user identifiers
(GUIDs).

See Also: "What Information is Contained in the Audit Trail?" on
page 11-7 for more information about the extensions to standard
and fine-grained audit trails

New PL/SQL Encryption Package: DBMS_CRYPTO

In this release, a new flexible interface, DBVM5_CRYPTQ, is provided to encrypt
especially sensitive stored data, or it can also be used in conjunction with PL/SQL
programs running network communications. This new interface provides support
for the following features:

XXXViii

Encryption algorithms as follows:

— AES (Advanced Encryption Standard)

— Triple DES (112- and 168-bits)

- DES

- RC4

Cryptographic hash algorithms (SHA-1, MD5, and MD4)

Keyed hash (MAC, or Message Authentication Code) algorithms (SHA-1, MD5)
Padding forms (PKCS #5, zeroes)

Block cipher chaining mode modifiers (CBC, CFB, ECB, OFB)

DBM5_CRYPTOis intended to replace the DBMS_OBFUSCATI ON_TOOLKI T,
providing greater ease of use and support for a range of algorithms to
accommodate new and existing systems.

See Also: Chapter 16, "Developing Applications Using Data
Encryption" for information about how to use this package

Part |

Overview of Security Considerations and
Requirements

Part | presents fundamental concepts of data security requirements and threats that
pertain to connecting to a database, accessing and altering tables, and using
applications. In addition, security checklists are provided for DBAs and application
developers, which cover installation preparation, database administration best
practices, and recommendations for developing secure applications.

This part contains the following chapters:

« Chapter 1, "Security Requirements, Threats, and Concepts"
« Chapter 2, "Security Checklists and Recommendations"

« Chapter 3, "Security Policies and Tips"

This part also contains high-level security checklists for DBAs and application
developers, covering preparations for installation, best practices for administration,
and recommended practices for developing secure applications. References are
included, pointing to the explanations and alternatives presented in Part 1l and the
examples described in Part Ill.

1

Security Requirements, Threats, and
Concepts

Database security requirements arise from the need to protect data: first, from
accidental loss and corruption, and second, from deliberate unauthorized attempts
to access or alter that data. Secondary concerns include protecting against undue
delays in accessing or using data, or even against interference to the point of denial
of service. The global costs of such security breaches run to billions of dollars
annually, and the cost to individual companies can be severe, sometimes
catastrophic.

These requirements are dynamic. New technologies and practices continually
provide new arenas for unauthorized exploitation, as well as new ways for
accidental or deliberate misuse to affect even stable products and environments.
Today's evolution involves a globally changing technological and cultural
environment, in which security concerns necessarily affect both the use of existing
solutions and the development of new ones.

As security requirements are understood with increasing clarity, certain general
principles can be developed for satisfying them and for disabling the threats against
them deriving from Internet vulnerabilities. Of course, principles can vary in
effectiveness. Their implementations usually vary in cost: hardware and software
acquisition and maintenance, administrative and programming personnel, and the
impact of security measures on processing time and response time. Total cost also
includes the costs of managing each of these areas — hardware, software,
personnel, efficiency, responsiveness, and so on — management costs that can
escalate with increasing volumes of users, transactions, and data types.

This book will address most of those issues, conceptually at first, and with
increasing detail as it moves toward discussing specific choices and
implementations.

Security Requirements, Threats, and Concepts 1-1

The basic elements and operations of the database environment include connection
to a server or a schema, table access and alteration, and application usage. Securing
these against accidental or deliberate misuse is the responsibility of security officers,
administrators, and application programmers. They must also administer and
protect the rights of internal database users, and guarantee electronic commerce
confidentiality as customers access databases from anywhere the Internet reaches.

In the Internet age, the full spectrum of risks to valuable and sensitive data, and to
user access and confidentiality, is broader than ever before. Figure 1-1 shows the
complex computing environment that security plans must protect.

Figure 1-1 Realms Needing Protection in an Internet World

Database
Server
= glntranet—g;
—2
' Clients
Clients Application
Web Server
Databases
Firewalls

The diagram shows several important parts of the security picture, illustrating
client communities, connections, databases, and servers, all of which must be
secured against inappropriate access or use. These different areas can require
different techniques to achieve good security, and they must integrate so as to
preclude or minimize security gaps or vulnerabilities.

1-2 Oracle Database Security Guide

Table 1-1 provides separate categories that are usable in focusing efforts to create
secure operations in a secure environment. When these necessary components are
consistent in their security focus, coherent in the ways they work together, and
made complete by closing all known channels of attack and misuse, your security is
as good as it gets.

These categories reappear in later chapters in discussing checklists and best
practices.

Table 1-1 Security Issues by Category

Dimension Security Issues

Physical Your computers must be made physically inaccessible to
unauthorized users by keeping them in a secure physical
environment.

Personnel The people responsible for your site's physical security, system
administration, and data security must be reliable. Performing
background checks on DBAs before making hiring decisions is a
wise protective measure.

Procedural The procedures and policies used in the operation of your system
must assure reliable data. It is often wise to separate out users'
functional roles in data management.

For example, one person might be responsible for database
backups. Her only role is to be sure the database is up and
running.

Another person might be responsible for generating application
reports involving payroll or sales data. His role is to examine the
data and verify its integrity.

Further, you can establish policies that protect tables and schemas
against unauthorized, accidental, or malicious usage.

Technical Storage, access, manipulation, and transmission of data must be
safeguarded by technology that enforces your particular
information control policies.

When you think carefully about security risks, the solutions you adopt will apply
well to the actual situation you're addressing; not all security problems have a
technical fix. For example, employees must occasionally leave their desks

Security Requirements, Threats, and Concepts 1-3

Identity Management: Security in Complex, High Volume Environments

unattended. Depending on the sensitivity of their work and on your required level
of security, your security procedures could require them to do any of the following

« have another person cover for them while they're away

« clear the desk surface, locking all sensitive materials away, before leaving
« lock their doors, if they have private offices

« explicitly lock their computer screens before leaving the desk

No technical solution can fix a physically insecure work environment or a corrupt
or disaffected employee. It is true, though, that procedural and technical protections
might be able to limit the damage that a physical breach or a disgruntled employee
(or ex-employee) can inflict.

|dentity Management: Security in Complex, High Volume Environments

In addition to the general issues and categories of security, the sheer numbers of
people and activities requiring a security focus add the dimension of complexity.

As the number of users, databases, applications, and networks grows from "a few"
to dozens, hundreds, or thousands, the complexity of their interactions rises
exponentially. So, too, do the risks, and the management tasks required to maintain
security and efficiency.

For example, the number of interactions for ten users accessing any of five
databases is potentially 50. Add 90 users and 45 databases, and you have 100 users
accessing any of 50 databases, with potential interactions at 5,000. When you add to
this example some number of applications and of networks, you begin to see
extreme complexity, with directly proportional security risks. A security breach
anywhere in a network can threaten the security of its databases and users, and that
of other connected networks, databases, and users as well.

This type of complex environment demands speed and flexibility in granting or
revoking access rights for any user and any resource. Delays in administrative
processes, or their implementation on the corresponding databases, translate either
to legitimate access delayed or to access granted when it should have been denied.

For example, when an employee with access to multiple applications and accounts
on multiple databases leaves the company, his access to those applications and
accounts should stop instantly. Achieving this can be difficult when administrative
control and responsibility is distributed across nodes in the network and among
different administrators and groups.

1-4 Oracle Database Security Guide

Identity Management: Security in Complex, High Volume Environments

But what if an intelligent central repository could efficiently control data regarding
identity, accounts, authentication, and authorization and rapidly communicate any
needed information to any node or application? Then one change (or few) in one
place could control the entirety of the departing employee's access rights and
privileges. The assumption is that the intelligence imputed to this central repository
and its software takes care of all such considerations and connections. Of course, all
related system, database, and application routines would need to adjust to relying
upon that central repository as the "single source of truth” regarding such
information.

These considerations are the basis for an integrated ldentity Management solution.
Its components and integration are described in subsequent chapters, as the need
for them becomes explicit in the context of general security functionality and
dimensions.

See Also: For a full discussion of Oracle's Identity Management
Infrastructure, see the Oracle Identity Management Concepts and
Deployment Planning Guide

As an overview, however, the following subsections provide an introduction:

« Desired Benefits of Identity Management

« Components of Oracle's Identity Management Infrastructure

Desired Benefits of Identity Management
The goal of identity management is to create

« greater security, because a single point of control is inherently easier to
secure and more responsive than multiple such points, and

« greater efficiency, because a single point of control automatically eliminates
the duplication and delays inherent in the need for multiple actions to
handle dispersed administrative responsibilities regarding the same
accounts.

However, cost and complexity remain relevant measures of the viability of any such
solution, which ideally should provide the following reductions in resource
allocations:

« One-time cost: Planning and implementing the identity management
infrastructure should be a one-time cost, rather than a necessary part of
each enterprise application deployment. In this way, new applications can
be rapidly deployed, automatically benefitting from the infrastructure, but

Security Requirements, Threats, and Concepts 1-5

Identity Management: Security in Complex, High Volume Environments

without having to re-create it. Examples could include portals, J2EE
applications, and e-business applications.

Centralized management with distributable tools: Provisioning and
managing identities should be done centrally, even if administered in
multiple places using tools that can handle any account alteration needed.

Seamless timely distribution: Changes to user accounts, profiles, or
privileges should be instantly available to all enterprise applications and
rapidly communicated to distributed databases.

User single sign-on: The centralized security infrastructure should make it
possible to realize user single sign-on across enterprise applications. Single
sign-on makes it unnecessary for users to remember multiple passwords
and for security administrators to protect multiple password repositories
and provisioning mechanisms.

Single point of integration: The centralized identity management
infrastructure should provide a single point of integration between the
enterprise environment and other identity management systems. It should
eliminate any need for multiple custom "point-to-point" integration
solutions.

An identity management solution meeting all these criteria at a high level would
provide an enterprise with high availability, information localization, and delegated
component administration. Further, each additional application deployed in that
enterprise would then leverage the shared infrastructure for identity management
services.

As a real-world example, the Oracle Identity Management Infrastructure uses
integrated components to provide those benefits, as described in the next section.

Components of Oracle's Identity Management Infrastructure

The Oracle Identity Management infrastructure includes the following components
and capabilities:

1-6

Oracle Internet Directory, a scalable, robust LDAP V3-compliant directory
service implemented on the Oracle9i Database.

Oracle Directory Integration and Provisioning, part of Oracle Internet
Directory, which enables synchronization between Oracle Internet Directory
and other directories and user repositories. This service also provides automatic
provisioning services for Oracle components and applications and, through
standard interfaces, for third-party applications.

Oracle Database Security Guide

Identity Management: Security in Complex, High Volume Environments

« Oracle Delegated Administration Service, part of Oracle Internet Directory,
which provides trusted proxy-based administration of directory information by
users and application administrators.

« OracleAS Single Sign-On, which provides single sign-on access to Oracle and
third party web applications.

« OracleAS Certificate Authority, which generates and publishes X.509 V3 PKI
certificates to support strong authentication methods, secure messaging, and so
on.

In addition to its use of SSL (Secure Socket Layer), OracleAS Containers for
J2EE, and Oracle HTTP Server, Oracle's Identity Management infrastructure has
a built-in reliance on OracleAS Single Sign-On and Oracle Internet Directory.
When OracleAS Certificate Authority is in use, it publishes each valid certificate
in a directory entry for the DN in use. The Single Sign-On server and other
components can rely on these directory entries because the certificate authority
removes revoked and expired certificates from the directory on a regular basis.
Users who are authenticated by the Single Sign-On server, and who lack a
certificate can rapidly acquire one directly from OracleAS Certificate Authority,
enabling them to authenticate to any Oracle component or application that is
configured to authenticate users with the Single Sign-On server.

In a typical enterprise application deployment, a single Oracle Identity
Management infrastructure is deployed, consisting of multiple server and
component instances. Such a configuration in fact provides the high availability,
information localization, and delegated component administration benefits
mentioned earlier.

Security Requirements, Threats, and Concepts 1-7

Identity Management: Security in Complex, High Volume Environments

1-8 Oracle Database Security Guide

2

Security Checklists and Recommendations

This chapter gives you a broad overview of the many types of tasks you must
confront in order to build good security. Understanding the diverse categories of
such tasks improves your likelihood of preventing security gaps. Such gaps,
whether exploited accidentally or intentionally, can undermine or overwhelm
otherwise tight security that you have created in other areas.

Chapter 1 introduced the requirements for good security, the threats against it, and
concepts that have proven useful in creating practical methods for developing and
sustaining it.

The overview presented here, in this chapter, identifies categories of tasks useful in
meeting those requirements and threats. This chapter presents brief descriptions of
these categories and tasks, with cross-references to Parts 2 and 3, where the
important details necessary to their implementation are described.

Good security requires physical access control, reliable personnel, trustworthy
installation and configuration procedures, secure communications, and control of
database operations such as selection, viewing, updating, or deleting database
records. Since some of these requirements involve applications or stored procedures
as well as human action, security procedures must also account for how these
programs are developed and dealt with.

Practical concerns must also be met: minimizing the costs of equipment, personnel,
and training; minimizing delays and errors; and maximizing rapid and thorough
accountability. Scalability, too, is an important and independent practical criterion
that should be assessed for each proposed solution.

These, then, are the categories with which this overview is concerned. They are
discussed in the following sections:

« Physical Access Control Checklist

« Personnel Checklist

Security Checklists and Recommendations 2-1

Physical Access Control Checklist

« Secure Installation and Configuration Checklist

« Networking Security Checklists

Physical Access Control Checklist

It shouldn't be easy to walk into your facility without a key or badge, or without
being required to show identity or authorization. Controlling physical access is your
first line of defense, protecting your data (and your staff) against the simplest of
inadvertent or malicious intrusions and interferences.

Lack of such control can make it easier to observe, copy, or steal your other security
controls, including internal keys, key codes, badge numbers or badges, and so on.
Of course, the security of these measures, too, depends on how alert and security
conscious each of your staff is, but physical access control stops a variety of
potential problems before they even get started.

Each organization must evaluate its own risks and budget. Elaborate measures may
well not be needed, depending on many factors: company size, risk of loss, internal
access controls, quantity and frequency of outside visitors, and so on. Preparing for
accountability and recovery are additional considerations, possibly prompting
alarms or video surveillance of entryways. The visibility of these preparations can
also act as deterrence.

Improving your facility's physical access control can add to your security. Make it
hard to get in, hard to remain or leave unobserved or unidentified, hard to get at
sensitive or secure areas inside, and hard not to leave a trace.

Personnel Checklist

Your staff makes your organization work, well or poorly depending on who they
are and how they are managed. Your security is critically dependent on them: first,
on how honest and trustworthy they are, and second, on how aware and alert they
are to security concerns and considerations. The first issue is a matter of selection,
interviewing, observation, and reference checking. Done well, these skills can
prevent your hiring people who are (or are likely to become) inappropriate for tasks
or environments that depend on establishing and maintaining security. To a very
large degree, security depends on individuals: when they get careless, resentful, or
larcenous, tight security loosens or disappears. Your other measures won't matter if
they are carelessly or deliberately undermined or sabotaged.

The second issue is how aware and alert your staff is to security concerns and
considerations. Such consciousness is only partly a matter of background: the

2-2 Oracle Database Security Guide

Secure Installation and Configuration Checklist

environment and training you provide are the most significant influences, given
basic honesty and intent to cooperate. When an organization both shows and says
that security is important, by establishing and enforcing security procedures and by
providing training and bulletins about it, people learn and adapt. The result is
better security and safety for them as well as for the organization's data and
products.

Secure Installation and Configuration Checklist

Information security, privacy, and protection of corporate assets and data are of
critical importance to every business. For databases, establishing a secure
configuration is a very strong first line of defense, using industry-standard "best
security practices" for operational database deployments. The following list of such
practices is deliberately general to remain brief. Additional details for each
recommendation as it applies to Oracle Database appear in Chapter 7, "Security
Policies". Further specific descriptions of database-related tasks and actions can be
found throughout the Oracle documentation set.

Implementing the following ten recommendations provides the basis for a secure
configuration;

1. Install Only What Is Required.

Do a custom installation. Avoid installing options and products you don't need.
Choose to install only those additional products and options, in addition to the
database server, that you do clearly need. Or, if you choose to do a "typical”
installation instead, improve your security after the installation processes finish,
by deinstalling the options and products you don't need.

2. Lock And Expire Default User Accounts.

The Oracle Database installs with many default (preset) database server user
accounts. Upon the successful creation of a database server instance, the
Database Configuration Assistant automatically locks and expires most default
database user accounts.

Note: If you use Oracle Universal Installer or Database
Configuration Assistant, they will prompt for new SYS and
SYSTEM passwords, and will not accept the defaults "change_on_
install" or "manager", respectively.

Security Checklists and Recommendations 2-3

Secure Installation and Configuration Checklist

Once the database is installed, lock SYS and SYSTEM as well, and use AS
SYSDBA for administrator access. Specify administrative passwords
individually.

This account (AS SYSDBA) tracks the operating system username, maintaining
accountability. If you only need access for database startup and shutdown, use
AS SYSOPER instead. SYSOPER has fewer administrative privileges than SYS,
but enough to perform basic operations such as startup/shutdown, mount,
backup, archive, and recover.

Database Configuration Assistant is not used during a manual installation, so
all default database users remain unlocked and able to gain unauthorized
access to data or to disrupt database operations. Therefore, after a manual
installation, use SQL to lock and expire all default database user accounts except
SYS, SYSTEM SCOTT, and DBSNWVP. (Do it to SCOTT, too, unless it is being
actively used. Also lock SYS and SYSTEM as described earlier.) If a locked
account is later needed, a database administrator can simply unlock and
activate that account with a new, meaningful password.

3. Change Default User Passwords.

Security is most easily broken when a default database server user account still
has a default password even after installation. Three steps fix this:

a. Change the default passwords of administrative users immediately after
installing the database server.

In any Oracle environment (production or test), assign strong, meaningful
passwords to the SYS and SYSTEM user accounts immediately upon
successful installation of the database server. Under no circumstances
should the passwords for SYS and SYSTEM remain in their default states.
Similarly, for production environments, do not use default passwords for
any administrative accounts, including SYSMAN and DBSNMP.

b. Change the default passwords of all users immediately after installation.

Lock and expire all default accounts after installation. If any such account is
later activated, change its default password to a new meaningful password.

c. Enforce password management.

Apply basic password management rules, such as password length, history,
and complexity, to all user passwords.

Require all users to change their passwords regularly, such as every eight
weeks.

2-4 Oracle Database Security Guide

Secure Installation and Configuration Checklist

4.

If possible, use Oracle Advanced Security (an option to the Enterprise
Edition of Oracle Database) with network authentication services (such as
Kerberos), token cards, smart cards, or X.509 certificates. These services
provide strong user authentication and enable better protection against
unauthorized access.

Enable Data Dictionary Protection.

Implement data dictionary protection to prevent users who have the ANY
system privilege from using it on the data dictionary. Oracle Database sets the
O7_DI CTI ONARY_ACCESSI BI LI TY to FALSE. This setting prevents using the
ANY system privilege on the data dictionary, except for authorized users making
DBA-privileged connections (for example CONNECT/ AS SYSDBA).

Practice The Principle Of Least Privilege.

Three practices implement this principle:

a.

Grant necessary privileges only.

Do not provide database users more privileges than necessary. Enable only
those privileges actually required to perform necessary jobs efficiently:

1) Restrict the number of system and object privileges granted to database
users, and

2) Restrict the number of SYS-privileged connections to the database as
much as possible. For example, there is generally no need to grant CREATE
ANY TABLE to any non DBA-privileged user.

Revoke unnecessary privileges and roles from the database server user
group PUBLI C.

This default role, granted to every user in an Oracle database, enables
unrestricted use of its privileges, such as EXECUTE on various PL/SQL
packages. If unnecessary privileges and roles are not revoked from PUBLIC,
a minimally privileged user could access and execute packages otherwise
inaccessible to him. The more powerful packages that may potentially be
misused are listed in Chapter 7, "Security Policies".

Restrict permissions on run-time facilities.

Do not assign "all permissions” to any database server run-time facility,
such as the Oracle Java Virtual Machine (OJVM).

Instead, grant specific permissions to the explicit document root file paths
for such facilities that may execute files and packages outside the database
server. Examples are listed in Chapter 7, "Security Policies".

Security Checklists and Recommendations 2-5

Secure Installation and Configuration Checklist

6.

Enforce Access Controls Effectively.
Authenticate clients properly.

Although remote authentication can be turned on (TRUE), your installation is
more secure with it off (FALSE, which is the default). With remote
authentication turned on, the database implicitly trusts every client, because it
assumes every client was authenticated by the remote authenticating system.
However, clients in general (such as remote PCs) cannot be trusted to perform
proper operating system authentication, so turning on this feature is a very
poor security practice. To enforce proper server-based authentication of clients
connecting to an Oracle database, leave or turn this feature off (remote_os_
authentication=FALSE, which is the default).

Restrict Operating System Access.
Four practices implement appropriate restrictions on operating system access:
a. Limit the number of operating system users.

b. Limit the privileges of the operating system accounts (administrative,
root-privileged or DBA) on the Oracle Database host (physical machine) to
the fewest and least powerful privileges required for each user.

c. Disallow modifying the default permissions for the Oracle Database home
(installation) directory or its contents, even by privileged operating system
users or the Oracle owner.

d. Restrict symbolic links. Ensure that when any path or file to the database is
provided, neither that file nor any part of that path is modifiable by an
untrusted user. The file and all components of the path should be owned by
the DBA or some trusted account, such as root. This recommendation
applies to all types of files: data files, log files, trace files, external tables,
bfiles, and so on.

Restrict Network Access.

(See Networking Security Checklists later in this chapter for appropriate
practices.)

Apply All Security Patches And Workarounds.

Plug every security hole or flaw as soon as corrective action is identified.
Always apply all relevant and current security patches for both the host
operating system and Oracle Database itself, and for all installed Oracle
Database options and components.

2-6 Oracle Database Security Guide

Networking Security Checklists

10.

Periodically check the security site on Oracle Technology Network for details on
security alerts released by Oracle Corporation:

http://otn.oracle.con depl oy/ security/alerts.htm
Also check Oracle Worldwide Support Service's site, Metalink, for details on
available and upcoming security-related patches:

http://metalink.oracle.com

Contact Oracle Security Products.

If you believe that you have found a security vulnerability in Oracle Database,
submit an iTAR to Oracle Worldwide Support Services using Metalink, or
e-mail a complete description of the problem, including product version and
platform, together with any exploit scripts and examples, to the following
address:

secal ert _us@racl e. com

Networking Security Checklists

Security for network communications is improved by using client, listener, and
network checklists to create thoroughgoing protection. Using SSL (Secure Sockets
Layer) is an essential element in these lists, enabling top security for authentication
and communications.

SSL (Secure Sockets Layer) Checklist

SSL is the Internet standard protocol for secure communication, providing
mechanisms for data integrity and data encryption. These mechanisms can protect
the messages sent and received by you or by applications and servers, supporting
secure authentication, authorization, and messaging by means of certificates and, if
necessary, encryption. Good security practices maximize all these protections and
minimize gaps or disclosures that threaten them. While the primary documentation
for Oracle's SSL configuration and practices is Oracle Advanced Security
Administrator's Guide, the following basic list illustrates the cautious attention to
detail necessary for successful, secure use of SSL.:

1.

Ensure that configuration files (such as for clients and listeners) use the correct
port for SSL, which is the port configured upon installation. You can run HTTPS
on any port, but the standards specify port 443, where any HTTPS-compliant
browser looks by default. Or the port can be specified in the URL, for example,
(for port 4445): ht t ps: // secur e. server. dom 4445/

Security Checklists and Recommendations 2-7

Networking Security Checklists

Client Checklist

If a firewall is in use, it too must use the same port(s) for secure (SSL)
communication.

Ensure that tcps is specified as the PROTOCOL in the ADDRESS parameter in
the tnsnames.ora file (typically on the client or in the LDAP directory). The
identical specification must appear in the listener.ora file (typically in the
$ORACLE_HOME/network/admin directory).

Ensure that the SSL mode is consistent for both ends of every communication.
For example, between the database on one side and the user or application on
the other. The mode can specify that there be client or server authentication
only (one-way), both client and server authentication (two-way), or no
authentication.

Ensure that the server supports the client cipher suites and the certificate key
algorithm that will be in use.

Do not remove the encryption from your RSA private key inside your

server . key file, which requires that you enter your pass-phrase to read and
parse this file. (A non-SSL-aware server does not require such a phrase.)
However, if you were to decide your server is secure enough, you could remove
the encryption from the RSA private key while preserving the original file. This
would enable system boot scripts to start the server, because no pass-phrase
would be needed. However, be very sure that permissions on the ser ver . key
file allow only root or the web server user to read it. Ideally, restrict permissions
to root alone, and have the web server start as root but run as another server.
Otherwise, anyone who gets this key can impersonate you on the net.

See Also:

« For general SSL information, including configuration, see the
Oracle Advanced Security Administrator's Guide.

« For tcps information in particular, see Oracle Net Services
Administrator's Guide and Oracle Net Services Reference Guide.

Since authenticating client computers is problematic over the Internet, user
authentication is typically done instead. This approach avoids client system issues
that include falsified IP addresses, hacked operating systems or applications, and
falsified or stolen client system identities. Nevertheless, the following steps improve
the security of client connections:

1.

Configure the connection to use SSL.

2-8 Oracle Database Security Guide

Networking Security Checklists

Using SSL (Secure Sockets Layer) communication makes eavesdropping
unfruitful and enables the use of certificates for user and server authentication.

2. Set up certificate authentication for clients and servers.

Listener Checklist

Because the listener acts as the database's gateway to the network, it is important to
limit the consequences of malicious interference:

1. Restrict the privileges of the listener, so that it cannot read or write files in the
database or the Oracle server address space.

This restriction prevents external procedure agents spawned by the listener (or
procedures executed by such an agent) from inheriting the ability to do such
reads or writes. The owner of this sepasrate listener process should not be the
owner that installed Oracle or executes the Oracle instance (such as ORACLE,
the default owner).

2. Secure administration by the following four steps:

See Also: See the section A Security Checklist in Chapter 7,
"Security Policies", for more specific details.

Password protect the listener.

Prevent on-line administration.

Use SSL when administering the listener.

Remove the external procedure configuration from the listener.ora file if
you do not intend to use such procedures.

3. Monitor listener activity.

Network Checklist

Protecting the network and its traffic from inappropriate access or modification is
the essence of network security. The following practices improve network security:

a.

Restrict physical access to the network. Make it hard to attach devices for
listening to, interfering with, or creating communications.

Protect the network access points from unauthorized access. This goal
includes protecting the network-related software on the computers, bridges,
and routers used in communication.

Security Checklists and Recommendations 2-9

Networking Security Checklists

Since you cannot protect physical addresses when transferring data over
the Internet, use encryption when this data needs to be secure.

Use firewalls.

Appropriately placed and configured firewalls can prevent outsider access
to your organization's intranet when you allow internal users to have
Internet access.

* Keep the database server behind a firewall. Oracle Database's network
infrastructure supports a variety of firewalls from various vendors;
examples are listed in Chapter 7, "Security Policies".

* Ensure that the firewall is placed outside the network to be protected.

* Configure the firewall to accept only those protocols, applications, or
client/server sources that you know are safe.

* Use a product like Oracle Connection Manager to multiplex multiple
client network sessions through a single network connection to the
database. It can filter on source, destination, and host name. This
functionality enables you to ensure that connections are accepted only
from physically secure terminals or from application Web servers with
known IP addresses. (Filtering on IP address alone is not enough for
authentication, because it can be faked.)

Never poke a hole through a firewall.

For example, do not leave open Oracle Listener's 1521 port, allowing the
database to connect to the Internet or the Internet to connect with the
database. Such a hole introduces significant security vulnerabilities that
hackers are likely to exploit. They can enable even more port openings
through the firewall, create multi-threaded operating system server
problems, and gain access to crucial information on databases behind the
firewall. If the Listener is running without an established password, they
can probe for critical details about the databases on which it is listening.
These details include trace and logging information, banner information,
and database descriptors and service names, enabling malicious and
damaging attacks on the target databases.

Prevent unauthorized administration of the Oracle Listener.

Always establish a meaningful, well-formed password for the Oracle
Listener, to prevent remote configuration of the Oracle Listener. Further,
prevent unauthorized administration of the Oracle Listener, as described in
Chapter 7, "Security Policies".

2-10 Oracle Database Security Guide

Networking Security Checklists

g. Check network IP addresses.

Use the Oracle Net "valid node checking" security feature to allow or deny
access to Oracle server processes from network clients with specified IP
addresses. Set parameters in the pr ot ocol . or a file (Oracle Net
configuration file) to specify client IP addresses respectively denied or
allowed connections to the Oracle Listener. This action prevents potential
Denial of Service attacks.

h. Encrypt network traffic.

If possible, utilize Oracle Advanced Security to encrypt network traffic
between clients, databases, and application servers. (Note that Oracle
Advanced Security is available only with the Enterprise Edition of the
Oracle database).

i. Harden the host operating system (the system on which Oracle Database
resides).

Disable all unnecessary operating system services. Many UNIX and
Windows services are not necessary for most deployments. Such services
include FTP, TFTP, TELNET, and so forth.

For each disabled service, be sure to close both the UDP and TCP ports.
Leaving either type of port enabled leaves the operating system vulnerable.

In summary, consider all paths the data travels and assess the threats that impinge
on each path and node. Then take steps to lessen or eliminate those threats and the
consequences of a successful breach of security. Also monitor and audit to detect
either increased threat levels or successful penetration.

Security Checklists and Recommendations 2-11

Networking Security Checklists

2-12 Oracle Database Security Guide

3

Security Policies and Tips

The idea of security policies includes many dimensions. Broad considerations
include requiring regular backups to be done and stored off-site. Narrow table or
data considerations include ensuring that unauthorized access to employee salaries
is precluded by built-in restrictions on every type of access to the table that contains
them.

This chapter introduces ideas about security policies and offers tips about
recommend practices that can tighten security, in the following sections:

« Introduction to Database Security Policies

« Recommended Application Design Practices to Reduce Risk

Introduction to Database Security Policies
This section briefly introduces security policies. It covers:
« Security Threats and Countermeasures

« What Information Security Policies Can Cover

Security Threats and Countermeasures

An organization should create a written security policy to enumerate the security
threats it is trying to guard against, and the specific measures the organization must
take. Security threats can be addressed with different types of measures:

« Procedural, such as requiring data center employees to display security badges
« Physical, such as securing computers in restricted-access facilities

« Technical, such as implementing strong authentication requirements for critical
business systems

Security Policies and Tips 3-1

Introduction to Database Security Policies

« Personnel-related, such as performing background checks or "vetting" key
personnel

Consider whether the appropriate response to a threat is procedural, physical,
technical, personnel-related, or a combination of the such measures.

For example, one possible security threat is disruption of critical business systems
caused by a malicious person damaging a computer. A physical response to this
threat is to secure key business computers in a locked facility. A procedural
response is to create system backups at regular intervals. Personnel measures could
include background checks on employees who access or manage key business
systems.

Oracle Database offers many mechanisms you can use to implement the technical
measures of a good security policy. Chapter 7, "Security Policies” and Chapter 13,
"Using Virtual Private Database to Implement Application Security Policies".

What Information Security Policies Can Cover

In addition to addressing requirements unique to your environment, you should
also design and implement technical measures in your information security policies
to address important generic issues, such as the following concerns:

Table 3-1 Issues and Actions for Policies to Address
Security Concern/Practice Recommended Actions References
Establish & maintain Attach privileges and roles to each application. See Ref !

application-level security

Ensure that users cannot misuse those roles and privileges when
they are not using the application.

Base use of roles on user-defined criteria, such as a user
connecting only from a particular IP address, or only through a
particular middle tier.

Manage privileges & attributes Permit only certain users to access, process, or alter data, See Ref ?
(system/object/user) including the rights to execute a particular type of SQL statement or

to access another user's object.

Apply varying limitations on users' access to or actions on
objects, such as schemas, tables, or rows, or resources, such as
time (CPU, connect, or idle times).

Create, manage, and control Create named groups of privileges to facilitate granting them to See Ref 3
roles (database, enterprise) users, including previously named groups (roles).

3-2 Oracle Database Security Guide

Introduction to Database Security Policies

Table 3-1 (Cont.) Issues and Actions for Policies to Address

Security Concern/Practice Recommended Actions References
Establish the granularity of Set up session-based attributes securely. For example, store user See Ref 4
access control desired attributes (username, employee number, and so on) to be

retrieved later in the session, enabling fine-grained access

control.

Create security policy functions & attach them to critical or
sensitive tables, views, or synonyms used by an application.
DML statements on such objects are then modified dynamically,
and transparently to the user, to preclude inappropriate access.

Enforce fine-grained or label-based access control automatically
with policy functions or data & user labels, quickly limiting
access to sensitive data, often without additional programming

Establish & manage the use of Use Secure Socket Layer (SSL) connections, well-established See Ref °
encryption encryption suites, or PKI certificates for critical/sensitive
transmissions/applications.

Establish & maintain security ~ Preserve user identity through a middle tier to the database. See Ref ©

in 3-tier applications Avoid the overhead of separate database connections by

proxying user identities (and credentials like a password or
certificate) through the middle tier to the database.

Control query access, data Monitor query access based on specific content or row to detect See Ref?
misuse, and intrusions data misuse or intrusions.

Use proxy authentication to support auditing of proxied user
connections.

Use Regular Auditing and Fine Grained Auditing to detect
unauthorized or inappropriate access or actions.

<<<role independence and Application Security>>> "Creating Secure Application Roles" on page 12-5

<<<privileges & attributes (system/object/user)>>> Introduction to Privileges on page 5-2, Understanding User Privileges
and Roles on page 10-15, & Granting User Privileges and Roles on page 10-24

<<<Create, manage, and control roles (database, enterprise)>>> "Introduction to Roles" on page 5-19 & Managing User Roles
on page 10-20

<<<Establish the granularity of access control desired)>>>Chapter 7, "Security Policies", Chapter 13, "Using Virtual Private
Database to Implement Application Security Policies" & Chapter 14, "Implementing Application Context and Fine-Grained
Access Control"

<<<Establish & manage the use of encryption>>>Chapter 4, "Authentication Methods"

Insert Reference for <<<Establish & maintain security in 3-tier applications>>>Chapter 14, "Implementing Application
Context and Fine-Grained Access Control" & Chapter 15, "Preserving User ldentity in Multitiered Environments”
<<<Control query access, data misuse, and intrusions>>>Chapter 14, "Implementing Application Context and Fine-Grained
Access Control" & Chapter 15, "Preserving User Identity in Multitiered Environments"; for auditing, Chapter 8, "Database
Auditing: Security Considerations"and Chapter 11, "Configuring and Administering Auditing"

Security Policies and Tips 3-3

Recommended Application Design Practices to Reduce Risk

The security practices and recommended actions of Table 3-1 are readily
implemented using the Oracle features, facilities, and products listed in Table 3-2,
in alphabetical order. Discussions of these terms and products appear in the
corresponding chapters (or book) listed in that table:

Table 3-2 References Terms and Chapters for Oracle Features and Products

Reference Terms Reference Chapters
Application Context Chapter 14, "Implementing Application Context
and Fine-Grained Access Control"
Data Encryption Chapter 16, "Developing Applications Using Data
Encryption”

Fine-Grained Access Control Chapter 14, "Implementing Application Context
and Fine-Grained Access Control"

Fine-Grained Auditing Chapter 8, "Database Auditing: Security
Considerations", and

Chapter 11, "Configuring and Administering

Auditing”
Oracle Label Security Oracle Label Security Administrator’s Guide
Proxy Authentication Chapter 15, "Preserving User Identity in Multitiered

Environments"

End-User Identity Propagation ~ Chapter 15, "Preserving User Identity in Multitiered
Environments"

Secure Application Roles Chapter 5, "Authorization: Privileges, Roles,
Profiles, and Resource Limitations", and

Chapter 12, "Introducing Database Security for
Application Developers”

See Also: Oracle Security Overview

Recommended Application Design Practices to Reduce Risk

To avoid or minimize potential problems, use the following recommended practices
for database roles and privileges. Each practice is explained in the following
sections in detail:

« Tip 1: Enable and Disable Roles Promptly

3-4 Oracle Database Security Guide

Recommended Application Design Practices to Reduce Risk

Tip 2: Encapsulate Privileges in Stored Procedures

Tip 3: Use Role Passwords Unknown to the User

Tip 4: Use Proxy Authentication and a Secure Application Role
Tip 5: Use Secure Application Role to Verify IP Address

Tip 6: Use Application Context and Fine-Grained Access Control

Tip 1: Enable and Disable Roles Promptly

Enable the proper role only when the application starts, and disable it as soon as the
application terminates. To do this, you must take the following approach:

Give each application distinct roles.

For each application, establish one role that contains all privileges necessary to
use the application successfully.

If needed, establish several additional roles that contain only some of these
privileges, to provide tighter or less restrictive security to different users or uses
of the application

Protect each database role by a password (or by operating system
authentication) to prevent unauthorized use.

One role should contain only non-destructive privileges associated with the
application (SELECT privileges for specific tables or views associated with the
application). This read-only role allows an application user to generate custom
reports using ad hoc tools, such as SQL*Plus, but disallows modifying table
data. A role designed for an ad hoc query tool may or may not be protected by a
password (or by operating system authentication).

Use the SET ROLE statement at application startup to enable one of the database
roles associated with that application. For a role authorized by a password, the
SET RCLE statement within the application must include that password,
preferably encrypted by the application. If a role is authorized by the operating
system, the system administrator must set up accounts in advance to provide
application users with appropriate operating system privileges.

Disable a previously enabled database role upon application termination.

Grant application users database roles as needed.

Security Policies and Tips 3-5

Recommended Application Design Practices to Reduce Risk

Note: Database roles granted to users can nonetheless be enabled
by users outside the application. Such use is not controlled by
application-based security, but it can be controlled by virtual
private database. In three-tier systems, using a secure application
role prevents users from acquiring the role outside the application.

Additionally, you can use the PRODUCT_USER_PROFI LE table to:

« Specify what roles to enable when a user starts SQL*Plus. This functionality is
similar to that of a precompiler or Oracle Call Interface (OCI) application that
issues a SET ROLE statement to enable specific roles upon application startup.

« Disable the use of the SET ROLE statement for SQL*Plus users, thereby
restricting such users to only the privileges associated with the roles enabled
when SQL*Plus started.

« Enable other ad hoc query and reporting tools to restrict the roles and
commands that each user can use while running that product.

See Also:

« "Ways to Use Application Context with Fine-Grained Access
Control" on page 13-16

« "Creating Secure Application Roles" on page 12-5

« The appropriate tool manual, such as the SQL*Plus User's Guide
and Reference, which contains information about how to create
and how to use the PRODUCT _USER_PROCFI LE table

Tip 2: Encapsulate Privileges in Stored Procedures

Restrict users' ad hoc query tools from exercising application privileges, by
encapsulating those privileges into stored procedures. Grant users execute
privileges on those procedures, rather than issuing direct privilege grants to the
users, so that the privileges cannot be used outside the appropriate procedure.

Users can then exercise privileges only in the context of well-formed business
applications. For example, consider authorizing users to update a table only by
executing a stored procedure, rather than by updating the table directly. By doing
this, you avoid the problem of the user having the SELECT privilege and using it
outside the application.

3-6 Oracle Database Security Guide

Recommended Application Design Practices to Reduce Risk

See Also: "Example 3: Event Triggers, Application Context,
Fine-Grained Access Control, and Encapsulation of Privileges” on
page 14-13

Tip 3: Use Role Passwords Unknown to the User
Grant privileges through roles that require a password unknown to the user.

For privileges that the user should exercise only within an application, enable the
role by a password known only by the creator of the role. Use the application to issue a
SET RCOLE statement. Since the user does not have the role password, it must either
be embedded in the application or retrievable from a database table by a stored
procedure.

Hiding the password discourages users from trying to use the privileges without
using the application, which does improve security, but it is not foolproof.

Security by obscurity is not a good security practice. It protects against lazy users
who merely want to bypass the application, even though they could, with access to
the application code, potentially find the password. It does not protect against users
who want deliberately to misuse privileges without using the application code
(malicious users). Since malicious users can decompile client code and recover
embedded passwords, you should only use the embedded password method to protect
against lazy users.

Retrieving the role password from a database table is a bit more secure. It requires
that the user uncover what stored procedure to use, gain EXECUTE permission on
that procedure, execute it, and retrieve the password. Only then could the user use
the role outside of the application.

Tip 4: Use Proxy Authentication and a Secure Application Role

In three-tier systems, enabling a role is possible only when the user accesses the
database through a middle-tier application. This requires the use of proxy
authentication and a secure application role.

Proxy authentication distinguishes between a middle tier creating a session on
behalf of a user and the user connecting directly. Both the proxy user (the middle
tier) and the real user information are captured in the user session.

A secure application role is implemented by a package, performing desired
validation before allowing a user to assume the privileges in the role. When an
application uses proxy authentication, the secure application role package validates
that the user session was created by proxy. If the user is connecting to the database

Security Policies and Tips 3-7

Recommended Application Design Practices to Reduce Risk

through an application, the role can be set, but if the user is connecting directly, it
cannot.

Consider a situation in which you want to restrict use of an HR administration role
to users accessing the database (by proxy) through the middle tier HRSERVER. You
could create the following secure access role:

CREATE ROLE adnin_rol e | DENTI FI ED USI NG hr. adm n;

Here, the hr . adm n package performs the desired validation, permitting the role to
be set only if it determines that the user is connected by proxy. The hr . admi n
package can use SYS_CONTEXT (' userenv', 'proxy_userid'),orSYS_
CONTEXT (userenv', 'proxy_user').Both returnthe ID and name of the
proxy user (HRSERVER, in this case). If the user attempts to connect directly to the
database, the hr . adni n package will not allow the role to be set.

See Also:

« Re proxy authentication, Chapter 15, "Preserving User Identity
in Multitiered Environments”

« Resecure application roles, "Creating Secure Application Roles"
on page 12-5

Re application context:
« Application Context on page 6-6.

« Chapter 13, "Using Virtual Private Database to Implement
Application Security Policies"

« Chapter 14, "Implementing Application Context and
Fine-Grained Access Control”

« Oracle Database SQL Reference for information about SYS
CONTEXT ('userenv', 'proxy_user') and SYS_
CONTEXT ('userenv', proxy_userid')

Tip 5: Use Secure Application Role to Verify IP Address

The secure application role package can use additional information in the user
session to restrict access, such as the user's original IP address.

You should never use IP addresses to make primary access control decisions,
because IP addresses can be spoofed.

You can, however, use an IP address to increase access restrictions after using other
criteria for the primary access control decision.

3-8 Oracle Database Security Guide

Recommended Application Design Practices to Reduce Risk

For example, you may want to ensure that a user session was created by proxy for a
middle tier user connecting from a particular IP address. Of course, the middle tier
must authenticate itself to the database before creating a lightweight session, and
the database ensures that the middle tier has privilege to create a session on behalf
of the user.

Your secure application role package could validate the IP address of the incoming
connection. Before allowing SET ROLE to succeed, you can to ensure that the
HRSERVER connection (or the lightweight user session) is coming from the
appropriate IP address by using SYS CONTEXT (userenv',' 'ip_address').
Doing so provides an additional layer of security.

Tip 6: Use Application Context and Fine-Grained Access Control
In this scenario, you combine server-enforced fine-grained access control and,

through application context, session-based attributes.
See Also:

« Chapter 13, "Using Virtual Private Database to Implement
Application Security Policies", and

« Chapter 14, "Implementing Application Context and
Fine-Grained Access Control"

Security Policies and Tips 3-9

Recommended Application Design Practices to Reduce Risk

3-10 Oracle Database Security Guide

Part Il

Security Features, Concepts, and
Alternatives

Part 1l presents methods and Oracle Database features that address the security
requirements, threats, and concepts presented in Part I.

This part contains the following chapters:

Chapter 4, "Authentication Methods"

Chapter 5, "Authorization: Privileges, Roles, Profiles, and Resource Limitations"
Chapter 6, "Access Controls on Tables, Views, Synonyms, or Rows"

Chapter 7, "Security Policies"

Chapter 8, "Database Auditing: Security Considerations"

A

Authentication Methods

Authentication means verifying the identity of someone (a user, device, or other
entity) who wants to use data, resources, or applications. Validating that identity
establishes a trust relationship for further interactions. Authentication also enables
accountability by making it possible to link access and actions to specific identities.
After authentication, authorization processes can allow or limit the levels of access
and action permitted to that entity, as described in Chapter 5, "Authorization:
Privileges, Roles, Profiles, and Resource Limitations".

Oracle allows a single database instance to use any or all methods. Oracle requires
special authentication procedures for database administrators, because they
perform special database operations. Oracle also encrypts passwords during
transmission to ensure the security of network authentication.

To validate the identity of database users and prevent unauthorized use of a
database username, you can authenticate using any combination of the methods
described in the following sections:

Authentication Considerations
About ... Links to Topics

Operating Systems Authentication by the Operating System
Networks and LDAP Directories Authentication by the Network

Databases Authentication by the Oracle Database

Multitier Systems Multitier Authentication and Authorization
Secure Socket Layer Usage Authentication of Database Administrators
Database Administrators Authentication of Database Administrators

Authentication Methods 4-1

Authentication by the Operating System

See Also:

« Chapter 9, "Administering Authentication", discusses how to
configure and administer these authentication methods.

« Chapter 15, "Preserving User ldentity in Multitiered
Environments”, discusses proxy authentication.

Authentication by the Operating System

Some operating systems permit Oracle to use information they maintain to
authenticate users, with the following benefits:

« Once authenticated by the operating system, users can connect to Oracle more
conveniently, without specifying a username or password. For example, an
operating-system-authenticated user can invoke SQL*Plus and skip the
username and password prompts by entering

SQAPLUS /

« With control over user authentication centralized in the operating system,
Oracle need not store or manage user passwords, though it still maintains
usernames in the database.

« Audit trails in the database and operating system use the same usernames.

When an operating system is used to authenticate database users, managing
distributed database environments and database links requires special care.

See Also:

« Oracle Database Administrator's Guide sections on (and index
entries for) authentication, operating systems, distributed
database concepts, and distributed data management.

= Your Oracle operating system-specific documentation for more
information about authenticating by way of your operating
system

Authentication by the Network

Authentication capabilities at the network layer are handled by the SSL protocol or
by third-party services, as described in the following subsections:

« Authentication by the Secure Socket Layer Protocol

4-2 Oracle Database Security Guide

Authentication by the Network

« Authentication Using Third-Party Services

DCE Authentication

Kerberos Authentication

Public Key Infrastructure-Based Authentication
Authentication with RADIUS

Directory-based Services

Authentication by the Secure Socket Layer Protocol

The Secure Socket Layer (SSL) protocol is an application layer protocol. It can be
used for user authentication to a database, independent of global user management
in Oracle Internet Directory. That is, users can use SSL to authenticate to the
database even without a directory server in place.

Authentication Using Third-Party Services

Authentication at the network layer makes use of third-party network
authentication services. Prominent examples include the Distributed Computing
Environment (DCE), Kerberos, public key infrastructure, the Remote Authentication
Dial-In User Service (RADIUS), and directory-based services, as described in
subsequent subsections.

If network authentication services are available to you, Oracle can accept
authentication from the network service. To use a network authentication service
with Oracle, you need Oracle Enterprise Edition with the Oracle Advanced Security

option.

See Also:

« Oracle Database Administrator’s Guide for more information
about network authentication. If you use a network
authentication service, some special considerations arise for
network roles and database links: see the sections on (and
index entries for) distributed database concepts and managing
a distributed database.

« Oracle Advanced Security Administrator's Guide for information
about Oracle Enterprise Edition with the Oracle Advanced
Security option

Authentication Methods 4-3

Authentication by the Network

DCE Authentication

The Distributed Computing Environment (DCE) from the Open Group is a set of
integrated network services that works across multiple systems to provide a
distributed environment. The network services include remote procedure calls
(RPCs), directory service, security service, threads, distributed file service, diskless
support, and distributed time service.

DCE is the middleware between distributed applications and the operating
system/network services and is based on a client/server model of computing. By
using the services and tools that DCE provides, users can create, use, and maintain
distributed applications that run across a heterogeneous environment.

Kerberos Authentication

Kerberos is a trusted third-party authentication system that relies on shared secrets.
It presumes that the third party is secure, and provides single sign-on capabilities,
centralized password storage, database link authentication, and enhanced PC
security. It does this through a Kerberos authentication server, or through Cybersafe
Active Trust, a commercial Kerberos-based authentication server.

See Also: Oracle Advanced Security Administrator's Guide for more
information about DCE and Kerberos.

Public Key Infrastructure-Based Authentication

Authentication systems based on public key infrastructure issue digital certificates
to user clients, which use them to authenticate directly to servers in the enterprise
without directly involving an authentication server. Oracle provides a public key
infrastructure (PKI) for using public keys and certificates, consisting of the
following components:

« Authentication and secure session key management using Secure Sockets Layer
(SSL).

« Oracle Call Interface (OCI) and PL/SQL functions to sign user-specified data
using a private key and certificate, and verify the signature on data using a
trusted certificate.

« Trusted certificates, identifying third-party entities that are trusted as signers of
user certificates when an identity is being validated as the entity it claims to be.
When the user's certificate is being validated, the signer is one of the factors
checked, using trust points or a trusted certificate chain of certificate authorities
stored in the validating system. If there are several levels of trusted certificates

4-4 Oracle Database Security Guide

Authentication by the Network

in that chain, a trusted certificate at a lower level is simply trusted without
needing to have all its higher level certificates reverified.

« Oracle wallets, which are data structures that contain a user private key, a user
certificate, and the user's set of trust points (trusted certificate authorities).

« OracleAS Certificate Authority, a component of the Oracle Identity
Management infrastructure, which provides an integrated solution for
provisioning X.509v3 certificates for use by individuals, applications, and
servers, which require certificates for PKlI-based operations such as
authentication, SSL, S/MIME, and so on.

« Oracle Wallet Manager, a standalone Java application used to manage and edit
the security credentials in Oracle wallets, providing the following operations:

« Protects user keys
« Manages X.509 Version 3 certificates on Oracle clients and servers

« Generates a public-private key pair and creates a certificate request for
submission to a certificate authority

« Installs a certificate for the entity

« Configures trusted certificates for the entity

« Creates wallets

« Opens a wallet to enable access to PKI-based services

« X.509 Version 3 certificates obtained from (and signed by) a trusted entity, a
certificate authority. Such a certificate certifies, because the certificate authority
is trusted, that the requesting entity's information is correct and that the public
key on the certificate belongs to the identified entity. The certificate is loaded
into an Oracle wallet to enable future authentication.

Oracle's public key infrastructure is illustrated in Figure 4-1.

Authentication Methods 4-5

Authentication by the Network

Figure 4-1 Oracle Public Key Infrastructure

Oracle Enterprise
Security Manager

Manages enterprise
users and
enterprise roles

Stores users, roles,

Oracle Wallet
Manager

3
==1

Creates keys and
manages credential
preferences

databases,
configuration
information,

ACLs

LDAP on SSL

Oracle
Internet
Directory

Oracle9i
Server

Oracle Net Services,
over SSL

LDAP on SSL

Oracle9i
Server

Note:

To use public key infrastructure-based authentication with

Oracle, you need Oracle Enterprise Edition with the Oracle

Advanced Security option.

Authentication with RADIUS

Oracle supports remote authentication of users through the Remote Authentication
Dial-In User Service (RADIUS), a standard lightweight protocol used for user

authentication, authorization, and accounting.

Note:

To use remote authentication of users through RADIUS

with Oracle, you need Oracle Enterprise Edition with the

Advanced Security option.

4-6 Oracle Database Security Guide

Authentication by the Network

See Also: Oracle Advanced Security Administrator's Guide for
information about Oracle Advanced Security

Directory-based Services

Using a central directory can make authentication and its administration extremely
efficient.

Oracle Internet Directory, which uses the Lightweight Directory Access Protocol
(LDAP), enables information about users (called enterprise users) to be stored and
managed centrally. Whereas database users must be created (with passwords) in
each database they need to access, enterprise user information is accessible centrally
in the Oracle Internet Directory. This directory is readily integrated with Active
Directory and iPlanet.

Oracle Internet Directory, built on the Oracle database and complying with the
Lightweight Directory Access Protocol (LDAP v3). Oracle Internet Directory
lets you manage the security attributes and privileges for users, including users
authenticated by X.509 certificates. Oracle Internet Directory also enforces
attribute-level access control. This feature enables read, write, or update
privileges on specific attributes to be restricted to specific named users, such as
an enterprise security administrator. Directory queries and responses can use
SSL encryption for enhanced protection during authentication and other
interactions.

Oracle Enterprise Security Manager, which provides centralized privilege
management to make administration easier and increase your level of security.
Oracle Enterprise Security Manager lets you store and retrieve roles from Oracle
Internet Directory. Oracle Enterprise Security Manager may also allow you to
store roles in other directory servers that comply with LDAP v3 if those servers
can also support the installation of the Oracle schema and related Access
Control Lists.

See Also:

« Oracle Internet Directory Administrator's Guide

« Oracle 2 Day DBA

« Oracle Enterprise Manager Concepts

« Oracle Enterprise Manager Advanced Configuration

Authentication Methods 4-7

Authentication by the Oracle Database

Authentication by the Oracle Database

Oracle can authenticate users attempting to connect to a database, by using
information stored in that database.

To set up Oracle to use database authentication, you create each user with an
associated password that must be supplied when the user attempts to establish a
connection. This process prevents unauthorized use of the database, since the
connection will be denied if the user provides an incorrect password. Oracle stores a
user's password in the data dictionary in an encrypted format to prevent
unauthorized alteration, but a user can change his own password at any time.

To establish which authentication protocols are allowed by the client or database, a
DBA can explicitly set the SQLNET.ALLOWED_LOGON_VERSION parameter in
the server sqglnet.ora file. Then each connection attempt is tested, and if the client or
server does not meet the minimum version specified by its partner, authentication
fails with an ORA-28040 error. The parameter can take the values 10, 9, or 8, the
default, representing database server versions. Oracle recommends the value 10.

Database authentication includes the following facilities:

« Password Encryption While Connecting. This protection is always in force, by
default.

« Account Locking
« Password Lifetime and Expiration
« Password History

« Password Complexity Verification

Password Encryption While Connecting

Passwords are always automatically and transparently encrypted during network
(client/server and server/server) connections, using a modified DES (Data
Encryption Standard) or 3DES algorithm, before sending them across the network.

See Also: For more information about encrypting passwords in
network systems:

« Chapter 7, "Security Policies"
« Oracle Database Administrator's Guide

» Oracle Advanced Security Administrator's Guide

4-8 Oracle Database Security Guide

Authentication by the Oracle Database

Account Locking

Oracle can lock a user's account after a specified number of consecutive failed log-in
attempts. You can configure the account to unlock automatically after a specified
time interval or to require database administrator intervention to be unlocked.

Use the CREATE PROFI LE statement to establish how many failed logins a user can
attempt before the account locks, and how long it remains locked before it unlocks
automatically.

The database administrator can also lock accounts manually, so that they cannot
unlock automatically but must be unlocked explicitly by the database administrator.

See Also: "Profiles" on page 5-32

Password Lifetime and Expiration

The database administrator can specify a lifetime for passwords, after which they
expire and must be changed before account login is again permitted. A grace period
can be established, during which each attempt to login to the database account
receives a warning message to change the password. If it is not changed by the end
of that period, the account is locked. No further logins to that account are allowed
without assistance by the database administrator.

The database administrator can also set the password state to expired, causing the
user's account status to change to expired. The user or the database administrator
must then change the password before the user can log in to the database.

See Also: Password Management Policy in Chapter 7, "Security
Policies"

Password History

The password history option checks each newly specified password to ensure that a
password is not reused for a specified amount of time or for a specified number of
password changes. The database administrator can configure the rules for password
reuse with CREATE PRCFI LE statements.

Authentication Methods 4-9

Multitier Authentication and Authorization

See Also:

« For the complete syntax of the CREATE PROFILE command,
see the Oracle Database SQL Reference .

« For a more complete discussion of password history policies,
see the Password History section in Chapter 7, "Security
Policies"

Password Complexity Verification

Complexity verification checks that each password is complex enough to provide
reasonable protection against intruders who try to break into the system by
guessing passwords.

The sample Oracle password complexity verification routine (PL/SQL script
UTLPWDMG. SQL, which sets the default profile parameters) checks that each
password meet the following requirements:

« Be aminimum of four characters in length
« Not equal the userid

« Include at least one alphabet character, one numeric character, and one
punctuation mark

« Not match any word on an internal list of simple words like welcome, account,
database, user, and so on

« Differ from the previous password by at least three characters

See Also: Chapter 7's discussion of Password Complexity
Verification, on page 7-16.

Multitier Authentication and Authorization

In a multitier environment, Oracle controls the security of middle-tier applications
by limiting their privileges, preserving client identities through all tiers, and
auditing actions taken on behalf of clients. In applications that use a heavy middle
tier, such as a transaction processing monitor, the identity of the client connecting to
the middle tier must be preserved. Yet one advantage of a middle tier is connection
pooling, which allows multiple users to access a data server without each of them
needing a separate connection. In such environments, you need to be able to set up
and break down connections very quickly.

4-10 Oracle Database Security Guide

Multitier Authentication and Authorization

For these environments, Oracle database administrators can use the Oracle Call
Interface to create lightweight sessions, allowing database password authentication
for each user. This method preserves the identity of the real user through the middle
tier without the overhead of a separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a
middle tier is outside or on a firewall, security is better when each lightweight
session has its own password. For an internal application server, lightweight
sessions without passwords might be appropriate.

Issues of administration and security in multitier environments are discussed in the
following sections:

« Clients, Application Servers, and Database Servers
« Security Issues for Middle-Tier Applications
« ldentity Issues in a Multitier Environment

« Restricted Privileges in a Multitier Environment

Clients, Application Servers, and Database Servers

In a multitier environment, an application server provides data for clients and
serves as an interface from them to one or more database servers. The application
server can validate the credentials of a client, such as a web browser, and the
database server can audit operations performed by the application server. These
auditable operations include actions performed by the application server on behalf
of clients, such as requests that information be displayed on the client. A request to
connect to the database server is an example of an application server operation not
related to a specific client.

Note: While client-side authentication is possible, Oracle strongly
recommends disallowing it by setting the remote_os_authentication
parameter to FALSE.

Authentication in a multitier environment is based on trust regions. Client
authentication is the province of the application server, which itself is authenticated
by the database server. The following operations are performed:

« The client provides proof of authentication to the application server, typically
using a password or an X.509 certificate.

Authentication Methods 4-11

Multitier Authentication and Authorization

« The application server verifies the client authentication and then authenticates
itself to the database server.

« The database server checks the application server authentication, verifies that
the client exists, and verifies that the application server has the privilege to
connect for this client.

Application servers can also enable roles for a client on whose behalf they connect.

The application server can obtain these roles from a directory, which thus serves as
an authorization repository. The application server can only request that these roles
be enabled. The database verifies the following requirements:

« That the client has these roles by checking its internal role repository

« That the application server has the privilege to connect on behalf of the user,
and thus to use these roles as the user could

Figure 4-2 shows an example of multitier authentication.

4-12 Oracle Database Security Guide

Multitier Authentication and Authorization

Figure 4-2 Multitier Authentication

User

:IB SSL to login Proxies user identity

Oracle 8i
Server

Application

Server
Wallet

Get roles

from LDAP

and log in
user

Oracle
Internet
Directory

Security Issues for Middle-Tier Applications
Security for middle-tier applications must address the following key issues:

« Accountability: The database server must be able to distinguish between the
actions of a client and the actions an application takes on behalf of a client. It
must be possible to audit both kinds of actions.

« Differentiation: The database server must be able to distinguish between a client
accessing the database directly and a web server acting either for itself or on
behalf of a browser client.

« Least privilege: Users and middle tiers should be given the fewest privileges
necessary to do their jobs, to minimize the danger of inadvertent or malicious
unauthorized activities.

Authentication Methods 4-13

Authentication of Database Administrators

Identity Issues in a Multitier Environment

Multitier authentication maintains the identity of the client through all tiers of the
connection in order to maintain useful audit records. If the originating client's
identity is lost, specific accountability of that client is lost. It becomes impossible to
distinguish operations performed by the application server on behalf of the client
from those done by the application server for itself.

Restricted Privileges in a Multitier Environment

Privileges in a multitier environment are limited to those necessary to perform the
requested operation.

Client Privileges

Client privileges are as limited as possible in a multitier environment. Operations
are performed on behalf of the client by the application server.

Application Server Privileges

Application server privileges in a multitier environment are also limited, so that the
application server cannot perform unwanted or unneeded operations while
performing a client operation.

See Also: Chapter 9, "Administering Authentication", and the
Oracle Database Administrator’s Guide, for more information about
multitier authentication

Authentication of Database Administrators

Database administrators perform special operations (such as shutting down or
starting up a database) that should not be performed by normal database users.
Oracle provides for secure authentication of database administrator usernames, for
which you can choose either operating system authentication or password files.

Figure 4-3 illustrates the choices you have for database administrator
authentication schemes. Different choices apply to administering your database
locally (on the machine where the database resides) and to administering many
different database machines from a single remote client.

4-14 Oracle Database Security Guide

Authentication of Database Administrators

Figure 4-3 Database Administrator Authentication Methods

Remote Database Local Database
Administration Administration

Do you
want to use OS
authentication?

Do you
have a secure
connection?

Yes Yes
Use OS

authentication

> Use a password file

Operating system authentication for a database administrator typically involves
establishing a group on the operating system, assigning the DBA privileges to that
group, and then adding to that group the names of persons who should have those
privileges. (On UNIX systems, the special group is called the dba group.)

The database uses password files to keep track of those database usernames that
have been granted the SYSDBA and SYSOPER privileges. These privileges enable the
following operations and capabilities:

« SYSOPER lets database administrators perform STARTUP, SHUTDOWN, ALTER
DATABASE OPEN/ MOUNT, ALTER DATABASE BACKUR, ARCHI VE LOG, and
RECOVER. SYSOPER also includes the RESTRI CTED SESSI ON privilege.

« SYSDBA has all system privileges with ADM N OPTI QN, including the SYSOPER
system privilege, and permits CREATE DATABASE and time-based recovery.

Authentication Methods 4-15

Authentication of Database Administrators

Note: Connections requested AS SYSDBA or AS SYSOPER must
use these phrases; without them, the connection fails. The Oracle
parameter 07_DICTIONARY_ACCESSIBILITY is set to FALSE by
default, to limit sensitive data dictionary access only to those
authorized. The parameter also enforces the required AS SYSDBA
or AS SYSOPER syntax. See also Administrator Security in
Chapter 7, "Security Policies"

See Also:

= Your Oracle operating system-specific documentation for
information about operating system authentication of database
administrators

« Oracle Database Administrator's Guide

4-16 Oracle Database Security Guide

D

Authorization: Privileges, Roles, Profiles,
and Resource Limitations

Authorization includes primarily two processes:
« Permitting only certain users to access, process, or alter data

« Applying varying limitations on users' access or actions. The limitations placed
on (or removed from) users can apply to objects, such as schemas, tables, or
rows; or to resources, such as time (CPU, connect, or idle times).

This chapter introduces the basic concepts and mechanisms for placing or removing
such limitations on users, individually or in groups, in the following sections;

Topic Category Links to Topics

How Privileges Are Acquired and Used Introduction to Privileges,
including system, schema,
object, table, procedure, and
other privileges

How Roles Are Acquired, Used, and Restricted Introduction to Roles
How and Why Resource Limits Are Applied to Users User Resource Limits
How Profiles Are Determined and Used Profiles

See Also: Chapter 10, "Administering User Privileges, Roles, and
Profiles", discusses how to configure and administer privileges,
roles, and profiles for users, including DBAs and application
programmers.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-1

Introduction to Privileges

Introduction to Privileges

A privilege is a right to execute a particular type of SQL statement or to access
another user's object. Some examples of privileges include the right to:

« Connect to the database (create a session)
« Create atable

« Select rows from another user's table

« Execute another user's stored procedure

You grant privileges to users so these users can accomplish tasks required for their
jobs. You should grant a privilege only to a user who absolutely requires that
privilege to accomplish necessary work. Excessive granting of unnecessary
privileges can compromise security. A user can receive a privilege in two different
ways:

= You can grant privileges to users explicitly. For example, you can explicitly
grant to user SCOTT the privilege to insert records into the enpl oyees table.

« You can also grant privileges to a role (a named group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges to
select, insert, update, and delete records from the enpl oyees table to the role
named cl er k, which in turn you can grant to users scot t and bri an.

Because roles allow for easier and better management of privileges, you should
normally grant privileges to roles and not to specific users.

See Also:
« Chapter 10, "Administering User Privileges, Roles, and Profiles™

« Oracle Database Administrator's Guide for discussions of
managing and using system and schema object privileges.

« Oracle Database SQL Reference for the complete list of system
privileges and their descriptions.
There are six major categories of privileges, some with significant subcategories:
« System Privileges
« Schema Object Privileges
« Table Privileges

« View Privileges

5-2 Oracle Database Security Guide

Introduction to Privileges

« Procedure Privileges

« Type Privileges

System Privileges

A system privilege is the right to perform a particular action, or to perform an
action on any schema objects of a particular type. For example, the privileges to
create tablespaces and to delete the rows of any table in a database are system
privileges. There are over 100 distinct system privileges to manage, as described in
the following subsections:

« Granting and Revoking System Privileges

« Who Can Grant or Revoke System Privileges?

Granting and Revoking System Privileges

You can grant or revoke system privileges to users and roles. If you grant system
privileges to roles, then you can use the roles to manage system privileges. For
example, roles permit privileges to be made selectively available.

Note: In general, you grant system privileges only to
administrative personnel and application developers. End users
normally do not require and should not have the associated
capabilities.

Use either of the following to grant or revoke system privileges to users and roles:
« The Oracle Enterprise Manager 10g Database Control
« The SQL statements GRANT and REVOKE

See Also:

« For more information about the Database Control, see Oracle 2
Day DBA.

« For information about modifying users with the Database
Control, see the topic "Creating, Editing, and Deleting Users" in
the Enterprise Manager online help.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-3

Introduction to Privileges

Who Can Grant or Revoke System Privileges?

Only two types of users can grant system privileges to other users or revoke such
privileges from them:

« Users who have been granted a specific system privilege with the ADM N
OPTI ON

« Users with the system privilege GRANT ANY PRI VI LEGE

Schema Object Privileges

A schema object privilege is a privilege or right to perform a particular action on a
specific schema object.

Different object privileges are available for different types of schema objects. The
privilege to delete rows from the depar t nent s table is an example of an object
privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not
have associated object privileges. Their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

The following subsections discuss granting and revoking such privileges:
« Granting and Revoking Schema Obiject Privileges

« Who Can Grant Schema Object Privileges?

« Using Privileges with Synonyms

Obiject privileges that apply to specific schema objects are discussed in the following
sections:

« Table Privileges

« View Privileges

« Sequences (see "Managing Sequences" in Oracle Database Administrator's Guide
« Procedure Privileges

« Functions and Packages ("Managing Object Dependencies" in Oracle Database
Administrator's Guide)

= Type Privileges

5-4 Oracle Database Security Guide

Introduction to Privileges

Granting and Revoking Schema Object Privileges

Schema object privileges can be granted to and revoked from users and roles. If you
grant object privileges to roles, you can make the privileges selectively available.
Obiject privileges for users and roles can be granted or revoked using the following:

« The SQL statements GRANT and REVOKE, respectively

« The Oracle Enterprise Manager 10g Database Control

See Also:

« For more information about the Database Control, see Oracle 2
Day DBA.

« For information about modifying privileges with the Database
Control, see the Enterprise Manager online help.

Who Can Grant Schema Object Privileges?

A user automatically has all object privileges for schema objects contained in his or
her schema. A user can grant any object privilege on any schema object he or she
owns to any other user or role. A user with the GRANT ANY OBJECT PRI VI LEGE can
grant or revoke any specified object privilege to another user with or without the
GRANT OPTI ON of the GRANT statement. Otherwise, the grantee can use the
privilege, but cannot grant it to other users.

For example, assume user SCOTT has a table named t 2:

SQA>GRANT grant any object privilege TO UL

SQ@> connect ul/ul

Gonnect ed.

SQ > GRANT sel ect on scott.t2 \TO W2;

SQA> SHECT GRANTEE, OMER (RANTAR PRV LEGE, GRANTABLE FROM DBA TAB PR VS
WHERE TABLE NAME = ' enpl oyees' ;

CRANTEE OMER
QRANTCR PR M LECE RA
w2 SaorT
SQOrT SH ECT NO

See Also: Oracle Database SQL Reference

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-5

Introduction to Privileges

Using Privileges with Synonyms

A schema object and its synonym are equivalent with respect to privileges. That is,
the object privileges granted for a table, view, sequence, procedure, function, or
package apply whether referencing the base object by name or using a synonym.

For example, assume there is a table j war d. enp with a synonym named
j war d. enpl oyee, and the user j war d issues the following statement:

GRANT SHLECT (N enp TO swi | | i ans;

The user swi | | i arrs can query j war d. enp by referencing the table by name or
using the synonym j war d. enpl oyee:

SELECT * FROMj war d. enp;
SELECT * FROM | war d. enpl oyee;

If you grant object privileges on a table, view, sequence, procedure, function, or
package to a synonym for the object, the effect is the same as if no synonym were
used. For example, if j war d wanted to grant the SELECT privilege for the enp table
toswi | | i ans, j war d could issue either of the following statements:

GRANT SHECT (N enp TOsw | | i ans;
GRANT SELECT ON enpl oyee TO swi l | i ans;

If a synonym is dropped, all grants for the underlying schema object remain in
effect, even if the privileges were granted by specifying the dropped synonym.

Table Privileges
Schema object privileges for tables enable table security at the DML or DDL level of
operation, as discussed in the following subsections:
« Data Manipulation Language (DML) Operations

«» Data Definition Language (DDL) Operations

Data Manipulation Language (DML) Operations

You can grant privileges to use the DELETE, | NSERT, SELECT, and UPDATE DML
operations on a table or view. Grant these privileges only to users and roles that
need to query or manipulate a table's data.

You can restrict | NSERT and UPDATE privileges for a table to specific columns of the
table. With selective | NSERT, a privileged user can insert a row with values for the
selected columns. All other columns receive NULL or the column's default value.
With selective UPDATE, a user can update only specific column values of a row.

5-6 Oracle Database Security Guide

Introduction to Privileges

Selective | NSERT and UPDATE privileges are used to restrict a user's access to
sensitive data.

For example, if you do not want data entry users to alter the sal ar y column of the
enpl oyees table, selective | NSERT or UPDATE privileges can be granted that
exclude the sal ar y column. Alternatively, a view that excludes the sal ary
column could satisfy this need for additional security.

See Also: Oracle Database SQL Reference for more information
about these DML operations

Data Definition Language (DDL) Operations

The ALTER, | NDEX, and REFERENCES privileges allow DDL operations to be
performed on a table. Because these privileges allow other users to alter or create
dependencies on a table, you should grant privileges conservatively. A user
attempting to perform a DDL operation on a table may need additional system or
object privileges. For example, to create a trigger on a table, the user requires both
the ALTER TABLE object privilege for the table and the CREATE TRI GGER system
privilege.

As with the | NSERT and UPDATE privileges, the REFERENCES privilege can be
granted on specific columns of a table. The REFERENCES privilege enables the
grantee to use the table on which the grant is made as a parent key to any foreign
keys that the grantee wishes to create in his or her own tables. This action is
controlled with a special privilege because the presence of foreign keys restricts the
data manipulation and table alterations that can be done to the parent key.

A column-specific REFERENCES privilege restricts the grantee to using the named
columns (which, of course, must include at least one primary or unique key of the
parent table).

See Also: "Data Integrity" in Oracle Database Concepts for more
information about primary keys, unique keys, and integrity
constraints

View Privileges

A view is a presentation of data selected from one or more tables (possibly
including other views). A view shows the structure of the underlying tables as well
as the selected data, and can be thought of as the result of a stored query. The view
contains no actual data but rather derives what it shows from the tables and views
on which it is based. A view can be queried, and the data it represents can be
changed. Data in a view can be updated or deleted, and new data inserted. These

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-7

Introduction to Privileges

operations directly alter the tables on which the view is based and are subject to the
integrity constraints and triggers of the base tables.

Data Manipulation Language (DML) object privileges for tables can be applied
similarly to views. Schema object privileges for a view allow various DML
operations, which as noted affect the base tables from which the view is derived.
These privileges are discussed in the following subsections:

« Privileges Required to Create Views

« Increasing Table Security with Views

Privileges Required to Create Views
To create a view, you must meet the following requirements:

« You must have been granted one of the following system privileges, either
explicitly or through a role:

— The CREATE VI EWsystem privilege (to create a view in your schema)

— The CREATE ANY VI EWsystem privilege (to create a view in another user's
schema)

« You must have been explicitly granted one of the following privileges:

— The SELECT, | NSERT, UPDATE, or DELETE object privileges on all base
objects underlying the view

— The SELECT ANY TABLE, | NSERT ANY TABLE, UPDATE ANY TABLE, or
DELETE ANY TABLE system privileges

« Additionally, in order to grant other users access to your view, you must have
received object privileges to the base objects with the GRANT OPTI ON clause or
appropriate system privileges with the ADM N OPTI ON clause. If you have not,
grantees cannot access your view.

See Also: Oracle Database SQL Reference

Increasing Table Security with Views

To use a view, you require appropriate privileges only for the view itself. You do not
require privileges on base objects underlying the view.

Views add two more levels of security for tables, column-level security and
value-based security:

5-8 Oracle Database Security Guide

Introduction to Privileges

« Aview can provide access to selected columns of base tables. For example, you
can define a view on the enpl oyees table to show only the enpl oyee i d,
| ast _nane, and manager _i d columns:

CREATE M EWenpl oyees_nanager AS
SELECT | ast _nane, enpl oyee id, nmanager_i d FRCM enpl oyees;

« Aview can provide value-based security for the information in a table. A
WHERE clause in the definition of a view displays only selected rows of base
tables. Consider the following two examples:

CREATE M EWI owsal AS
SELECT * FROM enpl oyees
WHERE sal ary < 10000;

The LOABAL view allows access to all rows of the enpl oyees table that have a
salary value less than 10000. Notice that all columns of the enpl oyees table are
accessible in the LOABAL view.

