ORACLE

Oracle® Application Server Containers for J2EE
Support for JavaServer Pages Developer's Guide

10g Release 2 (10.1.2)

Part No. B14014-01

November 2004

Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide, 10g Release
2(10.1.2)

Part No. B14014-01

Copyright © 2000, 2004, Oracle. All rights reserved.
Primary Author: Dan Hynes, Brian Wright
Contributing Author: Michael Freedman

Contributors: Ashok Banerjee, Ellen Barnes, Julie Basu, Matthieu Devin, Jose Alberto Fernandez, Sumathi
Gopalakrishnan, Ralph Gordon, Ping Guo, Hal Hildebrand, Susan Kraft, Sunil Kunisetty, Clement Lai, Song
Lin, Jeremy Lizt, Angie Long, Sharon Malek, Sheryl Maring, Kuassi Mensah, Jasen Minton, Kannan
Muthukkaruppan, John O’Duinn, Robert Pang, Olga Peschansky, Shiva Prasad, Jerry Schwarz, Sanjay Singh,
Gael Stevens, Kenneth Tang, YaQing Wang, Alex Yiu, Shinji Yoshida, Helen Zhao

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SENA US YOUT COMMENES ..ottt eeeet ettt et et et et ettt sttt ese e as et ar st s et et st e eans st st eeeeesenes iX
P T O C 8 ettt ettt ettt ettt ettt ettt ettt ettt Xi
1N (T gL [T AN B Lo [1< g ot =TT Xi
Documentation ACCESSIDIITYccviiiiiiii bbb Xii
] 1 (002 101 (=R Xii
R EEN (Lo B B 1o Yot U 3 41T 1 £ Xiii
(OL0] 0 V7=1 g (0] o 13 XV

1 General JSP Overview

INtrodUCtioN tO JAVASEIVEN PAJESc.cvitiiiiiiitiiiite ettt et enene 1-1
What @ JSP Page LOOKS LIKEccuiiieiicecce ettt nne e 1-2
Convenience of JSP Coding Versus Servlet Coding.........ccooveriiineninnienese e 1-3
Separation of Business Logic from Page Presentation: Calling JavaBeans............ccc.ccocveevvennne. 1-4
JSP Pages and Alternative Markup LANQUAGEScovveiriniiiiineseee e 1-5

Overview 0f JSP SYNtax EIEMENTSccvciviiiie e sre s 1-5
DT =T od Y =SS 1-6
Lo T oL] aTo [= 1= 0 g T=T o OSSPSR 1-7
JSP ODJECES ANA SCOPESvivivieeiiiiierte ettt bbbttt bbbt st 1-9
StaNdard ACLIONS: JSP TAOS.eveuiriiririeteieiiriet ettt b sttt b e bbb 1-12
Bean Property Conversions from String ValUeS.........cccov i 1-17
CUSTOM TaG LIDIAITES ..ot bbbt sr e 1-18

JSP EXECULTON ..ttt bbb bbbttt b e bbbt bt ettt eee e nnens 1-19
JSP Containers in @ NULShEll..........cooo i 1-19
JSP EXECULION IMOAEIS ...ttt ettt bbb bbb e 1-19
JSP Pages and On-Demand TranSIation ..o 1-20
REQUESTING @ JSP PAJEviivicee ettt sttt ettt s sttt e s be e e e nte e beteenbeenas 1-21

2 Overview of the Oracle JSP Implementation

Overview of the Oracle Application Server and JSP SUPPOIt........ccccooeiiiiiiiineneieise e, 2-1
Overview of the Oracle APPlICAtION SEIVEN ... 2-1
Oracle HTTP Server and MOGO_0CA]couiiiiiiiiiie ettt 2-2
OVEINVIEW OF OCA] ...ttt r et b e b e bt nr e e b n b an e enene s 2-2
Overview of the JSP Implementation iN OCA ..o 2-5

Oracle JDEVEIOPEr JSP SUPPOIT.....c..ciiiiiiteieee ettt sttt n e 2-8

Overview of Oracle Value-Added FEATUIES............cceie ittt et ste e s sbe s s erban s 2-9

Summary of Tag Libraries and Utilities Provided with OC4J...........cccccviviiiiiiii i 2-9
Overview of Oracle-SPecific FEAtUIES..........coeiiiiiieie s 2-10
Overview of Tags and API for Caching SUPPOIT ... 2-11
Support for the JavaServer Pages Standard Tag Libraryccccooevvvevnivnieecninsie s 2-11

3 Getting Started

SOME INTtiAl CONSIARTALIONS.......oeiiiiiiciitie e bbbttt eb et sb e st see e 3-1
Application ROOL FUNCLIONAIILYccoiiiiiiiii s 3-2
Classpath FUNCHIONAIITYccoiii ittt re e te e e aeenens 3-2
Runtime Retranslation or REIOAAINGccoiiiiiiiiine e 3-3
JSP Compilation CONSIAEIAtIONS.........cccviiiiiiie et reere e reeeas 3-4
JSP SeCUrity CONSIAEIALIONS. ... cc.eiiiieee ettt se e te e sre e e saeenreees 3-5
JSP Performance CONSIABIALIONScciiieiiiirieieieie sttt sb et snn 3-5
(D T] - L0 L = Tod 1 To T2 1 g o Lo £ RS 3-7
JSP File Naming CONVENTIONSc.iiiiiiiiiiiiiii ettt 3-7
Removal of tools.jar from OC4J) Standalone............cocveiiiiiiiie e e 3-8
JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages..........ccovevvveiinnieneinneniene. 3-8

Key Support Files Provided With OCA4 ..o 3-9

JSP Configuration N OCAJ ..ottt bbbt b b 3-10
N e o] o) = 1] g 1=T g T-1 (6| ISR 3-10
JSP Configuration ParameterS........c.coveiiiiieieeiee s et sreereenneas 3-11
OC4J Configuration Parameters fOr JSP ... s 3-20

Key OC4J CoNFIgUIAtioN FIlESccuiiiiie et te e e neens 3-22

JSP Configuration in Oracle Enterprise Manager 100..........ccouviiriiniinenieeseneseeeseeeeeeens 3-23
Application Server Control Console JSP Properties Page........cccccvvviveiiiienienieie s eeeinens 3-23
Configuration Parameters Supported by the JSP Properties Pagec.ccccovvrvinnenicennnenn 3-24
Configuration Parameters Not Supported by the JSP Properties Pagecccccocevvvevvieenns 3-25

Basic Programming Considerations

JSP-SErVIEt INTEIACTION ...ttt b ettt b e sbesbe b snenbe e 4-1
INnvoKing a Serviet from @ JSP PAgEcoc ittt 4-1
Passing Data to a Servlet Invoked from @ JSP Page ... 4-2
INvoKing a JSP Page from @ SEIVIEL ...t 4-2
Passing Data Between a JSP Page and @ SErVIEt ... 4-3
JSP-Serviet INteraction SAMPIESccoooiiiee e e 4-3

JSP Data-Access SUPPOIT aNd FEALUIEScueiieieciesiesie st streeese e se e tete e e e ssaeee e e seesneeseens 4-4
Introduction to JSP SUPPOIt fOr DAtA ACCESSceriuireiiieiiriie ettt 4-4
JSP Data-Access Sample USING JDBC.......cccoiiieiiiiece s et se et sae e srn e ne e 4-5
Use of JDBC Performance ENhancement FEALUIES..........ccoovvveiiriresieseie et 4-6
EJB CallS frOM JSP PAgESiciiii ittt sttt sttt ene e s sa et te e teeteenaenranneenneenes 4-9
OracleXMLQUETY CIaSS......cuiiiiiiiiiiiieiittiiste ettt ettt ettt e 4-10

JSP RESOUICE ManagEIMENT......cciviiiiiiiii ittt e e s e e st e be e sbe e nbaesteennas 4-10
Standard Session Resource Management: HttpSessionBindingListener..........c.ccococvevveennnne. 4-10
Overview of Oracle Value-Added Features for Resource Managementc...ccocveveeviennnnns 4-14

RUNTIME EFTOr PrOCESSING ...ccieiiiiiiiceiesie ettt se et e ste et e e s e e e st esaesneesaesneesrensaenraeneenseans 4-14
Servlet and JSP Runtime Error MeChaniSmS.........ccccveiiiiiinieiesire s s 4-14

JSP EFror Page EXAMPIEcoiiiiiiie et 4-15

5 JSP XML Support

JSP XML Documents and JSP XML View: Overview and COmMPariSONccccevvvenveieeneanernens 5-1
Details Of JSP XIML DOCUMENTS........coiieiiiitieiieie sttt sttt se et sttt neebesbesneeeeneas 5-3
Summary Table 0f JSP XIML SYNTAXuocveiiiiiiiccee e 5-4
JSP XML root Element and JSP XML NaAMESPACESccccvrriirieiirieiriiinieiereesie s 5-5
JSP XML Directive EIBMENTSc.ooiiiiiie ettt 5-6
JSP XML Declaration, Expression, and Scriptlet EIeMents ..o 5-7
JSP XML Standard Action and Custom Action EIemMents...........cccooiviiiinnie v, 5-8
JSP XML Text Elements and Other EIEMENTS.........cccvvieiiiiieieicie e 5-8
Sample Comparison: Traditional JSP Page Versus JSP XML Document...........ccccccovvvvevneeeennn. 5-9
Details O the JSP XIMIL VIBWocuiiiiiiiitiieee ettt 5-11
Transformation from a JSP Page to the XML VIEWccooiiiiiniinieeeeeesc s 5-11
The jsp:id Attribute for Error Reporting During Validationc.cccoccevvvvviiiivccciccieen, 5-12
Example: Transformation from Traditional JSP Page to XML VieWcccoccoivincinecniene, 5-12

6 Additional Programming Considerations

General JSP Programming STrategiesS........ccveuiiiieieiiieseiiesee e see et ste e e ste et sae e eesresee e snaesreesee e 6-1
JavaBeans VersuS SCHIPTIETScciiiiiii e e 6-1
Static Includes Versus DyNamicC INCIUAES.coovvviiiiiiiicie e 6-1
When to Consider Creating and Using JSP Tag Libraries. ... 6-3

Additional JSP Programming TIPS ..coociciiii e ie et te e ste e ste e e saesaesaserae e e see e e sreneens 6-4
Hiding JSP Pages from DireCt INVOCALION. ..ottt 6-4
Use of a Central CheCKEr PAgEcoouiii ittt ere e 6-5
Workarounds for Large Static Content or Significant Tag Library Usagec.ccococeevvennnnnn 6-6
Method Variable Declarations Versus Member Variable Declarationsccoceoeeviiieene. 6-7
Page DireCtive CharaCleriStiCS.....coiiiiiieiee ettt e e een e nre e 6-8
JSP Preservation of White Space and Use with Binary Datacccoveneenniinnencinsenee, 6-10

7 JSP Translation and Deployment

Functionality of the JSP TranSIator ... e 7-1
Features Of GeNerated COE ..ot bbb b et se e 7-1
General Conventions fOr OULPUL NAMES.........c.voiv it ene e 7-2
Generated Package and Class NAMES ..o 7-3
Generated Files and LOCATIONScooieieiiiisece ettt 7-4
1SSUES IN the CUITENT REIEASE.....c.eiviieieiiie ettt sttt see s r e e 7-6
Oracle JSP GIoDal INCIUAEScoiiiiieie bbb 7-6

The 0Jspc Pretranslation ULHHLY ... 7-8
Overview of Basic 0jSPC FUNCLIONAIITYc.coveiiiiccicece e 7-9
Overview of 0jspc Batch Pretranslation............coiiiiiiiiee s 7-9
Option SumMmary Table fOr OJSPC.......cciiiiiie e s 7-11
Command-Line SYNtaX fOr OJSPC.....c.uciiiiiiiieiie e seree et e e e reeneenes 7-12
OpPtion DeSCriPtiONS FOF OJSPC......c.vviiiiiieiriiiiieiiit ettt 7-13
Summary of ojspc Output Files, Locations, and Related OptionsS...........cccccvvvevienieviie e 7-22

JSP Deployment CONSIAEIAtIONScoviiiiirieiieiise et 7-23

vi

Overview of EAR/WAR DEPIOYMENTociiiiiiiiiiiice e 7-23

Application Deployment with Oracle JDEVEIOPETcoccveieie i 7-25
Bl o =T AU 1] - A o] o 7-26
Deployment of Binary FIleS ONIY ..ot 7-28

JSP Tag Libraries

Overview of the Tag Library FrameWOrK ... 8-1
Overview of a Custom Tag Library Implementationcccccoviiiiiciciiecsie e, 8-2
Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications................c.cc.... 8-3

Tag Library DesCriptor FIlES ...ttt re e e e e e 8-5
Overview of TLD File Validation and FEATUIES...........cccivieriniieieie e 8-6
USe OF the tag EIEMENT.........ciice et e e et et teereenas 8-7
Other Key Elements and Their Subelements: validator and listenerc.cccocoeviiviieiennns 8-10

Tag Library and TLD SetUP aN0d ACCESS........uvueiiiiiitirieieieiesisit ettt 8-11
Overview: Specifying a Tag Library with the taglib Directive...........ccccccoevivioiie i, 8-11
Specifying a Tag Library by Physical LOCAtiON........c.cccoviiiiiiiiinceseeee e 8-12
Packaging and Accessing Multiple Tag Librariesin aJAR File........cccocoveviiiiiicn e, 8-13
Use of Web.XmI fOr Tag LIBIari€s. ... 8-14
Oracle Extensions for Tag Library Sharing and Persistent TLD Caching........c.c.ccocceviveviennnans 8-15
Example: Multiple Tag Libraries and TLD Files in @ JAR Filecccocoviiiiniiniiiiee, 8-18

L= o o = U Lo | =T USSR 8-20
OVerview Of Tag HANAIEISc.ooiiiececc et ae e aneeen 8-21
Attribute Handling, Conversions from String ValUes............cccocoeiinnincinenceeee 8-21
Custom Tag Processing, with or without Tag BOIes..........cccocvvieeiieiieiiiiee e 8-22
Summary of Integer Constants for Body ProCessingccoceeveiriereiieseneienee e 8-23
Simple Tag Handlers Without Iteration ... 8-24
Simple Tag Handlers With Ieration ... s 8-25
Tag Handlers That Access BodY CONENT........c...coiiieiiiiecc et 8-26
TryCatChFinally INTEITACE ..o e e 8-28
Access to Outer Tag Handler INStANCEScvcviiiiiiiicce e 8-29

OCA4J ISP Tag HanNdIer FEAtUIES...........ccco ittt sttt sa et ae et e ere e e enae e anes 8-30
Disabling or Enabling Runtime or Compile-Time Tag Handler Reuseccccoooceveinncns 8-30
Tag Handler Code GENEFAtIONceiviiieiieeieie e se e et e e sae e e sreeraenne s 8-32

Scripting Variables, Declarations, and Tag-Extra-Info Classesccocooeeieiiiiiiine e 8-32
USING SCripting Variablesooviiiiii et er e 8-32
SCriPting Variable SCOPES......couiiiiiiiiie ettt 8-33
Variable Declaration Through TLD variable Elements........c.cccoooveiiiiieiicvcce e, 8-33
Variable Declaration Through Tag-Extra-Info Classes..........coevvviininniiinineeee e 8-34

Validation and Tag-Library-Validator CIasses..........cccccveivciiii i 8-36
TLD validator EIBMENT ..ot b 8-36
Key TLV-Related Classes and the validation() Methodcccccciiiniiniiiiicieee 8-38
LI VA o o o= [o T TSR 8-38
Validation MECHANISIMS ... et 8-39

Tag Library EVENT LISTENEIS.......ccv ittt e st ettt et e eneenbeenee e anes 8-39
LI 1Sy (=T Tl =T o g1 o S 8-39
Activation of Tag Library EVENt LISTENEISc.ccviviiiice et e 8-40
Access of TLD Files for Event Listener INformationcccccocovovvivneneneiesncsn e 8-40

End-to-End Custom Tag EXaMPIES.......ccoiiiiiie e 8-40

Example: Using the IterationTag INtErface.........cccviiieiiii e 8-41
Example: Using the IterationTag Interface and a Tag-Extra-Info Class..........cccocevviniiennnen, 8-43
(O%0]p] o1 [I [0 0= TN = o USSR 8-47
General Compile-Time Versus Runtime ConSiderations...........cocccvevervenieneinne e 8-47
JSP Compile-Time Versus Runtime JML Library ... 8-47

9 JSP Globalization Support

CONENT TYPE SEELINTS ...t bbbt b e bbb bttt sttt et 9-1
Content Type Settings in the page DIreCLIVE ...t 9-1
Dynamic Content TYPE SELLINGSoviriiieieieiie ettt bbb 9-4
Oracle Extension for the Character Set of the JSP Writer Object..........ccccovvevieiieiiiiciecce e 9-5

JSP Support for Multibyte Parameter ENCOAINGc.ccoviiiiiiiiieieccee e 9-5
Standard setCharacterEncoding() Method...........cccoeiiiiiiiiii s 9-6
Overview of Oracle Extensions for Older Servlet ENVIirONMENtscocveviiiieicinencnie 9-6

A Servlet and JSP Technical Background

BaCKgroUNd ON SEIVIETSocviiee ettt ettt st e s te e be b e et e ereenbeenteneas A-1
Review Of ServIet TECHNOIOQYccooii it eree s A-1
The SEIVIEE INTEITACE ...oviceece ettt et et e et e e ae e ebe e ebe et nnas A-2
SEIVIET CONTAINEIS ...ttt bbbttt s bbb bbbt nr e ne e e e e A-2
LT VA [LTI [o] o SRRSO PPRS A-3
LT VA [00T (=)t -SSP PSS A-4
Application Lifecycle Management Through Event LiStENErS.........cccovvrvviiieincieiiie s A-5
LT V4 [0 i V7o To% 1 1 o o OSSPSR A-5

Web ApPlIcation HIErArChY ... e A-6

Standard JSP Interfaces and METNOUS.............ccoie i A-8

B Third Party Licenses

APACNE HT TP SEIVEL ..ottt bbb bbbt b e bbbt bbbt B-1
The APache SOFtWAIE LICENSEcviiiiceiieece ettt et e esre e sne e B-1

Index

Vii

viii

Send Us Your Comments

Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14014-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?

« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserverdocs_us@oracle.com

« FAX: (650) 506-7225 Attn: Java Platform Group, Information Development
Manager

« Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Preface

This document introduces and explains the Oracle implementation of JavaServer
Pages (JSP) technology, specified by an industry consortium led by Sun Microsystems.
It summarizes standard features but focuses primarily on Oracle implementation
details and value-added features. An overview of standard JSP technology is followed
by discussion of the OC4J implementation, JSP configuration, basic programming
considerations, JSP strategies and tips, translation and deployment, JSP tag libraries,
and globalization support.