CREATE M EWown_sal ary AS
SELECT | ast_nane, sal ary
FRCM enpl oyees
WHERE | ast _nane = USER

In the own_sal ary view, only the rows with an | ast _nane that matches the
current user of the view are accessible. The own_sal ary view uses the user
pseudocolumn, whose values always refer to the current user. This view
combines both column-level security and value-based security.

Procedure Privileges

EXECUTE is the only schema object privilege for procedures, including standalone
procedures and functions as well as packages. Grant this privilege only to users
who need to execute a procedure or to compile another procedure that calls a
desired procedure. To create and manage secure and effective use of procedure
privileges, you need to understand the following subsections:

« Procedure Execution and Security Domains
« System Privileges Needed to Create or Alter a Procedure

« Packages and Package Objects

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-9

Introduction to Privileges

Procedure Execution and Security Domains

A user with the EXECUTE obiject privilege for a specific procedure can execute the
procedure or compile a program unit that references the procedure. No runtime
privilege check is made when the procedure is called. A user with the EXECUTE ANY
PROCEDURE system privilege can execute any procedure in the database.

Privileges to execute procedures can be granted to a user through roles.

A procedure's owner, called the "definer,” must have all the necessary object
privileges for referenced objects. If the owner grants to another user the right to use
that procedure, the owner's object privileges for the objects referenced by the
procedure apply to that user's exercise of the procedure. These are termed "definer’s
rights."

The user of a procedure who is not its owner is termed the "invoker." Additional
privileges on referenced objects are required for invoker’s rights procedures, but not
for definer’s rights procedures.

See Also: "PL/SQL Blocks and Roles" on page 5-24

Definer's Rights A user of a definer’s rights procedure requires only the privilege to
execute the procedure and no privileges on the underlying objects that the
procedure accesses, because a definer’s rights procedure operates under the
security domain of the user who owns the procedure, regardless of who is executing
it. The procedure's owner must have all the necessary object privileges for
referenced objects. Fewer privileges have to be granted to users of a definer’s rights
procedure, resulting in tighter control of database access.

You can use definer’s rights procedures to control access to private database objects
and add a level of database security. By writing a definer’s rights procedure and
granting only EXECUTE privilege to a user, the user can be forced to access the
referenced objects only through the procedure.

At runtime, the privileges of the owner of a definer’s rights stored procedure are
always checked before the procedure is executed. If a necessary privilege on a
referenced object has been revoked from the owner of a definer’s rights procedure,
then the procedure cannot be executed by the owner or any other user.

5-10 Oracle Database Security Guide

Introduction to Privileges

Note: Trigger execution follows the same patterns as definer’s
rights procedures. The user executes a SQL statement, which that
user is privileged to execute. As a result of the SQL statement, a
trigger is fired. The statements within the triggered action
temporarily execute under the security domain of the user that
owns the trigger.

See Also: "Triggers" in Oracle Database Concepts

Invoker's Rights An invoker’s rights procedure executes with all of the invoker's
privileges. Roles are enabled unless the invoker’s rights procedure was called
directly or indirectly by a definer’s rights procedure. A user of an invoker’s rights
procedure needs privileges (either directly or through a role) on objects that the
procedure accesses through external references that are resolved in the invoker's
schema.

The invoker needs privileges at runtime to access program references embedded in
DML statements or dynamic SQL statements, because they are effectively
recompiled at runtime.

For all other external references, such as direct PL/SQL function calls, the owner's
privileges are checked at compile time, and no runtime check is made. Therefore,
the user of an invoker’s rights procedure needs no privileges on external references
outside DML or dynamic SQL statements. Alternatively, the developer of an
invoker’s rights procedure only needs to grant privileges on the procedure itself,
not on all objects directly referenced by the invoker’s rights procedure.

Many packages provided by Oracle, such as most of the DBMS_* packages, run
with invoker’s rights—they do not run as the owner (SYS) but rather as the current
user. However, some exceptions exist such as the DBMS_RLS package.

You can create a software bundle that consists of multiple program units, some with
definer’s rights and others with invoker’s rights, and restrict the program entry
points (controlled step-in). A user who has the privilege to execute an entry-point
procedure can also execute internal program units indirectly, but cannot directly call
the internal programs.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-11

Introduction to Privileges

See Also:
« "Fine-Grained Access Control" on page 22-24

« PL/SQL Packages and Types Reference for detailed documentation
of the Oracle supplied packages

System Privileges Needed to Create or Alter a Procedure

To create a procedure, a user must have the CREATE PROCEDURE or CREATE ANY
PROCEDURE system privilege. To alter a procedure, that is, to manually recompile a
procedure, a user must own the procedure or have the ALTER ANY PROCEDURE
system privilege.

The user who owns the procedure also must have privileges for schema objects
referenced in the procedure body. To create a procedure, you must have been
explicitly granted the necessary privileges (system or object) on all objects
referenced by the procedure. You cannot have obtained the required privileges
through roles. This includes the EXECUTE privilege for any procedures that are
called inside the procedure being created.

Triggers also require that privileges to referenced objects be granted explicitly to the
trigger owner. Anonymous PL/SQL blocks can use any privilege, whether the
privilege is granted explicitly or through a role.

Packages and Package Objects

A user with the EXECUTE object privilege for a package can execute any public
procedure or function in the package and access or modify the value of any public
package variable. Specific EXECUTE privileges cannot be granted for a package's
constructs. Therefore, you may find it useful to consider two alternatives for
establishing security when developing procedures, functions, and packages for a
database application. These alternatives are described in the following examples.

Packages and Package Objects Example 1 This example shows four procedures created
in the bodies of two packages.

CREATE PACKACE BADY hire_fire AS
PROCEDURE hire(...) IS

BEG N
I NSERT | NTO enpl oyees . . .
END hire;
PROCEDURE fire(...) IS
BEA N

DELETE FROM enpl oyees . . .

5-12 Oracle Database Security Guide

Introduction to Privileges

BE\D fire;
END hire fire;

CREATE PACKAGE BQDY rai se_bonus AS
PROCEDURE give_raise(...) IS
BEA N
UPDATE enpl oyees SET sal ary = .
END gi ve_rai se;
PROCEDURE gi ve bonus(...) IS
BEA N
UPDATE enpl oyees SET bonus = .
END gi ve_bonus;
END rai se_honus;

Access to execute the procedures is given by granting the EXECUTE privilege for the
package, using the following statements:

GRANT EXEQUTE ON hire fire TO bi g_bosses;
GRANT EXEQUTE ON rai se_bonus TO little_bosses;

Granting EXECUTE privilege granted for a package provides uniform access to all
package objects.

Packages and Package Objects Example 2 This example shows four procedure
definitions within the body of a single package. Two additional standalone
procedures and a package are created specifically to provide access to the
procedures defined in the main package.

CREATE PACKAGE BQDY enpl oyee_changes AS
PROCEDURE change_sal ary(...) ISBEAN... BEND
PROCEDURE change_bonus(...) ISBEAN ... B\D
PROCEDURE insert_enployee(...) ISBEAN ... BND
PROCEDURE del ete_enployee(...) ISBEAN ... BND
END enpl oyee_changes;

CREATE PROCEDURE hire
BEA N
enpl oyee_changes. i nsert_enpl oyee(. . .)
END hire;

CREATE PROCEDURE fire
BEGQ N
enpl oyee_changes. del et e_enpl oyee(. . .)
END fire;

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-13

Introduction to Privileges

PACKAGE rai se_bonus IS
PROCEDURE give raise(...) AS
BEA N
enpl oyee_changes. change_sal ary(. . .)
END gi ve_rai se;

PROCEDURE gi ve_bonus(. . .)
BEA N
enpl oyee_changes. change_bonus(. . .)
END gi ve_bonus;

Using this method, the procedures that actually do the work (the procedures in the
enpl oyee_changes package) are defined in a single package and can share
declared global variables, cursors, on so on. By declaring top-level procedures
hireandfire, and an additional package r ai se_bonus, you can grant selective
EXECUTE privileges on procedures in the main package:

GRANT EXEQUTE ON hire, fire TO bi g_bosses;
GRANT EXEQUTE ON rai se_bonus TO little_bosses;

Type Privileges

The following subsections describe the use of privileges for types, methods, and
objects:

« System Privileges for Named Types

« Object Privileges

« Method Execution Model

« Privileges Required to Create Types and Tables Using Types

« Example of Privileges for Creating Types and Tables Using Types
= Privileges on Type Access and Object Access

« Type Dependencies
System Privileges for Named Types

Oracle defines system privileges shown in Table 5-1 for named types (object types,
VARRAYS, and nested tables):

5-14 Oracle Database Security Guide

Introduction to Privileges

Table 5-1 System Privileges for Named Types

Privilege Allows you to...
CREATE TYPE Create named types in your own schemas.
CREATE ANY TYPE Create a named type in any schema.
ALTER ANY TYPE Alter a named type in any schema.
DROP ANY TYPE Drop a named type in any schema.
EXECUTE ANY TYPE Use and reference a named type in any schema.

The CONNECT and RESQURCE roles include the CREATE TYPE system privilege. The
DBA role includes all of these privileges.

Object Privileges

The only object privilege that applies to named types is EXECUTE. If the EXECUTE
privilege exists on a named type, a user can use the named type to:

« Define a table
« Define acolumn in a relational table
« Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the type's methods, including the
type constructor. This is similar to EXECUTE privilege on a stored PL/SQL
procedure.

Method Execution Model
Method execution is the same as any other stored PL/SQL procedure.

See Also: "Procedure Privileges" on page 5-9

Privileges Required to Create Types and Tables Using Types
To create a type, you must meet the following requirements:

= You must have the CREATE TYPE system privilege to create a type in your
schema or the CREATE ANY TYPE system privilege to create a type in another
user's schema. These privileges can be acquired explicitly or through a role.

« The owner of the type must have been explicitly granted the EXECUTE object
privileges to access all other types referenced within the definition of the type,

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-15

Introduction to Privileges

or have been granted the EXECUTE ANY TYPE system privilege. The owner
cannot have obtained the required privileges through roles.

« If the type owner intends to grant access to the type to other users, the owner
must have received the EXECUTE privileges to the referenced types with the
GRANT OPTI ON or the EXECUTE ANY TYPE system privilege with the ADM N
OPTI ON. If not, the type owner has insufficient privileges to grant access on the
type to other users.

To create a table using types, you must meet the requirements for creating a table
and these additional requirements:

« The owner of the table must have been explicitly granted the EXECUTE object
privileges to access all types referenced by the table, or have been granted the
EXECUTE ANY TYPE system privilege. The owner cannot have obtained the
required privileges through roles.

« If the table owner intends to grant access to the table to other users, the owner
must have received the EXECUTE privileges to the referenced types with the
GRANT OPTI ON or the EXECUTE ANY TYPE system privilege with the ADM N
OPTI ON. If not, the table owner has insufficient privileges to grant access on the
type to other users.

See Also: "Table Privileges" on page 5-6 for the requirements for
creating a table

Example of Privileges for Creating Types and Tables Using Types
Assume that three users exist with the CONNECT and RESOURCE roles:

. userl
« user?
« user3

User 1 performs the following DDL in his schema:

CREATE TYPE typel AS CRIECT (
attrl NMBER;

CREATE TYPE type2 AS BIECT (
attr2 NMBER) ;

GRANT EXEQUTE ON typel TO user2;
GRANT EXEQUTE ON type2 TO user2 WTH GRANT CPTI ON

5-16 Oracle Database Security Guide

Introduction to Privileges

User 2 performs the following DDL in his schema:

CREATE TABLE tabl CF userl.typel;
CREATE TYPE type3 AS CBIECT (
attr3 userl.type2);
CREATE TABLE tab2 (
col 1 userl.type2);

The following statements succeed because user 2 has EXECUTE privilege on

user 1's TYPE2 with the GRANT OPTI ON:

GRANT EXEQUTE ON type3 TO user 3;

@RANT SH.ECT on tab2 TO user 3;

However, the following grant fails because user 2 does not have EXECUTE privilege
onuser 1's TYPEL with the GRANT OPTI ON:

GRANT SHLECT ON tabl TO user3;

User 3 can successfully perform the following statements:

CREATE TYPE typed AS CBIECT (
attr4 user?2.type3d);
CREATE TABLE tab3 CF type4;

Privileges on Type Access and Object Access

Existing column-level and table-level privileges for DML statements apply to both
column objects and row objects. Oracle defines the privileges shown in Table 5-2 for
object tables:

Table 5-2 Privileges for Object Tables

Privilege Allows you to...
SELECT Access an object and its attributes from the table
UPDATE Modify the attributes of the objects that make up the table's rows
| NSERT Create new objects in the table
DELETE Delete rows

Similar table privileges and column privileges apply to column objects. Retrieving
instances does not in itself reveal type information. However, clients must access
named type information in order to interpret the type instance images. When a

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-17

Introduction to Privileges

client requests such type information, Oracle checks for EXECUTE privilege on the
type.

Consider the following schema:

CREATE TYPE enp_type (
eno NUMBER enane CHAR(31), eaddr addr_t);
CREATE TABLE enp CF enp_t;

and the following two queries:

SELECT VALUH enp) FROM enp;
SH ECT eno, enane FRCM enp;

For either query, Oracle checks the user's SELECT privilege for the enp table. For
the first query, the user needs to obtain the enp_t ype type information to interpret
the data. When the query accesses the enp_t ype type, Oracle checks the user's
EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle
does not check type privileges.

Additionally, using the schema from the previous section, user 3 can perform the
following queries:

SHECT tabl.col 1. attr2 FROMuser 2. tabl tabl;

SHECT attrd.attr3.attr2 FROMt ab3;

Note that in both SELECT statements, user 3 does not have explicit privileges on
the underlying types, but the statement succeeds because the type and table owners
have the necessary privileges with the GRANT OPTI ON.

Oracle checks privileges on the following events, and returns an error if the client
does not have the privilege for the action:

« Pinning an object in the object cache using its REF value causes Oracle to check
SELECT privilege on the containing object table.

« Modifying an existing object or flushing an object from the object cache causes
Oracle to check UPDATE privilege on the destination object table.

» Flushing a new object causes Oracle to check | NSERT privilege on the
destination object table.

« Deleting an object causes Oracle to check DELETE privilege on the destination
table.

« Pinning an object of named type causes Oracle to check EXECUTE privilege on
the object.

5-18 Oracle Database Security Guide

Introduction to Roles

Modifying an object's attributes in a client 3GL application causes Oracle to update
the entire object. Hence, the user needs UPDATE privilege on the object table.
UPDATE privilege on only certain columns of the object table is not sufficient, even if
the application only modifies attributes corresponding to those columns. Therefore,
Oracle does not support column level privileges for object tables.

Type Dependencies

As with stored objects such as procedures and tables, types being referenced by
other objects are called dependencies. There are some special issues for types
depended upon by tables. Because a table contains data that relies on the type
definition for access, any change to the type causes all stored data to become
inaccessible. Changes that can cause this effect are when necessary privileges
required by the type are revoked or the type or dependent types are dropped. If
either of these actions occur, then the table becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges can automatically become valid
and accessible if the required privileges are granted again. A table that is invalid
because a dependent type has been dropped can never be accessed again, and the
only permissible action is to drop the table.

Because of the severe effects which revoking a privilege on a type or dropping a
type can cause, the SQL statements REVOKE and DROP TYPE by default implement a
restrict semantics. This means that if the named type in either statement has table or
type dependents, then an error is received and the statement aborts. However, if the
FORCE clause for either statement is used, the statement always succeeds, and if
there are depended-upon tables, they are invalidated.

See Also: Oracle Database Reference for details about using the
REVCOKE, DROP TYPE, and FORCE clauses

Introduction to Roles

Managing and controlling privileges is made easier by using roles, which are
named groups of related privileges that you grant, as a group, to users or other
roles. Within a database, each role name must be unique, different from all
usernames and all other role names. Unlike schema objects, roles are not contained
in any schema. Therefore, a user who creates a role can be dropped with no effect
on the role.

Roles are designed to ease the administration of end-user system and schema object
privileges, and are often maintained in Oracle Internet Directory. However, roles

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-19

Introduction to Roles

are not meant to be used by application developers, because the privileges to access
schema objects within stored programmatic constructs need to be granted directly.

The effective management of roles is discussed in the following subsections:

Table 5-3 Topics and Sections in This Section

Authentication Considerations in

These Topical Areas Links to Relevant Subsection
Why Roles Are Advantageous Properties of Roles
How Roles are Typically Used Common Uses for Roles
How Users Get Roles Granting and Revoking Roles

(or Role Restrictions

How Roles Affect The Scope of a User's Security Domains of Roles and Users
Privileges

How Roles Work in PL/SQL Blocks PL/SQL Blocks and Roles

How Roles Aid or Restrict DDL Usage Data Definition Language Statements and Roles
What Roles are Predefined in Oracle Predefined Roles

How Can Operating Systems Aid Roles The Operating System and Roles

How Roles Work in a Remote Session Roles in a Distributed Environment

How Secure Application Roles Are Secure Application Roles
Created and Used

Properties of Roles
These following properties of roles enable easier privilege management within a

database:
Property Description

Reduced privilege Rather than granting the same set of privileges explicitly to

administration several users, you can grant the privileges for a group of
related users to a role, and then only the role needs to be
granted to each member of the group.

Dynamic privilege If the privileges of a group must change, only the privileges

management of the role need to be modified. The security domains of all

users granted the group's role automatically reflect the
changes made to the role.

5-20 Oracle Database Security Guide

Introduction to Roles

Property Description
Selective availability of You can selectively enable or disable the roles granted to a
privileges user. This allows specific control of a user's privileges in any

given situation.

Application awareness The data dictionary records which roles exist, so you can
design applications to query the dictionary and automatically
enable (or disable) selective roles when a user attempts to
execute the application by way of a given username.

Application-specificsecurity You can protect role use with a password. Applications can
be created specifically to enable a role when supplied the
correct password. Users cannot enable the role if they do not
know the password.

Database administrators often create roles for a database application. The DBA
grants a secure application role all privileges necessary to run the application. The
DBA then grants the secure application role to other roles or users. An application
can have several different roles, each granted a different set of privileges that allow
for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to
know the password for an application's role.

See Also:

« "Data Definition Language Statements and Roles" on page 5-24
for information about restrictions for procedures

« Oracle Database Application Developer's Guide - Fundamentals for
instructions for enabling roles from an application

Common Uses for Roles
In general, you create a role to serve one of two purposes:

« To manage the privileges for a database application (Application Roles)
« To manage the privileges for a user group (User Roles)

Figure 5-1 and the sections that follow describe the two uses of roles.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-21

Introduction to Roles

Figure 5-1 Common Uses for Roles
o
u

bR b -

=/ t ./

PAY_CLERK Role MANAGER Role REC_CLERK Role User Roles

NS N

ACCTS_PAY Role | | ACCTS_REC Role

! 1

Privileges to Privileges to

Application Roles

execute the execute the Application Privileges
ACCTS_PAY ACCTS_REC
application application

Application Roles

You grant an application role all privileges necessary to run a given database
application. Then, you grant the secure application role to other roles or to specific
users. An application can have several different roles, with each role assigned a
different set of privileges that allow for more or less data access while using the
application.

User Roles

You create a user role for a group of database users with common privilege
requirements. You manage user privileges by granting secure application roles and
privileges to the user role and then granting the user role to appropriate users.

Granting and Revoking Roles

System or schema object privileges can be granted to a role, and any role can be
granted to any database user or to another role (but not to itself). However, a role
cannot be granted circularly, that is, a role X cannot be granted to role Y if role Y has
previously been granted to role X.

To provide selective availability of privileges, Oracle allows database applications
and users to enable and disable roles. Each role granted to a user is, at any given

5-22 Oracle Database Security Guide

Introduction to Roles

time, either enabled or disabled. A user's security domain includes the privileges of
all roles currently enabled for the user and excludes the privileges of any roles
currently disabled for the user.

A role granted to a role is called an indirectly granted role. It can be explicitly
enabled or disabled for a user. However, whenever you enable a role that contains
other roles, you implicitly enable all indirectly granted roles of the directly granted
role.

You grant roles to (or revoke roles from) users or other roles by using either of the
following methods:

« The Oracle Enterprise Manager 10g Database Control
« The SQL statements GRANT and REVOKE

Privileges are granted to and revoked from roles using the same options. Roles can
also be granted to and revoked from users using the operating system that executes
Oracle, or through network services.

See Also: For more information about
« The Database Control, see Oracle 2 Day DBA.

« Modifying users, roles, or privileges with the Database Control,
see the Enterprise Manager online help.

Who Can Grant or Revoke Roles?

Any user with the GRANT ANY ROLE system privilege can grant or revoke any role
except a global role to or from other users or roles of the database. You should grant
this system privilege conservatively because it is very powerful.

Any user granted a role with the ADM N OPTI ONcan grant or revoke that role to or
from other users or roles of the database. This option allows administrative powers
for roles on a selective basis.

See Also: Oracle Database Administrator's Guide for information
about global roles

Security Domains of Roles and Users

Each role and user has its own unique security domain. A role's security domain
includes the privileges granted to the role plus those privileges granted to any roles
that are granted to the role.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-23

Introduction to Roles

A user's security domain includes privileges on all schema objects in the
corresponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously
enabled for one user and disabled for another.) A user's security domain also
includes the privileges and roles granted to the user group PUBLI C.

PL/SQL Blocks and Roles

The use of roles in a PL/SQL block depends on whether it is an anonymous block
or a named block (stored procedure, function, or trigger), and whether it executes
with definer’s rights or invoker’s rights.

Named Blocks with Definer’s Rights

All roles are disabled in any named PL/SQL block (stored procedure, function, or
trigger) that executes with definer’s rights. Roles are not used for privilege checking
and you cannot set roles within a definer’s rights procedure.

The SESSI ON_ROLES view shows all roles that are currently enabled. If a named
PL/SQL block that executes with definer’s rights queries SESSI ON_RCLES, the
query does not return any rows.

See Also: Oracle Database Reference

Anonymous Blocks with Invoker’s Rights

Named PL/SQL blocks that execute with invoker’s rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles. Current
roles are used for privilege checking within an invoker’s rights PL/SQL block, and
you can use dynamic SQL to set a role in the session.

See Also:

« PL/SQL User's Guide and Reference for an explanation of
invoker’s and definer’s rights

« "Dynamic SQL in PL/SQL" in Oracle Database Concepts

Data Definition Language Statements and Roles

A user requires one or more privileges to successfully execute a data definition
language (DDL) statement, depending on the statement. For example, to create a
table, the user must have the CREATE TABLE or CREATE ANY TABLE system
privilege. To create a view of another user's table, the creator requires the CREATE

5-24 Oracle Database Security Guide

Introduction to Roles

VI EWor CREATE ANY VI EWsystem privilege and either the SELECT obj ect
privilege for the table or the SELECT ANY TABLE system privilege.

Oracle avoids the dependencies on privileges received by way of roles by restricting
the use of specific privileges in certain DDL statements. The following rules outline
these privilege restrictions concerning DDL statements:

« All system privileges and schema object privileges that permit a user to perform
a DDL operation are usable when received through a role. For example:

— System Privileges: the CREATE TABLE, CREATE VI EWand CREATE
PROCEDURE privileges.

— Schema Object Privileges: the ALTERand | NDEX privileges for a table.

Exception: The REFERENCES obiject privilege for a table cannot be used to define
a table's foreign key if the privilege is received through a role.

« All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when
received through a role. For example:

— A user who receives the SELECT ANY TABLE system privilege or the
SELECT obj ect privilege for a table through a role can use neither
privilege to create a view on another user's table.

The following example further clarifies the permitted and restricted uses of
privileges received through roles:

Assume that a user is:
« Granted a role that has the CREATE VI EWsystem privilege

« Granted a role that has the SELECT obj ect privilege for the enpl oyees table,
but the user is indirectly granted the SELECT obj ect privilege for the
enpl oyees table

« Directly granted the SELECT obj ect privilege for the depart nent s table
Given these directly and indirectly granted privileges:

« The user can issue SELECT statements on both the enpl oyees and
depart ment s tables.

« Although the user has both the CREATE VI EWand SELECT privilege for the
enpl oyees table through a role, the user cannot create a usable view on the
enpl oyees table, because the SELECT obj ect privilege for the enpl oyees
table was granted through a role. Any views created will produce errors when
accessed.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-25

Introduction to Roles

« The user can create a view on the depar t nent s table, because the user has the
CREATE VI EW privilege through a role and the SELECT privilege for the
depart ment s table directly.

Predefined Roles
The following roles are defined automatically for Oracle databases:

. CONNECT

. RESOURCE

. DBA

. EXP_FULL_DATABASE
. | MP_FULL_DATABASE

These roles are provided for backward compatibility to earlier versions of Oracle
and can be modified in the same manner as any other role in an Oracle database.

Note: Each installation should create its own roles and assign only
those privileges that are needed. For example, it is unwise to grant
CONNECT if all that is needed is CREATE SESSION, since
CONNECT includes several additional privileges: see Table 10-1,

" Predefined Roles", in Chapter 10, "Administering User Privileges,
Roles, and Profiles". Creating its own roles gives an organization
detailed control of the privileges it assigns, and protects it in case
Oracle were to change or remove roles that it defines.

The Operating System and Roles

In some environments, you can administer database security using the operating
system. The operating system can be used to manage the granting (and revoking) of
database roles and to manage their password authentication. This capability is not
available on all operating systems.

See Also: Your operating system specific Oracle documentation
for details on managing roles through the operating system

Roles in a Distributed Environment

When you use roles in a distributed database environment, you must ensure that all
needed roles are set as the default roles for a distributed (remote) session. Those

5-26 Oracle Database Security Guide

Introduction to Roles

roles cannot be enabled when you connect to a remote database from within a local
database session. For example, you cannot execute a remote procedure that
attempts to enable a role at the remote site.

See Also: Oracle Database Heterogeneous Connectivity
Administrator's Guide

Secure Application Roles

Oracle provides secure application roles, which are roles that can only be enabled
by authorized PL/SQL packages. This mechanism restricts the enabling of such
roles to the invoking application.

Security is strengthened when passwords are not embedded in application source
code or stored in a table. Instead, a secure application role can be created, specifying
which PL/SQL package is authorized to enable the role. Package identity is used to
determine whether privileges are sufficient to enable the roles. Before enabling the
role, the application can perform authentication and customized authorization, such
as checking whether the user has connected through a proxy.

Note: Because of the restriction that users cannot change security
domain inside definer's right procedures, secure application roles
can only be enabled inside invoker's right procedures.

Creation of Secure Application Roles

Secure application roles are created by using the statement CREATE ROLE ...
| DENTI FI ED USI NG. Here is an example:

CREATE RCLE adnin_rol e | DENTI FI ED USI NG hr. adm n;

This statement indicates the following:
« Theroleadm n_r ol e to be created is a secure application role.

« The role can only be enabled by modules defined inside the PL/SQL package
hr.admi n.

You must have the system privilege CREATE ROLE to execute this statement.

When such arole is assigned to a user, it becomes a default role for that user,
automatically enabled at login without resorting to the package. A user with a
default role does not have to be authenticated in any way to use the role; for
example, the password for the role is not requested or required.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-27

User Resource Limits

To restrict the role solely to the use specified by the IDENTIFIED USING clause,
you can take either of the following actions:

« Immediately after granting such a role to a user, issue an ALTER USER
statement with the clause DEFAULT ROLE ALL EXCEPT role, substituting the
application role for role. Then role can only be used by applications executing
the authorized package.

« When assigning roles, use GRANT ALL EXCEPT role.

Roles that are enabled inside an Invoker's Right procedure remain in effect even
after the procedure exits. Therefore, you can have a dedicated procedure that deals
with enabling the role for the rest of the session to use.

See Also:

« Oracle Database SQL Reference

« PL/SQL User's Guide and Reference

« PL/SQL Packages and Types Reference

« Oracle Database Application Developer's Guide - Fundamentals

User Resource Limits

You can set limits on the amount of various system resources available to each user
as part of that user's security domain. By doing so, you can prevent the
uncontrolled consumption of valuable system resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user or
small-scale multiuser database systems, the system resource feature is not as
important, because users' consumption of system resources is less likely to have
detrimental impact.

You manage a user's resource limits by means of the Database Resource Manager.
You can set password management preferences using profiles, either set
individually or using a default profile for many users. Each Oracle database can
have an unlimited number of profiles. Oracle allows the security administrator to
enable or disable the enforcement of profile resource limits universally.

5-28 Oracle Database Security Guide

User Resource Limits

See Also:

« For resource management, see the Database Resource Manager.

« For passwords, see Password Management Policy on page 7-12
Setting resource limits causes a slight performance degradation when users create

sessions, because Oracle loads all resource limit data for each user upon each
connection to the database.

See Also: Oracle Database Administrator's Guide for information
about security administrators.

Resource limits and profiles are discussed in the following sections:
« Types of System Resources and Limits

« Profiles

Types of System Resources and Limits

Oracle can limit the use of several types of system resources, including CPU time
and logical reads. In general, you can control each of these resources at the session
level, the call level, or both, as discussed in the following subsections:

« Session Level
« Call Level
« CPUTime
« Logical Reads

« Limiting Other Resources

Session Level

Each time a user connects to a database, a session is created. Each session consumes
CPU time and memory on the computer that executes Oracle. You can set several resource
limits at the session level.

If a user exceeds a session-level resource limit, Oracle terminates (rolls back) the
current statement and returns a message indicating the session limit has been
reached. At this point, all previous statements in the current transaction are intact,
and the only operations the user can perform are COMM T, ROLLBACK, or disconnect
(in this case, the current transaction is committed). All other operations produce an

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-29

User Resource Limits

error. Even after the transaction is committed or rolled back, the user can
accomplish no more work during the current session.

Call Level

Each time a SQL statement is executed, several steps are taken to process the
statement. During this processing, several calls are made to the database as part of
the different execution phases. To prevent any one call from using the system
excessively, Oracle lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, Oracle halts the processing of the
statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user's session remains
connected.

CPU Time

When SQL statements and other types of calls are made to Oracle, an amount of
CPU time is necessary to process the call. Average calls require a small amount of
CPU time. However, a SQL statement involving a large amount of data or a
runaway query can potentially consume a large amount of CPU time, reducing CPU
time available for other processing.

To prevent uncontrolled use of CPU time, you can limit the CPU time for each call
and the total amount of CPU time used for Oracle calls during a session. The limits
are set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call
or a session.

Logical Reads

Input/output (170) is one of the most expensive operations in a database system.
SQL statements that are 1/0 intensive can monopolize memory and disk use and
cause other database operations to compete for these resources.

To prevent single sources of excessive 170, Oracle let you limit the logical data
block reads for each call and for each session. Logical data block reads include data
block reads from both memory and disk. The limits are set and measured in number
of block reads performed by a call or during a session.

Limiting Other Resources
Oracle also provides for limiting several other resources at the session level:

« You can limit the number of concurrent sessions for each user. Each user can
create only up to a predefined number of concurrent sessions.

5-30 Oracle Database Security Guide

User Resource Limits

You can limit the idle time for a session. If the time between Oracle calls for a
session reaches the idle time limit, the current transaction is rolled back, the
session is aborted, and the resources of the session are returned to the system.
The next call receives an error that indicates the user is no longer connected to
the instance. This limit is set as a number of elapsed minutes.

Note: Shortly after a session is aborted because it has exceeded an
idle time limit, the process monitor (PMON) background process
cleans up after the aborted session. Until PMON completes this
process, the aborted session is still counted in any session/user
resource limit.

You can limit the elapsed connect time for each session. If a session's duration
exceeds the elapsed time limit, the current transaction is rolled back, the session
is dropped, and the resources of the session are returned to the system. This
limit is set as a number of elapsed minutes.

Note: Oracle does not constantly monitor the elapsed idle time or
elapsed connection time. Doing so would reduce system
performance. Instead, it checks every few minutes. Therefore, a
session can exceed this limit slightly (for example, by five minutes)
before Oracle enforces the limit and aborts the session.

You can limit the amount of private SGA space (used for private SQL areas) for
a session. This limit is only important in systems that use the shared server
configuration. Otherwise, private SQL areas are located in the PGA. This limit is
set as a number of bytes of memory in an instance's SGA. Use the characters K
or M to specify kilobytes or megabytes.

See Also: For instructions on enabling/disabling resource limits:

« Viewing Information About Database Users and Profiles on page 10-9

« Managing User Roles on page 10-20

« Oracle Database Administrator's Guide

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-31

Profiles

Profiles

In general, the word "profile" refers to a collection of attributes that apply to a user,
enabling a single point of reference for any of multiple users that share the those
exact attributes. User profiles in Oracle Internet Directory contain a wide range of
attributes pertinent to directory usage and authentication for each user. Similarly,
profiles in Oracle Label Security contain attributes useful in label security user
administration and operations management. Profile attributes can include
restrictions on system resources, but for that purpose the Database Resource
Manager is preferred.

See Also:

« For resources, see discussion of the Database Resource Manager
in the Oracle Database Administrator's Guide.

« For viewing resource information, see Viewing Information
About Database Users and Profiles on page 10-9.

« For password policies, see Password Management Policy in
Chapter 7, "Security Policies".

Determining Values for Resource Limits

Before creating profiles and setting the resource limits associated with them, you
should determine appropriate values for each resource limit. You can base these
values on the type of operations a typical user performs. For example, if one class of
user does not normally perform a high number of logical data block reads, then set
the LOG CAL_READS_PER SESSI ONand LOGd CAL_READS_PER_CALL limits
conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage.
For example, the database or security administrator can use the AUDI T SESSI ON
clause to gather information about the limits CONNECT_TI ME, LOQd CAL_READS
PER_SESSI ON, and LOG CAL_READS_PER CALL.

You can gather statistics for other limits using the Monitor feature of Oracle
Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.

5-32 Oracle Database Security Guide

Profiles

See Also:
« Chapter 8, "Database Auditing: Security Considerations”

« For more information about the Database Control, see Oracle 2
Day DBA.

« For information about the Monitor feature, see the Enterprise
Manager online help.

Authorization: Privileges, Roles, Profiles, and Resource Limitations 5-33

Profiles

5-34 Oracle Database Security Guide

6

Access Controls on Tables, Views,
Synonyms, or Rows

The authentication processes described in Chapter 4 validate the identities of the
entities using your networks, databases, and applications

The authorization processes described in Chapter 5 provide limits to their access
and actions, limits that are linked to their identities and roles.

This chapter describes restrictions associated not with users but with objects,
providing protection regardless of the entity who seeks, by whatever means, to
access or alter them.

You provide object protections using object-level privileges and views, as well as by
designing and using policies to restrict access to specific tables, views, synonyms, or
rows. This level of control, which enables you to use application context with
fine-grained access control, is called Virtual Private Database, or VPD. Such policies
invoke functions that you design to specify dynamic predicates establishing the
restrictions. You can also group established policies, applying a policy group to a
particular application.

Having established such protections, you need to be notified when they are
threatened or breached. Auditing capabilities enable you to receive notification of
activities you want watched, and to investigate in advance of or in response to
being notified. Given notification, you can strengthen your defenses and deal with
the consequences of inappropriate actions and the entities who caused them.
Oracle's auditing facilities are introduced in Chapter 8, "Database Auditing:
Security Considerations" and described in detail in Chapter 11, "Configuring and
Administering Auditing”.

This chapter describes Oracle's access control capabilities in the following sections:

« Introduction to Views

Access Controls on Tables, Views, Synonyms, or Rows 6- 1

Introduction to Views

« Fine-Grained Access Control

« Security Followup: Auditing as well as Prevention

See Also:
« Regarding policies, see Chapter 7, "Security Policies".

« Regarding application development considerations on policies,
see Chapter 12, "Introducing Database Security for Application
Developers", Chapter 13, and Chapter 14, "Implementing
Application Context and Fine-Grained Access Control"

« Regarding fine-grained access control, see Chapter 13, "Using
Virtual Private Database to Implement Application Security
Policies", about developing applications to configure and
administer such controls.

« Regarding security conditions for auditing, see Chapter 8.

« Regarding how to configure and administer auditing features
and mechanisms for both standard users and DBAs, see
Chapter 11.

Introduction to Views

A view is a presentation of data selected from one or more tables (possibly
including other views). In addition to showing the selected data, a view also shows
the structure of the underlying tables, and can be thought of as the result of a stored
query.

The view contains no actual data but rather derives what it shows from the tables
and views on which it is based. A view can be queried, and the data it represents
can be changed. Data in a view can be updated or deleted, and new data inserted.
These operations directly alter the tables on which the view is based and are subject
to the integrity constraints and triggers of the base tables.

For example, a base table of all employee data may have several columns and
numerous rows of information. If you want users to see only specific columns, you
can create a view of that table, containing only the allowable columns. You can then
grant other users access to the new view, while disallowing access to the base table.

Figure 6-1 shows an example of a view called staff derived from the base table
employees. Notice that the view shows only five of the columns in the base table.

6-2 Oracle Database Security Guide

Fine-Grained Access Control

Figure 6-1 An Example of a View

Base
Table
employees
employee_id | last_name | job_id manager_id | hire_date |salary |dept_id
203 marvis hr_rep 101 | 07-Jun-94(6500 40
204 baer pr_rep 101 | 07-Jun-94| 10000 70
205 higgins ac_rep 101 | 07-Jun-94 (12000 110
206 gietz ac_account 205 | 07-Jun-94(8300 110
View
staff
empioyee_id | last_name | job_id manager_id | dept_id
203 marvis hr_rep 101 40
204 baer pr_rep 101 70
205 higgins ac_rep 101 110
206 gietz ac_account 205 110

As discussed extensively in Chapter 5, a schema object privilege is a privilege or
right to perform a particular action on a specific schema object. Different object
privileges are available for different types of schema objects. Privileges related to
views are discussed in that chapter, in the View Privileges section. Some schema
objects, such as clusters, indexes, triggers, and database links, do not have
associated object privileges. Their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

All these privileges, including those for tables, views, procedures, types and more,
are introduced in Chapter 5's section entitled Introduction to Privileges. The tools
and processes for managing these security facilities are discussed in Chapter 10,
"Administering User Privileges, Roles, and Profiles".

In some circumstances, a finer level of access control is needed for tables or rows
and the possible actions on them, sometimes associated with particular
applications. When such controls are needed, Oracle's fine-grained access control
capabilities can be used, as described in the next section.

Fine-Grained Access Control

Fine-grained access control enables you to use functions to implement security
policies and to associate those security policies with tables, views, or synonymes.

Access Controls on Tables, Views, Synonyms, or Rows 6-3

Fine-Grained Access Control

See Also: Using application context with fine-grained access
control is called Virtual Private Database, or VPD. See these
references:

« Application Context on page 6-6.

« Chapter 13, "Using Virtual Private Database to Implement
Application Security Policies"

« Chapter 14, "Implementing Application Context and
Fine-Grained Access Control”

The database server automatically enforces your security policies, no matter how
the data is accessed, including, for example, through an application by ad hoc
gueries.

Fine-grained access control enables you to use all of the following capabilities:

« Limit access at the row level, using different policies for SELECT, | NSERT,
UPDATE, and DELETE.

« Use security policies only where you need them (for example, on salary
information).

« Invoke a policy only if a particular column is referenced.

« Restrict access using a combination of row- and column-level controls, by
applying a VPD policy to a view.

« Have some policies that are always applied, called static policies, and others that
can change during execution, called dynamic policies (see Application Context).

« Use more than one policy for each table, including building on top of base
policies in packaged applications.

« Distinguish policies between different applications, by using policy groups. Each
policy group is a set of policies that belong to an application.

« Distinguish and control the use of | NDEX, in row level security policies.

« Designate an application context, called a driving context, to indicate the policy
group in effect. When tables, views, or synonyms are accessed, the fine-grained
access control engine looks up the driving context to determine the policy
group in effect and enforces all the associated policies that belong to that policy
group.

6-4 Oracle Database Security Guide

Fine-Grained Access Control

The PL/SQL package DBM5_RLS let you administer your security policies. Using
this package, you can add, drop, enable, disable, and refresh the policies (or policy
groups) you create.

See Also:

« The DBMS_RLS chapter in PL/SQL Packages and Types Reference
for information about package implementation

« Chapter 13, "Using Virtual Private Database to Implement
Application Security Policies"

« Chapter 14, "Implementing Application Context and
Fine-Grained Access Control"

« Oracle Database Application Developer's Guide - Fundamentals for
information and examples on establishing security policies
The following subsections describe how fine-grained access control works:
« Dynamic Predicates
« Application Context

« Dynamic Contexts

Dynamic Predicates

A dynamic predicate for a table, view, or synonym is generated by a PL/SQL
function, which you write and associate with a security policy through a PL/SQL
interface.

Dynamic predicates are acquired at statement parse time, when the base table or
view is referenced in a query using SELECT or a DML statement.

The function or package that implements the security policy you create returns a
predicate (a WHERE condition). This predicate controls access according to the policy
you specified. Rewritten queries are fully optimized and shareable.

Here is an example of such a policy:
CBVE RLS. ADD PQLI CY (
"hr', 'enployees', "enp policy', "hr', "enp_sec', 'select');

Whenever the EMPLOYEES table, under the HR schema, is referenced in a query or
subquery (SELECT), the server calls your EMP_SEC function (under the HR schema).
This function returns a predicate (called P1 in the following section) defined in the

Access Controls on Tables, Views, Synonyms, or Rows 6-5

Fine-Grained Access Control

function, which in this example could be specific to the current user for the EMP_
PCLI CY policy. Your policy function can generate the predicates based on the
session environment variables available during the function call, that is, from the
application context as described in the next section. The policy can specify any
combination of security-relevant columns and any combination of these statement
types: SELECT, | NSERT, UPDATE, DELETE, or | NDEX. You can also specify whether the
result of an | NSERT or UPDATE should immediately be checked against the policy.

The server then produces a transient view, with the text:
SELECT * FROM hr. enpl oyees WERE P1

Here, P1 (for example, where SAL > 10000, or even a subquery) is the predicate
returned from your EMP_SEC function. The server treats the EMPLOYEES table as a
view and does the view expansion just like the ordinary view, except that the view
text is taken from the transient view instead of the data dictionary.

The policy function creates a WHERE clause relevant to the current user by using
information from the set of session environment variables called application
context.

Application Context

Application context helps you apply fine-grained access control because you can
link your function-based security policies with applications.

Oracle provides a built-in application context namespace, USERENYV, which
provides access to predefined attributes. These attributes are session
primitives--information that the database automatically captures regarding a user's
session. For example, the IP address from which a user connected, the username,
and a proxy username (in cases where a user connection is proxied through a
middle tier), are all available as predefined attributes through the USERENV
application context.

Each application has its own application-specific context, which users cannot
arbitrarily change (for example, through SQL*PIlus). Context attributes are
accessible to the functions implementing your security policies.

For example, context attributes you could use from a human resources application
could include "position," "organizational unit," and "country." Attributes available
from an order-entry control system might include "customer number" and "sales
region".

6-6 Oracle Database Security Guide

Fine-Grained Access Control

Application contexts thus permit flexible, parameter-based access control using
context attributes relevant to an application and to policies you might want to create
for controlling its use.

You can:

Base predicates on context values
Use context values within predicates, as bind variables
Set user attributes

Access user attributes

To define an application context:

1.

Create a PL/SQL package with functions that validate and set the context for
your application. You may want to use an event trigger on login to set the initial
context for logged-in users.

Use CREATE CONTEXT to specify a unique context name and associate it with
the PL/SQL package you created.

Then do either of the following:

« Reference the application context within the policy function implementing
fine-grained access control.

« Create an event trigger on login to set the initial context for a user. For
example, you could query a user's employee number and set this as an
"employee number" context value.

Reference the application context. For example, to limit customers to seeing
their own records only, use fine-grained access control to dynamically modify
the user's query from SELECT * FROM Or der s_t ab to the following:

SELECT * FROM Orders_tab
WHERE Custno = SYS_CONTEXT ('order_entry', 'cust_nuni);

Access Controls on Tables, Views, Synonyms, or Rows 6-7

Fine-Grained Access Control

See Also: Regarding how applications configure, administer, and
use application context, see

Chapter 13, "Using Virtual Private Database to Implement
Application Security Policies"

Chapter 14, "Implementing Application Context and
Fine-Grained Access Control”

PL/SQL User's Guide and Reference
PL/SQL Packages and Types Reference

Oracle Database Application Developer's Guide - Fundamentals

The next subsection, Dynamic Contexts, describes run-time efficiencies you can
establish by identifying how dynamic each of your policies is, using these
categories: static, shared, context-sensitive, or dynamic.

Dynamic Contexts

When you create a policy, you can establish run-time efficiencies by specifying
whether the policy is static, shared, context-sensitive, or dynamic:

6-8 Oracle Database Security Guide

Security Followup: Auditing as well as Prevention

Table 6-1 Policy Types and Run-Time Efficiencies

Predicate and

Policy Type Policy Function Description and Operational Explanation

Static Same predicate string Executed once and cached in SGA. Policies for statements accessing
for anyone accessing the same object do not reexecute the policy function, but use the
the object cached predicate instead.

Shared-static Same as static, except ldeal for data partitions in hosting environments because almost all
the policy can be objects share the same function and the policy is static. Also
shared across executed once and cached in SGA, but the server first looks for a
multiple objects cached predicate generated by the same policy function of the same

policy type.

Context-sensitive Policy function The policy function is not re-evaluated at statement execution time

and executed when unless the server detects context changes since the last use of the
statement parsed, but cursor. (For session pooling where multiple clients share a database

shared value returned is not session, the middle tier must reset context during client switches.)

context-sensitive cached When a context-sensitive policy is labeled "shared," the server first

looks for a cached predicate generated by the same policy function
of the same policy type within the same database session.

If the predicate is found in the session memory, the policy function is
not re-executed and the cached value is valid until session private
application context changes occur.

Dynamic Policy function Server assumes the predicate may be affected by any system or
always re-executed session environment at any time.
on each statement

parsing or execution Dynamic is the system default. If no policy type is specified when

DBMS_RLS.ADD_POLICY is called, dynamic is assumed.

See also: The section titled How to Add a Policy to a Table, View,
or Synonym in Chapter 14, "Implementing Application Context and
Fine-Grained Access Control".

Security Followup: Auditing as well as Prevention

Even after designing and implementing protective measures using privileges,
views, and policies, you want to know when these measures are threatened or
breached. Auditing can notify you of suspicious or questionable activities. You can
then investigate, strengthen your defenses, and deal with inappropriate actions,
consequences, and security offenders.

Access Controls on Tables, Views, Synonyms, or Rows 6-9

Security Followup: Auditing as well as Prevention

Use auditing to complement your access controls from several perspectives:

« Audit the data you considered important enough to protect with database
security mechanisms like access controls.

« Audit as a way of verifying that your access control mechanisms are
implemented properly and working as you intended.

« Design audit policies that you expect will never actually "fire" because your
other security mechanisms (authentication, authorization, access controls)
should be protecting that data. Then if such an audit policy does fire, you
are alerted that you have a security breach. It may mean, for example, that
your security protections are not operating as you expected them to in
protecting the data.

Chapter 8, "Database Auditing: Security Considerations” introduces Oracle's
auditing facilities, and Chapter 11, "Configuring and Administering Auditing"
describes them in detail.

6-10 Oracle Database Security Guide

v

Security Policies

The idea of security policies includes many dimensions. Broad considerations
include requiring backups to be done regularly and stored off-site. Narrow table or
data considerations include ensuring that unauthorized access to sensitive data,
such as employee salaries, is precluded by built-in restrictions on every type of
access to the table that contains them.

This chapter discusses security policies in the following sections:
« System Security Policy

« Data Security Policy

« User Security Policy

« Password Management Policy

« Auditing Policy

« A Security Checklist

System Security Policy

This section describes aspects of system security policy, and contains the following
topics:

« Database User Management
« User Authentication
« Operating System Security

Each database has one or more administrators who are responsible for maintaining
all aspects of the security policy: the security administrators. If the database system
is small, the database administrator may have the responsibilities of the security

Security Policies 7-1

System Security Policy

administrator. However, if the database system is large, a special person or group of
people may have responsibilities limited to those of a security administrator.

After deciding who will manage the security of the system, a security policy must
be developed for every database. A database's security policy should include
several sub-policies, as explained in the following sections.

Database User Management

Database users are the access paths to the information in an Oracle database.
Therefore, tight security should be maintained for the management of database
users. Depending on the size of a database system and the amount of work required
to manage database users, the security administrator may be the only user with the
privileges required to create, alter, or drop database users. On the other hand, there
may be a number of administrators with privileges to manage database users.
Regardless, only trusted individuals should have the powerful privileges to
administer database users.

See Also: Oracle Database Administrator's Guide

User Authentication

Database users can be authenticated (verified as the correct person) by Oracle using
database passwords, the host operating system, network services, or by Secure
Sockets Layer (SSL).

Note: To be authenticated using network authentication services
or SSL, requires that you have installed Oracle Advanced Security.
Refer to the Oracle Advanced Security Administrator*s Guide for
information about these types of authentication.

User authentication and how it is specified is discussed in "User Authentication
Methods" on page 9-1.

Operating System Security

The following security issues must also be considered for the operating system
environment executing Oracle and any database applications:

« Database administrators must have the operating system privileges to create
and delete files.

7-2 Oracle Database Security Guide

Data Security Policy

« Typical database users should not have the operating system privileges to
create or delete files related to the database.

« If the operating system identifies database roles for users, the security
administrators must have the operating system privileges to modify the
security domain of operating system accounts.

See Also: Your operating-system-specific Oracle documentation
contains more information about operating system security issues

Data Security Policy

Data security includes the mechanisms that control the access to and use of the
database at the object level. Your data security policy determines which users have
access to a specific schema object, and the specific types of actions allowed for each
user on the object. For example, the policy could establish that user scot t can issue
SELECT and | NSERT statements but not DELETE statements using the enp table.
Your data security policy should also define the actions, if any, that are audited for
each schema object.

Your data security policy is determined primarily by the level of security you want
to establish for the data in your database.For example, it may be acceptable to have
little data security in a database when you want to allow any user to create any
schema object, or grant access privileges for their objects to any other user of the
system. Alternatively, it might be necessary for data security to be very controlled
when you want to make a database or security administrator the only person with
the privileges to create objects and grant access privileges for objects to roles and
users.

Overall data security should be based on the sensitivity of data. If information is not
sensitive, then the data security policy can be more lax. However, if data is
sensitive, a security policy should be developed to maintain tight control over
access to objects.

Some means of implementing data security include system and object privileges,
and through roles. A role is a set of privileges grouped together that can be granted
to users. Privileges and roles are discussed in Chapter 10, "Administering User
Privileges, Roles, and Profiles".

Views can also implement data security because their definition can restrict access
to table data. They can exclude columns containing sensitive data.

Another means of implementing data security is through fine-grained access control
and use of an associated application context. Fine-grained access control is a feature

Security Policies 7-3

User Security Policy

of Oracle Database that enables you to implement security policies with functions,
and to associate those security policies with tables or views. In effect, the security
policy function generates a WHERE condition that is appended to relevant SQL
statements, thereby restricting user access to rows of data in the table or view. An
application context is a secure data cache for storing information used to make
access control decisions.

See Also:
« Introduction to Views in Chapter 6
« Introduction to Fine-Grained Access Control in Chapter 13

« Introduction to Application Context in Chapter 13

User Security Policy

This section describes aspects of user security policy, and contains the following
topics:

« General User Security

« End-User Security

« Administrator Security

« Application Developer Security

« Application Administrator Security

General User Security

For all types of database users, consider the following general user security issues:
« Password Security

« Privilege Management

Password Security

If user authentication is managed by the database, security administrators should
develop a password security policy to maintain database access security. For
example, database users should be required to change their passwords at regular
intervals, and of course, when their passwords are revealed to others. By forcing a
user to modify passwords in such situations, unauthorized database access can be
reduced.

7-4 Oracle Database Security Guide

User Security Policy

Passwords are always automatically and transparently encrypted during network
(client/server and server/server) connections, using a modified DES (Data
Encryption Standard) algorithm, before sending them across the network.

Privilege Management

Security administrators should consider issues related to privilege management for
all types of users. For example, in a database with many usernames, it may be
beneficial to use roles (which are named groups of related privileges that you grant
to users or other roles) to manage the privileges available to users. Alternatively, in
a database with a handful of usernames, it may be easier to grant privileges
explicitly to users and avoid the use of roles.

Security administrators managing a database with many users, applications, or
objects should take advantage of the benefits offered by roles. Roles greatly simplify
the task of privilege management in complicated environments.

End-User Security

Security administrators must define a policy for end-user security. If a database has
many users, the security administrator can decide which groups of users can be
categorized into user groups, and then create user roles for these groups. The
security administrator can grant the necessary privileges or application roles to each
user role, and assign the user roles to the users. To account for exceptions, the
security administrator must also decide what privileges must be explicitly granted
to individual users.

Using Roles for End-User Privilege Management

Roles are the easiest way to grant and manage the common privileges needed by
different groups of database users.

Consider a situation where every user in the accounting department of a company
needs the privileges to run the accounts receivable and accounts payable database
applications (ACCTS_RECand ACCTS_PAY). Roles are associated with both
applications, and they contain the object privileges necessary to execute those
applications.

The following actions, performed by the database or security administrator, address
this simple security situation:

1. Create arole named account ant .

Security Policies 7-5

User Security Policy

2. Grant the roles for the ACCTS_RECand ACCTS_PAY database applications to

the account ant role.

3. Grant each user of the accounting department the account ant role.

This security model is illustrated in Figure 7-1.

Figure 7-1 User Role

G b &

&7 & -

— Nt -

ACCOUNTANT

Role

/

AN

User Roles

ACCTS_PAY ACCTS_REC
Role Role Application Roles
Privileges to Privileges to
execute the execute the Application Privileges
ACCTS_PAY ACCTS_REC
application application

This plan addresses the following potential situations:

« If accountants subsequently need a role for a new database application, that
application's role can be granted to the account ant role, and all users in the
accounting department will automatically receive the privileges associated with
the new database application. The application’s role does not need to be granted

to individual users requiring use of the application.

« Similarly, if the accounting department no longer requires the need for a specific
application, the application's role can be dropped from the account ant role.

« If the privileges required by the ACCTS _RECand ACCTS_PAY applications
change, the new privileges can be granted to, or revoked from, the application’s
role. The security domain of the account ant role, and all users granted the

account ant role, automatically reflect the privilege modification.

Use roles in all possible situations to make end-user privilege management efficient

and simple.

7-6 Oracle Database Security Guide

User Security Policy

Using a Directory Service for End-User Privilege Management

You can also manage users and their authorizations centrally, in a directory service,
through the enterprise user and enterprise role features of Oracle Advanced
Security. See the Oracle Advanced Security Administrator’s Guide for information
about this functionality.

Administrator Security

Security administrators should have a policy addressing database administrator
security. For example, when the database is large and there are several types of
database administrators, the security administrator may decide to group related
administrative privileges into several administrative roles. The administrative roles
can then be granted to appropriate administrator users. Alternatively, when the
database is small and has only a few administrators, it may be more convenient to
create one administrative role and grant it to all administrators.

Protection for Connections as SYS and SYSTEM

After database creation, and if you used the default passwords for SYS and
SYSTEM immediately change the passwords for the SYS and SYSTEMadministrative
usernames. Connecting as SYS or SYSTEMgives a user powerful privileges to
modify a database. For example, connecting as SYS allows a user to alter data
dictionary tables. The privileges associated with these usernames are extremely
sensitive, and should only be available to select database administrators.

If you have installed options that have caused other administrative usernames to be
created, such username accounts are initially created locked. To unlock these
accounts, use the ALTER USER statement. The ALTER USER statement should also
be used to change the associated passwords for these accounts.

The passwords for these accounts can be modified using the procedures described
in "Altering Users" on page 10-7.

Protection for Administrator Connections

Only database administrators should have the capability to connect to a database
with administrative privileges. For example:

CONNECT user nanme/ password AS SYSDBA/ SYSOPER
Connecting as SYSOPER gives a user the ability to perform basic operational tasks

(such as STARTUPR, SHUTDOWN, and recovery operations). Connecting as SYSDBA
gives the user these abilities plus unrestricted privileges to do anything to a

Security Policies 7-7

User Security Policy

database or the objects within a database (including, CREATE, DROP, and DELETE).
Connecting as SYSDBA places a user in the SYS schema, where he can alter data
dictionary tables.

Notes:

« Connections requested AS SYSDBA or AS SYSOPER must use
these phrases; without them, the connection fails. The Oracle
parameter 07_DICTIONARY_ACCESSIBILITY is set to FALSE
by default, to limit sensitive data dictionary access only to those
authorized.

= Such connections are authorized only after verification with the
password file or with the operating system privileges and
permissions. If operating system authentication is used, the
database does not use the supplied username/password.
Operating system authentication is used if there is no password
file, or if the supplied username/password is not in that file, or
if no username/password is supplied.

« However, if authentication succeeds by means of the password
file, the connection is logged with the username; if
authentication succeeds by means of the operating system, it's a
CONNECT 7/ connection that does not record the specific user.

Using Roles for Administrator Privilege Management

Roles are the easiest way to restrict the powerful system privileges and roles
required by personnel administrating the database.

Consider a scenario where the database administrator responsibilities at a large
installation are shared among several database administrators, each responsible for
the following specific database management jobs:

Obiject creation and maintenance
Database tuning and performance
Creation of new users and granting roles and privileges to database users

Routine database operation (for example: STARTUP, SHUTDOWN, and backup
and recovery operations)

Emergency situations, such as database recovery

7-8 Oracle Database Security Guide

User Security Policy

There are also new, inexperienced database administrators needing limited
capabilities to experiment with database management

In this scenario, the security administrator should structure the security for
administrative personnel as follows:

1. Define six roles to contain the distinct privileges required to accomplish each
type of job (for example, dba_obj ect s, dba_t une, dba_security, dba_
mai nt ai n, dba_r ecov, dba_new).

2. Grant each role the appropriate privileges.
3. Grant each type of database administrator the corresponding role.
This plan diminishes the likelihood of future problems in the following ways:

« If a database administrator's job description changes to include more
responsibilities, that database administrator can be granted other
administrative roles corresponding to the new responsibilities.

« If a database administrator's job description changes to include fewer
responsibilities, that database administrator can have the appropriate
administrative roles revoked.

« The data dictionary always stores information about each role and each user, so
information is available to disclose the task of each administrator.

Application Developer Security

Security administrators must define a special security policy for the application
developers using a database. A security administrator could grant the privileges to
create necessary objects to application developers. Or, alternatively, the privileges to
create objects could be granted only to a database administrator, who then receives
requests for object creation from developers.

Application Developers and Their Privileges

Database application developers are unique database users who require special
groups of privileges to accomplish their jobs. Unlike end users, developers need
system privileges, such as CREATE TABLE, CREATE PROCEDURE, and so on.
However, only specific system privileges should be granted to developers to restrict
their overall capabilities in the database.

Security Policies 7-9

User Security Policy

The Application Developer's Environment: Test and Production Databases

In many cases, application development is restricted to test databases and is not
allowed on production databases. This restriction ensures that application
developers do not compete with end users for database resources, and that they
cannot detrimentally affect a production database.

After an application has been thoroughly developed and tested, it is permitted
access to the production database and made available to the appropriate end users
of the production database.

Free Versus Controlled Application Development

The database administrator can define the following options when determining
which privileges should be granted to application developers:

« Free development

An application developer is allowed to create new schema objects, including
tables, indexes, procedures, packages, and so on. This option allows the
application developer to develop an application independent of other objects.

« Controlled Development

An application developer is not allowed to create new schema objects. All
required tables, indexes, procedures, and so on are created by a database
administrator, as requested by an application developer. This option allows the
database administrator to completely control a database's space usage and the
access paths to information in the database.

Although some database systems use only one of these options, other systems could
mix them. For example, application developers can be allowed to create new stored
procedures and packages, but not allowed to create tables or indexes. A security
administrator's decision regarding this issue should be based on the following:

« The control desired over a database's space usage
=« The control desired over the access paths to schema objects

« The database used to develop applications—if a test database is being used for
application development, a more liberal development policy would be in order

Roles and Privileges for Application Developers

Security administrators can create roles to manage the privileges required by the
typical application developer. For example, a typical role named APPLI CATI ON _
DEVEL OPER might include the CREATE TABLE, CREATE VI EWand CREATE

7-10 Oracle Database Security Guide

User Security Policy

PROCEDURE system privileges. Consider the following when defining roles for
application developers:

« CREATE system privileges are usually granted to application developers so that
they can create their own objects. However, CREATE ANY system privileges,
which allow a user to create an object in any user's schema, are not usually
granted to developers. This restricts the creation of new objects only to the
developer's user account.

« Obiject privileges are rarely granted to roles used by application developers,
because granting object privileges through roles often restricts their usability in
creating other objects (primarily views and stored procedures). It is more
practical to allow application developers to create their own objects for
development purposes.

Space Restrictions Imposed on Application Developers

While application developers are typically given the privileges to create objects as
part of the development process, security administrators must maintain limits on
what and how much database space can be used by each application developer. For
example, as the security administrator, you should specifically set or restrict the
following limits for each application developer:

« The tablespaces in which the developer can create tables or indexes
« The quota for each tablespace accessible to the developer

Both limitations can be set by altering a developer's security domain. This is
discussed in "Altering Users" on page 10-7.

Application Administrator Security

In large database systems with many database applications, you might consider
assigning application administrators. An application administrator is responsible
for the following types of tasks:

« Creating roles for an application and managing the privileges of each
application role

« Creating and managing the objects used by a database application

« Maintaining and updating the application code and Oracle procedures and
packages, as necessary

Security Policies 7-11

Password Management Policy

Often, an application administrator is also the application developer who designed
an application. However, an application administrator could be any individual
familiar with the database application.

Password Management Policy

Database security systems that are dependent on passwords require that passwords
be kept secret at all times. Since passwords are vulnerable to theft, forgery, and
misuse, Oracle Database has DBAs and security officers control password
management policy through user profiles, enabling greater control over database
security.

You use the CREATE PROFI LE statement to create a user profile. The profile is
assigned to a user with the CREATE USERor ALTER USER statement. Details of
creating and altering database users are not discussed in this section. This section is
concerned with the password parameters that can be specified using the CREATE
PROFI LE (or ALTER PROFI LE) statement.

This section contains the following topics relating to Oracle password management:
« Account Locking

« Password Aging and Expiration

« Password History

« Password Complexity Verification

See Also:
« "Managing Resources with Profiles" on page 10-13
« "Managing Oracle Users" on page 10-1

» Oracle Database SQL Reference for syntax and specific
information about SQL statements discussed in this section

Account Locking

When a particular user exceeds a designated number of failed login attempts, the
server automatically locks that user's account. You specify the permissible number
of failed login attempts using the CREATE PROFI LE statement. You can also
specify the amount of time accounts remain locked.

7-12 Oracle Database Security Guide

Password Management Policy

In the following example, the maximum number of failed login attempts for the
user ashwi ni is four, and the amount of time the account will remain locked is 30
days. The account will unlock automatically after the passage of 30 days.

CREATE PRCHI LE prof LIMT
FA LED LOd N ATTEIMPTS 4
PASSWORD LOK_TI ME 30;
ALTER USER ashwi ni PRCFI LE prof;

If you do not specify a time interval for unlocking the account, PASSWORD LOCK
TI ME assumes the value specified in a default profile. If you specify PASSWORD _
LOCK_TI ME as UNLI M TED, the account must be explicitly unlocked using an
ALTER USER statement. For example, assuming that PASSWORD LOCK_ Tl ME

UNLI M TED is specified for ashwi ni , then the following statement must be used to
unlock the account:

ALTER USER ashwi ni AGOOUNT UNLOK;

After a user successfully logs into an account, that user's unsuccessful login attempt
count, if there is one, is reset to 0.

The security officer can also explicitly lock user accounts. When this occurs, the
account cannot be unlocked automatically, and only the security officer should
unlock the account. The CREATE USERor ALTER USER statements are used to
explicitly lock or unlock user accounts. For example, the following statement locks
user account susan:

ALTER USER susan ACOONT LOX

Password Aging and Expiration

Use the CREATE PROFI LE statement to specify a maximum lifetime for passwords.
When the specified amount of time passes and the password expires, the user or
DBA must change the password. The following statements create and assign a
profile to user ashwi ni , and the PASSWORD LI FE_TI ME clause specifies that
ashwi ni can use the same password for 90 days before it expires.

CREATE PRCHI LE prof LIMT
FAl LED LGG N ATTEMPTS 4
PASSWRD LXK TI ME 30
PASSWRD LI FE TI ME 90;

ALTER USER ashwi ni PRCFI LE prof;

You can also specify a grace period for password expiration. Users enter the grace
period upon the first attempt to log in to a database account after their password

Security Policies 7-13

Password Management Policy

has expired. During the grace period, a warning message appears each time users
try to log in to their accounts, and continues to appear until the grace period
expires. Users must change the password within the grace period. If the password is
not changed within the grace period, thereafter users are prompted for a new
password each time an attempt is made to access their accounts. Access to an
account is denied until a new password is supplied.

Figure 7-2 shows the chronology of the password lifetime and grace period.

Figure 7-2 Chronology of Password Lifetime and Grace Period
last password 1st login after Expires ...
change password lifetime

Password

Life time Grace period

In the following example, the profile assigned to ashwi ni includes the specification
of a grace period: PASSWORD_GRACE_TI ME = 3. The first time ashwi ni tries to
log in to the database after 90 days (this can be any day after the 90th day; that is,
the 70th day, 100th day, or another day), she receives a warning message that her
password will expire in three days. If three days pass, and she does not change her
password, the password expires. Thereafter, she receives a prompt to change her
password on any attempt to log in, and cannot log in until she does so.

CREATE PRCFI LE prof LIMT
FAI LED LGd N ATTEMPTS 4
PASSWIRD LOXX TI ME 30
PASSWIRD LI FE TI ME 90
PASSWIRD GRACE TI ME 3;

ALTER USER ashwi ni PRCFI LE prof;

Oracle provides a means of explicitly expiring a password. The CREATE USERand
ALTER USER statements provide this functionality. The following statement creates
a user with an expired password. This setting forces the user to change the
password before the user can log in to the database.

CREATE USER j brown
| DENTI F ED BY zX83yT

PASSWIFD BEXPI RE,

7-14 Oracle Database Security Guide

Password Management Policy

Password History
The following two parameters control the user's ability to reuse an old password:

Table 7-1 Parameters Controlling Re-Use of an Old Password

Parameter Name Description and Use

PASSWORD_REUSE_TIME requires either

« anumber specifying how many days (or a fraction of a day) between the
earlier use of a password and its next use, or

« the word UNLIMITED.

PASSWORD_REUSE_MAX requires either

« an integer to specify the number of password changes required before a
password can be reused, or

. -the word UNLIMITED.

If you specify neither, the user can reuse passwords at any time, which is not a
"security best practice."

If neither parameter is UNLIMITED, password reuse is allowed, but only after
meeting both conditions. The user must have changed the password the specified
number of times, and the specified number of days must have passed since the old
password was last used.

For example, suppose user A's profile had PASSWORD_REUSE_MAX set to 10 and
PASSWORD_REUSE_TIME set to 30. Then user A could not reuse a password until
she had reset her password ten times, and 30 days had passed since she last used
that password.

If either parameter is specified as UNLIMITED, the user can never reuse a
password.

If both parameters are set to UNLIMITED, Oracle ignores both, and the user can
reuse any password at any time.

Note: If you specify DEFAULT for either parameter, then Oracle
uses the value defined in the DEFAULT profile, which by default
sets all parameters to UNLIMITED. Oracle thus uses UNLIMITED
for any parameter specified as DEFAULT, unless you change the
setting for that parameter in the DEFAULT profile.

Security Policies 7-15

Password Management Policy

Password Complexity Verification

Oracle's sample password complexity verification routine can be specified using a
PL/SQL script (UTLPWDMG. SQL), which sets the default profile parameters.

The password complexity verification routine ensures that the password meets the
following requirements:

« Isat least four characters long

« Differs from the username

« Has at least one alpha, one numeric, and one punctuation mark character
« Isnotsimple or obvious, such as wel cone, account , dat abase, or user

« Differs from the previous password by at least 3 characters

Note: The ALTER USER command now has a REPLACE clause
whereby users can change their own unexpired passwords by
supplying the old password to authenticate themselves.

If the password has expired, the user cannot log in to SQL to issue
the ALTER USER command. Instead, the OCIPasswordChange()
function must be used, which also requires the old password.

A DBA with ALTER ANY USER privilege can alter any user's
password (force a new password) without supplying the old one.

Password Verification Routine Formatting Guidelines

You can enhance the existing password verification complexity routine or create
other password verification routines using PL/SQL or third-party tools.

The PL/SQL call must adhere to the following format:

routine_nane

(

userid_paraneter | N VARCHAR 30),
password_par anet er | N VARCHAR (30),

ol d_passwor d_paraneter | N VARCHAR (30)

)
RETURN BOCLEAN

After a new routine is created, it must be assigned as the password verification
routine using the user's profile or the system default profile.

7-16 Oracle Database Security Guide

Password Management Policy

CREATH ALTER PRCFI LE profile_name LIMT
PASSWIRD VER FY_FUNCTI N rout i ne_nare

The password verify routine must be owned by SYS.

Sample Password Verification Routine

You can use this sample password verification routine as a model when developing
your own complexity checks for a new password.

The default password complexity function performs the following minimum
complexity checks:

« The password satisfies minimum length requirements.

« The password is not the username. You can modify this function based on your
requirements.

This function must be created in SYS schema, and you must connect
SYS/passwor d AS SYSDBA before running the script.

CREATE (R REPLACE FUNCTI N veri fy _function
(usernane var char 2,
password varchar 2,
ol d_password var char 2)
RETURN bool ean 1S
n bool ean;
mi nt eger;
differ integer;
isdigit bool ean;
i schar bool ean;
i spunct bool ean;
digitarray varchar2(20);
punctarray varchar2(25);
chararray varchar2(52);

BEA N
digitarray: = ' 0123456789 ;
chararray: = ' abcdef ghi j kl mopgr st uvwyz ABCDEFGH JKLMNCPQRSTUWKYZ ;
punctarray: = I"#$9&()' "' *+,-/:;<=>?";

--Check if the password is sane as the usernane
| F password = usernane THEN

rai se_application_error(-20001, 'Password sane as user');
END I F;

Security Policies 7-17

Password Management Policy

--Check for the minimumlength of the password
I F | engt h(password) < 4 THEN

rai se_application_error(-20002, 'Password |ength | ess than 4');
END I F;

--Check if the password is too sinple. Adictionary of words nay be
--nai ntai ned and a check may be nade so as not to all ow the words
--that are too sinple for the password.
IF NLS LOMR password) IN ('wel cone', 'database', 'account', 'user',
"password', 'oracle', 'conputer', 'abcd')
THEN rai se_appl i cation_error(-20002, 'Password too sinple');
END I F

--Check if the password contains at |east one letter,
--one digit and one punctuation nark.
--1. Check for the digit
--You nay delete 1. and replace with 2. or 3.
isdigit:=FALSE
m: = | engt h(passwor d) ;
FORi IN1..10 LOCP

FORj IN1.mLOP

| F substr(password,j,1) = substr(digitarray,i,1l) THEN

isdigit:=TRE
Q01O fi ndchar ;
END | F;
END LAP,
BEND LAP;

IFisdigit = FALSE THEN
rai se_appl ication_error(-20003, 'Password should contain at |east one \
digit, one character and one punctuation');

B\D | F,

--2. Check for the character

<<fi ndchar >>
i schar: =FALSE,
FCRi IN1..length(chararray) LOCP
FCRj IN1.mLOP
| F substr(password,j,1) = substr(chararray,i,l) THEN

i schar: =TRUE
QOrO fi ndpunct ;
END | F,
END LAP,
END LAP,

I F ischar = FALSE THEN
rai se_application_error(-20003, 'Password should contain at |east one digit,\

7-18 Oracle Database Security Guide

Password Management Policy

one character and one punctuation');
END I F;
--3. Check for the punctuation

<<f i ndpunct >>
i spunct : =FALSE;
FCRi IN 1. .length(punctarray) LOCP
FORj IN1..mLOP
| F substr(password,j,1) = substr(punctarray,i,1l) THEN

i spunct : =TRE,
QOO endsear ch;
END | F;
END LAP,
END LR,

I F ispunct = FALSE THEN rai se_appl i cati on_error(-20003, 'Password shoul d \
contain at |east one digit, one character and one punctuation');
BEND I F;

<<endsear ch>>
--Check if the password differs fromthe previous password by at least 3 letters
IF old password ='' THEN
rai se_application_error(-20004, 'Qd password is null');
END IF
--Bverything is fine; return TRE ;
differ :=1length(ol d password) - |ength(password);
IF abs(differ) <3 THEN
I F I engt h(password) < | ength(ol d _password) THEN

m: = | engt h(passwor d) ;
BLSE

m = | engt h(ol d_password);
END I F

differ := abs(differ);
FORi IN1.mLOP
| F substr(password,i,1) != substr(ol d_password,i,1) THEN
differ :=differ + 1;
BE\D I F;
END LQOCP,
IF differ <3 THEN
rai se_application_error(-20004, 'Password shoul d differ by at \
least 3 characters');
END I F
END I F
--Bverything is fine; return TRE ;
RETURN(TRLE) ;
END,

Security Policies 7-19

Auditing Policy

Auditing Policy

Security administrators should define a policy for the auditing procedures of each
database. You may, for example, decide to have database auditing disabled unless
guestionable activities are suspected. When auditing is required, the security
administrator must decide what level of detail to audit the database; usually,
general system auditing is followed by more specific types of auditing after the
origins of suspicious activity are determined. In addition to standard database
auditing, Oracle supports fine-grained auditing using policies that can monitor
multiple specific objects, columns, and statements, including INDEX.

Auditing is discussed in Chapter 8, "Database Auditing: Security Considerations"
and Chapter 11, "Configuring and Administering Auditing”.

A Security Checklist

Information security and privacy and protection of corporate assets and data are of
pivotal importance in any business. Oracle Database comprehensively addresses

the need for information security by offering cutting-edge security features such as
deep data protection, auditing, scalable security, secure hosting and data exchange.

The Oracle Database server leads the industry in security. However, in order to fully
maximize the security features offered by Oracle Database in any business
environment, it is imperative that the database itself be well-protected.
Furthermore, proper use of its security features and adherence to basic security
practices will help protect against database-related threats and attacks. Such an
approach provides a much more secure operating environment for the Oracle
Database database.

This security checklist provides guidance on configuring Oracle Database in a
secure manner by adhering to and recommending industry-standard "best security
practices” for operational database deployments.

In simple summary, before looking at the more detailed checklist: consider all paths
the data travels and assess the threats that impinge on each path and node. Then
take steps to lessen or eliminate both those threats and the consequences of a
successful breach of security. Monitoring and auditing to detect either increased
threat levels or successful penetration increases the likelihood of preventing or
minimizing security losses.

Details on specific database-related tasks and actions can be found throughout the
Oracle documentation set.

1. INSTALL ONLY WHAT IS REQUIRED.

7-20 Oracle Database Security Guide

A Security Checklist

Options and Products

The Oracle Database CD pack contains a host of options and products in
addition to the database server. Install additional products and options only as
necessary. Use Custom Installation to avoid installing unnecessary products or,
following a typical installation, deinstall unneeded options and products. There
is no need to maintain the additional products and options if they are not being
used. They can always be properly and easily reinstalled as required.

Sample Schemas

Oracle Corporation provides Sample Schemas to provide a common platform
for examples. If your database will be used in a production environment, do not
install the Sample Schema. If you have installed the Sample Schema on a test
database, then before going production, remove or re-lock the Sample Schema
accounts.

LOCK AND EXPIRE DEFAULT USER ACCOUNTS.

Oracle Database installs with a number of default (preset) database server user
accounts. Upon successful installation of the database server, the Database
Configuration Assistant automatically locks and expires most default database
user accounts.

If a manual (not utilizing Database Configuration Assistant) installation of
Oracle Database is performed, no default database users are locked upon
successful installation of the database server. If left open in their default states,
these user accounts can be exploited to gain unauthorized access to data or
disrupt database operations.

Therefore, after performing any kind of initial installation that does not utilize
Database Configuration Assistant, you should lock and expire all default
database user accounts. Oracle Database provides SQL to perform such
operations.

Installing additional products and components later also results in creating
more default database server accounts. Database Configuration Assistant
automatically locks and expires all additionally created database server user
accounts. Unlock only those accounts that are need to be accessed on a regular
basis and assign a strong, meaningful password to each of these unlocked
accounts. Oracle provides SQL and password management to perform such
operations.

Table 7-2 shows the database users after a typical Oracle Database installation
utilizing Database Configuration Assistant.

Security Policies 7-21

A Security Checklist

Table 7-2 Default Accounts and Their Status (Standard Installation)

USERNAME

ACCOUNT_STATUS

ANONYMOUS
CTXSYS
DBSNVP
DIP

DMSYS
EXFSYS

HR
MDDATA
MDSYS
MGMT_VIEW
ODM
ODM_MTR
CE
OLAPSYS
ORDPLUGI NS
ORDSYS
OUTLN

PM

OS]

QS_ADM

Qs CB
QS_CBADM
Qs Cs

QS _ES

Qs 08
oA\
RMAN

7-22 Oracle Database Security Guide

EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED
EXPI RED & LOCKED

A Security Checklist

Table 7-2 (Cont.) Default Accounts and Their Status (Standard Installation)

USERNAME ACCOUNT_STATUS
SCOTT EXPI RED & LOCKED
SH EXPI RED & LOCKED
SI_INFORMTN_SCHEMA EXPI RED & LOCKED
SYS OPEN

SYSMAN EXPI RED & LOCKED
SYSTEM OPEN

WK_TEST EXPI RED & LOCKED
WKPROXY EXPI RED & LOCKED
WKSYS EXPI RED & LOCKED
WMSYS EXPI RED & LOCKED
XDB EXPI RED & LOCKED

If any default database server user account other the ones left open is required
for any reason, a database administrator (DBA) need simply unlock and
activate that account with a new, meaningful password.

Enterprise Manager Accounts

The preceding list of accounts depends on whether you choose to install
Enterprise Manager. If so, SYSMAN and DBSNMP are open as well, unless you
configure Enterprise Manager for Central Administration: then the SYSMAN
account (if present) will be locked as well.

If you do not install Enterprise Manager, then only SYS and SYSTEM are open.
Database Configuration Assistant locks and expires all other accounts
(including SYSMAN and DBSNMP).

CHANGE DEFAULT USER PASSWORDS.

The most trivial method by which Oracle Database can be compromised is a
default database server user account which still has a default password
associated with it even after installation.

a. Change default passwords of administrative users.

Oracle Database 10g installation enables you to use the same or different
passwords for the SYS, SYSTEM, SYSMAN and DBSNMP administrative

Security Policies 7-23

A Security Checklist

4.

accounts. Use different passwords for each: in any Oracle environment
(production or test), assign strong, meaningful, and distinct passwords to
these administrative accounts. If Database Configuration Assistant is used,
it requires you to enter passwords for the SYS and SYSTEM accounts,
disallowing the use of the defaults CHANGE_ON_| NSTALL and MANAGER.

Similarly, for production environments, do not use default passwords for
any administrative accounts, including SYSMAN and DBSNMP.

At the end of database creation, Database Configuration Assistant displays
a page requiring you to enter and confirm new passwords for the SYS and
SYSTEM user accounts.

Change default passwords of all users.

In Oracle Database, SCOTT no longer installs with default password Tl GER,
but instead is locked and expired, as is DBSNMP. Each of the other accounts
install with a default password that is exactly the same as that user account
(for example, user MDSYS installs with password MDSYS).

If any of the default user accounts that were locked and expired upon
installation need to be activated, assign a new meaningful password to each
such user account.

Even though Oracle does not explicitly mandate changing the default
password for user SCOTT, Oracle nevertheless recommends that this user
account also be locked in a production environment.

Enforce password management.

Oracle recommends that basic password management rules (such as
password length, history, complexity, and so forth) as provided by the
database be applied to all user passwords and that all users be required to
change their passwords periodically.

Oracle also recommends, if possible, utilizing Oracle Advanced Security (an
option to the Enterprise Edition of Oracle Database) with network
authentication services (such as Kerberos), token cards, smart cards or X.509
certificates. These services enable strong authentication of users to provide
better protection against unauthorized access to Oracle Database.

ENABLE DATA DICTIONARY PROTECTION.

Oracle recommends that customers implement data dictionary protection to
prevent users having the ANY system privileges from using such privileges on
the data dictionary.

7-24 Oracle Database Security Guide

A Security Checklist

To enable dictionary protection, set the following configuration parameter to
FALSE, in the init<sid>.ora control file:

Or_D CT1 ONARY_ACCESSI Bl LI TY = FALSE

By doing so, only those authorized users making DBA-privileged (for example
CONNECT / AS SYSDBA) connections can use the ANY system privilege on the
data dictionary. If this parameter is not set to the value recommended earlier,
any user with a DROP ANY TABLE (for example) system privilege will be able
to maliciously drop parts of the data dictionary.

However, if a user requires view access to the data dictionary;, it is permissible
to grant that user the SELECT ANY DI CTI ONARY system privilege.

Notes:

« Regarding O7_DI CTlI ONARY_ACCESSI BI LI TY, note that in
Oracle Database, the default is FALSE; whereas in Oracle8i, this
parameter is set to TRUE by default and must specifically be
changed to FALSE to enable this security feature.

» Regarding the SELECT ANY DICTIONARY privilege: this
privilege is not included in the GRANT ALL PRIVILEGES
statement, but it can be granted through a role.

5. PRACTICE PRINCIPLE OF LEAST PRIVILEGE.
a. Grant necessary privileges only.

Do not provide database users more privileges than are necessary. In other
words, principle of least privilege is that a user be given only those privileges
that are actually required to efficiently and succinctly perform his or her
job.

To implement least privilege, restrict: 1) the number of SYSTEMand
OBJECT privileges granted to database users, and 2) the number of people
who are allowed to make SYS-privileged connections to the database as
much as possible. For example, there is generally no need to grant CREATE
ANY TABLE to any non DBA-privileged user.

b. Revoke unnecessary privileges from PUBLI C.

Security Policies 7-25

A Security Checklist

Revoke all unnecessary privileges and roles from the database server user
group PUBLI C. PUBLI Cacts as a default role granted to every user in an
Oracle database. Any database user can exercise privileges that are granted
to PUBLI C. Such privileges include EXECUTE on various PL/SQL packages
that may permit a minimally privileged user to access and execute packages
that he may not directly be permitted to access. The more powerful
packages that may potentially be misused are listed in the following table:

Package

Description

uTL_SmMrp(d

uTL_TCP(D

UTL_HTTP(Y

UTL_FI LE(Y

DBVS_RANDOM

This package permits arbitrary mail messages to be sent from
one arbitrary user to another arbitrary user. Granting this
package to PUBLI C may permit unauthorized exchange of mail
messages.

This package permits outgoing network connections to be
established by the database server to any receiving (or waiting)
network service. Thus, arbitrary data may be sent between the
database server and any waiting network service.

This package allows the database server to request and retrieve
data using HTTP. Granting this package to PUBLI C may permit
using HTML forms to send data to a malicious Web site.

If configured improperly, this package allows text level access to
any file on the host operating system. Even when properly
configured, this package may allow unauthorized access to
sensitive operating system files, such as trace files, because it
does not distinguish between its calling applications. The result
can be that one application accessing UTL_FI LE may write
arbitrary data into the same location that is written to by another
application.

This package can be used to encrypt stored data. Generally, most
users should not have the privilege to encrypt data since
encrypted data may be non-recoverable if the keys are not
securely generated, stored, and managed.

! These packages should be revoked from PUBLIC and made executable for an application
only when absolutely necessary.

These packages are extremely useful to some applications that need them.
They require proper configuration and usage for safe and secure operation,
and may not be suitable for most applications.

c. Grantusers roles only if they need all of the role's privileges.

7-26 Oracle Database Security Guide

A Security Checklist

Roles (groups of privileges) are useful for quickly and easily granting
permissions to users. If your application users do not need all the privileges
encompassed by an existing role, then create your own roles containing
only the appropriate privileges for your requirements. Similary, ensure that
roles contain only the privileges that reflect job responsibility.

For example, grant users the CREATE SESSION privilege to authorize them
to log in to the database, rather than granting them the CONNECT role,
which has many additional privileges. Unless users require all the extra
privileges contained in the CONNECT role (or any other role), assign them
individually only the minimum set of individual privileges truly needed.
Alternatively, create your own roles and assign only needed privileges.

For example, it is imperative to strictly limit the privileges of SCOTT. Drop
the CREATE DBLINK privilege for SCOTT. Then drop the entire role for the
user, since privileges acquired by means of a role cannot be dropped
individually. Recreate your own role with only the privileges needed, and
grant that new role to that user. Similarly, for even better security, drop the
CREATE DBLINK privilege from all users who do not require it.

Restrict permissions on run-time facilities.

Do not assign "all permissions" to any database server run-time facility such
as the Oracle Java Virtual Machine (OJVM). Grant specific permissions to
the explicit document root file paths for such facilities that may execute files
and packages outside the database server.

Here is an example of a vulnerable run-time call:

call dbns_j ava. grant _perm ssion(' SCOIT ,
"SYSjava.io.FlePermssion','<<ALL FILES>>','read');

Here is an example of a better (more secure) run-time call:

call dbns_j ava. grant_pernission(' SCOIT ,
"'SYSjava.io.FilePernmission','<<actual directory path>>','read);

ENFORCE ACCESS CONTROLS EFFECTIVELY.
Authenticate clients properly.

By default, Oracle allows operating-system-authenticated logins only over
secure connections, which precludes using Oracle Net and a shared server
configuration. This default restriction prevents a remote user from
impersonating another operating system user over a network connection.

Security Policies 7-27

A Security Checklist

Setting the initialization parameter REMOTE_QOS_AUTHENT to TRUE forces the
RDBMS to accept the client operating system user name received over a
nonsecure connection and use it for account access. Since clients, in general,
such as PCs, are not trusted to perform operating system authentication
properly, it is very poor security practice to turn on this feature.

The default setting, REMOTE_C5 AUTHENT = FALSE, creates a more secure
configuration that enforces proper, server-based authentication of clients
connecting to an Oracle database.

You should not alter the default setting of the REMOTE G5 AUTHENT initialization
parameter, which is FALSE.

Setting this parameter to FALSE does not mean that users cannot connect
remotely. It simply means that the database will not trust that the client has
already authenticated, and will therefore apply its standard authentication
processes.

RESTRICT OPERATING SYSTEM ACCESS.
Limit the number of operating system users.

Limit the privileges of the operating system accounts (administrative,
root-privileged or DBA) on the Oracle Database host (physical machine) to the
least privileges needed for the user's tasks.

Oracle also recommends:

« Restricting the ability to modify the default file and directory permissions
for the Oracle Database home (installation) directory or its contents. Even
privileged operating system users and the Oracle owner should not modify
these permissions, unless instructed otherwise by Oracle Corporation.

« Restricting symbolic links. Ensure that when providing a path or file to the
database, neither the file nor any part of the path is modifiable by an
untrusted user. The file and all components of the path should be owned by
the DBA or some trusted account, such as root.

This recommendation applies to all types of files: data files, log files, trace
files, external tables, bfiles, and so on.

RESTRICT NETWORK ACCESS.
a. Use a firewall.

Keep the database server behind a firewall. Oracle Database's network
infrastructure, Oracle Net (formerly known as Net8 and SQL*Net), offers
support for a variety of firewalls from various vendors. Supported

7-28 Oracle Database Security Guide

A Security Checklist

proxy-enabled firewalls include Network Associates' Gauntlet and Axent's
Raptor. Supported packet-filtered firewalls include Cisco's PIX Firewall and
supported stateful inspection firewalls (more sophisticated packet-filtered
firewalls) include CheckPoint's Firewall-1.

Never poke a hole through a firewall.

If Oracle Database is behind a firewall, do not, under any circumstances,
poke a hole through the firewall; for example, do not leave open Oracle
Listener's 1521 port to make a connection to the Internet or vice versa.

Doing so will introduce a number of significant security vulnerabilities
including more port openings through the firewall, multi-threaded
operating system server issues and revelation of crucial information on
database(s) behind the firewall. Furthermore, an Oracle Listener running
without an established password may be probed for critical details about
the database(s) on which it is listening such as trace and logging
information, banner information and database descriptors and service
names.

Such a plethora of information and the availability of an ill-configured
firewall will provide an attacker ample opportunity to launch malicious
attacks on the target database(s).

Protect the Oracle Listener.

Because the listener acts as the database's gateway to the network, it is
important to limit the consequences of malicious interference:

* Restrict the privileges of the listener, so that it cannot read or write files
in the database or the Oracle server address space.

This restriction prevents external procedure agents spawned by the lis-
tener (or procedures executed by such an agent) from inheriting the
ability to do such reads or writes. The owner of this separate listener
process should not be the owner that installed Oracle or executes the
Oracle instance (such as ORACLE, the default owner).

Sample configuration:

EXTPROC LI STENER=
(DESCRI PTI ON=
(ADDRESS=
(PROTOCOL=i pc) (KEY=ext proc)))
SID_LI ST_EXTPROC LI STENER=
(SID LIST=
('Sl D_DESC=

Security Policies 7-29

A Security Checklist

('Sl D_NAME=pl sext proc)
(ORACLE_HOME=/ ul/ app/ or acl e/ 9. 0)
(PROGRAM=ext proc)))

Secure administration by these three steps:

i. Prevent on-line administration by requiring the administrator to have
write privileges on the LI STENER. ORA file and the listener's password:

Add or alter this line in the LISTENER.ORA file
ADM N_RESTRI CTI ONS_LI STENER=ON

Then RELOAD the configuration.

ii. Use SSL when administering the listener, by making the TCPS proto-
col the first entry in the address list:

LI STENER=
(DESCRI PTI ON=
(ADDRESS LI ST=
(ADDRESS=
(PROTOCOL=t cps)
(HOST = ed-pdsunl. us. oracle.com
(PORT = 8281)))

(To administer the listener remotely, you need to define the listener in
the client computer's LISTENER.ORA file. For example, to access lis-
tener USER281 remotely., using the following configuration:)

user281 =
(DESCRI PTI ON =
(ADDRESS =
(PROTOCOL = tcps)
(HOST = ed-pdsunl. us. oracl e.com
(PORT = 8281))
)
)

iii. Always establish a meaningful, well-formed password for the Ora-
cle Listener to prevent remote configuration of the Oracle Listener.
Password protect the listener:

LSNRCTL> CHANGE_PASSWORD

A d password: Isnrc80

New password: |snrc90

Reent er new password: |snrc90

7-30 Oracle Database Security Guide

A Security Checklist

LSNRCTL> SET PASSWORD

Passwor d:

The command conpl et ed successful Iy
LSNRCTL> SAVE_CONFI G

The command conpl eted successful ly

* Actually remove the external procedure configuration from the
listener.ora file if you do not intend to use such procedures.

* Monitor listener activity.
Be sure of who is accessing your systems.

Authenticating client computers over the Internet is problematic. Do user
authentication instead, which avoids client system issues that include
falsified IP addresses, hacked operating systems or applications, and
falsified or stolen client system identities. The following steps improve
client computer security:

* Configure the connection to use SSL. Using SSL (Secure Sockets Layer)
communication makes eavesdropping unfruitful and enables the use of
certificates for user and server authentication.

* Set up certificate authentication for clients and servers such that:

i. The organization is identified by unit and certificate issuer and the
user is identified by distinguished name and certificate issuer.

ii. Applications test for expired certificates.
iii. Certificate revocation lists are audited.
Check network IP addresses.

Utilize the Oracle Net "valid node checking" security feature to allow or
deny access to Oracle server processes from network clients with specified
IP addresses. To use this feature, set the following pr ot ocol . or a (Oracle
Net configuration file) parameters:

tcp. val i dnode_checking = YES
tcp. excl uded_nodes = {list of IP addresses}
tep.invited_nodes = {list of |IP addresses}

The first parameter turns on the feature whereas the latter two parameters
respectively deny or allow specific client IP addresses from making

Security Policies 7-31

A Security Checklist

connections to the Oracle Listener (and thereby preventing potential Denial
of Service attacks).

Encrypt network traffic.

If possible, utilize Oracle Advanced Security to encrypt network traffic
between clients, databases, and application servers. (Note that Oracle
Advanced Security is available only with the Enterprise Edition of the
Oracle database. It installs in Typical Installation mode and can be
configured, after licensing, with the Oracle Net Manager tool or by
manually setting six sglnet.ora parameters to enable network encryption.)

Harden the operating system.

Harden the host operating system by disabling all unnecessary operating
system services. Both UNIX and Windows platforms provide a variety of
operating system services, most of which are not necessary for most
deployments. Such services include FTP, TFTP, TELNET, and so forth. Be
sure to close both the UDP and TCP ports for each service that is being
disabled. Disabling one type of port and not the other does not make the
operating system more secure.

APPLY ALL SECURITY PATCHES AND WORKAROUNDS.

Always apply all relevant and current security patches for both the operating
system on which Oracle Database resides and Oracle Database itself, and for all
installed Oracle Database options and components thereof.

Periodically check the security site on Oracle Technology Network for details on
security alerts released by Oracle Corporation.

http://otn.oracle.conm depl oy/ security/alerts.htm
Also check Oracle Worldwide Support Service's site, Metalink, for details on
available and upcoming security-related patches.
http://metalink.oracle.com
In summary, consider all paths the data travels and assess the threats that impinge
on each path and node. Then take steps to lessen or eliminate both those threats and

the consequences of a successful breach of security. Also monitor and audit to detect
either increased threat levels or successful penetration.

10. CONTACT ORACLE SECURITY PRODUCTS.

7-32 Oracle Database Security Guide

A Security Checklist

If you believe that you have found a security vulnerability in Oracle Database,
submit an iTAR to Oracle Worldwide Support Services using Metalink, or
e-mail a complete description of the problem, including product version and
platform, together with any exploit scripts and examples to the following

address:

secal ert _us@racl e. com

Security Policies 7-33

A Security Checklist

7-34 Oracle Database Security Guide

8

Database Auditing: Security Considerations

Auditing is the monitoring and recording of selected user database actions. It can
be based on individual actions, such as the type of SQL statement executed, or on
combinations of factors that can include user name, application, time, and so on.
Security policies can trigger auditing when specified elements in an Oracle database
are accessed or altered, including the contents within a specified object.

An overview of database auditing appears in Chapter 6.

Chapter 11 provides detailed information and guidelines on configuring auditing
parameters and administering auditing actions and results.

The present chapter describes the different types and focuses of auditing and the
resulting audit trails and records.

Auditing is normally used to:

« Enable future accountability for current actions taken in a particular schema,
table, or row, or affecting specific content

« Deter users (or others) from inappropriate actions, based on that accountability

« Investigate suspicious activity. For example, if some user is deleting data from
tables, the security administrator might decide to audit all connections to the
database and all successful and unsuccessful deletions of rows from all tables in
the database.

« Notify an auditor that an unauthorized user is manipulating or deleting data
and that the user has more privileges than expected, which can lead to
reassessing user authorizations.

« Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being
updated, how many logical 1/0s are performed, or how many concurrent users
connect at peak times.

Database Auditing: Security Considerations 8-1

Auditing Types and Records

Detect problems with an authorization or access control implementation. For
example, you can create audit policies that you expect will never generate an
audit record because the data is protected in other ways. However, if these
policies do generate audit records, you will know the other security controls are
not properly implemented.

This chapter describes the types of auditing available in Oracle systems, in the
following sections:

Auditing Types and Records

Statement Auditing

Privilege Auditing

Schema Object Auditing

Fine-Grained Auditing

Focusing Statement, Privilege, and Schema Object Auditing

Auditing in a Multitier Environment

See Also:
« Chapter 11, "Configuring and Administering Auditing"

« Oracle Database Administrator's Guide

Auditing Types and Records

Oracle allows audit options to be focused or broad, enabling you to audit:

Successful statement executions, unsuccessful statement executions, or both

Statement executions once in each user session or once every time the statement
is executed

Activities of all users or of a specific user

Table 8-1 describes the different Oracle auditing mechanisms. Each entry in the first
column is a link to a more extensive discussion of that particular method.

8-2 Oracle Database Security Guide

Auditing Types and Records

Table 8-1 Auditing Types and Descriptions

Type of Auditing
(link to discussion) Meaning/Description

Statement Auditing Audits SQL statements by type of statement, not by the specific
schema objects on which they operate. Typically broad,
statement auditing audits the use of several types of related
actions for each option. For example, AUDI T TABLE tracks
several DDL statements regardless of the table on which they
are issued. You can also set statement auditing to audit selected
users or every user in the database.

Privilege Auditing Audits the use of powerful system privileges that enable
corresponding actions, such as AUDI T CREATE TABLE.
Privilege auditing is more focused than statement auditing,
which audits only a particular type of action. You can set
privilege auditing to audit a selected user or every user in the

database.
Schema Object Audits specific statements on a particular schema object, such
Auditing as AUDI T SELECT ONenpl oyees. Schema object auditing is

very focused, auditing only a single specified type of statement
(such as SELECT) on a specified schema object. Schema object
auditing always applies to all users of the database.

Fine-Grained Audits, at the most granular level, data access and actions

Auditing based on content, using any boolean measure, such as value >
1,000,000. Enables auditing based on access to or changes in a
column.

The following subsections explain the records and timing of the different audit
trails:

« Audit Records and the Audit Trails
= When Are Audit Records Created?

Audit Records and the Audit Trails

Audit records include such information as the operation that was audited, the user
performing the operation, and the date and time of the operation. Audit records can
be stored in either a data dictionary table, called the database audit trail, or in
operating system files, called an operating system audit trail.

See Also: The complete contents of these audit trails is described

in Chapter 11, "Configuring and Administering Auditing", in the
section entitled What Information is Contained in the Audit Trail?

Database Auditing: Security Considerations 8-3

Auditing Types and Records

The two general types of auditing are standard auditing, which is based on
privileges, schemas, objects, and statements, and fine-grained auditing. Standard
audit records can be written either to DBA_AUDIT_TRAIL (the sys.aud$ table) or to
the operating system. Fine-grained audit records are written to DBA_FGA_AUDIT_
TRAIL (the sys.fga_log$ table) and the DBA_COVMON_AUDI T_TRAI L view, which
combines standard and fine-grained audit log records.

The following subsections describe these trails and records:
« Database Audit Trail (DBA_AUDIT_TRAIL)

« Operating System Audit Trail

« Operating System Audit Records

« Records Always in the Operating System Audit Trail

Database Audit Trail (DBA_AUDIT _TRAIL)

The database audit trail is a single table named SYS. AUD$ in the SYS schema of
each Oracle database's data dictionary. Several predefined views are provided to
help you use the information in this table, such as DBA_ AUDI T_TRAI L.

Audit trail records can contain different types of information, depending on the
events audited and the auditing options set. The partial list in the following section
shows columns that always appear in the audit trail; if the data they represent is
available, that data populates the corresponding column. (For certain columns, this
list shows the column name displayed in the audit record, here inside parentheses.)

Table 8-2 Columns Shown in the Database Audit Trail (DBA_AUDIT_TRAIL)

Also Appears in the Operating System

Column Description/Name Audit Trail?

Operating system login user name (CLI ENT USER) Yes.
Database user name (DATABASE USER) No.

Session identifier Yes.
Terminal identifier Yes.
Name of the schema object accessed Yes.
Operation performed or attempted (ACTI ON) Yes.
Completion code of the operation Yes.

Date and time stamp in UTC (Coordinated Universal Time) format No.

8-4 Oracle Database Security Guide

Auditing Types and Records

Table 8-2 (Cont.) Columns Shown in the Database Audit Trail (DBA_AUDIT_TRAIL)

Also Appears in the Operating System

Column Description/Name Audit Trail?
System privileges used (PRI VI LEGE) Yes.
Proxy Session's auditid No.
Global User unique id No.
Distinguished name Yes.
Instance number No.
Process number No.
Transactionld No.
SCN (system change number) for the SQL statement No.
SQL text that triggered the auditing (SQLTEXT) No.
Bind values used for the SQL statement, if any (SQLBI ND) No.
Notes:

« The "Process number" column is always NULL in Oracle
Database 10g.

« SQ.BI NDand SQLTEXT are not populated unless you specified
AUDI T_TRAI L=DB_EXTENDED in the database initialization
file, init.ora, since CLOBs are comparatively expensive to
populate.

If the database destination for audit records becomes full or unavailable and
therefore unable to accept new records, an audited action cannot complete. Instead,
it causes an error message and is not done. In some cases, an operating system log
allows such an action to complete.

Operating System Audit Trail

Oracle allows audit trail records to be directed to an operating system audit trail if
the operating system makes such an audit trail available to Oracle. If not, audit
records are written to a file outside the database. The target directory varies by
platform: on the Solaris platform, it is SORACLE_HOME/rdbms/audit, but for

Database Auditing: Security Considerations 8-5

Auditing Types and Records

other platforms you must check the platform documentation to learn the correct
target directory. In Windows, the information is accessed through Event Viewer.

See Also: Your operating system specific Oracle documentation,
to see if this feature has been implemented on your operating
system

An operating system audit trail or file system can become full and therefore unable
to accept new records, including audit records directed to the operating system. In
this circumstance, Oracle still allows certain actions that are always audited to
continue, even though the audit record cannot be stored because the operating
system destination is full. Using a database audit trail prevents audited actions from
completing if their audit records cannot be stored.

System administrators configuring operating system auditing should ensure that
the operating system audit trail or the file system does not fill completely. Most
operating systems provide administrators with sufficient information and warning
to enable them to ensure this does not occur.

Note, however, that configuring auditing to use the database audit trail removes
this potential loss of audit information. The Oracle server prevents audited events
from occurring if the audit trail is unable to accept the database audit record for the
statement.

Operating System Audit Records

The operating system audit trail is encoded, but it is decoded in data dictionary files
and error messages.

« Action code describes the operation performed or attempted. The AUDI T_
ACTI ONS data dictionary table contains a list of these codes and their
descriptions.

« Privileges used describes any system privileges used to perform the operation.
The SYSTEM PRI VI LEGE_NMAP table lists all of these codes and their
descriptions.

« Completion code describes the result of the attempted operation. Successful
operations return a value of zero, and unsuccessful operations return the Oracle
error code describing why the operation was unsuccessful.

8-6 Oracle Database Security Guide

Auditing Types and Records

See Also:

« Table 8-2, " Columns Shown in the Database Audit Trail (DBA _
AUDIT_TRAIL)", which also indicates the columns that appear
in the operating system audit trail.

« Oracle Database Administrator's Guide for instructions for
creating and using predefined views

« Oracle Database Error Messages for a list of completion codes

Records Always in the Operating System Audit Trail

Some database-related actions are always recorded into the operating system audit
trail regardless of whether database auditing is enabled. The fact that these records
are always created is sometimes referred to as mandatory auditing:

« At instance startup, an audit record is generated that details the operating
system user starting the instance, the user's terminal identifier, the date and
time stamp. This information is recorded into the operating system audit trail
because the database audit trail is not available until after startup has
successfully completed.

« At instance shutdown, an audit record is generated that details the operating
system user shutting down the instance, the user's terminal identifier, the date
and time stamp.

« During connections made with administrator privileges, an audit record is
generated that details the operating system user connecting to Oracle with
administrator privileges. This record provides accountability regarding users
connected with administrator privileges.

On operating systems that do not make an audit trail accessible to Oracle, these
audit trail records are placed in an Oracle audit trail file in the same directory as
background process trace files, and in a similar format.

See Also: Your operating system specific Oracle documentation
for more information about the operating system audit trail

When Are Audit Records Created?

Standard auditing for the entire database is either enabled or disabled by the
security administrator. If it is disabled, no audit records are created.

Database Auditing: Security Considerations 8-7

Auditing Types and Records

Note: Fine-grained auditing uses audit policies applied to
individual objects. Therefore, standard audit settings that are on or
off for the entire database do not affect fine-grained auditing.

If database auditing is enabled by the security administrator, then individual audit
options become effective. These audit options can be set by any authorized database
user for database objects he owns.

When auditing is enabled in the database and an action set to be audited occurs, an
audit record is generated during the execute phase of statement execution.

SQL statements inside PL/SQL program units are individually audited, as
necessary, when the program unit is executed.

The generation and insertion of an audit trail record is independent of a user's
transaction being committed. That is, even if a user's transaction is rolled back, the
audit trail record remains committed.

Statement and privilege audit options in effect at the time a database user connects
to the database remain in effect for the duration of the session. Setting or changing
statement or privilege audit options in a session does not cause effects in that
session. The modified statement or privilege audit options take effect only when the
current session is ended and a new session is created.

In contrast, changes to schema object audit options become effective for current
sessions immediately.

Note: Operations by the SYS user and by users connected through
SYSDBA or SYSOPER can be fully audited with the AUDI T_SYS
OPERATI ONS initialization parameter. Every successful SQL
statement from SYS is audited. This specialized form of auditing
audits all actions performed by every user with the SYSDBA
privilege and writes only to an operating system location. It is not
dependent on the standard auditing parameter AUDIT_TRAIL=.
Sending these records to a location separate from the usual
database audit trail in the SYS schema provides for greater auditing
security.

8-8 Oracle Database Security Guide

Privilege Auditing

See Also:

« Oracle Database Administrator's Guide for instructions on
enabling and disabling auditing

« "SQL, PL/SQL, and Java" in Oracle Database Concepts for
information about the different phases of SQL statement
processing and shared SQL

Statement Auditing

Statement auditing is the selective auditing of related groups of statements
regarding a particular type of database structure or schema object, but not a
specifically named structure or schema object. These statements fall into two

categories:
« DDL statements. As an example, AUDI T TABLE audits all CREATE and DROP
TABLE statements.

« DML statements. As an example, AUDI T SELECT TABLE audits all SELECT ...
FROMTABLE/ VI EWstatements, regardless of the table or view.

Statement auditing can be broad or focused, auditing the activities of all database
users or of only a select list.

Privilege Auditing
Privilege auditing audits statements that use a system privilege, such as SELECT

ANY TABLE. For example, when AUDIT SELECT ANY TABLE is in force, all
statements issued by users with the SELECT ANY TABLE privilege are audited.

You can audit the use of any system privilege. Like statement auditing, privilege
auditing can audit the activities of all database users or of only a specified list.

If similar statement and privilege audit options are both set, only a single audit
record is generated. For example, if the statement clause TABLE and the system
privilege CREATE TABLE are both audited, only a single audit record is generated
each time a table is created.

Thus privilege auditing does not occur if the action is already permitted by the
existing owner and schema object privileges. Privilege auditing triggered only if
they are insufficient, that is, only if what makes the action possible is a system
privilege.

Database Auditing: Security Considerations 8-9

Schema Object Auditing

Privilege auditing is more focused than statement auditing because each privilege
auditing option audits only specific types of statements, not a related list of
statements. For example, the statement auditing clause TABLE audits CREATE
TABLE, ALTER TABLE, and DROP TABLE statements. However, the privilege
auditing option CREATE TABLE audits only CREATE TABLE statements, because
only the CREATE TABLE statement requires the CREATE TABLE privilege.

Schema Object Auditing

Schema object auditing can audit all SELECT and DML statements permitted by
schema object privileges, such as SELECT or DELETE statements on a given table.
The GRANT and REVCKE statements that control those privileges are also audited.

You can audit statements that reference tables, views, sequences, standalone stored
procedures or functions, and packages, but not individual procedures within
packages. Further discussion appears in the next section, entitled Schema Object
Audit Options for Views, Procedures, and Other Elements.

Statements that reference clusters, database links, indexes, or synonyms are not
audited directly. However, you can audit access to these schema objects indirectly,
by auditing the operations that affect the base table.

Schema object audit options are always set for all users of the database. These
options cannot be set for a specific list of users. You can set default schema object
audit options for all auditable schema objects.

See Also: Oracle Database SQL Reference for information about
auditable schema objects

Schema Object Audit Options for Views, Procedures, and Other Elements

The definitions for views and procedures (including stored functions, packages, and
triggers) reference underlying schema objects. Because of this dependency, some
unique characteristics apply to auditing views and procedures, such as the
likelihood of generating multiple audit records.

Views and procedures are subject to the enabled audit options on the base schema
objects, including the default audit options. These options apply to the resulting
SQL statements as well.

Consider the following series of SQL statements:
AD T SELECT (N enpl oyees;

8-10 Oracle Database Security Guide

Schema Object Auditing

CREATE M EWenpl oyees_depart nents AS
SELECT enpl oyee id, |ast_nane, departnent_id
FROM enpl oyees, departnents
WHERE enpl oyees. depart nent _i d = departnents. depart nent _i d;

AD T SELECT N enpl oyees_depart nent s;
SELECT * FROM enpl oyees_depart nent s;

As a result of the query on enpl oyees_depart nent s, two audit records are
generated: one for the query on the enpl oyees_depart nent s view and one for
the query on the base table enpl oyees (indirectly through the enpl oyees__
depart ment s view). The query on the base table depar t ment s does not generate
an audit record because the SELECT audit option for this table is not enabled. All
audit records pertain to the user that queried the enpl oyees_depart nment s view.

The audit options for a view or procedure are determined when the view or
procedure is first used and placed in the shared pool. These audit options remain
set until the view or procedure is flushed from, and subsequently replaced in, the
shared pool. Auditing a schema object invalidates that schema object in the cache
and causes it to be reloaded. Any changes to the audit options of base schema
objects are not observed by views and procedures in the shared pool.

In the given example, if the "AUD T SELECT ON enpl oyees; " statement is omitted, then
using the enpl oyees_depart ment s view will not generate an audit record for
the enpl oyees table.

Table 8-3, " Auditing Actions Newly Enabled by Oracle Database 10g" lists auditing
actions that were not available before Oracle Database.

Table 8-3 Auditing Actions Newly Enabled by Oracle Database 10g

Object or Element Newly Auditable Actions

Materialized Views AUDIT, DELETE, INSERT, SELECT, UPDATE, AND
FLASHBACK

Tables & views REFERENCES, UNDER, ON COMMIT REFRESH, QUERY
REWRITE, DEBUG, and FLASHBACK

Library AUDIT, EXECUTE, and DEBUG

Java source AUDIT, EXECUTE, and DEBUG

Operator AUDIT and EXECUTE

Index type AUDIT and EXECUTE

Database Auditing: Security Considerations 8-11

Focusing Statement, Privilege, and Schema Object Auditing

Table 8-3 (Cont.) Auditing Actions Newly Enabled by Oracle Database 10g

Object or Element Newly Auditable Actions
Directory WRITE
Queue AUDIT, ENQUEUE, and DEQUEUE

Focusing Statement, Privilege, and Schema Object Auditing

Oracle lets you focus statement, privilege, and schema object auditing in three
areas, as discussed in the following subsections:

« Auditing Statement Executions: Successful, Unsuccessful, or Both
« Number of Audit Records from Multiple Executions of a Statement

« Audit By User, for specific users or for all users in the database (statement and
privilege auditing only)

Auditing Statement Executions: Successful, Unsuccessful, or Both

For statement, privilege, and schema object auditing, Oracle allows the selective
auditing of successful executions of statements, unsuccessful attempts to execute
statements, or both. Therefore, you can monitor actions even if the audited
statements do not complete successfully. Monitoring unsuccessful SQL can expose
users who are snooping or acting maliciously, though of course most unsuccessful
SQL is neither.

Auditing an unsuccessful statement execution provides a report only if a valid SQL
statement is issued but fails because it lacks proper authorization or references a
nonexistent schema object. Statements that failed to execute because they simply
were not valid cannot be audited.

For example, an enabled privilege auditing option set to audit unsuccessful
statement executions audits statements that use the target system privilege but have
failed for other reasons. One example is when a CREATE TABLE auditing condition
is set, but some CREATE TABLE statements fail due to lack of quota for the specified
tablespace.

When your audit statement includes the WHENEVER SUCCESSFUL clause, you will
be auditing only successful executions of the audited statement.

When your audit statement includes the WHENEVER NOT SUCCESSFUL clause, you
will be auditing only unsuccessful executions of the audited statement.

8-12 Oracle Database Security Guide

Focusing Statement, Privilege, and Schema Object Auditing

When your audit statement includes neither of the preceding two clauses, you will
be auditing both successful and unsuccessful executions of the audited statement.

Number of Audit Records from Multiple Executions of a Statement

If an audited statement is issued multiple times in a single user session, your audit
trail can have one or more related records. The controlling clause BY ACCESS
causes each execution of an auditable operation within a cursor to generate a
separate audit record. If you use the BY SESSI ON clause instead, your audit trail
will contain a single audit record for each session, for each user and schema object.
Only one audit record results, no matter how often the statement occurs in that
session.

However, several audit options can be set only BY ACCESS:
« All statement audit options that audit DDL statements
« All privilege audit options that audit DDL statements
For all other audit options, BY SESSI ONis used by default.

This section provides detailed examples of using each clause, in the following
subsections:

« BY SESSION
« BY ACCESS

See Also: Oracle Database SQL Reference

BY SESSION

For any type of audit (schema object, statement, or privilege), BY SESSI ON inserts
only one audit record in the audit trail, for each user and schema object, during a
session that includes an audited action.

A session is the time between when a user connects to and disconnects from an
Oracle database.

BY SESSION Example 1 Assume the following:

« The SELECT TABLE statement auditing option is set BY SESSI ON.

« JWARD connects to the database and issues five SELECT statements against the
table named depar t ment s and then disconnects from the database.

Database Auditing: Security Considerations 8-13

Focusing Statement, Privilege, and Schema Object Auditing

« SWLLI AVS connects to the database and issues three SELECT statements
against the table enpl oyees and then disconnects from the database.

In this case, the audit trail contains two audit records for the eight SELECT
statements— one for each session that issued a SELECT statement.

BY SESSION Example 2 Alternatively, assume the following:

« The SELECT TABLE statement auditing option is set BY SESSI ON.

« JWARD connects to the database and issues five SELECT statements against the
table named depar t ment s, and three SELECT statements against the table
enpl oyees, and then disconnects from the database.

In this case, the audit trail contains two records—one for each schema object against
which the user issued a SELECT statement in a session.

Note: If you use the BY SESSI ON clause when directing audit
records to the operating system audit trail, Oracle generates and
stores an audit record each time an access is made. Therefore, in
this auditing configuration, BY SESSI ONis equivalent to BY
ACCESS.

BY ACCESS

Setting audit BY ACCESS inserts one audit record into the audit trail for each
execution of an auditable operation within a cursor. Events that cause cursors to be
reused include the following:

« An application, such as Oracle Forms, holding a cursor open for reuse
« Subsequent execution of a cursor using new bind variables

« Statements executed within PL/SQL loops where the PL/SQL engine optimizes
the statements to reuse a single cursor

Note that auditing is not affected by whether a cursor is shared. Each user creates
her or his own audit trail records on first execution of the cursor.

For example, assume that:
« The SELECT TABLE statement auditing option is set BY ACCESS.

« JWARD connects to the database and issues five SELECT statements against the
table named depar t ment s and then disconnects from the database.

8-14 Oracle Database Security Guide

Auditing in a Multitier Environment

« SWLLI AMS connects to the database and issues three SELECT statements
against the table depar t nent s and then disconnects from the database.

The single audit trail contains eight records for the eight SELECT statements.

Audit By User

Statement and privilege audit options can audit statements issued by any user or
statements issued by a specific list of users. By focusing on specific users, you can
minimize the number of audit records generated.

Audit By User Example To audit statements by the users SCOTT and BLAKE that query
or update a table or view, issue the following statements:

AD T SHECT TABLE, UPDATE TABLE
BY scott, bl ake;

See Also: Oracle Database SQL Reference for more information
about auditing by user

Auditing in a Multitier Environment

In a multitier environment, Oracle can preserve the identity of a client through all
tiers. Thus, you can audit actions taken on behalf of the client by a mid-tier
application. To do so, use the BY proxy clause in your AUDI T statement.

This clause allows you a few options. You can:

« Audit SQL statements issued by the specific proxy on its own behalf
« Audit statements executed on behalf of a specified user or users

« Audit all statements executed on behalf of any user

The middle tier can also set the user's client identity in a database session, enabling
audit of end-user actions through the mid-tier application. The end-user's client
identity then shows up in the audit trail.

See Also:

« Oracle Database Application Developer's Guide - Fundamentals
« Oracle Call Interface Programmer*s Guide

« PL/SQL User's Guide and Reference

Database Auditing: Security Considerations 8-15

Fine-Grained Auditing

Fine-Grained Auditing

Fine-Grained Auditing (FGA) enables you to monitor data access based on content.
A built-in audit mechanism in the database prevents users from bypassing the
audit.

While Oracle triggers can potentially monitor DML actions such as | NSERT,
UPDATE, and DELETE, monitoring on SELECT can be costly. In some cases, a trigger
may audit too much; in others, its effectiveness or completeness may be uncertain.
Triggers also do not enable users to define their own alert action in response to a
triggered audit, beyond simply inserting an audit record into the audit trail.

Fine-Grained Auditing provides an extensible interface for creating policies to audit
SELECT and DML statements on tables and views. The DBM5_FGA package
administers these value-based audit policies. Using DBM5_FGA, the security
administrator creates an audit policy on the target object. If any rows returned from
a query match the audit condition, then an audit event entry is inserted into the
fine-grained audit trail. This entry includes all the information reported in the
regular audit trail: see the Audit Records and the Audit Trails section on page 8-3.
Only one row of audit information is inserted into the audit trail for every FGA
policy that evaluates to TRUE. The extensibility framework in FGA also enables
administrators optionally to define an appropriate audit event handler to process
the event, for example by sending an alert page to the administrator.

The administrator uses the DBMS_FGA.ADD_POLICY interface to define each FGA
policy for a table or view, identifying any combination of SELECT, UPDATE,
DELETE, or INSERT statements.

FGA policies associated with a table or view may also specify relevant columns, so
that any specified statement type affecting a relevant column is audited. If no
relevant column is specified, auditing applies to all columns. That is, auditing occurs
whenever any specified statement type affects any column, independent of whether
any rows are returned or not.

The relevant-column capability enables you to hone in on particularly important
types of data to audit. Examples include privacy-relevant columns, such as those
containing social security numbers, salaries, patient diagnoses, and so on. You
could combine the fine-grained audit records to surface queries that had addressed
both name and social security number, a potential violation of privacy security
laws.

One added benefit is that the audit records being created are more clearly relevant,
because they relate to specific data of interest or concern. Another benefit is that

8-16 Oracle Database Security Guide

Fine-Grained Auditing

fewer total audit records need be generated, because each is now more specific and
useful than what could be tracked in earlier releases.

See Also:

« Chapter 11, "Configuring and Administering Auditing"

« Oracle Database Application Developer's Guide - Fundamentals

« The DBMS_FGA chapter in PL/SQL Packages and Types Reference

Database Auditing: Security Considerations 8-17

Fine-Grained Auditing

8-18 Oracle Database Security Guide

Part Il

Security Implementation, Configuration,
and Administration

Part 1l presents the details of configuring and administering Oracle Database
security features.

This part contains the following chapter:

« Chapter 9, "Administering Authentication”

« Chapter 10, "Administering User Privileges, Roles, and Profiles"

« Chapter 11, "Configuring and Administering Auditing"

« Chapter 12, "Introducing Database Security for Application Developers"

« Chapter 13, "Using Virtual Private Database to Implement Application Security
Policies"

« Chapter 14, "Implementing Application Context and Fine-Grained Access
Control"

« Chapter 15, "Preserving User Identity in Multitiered Environments"

« Chapter 16, "Developing Applications Using Data Encryption”

9

Administering Authentication

Authentication is the process of verifying the identity of a user, device, or other
entity in a computer system, often as a prerequisite to granting access to resources

in a system.

User Authentication Methods

Oracle provides several means for users to be authenticated before they are allowed
to create a database session, as discussed in the following sections:

Topics: You can define users who are ...

Links to Topics

identified and authenticated by the database, which is called database
authentication.

authenticated by the operating system or network service, which is called
external authentication.

authenticated globally by SSL (Secure Sockets Layer), called global users,
whose database access is through global roles, authorized by an enterprise
directory.

allowed to connect through a middle-tier server that authenticates the user,
assumes that identity, and can enable specific roles for the user. This
combination of actions and abilities is called proxy authentication and
authorization.

Database Authentication

External Authentication

Global Authentication and
Authorization

Proxy Authentication and
Authorization

Database Authentication

If you choose database authentication for a user, administration of the user account
including authentication of that user is performed entirely by Oracle. To have
Oracle authenticate a user, specify a password for the user when you create or alter
the user. Users can change their password at any time. Passwords are stored in an

Administering Authentication 9-1

User Authentication Methods

encrypted format. While usernames can be multibyte, each password must be
made up of single-byte characters, even if your database uses a multibyte character
set.

Note: Oracle Corporation recommends that you encode user
names and passwords in ASCII or EBCDIC characters only;,
depending on your platform. Doing so will maintain compatibility
for supporting future changes to your database character set.

Basing user names or passwords on characters that expand in size
when migrated to a new target character set can cause login
difficulties. Authentication can fail after such a migration because
the encrypted user names and passwords in the data dictionary are
not updated during a migration to a new database character set.

For example, assuming the current database character set is
WEBMSWIN1252 and the target database character set is UTF8, the
user name sco6t t (o with an umlaut) will change from 5 bytes to 6
bytes in UTF8. the user scdt t will no longer be able to log in.

If user names and passwords are not based on ASCII or EBCDIC
characters, then if a migration to a new character set occurs, the
affected user names and passwords will need to be reset.

To enhance security when using database authentication, Oracle recommends the
use of password management, including account locking, password aging and
expiration, password history, and password complexity verification.

See Also: "Password Management Policy" on page 23-12

Creating a User Who is Authenticated by the Database

The following statement creates a user who is identified and authenticated by
Oracle. User scot t must specify the password t i ger whenever connecting to
Oracle.

CREATE USER scott | DENTI FI ED BY ti ger;
See Also: Oracle Database SQL Reference for more information

about valid passwords, and how to specify the | DENTI FI ED BY
clause in the CREATE USERand ALTER USER statements

9-2 Oracle Database Security Guide

User Authentication Methods

Advantages of Database Authentication
Following are advantages of database authentication:

« User accounts and all authentication are controlled by the database. There is no
reliance on anything outside of the database.

« Oracle provides strong password management features to enhance security
when using database authentication.

=« Itis easier to administer when there are small user communities.

External Authentication

When you choose external authentication for a user, the user account is maintained
by Oracle, but password administration and user authentication is performed by an
external service. This external service can be the operating system or a network
service, such as Oracle Net.

With external authentication, your database relies on the underlying operating
system or network authentication service to restrict access to database accounts. A
database password is not used for this type of login. If your operating system or
network service permits, you can have it authenticate users. If you do so, set the
initialization parameter OS_AUTHENT _PREFI X, and use this prefix in Oracle user
names. The OS_AUTHENT_PREFI X parameter defines a prefix that Oracle adds to
the beginning of every user's operating system account name. Oracle compares the
prefixed user name with the Oracle user names in the database when a user
attempts to connect.

For example, assume that OS_ AUTHENT _PREFI X is set as follows:
C5_AUTHENT _PREFI X=CPS$

Note: The text of the OS_AUTHENT _PREFI X initialization
parameter is case sensitive on some operating systems. See your
operating system specific Oracle documentation for more
information about this initialization parameter.

If a user with an operating system account named t smi t h is to connect to an
Oracle database and be authenticated by the operating system, Oracle checks that
there is a corresponding database user OPS$t sni t h and, if so, allows the user to
connect. All references to a user authenticated by the operating system must include
the prefix, as seen in OPS$t sni t h.

Administering Authentication 9-3

User Authentication Methods

The default value of this parameter is OPS$ for backward compatibility with
previous versions of Oracle. However, you might prefer to set the prefix value to
some other string or a null string (an empty set of double quotes: "*). Using a null
string eliminates the addition of any prefix to operating system account names, so
that Oracle user names exactly match operating system user names.

After you set OS_AUTHENT _PREFI X, it should remain the same for the life of a
database. If you change the prefix, any database user name that includes the old
prefix cannot be used to establish a connection, unless you alter the user name to
have it use password authentication.

Creating a User Who is Authenticated Externally

The following statement creates a user who is identified by Oracle and
authenticated by the operating system or a network service. This example assumes
that G5 AUTHENT_PREFI X = "".

CREATE USER scott | DENTI FI ED EXTERNALLY;

Using CREATE USER ... | DENTI FI ED EXTERNALLY, you create database
accounts that must be authenticated by the operating system or network service.
Oracle will then rely on this external login authentication when it provides that
specific operating system user with access to a specific database user's resources.

See Also: Oracle Advanced Security Administrator's Guide for more
information about external authentication

Operating System Authentication

By default, Oracle allows operating-system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.
This default restriction prevents a remote user from impersonating another
operating system user over a network connection.

Setting REMOTE_OS_AUTHENT to TRUE in the database's initialization parameter
file forces the RDBMS to accept the client operating system user nhame received over
a nonsecure connection and use it for account access. Since clients, in general, such
as PCs, are not trusted to perform operating system authentication properly, it is
very poor security practice to turn on this feature.

The default setting, REMOTE (5 AUTHENT = FALSE, creates a more secure configuration
that enforces proper, server-based authentication of clients connecting to an Oracle
database.

9-4 Oracle Database Security Guide

User Authentication Methods

Any change to this parameter takes effect the next time you start the instance and
mount the database. Generally, user authentication through the host operating
system offers faster and more convenient connection to Oracle without specifying a
separate database user name or password. Also, user entries correspond in the
database and operating system audit trails.

Network Authentication

Network authentication is performed using Oracle Advanced Security, which can
be configured to use a third party service such as Kerberos. If you are using Oracle
Advanced Security as your only external authentication service, the setting of the
parameter REMOTE_OS_AUTHENT is irrelevant, since Oracle Advanced Security
only allows secure connections.

Advantages of External Authentication
Following are advantages of external authentication:

« More choices of authentication mechanism are available, such as smart cards,
fingerprints, Kerberos, or the operating system.

« Many network authentication services, such as Kerberos and DCE, support
single sign-on, enabling users to have fewer passwords to remember.

« If you are already using some external mechanism for authentication, such as
one of those listed earlier, there may be less administrative overhead to use that
mechanism with the database as well.

Global Authentication and Authorization

Oracle Advanced Security enables you to centralize management of user-related
information, including authorizations, in an LDAP-based directory service. Users
can be identified in the database as global users, meaning that they are
authenticated by SSL and that the management of these users is done outside of the
database by the centralized directory service. Global roles are defined in a database
and are known only to that database, but authorizations for such roles is done by
the directory service.

Note: You can also have users authenticated by SSL, whose
authorizations are not managed in a directory; that is, they have
local database roles only. See the Oracle Advanced Security
Administrator’s Guide for details.

Administering Authentication 9-5

User Authentication Methods

This centralized management enables the creation of enterprise users and
enterprise roles. Enterprise users are defined and managed in the directory. They
have unique identities across the enterprise, and can be assigned enterprise roles
that determine their access privileges across multiple databases. An enterprise role
consists of one or more global roles, and might be thought of as a container for
global roles.

Creating a User Who is Authorized by a Directory Service

You have a couple of options as to how you specify users who are authorized by a
directory service.

Creating a Global User The following statement illustrates the creation of a global
user, who is authenticated by SSL and authorized by the enterprise directory
service:

CREATE USER scot t
| DENTI FI ED GLOBALLY AS ' CN=scott, QU=di vi si onl, O=or acl e, C=US' ;

The string provided in the AS clause provides an identifier (distinguished name, or
DN) meaningful to the enterprise directory.

In this case, scot t is truly a global user. But, the disadvantage here is that user
scot t must then be created in every database that he must access, plus the
directory.

Creating a Schema-Independent User Creating schema-independent users allows
multiple enterprise users to access a shared schema in the database. A
schema-independent user is:

« Authenticated by SSL or passwords
= Not created in the database with a CREATE USER statement of any type
« A user whose privileges are managed in a directory
« A user who connects to a shared schema
The process of creating a schema-independent user is as follows:
1. Create a shared schema in the database as follows.
CREATE USER appschena | NDENTI FI ED Q.CBALLY AS ' ';

2. Inthe directory, you now create multiple enterprise users, and a mapping
object.

9-6 Oracle Database Security Guide

User Authentication Methods

The mapping object tells the database how you want to map users' DNs to the
shared schema. You can either do a full DN mapping (one directory entry for
each unique DN), or you can map, for example, every user containing the
following DN components to the appschena:

Qkdi vi si on, O=C acl e, C=US

See the Oracle Internet Directory Administrator's Guide for an explanation of these
mappings.

Most users do not need their own schemas, and implementing schema-independent
users divorces users from databases. You create multiple users who share the same
schema in a database, and as enterprise users, they can access shared schemas in
other databases as well.

Advantages of Global Authentication and Global Authorization

Some of the advantages of global user authentication and authorization are the
following:

« Provides strong authentication using SSL or Windows NT native authentication
« Enables centralized management of users and privileges across the enterprise

« Iseasy to administer—for every user you do not have to create a schema in
every database in the enterprise

« Facilitates single sign-on—users only need to sign on once to access multiple
databases and services. Further, users using passwords can have a single
password to access databases accepting password authenticated enterprise
users.

= Because it provides password based access, previously defined password
authenticated database users can be migrated to the directory (using the User
Migration Utility) to be centrally administered. This makes global
authentication and authorization available for prior Oracle release clients that
are still supported.

« CURRENT_USER database links connect as a global user. A local user can
connect as a global user in the context of a stored procedure—without storing
the global user's password in a link definition.

Administering Authentication 9-7

User Authentication Methods

See Also: The following books contain additional information
about global authentication and authorization, and enterprise users
and roles:

« Oracle Advanced Security Administrator's Guide

« Oracle Internet Directory Administrator’s Guide

Proxy Authentication and Authorization
It is possible to design a middle-tier server to proxy clients in a secure fashion.
Oracle provides three forms of proxy authentication:

« The middle-tier server authenticates itself with the database server and a client,
in this case an application user or another application, authenticates itself with
the middle-tier server. Client identities can be maintained all the way through
to the database.

« Theclient, in this case a database user, is not authenticated by the middle-tier
server. The clients identity and database password are passed through the
middle-tier server to the database server for authentication.

« Theclient, in this case a global user, is authenticated by the middle-tier server,
and passes one of the following through the middle tier for retrieving the
client's user name.

— Distinguished name (DN)
— Certificate

In all cases, the middle-tier server must be authorized to act on behalf of the client
by the administrator.

To authorize a middle-tier server to proxy a client use the GRANT CONNECT
THROUGH clause of the ALTER USER statement. You can also specify roles that the
middle tier is permitted to activate when connecting as the client.

Operations done on behalf of a client by a middle-tier server can be audited.

The PROXY_USERS data dictionary view can be queried to see which users are
currently authorized to connect through a middle tier.

Use the REVOKE CONNECT THROUGH clause of ALTER USERto disallow a proxy
connection.

9-8 Oracle Database Security Guide

User Authentication Methods

See Also:

« Oracle Call Interface Programmer’s Guide and Oracle Database
Application Developer's Guide - Fundamentals for details about
designing a middle-tier server to proxy users

« Oracle Database SQL Reference for a description and syntax of
the proxy clause for ALTER USER

« "Auditing in a Multi-Tier Environment" on page 26-13 for
details of auditing operations done on behalf of a user by a
middle tier

Authorizing a Middle Tier to Proxy and Authenticate a User
The following statement authorizes the middle-tier server appser ve to connect as

user bi | I . It uses the W TH ROLE clause to specify that appser ve activate all roles
associated with bi | | , except payrol | .
ALTER USER bi | |

GRANT GONNECT THROUGH appser ve
WTH ROLE ALL EXCEPT payrol | ;

To revoke the middle-tier server's (appser ve) authorization to connect as user
bi | I, the following statement is used:

ALTER USER bi || REMKE GONNECT THROUGH appser ve;

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

Use the AUTHENTI CATED USI NGclause of the ALTER USER ... GRANT
CONNECT THROUGH statement to authorize a user to be proxied, but not
authenticated, by a middle tier. Currently, PASSWORD is the only means supported.

The following statement illustrates this form of authentication:

ALTER USER nary
GRANT GONNECT THROUGH midti er
AUTHENTI CATED USI NG PASSWRD,

In the preceding statement, middle-tier server m dt i er is authorized to connect as

mar y, and mi dt i er must also pass mar y's password to the database server for
authorization.

Administering Authentication 9-9

User Authentication Methods

9-10 Oracle Database Security Guide

10

Administering User Privileges, Roles, and

Profiles

Many tasks, with many interwoven considerations, are involved in administering
user privileges, roles, and profiles. These necessary operations and principles are
discussed in the following sections:

Topic Category Links to Topics

Managing Privileges, Roles, and Profiles .

Granting, Revoking, and Viewing .
Privileges and Roles

Managing Oracle Users

Viewing Information About Database Users and Profiles
Managing Resources with Profiles

Understanding User Privileges and Roles

Managing User Roles

Granting User Privileges and Roles

Revoking User Privileges and Roles

Granting to and Revoking from the User Group PUBLIC
When Do Grants and Revokes Take Effect?

Granting Roles Using the Operating System or Network
Viewing Privilege and Role Information

Managing Oracle Users

Each Oracle database has a list of valid database users. To access a database, a user
must run a database application and connect to the database instance using a valid
user name defined in the database. This section explains how to manage users for a
database, and contains the following topics:

Administering User Privileges, Roles, and Profiles 10-1

Managing Oracle Users

« Creating Users
« Altering Users
« Dropping Users

See Also: Oracle Database SQL Reference for more information
about SQL statements used for managing users

Creating Users

You create a database user with the CREATE USER statement.To create a user, you
must have the CREATE USER system privilege. Because it is a powerful privilege, a
DBA or security administrator is normally the only user who has the CREATE USER
system privilege.

The following example creates a user and specifies that user's password, default
tablespace, temporary tablespace where temporary segments are created, tablespace
guotas, and profile.

CREATE USER j war d
| DENTI Fl ED BY AZ7BQ2
DEFALLT TABLESPACE data ts
QUOTA 100M (N test _ts
QUOTA 500K ON data ts
TEMPCRARY TABLESPACE tenp_ts
PRCHI LE cl erk;

GRANT create session TO jward;

A newly created user cannot connect to the database until granted the CREATE
SESSI ON system privilege.

Note: As administrator, you should create your own roles and
assign only those privileges that are needed. For example, it is
unwise to grant CONNECT if all that is needed is CREATE
SESSION, since CONNECT includes several additional privileges:
see Table 10-1 on page 10-18. Creating its own roles gives an
organization detailed control of the privileges it assigns, and
protects it in case Oracle were to change or remove roles that it
defines.

This section refers to the preceding example as it discusses the following aspects of
creating a user:

10-2 Oracle Database Security Guide

Managing Oracle Users

« Specifying a Name

« Setting a User's Authentication

« Assigning a Default Tablespace

« Assigning Tablespace Quotas

« Assigning a Temporary Tablespace
« Specifying a Profile

« Setting Default Roles

See Also: "Granting System Privileges and Roles" on page 25-11

Specifying a Name

Within each database a user name must be unique with respect to other user names
and roles. A user and role cannot have the same name. Furthermore, each user has
an associated schema. Within a schema, each schema object must have a unique
name.

Setting a User's Authentication

In the previous CREATE USER statement, the new user is to be authenticated using
the database. In this case, the connecting user must supply the correct password to
the database to connect successfully.

Selecting and specifying the method of user authentication is discussed in "User
Authentication Methods" on page 9-1.

Assigning a Default Tablespace

Each user should have a default tablespace. When a user creates a schema object
and specifies no tablespace to contain it, Oracle stores the object in the user's default
tablespace.

The default setting for every user's default tablespace is the SYSTEMtablespace. If a
user does not create objects, and has no privileges to do so, this default setting is
fine. However, if a user is likely to create any type of object, you should specifically
assign the user a default tablespace. Using a tablespace other than SYSTEMreduces
contention between data dictionary objects and user objects for the same datafiles.
In general, it is not advisable for user data to be stored in the SYSTEMtablespace.

You can create a permanent default tablespace other than SYSTEMat the time of
database creation, to be used as the database default for permanent objects. By

Administering User Privileges, Roles, and Profiles 10-3

Managing Oracle Users

separating the user data from the system data, you reduce the likelihood of
problems with the SYSTEMtablespace, which can in some circumstances cause the
entire database to become non-functional. This default permanent tablespace is not
used by system users, that is, SYS, SYSTEM and OQUTLN, whose default permanent
tablespace remains SYSTEM A tablespace designated as the default permanent
tablespace cannot be dropped; to accomplish this goal, another tablespace must first
be designated as the default permanent tablespace. It is possible to ALTER the
default permanent tablespace to another tablespace, affecting all users/objects
created after the ALTER DDL commits.

You can also set a user's default tablespace during user creation, and change it later
with the ALTER USER statement. Changing the user's default tablespace affects
only objects created after the setting is changed.

When you specify the user's default tablespace, also specify a quota on that
tablespace.

In the previous CREATE USER statement, j war d's default tablespace isdat a_t s,
and his quota on that tablespace is 500K.

Assigning Tablespace Quotas

You can assign each user a tablespace quota for any tablespace (except a temporary
tablespace). Assigning a quota does two things:

« Users with privileges to create certain types of objects can create those objects in
the specified tablespace.

« Oracle limits the amount of space that can be allocated for storage of a user's
objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the
privilege to create a schema object, you must assign a quota to allow the user to
create objects. Minimally, assign users a quota for the default tablespace, and
additional quotas for other tablespaces in which they can create objects.

You can assign a user either individual quotas for a specific amount of disk space in
each tablespace or an unlimited amount of disk space in all tablespaces. Specific
guotas prevent a user's objects from consuming too much space in the database.

You can assign a user's tablespace quotas when you create the user, or add or
change quotas later. If a new quota is less than the old one, then the following
conditions hold true:

10-4 Oracle Database Security Guide

Managing Oracle Users

« Ifauser has already exceeded a new tablespace quota, the user's objects in the
tablespace cannot be allocated more space until the combined space of these
objects falls below the new quota.

« If a user has not exceeded a new tablespace quota, or if the space used by the
user's objects in the tablespace falls under a new tablespace quota, the user's
objects can be allocated space up to the new quota.

Revoking Users' Ability to Create Objects in a Tablespace You can revoke a user's ability
to create objects in a tablespace by changing the user's current quota to zero. After a
guota of zero is assigned, the user's objects in the tablespace remain, but new objects
cannot be created and existing objects cannot be allocated any new space.

UNLIMITED TABLESPACE System Privilege To permit a user to use an unlimited
amount of any tablespace in the database, grant the user the UNLI M TED
TABLESPACE system privilege. This overrides all explicit tablespace quotas for the
user. If you later revoke the privilege, explicit quotas again take effect. You can
grant this privilege only to users, not to roles.

Before granting the UNLI M TED TABLESPACE system privilege, consider the
consequences of doing so.

Advantage:

« You can grant a user unlimited access to all tablespaces of a database with one
statement.

Disadvantages:
« The privilege overrides all explicit tablespace quotas for the user.

= You cannot selectively revoke tablespace access from a user with the
UNLI M TED TABLESPACE privilege. You can grant access selectively only after
revoking the privilege.

Assigning a Temporary Tablespace

Each user also should be assigned a temporary tablespace. When a user executes a
SQL statement that requires a temporary segment, Oracle stores the segment in the
user's temporary tablespace. These temporary segments are created by the system
when doing sorts or joins and are owned by SYS, which has resource privileges in
all tablespaces.

Administering User Privileges, Roles, and Profiles 10-5

Managing Oracle Users

In the previous CREATE USER statement, j war d's temporary tablespace ist enp_
t s, atablespace created explicitly to contain only temporary segments. Such a
tablespace is created using the CREATE TEMPORARY TABLESPACE statement.

If a user's temporary tablespace is not explicitly set, the user is assigned the default
temporary tablespace that was specified at database creation, or by an ALTER
DATABASE statement at a later time. If there is no default temporary tablespace
explicitly assigned, the default is the SYSTEMtablespace or another permanent
default established by the system administrator. It is not advisable for user data to
be stored in the SYSTEMtablespace. Also, assigning a tablespace to be used
specifically as a temporary tablespace eliminates file contention among temporary
segments and other types of segments.

Note: If your SYSTEMtablespace is locally managed, then users
must be assigned a specific default (locally managed) temporary
tablespace. They may not be allowed to default to using the
SYSTEMtablespace because temporary objects cannot be placed in
permanent locally managed tablespaces.

You can set a user's temporary tablespace at user creation, and change it later using
the ALTER USER statement. Do not set a quota for temporary tablespaces. You can
also establish tablespace groups instead of assigning individual temporary
tablespaces.

See Also: These sections in Oracle Database Administrator's Guide:,
Chapter 8, Managing Tablespaces:

« "Temporary Tablespaces"

« "Multiple Temporary Tablespaces: Using Tablespace Groups"
Specifying a Profile
You also specify a profile when you create a user. A profile is a set of limits on

database resources and password access to the database. If no profile is specified,
the user is assigned a default profile.

See Also: "Managing Resources with Profiles" on page 10-13
Setting Default Roles

You cannot set a user's default roles in the CREATE USER statement. When you first
create a user, the user's default role setting is ALL, which causes all roles

10-6 Oracle Database Security Guide

Managing Oracle Users

subsequently granted to the user to be default roles. Use the ALTER USER
statement to change the user's default roles.

Altering Users

Users can change their own passwords. However, to change any other option of a
user's security domain, you must have the ALTER USER system privilege. Security
administrators are normally the only users that have this system privilege, as it
allows a modification of any user's security domain. This privilege includes the
ability to set tablespace quotas for a user on any tablespace in the database, even if
the user performing the modification does not have a quota for a specified
tablespace.

You can alter a user's security settings with the ALTER USER statement. Changing a
user's security settings affects the user's future sessions, not current sessions.

The following statement alters the security settings for user avyrr os:

ALTER USER avyrros

| DENTI Fl ED EXTERNALLY

DEFALLT TABLESPACE data ts

TEMPCRARY TABLESPACE tenp_ts

QUOTA 100M N data ts

QUTA O ONtest _ts

PRCH LE cl erk;
The ALTER USER statement here changes avyr r 0s's security settings as follows:
« Authentication is changed to use avyr r 0s's operating system account.
« avyrros's default and temporary tablespaces are explicitly set.
« avyrros isgiven a 100Mquota for the dat a_t s tablespace.
« avyrros'squotaonthetest ts isrevoked.

« avyrros isassigned the cl er k profile.

Changing a User's Authentication Mechanism

Most non-DBA users can still change their own passwords with the ALTER USER
statement, as follows:

ALTER USER andy
| DENTI Fl ED BY swor df i sh;

Administering User Privileges, Roles, and Profiles 10-7

Managing Oracle Users

No special privileges (other than those to connect to the database) are required for a
user to change passwords. Users should be encouraged to change their passwords
frequently.

Users must have the ALTER USER privilege to switch between methods of
authentication. Usually, only an administrator has this privilege.

See Also: "User Authentication Methods" on page 9-1 for
information about the authentication methods that are available for
Oracle users

Changing a User's Default Roles

A default role is one that is automatically enabled for a user when the user creates a
session. You can assign a user zero or more default roles.

See Also: "Managing User Roles" on page 10-20

Dropping Users

When a user is dropped, the user and associated schema are removed from the data
dictionary and all schema objects contained in the user's schema, if any, are
immediately dropped.

Notes:

« Ifauser's schema and associated objects must remain but the
user must be denied access to the database, revoke the CREATE
SESSI ON privilege from the user.

« Do not attempt to drop the SYS or SYSTEM user. Doing so will
corrupt your database.

A user that is currently connected to a database cannot be dropped. To drop a
connected user, you must first terminate the user's sessions using the SQL statement
ALTER SYSTEMwith the KI LL SESSI ON clause.

You can drop a user from a database using the DROP USER statement. To drop a
user and all the user's schema objects (if any), you must have the DROP USER
system privilege. Because the DROP USER system privilege is so powerful, a
security administrator is typically the only type of user that has this privilege.

If the user's schema contains any schema objects, use the CASCADE option to drop
the user and all associated objects and foreign keys that depend on the tables of the

10-8 Oracle Database Security Guide

Viewing Information About Database Users and Profiles

user successfully. If you do not specify CASCADE and the user's schema contains
objects, an error message is returned and the user is not dropped. Before dropping a
user whose schema contains objects, thoroughly investigate which objects the user's
schema contains and the implications of dropping them. Pay attention to any
unknown cascading effects. For example, if you intend to drop a user who owns a
table, check whether any views or procedures depend on that particular table.

The following statement drops user j ones and all associated objects and foreign
keys that depend on the tables owned by j ones.

DRCP USER j ones CASCACE,
See Also: "Terminating Sessions" in Oracle Database

Administrator's Guide for more information about terminating
sessions

Viewing Information About Database Users and Profiles

The wide variety of options for viewing such information is discussed in the
following subsections:

« User and Profile Information in Data Dictionary Views
« Listing All Users and Associated Information

« Listing All Tablespace Quotas

« Listing All Profiles and Assigned Limits

« Viewing Memory Use for Each User Session

User and Profile Information in Data Dictionary Views
The following data dictionary views contain information about database users and

profiles:
View Description
DBA_USERS DBA view describes all users of the database.
ALL_USERS ALL view lists users visible to the current user, but does not
describe them.
USER_USERS USER view describes only the current user.

Administering User Privileges, Roles, and Profiles 10-9

Viewing Information About Database Users and Profiles

View

Description

DBA_TS_QUOTAS
USER TS _QUOTAS

Describes tablespace quotas for users.

USER _PASSWORD LI M TS

Describes the password profile parameters that are
assigned to the user.

USER_RESOURCE_LI M TS

Displays the resource limits for the current user.

DBA_PRCFI LES Displays all profiles and their limits.

RESOURCE_COST Lists the cost for each resource.

V$SESSI ON Lists session information for each current session. Includes
user name.

V$SESSTAT Lists user session statistics.

V$STATNAMVE Displays decoded statistic names for the statistics shown in
the V$SESSTAT view.

PROXY_USERS Describes users who can assume the identity of other users.

The following sections present some example of using these views, and assume a
database in which the following statements have been executed:

CREATE PRCFILE clerk LIMT

SESSI ONS PER USER 1
| DLE_TI ME 30
GONNECT_TI ME 600;

CREATE USER jfee

| DENTI Fl BED BY wi | dcat
DEFALLT TABLESPACE users

TEMPCRARY TABLESPACE tenp_ts

QUOTA 500K ON users
PRCHI LE cl erk;

CREATE USER dcr anney

| DENTI Fl ED BY bedr ock
DEFALLT TABLESPACE users
TEMPCRARY TABLESPACE tenp_ts
QUOTA unlimted ON users;

CREATE USER userscot t
| DENTI Fl ED BY scott1,

10-10 Oracle Database Security Guide

Viewing Information About Database Users and Profiles

See Also: Oracle Database SQL Reference for complete descriptions
of the preceding data dictionary and dynamic performance views

Listing All Users and Associated Information

The following query lists users and their associated information as defined in the
database:

SH ECT USERNAME, PRCH LE, AGOONT_STATUS FROM DBA USERS,

USERNAME PRCFI LE ACOONT_STATUS
SYS DEFAULT CPEN
SYSTEM CEFALLT CPEN
USERSCOTT CEFALLT CPEN
JFEE AR CPEN
DCRANNEY CEFALLT CPEN

All passwords are encrypted to preserve security. If a user queries the PASSWORD
column, that user is not able to determine another user's password.

Listing All Tablespace Quotas

The following query lists all tablespace quotas specifically assigned to each user:
SELECT * FROM DBA TS QUOTAS,

TABLESPACE USERNAME BYTES MAX BYTES BLOXKS MAX_BLOCKS

USERS JFEE 0 512000 0 250
USERS DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the MAX_BYTES
column. Note that this number is always a multiple of the database block size, so if
you specify a tablespace quota that is not a multiple of the database block size, it is
rounded up accordingly. Unlimited quotas are indicated by "-1".