JavaServer Pages technology is a component of the standard Java 2 Enterprise Edition
(J2EE). The J2EE component of the Oracle Application Server is known as the Oracle
Application Server Containers for J2EE (OC4J).

The OC4J JSP container in Oracle Application Server 10g Release 2 (10.1.2) is a
complete implementation of the Sun Microsystems JavaServer Pages Specification,
Version 1.2.

This preface contains the following sections:
« Intended Audience

« Documentation Accessibility

« Structure

« Related Documents

« Conventions

Intended Audience

This document is intended for developers interested in creating Web applications
based on JavaServer Pages technology. It assumes that working Web and servlet
environments already exist, and that readers are already familiar with the following:

« General Web technology

« General servlet technology (technical background provided in Appendix A)
« How to configure their Web server and servlet environments

« HTML

« Java

« Oracle JDBC (for JSP applications accessing Oracle Database)

While some information about standard JSP technology and syntax is provided in
Chapter 1 and elsewhere, there is no attempt at completeness in this area. For

Xi

additional information about standard JSP features, consult the Sun Microsystems
JavaServer Pages Specification or other appropriate reference materials.

The JSP 1.2 specification relies on a servlet 2.3 environment, and this document is
geared largely toward such environments (also considering some JSP 1.1 backward
compatibility issues). The OC4J JSP container has special features for earlier servlet
environments, however.

For documentation of tag libraries and utilities that are provided with the OC4J
product, please refer to the Oracle Application Server Containers for J2EE JSP Tag Libraries
and Utilities Reference.

For a quick primer about getting started with JSP pages in OC4J, see the Oracle
Application Server Containers for J2EE User’s Guide.

Documentation Accessibility

Structure

Xi

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessi bility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

This document contains:

Chapter 1, "General JSP Overview"

This chapter highlights standard JSP 1.2 technology. It is not intended as a complete
reference.

Chapter 2, "Overview of the Oracle JSP Implementation”

This chapter provides an overview of the JSP implementation provided with OC4J,
including both portable and Oracle-specific value-added features.

Chapter 3, "Getting Started"

This contains information about required files for the OC4J JSP container, OC4J Web
server configuration, and JSP configuration.

Chapter 4, "Basic Programming Considerations"
This chapter introduces basic JSP programming considerations, including JSP-servlet
interaction and database access, and provides some examples.

Chapter 5, "JSP XML Support"

This chapter describes JavaServer Pages XML support, primarily added in the JSP 1.2
specification. JSP XML syntax and the JSP XML view are described.

Chapter 6, "Additional Programming Considerations"

This chapter discusses a variety of general programming, configuration, and runtime
issues that the developer should be aware of. It also covers considerations specific to
the OC4J environment.

Chapter 7, "JSP Translation and Deployment"

This chapter describes features of the OC4J JSP translator and Oracle oj spc
pretranslation utility, and discusses general and OC4J-specific deployment
considerations.

Chapter 8, "JSP Tag Libraries"

This chapter describes the standard JSP 1.2 framework for custom tag libraries. There
is also discussion of OC4J extended features for tag library support, and
vendor-specific compile-time tags.

Chapter 9, "JSP Globalization Support"
This chapter covers features for globalization support.

Appendix A, "Servlet and JSP Technical Background"

This appendix provides a brief background of servlet technology and introduces the
standard JSP interfaces for translated pages.

Appendix B, "Third Party Licenses"

This appendix includes the Third Party License for third party products included with
Oracle Application Server and discussed in this document.

Related Documents

For more information, see these Oracle resources available from the Oracle Java
Platform Group:

« Oracle Application Server Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

« Oracle Application Server Containers for J2EE Stand Alone User’s Guide

This version of the user’s guide is specifically for the standalone version of OC4J,
and is available when you download the standalone version from OTN. OC4J
standalone is used in development environments, but not typically in production
environments.

« Oracle Application Server Containers for J2EE Servlet Developer’s Guide

xiii

Xiv

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J, including basic servlet development, use of
JDBC and EJBs, building and deploying applications, and servlet and Web site
configuration. Consideration is given to both OC4J in a standalone environment
for development and OC4J in Oracle Application Server for production.

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OC4J. There is also a summary of tag libraries from other Oracle product groups.

Oracle Application Server Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

Oracle Application Server Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server 10g Security
Guide), describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

Also available from the Oracle Java Platform group:

Oracle Database Java Developer's Guide
Oracle Database JDBC Developer's Guide and Reference

Oracle Database JPublisher User's Guide

Available from the Oracle Application Server group:

Oracle Application Server Administrator’s Guide

Oracle Application Server Security Guide

Oracle Application Server Performance Guide

Oracle Enterprise Manager Concepts

Oracle HTTP Server Administrator’s Guide

Oracle Application Server Globalization Guide

Oracle Application Server Web Cache Administrator’s Guide
Oracle Application Server Web Services Developer’s Guide

Oracle Application Server Upgrading to 10g Release 2 (10.1.2)

Available from the Oracle JDeveloper group:

Oracle JDeveloper online help
Oracle JDeveloper documentation on the Oracle Technology Network:

http: //wwmv. oracl e. com t echnol ogy/ product s/ j dev/ content. ht mi

Available from the Oracle Server Technologies group:

Oracle XML Developer’s Kit Programmer’s Guide
Oracle XML API Reference

Oracle Database Application Developer's Guide - Fundamentals

» PL/SQL Packages and Types Reference

« PL/SQL User's Guide and Reference

« Oracle Database SQL Reference

» Oracle Database Net Services Administrator’s Guide

» Oracle Advanced Security Administrator's Guide

» Oracle Database Reference

Printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. com

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://ww. oracl e. com t echnol ogy/ menber shi p/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://ww. oracl e. com t echnol ogy/ docunent ati on

The following OTN Web site for Java servlets and JavaServer Pages is also available:

http://ww. oracl e. com t echnol ogy/tech/javalservlets/

The following resources are available from Sun Microsystems.
« Web site for JavaServer Pages, including the latest specifications:

http://java. sun. coni products/jsp/index. htm

« Web site for Java Servlet technology, including the latest specifications:

http://java. sun. coni product s/ servl et/ i ndex. ht m

=« | sSp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to | i st serv@ ava. sun. comwith the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname

It is recommended, however, that you request only the daily digest of the posted
e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions

The following conventions are also used in this manual:

Convention Meaning

Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

XV

XVi

Convention

Meaning

Italics

Monospace
(fixed-wi dth)
font

I'tal i c nonospace
(fixed-wi dth)
font

<>

[]

Italic typeface indicates book titles or emphasis, or terms that are
defined in the text.

Monospace typeface within text indicates items such as executables, file
names, directory names, Java class names, Java method names, variable
names, other programmatic elements (such as JSP tags or attributes, or
XML elements or attributes), or database SQL commands or elements
(such as schema names, table names, or column names).

Italic monospace font represents placeholders or variables.

Angle brackets enclose user-supplied names.

Brackets enclose optional clauses from which you can choose one or
none.

A vertical bar represents a choice of two or more options. Enter one of
the options. Do not enter the vertical bar.

1

General JSP Overview

This chapter reviews standard features and functionality of JavaServer Pages
technology, then concludes with a discussion of JSP execution models. For further
general information, consult the Sun Microsystems JavaServer Pages Specification.

JSP functionality depends upon servlet functionality. You can also refer to the Sun
Microsystems Java Servlet Specification for information.

For an overview of the JSP implementation in Oracle Application Server Containers
for J2EE (OC4)), see Chapter 2, "Overview of the Oracle JSP Implementation”. Also
note that Appendix A, "Servlet and JSP Technical Background", provides related
background on standard servlet and JSP technology.

The chapter contains the following sections:
« Introduction to JavaServer Pages
« Overview of JSP Syntax Elements

= JSP Execution

Note: The Sample Applications chapter available in previous
releases has been removed. Applications that were listed there are
available in the OC4J demos, available from the following location
on the Oracle Technology Network (requiring an OTN
membership, which is free of charge):

http://ww. oracl e. conm t echnol ogy/tech/j aval/ oc4j / denos/

Introduction to JavaServer Pages

JavaServer Pages is a technology specified by Sun Microsystems as a convenient way
of generating dynamic content in pages that are output by a Web application (an
application running on a Web server).

This technology, which is closely coupled with Java servlet technology, enables you to
include Java code snippets and calls to external Java components within the HTML
code (or other markup code, such as XML) of your Web pages. JavaServer Pages (JSP)
technology works nicely as a front-end for business logic and dynamic functionality in
JavaBeans and Enterprise JavaBeans (EJBs).

JSP code is distinct from other Web scripting code, such as JavaScript, in a Web page.
Anything that you can include in a normal HTML page can be included in a JSP page
as well.

General JSP Overview 1-1

Introduction to JavaServer Pages

In a typical scenario for a database application, a JSP page will call a component such
as a JavaBean or Enterprise JavaBean, and the bean will directly or indirectly access the
database, generally through JDBC.

A JSP page is translated into a Java servlet before being executed, and processes HTTP
requests and generates responses similarly to any other servlet. JSP technology offers a
more convenient way to code the servlet. The translation typically occurs on demand,
but sometimes in advance.

Furthermore, JSP pages are fully interoperable with servlets—JSP pages can include
output from a servlet or forward to a servlet, and servlets can include output from a
JSP page or forward to a JSP page.

What a JSP Page Looks Like

Here is an example of a simple JSP page. For an explanation of JSP syntax elements
used here, see "Overview of JSP Syntax Elements" on page 1-5.

<HTM.>

<HEAD><TI TLE>The Wl cone User JSP</TI TLE></ HEAD>
<BODY>

<% String user=request.getParanmeter("user"); %
<H3>Wel come <% (user==null) ? "" : user %! </H3>
<P> Today is <% new java.util.Date() %. Have a nice day! :-)</P>
Enter nane: </ B>

<FORM METHCOD=get >

<INPUT TYPE="text" NAME="user" SIZE=15>

<INPUT TYPE="subnit" VALUE="Subnit name">

</ FORV>

</ BODY>

</ HTM.>

In a traditional JSP page, Java elements are set off by tags such as <%and %, as in the
preceding example. (JSP XML syntax is different, as described in "Details of JSP XML
Documents" on page 5-3.) In this example, Java snippets get the user name from an
HTTP request object, print the user name, and get the current date.

This JSP page will produce the following output if the user inputs the name "Amy":

1-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Introduction to JavaServer Pages

- The Welcome User JSP - Netscape

File Edit “iew Go Communicator Help

-

< » A B/ 2 W 3 & i N

Back Forward Reload Home Search Metzcape Print Security S.h:up

Wt " Bookmarks A Lu:n:atiu:un:l j ﬁ' What's Related

= | Dacument: Daone

Welcome Amy!
Today is Wed Jun 21 13:42:23 PDT 2000. Have a nice day! :-)

Enter name:

| Submit name

Convenience of JSP Coding Versus Servlet Coding

Combining Java code and Java calls into an HTML page is more convenient than using
straight Java code in a servlet. JSP syntax gives you a shortcut for coding dynamic Web
pages, typically requiring much less code than Java servlet syntax. Following is an
example contrasting servlet code and JSP code.

Servlet Code

inport javax.servlet.*;
i nport javax.servlet.http.*;
inport java.io.*;

public class Hello extends HttpServl et
{
public void doGet(HtpServletRequest rq, HtpServletResponse rsp)
{
rsp. set Cont ent Type(“text/htm");
try {
PrintWiter out = rsp.getWiter();
out.println("<HTM.>");
out. printl n("<HEAD><TI TLE>WI cone</ TI TLE></ HEAD>") ;
out. println("<BODY>");
out. println("<H3>Wel come! </ H3>");
out.println("<P>Today is "+new java.util.Date()+".</P>");
out. println("</BODY>");
out. println("</HTM.>");
} catch (I OException ioe)
{

Il (error processing)

}

===

}

General JSP Overview 1-3

Introduction to JavaServer Pages

See "The Servlet Interface" on page A-2 for some background information about the
standard Ht t pSer vl et abstract class, Ht t pSer vl et Request interface, and
Ht t pSer vl et Response interface.

JSP Code

<HTM.>

<HEAD><TI TLE>W¢I cone</ Tl TLE></ HEAD>

<BODY>

<H3>Wel comre! </ H3>

<P>Today is <% new java.util.Date() %.</P>
</ BODY>

</ HTM.>

Note how much simpler JSP syntax is. Among other things, it saves Java overhead
such as package importsandtry. .. cat ch blocks.

Note: The list of packages imported into a JSP page by default
changed in the OC4J 9.0.3 implementation. The default list was
reduced to follow the JSP specification. See "Default Package
Imports" on page 3-7 for more information. Therefore, beginning
with Oracle9iAS Release 2 (9.0.3), the preceding JSP example
requires a configuration setting to import the j ava. i o package.

Additionally, the JSP translator automatically handles a significant amount of servlet
coding overhead for you in the . j ava file that it outputs, such as directly or indirectly
implementing the standard j avax. servl et . j sp. Ht t pJspPage interface (covered
in "Standard JSP Interfaces and Methods" on page A-8) and adding code to acquire an
HTTP session.

Also note that because the HTML of a JSP page is not embedded within Java print
statements, as it is in servlet code, you can use HTML authoring tools to create JSP

pages.

Separation of Business Logic from Page Presentation: Calling JavaBeans

JSP technology allows separating the development efforts between the HTML code
that determines static page presentation, and the Java code that processes business
logic and presents dynamic content. It therefore becomes much easier to split
maintenance responsibilities between presentation and layout specialists who might
be proficient in HTML but not Java, and code specialists who may be proficient in Java
but not HTML.

In a typical JSP page, most Java code and business logic will not be within snippets
embedded in the JSP page. Instead, it will be in JavaBeans or Enterprise JavaBeans that
are invoked from the JSP page.

JSP technology offers the following syntax for defining and creating an instance of a
JavaBeans class:

<j sp: useBean i d="pageBean" cl ass="nybeans. NameBean" scope="page" />

This example creates an instance, pageBean, of the mybeans. NaneBean class. The
scope parameter will be explained later in this chapter.

Later in the page, you can use this bean instance, as in the following example:

Hel lo <% pageBean. get NewName() % !

1-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

This prints "Hello Julie !, for example, if the name "Julie" is in the newNane attribute
of pageBean, which might occur through user input.

The separation of business logic from page presentation allows convenient division of
responsibilities between the Java expert who is responsible for the business logic and
dynamic content (the person who owns and maintains the code for the NaneBean
class) and the HTML expert who is responsible for the static presentation and layout of
the Web page that the application users see (the person who owns and maintains the
code in the . j sp file for this JSP page).

Tags used with JavaBeans—useBean to declare the JavaBean instance and
get Property and set Propert y to access bean properties—are further discussed in
"Standard Actions: JSP Tags" on page 1-12.

JSP Pages and Alternative Markup Languages

JavaServer Pages technology is typically used for dynamic HTML output, but the JSP
specification also supports additional types of structured, text-based document output.
A JSP translator does not process text outside of JSP elements, so any text that is
appropriate for Web pages in general is typically appropriate for a JSP page as well.

A JSP page takes information from an HTTP request and accesses information from a
database server (such as through a SQL database query). It combines and processes
this information and incorporates it, as appropriate, into an HTTP response with
dynamic content. The content can be formatted as HTML, DHTML, XHTML, or XML,
for example.

For information about JSP support for XML, refer to Chapter 5, "JSP XML Support"
and to the Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Overview of JSP Syntax Elements

You have seen a simple example of JSP syntax in "What a JSP Page Looks Like" on
page 1-2. Now here is a top-level list of syntax categories and topics:

« Directives: These convey information regarding the JSP page as a whole.

« Scripting elements: These are Java coding elements such as declarations,
expressions, scriptlets, and comments.

= Objects and scopes: JSP objects can be created either explicitly or implicitly and are
accessible within a given scope, such as from anywhere in the JSP page or the
session.

« Actions: These create objects or affect the output stream in the JSP response (or
both).

This section introduces each category, including basic syntax and a few examples.
There is also discussion of bean property conversions, and an introduction to custom
tag libraries (used for custom actions). For more information, see the Sun
Microsystems JavaServer Pages Specification.

Note: This section describes traditional JSP syntax. For
information about JSP XML syntax and JSP XML documents, see
Chapter 5, "JSP XML Support".

General JSP Overview 1-5

Overview of JSP Syntax Elements

Directives

Directives provide instruction to the JSP container regarding the entire JSP page. This
information is used in translating or executing the page. The basic syntax is as follows:

<U@directive attributel="val uel" attribute2="value2"... %

The JSP specification supports the following directives:
« page
« include

. taglib

page directive

Use this directive to specify any of a number of page-dependent attributes, such as
scripting language, content type, character encoding, class to extend, packages to
import, an error page to use, the JSP page output buffer size, and whether to
automatically flush the buffer when it is full. For example:

<%@ page | anguage="java" inport="packages. nypackage" errorPage="boof.jsp" %

Alternatively, to enable auto-flush and set the JSP page output buffer size to 20 KB:
<%@ page autoFl ush="true" buffer="20kb" %

This example unbuffers the page:

<%@ page buffer="none" %

Notes:
= The default buffer size is 8 KB.
« ltisillegal to setaut oFl ush="true" when buf f er =" none".

« A ISP page using an error page must be buffered. Forwarding
to an error page (not outputting it to the browser) clears the
buffer.

= Inthe Oracle JSP implementation, "j ava" is the default
language setting. It is good programming practice to set it
explicitly, however.

« Forinformation about using page directive attributes to set the
content type and character set for the JSP page and response
object, see "Content Type Settings in the page Directive" on
page 9-1.

include directive

Use this directive to specify a resource that contains text or code to be inserted into the
JSP page when it is translated. For example:

<%@include file="/jspluserinfopage.jsp" %

Specify either a page-relative or context-relative path to the resource. See "Requesting
a JSP Page" on page 1-21 for discussion of page-relative and context-relative paths.

1-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

Notes:

« Theincl ude directive, referred to as a static include, is
comparable in nature to the j sp: i ncl ude action discussed
later in this chapter, butj sp: i ncl ude takes effect at
request-time instead of translation-time. See "Static Includes
Versus Dynamic Includes” on page 6-1.

« Thei ncl ude directive can be used only between files in the
same servlet context (application).

« See "JSP File Naming Conventions" on page 3-7 for information
about naming conventions for included files.

taglib directive

Use this directive to specify a library of custom JSP tags that will be used in the JSP
page. Vendors can extend JSP functionality with their own sets of tags. This directive
includes a pointer to a tag library descriptor file and a prefix to distinguish use of tags
from that library. For example:

<Y@taglib uri="/oracustontags" prefix="oracust" %
Later in the page, use the or acust prefix whenever you want to use one of the tags in
the library. Presume this library includes a tag dbaseAccess:

<oracust: dbaseAccess ... >
</ oracust : dbaseAccess>

JSP tag libraries and tag library descriptor files are introduced later in this chapter, in
"Custom Tag Libraries" on page 1-18, and discussed in detail in Chapter 8, "JSP Tag
Libraries".

Scripting Elements

JSP scripting elements include the following categories of Java code snippets that can
appear in a JSP page:

« Declarations
« Expressions
« Scriptlets

« Comments

Declarations
These are statements declaring methods or member variables that will be used in the
JSP page.

A JSP declaration uses standard Java syntax within the <% . . . % declaration tags to
declare a member variable or method. This will result in a corresponding declaration
in the generated servlet code. For example:

<% double f1=0.0; %

This example declares a member variable, f 1. In the servlet class code generated by
the JSP translator, f 1 will be declared at the class top level.

General JSP Overview 1-7

Overview of JSP Syntax Elements

Note: Method variables, as opposed to member variables, are
declared within JSP scriptlets as described below. See "Method

Variable Declarations Versus Member Variable Declarations” on
page 6-7 for a comparison between the two.

Expressions

These are Java expressions that are evaluated, converted into string values as
appropriate, and displayed where they are encountered on the page.

A JSP expression does not end in a semicolon, and is contained within <%. . . % tags.
For example:

<P> Today is <% new java.util.Date() %. Have a nice day! </ B></P>

Note: A JSP expression in a request-time attribute, such asin a
j sp: set Property statement, need not be converted to a string
value.

Scriptlets
These are portions of Java code intermixed within the markup language of the page.

A scriptlet, or code fragment, can consist of anything from a partial line to multiple
lines of Java code. You can use them within the HTML code of a JSP page to set up
conditional branches or a loop, for example.

A JSP scriptlet is contained within <% . . % scriptlet tags, using normal Java syntax.
Example 1.

<% if (pageBean.getNewNane().equals("")) { %
| don’t know you.

<%} else { %
Hel | o <% pageBean. get NewNane() %.

<%} %

Three one-line JSP scriptlets are intermixed with two lines of HTML code, one of
which includes a JSP expression (which does not require a semicolon). Note that JSP
syntax allows HTML code to be the code that is conditionally executed within the i f
and el se branches (inside the Java brackets set out in the scriptlets).

The preceding example assumes the use of a JavaBean instance, pageBean.
Example 2:

<%if (pageBean.getNewNane().equals("")) { %
| don’t know you.
<% enpngr . unknownenpl oyee();
} else { %
Hel | o <% pageBean. get NewNane() %.
<% enpngr . knownenpl oyee();
} %

This example adds more Java code to the scriptlets. It assumes the use of a JavaBean
instance, pageBean, and assumes that some object, enpngr , was previously
instantiated and has methods to execute appropriate functionality for a known
employee or an unknown employee.

1-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

Note: Use a JSP scriptlet to declare method variables, as opposed
to member variables, as in the following example:

<% doubl e f2=0.0; %

This scriptlet declares a method variable, f 2. In the servlet class
code generated by the JSP translator, f 2 will be declared as a
variable within the service method of the servlet.

Member variables are declared in JSP declarations as described
above.

For a comparative discussion, see "Method Variable Declarations
Versus Member Variable Declarations" on page 6-7.

Comments

These are developer comments embedded within the JSP code, similar to comments
embedded within any Java code.

Comments are contained within <% - . . . - - % syntax. For example:
<% - Execute the followi ng branch if no user nane is entered. --%

Unlike HTML comments, JSP comments are not visible when users view the page
source from their browsers.

JSP Objects and Scopes

In this document, the term JSP object refers to a Java class instance declared within or
accessible to a JSP page. JSP objects can be either:

« Explicit: Explicit objects are declared and created within the code of your JSP page,
accessible to that page and other pages according to the scope setting you choose.

or:

« Implicit: Implicit objects are created by the underlying JSP mechanism and
accessible to Java scriptlets or expressions in JSP pages according to the inherent
scope setting of the particular object type.

These topics are discussed in the following sections:
« Explicit Objects

« Implicit Objects

« Using an Implicit Object

» Object Scopes

Explicit Objects

Explicit objects are typically JavaBean instances that are declared and created in

j sp: useBean action statements. The j sp: useBean statement and other action
statements are described in "Standard Actions: JSP Tags" on page 1-12, but here is an
example:

<j sp: useBean i d="pageBean" cl ass="nybeans. NaneBean" scope="page" />

This statement defines an instance, pageBean, of the NanmeBean class that is in the
nybeans package. The scope parameter is discussed in "Object Scopes" on page 1-11.

General JSP Overview 1-9

Overview of JSP Syntax Elements

You can also create objects within Java scriptlets or declarations, just as you would
create Java class instances in any Java program.

Implicit Objects

JSP technology makes available to any JSP page a set of implicit objects. These are Java
objects that are created automatically by the JSP container and that allow interaction
with the underlying servlet environment.

The implicit objects listed immediately below are available. For information about
methods available with these objects, refer to the Sun Microsystems Javadoc for the
noted classes and interfaces at the following location:

http://java. sun. coni product s/ servl et/ 2. 3/javadoc/ i ndex. ht m

. page

This is an instance of the JSP page implementation class and is created when the
page is translated. The page implementation class implements the interface

j avax. servl et.jsp. H t pJspPage. Note that page is synonymous witht hi s
within a JSP page.

. request

This represents an HTTP request and is an instance of a class that implements the
javax.servlet. http. Ht pServl et Request interface, which extends the
j avax. servl et. Servl et Request interface.

. response

This represents an HTTP response and is an instance of a class that implements the
j avax.servlet.http. H t pSer vl et Response interface, which extends the
j avax. servl et. Servl et Response interface.

Theresponse and r equest objects for a particular request are associated with
each other.

« pageCont ext

This represents the page context of a JSP page, which is provided for storage and
access of all page scope objects of a JSP page instance. A pageCont ext object is
an instance of the j avax. servl et . j sp. PageCont ext class.

The pageCont ext object has page scope, making it accessible only to the JSP
page instance with which it is associated.

= Session

This represents an HTTP session and is an instance of a class that implements the
j avax.servlet. http. H t pSessi on interface.

« application

This represents the servlet context for the Web application and is an instance of a
class that implements the j avax. ser vl et . Ser vl et Cont ext interface.

The appl i cat i on object is accessible from any JSP page instance running as part
of any instance of the application within a single JVM. (The programmer should
be aware of the server architecture regarding use of JVMs.)

. out

This is an object that is used to write content to the output stream of a JSP page
instance. It is an instance of thej avax. servl et. | sp. JspWi t er class, which
extends thej ava. i o. Witer class.

1-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

The out object is associated with the r esponse object for a particular request.
« config

This represents the servlet configuration for a JSP page and is an instance of a class
that implements the j avax. servl et. Servl et Confi g interface. Generally
speaking, servlet containers use Ser vl et Conf i g instances to provide
information to servlets during initialization. Part of this information is the
appropriate Ser vl et Cont ext instance.

« exception (JSP error pages only)

This implicit object applies only to JSP error pages, which are pages to which
processing is forwarded when an exception is thrown from another JSP page. They
must have the page directive i SErr or Page attribute setto t r ue.

The implicit except i on objectisaj ava. | ang. Excepti on instance that
represents the uncaught exception that was thrown from another JSP page and
that resulted in the current error page being invoked.

The except i on object is accessible only from the JSP error page instance to which
processing was forwarded when the exception was encountered. For an example
of JSP error processing and use of the except i on object, see "Runtime Error
Processing" on page 4-14.

Using an Implicit Object

Any of the implicit objects discussed in the preceding section might be useful. The
following example uses the r equest object to retrieve and display the value of the
user name parameter from the HTTP request:

<H3> Wl cone <% request. get Paraneter("username") % ! <H3>

The r equest object, like the other implicit objects, is available automatically; it is not
explicitly instantiated.

Object Scopes

Objects in a JSP page, whether explicit or implicit, are accessible within a particular
scope. In the case of explicit objects, such as a JavaBean instance created in a

j sp: useBean action, you can explicitly set the scope with the following syntax, as in
the example in "Explicit Objects" on page 1-9:

scope="scopeval ue"

There are four possible scopes:

« scope="page" (default scope): The object is accessible only from within the JSP
page where it was created. A page-scope object is stored in the implicit
pageCont ext object. The page scope ends when the page stops executing.

Note that when the user refreshes the page while executing a JSP page, hew
instances will be created of all page-scope objects.

« scope="request": The object is accessible from any JSP page servicing the same
HTTP request that is serviced by the JSP page that created the object. A
request-scope object is stored in the implicit r equest object. The r equest scope
ends at the conclusion of the HTTP request.

« Sscope="session": The object is accessible from any JSP page that is sharing the
same HTTP session as the JSP page that created the object. A session-scope object

General JSP Overview 1-11

Overview of JSP Syntax Elements

is stored in the implicit sessi on object. The sessi on scope ends when the HTTP
session times out or is invalidated.

« scope="application":The object is accessible from any JSP page that is used
in the same Web application as the JSP page that created the object, within any
single Java virtual machine. The concept is similar to that of a Java static variable.
An application-scope object is stored in the implicitappl i cat i on servlet context
object. The appl i cat i on scope ends when the application itself terminates, or
when the JSP container or servlet container shuts down.

You can think of these four scopes as being in the following progression, from
narrowest scope to broadest scope:

page < request < session < application

If you want to share an object between different pages in an application, such as when
forwarding execution from one page to another, or including content from one page in
another, you cannot use page scope for the shared object; in this case, there would be a
separate object instance associated with each page. The narrowest scope you can use to
share an object between pages is r equest . (For information about including and
forwarding pages, see "Standard Actions: JSP Tags" below.)

Note: Therequest, sessi on, and appl i cati on scopes also
apply to servlets.

Standard Actions: JSP Tags

JSP action elements result in some sort of action occurring while the JSP page is being
executed, such as instantiating a Java object and making it available to the page. Such
actions can include the following:

« Creating a JavaBean instance and accessing its properties
« Forwarding execution to another HTML page, JSP page, or servlet
« Including an external resource in the JSP page

For standard actions, there is a set of tags defined in the JSP specification. Although
directives and scripting elements described earlier in this chapter are sufficient to code
a JSP page, the standard tags described here provide additional functionality and
convenience.

Here is the general tag syntax for JSP standard actions:

<jsp:tag attrl="valuel" attr2="value2" ... attrN="val ueN'>
... body...

</jsp:tag>

Alternatively, if there is no body:

<jsp:tag attrl="valuel", ..., attrN="valueN' />

The JSP specification includes the following standard action tags, which are
introduced and briefly discussed immediately below:

= | Sp:usebean
« jSp:setProperty
« jSp:getProperty

« | Sp:param

1-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

= jsp:include
« jsp:forward

« jsp:plugin

jsp:useBean tag

The j sp: useBean tag accesses or creates an instance of a Java type, typically a
JavaBean class, and associates the instance with a specified name, or ID. The instance
is then available by that ID as a scripting variable of specified scope. Scripting
variables are introduced in "Custom Tag Libraries" on page 1-18. Scopes are discussed
in "JSP Objects and Scopes" on page 1-9.

The key attributes are cl ass, type,i d, and scope. (There is also a less frequently
used beanNane attribute, discussed below.)

Use the i d attribute to specify the instance name. The JSP container will first search for
an object by the specified ID, of the specified type, in the specified scope. If it does not
exist, the container will attempt to create it.

Intended use of the cl ass attribute is to specify a class that can be instantiated, if
necessary, by the JSP container. The class cannot be abstract and must have a
no-argument constructor. Intended use of the t ype attribute is to specify a type that
cannot be instantiated by the JSP container—either an interface, an abstract class, or a
class without a no-argument constructor. You would use t ype in a situation where the
instance will already exist, or where an instance of an instantiable class will be
assigned to the type. There are three typical scenarios:

« Usetypeandi dto specify an instance that already exists in the target scope.

« Usecl ass andi d to specify the name of an instance of the class—either an
instance that already exists in the target scope or an instance to be newly created
by the JSP container.

« Useclass,type,andi d to specify a class to instantiate and a type to assign the
instance to. In this case, the class must be legally assignable to the type.

Use the scope attribute to specify the scope of the instance—either page for the
instance to be associated with the page context object, r equest for it to be associated
with the HTTP request object, sessi on for it to be associated with the HTTP session
object, or appl i cati on for it to be associated with the servlet context.

As an alternative to using the cl ass attribute, you can use the beanNane attribute. In
this case, you have the option of specifying a serializable resource instead of a class
name. When you use the beanNane attribute, the JSP container creates the instance by
using thei nst anti at e() method of the j ava. beans. Beans class.

The following example uses a request-scope instance r eqobj of type Myl ntfc.
Because Myl nt f ¢ is an interface and cannot be instantiated directly, r eqobj would
have to already exist.

<j sp: useBean id="reqobj" type="nypkg. MIntfc" scope="request" />

This next example uses a page-scope instance pageobj of class PageBean, first
creating it if necessary:

<j sp: useBean i d="pageobj" cl ass="nybeans. PageBean" scope="page" />

The following example creates an instance of class Sessi onBean and assigns the
instance to the variable sessobj of type Myl ntf c:

<j sp: useBean id="sessobj" cl ass="nybeans. Sessi onBean"

General JSP Overview 1-13

Overview of JSP Syntax Elements

type="nypkg. Myl ntfc scope="session" />

jsp:setProperty tag

Thej sp: set Property tag sets one or more bean properties. The bean must have
been previously specified inaj sp: useBean tag. You can directly specify a value for a
specified property, or take the value for a specified property from an associated HTTP
request parameter, or iterate through a series of properties and values from the HTTP
request parameters.

The following example sets the user property of the pageBean instance (defined in
the preceding j sp: useBean example) to a value of "Smith":

<j sp: setProperty nanme="pageBean" property="user" value="Snith" />

The following example sets the user property of the pageBean instance according to
the value set for a parameter called user nane in the HTTP request:

<j sp: set Property name="pageBean" property="user" paran="usernane" />

If the bean property and request parameter have the same name (user), you can
simply set the property as follows:

<j sp: set Property nane="pageBean" property="user" />

The following example results in iteration over the HTTP request parameters,

matching bean property names with request parameter names and setting bean
property values according to the corresponding request parameter values:

<j sp: set Property name="pageBean" property="*" />
When you use the j sp: set Property tag, string input can be used to specify the

value of a non-string property through conversions that happen behind the scenes. See
"Bean Property Conversions from String Values" on page 1-17.

Important: Note the following for pr operty="*":

« To specify that iteration should continue if an error is
encountered, set the set property_onerr_conti nue
configuration parameter to t r ue. This parameter is described
under "JSP Configuration Parameters" on page 3-11.

= The JSP specification does not stipulate the order in which
properties are set. If order matters, and if you want to ensure
that your JSP page is portable, you should use a separate
j sp: set Property statement for each property. Also, if you
use separate j sp: set Pr oper t y statements, the JSP translator
can generate the corresponding set XXX() methods directly. In
this case, introspection occurs only during translation. There
will be no need to introspect the bean during runtime, which is
more costly.

jsp:getProperty tag

Thej sp: get Property tag reads a bean property value, converts it to a Java string,
and places the string value into the implicit out object so that it can be displayed as
output. The bean must have been previously specified in aj sp: useBean tag. For the
string conversion, primitive types are converted directly and object types are
converted using thet oSt ri ng() method specified in the j ava. | ang. Obj ect class.

1-14 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

The following example puts the value of the user property of the pageBean bean
into the out object:

<j sp: get Property name="pageBean" property="user" />

jsp:param tag
You can use j sp: par amtags in conjunction with j sp: i ncl ude,j sp: f orwar d, and
j sp: pl ugi n tags (described below).

Used with j sp: f orwar d andj sp: i ncl ude tags, aj sp: par amtag optionally
provides name/value pairs for parameter values in the HTTP r equest object. New
parameters and values specified with this action are added to the r equest object,
with new values taking precedence over old.

The following example sets the r equest object parameter user namne to a value of
Smth:

<j sp: par am nane="user nane" val ue="Smith" />

jsp:include tag

The j sp: i ncl ude tag inserts additional static or dynamic resources into the page at
request-time as the page is displayed. Specify the resource with a relative URL (either
page-relative or application-relative). For example:

<j sp:include page="/tenpl ates/userinfopage.jsp" flush="true" />

A"t rue" setting of the f | ush attribute results in the buffer being flushed to the
browser when aj sp: i ncl ude action is executed. The JSP specification and the OC4J
JSP container support either a"t r ue” or "f al se" setting, with "f al se" being the
default. (The JSP 1.1 specification supported only a "t r ue" setting, with f | ush being a
required attribute.)

You can also have an action body with j sp: par amtags, as shown in the following
example:

<j sp:include page="/tenpl ates/userinfopage.sp" flush="true" >
<j sp: param nane="user nane" val ue="Smith" />
<j sp: par am nanme="user enpno" val ue="9876" />

</jsp:include>

Note that the following syntax would work as an alternative to the preceding example:

<j sp:include page="/tenpl at es/ useri nf opage. j sp?user name=Sni t h&user enpno=9876" flush="true" />

Notes:

« Thejsp:incl ude tag, known as a "dynamic include", is
similar in nature to the i ncl ude directive discussed earlier in
this chapter, but takes effect at request-time instead of
translation-time. See "Static Includes Versus Dynamic Includes”
on page 6-1.

« Thejsp:incl ude tag can be used only between pages in the
same servlet context (application).

General JSP Overview 1-15

Overview of JSP Syntax Elements

jsp:forward tag

Thej sp: f or war d tag effectively terminates execution of the current page, discards
its output, and dispatches a new page—either an HTML page, a JSP page, or a servlet.

The JSP page must be buffered to use aj sp: f or war d tag; you cannot set
buf f er ="none" in a page directive. The action will clear the buffer and not output
contents to the browser.

As withj sp: i ncl ude, you can also have an action body with j sp: par amtags, as
shown in the second of the following examples:

<jsp:forward page="/tenpl ates/ userinfopage.jsp" />

or:

<jsp:forward page="/tenpl ates/ userinfopage.jsp" >
<j sp: par am nane="user nane" val ue="Snith" />
<j sp: par am nanme="user enpno" val ue="9876" />
</j sp: forward>

Notes:

« The difference between the j sp: f or war d examples here and
thej sp: i ncl ude examples earlier is that the j sp: i ncl ude
examples insert user i nf opage. j sp within the output of the
current page; the j sp: f or war d examples stop executing the
current page and display user i nf opage. j sp instead.