Listing All Profiles and Assigned Limits

The following query lists all profiles in the database and associated settings for each
limit in each profile:

SH ECT * FROM DBA PRCH LES
CROER BY PRCH LE

Administering User Privileges, Roles, and Profiles 10-11

Viewing Information About Database Users and Profiles

PRCFI LE RESCLRCE. NAMVE RESORE LIMT
ALERK QOGS TELIMT KERNEL DEFALLT
ALERK FAl LED LG N ATTEMPTS PASSWRD CEFAULT
ALK PASSWRD LI FE T ME PASSWRD CEFAULT
QLERK PASSWRD REUSE TI ME PASSITRD DEFALLT
QLERK PASSWIRD REUSE MAX PASSWRD DEFALLT
ALERK PASSWRD VER FY_FUNCTION PASSWRD DEFALLT
ALERK PASSWIRD LOK Tl ME PASSWRD DEFAULT
ALERK PASSWRD GRACE Tl ME PASSWRD CEFAULT
AR PR VATE_SGA KERNEL DEFALLT
QLERK CONNECT_TI ME KERNEL 600

QLERK | DLE_TI ME KERNEL 30

ALERK L0 CAL_READS PER CALL KERNEL DEFALLT
ALERK LO3 CAL_REACS PER SESS ON KER\EL DEFALLT
ALERK CPU PER CALL KERNEL DEFALLT
ALERK CPU PER SESS ON KERNEL DEFALLT
QLERK ONS_PER USER KERNEL 1

DEFALLT QPGS TELIMT KERNEL UNLI M TED
DEFALLT PR VATE_SGA KERNEL UNLI M TED
DEFALLT SESSI ONS PER USER KERNEL UNLI M TED
DEFALLT CPU PER CALL KERNEL UNLI M TED
DEFALLT LO3 CAL_READS PER CALL KERNEL UNLI M TED
DEFALLT CONNECT_TI ME KERNEL UNLI M TED
DEFALLT | DLE_TI ME KERNEL UNLI M TED
DEFALLT LOQ CAL_REACS PER SESSI N KER\EL UNLI M TED
DEFALLT CPU_PER SESS ON KERNEL UNLI M TED
DEFALLT FA LED LOd N ATTEMPTS PASSWZRD UNLI M TED
DEFALLT PASSWRD LI FE TI ME PASSWZRD UNLI M TED
DEFALLT PASSWIRD REUSE MAX PASS/ZRD UNLI M TED
DEFALLT PASSWIRD LOK_TI ME PASS/ZRD UNLI M TED
DEFALLT PASSWIRD GRACE TI ME PASS/ZRD UNLI M TED
DEFALLT PASSWRD VER FY_FUNCTION PASSWZRD UNLI M TED
DEFALLT PASSWRD REUSE TI ME PASS/ZRD UNLI M TED

32 rows sel ect ed.

Viewing Memory Use for Each User Session

The following query lists all current sessions, showing the Oracle user and current
UGA (user global area) memory use for each session:

SELECT USERNAME, VALLE || 'bytes' "Qurrent UGA nenory"
FROM VBSESSI ON sess, VBSESSTAT stat, VBSTATNAME nane

10-12 Oracle Database Security Guide

Managing Resources with Profiles

WHERE sess.SSD = stat. 9D
AND st at . STATI STI G# = nane. STATI STI G¢
AND nane. NAME = ' sessi on uga nenory' ;

USERNAME Qurrent UGA nenory

18636byt es
17464byt es
19180byt es
18364byt es
39384byt es
35292byt es
17696byt es
15868byt es
USERSCOTT 42244byt es
SYs 98196byt es
SYSTEM 30648byt es

11 rows sel ect ed.

To see the maximum UGA memory ever allocated to each session since the instance
started, replace ' sessi on uga menory' in the preceding query with ' sessi on
uga nenory nmax' .

Managing Resources with Profiles

A profile is a named set of resource limits that restrict a user's database usage and
instance resources, as well as password practices. For profiles to take effect, resource
limits must be turned on for the database as a whole. You can assign a profile to
each user, and a default profile to all others. Each user can have only one profile;
creating a new one supersedes any earlier one.

However, in Oracle 10g, resource allocations and restrictions are primarily handled
through the Database Resource Manager.

See Also:

« For resource allocation, see the Database Resource Manager, as
described in the Oracle Database Administrator's Guide.

« For password policies, see Password Management Policy on
page 7-12.

Administering User Privileges, Roles, and Profiles 10-13

Managing Resources with Profiles

A profile can be created, assigned to users, altered, and dropped at any time (using
CREATE USER or ALTER USER) by any authorized database user. Profiles can be
assigned only to users and not to roles or other profiles. Such assignments do not
affect current sessions. Profile resource limits are enforced only when you enable
resource limitation for the associated database. Enabling such limitation can occur
either before starting up the database (the RESOURCE_LI M T initialization
parameter) or while it is open (using an ALTER SYSTEMstatement).

See Also:

« Oracle Database SQL Reference for more information about the
SQL statements used for managing profiles, such as CREATE
PROFILE, and for information on how to calculate composite
limits.

« "Creating Users" on page 10-2

« "Altering Users" on page 10-7

« Database Resource Manager in the Oracle Database
Administrator's Guide.

Dropping Profiles

To drop a profile, you must have the DROP PROFI LE system privilege. You can
drop a profile (other than the default profile) using the SQL statement DROP
PROFI LE. To successfully drop a profile currently assigned to a user, use the
CASCADE option.

The following statement drops the profile cl er k, even though it is assigned to a
user:

DRCP PRCH LE cl erk CASCACE,
Any user currently assigned to a profile that is dropped is automatically assigned to
the DEFAULT profile. The DEFAULT profile cannot be dropped. When a profile is

dropped, the drop does not affect currently active sessions. Only sessions created
after a profile is dropped abide by any modified profile assignments.

10-14 Oracle Database Security Guide

Understanding User Privileges and Roles

Understanding User Privileges and Roles

A user privilege is a right to execute a particular type of SQL statement, or a right to
access another user's object, execute a PL/SQL package, and so on. The types of privileges
are defined by Oracle.

Roles are created by users (usually administrators) to group together privileges or other
roles. They are a means of facilitating the granting of multiple privileges or roles to users.

This section describes Oracle user privileges, and contains the following topics:
« System Privileges
« Object Privileges

= User Roles

See Also: Oracle Database Concepts for additional information
about privileges and roles

System Privileges

There are over 100 distinct system privileges. Each system privilege allows a user to
perform a particular database operation or class of database operations.

Caution: System privileges can be very powerful, and should be
granted only when necessary to roles and trusted users of the
database.

See Also: Oracle Database SQL Reference. for the complete list of
system privileges and their descriptions

Restricting System Privileges

Because system privileges are so powerful, Oracle recommends that you configure
your database to prevent regular (non-DBA) users exercising ANY system privileges
(such as UPDATE ANY TABLE) on the data dictionary. In order to secure the data
dictionary, ensure that the O7_DI CTI ONARY_ACCESSI BI LI TY initialization
parameter is set to FALSE, the default value. This feature is called the dictionary
protection mechanism.

Administering User Privileges, Roles, and Profiles 10-15

Understanding User Privileges and Roles

Note: The O7_DI CTI ONARY_ACCESSI BI LI TY initialization
parameter controls restrictions on system privileges when you
upgrade from Oracle database version 7 to Oracle8i and higher
releases. If the parameter is set to TRUE, access to objects in the SYS
schema is allowed (Oracle database version 7 behavior). If this
parameter is set to FALSE, system privileges that allow access to
objects in "any schema" do not allow access to objects in SYS
schema. The default for O7_DI CTI ONARY_ACCESSI BI LI TY is
FALSE.

When this parameter is not set to FALSE, the ANY privilege applies
to the data dictionary, and a malicious user with ANY privilege
could access or alter data dictionary tables.

See the Oracle Database Reference for more information on the O7_
DI CTI ONARY_ACCESSI BI LI TY initialization parameter to
understand its usage.

If you enable dictionary protection (O7_DI CTI ONARY_ACCESSI BI LI TY is FALSE),
access to objects in the SYS schema (dictionary objects) is restricted to users with the
SYS schema. These users are SYS and those who connect as SYSDBA. System
privileges providing access to objects in other schemas do not give other users
access to objects in the SYS schema. For example, the SELECT ANY TABLE
privilege allows users to access views and tables in other schemas, but does not
enable them to select dictionary objects (base tables of dynamic performance views,
views, packages, and synonyms). These users can, however, be granted explicit
object privileges to access objects in the SYS schema.

Accessing Objects in the SYS Schema

Users with explicit object privileges or those who connect with administrative
privileges (SYSDBA) can access objects in the SYS schema. Another means of
allowing access to objects in the SYS schema is by granting users any of the
following roles:

. SELECT CATALOG ROLE

This role can be granted to users to allow SELECT privileges on data dictionary
views.

. EXECUTE_CATALOG ROLE

10-16 Oracle Database Security Guide

Understanding User Privileges and Roles

This role can be granted to users to allow EXECUTE privileges for packages and
procedures in the data dictionary.

« DELETE_CATALOG ROLE

This role can be granted to users to allow them to delete records from the
system audit table (AUDS).

Additionally, the following system privilege can be granted to users who require
access to tables created in the SYS schema:

« SELECT ANY DI CTlI ONARY

This system privilege allows query access to any object in the SYS schema,
including tables created in that schema. It must be granted individually to each
user requiring the privilege. It is not included in GRANT ALL PRI VI LEGES,
nor can it be granted through a role.

Caution: You should grant these roles and the SELECT ANY
DI CTI ONARY system privilege with extreme care, since the
integrity of your system can be compromised by their misuse.

Object Privileges
Each type of object has different privileges associated with it.

You can specify ALL [PRI VI LEGES] to grant or revoke all available object privileges
for an object. ALL is not a privilege; rather, it is a shortcut, or a way of granting or
revoking all object privileges with one word in GRANT and REVOKE statements.
Note that if all object privileges are granted using the ALL shortcut, individual
privileges can still be revoked.

Likewise, all individually granted privileges can be revoked by specifying ALL.
However, if you REVOKE ALL, and revoking causes integrity constraints to be
deleted (because they depend on a REFERENCES privilege that you are revoking),
you must include the CASCADE CONSTRAI NTS option in the REVOKE statement.

See Also: Oracle Database SQL Reference. for the complete list of
object privileges

Administering User Privileges, Roles, and Profiles 10-17

Understanding User Privileges and Roles

User Roles

A role groups several privileges and roles, so that they can be granted to and revoked
from users simultaneously. A role must be enabled for a user before it can be used by the
user.

Oracle provides some predefined roles to help in database administration. These
roles, listed in Table 10-1, are automatically defined for Oracle databases when you
run the standard scripts that are part of database creation. You can grant privileges
and roles to, and revoke privileges and roles from, these predefined roles in the
same way as you do with any role you define.

Note: Each installation should create its own roles and assign only
those privileges that are needed. For example, it is unwise to grant
CONNECT if all that is needed is CREATE SESSION, since
CONNECT includes several additional privileges: see Table 10-1.
Creating its own roles gives an organization detailed control of the
privileges it assigns, and protects it in case Oracle were to change or
remove roles that it defines.

Table 10-1 Predefined Roles

Role Name Created By (Script) Description

CONNECT SQL. BSQ Includes the following system privileges:
ALTER SESSI ON, CREATE CLUSTER
CREATE DATABASE LI NK, CREATE
SEQUENCE, CREATE SESSI ON, CREATE
SYNONYM CREATE TABLE, CREATE VI EW

RESOURCE SQ.. BSQ Includes the following system privileges:
CREATE CLUSTER, CREATE | NDEXTYPE,
CREATE OPERATOR, CREATE PROCEDURE,
CREATE SEQUENCE, CREATE TABLE,
CREATE TRI GGER, CREATE TYPE

DBA SQL. BSQ All system privileges W TH ADM N
OPTI ON

Note: The previous three roles are provided to maintain compatibility with previous versions of Oracle
and may not be created automatically in future versions of Oracle. Oracle Corporation recommends
that you design your own roles for database security, rather than relying on these roles.

10-18 Oracle Database Security Guide

Understanding User Privileges and Roles

Table 10-1 (Cont.) Predefined Roles

Role Name

Created By (Script) Description

EXP_FULL_DATABASE

CATEXP. SQL

Provides the privileges required to perform
full and incremental database exports.
Includes: SELECT ANY TABLE, BACKUP
ANY TABLE, EXECUTE ANY PROCEDURE,
EXECUTE ANY TYPE, ADM NI STER
RESOURCE MANAGER, and | NSERT,
DELETE, and UPDATE on the tables

SYS. I NCVI D, SYS. | NCFI L, and

SYS. | NCEXP. Also the following roles:
EXECUTE_CATALOG ROLE and SELECT _
CATALOG ROLE.

| MP_FULL_DATABASE

CATEXP. SQL

Provides the privileges required to perform
full database imports. Includes an extensive
list of system privileges (use view DBA
SYS_PRI VSto view privileges) and the
following roles: EXECUTE_CATALOG ROLE
and SELECT_CATALOG_RCLE.

DELETE_CATALOG ROLE

SQL. BSQ

Provides DELETE privilege on the system
audit table (AUDS$)

EXECUTE_CATALOG RCLE

SQL. BSQ

Provides EXECUTE privilege on objects in
the data dictionary. Also, HS_ADM N_ROLE.

SELECT_CATALOG RCOLE

SQL. BSQ

Provides SELECT privilege on objects in the
data dictionary. Also, HS_ADM N_ROLE.

RECOVERY_CATALOG_OMNER

CATALOG. SQL

Provides privileges for owner of the
recovery catalog. Includes: CREATE
SESSI ON, ALTER SESSI ON, CREATE
SYNONYM CREATE VI EWCREATE
DATABASE LI NK, CREATE TABLE,
CREATE CLUSTER, CREATE SEQUENCE,
CREATE TRI GGER, and CREATE
PROCEDURE

HS_ADM N_ROLE

CATHS. SQL

Used to protect access to the HS
(Heterogeneous Services) data dictionary
tables (grants SELECT) and packages
(grants EXECUTE). It is granted to SELECT _
CATALOG _ROLE and EXECUTE_CATALOG _
ROLE such that users with generic data
dictionary access also can access the HS
data dictionary.

AQ USER ROLE

CATQUELE. SQL

Obsoleted, but kept mainly for release 8.0
compatibility. Provides execute privilege on
DBVS_AQand DBVS_AQI N.

Administering User Privileges, Roles, and Profiles 10-19

Managing User Roles

Table 10-1 (Cont.) Predefined Roles

Role Name Created By (Script) Description

AQ _ADM NI STRATOR_RCOLE CATQUEUE. SQL Provides privileges to administer Advance
Queuing. Includes ENQUEUE ANY QUEUE,
DEQUEUE ANY QUEUE, and MANAGE ANY
QUEUE, SELECT privileges on AQ tables
and EXECUTE privileges on AQ packages.

If you install other options or products, other predefined roles may be created.

Managing User Roles
This section describes aspects of managing roles, and contains the following topics:
« Creating a Role
« Specifying the Type of Role Authorization
« Dropping Roles

Creating a Role

You can create a role using the CREATE ROLE statement, but you must have the
CREATE ROLE system privilege to do so. Typically, only security administrators
have this system privilege.

Note: Immediately after creation, a role has no privileges
associated with it. To associate privileges with a new role, you must
grant privileges or other roles to the new role.

You must give each role you create a uniqgue name among existing usernames and
role names of the database. Roles are not contained in the schema of any user. In a
database that uses a multibyte character set, Oracle recommends that each role
name contain at least one single-byte character. If a role name contains only
multibyte characters, the encrypted role name/password combination is
considerably less secure.

The following statement creates the cl er k role, which is authorized by the
database using the password bi cent enni al :

CREATE RQLE cl erk | DENTI FI ED BY bi cent enni al ;

10-20 Oracle Database Security Guide

Managing User Roles

The | DENTI FI ED BY clause specifies how the user must be authorized before the
role can be enabled for use by a specific user to which it has been granted. If this
clause is not specified, or NOT | DENTI FI EDis specified, then no authorization is
required when the role is enabled. Roles can be specified to be authorized by:

« The database using a password

« An application using a specified package

« Externally by the operating system, network, or other external source
« Globally by an enterprise directory service

These authorizations are discussed in following sections.

Later, you can set or change the authorization method for a role using the ALTER
RCLE statement. The following statement alters the cl er k role to specify that the
user must have been authorized by an external source before enabling the role:

ALTER RQLE cl erk | DENTI Fl ED EXTERNALLY;

To alter the authorization method for a role, you must have the ALTER ANY ROLE
system privilege or have been granted the role with the ADM N OPTI ON.

See Also:

« Oracle Database SQL Reference for syntax, restrictions, and
authorization information about the SQL statements used to
manage roles and privileges

« Oracle Advanced Security Administrator's Guide

Specifying the Type of Role Authorization

The methods of authorizing roles are presented in this section. A role must be
enabled for you to use it.

See Also: "When Do Grants and Revokes Take Effect?" on
page 10-35 for a discussion about enabling roles

Role Authorization by the Database

The use of a role authorized by the database can be protected by an associated
password. If you are granted a role protected by a password, you can enable or
disable the role by supplying the proper password for the role in a SET RCOLE
statement. However, if the role is made a default role and enabled at connect time,
the user is not required to enter a password.

Administering User Privileges, Roles, and Profiles 10-21

Managing User Roles

The following statement creates a role manager . When it is enabled, the password
nor ewor k must be supplied.

CREATE ROLE nanager | DENTI Fl ED BY nor ewor k;

Note: In a database that uses a multibyte character set, passwords
for roles must include only singlebyte characters. Multibyte
characters are not accepted in passwords. See the Oracle Database
SQL Reference for information about specifying valid passwords.

Role Authorization by an Application

The | NDENTI FI ED USI NG package_ nane clause lets you create an application
role, which is a role that can be enabled only by applications using an authorized
package. Application developers do not need to secure a role by embedding
passwords inside applications. Instead, they can create an application role and
specify which PL/SQL package is authorized to enable the role.

The following example indicates that the role adm n_r ol e is an application role
and the role can only be enabled by any module defined inside the PL/SQL
package hr. adm n.

CREATE ROLE admin_rol e | DENTI FI ED USI NG hr. admn;

When enabling the user's default roles at login as specified in the user's profile, no
checking is performed for application roles.

Role Authorization by an External Source

The following statement creates a role named acct s_r ec and requires that the
user be authorized by an external source before it can be enabled:

CREATE ROLE accts_rec | DENTI Fl ED EXTERNALLY;

Role Authorization by the Operating System Role authentication through the operating
system is useful only when the operating system is able to dynamically link
operating system privileges with applications. When a user starts an application,
the operating system grants an operating system privilege to the user. The granted
operating system privilege corresponds to the role associated with the application.
At this point, the application can enable the application role. When the application
is terminated, the previously granted operating system privilege is revoked from
the user's operating system account.

10-22 Oracle Database Security Guide

Managing User Roles

If a role is authorized by the operating system, you must configure information for
each user at the operating system level. This operation is operating system
dependent.

If roles are granted by the operating system, you do not need to have the operating
system authorize them also; this is redundant.

See Also: "Granting Roles Using the Operating System or
Network" on page 10-36 for more information about roles granted
by the operating system

Role Authorization and Network Clients If users connect to the database over Oracle Net,
by default their roles cannot be authenticated by the operating system. This
includes connections through a shared server configuration, as this connection
requires Oracle Net. This restriction is the default because a remote user could
impersonate another operating system user over a network connection.

If you are not concerned with this security risk and want to use operating system
role authentication for network clients, set the initialization parameter REMOTE_OS
RCOLES in the database's initialization parameter file to TRUE. The change will take
effect the next time you start the instance and mount the database. The parameter is
FALSE by default.

Role Authorization by an Enterprise Directory Service

A role can be defined as a global role, whereby a (global) user can only be
authorized to use the role by an enterprise directory service. You define the global
role locally in the database by granting privileges and roles to it, but you cannot
grant the global role itself to any user or other role in the database. When a global
user attempts to connect to the database, the enterprise directory is queried to
obtain any global roles associated with the user.

The following statement creates a global role:

CREATE ROLE super vi sor | DENTI FI ED Q.GBALLY;

Global roles are one component of enterprise user security. A global role only
applies to one database, but it can be granted to an enterprise role defined in the

enterprise directory. An enterprise role is a directory structure which contains
global roles on multiple databases, and which can be granted to enterprise users.

A general discussion of global authentication and authorization of users, and its
role in enterprise user management, was presented earlier in "Global
Authentication and Authorization" on page 9-5.

Administering User Privileges, Roles, and Profiles 10-23

Granting User Privileges and Roles

See Also: Oracle Advanced Security Administrator’s Guide and
Oracle Internet Directory Administrator's Guide for information about
enterprise user management and how to implement it

Dropping Roles

In some cases, it may be appropriate to drop a role from the database. The security
domains of all users and roles granted a dropped role are immediately changed to
reflect the absence of the dropped role's privileges. All indirectly granted roles of
the dropped role are also removed from affected security domains. Dropping a role
automatically removes the role from all users' default role lists.

Because the creation of objects is not dependent on the privileges received through a
role, tables and other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must
have the DROP ANY ROLE system privilege or have been granted the role with the
ADM N OPTI ON.

The following statement drops the role CLERK:
DRCP RALE cl erk;

Granting User Privileges and Roles

This section describes the granting of privileges and roles, and contains the
following topics:

« Granting System Privileges and Roles
« Granting Object Privileges
« Granting Privileges on Columns

It is also possible to grant roles to a user connected through a middle tier or proxy.
This is discussed in "Proxy Authentication and Authorization" on page 9-8.

Granting System Privileges and Roles

10-24

You can grant system privileges and roles to other users and roles using the GRANT
statement. The following privileges are required:

« To grant a system privilege, you must have been granted the system privilege
with the ADM N OPTI ONor have been granted the GRANT ANY PRI VI LEGE
system privilege.

Oracle Database Security Guide

Granting User Privileges and Roles

To grant a role, you must have been granted the role with the ADM N OPTI ON
or have been granted the GRANT ANY ROLE system privilege.

Note: You cannot grant a role that is | DENTI FI ED GLOBALLY to
anything. The granting (and revoking) of global roles is controlled
entirely by the enterprise directory service.

The following statement grants the system privilege CREATE SESSI ON and the
accts_pay role to the user j war d:

GRANT CREATE SESSI AN accts_pay TO jward;

Notes:

= Object privileges cannot be granted along with system privileges
and roles in the same GRANT statement.

« Each installation should create its own roles and assign only
those privileges that are needed. For example, it is unwise to
grant CONNECT if all that is needed is CREATE SESSION,
since CONNECT includes several additional privileges: see
Table 10-1 on page 10-18. Creating its own roles gives an
organization detailed control of the privileges it assigns, and
protects it in case Oracle were to change or remove roles that it
defines.

Granting the ADMIN OPTION

A user or role that is granted a privilege or role specifying the W TH ADM N
OPTI ONclause has several expanded capabilities;

The grantee can grant or revoke the system privilege or role to or from any user
or other role in the database. Users cannot revoke a role from themselves.

The grantee can further grant the system privilege or role with the ADM N
OPTI ON.

The grantee of a role can alter or drop the role.

In the following statement, the security administrator grants the new_dba role to
m chael :

GRANT new dba TO michael WTH ADM N CPTI ON

Administering User Privileges, Roles, and Profiles 10-25

Granting User Privileges and Roles

The user mi chael cannot only use all of the privileges implicit in the new_dba
role, but can grant, revoke, or drop the new_dba role as deemed necessary. Because
of these powerful capabilities, exercise caution when granting system privileges or
roles with the ADM N OPTI ON. Such privileges are usually reserved for a security
administrator and rarely granted to other administrators or users of the system.

When a user creates a role, the role is automatically granted to the creator with the
ADM N OPTI ON

Creating a New User with the GRANT Statement

Oracle enables you to create a new user with the GRANT statement. If you specify a
password using the | DENTI FI ED BY clause, and the username/password does not
exist in the database, a new user with that username and password is created. The
following example creates ssmi t h as a new user while granting ssmi t h the
CONNECT system privilege:

GRANT GONNECT TO ssnith | DENTI H ED BY plg2r 3;

See Also: "Creating Users" on page 10-2

Granting Object Privileges

You also use the GRANT statement to grant object privileges to roles and users. To
grant an object privilege, you must fulfill one of the following conditions:

=« You own the object specified.

« You possess the GRANT ANY OBJECT PRI VI LEGE system privilege that
enables you to grant and revoke privileges on behalf of the object owner.

« The W TH GRANT OPTI ONclause was specified when you were granted the
object privilege by its owner.

Note: System privileges and roles cannot be granted along with
object privileges in the same GRANT statement.

The following statement grants the SELECT, | NSERT, and DELETE object privileges
for all columns of the enp table to the usersj f ee andt smi t h:

GRANT SELECT, |NSERT, DELETE CNenp TOjfee, tsnith;

To grant all object privileges on the sal ary view to the user j f ee, use the ALL
keyword, as shown in the following example:

10-26 Oracle Database Security Guide

Granting User Privileges and Roles

GRANT ALL N salary TOjfee;

Specifying the GRANT OPTION

Specify WITH GRANT OPTION to enable the grantee to grant the object privileges
to other users and roles. The user whose schema contains an object is automatically
granted all associated object privileges with the GRANT OPTI ON. This special
privilege allows the grantee several expanded privileges:

« The grantee can grant the object privilege to any users in the database, with or
without the GRANT OPTI QN, or to any role in the database.

« If both of the following are true, the grantee can create views on the table and
grant the corresponding privileges on the views to any user or role in the
database.

— The grantee receives object privileges for the table with the GRANT
OPTI ON.

— The grantee has the CREATE VI EWor CREATE ANY VI EWsystem
privilege.

The GRANT OPTI ON is not valid when granting an object privilege to a role. Oracle
prevents the propagation of object privileges through roles so that grantees of a role
cannot propagate object privileges received by means of roles.

Granting Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRI VI LEGE system privilege allows users to grant and
revoke any object privilege on behalf of the object owner. This provides a
convenient means for database and application administrators to grant access to
objects in any schema without requiring that they connect to the schema. This
eliminates the need to maintain login credentials for schema owners so that they
can grant access to objects, and it reduces the number of connections required
during configuration.

This system privilege is part of the Oracle supplied DBA role and is thus granted
(with the ADM N OPTI ON) to any user connecting AS SYSDBA (user SYS). As with
other system privileges, the GRANT ANY OBJECT PRI VI LEGE system privilege
can only be granted by a user who possesses the ADM N OPTI ON.

When you exercise the GRANT ANY OBJECT PRI VI LEGE system privilege to grant
an object privilege to a user, if you already possess the object privilege with the
GRANT OPTI QN, then the grant is performed in the usual way. In this case, you
become the grantor of the grant. If you do not possess the object privilege, then the

Administering User Privileges, Roles, and Profiles 10-27

Granting User Privileges and Roles

object owner is shown as the grantor, even though you, with the GRANT ANY
OBIJECT PRIVILEGE system privilege, actually performed the grant.

Note: The audit record generated by the GRANT statement will
always show the real user who performed the grant.

For example, consider the following. User adans possesses the GRANT ANY
OBJECT PRI VI LEGE system privilege. He does not possess any other grant
privileges. He issues the following statement:

GRANT SELECT ON hr. enpl oyees TO bl ake WTH GRANT CPTI O\
If you examine the DBA_TAB_PRI VS view, you will see that hr is shown as being
the grantor of the privilege:

SQ> SELECT GRANTEE, OMER GRANTCR PR I LEGE, GRANTABLE
2> FRCM DBA TAB PR VS
3> \WERE TABLE NAME = ' EMPLOYEES and OMER = 'HR ;

GRANTEE OANER GRANTCR PR M LEGE GRANTABLE

Now assume that bl ake also has the GRANT ANY OBJECT PRI VI LEGE system.
He, issues the following statement:

GRANT SHLECT ON hr. enpl oyees TO cl ark;

In this case, when you again query the DBA_TAB_PRI VS view, you see that bl ake
is shown as being the grantor of the privilege:

GRANTEE OMER GRANTCR PR'M LECE GRANTABLE

This occurs because bl ake already possesses the SELECT privilege on
hr . enpl oyees with the GRANT OPTI ON.

See Also: "Revoking Object Privileges on Behalf of the Object
Owner" on page 10-31

10-28 Oracle Database Security Guide

Revoking User Privileges and Roles

Granting Privileges on Columns

You can grant | NSERT, UPDATE, or REFERENCES privileges on individual columns
in a table.

Caution: Before granting a column-specific | NSERT privilege,
determine if the table contains any columns on which NOT NULL
constraints are defined. Granting selective insert capability without
including the NOT NULL columns prevents the user from inserting
any rows into the table. To avoid this situation, make sure that each
NOT NULL column is either insertable or has a non-NULL default
value. Otherwise, the grantee will not be able to insert rows into the
table and will receive an error.

The following statement grants | NSERT privilege on the acct _no column of the
account s tableto scot t:

GRANT | NSERT (acct_no) ON accounts TO scott;

In another example, object privilege for the enane and j ob columns of the enp
table are granter tothe usersj feeandtsnmi t h:

GRANT | NSERT(enane, job) ONenp TOjfee, tsnith;

Row-Level Access Control

You can also provide access control at the row level, that is, within objects, using
Virtual Private Database (VPD) or Oracle Label Security.

See Also:

« Chapter 13, "Using Virtual Private Database to Implement
Application Security Policies", and

« Adding Policies for Column-Level VPD, in Chapter 14,
"Implementing Application Context and Fine-Grained Access
Control"

Revoking User Privileges and Roles

This section describes aspects of revoking user privileges and roles, and contains
the following topics:

» Revoking System Privileges and Roles

Administering User Privileges, Roles, and Profiles 10-29

Revoking User Privileges and Roles

« Revoking Object Privileges

« Cascading Effects of Revoking Privileges

Revoking System Privileges and Roles
You can revoke system privileges and roles using the SQL statement REVOKE.

Any user with the ADM N OPTI ON for a system privilege or role can revoke the
privilege or role from any other database user or role. The revoker does not have to
be the user that originally granted the privilege or role. Users with GRANT ANY
RCLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the
accts_recrolefromtsmth:

REMCKE CREATE TABLE, accts rec FROMtsnith;

Note: The ADM N OPTI ONfor a system privilege or role cannot be
selectively revoked. The privilege or role must be revoked and then
the privilege or role re-granted without the ADM N OPTI ON.

Revoking Object Privileges

The REVOKE statement is used to revoke object privileges. To revoke an object
privilege, you must fulfill one of the following conditions:

= You previously granted the object privilege to the user or role.

= You possess the GRANT ANY OBJECT PRI VI LEGE system privilege that
enables you to grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the grantor, directly authorized, not the
grants made by other users to whom you granted the GRANT OPTION. However,
there is a cascading effect. The object privilege grants propagated using the GRANT
OPTI ONare revoked if a grantor's object privilege is revoked.

Assuming you are the original grantor, the following statement revokes the SELECT
and | NSERT privileges on the enp table from the usersj f ee and t smi t h:

REVCKE SHLECT, insert ONenp FROMjfee, tsnith;

The following statement revokes all object privileges for the dept table that you
originally granted to the human_r esour ce role

REVCKE ALL ON dept FROM hunan_r esour ces;

10-30 Oracle Database Security Guide

Revoking User Privileges and Roles

Note: The GRANT OPTI ONfor an object privilege cannot be
selectively revoked. The object privilege must be revoked and then
re-granted without the GRANT OPTI ON. Users cannot revoke object
privileges from themselves.

Revoking Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRI VI LEGE system privilege enables you to revoke any
specified object privilege where the object owner is the grantor. This occurs when
the object privilege is granted by the object owner, or on behalf of the owner by any
user holding the GRANT ANY OBJECT PRI VI LEGE system privilege.

In a situation where the object privilege has been granted by both the owner of the
object and the user executing the REVOKE statement (who has both the specific
object privilege and the GRANT ANY OBJECT PRI VI LECGE system privilege),
Oracle only revokes the object privilege granted by the user issuing the REVOKE.
This can be illustrated by continuing the example started in "Granting Object
Privileges on Behalf of the Object Owner" on page 10-27.

At this point, bl ake has granted the SELECT privilege on hr . enpl oyees to

cl ar k. Even though bl ake possesses the GRANT ANY OBJECT PRI VI LEGE
system privilege, he also holds the specific object privilege, thus this grant is
attributed to him. Assume that hr also grants the SELECT privilege on

hr . empl oyees to cl ar k. A query of the DBA TAB_PRI VS view shows that the
following grants are in effect for the hr.employees table:

GRANTEE OANER GRANTCR PR M LEGE GRANTABLE

BLAKE H H SHECT YES
AARK H BLAKE SH ECT NO
AARK H H SH ECT NO

User bl ake now issues the following REVOKE statement:;

REMCKE SH ECT ON hr. enpl oyees FROM cl ark;

Only the object privilege for cl ar k granted by bl ake is removed. The grant by the
object owner, hr, remains.

GRANTEE OMER GRANTCR PR M LEGE GRANTABLE

Administering User Privileges, Roles, and Profiles 10-31

Revoking User Privileges and Roles

If bl ake issues the REVOKE statement again, this time the effect will be to remove
the object privilege granted by hr.

See Also: "Granting Object Privileges on Behalf of the Object
Owner" on page 10-27

Revoking Column-Selective Object Privileges

Although users can grant column-selective | NSERT, UPDATE, and REFERENCES
privileges for tables and views, they cannot selectively revoke column specific
privileges with a similar REVOKE statement. Instead, the grantor must first revoke
the object privilege for all columns of a table or view, and then selectively re-grant
the column-specific privileges that should remain.

For example, assume that role hurman_r esour ces has been granted the UPDATE
privilege on the dept no and dnarme columns of the table dept . To revoke the
UPDATE privilege on just the dept no column, issue the following two statements:

REVCKE UPDATE ON dept FROM human_r esour ces;
GRANT UPDATE (dnane) ON dept TO hunman_r esour ces;

The REVOKE statement revokes UPDATE privilege on all columns of the dept table
from the role hurman_r esour ces. The GRANT statement re-grants UPDATE privilege on
the dname column to the role human_r esour ces.

Revoking the REFERENCES Object Privilege

If the grantee of the REFERENCES object privilege has used the privilege to create a
foreign key constraint (that currently exists), the grantor can revoke the privilege
only by specifying the CASCADE CONSTRAI NTS option in the REVOKE statement:

REVOKE REFERENCES ON dept FROM j ward CASCADE GONSTRAI NTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAI NTS clause is specified.

Cascading Effects of Revoking Privileges

Depending on the type of privilege, there may be cascading effects when a privilege
is revoked.

10-32 Oracle Database Security Guide

Revoking User Privileges and Roles

System Privileges

There are no cascading effects when revoking a system privilege related to DDL
operations, regardless of whether the privilege was granted with or without the
ADM N OPTI ON. For example, assume the following:

1. The security administrator grants the CREATE TABLE system privilegetoj f ee
with the ADM N OPTI ON.

User j f ee creates a table.
User j f ee grants the CREATE TABLE system privilegetot smi t h.

User t smi t h creates a table.

a M 0D

The security administrator revokes the CREATE TABLE system privilege from
j fee.

6. User| f ee's table continues to exist. t sni t h still has the table and the CREATE
TABLE system privilege.

Cascading effects can be observed when revoking a system privilege related to a
DML operation. If SELECT ANY TABLE is revoked from a user, then all procedures
contained in the users schema relying on this privilege will fail until the privilege is
reauthorized.

Object Privileges

Revoking an object privilege can have cascading effects that should be investigated
before issuing a REVOKE statement.

= Object definitions that depend on a DML object privilege can be affected if the
DML object privilege is revoked. For example, assume the procedure body of
the t est procedure includes a SQL statement that queries data from the enp
table. If the SELECT privilege on the enp table is revoked from the owner of the
t est procedure, the procedure can no longer be executed successfully.

« When a REFERENCES privilege for a table is revoked from a user, any foreign
key integrity constraints defined by the user that require the dropped
REFERENCES privilege are automatically dropped. For example, assume that
the user j war d is granted the REFERENCES privilege for the dept no column of
the dept table and creates a foreign key on the dept no column in the enp table
that references the dept no column. If the r ef er ences privilege on the
dept no column of the dept table is revoked, the foreign key constraint on the
dept no column of the enp table is dropped in the same operation.

Administering User Privileges, Roles, and Profiles 10-33

Granting to and Revoking from the User Group PUBLIC

« The object privilege grants propagated using the GRANT OPTI ONare revoked if
a grantor’s object privilege is revoked. For example, assume that user 1 is
granted the SELECT object privilege with the GRANT OPTI ON, and grants the
SELECT privilege on enp to user 2. Subsequently, the SELECT privilege is
revoked from user 1. This REVOKE is cascaded to user 2 as well. Any objects
that depended on user 1's and user 2's revoked SELECT privilege can also be
affected, as described in previous bullet items.

Object definitions that require the ALTERand | NDEX DDL object privileges are not
affected if the ALTER or | NDEX object privilege is revoked. For example, if the

| NDEX privilege is revoked from a user that created an index on someone else’s
table, the index continues to exist after the privilege is revoked.

Granting to and Revoking from the User Group PUBLIC

Privileges and roles can also be granted to and revoked from the user group
PUBLI C. Because PUBLI Cis accessible to every database user, all privileges and
roles granted to PUBLI Care accessible to every database user.

Security administrators and database users should grant a privilege or role to
PUBLI Conly if every database user requires the privilege or role. This
recommendation reinforces the general rule that at any given time, each database
user should only have the privileges required to accomplish the group's current
tasks successfully.

Revoking a privilege from PUBLI C can cause significant cascading effects. If any
privilege related to a DML operation is revoked from PUBLI C (for example,
SELECT ANY TABLE, UPDATE ON enp), all procedures in the database,
including functions and packages, must be reauthorized before they can be used again.
Therefore, exercise caution when granting and revoking DML-related privileges to
PUBLI C.

See Also:

« "Managing Object Dependencies” in Oracle Database
Administrator*s Guide for more information about object
dependencies

« A Security Checklist, in Chapter 7, "Security Policies"

10-34 Oracle Database Security Guide

When Do Grants and Revokes Take Effect?

When Do Grants and Revokes Take Effect?

Depending on what is granted or revoked, a grant or revoke takes effect at different
times:

« All grants/revokes of system and object privileges to anything (users, roles, and
PUBLI C) are immediately observed.

« All grants/revokes of roles to anything (users, other roles, PUBLI C) are only
observed when a current user session issues a SET ROLE statement to re-enable
the role after the grant/revoke, or when a new user session is created after the
grant/revoke.

You can see which roles are currently enabled by examining the SESSI ON_ROLES
data dictionary view.

The SET ROLE Statement

During the session, the user or an application can use the SET ROLE statement any
number of times to change the roles currently enabled for the session. You must
already have been granted the roles that you name in the SET RCLE statement. The
number of roles that can be concurrently enabled is limited by the initialization
parameter MAX_ENABLED ROLES.

This example enables the role cl er k, which you have already been granted, and
specifies the password.

SET RQLE cl erk | DENTI Fl ED BY bi cent enni al ;

You can disable all roles with the following statement:
SET ROLE NON\g

Specifying Default Roles

When a user logs on, Oracle enables all privileges granted explicitly to the user and
all privileges in the user's default roles.

A user's list of default roles can be set and altered using the ALTER USER
statement. The ALTER USER statement enables you to specify roles that are to be
enabled when a user connects to the database, without requiring the user to specify
the roles' passwords. The user must have already been directly granted the roles
with a GRANT statement. You cannot specify as a default role any role managed by
an external service including a directory service (external roles or global roles).

The following example establishes default roles for user j ane:

Administering User Privileges, Roles, and Profiles 10-35

Granting Roles Using the Operating System or Network

ALTER USER j ane DEFALLT RQLE paycl erk, pettycash;

You cannot set a user's default roles in the CREATE USER statement. When you first
create a user, the user's default role setting is ALL, which causes all roles
subsequently granted to the user to be default roles. Use the ALTER USER
statement to limit the user's default roles.

Caution: When you create a role (other than a user role), it is
granted to you implicitly and added as a default role. You receive
an error at login if you have more than MAX_ENABLED ROLES. You
can avoid this error by altering the user's default roles to be less
than MAX_ENABLED ROLES. Thus, you should change the
DEFAULT ROLE settings of SYS and SYSTEMbefore creating user
roles.

Restricting the Number of Roles that a User Can Enable

A user can enable as many roles as specified by the initialization parameter MAX
ENABLED_RCLES. All indirectly granted roles enabled as a result of enabling a primary
role are included in this count. The database administrator can alter this limitation by
modifying the value for this parameter. Higher values permit each user session to have
more concurrently enabled roles, but these values also cause more memory to be used
for each user session. This occurs because the PGA size requires four bytes for each role
in each session. Determine the highest number of roles that will be concurrently enabled
by any one user and use this value for the MAX_ENABLED ROLES parameter.

Granting Roles Using the Operating System or Network

This section describes aspects of granting roles through your operating system or
network, and contains the following topics:

« Using Operating System Role Identification

« Using Operating System Role Management

« Granting and Revoking Roles When OS_ROLES=TRUE

« Enabling and Disabling Roles When OS_ROLES=TRUE

« Using Network Connections with Operating System Role Management

Instead of a security administrator explicitly granting and revoking database roles
to and from users using GRANT and REVOKE statements, the operating system that

10-36 Oracle Database Security Guide

Granting Roles Using the Operating System or Network

operates Oracle can grant roles to users at connect time. Roles can be administered
using the operating system and passed to Oracle when a user creates a session. As
part of this mechanism, each user's default roles and the roles granted to a user with
the ADM N OPTI ONcan be identified. Even if the operating system is used to
authorize users for roles, all roles must be created in the database and privileges
assigned to the role with GRANT statements.

Roles can also be granted through a network service.

The advantage of using the operating system to identify a user's database roles is
that privilege management for an Oracle database can be externalized. The security
facilities offered by the operating system control a user's privileges. This option may
offer advantages of centralizing security for a number of system activities, such as
the following situation:

« MVS Oracle administrators want RACF groups to identify a database user's
roles.

« UNIX Oracle administrators want UNIX groups to identify a database user's
roles.

« VMS Oracle administrators want to use rights identifiers to identify a database
user's roles.

The main disadvantage of using the operating system to identify a user's database
roles is that privilege management can only be performed at the role level.
Individual privileges cannot be granted using the operating system, but can still be
granted inside the database using GRANT statements.

A secondary disadvantage of using this feature is that by default users cannot
connect to the database through the shared server, or any other network connection,
if the operating system is managing roles. However, you can change this default;
see "Using Network Connections with Operating System Role Management” on
page 10-40.

Note: The features described in this section are available only on
some operating systems. See your operating system specific Oracle
documentation to determine if you can use these features.

Using Operating System Role Identification

To operate a database so that it uses the operating system to identify each user's
database roles when a session is created, set the initialization parameter OS_ROLES
to TRUE (and restart the instance, if it is currently running). When a user attempts to

Administering User Privileges, Roles, and Profiles 10-37

Granting Roles Using the Operating System or Network

create a session with the database, Oracle initializes the user's security domain
using the database roles identified by the operating system.

To identify database roles for a user, each Oracle user's operating system account
must have operating system identifiers (these may be called groups, rights
identifiers, or other similar names) that indicate which database roles are to be
available for the user. Role specification can also indicate which roles are the default
roles of a user and which roles are available with the ADM N OPTI ON. No matter
which operating system is used, the role specification at the operating system level
follows the format:

ora IDRALH [d][a]]

where:

« | D has a definition that varies on different operating systems. For example, on
VMS, | Dis the instance identifier of the database; on MVS, it is the machine
type; on UNIX; it is the system | D.

Note: | Dis case sensitive to match your ORACLE_SI D. ROLE is
not case sensitive.

« ROLE is the name of the database role.

« d isan optional character that indicates this role is to be a default role of the
database user.

« a isan optional character that indicates this role is to be granted to the user
with the ADM N OPTI ON. This allows the user to grant the role to other roles
only. Roles cannot be granted to users if the operating system is used to manage
roles.

Note: If either the d or a characters are specified, they must be
preceded by an underscore.

For example, an operating system account might have the following roles identified
in its profile:

ora PAYROLL RO.EL

ora PAYROLL ROR2 a

ora PAYROLL RO E3 d

ora PAYROLL ROF4 da

10-38 Oracle Database Security Guide

Granting Roles Using the Operating System or Network

When the corresponding user connects to the payr ol | instance of Oracle, r ol €3
and r ol e4 are defaults, while r ol e2 and r ol e4 are available with the ADM N

OPTI ON.

Using Operating System Role Management

When you use operating system managed roles, it is important to note that database
roles are being granted to an operating system user. Any database user to which the
operating system user is able to connect will have the authorized database roles
enabled. For this reason, you should consider defining all Oracle users as

| DENTI FI ED EXTERNALLY if you are using OS_ROLES = TRUE, so that the
database accounts are tied to the operating system account that was granted
privileges.

Granting and Revoking Roles When OS_ROLES=TRUE

If OS_ROLES is set to TRUE, the operating system completely manages the grants
and revokes of roles to users. Any previous grants of roles to users using GRANT
statements do not apply; however, they are still listed in the data dictionary. Only the role
grants made at the operating system level to users apply. Users can still grant privileges
to roles and users.

Note: If the operating system grants a role to a user with the
ADM N OPTI ON, the user can grant the role only to other roles.

Enabling and Disabling Roles When OS_ROLES=TRUE

If OS_ROLES is set to TRUE, any role granted by the operating system can be
dynamically enabled using the SET ROLE statement. This still applies, even if the
role was defined to require a password or operating system authorization.
However, any role not identified in a user's operating system account cannot be
specified in a SET ROLE statement, even if a role has been granted using a GRANT
statement when OS_ROLES = FALSE. (If you specify such a role, Oracle ignores it.)

When OS_ROLES = TRUE, a user can enable as many roles as specified by the
initialization parameter MAX_ENABLED ROLES.

Administering User Privileges, Roles, and Profiles 10-39

Viewing Privilege and Role Information

Using Network Connections with Operating System Role Management

If you choose to have the operating system to manage roles, by default users cannot
connect to the database through the shared server. This restriction is the default
because a remote user could impersonate another operating system user over a
non-secure connection.

If you are not concerned with this security risk and want to use operating system
role management with the shared server, or any other network connection, set the
initialization parameter REMOTE_OS_RCLES in the database's initialization
parameter file to TRUE. The change will take effect the next time you start the
instance and mount the database. The default setting of this parameter is FALSE.

Viewing Privilege and Role Information

To access information about grants of privileges and roles, you can query the
following data dictionary views:

View Description

DBA COL_PRI VS DBA view describes all column object grants in the database. ALL view
describes all column object grants for which the current user or PUBLI Cis the
ALL_COL_PRI VS ; . . X
- = object owner, grantor, or grantee. USER view describes column object grants
USER_COL_PRI VS for which the current user is the object owner, grantor, or grantee.

ALL_COL_PRI VS_NADE ALL view lists column object grants for which the current user is object owner
or grantor. USER view describes column object grants for which the current
USER_COL_PRI VS_MADE user is the grantor.

ALL_COL_PRI VS_RECD ALL view describes column object grants for which the current user or
USER COL PRI VS RECD PUBLI Cis the grantee. USER view describes column object grants for which
- = - the current user is the grantee.

DBA TAB PRI VS DBA view lists all grants on all objects in the database. ALL view lists the

ALL TAB PRI VS grants on objects where the user or PUBLI Cis the grantee. USER view lists
- = grants on all objects where the current user is the grantee.

USER_TAB_PRI VS

ALL_TAB_PRI VS_MADE ALL view lists the all object grants made by the current user or made on the
USER TAB PRI VS MADE objects owned by the current user. USER view lists grants on all objects owned
- = - by the current user.

ALL_TAB_PRI VS_RECD ALL view lists object grants for which the user or PUBLI Cis the grantee.
USER TAB_PRI VS_RECD USER view lists object grants for which the current user is the grantee.

DBA ROLES This view lists all roles that exist in the database.

10-40 Oracle Database Security Guide

Viewing Privilege and Role Information

View

Description

DBA_ROLE PRI VS
USER ROLE_PRI VS

DBA view lists roles granted to users and roles. USER view lists roles granted
to the current user.

DBA_SYS_PRI VS
USER_SYS_PRI VS

DBA view lists system privileges granted to users and roles. USER view lists
system privileges granted to the current user.

ROLE_ROLE_PRI VS

This view describes roles granted to other roles. Information is provided only
about roles to which the user has access.

ROLE_SYS_PRI VS

This view contains information about system privileges granted to roles.
Information is provided only about roles to which the user has access.

ROLE_TAB_ PRI VS

This view contains information about object privileges granted to roles.
Information is provided only about roles to which the user has access.

SESSI ON_PRI VS

This view lists the privileges that are currently enabled for the user.

SESSI ON_ROLES

This view lists the roles that are currently enabled to the user.

Some examples of using these views follow. For these examples, assume the
following statements have been issued:

CREATE RCOLE security_admin | DENT FH ED BY honcho;

GRANT CREATE PRCH LE, ALTER PRCH LE, DRCP PRCH LE

CGREATE ROLE, DRCP ANY ROLE, GRANT ANY ROLE, ALDIT ANY,
AD T SYSTEM CREATE USER BEQOME USER ALTER USER DRCP USER
TO security_admn WTH ADM N CPTI ON

GRANT SHLECT, DHELETE ON SYS. AUD$ TO security_adnin;

GRANT security_admn, CREATE SESSION TO swil | i ans;

GRANT security_admn TO systemadmnistrator;

GRANT CREATE SESSI QN TO j war d;

GRANT SH ECT, DELETE QN enp TO j war d;

GRANT | NSERT (enane, job) ONenp TOsw | lians, jward;

See Also: Oracle Database Reference for a detailed description of
these data dictionary views

Administering User Privileges, Roles, and Profiles 10-41

Viewing Privilege and Role Information

Listing All System Privilege Grants
The following query returns all system privilege grants made to roles and users:
SELECT * FROMDBA SYS PR VS,

GRANTEE PR M LECE ADM
SEOR TY_ADMN ALTER PRCFI LE YES
SEOR TY_ADMN ALTER USER YES
SEQR TY_ ADMN AD T ANY YES
SEOR TY ADMN AD T SYSTEM YES
SEOR TY ADMN BECOME USER YES
SEOR TY_ADMN CREATE PRCHI LE YES
SEOR TY_ADMN CREATE ROLE YES
SEOR TY_ ADMN CREATE USER YES
SEQOR TY_ ADM N CRCP ANY ROLE YES
SEOR TY ADMN CRCP PRCH LE YES
SEOR TY ADMN CRCP USER YES
SEOR TY_ADMN GRANT ANY ROLE YES
SWLLI AVB CREATE SESSI ON NO
JWARD CREATE SESSI ON NO

Listing All Role Grants
The following query returns all the roles granted to users and other roles:
SHECT * FROMDBA ROLE PR VS,

Listing Object Privileges Granted to a User

The following query returns all object privileges (not including column-specific
privileges) granted to the specified user:

SEH ECT TABLE NAME, PRM LEGE, GRANTABLE FRCM CBA TAB PR VS
WHERE GRANTEE = ' JWARD ;

TABLE NAVE PRV LECE GRANTABLE

10-42 Oracle Database Security Guide

Viewing Privilege and Role Information

To list all the column-specific privileges that have been granted, use the following
query:

SELECT GRANTEE, TABLE NAME, GCLUW NAME, PR VI LEGE
FROM DBA OCL_PR VS,

GRANTEE TABLE NAME COLUWN_NAME PR MV LECE
SWLLI AVE Bw ENAME | NSERT
SWLLI ANB Bw JaB | NSERT
JWARD Bw NAME | NSERT
JWARD Bw JB I NSERT

Listing the Current Privilege Domain of Your Session
The following query lists all roles currently enabled for the issuer:

SH ECT * FROM SESSI ON ROLES;

If swi | | i ans has enabled the securi ty_adm n role and issues this query, Oracle
returns the following information:

The following query lists all system privileges currently available in the issuer's
security domain, both from explicit privilege grants and from enabled roles:

SHECT * FROMSESS ON PR VS,

If swillians hasthe security_adm n role enabled and issues this query, Oracle
returns the following results:

Administering User Privileges, Roles, and Profiles 10-43

Viewing Privilege and Role Information

CREATE PRCH LE
ALTER PRCH LE
DRCP PRCHI LE

If the security_adm nroleis disabled for swi | | i ans, the first query would
have returned no rows, while the second query would only return a row for the
CREATE SESSI ON privilege grant.

Listing Roles of the Database

The DBA_ROLES data dictionary view can be used to list all roles of a database and
the authentication used for each role. For example, the following query lists all the
roles in the database:

SH ECT * FROM OBA ROLES,

RALE PASSWIRD
GONNECT NO
RESOURCE NO

CBA NO

SEQOR TY_ ADM N YES

Listing Information About the Privilege Domains of Roles

The ROLE_ROLE_PRI VS, ROLE_SYS_PRI VS, and ROLE_TAB_PRI VS data
dictionary views contain information on the privilege domains of roles.

For example, the following query lists all the roles granted to the syst em adm n
role:

SELECT GRANTED ROLE, ADM N CPTI ON
FROM ROLE_ROLE PR \S
WERE ROLE = ' SYSTEMADMN ;

The following query lists all the system privileges granted to the securi ty_adm n
role:

SELECT * FROM ROLE SYS PR VS WERE ROLE = ' SEOR TY_ ADMN ;

RQLE PRV LEGE ADM

10-44 Oracle Database Security Guide

Viewing Privilege and Role Information

SEOR TY ADMN ALTER PRCH LE YES
SEOR TY_ ADMN ALTER USER YES
SEOR TY_ ADMN AD T ANY YES
SEOR TY_ADMN AD T SYSTEM YES
SEOR TY_ADMN BECOME USER YES
SEOR TY ADMN CREATE PRCH LE YES
SEOR TY ADMN CREATE RQLE YES
SEOR TY_ ADMN CREATE USER YES
SEOR TY_ADMN ORGP ANY RCLE YES
SEOR TY_ADMN CRCP PRCH LE YES
SEOR TY_ADMN DRCP USER YES
SEOR TY ADMN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the securi ty_adm n
role:

SELECT TABLE NAME, PR M LEGE FROM ROLE TAB PR VS
WERE ROLE = ' SEQR TY_ ADMN ;

TABLE _NAME PRV LEGE
ADB CELETE
ADS SH ECT

Administering User Privileges, Roles, and Profiles 10-45

Viewing Privilege and Role Information

10-46 Oracle Database Security Guide

11

Configuring and Administering Auditing

Auditing is always about accountability, and frequently is done to protect and
preserve privacy for the information stored in databases. Concern about privacy
policies and practices has been rising steadily with the ubiquitous use of databases
in businesses and on the Internet. Oracle Database provides a depth of auditing that
readily enables system administrators to implement enhanced protections, early
detection of suspicious activities, and finely-tuned security responses.

The types of auditing available in Oracle systems were described in Chapter 8,
"Database Auditing: Security Considerations".

The present chapter explains how to choose the types of auditing you need, how to
manage that auditing, and how to use the information gained, in the following
sections:

« Actions Audited by Default

« Guidelines for Auditing

« What Information is Contained in the Audit Trail?
« Managing the Standard Audit Trail

« Viewing Database Audit Trail Information

« Fine-Grained Auditing

Actions Audited by Default

Regardless of whether database auditing is enabled, Oracle always audits certain
database-related operations and writes them to the operating system audit file. This
fact is called mandatory auditing, and it includes the following operations:

« Connections to the instance with administrator privileges

Configuring and Administering Auditing 11-1

Guidelines for Auditing

An audit record is generated that lists the operating system user connecting to
Oracle as SYSOPER or SYSDBA. This provides for accountability of users with
administrative privileges. Full auditing for these users can be enabled as
explained in "Auditing Administrative Users" on page 11-4.

Database startup

An audit record is generated that lists the operating system user starting the
instance, the user’s terminal identifier, the date and time stamp. This data is
stored in the operating system audit trail because the database audit trail is not
available until after startup has successfully completed.

Database shutdown

An audit record is generated that lists the operating system user shutting down
the instance, the user's terminal identifier, and the date and time stamp.

Guidelines for Auditing

Oracle Database 10g gives you the option of sending audit records to the database
audit trail or your operating system's audit trail, when the operating system is
capable of receiving them. The audit trail for database administrators, for example,
is typically written to a secure location in the operating system. Writing audit trails
to the operating system provides a way for a separate auditor who is root on the
operating system to hold all DBAs (who don't have root access) accountable for
their actions. These options, added to the broad selection of audit options and
customizable triggers or stored procedures, give you the flexibility to implement an
auditing scheme that suits your specific business needs.

This section describes guidelines for auditing and contains the following topics:

Keep Audited Information Manageable

Auditing Normal Database Activity

Auditing Suspicious Database Activity

Auditing Administrative Users

Using Triggers

Decide Whether to Use the Database or Operating System Audit Trail

11-2 Oracle Database Security Guide

Guidelines for Auditing

Keep Audited Information Manageable

Although auditing is relatively inexpensive, limit the number of audited events as
much as possible. Doing so minimizes the performance impact on the execution of
audited statements and the size of the audit trail, making it easier to analyze and
understand.

Use the following general guidelines when devising an auditing strategy:

Evaluate your purpose for auditing.

After you have a clear understanding of the reasons for auditing, you can
devise an appropriate auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database
activity. This information by itself is not specific enough. What types of
suspicious database activity do you suspect or have you noticed? A more
focused auditing purpose might be to audit unauthorized deletions from
arbitrary tables in the database. This purpose narrows the type of action being
audited and the type of object being affected by the suspicious activity.

Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the
targeted information. This prevents unnecessary audit information from
cluttering the meaningful information and consuming valuable space in the
SYSTEMtablespace. Balance your need to gather sufficient security information
with your ability to store and process it.

For example, if you are auditing to gather information about database activity,
determine exactly what types of activities you are tracking, audit only the
activities of interest, and audit only for the amount of time necessary to gather
the information you desire. As another example, do not audit objects if you are
only interested in each session's logical 1/0 information.

Auditing Normal Database Activity

When your purpose for auditing is to gather historical information about particular
database activities, use the following guidelines:

Audit only pertinent actions.

To avoid cluttering meaningful information with useless audit records and
reduce the amount of audit trail administration, only audit the targeted
database activities.

Archive audit records and purge the audit trail.

Configuring and Administering Auditing 11-3

Guidelines for Auditing

After you have collected the required information, archive the audit records of
interest and purge the audit trail of this information.

Privacy considerations

Privacy regulations often lead to additional business privacy policies. Most
privacy laws require businesses to monitor access to personally identifiable
information (P11), and such monitoring is implemented by auditing. A
business-level privacy policy should address all relevant aspects of data access
and user accountability, including technical, legal, and company-policy
concerns.

Auditing Suspicious Database Activity

When you audit to monitor suspicious database activity, use the following
guidelines:

Audit generally, then specifically.

When starting to audit for suspicious database activity, it is common that not
much information is available to target specific users or schema objects.
Therefore, audit options must be set more generally at first. Once preliminary
audit information is recorded and analyzed, the general audit options should be
turned off and more specific audit options enabled. This process should
continue until enough evidence is gathered to make concrete conclusions about
the origin of the suspicious database activity.

Protect the audit trail.

When auditing for suspicious database activity, protect the audit trail so that
audit information cannot be added, changed, or deleted without being audited.

See Also: "Protecting the Standard Audit Trail" on page 11-21

Auditing Administrative Users

Sessions for users who connect as SYS can be fully audited, including all users
connecting as SYSDBA or SYSOPER. Use the AUDI T_SYS_OPERATI ONS
initialization parameter to specify whether such users are to be audited. For
example, the following setting specifies that SYS is to be audited:

ALD T_SYS CPERATI ONS = TRE

The default value, FALSE, disables SYS auditing.

11-4 Oracle Database Security Guide

Guidelines for Auditing

All audit records for SYS are written to the operating system file that contains the
audit trail, and not to SYS. AUD$ (also viewable as DBA AUDI T_TRAI L).

« In Windows, for example, audit records are written as events to the Event
Viewer log file.

« For Solaris, if the AUDI T_FI LE_DEST parameter is not specified, the
default location is $ORACLE_HOVE/ r dbns/ audi t .

« For other operating systems, see their audit trail documentation.

All SYS-issued SQL statements are audited indiscriminately and regardless of the
setting of the AUDI T_TRAI L initialization parameter.

Consider the following SYS session:

QONNECT / AS SYSDBA
ALTER SYSTEM FLUSH SHARED PAO;
UPDATE sal ary SET base=1000 WHERE nane=' nynang' ;

When SYS auditing is enabled, both the ALTER SYSTEMand UPDATE statements
are displayed in the operating system audit file as follows:

Thu Jan 24 12:58: 00 2002
ACTION ' GONNECT
DATABASE USER '[!
C5PR V. SYSIBA

QLI ENT USER jeff

QLI ENT TERMNAL: pts/2
STATUS. 0

Thu Jan 24 12:58:00 2002

ACTION 'alter systemflush shared pool’
DATABASE USER "'

C5PR V. SYSDBA

QLI ENT USER j ef f

QLI ENT TERM NAL: pts/2

STATUS, 0

Thu Jan 24 12:58: 00 2002

ACTION 'update sal ary set base=1000 where nane=' nynane''
DATABASE USER '

C5PR V. SYSDBA

QLI ENT USER | ef f

QLI ENT TERMNAL: pts/2

STATUS 0

Configuring and Administering Auditing 11-5

Guidelines for Auditing

Because of the superuser privileges available to users who connect as SYSDBA,
Oracle recommends that DBASs rarely use this connection and only when necessary.
Normal day to day maintenance activity can usually be done by DBAs, who are
regular database users with the DBA role, or a DBA role (for example, nydba or

j r _dba) that your organization customizes.

Using Triggers

You can often use triggers to record additional customized information that is not
automatically included in audit records, thereby customizing your own audit
conditions and record contents. For example, you could define a trigger on the EMP
table to generate an audit record whenever an employee's salary is increased by
more than 10 percent. You can include selected information, such as the values of
SALARY before and after it was changed:

CREATE TR GEER audit _enp_sal ari es
AFTER | NSERT (R DELETE CR UPDATE ON enpl oyee_sal ari es
for each row
begi n
if (:newsalary>:old.salary * 1.10)
t hen
insert into enp_sal ary audit val ues (
: enpl oyee_no,
:old.sal ary,
:new sal ary,
user,
sysdate) ;
endif;
end;

Furthermore, you can use event triggers to enable auditing options for specific users
on login, and disable them upon logoff.

However, while Oracle triggers can readily monitor DML actions such as | NSERT,
UPDATE, and DELETE, monitoring on SELECT can be costly and, in some cases,
uncertain. Triggers do not enable businesses to capture the statement executed as
well as the result set from a query. They also do not enable users to define their own
alert action in addition to simply inserting an audit record into the audit trail.

For these capabilities, use Oracle's Fine-grained Auditing, which provides an
extensible auditing mechanism supporting definition of key conditions for granular
audit as well as an event handler to actively alert administrators to misuse of data
access rights. See Fine-Grained Auditing on page 11-29.

11-6 Oracle Database Security Guide

What Information is Contained in the Audit Trail?

Decide Whether to Use the Database or Operating System Audit Trail

The data dictionary of every Oracle database has a table named SYS. AUDS$,
commonly referred to as the database audit trail, and viewable as DBA AUDI T__
TRAI L. This table is designed to store entries auditing database statements,
privileges, or schema objects.

You can optionally choose to store the database audit information to an operating
system file. If your operating system has an audit trail that stores audit records
generated by the operating system auditing facility, and Oracle is allowed to write
to it, you can choose to direct the database audit entries to this file. For example, the
Windows operating system allows Oracle to write audit records as events to the
Application Event Log, viewable by the Event Viewer.

Consider the advantages and disadvantages of using either the database or
operating system audit trail to store database audit records.

Using the database audit trail offers the following advantages:

=« You can view selected portions of the audit trail with the predefined audit trail
views of the data dictionary, such as DBA_AUDI T_TRAI L.

« You can use Oracle tools (such as Oracle Reports) or third-party tools to
generate audit reports.

Alternatively, your operating system audit trail may allow you to consolidate audit
records from multiple sources including Oracle and other applications. Therefore,
examining system activity might be more efficient because all audit records are in
one place. Another advantage to this approach is achieving a separation of duty
between a DBA and an auditor.

See Also:

= Your operating system specific documentation for information
about its auditing capabilities.

« Audit Trail Views on page 11-22

What Information is Contained in the Audit Trail?

Oracle can write records to either the database audit trail, an operating system file,
or both. This section describes what information the audit trail contains. asdf

« Database Audit Trail Contents

« Audit Information Stored in an Operating System File

Configuring and Administering Auditing 11-7

What Information is Contained in the Audit Trail?

Database Audit Trail Contents

The database audit trail is a single table named SYS. AUD$ in the SYS schema of
each Oracle database's data dictionary. Several predefined views are provided to
help you use the information in this table, such as DBA_AUDIT_TRAIL.

Audit trail records can contain different types of information, depending on the
events audited and the auditing options set. The partial list in the following section
shows columns that always appear in the audit trail: if the data they represent is
available, that data populates the corresponding column. (For certain columns, this
list has the column name as it displays in the audit record, shown here inside
parentheses.) Certain audit columns (marked with an * in the following list)
appear only if you have specified AUDIT_TRAIL=DB_EXTENDED in the database
initialization file, init.ora. The operating system audit trail has only those columns
marked (0s).

« Operating system login user name (CLI ENT USER) (0s)
« Database user name (DATABASE USER)

« Session identifier (0s)

« Terminal identifier (0s)

« Name of the schema object accessed (0s)

« Operation performed or attempted (ACTI ON) (0s)

« Completion code of the operation (0s)

« Date and time stamp in UTC (Coordinated Universal Time) format
« System privileges used (PRI VI LEGE) (0s)

« Proxy Session's auditid

« Global User unique id

« Distinguished name (0S)

« Instance number

« Process number

« Transactionld

« SCN (system change number) for the SQL statement

« (*) SQL text (the SQL text that triggered the auditing)

« (*) Bind values used for the SQL statement, if any

11-8 Oracle Database Security Guide

What Information is Contained in the Audit Trail?

If the database destination for audit records becomes full or unavailable and
therefore unable to accept new records, an audited action cannot complete. Instead,
it causes an error message and is not done. In some cases, an operating system log
allows such an action to complete.

The audit trail does not store information about any data values that might be
involved in the audited statement. For example, old and new data values of
updated rows are not stored when an UPDATE statement is audited. However, this
specialized type of auditing can be performed using fine-grained auditing methods.

There is a new audit trail view that combines standard and fine-grained audit log
records, named DBA_COMMON_AUDIT_TRAIL.

You can use the Flashback Query feature to show the old and new values of the
updated rows, subject to any auditing policy presently in force. The current policies
are enforced even if the flashback is to an old query that was originally subject to a
different policy. Current business access rules always apply.

See Also:

« "Fine-Grained Auditing" on page 11-29 for more information
about methods of fine-grained auditing

« "Flashback Queries" in Oracle Database Administrator's Guide

Audit Information Stored in an Operating System File

The operating system file that contains the audit trail can contain any of the
following:

« Audit records generated by the operating system
« Database audit trail records

« Database actions that are always audited

« Audit records for administrative users (SYS)

Audit trail records written to an operating system audit trail may contain encoded
information, but this information can be decoded using data dictionary tables and
error messages as follows:

Encoded Information How to Decode

Action code Describes the operation performed or attempted. The AUDI T_
ACTI ONS data dictionary table contains a list of these codes and
their descriptions.

Configuring and Administering Auditing 11-9

Managing the Standard Audit Trail

Encoded Information How to Decode

Privileges used Describes any system privileges used to perform the operation.

The SYSTEM PRI VI LEGE_MAP table lists all of these codes and
their descriptions.

Completion code Describes the result of the attempted operation. Successful

operations return a value of zero; unsuccessful operations return
the Oracle error code describing why the operation was
unsuccessful. These codes are listed in Oracle Database Error
Messages.

Managing the Standard Audit Tralil

This section describes various aspects of managing standard audit trail information,
and contains the following topics:

Enabling and Disabling Standard Auditing

Standard Auditing in a Multitier Environment

Setting Standard Auditing Options

Turning Off Standard Audit Options

Controlling the Growth and Size of the Standard Audit Trail
Protecting the Standard Audit Trail

Auditing the Standard Audit Trail

Enabling and Disabling Standard Auditing

Any authorized database user can set statement, privilege, and object auditing
options at any time, but Oracle does not generate audit information for the standard
database audit trail unless database auditing is enabled. The security administrator
is normally responsible for controlling auditing.

This section discusses the initialization parameters that enable and disable standard
auditing.

11-10 Oracle Database Security Guide

Managing the Standard Audit Trail

Note:

« theinitialization parameters AUDI T_SYS_ OPERATI ONS and
AUDI T_TRAI L affecting standard auditing are static. "Static"
means that if you change their values, you must shut down and
restart your database for the new values to take effect.

« The AUDI T_FI LE_DEST initialization parameter can be
changed with "Alter System set AUDIT_FILE_DEST = <dir>
DEFERRED", meaning the new destination will be effective for
all subsequent sessions.

Setting the AUDIT_TRAIL Initialization Parameter

Database auditing is enabled and disabled by the AUDI T_TRAI L initialization
parameter in the database's initialization parameter file. The parameter can be set to
the following values:

Parameter Value Meaning

DB Enables database auditing and directs all audit records to the
database audit trail (SYS.AUDS$), except for records that are
always written to the operating system audit trail

DB_EXTENDED Does all actions of AUDIT_TRAIL=DB and also populates the
SQL bind and SQL text CLOB-type columns of the SYS.AUD$
table, wherever possible. (These columns are the ones referred to
as the additional eight, populated only when this parameter is
specified.)

oS Enables database auditing and directs all audit records to an
operating system file

NONE Disables standard auditing (This value is the default.)

Note that changes that alter what objects are audited do not require restarting the
database, which is only required if a universal change is made, such as turning on
or off all auditing.

Configuring and Administering Auditing 11-11

Managing the Standard Audit Trail

Note: You do not need to set AUDIT_TRAIL to enable either
fine-grained auditing or SYS auditing. For fine-grained auditing,
you simply add and remove FGA policies as you see fit, applying
them to the specific operations or objects you want to monitor. For
SYS auditing, you just set the SYS audit parameter for SYS audit.

See the section titled Fine-Grained Auditing later in this chapter.

Setting the AUDIT_FILE_DEST Initialization Parameter

The AUDI T_FI LE_DEST initialization parameter specifies an operating system
directory into which the audit trail is written when AUDI T_TRAI L=CS is specified.
It is also the location to which mandatory auditing information is written and, if so
specified by the AUDI T_SYS OPERATI ONS initialization parameter, audit records
for user SYS. AUDI T_FI LE_DEST can be changed with "Alter System set AUDIT _
FILE_DEST = <dir> DEFERRED", meaning the new destination will be effective for
all subsequent sessions.

If the AUDI T_FI LE _DEST parameter is not specified, the default location on Solaris
is $ORACLE_HOVE/ r dbns/ audi t .

In Windows, the default location to which audit records are written is the Event
Viewer log file.

Notes:

« If your operating system supports an audit trail, then its
location is operating system specific. For example, the
Windows operating systems writes audit records as events to
the application event log. You can view and manage these
events using Event Viewer. You are not allowed to specify the
AUDI T_FI LE_DEST initialization parameter for Windows
platforms. For more information, see Oracle Database Platform
Guide for Windows.

« Some operating systems always log an audit record for instance
connection and database startup to the default location
$ORACLE_HQOVE/ r dbrrs/ audi t regardless of the setting for
AUDI T_FI LE_DEST. This log action occurs because the
parameter setting is not known until the database is mounted.

11-12 Oracle Database Security Guide

Managing the Standard Audit Trail

Standard Auditing in a Multitier Environment

In a multitier environment, Oracle preserves the identity of the client through all
tiers, which enables auditing of actions taken on behalf of the client. To do such
auditing, you use the BY pr oxy clause in your AUDI T statement.

This clause allows you a few options. You can:

« Audit SQL statements issued by the specified proxy on its own behalf
« Audit statements executed on behalf of a specified user or users

« Audit all statements executed on behalf of any user

The following example audits SELECT TABLE statements issued on behalf of client
j ackson by the proxy application server appser ve.

AUDI T SELECT TABLE
BY appserve ON BEHALF CF j ackson;

See Also: Oracle Database Concepts and Oracle Database Application
Developer's Guide - Fundamentals for more information on proxies
and multitier applications

Setting Standard Auditing Options

You specify one of the three standard auditing options using the AUDI T statement:

Level Effect

Statement Causes auditing of specific SQL statements or groups of
statements that affect a particular type of database object. For
example, AUDI T TABLE audits the CREATE TABLE, TRUNCATE
TABLE, COMMENT ON TABLE, and DELETE [FROM TABLE
statements.

Privilege Audits SQL statements that are authorized by the specified
system privilege. For Example, AUDI T CREATE ANY TRI GGER
audits statements issued using the CREATE ANY TRI GGER
system privilege.

Object Audits specific statements on specific objects, such as ALTER
TABLE on the enp table

To use the AUDI T statement to set statement and privilege options, you must have
the AUDI T SYSTEMprivilege. To use it to set object audit options, you must own
the object to be audited or have the AUDI T ANY privilege.

Configuring and Administering Auditing 11-13

Managing the Standard Audit Trail

Audit statements that set statement and privilege audit options can include a BY
clause to specify a list of users or application proxies to limit the scope of the
statement and privilege audit options.

When setting auditing options, you can also specify the following conditions for
auditing:

« BY SESSI OVVBY ACCESS

BY SESSI ON causes Oracle to write a single record for all SQL statements of
the same type issued in the same session. BY ACCESS causes Oracle to write
one record for each access.

Note: If you are using an operating system file for the audit trail
(AUDI T_TRAI L=0S), multiple records may still be written to the
audit trail when BY SESSI ONis specified. This occurs because
while Oracle can write to the operating system file, it is unable to
read it to detect that it has already written an audit entry for the
action.

= VWHENEVER SUCCESSFUL/WHENEVER NOT SUCCESSFUL

WHENEVER SUCCESSFUL chooses auditing only for statements that succeed.
WHENEVER NOT SUCCESSFUL chooses auditing only for statements that fail or
result in errors.

The implications of your choice of auditing option and specification of AUDI T
statement clauses is discussed in subsequent sections.

A new database session picks up auditing options from the data dictionary when
the session is created. These auditing options remain in force for the duration of the
database connection. Setting new system or object auditing options causes all
subsequent database sessions to use these options; existing sessions continue using
the audit options in place at session creation.

Caution: The AUDI T statement only specifies auditing options; it
does not enable auditing as a whole. To turn auditing on and
control whether Oracle generates audit records based on the audit
options currently set, set the initialization parameter AUDI T_TRAI L
as described in "Enabling and Disabling Standard Auditing"” on
page 11-10.

11-14 Oracle Database Security Guide

Managing the Standard Audit Trail

See Also: Oracle Database SQL Reference for a complete description
of the AUDI T statement

Specifying Statement Auditing

Valid statement audit options that can be included in AUDI T and NOAUDI T
statements are listed in the Oracle Database SQL Reference.

Two special cases of statement auditing are discussed in the following sections.

Auditing Connections and Disconnections The SESSI ON statement option is unique
because it does not generate an audit record when a particular type of statement is
issued; this option generates a single audit record for each session created by
connections to an instance. An audit record is inserted into the audit trail at connect
time and updated at disconnect time. Cumulative information about a session is
stored in a single audit record that corresponds to the session. This record can
include connection time, disconnection time, and logical and physical 1/0s
processed, among other information.

To audit all successful and unsuccessful connections to and disconnections from the
database, regardless of user, BY SESSI ON (the default and only value for this
option), enter the following statement:

AD T SESS AN

You can set this option selectively for individual users also, as in the next example:

AD T SESSI ON
BY jeff, lori;

Auditing Statements That Fail Because an Object Does Not Exist The NOT EXI STS
statement option specifies auditing of all SQL statements that fail because the target
object does not exist.

Specifying Privilege Auditing

Privilege audit options exactly match the corresponding system privileges. For
example, the option to audit use of the DELETE ANY TABLE privilege is DELETE
ANY TABLE. To turn this option on, you use a statement similar to the following
example:

AUD T DELETE ANY TABLE
BY ACCESS
WHENEVER NOT' SUCCESSHUL;

Configuring and Administering Auditing 11-15

Managing the Standard Audit Trail

Oracle's system privileges are listed in the Oracle Database SQL Reference.

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system
privilege, enter the following statement:

AD T DELETE ANY TABLE

To audit all unsuccessful SELECT, | NSERT, and DELETE statements on all tables and
unsuccessful uses of the EXECUTE PROCEDURE system privilege, by all database
users, and by individual audited statement, issue the following statement:

AUDI T SELECT TABLE, |NSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE
BY ACCESS
WHENEVER NOT' SUCCESSFUL;

The AUDI T SYSTEMsystem privilege is required to set any statement or privilege
audit option. Normally, the security administrator is the only user granted this
system privilege.

Specifying Object Auditing
The Oracle Database SQL Reference lists valid object audit options and the schema
object types for which each option is available.

A user can set any object audit option for the objects contained in the user's own
schema. The AUDI T ANY system privilege is required to set an object audit option
for an object contained in another user's schema or to set the default object auditing
option. Normally, the security administrator is the only user granted the AUDI T
ANY privilege.

To audit all successful and unsuccessful DELETE statements on the j ef f . enp table,
BY SESSI ON (the default value), enter the following statement:

AD T DELETE N j ef f. enp;
To audit all successful SELECT, | NSERT, and DELETE statements on the dept table
owned by user j war d, BY ACCESS, enter the following statement:

AUDI T SELECT, | NSERT, DELETE
ON j war d. dept
BY ACCESS
WHENEVER SUCCESSFU;

To set the default object auditing options to audit all unsuccessful SELECT
statements, BY SESSI ON (the default), enter the following statement:

AUDI T SELECT

11-16 Oracle Database Security Guide

Managing the Standard Audit Trail

ON DEFAULT
WHENEVER NOT' SUCCESSFUL;

Turning Off Standard Audit Options

The NQAUDI T statement turns off the various audit options of Oracle Database 10g.
Use it to reset statement and privilege audit options, and object audit options. A
NQAUDI T statement that sets statement and privilege audit options can include the
BY user or BY pr oxy option to specify a list of users to limit the scope of the
statement and privilege audit options.

You can use a NOAUDI T statement to disable an audit option selectively using the
WHENEVER clause. If the clause is not specified, the auditing option is disabled
entirely, for both successful and unsuccessful cases.

The BY SESSI ON/BY ACCESS option pair is not supported by the NOAUDI T
statement; audit options, no matter how they were turned on, are turned off by an
appropriate NOAUDI T statement.

Caution: The NOAUDI T statement only specifies auditing options;
it does not disable auditing as a whole. To turn auditing off and
stop Oracle from generating audit records, set the initialization
parameter AUDI T_TRAI L in the database's initialization parameter
file as described in "Enabling and Disabling Standard Auditing" on
page 11-10.

See Also: Oracle Database SQL Reference for a complete syntax
listing of the NOAUDI T statement

Turning Off Statement and Privilege Auditing
The following statements turn off the corresponding audit options:

NOAUDI T sessi on;

NCAUDI T session BY jeff, lori;

NOAUDI T DELETE ANY TABLE;

NOAUDI T SELECT TABLE, | NSERT TABLE, DELETE TABLE,
EXECUTE PROCEDURE;

The following statement turns off all statement audit options:
NOALD T ALL;

Configuring and Administering Auditing 11-17

Managing the Standard Audit Trail

The fol lowing statement turns off all privilege audit options:

NOALD T ALL PR'M LEGES,

To disable statement or privilege auditing options, you must have the AUDI T
SYSTEMSsystem privilege.

Turning Off Object Auditing
The following statements turn off the corresponding auditing options:

NOALD T DELETE
N enp;

NOAUDI T SELECT, | NSERT, DELETE
N jward. dept ;

Furthermore, to turn off all object audit options on the enp table, enter the
following statement:

NOALDI T ALL
QN enp;

To turn off all default object audit options, enter the following statement:

NOALD T ALL
ON DEFAULT,

All schema objects created before this NOAUDI T statement is issued continue to use
the default object audit options in effect at the time of their creation, unless
overridden by an explicit NOAUDI T statement after their creation.

To disable object audit options for a specific object, you must be the owner of the
schema object. To disable the object audit options of an object in another user's
schema or to disable default object audit options, you must have the AUDI T ANY
system privilege. A user with privileges to disable object audit options of an object
can override the options set by any user.

Controlling the Growth and Size of the Standard Audit Trail

If the audit trail becomes completely full and no more audit records can be inserted,
audited statements cannot be successfully executed until the audit trail is purged.
Warnings are returned to all users that issue audited statements. Therefore, the
security administrator must control the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the audit trail
grows according to two factors:

11-18 Oracle Database Security Guide

Managing the Standard Audit Trail

« The number of audit options turned on
« The frequency of execution of audited statements
To control the growth of the audit trail, you can use the following methods:

« Enable and disable database auditing. If it is enabled, audit records are
generated and stored in the audit trail; if it is disabled, audit records are not
generated.

« Be very selective about the audit options that are turned on. If more selective
auditing is performed, useless or unnecessary audit information is not
generated and stored in the audit trail.

« Tightly control the ability to perform object auditing. This can be done two
different ways:

— Asecurity administrator owns all objects and the AUDI T ANY system
privilege is never granted to any other user. Alternatively, all schema
objects can belong to a schema for which the corresponding user does not
have CREATE SESSI ON privilege.

— All objects are contained in schemas that do not correspond to real database
users (that is, the CREATE SESSI ON privilege is not granted to the
corresponding user) and the security administrator is the only user granted
the AUDI T ANY system privilege.

In both scenarios, object auditing is controlled entirely by the security
administrator.

The maximum size of the database audit trail (SYS. AUD$ table) is determined by
the default storage parameters of the SYSTEMtablespace, in which it is stored.

See Also: Your operating system specific Oracle documentation
for more information about managing the operating system audit
trail when you are directing audit records to that location

Purging Audit Records from the Audit Trail

After auditing is enabled for some time, the security administrator may want to
delete records from the database audit trail both to free audit trail space and to
facilitate audit trail management.

For example, to delete all audit records from the audit trail, enter the following
statement:

DELETE FROM SYS. ALDS;

Configuring and Administering Auditing 11-19

Managing the Standard Audit Trail

Alternatively, to delete all audit records from the audit trail generated as a result of
auditing the table enp, enter the following statement:

DELETE FROM SYS. AUDH
WHERE obj $nane=' B\WP ;

Note: All deletes from the audit trail are audited without
exception: see this chapter's sections entitled Auditing the Standard
Audit Trail on page 11-21 and Auditing Administrative Users on
page 11-4.

Only the user SYS, a user who has the DELETE ANY TABLE privilege, or a user to
whom SYS has granted DELETE privilege on SYS. AUD$ can delete records from the
database audit trail.

Note: If the audit trail is completely full and connections are being
audited (that is, if the SESSI ON option is set), typical users cannot
connect to the database because the associated audit record for the
connection cannot be inserted into the audit trail. In this case, the
security administrator must connect as SYS (operations by SYS are
not audited) and make space available in the audit trail.

See Also: Oracle Database Utilities for information about exporting
tables

Archiving Audit Trail Information

If audit trail information must be archived for historical purposes, the security
administrator can copy the relevant records to a normal database table (for example,
using | NSERT | NTO tabl e SELECT ... FROM SYS. AUDS$.. .) or export the
audit trail table to an operating system file.

Reducing the Size of the Audit Trail

As with any database table, after records are deleted from the database audit trail,
the extents allocated for this table still exist.

11-20 Oracle Database Security Guide

Managing the Standard Audit Trail

If the database audit trail has many extents allocated for it, but many of them are
not being used, the space allocated to the database audit trail can be reduced by
following these steps:

1. If you want to save information currently in the audit trail, copy it to another
database table or export it using the EXPORT utility.

2. Connect as a user with administrator privileges.
3. Truncate SYS. AUD$ using the TRUNCATE statement.
4. Reload archived audit trail records generated from Step 1.

The new version of SYS. AUD$ is allocated only as many extents as are necessary to
contain current audit trail records.

Note: SYS. AUD$ is the only SYS object that should ever be
directly modified.

Protecting the Standard Audit Trail

When auditing for suspicious database activity, protect the integrity of the audit
trail's records to guarantee the accuracy and completeness of the auditing
information.

Audit records generated as a result of object audit options set for the SYS. AUD$
table can only be deleted from the audit trail by someone connected with
administrator privileges, which itself has protection against unauthorized use.

Auditing the Standard Audit Trail

If an application needs to give SYS.AUDS$ access to regular users (non-SYSDBA
users), then such access needs to be audited.

To do so, you turn on the relevant auditing options for SYS.AUDS$, which work a
little differently because they are auditing actions on the audit trail(aud$) itself:

1. Connect sys/passw as SYSDBA.
2. Issue the following command:
AUDI T SELECT, | NSERT, UPDATE, DELETE ON sys.aud$ BY ACCESS;

Please note that this command will AUDI T actions performed by non-SYSDBA
users only.

Configuring and Administering Auditing 11-21

Viewing Database Audit Trail Information

Then if a regular user has select, update, insert and delete privileges on SYS. AUD$
and executes a SELECT operation, the audit trail will have a record of that
operation. That is, SYS.AUD$ will have a row identifying the SELECT action on
itself, as say rowl.

If a user later tries to DELETE this rowl from SYS.AUD$, the DELETE will succeed,
since the user has the privilege to perform this action. However, this DELETE action
on SYS.AUDS is also recorded in the audit trail.

Setting up this type of auditing acts as a safety feature, potentially revealing
unusual or unauthorized actions.

A logfile for an illustrative test case appears at the end of this chapter, at Example of
Auditing Table SYS.AUDS$.

Viewing Database Audit Trail Information

The database audit trail (SYS. AUD$) is a single table in each Oracle database's data
dictionary. Several predefined views are available to present auditing information
from this table in a meaningful way. If you decide not to use auditing, you can later
delete these views. The following subsections show you what's in these views, how
to use them, and how to delete them:

« Audit Trail Views
« Using Audit Trail Views to Investigate Suspicious Activities

« Deleting the Audit Trail Views

Audit Trail Views

The following views are created upon installation:

View

Description

STMI_AUDI T_OPTI ON_MAP | Contains information about auditing option type codes. Created by the

SQL. BSQscript at CREATE DATABASE time.

AUDI T_ACTI ONS Contains descriptions for audit trail action type codes

ALL_DEF_AUDI T_OPTS Contains default object-auditing options that will be applied when objects are

created

DBA_STMI_AUDI T_OPTS Describes current system auditing options across the system and by user

DBA PRI V_AUDI T_OPTS Describes current system privileges being audited across the system and by

user

11-22 Oracle Database Security Guide

Viewing Database Audit Trail Information

View

Description

DBA_OBJ_AUDI T_OPTS
USER OBJ_AUDI T_CPTS

Describes auditing options on all objects. USER view describes auditing options
on all objects owned by the current user.

DBA AUDI T_TRAI L
USER_AUDI T_TRAI L

Lists all audit trail entries. USER view shows audit trail entries relating to
current user.

DBA_AUDI T_OBJECT
USER_AUDI T_OBJECT

Contains audit trail records for all objects in the system. USER view lists audit
trail records for statements concerning objects that are accessible to the current
user.

DBA_AUDI T_SESSI ON
USER AUDI T_SESSI ON

Lists all audit trail records concerning CONNECT and DI SCONNECT. USER view
lists all audit trail records concerning connections and disconnections for the
current user.

DBA_AUDI T_STATEMENT
USER_AUDI T_STATEMENT

Lists audit trail records concerning GRANT, REVOKE, AUDI T, NOAUDI T, and
ALTER SYSTEMstatements throughout the database, or for the USER view,
issued by the user

DBA_AUDI T_EXI STS

Lists audit trail entries produced BY AUDI T NOT EXI STS

DBA AUDI T_PCLI CI ES

Shows all the auditing policies on the system.

DBA FGA AUDI T_TRAI L

Lists audit trail records for value-based auditing.

DBA_COMMON_AUDI T_
TRAI L

Combines standard and fine-grained audit log records

See Also:

Oracle Database Reference for more detailed descriptions

of the Oracle provided predefined views

Using Audit Trail Views to Investigate Suspicious Activities

This section offers examples that demonstrate how to examine and interpret the
information in the audit trail. Consider the following situation.

You would like to audit the database for the following suspicious activities:

« Passwords, tablespace settings, and quotas for some database users are being
altered without authorization.

« A high number of deadlocks are occurring, most likely because of users
acquiring exclusive table locks.

« Rows are arbitrarily being deleted from the enp table inj ef f 's schema.

You suspect the users j war d and swi | | i ans of several of these detrimental

actions.

Configuring and Administering Auditing 11-23

Viewing Database Audit Trail Information

To enable your investigation, you issue the following statements (in order):

AUDI T ALTER, | NDEX, RENAME ON DEFAULT
BY SESSI ON;
CREATE VIEW | eff. enpl oyee AS SELECT * FROM j eff. enp;
AUDI T SESSION BY jward, swillians;
AUDI T ALTER USER;
AUDI T LOCK TABLE
BY ACCESS
WHENEVER SUCCESSFUL;
AUDI T DELETE ON jeff.enp
BY ACCESS
WHENEVER SUCCESSFUL;

The following statements are subsequently issued by the user j war d:
ALTER USER tsnmith QUOTA O ON users;

DRCP USER dj ones;

The following statements are subsequently issued by the user swi | | i ans:

LOX TABLE jeff.enp I N EXCLUS VE MDE
DELETE FROMj ef f. enp WHERE ngr = 7698;
ALTER TABLE j ef f. enp ALLCCATE EXTENT (S ZE 100K);
CREATE | NDEX jef f. ename_i ndex ON jeff.enp (enane);
CREATE PROCEDURE jeff.fire_enpl oyee (enpi d NUMBER) AS

BEGQ N

DELETE FROM j ef f. enp WHERE enpno = enpi d;

END

/

EXEQUTE j eff. fire_enpl oyee(7902);

The following sections display the information relevant to your investigation that
can be viewed using the audit trail views in the data dictionary:

» Listing Active Statement Audit Options

« Listing Active Privilege Audit Options

« Listing Active Object Audit Options for Specific Objects

« Listing Default Object Audit Options

« Listing Audit Records

« Listing Audit Records for the AUDIT SESSION Option

11-24 Oracle Database Security Guide

Viewing Database Audit Trail Information

Listing Active Statement Audit Options
The following query returns all the statement audit options that are set:

SELECT * FROM DBA_STMT_AUDI T_CPTS;

USER_NAME AUDI T_OPTI ON SUCCESS FAI LURE

JWARD SESSI ON BY SESSI ON BY SESSI ON

SWLLI AV SESSI ON BY SESSI ON BY SESSI ON
LOCK TABLE BY ACCESS NOT SET

Notice that the view reveals the statement audit options set, whether they are set for
success or failure (or both), and whether they are set for BY SESSI ONor BY
ACCESS.

Listing Active Privilege Audit Options
The following query returns all the privilege audit options that are set:

SELECT * FROM DBA_PRI V_AUDI T_CPTS,

USER_NAME PRI VI LEGE SUCCESS FAI LURE

ALTER USER BY SESSION BY SESSI ON

Listing Active Object Audit Options for Specific Objects

The following query returns all audit options set for any objects whose name starts
with the characters enp and which are contained in j ef f 's schema:

SELECT * FROM DBA_OBJ_AUDI T_CPTS
WHERE OMKER = ' JEFF' AND OBJECT NAME LI KE ' EMP% :

OMER OBJECT_NAME OBJECT_TY ALT AUD COM DEL GRA IND INS LOC ...

JEFF EWP TABLE SIS /- </ A= </~ SIS/~ -[- ..
JEFF ENPLOYEE VIBW /- /- -/~ A~ /- SIS -/~ -]-

Notice that the view returns information about all the audit options for the specified
object. The information in the view is interpreted as follows:

« The character "-" indicates that the audit option is not set.

« The character "S" indicates that the audit option is set, BY SESSI ON.

« The character "A" indicates that the audit option is set, BY ACCESS.

Configuring and Administering Auditing 11-25

Viewing Database Audit Trail Information

« Each audit option has two possible settings, WHENEVER SUCCESSFUL and
VWHENEVER NOT SUCCESSFUL, separated by "/". For example, the DELETE
audit option for j ef f . enp is set BY ACCESS for successful delete statements
and not set at all for unsuccessful delete statements.

Listing Default Object Audit Options
The following query returns all default object audit options:

SELECT * FROM ALL_DEF_AUDI T_OPTS;

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE FBK

B e S R

Notice that the view returns information similar to the USER_OBJ_AUDI T_OPTS
and DBA_OBJ_AUDI T_OPTS views (see previous example).

Listing Audit Records
The following query lists audit records generated by statement and object audit
options:

SELECT * FROM DBA_AUDI T_OBJECT;

Listing Audit Records for the AUDIT SESSION Option

The following query lists audit information corresponding to the AUDI T SESSI ON
statement audit option:

SELECT USERNAME, LOGOFF_TIME, LOGOFF_LREAD, LOGOFF_PREAD,
LOGOFF_LWRI TE, LOGOFF_DLOCK
FROM DBA_AUDI T_SESSI O\,

USERNAME ~ LOGOFF_TI LOGOFF_LRE LOGOFF_PRE LOGOFF_LWR LOGOFF_DLO

JWARD 02- AUG 91 53 2 24 0
SWLLIAMS 02- AUG 91 3337 256 630 0

Deleting the Audit Trail Views

If you disable auditing and no longer need the audit trail views, delete them by
connecting to the database as SYS and running the script file CATNOAUD. SQ.. The
name and location of the CATNQAUD. SQL script are operating system dependent.

11-26 Oracle Database Security Guide

Viewing Database Audit Trail Information

Example of Auditing Table SYS.AUD$
The code in this section illustrates the auditing of changes made to SYS.AUDS.

SQ> @

SQL>

SQL> SET FEEDBACK 1

SQ.> SET NUMW DTH 10

SQL> SET LI NESI ZE 80

SQL> SET TRI MSPOOL ON

SQL> SET TAB COFF

SQL> SET PAGESI ZE 100

SQL>

SQL> col um usernane format al0

SQL> col um owner format al0

SQL> col um obj _nane format a6

SQ.> colum action_nane format al7

SQL> SET ECHO ON

SQL>

SQL> connect sys/newdbapassword as sysdba
Connect ed.

SQ> grant select, insert, update, delete on sys.aud$ to jeff;

Grant succeeded.

SQL> grant select on dba_audit_trail to jeff;

G ant succeeded.

SQL> audit select, update, delete on sys.aud$ by access;
Audit succeeded.

SQ.> truncate table sys.aud$;

Tabl e truncat ed.

SQL>

SQL> connect jeff/wol f

Connect ed.

SQL> select count(*) fromenp

Configuring and Administering Auditing 11-27

Viewing Database Audit Trail Information

0

1 row sel ected.

SQL>

SQL> sel ect statenentid,entryid, usernane, acti on_nane, ret urncode, owner,
2 obj _nanme, substr(priv_used, 1,8) priv, SES _ACTI ONS
3 fromdba audit _trail
4 order by sessionid, entryid,

STATEMENTI D ENTRYI D USERNAME ~ ACTI ON_NAME RETURNCODE OWNER CBJ_NA

8 1 JEFF SELECT 0 SYS AUDS

1 row sel ect ed.

SQL>
SQL> update sys.aud$ set userid = 0;

2 rows updated.

SQL> sel ect statementid, entryid, usernang, acti on_nane, ret urncode, owner,
2 obj _name, substr(priv_used, 1,8) priv, SES _ACTI ONS
3 fromdba_audit _trail
4 order by sessionid, entryid,

STATEMENTI D ENTRYI D USERNAME ~ ACTI ON_NAME RETURNCODE OWNER CBJ_NA

8 10 SELECT 0 SYS AUDS
9 20 SELECT 0 SYS AUD$
10 3 JEFF UPDATE 0 SYS AUDS$

3 rows sel ected.

s>
SQ.> del ete from sys. aud$;

3 rows del eted.

11-28 Oracle Database Security Guide

Fine-Grained Auditing

> sel ect statementid, entryid, username, acti on_name, r et ur ncode, owner,
obj _name, substr(priv_used, 1,8) priv, SES ACTIONS
fromdba_audit_trail
order by sessionid,entryid;

INPRINE S

STATEMENTI D ENTRYI D USERNAME ~ ACTI ON_NAME RETURNCODE OMNER OBJ_NA

10 3 JEFF UPDATE 0 SYS AUDS$
12 5 JEFF DELETE 0 SYS AUDS

2 rows sel ected.

SQL>

SQL> connect sys/newdbapassword as sysdba

Connect ed.

SQ> noaudit insert, select, update, delete on sys.aud$;

Noaudit succeeded.

SQL>
SQL> spool of f

Fine-Grained Auditing

As described earlier in this chapter and in Chapter 8, standard Oracle auditing is
highly configurable. Its audit trail provides a fixed set of facts that monitor
privileges, object access, or (optionally) SQL usage, including information about the
environment or query results. The scope of standard auditing can be substantially
expanded by using triggers, providing additional customized information.

However, there is no mechanism to specify audit conditions so as to minimize
unhelpful audits, and reconstructing events from access logs often fails to prove
access rights were violated.

Oracle's Fine-Grained Auditing addresses these needs, taking you beyond standard
auditing and enabling you to minimize false or unhelpful audits by specifying more
detailed audit conditions. You do not need to set AUDI T_TRAI L to enable
fine-grained auditing. You simply add and remove FGA policies as you see fit,
applying them to the specific operations or objects you want to monitor. A built-in
audit mechanism in the database prevents users from bypassing the audit.

Configuring and Administering Auditing 11-29

Fine-Grained Auditing

Fine-grained auditing records are stored in the DBA FGA_AUDI T_TRAI L view, and
also in the DBA_COMMON_AUDI T_TRAI L view, which combines standard and
fine-grained audit log records.

See Also: To add, drop, enable, or disable policies, you use the
package described later in this chapter: The DBMS_FGA Package

Policies in Fine-Grained Auditing

Policies you establish with fine-grained auditing can monitor data access based on
content. Using policies, you can establish what columns and conditions you want
audit records for. Your conditions can include limiting the audit to specific types of
DML statements used in connection with the columns you specify. You can also
provide the name of the routine you want called when an audit event occurs, to
notify or alert administrators or to handle errors or anomalies.

For example, most companies logically want to limit access to the specifications for
a product under development, or its test results, and prefer that salary information
remain private. Auditors want enough detail to be able to determine what data was
accessed. Knowing only that SELECT privilege was used by a specific user on a
particular table is not specific enough to provide accountability.

A central tax authority has similar privacy concerns, needing to track access to tax
returns so that employees don't snoop. Similarly, a government agency needs
detailed tracking of access to its database of informants. Such agencies also need
enough detail to determine what data was accessed, not simply that the SELECT
privilege was used by JEFF on the TAXPAYERS or | NFORVANTS table.

Advantages of Fine-Grained Auditing over Triggers

Fine-grained auditing meets these needs by providing functionality (and efficiency)
beyond what triggers can do. Triggers incur a PL/SQL process call for every row
processed, and create an audit record only when a relevant column is changed by a
DML statement.

An FGA policy, on the other hand, does not incur this cost for every row. Instead, it
audits only once for every policy. Specifically, it audits when a specified relevant
column occurs in a specified type of DML statement, either being changed by the
statement or being in its selection criteria. This combination of criteria uncovers
users who hope their information gathering will be masked because they only use
the selection criteria of a DML statement. Triggers also cannot monitor the activity
of another "instead-of" trigger on the same object, while fine-grained auditing
supports tables and views.

11-30 Oracle Database Security Guide

Fine-Grained Auditing

Extensible Interface Using Event Handler Functions

Organizations can thus use fine-grained auditing to define policies specifying the
data access conditions that are to trigger audit events. These policies can use flexible
event handlers that notify administrators when a triggering event has occurred. For
example, an organization may allow HR clerks to access employee salary
information, but trigger an audit event when salaries are greater than $500K are
accessed. The audit policy (where SALARY > 500000) is applied to the EMPLOYEES
table through an audit policy interface (DBMS_FGA, a PL/SQL package).

The audit function (handler_module) is an alerting mechanism for the administrator.
The required interface for such a function is as follows:

PROCEDURE <f nane> (object_schema VARCHAR2, object _name VARCHAR2, policy_
nane VARCHAR2) AS ...

where f nane is the name of the procedure, obj ect _schemna is the name of the
schema of the table audited, obj ect _nan® is the name of the table to be audited,
and pol i cy_nane is the name of the policy being enforced.

Functions and Relevant Columns in Fine-Grained Auditing

For additional flexibility in implementation, organizations can employ a
user-defined function to determine the policy condition, and identify an audit
column (called a relevant column) to further refine the audit policy. For example, the
function could cause an audit record only when a salary greater than $250,000 is
accessed.

Specifying a relevant column helps reduce the instances of false or unnecessary
audit records, because the audit need only be triggered when a particular column is
referenced in the query. For example, an organization may only wish to audit
executive salary access when an employee name is accessed, because accessing
salary information alone is not meaningful unless an HR clerk also selects the
corresponding employee name. You can, however, specify that auditing occur only
when all relevant columns are referenced.

If more than one relevant audit column is specified, Oracle produces an audit
record if the SQL statement references any of those audit columns.

The DBM5_FGA package administers these value-based audit policies. The security
administrator creates an audit policy on the target object using the functions in the
DBM5_FGA package.

See also: The DBMS_FGA Package (the next major section)

Configuring and Administering Auditing 11-31

Fine-Grained Auditing

Audit Records in Fine-Grained Auditing

If any rows returned from a query block match the audit condition, then an audit
event entry is inserted into the fine-grained audit trail. This entry includes
username, SQL text, bind variable, policy name, session ID, time stamp, and other
attributes. Only one row of audit information is inserted into the audit trail for
every FGA policy that evaluates to TRUE. As part of the extensibility framework,
administrators can also optionally define an appropriate audit event handler to
process the event, for example sending an alert page to the administrator.

NULL Audit Conditions

To guarantee auditing of the specified actions ("statement_types") affecting the
specified columns ("audit_column"), specify the audit_condition as NULL (or omit
it), which is interpreted as TRUE. Only specifying NULL will guarantee auditing of
the specified actions ("statement_types") affecting the specified columns ("audit_
column"). The former practice of specifying an audit condition of "1=1" to force such
auditing should no longer be used and will not reliably achieve the desired result.
NULL will cause audit even if no rows were processed, so that all actions on an
audit_column with this policy are audited.

Note: Using an empty string is not equivalent to NULL and will
not reliably cause auditing of all actions on a table with this policy.

The audit function is executed as an autonomous transaction, committing only the
actions of the handler_module and not any user transaction. This function has no
effect on any user SQL transaction.

If NULL or no audit condition is specified, then any action on a table with that
policy causes an audit record to be created, whether or not rows are returned.

Defining FGA Policies

The administrator uses the DBM5_FGA. ADD_POQLI CY interface to define each FGA
policy for a table or view, identifying any combination of select, update, delete, or
insert statements. Oracle supports MERGE statements as well, by auditing the
underlying actions of | NSERT and UPDATE. To audit MERGES, set up FGA on these
| NSERTs and UPDATEs. Only one record is generated, for each policy, for successful
MERGES.

FGA policies associated with a table or view may also specify relevant columns, so
that any specified statement type affecting a particular column is audited. More
than one column can be included as relevant columns in a single FGA policy.

11-32 Oracle Database Security Guide

Fine-Grained Auditing

Examples include privacy-relevant columns, such as those containing social security
numbers, salaries, patient diagnoses, and so on. If no relevant column is specified,
auditing applies to all columns. That is, auditing occurs whenever any specified
statement type affects any column, unless you specify in the policy that auditing is
to occur only when all relevant columns are referenced.

An Added Benefit to Fine-Grained Auditing

In general, fine-grained auditing policies are based on simple user-defined SQL
predicates on table objects as conditions for selective auditing. During fetching,
whenever policy conditions are met for a returning row, the query is audited. Later,
Oracle can execute a user-defined audit event handler, if specified in the policy,
using autonomous transactions to process the event.

Fine-grained auditing can be implemented in user applications using the DBMS_FGA
package or by using database triggers.

The following example shows how you can audit statements (I NSERT, UPDATE,
DELETE, and SELECT) on table hr.emp to monitor any query that accesses the salary
column of the employee records which belong to sales department:

DBVS_FGA. ADD PQOLI CY(

obj ect _schema => "hr',

object_name => 'enp',

policy_name =>'chk_hr_enp',

audit_condition => 'dept = '"SALES'" ',
audit_colum => 'sal ary'

statenent _types => 'insert, update, del ete, select');

Then, any of the following SQL statements will cause the database to log an audit
event record.

SELECT count(*) FROM hr.enmp WHERE dept = 'SALES' and salary > 10000000;
SELECT sal ary FROM hr.enp WHERE dept = ' SALES';
DELETE from hr.enp where sal ary >1000000

Wth all the relevant infornation available, and a trigger-like nechanismto
use, the adnministrator can define what to record and how to process the audit
event .

Consi der the follow ng comands:

/* create audit event handler */

CREATE PROCEDURE sec.log_id (schemal varchar2, tablel varchar2, policyl
varchar2) AS

Configuring and Administering Auditing 11-33

Fine-Grained Auditing

BEG N

UTI L_ALERT_PAGER(schenal, tablel, policyl); -- send an alert note to ny
pager

END;

/* add the policy */

DBVS_FGA. ADD_PQLI CY(

obj ect _schema => "hr',

object_name => 'enp',

policy _name => 'chk_hr_enp',

audit _condition => 'dept = '"'SALES'" ',
audit_colum => 'salary',

handl er _schema => 'sec',

handl er _nodule => "log_id",

enabl e = TRUE);

Note: Since the words "schema" and "table" are reserved words,
they cannot be used as variables without some alteration, such as
appending "1" as is done here.

What happens when these commands are issued? After the fetch of the first
interested row, the event is recorded, and the audit function SEC. LOG | Dis
executed. The audit event record generated is stored in DBA_FGA AUDI T_TRAI L
(fga_log$), which has reserved columns (such as SQL_TEXT and SQL_BI ND) for
recording SQL text, policy hame, and other information. The query's SQLBI ND and
SQLTEXT are recorded in the LSQLTEXT and LSQLBI ND columns of fga_log$ only if
the policy specified audit_trail = DBVMS_FGA. DB_EXTENDED.

Note: Fine-grained auditing is supported only with cost-based
optimization. For queries using rule-based optimization, audit will
check before applying row filtering, which could result in an
unnecessary audit event trigger.

See Also:

« Oracle Database Application Developer's Guide - Fundamentals for
information about using fine-grained auditing

« The DBMS_FGA chapter in PL/SQL Packages and Types Reference

11-34 Oracle Database Security Guide

The DBMS_FGA Package

Note: Policies currently in force on an object involved in a
flashback query are applied to the data returned from the specified
flashback snapshot (based on time or SCN).

The DBMS_FGA Package

The DBM5_FGA package provides fine-grained security functions. Execute privilege
on DBMB_FGA is needed for administering audit policies. Because the audit function
can potentially capture all user environment and application context values, policy
administration should be executable by privileged users only.

This feature is available for only cost-based optimization. The rule-based optimizer
may generate unnecessary audit records since audit monitoring can occur before
row filtering. For both the rule-based optimizer and the cost-based optimizer, you
can refer to DBA FGA AUDI T_TRAI L to analyze the SQL text and corresponding
bind variables that are issued.

The procedures for this package are described in the following subsections:
« ADD_POLICY Procedure
« DROP_POLICY Procedure
« ENABLE_POLICY Procedure
« DISABLE_POLICY Procedure

The syntax, parameters, and usage notes accompanying each procedure description
also discuss the defaults and restrictions that apply to it.

ADD_POLICY Procedure

This procedure creates an audit policy using the supplied predicate as the audit
condition. The maximum number of FGA policies on any table or view object is 256.

Syntax

DBVE FGA ADD PALI CY(
obj ect_schema VARCHARZ,
obj ect _nane VARCHAR2,
pol i cy_nane VARCHAR?,
audi t _condi ti on VARCHAR?,
audi t _col um VARCHAR?,
handl er_schema VARCHAR2,

Configuring and Administering Auditing 11-35

The DBMS_FGA Package

handl er_nodul e VARCHAR2,

enabl e BOOLEAN
stat enent _types VARCHAR?,
audit_trail Bl NARY_| NTEGER | N DEFALLT,

audi t _col umm_opts Bl NARY_| NTEGER | N DEFALLT) ;

Parameters

Table 11-1 ADD_POLICY Procedure Parameters

Parameter

Description

Default Value

obj ect _schemma

The schema of the object to be audited. (If NULL, the
current effective user schema is assumed.)

NULL

obj ect _nane

The name of the object to be audited.

policy_nane

The unique name of the policy.

audi t _condi tion

A condition in a row that indicates a monitoring condition.
NULL is allowed and acts as TRUE.

NULL

audi t _col um

The columns to be checked for access. These can include
hidden columns. The default, NULL, causes audit if any column
is accessed or affected.

NULL

handl er _schema

The schema that contains the event handler. The default,
NULL, causes the current schema to be used.

NULL

handl er _nodul e

The function name of the event handler; includes the package
name if necessary. This is fired only after the first row that
matches the audit condition is processed in the query. If the
procedure fails with exception, the user SQL statement will fail
as well.

NULL

enabl e

Enables the policy if TRUE, which is the default.

TRUE

st atenent _t ypes

The SQL statement types to which this policy is applicable:
insert, update, delete, or select only.

SELECT

audit_trail

Whether to populate LSQLTEXT and LSQLBI NDin fga_log$.

DB_EXTENDED

audi t _col um_opt s

Establishes whether a statement is audited when the query
references any column specified in the audit_column parameter
or only when all such columns are referenced.

ANY_COLUMNS

Usage Notes

Sample command: DBMS_FGA. ADD POLI CY(obj ect _schema =>
"scott', object _name=>'enmp', policy nane => 'nypolicyl',

11-36 Oracle Database Security Guide

The DBMS_FGA Package

audit _condition => 'sal < 100', audit_colum =>'comm
credit_card, expirn_date', handl er_schema => NULL, handler__
nodul e => NULL, enable => TRUE, statenent_types=> '| NSERT,
UPDATE));

An FGA policy should not be applied to out-of-line columns such as LOB
columns.

The audit_condition must be a boolean expression that can be evaluated using
the values in the row being inserted, updated, or deleted. This condition can be
NULL (or omitted), which is interpreted as TRUE, but it cannot contain the
following elements:

« Subqueries or sequences

« Any direct use of SYSDATE, UID, USER or USERENY functions. However,
a user-defined function and other SQL functions can use these functions to
return the desired information.

« Any use of the pseudocolumns LEVEL, PRIOR, or ROWNUM.

Specifying an audit condition of "1=1" to force auditing of all specified
statements ("statement_types") affecting the specified column ("audit_column")
is no longer needed to achieve this purpose. NULL will cause audit even if no
rows were processed, so that all actions on a table with this policy are audited.

If object_schema is NULL, the current effective user schema is assumed.

The audit function (handler_module) is an alerting mechanism for the
administrator. The required interface for such a function is as follows:

PROCEDURE <f nane> (obj ect_schema VARCHAR2, object_name VARCHAR2, policy_
name VARCHAR2) AS ...

where f nane is the name of the procedure, obj ect _schenma is the name of the
schema of the table audited, obj ect _nane is the name of the table to be
audited, and pol i cy_nane is the name of the policy being enforced.

Each audit policy is applied to the query individually. However, at most one
audit record may be generated for each policy, no matter how many rows being
returned satisfy that policy's audit_condition. In other words, whenever any
number of rows being returned satisfy an audit condition defined on the table, a
single audit record will be generated for each such policy.

If a table with an FGA policy defined on it receives a Fast Path insert or a
vectored update, the hint is automatically disabled before any such operations.

Configuring and Administering Auditing 11-37

The DBMS_FGA Package

Disabling the hint allows auditing to occur according to the policy's terms. (One
example of a Fast Path insert is the statement | NSERT- W TH- APPEND-hint.)

« Theaudit_trail parameter specifies whether to record the query's Sql Text and Sql
Bind variable information in the FGA audit trail (fga_log$) columns named LSQLTEXT
and LSQLBI ND:

« To populate, set to DBMS_FGA. DB_EXTENDED (the default)
« To leave unpopulated, set to DBVS_FGA. DB.
The audit_trail parameter appears in the ALL_AUDIT_POLICIES view.
« The audit_column_opts parameter establishes whether a statement is audited

« when the query references any column specified in the audit_column
parameter (audit_column_opts = DBMS_FGA. ANY_COLUWNS), or

« only when all such columns are referenced (audit_column_opts = DBMS_
FGA. ALL_COLUWNS).

The default is DBMS_FGA. ANY_COLUWNS.
The ALL_AUDIT_POLICIES view also shows audit_column_opts.

DROP_POLICY Procedure

This procedure drops an audit policy.

Syntax

DBV FGA DRCP_PALI CY(
obj ect_schema VARCHAR?,
obj ect _nane VARCHAR?,
pol i cy_nane VARCHAR?) ;

Parameters

Table 11-2 DROP_POLICY Procedure Parameters

Parameter Description

obj ect _schema The schema of the object to be audited. (If NULL, the
current effective user schema is assumed.)

obj ect _nane The name of the object to be audited.

pol i cy_nane The unigue name of the policy.

11-38 Oracle Database Security Guide

The DBMS_FGA Package

Usage Notes

The DBMS_FGA procedures cause current DML transactions, if any, to commit before
the operation. However, the procedures do not cause a commit first if they are
inside a DDL event trigger. With DDL transactions, the DBMS_FGA procedures are
part of the DDL transaction. The default value for object_schema is NULL. (If
NULL, the current effective user schema is assumed.)

ENABLE_POLICY Procedure

This procedure enables an audit policy.

Syntax

DBV FGA ENABLE PALI CY(
obj ect _schema VARCHAR?,
obj ect _nane VARCHAR?,
pol i cy_nane VARCHAR?,
enabl e BOCLEAN) ;

Parameters

Table 11-3 ENABLE_POLICY Procedure Parameters

Parameter Description

obj ect _schema The schema of the object to be audited. (If NULL, the
current effective user schema is assumed.)

obj ect _nane The name of the object to be audited.

pol i cy_nane The unique name of the policy.

enabl e Defaults to TRUE to enable the policy.

DISABLE_POLICY Procedure

This procedure disables an audit policy.

Syntax

CBVE FGA D SABLE PQLI CY(
obj ect _schena VARCHAR?,
obj ect _nane VARCHAR?,
pol i cy_nane VARCHAR?) ;

Configuring and Administering Auditing 11-39

The DBMS_FGA Package

Parameters

Table 11-4 DISABLE_POLICY Procedure Parameters

Parameter Description

obj ect _schema The schema of the object to be audited. (If NULL, the
current effective user schema is assumed.)

obj ect _nane The name of the object to be audited.

policy_nane The unique name of the policy.

The default value for object_schema is NULL. (If NULL, the current effective user
schema is assumed.)

11-40 Oracle Database Security Guide

12

Introducing Database Security for
Application Developers

Creating an application security policy is the first step when writing secure
database applications. An application security policy is a list of application security
requirements and rules that regulate user access to database objects.

This chapter discusses aspects of application security and Oracle Database features
that you should consider when drafting security policies for database applications.
It contains the following topics:

About Application Security Policies

Considerations for Using Application-Based Security
Managing Application Privileges

Creating Secure Application Roles

Associating Privileges with the User's Database Role
Protecting Database Objects Through the Use of Schemas
Managing Object Privileges

Introducing Database Security for Application Developers 12-1

About Application Security Policies

About Application Security Policies

You should draft security policies for each database application. For example, each
database application should have one or more database roles that provide different
levels of security when executing the application. The database roles can be granted
to user roles, or directly to specific usernames.

Applications that potentially allow unrestricted SQL statement execution (through
tools such as SQL*Plus) also need security policies that prevent malicious access to
confidential or important schema objects.

The following sections describe aspects of application security and the Oracle
Database features that you can use to plan and develop secure database
applications.

See Also:

« Chapter 7, "Security Policies" for an overview of database
security policies

« "Application Developer Security" on page 7-9 for a discussion
of application developer database privileges

« "Application Administrator Security” on page 7-11 for a
description of the security-related tasks of an application
administrator

Considerations for Using Application-Based Security

Two main issues to consider when you formulate and implement application
security are listed as follows:

« Are Application Users Also Database Users?

« Is Security Enforced in the Application or in the Database?

Are Application Users Also Database Users?

Oracle Corporation recommends that, where possible, you build applications in
which application users are database users. In this way you can leverage the
intrinsic security mechanisms of the database.

For many commercial packaged applications, application users are not database
users. For these applications, multiple users authenticate themselves to the

12-2 Oracle Database Security Guide

Considerations for Using Application-Based Security

application, and the application then connects to the database as a single,
highly-privileged user. We will call this the "One Big Application User" model.

Applications built in this fashion generally cannot use many of the intrinsic security
features of the database, because the identity of the user is not known to the

database.

For example, use of the following features is compromised by the One Big
Application User model:

Oracle Feature

Limitations of "One Big Application User" Model

Auditing

Oracle Advanced
Security enhanced
authentication

Roles

Enterprise user
management feature
of Oracle Advanced
Security

A basic principle of security is accountability through
auditing. If all actions in the database are performed by
One Big Application User, then database auditing cannot
hold individual users accountable for their actions. The
application must implement its own auditing mechanisms
to capture individual users' actions.

Strong forms of authentication supported by Oracle
Advanced Security (such as, client authentication over
SSL, tokens, and so on) cannot be used if the client
authenticating to the database is the application, rather
than an individual user.

Roles are assigned to database users. Enterprise roles are
assigned to enterprise users who, though not created in
the database, are known to the database. If application
users are not database users, then the usefulness of roles
is diminished. Applications must then craft their own
mechanisms to distinguish between the privileges which
various application users need to access data within the
application.

This feature enables an Oracle database to use the Oracle
Identity Management Infrastructure by securely storing
and managing user information and authorizations in an
LDAP-based directory such as Oracle Internet Directory.
While enterprise users do not need to be created in the
database, they do need to be known to the database. The
One Big Application User model cannot take advantage of
Oracle Identity Management.

Introducing Database Security for Application Developers 12-3

Managing Application Privileges

Is Security Enforced in the Application or in the Database?

Applications whose users are also database users can either build security into the
application, or rely upon intrinsic database security mechanisms such as granular
privileges, virtual private database (fine-grained access control with application
context), roles, stored procedures, and auditing (including fine-grained auditing).
To the extent possible, Oracle recommends that applications utilize the security
enforcement mechanisms of the database.

When security is enforced in the database itself, rather than in the application, it
cannot be bypassed. The main shortcoming of application-based security is that
security is bypassed if the user bypasses the application to access data. For example,
a user who has SQL*Plus access to the database can execute queries without going
through the Human Resources application. The user thus bypasses all of the
security measures in the application.

Applications that use the One Big Application User model must build security
enforcement into the application rather than use database security mechanisms.
Because it is the application—and not the database—which recognizes users, the
application itself must enforce security measures for each user.

This approach means that each application which accesses data must re-implement
security. Security becomes expensive because organizations must implement the
same security policies in multiple applications. Each new application requires an
expensive re-implementation.

See Also: "Use of Ad Hoc Tools a Potential Security Problem" on
page 13-18

Managing Application Privileges

Most database applications involve different privileges on different schema objects.
Keeping track of which privileges are required for each application can be complex.
In addition, authorizing users to run an application can involve many GRANT
operations.

To simplify application privilege management, you can create a role for each
application and grant that role all the privileges a user needs to run the application.
In fact, an application might have a number of roles, each granted a specific subset
of privileges that allow greater or lesser capabilities while running the application.

For example, suppose that every administrative assistant uses the Vacation
application to record vacation taken by members of the department. To best manage
this application, you should:

12-4 Oracle Database Security Guide

Creating Secure Application Roles

Create a VACATI ONrole.
Grant all privileges required by the Vacation application to the VACATI ONrole.

Grant the VACATI ONrole to all administrative assistants or to a role named
ADM N_ASSI STS (if previously defined).

Grouping application privileges in a role aids privilege management. Consider the
following administrative options:

You can grant the role, rather than many individual privileges, to those users
who run the application. Then, as employees change jobs, you need to grant or
revoke only one role, rather than many privileges.

You can change the privileges associated with an application by modifying only
the privileges granted to the role, rather than the privileges held by all users of
the application.

You can determine which privileges are necessary to run a particular
application by querying the ROLE_TAB PRI VSand ROLE_SYS PRI VS data
dictionary views.

You can determine which users have privileges on which applications by
guerying the DBA ROLE_PRI VS data dictionary view.

See Also: Chapter 10, "Administering User Privileges, Roles, and
Profiles" for a complete discussion of creating, enabling, and
disabling roles, and granting and revoking privileges

Creating Secure Application Roles

After database access privileges are grouped into roles, the roles are granted to the
application user. Securing these roles can be accomplished in two ways:

Roles secured by embedding passwords inside their applications, which are
called application roles, or

Application developers can create application roles and specify which PL/SQL
package is authorized to enable the roles, which are called secure application
roles.

Within the package that implements the secure application role:

The application must do the necessary validation. For example, the application
must validate that the user is in a particular department, the user session was
created by proxy, the request comes from a particular IP address, or that the
user was authenticated using an X.509 certificate. To perform the validation,

Introducing Database Security for Application Developers 12-5

Creating Secure Application Roles

applications can use session information accessible by using the SYS_CONTEXT
SQL function with the USERENV namespace attributes (‘'user env' ,

<sessi on_attri but e>). The information returned by this function can
indicate the way the user was authenticated, the IP address of the client, and
whether the user was proxied.

« The application must issue a SET_RCOLE command using dynamic SQL (DBMS_
SESSI ON. SET ROLE).

Note: Because users cannot change the security domain inside
definer’s rights procedures, secure application roles can only be
enabled inside invoker’s rights procedures.

See Also:

« "Secure Application Roles" on page 5-27 for conceptual
information about this topic

« Table 13-1, " Key to Predefined Attributes in USERENV
Namespace" on page 13-12

« PL/SQL User's Guide and Reference for information about
definer's rights versus invoker's rights procedures and how to
create them

Example of Creating a Secure Application Role

Note: You need to set up the following data structures for the
examples in this section to work:

CREATE OR REPLACE PACKAGE hr_logon IS
PROCEDURE hr _set _responsibility;

END;

/

CREATE OR REPLACE PACKAGE BCODY hr_logon IS
PROCEDURE hr_set _responsibility IS
BEG N
DBMS_SESSI ON. SET_| DENTI FI ER (1234) ;
END;
END;
/

12-6 Oracle Database Security Guide

Creating Secure Application Roles

To create a secure application role:

1.

Create the roles as application roles and specify the authorized package that
will enable the roles. In this example, hr . hr _adm n is the example authorized
package.

CREATE ROLE admin_rol e | DENTI FI ED USI NG hr. hr_admi n;
CREATE ROLE staff _rol e | DENTI FIED USI NG hr. hr_admin;

Create an invoker's right procedure.

/* Ceate a dedicated authentication function for manageability so that
changes in authentication policies would not affect the source code of the
application - this design is up to the application devel opers */
/* the only policy in this function is that current user nust have been
aut henti cated using the proxy user 'SCOIT */
CREATE (R REPLACE FUNCTI ON hr . MySecuri t yCheck RETURN BGOLEAN
AS
BEG N
/* a sinple check to see if current session is authenticated
by the proxy user 'SQOIT */
if (sys_context('userenv','proxy_user') = 'SCOIT)
t hen
return TRE
el se
return FALSE
end | F
END

GRANT EXECUTE ON hr. M/SecurityCheck TO PUBLIC,

/*Qeate the procedure*/
CREATE (R REPLACE PACKACE hr_adnin
AUTH D AURRENT_USER
1S
PROCEDURE hr_app_report;
END,
/
CREATE (R REPLACE PACKACGE BODY hr_admin IS
PROCEDURE hr_app report IS
BEA N
/* set application context in 'responsibility' nanespace */
hr_| ogon. hr_set _responsi bi li ty;
/* authentication check here */
if (hr.MSecurityCheck = TRUE)
t hen

Introducing Database Security for Application Developers 12-7

Associating Privileges with the User's Database Role

/* check 'responsibility' being set, then enable the rol es w thout
suppl yi ng the password */
if (sys_context('hr','role') ="'admn')
t hen
dbns_session.set_rol e(' adnmin_role');
el se
dbns_session.set_role('staff_role');
end if;
end if;
END
END

When enabling the secure application role, the database verifies that the authorized
PL/SQL package is on the calling stack. This step verifies that the authorized
PL/SQL package is issuing the command to enable the role. Also, when enabling
the user's default roles, no checking is performed for application roles.

You can use secure application role to ensure a database connection. Because a
secure application role is a role implemented by a package, the package can validate
that users can connect to the database through a middle tier or from a specific IP
address. In this way, the secure application role prevents users from accessing data
outside an application. They are forced to work within the framework of the
application privileges that they have been granted.

Assaociating Privileges with the User's Database Role

A single user can use many applications and associated roles. However, you should
ensure that the user has only the privileges associated with the running database
role. Consider the following scenario:

« The ORDERTole (for the Order application) contains the UPDATE privilege for
the | NVENTORY table

« The | NVENTORY role (for the Inventory application) contains the SELECT
privilege for the | NVENTCRY table

« Several order entry clerks have been granted both the ORDER and | NVENTORY
roles

In this scenario, an order entry clerk who has been granted both roles, can use the
privileges of the ORDER role when running the | NVENTORY application to update
the | NVENTORY table. The problem is that updating the | NVENTORY table is not an
authorized action when using the | NVENTORY application, but only when using the
ORDER application.

12-8 Oracle Database Security Guide

Associating Privileges with the User's Database Role

To avoid such problems, consider using either the SET ROLE statement or the SET_
RCLE procedure as explained in the following section. You can also use the secure
application role feature to allow roles to be set based on criteria you define.

Topics in this section include:

« Using the SET ROLE Statement

« Using the SET_ROLE Procedure

« Examples of Assigning Roles with Static and Dynamic SQL

Using the SET ROLE Statement

Use a SET ROLE statement at the beginning of each application to automatically
enable its associated role and to disable all others. In this way, each application
dynamically enables particular privileges for a user only when required.

The SET ROLE statement simplifies privilege management. You control what
information users can access and when they can access it. The SET ROLE statement
also keeps users operating in a well-defined privilege domain. If a user obtains
privileges only from roles, the user cannot combine these privileges to perform
unauthorized operations.

See Also:

« "When Do Grants and Revokes Take Effect?" on page 10-35 for
information about enabling and disabling roles

« "The SET ROLE Statement" on page 10-35

Using the SET_ROLE Procedure

The PL/SQL package DBM5_SESSI ON. SET_ROLE is functionally equivalent to the
SET ROLE statement in SQL. Roles are not supported in definer's rights procedures,
so the DBMS_SESSI ON. SET_ROLE command cannot be called from them.
However, the DBMS_SESSI ON. SET_ROLE command can be called from the
following:

« Anonymous PL/SQL blocks

« Invoker's rights stored procedures (except those invoked from within definer's
rights procedures)

SET ROLE takes effect only at execution time. Because anonymous blocks compile
and execute simultaneously, roles are set before security checks are performed, so

Introducing Database Security for Application Developers 12-9

Associating Privileges with the User's Database Role

the block completes successfully. With respect to invoker's rights stored procedures,
if they contain static SQL statements and access to objects in the SQL are authorized
through roles, then the procedure may fail during compilation. (Because the roles
are not enabled until the procedure executes.) To resolve this problem, replace static
SQL with dynamic SQL by using the DBMS_SQL package. Then security checks are
performed at execution, at the same time the SET ROLE statement enables roles.

Note: If you use DBM5_SESSI ON. SET_ROLE within an invoker's
rights procedure, the role remains in effect until you explicitly
disable it. In keeping with the least privilege principle, (that users
should have the fewest privileges they need to do their jobs), you
should explicitly disable roles set within an invoker's rights
procedure, at the end of the procedure.

See Also: PL/SQL Packages and Types Reference for information
about the DBMS_SESSI ONand the DBMS_SQL packages

Examples of Assigning Roles with Static and Dynamic SQL

This section shows how static and dynamic SQL affect the assignment of roles.

Note: You need to set up the following data structures for the
examples in this section to work:

QONNECT syst end manager

DRCP USER j oe CASCALCE;

CREATE USER j oe | DENTI FH ED BY j o€;

GRANT CREATE SESSI N RESOLRCE, UNLI M TED TABLESPACE TO j 0e;
GRANT CREATE SESS AN RESOURCE, UNLI M TED TABLESPACE TO scott;
DRCP RCLE acct;

CREATE RQLE acct

GRANT acct TO scott;

ALTER USER scott DEFAULT ROLE ALL EXCEPT acct;

QONNECT j o€/ | o€;

CREATE TABLE finance (enpno NUMBER) ;
GRANT SHLECT ON finance TO acct;
QONNECT scott/tiger

12-10 Oracle Database Security Guide

Associating Privileges with the User's Database Role

Suppose you have a role named ACCT that has been granted privileges allowing
you to select from table FI NANCE in the JOE schema. In this case, the following
procedure that uses static SQL fails:

CREATE (R REPLACE PROCEDURE stat S(L_proc
AUTH D QURRENT_USER AS
n NUMBER
BEG N
SYS. DBVB SESSION SET_ RO K" acct');
SH ECT enpno | NTO n FROM JCE Fl NANCE,
END,

The procedure fails because the security check which verifies that you have the
SELECT privilege on table JCE.FI NANCE occurs at compile time. At compile time,
however, the ACCT role is not yet enabled. The role is not enabled until the
procedure is executed.

Introducing Database Security for Application Developers 12-11

Protecting Database Objects Through the Use of Schemas

In contrast, the DBMS_SQL package, which uses dynamic SQL, is not subject to this
restriction. When you use this package, the security checks are performed when the
procedure executes—not when it is compiled. Thus, the following block is
successful:

CREATE (R REPLACE PROCEDURE dynSQ__pr oc
AUTH D QURRENT_USER AS
n NUMBER
BEG N
SYS. DBVMB SESSION SET_ROLE' acct') ;
EXEQUTE | MEDI ATE ' sel ect enpno fromj oe. finance' | NIO n;
--other calls to SYS DBMS SQL

BEND,
/

See Also: "Choosing Between Native Dynamic SQL and the
DBM5_SQL Package" in Oracle Database Application Developer's Guide
- Fundamentals

Protecting Database Objects Through the Use of Schemas

A schema is a security domain that can contain database objects. The privileges
granted to each user or role control access to these database objects. This section
covers:

« Unique Schemas

« Shared Schemas

Unique Schemas

Most schemas can be thought of as usernames: the accounts which enable users to
connect to a database and access the database objects. However, unique schemas do
not allow connections to the database, but are used to contain a related set of
objects. Schemas of this sort are created as normal users, yet are not granted the
CREATE SESSI ON system privilege (either explicitly or through a role). However,
you must temporarily grant the CREATE SESSI ONand RESOURCE privilege to such
schemas if you want to use the CREATE SCHENMA statement to create multiple tables
and views in a single transaction.

For example, the schema objects for a specific application might be owned by a
given schema. If application users have the privileges to do so, then they can
connect to the database using typical database usernames and use the application
and the corresponding objects. However, no user can connect to the database using

12-12 Oracle Database Security Guide

Managing Object Privileges

the schema set up for the application. This configuration prevents access to the
associated objects through the schema, and provides another layer of protection for
schema objects. In this case, the application could issue an ALTER SESSI ON SET
CURRENT _ SCHEMA statement to connect the user to the correct application schema.

Shared Schemas

For many applications, users do not need their own accounts— their own
schemas—in a database. These users only need to access an application schema. For
example, users John, Firuzeh, and Jane are all users of the Payroll application, and
they need access to the Payr ol | schema on the Fi nance database. None of them
need to create their own objects in the database. They need only access Payr ol |
objects. To address this issue, Oracle Advanced Security provides enterprise users
(schema-independent users).

Enterprise users, users managed in a directory service, do not need to be created as
database users because they use a shared database schema. To reduce
administration costs, administrator can create an enterprise user once in the
directory, and point the user at a shared schema that many other enterprise users
can also access.

See Also: Oracle Advanced Security Administrator's Guide for
information about how shared schemas are created and used for
Enterprise User Security

Managing Object Privileges

As part of designing your application, you need to determine the types of users
who will be working with the application, and the level of access they need to
accomplish their designated tasks. You must categorize these users into role groups,
and then determine the privileges that must be granted to each role. This section
covers:

« What Application Developers Need to Know About Object Privileges
« SQL Statements Permitted by Object Privileges

What Application Developers Need to Know About Object Privileges

End users are typically granted object privileges. An object privilege allows a user
to perform a particular action on a specific table, view, sequence, procedure,
function, or package. Table 12-1 summarizes the object privileges available for each
type of object.

Introducing Database Security for Application Developers 12-13

Managing Object Privileges

Table 12-1 How Privileges Relate to Schema Objects

Applies Applies Applies to Applies to
Object Privilege to Table? to View? Sequence? Procedure??!
ALTER Yes No Yes No
DELETE Yes Yes No No
EXECUTE No No No Yes
I NDEX Yes? No No No
| NSERT Yes Yes No No
REFERENCES Yes? No No No
SELECT Yes Yes? Yes No
UPDATE Yes Yes No No

! Stand-alone stored procedures, functions, and public package constructs.

2 Privilege that cannot be granted to a role.

% Can also be granted for snapshots.

12-14 Oracle Database Security Guide

Managing Object Privileges

SQL Statements Permitted by Object Privileges

As you implement and test your application, you should create each necessary role.
Test the usage scenario for each role to be certain that the users of your application
will have proper access to the database. After completing your tests, coordinate
with the administrator of the application to ensure that each user is assigned the

proper roles.

Table 12-2 lists the SQL statements permitted by the object privileges shown in

Table 12-1.

Table 12-2 SQL Statements Permitted by Database Object Privileges

Object Privilege

SQL Statements Permitted

ALTER

DELETE
EXECUTE

I NDEX
I NSERT
REFERENCES

SELECT

ALTER object (table or sequence)
CREATE TRI GGER ON object (tables only)

DEL ETE FROMobiject (table, view, or synonym)
EXECUTE object (procedure or function)
References to public package variables

CREATE | NDEX ON object (table, view, or synonym)
I NSERT | NTOobject (table, view, or synonym)

CREATE or ALTER TABLE statement defining a FORElI GN KEY
integrity constraint on object (tables only)

SELECT...FROMobject (table, view, synonym, or snapshot)
SQL statements using a sequence

See Also:

"Understanding User Privileges and Roles" on

page 10-15 for a discussion of object privileges

Introducing Database Security for Application Developers 12-15

Managing Object Privileges

12-16 Oracle Database Security Guide

13

Using Virtual Private Database to Implement
Application Security Policies

Oracle Database provides the necessary tools to build secure applications, such as
Virtual Private Database (VPD), which is the combination of fine-grained access
control and application context. Fine-grained access control enables you to associate
security policies to database objects. Application context enables you to define and
access application or database session attributes. VPD combines these two features,
enabling you to enforce security policies to control access at the row level, based on
application or session attributes.

This chapter introduces these features, and then explains how and why you would
use them in the following topics:

« About Virtual Private Database, Fine-Grained Access Control, and Application
Context

« Introduction to Fine-Grained Access Control
« Introduction to Application Context

« Introduction to Global Application Context
« Enforcing Application Security

« User Models and Virtual Private Database

Using Virtual Private Database to Implement Application Security Policies 13-1

About Virtual Private Database, Fine-Grained Access Control, and Application Context

About Virtual Private Database, Fine-Grained Access Control, and
Application Context

Virtual Private Database (VPD) is the aggregation of server-enforced fine-grained
access control and a secure application context in the Oracle database server. VPD
enables you to build applications that enforce row-level security policies at the
object level by dynamically appending predicates (WHERE clauses) to SQL
statements that query data you want to protect. Application context is a feature that
allows application developers to define, set, and access application attributes and
then use these attributes to supply the predicate values for fine-grained access
control policies. Local, or session-based, application contexts are stored in the UGA
and are invoked each time an application user connects to the database. For
multitiered environments where users access the database by way of connection
pooling, non-session-based global application context, which stores the application
context in the SGA, can be used. Although application context is an integral part of
VPD, it can be implemented alone, without fine-grained access control. When
application context is implemented alone, it can be used to access session
information, such as the client identifier, to preserve user identity across multitiered
environments.

The remainder of this chapter discusses how VPD works and introduces its main
components—fine-grained access control and application context.

See Also:

« Chapter 14, "Implementing Application Context and
Fine-Grained Access Control" for information about using local
application context and global application context with or
without VPD fine-grained access control policies.

» "Using the CLIENT_IDENTIFIER Attribute to Preserve User
Identity" on page 15-12 for information about using the client
identifier attribute to preserve user identity across multitiered
environments.

Introduction to VPD

Virtual private database (VPD) enables you to enforce security, to a fine level of
granularity, directly on tables, views, or synonyms. Because security policies are
attached directly to tables, views, or synonyms and automatically applied whenever
a user accesses data, there is no way to bypass security.

13-2 Oracle Database Security Guide

About Virtual Private Database, Fine-Grained Access Control, and Application Context

When a user directly or indirectly accesses a table, view, or synonym that is
protected with a VPD policy, the server dynamically modifies the user's SQL
statement. The modification is based on a WHERE condition (known as a predicate)
returned by a function which implements the security policy. The statement is
modified dynamically, transparently to the user, using any condition which can be
expressed in, or returned by a function. VPD policies can be applied to SELECT,

| NSERT, UPDATE, | NDEX, and DEL ETE statements.

Note: Users need full table access to create table indexes.
Consequently, a user who has privileges to maintain an index can
see all the row data although the user does not have full table
access under a regular query. To prevent this, apply VPD policies to
I NDEX statements.

Functions which return predicates can also include callouts to other functions.
Within your PL/SQL package, you can embed a C or Java callout that can either
access operating system information, or return WHERE clauses from an operating
system file or central policy store. A policy function can return different predicates
for each user, for each group of users, or for each application. Using policy
functions over synonyms can substitute for maintaining a separate view for each
user or class of users, saving substantial overhead in memory and processing
resources.

Application context enables you to securely access the attributes on which you base
your security policies. For example, users with the position attribute of manager
would have a different security policy than users with the position attribute of

enpl oyee.

Consider an HR clerk who is only allowed to see employee records in the Retail
Division. When the user initiates the query

SELECT * FROM enp;
the function implementing the security policy returns the predicate di vi si on =

" RETAI L' , and the database transparently rewrites the query. The query actually
executed becomes:

SELECT * FROM enp WHERE division = 'RETAIL';

Using Virtual Private Database to Implement Application Security Policies 13-3

About Virtual Private Database, Fine-Grained Access Control, and Application Context

Column-level VPD

Column-level VPD enables you to enforce row-level security when a
security-relevant column is referenced in a query. You can apply column-level VPD
to tables and views, but not to synonyms. By specifying the security-relevant
column name with the sec_r el evant _col s parameter of the DBMS_RLS. ADD _
PCLI CY procedure, the security policy is applied whenever the column is
referenced, explicitly or implicitly, in a query.

For example, users outside of the HR department typically are allowed to view only
their own Social Security numbers. When a sales clerk initiates the query

SELECT fnane, |name, ssn FROM enp;

the function implementing the security policy returns the predicate ssn='nmy_ssn'
and the database rewrites the query and executes

SELECT fname, |name, ssn FROM enp WHERE ssn = 'ny_ssn';

See Also: "Adding Policies for Column-Level VPD" on page 14-40
for information about how to add column-level VPD policies

Column-level VPD with Column Masking Behavior

If a query references a security-relevant column, then the default behavior of
column-level VPD restricts the number of rows returned. With column masking
behavior, which can be enabled by using the sec_r el evant _col s_opt
parameter of the DBMS_RLS. ADD _POLI CY procedure, all rows display, even those
that reference security relevant columns. However, the sensitive columns display as
NULL values.

To illustrate this, consider the results of the sales clerk's query, described in the
previous example. If column masking behavior is used, then instead of only seeing
the row containing the sales clerk's own Social Security number, the clerk would see
all rows from enp, but the ssn column values would be returned as NULL. Note
that this behavior is fundamentally different from all other types of VPD policies,
which return only a subset of rows.

See Also: "Column Masking Behavior" on page 14-42 for
information about how to add column-level VPD policies with
column masking behavior.

VPD Security Policies and Applications

The security policy is applied within the database itself, rather than within an
application. This means that use of a different application will not bypass the

13-4 Oracle Database Security Guide

About Virtual Private Database, Fine-Grained Access Control, and Application Context

security policy. Security can thus be built once, in the database, instead of being
implemented again in multiple applications. Virtual Private Database therefore
provides far stronger security than application-based security, at a lower cost of
ownership.

It may be desirable to enforce different security policies depending on which
application is accessing data. Consider a situation in which two applications, Order
Entry and Inventory, both access the ORDERS table. You may want to have the
Inventory application apply to the table a policy which limits access based on type
of product. At the same time, you may want to have the Order Entry application
apply to the same table a policy which limits access based on customer number.

In this case, you must partition the use of fine-grained access by application.
Otherwise, both policies would be automatically ANDed together—which is not the
desired result. You can specify one or more policy groups, and a driving application
context that determines which policy group is in effect for a given transaction. You
can also designate default policies which always apply to data access. In a hosted
application, for example, data access should always be limited by subscriber ID.

Using Virtual Private Database to Implement Application Security Policies 13-5

Introduction to Fine-Grained Access Control

Introduction to Fine-Grained Access Control

Fine-grained access control enables you to build applications that enforce security
policies at a low level of granularity. (These policies are also referred to as VPD
policies.) You can use it, for example, to restrict a customer who is accessing an
Oracle database server to see only his own account, a physician to see only the
records of her own patients, or a manager to see only the records of employees who
work for him.

When you use fine-grained access control, you create security policy functions
attached to the table, view, or synonym on which you have based your application.
Then, when a user enters a SELECT or a DML statement (I NSERT, UPDATE, or
DELETE) on that object, Oracle dynamically modifies the user's
statement—transparently to the user—so that the statement implements the correct
access control. You can also enforce security policies on index maintenance
operations performed with the DDL statements CREATE | NDEX and ALTER

| NDEX.

Features of Fine-Grained Access Control
Fine-grained access control provides the following capabilities:

« Table-, View-, or Synonym-Based Security Policies
« Multiple Policies for Each Table, View, or Synonym
« Grouping of Security Policies

« High Performance

« Default Security Policies

Table-, View-, or Synonym-Based Security Policies

Attaching security policies to tables, views, or synonyms rather than to applications
provides greater security, simplicity, and flexibility.

Security Attaching a policy to a table, view, or synonym overcomes a potentially
serious application security problem. Suppose a user is authorized to use an
application, and then, drawing on the privileges associated with that application,
wrongfully modifies the database by using an ad hoc query tool, such as SQL*Plus.
By attaching security policies to tables, views, or synonyms, fine-grained access
control ensures that the same security is in force, no matter how a user accesses the
data.

13-6 Oracle Database Security Guide

Introduction to Fine-Grained Access Control

Simplicity Adding the security policy to the table, view, or synonym means that you
make the addition only once, rather than repeatedly adding it to each of your table-,
view-, or synonym-based applications.

Flexibility You can have one security policy for SELECT statements, another for

| NSERT statements, and still others for UPDATE and DELETE statements. For
example, you might want to enable a Human Resources clerk to SELECT all
employee records in her division, but to UPDATE only salaries for those employees
in her division whose last names begin with "A" through "F".

Note: Although you can define a policy against a table, you
cannot select that table from within the policy that was defined
against the table.

Multiple Policies for Each Table, View, or Synonym

You can establish several policies for the same table, view, or synonym. Suppose, for
example, you have a base application for Order Entry, and each division of your
company has its own special rules for data access. You can add a division-specific
policy function to a table without having to rewrite the policy function of the base
application.

Note that all policies applied to a table are enforced with AND syntax. Thus, if you
have three policies applied to the CUSTOVERS table, each policy is applied to any
access of the table. You can use policy groups and a driving application context to
partition fine-grained access control enforcement so that different policies apply,
depending upon which application is accessing data. This eliminates the
requirement for development groups to collaborate on policies and simplifies
application development. You can also have a default policy group that always
applies (for example, to enforce data separated by subscriber, in a hosting
environment).

Grouping of Security Policies

Since multiple applications, with multiple security policies, can share the same
table, view, or synonym, it is important to identify those policies which should be in
effect when the table, view, or synonym is accessed.

For example, in a hosting environment, Company A can host the BENEFI T table for
Company B and Company C. The table is accessed by two different applications,
Human Resources and Finance, with two different security policies. The Human
Resources application authorizes users based on ranking in the company, and the

Using Virtual Private Database to Implement Application Security Policies 13-7

Introduction to Fine-Grained Access Control

Finance application authorizes users based on department. To integrate these two
policies into the BENEFI T table would require joint development of policies
between the two companies, which is not a feasible option. By defining an
application context to drive the enforcement of a particular set of policies to the
base objects, each application can implement a private set of security policies.

To do this, you can organize security policies into groups. By referring to the
application context, the Oracle server determines which group of policies should be
in effect at runtime. The server enforces all the policies which belong to that policy

group.

High Performance

With fine-grained access control, each policy function for a given query is evaluated
only once, at statement parse time. Also, the entire dynamically modified query is
optimized and the parsed statement can be shared and reused. This means that
rewritten queries can take advantage of Oracle's high performance features, such as
dictionary caching and shared cursors.

Default Security Policies

While partitioning security policies by application is desirable, it is also useful to
have security policies that are always in effect. In the previous example, a hosted
application can always enforce data separation by subscri ber _I D, whether you
are using the Human Resources application or the Finance application. Default
security policies allow developers to have base security enforcement under all
conditions, while partitioning of security policies by application (using security
groups) enables layering of additional, application-specific security on top of
default security policies. To implement default security policies, you add the policy
to the SYS_DEFAULT policy group.

See Also: The following topics for information about how to
implement fine-grained access control:

« "How Fine-Grained Access Control Works" on page 14-29
« "How to Establish Policy Groups" on page 14-30

« "How to Add a Policy to a Table, View, or Synonym" on
page 14-35

« "Examples: Application Context Within a Fine-Grained Access
Control Function" on page 14-7

13-8 Oracle Database Security Guide

Introduction to Fine-Grained Access Control

About Creating a Virtual Private Database Policy with Oracle Policy Manager

To implement Virtual Private Database (VPD), developers can use the DBM5S_RLS
package to apply security policies to tables and views. They can also use the
CREATE CONTEXT command to create application contexts.

Alternatively, developers can use the Oracle Policy Manager graphical user
interface, accessed from Oracle Enterprise Manager, to apply security policies to
schema objects, such as tables and views, and to create application contexts. Oracle
Policy Manager provides an easy-to-use interface to manage security policies and
application contexts, and therefore makes VVPD easier to develop.

To create VPD policies, users must provide the schema name, table (or view or
synonym) name, policy name, the function name that generates the predicate, and
the statement types to which the policy applies (that is, SELECT, | NSERT, UPDATE,
DELETE). Oracle Policy Manager then executes the function DBMS_RLS. ADD _

PCLI CY. You create an application context by providing the name of the context and
the package that implements the context.