« Thej sp: f or war d tag can be used only between pages in the
same servlet context.

« Thej sp: f orward tag results in the original r equest object
being forwarded to the target page. As an alternative, if you do
not want the r equest object forwarded, you can use the
sendRedi rect (St ri ng) method specified in the standard
javax.servlet.http. Ht pServl et Response interface.
This sends a temporary redirect response to the client using the
specified redirect-location URL. You can specify a relative URL;
the servlet container will convert the relative URL to an
absolute URL.

jsp:plugin tag
Thej sp: pl ugi n tag results in the execution of a specified applet or JavaBean in the
client browser, preceded by a download of Java plugin software if necessary.

Specify configuration information, such as the applet to run and the code base, using
j sp: pl ugi n attributes. The JSP container might provide a default URL for the
download, but you can also specify attribute nspl ugi nur | ="ur| " (for a Netscape
browser) ori epl ugi nurl ="url " (for an Internet Explorer browser).

Use nested j sp: par amtags between the j sp: par ans start-tag and end-tag to
specify parameters to the applet or JavaBean. (Note that the j sp: par ans start-tag
and end-tag are not necessary when using j sp: paraminaj sp: i ncl ude or

j sp: forwar d action.)

Useaj sp: fal | back start -tag and end-tag to delimit alternative text to execute if the
plugin cannot run.

1-16 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of JSP Syntax Elements

The following example, from the Sun Microsystems JavaServer Pages Specification, Version
1.2, shows the use of an applet plugin:

<j sp: plugin type=appl et code="Mvl ecul e. cl ass" codebase="/htm" >
<j sp: par ams>
<j sp: param name="nol ecul e" val ue="nol ecul es/ benzene. nol " />
</j sp: par ans>
<j sp: fal | back>
<p> Unable to start the plugin. </p>
</jsp:fall back>
</jsp: pl ugi n>

Many additional parameters—such as ARCHI VE, HEI GHT, NAME, Tl TLE, and
W DTH—are allowed in the j sp: pl ugi n tag as well. Use of these parameters is
according to the general HTML specification.

Bean Property Conversions from String Values

As noted earlier, when you use a JavaBean through aj sp: useBean tag in a JSP page,
and then use aj sp: set Property tag to set a bean property, string input can be used
to specify the value of a non-string property through conversions that happen behind
the scenes. There are two conversion scenarios, covered in the following sections:

« Typical Property Conversions

« Conversions for Property Types with Property Editors

Typical Property Conversions

For a bean property that does not have an associated property editor, Table 1-1 shows
how conversion is accomplished when using a string value to set the property.

Table 1-1 Attribute Conversion Methods

Property Type Conversion

Boolean or boolean According to val ueO (St ri ng) method of Bool ean class

Byte or byte According to val ueO (St ri ng) method of Byt e class

Character or char According to char At (0) method of St ri ng class (inputting an
index value of 0)

Double or double According to val ueO (Stri ng) method of Doubl e class

Integer or int According to val ueOf (St ri ng) method of | nt eger class

Float or float According to val ued (Stri ng) method of Fl oat class

Long or long According to val ueO (St ri ng) method of Long class

Short or short According to val ueOf (St ri ng) method of Short class

Object As if St ri ng constructor is called, using literal string input

The St ri ng instance is returned as an Cbj ect instance.

Conversions for Property Types with Property Editors

A bean property can have an associated property editor, which is a class that
implements the j ava. beans. Propert yEdi t or interface. Such classes can provide
support for GUIs used in editing properties. Generally speaking, there are standard
property editors for standard Java types, and there can be user-defined property
editors for user-defined types. In the OC4J JSP implementation, however, only

General JSP Overview 1-17

Overview of JSP Syntax Elements

user-defined property editors are searched for. Default property editors of the
sun. beans. edi t or s package are not taken into account.

For information about property editors and how to associate a property editor with a
type, you can refer to the Sun Microsystems JavaBeans API Specification.

You can still use a string value to set a property that has an associated property editor,
as specified in the JavaBeans specification. In this situation, the set AsText (Stri ng
t ext) method specified in the Propert yEdi t or interface is used in converting from
string input to a value of the appropriate type. If the set AsText () method throws an
I'1'1 egal Argument Except i on, the conversion will fail.

Custom Tag Libraries

In addition to the standard JSP tags discussed above, the JSP specification lets vendors
define their own tag libraries, and lets vendors implement a framework that allows
customers to define their own tag libraries as well.

A tag library defines a collection of custom tags and can be thought of as a JSP
sub-language. Developers can use tag libraries directly when manually coding a JSP
page, but they might also be used automatically by Java development tools. A
standard tag library must be portable between different JSP container
implementations.

Import a tag library into a JSP page using the t agl i b directive introduced in
"Directives” on page 1-6.

Key concepts of standard JavaServer Pages support for JSP tag libraries include the
following:

« Tag library descriptor files

A tag library descriptor (TLD) file is an XML document that contains information
about a tag library and about individual tags of the library. The file name of a TLD
has the . t | d extension.

« Tag handlers

A tag handler specifies the action of a custom tag and is an instance of a Java class
that implements either the Tag, I t er at i onTag, or Body Tag interface in the
standard j avax. servl et . j sp. t agext package. Which interface to implement
depends on whether the tag has a body and whether the tag handler requires
access to the body content.

« Scripting variables

Custom tag actions can create server-side objects available for use by the tag itself
or by other scripting elements such as scriptlets. This is accomplished by creating
or updating scripting variables.

Details regarding scripting variables that a custom tag defines are specified in the
TLD file or in a subclass of the TagExt r al nf o abstract class (in package

j avax. servl et.j sp.tagext). This document refers to a subclass of

TagExt r al nf 0 as a tag-extra-info class. The JSP container uses instances of these
classes during translation.

« Tag-library-validators

A tag-library-validator class has logic to validate any JSP page that uses the tag
library, according to specified constraints.

= Event listeners

1-18 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

JSP Execution

You can use servlet 2.3 event listeners with a tag library. This functionality is offered
as a convenient alternative to declaring listeners in the application web. xm file.

« Useofweb. xm fortag libraries

The Sun Microsystems Java Servlet Specification describes a standard deployment
descriptor for servlets: the web. xml file. JSP applications can use this file in
specifying the location of a JSP tag library descriptor file.

For JSP tag libraries, the web. xmi file can include at agl i b element and two
subelements: t agl i b-uri andtaglib-1ocation.

For information about these topics, see Chapter 8, "JSP Tag Libraries". For further
information, see the Sun Microsystems JavaServer Pages Specification.

For complete information about the tag libraries provided with OC4J, see the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

JSP Execution

This section provides a top-level look at how a JSP page is run, including on-demand
translation (the first time a JSP page is run), the role of the JSP container and the servlet
container, and error processing.

Note: The term JSP container first appeared in the Sun
Microsystems JavaServer Pages Specification, Version 1.1, replacing
the term JSP engine that was used in earlier specifications. The two
terms are synonymous.

JSP Containers in a Nutshell

A JSP container is an entity that translates, executes, and processes JSP pages and
delivers requests to them.

The exact make-up of a JSP container varies from implementation to implementation,
but it will consist of a servlet or collection of servlets. The JSP container, therefore, is
executed by a servlet container. Servlet containers are summarized in "Servlet
Containers" on page A-2.

A JSP container can be incorporated into a Web server if the Web server is written in
Java, or the container can be otherwise associated with and used by the Web server.

JSP Execution Models

There are two distinct execution models for JSP pages:

« Inmost implementations and situations, the JSP container translates pages on
demand before triggering their execution; that is, at the time they are requested by
the user.

= Insome scenarios, however, the developer might want to translate the pages in
advance and deploy them as working servlets. Command-line tools are available
to translate the pages, load them, and publish them to make them available for
execution. You can have the translation occur either on the client or in the server.
When the user requests the JSP page, it is executed directly, with no translation
necessary.

General JSP Overview 1-19

JSP Execution

On-Demand Translation Model

It is typical to run JSP pages in an on-demand translation scenario. When a JSP page is
requested from a Web server that incorporates the JSP container, a front-end servlet is
instantiated and invoked, assuming proper Web server configuration. This servlet can
be thought of as the front-end of the JSP container. In OC4J, it is
oracle.jsp.runtinmev2.JspServlet.

JspSer vl et locates the JSP page, translates and compiles it if necessary (if the
translated class does not exist or has an earlier timestamp than the JSP page source),
and triggers its execution.

Note that the Web server must be properly configured to map the *. j sp file name
extension (in a URL) to JspSer vl et . This is handled automatically during OC4J
installation, as discussed in "JSP Container Setup" on page 3-10.

Pretranslation Model

As an alternative to the typical on-demand scenario, developers might want to
pretranslate their JSP pages before deploying them. This can offer the following
advantages, for example:

« It can save time for the users when they first request a JSP page, because
translation at execution time is not necessary.

« Itis useful if you want to deploy binary files only, perhaps because the software is
proprietary or you have security concerns and you do not want to expose the
code.

For more information, see "JSP Pretranslation" on page 7-26 and "Deployment of
Binary Files Only" on page 7-28.

Oracle supplies the oj spc command-line utility for pretranslating JSP pages. This
utility has options that allow you to set an appropriate base directory for the output
files, depending on how you want to deploy the application. The oj spc utility is
documented in "The ojspc Pretranslation Utility" on page 7-8.

JSP Pages and On-Demand Translation

Presuming the typical on-demand translation scenario, a JSP page is usually executed
as follows:

1. The user requests the JSP page through a URL ending with a . j sp file name.

2. Upon noting the . j sp file name extension in the URL, the servlet container of the
Web server invokes the JSP container.

3. The JSP container locates the JSP page and translates it if this is the first time it has
been requested. Translation includes producing serviet code ina. j ava file and
then compiling the . j ava file to produce a servlet . cl ass file.

The servlet class generated by the JSP translator extends a class (provided by the
JSP container) that implements the j avax. servl et.j sp. H t pJspPage
interface (described in "Standard JSP Interfaces and Methods" on page A-8). The
servlet class is referred to as the page implementation class. This document will refer
to instances of page implementation classes as JSP page instances.

Translating a JSP page into a servlet automatically incorporates standard servlet
programming overhead into the generated servlet code, such as implementing the
Ht t pJspPage interface and generating code for its service method.

1-20 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

JSP Execution

4. The JSP container triggers instantiation and execution of the page implementation
class.

The JSP page instance will then process the HTTP request, generate an HTTP response,
and pass the response back to the client.

Note: The preceding steps are loosely described for purposes of
this discussion. As mentioned earlier, each vendor decides how to
implement its JSP container, but it will consist of a servlet or
collection of servlets. For example, there might be a front-end
servlet that locates the JSP page, a translation servlet that handles
translation and compilation, and a wrapper servlet class that is
extended by each page implementation class (because a translated
page is not actually a pure servlet and cannot be run directly by the
servlet container). A servlet container is required to run each of
these components.

Requesting a JSP Page

A JSP page can be requested either directly through a URL or indirectly through
another Web page or servlet.

Directly Requesting a JSP Page

As with a servlet or HTML page, the user can request a JSP page directly by URL. For
example, suppose you have a Hel | oWor | d JSP page that is located under a myapp
directory, as follows, where nmyapp is mapped to the nyappr oot context path in the
Web server:

myapp/ di r1/ Hel | oVWr |1 d.j sp

You can request it with a URL such as the following:
http://host: port/nyapproot/dirl/ HelloWrld.jsp
The first time the user requests Hel | oWor | d. j sp, the JSP container triggers both

translation and execution of the page. With subsequent requests, the JSP container
triggers page execution only; the translation step is no longer necessary.

Note: General servlet and JSP invocation are discussed in the
Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

Indirectly Requesting a JSP Page

JSP pages, like servlets, can also be executed indirectly—linked from a regular HTML
page or referenced from another JSP page or from a servlet.

When invoking one JSP page from a JSP statement in another JSP page, the path can be
either relative to the application root—known as context-relative or
application-relative—or relative to the invoking page—known as page-relative. An
application-relative path starts with "/ "; a page-relative path does not.

Be aware that, typically, neither of these paths is the same path as used in a URL or
HTML link. Continuing the example in the preceding section, the path in an HTML
link is the same as in the direct URL request, as follows:

General JSP Overview 1-21

JSP Execution

The application-relative path in a JSP statement is:

<j sp:include page="/dirl/HelloWrld.jsp" flush="true" />

The page-relative path to invoke Hel | oWbr | d. j sp from a JSP page in the same
directory is:

<jsp:forward page="Hel | oWorld.jsp" />

("Standard Actions: JSP Tags" on page 1-12 discusses the j sp: i ncl ude and
j sp: f orwar d statements.)

1-22 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

2

Overview of the Oracle JSP Implementation

The JSP container provided with Oracle Application Server Containers for J2EE (OC4J)
in the Oracle Application Server is a complete implementation of the JSP 1.2
specification. This functionality depends upon servlet 2.3 functionality, and the OC4J
servlet container is a complete implementation of the servlet 2.3 specification.

This chapter provides overviews of the Oracle Application Server, OC4J, the OC4J JSP
implementation and features, and custom tag libraries and utilities that are also
supplied (documented in the Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference).

The following sections are included:
« Overview of the Oracle Application Server and JSP Support
« Oracle JDeveloper JSP Support

= Overview of Oracle Value-Added Features

Overview of the Oracle Application Server and JSP Support

The following sections provide a brief overview of the Oracle Application Server, its
J2EE environment, its JSP implementation, and its Web server:

« Overview of the Oracle Application Server
« Oracle HTTP Server and mod_oc4j
« Overview of OC4]

« Overview of the JSP Implementation in OC4J

Note: Users of earlier Oracle Application Server releases can refer
to Oracle Application Server Upgrading to 10g Release 2 (10.1.2) for
information about issues in migrating to the current release.

Overview of the Oracle Application Server

Oracle Application Server is a scalable, secure, middle-tier application server. It can be
used to deliver Web content, host Web applications, connect to back-office
applications, and make these services accessible to any client browser. Users can access
information, perform business analysis, and run business applications on the Internet
or corporate intranets or extranets. Major areas of functionality include business
intelligence, e-business integration, J2EE Web services, performance and caching,
portals, wireless services, and management and security. For performance, scalability,
and dependability, there are also clustering and load-balancing features.

Overview of the Oracle JSP Implementation 2-1

Overview of the Oracle Application Server and JSP Support

To deliver this range of content and services, the Oracle Application Server
incorporates many components, including the Oracle HTTP Server, Oracle Application
Server Web Cache, Oracle Application Server Web Services, Oracle Application Server
Portal, Oracle Application Server Wireless, and business logic runtime environments
that support Enterprise JavaBeans, stored procedures, and Oracle Application
Development Framework (Oracle ADF) Business Components.

For its Java environment, Oracle Application Server provides the Oracle Application
Server Containers for J2EE (OC4J), a J2EE 1.3-compliant set of containers and services.
This includes the JSP container described in this manual, a servlet container, and an
EJB container.

For administration, you can fully manage and configure Oracle Application Server
and OC4J using the HTML-based Oracle Enterprise Manager 10g. This includes full
support for managing clustering, configuration, and deployment.

Oracle HTTP Server and mod_oc4j

Oracle HTTP Server, powered by the Apache Web server, is included with Oracle
Application Server as the HTTP entry point for Web applications, particularly in a
production environment. By default, it is the front-end for all OC4J processes. Client
requests go through Oracle HTTP Server first.

When the Oracle HTTP Server is used, dynamic content is delivered through various
Apache mod components provided either by the Apache Software Foundation or by
Oracle. Static content is typically delivered from the file system, which is more efficient
in this case. An Apache mod is typically a module of C code, running in the Apache
address space, that passes requests to a particular mod-specific processor. The mod
software will have been written specifically for use with the particular processor.

Oracle Application Server supplies the nrod_oc4j Apache mod, which is used for
communication between the Oracle HTTP Server and OC4J. It routes requests from the
Oracle HTTP Server to OCA4J processes, and forwards responses from OC4J processes
to Web clients.

Communication is through the Apache JServ protocol (AJP). AJP was chosen over
HTTP because of a variety of AJP features allowing faster communication, including
use of binary format and more efficient processing of message headers.

The following features are provided with nod_oc4j :
« Load balancing capabilities across many back-end OC4J clusters
« Stateless session routing of stateful servlets

This is accomplished through enhanced use of cookies. Routing information is
maintained in the cookie itself to ensure that stateful servlets are always routed to
the same OC4J JVM.

Note: Oracle HTTP Server is not relevant for an OC4J standalone
environment (typically used only during development). See "OC4J
Standalone” on page 2-5.

Overview of OC4J

The following sections provide an overview of features of OC4J, the J2EE component
of the Oracle Application Server:

« OC4) General Features

2-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Overview of the Oracle Application Server and JSP Support

= OC4J Services
= OC4J Containers
= OC4] Standalone

OC4J General Features

OC4J is a high-performance, J2EE-compliant set of containers and services providing a
scalable and reliable server infrastructure. In Oracle Application Server 10g Release 2
(10.1.2), OC4J complies with the J2EE 1.3 specification.

For developer convenience, OC4J has been integrated with Oracle JDeveloper and
other development tools, and can run in a standalone mode separate from Oracle
Application Server during the development process.

Java applications built with any development tool can be deployed to OC4J, which
supports standard EAR or WAR file deployment. You can debug applications
deployed to OC4J through standard Java profiling and debugging facilities.

For security, OC4J supports Secure Socket Layer (SSL) and HTTPS functionality.

Note: Each OC4Jinstance runs in a single Java virtual machine.

0C4J Services

OC4J supports the following Java and J2EE services:

« J2EE Connector Architecture (JCA): JCA defines a standard architecture for
connecting J2EE platforms to heterogeneous enterprise information systems such

as ERP systems, mainframe transaction processing, database systems, and legacy
applications.

« Java Transaction APl (JTA) and two-phase commits: JTA allows simultaneous
updates to multiple resources in a single, coordinated transaction.

« Java Message Service (JMS) integration: This integration allows compatibility
between the Oracle JMS implementation and those of other JMS providers.

« Java Naming and Directory Interface (JNDI): JNDI associates names with
resources for lookup purposes.

« Java Authentication and Authorization Service (JAAS): The Oracle
implementation of JAAS and the Java2 security model provides complete support
for development and deployment of secure applications and for fine-grained
authorization and access control.