Oracle Policy Manager is also the administration tool for Oracle Label Security.
Oracle Label Security provides a functional, out-of-the-box VPD policy which
enhances your ability to implement row-level security. It supplies an
infrastructure—a label-based access control framework—whereby you can specify
labels for users and data. It also enables you to create one or more custom security
policies to be used for label access decisions. You can implement these policies
without any knowledge of a programming language. There is no need to write
additional code; in a single step you can apply a security policy to a given table. In
this way, Oracle Label Security provides a straightforward, efficient way to
implement row-level security policies using data labeling technology. Finally, the
structure of Oracle Label Security labels provides a degree of granularity and
flexibility which cannot easily be derived from the application data alone. Oracle
Label Security is thus a generic solution which can be used in many different
circumstances.

See Also: Oracle Label Security Administrator’s Guide for
information about using Oracle Policy Manager

Using Virtual Private Database to Implement Application Security Policies 13-9

Introduction to Application Context

Introduction to Application Context

Application context enables you to define, set, and access application attributes that
you can use as a secure data cache which is available in UGA and SGA.

Most applications contain the kind of information that can be used for access
control. For example, in an order entry application customers can be limited to
accessing their own orders (ORDER_NUMBER) and customer number (CUSTOVER _
NUMBER). These can be used as security attributes.

As an additional example, consider a user running a human resources application.
Part of the application’'s initialization process is to determine the kind of
responsibility that the user can assume, based on the user's identity. This
responsibility ID becomes part of the human resource application context. It affects
what data the user can access throughout the session.

You use the SQL function SYS_CONTEXT to configure application context with the
following syntax:

SYS_CONTEXT (' nanespace','paraneter'[,length])

This section describes application context and how to use it. It includes:
« Features of Application Context

« Ways to Use Application Context with Fine-Grained Access Control

See Also: Oracle Database SQL Reference for detailed information
about using SYS_CONTEXT

Features of Application Context
Application context provides the following important security features:
« Specifying Attributes for Each Application
« Providing Access to Predefined Attributes through the USERENV Namespace

« Externalized Application Contexts

Specifying Attributes for Each Application

Each application can have its own context with its own attributes. Suppose, for
example, you have three applications: General Ledger, Order Entry, and Human
Resources. You can specify different attributes for each application. Thus,

13-10 Oracle Database Security Guide

Introduction to Application Context

« For the General Ledger application context, you can specify the attributes SET _
OF_BOOKSand TI TLE.

« For the Order Entry application context, you can specify the attribute
CUSTOMER _NUMBER.

« For the Human Resources application context, you can specify the attributes
ORGANI ZATI ON_I D, PCsI TI ON, and COUNTRY.

In each case, you can adapt the application context to your precise security needs.

Providing Access to Predefined Attributes through the USERENV Namespace

Oracle database server provides a built-in application context namespace, USERENV,
which provides access to predefined attributes. These attributes are session
primitives—information which the database captures regarding a user's session. For
example, the IP address from which a user connected, the username, and a proxy
username (in cases where a user connection is proxied through a middle tier), are all
available as predefined attributes through the USERENV application context.

Predefined attributes are useful for access control. For example, if you are using a
three-tier application which creates lightweight user sessions through OCI or thick
JDBC, you can access the PROXY_USER attribute in the USERENV application
context to determine whether the user's session was created by a middle tier
application. Your policy function could allow a user to access data only for
connections where the user is proxied. If the user connects directly to the database,
then she would not be able to access any data.

You can use the PROXY_USER attribute within VPD to ensure that users only access
data through a particular middle-tier application. As a different approach, you can
develop a secure application role. Then rather than each policy ensuring that users
access the database through a specific proxy, the secure application role enforces
this.

You can access predefined attributes through the USERENV application context, but
you cannot change them. They are listed in Table 13-1.

Use the following syntax to return information about the current session.
SYS GONTEXT(' userenv', 'attribute')

Note: The USERENV application context namespace replaces the
USERENV function provided in earlier database releases.

Using Virtual Private Database to Implement Application Security Policies 13-11

Introduction to Application Context

See Also:

« Chapter 15, "Preserving User Identity in Multitiered
Environments"” for information about proxy authentication and
about using the USERENV attribute, CLI ENT_I DENTI FI ER, to
preserve user identity across multiple tiers

« SYS_CONTEXT in the Oracle Database SQL Reference for
complete details about the USERENV namespace and its
predefined attributes

Table 13-1 Key to Predefined Attributes in USERENV Namespace

Predefined Attribute

Meaning

AUDI TED_CURSORI D
AUTHENTI CATI ON_DATA

AUTHENTI CATI ON_TYPE

BG JOB_I D
CLI ENT_| DENTI FI ER
CLI ENT_| NFO

CURRENT_BI ND

CURRENT _SCHEMA

CURRENT_SCHEMAI D

CURRENT_SQL

13-12 Oracle Database Security Guide

Returns the fine-grained auditing cursor ID.

Returns the data being used to authenticate the login user. If
the user has been authenticated through SSL, or if the user's
certificate was proxied to the database, this includes the
user's X.509 certificate

Shows how the user was authenticated (DATABASE, CS,
NETWORK, or PROXY)

Returns the background job ID
User-defined client identifier for the session

Returns up to 64 bytes of user session information that can be
stored by an application using the DBVS_APPLI CATI ON_
I NFOpackage

Returns the bind variables for fine-grained auditing.
Maximum length is 4K.

Returns the name of the default schema being used in the
current session. This can be changed with an ALTER
SESSI ON SET SCHEMNA statement.

Returns the identifier of the default schema being used in the
current session. This can be changed with an ALTER
SESSI ON SET SCHEMAI D statement.

Returns SQL text of the query that triggers fine-grained audit
or row-level security (RLS) policy functions or event
handlers. Only valid inside the function or event handler.

Introduction to Application Context

Table 13-1 (Cont.) Key to Predefined Attributes in USERENV Namespace

Predefined Attribute

Meaning

CURRENT_SQL1 to
CURRENT_SQL7

CURRENT_SQL_LENGTH

CURRENT_USER

CURRENT_USERI D

DB_DOMAI N

DB_NAVE

ENTRY!I D

EXTERNAL_NANVE

FG JOB ID
GLOBAL_ CONTEXT_MEMORY

GLOBAL_UI D
HOST

I NSTANCE

I NSTANCE_NAME

Returns 4K length substrings of the SQL query text that
triggers fine-grained audit or row-level security (RLS) policy
functions or audit event handlers. Only valid inside the RLS
policy function or event handler. Maximum length is 32K.
For example, if a user issued a 32 K length SQL statement,
then CURRENT _SQL returns 0 to 4K, CURRENT _SQ_1 returns
5K to 8K, CURRENT_SQL2 returns 9K to 12K, and so on.

Returns the length of the current SQL statement that triggers
fine-grained audit or row-level security (RLS) policy
functions or event handlers. Only valid inside the function or
event handler.

Returns name of user under whose privilege the current
session runs. Can be different from SESSI ON_USER from
within a stored procedure (such as an invoker's rights
procedure).

Returns the user ID of the user under whose privilege the
current session runs. Can be different from SESSI ON _

USERI Dfrom within a stored procedure (such as an invoker's
rights procedure).

Returns the domain of the database as specified in the DB_
DOVAI Ninitialization parameter

Returns the name of the database as specified in the DB_
NAME initialization parameter

Returns available auditing entry identifier. Incremented for
every audit record for a SQL statement. Note: there can be
more than one audit record for the same SQL statement.

Returns the external name of the database user
Returns the foreground job ID

Amount of shared memory used by global application
context, in bytes

Returns the user Login name from Oracle Internet Directory.

Returns the name of the host machine on which the database
is running

Returns instance identification number of the current
instance

Returns the name of the instance.

Using Virtual Private Database to Implement Application Security Policies 13-13

Introduction to Application Context

Table 13-1 (Cont.) Key to Predefined Attributes in USERENV Namespace

Predefined Attribute

Meaning

| P_ADDRESS

| SDBA

LANG
LANGUAGE

NETWORK_PROTOCOL

NLS TERRI TORY
NLS_CURRENCY

NLS CALENDAR

NLS DATE FORVAT
NLS DATE LANGUAGE
NLS SORT

0S_USER

POLI CY_I NVOKER
PROXY_USER

PROXY_USERI D

SERVER _HOST

SESSI ON_USER

SESSI ON_USERI D

SESSI ONI D
SID

13-14 Oracle Database Security Guide

Returns the IP address (when available) of the machine from
which the client is connected

Returns TRUE if you currently have the DBA role enabled
and FALSE if you do not.

Returns abbreviation for the language name

Returns the language and territory currently used by the
session, along with the database character set in the form:
language_territory.characterset

Returns the protocol named in the connect string
(PROTOCOL =protocol)

Returns the territory of the current session

Returns the currency symbol of the current session

Returns the calendar used for dates in the current session
Returns the current date format of the current session
Returns language used to express dates in the current session
Indicates whether the sort base is binary or linguistic

Returns the operating system username of the client process
that initiated the database session

Returns the invoker of row-level security policy functions.

Returns the name of the database user (typically middle tier)
who opened the current session on behalf of SESSI ON_USER

Returns identifier of the database user (typically middle tier)
who opened the current session on behalf of SESSI ON_USER

Returns the hostname of machine on which the instance is
running.

Returns the database user name by which the current user is
authenticated

Returns the identifier of the database user name by which
the current user is authenticated

Returns auditing session identifier

Returns the session number (different from the session ID).

Introduction to Application Context

Table 13-1 (Cont.) Key to Predefined Attributes in USERENV Namespace

Predefined Attribute Meaning

STATEMENTI D Returns available auditing statement identifier. Incremented
once for every SQL statement audited in a session.

TERM NAL Returns the operating system identifier for the client of the
current session. "Virtual" in TCP/IP

Externalized Application Contexts

Many applications store attributes used for fine-grained access control within a
database metadata table. For example, an EMPLOYEES table could include cost
center, title, signing authority, and other information useful for fine-grained access
control. Organizations also centralize user information for user management and
access control in LDAP-based directories, such as Oracle Internet Directory.
Application context attributes can be stored in Oracle Internet Directory and
assigned to one or more enterprise users. They can be retrieved automatically upon
login for an enterprise user and then used to initialize an application context.

Note: Enterprise User Security is a feature of Oracle Advanced
Security.

See Also:

« Initializing Application Context Externally” on page 14-18 for
information about initializing local application context through
external resources such as an OCI interface, a job queue
process, or a database link.

« Initializing Application Context Globally" on page 14-19 for
information about initializing local application context through
a centralized resource, such as Oracle Internet Directory.

« Oracle Advanced Security Administrator's Guide for information
about enterprise users.

Using Virtual Private Database to Implement Application Security Policies 13-15

Introduction to Application Context

Ways to Use Application Context with Fine-Grained Access Control

To simplify security policy implementation, you can use application context within
a fine-grained access control function.

Application context can be used in the following ways with fine-grained access
control:

« Using Application Context as a Secure Data Cache
« Using Application Context to Return a Specific Predicate (Security Policy)

« Using Application Context to Provide Attributes Similar to Bind Variables in a
Predicate

Using Application Context as a Secure Data Cache

Accessing an application context inside your fine-grained access control policy
function is like writing down an often-used phone number and posting it next to
your phone, where you can find it easily rather than looking it up every time you
need it.

For example, suppose you base access to the ORDERS_TAB table on customer
number. Rather than querying the customer number for a logged-in user each time
you need it, you could store the number in the application context. In this way, the
customer number is available in the session when you need it.

Application context is especially helpful if your security policy is based on multiple
security attributes. For example, if a policy function bases a predicate on four
attributes (such as employee number, cost center, position, spending limit), then
multiple subqueries must execute to retrieve this information. Instead, if this data is
available through application context, then performance is much faster.

Using Application Context to Return a Specific Predicate (Security Policy)

You can use application context to return the correct security policy, enforced
through a predicate here.

Consider an order entry application which enforces the rules, "customers only see
their own orders, and clerks see all orders for all customers." These are two different
policies. You could define an application context with a Posi t i on attribute, and
this attribute could be accessed within the policy function to return the correct
predicate, depending on the value of the attribute. Thus, you can enable a user in
the Cl er k position to retrieve all orders, but a user in the Cust oner position to see
his own records only.

13-16 Oracle Database Security Guide

Introduction to Global Application Context

To design a fine-grained access control policy to return a specific predicate for an
attribute, access the application context within the function that implements the
policy. For example, to limit customers to seeing their own records only, use
fine-grained access control to dynamically modify the user's query from this:

SELECT * FROM Orders_tab

to this:

SELECT * FROM Orders_tab
WHERE Custno = SYS_CONTEXT ('order_entry', 'cust_nuni);

Using Application Context to Provide Attributes Similar to Bind Variables in a
Predicate

Continuing with the preceding example, suppose you have 50,000 customers, and
you do not want to have a different predicate returned for each customer.
Customers all share the same predicate, which prescribes that they can only see
their own orders. It is merely their customer numbers which are different.

Using application context, you can return one predicate within a policy function
which applies to 50,000 customers. As a result, there is one shared cursor which
executes differently for each customer because the customer number is evaluated at
execution time. This value is different for every customer. Use of application context
in this case provides optimum performance, as well as row-level security.

Note that the SYS_CONTEXT function works much like a bind variable, but only if
the SYS_CONTEXT arguments are constants.

See Also: "Examples: Application Context Within a Fine-Grained
Access Control Function” on page 14-7 which provides a code
example.

Introduction to Global Application Context

In many application architectures, the middle tier application is responsible for
managing session pooling for application users. Users authenticate themselves to
the application, which uses a single identity to log in to the database and maintains
all the connections. In this environment, it is not possible to maintain application
attributes using session-dependent application context (local application context)
because of the sessionless model of the application.

Another scenario is when a user is connected to the database through an application
(such as Oracle Forms) which then spawns other applications (such as Oracle

Using Virtual Private Database to Implement Application Security Policies 13-17

Enforcing Application Security

Reports) to connect to the database. These applications may need to share the
session attributes such that they appear to be sharing the same database session.

Global application context is a type of secure application context that can be shared
among trusted sessions. In addition to driving the enforcement of the fine-grained
access control policies, applications (especially middle-tier products) can use this
support to manage application attributes securely and globally.

Note:

« Global application context is not available in Real Application
Clusters.

« Oracle Connection Manager, a router provided with Oracle Net
Services, cannot be used with global application context.

Enforcing Application Security

This section contains information about enforcing application security. This section
consists of the following topics:

« Use of Ad Hoc Tools a Potential Security Problem
« Restricting SQL*Plus Users from Using Database Roles

« Virtual Private Database and Oracle Label Security Exceptions and Exemptions

Use of Ad Hoc Tools a Potential Security Problem

Prebuilt database applications explicitly control the potential actions of a user,
including the enabling and disabling of the user's roles while using the application.
By contrast, ad hoc query tools, such as SQL*Plus, allow a user to submit any SQL
statement (which may or may not succeed), including the enabling and disabling of
any granted role.

Potentially, an application user can exercise the privileges attached to that
application to issue destructive SQL statements against database tables by using an
ad hoc tool.

For example, consider the following scenario:
« The Vacation application has a corresponding VACATI ONrole.

« The VACATI ONrole includes the privileges to issue SELECT, | NSERT, UPDATE,
and DELETE statements against the EMP_TAB table.

13-18 Oracle Database Security Guide

Enforcing Application Security

« The Vacation application controls the use of privileges obtained through the
VACATI ONrole.

Now, consider a user who has been granted the VACATI ONrole. Suppose that,
instead of using the Vacation application, the user executes SQL*Plus. At this point,
the user is restricted only by the privileges granted to him explicitly or through
roles, including the VACATI ONrole. Because SQL*Plus is an ad hoc query tool, the
user is not restricted to a set of predefined actions, as with designed database
applications. The user can query or modify data in the EMP_TAB table as he or she
chooses.

Restricting SQL*Plus Users from Using Database Roles

This section presents features that you may use in order to restrict SQL*Plus users
from using database roles and thus, prevent serious security problems. These
features include the following:

« Limit Roles Through PRODUCT_USER_PROFILE
« Use Stored Procedures to Encapsulate Business Logic

« Use Virtual Private Database for Highest Security

Limit Roles Through PRODUCT_USER_PROFILE

DBAs can use PRODUCT _USER PROFI LE to disable certain SQL and SQL*Plus
commands in the SQL*Plus environment for each user. SQL*Plus, not the Oracle
Database, enforces this security. DBAs can even restrict access to the GRANT,
REVOKE, and SET ROLE commands in order to control users' ability to change their
database privileges.

The PRODUCT_USER_PROFI LE table enables you to list roles which you do not
want users to activate with an application. You can also explicitly disable use of
various commands, such as SET ROLE.

For example, you could create an entry in the PRODUCT _USER PROFI LE table to:
« Disallow use of the CLERK and MANAGER roles with SQL*Plus
« Disallow use of SET ROLE with SQL*Plus

Suppose user Jane connects to the database using SQL*Plus. Jane has the CLERK,
MANAGER, and ANALYST roles. As a result of the preceding entry in PRODUCT _
USER_PROFI LE, Jane is only able to exercise her ANALYST role with SQL*Plus.
Also, when Jane attempts to issue a SET ROLE statement, she is explicitly

Using Virtual Private Database to Implement Application Security Policies 13-19

Enforcing Application Security

prevented from doing so because of the entry in the PRODUCT_USER_PROFI LE
table prohibiting use of SET RCLE.

Use of the PRODUCT_USER_PROFI LE table does not completely guarantee security,
for multiple reasons. In the preceding example, while SET ROLE is disallowed with
SQL*Plus, if Jane had other privileges granted to her directly, she could exercise
these using SQL*Plus.

See Also: SQL*Plus User's Guide and Reference for more
information about the PRODUCT _USER PROFI LE table

Use Stored Procedures to Encapsulate Business Logic

Stored procedures encapsulate use of privileges with business logic so that
privileges are only exercised in the context of a well-formed business transaction.
For example, an application developer might create a procedure to update
employee name and address in the EMPLOYEES table, which enforces that the data
can only be updated in normal business hours. Also, rather than grant a human
resources clerk the UPDATE privilege on the EMPLOYEES table, a developer (or
application administrator) may grant the privilege on the procedure only. Then, the
human resources clerk can exercise the privilege only in the context of the
procedures, and cannot update the EMPLOYEES table directly.

Use Virtual Private Database for Highest Security
VPD provides the benefit of strong security policies, which apply directly to data.

When you use VPD, you can enforce security no matter how a user gets to the data:
whether through an application, through a query, or by using a report-writing tool.
See Also:

« "Introduction to VPD" on page 13-2

« "Ways to Use Application Context with Fine-Grained Access
Control" on page 13-16

« "How to Add a Policy to a Table, View, or Synonym" on
page 14-35 for information about using the DBMS_RLS. ADD _
PCLI CY procedure to add policies for VPD.

Virtual Private Database and Oracle Label Security Exceptions and Exemptions

Virtual Private Database and Oracle Label Security are not enforced during DI RECT
path export. Also, Virtual Private Database policies and Oracle Label Security
policies cannot be applied to objects in the SYS schema. As a consequence, the SYS

13-20 Oracle Database Security Guide

Enforcing Application Security

user and users making a DBA-privileged connection to the database (for example,
CONNECT/ AS SYSDBA) do not have VPD or Oracle Label Security policies applied
to their actions. The database user SYS is thus always exempt from VPD or Oracle
Label Security enforcement, regardless of the export mode, application, or utility
used to extract data from the database. However, SYSDBA actions can be audited
by enabling such auditing upon installation and specifying that this audit trail be
stored in a secure location in the operating system.

Similarly, database users granted the EXEMPT ACCESS POLI CY privilege, either
directly or through a database role, are exempt from VPD enforcements. They are
also exempt from some Oracle Label Security policy enforcement controls — READ _
CONTROL and CHECK CONTRCOL — regardless of the export mode, application, or
utility used to access the database or update its data. However, the following policy
enforcement options remain in effect even when EXEMPT ACCESS POLI CY is
granted:

= | NSERT_CONTRCL, UPDATE_CONTROL, DELETE_CONTROL, WRI TE_CONTROL,
LABEL_UPDATE, and LABEL_DEFAULT.

« If the Oracle Label Security policy specifies the ALL_CONTROL option, then all
enforcement controls are applied except READ CONTRCL and CHECK CONTROL.

EXEMPT ACCESS POLI CY is a very powerful privilege and should be carefully
managed. It is inadvisable to grant this privilege W TH ADM N OPTI ON because
very few users should have this exemption.

Note:

« The EXEMPT ACCESS POLI CY privilege does not affect the
enforcement of object privileges such as SELECT, | NSERT,
UPDATE, and DELETE. These privileges are enforced even if a
user has been granted the EXEMPT ACCESS POLI CY privilege.

« The SYS_CONTEXT values that VPD uses are not propagated to
secondary databases for failover.

See Also: Oracle Label Security Administrator's Guide

Using Virtual Private Database to Implement Application Security Policies 13-21

User Models and Virtual Private Database

User Models and Virtual Private Database

Whether the user is a database user or an application user unknown to the
database, Oracle provides different ways in which applications can enforce
fine-grained access control for each user.

For applications in which the application users are also database users, VPD
enforcement is relatively simple. Users connect to the database, and the application
sets up application contexts for each session. Each session is initiated under a
different username, so that it is simple to enforce different fine-grained access
control conditions for different users. This is also possible when using proxy
authentication, because each session in OCI or thick JDBC is a distinct database
session, and has its own application context.

When proxy authentication is integrated with Enterprise User Security, user roles
and other attributes can be retrieved from Oracle Internet Directory to enforce VPD.
(In addition, globally initialized application context can also be retrieved from the
directory.)

For applications in which a single user (for example, One Big Application User)
connects to the database on behalf of all users, it is possible to have fine-grained
access control for each user. An application developer can create a global
application context attribute to represent the application user (for example,
REALUSER). Although all database sessions and audit records are initiated as One
Big Application User, each session can have attributes that vary, depending on who
the real end user is. This model works best for applications that have a limited
number of users and where sessions are not reused. In this model, the option to use
roles and perform database auditing is diminished because each session is created
as the same database user.

Web-based applications typically have hundreds if not thousands of users. There
may be a persistent connection to the database (to support data retrieval for a
number of user requests), but these connections are not specific to each Web-based
user. To provide scalability, Web-based applications typically set up and reuse
connections instead of having different sessions for each user. For example, Web
user Jane and Ajit connect to a middle tier application, which establishes a session
in the database used by the application on behalf of both users. Typically, neither
Jane nor Ajit are known to the database. The application is responsible for switching
the username on the connection, so that, at any given time, it's either Jane or Ajit
using the session.

Oracle Database VPD capabilities facilitate connection pooling by allowing multiple
connections to access one or more global application contexts, instead of setting up
an application context for each distinct user session.

13-22 Oracle Database Security Guide

14

Implementing Application Context and

Fine-Grained Access Control

Application context can be implemented with fine-grained access control as part of
Virtual Private Database (VPD) or by itself to provide application developers a way
to define, set, and access application attributes. When used alone, application
context can serve as a secure data cache, saving the overhead of multiple queries to
the database each time an application needs to access application attributes.

This chapter discusses how to implement application context and fine-grained
access control. It contains the following topics:

Topic Category

Links to Topics

Application Context .
Fine-Grained Access .
Control

About Implementing Application Context

How to Use Application Context

Examples: Application Context Within a Fine-Grained Access Control Function
Initializing Application Context Externally

Initializing Application Context Globally

How to Use Global Application Context

How Fine-Grained Access Control Works

How to Establish Policy Groups

How to Add a Policy to a Table, View, or Synonym
How to Check for Policies Applied to a SQL Statement
Users Who Are Exempt from VPD Policies

Automatic Reparse

VPD Policies and Flashback Query

Implementing Application Context and Fine-Grained Access Control 14-1

About Implementing Application Context

About Implementing Application Context
Application context can be used for the following purposes:
« Enforce fine-grained access control
« Preserve user identity across multitier environments

« Serve as a secure data cache, saving the overhead of multiple queries to the
database each time an application needs to access application attributes

When application context is used as a secure data cache, applications can use the
attributes stored in the context for PL/SQL control structures that use conditional
statements or loops, or for fine-grained auditing.

There are two types of application contexts, depending on where the context
information is stored:

« Session-based application context, where the context information is stored in
the database user session (UGA), and

« Non-session-based, or global application context, where the context information is
stored in the shared area (SGA).

Session-based application contexts can be initialized from external sources or they
can be initialized globally. In either case, the context information is stored in the
user session. Those session-based application contexts that are initialized externally
can accept initialization of attributes and values through external resources such as
an OClI interface, a job queue process, or a connected user database link. Those that
are initialized globally can accept initialization of attributes and values from a
centralized location, such as an LDAP directory.

Table 14-1 summarizes the different types of application contexts.

Table 14-1 Types of Application Contexts

Supports
Stored Stored ConnectedUser Supports Centralized Storage Supports Sessionless
Application Context Type in UGA in SGA Database Links of Users' Application Context Multitier Applications

Application Context X

Application Context
Initialized Externally X X

Application Context
Initialized Globally X X

Global Application
Context X X

14-2 Oracle Database Security Guide

How to Use Application Context

See Also:

« "Introduction to Application Context" on page 13-10 for
conceptual information about session-based application context

« "Introduction to Global Application Context" on page 13-17 for
conceptual information about non-session-based application
context

« "Using the CLIENT_IDENTIFIER Attribute to Preserve User
Identity" on page 15-12 for a discussion of using the CLI ENT_
| DENTI FI ER attribute of the predefined USERENV application
context

« "Fine-Grained Auditing" on page 11-29 for information about
using application context with fine-grained auditing

How to Use Application Context
To use application context, you perform the following tasks:
» Task 1: Create a PL/SQL Package that Sets the Context for Your Application
« Task 2: Create a Unique Context and Associate It with the PL/SQL Package
» Task 3: Set the Context Before the User Retrieves Data
« Task 4. Use the Context in a VPD Policy Function

Task 1: Create a PL/SQL Package that Sets the Context for Your Application

Begin by creating a PL/SQL package with functions that set the context for your
application. This section presents an example for creating the PL/SQL package,
followed by a discussion of the syntax and behavior of the SYS CONTEXT SQL
function.

Note: A logon trigger can be used because the user's context
(information such as EMPNO, GROUP, MANAGER) should be set before
the user accesses any data.

SYS_CONTEXT Example
The following example creates the package App_security_cont ext.

Implementing Application Context and Fine-Grained Access Control 14-3

How to Use Application Context

CREATE (R REPLACE PACKAGE App_security context IS
PROCEDURE Set _enpno;
BND,

CREATE (R REPLACE PACKAGE BCDY App_security context |S

PROCEDURE Set _enpno

1S

Enp_i d NUMBER

BEA N

SH ECT Enpno | NTO Enp_i d FROM Enp

WHERE Enane = SYS CONTEXT(' USERENV
' SESSI QN USER) ;
CBVE SESSI ON SET_GONTEXT(" app_context', 'enpno', Enp_id);

END,

END,

See Also: PL/SQL Packages and Types Reference for information
about the DBMS_SESSI ON. SET_CONTEXT procedure.

SYS_CONTEXT Syntax
The syntax for this function is:

SYS GONTEXT (' namespace', 'attribute', [length])

This function returns the value of at t ri but e as defined in the package currently
associated with the context namespace. It is evaluated once for each statement
execution, and is treated like a constant during type checking for optimization. You
can use the pre-defined namespace USERENV to access primitive contexts such as
userid and Globalization Support parameters.

See Also:

« "Providing Access to Predefined Attributes through the
USERENYV Namespace" on page 13-11 for information about
the USERENV application context namespace and a complete
list of its predefined attributes.

« Oracle Database SQL Reference for details about USERENV
predefined attributes

14-4 Oracle Database Security Guide

How to Use Application Context

Using Dynamic SQL with SYS_CONTEXT

Note: This feature is applicable when COMPATIBLE is set to
either 8.0 or 8.1.

During a session in which you expect a change in policy between executions of a
given query, that query must use dynamic SQL. You must use dynamic SQL
because static SQL and dynamic SQL parse statements differently.

« Static SQL statements are parsed at compile time. They are not reparsed at
execution for performance reasons.

« Dynamic SQL statements are parsed every time they are executed.

Consider a situation in which policy A is in force when you compile a SQL
statement—and then you switch to policy B and execute the statement. With static
SQL, policy A remains in force: the statement is parsed at compile time and not
reparsed upon execution. With dynamic SQL, the statement is parsed upon
execution, and so the switch to policy B takes effect.

For example, consider the following policy:
BVPLOYEE_ NAME = SYS QONTEXT (' USERENV , ' SESSION USER)

The policy "Employee name matches database user name" is represented in the
form of a SQL predicate: the predicate is basically a policy. If the predicate changes,
the statement must be reparsed in order to produce the correct result.

See Also: "Automatic Reparse" on page 14-46

Using SYS_CONTEXT in a Parallel Query

If SYS_CONTEXT is used inside a SQL function which is embedded in a parallel
guery, the function picks up the application context.

Consider a user-defined function within a SQL statement, which sets the user's ID
to 5:

CREATE FUNCTI ON procl AS RETURN NUVBER
BEG N
IF SYS GONTEXT (" hr', 'id') =5
THEN RETURN 1; ELSE RETURN 2;
END
BEND

Implementing Application Context and Fine-Grained Access Control 14-5

How to Use Application Context

Now consider the statement:
SHLECT * FROM BW WHERE procl() = 1;

When this statement is run as a parallel query, the user session, which contains the
application context information, is propagated to the parallel execution servers
(query slave processes).

Using SYS_CONTEXT with Database Links

Session-based local application context can be accessed by SQL statements within a
user session by using the SYS_CONTEXT SQL function. When these SQL statements
involve database links, then the SYS_CONTEXT SQL function is executed at the
database link's initiating site and captures the context information there (on the
initiating site).

If remote PL/SQL procedure calls are executed over a database link, then any SYS
CONTEXT function inside such a procedure is executed at the database link's
destination site. In this case, only externally initialized application contexts are
available at the database link's destination site. For security reasons, only the
externally initialized application context information is propagated to the
destination site from the initiating database link site.

Task 2: Create a Unique Context and Associate It with the PL/SQL Package

To perform this task, use the CREATE CONTEXT statement. Each context must have a
unique attribute and belong to a namespace. That is, context names must be unique
within the database, not just within a schema. Contexts are always owned by the
schema SYS.

For example:

CREATE QONTEXT order_entry USI NG App_security_context;

where or der _ent ry is the context namespace, and App_security_cont ext is
the trusted package that can set attributes in the context namespace.

After you have created the context, you can set or reset the context attributes by
using the DBM5_SESSI ON. SET__CONTEXT package. The values of the attributes you
set remain either until you reset them, or until the user ends the session.

You can only set the context attributes inside the trusted procedure you named in
the CREATE CONTEXT statement. This prevents a malicious user from changing
context attributes without proper attribute validation.

14-6 Oracle Database Security Guide

Examples: Application Context Within a Fine-Grained Access Control Function

Alternatively, you can use the Oracle Policy Manager graphical user interface to
create a context and associate it with a PL/SQL package. Oracle Policy Manager,
accessed from Oracle Enterprise Manager, enables you to apply policies to database
objects and create application contexts. It also can be used to create and manage
Oracle Label Security policies.

Task 3: Set the Context Before the User Retrieves Data

Always use an event trigger on login to pull session information into the context.
This sets the user's security-limiting attributes for the database to evaluate, and thus
enables it to make the appropriate security decisions.

Other considerations come into play if you have a changing set of books, or if
positions change constantly. In these cases, the new attribute values may not be
picked up right away, and you must force a cursor reparse to pick them up.

Task 4. Use the Context in a VPD Policy Function

Now that you have set up the context and the PL/SQL package, your VPD policy
functions can use the application context to make policy decisions based on
different context values.

Examples: Application Context Within a Fine-Grained Access Control
Function

This section provides three examples that use session-based application context
within a fine-grained access control function.

« Example 1: Implementing the Policy
« Example 2: Controlling User Access by Way of an Application

« Example 3: Event Triggers, Application Context, Fine-Grained Access Control,
and Encapsulation of Privileges

Example 1: Implementing the Policy

This example uses application context to implement the policy, "Customers can see
their own orders only."

This example guides you through the following steps in building the application:

« Step 1. Create a PL/SQL Package Which Sets the Context for the Application

Implementing Application Context and Fine-Grained Access Control 14-7

Examples: Application Context Within a Fine-Grained Access Control Function

« Step 2. Create an Application Context
« Step 3. Access the Application Context Inside the Package
« Step 4. Create the New Security Policy

The procedure in this example assumes a one-to-one relationship between users
and customers. It finds the user's customer number (Cust _nunj, and caches the
customer number in the application context. You can later refer to the cust _num
attribute of your order entry context (oe_ct x) inside the security policy function.

Note that you could use a logon trigger to set the initial context.

Step 1. Create a PL/SQL Package Which Sets the Context for the Application
Create the package as follows:

Note: You may need to set up the following data structures for the
following examples to work:

CREATE TABLE apps. custoners (cust_no NUMBER(4), cust_name
VARCHAR2(20)) ;
CREATE TABLE scott.orders_tab (order_no NUVBER(4));

CREATE (R REPLACE PACKACE apps. oe_ctx AS
PROCEDURE set _cust _num
BEND

CREATE (R REPLACE PACKACGE BQDY apps. oe_ctx AS
PROCEDURE set _cust_num 1 S
cust num NUMBER
BEA N
SH ECT cust_no | NTO cust num FRCOM cust oners WHERE cust _nane =
SYS OONTEXT(' USERENV , ' SESS ON USER) ;
[* SET cust_numattribute in "order_entry' context */
DBV SESSI ON SET_QONTEXT(' order _entry', 'cust_num, custnun);
DBVB SESSI ON SET_QONTEXT(' order _entry', 'cust_num, custnun);
END set _cust _num
END,

14-8 Oracle Database Security Guide

Examples: Application Context Within a Fine-Grained Access Control Function

Note: This example does not treat error handling.
You can access predefined attributes—such as session user—by
using SYS_CONTEXT(' USERENV' , session_prinmtive).

For more information, see Table 13-1, " Key to Predefined
Attributes in USERENV Namespace" on page 13-12 and Oracle
Database SQL Reference

Step 2. Create an Application Context
Create an application context by entering:

CREATE QONTEXT Order _entry USI NG apps. oe_ct Xx;

Alternatively, you can use Oracle Policy Manager to create an application context.

Step 3. Access the Application Context Inside the Package

Access the application context inside the package that implements the security
policy on the database object.

Note: You may need to set up the following data structures for
certain examples to work:

CREATE (R REPLACE PACKAGE (e_security AS

FUNCTI ON Qust num sec (DL VARCHAR?, D2 VARCHAR?)
RETURN VARCHARZ;

END

The package body appends a dynamic predicate to SELECT statements on the
ORDERS_TAB table. This predicate limits the orders returned to those of the user's
customer number by accessing the cust _numcontext attribute, instead of a
subquery to the customers table.

CREATE (R REPLACE PACKACE BADY Ge_security AS

/* limts select statenents based on custoner nunber: */
FUNCTI ON Qust num sec (DL VARCHAR?, 2 VARCHAR?) RETURN VARCHAR?
IS
D predi cate VARCHAR2 (2000);
BEA N
Dpredicate := 'cust_no = SYS GONTEXT(' ' order_entry'', ''cust_num')";

Implementing Application Context and Fine-Grained Access Control 14-9

Examples: Application Context Within a Fine-Grained Access Control Function

RETURN D predi cat €
END Qust num sec;
BEND Ge_security;

Step 4. Create the New Security Policy
Create the policy as follows:

Note: You may need to set up the following data structures for
certain examples to work:

QONNECT sys/ xl cf1T9u AS sysdba;
CREATE USER secusr | DENTI FI ED BY secusr;

BEA N

DBV RS ADD PALICY ('scott', 'orders tab', 'oe policy', 'secusr',
'oe_security.custnumsec', 'select');

END;

This statement adds a policy named CE_POLI CY to the ORDERS_TAB table for
viewing in schema SCOTT. The SECUSR.CE_SECURI TY. CUSTNUM_SEC function
implements the policy, is stored in the SECUSR schema, and applies to SELECT
statements only.

Now, any select statement by a customer on the ORDERS_TAB table automatically
returns only that customer's orders. In other words, the dynamic predicate modifies
the user's statement from this:

SHECT * FRAMM Q ders_tab;

to this:

SELECT * FRM Qders_tab
WHERE Cust no = SYS GONTEXT(' order _entry',' cust_num);

Note the following with regard to this example:

« Inreality, you might have several predicates based on a user's position. For
example, a sales representative would be able to see records only for his
customers, and an order entry clerk would be able to see any customer order.
You could expand the cust num sec function to return different predicates
based on the user's position context value.

« The use of application context in a fine-grained access control package
effectively gives you a bind variable in a parsed statement. For example:

14-10 Oracle Database Security Guide

Examples: Application Context Within a Fine-Grained Access Control Function

SHECT * FRMQders_tab
WHERE Qustno = SYS QONTEXT(' order_entry', 'cust_num)

This is fully parsed and optimized, but the evaluation of the user's CUST_NUM
attribute value for the ORDER_ENTRY context takes place at execution. This
means that you get the benefit of an optimized statement which executes
differently for each user who executes the statement.

Note: You can improve the performance of the function in this
example even more by indexing CUST_NO

= You could set your context attributes based on data from a database table or
tables, or from a directory server using LDAP (Lightweight Directory Access
Protocol).
See Also:

« Compare and contrast this example, which uses an application
context within the dynamically generated predicate, with "How
Fine-Grained Access Control Works" on page 14-29, which uses
a subquery in the predicate

« "Using Triggers" in Oracle Database Application Developer*s Guide
- Fundamentals

« "Optimizing Performance by Enabling Static and Context
Sensitive Policies" on page 14-38

« "Adding Policies for Column-Level VPD" on page 14-40

Example 2: Controlling User Access by Way of an Application

This example uses application context to control user access by way of a Human
Resources application. It guides you through the following three tasks, each of
which is described more fully in the following sections.

« Step 1. Create a PL/SQL Package to Set the Context
« Step 2. Create the Context and Associate It with the Package
« Step 3. Create the Initialization Script for the Application

In this example, assume that the application context for the Human Resources
application is assigned to the HR_CTX namespace.

Implementing Application Context and Fine-Grained Access Control 14-11

Examples: Application Context Within a Fine-Grained Access Control Function

Step 1. Create a PL/SQL Package to Set the Context

Create a PL/SQL package with a number of functions that set the context for the
application

Note: You may need to set up the following data structures for
certain examples to work:

DRCOP USER apps CASCADE;
CREATE USER apps | DENTI FI ED BY wel conel,;

CREATE (R REPLACE PACKACE apps. hr_sec_ctx IS
PROCEDURE set_resp_id (respid NMBER ;
PROCEDURE set_org_id (orgid NMBER ;

/* PROCEDURE val idate _respid (respid NMBER; */
/* PROCEDURE val idate org id (orgid NMBER; */
END hr_sec_ctx;

APPS is the schema owning the package.

CREATE (R REPLACE PACKACE BCDY apps. hr_sec_ctx IS
/* function to set responsibility id */

PROCEDURE set_resp_id (respid NMBER IS

BEQ N

/* validate respid based on prinitive and other context */
/* validate respid (respid); */
/* set resp_id attribute under nanespace 'hr_ctx'*/

DBVE SESSI ON SET_GONTEXT(' hr_ctx', 'resp_id, respid);
END set_resp_id;

/* function to set organization id */

PROCEDURE set_org_id (orgid NNMBER IS

BEQ N

/* validate organi zation ID */

/* validate org id(orgid); /*

/* set org_id attribute under nanmespace 'hr_ctx' */

DBVB SESSI ON SET_GONTEXT(' hr_ctx', 'org_id', orgid);
END set_org_id;

/* nore functions to set other attributes for the HR application */

14-12 Oracle Database Security Guide

Examples: Application Context Within a Fine-Grained Access Control Function

END hr_sec _ctx;

Step 2. Create the Context and Associate It with the Package
For example:

CREATE QONTEXT H_ctx USI NG apps. hr _sec_ct x;

Step 3. Create the Initialization Script for the Application

Suppose that the execute privilege on the package HR_SEC CTX has been granted
to the schema running the application. Part of the script will make calls to set
various attributes of the HR_CTX context. Here, we do not show how the context is
determined. Normally, it is based on the primitive context or other derived context.

APPS, HR SEC CTX. SET_RESP 1 (1)
APPS. HR_SEC CTX. SET_CRG | { 101) ;

The SYS_CONTEXT function can be used for data access control based on this
application context. For example, the base table HR_ORGANI ZATI ON_UNI T can be
secured by a view that restricts access to rows based on attribute ORG | D

Note: You may need to set up data structures for certain examples
to work:

CREATE TABLE hr_organi zati on_unit (organization_i d NJMBER);

CREATE M EWH _or gani zati on_secv AS
SELECT * FROM hr_or gani zati on_uni t
WHERE Qrgani zation_id = SYS GQONTEXT(' hr_ctx','org_id');

Example 3: Event Triggers, Application Context, Fine-Grained Access Control, and
Encapsulation of Privileges
This example illustrates use of the following security features in Oracle Database:

« Eventtriggers
« Application context (session-based)
« Fine-grained access control

« Encapsulation of privileges in stored procedures

Implementing Application Context and Fine-Grained Access Control 14-13

Examples: Application Context Within a Fine-Grained Access Control Function

In this example, we associate a security policy with the table called DI RECTORY
which has the following columns:

Column Description

EMPNO identification number for each employee

MERI D employee identification number for the manager of each
employee

RANK position of the employee in the corporate hierarchy

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE Payrol | (

Sate NMBER

Cate NIMER

Acct no NOMBER

Enpno NUMBER

Nane VARCHAR2(20));
CREATE TABLE Directory_u(

Enmpno NUMBER,

Mgrno NUMBER,

Rank NUMBER) ;
CREATE SEQUENCE Enpno_seq;
CREATE SEQUENCE Rank_seq;

The security policy associated with this table has two elements:

« All users can find the MGRI D for a specific EMPNQO. To implement this, we create
a definer's right package in the human resources schema (HR) to perform
SELECT on the table.

« Managers can update the positions in the corporate hierarchy of only their
direct subordinates. To do this they must use only the designated application.
You can implement this as follows:

* Define fine-grained access control policies on the table based on EMPNO
and application context.

* Set EMPNODby using a logon trigger.

14-14 Oracle Database Security Guide

Examples: Application Context Within a Fine-Grained Access Control Function

* Set the application context by using the designated package for
processing the updates (event triggers and application context).

Note: In this example, we grant UPDATE privileges on the table to
PUBLI C, because fine-grained access control prevents an
unauthorized user from wrongly modifying a given row.

CONNECT system yJdg2Ulv AS sysdba
GRANT CONNECT, RESCURCE, UNLI M TED TABLESPACE, CREATE ANY CONTEXT, CREATE
PROCEDURE, CREATE ANY TRI GGER TO HR | DENTI FI ED BY HR;
CONNECT hr/ hr;
CREATE TABLE Directory (Empno NUMBER(4) NOT NULL,
Myrno NUMBER(4) NOT NULL,
Rank ~ NUMBER(7,2) NOT NULL);

CREATE TABLE Payrol | (Enpno NUVBER(4) NOT NULL,
Name VARCHAR(30) NOT NULL)

/* seed the tables with a couple of managers: */
I NSERT INTO Directory VALUES (1, 1, 1.0);

I NSERT I NTO Payrol | VALUES (1, 'KING);

I NSERT INTO Directory VALUES (2, 1, 5);

I NSERT | NTO Payrol | VALUES (2, 'CLARK);

/* Create the sequence nunber for EMPNO */
CREATE SEQUENCE Enpno_seq START WTH 5;

[* Create the sequence nunber for RANK: */
CREATE SEQUENCE Rank_seq START W TH 100;

CREATE OR REPLACE CONTEXT Hr_app USING Hr. Hr0_pck;
CREATE OR REPLACE CONTEXT Hr_sec USING Hr.Hr1_pck;

CREATE or REPLACE PACKAGE H0_pck IS
PROCEDURE adj ust r ankby1(Enpno NUMBER) ;
END;

CREATE or REPLACE PACKAGE BODY Hr0_pck IS
/* raise the rank of the empno by 1: */
PROCEDURE Adj ust rankby1(Enpno NUVBER)
IS

Stm VARCHAR2(100);

BEG N

Implementing Application Context and Fine-Grained Access Control 14-15

Examples: Application Context Within a Fine-Grained Access Control Function

/*Set context to indicate application state */

DBMS_SESSI ON. SET_CONTEXT(" hr _app', ' adj state', 1);

/* Now we can issue DM. statement: */

Stmt := 'UPDATE Directory d SET Rank = Rank + 1 WHERE d. Enpno ="
|| Enmpno;

EXECUTE | MVEDI ATE STM;

/* Re-set application state: */
DBMS_SESSI ON. SET_CONTEXT(' hr _app', ' adj state', 0);
END;

END;

CREATE or REPLACE PACKAGE hr1_pck IS PROCEDURE seti d;

END;

/

/* Based on userid, find EMPNO, and set it in application context */

CREATE or REPLACE PACKAGE BODY H1 pck IS
PROCEDURE seti d
IS
i d NUMBER;
BEG N
SELECT Enpno INTO id FROM Payrol | WHERE Nane =
SYS_CONTEXT(' userenv','session_user') ;
DBMVS_SESSI ON. SET_CONTEXT(' hr _sec', ' enpno',id);
DBMVS_SESSI ON. SET_CONTEXT(' hr _sec', "appid',id);
EXCEPTI ON
/* For purposes of denonstration insert into payroll table
| so that user can continue on and run exanple. */
VWHEN NO_DATA FOUND THEN
I NSERT | NTO Payrol | (Enpno, Nane)
VALUES (Enpno_seq. NEXTVAL, SYS CONTEXT(' userenv','session_user'));
I NSERT | NTO Directory (Enpno, Myrno, Rank)
VALUES (Enpno_seq. CURRVAL, 2, Rank_seq. NEXTVAL);
SELECT Enpno INTO id FROM Payrol | WHERE Nane =
sys_context (' userenv','session_user') ;
DBMS_SESSI ON. SET_CONTEXT(' hr _sec', ' enpno' ,id);
DBMS_SESSI ON. SET_CONTEXT(' hr _sec', "appid',id);
WHEN OTHERS THEN
NULL;
I* 1f thisis to be fired by using a "l ogon" trigger,
| you need to handl e exceptions if you want the user to continue
I logging into the database. */
END;

14-16 Oracle Database Security Guide

Examples: Application Context Within a Fine-Grained Access Control Function

END;

GRANT EXECUTE ON Hrl pck TO public;
CONNECT systenf yJdg2Ulv AS sysdba

CREATE OR REPLACE TRI GGER Dat abasetri gger

AFTER LOGON
ON DATABASE
BEG N
hr. H1_pck. Seti d;
END;

/* Creates the package for finding the MGRID for a particular EMPNO

using definer's right (encapsulated privileges). Note that users are
granted EXECUTE privileges only on this package, and not on the table
(DIRECTORY) it is querying. */

CONNECT hr/ hr

CREATE or REPLACE PACKAGE hr2_pck IS
FUNCTI ON Fi ndngr (Enpno NUMBER) RETURN NUMBER;
END;

CREATE or REPLACE PACKAGE BODY hr2_pck 1S
/* insert a new enployee record: */
FUNCTI ON fi ndrgr (enpno nunber) RETURN NUMBER | S
Myrid NUMBER;
BEG N
SELECT mgrno I NTO ngrid FROM directory WHERE mgrid = enpno;
RETURN ngri d;
END;
END;

CREATE or REPLACE FUNCTI ON secure_updat es(ns varchar2, na varchar2)
RETURN VARCHAR2 | S
Resul t s VARCHAR2(100) ;
BEG N
/* Only allow updates when designated application has set the session
state to indicate we are inside it. */
IF (sys_context('hr_app','adjstate') = 1)
THEN results := 'ngrno = SYS_CONTEXT("hr_sec", "enmpno")";
ELSE results := '1=2";
END I F;

Implementing Application Context and Fine-Grained Access Control 14-17

Initializing Application Context Externally

RETURN Resul ts;
END;

/* Attaches fine-grained access policy to all update operations on
hr.directory */

CONNECT system yJdg2Ulv AS sysdba;
BEG N
DBVS_RLS. ADD POLICY(' hr',"directory','secure_update','hr',
"secure_updates','update', TRUE, TRUE);
END;

Initializing Application Context Externally

This feature lets you specify a special type of namespace that accepts initialization
of attribute values from external resources and stores them in the user's local
session. This enhances performance and enables the automatic propagation of
attributes from one session to the other. Only those application contexts initialized
from OCl-based external sources support connected user database links.

This section contains these topics:
« Obtaining Default Values from Users

« Obtaining Values from Other External Resources

Obtaining Default Values from Users

Sometimes it is desirable to obtain default values from users. Initially, these default
values may serve as hints or preferences, and then after validation become trusted
contexts. Similarly, it may be more convenient for clients to initialize some default
values, and then rely on a login event trigger or applications to validate the values.

For job queues, the job submission routine records the context being set at the time
the job is submitted, and restores it when executing the batched job. To maintain the
integrity of the context, job queues cannot bypass the designated PL/SQL package
to set the context. Rather, externally initialized application context accepts
initialization of context values from the job queue process.

Automatic propagation of context to a remote session may create security problems.
Developers or administrators can effectively handle this type of context that takes
default values from resources other than the designated PL/SQL procedure by
using logon triggers to reset the context when users logon.

14-18 Oracle Database Security Guide

Initializing Application Context Globally

Obtaining Values from Other External Resources

In addition to using the designated trusted package, externally initialized
application context can also accept initialization of attributes and values through
external resources such as an OCI interface, a job queue process, or a database link.
It provides:

« For remote sessions, automatic propagation of context values that are in the
externally initialized context namespace

« For job queues, restoration of context values that are in the externally initialized
context namespace

« For OCl interfaces, a mechanism to initialize context values that are in the
externally initialized context namespace

Although this type of namespace can be initialized by any client program using
OCIl, there are login event triggers that can verify the values. It is up to the
application to interpret and trust the values of the attributes.

Middle-tier servers can actually initialize context values on behalf of database users.
Context attributes are propagated for the remote session at initialization time, and
the remote database accepts the values if the namespace is externally initialized.

See Also:
Oracle Database JDBC Developer's Guide and Reference

Oracle Call Interface Programmer's Guide

Initializing Application Context Globally

This feature uses a centralized location to store the user's application context,
enabling applications to set up the user's contexts during initialization based upon
the user's identity. In particular, it supports Oracle Label Security labels and
privileges. This feature makes it much easier for the administrator to manage
contexts for large numbers of users and databases. For example, many
organizations want to manage user information centrally, in an LDAP-based
directory. Enterprise User Security, a feature of Oracle Advanced Security, supports
centralized user and authorization management in Oracle Internet Directory.
However, there may be additional attributes an application wishes to retrieve from
LDAP to use for VPD enforcement, such as the user's title, organization, or physical
location.

This section contains these topics:

Implementing Application Context and Fine-Grained Access Control 14-19

Initializing Application Context Globally

« Application Context Utilizing LDAP
« How Globally Initialized Application Context Works
« Example: Initializing Application Context Globally

Application Context Utilizing LDAP

Session-based application context initialized globally utilizes the Lightweight
Directory Access Protocol (LDAP). LDAP is a standard, extensible, and efficient
directory access protocol. The LDAP directory stores a list of users to which this
application is assigned. An Oracle database server can use Oracle Internet
Directory, or third-party directories such as Microsoft Active Directory and Sun
Microsystems iPlanet, as the directory service for authentication and authorization
of enterprise users. (Enterprise User Security requires Oracle Advanced Security.)

The LDAP object or cl DBAppl i cat i onCont ext (a subclass of

gr oupOf Uni queNanes) has been defined to store the application context values in
the directory. The location of the application context object is described in

Figure 14-1, which is based upon the Human Resources example.

An internal C function is required to retrieve the or c| DBAppl i cat i onCont ext
value, which returns a list of application context values to the RDBMS.

Note: In this example, HR is the namespace, Title and Project are
the attributes, and Manager and Promotion are the values.

14-20 Oracle Database Security Guide

Initializing Application Context Globally

Figure 14-1 Location of Application Context in LDAP Directory Information Tree (DIT)

cn=0OracleContext

cn=Products

cn=OracleDBSecurity

cn=0OracleDefaultDomain

cn=MyDomain

cn=OracleDBAppContext cn=Enterprise Role cn=Mapping
cn=HR
]
cn=Title cn=Project
| |
cn=Manager cn=Promotion

dn: cn=Manager, cn=Title, cn=HR, cn=0r acl eDBAppCont ext, cn=MyDonwi n,
cn=Products, cn=0Cracl eContext, ou=Americas, o=Oracle, c=US

cn: Manager

obj ectcl ass: top

obj ect cl ass: groupOf Uni queNanes

obj ect cl ass: orcl DBAppl i cati onCont ext

uni quenenber: cn=user1l, ou=Anmericas, o=Oracle, |=Redwoodshores, st=CA, c¢=US

Implementing Application Context and Fine-Grained Access Control

14-21

Initializing Application Context Globally

How Globally Initialized Application Context Works

The administrator configures Enterprise User Security, a feature of Oracle
Advanced Security. Then she sets up the user's application context values in the
database and the directory.

When a global user (enterprise user) connects to the database, the Oracle Advanced
Security Enterprise User Security feature performs authentication to verify the
identity of the user connecting to the database. After authentication, the user's
global roles and application context are retrieved from the directory. When the user
logs on to the database, her global roles and initial application context are already
set up.

See Also: Oracle Advanced Security Administrator's Guide for a
complete discussion of Enterprise User Security and how to
configure this feature.

Example: Initializing Application Context Globally

The initial application context for a user, such as department name and title, can be
set up and stored in the LDAP directory. The values are retrieved during user login
so that the context is set properly. In addition, any information related to the user is
retrieved and stored in the application context namespace SYS_USER DEFAULTS.
The following example shows how this is done.

1. Create an application context in the database.
CREATE CONTEXT HR USI NG hrapps. hr _manage_pkg | NI TI ALI ZED GLOBALLY;

2. Create and add new entries in the LDAP directory.

An example of the entries added to the LDAP directory follows. These entries
create an attribute name Ti t | e with attribute value Manager for the
application (namespace) HR, and assign usernames user 1 and user 2.

dn:

cn=0r acl eDBAppCont ext , cn=nyDomai n, cn=0r acl eDBSecuri ty, cn=Product s, cn=0r acl eC
ont ext, ou=Ameri cas, o=or acl e, c=US

changet ype: add

cn: Oracl eDBAppCont ext

obj ectclass: top

obj ectcl ass: orcl Cont ai ner

dn:

cn=HR, cn=0r acl eDBAppCont ext, cn=nyDonai n, cn=0r acl eDBSecurity, cn=Product s, cn=0
racl eCont ext, ou=Aneri cas, o=or acl e, c=US

14-22 Oracle Database Security Guide

Initializing Application Context Globally

changet ype: add

cn: HR

obj ectclass: top

obj ectcl ass: orcl Contai ner

dn:

cn=Titl e, cn=HR cn=0racl eDBAppCont ext, cn=nyDomai n, cn=0r acl eDBSecuri ty, cn=Prod
uct s, cn=0r acl eCont ext , ou=Aneri cas, o=or acl e, c=US

changet ype: add

cn: Title

obj ectclass: top

obj ectcl ass: orcl Cont ai ner

dn:

cn=Manager, cn=Ti t| e, cn=HR, cn=0r acl eDBAppCont ext, cn=nyDonai n, cn=0r acl eDBSecur
ity, cn=Products, cn=0racl eCont ext, ou=Aneri cas, o=or acl e, c=US

cn: Manager

obj ectclass: top

obj ectcl ass: groupof uni quenanes

obj ectcl ass: orcl DBAppl i cati onCont ext

uni quenenber: CN=user 1, OQU=Aneri cas, O=0r acl e, L=Redwoodshor es, ST=CA, C=US

uni quenenber: CN=user 2, OQU=Aneri cas, O=0r acl e, L=Redwoodshor es, ST=CA, C=US

If an LDAP i net Or gPer son object entry exists for the user, the connection will
also retrieve all the attributes from i net Or gPer son and assign them to the
namespace SYS_LDAP_USER_DEFAULT. The following is an example of an

i net Or gPer son entry:

dn: cn=user1, ou=Americas, O-oracl e, L=r edwoodshor es, ST=CA, C=US
changet ype: add

obj ectC ass: top

obj ect ass: person

obj ect G ass: organi zati onal Person
obj ect G ass: inet OrgPerson

cn: userl

sn: One

gi venNane: User

initials: UO

title: nanager, product devel opment
uid: uone

mai | : uone@s. oracl e. com

t el ephoneNunber: +1 650 123 4567
enpl oyeeNunber: 00001

enpl oyeeType: full tinme

Implementing Application Context and Fine-Grained Access Control 14-23

How to Use Global Application Context

4. Connect to the database.

When user 1 connects to a database that belongs to domain nyDonai n, user 1
will have his Ti t | e set to Manager. Any information related to user 1 will be
retrieved from the LDAP directory. The value can be obtained using the syntax

SYS_CONTEXT(' namespace', ' attribute name')

For example:

DECLARE

tmpstrl VARCHAR2(30);

tmpstr2 VARCHAR2(30);

BEG N

tnpstrl = SYS_CONTEXT(' HR ,' TITLE);

trpstr2 = SYS_CONTEXT(' SYS_LDAP_USER DEFAULT', 't el ephoneNunber');

DBVS_OUTPUT. PUT_LINE(' Title is ' || tnpstrl);
DBMS_QUTPUT. PUT_LI NE(' Tel ephone Nunber is ' || tnpstr2);
END;

The output of the preceding example is:

Title is Manager
Tel ephone Nunmber is +1 650 123 4567

How to Use Global Application Context

Global application context stores context information in the SGA so it can be used
for applications which use a sessionless model, such as middle-tier applications in a
three-tiered architecture. These applications cannot use session-based application
context because users authenticate to the application and then it typically connects
to the database as a single identity. Global application context uses the CLI ENT _

| DENTI FI ER USERENYV namespace attribute, set with the DBM5_SESSI ON
interface, to associate the database session with a particular user or group. The
following sections explain how to use the DBMS_SESSION interface to set the

CLI ENT_I DENTI FI ERand then examples are provided:

« Using the DBMS_SESSION Interface to Manage Application Context in Client
Sessions

« Examples: Global Application Context

See Also: "Introduction to Global Application Context" on
page 13-17 for conceptual information about this feature.

14-24 Oracle Database Security Guide

How to Use Global Application Context

Using the DBMS_SESSION Interface to Manage Application Context in Client

Sessions

The DBM5_SESSI ON interface for managing application context has a client
identifier for each application context. In this way, application context can be
managed globally, yet each client sees only his or her assigned application context.
The following interfaces in DBMS_SESSI ON enable the administrator to manage
application context in client sessions:

. SET_CONTEXT
. CLEAR_CONTEXT

« CLEAR ALL_CONTEXT (can also be used with session-based application
context)

« SET_I DENTI FI ER
« CLEAR_|I DENTI FI ER

The middle-tier application server can use SET_CONTEXT to set application context
for a specific client ID. Then, when assigning a database connection to process the
client request, the application server needs to issue a SET_| DENTI FI ERto denote
the ID of the application session. From then on, every time the client invokes SYS_
CONTEXT, only the context that was associated with the set identifier is returned.

See Also:

« PL/SQL Packages and Types Reference for reference information
and a complete description of the DBM5_SESSI ON package.

« "Using CLIENT_IDENTIFIER Independent of Global
Application Context" on page 15-12 for information about
setting this USERENV namespace attribute with the DBMS_
SESSI ONinterface.

Examples: Global Application Context

This section provides two examples that use global application context.
« Example 1: Global Application Context
« Example 2: Global Application Context for Lightweight Users

Example 1: Global Application Context
The following steps outline the global application context process:

Implementing Application Context and Fine-Grained Access Control 14-25

How to Use Global Application Context

1. Consider the application server, AppSvr, that has assigned the client identifier
12345 to client SCOTT. It then issues the following statement to indicate that,
for this client identifier, there is an application context RESPONSI BI LI TY with
a value of 13 in the HR namespace.

DBVS SESSION SET_OONTEXT("HR, 'RESPONSI BILITY |, '13', 'SOOIT, ‘12345);

Note that HR must be a global context namespace created as follows:
CREATE QONTEXT hr USING hr.init ACCESSED @.CBALLY;
2. Then, the following command is issued to indicate the connecting client's
identity each time SCOTT uses AppSvr to connect to the database:
DBMVS_SESSI ON SET | DENTI FI BER(' 12345') ;
3. When there isa SYS _CONTEXT(' HR , ' RESPONSI BI LI TY') call within the

database session, the database engine matches the client identifier 12345 to the
global context, and returns the value 13.

4. When exiting this database session, AppSvr clears the client identifier by
issuing:

DBVE SESSI ON OLEAR | DENTI FIER() ;
After a session's client identifier is cleared, it takes on a NULL value. This implies
that subsequent SYS_CONTEXT calls only retrieve application contexts with NULL

client identifiers, until the client identifier is set again using the SET_| DENTI FI ER
interface.

14-26 Oracle Database Security Guide

How to Use Global Application Context

Example 2: Global Application Context for Lightweight Users

The following steps outline the global application context process for a lightweight
user application:

1.

The administrator creates the global context namespace by issuing:
CREATE CONTEXT hr USING hr.init ACCESSED GLOBALLY;

The HR application server (AppSvr) starts up and establishes multiple
connections to the HR database as user APPSMGR.

User SCOTT logs on to the HR application server.
AppSvr authenticates SCOTT to the application.

AppSvr assigns a temporary session ID (or simply uses the application user
ID), 12345, for this connection.

The session ID is returned to SCOTT's browser as part of a cookie or maintained
by AppSvr.

Note: If the application generates a session ID for use as a

CLI ENT_I DENTI FI ER, the session ID must be suitably random,
and protected over the network through encryption. If the session
ID is not random, then a malicious user could guess the session 1D
and access another user's data. If the session ID is not encrypted
over the network, then a malicious user could retrieve the session
ID and access the connection.

AppSvr initializes application context for this client callingthe HR. I NI T
package, which issues:

DBVE SESSI ON SET_QONTEXT(" hr', 'id', '"scott', 'APPSMER, 12345);

DBVB SESSI ON SET_GONTEXT("hr', 'dept', 'sales', 'APPSMR, 12345);

AppSvr assigns a database connection to this session, and initializes the session
by issuing:

DB\VE SESSI ON SET | DENTI FI ER| 12345);

All SYS_CONTEXT calls within this database session will return application

context values belonging to the client session only. For example, SYS _
CONTEXT(" hr' ,"id") will return the value SCOTT.

Implementing Application Context and Fine-Grained Access Control 14-27

How to Use Global Application Context

10. When done with the session, AppSvr can issue the following statement to clean
up the client identity:

CBVE SESSI ON OLEAR IDENTIFIER () ;
Note that even if another database user (ADAMS) had logged into the database, he
cannot access the global context set by AppSvr because AppSvr has specified that
only the application with logged in user APPSMGR can see it. If AppSvr has used the

following, then any user session with client ID set to 12345 can see the global
context.

DBV SESSI ON SET_GONTEXT(' hr', 'id', 'scott', NUL , 12345);
DBV SESSI ON SET_GONTEXT(' hr', 'dept', 'sales', NUL , 12345);
This approach enables different users to share the same context.

Users should be aware of the security implication of different settings of the global

context. NULL in the username means that any user can access the global context. A
NULL client ID in the global context means that only a session with an uninitialized
client ID can access the global context.

Users can query the client identifier set in the session as follows:

SYS QONTEXT(' USERENV , ' CLI ENT_| DENTI FI ER)

The DBA can see which sessions have the client identifier set by querying the
V$SESSI ONview's CLI ENT_| DENTI FI ER and USERNAME.

When a user wants to see how much global context area (in bytes) is being used, she
can use SYS_CONTEXT(' USERENV' , ' GLOBAL_CONTEXT_MEMORY")

See Also: For more information about using the CLI ENT_
| DENTI FI ER predefined attribute of the USERENV application
context:

« "Using the CLIENT_IDENTIFIER Attribute to Preserve User
Identity" on page 15-12

« Oracle Database SQL Reference
« PL/SQL Packages and Types Reference
« Oracle Database JDBC Developer's Guide and Reference

« Oracle Call Interface Programmer’s Guide

14-28 Oracle Database Security Guide

How Fine-Grained Access Control Works

How Fine-Grained Access Control Works

Fine-grained access control is based on dynamically modified statements. Suppose
you want to attach to the ORDERS_TAB table the following security policy:
"Customers can see only their own orders." The process is described in this section.

1. Create a function to add a predicate to a user's DML statement.

Note: A predicate is the WHERE clause (a selection criterion clause)
based on one of the operators (=,!=,1 S,1 S NOT, >, >=, EXI ST,
BETVEEEN, I N, NOT | N, and so on). For a complete list of operators,
see the Oracle Database SQL Reference

In this case, you might create a function that adds the following predicate:
Qust_no = (SELECT Qustno FROM Qust oners WHERE Qust nane =
SYS GONTEXT (' userenv',' session_user'))
2. A user enters the statement:
SELECT * FROM O ders_t ab;
3. The Oracle database server calls the function you created to implement the
security policy.
4. The function dynamically modifies the user's statement to read:

SELECT * FROM Q ders_tab WHERE Qustno = (
SELECT Qustno FROM Qust oner s
WHERE Qust nane = SYS QONTEXT(' userenv', 'session_user'))

5. The Oracle database server executes the dynamically modified statement.

Upon execution, the function employs the username returned by SYS
CONTEXT (' userenv','session_user') tolook up the corresponding
customer and to limit the data returned from the ORDERS TAB table to that
customer's data only.

Implementing Application Context and Fine-Grained Access Control 14-29

How to Establish Policy Groups

See Also: For more information on using fine-grained access
control:

« "Introduction to Fine-Grained Access Control" on page 13-6
« "Introduction to Global Application Context" on page 13-17
« PL/SQL Packages and Types Reference.

How to Establish Policy Groups

A policy group is a set of security policies which belong to an application. You can
designate an application context (known as a driving context) to indicate the policy
group in effect. Then, when the table, view, or synonym column is accessed, the
server looks up the driving context (which are also known as policy contexts) to
determine the policy group in effect. It enforces all the associated policies which
belong to that policy group.

This section contains the following topics:

« The Default Policy Group: SYS_DEFAULT
« New Policy Groups

« How to Implement Policy Groups

« Validation of the Application Used to Connect

The Default Policy Group: SYS_DEFAULT

In the Oracle Policy Manager tree structure, the Fine-Grained Access Control
Policies folder contains the Policy Groups folder. The Policy Groups folder contains
an icon for each policy group, as well as an icon for the SYS_DEFAULT policy
group.

By default, all policies belong to the SYS_DEFAULT policy group. Policies defined in
this group for a particular table, view, or synonym will always be executed along
with the policy group specified by the driving context. The SYS_DEFAULT policy
group may or may hot contain policies. If you attempt to drop the SYS _DEFAULT
policy group, an error will be raised.

If, to the SYS _DEFAULT policy group, you add policies associated with two or more
objects, then each such object will have a separate SYS_DEFAULT policy group
associated with it. For example, the EMP table in the SCOTT schema has one SYS
DEFAULT policy group, and the DEPT table in the SCOTT schema has a different

14-30 Oracle Database Security Guide

How to Establish Policy Groups

SYS DEFAULT policy group associated with it. These are displayed in the tree
structure as follows:

SYS_DEFAULT
- policyl (SCOTT/ EMP)
- policy3 (SCOTT/ EMP)
SYS_DEFAULT
- policy2 (SCOTT/ DEPT)

Note: Policy groups with identical names are supported. When
you select a particular policy group, its associated schema and
object name are displayed in the property sheet on the right-hand
side of the screen.

New Policy Groups

When adding the policy to a table, view, or synonym, you can use the DBV5

RLS. ADD_GROUPED_POQLI CY interface to specify the group to which the policy
belongs. To specify which policies will be effective, you add a driving context using
the DBM5_RLS. ADD POLI CY_CONTEXT interface. If the driving context returns an
unknown policy group, an error is returned.

If the driving context is not defined, then all policies are executed. Likewise, if the
driving context is NULL, then policies from all policy groups are enforced. In this
way, an application accessing the data cannot bypass the security setup module
(which sets up application context) to avoid any applicable policies.

You can apply multiple driving contexts to the same table, view, or synonym, and
each of them will be processed individually. In this way you can configure multiple
active sets of policies to be enforced.

Consider, for example, a hosting company that hosts Benefits and Financial
applications, which share some database objects. Both applications are striped for
hosting using a SUBSCRI BER policy in the SYS DEFAULT policy group. Data access
is partitioned first by subscriber ID, then by whether the user is accessing the
Benefits or Financial applications (determined by a driving context). Suppose that
Company A, which uses the hosting services, wants to apply a custom policy which
relates only to its own data access. You could add an additional driving context
(such as COMPANY A SPECI AL) to ensure that the additional, special policy group
is applied for Company A's data access only. You would not apply this under the
SUBSCRI BER policy, since the policy relates only to Company A, and it is more
efficient to segregate the basic hosting policy from other policies.

Implementing Application Context and Fine-Grained Access Control 14-31

How to Establish Policy Groups

How to Implement Policy Groups
To create policy groups, the administrator must do two things:

« Setup adriving context to identify the effective policy group.
« Add policies to policy groups, as required.

The following example shows how to perform these tasks.

Note: You need to set up the following data structures for the
examples in this section to work:

DROP USER fi nance CASCADE;

CREATE USER finance | DENTI FI ED BY wel cone2;
GRANT RESQURCE TO apps;

DROP TABLE apps. benefit;

CREATE TABLE apps. benefit (¢ NUMBER);

Step 1: Set Up a Driving Context
Begin by creating a namespace for the driving context. For example:

CREATE QONTEXT appsct x USI NG apps. apps_security_init;

Create the package that administers the driving context. For example:

CREATE (R REPLACE PACKACGE apps. apps_security_init 1S
PROCEDURE setctx (policy_group VARCHAR2);
END;

CREATE (R REPLACE PACKACE BCDY apps. apps_security_ init AS
PROCEDURE setctx (policy_group varchar2) IS
BEA N

REM Do sone checking to deternine the current application.

REM You can check the proxy if using the proxy authentication feature.
REM Then set the context to indicate the current application.

DBVB_SESS| N SET_GONTEXT(* APPSCTX |, ' ACTI VE_APPS , pol i cy_group) ;
BEND
END

Define the driving context for the table APPS. BENEFI T.

14-32 Oracle Database Security Guide

How to Establish Policy Groups

BEAG N
DBVS RLS. ADD PQLI CY_QONTEXT(" apps' , ' benefit'," APPSCTX , ' ACTI VE_APPS);
END;

Step 2: Add a Policy to the Default Policy Group.
Create a security function to return a predicate to divide the data by company.

CREATE (R REPLACE FUNCTI CN by_conpany (sch varchar2, tab varchar?2)
RETURN VARCHAR2 AS
BEQ N
RETURN ' CCMPANY = SYS QONTEXT(' ' 1D ', "' MY_COMPANY' ')" ;
BEND,

Since policies in SYS_DEFAULT are always executed (except for SYS, or users with
the EXEMPT ACCESS POLI CY system privilege), this security policy (hamed
SECURI TY_BY_COWPANY), will always be enforced regardless of the application
running. This achieves the universal security requirement on the table: namely, that
each company should see its own data, regardless of the application running. The
function APPS. APPS_SECURI TY_I NI T. BY_COVPANY returns the predicate to
make sure that you can only see your company's data.

BEQ N

DBV RLS. ADD GROPED PQLI CY(" apps' , ' benefit',' SYS DEFALLT ,
"security_by conpany',

"apps', ' by_conpany");

END;

Step 3: Add a Policy to the HR Policy Group
First, create the HR group:

CREATE (R REPLACE FUNCTI ON hr. security _pol i cy

RETURN VARCHAR2

AS

BEAQ N

RETURN ' SYS OONTEXT("'ID ' ,""TITLE ') ="'""MWNAGER ' ';
BEND

The following creates the policy group and adds a policy named HR_SECURI TY to
the HR policy group. The function HR. SECURI TY_POLI CY returns the predicate to
enforce HR's security on the table APPS. BENEFI T:

BEG N
DBVB RS CREATE PCLI CY_GROP(" apps' , ' benefit' ' HR);
DBV RS ADD GROPED PQALI OY(" apps', ' benefit',' HR,

Implementing Application Context and Fine-Grained Access Control 14-33

How to Establish Policy Groups

"hr_security', " hr',"security policy');
END;

Step 4: Add a Policy to the FINANCE Policy Group
Create the FI NANCE policy:

CREATE (R REPLACE FUNCTI ON fi nance. security_pol i cy
RETURN VARCHAR2

AS

BEQ N

RETURN (" SYSOINTEXT("'ID",""DEPT ') = ""HNANCE ' ');
END

Create a policy group named FI NANCE and add the FI NANCE policy to the
FI NANCE group:

BEQ N

DBVB RLS. CREATE PCLI CY_GROP(" apps' , ' benefit',' FINANCE);
DBVE RLS. ADD GROPED PQLI CY(" apps' , ' benefit',' F NANCE ,
'finance_security','finance', 'security _policy');

END;

As a result, when the database is accessed, the application initializes the driving
context after authentication. For example, with the HR application:

execute apps.security init.setctx('HR);

Validation of the Application Used to Connect

The package implementing the driving context must correctly validate the
application which is being used. Although the database always ensures that the
package implementing the driving context sets context attributes (by checking the
call stack), this cannot protect against inadequate validation within the package.

For example, in applications where database users or enterprise users are known to
the database, the user needs EXECUTE privilege on the package which sets the
driving context. Consider a user who knows that:

« The company's BENEFI TS application allows more liberal access than its HR
application, and

« Theset ct x procedure (which sets the correct policy group within the driving
context) does not perform any validation to determine which application is
actually connecting. That is, the procedure does not check the IP address of the

14-34 Oracle Database Security Guide

How to Add a Policy to a Table, View, or Synonym

incoming connection (for a three-tier system), or the pr oxy_user attribute of
the user session.

In this situation, the user could pass to the driving context package an argument
which sets the context to the more liberal BENEFI TS policy group even though this
user will access the HR application. In this way the user can bypass the more
restrictive security policy because the package inadequately validates the
application.

By contrast, if you implement proxy authentication with VPD, then you can
determine the identity of the middle tier (and the application) which is actually
connecting to the database on a user's behalf. In this way, the correct policy will be
applied for each application to mediate data access. For example, a developer using
the proxy authentication feature could determine that the application (the middle
tier) connecting to the database is HRAPPSERVER. The package which implements
the driving context can thus verify that the pr oxy_user in the user session is
HRAPPSERVER before setting the driving context to use the HR policy group, or can
disallow access if pr oxy_user is not HRAPPSERVER

In this case, when the following query is executed

SH ECT * FROM APPS. BENEHI T;

Oracle picks up policies from the default policy group (SYS_DEFAULT) and active
namespace HR The query is internally rewritten as follows:

SELECT * FROM APPS, BENEFI T WHERE GOMPANY = SYS GONTEXT(' 1 D, MY_GOMPANY') and
SYS GNTEXT(' D, TITLE) = ' MANAGER ;

How to Add a Policy to a Table, View, or Synonym

The DBM5_RLS package enables you to administer security policies. This package's
procedures allow you to specify the table, view, or synonym to which you are
adding a policy and various data pertinent to that policy. These data include the
names of the policy, the policy group, the function implementing the policy, and the
type of statement the policy controls (SELECT, | NSERT, UPDATE, DELETE, CREATE
| NDEX, or ALTER | NDEX). Table 14-2 lists these procedures.

Table 14-2 DBMS_RLS Procedures

Procedure Purpose

DBMS_RLS. ADD _PQOLI CY Use this procedure to add a policy to a table,
view, or synonym.

Implementing Application Context and Fine-Grained Access Control 14-35

How to Add a Policy to a Table, View, or Synonym

Table 14-2 (Cont.) DBMS_RLS Procedures

Procedure Purpose

DBMS_RLS. DROP_PQOLI CY Use this procedure to drop a policy from a
table, view, or synonym.

DBMS_RLS. REFRESH_POLI CY Use this procedure to invalidate cursors

DBVS_RLS.

DBVS_RLS.

DBVS_RLS.

DBVS_RLS.

DBVS_RLS.
DBVS_RLS.

DBVS_RLS.

DBVS_RLS.

DBVS_RLS.

DBVS_RLS.

ENABLE_POLI CY

CREATE_PCLI CY_GROUP

ADD_GROUPED_POLI CY

ADD_POLI CY_CONTEXT

DELETE_POLI CY_GROUP
DROP_GROUPED_POLI CY

DROP_POLI CY_CONTEXT

ENABLE_GROUPED_POLI CY

DI SABLE_GROUPED_PCLI CY

REFRESH_GROUPED_POLI CY

associated with non-static policies.

Use this procedure to enable (or disable) a
policy you previously added to a table, view, or
synonym.

Use this procedure to create a policy group.

Use this procedure to add a policy to the
specified policy group.

Use this procedure to add the context for the
active application.

Use this procedure to drop a policy group.

Use this procedure to drop a policy which is a
member of the specified group.

Use this procedure to drop the context for the
application.

Use this procedure to enable a policy within a
group.

Use this procedure to disable a policy within a
group.

Use this procedure to reparse the SQL
statements associated with a refreshed policy.

See Also:

PL/SQL Packages and Types Reference for information

about using the DBMS_RLS package and all of its procedures and
parameters.

Alternatively, you can use Oracle Policy Manager to administer security policies.

DBMS_RLS.ADD_POLICY Procedure Policy Types

The execution of policy functions can consume a significant amount of system
resources. If you can minimize the number of times policy functions must execute,
then you can optimize your database server's performance. To avoid unnecessary

14-36 Oracle Database Security Guide

How to Add a Policy to a Table, View, or Synonym

policy function execution, you can choose from five different policy types, which
enable you to precisely specify how and how often a policy predicate should
change. You can enable these different types of policies, which are listed in

Table 14-3 on page 14-37, by setting the pol i cy_t ype parameter of the DBVS
RLS. ADD PCLI CY procedure.

Table 14-3 DBMS_RLS.ADD_POLICY Policy Types At a Glance

Shared
Across
Multiple
Policy Types When Policy Function Executes... Usage Example Objects?
STATI C Once, then the predicate is cached in View replacement No
the SGA.!
SHARED _ Same as STATI C Hosting environments, such as data warehouses where Yes
STATI C the same predicate must be applied to multiple
database objects.
CONTEXT_ . At statement parse time 3-tier, session pooling applications where policies No
SENSI Tl VE At statement execution time when enforce two or more predicates for different users or
the local application context has groups.
changed since the last use of the
cursor
SHARED _ First time the object is reference in a Same as CONTEXT_SENSI TI VE, but multiple objects Yes
CONTEXT_ database session. Predicates are cached can share the policy function from the session UGA.
SENSI TI VE in the session's private memory UGA
so policy functions can be shared
among objects.
DYNAM C Policy function re-executes every time Applications where policy predicates must be generated No
a policy-protected database object is for each query, such as time-dependent policies where
accessed. users are denied access to database objects at certain

times during the day

1 However, each execution of the same cursor could produce a different row set even for the same predicate because the
predicate may filter the data differently based on attributes such as SYS_CONTEXT or SYSDATE.

Static and context sensitive policies enable you to optimize server performance
because they do not execute the policy function each time protected database
objects are accessed. However, Oracle recommends that before you enable policies
as either static or context sensitive, you first test them as DYNAM C policy types,
which execute every time. Testing policy functions as DYNAM C policies first enables
you to observe how the policy function affects each query because nothing is
cached. This ensures that the functions work properly before you enable them as
static or context sensitive policy types to optimize performance.

Implementing Application Context and Fine-Grained Access Control 14-37

How to Add a Policy to a Table, View, or Synonym

Dynamic policies are the system default. If you do not specify a policy type with the
DBMS_RLS. ADD_PCLI CY procedure, then by default your policy will be dynamic.
You can specifically configure a policy to be dynamic by setting the pol i cy_t ype
parameter of the DBMS_RLS. ADD_POLI CY procedure to DYNAM C. Refer to
Example 14-1 for the syntax.

Example 14-1 Syntax for Enabling Policy Types with DBMS_RLS.ADD_POLICY
DBVS_RLS. ADD_POLI CY (

policy_type => dbns_rls. POLI CY_TYPE);

Note: The DBMS_RLS. ADD PQOLI CY pol i cy_t ype parameter is
intended to replace the st ati c_pol i cy parameter, which may be
desupported in future releases.

See Also: The following topics for a more detailed discussion of
static and context sensitive policies:

« "About Static Policies" on page 14-39

« "About Context Sensitive Policies" on page 14-39

Optimizing Performance by Enabling Static and Context Sensitive Policies

In previous releases, policies were dynamic, which means the database executes the
policy function for each query or DML statement. In addition to dynamic policies,
the current release of the Oracle database provides static and context sensitive
policies. These policy types provide a means to improve server performance
because they do not always reexecute policy functions for each DML statement and
can be shared across multiple database objects.

Note: When using shared static and shared context sensitive
policies, ensure that the policy predicate does not contain attributes
which are specific to a particular database object, such as a column
name.

14-38 Oracle Database Security Guide

How to Add a Policy to a Table, View, or Synonym

About Static Policies

Static policy predicates are cached in SGA, so policy functions do not reexecute for
each query, resulting in faster performance. When you specify a static policy, the
same predicate is always enforced for all users in the instance. However, each
execution of the same cursor could produce a different row set even for the same
predicate because the predicate may filter the data differently based on attributes
such as SYS_CONTEXT or SYSDATE.

For example, suppose you enable a policy as either a STATI Cor SHARED STATI C
policy type, which appends the following predicate to all queries made against
policy protected database objects:

where dept =SYS_CONTEXT (' HR_APP', ' deptno')

Although the predicate does not change for each query, it applies to the query based
on session attributes of the SYS_CONTEXT. In the case of the preceding example, the
predicate would return only those rows where the department number matches the
dept no attribute of the SYS_CONTEXT, which would be the department number of
the user who is querying the policy protected database object.

You can enable static policies by setting the pol i cy_t ype parameter of the DBVS_
RLS. ADD_POQLI CY procedure to either STATI Cor SHARED STATI C, depending on
whether you want the policy to be shared across multiple objects. (See

Example 14-1 on page 14-38 for the syntax.)

When to Use Static Policies Static policies are ideal for environments where every
guery requires the same predicate and fast performance is essential, such as hosting
environments. For these situations when the policy function appends the same
predicate to every query, reexecuting the policy function each time adds
unnecessary overhead to the system. For example, consider a data warehouse that
contains market research data for customer organizations who are competitors to
one another. The warehouse must enforce the policy that each organization can see
only their own market research, which is expressed by the predicate wher e
subscri ber i d=SYS_CONTEXT(' custoner', 'cust_num).Using SYS_
CONTEXT for the application context enables the database to dynamically change
which organization's rows are returned. There is no need to reexecute the function,
so the predicate can be cached in the SGA, thus conserving system resources and
improving performance.

About Context Sensitive Policies

In contrast to static policies, context sensitive policies do not always cache the
predicate. With context sensitive policies, the server assumes that the predicate will

Implementing Application Context and Fine-Grained Access Control 14-39

How to Add a Policy to a Table, View, or Synonym

change after statement parse time. But if there is no change in local application
context, the server does not reexecute the policy function within the user session. If
there has been a change in context, then the server reexecutes the policy function to
ensure it captures any changes to the predicate since the initial parsing. These
policies are useful where different predicates should apply depending on which
user is executing the query. For example, consider the case where managers should
always have the predicate wher e gr oup=manager s and employees should
always have the predicate wher e enpno=enp_i d.

Shared context sensitive policies operate in the same way as regular context
sensitive policies, except they can be shared across multiple database objects. For
this policy type, all objects can share the policy function from the UGA, where the
predicate is cached until the local session context changes.

You can enable context sensitive policies by setting the pol i cy_t ype parameter of
the DBM5_RLS. ADD_POLI CY procedure to either CONTEXT_SENSI TI VE or
SHARED CONTEXT_SENSI Tl VE. (See Example 14-1 on page 14-38 for the syntax.)

When to Use Context Sensitive Policies This type of policy is useful when a predicate
need not change for a user's session, but the policy must enforce two or more
different predicates for different users or groups. For example, consider a SALES _
HI STORY table with a single policy of "analysts see only their own products” and
"regional employees see only their own region.” In this case, the server must
reexecute the policy function each time the type of user changes. The performance
gain is realized when a user can log in and issue several DML statements against
the protected object without causing the server to reexecute the policy function.

Note: For session pooling where multiple clients share a database
session, the middle tier must reset the context during client
switches.

Adding Policies for Column-Level VPD

Column-level VPD, which can be applied to a table or a view, enables you to
enforce security when a security-relevant column is referenced in a query, resulting
in row-level security. Column-level VPD cannot be applied to a synonym.

It can be configured to produce two distinct behaviors as follows:
« Default Behavior

Restricts the number of rows returned by queries that reference columns
containing sensitive information. Set this behavior by specifying the

14-40 Oracle Database Security Guide

How to Add a Policy to a Table, View, or Synonym

security-relevant column names with the sec_r el evant _col s parameter of
the DBM5_RLS. ADD_POLI CY procedure.

« Column Masking Behavior

Returns all rows for queries, but it returns NULL values for the columns that
contain sensitive information. Set this behavior by setting the sec_rel evant _
col s_opt parameter of the DBMS_RLS. ADD _POLI CY procedure to dbns_
ris. ALL_ROWB.

The following example shows a VPD policy in which sales department users should
not see the salaries of people outside their own department (department number
30). The relevant columns for such a policy are SAL and COWM First, the VPD policy
function is created and then added by using the DBMS_RLS PL/SQL package as
shown in Example 14-2;

Example 14-2 Creating and Adding a Column-Level VPD Policy

*/Create a policy function which does not expose sal aries of enployees outside
the sal es department (department 30)/*

CREATE OR REPLACE FUNCTION pfl (oowner IN VARCHAR2, ojnane |N VARCHAR?)
RETURN VARCHAR2 AS
con VARCHAR2 (200);

BEG N
con : = "deptno=30";
RETURN (con);

END pf 1;

Then the policy is added with the DBMS_RLS package as follows:

BEG N
DBMS_RLS. ADD_PQOLI CY (obj ect _schema=>'scott', object_nanme=>'enp',
pol i cy_name=>'sp', function_schema=>'pol _adnin',
policy_function=>"pf1l',
sec_rel evant _col s=>' sal , commi) ;
END;

The two different behaviors of column-level VPD are discussed in the following
sections using Example 14-2 on page 14-41 as a starting point for discussion.

Default Behavior

The default behavior for column-level VPD is to restrict the number of rows
returned for a query that references columns containing sensitive information.

Implementing Application Context and Fine-Grained Access Control 14-41

How to Add a Policy to a Table, View, or Synonym

These security-relevant columns are specified with the sec_r el evant _col s
parameter of the DBMS_RLS. ADD_POLI CY procedure.

For an example of column-level VPD default behavior, consider sales department
users with SELECT privilege on the enp table, which is protected with the
column-level VPD policy created in Example 14-2. When these users perform the
following query:

SELECT ENAME, d.dname, JOB, SAL, COW fromenp e, dept d
WHERE d. deptno = e. dept no;

the database returns a subset of rows as follows:

ENAME DNAME JOB SAL COW
ALLEN SALES SALESVAN 1600 300
WARD SALES SALESVAN 1250 500
MARTI N SALES SALESMAN 1250 1400
BLAKE SALES MANAGER 2850

TURNER SALES SALESVAN 1500 0
JAMES SALES CLERK 950

Only the rows display in which the user should have access to all columns.

Column Masking Behavior

In contrast to the default behavior of column-level VPD, the column masking
behavior displays all rows, but returns sensitive column values as NULL. To set this
behavior set the sec_r el evant _col s_opt parameter of the DBMS_RLS. ADD _
PCLI CY procedure to dbns_r | s. ALL_ROWS in addition to setting the default
behavior parameter.

For an example of column-level VPD column masking behavior, consider that the
same VPD policy (created Example 14-2 on page 14-41) applies, but it has been
added with the sec_r el evant _col s_opt parameter specified also. See
Example 14-3 on page 14-42.

Example 14-3 Adding a Column-level VPD Policy with Column Masking Behavior

/add the ALL_ROAS policy/
BEG N
DBVS_RLS. ADD PQOLI CY(obj ect _schema=>" scott', object_nanme=>'enp',
pol i cy_name=>'sp', function_schema=>'pol _adnin',
policy_function=>'pfl',
sec_rel evant _col s=>' sal , comi,
sec_rel evant _col s_opt=>dbns_rls. ALL_ROAS);

14-42 Oracle Database Security Guide

How to Add a Policy to a Table, View, or Synonym

END;

Now a sales department user with SELECT privilege on the emp table, performs the
following query:

SELECT ENAME, d.dname, JOB, SAL, COW fromenp e, dept d

WHERE d. deptno = e. dept no;

The database returns all rows specified in the query, but certain values are masked
because of the VPD policy:

ENAVE DNAME JOB SAL COW
SM TH RESEARCH CLERK

ALLEN SALES SALESVAN 1600 300
WARD SALES SALESVAN 1250 500
JONES RESEARCH MANAGER

MARTI N SALES SALESVAN 1250 1400
BLAKE SALES MANAGER 2850

CLARK ACCOUNTI NG MANAGER

SCOrT RESEARCH ANALYST

KI NG ACCOUNTI NG PRESI DENT

TURNER SALES SALESVAN 1500 0
ADANG RESEARCH CLERK

JAMES SALES CLERK 950

FORD RESEARCH ANALYST

M LLER ACCOUNTI NG CLERK

With column masking behavior, sales users see all rows returned by a query, but
the SAL and COVMMcolumns become NULL for rows containing information about
employees outside the sales department.

Column masking behavior is subject to the following restrictions:
« Applies only to SELECT statements

« Unlike regular VPD predicates, the masking condition that is generated by the
policy function must be a simple boolean expression.

« If your application performs calculations, or does not expect NULL values, then
you should use the default behavior of column-level VPD, which is specified
with the sec_r el evant _col s parameter.

« If you use UPDATE AS SELECT with this option, then only the values in the
columns you are allowed to see will be updated.

« This option may prevent some rows from displaying. For example:

Implementing Application Context and Fine-Grained Access Control 14-43

How to Check for Policies Applied to a SQL Statement

sel ect * from enpl oyees
where salary = 10

This query may not return rows if the sal ar y column returns a NULL value
because the column masking option has been set.

See Also: The chapter on the DBMS_RLS package in the PL/SQL
Packages and Types Reference for a discussion of the DBVS_RLS. ADD
PCLI CY procedure parameters and usage examples.

Enforcing VPD Policies on Specific SQL Statement Types

VPD policies can be enforced for SELECT, | NSERT, UPDATE, | NDEX, and DELETE
statements. Specify any combination of these statement types with the DBVS_
RLS. ADD_PCLI CY procedure st at enent _t ypes parameter as follows:

DBMS_RLS. ADD_PCLI CY (

stat ement _t ypes=>" SELECT, | NDEX') ;

Enforcing Policies on Index Maintenance

A user who has privileges to maintain an index can see all the row data even if the
user does not have full table access under a regular query, such as SELECT. For
example, a user can create a function-based index which contains a user defined
function with column values as its arguments. During index creation, the server
passes column values of every row into the user function, making the row data
available to the user who creates the index. Administrators can enforce VPD
policies on index maintenance operations by specifying | NDEX with the

st at ement _t ypes parameter as shown in the previous section.

How to Check for Policies Applied to a SQL Statement

V$VPD_PCLI CY allows one to perform a dynamic view in order to check what
policies are being applied to a SQL statement. When debugging, in your attempt to
find which policy corresponds to a particular SQL statement, you should use the
following table.

14-44 Oracle Database Security Guide

Users Who Are Exempt from VPD Policies

Table 14-4 V$VPD_POLICY

Column Name Type
ADDRESS RAW(4] 8)
PARADDR RAW(4] 8)
SQL_HASH NUVBER
SQL_ID VARCHAR2(13)
CHI LD_NUMBER NUMBER
OBJECT_OWNER VARCHAR2(30)
OBJECT_NAME VARCHAR2(30)
POLI CY_GROUP VARCHAR2(30)
POLI CY VARCHAR2(30)
PCLI CY_FUNCTI ON_OMNNER VARCHAR2(30)
PREDI CATE VARCHAR2(4000)

DBMS_RLS. REFRESH GROUPED_POLI CY VARCHAR2(4096)

See Also: Oracle Database Reference for more information about the
V$VPD_PCLI CY view

Users Who Are Exempt from VPD Policies

Two classes of users are exempt from VPD policies: the SYS user is exempt by
default, and any other user can be exempt if granted the EXEMPT ACCESS PCLI CY
system privilege. These two cases are discussed in the following sections.

SYS User Exempted from VPD Policies

The database user SYS is always exempt from VPD or Oracle Label Security policy
enforcement, regardless of the export mode, application, or utility that is used to
extract data from the database. However, SYSDBA actions can be audited.

Implementing Application Context and Fine-Grained Access Control 14-45

Automatic Reparse

EXEMPT ACCESS POLICY System Privilege

The system privilege EXEMPT ACCESS POLI CY allows a user to be exempted from
all fine-grained access control policies on any SELECT or DML operation (I NSERT,
UPDATE, and DELETE). This provides ease of use for such administrative activities
as installation, and import and export of the database through a non-SYS schema.

Also, regardless of the utility or application that is being used, if a user is granted
the EXEMPT ACCESS POLI CY privilege, then the user is exempt from VPD and
Oracle Label Security policy enforcement. That is, the user will not have any VPD or
Oracle Label Security policies applied to their data access.

Since EXEMPT ACCESS POLI CY negates the effect of fine-grained access control,
this privilege should only be granted to users who have legitimate reasons for
bypassing fine-grained access control enforcement. This privilege should not be
granted W TH ADM N OPTI ON, so that users cannot pass on the EXEMPT ACCESS
PCLI CY privilege to other users, and thus propagate the ability to bypass
fine-grained access control.

Automatic Reparse

Note: This feature is applicable when COVPATI BLE is set to 9.0.1.

Starting from Oracle9i, queries against objects enabled with fine-grained access
control always execute the policy function to make sure the most current predicate
is used for each policy. For example, in the case of a time-based policy function, in
which queries are only allowed between 8:00 a.m. and 5:00 p.m., a cursor execution
parsed at noon cause the policy function to execute, ensuring the policy is consulted
again for the query.

Automatic reparse does not occur under the following conditions:

« Ifyou specified STATI C_POLI CY=TRUE when adding the policy to indicate
that the policy function always returns the same predicate.

« Ifyousetthe dynamic_rls_policies parameter to FALSE in the
initialization parameters files. Typically, this parameter is set to FALSE for users
whose security policies do not return different predicates within a database
session to reduce the execution overhead.

For deployment environments where the latest application context value is always
the desired value, the _app_ct x_ver s parameter can be set to FALSE in the

14-46 Oracle Database Security Guide

VPD Policies and Flashback Query

initialization parameters file to reduce the overhead of application context scoping.
By default, it is set to TRUE and changes of value within a SQL statement are not
visible. This default may change in the future, thus developers should be careful not
to allow changes of application context values within a SQL statement using a user
defined function. In general, you should not depend on the order of SQL statement
execution, which can yield inconsistent results depending on query plans.

See Also: "Using Dynamic SQL with SYS_CONTEXT" on
page 14-5

VPD Policies and Flashback Query

By default, operations on the database use the most recent committed data
available. The flashback query feature enables you to query the database as it was at
some time in the past. To write an application that uses flashback query, you can
use the AS OF clause in SQL queries to specify either a time or a system change
number (SCN) and then query against the committed data from the specified time.
You can also use the DBM5_FLASHBACK PL/SQL package, which requires more
code, but enables you to perform multiple operations, all of which refer to the same
past time.

Flashback queries return data as it stood at the time specified in the query.
However, if you use flashback query against a database object that is protected with
VPD policies, then the current policies are applied to the old data. Applying the
current VPD policies to flashback query data is more secure because it reflects the
most current business policy.

See Also:

« Oracle Database Application Developer's Guide - Fundamentals for
more information about the flashback query feature and how to
write applications that use it.

« PL/SQL Packages and Types Reference for more information about
the DBM5_FLASHBACK PL/SQL package

Implementing Application Context and Fine-Grained Access Control 14-47

VPD Policies and Flashback Query

14-48 Oracle Database Security Guide

15

Preserving User Identity in Multitiered

Environments

Enforcing security in multitiered environments can be challenging. This chapter
discusses the risks associated with computing environments that span multiple
tiers, and explains how to implement proxy authentication and use client identifiers

for preserving user identity.

This chapter contains the following topics:

Topic Category

Links to Topics

Security Challenges of Three-tier Computing .
Oracle Database Solutions for Preserving User .
Identity

Who Is the Real User?
Does the Middle Tier Have Too Much Privilege?
How to Audit? Whom to Audit?

What Are the Authentication Requirements for
Three-tier Systems?

Proxy Authentication
Client Identifiers

Preserving User Identity in Multitiered Environments 15-1

Security Challenges of Three-tier Computing

Security Challenges of Three-tier Computing

While three-tier computing provides many benefits, it raises a number of security
issues. These issues are described in the following sections:

« Who Is the Real User?
« Does the Middle Tier Have Too Much Privilege?
« How to Audit? Whom to Audit?

« What Are the Authentication Requirements for Three-tier Systems?

Who Is the Real User?

Most organizations want to know the identity of the actual user who is accessing
the database, for reasons of access control, resource monitoring, or auditing. User
accountability is diminished if the identity of the users cannot be traced through all
tiers of the application.

Furthermore, if only the application server knows who the user is, then all security
enforcement for each user must be done by the application itself. Application-based
security is very expensive. If each application that accesses the data must enforce
security, then security must be re-implemented in each and every application. It is
often preferable to build security on the data itself, accountability for each user
enforced within the database.

Does the Middle Tier Have Too Much Privilege?

Some organizations are willing to accept three-tier systems within the enterprise, in
which "all-privileged" middle tiers, such as transaction processing (TP) monitors,
can perform all actions for all users. In this architecture, the middle tier connects to
the database as the same user for all application users. It therefore needs to have all
privileges that application users need to do their jobs.

This computing model can be undesirable in the Internet, where the middle tier
resides outside, on, or just inside a firewall. More desirable, in this context, is a
limited trust model, in which the identity of the real client is known to the data server,
and the application server (or other middle tier) has a restricted privilege set.

Also useful is the ability to limit the users on whose behalf a middle tier can
connect, and the roles the middle tier can assume for the user. For example, many
organizations would prefer that users have different privileges depending on where
they are connecting from. A user connecting to a Web server or application server
on the firewall might only be able to use very minimal privileges to access data,

15-2 Oracle Database Security Guide

Security Challenges of Three-tier Computing

whereas a user connecting to a Web server or application server within the
enterprise might be able to exercise all privileges she is otherwise entitled to have.

How to Audit? Whom to Audit?

Accountability through auditing is a basic principle of information security. Most
organizations want to know on whose behalf a transaction was accomplished, not
just that a particular application server performed a transaction. A system must
therefore be able to differentiate between a user performing a transaction, and an
application server performing a transaction on behalf of a user.

Auditing in three-tier systems should be tied to the issue of knowing the real user: if
you cannot preserve the user's identity through the middle tier of a three-tier
application, then you cannot audit actions on behalf of the user.

What Are the Authentication Requirements for Three-tier Systems?

In client/server systems, authentication tends to be straightforward: the client
authenticates to the server. In three-tier systems authentication is more difficult,
because there are several potential types of authentication.

« Client to Middle Tier Authentication
« Middle Tier to Database Authentication
« Client Re-Authentication Through Middle Tier to Database

Client to Middle Tier Authentication

Client authentication to the middle tier is clearly required if a system is to conform
with basic security principles. The middle tier is typically the first gateway to useful
information that the user can access. Users must, therefore, authenticate to the
middle tier. Note that such authentication can be mutual; that is, the middle tier
authenticates to the client just as the client authenticates to the middle tier.

Middle Tier to Database Authentication

Since the middle tier must typically initiate a connection to a database to retrieve
data (whether on its own behalf or on behalf of the user), this session clearly must
be authenticated. In fact, the Oracle Database does not allow unauthenticated
sessions. Again, middle tier to database authentication can also be mutual if using a
protocol that supports this, such as SSL.

Preserving User Identity in Multitiered Environments 15-3

Security Challenges of Three-tier Computing

Client Re-Authentication Through Middle Tier to Database

Client re-authentication from the middle tier to the database is problematic in
three-tier systems. The username might not be the same on the middle tier and the
database. In this case, users may need to reenter a username and credential, which
the middle tier uses to connect on their behalf. Or, more commonly, the middle tier
may need to map the username provided, to a database username. This mapping is
often done in an LDAP-compliant directory service, such as Oracle Internet
Directory.

For the client to re-authenticate himself to the database, the middle tier either needs
to ask the user for a credential (which it then must be trusted to pass to the
database), or the middle tier must retrieve a credential for the user and use that to
authenticate the user. Both approaches involve security risks, because the middle
tier is provided with the user's credentials.

Re-authenticating the client to the back-end database is not always beneficial. First,
two sets of authentication handshakes for each user involves considerable network
overhead. Second, you must trust the middle tier to have authenticated the user.
(You clearly must trust the middle tier if it is privy to the user's credential.) It is
therefore not unreasonable for the database to simply accept that the middle tier has
performed proper authentication. In other words, the database accepts the identity
of the real client without requiring the real client to authenticate herself.

For some authentication protocols, client re-authentication is just not possible. For
example, many browsers and application servers support the Secure Sockets Layer
(SSL) protocol. Both the Oracle Database (through Oracle Advanced Security) and
Oracle Application Server support the use of SSL for client authentication.
However, SSL is a point-to-point protocol, not an end-to-end protocol. It cannot be
used to re-authenticate a browser client (through the middle tier) to the database.

In short, organizations deploying three-tier systems require flexibility as regards
re-authentication of the client.

15-4 Oracle Database Security Guide

Oracle Database Solutions for Preserving User Identity

Oracle Database Solutions for Preserving User Identity

Many organizations want to know who the user is through all tiers of an
application, without sacrificing the benefits of a middle tier. The Oracle Database
supports the following ways of preserving user identity through the middle tier of
an application:

« Proxy Authentication

Oracle Database provides proxy authentication in OCI or thick JDBC for
database users or enterprise users. Enterprise users are those who are managed
in Oracle Internet Directory and who access a shared schema in the database.

= Client Identifiers

Oracle Database provides the CLI ENT_| DENTI FI ER attribute of the built-in
USERENV application context namespace for application users. These users are
known to an application but unknown to the database. The CLI ENT_

| DENTI FI ER attribute can be used to capture any value the application uses for
identification or access control and pass it to the database. CLI ENT_

| DENTI FI ERis supported in OCI, thick JDBC, and thin JDBC.

Proxy Authentication
The following sections explain how proxy authentication works and how to use it:

« Passing Through the Identity of the Real User by Using Proxy Authentication
« Limiting the Privilege of the Middle Tier

« Re-authenticating The User through the Middle Tier to the Database

« Auditing Actions Taken on Behalf of the Real User

« Advantages of Proxy Authentication

Passing Through the Identity of the Real User by Using Proxy Authentication

For enterprise users or database users, OCI or thick JDBC enables a middle tier to
set up, within a single database connection, a number of user sessions, each of
which uniquely identifies a connected user. This is commonly referred to as
connection pooling. These sessions reduce the network overhead of creating separate
network connections from the middle tier to the database.

Preserving User Identity in Multitiered Environments 15-5

Oracle Database Solutions for Preserving User Identity

Authentication Process from Clients through Middle Tiers to the Database The full
authentication sequence from the client to the middle tier to the database occurs as
follows:

1. The client authenticates to the middle tier, using whatever form of
authentication the middle tier will accept. For example, the client could
authenticate to the middle tier using a username/password, or an X.509
certificate by means of SSL.

2. The middle tier authenticates itself to the database, using whatever form of
authentication the database accepts. This could be a password, or an
authentication mechanism supported by Oracle Advanced Security, such as a
Kerberos ticket or an X.509 certificate (SSL).

3. The middle tier then creates one or more sessions for users using OCI or thick
JDBC.

« If the user is a database user, the session must, as a minimum, include the
database username. If the database requires it, the session may also include
a password (which the database verifies against the password store in the
database). The session may also include a list of database roles for the user.

« If the user is an enterprise user, the session may provide different
information depending on how the user is authenticated. For example:

— If the user authenticated to the middle tier by way of SSL, then the
middle tier can provide the DN from the user's X.509 certificate, or the
certificate itself in the session. The database uses the DN to look up the
user in Oracle Internet Directory.

— Ifthe user is a password-authenticated enterprise user, then the middle
tier must provide, as a minimum, a globally unique name for the user.
The database uses this name to look up the user in Oracle Internet
Directory. If the session also provides a password for the user, the
database will verify the password against Oracle Internet Directory. The
user's roles are automatically retrieved from Oracle Internet Directory
after the session is established.

« The middle tier may optionally provide a list of database roles for the client.
These roles are enabled if the proxy is authorized to exercise the roles on the
client's behalf.

4. The database verifies that the middle tier has the privilege to create sessions on
behalf of the user.

15-6 Oracle Database Security Guide

Oracle Database Solutions for Preserving User Identity

The OCI Sessi onBegi n call will fail if the application server is not allowed to
proxy on behalf of the client by the administrator, or if the application server is
not allowed to activate the specified roles.

Limiting the Privilege of the Middle Tier

"Least privilege" is the principle that users should have the fewest privileges
necessary to perform their duties, and no more. As applied to middle tier
applications, this means that the middle tier should not have more privileges than it
needs. The Oracle Database enables you to limit the middle tier such that it can
connect only on behalf of certain database users, using only specific database roles.
You can limit the privilege of the middle tier to connect on behalf of an enterprise
user, stored in an LDAP directory, by granting to the middle tier the privilege to
connect as the mapped database user. For instance, if the enterprise user is mapped
to the APPUSER schema, you must at least grant to the middle tier the ability to
connect on behalf of APPUSER. Otherwise, attempts to create a session for the
enterprise user will fail.

However, you cannot limit the ability of the middle tier to connect on behalf of
enterprise users. For example, suppose that user Sarah wants to connect to the
database through a middle tier, appsr v (which is also a database user). Sarah has
multiple roles, but it is desirable to restrict the middle tier to exercise only the

cl er k role on her behalf.

A DBA could effectively grant permission for appsr v to initiate connections on
behalf of Sarah using her cl er k role only, using the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv W TH ROLE cl erk;
By default, the middle tier cannot create connections for any client. The permission
must be granted for each user.

To allow appsr v to use all of the roles granted to the client Sarah, the following
statement would be used:

ALTER USER sarah GRANT CONNECT THROUGH appsrv;
Each time a middle tier initiates an OCI or thick JDBC session for another database

user, the database verifies that the middle tier is authorized to connect for that user,
using the role specified.

Preserving User Identity in Multitiered Environments 15-7

Oracle Database Solutions for Preserving User Identity

Note: Instead of using default roles, create your own and assign
only necessary privileges to them. For example, if users only need
CREATE SESSI ON, then granting them CONNECT, which includes
several privileges (see Table 10-1, " Predefined Roles"), may result
in assigning too many privileges for your database application.
Creating your own roles enables you to control the privileges
granted by them, and protects you if Oracle changes or removes
default roles.

Re-authenticating The User through the Middle Tier to the Database

Administrators can specify that authentication is required by using the
AUTHENTI CATI ON REQUI RED proxy clause with the ALTER USER SQL statement.
In this case, the middle tier must provide user authentication credentials.

For example, suppose that user Sarah wants to connect to the database through a
middle tier, appsr v. A DBA could require that appsr v provides authentication
credentials for Sarah by using the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv AUTHENTI CATI ON REQUI RED;

The AUTHENTI CATI ON REQUI RED clause ensures that authentication credentials
for the user must be presented when the user is authenticated through the specified

proxy.

Note: For backward compatibility, if a DBA uses the
AUTHENTI CATED USI NG PASSWORD proxy clause, then the
system transforms it to AUTHENTI CATI ON REQUI RED.

Using Password-Based Proxy Authentication Using password-based proxy
authentication, the password of the client is passed to the middle-tier server. The
middle-tier server then passes the password as an attribute to the data server for
verification. The main advantage to this is that the client machine does not have to
have Oracle software actually installed on it to perform database operations.

To pass over the password of the client, the middle-tier server calls OCl At t r Set ()
with the following pseudo-interface:

OCl AttrSet (OCl Session *session_handl e,
OCl _HTYPE_SESSI ON,

| xstp *password,

(ub4) 0,

15-8 Oracle Database Security Guide

Oracle Database Solutions for Preserving User Identity

OCl _ATTR_PASSWORD,
OCl Error *error_handl e);

Using Proxy Authentication with Enterprise Users If the middle tier is connecting to the
database as a client who is an enterprise user, either the distinguished name, or the
X.509 certificate containing the distinguished name is passed over instead of the
database user name. If the user is a password-authenticated enterprise user, then
the middle tier must provide, as a minimum, a globally unique name for the user.
The database uses this name to look up the user in Oracle Internet Directory.

To pass over the distinguished name of the client, the application server would call
OCl At t r Set () with the following pseudo-interface.

OCl At tr Set (OCl Sessi on *sessi on_handl e,
OCl _HTYPE_SESSI ON,

| xstp *distinguished_nane,

(ub4) 0,

OCl _ATTR_DI STI NGUI SHED_NAME,

OCl Error *error_handl e);

To pass over the entire certificate, the middle tier would use the following
pseudo-interface:

OCl At tr Set (OCl Sessi on *sessi on_handl e,
OCl _HTYPE_SESSI ON,

ubl *certificate,

ub4 certificate_l ength,

COCl _ATTR_CERTI FI CATE,

OClError *error_handl e);

If the type is not specified, then the server will use its default certificate type of
X.509.

Note: OCI _ATTR _CERTI FI CATE is DER encoded.

If using proxy authentication for password-authenticated enterprise users, then use
the same OCI attributes as for database users authenticated by password (OCl _
ATTR_USERNAME). The database first checks the username against the database; if
no user is found, then the database checks the username in the directory. This
username must be globally unique.

Preserving User Identity in Multitiered Environments 15-9

Oracle Database Solutions for Preserving User Identity

Auditing Actions Taken on Behalf of the Real User

The proxy authentication features of the Oracle Database enable you to audit
actions that a middle tier performs on behalf of a user. For example, suppose an
application server hr appser ver creates multiple sessions for users Ajit and Jane.
A DBA could enable auditing for SELECTs on the bonus table that hr appser ver
initiates for Jane as follows:

AUD T SELECT TABLE BY hrappserver QN BEHALF CF Jane;

Alternatively, the DBA could enable auditing on behalf of multiple users (in this
case, both Jane and Ajit) connecting through a middle tier as follows:

AU T SELECT TABLE BY hrappserver ON BEHALF GF ANY;,

This auditing option only audits SELECT statements being initiated by

hr appser ver on behalf of other users. A DBA can enable separate auditing
options to capture SELECTs against the bonus table from clients connecting directly
to the database:

AD T SELECT TABLE

For audit actions taken on behalf of the real user, you cannot audit CONNECT ON
BEHALF OF DN, since the user in the LDAP directory is not known to the
database. However, if the user accesses a shared schema (for example, APPUSER),
then you can audit CONNECT ON BEHALF OF APPUSER

See Also: «Chapter 11, "Configuring and Administering
Auditing”

Advantages of Proxy Authentication

In multitier environments, proxy authentication enables you to control the security
of middle-tier applications by preserving client identities and privileges through all
tiers, and by auditing actions taken on behalf of clients. For example, this feature
allows the identity of a user using a Web application (which acts as a "proxy") to be
passed through the application to the database server.

Three-tier systems provide many benefits to organizations.

« Application servers and Web servers enable users to access data stored in
databases.

« Users like using a familiar, easy-to-use browser interface.

« Organizations can separate application logic from data storage, partitioning the
former in application servers and the latter in databases.

15-10 Oracle Database Security Guide

Oracle Database Solutions for Preserving User Identity

« Organizations can also lower their cost of computing by replacing many "fat
clients" with a number of "thin clients" and an application server.

In addition, Oracle proxy authentication delivers the following security benefits:

« Alimited trust model, by controlling the users on whose behalf middle tiers can
connect, and the roles the middle tiers can assume for the user

« Scalability, by supporting user sessions through OCI and thick JDBC, and
eliminating the overhead of re-authenticating clients

« Accountability, by preserving the identity of the real user through to the
database, and enabling auditing of actions taken on behalf of the real user

« Flexibility, by supporting environments in which users are known to the
database, and in which users are merely "application users" of which the
database has no awareness

Note: Oracle Database supports this proxy authentication
functionality in three tiers only; it does not support it across
multiple middle tiers.

Client Identifiers
The following sections explain how using client identifiers works and how to use
them:
= Support for Application User Models by Using Client Identifiers
« Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity

« Using CLIENT_IDENTIFIER Independent of Global Application Context

Support for Application User Models by Using Client Identifiers

Many applications use session pooling to set up a number of sessions to be reused
by multiple application users. Users authenticate themselves to a middle-tier
application, which uses a single identity to log in to the database and maintains all
the user connections. In this model, "application users" are users who are
authenticated to the middle tier of an application, but who are not known to the
database. Oracle Database supports use of a CLI ENT_| DENTI FI ER attribute that
acts like an application user proxy for these types of applications.

In this model, the middle tier passes a client identifier to the database upon the
session establishment. (The client identifier could actually be anything that

Preserving User Identity in Multitiered Environments 15-11

Oracle Database Solutions for Preserving User Identity

represents a client connecting to the middle tier, for example, a cookie or an IP
address.) The client identifier, representing the application user, is available in user
session information and can also be accessed with an application context (by using
the USERENV naming context). In this way, applications can set up and reuse
sessions, while still being able to keep track of the "application user"” in the session.
Applications can reset the client identifier and thus reuse the session for a different
user, enabling high performance.

Using the CLIENT _IDENTIFIER Attribute to Preserve User Identity

The CLI ENT_I DENTI FI ER, a predefined attribute of the built-in application
context namespace, USERENV, can be used to capture the "application username” for
use with global application context, or it can be used independently. When used
independent of global application context, CLI ENT_| DENTI FI ER can be set with
the DBM5_SESSI ONinterface. The ability to pass a CLI ENT_| DENTI FI ERto the
database is supported in OCI and thick JDBC.

When CLI ENT_I DENTI FI ERis used with global application context, it provides
flexibility and high performance for building applications. For example, suppose a
Web-based application that provides information to business partners has three
types of users: gold partner, silver partner, and bronze partner, representing
different levels of information available. Instead of each user having his own
session set up with individual application contexts, the application could set up
global applications contexts for gold partners, silver partners, and bronze partners.
Then, use the CLI ENT_I DENTI FI ER to point the session at the correct context, in
order to retrieve the appropriate type of data. The application need only initialize
the three global contexts once, and use the CLI ENT_| DENTI FI ER to access the
correct application context to limit data access. This provides performance benefits
through session reuse, and through accessing global application contexts set up
once, instead of having to initialize application contexts for each session
individually.

See Also: "How to Use Global Application Context" on

page 14-24 for a discussion about implementing global application
contexts and an example of using the CLI ENT_| DENTI FI ER
attribute with it.

Using CLIENT_IDENTIFIER Independent of Global Application Context

Using the CLI ENT I DENTI FI ER attribute is especially useful for applications
whose users are unknown to the database. In these situations, the application
typically connects as a single database user, and all actions are taken as that user.
Since all user sessions are created as the same user, this security model makes it

15-12 Oracle Database Security Guide

Oracle Database Solutions for Preserving User Identity

very difficult to achieve data separation for each user. These applications can use
the CLI ENT_I DENTI FI ER attribute to preserve the "real" application user's identity
to the database.

With this approach, sessions can be reused by multiple users by changing the value
of the CLI ENT _| DENTI FI ER attribute, which is used to capture the name of the
real application user. This avoids the overhead of setting up a separate session and
separate attributes for each user, and enables reuse of sessions by the application.
When the CLI ENT_| DENTI FI ER attribute value changes, the change is
piggybacked on the next OCI or thick JDBC call, for additional performance
benefits.

For example, a user, Daniel, connects to a Web Expense application. Daniel is not a
database user, he is a typical Web Expense application user. The application
accesses the built-in application context namespace and sets DANI EL as the

CLI ENT_| DENTI FI ERattribute value. Daniel completes his Web Expense form and
exits the application. Then Ajit connects to the Web Expense application. Instead of
setting up a new session for Ajit, the application reuses the session that currently
exists for Daniel, by changing the CLI ENT_| DENTI FI ERto AJI T. This avoids the
overhead of setting up a new connection to the database and the overhead of setting
up a global application context. The CLI ENT_| DENTI FI ER attribute can be set to
any value on which the application bases access control. It does not have to be the
application username.

To use the DBMS_SESSI ON package to set and clear the CLIENT _IDENTIFIER on
the middle tier, use the following interfaces:

« SET_I DENTI FI ER
« CLEAR_|I DENTI FI ER

The middle tier uses SET_| DENTI FI ERto associate the database session with a
particular user or group. Then, the CLI ENT_| DENTI FI ERis an attribute of the
session and can be viewed in session information.

To set the CLI ENT_| DENTI FI ER attribute with OCI, use the OCI _ATTR _CLI ENT _
| DENTI FI ER attribute in the call to OCl At t r Set () . Then, on the next request to
the server, the information is propagated and stored in the server sessions. For
example:

OCl AttrSet (session,
OCl _HTYPE_SESSI ON,
(dvoid *) "appuserl",
(ub4)strlen("appuserl"),
OCl _ATTR_CLI ENT_I DENTI FI ER,
OCl Error *error_handl e);

Preserving User Identity in Multitiered Environments 15-13

Oracle Database Solutions for Preserving User Identity

For applications that use JDBC, in a connection pooling environment, the client
identifier can be used to identify which light-weight user is currently using the
database session. To set the CLI ENT_| DENTI FI ER for JDBC applications, use the
following or acl e. j dbc. Oracl eConnect i on interface methods:

« setCientldentifier() :Setsthe client identifier for a connection

« cleardientldentifier() :Clearsthe clientidentifier for a connection

See Also:

« The chapter on the DBMS_SESSI ON interface in the PL/SQL
Packages and Types Reference

« Thesection on OCI_ATTR_CLIENT_IDENTIFIER user session
handle attribute in the Oracle Call Interface Programmer*s Guide

« Thesection onthe oracl e. j dbc. Oracl eConnecti on
interface in the Oracle Database JDBC Developer*s Guide and
Reference for information about the set Cl i ent | denti f er
andthecl eard i entl dentifi er methods

15-14 Oracle Database Security Guide

16

Developing Applications Using Data

Encryption

In addition to controlling access, you can also encrypt data to reduce your security
risks. However, data encryption is not an infallible solution. This chapter discusses
the appropriate uses of data encryption and provides examples of using data
encryption in applications. It contains the following topics:

Securing Sensitive Information

Principles of Data Encryption

Solutions For Stored Data Encryption in Oracle Database
Data Encryption Challenges

Example of a Data Encryption PL/SQL Program

Developing Applications Using Data Encryption 16-1

Securing Sensitive Information

Securing Sensitive Information

While the Internet poses new challenges in information security, many of them can
be addressed by the traditional arsenal of security mechanisms:

« Strong user authentication to identify users
« Granular access control to limit what users can see and do
« Auditing for accountability

« Network encryption to protect the confidentiality of sensitive data in
transmission

Encryption is an important component of several of these solutions. For example,
Secure Sockets Layer (SSL), an Internet-standard network encryption and
authentication protocol, uses encryption to strongly authenticate users by means of
X.509 digital certificates. SSL also uses encryption to ensure data confidentiality, and
cryptographic checksums to ensure data integrity. Many of these uses of encryption
are relatively transparent to a user or application. For example, many browsers
support SSL, and users generally do not need to do anything special to enable SSL
encryption.

Oracle has provided network encryption between database clients and the Oracle
database since version 7. Oracle Advanced Security, an option to the Oracle
database server, provides encryption and cryptographic checksums for integrity
checking with any protocol supported by the database, including Oracle Net, Java
Database Connectivity (JDBC—both "thick" and "thin" JDBC), and the Internet
Intra-Orb Protocol (I1OP). Oracle Advanced Security also supports SSL for Oracle
Net, "thick" JDBC, and I1OP connections.

While encryption is not a security cure-all, it is an important tool in addressing
specific security threats. In particular, the rapid growth of e-business has spurred
increased encryption of stored data, such as credit card numbers. While SSL is
typically used to protect these numbers in transit to a Web site, where data is not
protected as it is in storage, the file system or database storing them often does so as
clear text (un-encrypted). Information stored in the clear is then directly accessible
to anyone who can break into the host and gain root access, or gain illicit access to
the database. Databases can be made quite secure through proper configuration, but
they can also be vulnerable to host break-ins if the host is misconfigured. In
well-publicized break-ins, a hacker obtained a large list of credit card numbers by
breaking into a database. Had they been encrypted, the stolen information would
have been useless. Encryption of stored data can thus be an important tool in
limiting information loss even in the normally rare occurrence that access controls
are bypassed.

16-2 Oracle Database Security Guide

Principles of Data Encryption

Principles of Data Encryption

While there are many good reasons to encrypt data, there are many bad reasons to
encrypt data. Encryption does not solve all security problems, and may even make
some problems worse. The following sections describe some misconceptions about
encryption of stored data:

« Principle 1: Encryption Does Not Solve Access Control Problems
« Principle 2: Encryption Does Not Protect Against a Malicious DBA
« Principle 3: Encrypting Everything Does Not Make Data Secure

Principle 1: Encryption Does Not Solve Access Control Problems

Most organizations need to limit data access to those who have a "need to know."
For example, a human resources system may limit employees to viewing only their
own employment records, while allowing managers of employees to see the
employment records of subordinates. Human resources specialists may also need to
see employee records for multiple employees.

This type of security policy limiting data access to those with a need to see it[] is
typically addressed by access control mechanisms. The Oracle database has
provided strong, independently-evaluated access control mechanisms for many
years. It enables access control enforcement to an extremely fine level of granularity,
through its Virtual Private Database capability.

Because human resources records are considered sensitive information, it is
tempting to think that all information should be encrypted "for better security."
However, encryption cannot enforce granular access control, and it may actually
hinder data access. For example, an employee, his manager, and a human resources
clerk may all need to access the employee's record. If all employee data is
encrypted, then all three must be able to access the data in un-encrypted form.
Therefore, the employee, the manager and the HR clerk would have to share the
same encryption key to decrypt the data. Encryption would therefore not provide
any additional security in the sense of better access control, and the encryption
might actually hinder the proper or efficient functioning of the application. An
additional issue is that it is very difficult to securely transmit and share encryption
keys among multiple users of a system.

A basic principle behind encrypting stored data is that it must not interfere with
access control. For example, a user who has SELECT privilege on EMP should not be
limited by the encryption mechanism from seeing all the data he is otherwise
allowed to see. Similarly, there is little benefit to encrypting part of a table with one

Developing Applications Using Data Encryption 16-3

Principles of Data Encryption

key and part of a table with another key if users need to see all encrypted data in
the table; it merely adds to the overhead of decrypting the data before users can
read it. If access controls are implemented well, encryption adds little additional
security within the database itself. Any user who has privilege to access data within
the database has no more nor any less privilege as a result of encryption. Therefore,
encryption should never be used to solve access control problems.

Principle 2: Encryption Does Not Protect Against a Malicious DBA

Some organizations, concerned that a malicious user might gain elevated (DBA)
privilege by guessing a password, like the idea of encrypting stored data to protect
against this threat. However, the correct solution to this problem is to protect the
DBA account, and to change default passwords for other privileged accounts. The
easiest way to break into a database is by using a default password for a privileged
account that an administrator has allowed to remain unchanged. One example is
SYS/ CHANGE_ON_| NSTALL.

While there are many destructive things a malicious user can do to a database after
gaining DBA privilege, encryption will not protect against many of them. Examples
include corrupting or deleting data, exporting user data to the file system to mail
the data back to himself so as to run a password cracker on it, and so on.

Some organizations are concerned that DBAs, typically having all privileges, are
able to see all data in the database. These organizations feel that the DBAs should
merely administer the database, but should not be able to see the data that the
database contains. Some organizations are also concerned about concentrating so
much privilege in one person, and would prefer to partition the DBA function, or
enforce two-person access rules.

It is tempting to think that encrypting all data (or significant amounts of data) will
solve these problems, but there are better ways to protect against these threats. For
example, Oracle does support limited partitioning of DBA privileges. Oracle
provides native support for SYSDBA and SYSOPER users. SYSDBA has all privileges,
but SYSOPER has a limited privilege set (such as startup and shutdown of the
database).

Furthermore, an organization can create smaller roles encompassing a number of
system privileges. A JR_DBA role might not include all system privileges, but only
those appropriate to a junior DBA (such as CREATE TABLE, CREATE USER, and so
on).

Oracle also enables auditing the actions taken by SYS (or SYS-privileged users) and
storing that audit trail in a secure operating system location. Using this model, a

16-4 Oracle Database Security Guide

Principles of Data Encryption

separate auditor who has root privileges on the operating system can audit all
actions by SYS, enabling the auditor to hold all DBAs accountable for their actions.

See Also: "Auditing Administrative Users" on page 11-4 for
information about using the AUDI T_SYS_OPERATI ONS parameter.

The DBA function by its nature is a trusted position. Even organizations with the
most sensitive datall such as intelligence agenciest do not typically partition the
DBA function. Instead, they vet their DBAs strongly, because it is a position of trust.
Periodic auditing can help to uncover inappropriate activities.

Encryption of stored data must not interfere with the administration of the
database; otherwise, larger security issues can result. For example, if by encrypting
data you corrupt the data, you've created a security problem: the data itself has
become uninterpretable, and it may not be recoverable.

Encryption can be used to limit the ability of a DBAO or other privileged userQ to
see data in the database. However, it is not a substitute for vetting a DBA properly,
or for controlling the use of powerful system privileges. If untrustworthy users
have significant privileges, they can pose multiple threats to an organization, some
of them far more significant than viewing un-encrypted credit card numbers.

Principle 3: Encrypting Everything Does Not Make Data Secure

A common error is to think that if encrypting some data strengthens security, then
encrypting everything makes all data secure.

As the discussion of the prior two principles illustrates, encryption does not address
access control issues well, and it is important that encryption not interfere with
normal access controls. Furthermore, encrypting an entire production database
means that all data must be decrypted to be read, updated, or deleted. Encryption is
inherently a performance-intensive operation; encrypting all data will significantly
affect performance.

Availability is a key aspect of security. If encrypting data makes data unavailable, or
adversely affects availability by reducing performance, then encrypting everything
will have created a new security problem. Availability is also adversely affected by
the database being inaccessible when encryption keys are changed, as good security
practices require on a regular basis. When the keys are to be changed, the database
is inaccessible while data is decrypted and re-encrypted with a new key or keys.

However, there may be advantages to encrypting data stored off-line. For example,
an organization may store backups for a period of six months to a year off-line, in a
remote location. Of course, the first line of protection is to secure the facility storing

Developing Applications Using Data Encryption 16-5

Solutions For Stored Data Encryption in Oracle Database

the data, by establishing physical access controls. Encrypting this data before it is
stored may provide additional benefits. Since it is not being accessed on-line,
performance need not be a consideration. While an Oracle database server does not
provide this capability, there are vendors who can provide such encryption services.
Before embarking on large-scale encryption of backup data, organizations
considering this approach should thoroughly test the process. It is essential to verify
that data encrypted before off-line storage can be decrypted and re-imported
successfully.

Solutions For Stored Data Encryption in Oracle Database

The DBM5_CRYPTOpackage provides several means for addressing the security
issues that have been discussed. (For backward compatibility, DBVS
OBFUSCATI ON_TOOLKI T is also provided.) This section includes these topics:

« Oracle Database Data Encryption Capabilities

« Data Encryption Challenges

Oracle Database Data Encryption Capabilities

While encryption is not the ideal solution for addressing a number of security
threats, it is clear that selectively encrypting sensitive data before storage in the
database does improve security. Examples of such data could include:

« Credit card numbers
« National identity numbers

To address these needs, Oracle Database provides the PL/SQL package DBMS_
CRYPTOto encrypt and decrypt stored data. This package supports several
industry-standard encryption and hashing algorithms, including the Advanced
Encryption Standard (AES) encryption algorithm. AES has been approved by the
National Institute of Standards and Technology (NIST) to replace the Data
Encryption Standard (DES).

The DBM5_CRYPTOpackage enables encryption and decryption for common Oracle
datatypes, including RAWand large objects (LOBs), such as images and sound.
Specifically, it supports BLOBs and CLOBs. In addition, it provides Globalization
Support for encrypting data across different database character sets.

The following cryptographic algorithms are supported:
« Data Encryption Standard (DES), Triple DES (3DES, 2-key)

16-6 Oracle Database Security Guide

Solutions For Stored Data Encryption in Oracle Database

« Advanced Encryption Standard (AES)
« MD5, MD4, and SHA-1 cryptographic hashes
« MD?5 and SHA-1 Message Authentication Code (MAC)

Block cipher modifiers are also provided with DBMS_CRYPTO. You can choose from
several padding options, including PKCS (Public Key Cryptographic Standard) #5,
and from four block cipher chaining modes, including Cipher Block Chaining
(CBC). (Padding must be done in multiples of eight bytes.)

Table 16-1 compares the DBMS_CRYPTO package features to the other PL/SQL
encryption package, the DBMS_OBFUSCATI ON_TOOLKI T.

Table 16-1 DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison

Package Feature DBMS_CRYPTO DBMS_OBFUSCATION_TOOLKIT
Cryptographic algorithms DES, 3DES, AES, RC4, 3DES_2KEY DES, 3DES

Padding forms PKCSS5, zeroes none supported

Block cipher chaining modes CBC, CFB, ECB, OFB CBC

Cryptographic hash algorithms MD5, SHA-1, MD4 MD5

Keyed hash (MAC) algorithms HMAC_MD5, HMAC_SH1 none supported

Cryptographic pseudo-random number RAWNUMBER, Bl NARY_| NTEGER RAWVARCHAR2

generator

Database types RAWCLOB, BLOB RAWVARCHAR2

DBMS_CRYPTOis intended to replace the obfuscation toolkit, since it is easier to use
and supports a range of algorithms accommodating both new and existing systems.
Although 3DES 2KEY and MD4 are provided for backward compatibility, you
achieve better security using 3DES, AES, MD5, or SHA-1. Thus 3DES_2KEY and
MD4 are not recommended.

The DBM5_CRYPTOpackage includes cryptographic checksumming capabilities
(MD5), which are useful for compares, and the ability to generate a secure random
number (the RANDOVBYTES function). Secure random number generation is an
important part of cryptography; predictable keys are easily-guessed keys, and
easily-guessed keys may lead to easy decryption of data. Most cryptanalysis is done
by finding weak keys or poorly-stored keys, rather than through brute force
analysis (cycling through all possible keys).

Developing Applications Using Data Encryption 16-7

Data Encryption Challenges

Note:

« Do not use DBM5S_RANDOMas it is unsuitable for cryptographic
key generation.

« For more detailed descriptions of both DBMS_CRYPTOand
DBM5_OBFUSCATI ON_TOOLKI T, see also the PL/SQL Packages
and Types Reference.

Key management is programmatic. That is, the application (or caller of the function)
must supply the encryption key; and this means that the application developer
must find a way of storing and retrieving keys securely. The relative strengths and
weaknesses of various key management techniques are discussed in the sections
that follow. The DBM5_OBFUSCATI ON_TOOLKI T package, which can handle both
string and raw data, requires the submission of a 64-bit key. The DES algorithm
itself has an effective key length of 56-bits.

The DBM5_OBFUSCATI ON_TOOLKI T is granted to PUBLI C by default. Oracle
Corporation strongly recommends that you revoke this grant.

Note: While the DBVMS_OBFUSCATI ON_TOCLKI T package can
take either VARCHARZ2 or RAWdatatypes, it is preferable to use the
RAWdatatype for keys and encrypted data. Storing encrypted data
as VARCHAR?Z can cause problems if it passes through Globalization
Support routines. For example, when transferring database to a
database that uses another character set.

To convert between VARCHAR2 and RAWdatatypes, use the CAST _
TO _RAWand CAST_TO VARCHARZ funtions of the UTL_RAW
package.

See Also: PL/SQL Packages and Types Reference for detailed
documentation of the DBMS_CRYPTO, DBMS _ OBFUSCATI ON
TOOLKI T and UTL_RAWpackages

Data Encryption Challenges

Even in cases where encryption can provide additional security, it is not without its
technical challenges, as described in the following sections:

16-8 Oracle Database Security Guide

Data Encryption Challenges

« Encrypting Indexed Data

« Key Management

« Key Transmission

« Key Storage

« Changing Encryption Keys

« Binary Large Objects (BLOBS)

Encrypting Indexed Data

Special difficulties arise in handling encrypted data that is indexed. For example,
suppose a company uses a national identity number—such as the U.S. Social
Security number (SSN)—as the employee number for its employees. The company
considers employee numbers to be very sensitive data and therefore wants to
encrypt data in the EMPLOYEE_NUMBER column of the EMPLOYEES table. Because
EMPLOYEE_NUMBER contains unique values, the database designers want to have
an index on it for better performance.

However, if DBMS_CRYPTOor the DBMS_OBFUSCATI ON_TOOLKI T (or another
mechanism) is used to encrypt data in a column, then an index on that column will
also contain encrypted values. Although such an index can be used for equality
checking (for example, ' SELECT * FROM enp WHERE enpl oyee_nunber =

' 123245"), if the index on that column contains encrypted values, then the index is
essentially unusable for any other purpose. Oracle therefore recommends that
developers not encrypt indexed data.

Given the privacy issues associated with overuse of national identity numbers (for
example, identity theft), the fact that some allegedly unique national identity
numbers have duplicates (as with U.S. Social Security numbers), and the ease with
which a sequence can generate a unique number, there are many good reasons to
avoid using national identity numbers as unique IDs.

Key Management

To address the issue of secure cryptographic key generation, Oracle Database
provides support for secure random number generation, the RANDOVBYTES
function of DBMS_CRYPTOQ. (This function replaces the capabilities provided by the
CGet Key procedure of the earlier DBVS_OBFUSCATI ON_TOCLKI T.) DBMS_CRYPTO
calls the secure random number generator (RNG) previously certified by RSA.
Developers should not, under any circumstances use the DBM5 _RANDOMpackage.
The DBM5_RANDOMpackage generates pseudo-random numbers, which, as

Developing Applications Using Data Encryption 16-9

Data Encryption Challenges

RFC-1750 states, "The use of pseudo-random processes to generate secret quantities
can result in pseudo-security.”

Key Transmission

Key Storage

If the key is to be passed by the application to the database, then it must be
encrypted. Otherwise, a snooper could grab the key as it is being transmitted. Use
of network encryption, such as that provided by Oracle Advanced Security, will
protect all data in transit from modification or interception, including cryptographic
keys.

Key storage is one of the most important, yet difficult, aspects of encryption. To
recover data encrypted with a symmetric key, the key must be accessible to the
application or user seeking to decrypt the data. The key needs to be easy enough to
retrieve that users can access encrypted data, without significant performance
degradation. The key needs to be secure enough not to be easily recoverable by
someone who is maliciously trying to access encrypted data which he is not
supposed to see.

The three basic options available to a developer are:
« Storing the Keys in the Database

« Storing the Keys in the Operating System

« Users Managing Their Own Keys

Storing the Keys in the Database

Storing the keys in the database cannot always provide infallible security if you are
trying to protect against the DBA accessing encrypted data. An all-privileged DBA
could still access tables containing encryption keys. However, it can often provide
quite good security against the casual snooper or against someone compromising
the database file on the operating system.

As a trivial example, suppose you create a table (EMP) that contains employee data.
You want to encrypt each employee's Social Security number (SSN) stored in one of
the columns. You could encrypt each employee's SSN using a key which is stored in
a separate column. However, anyone with SELECT access on the entire table could
retrieve the encryption key and decrypt the matching SSN.

While this encryption scheme seems easily defeated, with a little more effort you
can create a solution that is much harder to break. For example, you could encrypt

16-10 Oracle Database Security Guide

Data Encryption Challenges

the SSN using a technique that performs some additional data transformation on
the enpl oyee_nunber before using it to encrypt the SSN. This technique might be
something as simple, for example, as XORing the enpl oyee_nunber with the
birthdate of the employee.

As additional protection, a PL/SQL package body performing encryption can be
"wrapped," (using the WRAP utility) which obfuscates the code. A developer could
wrap a package body called KEYMANAGE as follows:

wap i nane=/ nydi r/ keynanage. sql

A developer can subsequently have a function in the package call the DBVS_
OBFUSCATI ON_TOOLKI T with the key contained in the wrapped package.

While wrapping is not unbreakable, it makes it harder for a snooper to get the key.
Because literals are still readable within the package file, the key could be split up in
the package and then have the procedure reassemble it prior to use. Even in cases
where a different key is supplied for each encrypted data value, not embedding the
key value within a package, wrapping the package that performs key management
(that is, data transformation or padding) is recommended.

See Also: PL/SQL Packages and Types Reference for additional
information about the WRAP utility

An alternative would be to have a separate table in which to store the encryption
key and to envelope the call to the keys table with a procedure. The key table can be
joined to the data table using a primary key to foreign key relationship. For
example, EMPLOYEE_NUMBER is the primary key in the EMPLOYEES table which
stores employee information and the encrypted SSN. EMPLOYEE_NUMBER is a
foreign key to the SSN_KEYS table which stores the encryption keys for each
employee's SSN. The key stored in the SSN_KEYS table can also be transformed
before use (by using XORing), so the key itself is not stored unencrypted. The
procedure itself should be wrapped, to hide the way in which keys are transformed
before use.

The strengths of this approach are:

« Users who have direct table access cannot see the sensitive data unencrypted,
nor can they retrieve the keys to decrypt the data.

« Access to decrypted data can be controlled through a procedure that selects the
encrypted data, retrieves the decryption key from the key table, and transforms
it before it can be used to decrypt the data.

Developing Applications Using Data Encryption 16-11

Data Encryption Challenges

« The data transformation algorithm is hidden from casual snooping by
wrapping the procedure, which obfuscates the procedure code.

« SELECT access to both the data table and the keys table does not guarantee that
the user with this access can decrypt the data, because the key is transformed
before use.

The weakness in this approach is that a user who has SELECT access to both the key
table and the data table, who can derive the key transformation algorithm, can
break the encryption scheme.

The preceding approach is not infallible, but it is good enough to protect against
easy retrieval of sensitive information stored in clear text.

Storing the Keys in the Operating System

Storing keys in a flat file in the operating system is another option. Oracle Database
enables you to make callouts from PL/SQL, which you could use to retrieve
encryption keys. However, if you store keys in the operating system and make
callouts to it, then your data is only as secure as the protection on the operating
system. If your primary security concern driving you to encrypt data stored in the
database is that the database can be broken into from the operating system, then
storing the keys in the operating system arguably makes it easier for a hacker to
retrieve encrypted data than storing the keys in the database itself.

Users Managing Their Own Keys

Having the user supply the key assumes the user will be responsible with the key.
Considering that 40% of help desk calls are from users who have forgotten their
passwords, you can see the risks of having users manage encryption keys. In all
likelihood, users will either forget an encryption key, or write the key down, which
then creates a security weakness. If a user forgets an encryption key or leaves the
company, then your data is unrecoverable.

If you do elect to have user-supplied or user-managed keys, then you need to make
sure you are using network encryption so the key is not passed from client to server
in the clear. You also must develop key archive mechanisms, which is also a difficult
security problem. Key archives or "backdoors" create the security weaknesses that
encryption is attempting to address in the first place.

Changing Encryption Keys

Prudent security practice dictates that you periodically change encryption keys. For
stored data, this requires periodically unencrypting the data, and reencrypting it

16-12 Oracle Database Security Guide

Example of a Data Encryption PL/SQL Program

with another well-chosen key. This would likely have to be done while the data is
not being accessed, which creates another challenge. This is especially true for a
Web-based application encrypting credit card numbers, since you do not want to
shut down the entire application while you switch encryption keys.

Binary Large Objects (BLOBS)

Certain datatypes require more work to encrypt. For example, Oracle supports
storage of binary large objects (BLOBSs), which let users store very large objects (for
example, multiple gigabytes) in the database. A BLOB can be either stored
internally as a column, or stored in an external file.

For an example of using DBMS_CRYPTO on BLOB data, see the section entitled
Example of Encrypt/Decrypt Procedures for BLOB Data on page 16-15.

Example of a Data Encryption PL/SQL Program

The following sample PL/SQL program (dbms_crypto.sql) illustrates encrypting
data. This example code does the following:

« DES-encrypts a string (VARCHAR2 type) after first converting it into RAW
type.

This step is necessary because encrypt and decrypt functions and procedures in
dbms_crypto package work on RAW data type only, unlike functions/packages
in dbms_obfuscation_toolkit package.

« Shows how to create 160-bit hash using SHA-1 algorithm.

« Demonstrates how MAC, a key-dependent one-way hash, can be computed
using MD?5 algorithm.

The dbms_crypto.sql procedure follows:

DECLARE
i nput _string VARCHAR2(16) := "tigertigertigert';
raw_i nput RAW 128) : =
UTL_RAW CAST_TO_RAW CONVERT(i nput _string, ' AL32UTF8',"' US7ASCI|'));
key_string VARCHAR2(8) := 'scottsco';
raw _key RAW 128) : =

UTL_RAW CAST_TO_RAW CONVERT(key_string, ' AL32UTF8',' USTASCI | '));
encrypted_raw RAW 2048) ;
encrypted_string VARCHAR2(2048);
decrypted_raw RAW 2048) ;
decrypted_string VARCHAR2(2048);

Developing Applications Using Data Encryption 16-13

Example of a Data Encryption PL/SQL Program

- 1. Begin testing Encryption
BEG N
dbns_out put. put _line(' > Input String

CONVERT(UTL_RAW CAST_TO VARCHAR2(raw i nput), ' US7ASCI | *

dbns_out put. put _I i ne(' > ========= BEG N TEST Encrypt
encrypted_raw : = dbns_crypto. Encrypt (

src => raw_i nput,

typ => DBMS_CRYPTQO DES_CBC PKCSS,

key => raw key);

dbns_out put. put _line('> Encrypted hex val ue

r awt ohex(UTL RAW CAST_TO RAW encrypted_raw)));

decrypted_raw : = dbms_crypto. Decrypt (

src => encrypted_raw,

typ => DBMS_CRYPTO DES_CBC PKCSS,

key => raw_key);
decrypted_string :

Sl
. AL32UTFS'));

CONVERT(UTL_ RAWCAST TO_VARCHARR(decr ypt ed_rav) " USTASCI I, * AL32UTF8')

dbns_out put . put _l'ine(" > Decrypted string out put
decrypted_string);
if input_string = decrypted_string THEN

dbns_out put.put_line('> String DES Encyption and Decryption successful');

END i f;
dbns_out put. put_line('");

dbns_out put . put _l i ne(' > ========= BEG N TEST Hash =========');

encrypted_raw : = dbms_crypto. Hash(
src => raw_ i nput,
typ => DBMS_CRYPTO HASH SH1);
dbns_out put. put _|ine(' > Hash val ue of input string
r awt ohex(UTL_RAW CAST_TO RAW encrypted_raw)));

dbms_out put . put _l i ne(' > ========= BEG N TEST Mac =========");

encrypted_raw : = dbnms_crypto. Mac(
src => raw_ i nput,
typ => DBMS_CRYPTO HVAC_MD5,
key => raw key);
dbns_out put. put _Iine(' > Message Authentication Code
r awt ohex(UTL_RAW CAST_TO _RAW encrypted_raw)));
dbms_out put. put _line('");
dbnms_out put. put _|ine(' > End of DBMS_CRYPTO tests ');
END;
/

See Also: PL/SQL User's Guide and Reference

16-14 Oracle Database Security Guide

Example of Encrypt/Decrypt Procedures for BLOB Data

Example of Encrypt/Decrypt Procedures for BLOB Data

The following sample PL/SQL program (blob_test.sql) illustrates encrypting and
decrypting BLOB data. This example code does the following, printing out its

progress (or problems) at each step:

» Creates a table for the BLOB column.
« Inserts the raw values into that table.
« Encrypts the raw data.

« Decrypts the encrypted data.