« JDBC data sources: This is the standard mechanism for connecting to a database.

See the Oracle Application Server Containers for J2EE Services Guide for information.

OC4J Containers
The OC4J 10.1.2 implementation supplies the following J2EE containers:

« A SP container complying with the Sun JSP 1.2 specification

The JSP bundle also supplies tag libraries to implement Web services, caching
capabilities, SQL access, file access, and other features. For further overview of the
JSP container provided with OC4J, see "Overview of the JSP Implementation in
OC4J" on page 2-5.

Overview of the Oracle JSP Implementation 2-3

Overview of the Oracle Application Server and JSP Support

= A servlet container complying with the servlet 2.3 specification (with key features
described immediately below)

=« An EJB container complying with the EJB 2.0 specification (with key features
described below)

OC4J containers have been instrumented to support the Dynamic Monitoring Service
(DMS) to provide runtime performance data. You can view this data through
Enterprise Manager.

Note: Servlet 2.3 compliance is required in order to support JSP
1.2 compliance.

Key Servlet Container Features The OC4J servlet container supports the following key
features:

« SSL and HTTPS: In Oracle Application Server, OC4J supports SSL (Secure Socket
Layer) communication between Oracle HTTP Server and OC4J, using secure AJP.
In addition, OC4J standalone supports SSL communication directly between a
client and OC4J, using HTTPS.

» Integration with SSO and Oracle Internet Directory: This is through the Oracle
JAAS implementation.

« Stateful failover and cluster deployment: For a distributable application, session
state is replicated to alternate OC4J servers so that state is not lost in the event of
failover.

« Servlet filtering: This allows transformation of the content of an HTTP request or
response, and modification of header information.

= Application-level and session-level event listeners: This feature allows greater
control over interaction with servlet context and HTTP session objects and,
therefore, greater efficiency in managing resources that the application uses.

See the Oracle Application Server Containers for J2EE Servlet Developer’s Guide for
information.

Key EJB Container Features The OC4J EJB container supports the following:

= Session beans: A session bean is used for task-oriented requests. You can define a
session bean as stateless or stateful. Stateless session beans cannot maintain state
information across calls, while stateful session beans can maintain state across
calls.

« Entity beans: An entity bean represents data. It can use the container to maintain
the data persistently, which is referred to as container-managed persistence (CMP), or
it can use the bean implementation to manage the data, which is referred to as
bean-managed persistence (BMP).

» Message-driven beans (MDB): A message-driven bean is used to receive JMS
messages from a queue or topic. It can then invoke other EJBs to process the IMS
message.

EJB support in OC4J also includes these features:
« Clustering for session and entity beans

« Enhanced entity bean concurrency models to support concurrent access from
multiple clients

2-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Overview of the Oracle Application Server and JSP Support

«» Extended locking models for entity beans (optimistic locking mode / pessimistic
locking mode / read-only mode)

« Active Components for Java (AC4J), to provide a standards-based infrastructure
for coordinating long-running business transactions

See the Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide for information.

0OC4J Standalone

In a production environment, it is typical to use OC4J inside a complete Oracle
Application Server environment, including the Oracle HTTP Server (as described in
"Oracle HTTP Server and mod_oc4j" on page 2-2), OracleAS Web Cache, and
Enterprise Manager.

For a development environment, OC4J is also available as a standalone component by
downloading OC4J _ext ended. zi p from the Oracle Technology Network at the
following location:

http://ww. oracl e. com t echnol ogy/tech/javal oc4j

When using OC4J standalone, you can use its own HTTP Web listener through port
8888. For information about OC4J standalone, see the Oracle Application Server
Containers for J2EE Stand Alone User’s Guide (downloadable with OC4J_extended.zip)
and the Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

Note: To use OC4J standalone, you must have a supported
version of the Sun Microsystems JDK installed. A JDK is not
provided with the OC4J standalone product.

Overview of the JSP Implementation in OC4J

The JSP container in Oracle Application Server 10g Release 2 (10.1.2) is compliant with
the JSP 1.2 specification.

In general, a JSP 1.2 environment requires a servlet 2.3 environment, such as the OC4J
servlet container. The OC4J JSP implementation, however, also supports running on a
servlet 2.0 environment. To make this possible, the OC4J JSP container emulates
required servlet features beyond the 2.0 specification.

For a variety of reasons, though, it is generally advisable to use the OC4J servlet 2.3
environment.

These features are discussed in the following sections:
« History and Integration of JSP Containers

« JSP Front-End Servlet and Configuration

= OCA4J ISP Features for JSP 1.2

« Configurable JSP Extensions in OC4J

« Portability Across Servlet Environments

History and Integration of JSP Containers

In Oracle9iAS Release 1.0.2.2, the first release to include OC4J, there were two JSP
containers: 1) a container developed by Oracle and known as "OracleJSP"; 2) a
container licensed from Ironflare AB and known as the "Orion JSP container".

Overview of the Oracle JSP Implementation 2-5

Overview of the Oracle Application Server and JSP Support

The OracleJSP container offered several advantages, including useful value-added
features and enhancements such as for globalization. The Orion container also offered
advantages, including superior speed, but had disadvantages as well. It did not
always exhibit standard behavior when compared to the JSP reference implementation
(Tomcat), and its support for internationalization and globalization was not as
complete.

Oracle9iAS Release 2 (9.0.2) first integrated the OracleJSP and Orion containers into a
single JSP container referred to in this manual as the "OC4J JSP container". This
container offers the best features of both previous versions, runs efficiently as a servlet
in the OC4J servlet container, and is integrated with other OC4J containers as well. The
integrated container primarily consists of the OraclelSP translator and the Orion
container runtime, running with a simplified dispatcher and the OC4J core runtime
classes.

JSP Front-End Servlet and Configuration

The JSP container in OC4J uses the front-end servlet
oracle.jsp.runtinmev2. JspServl et. See "JSP Configuration in OC4J" on
page 3-10.

For non-OC4J environments, use the old front-end servlet,
oracle.jsp.JspServlet.

0C4J JSP Features for JSP 1.2

In the OC4J 10.1.2 implementation, the OC4J JSP container is fully compliant with the
JSP 1.2 specification. Most functionality introduced in this specification is in the area of
custom tag libraries.

« Tag library features:

— There is a tag handler interface that allows iteration through a tag body
without having to maintain and access a body content object.

— You can create a tag-library-validator class and associate it with a tag library. A
validator instance will check any JSP page that uses the library, to verify that it
meets whatever constraints you desire.

— For convenience, you can declare servlet event listeners in a tag library
descriptor file instead of in the web. xml file. This enables you to more
conveniently manage application and session resources associated with usage
of the tag library.

— You can package multiple tag libraries and their TLD files inside a single JAR
file.

See Chapter 8, "JSP Tag Libraries" for details about these features, and "Overview
of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications" on page 8-3 for
a more detailed summary.

= XML features:

— The OC4J JSP container previously supported a standard XML-alternative
syntax, but this is replaced with newer technology according to the current JSP
specification.

— The OC4J JSP container generates an XML view of every translated page,
which is a mapping to an XML document that describes the page. This view is
available for use by tag-library-validator classes.

See Chapter 5, "JSP XML Support" for information about these features.

2-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Overview of the Oracle Application Server and JSP Support

Character encoding features:

The OC4J JSP implementation supports the pageEncodi ng attribute of the page
directive. This enables you to specify a character encoding for the page source that
is different than the character encoding for the response (specified in the

cont ent Type attribute).

See "Content Type Settings" on page 9-1.

Configurable JSP Extensions in OC4J

In addition to JSP 1.2 compliance, the OC4J JSP container in Oracle Application Server
10g Release 2 (10.1.2) includes the following notable features.

Also see "Overview of Oracle Value-Added Features” on page 2-9.

The following have been supported since the OC4J 9.0.3 implementation:

Mode switch to avoid JSP translation errors if you have duplicate settings for the
same directive attribute within a single JSP translation unit

The JSP specification mandates translation errors if you have duplicate settings for
the same directive attribute within a single JSP translation unit, except for the
page directive i nport attribute. These errors may be unwanted or inappropriate,
for example, if a page and an included file both set an attribute to the same value
(such as | anguage="j ava").

In "JSP Configuration Parameter Descriptions” on page 3-13, see the description of
theforgi ve_dup_dir_attr parameter.

Separate mode switches for XML validation of web. xm file and TLD files

Validation of web. xm is disabled by default but can be enabled. Validation of
TLD files is enabled by default but can be disabled.

In "JSP Configuration Parameter Descriptions" on page 3-13, see the descriptions
of the xm _validateandno_t|d_xm _val i dat e parameters.

Mode flag for extra imports
Use this to automatically import certain Java packages beyond the JSP defaults.

In "JSP Configuration Parameter Descriptions” on page 3-13, see the description of
the extra_i nport s parameter.

"Well-known" location for sharing tag libraries

You can specify a directory where tag library JAR files can be placed for sharing
across multiple Web applications.

In "JSP Configuration Parameter Descriptions"” on page 3-13, see the description of
thewel | _known_t agl i b_| oc parameter.

Configurable JSP timeout

You can specify a timeout value for JSP pages, after which a page is removed from
memory if it has not been requested again. In "JSP-Related OC4J Configuration
Parameter Descriptions" on page 3-20, see the description of the j sp-ti nmeout
parameter.

The following features have been supported since the OC4J 9.0.2 implementation:

Mode switch for automatic page retranslation and reloading

You have a choice of: 1) running JSP pages without any automatic reloading or
retranslation of JSP pages; 2) automatically reloading any page implementation

Overview of the Oracle JSP Implementation 2-7

Oracle JDeveloper JSP Support

classes (but not JavaBeans or other dependency classes); or 3) automatically
retranslating any JSP pages that have changed.

In "JSP Configuration Parameter Descriptions” on page 3-13, see the description of
the mai n_node parameter.

« Tag handler instance pooling

To save time in tag handler creation and garbage collection, you can optionally
enable pooling of tag handler instances. They are pooled in appl i cat i on scope.
You can use different settings in different pages, or even in different sections of the
same page. See "Disabling or Enabling Runtime or Compile-Time Tag Handler
Reuse" on page 8-30.

« Output mode for null output

You can print an empty string instead of the default "null" string for null output
from a JSP page.

In "JSP-Related OC4J Configuration Parameter Descriptions” on page 3-20, see the
description of thej sp- pri nt-nul | parameter.

« Single-threaded-model JSP instance pooling

For single-threaded (non-thread-safe) JSP pages, page instances are pooled. There
is no switch for this feature—it is always enabled.

Portability Across Servlet Environments

The JSP container is provided as a component of OC4J but is portable to other
environments. Because the OC4J JSP container itself emulates certain required servlet
features, this portability extends to older servlet environments. (Generally, a servlet 2.3
environment is required in order to support JSP 1.2 compliance.)

The servlet 2.0 specification was limited in that it provided only a single servlet
context for each Java virtual machine, instead of a servlet context for each application.
The OC4J JSP servlet emulation allows a full application framework in a servlet 2.0
environment, including providing applications with distinct servlet context and HTTP
session objects.

Because of this extended functionality, the OC4J JSP container is not limited by the
underlying servlet environment.

Oracle JDeveloper JSP Support

Visual Java programming tools now typically support JSP coding. In particular, Oracle
JDeveloper supports JSP development and includes the following features:

« Integration of the OC4J JSP container to support the full application development
cycle: editing, debugging, and running JSP pages

« Debugging of deployed JSP pages

« An extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

« TheJSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

« Support for incorporating custom JavaBeans

« A deployment option for JSP applications that rely on Oracle ADF Business
Components, offered with JDeveloper

2-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Overview of Oracle Value-Added Features

See "Application Deployment with Oracle JDeveloper" on page 7-25 for more
information about JSP deployment support.

For debugging, JDeveloper can set breakpoints within JSP page source and can follow
calls from JSP pages into JavaBeans. This is much more convenient than manual
debugging techniques, such as adding print statements within the JSP page to output
state into the response stream (for viewing in your browser) or to the server log
(through the I og() method of the implicit appl i cat i on object).

For information about JDeveloper, refer to the JDeveloper online help, or to the
following site on the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ products/j dev/content. htm
(You will need an Oracle Technology Network membership, which is free of charge.)

For an overview of JSP tag libraries provided with JDeveloper, see the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

Note: Other key IDE vendors have built plug-in modules that
allow seamless integration with OCA4J. This provides developers
with the capability to build, deploy, and debug J2EE applications
running on OC4J directly from within the IDE. You can refer to the
following Web site for more information:

http://ww. oracl e. com t echnol ogy/ product s/i as/9i as_
partners. htn

Overview of Oracle Value-Added Features
OC4J value-added features for JSP pages can be grouped into three major categories:

» Features implemented through custom tag libraries, custom JavaBeans, or custom
classes that are generally portable to other JSP environments

« Features that are Oracle-specific
« [Features supporting caching technologies

The rest of this section provides feature summaries and overviews in these areas, plus
a brief summary of Oracle support for the JavaServer Pages Standard Tag Library
(JSTL). JSTL support is summarized more fully in the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference.

Summary of Tag Libraries and Utilities Provided with OC4J

This section provides a brief summary of extended OC4J JSP features that are
implemented through standards-compliant custom tag libraries, custom JavaBeans,
and other classes. These features are documented in the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference:

« Extended types implemented as JavaBeans that can have a specified scope

« JspScopeli st ener for event-handling

« Integration with XML and XSL

« Data-access tag library (sometimes referred to as "SQL tags") and JavaBeans

« The JSP Markup Language (JML) custom tag library, which reduces the level of
Java proficiency required for JSP development

Overview of the Oracle JSP Implementation 2-9

Overview of Oracle Value-Added Features

= Web services tag library

« Tag libraries and JavaBeans for uploading files, downloading files, and sending
e-mail from within an application

« EJBtaglibrary

= Additional utility tags, such as for displaying dates and currency amounts
appropriately for a specified locale

Note: See "Overview of Tags and API for Caching Support” on
page 2-11 for an overview of additional tag libraries for caching.

Overview of Oracle-Specific Features

This section provides an overview of Oracle-specific programming extensions
supported by the OC4J JSP container:

= Global includes, a mechanism to automatically statically include a file or files in
multiple pages

= Dynamic Monitoring Service (DMS) support for performance measurements

« Enhanced application framework and globalization support for serviet 2.0
environments

Global Includes

The OC4J JSP container provides a feature called global includes. You can use this
feature to specify one or more files to statically include into JSP pages in or under a
specified directory, through virtual JSP i ncl ude directives. During translation, the
JSP container looks for a configuration file,

/ VEEB- | NF/ oj sp-gl obal -i ncl ude. xm , that specifies the included files and the
directories for the pages.

This enhancement is particularly useful in migrating applications that had used
gl obal s. jsaortransl at e_par ans functionality in previous Oracle JSP releases.
For more information, see "Oracle JSP Global Includes” on page 7-6.

Support for Dynamic Monitoring Service

DMS adds performance-monitoring features to a number of Oracle Application Server
components, including OC4J. The goal of DMS is to provide information about
runtime behavior through built-in performance measurements so that users can
diagnose, analyze, and debug any performance problems. DMS provides this
information in a package that can be used at any time, including during live
deployment. Data are published through HTTP and can be viewed with a browser.

The OC4J JSP container supports DMS features, calculating relevant statistics and
providing information to DMS servlets such as the spy servlet and monitoring agent.
Statistics include the following (using averages, maximums, and minimums, as
applicable). Times are in milliseconds.

« Processing time of HTTP request
= Processing time of JSP service method
=« Number of JSP instances created or available

= Number of active JSP instances

2-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Overview of Oracle Value-Added Features

(Counts of JSP instances are applicable only for single-threaded situations, where
i sThreadSaf e issettof al se in apage directive.)

Standard configuration for these servlets is in the OC4J appl i cati on. xm and
def aul t-web-si te. xm configuration file. Use the Enterprise Manager to access
DMS, display DMS information, and, if appropriate, alter DMS configuration.

Also see the Oracle Application Server Performance Guide, which contains precise
definitions of the JSP metrics and detailed instructions for viewing and analyzing
them.

Enhanced Servlet 2.0 Support

OC4J supports special features for a servlet 2.0 environment. It is highly advisable to
migrate to the OC4J servlet 2.3 environment as soon as practical, but in the meantime,
be aware of the following:

« Anenhanced application framework for servlet 2.0 environments

« Extended globalization support for servlet 2.0 environments

Overview of Tags and API for Caching Support

Faced with Web performance challenges, e-businesses must invest in more
cost-effective technologies and services to improve the performance of their Internet
sites. Web caching, the caching of both static and dynamic Web content, is a key
technology in this area. Benefits of Web caching include performance, scalability, high
availability, cost savings, and network traffic reduction.

OCA4J] provides the following support for Web caching technologies:

« The JESI tag library for Edge Side Includes (ESI), an XML-style markup language
that allows dynamic content assembly away from the Web server

The OracleAS Web Cache provides an ESI engine.

« Atag library and serviet API for the Web Object Cache, an application-level cache
that is embedded and maintained within a Java Web application

The Web Object Cache uses the Oracle Application Server Java Object Cache as its
default repository.

These features are documented in the Oracle Application Server Containers for J2EE JSP
Tag Libraries and Utilities Reference.

Support for the JavaServer Pages Standard Tag Library

With Oracle Application Server 10g Release 2 (10.1.2), the OC4J JSP product supports
the JavaServer Pages Standard Tag Library (JSTL), as specified in the Sun
Microsystems JavaServer Pages Standard Tag Library, Version 1.0 specification.

JSTL is intended as a convenience for JSP page authors who are not familiar or not
comfortable with scripting languages such as Java. Historically, scriptlets have been
used in JSP pages to process dynamic data. With JSTL, the intent is for JSTL tag usage
to replace the need for scriptlets.

Key JSTL features include the following:
« JSTL expression language (EL)

The expression language further simplifies the code required to access and
manipulate application data, making it possible to avoid request-time attributes as
well as scriptlets.

Overview of the Oracle JSP Implementation 2-11

Overview of Oracle Value-Added Features

« Core tags for expression language support, conditional logic and flow control,
iterator actions, and access to URL-based resources

« Tags for XML processing, flow control, and XSLT transformations
« SQL tags for database access
« Tags for 118N-capable internationalization and formatting

The term "I118N" refers to an internationalization standard.

Tag support is organized into four JSTL sublibraries according to these functional
areas.

For a more complete summary of JSTL support, you can refer to the Oracle Application
Server Containers for J2EE JSP Tag Libraries and Utilities Reference. For complete
information about JSTL, refer to the specification at the following location:

http://wwmv. j cp. org/ about Java/ comuni t yprocess/first/jsr052/index. htm

Note: The custom JML, XML, and data-access (SQL) tag libraries
provided with OC4J pre-date JSTL and have areas of duplicate
functionality. Going forward, for standards compliance, it is
generally advisable to use JSTL instead of the custom libraries.
Oracle is not desupporting the existing tags, however. For features
in the custom libraries that are not yet available in JSTL, where
there seems to be general usefulness, Oracle will try to have the
features adopted into the JSTL standard as appropriate.

2-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

3

Getting Started

This chapter covers basic issues in your JSP environment, including key support files,
key OC4J configuration files, and configuration of the JSP container. It also discusses
initial considerations such as application root functionality, classpath functionality,
security issues, and file naming conventions.

Before getting started, it is assumed that you can do the following on your system:
= Runlava

« RunalJava compiler (typically the standard j avac)

=« RunanHTTP serviet

The following sections are included in this chapter:

= Some Initial Considerations

« Key Support Files Provided with OC4J

« JSP Configuration in OC4J

« Key OC4J Configuration Files

« JSP Configuration in Oracle Enterprise Manager 10g

Note: JSP pages will run with any standard browser supporting
HTTP 1.0 or higher. The JDK or other Java environment in the
user’s Web browser is irrelevant, because all the Java code in a JSP
page is executed in the Web server.

Some Initial Considerations

The following sections discuss some considerations you should be aware of before you
begin coding or using JSP pages:

« Application Root Functionality

« Classpath Functionality

« Runtime Retranslation or Reloading
« JSP Compilation Considerations

« JSP Security Considerations

« JSP Performance Considerations

« Default Package Imports

« JSP File Naming Conventions

Getting Started 3-1

Some Initial Considerations

« JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

Application Root Functionality

The servlet specification (since servlet 2.2) provides for each Web application to have
its own servlet context. Each servlet context is associated with a directory path in the
server file system, which is the base path for modules of the Web application. This is
the application root. Each Web application has its own application root. For a Web
application in a standard servlet environment, servlets, JSP pages, and static files such
as HTML files are all based out of this application root. (By contrast, in servlet 2.0
environments the application root for servlets and JSP pages is distinct from the
document root for static files.)

Note that a servlet URL has the following general form:

http://host: port/contextpath/servletpath

When a servlet context is created, a mapping is specified between the application root
and the context path portion of a URL. The servlet path is defined in the application
web. xm file. The <ser vl et > element within web. xn associates a servlet class with
a servlet name. The <ser vl et - mappi ng> element within web. xrml associates a URL
pattern with a named servlet. When a servlet is executed, the servlet container will
compare a specified URL pattern with known servlet paths, and pick the servlet path
that matches. See the Oracle Application Server Containers for J2EE Servlet Developer’s
Guide for more information.

For example, consider an application with the application root

/ horre/ di r/ mybankapp/ nybankwebapp, which is mapped to the context path
/ mybank. Further assume the application includes a servlet whose servlet path is
| ogi nser vl et. You can invoke this servlet as follows:

http://host: port/nybank/| ogi nservl et

The application root directory name itself is not visible to the user.

To continue this example for an HTML page in this application, the following URL
points to the file / hore/ di r/ nybankapp/ mybankwebapp/ di r 1/ abc. ht i :

http://host: port/nybank/dir1/abc. htm

For each servlet environment there is also a default servlet context. For this context, the
context path is simply "/ ", which is mapped to the default servlet context application
root. For example, assume the application root for the default context is

/ horre/ di r/ def aul t app/ def aul t webapp, and a servlet with the servlet path
myser vl et uses the default context. Its URL would be as follows:

http://host: port/nyservl et

The default context is also used if there is no match for the context path specified in a
URL.

Continuing this example for an HTML file, the following URL points to the file
/ homre/ di r/ def aul t app/ def aul t webapp/ di r 2/ def . htni :

http://host: port/dir2/def.htn

Classpath Functionality

The JSP container uses standard locations on the Web server to look for translated JSP
pages, as well as. cl ass filesand . j ar files for any required classes such as

3-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Some Initial Considerations

JavaBeans. The container will find files in these locations without any Web server
classpath configuration.

The locations for dependency classes are as follows and are relative to the application
root:

/ \EB- | NF/ ¢l asses/ . ..
/VEB-INF/lib

The location for JSP page implementation classes (translated pages) is as follows:

...l _pages/...

The / VEB- | NF/ ¢l asses directory is for individual Java . cl ass files. You should
store these classes in subdirectories under the cl asses directory, according to Java
package naming conventions. For example, consider a JavaBean called Lot t oBean
whose code defines it to be in the or acl e. j sp. sanpl e. | ot t ery package. The JSP
container will look for Lot t oBean. cl ass in the following location relative to the
application root:

/ \\EB- | NF/ cl asses/ oracl e/ j sp/ sanpl e/ | ot tery/ Lot t oBean. cl ass

The | i b directory is for JAR (. j ar) files. Because Java package structure is specified
in the JAR file structure, the JAR files are all directly in the | i b directory, notin
subdirectories. As an example, Lot t oBean. cl ass might be stored in| ottery.jar,
located as follows relative to the application root:

/WEB-INF/libllottery.jar
The _pages directory is under the J2EE home directory in OC4J and depends on the

value of the j sp- cache-di r ect or y configuration parameter. See "JSP Translator
Output File Locations" on page 7-5 for information.

Important: Implementation details, such as the default location of
the _pages directory, are subject to change in future releases.

Runtime Retranslation or Reloading

During runtime, any retranslation of JSP pages or reloading of JSP page
implementation classes is controlled by the JSP mai n_node configuration parameter.
Possible settings are r econpi | e (default) to retranslate JSP pages that have changed,
r el oad to reload classes that were generated by the JSP container and have changed
(such as page implementation classes), or j ust r un to run without any
timestamp-checking, for optimal performance in production environments. See "JSP
Configuration Parameter Descriptions” on page 3-13 for additional information.

Getting Started 3-3

Some Initial Considerations

Notes:
« This discussion is not relevant for pretranslation scenarios.
=« The OC4JJSP container does not have its own classloader.

= Because of the usage of in-memory values for class file
last-modified times, removing a page implementation class file
from the file system will not by itself cause retranslation of the
associated JSP page source.

« The page implementation class file will be regenerated when
the memory cache is lost. This happens whenever a request is
directed to this page after the server is restarted or after another
page in this application has been retranslated.

« InOC4), if a statically included page is updated (that is, a page
included through ani ncl ude directive), the page that includes
it will be automatically retranslated the next time it is invoked.

For information about classloading behavior at the servlet layer, see the Oracle
Application Server Containers for J2EE Servlet Developer’s Guide.

JSP Compilation Considerations

Java compilation can be either in-process, running in the same process as OC4J, or
out-of-process, running in a separate process.

By default, OC4J as a whole uses out-of-process compilation, and the compiler is
invoked as a separate executable. The default compiler executable isj avac from the
Sun Microsystems JDK; however, you can configure OC4J to use a different compiler.
In OC4J standalone, you can accomplish this by adding a <j ava- conpi | er >
element, with desired settings, to the OC4Jser ver. xm file. In an Oracle Application
Server environment, use Oracle Enterprise Manager 10g to change this configuration.

For improved JSP performance, however, the OC4J JSP container uses in-process
compilation by default, assuming that thet ool s. j ar file of the Sun Microsystems
JDK is installed and in the classpath. With in-process compilation, the compiler class is
invoked directly. You can use a<l i br ar y> element in the server. xm file to ensure
thatt ool s. j ar is in the classpath.

There are also two related JSP configuration parameters: use_ol d_conpi | er and
j avaccnd:

= Youcansetuse_ol d_conpil er tof al se to force the JSP container to use the
same compiler as the rest of OC4J—out-of-process compilation with j avac by
default, or compilation according to a <j ava- conpi | er > element in
server.xm .Theuse_ol d_conpi |l er flagissettotrue by default if
t ool s. j ar isin the classpath, resulting in in-process compilation unless
j avaccnd is set.

« If you want to use an out-of-process compiler, but not the compiler that the rest of
OC4J uses, thensetuse_ol d_conpi | er totrue and use thej avaccnd
parameter to specify the desired compiler. (The j avaccnd parameter is ignored if
use_ol d_conpil er issettof al se.)

3-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Some Initial Considerations

Notes:

« Iftools.jar isnotin the classpath, then
use_ol d_conpi | er is forced to af al se setting.

« Theuse_ol d_conpil er andj avaccnd parameters are
further discussed under "JSP Configuration Parameter
Descriptions" on page 3-13.

« See the Oracle Application Server Containers for J2EE User’s Guide
for information about elements of the server. xm file.

JSP Security Considerations

With respect to application security, be aware that you should verify that the
debug_node parameter has its default f al se setting if you want to suppress the
display of the physical file path when nonexistent JSP files are requested. This
parameter is described in "JSP Configuration Parameter Descriptions” on page 3-13.

JSP Performance Considerations

The following sections summarize JSP, OC4J, and Oracle Application Server features
for performance optimization and monitoring:

« Programmatic Considerations for Optimization
« Configuration Optimizations
« The ojspc Utility for Pretranslation

« Additional OC4J and Oracle Application Server Performance Features

Programmatic Considerations for Optimization

You might consider the following when creating your JSP pages:

« Unbuffer JSP pages. By default, a JSP page uses an area of memory known as a
page buffer. This buffer (8 KB by default) is required if the page uses dynamic

globalization support content type settings, forwards, or error pages. If it does not
use any of these features, you can disable the buffer in a page directive:

<%@ page buffer="none" %
This will improve the performance of the page by reducing memory usage and
saving the output step of copying the buffer.

« Avoid using HTTP session objects if they are not required. If a JSP page does not
require an HTTP session (essentially, does not require storage or retrieval of
session attributes), then you can specify that no session is to be used. Specify this
with a page directive such as the following:

<Y%@ page session="fal se" %
This will improve the performance of the page by eliminating the overhead of
session creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do
use a session. For background information, see "Servlet Sessions" on page A-3.

« Inaddition to general Oracle Application Server caching features such as
Oracle AS Web Cache and Java Object Cache, there are caching features that are

Getting Started 3-5

Some Initial Considerations

specific to JSP pages and are available through custom tag libraries provided with
OCA4). For a brief overview of these features—the JESI tag library and the Web
Object Cache—see "Overview of Tags and API for Caching Support" on page 2-11.
For additional information, refer to the Oracle Application Server Containers for J2EE
JSP Tag Libraries and Utilities Reference.

Configuration Optimizations
There are a number of JSP and OC4J configuration parameters that affect performance:

« Inaproduction environment, where JSP pages do not change, you should
configure the JSP container to not check timestamps (which it would otherwise do
to see if any pages require retranslation). You can specify this by setting the Oracle
JSP configuration parameter mai n_node to the value j ust r un. See "JSP
Configuration Parameter Descriptions" on page 3-13 for information about this
parameter.

= You can also improve performance with tag libraries by specifying that tag
handler instances be reused within each JSP page. For optimal results, especially
for JSP pages with very large numbers of custom tags, specify that the logic and
patterns of tag handler reuse be determined at translation time instead of runtime.
You can specify this through the Oracle JSP configuration parameter
tags_reuse_def aul t. See "Disabling or Enabling Runtime or Compile-Time
Tag Handler Reuse" on page 8-30.

» There are a number of additional Oracle JSP configuration parameters that can
affect performance, either favorably or unfavorably. See "JSP Configuration
Parameter Descriptions” on page 3-13 for information about check _page_scope,
preconpil e_check,reduce_tag_code,andstatic_text_in_chars.

« Features have been added to make tag library usage more efficient. The key
feature is persistent caching for tag library descriptor (TLD) files, which you can
enable through the OC4J configuration parameter j sp- cache-t | ds. See "Oracle
Extensions for Tag Library Sharing and Persistent TLD Caching" on page 8-15.

« The OC4J configuration parameters si npl e- j sp- mappi ng and
enabl e- j sp-di spat cher-short cut can significantly affect performance. See
"JSP-Related OC4J Configuration Parameter Descriptions" on page 3-20 for
information about these parameters.

The ojspc Utility for Pretranslation

You might consider using the oj spc utility to pretranslate JSP pages. This avoids the
performance cost of translating pages as they are first accessed by users. See "JSP
Pretranslation" on page 7-26 for additional discussion of the advantages of
pretranslation. See "The ojspc Pretranslation Utility" on page 7-8 for details about the
utility itself.

Additional OC4J and Oracle Application Server Performance Features
Note the following OC4J and Oracle Application Server features for performance
optimization and monitoring:

« OCA4JJSP code for output JspW i t er objects using nondefault character sets has
been optimized.

« Tag libraries provided with OC4J, such as the data-access (SQL) tag library, are
optimized to take advantage of additional Oracle resource pooling and resource
cleanup features, such as for database connections.

3-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Some Initial Considerations

= You can use the Oracle Application Server Dynamic Monitoring Service to track
performance. See "Support for Dynamic Monitoring Service" on page 2-10.

« For information about general OC4J or Oracle Application Server features for
performance and robustness, consult the Oracle Application Server Containers for
J2EE User’s Guide and the Oracle Application Server Performance Guide.

Default Package Imports

Beginning with Oracle9iAS Release 2 (9.0.3), the OC4J JSP container by default imports
the following packages into any JSP page, in accordance with the JSP specification. No
page directive i nport settings are required:

j avax.servlet.*
javax.servlet.http.*
javax.servlet.jsp.*

In earlier releases, the following packages were also imported by default:

java.io.*
java.util.*
java.lang.reflect.*
j ava. beans. *

The default list of packages to import was reduced to minimize the chance of a conflict
between any unqualified class name you might use and a class by the same name in
any of the imported packages.

However, this might result in migration problems for applications you have used with
previous versions of OC4J. Such applications might no longer compile successfully. If
you need imports beyond the default list, you have two choices:

« Specify additional package names or fully qualified class names in one or more
page directive i nport settings. For more information, see the page directive
under "Directives" on page 1-6, and see "Page Directive import Settings Are
Cumulative" on page 6-10.

For multiple pages, you can accomplish this through global includes functionality.
See "Oracle JSP Global Includes” on page 7-6.

« Specify additional package names or fully qualified class names through the JSP
ext ra_i nports configuration parameter, or by using the oj spc
- ext ral nport s option for pretranslation. Syntax varies between OC4J
configuration parameter settings and oj spc option settings, so refer to the
following sections as appropriate:

— "JSP Configuration Parameter Descriptions” on page 3-13

"Option Descriptions for ojspc"” on page 7-13

JSP File Naming Conventions

The file name extension . j sp for JSP pages is required by the servlet specification. The
servlet 2.3 specification does not, however, distinguish between complete pages that
are independently translatable and page segments that are not (such as files brought in
through an i ncl ude directive).

The JSP 1.2 specification recommends the following:

« Usethe. j sp extension for top-level pages, dynamically included pages, and
pages that are forwarded to—pages that are translatable on their own.

Getting Started 3-7

Some Initial Considerations

« Donotuse. | sp for page segments brought in through i ncl ude directives—files
that are not translatable on their own. No particular extension is mandated for
such files, but. j sph,.j spf,or.j sf is recommended.

Removal of tools.jar from OC4J Standalone

The OC4J 9.0.3 standalone implementation provided the t ool s. j ar file from the Sun
Microsystems JDK 1.3.1. This file includes the j ava front-end executable and j avac
compiler executable, for example, among many other components.

The OC4J 10.1.2 standalone implementation no longer provides the t ool s. j ar file.
Therefore, you must install a JDK that OC4J supports before installing OC4J itself. The
JDK versions that OC4J supports for the OC4J 10.1.2 implementation are JDK 1.3.1 (for
OC4J standalone only) and JDK 1.4. Oracle Application Server 10g Release 2 (10.1.2)
includes JDK 1.4, so you should typically use this JDK version for OC4J standalone as
well. However, there are migration issues to consider, particularly the JDK 1.4
requirement that all invoked classes must be in packages. See "JDK 1.4 Considerations:
Cannot Invoke Classes Not in Packages" below.

Notes: OC4J standalone uses j avac from the same directory in
which j ava is accessed through the command "j ava -j ar
ocdj . j ar", ensuring use of the appropriate j avac version.

JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

Among the migration considerations in moving to a Sun Microsystems JDK 1.4
environment, which is the environment that is shipped with Oracle Application Server
10g Release 2 (10.1.2), there is one of particular importance to servlet and JSP
developers.

As stated by Sun Microsystems, "The compiler now rejects import statements that
import a type from the unnamed namespace." This was to address security concerns
and ambiguities with previous JDK versions. Essentially, this means that you cannot
invoke a class (a method of a class) that is not within a package. Any attempt to do so
will result in a fatal error at compilation time.

This especially affects JSP developers who invoke JavaBeans from their JSP pages, as
such beans are often outside of any package (although the JSP 2.0 specification now
requires beans to be within packages, in order to satisfy the new compiler
requirements). Where JavaBeans outside of packages are invoked, JSP applications that
were built and executed in an OC4J9.0.3 / JDK 1.3.1 environment will no longer work
in an OC4J) 10.1.2 /7 JDK 1.4 environment.

Until you update your application so that all JavaBeans and other invoked classes are
within packages, you can avoid this issue by reverting back to a JDK 1.3.1 environment
for OC4J standalone. Note that JDK 1.3.x is not supported in a full Oracle Application
Server 10.1.2 environment.

3-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Key Support Files Provided with 0C4J

Notes:

« Thejavac - sour ce compiler option is intended to allow JDK
1.3.1 code to be processed seamlessly by the JDK 1.4 compiler,
but this option does not account for the "classes not in
packages" issue.

« Only the JDK 1.3.1 and JDK 1.4 compilers are supported and
certified by OC4J. It is possible to specify an alternative
compiler by adding a <j ava- conpi | er > element to the
server. xm file, and this might provide a workaround for the
"classes not in packages" issue, but no other compilers are
certified or supported by Oracle for use with OC4J.
(Furthermore, do not update the ser ver . xm file directly in an
Oracle Application Server environment. Use the Oracle
Enterprise Manager 10g.)

For more information about the "classes not in packages" issue and other JDK 1.4
compatibility issues, refer to the following Web site:

http://java.sun.conlj2se/ 1.4/ conpatibility. htm

In particular, click the link "Incompatibilities Between Java 2 Platform, Standard
Edition, v1.4.0 and v1.3".

Key Support Files Provided with OC4J

This section summarizes JAR and ZIP files that are used by the JSP container or JSP
applications. These files are installed on your system and into your classpath with
OC4).