The blob_test.sql procedure follows:

- Create a table for BLOB col um.
create table table_lob (id number, loc blob);

- insert 3 enpty lobs for src/enc/dec

insert into table_|lob values (1, EMPTY_BLOB());
insert into table_|ob values (2, EMPTY BLOB());
insert into table_|lob values (3, EMPTY_BLOB());

set echo on
set serverout put on

decl are

srcdata RAW 1000) ;
srchl ob BLOB;

encrypbl ob BLOB;
encrypraw RAW1000);
encrawl en Bl NARY | NTECGER;
decrypbl ob BLOB;
decrypraw RAW1000);
decraw en Bl NARY_| NTEGER;

| eng | NTEGER;

begin

- RAWinput data 16 bytes

srcdata := hextoraw(' 6D6D6D6D6D6D6D6D6D6D6D6DEDEDEDED) ;
dbns_out put. put _line('---");

dbns_out put. put _line("input is ' || srcdata);

dbns_out put. put _line('---");

Developing Applications Using Data Encryption 16-15

Example of Encrypt/Decrypt Procedures for BLOB Data

- select enpty lob locators for src/enc/dec
select loc into srchlob fromtable_|ob where id = 1;
select loc into encrypblob fromtable_|ob where id
select loc into decrypblob fromtable_|ob where id

dbms_out put. put _|ine(' Created Enpty LOBS);
dbns_out put. put _line('---");

| eng : = DBMS_LOB. GETLENGTH(srchl ob);
IF leng I'S NULL THEN

dbns_out put . put _| i ne(' Source BLOB Len NULL ');
ELSE

dbms_out put . put _| i ne(* Source BLOB Len ' || leng);
END | F;

| eng : = DBMS_LOB. GETLENGTH(encrypbl ob);
IF leng I'S NULL THEN

dbms_out put . put _l i ne(' Encrypt BLOB Len NULL ');
ELSE

dbns_out put . put _line(' Encrypt BLOB Len ' || leng);
END | F;

| eng : = DBMS_LOB. GETLENGTH(decr ypbl ob);
IF leng 1S NULL THEN

dbms_out put . put _| i ne(' Decrypt BLOB Len NULL ');
ELSE

dbns_out put. put _Iine(' Decrypt BLOB Len ' || leng);
END | F;

- wite source raw data into blob

DBMS_LOB. OPEN (srcbl ob, DBMS_LOB.|ob_readwite);
DBMS_LOB. WRI TEAPPEND (srchl ob, 16, srcdata);
DBMS_LOB. CLOSE (srchl ob);

dbms_out put . put _| i ne(* Source raw data witten to source blob');
dbms_out put. put _line('---");

| eng : = DBMS_LOB. GETLENGTH(sr chl ob);
IF leng I'S NULL THEN

dbns_out put. put _|ine(' source BLOB Len NULL ');
ELSE

dbms_out put . put _| i ne(* Source BLOB Len ' || leng);
END | F;

16-16 Oracle Database Security Guide

Example of Encrypt/Decrypt Procedures for BLOB Data

/*
* Procedure Encrypt
* Argunments: srchlob -> Source BLOB
encrypbl ob -> Qutput BLOB for encrypted data
DBMS_CRYPTO. AES_CBC PKCS5 -> Algo : AES
Chaining : CBC
Paddi ng : PKCS5
256 bit key for AES passed as RAW
->
ext oraw(' 000102030405060708090A0B0OCODOEOF101112131415161718191A1B1C1D1ELF")
IV (Initialization Vector) for AES al go passed as RAW
-> hextoraw(' 00000000000000000000000000000000")

* % STk ok ok k% %

*
-

DBMS_CRYPTOQ. Encr ypt (encrypbl ob,
srchl ob,
DBVS_CRYPTO. AES_CBC_PKCS5,
hext or aw
(' 000102030405060708090A0B0OCODOEOF101112131415161718191A1B1C1DIELF'),
hext oraw(' 00000000000000000000000000000000')) ;

dbns_out put . put _l i ne(" Encryption Done');
dbms_out put. put _line('---");

| eng : = DBMS_LOB. GETLENGTH(encrypbl ob);
IF leng I'S NULL THEN

dbns_out put. put _|ine(' Encrypt BLOB Len NULL');
ELSE

dbns_out put . put _line(" Encrypt BLOB Len ' || leng);
END | F;

- Read encrypblob to a raw
encraw en := 999;

DBMS_LOB. OPEN (encrypbl ob, DBMS_LOB.|ob_readwite);
DBMS_LOB. READ (encrypbl ob, encraw en, 1, encrypraw);
DBMS_LOB. CLCSE (encrypbl ob);

dbns_out put. put _|ine(' Read encrypt blob to a raw);

dbns_out put. put _line('---");
dbrs_out put . put _I'ine(' Encrypted data is (256 bit key) ' || encrypraw);
dbns_out put. put _line('---");

Developing Applications Using Data Encryption 16-17

Example of Encrypt/Decrypt Procedures for BLOB Data

/*

* Procedure Decrypt

* Arguments: encrypblob -> Encrypted BLOB to decrypt

* decrypbl ob -> Qutput BLOB for decrypted data in RAW

* DBMS_CRYPTO. AES_CBC PKCS5 -> Algo : AES

* Chaining : CBC

* Paddi ng : PKCS5

* 256 bit key for AES passed as RAW (same as used during Encrypt)
* ->

hext oraw(' 000102030405060708090A0BOCODOEOF101112131415161718191A1B1C1D1ELF')
* IV (Initialization Vector) for AES al go passed as RAW (sane as
used during Encrypt)
* -> hextoraw(' 00000000000000000000000000000000")
*/

DBMS_CRYPTOQ. Decr ypt (decr ypbl ob,
encrypbl ob,
DBVS_CRYPTO. AES_CBC_PKCS5,
hext or aw
(' 000102030405060708090A0BOCODOEOF101112131415161718191A1B1C1DIELF'),
hext oraw(' 00000000000000000000000000000000')) ;

| eng : = DBMS_LOB. GETLENGTH(decrypbl ob);
IF leng I'S NULL THEN

dbms_out put . put _| i ne(' Decrypt BLOB Len NULL');
ELSE

dbns_out put . put _line(' Decrypt BLOB Len ' || leng);
END | F;

- Read decrypblob to a raw
decraw en : = 999;

DBMS_LOB. OPEN (decrypbl ob, DBMS LOB.|1ob _readwite);
DBMS_LOB. READ (decrypbl ob, decraw en, 1, decrypraw);
DBMS_LOB. CLCSE (decrypbl ob) ;

dbns_out put . put _line(' Decrypted data is (256 bit key) ' || decrypraw);
dbms_out put. put _line("---");

DBMS_LOB. OPEN (srchl ob, DBVMS LOB.|ob_readwite);
DBMS_LOB. TRIM (srchblob, 0);
DBMS_LOB. CLOSE (srchl ob);

DBMS_LCB. OPEN (encrypbl ob, DBMS_LOB.|1ob_readwite);
DBMS_LCB. TRI M (encrypbl ob, 0);

16-18 Oracle Database Security Guide

Example of Encrypt/Decrypt Procedures for BLOB Data

DBMS_LOB. CLCSE (encrypbl ob);

DBMS_LOB. OPEN (decrypbl ob, DBMS LOB.1ob_readwite);
DBMS_LOB. TRI M (decrypbl ob, 0);

DBMS_LOB. CLCSE (decrypbl ob);

end;
/

truncate table table_| ob;
drop tabl e table_| ob;

Developing Applications Using Data Encryption 16-19

Example of Encrypt/Decrypt Procedures for BLOB Data

16-20 Oracle Database Security Guide

Glossary

application roles

Database roles that are granted to application users and that are secured by
embedding passwords inside the application. See also secure application roles

definer’s rights procedures

Definer’s rights procedures execute with the privileges of their owner, not their
current user. Such definer’s rights sub-programs are bound to the schema in which
they reside. For example, assume that user bl ake and user scot t each have a table
called dept in their respective user schemas. If user bl ake calls a definer’s rights
procedure, which is owned by user scot t , to update the dept table, then this
procedure will update the dept table in the scot t schema because this procedure
executes with the privileges of the user who owns (defined) the procedure.

Forwardable Ticket Granting Ticket

A special Kerberos ticket that can be forwarded to proxies permits the proxy to
obtain additional Kerberos tickets on behalf of the client for proxy authentication.
See also Kerberos ticket

invoker’s rights procedures

Invoker’s rights procedures execute with the privileges of the current user, that is,
the user who invokes the procedure. Such procedures are not bound to a particular
schema. They can be run by a variety of users and allow multiple users to manage
their own data by using centralized application logic. Invoker’s rights procedures
are created with the AUTHI D clause in the declaration section of the procedure code.

KDC
See Key Distribution Center

Glossary-1

Glossary-2

Kerberos ticket

A temporary set of electronic credentials that verify the identity of a client for a
particular service. Also referred to as a service ticket.

Key Distribution Center
(KDC) A machine that issues Kerberos tickets. See also Kerberos ticket

secure application roles

Like an application roles, a secure application role is a database role that is granted
to application users, but it is secured by using an Invoker's Right stored procedure
to retrieve the role password from a database table. A secure application role
password is not embedded in the application. See also application roles

service ticket
See Kerberos ticket

Index

Symbols privileges, 7-7
roles, 7-7
administrator
application security, 7-11
administrator connections, 7-7
administrator privileges
Numerics statement execution audited, 8-8
07_DICTIONARY_ACCESSIBILITY, 7-8 write, on listener.ora, _7-30
administrator security, 7-7
AES, i-xxxviii
A algorithms
encryption, i-xxxviii
hash, i-xxxviii
6-3 ALTER privilege, 12-15
ALTER PROFILE

"all permissions”, 2-5, 7-27
"change_on_install" default password, 2-3, 7-24
"manager" default password, 2-3,7-24

access control, 5-2
enforce, 7-27
fine-grained access control,

privileges, 5-2
account locking password management, 7-12
explicit, 7-13 ALTER RESOURCE COST statement, 10-14
password management, 7-12 ALTER ROLE statement
example, 7-13 changing authorization method, 10-21
PASSWORD LOCK TIME, 7-13 ALTER SESSION SET SCHEMA statement, 13-12
ADD_CONTEXT procedure, 14-36 ALTER SESSION statement
ADD_GROUPED_POLICY procedure, 14-36 SET SCHEMA, 12-13
ADD_POLICY procedure, 14-35 ALTER TABLE statement
ADMIN OPTION auditing, 8-10
about, 10-25 ALTER USER, 7-7,7-12,7-14
revoking roles/privileges, 10-30 explicit account unlocking, 7-13
roles, 5-23 passwgrd
system privileges, 5-4 expire, 7-14
administration ALTER USER privilege, 10-7
difficulties in complex environments, 1-4 ALTER USER statement
administrative default roles, 10-36
delays, 1-4 GRANT CONNECT THROUGH clause, 9-8

REVOKE CONNECT THROUGH clause, 9-8

passwords, 2-4,7-24 £
altering users, 10-7

Index-1

ANONYMOUS, 7-22
anonymous PL/SQL blocks, 12-9
ANY system privilege, 7-24
application administrator security, 7-11
application administrators, 7-11
application context, 7-3
as secure data cache, 13-16, 14-1, 14-2
bind variables, 13-17
creating, 14-6
examples, 14-7
fine-grained access control, 3-9, 13-16
how to use session-based, 14-3
local versus global, 14-2
non-session-based (global), 14-2
parallel query, i-xxxvii, 14-5
performance, 14-11
returning predicate, 13-16
security features, 13-10
session-based, 14-2
setting, 14-7
support for database links, 14-18
USERENYV namespace, 13-11
using in policy, 14-7
application developer security, 7-9
application developers
privileges, 7-9
privileges for, 7-9
roles for, 7-10
application development
CREATE privileges, 7-11
free versus controlled, 7-10
object privileges, 7-11
roles and privileges, 7-10
security domain, 7-11
security for, 7-10
application roles, 12-5
application security
considerations for use, 12-2
limitations, 13-5
specifying attributes, 13-10
applications
about security policies for, 12-2
context, 6-6
database users, 12-2
enhancing security with, 5-21

Index-2

One Big Application User model, 12-3,12-4

roles, 12-8
rolesand, 5-22
security, 12-4,13-19
application context, 6-6
applications development
space restrictions, 7-11
tablespaces
developer restrictions, 7-11

AQ_ADMINISTRATOR_ROLE role, 10-20

AQ_USER_ROLE role, 10-19
AS SYSDBA, 2-4,2-5
create, drop, delete, etc., 7-8

for administrator access, 2-4, 7-7,7-8, 7-17, 7-25

AS SYSOPER, 2-4,7-8

startup, shutdown, recovery, etc., 7-7
attacks

denial of service, 2-11,7-32
attributes, USERENV, 13-12

audit files, 11-1,11-5,11-7, 11-9, 11-11, 11-14, 11-20

AUDIT statement
BY proxy clause, 11-13
schema objects, 11-16
statement auditing, 11-15
system privileges, 11-15
audit trail, 11-18
archiving, 11-20
controlling size of, 11-18
creating and deleting, 11-22
deleting views, 11-26
dropping, 11-22
interpreting, 11-23
maximum size of, 11-19
protecting integrity of, 11-21
purging records from, 11-19
reducing size of, 11-20
table that holds, 11-7
views on, 11-22
audit trail, uniform, i-xxxvii
AUDIT_FILE_DEST initialization
parameter, 11-11,11-12
setting for OS auditing, 11-12
AUDIT_SYS_OPERATIONS initialization
parameter, 11-11
auditing SYS, 114

AUDIT_TRAIL initialization parameter, 11-11
auditing SYS, 11-5
setting, 11-11
AUDIT_TRAIL=DB, 11-11
AUDITED_CURSORID attribute, 13-12
auditing, 11-7
audit option levels, 11-13
audit options, 8-2
audit records, 8-3
audit trail records, 11-8
audit trails, 8-3
database, 8-4,11-8
operating system, 8-5, 8-7
by access, 8-14
mandated for, 8-13
by session, 8-13
prohibited with, 8-13
compromised by One Big Application
User, 12-3
database and operating-system usernames, 4-2
DDL statements, 8-9
default options, 11-16
described, 8-1
disabling default options, 11-18
disabling options, 11-10, 11-17, 11-18
disabling options versus auditing, 11-17
DML statements, 8-9
enabling options, 11-10
privileges for, 11-10
enabling options versus auditing, 11-14
fine-grained, 11-29
guidelines, 11-2
historical information, 11-3
information stored in OS file, 11-9
keeping information manageable, 11-3
managing the audit trail, 11-22
mandatory, 8-7
multi-tier environments, 11-13
new features, i-xxxvii
n-tier systems, 15-10
operating-system audit trails, 11-7
policies for, 7-20
privilege audit options, 11-15
privilege use, 8-3, 8-9
privileges required for object, 11-16

privileges required for system, 11-16
range of focus, 8-2,8-12
schema object, 8-3, 8-10
schema objects, 11-16
security and, 8-6
session level, 11-15
statement, 8-3, 8-9, 11-15
statement level, 11-15
successful executions, 8-12
suspicious activity, 11-4
SYS, 11-4
system privileges, 11-15
to OS file, 11-12
transaction independence, 8-8
unsuccessful executions, 8-12
user, 8-15
using the database, 11-7
viewing
active object options, 11-25
active privilege options, 11-25
active statement options, 11-25
default object options, 11-26
views, 11-22
when options take effect, 8-8
auditing extensions, i-xxxviii
auditing policy, 7-20
authentication
by database, 9-1
by SSL, 9-1,9-6
certificate, 7-31
client, 7-27,7-31
compromised by One Big Application
User, 12-3
database administrators, 4-14
described, 4-1
directory service, 9-6
external, 9-3
global, 9-5
multitier, 4-10
network, 4-3
n-tier systems, 15-5
operating system, 4-2
Oracle, 4-8
password policy, 7-4
proxy, 9-8

Index-3

public key infrastructure, 4-4
remote, 4-6,7-27,7-28
specifying when creating a user, 10-3

strong, 7-24
user, 7-31
users, 7-2

ways to authenticate users, 9-1
AUTHENTICATION_DATA attribute, 13-12
AUTHENTICATION_TYPE attribute, 13-12
authorization

changing for roles, 10-21

global, 9-5

omitting for roles, 10-21

operating-system role management and, 10-23

roles, about, 10-21

Axent, 7-29
B

backups, 7-1
bfiles, 7-28

BG_JOB_ID attribute, 13-12
bind variables, 13-17
Block cipher, i-xxxviii

C

cascading revokes, 10-32
CATAUDIT.SQL script

running, 11-22
categories of security issues, 1-3
CATNOAUD.SQL, 11-26
CATNOAUD.SQL script

running, 11-26
central repository, 1-5
centralized management with distributable

tools, 1-6

certificate authentication, 7-31
certificates for user and server authentication, 2-9
chaining mode, i-xxxviii

modifiers (CBC, CFB, ECB, OFB, i-xxxviii
character sets

multibyte characters in role names, 10-20

multibyte characters in role passwords, 10-22
checklists and recommendations

Index-4

custom installation, 2-3, 7-20, 7-21
disallow modifying default permissions for
Oracle Database home (installation)
directory or its contents, 2-6
disallow modifying Oracle home default
permissions, 7-28
limit the number of operating system users, 2-6,
7-28
limit the privileges of the operating system
accounts, 2-6,7-28
networking security, 2-7,7-28
personnel, 2-2
physical access control, 2-2
restrict symbolic links, 2-6, 7-28
CheckPoint, 7-29
cipher suites
, 2-8
Cisco, 7-29
client checklist, 2-8
CLIENT_IDENTIFIER
setting and clearing with DBMS_SESSION
package, 15-13
setting for applications that use JDBC, 15-14
setting with OCI user session handle
attribute, 15-13
CLIENT_IDENTIFIER attribute, 13-12
CLIENT_INFO attribute, USERENV, 13-12
column masking behavior, 13-4, 14-41
column masking behavior restrictions, 14-43
column masking behavior, VPD, i-xxxvi, 14-41
column-level VPD, 13-4, 14-40
adding policies for, 14-40
column masking behavior, 14-41
default behavior, 14-41
does not apply to synonyms, 14-40
new features, i-xxxvi
column-level VPD column masking
restrictions, 14-43
columns
granting privileges for selected, 10-29
granting privileges on, 10-29
INSERT privilege and, 10-29
listing users granted to, 10-43
privileges, 10-29
pseudocolumns

USER, 5-9

revoking privileges on, 10-32
common platform for examples, 7-21
complex environments

administration difficulties, 1-4
concurrency

limits on

for each user, 5-30
configuration files, 2-8, 2-9, 2-11, 4-8, 4-10, 7-25,
7-30, 7-31, 7-32, 8-5, 9-4, 10-23, 10-40, 11-8, 11-11,
11-17, 14-46, 14-47

listener, 7-29

sample listener.ora, 7-30

typical directory, 2-8
CONNECT, 7-25,7-27
CONNECT /, 7-8
CONNECT role, 5-26, 10-18
connection pooling, 4-10
connections

auditing, 11-15

SYS-privileged, 2-5, 7-25
connections as SYS and SYSTEM, 7-7
context-sensitive policy type, i-xxxvi, 14-37, 14-39
controlled development, 7-10
CPU time limit, 5-30
CREATE

AS SYSDBA, 7-8
CREATE ANY TABLE, 2-5,7-25
CREATE CONTEXT statement, 14-6
CREATE DBLINK, 7-27
CREATE PROCEDURE, 7-10

developers, 7-9
CREATE PROFILE, 7-12,7-14

failed login attempts, 7-12

how long account is locked, 7-12

password aging and expiration, 7-13

password management, 7-12
CREATE ROLE statement

IDENTIFIED BY option, 10-21

IDENTIFIED EXTERNALLY option, 10-22
CREATE SCHEMA statement, 12-12
CREATE SESSION, 7-27
CREATE SESSION statement, 12-12
CREATE TABLE, 7-10

developers, 7-9

CREATE TABLE statement

auditing, 8-9, 8-12
CREATE USER, 7-12

explicit account locking, 7-13

password

expire, 7-14

CREATE USER statement

IDENTIFIED BY option, 10-3

IDENTIFIED EXTERNALLY option, 10-3
CREATE VIEW, 7-10
CREATE_POLICY_GROUP procedure, 14-36
creating an audit trail, 11-22
CTXSYS, 7-22
CURRENT_BIND attribute, 13-12
CURRENT_SCHEMA attribute, USERENV, 13-12
CURRENT_SCHEMAID attribute, 13-12
CURRENT_SQL attribute, 13-12
CURRENT_SQL_LENGTH attribute, 13-13
CURRENT_SQL1 to CURRENT_SQL7

attributes, 13-13

CURRENT_USER attribute, USERENV, 13-13
CURRENT_USERID attribute, 13-13
cursors

shared, 13-17
custom installation, 2-3, 7-20, 7-21

D

data
access to
fine-grained access control, 6-3
security level desired, 7-3
data definition language
auditing, 8-9
roles and privileges, 5-24
data dictionary protection, 2-5,7-24
data dictionary tables, 7-7
data encryption, 3-3
data files, 7-28
data manipulation language
auditing, 8-9
privileges controlling, 5-6
data security level
based on data sensitivity, 7-3
data security policy, 7-3

Index-5

database

granting privileges, 10-24

granting roles, 10-24

security and schemas, 12-12

user and application user, 12-2
database administrators

application administrator versus, 7-11

roles

for security, 7-8,7-9

security for, 7-7

security officer versus, 7-1
database administrators (DBAS)

authentication, 4-14

DBA role, 5-26

password files, 4-15
database authentication, 9-1
Database Configuration Assistant, 2-3, 2-4, 7-21,

7-24

database descriptors, 7-29
database links, 14-18
database links, and SYS_CONTEXT, 14-6
database user management, 7-2
databases

limitations on usage, 5-28

production, 7-10, 7-11

test, 7-10
DB_DOMAIN attribute, USERENV, 13-13
DB_NAME attribute, 13-13
DBA role, 5-26,10-18
DBA_COMMON_AUDIT_TRAIL view, i-xxxvii
DBA_ROLE_PRIVS view, 12-5
DBMS_CRYPTO, i-xxxviii, 16-6
DBMS_FGA package, 11-35

DBMS_OBFUSCATION_TOOLKIT, i-xxxviii, 16-6

DBMS_RLS package, 14-35
security policies, 6-5
uses definer’s rights, 5-11
DBMS_RLS.ADD_POLICY

sec_relevant_cols parameter, 13-4, 14-41, 14-42

sec_relevant_cols_opt parameter, 14-41
DBMS_SESSION package

SET_CONTEXT procedure, 14-6

SET_ROLE procedure, 12-9,12-10
DBMS_SQL package

SET_ROLE procedure, 12-12

Index-6

DBSNMP, 2-4,7-22,7-23, 7-24
default
audit options, 11-16
disabling, 11-18
default accounts
ANONYMOUS, 7-22

CTXSYS, 7-22
DIP, 7-22
EXFSYS, 7-22
MDDATA, 7-22
MDSYS, 7-22
MGMT_VIEW, 7-22
OUTLN, 7-22
QS_0S, 7-22
SYSTEM, 7-22

default passwords, 2-3, 2-4, 7-7, 7-17, 7-23, 7-24,
16-4
default permissions, 2-6, 7-28
default roles, 10-35
default user
accounts, 2-3,2-4,7-21
passwords, 2-4,7-23,7-24
default users
enterprise manager accounts, 7-23
defaults
"change_on_install” or "manager”
passwords, 2-3,7-24
role, 10-8
tablespace quota, 10-4
user tablespaces, 10-3
definer’s rights
procedure security, 5-10
delays
administrative, 1-4
DELETE
AS SYSDBA, 7-8
DELETE privilege, 12-15
DELETE_CATALOG_ROLE role, 10-17, 10-19
DELETE_POLICY_GROUPS procedure, 14-36
denial of service attacks, 2-11, 7-32
DES, i-xxxviii, 7-5
developers, application, 7-9
development environment
free versus controlled, 7-10
dictionary protection mechanism, 10-15

DIP, 7-22
directory service

See also enterprise directory service.
disable unnecessary services

FTP, TFTP, TELNET, 7-32
DISABLE_GROUPED_POLICY procedure, 14-36
disabling

roles, 3-5
disabling audit options, 11-17, 11-18
disabling auditing, 11-10
disabling resource limits, 10-14
disallow modifying default permissions for

database home directory or its contents, 2-6
disallow modifying Oracle home default
permissions, 7-28

disconnections

auditing, 11-15
dispatcher processes (Dnnn)

limiting SGA space for each session, 5-31
distinguished names, i-xxxviii
DML support in fine-grained auditing, i-xxxvii
DMSYS, 7-22
DNSs, i-xxxviii
DROP

AS SYSDBA, 7-8
DROP ANY TABLE, 7-25
DROP PROFILE statement, 10-14
DROP ROLE statement, 10-24
DROP TABLE statement

auditing, 8-9, 8-10
DROP USER privilege, 10-8
DROP USER statement, 10-9
DROP_CONTEXT procedure, 14-36
DROP_GROUPED_POLICY procedure, 14-36
DROP_POLICY procedure, 14-36
dropping an audit trail, 11-22
dropping profiles, 10-14
dropping users, 10-8
dynamic predicates

in security policies, 6-5
dynamic SQL, 13-3, 14-29
dynamic VPD policy types, 14-37

testing, 14-37

E

eavesdropping, 2-9
ENABLE_GROUPED_POLICY procedure, 14-36
ENABLE_POLICY procedure, 14-36
enabling

roles, 3-5
enabling resource limits, 10-14
encryption, 2-10, 3-3, 16-6

algorithms, i-xxxviii

database passwords, 9-2

network traffic, 7-32

stored data, 7-26
end-user security, 7-5
enforcement options

exemptions, 13-21
enterprise directory service, 7-7,10-23
Enterprise Edition, 2-5,7-24, 7-32
Enterprise Manager

granting roles, 5-23

statistics monitor, 5-32
enterprise roles, 7-7, 9-6, 10-23

enterprise user management, 12-3

Enterprise User Security, 14-22
enterprise users, 7-7, 9-6, 10-23, 12-13
Enterprise users are global users, i-xxxviii
ENTRYID attribute, 13-13
event triggers, 14-13
EXECUTE privilege, 2-5, 7-26, 12-15
EXECUTE_CATALOG_ROLE role, 10-16, 10-19
EXEMPT ACCESS POLICY privilege, 13-21
EXFSYS, 7-22
EXP_FULL_DATABASE role, 5-26,10-19
expired & locked, 7-22
explicitly expiring a password, 7-14
Export utility

policy enforcement, 13-21
extensions to auditing, i-xxxviii
external authentication

by network, 9-5

by operating system, 9-4
external tables, 7-28
EXTERNAL_NAME attribute, USERENV, 13-13

Index-7

F

failed login attempts
account locking, 7-12
password management, 7-12
resetting, 7-13
falsified IP addresses, 2-8
falsified or stolen client system identities, 2-8
features, new
Virtual Private Database, i-xxxvi
FG_JOB_ID attribute, 13-12,13-13
files
audit, 11-1,11-5,11-7,11-9,11-11, 11-14, 11-20
bfiles, 2-6,7-28
BLOB, 16-13
configuration, 2-8, 2-9, 2-11, 4-8, 4-10, 7-25, 7-30,
7-31, 8-5, 9-4, 10-23, 10-40, 11-8, 11-11, 11-17,
14-46, 14-47
data, 2-6,7-28
external tables, 2-6, 7-28
init<sid>.ora, 7-25
init.ora, 8-5,9-4, 10-23, 10-40, 11-8, 11-11, 11-17,
14-46, 14-47
keys, 16-12
listener.ora, 2-8, 2-9, 7-30, 7-31
log, 2-6,7-28,11-5,11-12
password, 4-15
protocol.ora, 2-11,7-31
restrict listener access, 2-9
restrict symbolic links, 2-6, 7-28
server.key, 2-8
sqlnet.ora, 4-8, 7-32
SSL, 2-7
trace, 2-6,7-28
tsnames.ora, 2-8
UTLPWDMG.SQL, 4-10
fine-grained access control, 6-3, 7-3
application context, 3-9, 13-16
features, 13-6
performance, 13-8
fine-grained auditing, 11-29
DML support, i-xxxvii
extensions, i-xxxviii
introduction, 3-4
multiple objects, columns, statements, including

Index-8

INDEX, 7-20
policies, 7-20
Firewall-1, 7-29
firewalls, 2-10, 7-28
breach
vulnerable data, 2-10, 7-29
ill-configured, 7-29
no holes, 7-29
ports, 2-8
supported
packet-filtered, 7-28
proxy-enabled, 7-28
flashback query, 11-9, 14-47
foreign keys
privilege to use parent key, 5-7
formatting of password complexity verification
routine, 7-16
free development, 7-10

FTP, 7-32
functions
PL/SQL
privileges for, 5-9
roles, 5-24
G

Gauntlet, 7-29
general user security, 7-4
global authentication and authorization, 9-5
global roles, 9-5, 10-23
global users, 9-5

identifiers, i-xxxviii
GLOBAL_CONTEXT_MEMORY attribute, 13-13
GLOBAL_UID attribute, 13-13
grace period

example, 7-14

password expiration, 7-13,7-14
GRANT ALL PRIVILEGES

SELECT ANY DICTIONARY, 7-25
GRANT ANY OBJECT PRIVILEGE system

privilege, 10-27,10-31

GRANT ANY PRIVILEGE system privilege, 5-4
GRANT CONNECT THROUGH clause

for proxy authorization, 9-8
GRANT statement, 10-24

ADMIN OPTION, 10-25
creating a new user, 10-26
object privileges, 10-26, 12-13
system privileges and roles, 10-24
when takes effect, 10-35
WITH GRANT OPTION, 10-27
granting
privileges and roles, 5-3
granting privileges and roles
listing grants, 10-40
GT GlossaryTitle, Glossary-1
GUIDs, i-xxxviii

H

hacked operating systems or applications, 2-8
harden
operating system, 7-32
hash
keyed, i-xxxviii
hash algorithms, i-xxxviii
HOST attribute, 13-13
HR, 7-22
HS_ADMIN_ROLE role, 10-19
HTTP
potentially malicious data transmissions, 7-26
request and retrieve arbitrary data, 7-26
HTTPS port, 2-7

identity management
centralized management with distributable
tools, 1-6
components, 1-6
desired benefits, 1-5
infrastructure, 1-6
Oracle’s infrastructure components, 1-6
seamless timely distribution, 1-6
security, 1-4
single sign-on, 1-6
sngle point of integration, 1-6
solution, 1-5
IMP_FULL_DATABASE role, 5-26, 10-19
INDEX privilege, 12-15

init.ora, 11-8,11-11, 11-17, 14-46, 14-47
INSERT privilege, 12-15

granting, 10-29

revoking, 10-32
INSTANCE attribute, 13-13
INSTANCE_NAME attribute, 13-13
invoker’s rights

procedure security, 5-11

supplied packages, 5-11
invoker’s rights stored procedures, 12-9
IP address

fakeable, 2-10
IP addresses, 7-31
IP_ADDRESS attribute, 13-14
ISDBA attribute, USERENV, 13-14
iTAR, 7-33

K

Kerberos, 2-5,7-24
keyed hash, i-xxxviii

L

LANG attribute, 13-14
LANGUAGE attribute, 13-14
least privilege principle, 2-5,7-25
Lightweight Directory Access Protocol
(LDAP), 14-11
limit operating system account privileges, 2-6, 7-28
limit sensitive data dictionary access, 7-8
limit the number of operating system users, 2-6,
7-28
listener, 7-29
checklist, 2-9
establish password, 2-10, 7-29, 7-30
not Oracle owner, 7-29
prevent on-line administration, 7-30
restrict privileges, 2-9, 7-29
sample configuration, 7-29
secure administration, 2-9, 2-10, 7-30
listener.ora, 2-8
add line, 7-30
sample, 7-30
typical directory, 2-8

Index-9

lock and expire, 2-3,2-4,7-21, 7-24
unlock via ALTER USER, 7-7

log files, 7-28,7-29, 11-5, 11-12

logical reads limit, 5-30

login triggers, 14-7

logon triggers, 14-3, 14-8

M

MAC, i-xxxviii
mail messages
arbitrary, 7-26
unauthorized, 7-26
managing roles, 10-20
mandatory auditing, 8-7
MAX_ENABLED_ROLES initialization parameter
enabling roles and, 10-36
MD4, i-xxxviii
MD5, i-xxxviii
MDDATA, 7-22
MDSYS, 7-22,7-24
memory
viewing per user, 10-12
message authentication code, i-xxxviii
Metalink, 7-32
methods
privilegeson, 5-14
MGMT_VIEW, 7-22
middle tier systems, 13-11
mode, SSL, 2-8
monitoring, 8-1
monitoring user actions, 8-1
multiple administrators
roles example, 7-8,7-9
multiplex multiple client network sessions, 2-10
multi-tier environments
auditing clients, 11-13

N
Net8, 7-28
network

authentication, 9-5
Network Associates, 7-29
network authentication, 9-5

Index-10

network authentication services, 2-5, 7-24
smart cards, 7-24
token cards, 7-24
X.509 certificates, 7-24
network connections
arbitrary transmissions, 7-26
outgoing, 7-26
network IP addresses, 2-11, 7-31
NETWORK_PROTOCOL attribute, 13-14
networking security checklists, 2-7,7-28
client checklist, 2-8
listener checklist, 2-9
network checklist, 2-9
SSL, 2-7
configuration files, 2-7
mode, 2-8
tcps, 2-8
networks
network authentication service, 4-3
new features, i-XXxv
auditing, i-xxxvii
column-level VPD, i-xxxvi
policy types, i-xxxvi
Virtual Private Database, i-xxxvi
NLS CALENDAR attribute, 13-14
NLS CURRENCY attribute, 13-14
NLS DATE_FORMAT attribute, 13-14
NLS_DATE_LANGUAGE attribute, 13-14
NLS_SORT attribute, 13-14
NLS_TERRITORY attribute, 13-14
NOAUDIT statement
disabling audit options, 11-17
disabling default object audit options, 11-18
disabling object auditing, 11-18
disabling statement and privilege
auditing, 11-17

o

O7_DICTIONARY_ACCESSIBILITY, 2-5,7-25,
10-15, 10-16
initialization parameter, 10-16
object privileges, 2-5, 5-4, 6-3, 7-25
developers, 7-11
granting on behalf of the owner, 10-27

revoking, 10-30

revoking on behalf of owner, 10-31

See also schema object privileges
objects

granting privileges, 12-15

privileges, 12-13

privilegeson, 5-14

OClI
enabling roles, 3-6
ODM, 7-22

ODM_MTR, 7-22
OLAPSYS, 7-22
operating system
harden, 7-32
operating system authentication, 7-8
operating system security, 7-2
operating system username, 2-4
operating systems
accounts, 10-38
authentication, 9-4, 10-36
authentication by, 4-2
default permissions, 2-6, 7-28
enabling and disabling roles, 10-39
role identification, 10-37
rolesand, 5-26, 10-36
security in, 7-2
optimization
query rewrite
in security policies, 6-5

Oracle Advanced Security, 2-5,7-24,7-32,12-13

Oracle Connection Manager, 2-10

Oracle Delegated Administration Service, 1-7
Oracle Directory Integration and Provisioning,
Oracle Enterprise Security Manager, 4-7
Oracle Internet Directory, 1-6,4-7,15-4
Oracle Java Virtual Machine (OJVM), 2-5,7-27
Oracle Net, 7-28

Oracle Net Manager, 7-32

Oracle Technology Network, 7-32

Oracle Universal Installer, 2-3

Oracle Wallet Manager, 4-5

Oracle wallets, 4-5

Oracle Worldwide Support Services, 7-33
OracleAS Certificate Authority, 1-7,4-5
OracleAS Single Sign-On, 1-7

ORDPLUGINS, 7-22
ORDSYS, 7-22
OS username, 7-8
OS_ROLES parameter
operating-system authorization and, 10-23
REMOTE_OS_ROLES and, 10-40
using, 10-37
OS_USER attribute, USERENYV, 13-14
OUTLN, 7-22

P
packages
auditing, 8-10
examples of, 5-12,5-13
privileges

divided by construct, 5-12
executing, 5-9,5-12
supplied packages
invoker’s or definer’s rights, 5-11
Padding forms, i-xxxviii
paragraph tags
GT GlossaryTitle, Glossary-1
parallel execution servers, 14-6
parallel query
and SYS_CONTEXT, i-xxxvii
application context, i-xxxvii
parallel query, and SYS_CONTEXT, 14-5
parameters
protocol.ora, 7-31
pass-phrase
to read and parse server.key file, 2-8
password
establish for listener, 2-10, 7-29, 7-30
password aging and expiration, 7-13
grace period, 7-13,7-14
example, 7-14
password complexity verification, 4-10, 7-16
formatting of routine, 7-16
sample routine, 7-17
password files, 4-15,7-8
password management
account locking, 7-12
explicit, 7-13
ALTER PROFILE, 7-12

Index-11

CREATE PROFILE, 7-12
expiration grace period, 7-13,7-14
explicitly expire, 7-14
failed login attempts, 7-12
failed logins resetting, 7-13
grace period
example, 7-14
history, 7-15
lifetime for password, 7-13
password complexity verification, 7-16
PASSWORD_LOCK_TIME, 7-13
PASSWORD_REUSE_MAX, 7-15
PASSWORD_REUSE_TIME, 7-15
sample password complexity verification
routine, 7-17
UTLPWDMG.SQL
password management, 7-16
password management policy, 7-12
password security, 7-4
PASSWORD_LIFE_TIME, 7-13
PASSWORD_LOCK_TIME, 7-13
PASSWORD_REUSE_MAX, 7-15
PASSWORD_REUSE_TIME, 7-15
passwords
account locking, 4-9
administrative, 2-4, 7-24
change via ALTER USER, 7-7
changing for roles, 10-21
complexity verification, 4-10
connecting without, 4-2
database user authentication, 4-8
default, 7-7
duration, 2-4,7-24
encryption, 4-8,7-5,9-2
history, 7-15
PASSWORD_REUSE_MAX, 7-15
PASSWORD_REUSE_TIME, 7-15
length, history, and complexity, 7-24
length, history, and complexity,, 2-4
management, 7-12
management rules, 2-4,7-24
password files, 4-15
password reuse, 4-9
privileges for changing for roles, 10-21
privileges to alter, 10-7

Index-12

reuse, 2-4,7-24
role, 3-7
roles, 10-21
security policy for users, 7-4
SYS and SYSTEM, 2-3,7-23,7-24
used in roles, 5-21
user authentication, 9-1
performance
resource limits and, 5-28
personnel checklist, 2-2
personnel security, 1-3
physical access control checklist, 2-2
physical security, 1-3
PIX Firewall, 7-29
PKCS #5, i-xxxviii
PKI, 4-4
PL/SQL
anonymous blocks, 12-9
auditing of statements within, 8-8
dynamically modifying SQL statements,
roles in procedures, 5-24
setting context, 14-3
PM, 7-22
policies
auditing, 7-20
password management, 7-12
policy function, 7-4
policy types
context-sensitive, i-xxxvi, 14-37, 14-39
new features, i-xXxxvi
shared, i-xxxvi, 14-37
static, i-xxxvi, 14-37, 14-39
POLICY_INVOKER attribute, 13-14
practical security concerns, 2-1
predicates
dynamic
in security policies, 6-5
principle of least privilege, 2-5,7-25
privacy, 2-3,7-20
privilege management, 7-5
granting privileges and roles
specifying ALL, 10-17
revoking privileges and roles
specifying ALL, 10-17
privileges, 10-15

13-3

See also system privileges.
administrator
statement execution audited, 8-8

altering
passwords, 10-8
users, 10-7

altering role authentication method, 10-21
application developers, 7-9
application developers and, 7-9
audit object, 11-16
auditing system, 11-16
auditing use of, 8-9, 11-15
cascading revokes, 10-32
column, 10-29
CREATE DBLINK, 7-27
creating roles, 10-20
creating users, 10-2
dropping profiles, 10-14
dropping roles, 10-24
encapsulating in stored procedures, 3-6
granting, 5-3,5-5, 10-24
examples of, 5-12,5-13
granting object privileges, 10-26
granting system privileges, 10-24
granting, about, 10-24
grouping with roles, 10-20
individual privilege names, 10-15
listing grants, 10-42
managing, 12-4,12-13
middle tier, 15-7
object, 7-11,10-17,12-15
on selected columns, 10-32
overview of, 5-2
policies for managing, 7-5
procedures, 5-9
creating and altering, 5-12
executing, 5-9
in packages, 5-12
revoking, 5-3,5-5,10-30
revoking object, 10-30
revoking object privileges, 10-30, 10-33
revoking system privileges, 10-30
roles, 5-19
restrictions on, 5-25
schema object, 5-4, 6-3

DML and DDL operations, 5-6
granting and revoking, 5-5
packages, 5-12
procedures, 5-9
SQL statements permitted, 12-15
system, 5-3,10-15
ANY, 7-24
CREATE, 7-11
DROP ANY TABLE, 7-25
granting and revoking, 5-3
SELECT ANY DICTIONARY, 7-25
SYSTEM and OBJECT, 2-5,7-25
trigger privileges, 5-11
views, 5-8
creating, 5-8
using, 5-8
procedural security, 1-3
procedures
auditing, 8-10
definer’s rights, 5-10
roles disabled, 5-24
examples of, 5-12,5-13
invoker’s rights, 5-11
roles used, 5-24
supplied packages, 5-11
privileges
create or alter, 5-12
executing, 5-9
executing in packages, 5-12
security enhanced by, 5-10
supplied packages
invoker’s or definer’s rights, 5-11
process monitor process (PMON)
cleans up timed-out sessions, 5-31
PRODUCT_USER_PROFILE table, 3-6, 13-19,
13-20
production environment, 7-24
products and options
install only as necessary, 7-21
profiles, 10-13
disabling resource limits, 10-14
dropping, 10-14
enabling resource limits, 10-14
listing, 10-9
managing, 10-13

Index-13

password management, 4-9, 7-12

privileges for dropping, 10-14

viewing, 10-11
program global area (PGA)

effect of MAX_ENABLED_ROLES on, 10-36
protocol.ora file, 2-11

parameters, 7-31
proxies, 4-11

auditing clients of, 11-13

proxy authentication and authorization, 9-8
proxy authentication, 9-8
proxy authorization, 9-8
proxy servers

auditing clients, 11-13
PROXY_USER attribute, 13-11, 13-14
PROXY_USERID attribute, 13-14
PROXY_USERS view, 9-8
pseudocolumns

USER, 5-9
PUBLIC, 2-5,7-26

granting and revoking privileges to, 10-34

procedures and, 10-34

revoke all unnecessary privileges and

roles, 7-26

user group, 5-24,10-34
public key infrastructure, 4-4
PUBLIC_DEFAULT profile

dropping profiles and, 10-14

Q

QS, 7-22
QS_ADM, 7-22
QS_CB, 7-22
QS_CBADM, 7-22
QS_Cs, 7-22
QS_ES, 7-22
QS_Os, 7-22
QS_Ws, 7-22
query rewrite
dynamic predicates in security policies, 6-5
quotas
listing, 10-9
revoking from users, 10-5
setting to zero, 10-5

Index-14

tablespace, 10-4

temporary segments and, 10-4
unlimited, 10-5

viewing, 10-11

R

RADIUS, 4-6
Raptor, 7-29
RC4, i-xxxviii
reads
data block
limitson, 5-30
reauthenticating clients, 15-4
RECOVERY_CATALOG_OWNER role, 10-19
REFERENCES privilege, 12-15
CASCADE CONSTRAINTS option, 10-32
revoking, 10-32
when granted through a role, 5-25
REFRESH_GROUPED_POLICY procedure, 14-36,
14-45
REFRESH_POLICY procedure, 14-36, 14-45
remote authentication, 2-6, 7-27, 7-28
REMOTE_OS_AUTHENT, 7-28
REMOTE_OS_AUTHENT initialization parameter
setting, 9-4
remote_os_authentication, 2-6, 7-28
REMOTE_OS_ROLES initialization parameter
setting, 10-23, 10-40
reparsing, 14-7
resetting failed login attempts, 7-13
resource limits
call level, 5-30
connect time for each session, 5-31
CPU time limit, 5-30
determining values for, 5-32
disabling, 10-14
enabling, 10-14
idle time in each session, 5-31
logical reads limit, 5-30
number of sessions for each user, 5-30
private SGA space for each session, 5-31
profiles, 10-13
RESOURCE privilege, 12-12
RESOURCE role, 5-26, 10-18

resources
profiles, 10-13
restrict symbolic links, 2-6, 7-28
restrictions
space
developers, 7-11
tablespaces, 7-11
REVOKE CONNECT THROUGH clause
revoking proxy authorization, 9-8
REVOKE statement, 10-30
when takes effect, 10-35
revoking privileges and roles
on selected columns, 10-32
REVOKE statement, 10-30
when using operating-system roles, 10-39
rewrite
predicates in security policies, 6-5
RMAN, 7-22
role, 7-3
typical developer, 7-10
role identification
operating system accounts, 10-38
ROLE_SYS_PRIVSview, 12-5
ROLE_TAB_PRIVS view, 12-5
roles, 5-19, 7-5, 7-26
ADMIN OPTION and, 10-25
administrative, 7-7
advantages, 12-5
application, 5-22,12-8, 12-13, 13-19
application developers and, 7-10
AQ_ADMINISTRATOR_ROLE, 10-20
AQ_USER_ROLE, 10-19
authorization, 10-21
authorized by enterprise directory
service, 10-23
changing authorization for, 10-21
changing passwords, 10-21
CONNECT, 7-27
CONNECT role, 5-26,10-18
create your own, 7-27
database authorization, 10-21
DBA role, 5-26,10-18
DDL statements and, 5-24
default, 10-8, 10-35
definer’s rights procedures disable, 5-24

definition, 10-18
DELETE_CATALOG_ROLE, 10-19
dependency management in, 5-25
disabling, 10-35
dropping, 10-24
enabled or disabled, 5-22
enabling, 10-35, 12-8
enabling and disabling, 3-5
enterprise, 9-6, 10-23
example, 7-5,7-6

explanation, 7-6
EXECUTE_CATALOG_ROLE, 10-19
EXP_FULL_DATABASE, 10-19
EXP_FULL_DATABASE role, 5-26
for multiple administrators

example, 7-8,7-9
functionality, 5-2
global, 9-5, 10-23
global authorization, 10-23
GRANT statement, 10-39
granting, 5-3,5-23,10-24
granting, about, 10-24
HS_ADMIN_ROLE, 10-19
IMP_FULL_DATABASE, 10-19
IMP_FULL_DATABASE role, 5-26
in applications, 5-21
invoker’s rights procedures use, 5-24
job responsibility privileges only, 7-27
listing, 10-44
listing grants, 10-42
listing privileges and roles in, 10-44
management using the operating system, 10-36
managing, 10-20, 12-13
managing through operating system, 5-26
maximum, 10-36
multibyte characters in names, 10-20
multibyte characters in passwords, 10-22
naming, 5-19
network authorization, 10-23
operating system, 10-38
operating system granting of, 10-37, 10-39
operating-system authorization, 10-22
OS management and the shared server, 10-40
passwords, 3-7
passwords for enabling, 10-21

Index-15

predefined, 5-26, 10-18
privileges for creating, 10-20
privileges for dropping, 10-24
privileges, changing authorization method
for, 10-21
privileges, changing passwords, 10-21
RECOVERY_CATALOG_OWNER, 10-19
RESOURCE role, 5-26, 10-18
restricting from tool users, 13-19
restrictions on privileges of, 5-25
REVOKE statement, 10-39
revoking, 5-23,10-30
revoking ADMIN OPTION, 10-30
schemas do not contain, 5-19
secure application, 3-4
security and, 7-5
security domains of, 5-23
SELECT_CATALOG_ROLE, 10-19
SET ROLE statement, 10-39
setting in PL/SQL blocks, 5-24
unique names for, 10-20
use of passwords with, 5-21
usefulness compromised, 12-3
user, 5-22,12-8,12-13
users capable of granting, 5-23
uses of, 5-21
WITH GRANT OPTION and, 10-27
without authorization, 10-21
root file paths
for files and packages outside the database, 2-5,
7-27
row-level security
see fine-grained access control, virtual private
database (VPD), and Oracle Label Security
rows
row-level security, 6-3
RSA private key, 2-8
run-time facilities, 2-5, 7-27

S

sample configuration
listener, 7-29
sample password complexity verification
routine, 7-17

Index-16

Sample Schemas, 7-21
remove or re-lock for production, 7-21
test database, 7-21

schema object privileges, 5-4,6-3
DML and DDL operations, 5-6
granting and revoking, 5-5
views, 5-8

schema objects
auditing, 8-10
cascading effects on revoking, 10-33
default audit options, 11-16
default tablespace for, 10-3
disabling audit options, 11-18
enabling audit options on, 11-16
granting privileges, 10-26
in a revoked tablespace, 10-5
owned by dropped users, 10-8
privileges on, 5-4,6-3
privileges to access, 10-17
privileges with, 10-17
revoking privileges, 10-30

schema-independent users, 9-6, 12-13

schemas
default, 13-12
unique, 12-12

SCOTT, 2-4,7-23,7-24,7-27
script files, 11-26
CATNOAUD.SQL, 11-26
scripts, 4-10
seamless timely distribution, 1-6
sec_relevant_cols parameter, 13-4, 14-41, 14-42
sec_relevant_cols_opt parameter, 13-4, 14-41
secure application, 12-5
secure application role
using to ensure database connection, 12-8
secure installation and configuration checklist, 2-3,
7-20
Secure Sockets Layer, 2-7,7-2,7-31,9-1,9-6
certificate key algorithm, 2-8
checklist, 2-7
cipher suites, 2-8
configuration files, 2-7
pass-phrase, 2-8
Secure Sockets Layer (SSL) protocol, 15-4
security

accessing a database, 7-2
administrator of, 7-2
application developers and, 7-9
application enforcement of, 5-21
auditing, 8-1, 8-6
auditing policies, 7-20
authentication of users, 7-2
breach effects, 1-4
data, 7-3
database security, 7-2
database users and, 7-2
default user accounts, 2-3,7-21
dynamic predicates, 6-5
enforcement in application, 12-4
enforcement in database, 12-4
fine-grained access control, 6-3
general users, 7-4
identity management, 1-4
interaction complexity, 1-4
issues by category, 1-3
multibyte characters in role names, 10-20
multibyte characters in role passwords, 10-22
operating-system security and the database, 7-2
passwords, 4-8
personnel dimension, 1-3
physical dimension, 1-3
policies
administering, 14-35
applied within database, 13-4
centrally managed, 13-20
example, 14-29
implementing, 6-6, 13-16
multiple policies per table, 13-7
on tables or views, 13-6
technical issues, 3-2
policies for database administrators, 7-7
policy for applications, 12-2, 13-19
practical concerns, 2-1
privilege management policies, 7-5
privileges, 7-2
procedural dimension, 1-3
procedures enhance, 5-10
protecting the audit trail, 11-21
REMOTE_OS_ROLES parameter, 10-40
roles to force security, 7-5

roles, advantages, 12-5

security policies, 6-3

technical dimension, 1-3

test databases, 7-10

threats and countermeasures, 3-1

views enhance, 5-8
security alerts, 7-32
security domain

application development, 7-11
security domains

enabled roles and, 5-22
security patches and workarounds, 2-6, 7-32
security policy function, 7-4
security-relevant columns VPD, 13-4
SELECT ANY DICTIONARY, 7-25
SELECT privilege, 12-15
SELECT_CATALOG_ROLE role, 10-16, 10-19
sequences

auditing, 8-10
SERVER_HOST attribute, 13-14
server.key file, 2-8

pass-phrase to read and parse, 2-8

permissions on, 2-8
service names, 7-29
session primitives, 13-11
SESSION_ROLES view

queried from PL/SQL block, 5-24
SESSION_USER attribute, USERENV, 13-14
SESSION_USERID attribute, 13-14
SESSIONID attribute, 13-14
sessions

auditing by, 8-13

auditing connections and disconnections, 11-15

defined, 8-13

limits for each user, 5-30

listing privilege domain of, 10-43

time limits on, 5-31

viewing memory use, 10-12

when auditing options take effect, 8-8
SET ROLE statement

associating privileges with role, 12-9

at startup, 3-5

disabling, 3-6

equivalent to SET_ROLE, 12-9

how password is set, 10-21

Index-17

role passwords, 3-7
used to enable/disable roles, 10-35

when using operating-system roles, 10-39

SET_CONTEXT procedure, 14-6
SET_ROLE procedure, 12-9
SH, 7-23
SHA-1, i-xxxviii
shared policy type, i-xxxvi, 14-37
shared server

limiting private SQL areas, 5-31

OS role management restrictions, 10-40

SI_INFORMTN_SCHEMA, 7-23
SID attribute, 13-14
single sign-on, 1-6
single source of truth, 1-5
smart cards, 7-24
sngle point of integration, 1-6
space restrictions
developers, 7-11
tablespaces, 7-11
SQL statements, i-xxxviii
auditing, 8-9, 8-12
when records generated, 8-7
disabling audit options, 11-17
dynamic, 14-5
enabling audit options on, 11-15
privileges required for, 5-4, 6-3, 12-15
resource limits and, 5-30
restricting ad hoc use, 13-18
SQL text, i-xxxviii
SQL*Net, 7-28
SQL*Plus
connecting with, 4-2
restricting ad hoc use, 13-18
statistics monitor, 5-32
sqlnet.ora, 7-32
ssL, 1-7,2-7,7-2,7-30, 7-31
SSL. See Secure Sockets Layer.
STATEMENTID attribute, 13-15
static, i-xxxvi, 14-37, 14-39
storage
quotas and, 10-4
revoking tablespaces and, 10-5
unlimited quotas, 10-5
stored procedures

Index-18

encapsulating privileges, 3-6

invoker’s rights, 12-9

using privileges granted to PUBLIC,
strong authentication, 7-24
supplied packages

invoker’s or definer’s rights, 5-11
symbolic links, 2-6, 7-28
synonyms

inherit privileges from object, 5-6
SYS, 7-23
SYS account

policies for protecting, 7-7

policy enforcement, 13-21
SYS and SYSTEM, 7-23

passwords, 2-3,7-23,7-24
SYS and SYSTEM connections, 7-7
SYS schema, 14-6

AS SYSDBA, 7-8
SYS username

statement execution audited, 8-8
SYS_CONTEXT

and parallel query, i-xxxvii
SYS_CONTEXT function

access control, 14-13

database links, 14-6

dynamic SQL statements, 14-5

parallel query, 14-5

syntax, 14-4

USERENYV namespace, 13-12
SYS.AUDS$, 11-11
SYS.AUDS$ table

audit trail, 11-7

creating and deleting, 11-22
SYSMAN, 2-4,7-23,7-24
SYS-privileged connections, 2-5, 7-25
SYSTEM, 7-23
SYSTEM account

policies for protecting, 7-7
system global area (SGA)

limiting private SQL areas, 5-31
system privileges, 2-5, 5-3, 7-25, 10-15

ADMIN OPTION, 5-4

ANY, 7-24

CREATE, 7-11

described, 5-3,10-15

10-34

DROP ANY TABLE, 7-25
GRANT ANY OBJECT PRIVILEGE, 10-27,
10-31

GRANT ANY PRIVILEGE, 5-4

granting, 10-24

granting and revoking, 5-3

SELECT ANY DICTIONARY, 7-25
system security policy, 7-1

database user management, 7-2

operating system security, 7-2

user authentication, 7-2

T

tables
auditing, 8-10
privileges on, 5-6
tablespaces
assigning defaults for users, 10-3
default quota, 10-4
quotas for users, 10-4
revoking from users, 10-5
temporary
assigning to users, 10-5
unlimited quotas, 10-5
viewing quotas, 10-11
tcps, 2-8,7-30
technical security, 1-3
TELNET, 7-32
TERMINAL attribute, USERENV, 13-15
test and production databases
application developer environment, 7-10
testing VPD policies, 14-37
text level access
host operating system, 7-26
unauthorized, 7-26
TFTP, 7-32
TIGER, 7-24
time stamp, i-xxxviii
token cards, 7-24
trace files, 7-26, 7-28, 7-29, 8-7
triggers
auditing, 8-10
CREATE TRIGGER ON, 12-15
event, 14-13

login, 14-7
logon, 14-3,14-8
privileges for executing, 5-11
roles, 5-24
Triple DES, i-xxxviii
tsnames.ora, 2-8
typical directory, 2-8
types
privilegeson, 5-14
typical role, 7-10

U

UDP and TCP ports
close for ALL disabled services, 7-32
uniform audit trail, i-xxxvii
UNLIMITED, 7-15
UNLIMITED TABLESPACE privilege, 10-5
unlock locked accounts, 7-7
UPDATE privilege
revoking, 10-32
user authentication
methods, 7-2
user groups, 7-5
USER pseudocolumn, 5-9
user security policy, 7-4
USERENYV function, 13-11, 15-9, 16-8
USERENYV namespace, 13-11, 13-12
usernames
oS, 7-8
schemas, 12-12
users
altering, 10-7
assigning unlimited quotas for, 10-5
auditing, 8-15
authentication
about, 7-2,9-1
authentication of, 4-1
changing default roles, 10-8
database authentication, 9-1
default tablespaces, 10-3
dropping, 10-8
dropping profiles and, 10-14
dropping roles and, 10-24
enabling roles for, 12-8

Index-19

end-user security policies, 7-5
enterprise, 9-6,10-23, 12-13
external authentication, 9-3
global, 9-5
listing, 10-9
listing privileges granted to, 10-42
listing roles granted to, 10-42
managing, 10-1
network authentication, 9-5
objects after dropping, 10-8
operating system authentication, 9-4
password encryption, 4-8,7-5
password security, 7-4
policies for managing privileges, 7-5
privileges for changing passwords, 10-7
privileges for creating, 10-2
privileges for dropping, 10-8
proxy authentication and authorization, 9-8
PUBLIC group, 10-34
PUBLIC user group, 5-24
restricting application roles, 13-19
rolesand, 5-20
for types of users, 5-22

schema-independent, 9-6, 12-13
security and, 7-2
security domains of, 5-23
security for general users, 7-4
specifying user names, 10-3
tablespace quotas, 10-4
viewing information on, 10-11
viewing memory use, 10-12
viewing tablespace quotas, 10-11

UTC, i-xxxviii

UTL_FILE, 7-26

UTL_HTTP, 7-26

UTL_SMTP, 7-26

UTL_TCP, 7-26

UTLPWDMG.SQL, 4-10,7-16

formatting of password complexity verification

routine, 7-16

\Y
valid node checking, 2-11,7-31
view, 5-7

Index-20

views, 7-3
auditing, 8-10
privileges for, 5-8
security applications of, 5-8
Virtual Private Database
new features, i-Xxxvi
virtual private database (VPD), 3-6, 12-4, 13-2,
13-5, 13-20
column-level VPD, 14-40

defined, 13-2
policies, 13-6
VPD

column masking behavior, 13-4
column masking restrictions, 14-43
objects it applies to, 13-4
sec_relevant_cols parameter, 13-4
see virtual private database
sel_relevant_cols_opt parameter, 13-4
with flashback query, 14-47
VPD default behavior, 14-41
VPD policies
dynamic, 14-37
testing with dynamic policy type, 14-37
vulnerable data behind firewalls, 2-10, 7-29
vulnerable run-time call, 7-27
made more secure, 7-27

W

Wallet Manager, 4-5
wallets, 4-5
WHERE, 7-4
WHERE clause, dynamic SQL, 13-3
Windows operating system

OS audit trail, 11-7,11-12
WKPROXY, 7-23

WKSYS, 7-23
WMSYS, 7-23
X

X.509 certificates, 7-24
X.509 Version 3 certificates, 4-5
XDB, 7-23

	Contents
	Send Us Your Comments
	Preface
	What's New in Oracle Database Security?
	Part I� Overview of Security Considerations and Requirements
	1 Security Requirements, Threats, and Concepts
	Identity Management: Security in Complex, High Volume Environments
	Desired Benefits of Identity Management
	Components of Oracle's Identity Management Infrastructure

	2 Security Checklists and Recommendations
	Physical Access Control Checklist
	Personnel Checklist
	Secure Installation and Configuration Checklist
	Networking Security Checklists
	SSL (Secure Sockets Layer) Checklist
	Client Checklist
	Listener Checklist
	Network Checklist

	3 Security Policies and Tips
	Introduction to Database Security Policies
	Security Threats and Countermeasures
	What Information Security Policies Can Cover

	Recommended Application Design Practices to Reduce Risk
	Tip 1: Enable and Disable Roles Promptly
	Tip 2: Encapsulate Privileges in Stored Procedures
	Tip 3: Use Role Passwords Unknown to the User
	Tip 4: Use Proxy Authentication and a Secure Application Role
	Tip 5: Use Secure Application Role to Verify IP Address
	Tip 6: Use Application Context and Fine-Grained Access Control

	Part II� Security Features, Concepts, and Alternatives
	4 Authentication Methods
	Authentication by the Operating System
	Authentication by the Network
	Authentication by the Secure Socket Layer Protocol
	Authentication Using Third-Party Services
	DCE Authentication
	Kerberos Authentication
	Public Key Infrastructure-Based Authentication
	Authentication with RADIUS
	Directory-based Services

	Authentication by the Oracle Database
	Password Encryption While Connecting
	Account Locking
	Password Lifetime and Expiration
	Password History
	Password Complexity Verification

	Multitier Authentication and Authorization
	Clients, Application Servers, and Database Servers
	Security Issues for Middle-Tier Applications
	Identity Issues in a Multitier Environment
	Restricted Privileges in a Multitier Environment
	Client Privileges
	Application Server Privileges

	Authentication of Database Administrators

	5 Authorization: Privileges, Roles, Profiles, and Resource Limitations
	Introduction to Privileges
	System Privileges
	Granting and Revoking System Privileges
	Who Can Grant or Revoke System Privileges?

	Schema Object Privileges
	Granting and Revoking Schema Object Privileges
	Who Can Grant Schema Object Privileges?
	Using Privileges with Synonyms

	Table Privileges
	Data Manipulation Language (DML) Operations
	Data Definition Language (DDL) Operations

	View Privileges
	Privileges Required to Create Views
	Increasing Table Security with Views

	Procedure Privileges
	Procedure Execution and Security Domains
	Definer’s Rights
	Invoker’s Rights

	System Privileges Needed to Create or Alter a Procedure
	Packages and Package Objects
	Packages and Package Objects Example 1
	Packages and Package Objects Example 2

	Type Privileges
	System Privileges for Named Types
	Object Privileges
	Method Execution Model
	Privileges Required to Create Types and Tables Using Types
	Example of Privileges for Creating Types and Tables Using Types
	Privileges on Type Access and Object Access
	Type Dependencies

	Introduction to Roles
	Properties of Roles
	Common Uses for Roles
	Application Roles
	User Roles

	Granting and Revoking Roles
	Who Can Grant or Revoke Roles?

	Security Domains of Roles and Users
	PL/SQL Blocks and Roles
	Named Blocks with Definer’s Rights
	Anonymous Blocks with Invoker’s Rights

	Data Definition Language Statements and Roles
	Predefined Roles
	The Operating System and Roles
	Roles in a Distributed Environment
	Secure Application Roles
	Creation of Secure Application Roles

	User Resource Limits
	Types of System Resources and Limits
	Session Level
	Call Level
	CPU Time
	Logical Reads
	Limiting Other Resources

	Profiles
	Determining Values for Resource Limits

	6 Access Controls on Tables, Views, Synonyms, or Rows
	Introduction to Views
	Fine-Grained Access Control
	Dynamic Predicates
	Application Context
	Dynamic Contexts

	Security Followup: Auditing as well as Prevention

	7 Security Policies
	System Security Policy
	Database User Management
	User Authentication
	Operating System Security

	Data Security Policy
	User Security Policy
	General User Security
	Password Security
	Privilege Management

	End-User Security
	Using Roles for End-User Privilege Management
	Using a Directory Service for End-User Privilege Management

	Administrator Security
	Protection for Connections as SYS and SYSTEM
	Protection for Administrator Connections
	Using Roles for Administrator Privilege Management

	Application Developer Security
	Application Developers and Their Privileges
	The Application Developer's Environment: Test and Production Databases
	Free Versus Controlled Application Development
	Roles and Privileges for Application Developers
	Space Restrictions Imposed on Application Developers

	Application Administrator Security

	Password Management Policy
	Account Locking
	Password Aging and Expiration
	Password History
	Password Complexity Verification
	Password Verification Routine Formatting Guidelines
	Sample Password Verification Routine

	Auditing Policy
	A Security Checklist

	8 Database Auditing: Security Considerations
	Auditing Types and Records
	Audit Records and the Audit Trails
	Database Audit Trail (DBA_AUDIT_TRAIL)
	Operating System Audit Trail
	Operating System Audit Records
	Records Always in the Operating System Audit Trail

	When Are Audit Records Created?

	Statement Auditing
	Privilege Auditing
	Schema Object Auditing
	Schema Object Audit Options for Views, Procedures, and Other Elements

	Focusing Statement, Privilege, and Schema Object Auditing
	Auditing Statement Executions: Successful, Unsuccessful, or Both
	Number of Audit Records from Multiple Executions of a Statement
	BY SESSION
	BY SESSION Example 1
	BY SESSION Example 2

	BY ACCESS

	Audit By User
	Audit By User Example

	Auditing in a Multitier Environment
	Fine-Grained Auditing

	Part III� Security Implementation, Configuration, and Administration
	9 Administering Authentication
	User Authentication Methods
	Database Authentication
	Creating a User Who is Authenticated by the Database
	Advantages of Database Authentication

	External Authentication
	Creating a User Who is Authenticated Externally
	Operating System Authentication
	Network Authentication
	Advantages of External Authentication

	Global Authentication and Authorization
	Creating a User Who is Authorized by a Directory Service
	Creating a Global User
	Creating a Schema-Independent User

	Advantages of Global Authentication and Global Authorization

	Proxy Authentication and Authorization
	Authorizing a Middle Tier to Proxy and Authenticate a User
	Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

	10 Administering User Privileges, Roles, and Profiles
	Managing Oracle Users
	Creating Users
	Specifying a Name
	Setting a User's Authentication
	Assigning a Default Tablespace
	Assigning Tablespace Quotas
	Revoking Users' Ability to Create Objects in a Tablespace
	UNLIMITED TABLESPACE System Privilege

	Assigning a Temporary Tablespace
	Specifying a Profile
	Setting Default Roles

	Altering Users
	Changing a User's Authentication Mechanism
	Changing a User's Default Roles

	Dropping Users

	Viewing Information About Database Users and Profiles
	User and Profile Information in Data Dictionary Views
	Listing All Users and Associated Information
	Listing All Tablespace Quotas
	Listing All Profiles and Assigned Limits
	Viewing Memory Use for Each User Session

	Managing Resources with Profiles
	Dropping Profiles

	Understanding User Privileges and Roles
	System Privileges
	Restricting System Privileges
	Accessing Objects in the SYS Schema

	Object Privileges
	User Roles

	Managing User Roles
	Creating a Role
	Specifying the Type of Role Authorization
	Role Authorization by the Database
	Role Authorization by an Application
	Role Authorization by an External Source
	Role Authorization by the Operating System
	Role Authorization and Network Clients

	Role Authorization by an Enterprise Directory Service

	Dropping Roles

	Granting User Privileges and Roles
	Granting System Privileges and Roles
	Granting the ADMIN OPTION
	Creating a New User with the GRANT Statement

	Granting Object Privileges
	Specifying the GRANT OPTION
	Granting Object Privileges on Behalf of the Object Owner
	Granting Privileges on Columns
	Row-Level Access Control

	Revoking User Privileges and Roles
	Revoking System Privileges and Roles
	Revoking Object Privileges
	Revoking Object Privileges on Behalf of the Object Owner
	Revoking Column-Selective Object Privileges
	Revoking the REFERENCES Object Privilege

	Cascading Effects of Revoking Privileges
	System Privileges
	Object Privileges

	Granting to and Revoking from the User Group PUBLIC
	When Do Grants and Revokes Take Effect?
	The SET ROLE Statement
	Specifying Default Roles
	Restricting the Number of Roles that a User Can Enable

	Granting Roles Using the Operating System or Network
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES=TRUE
	Enabling and Disabling Roles When OS_ROLES=TRUE
	Using Network Connections with Operating System Role Management

	Viewing Privilege and Role Information
	Listing All System Privilege Grants
	Listing All Role Grants
	Listing Object Privileges Granted to a User
	Listing the Current Privilege Domain of Your Session
	Listing Roles of the Database
	Listing Information About the Privilege Domains of Roles

	11 Configuring and Administering Auditing
	Actions Audited by Default
	Guidelines for Auditing
	Keep Audited Information Manageable
	Auditing Normal Database Activity
	Auditing Suspicious Database Activity
	Auditing Administrative Users
	Using Triggers
	Decide Whether to Use the Database or Operating System Audit Trail

	What Information is Contained in the Audit Trail?
	Database Audit Trail Contents
	Audit Information Stored in an Operating System File

	Managing the Standard Audit Trail
	Enabling and Disabling Standard Auditing
	Setting the AUDIT_TRAIL Initialization Parameter
	Setting the AUDIT_FILE_DEST Initialization Parameter

	Standard Auditing in a Multitier Environment
	Setting Standard Auditing Options
	Specifying Statement Auditing
	Auditing Connections and Disconnections
	Auditing Statements That Fail Because an Object Does Not Exist

	Specifying Privilege Auditing
	Specifying Object Auditing

	Turning Off Standard Audit Options
	Turning Off Statement and Privilege Auditing
	Turning Off Object Auditing

	Controlling the Growth and Size of the Standard Audit Trail
	Purging Audit Records from the Audit Trail
	Archiving Audit Trail Information
	Reducing the Size of the Audit Trail

	Protecting the Standard Audit Trail
	Auditing the Standard Audit Trail

	Viewing Database Audit Trail Information
	Audit Trail Views
	Using Audit Trail Views to Investigate Suspicious Activities
	Listing Active Statement Audit Options
	Listing Active Privilege Audit Options
	Listing Active Object Audit Options for Specific Objects
	Listing Default Object Audit Options
	Listing Audit Records
	Listing Audit Records for the AUDIT SESSION Option

	Deleting the Audit Trail Views
	Example of Auditing Table SYS.AUD$

	Fine-Grained Auditing
	Policies in Fine-Grained Auditing
	Advantages of Fine-Grained Auditing over Triggers
	Extensible Interface Using Event Handler Functions
	Functions and Relevant Columns in Fine-Grained Auditing
	Audit Records in Fine-Grained Auditing
	NULL Audit Conditions
	Defining FGA Policies

	An Added Benefit to Fine-Grained Auditing

	The DBMS_FGA Package
	ADD_POLICY Procedure
	Syntax
	Parameters
	Usage Notes

	DROP_POLICY Procedure
	Syntax
	Parameters
	Usage Notes

	ENABLE_POLICY Procedure
	Syntax
	Parameters

	DISABLE_POLICY Procedure
	Syntax
	Parameters

	12 Introducing Database Security for Application Developers
	About Application Security Policies
	Considerations for Using Application-Based Security
	Are Application Users Also Database Users?
	Is Security Enforced in the Application or in the Database?

	Managing Application Privileges
	Creating Secure Application Roles
	Example of Creating a Secure Application Role

	Associating Privileges with the User's Database Role
	Using the SET ROLE Statement
	Using the SET_ROLE Procedure
	Examples of Assigning Roles with Static and Dynamic SQL

	Protecting Database Objects Through the Use of Schemas
	Unique Schemas
	Shared Schemas

	Managing Object Privileges
	What Application Developers Need to Know About Object Privileges
	SQL Statements Permitted by Object Privileges

	13 Using Virtual Private Database to Implement Application Security Policies
	About Virtual Private Database, Fine-Grained Access Control, and Application Context
	Introduction to VPD
	Column-level VPD
	Column-level VPD with Column Masking Behavior
	VPD Security Policies and Applications

	Introduction to Fine-Grained Access Control
	Features of Fine-Grained Access Control
	Table-, View-, or Synonym-Based Security Policies
	Security
	Simplicity
	Flexibility

	Multiple Policies for Each Table, View, or Synonym
	Grouping of Security Policies
	High Performance
	Default Security Policies

	About Creating a Virtual Private Database Policy with Oracle Policy Manager

	Introduction to Application Context
	Features of Application Context
	Specifying Attributes for Each Application
	Providing Access to Predefined Attributes through the USERENV Namespace
	Externalized Application Contexts

	Ways to Use Application Context with Fine-Grained Access Control
	Using Application Context as a Secure Data Cache
	Using Application Context to Return a Specific Predicate (Security Policy)
	Using Application Context to Provide Attributes Similar to Bind Variables in a Predicate

	Introduction to Global Application Context
	Enforcing Application Security
	Use of Ad Hoc Tools a Potential Security Problem
	Restricting SQL*Plus Users from Using Database Roles
	Limit Roles Through PRODUCT_USER_PROFILE
	Use Stored Procedures to Encapsulate Business Logic
	Use Virtual Private Database for Highest Security

	Virtual Private Database and Oracle Label Security Exceptions and Exemptions

	User Models and Virtual Private Database

	14 Implementing Application Context and Fine-Grained Access Control
	About Implementing Application Context
	How to Use Application Context
	Task 1: Create a PL/SQL Package that Sets the Context for Your Application
	SYS_CONTEXT Example
	SYS_CONTEXT Syntax
	Using Dynamic SQL with SYS_CONTEXT
	Using SYS_CONTEXT in a Parallel Query
	Using SYS_CONTEXT with Database Links

	Task 2: Create a Unique Context and Associate It with the PL/SQL Package
	Task 3: Set the Context Before the User Retrieves Data
	Task 4. Use the Context in a VPD Policy Function

	Examples: Application Context Within a Fine-Grained Access Control Function
	Example 1: Implementing the Policy
	Step 1. Create a PL/SQL Package Which Sets the Context for the Application
	Step 2. Create an Application Context
	Step 3. Access the Application Context Inside the Package
	Step 4. Create the New Security Policy

	Example 2: Controlling User Access by Way of an Application
	Step 1. Create a PL/SQL Package to Set the Context
	Step 2. Create the Context and Associate It with the Package
	Step 3. Create the Initialization Script for the Application

	Example 3: Event Triggers, Application Context, Fine-Grained Access Control, and Encapsulation of...

	Initializing Application Context Externally
	Obtaining Default Values from Users
	Obtaining Values from Other External Resources

	Initializing Application Context Globally
	Application Context Utilizing LDAP
	How Globally Initialized Application Context Works
	Example: Initializing Application Context Globally

	How to Use Global Application Context
	Using the DBMS_SESSION Interface to Manage Application Context in Client Sessions
	Examples: Global Application Context
	Example 1: Global Application Context
	Example 2: Global Application Context for Lightweight Users

	How Fine-Grained Access Control Works
	How to Establish Policy Groups
	The Default Policy Group: SYS_DEFAULT
	New Policy Groups
	How to Implement Policy Groups
	Step 1: Set Up a Driving Context
	Step 2: Add a Policy to the Default Policy Group.
	Step 3: Add a Policy to the HR Policy Group
	Step 4: Add a Policy to the FINANCE Policy Group

	Validation of the Application Used to Connect

	How to Add a Policy to a Table, View, or Synonym
	DBMS_RLS.ADD_POLICY Procedure Policy Types
	Optimizing Performance by Enabling Static and Context Sensitive Policies
	About Static Policies
	When to Use Static Policies

	About Context Sensitive Policies
	When to Use Context Sensitive Policies

	Adding Policies for Column-Level VPD
	Default Behavior
	Column Masking Behavior

	Enforcing VPD Policies on Specific SQL Statement Types
	Enforcing Policies on Index Maintenance

	How to Check for Policies Applied to a SQL Statement
	Users Who Are Exempt from VPD Policies
	SYS User Exempted from VPD Policies
	EXEMPT ACCESS POLICY System Privilege

	Automatic Reparse
	VPD Policies and Flashback Query

	15 Preserving User Identity in Multitiered Environments
	Security Challenges of Three-tier Computing
	Who Is the Real User?
	Does the Middle Tier Have Too Much Privilege?
	How to Audit? Whom to Audit?
	What Are the Authentication Requirements for Three-tier Systems?
	Client to Middle Tier Authentication
	Middle Tier to Database Authentication
	Client Re-Authentication Through Middle Tier to Database

	Oracle Database Solutions for Preserving User Identity
	Proxy Authentication
	Passing Through the Identity of the Real User by Using Proxy Authentication
	Authentication Process from Clients through Middle Tiers to the Database

	Limiting the Privilege of the Middle Tier
	Re-authenticating The User through the Middle Tier to the Database
	Using Password-Based Proxy Authentication
	Using Proxy Authentication with Enterprise Users

	Auditing Actions Taken on Behalf of the Real User
	Advantages of Proxy Authentication

	Client Identifiers
	Support for Application User Models by Using Client Identifiers
	Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity
	Using CLIENT_IDENTIFIER Independent of Global Application Context

	16 Developing Applications Using Data Encryption
	Securing Sensitive Information
	Principles of Data Encryption
	Principle 1: Encryption Does Not Solve Access Control Problems
	Principle 2: Encryption Does Not Protect Against a Malicious DBA
	Principle 3: Encrypting Everything Does Not Make Data Secure

	Solutions For Stored Data Encryption in Oracle Database
	Oracle Database Data Encryption Capabilities

	Data Encryption Challenges
	Encrypting Indexed Data
	Key Management
	Key Transmission
	Key Storage
	Storing the Keys in the Database
	Storing the Keys in the Operating System
	Users Managing Their Own Keys

	Changing Encryption Keys
	Binary Large Objects (BLOBS)

	Example of a Data Encryption PL/SQL Program
	Example of Encrypt/Decrypt Procedures for BLOB Data

	Glossary
	Index