0j sp. j ar: classes for the JSP container
oj sputil .jar:classes for tag libraries and utilities provided with OC4J

xm par serv2. j ar: for XML parsing; required for the web. xm deployment
descriptor and any tag library descriptor files and XML-related tag functionality

xsul2. j ar: for XML functionality on the client
oj dbc14. j ar : for the Oracle JDBC drivers

j ndi . jar:for JNDI service for lookup of resources such as JDBC data sources
and Enterprise JavaBeans

j ta.j ar:for the Java Transaction API

There are also files relating to particular areas, such as particular tag libraries. These
include the following:

mai | . j ar: for e-mail functionality within applications (standard j avax. nmai |
package)

activati on.j ar:Java activation files for e-mail functionality

cache. j ar: for the Oracle Application Server Java Object Cache (which is the
default back-end repository for the OC4J Web Object Cache)

Getting Started 3-9

JSP Configuration in OC4J

JSP Configuration in OC4J

The following sections cover topics regarding configuration of the JSP environment:
= JSP Container Setup
« JSP Configuration Parameters

» OC4J Configuration Parameters for JSP

Notes:

« Discussion of OC4J configuration files and configuration
parameters, and how to update them manually, generally
assumes an OC4J standalone environment. This is typical
during development. For information about JSP configuration
through Oracle Enterprise Manager 10g in an Oracle
Application Server environment, such as for production
deployment, see "JSP Configuration in Oracle Enterprise
Manager 10g" on page 3-23.

« For non-OC4J environments, use the old
oracl e.jsp.JspServl et front-end servlet instead of the
oracle.jsp.runtinmev2.JspServl et version.

JSP Container Setup

The JSP container is appropriately preconfigured in OC4J. The following settings
appear in the OC4J gl obal - web- appl i cati on. xm file to map the name of the
front-end JSP servlet, and to map the appropriate file name extensions for JSP pages:

<orion-web-app ... >
<web- app>
<servlet>
<servl et - nane>j sp</ servl et - nane>
<servl et-cl ass>oracl e.jsp.runtinev2.JspServl et </servlet-class>
init_parans
</servl et>

<servl et - mappi ng>
<servl et - name>j sp</ servl et - name>
<url-pattern>/*.jsp</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - name>j sp</ ser vl et - name>
<url-pattern>/*.JSP</url-pattern>
</ servl et - mappi ng>

</ web- app>
</ ori on-web- app>

See the Oracle Application Server Containers for J2EE Servlet Developer’s Guide for more
information about the gl obal - web- appl i cati on. xm file.

3-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in OC4J

JSP Configuration Parameters

The JSP front-end servlet in OC4J, or acl e. j sp. runti mev2. JspSer vl et , supports
a humber of configuration parameters to control JSP operation. This section describes
those parameters. The following subsections provide a summary table, detailed
descriptions, and documentation of how to set them in the OC4J

gl obal - web- applicati on.xm ororion-web. xm file:

« JSP Configuration Parameter Summary Table
« JSP Configuration Parameter Descriptions

« Setting JSP Configuration Parameters in OC4J

JSP Configuration Parameter Summary Table

Table 3-1 summarizes the configuration parameters supported by JspSer vl et . For
each parameter, the table notes any equivalent oj spc translation options for pages
you are pretranslating, and whether the parameter is for runtime or compile-time use.

Notes: See "Option Descriptions for ojspc" on page 7-13 for
information about any oj spc options.

Table 3-1 JSP Configuration Parameters, OC4J Environment
Runtime/
Compile-
Parameter Related ojspc Option Description Default Time
check_page_scope (None) Set this booleanto t r ue to enable fal se Runtime
page-scope checking by
JspScopeli st ener (OC4J only).
debug_mode (None) Set this boolean to t r ue to print fal se Runtime
the stack trace when a runtime
exception occurs.
emit_debuginfo (None) Set this booleanto t r ue to fal se Compile-
generate a line map to the original time
.] sp file for debugging (for
development).
external_resource -extres Setthisbooleantot r ue toplaceall fal se Compile-
static content of the page into a time
separate Java resource file during
translation.
extra_imports -extralmports Use this to add imports beyond the nul | Compile-
JSP defaults. time
forgive_dup_dir_attr -forgiveDupDirAttr Set this boolean to t r ue to avoid fal se Compile-
JSP 1.2 translation errors if you time
have duplicate settings for the
same directive attribute within a
single JSP translation unit.
javaccmd -noCompile Use this if you want to specify a nul | Compile-
j avac command line or an time

alternative Java compiler. If you
use this option, the compiler will
be run in a separate process from
OC4]. The j avaccnd parameter is
ignored ifuse_ol d_conpi l er is
settof al se.

Getting Started 3-11

JSP Configuration in OC4J

Table 3-1 (Cont.) JSP Configuration Parameters, OC4J Environment

Runtime/
Compile-
Parameter Related ojspc Option Description Default Time

main_mode (None) This determines whether reconpi |l e Runtime
JSP-generated classes are
automatically reloaded or JSP
pages are automatically
retranslated, in case of changes.
Possible settings are j ust r un,
rel oad, and r econpi |l e.

no_tld_xml_validate -noTldXmlValidate Set this boolean to t r ue to not fal se Compile-
perform XML validation of TLD time
files. By default, validation of TLD
files is performed.

old_include_from_top -oldIncludeFromTop Set this booleantotrue for page fal se Compile-
locations in nested i ncl ude time
directives to be relative to the
top-level page, for backward
compatibility with behavior prior
to Oracle9iAS Release 2.

precompile_check (None) Set this booleanto t rue tocheck fal se Runtime
the HTTP request for a standard
j sp_pr econpi | e setting.

reduce_tag_code -reduceTagCode Set this boolean to t r ue for further fal se Compile-
reduction in the size of generated time
code for custom tag usage.

req_time_introspection -regTimelntrospection Set this booleantotr ue toenable fal se Compile-
request-time JavaBean time
introspection whenever
compile-time introspection is not
possible.

setproperty_onerr_continue (None) Set this boolean to t r ue to false Runtime
continue iterating over request
parameters and setting
corresponding bean properties
when an error is encountered
duringj sp: set Property when
property="*".

static_text_in_chars -staticTextInChars Set this boolean to t r ue to instruct f al se Compile-
the JSP translator to generate static time
text in JSP pages as characters
instead of bytes.

tags_reuse_default -tagReuse This specifies the mode for JSPtag runti ne Either
handler reuse: r unt i e for the
runtime model, conpi | eti ne or
conpiletime_with_rel ease
for the compile-time model, or
none to disable tag handler reuse.

3-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in OC4J

Table 3-1 (Cont.) JSP Configuration Parameters, OC4J Environment

Runtime/
Compile-
Parameter Related ojspc Option Description Default Time
use_old_compiler (None) Set this boolean to f al se toforce true, if Compile-
the JSP container to use the same tool s.jar time
compiler as the rest of OC4J. in classpath
Otherwise, by default, OC4J uses
in-process compilation (or
compilation according to the
j avaccmd setting, if applicable).
well_known_taglib_loc (None) If TLD caching is not enabled, this (See Compile-
specifies a directory where tag description time
library JAR files can be placed for column.)
sharing across multiple Web
applications. The default location is
j 2eel hone/jsp/lib/taglib
under the ORACLE_HQVE directory.
xml_validate -xmlValidate Set thisbooleantot r ue to perform fal se Compile-
XML validation of the web. xm time

file. By default, validation of
web. xn is not performed.

JSP Configuration Parameter Descriptions
This section describes the JSP configuration parameters for OC4J in more detail.

check_page_scope (boolean; default: f al se)

For OC4J environments, set this parameter to t r ue to enable Oracle-specific
page-scope checking by the JspScopelLi st ener utility. Itisf al se by default for
performance reasons.

This parameter is not relevant for non-OC4J environments, where the Oracle-specific
implementation is not used and you must use the checkPageScope custom tag for
JspScopeli st ener page-scope functionality. See the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference for detailed information
about the JspScopeli st ener utility.

debug_mode (boolean; default: f al se)

Use the t r ue setting to print a stack trace whenever a runtime exception occurs. A
f al se setting disables this feature.

Important: When debug_node isf al se and a file is not found,
the full path of the missing file is not displayed. This is an
important security consideration if you want to suppress the
display of the physical file path when non-existent JSP files are
requested.

emit_debuginfo (boolean; default: f al se)

During development, set this flag to t r ue to instruct the JSP translator to generate a
line map to the original . j sp file for debugging. Otherwise, lines will be mapped to
the generated page implementation class . j ava file.

Getting Started 3-13

JSP Configuration in OC4J

Note: Oracle JDeveloper enables eni t _debugi nf o.

external_resource (boolean; default: f al se)

Set this flag to t r ue to instruct the JSP translator to place static content of the page
into a Java resource file instead of into the service method of the generated page
implementation class.

The resource file name is based on the JSP page name, with the . r es suffix. With
Oracle Application Server 10g Release 2 (10.1.2), translation of MyPage. j sp, for
example, would create _MyPage. r es in addition to normal output. (The exact
implementation might change in future releases.)

The translator places the resource file into the same directory as generated class files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. For more information, see "Workarounds for Large
Static Content or Significant Tag Library Usage" on page 6-6.

Note: For pretranslating pages, the oj spc - ext r es option is
equivalent.

extra_imports (import list; default: nul I')

As described in "Default Package Imports" on page 3-7, the default list of packages
that are imported into each JSP page is smaller than the list prior to the OC4J9.0.3
implementation. This is in accordance with the JSP specification. You can avoid
updating your code, however, by specifying package names or fully qualified class
names for any additional imports through the ext ra_i npor t s configuration
parameter. See "Setting JSP Configuration Parameters in OC4J" on page 3-19 for
general syntax, and be aware that the names can be either comma-delimited or
space-delimited. Either of the following is okay, for example:

<init-param
<par am name>extra_i nport s</ par am name>
<param val ue>j ava. util.* java. beans. *</param val ue>
</init-paranp
or:
<init-param
<par am nane>ext r a_i npor t s</ par am nane>
<param val ue>j ava. util.*,java. beans. *</ param val ue>
<linit-paranmp

Notes:

« For pretranslating pages, the oj spc - ext r al nport s option is
equivalent.

« Asanalternative to usingext ra_i nport s, you can use global
includes. See "Oracle JSP Global Includes” on page 7-6.

forgive_dup_dir_attr (boolean; default; f al se)

Set this boolean to t r ue to avoid translation errors in a JSP 1.2 (or higher)
environment if you have duplicate settings for the same directive attribute within a

3-14 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in OC4J

single JSP translation unit (a JSP page plus anything it includes throughi ncl ude
directives).

The JSP specification directs that a JSP container must verify that directive attributes,
with the exception of the page directive i mport attribute, are not set more than once
each within a single JSP translation unit. See "Duplicate Settings of Page Directive
Attributes Are Disallowed" on page 6-8 for more information.

The JSP 1.1 specification did not specify such a limitation. OC4J offers the
forgi ve_dup_dir_attr parameter for backward compatibility.

Note: For pretranslating pages, the oj spc
-forgiveDupDir Att r option is equivalent.

javaccmd (compiler executable and options; default: nul | ')

Ifuse_ol d_conpi |l er issettotrue, you can usej avaccnd, typically during
development, to specify a Java compiler command line for use during JSP translation.
This would be useful if you want to specify particular j avac settings or an alternative
compiler (optionally including command-line settings). You can fully specify the path
for the executable, or specify only the executable and let the JSP container look for it in
the system path.

For example, setj avaccnd to the value j avac - ver bose to run the compiler in
verbose mode.

Be aware of the following:
« Thejavaccnd isignoredifuse_ol d_conpil er issettof al se.
« Usingj avaccnd results in the compiler running in a separate process from OCA4J.

See "JSP Compilation Considerations" on page 3-4 for related information.

Notes:

« The specified Java compiler must be installed in the classpath,
and any front-end utility (if applicable) must be installed in the
system path.

« For pretranslating pages, the oj spc - noConpi | e option
allows similar functionality. It results in no compilation by
j avac, so you can compile the translated classes manually
through any desired compiler.

main_mode (mode for reloading or retranslation; default: r econpi | €)

This is a flag to direct the mode of operation of the JSP container, particularly for
automatic retranslation of JSP pages and reloading of JSP-generated Java classes that
have changed.

Here are the supported settings:

= j ustrun: The runtime dispatcher will not perform any timestamp checking, so
there is no retranslation of JSP pages or reloading of JSP-generated Java classes.
This mode is the most efficient mode for a deployment environment, where code
will not change.

« rel oad: The dispatcher will check the timestamp of classes generated by the JSP
translator, such as page implementation classes, and reload any that have changed

Getting Started 3-15

JSP Configuration in OC4J

or been redeployed since they were last loaded. This might be useful, for example,
when you deploy or redeploy compiled classes, but not page source, from a
development environment to a production environment.

« reconpi |l e (default): The dispatcher will check the timestamp of the JSP page,
retranslate it and reload it if has been modified since loading, and execute r el oad
functionality as well.

no_tld_xml_validate (boolean; default: f al se)

Set thistot r ue to disable XML validation of the tag library descriptor (TLD) files of
the application. By default, validation of TLD files is performed.

See "Overview of TLD File Validation and Features" on page 8-6 for related
information.

Note: For pretranslating pages, the oj spc - noTl dXm Val i dat e
option is equivalent.

old_include_from_top (boolean; default: f al se)

This is for backward compatibility with Oracle JSP versions prior to Oracle9iAS
Release 2, for functionality of i ncl ude directives. If this parameter issettot r ue,
page locations in nested i ncl ude directives are relative to the top-level page. If it is
settof al se, page locations are relative to the immediate parent page, which complies
with the JSP specification.

Note: For pretranslating pages, the oj spc
- ol dl ncl udeFr onTop option is equivalent.

precompile_check (boolean; default: f al se)

Set thistot r ue to check the HTTP request for a standard j sp_pr econpi | e setting. If
preconpil e_check istrue and the request enables j sp_pr econpi | e, then the JSP
page will be pretranslated only, without execution. Setting pr econpi | e_check to

f al se improves performance and ignores any j sp_pr econpi | e setting in the
request.

For more information aboutj sp_pr econpi | e, see "Standard JSP Pretranslation
without Execution” on page 7-27, and the Sun Microsystems JavaServer Pages
Specification.

reduce_tag_code (boolean; default: f al se)

The Oracle JSP implementation reduces the size of generated code for custom tag
usage, but setting r educe_t ag_code tot r ue results in even further size reduction.
There may be performance consequences regarding tag handler reuse, however. See
"Tag Handler Code Generation" on page 8-32.

Note: For pretranslating pages, the oj spc - r educeTagCode
option is equivalent.

req_time_introspection (boolean; default: f al se)

3-16 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in OC4J

At r ue setting enables request-time JavaBean introspection whenever compile-time
introspection is not possible. When compile-time introspection is possible and
succeeds, however, there is no request-time introspection regardless of the setting of
this flag.

As an example of a scenario for use of request-time introspection, assume a tag
handler returns a generic j ava. | ang. Obj ect instance in Var i abl el nf o of the
tag-extra-info class during translation and compilation, but actually generates more
specific objects during request-time (runtime). In this case, if
reg_time_introspection isenabled, the JSP container will delay introspection
until request-time. (See "Scripting Variables, Declarations, and Tag-Extra-Info Classes"
on page 8-32 for information about use of Vari abl el nf 0.)

An additional effect of this flag is to allow a bean to be declared twice, such as in
different branches of ani f. . t hen. . el se loop. Consider the example that follows.
With the default f al se value of req_ti me_i nt rospect i on, this code would cause
a parse exception. With a t r ue value, the code will work without error:

<%if (cond) { %

<j sp: useBean id="foo" class="pkgA. Fool" />
<%} else { %

<j sp: useBean i d="foo0" class="pkgA Foo2" />
<%} %

Note: For pretranslating pages, the oj spc
-reqTi el ntrospecti on option is equivalent.

setproperty_onerr_continue (boolean; default: f al se)

Set this boolean to t r ue to continue iterating over request parameters and setting
corresponding bean properties when an error is encountered during a
j sp: set Property statement when property="*".

See the description of j sp: set Property, under "Standard Actions: JSP Tags" on
page 1-12, for related information.
static_text_in_chars (boolean; default: f al se)

At r ue setting directs the JSP translator to generate static text in JSP pages as
characters instead of bytes. Enable this flag if your application requires the ability to
change the character encoding dynamically during runtime, such as in the following
example:

<% response. set Cont ent Type("text/htm ; charset=UTF-8"); %

(See "Dynamic Content Type Settings" on page 9-4 for related information.)

The f al se default setting improves performance in outputting static text blocks.

Note: For pretranslating pages, the oj spc
-stati cText | nChar s option is equivalent.

tags_reuse_default (mode for tag handler reuse; default: r unt i ne)

Use this parameter to specify the mode of tag handler reuse (tag handler instance
pooling), as follows:

Getting Started 3-17

JSP Configuration in OC4J

« Use the setting none to disable tag handler reuse. You can override this in any
particular JSP page by setting the JSP page context attribute
oracl e.jsp.tags. reuse toavalue oft rue.

« Use the default setting r unt i e to enable the runtime model of tag handler reuse.
You can override this in any particular JSP page by setting the JSP page context
attribute or acl e. j sp. t ags. reuse to a value of f al se.

« Use the setting conpi | et i me to enable the compile-time model of tag handler
reuse in its basic mode.

« Usethe setting conpi |l eti me_wi t h_r el ease to enable the compile-time model
of tag handler reuse in its "with release" mode, where the tag handler r el ease()
method is called between usages of a given tag handler within a given page.

Notes:

« Ifyou use avalue of r unt i e, and your code allows the JSP
container to continue processing a JSP page in the event that
custom tags cause exceptions, you may encounter subsequent
occurrences of Cl assCast Except i on. In this event, change
thet ags_reuse_def aul t valuetoconpil etineor
conpiletime_wi th_rel ease.

« If you switch from the runtime model (t ags_r euse_def aul t
value of r unt i ne) to the compile-time model
(tags_reuse_defaul t value of conpi |l eti me or
conpiletime_wi th_rel ease), or from the compile-time
model to the runtime model, you must retranslate the JSP
pages.

« For backward compatibility, a setting of t r ue is also supported
and is equivalent tor unti me, and a setting of f al se is
supported and is equivalent to none.

« For pretranslating pages, the oj spc -t agReuse option is
equivalent.

See "Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse" on
page 8-30 for more information about tag handler reuse.

use_old_compiler (boolean; default: true if t ool s. j ar is in classpath)

You can setuse_ol d_conpi | er tof al se to force the JSP container to use the same
compiler as the rest of OC4J—out-of-process compilation with j avac by default, or
compilation according to a <j ava- conpi | er > elementin server. xm . The

use_ol d_conpi |l er flagissettot rue by defaultift ool s. j ar isin the classpath,
resulting in in-process compilation unless j avaccnd is set. (Youcanusea<l i brary>
elementin the server. xm file to ensure thatt ool s. j ar is in the classpath.)

See "JSP Compilation Considerations" on page 3-4 for related information.

3-18 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in OC4J

Notes:

« Iftools.jar isnotin the classpath, then
use_ol d_conpi | er is forced to af al se setting.

« If you want to use an out-of-process compiler, but not the
compiler that the rest of OC4J uses, then set
use_ol d_conpil er totrue and use the j avaccnd
parameter to specify the desired compiler.

well_known_taglib_loc (location for shared tag libraries; default: see description)

If persistent TLD caching is not enabled, you can usewel | _known_t agl i b_I oc to
specify a single directory to use as the "well-known location" where tag library JAR
files can be placed for sharing across multiple Web applications. See "TLD Caching
and Well-Known Tag Library Locations" on page 8-16 for important related
information.

Specify a relative directory location. This would be under ORACLE_HOVE if
ORACLE_HOVE is defined, or under the current directory, from which the OC4J process
was started, if ORACLE_HOME is not defined. The default value is as follows:

« ORACLE_HOVE/ | 2ee/ hone/jsp/lib/taglib/ if ORACLE HOVE is defined.
or:

« ./jsp/lib/taglib if ORACLE HOVE is not defined.

xml_validate (boolean; default: f al se)

Set this tot r ue to enable XML validation of the application web. xm file. Because the
Tomcat reference implementation does not perform XML validation, xm _val i dat e
is f al se by default.

Note: For pretranslating pages, the oj spc - xim Val i dat e option
is equivalent.

Setting JSP Configuration Parameters in OC4J

In an OC4J standalone development environment, you can set JSP configuration
parameters directly in gl obal - web- application. xm ,web. xni , or

ori on-web. xm , inside the <ser vl et > element for the JSP front-end servlet. In the
portion of gl obal - web- appl i cati on. xm shown in "JSP Container Setup" on
page 3-10, the settings would go where the i ni t _par ans placeholder appears.

Note: In an Oracle Application Server production environment,
use Enterprise Manager for configuration. You can use the
Application Server Control Console Web Module Advanced
Properties Page in Enterprise Manager to update the

gl obal - web-application.xm ororion-web. xm file. This
Application Server Control Console is discussed in the Oracle
Application Server Containers for J2EE Servlet Developer’s Guide.

The following example lists <ser vl et > element and subelement settings for the JSP
front-end servlet. This sample enables the pr econpi | e_check flag, sets the

Getting Started 3-19

JSP Configuration in OC4J

mai n_node flag to run without checking timestamps, and runs the Java compiler in
verbose mode.

<servl et>
<servl et - name>j sp</ ser vl et - name>
<servl et-class>oracle.jsp.runtinev2. JspServlet</servlet-class>
<init-param
<par am nane>pr econpi | e_check</ par am name>
<par am val ue>t r ue</ par am val ue>
</init-paranp
<init-param
<par am nanme>mai n_node</ par am nane>
<par am val ue>j ust r un</ par am val ue>
</init-paranp
<init-paranp
<par am nane>j avaccnd</ par am nane>
<param val ue>j avac -verbose</param val ue>
</init-paranp
</ servlet>

You can override any settings in the gl obal - web- appl i cati on. xml file with
settings in the web. xm file for a particular application, and you can make
deployment-specific overrides of web. xm settings through settings in
orion-web. xm . For information about gl obal - web-applicati on. xm and
ori on-web. xm , see the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide.

OC4J Configuration Parameters for JSP

There are also OC4J configuration parameters—as opposed to parameters for the
JspSer vl et front-end servlet of the JSP container—which affect JSP pages. This
section documents JSP-related attributes of the root <or i on- web- app> element of the
OC4J gl obal - web-appli cation.xm fileororion-web. xm file. For more
information about these files, see the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide.

JSP-Related OC4J Configuration Parameter Descriptions

The following <or i on- web- app> attributes, in the OC4J
gl obal - web-appl i cati on. xm file orori on-web. xm file, affect JSP
performance and functionality:

= jsp-print-null:Setthisflag to "f al se" to print an empty string instead of the
string "null” for null output from a JSP page. The defaultis "t r ue".

= | sp-timeout: Specify an integer value, in seconds, after which any JSP page will
be removed from memory if it has not been requested. This frees up resources in
situations where some pages are called infrequently. The default value is 0, for no
timeout.

=] sp-cache-directory: The JSP cache directory is used as a base directory for
output files from the JSP translator. (See "JSP Translator Output File Locations" on
page 7-5.) It is also used as a base directory for application-level TLD caching. (See
"TLD Cache Features and Files" on page 8-17.) The default value is
". /| per si st ence", relative to the deployment directory of the application.

= j sp-cache-tl ds: This flag indicates whether persistent TLD caching is enabled
for JSP pages. TLD caching is implemented both at a global level, for TLD files in
"well-known" tag library locations, and at an application level, for TLD files under
the VIEB- | NF directory. Use a "t r ue" or "on" setting, which is the default, to search

3-20 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in OC4J

for TLD files among all application files. A setting of "st andar d" searches for
TLD files only in / VEB- | NF and subdirectories other than / VEB- | NF/ cl asses
or/ V\EEB- | NF/ | i b. A setting of "f al se" or "of f " disables this feature.
Well-known locations are according to the j sp-t agl i b- 1 ocat i ons attribute.
See "TLD Caching and Well-Known Tag Library Locations" on page 8-16 for
related information.

jsp-taglib-1locations: If persistent TLD caching is enabled, through the

j sp- cache-t | ds attribute, you can use j sp-tagl i b-1 ocati ons to specify a
semicolon-delimited list of one or more directories to use as "well-known"
locations. Tag library JAR files can be placed in these locations for sharing across
multiple Web applications and for TLD caching. See "TLD Caching and
Well-Known Tag Library Locations" on page 8-16 for important related
information.

You can specify any combination of absolute directory paths or relative directory
paths. Relative paths would be under ORACLE_HQOVE if ORACLE_HOME is defined,
or under the current directory, from which the OC4J process was started, if
ORACLE_HOVE is not defined. The default value is as follows:

— ORACLE _HOWVE/j 2eel/ home/jsp/lib/taglib/ if ORACLE_HOVE is defined.
or:

- ./ljsp/lib/taglib if ORACLE_HOVE is not defined.

Important: Use thej sp-tagli b-1ocations attribute only in
gl obal - web-application.xm ,notinorion-web.xm .

si npl e-j sp- mappi ng: Set thisto "t rue" if the "*. j sp" file extension is mapped
toonly theoracl e.jsp. runtinmev2. JspServl et front-end JSP servlet in the
<ser vl et > elements of any Web descriptors affecting your application

(gl obal - web-appl i cation.xm ,web. xm , and ori on-web. xm). This will
allow performance improvements for JSP pages. The default setting is "f al se".

enabl e-] sp-di spat cher -short cut: A"t rue" setting, which is the case by
default, results in significant performance improvements by the OC4J JSP
container, especially in conjunction with a "t r ue" setting for the

si npl e-j sp- mappi ng attribute. This is particularly true for JSP pages with
numerous j sp: i ncl ude statements. Use of the "t r ue" setting assumes, however,
that if you define JSP files with <j sp-fi | e> elements in web. xm , then you have
corresponding <ur | - pat t er n> specifications for those files, as in the following
example:

<servl et >
<servl et - name>f oo</ servl et - nane>
<jsp-file>bar.jsp</jsp-file>
</servlet>

<servl et - mappi ng>
<servl et - name>f oo</ servl et - name>
<url-pattern>/ nypath</url-pattern>
</ servl et - mappi ng>

If you use <j sp-fi | e>without a corresponding <ur | - pat t er n> setting (which

is not a typical scenario), then set
enabl e-] sp-di spat cher-shortcut="fal se".

Getting Started 3-21

Key OC4J Configuration Files

Note: The aut or el oad-| sp- pages and

aut or el oad-j sp- beans attributes of the <or i on- web- app>
element are not supported by the OC4J JSP container in Oracle
Application Server 10g Release 2 (10.1.2). You can use the JSP
mai n_node configuration parameter, described in "JSP
Configuration Parameter Descriptions" on page 3-13, for
functionality equivalent to that of aut or el oad- j sp- pages.

Setting JSP-Related OC4J Configuration Parameters

To set configuration values that would apply to all applications in an OC4J instance,
use the <or i on- web- app> element of the OC4J gl obal - web- appl i cati on. xm
file. To set configuration values for a particular application deployment, overriding
settings in gl obal - web- appl i cati on. xm , use the <ori on- web- app> element of
the deployment-specific ori on- web. xmi file.

Here is an example:

<orion-web-app ... jsp-print-null="false" ... >
</ ori on-web-app>

Note that the <or i on- web- app> element has numerous attributes and subelements.
For a complete discussion, see the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide.

Note: Update these files directly only if you are in an OC4J
standalone environment. In an Oracle Application Server
environment, use Enterprise Manager for configuration. In Oracle
Application Server 10g Release 2 (10.1.2), JSP <or i on- web- app>
attributes are not yet supported by the Application Server Control
Console JSP Properties Page in Enterprise Manager, but you can
make settings through the Application Server Control Console Web
Module Advanced Properties Page. This page is described in the
Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

Key OC4J Configuration Files
Be aware of the following key configuration files in the OC4J environment.
Global files for all OC4J applications, in the OC4J configuration files directory:

« server.xnl : This has an overall <appl i cati on- server > element, with an
<appl i cat i on> subelement for each J2EE application. Each <appl i cat i on>
subelement specifies the name of the application and the name and location of its
EAR deployment file. The <appl i cat i on- ser ver > element specifies the name
of the general application source directory, where EAR files are placed for
deployment and extracted, and the application deployment directory, where
OC4J-specific configuration files are generated. Additionally, there is a
<web- si t e>element for the default Web site, and you can add a <web- si t e>
element for each additional Web site you want to have on the server.

« default-web-site.xm (orhttp-web-site.xm for OC4Jstandalone, or
other Web site XML file as applicable): This includes a <web- app> element for
each Web application for the default Web site, mapping the application name to
the "Web application name". The Web application name corresponds to the WAR

3-22 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in Oracle Enterprise Manager 10g

deployment file name. Additional Web site XML files, as specified for additional
Web sites in the ser ver . xm file, have the same functionality.

« gl obal -web-application.xm : Thisis a global configuration file for OC4J
Web applications. It establishes default configurations and includes setup and
configuration of the JSP front-end servlet, JspSer vl et .

« application.xm :Thisis the application descriptor of the OC4J default
application, which by default is the parent application of any other OC4J
applications. Do not confuse this with standard J2EE application-level
appli cation. xml files. The application descriptor of the OC4J default
application is OC4J-specific, governed by or i on- appl i cati on. dtd.

« dat a- sources. xm : This specifies data sources for database connections.

(In Oracle Application Server, OC4J directory paths are configurable; in OC4J
standalone, the configuration files directory isj 2ee/ home/ conf i g by default.)

In addition to the global appl i cati on. xmi file, there is a standard
application.xm file, and optionally an ori on- appl i cati on. xm file, for each
application. These files are in the application EAR file.

Also, in an application WAR file, which is inside the application EAR file, there is a
standard web. xm file and optionally an or i on- web. xmi file. These are for
application-specific and deployment-specific configuration settings, overriding

gl obal - web- appl i cati on. xm settings or providing additional settings as
appropriate. The gl obal - web-appl i cati on. xm and ori on-web. xm files
support the same elements, which is a superset of those supported by the web. xm
file.

Ifthe ori on-application.xm andorion-web. xnl files are not present in the
archive files, they will be generated during initial deployment according to settings in
the gl obal - web- appl i cati on. xmi file.

For additional information, see "Overview of EAR/WAR Deployment" on page 7-23.
For complete information about the use of these files, see the Oracle Application Server
Containers for J2EE User’s Guide and the Oracle Application Server Containers for J2EE
Servlet Developer’s Guide.

JSP Configuration in Oracle Enterprise Manager 10g

In an Oracle Application Server environment, such as for production deployment, use
Enterprise Manager for OC4J configuration. This includes configuration of the
front-end JSP servlet for the OC4J JSP container.

Oracle Enterprise Manager 10g Application Server Control Console is the
administration console for an Oracle Application Server instance. It enables you to
monitor real-time performance, manage Oracle Application Server components and
instances, and configure these components and instances. This includes any instances
of OC4J. In particular, Application Server Control Console includes the JSP Properties
Page. Application Server Control Console comes with your Oracle Application Server
installation. Log in as the i as_admi n user.

Application Server Control Console JSP Properties Page

The following graphic shows the key portion of the Application Server Control
Console JSP Properties Page for an OC4J instance.

Getting Started 3-23

JSP Configuration in Oracle Enterprise Manager 10g

JSP Properties: jsp

Refreshed at Wednesday, July 10, 2002 7:41:52 PM POT E=j

Oracle JSP Container Properties
The following properties may be used to configure the Cracle JSP Container.

Debug Mode |No x| Emit Debuy Info |Mo j
External Resource for Static Content |Yes | v| ‘When a JSF Changes |Recompile JSP 'l
Generate Static Text as Bytes | Yes x| Precompile Check Mo)
Tags Reuse Default [Yes = Walidate XML Mo =]
Reduce Code Size for Customn Tags |Mo | =

20L Command |

Alternate Java Compiler |

[Bevert.] . Apply)

When you first access an Oracle Application Server instance through Application
Server Control Console in Enterprise Manager, you reach the Oracle Application
Server Instance Home Page. You can drill down to the JSP Properties Page as follows:

1. From the Oracle Application Server Instance Home Page, select the name of an
OC4J instance in the System Components table. Things brings you to the OC4J
Home Page for the OC4J instance.

2. From the OC4J Home Page, click Administration. This brings you to the OC4J
Administration Page.

3. From the OC4J Administration Page, click JSP Container Properties under
Instance Properties. This brings you to the JSP Properties Page

For further information about using Enterprise Manager, see the Oracle Application
Server Containers for J2EE Servlet Developer’s Guide for an overview of Web application
deployment and configuration or the Oracle Application Server Containers for J2EE User’s
Guide for information about any OC4J-related deployment and configuration.

Configuration Parameters Supported by the JSP Properties Page

Table 3-2 shows the correspondence between JSP container properties shown in the
Application Server Control Console JSP Properties Page in Enterprise Manager, and
configuration parameters of the JSP container front-end servlet as described in "JSP
Configuration Parameters" on page 3-11. See that section for the meanings of the
settings.

Possible settings are shown with defaults in bold. Note that Application Server
Control Console defaults are appropriate for a production environment, so are not
necessarily the same as defaults otherwise, which are appropriate for a development
environment.

Table 3-2 Application Server Control Console Properties, JSP Parameters

Application Server

Control Console JSP Possible Possible
Container Property Settings JSP Configuration Parameter Settings
Debug Mode No debug_mode false

Yes true

3-24 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Configuration in Oracle Enterprise Manager 10g

Table 3-2 (Cont.) Application Server Control Console Properties, JSP Parameters

Application Server

Control Console JSP Possible Possible
Container Property Settings JSP Configuration Parameter Settings
External Resource for Static No external_resource false
Content Yes true
Generate Static Text as No static_text_in_chars false
Bytes Yes true
Tags Reuse Default No tags_reuse_default none

Yes runtime
Reduce Code Size for No reduce_tag_code false
Custom Tags Yes true
Emit Debug Info No emit_debuginfo false

Yes true
When a JSP Page Changes Recompile JSP main_mode recompile

Reload Classes reload

Do Nothing justrun
Precompile Check No precompile_check false

Yes true
Validate XML No xml_validate false

Yes true
Alternate Java Compiler Command javaccmd Command

string (null by string (null by

default) default)

Notes:

« Asof Oracle Application Server 10g Release 2 (10.1.2),
Application Server Control Console supports only runtime (not
compile-time) tag handler reuse. In other words,
tags_reuse_def aul t settings of conpi | eti me or
conpi | etime_wi th_rel ease are not yet directly supported
through Application Server Control Console.

« The Application Server Control Console JSP container property
"Generate Static Text as Bytes" corresponds to the JSP
configuration parameter st ati c_t ext _i n_char s, but with
opposite orientation. Their defaults are equivalent.

Configuration Parameters Not Supported by the JSP Properties Page

As of Oracle Application Server 10g Release 2 (10.1.2), the following configuration
parameters are not yet supported through the Application Server Control Console JSP
Properties Page:

« JSP front-end servlet parameters: check_page_scope, extra_i nports,
forgive dup_dir_attr,no_tld xm _validate,
ol d_include_fromtop,req_tinme_introspection,and
wel | _known_taglib_Ioc.

Getting Started 3-25

JSP Configuration in Oracle Enterprise Manager 10g

» JSP-related attributes of the <or i on- web- app> element in
gl obal - web-appl i cati on. xm ororion-web. xm :jsp-print-null and
j sp-tinmeout,jsp-cache-directory,jsp-cache-tlds,
j sp-taglib-1ocations,sinple-jsp-nmappi ng, and
enabl e-j sp-di spat cher-shortcut.

Instead, you must update them in ori on- web. xm or other appropriate XML file
(such asweb. xm or gl obal - web-application. xm). Editori on-web. xm or
gl obal - web-appli cati on. xm through the Application Server Control Console
Web Module Advanced Properties Page, as described in the Oracle Application Server
Containers for J2EE Servlet Developer’s Guide. Also see "Setting JSP Configuration
Parameters in OC4J" on page 3-19 and "Setting JSP-Related OC4J Configuration
Parameters” on page 3-22 for related information.

3-26 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

A

Basic Programming Considerations

This chapter discusses basic programming considerations for JSP pages, including
JSP-servlet interaction and database access, with examples provided.

The following sections are included:

« JSP-Servlet Interaction

« JSP Data-Access Support and Features
« JSP Resource Management

« Runtime Error Processing

JSP-Servlet Interaction

Although coding JSP pages is convenient in many ways, some situations call for
servlets. One example is when you are outputting binary data, as discussed in
"Reasons to Avoid Binary Data in JSP Pages" on page 6-12.

Therefore, it is sometimes necessary to go back and forth between servlets and JSP
pages in an application. The following sections discuss how to accomplish this:

« Invoking a Servlet from a JSP Page

« Passing Data to a Servlet Invoked from a JSP Page
« Invoking a JSP Page from a Servlet

« Passing Data Between a JSP Page and a Servlet

« JSP-Servlet Interaction Samples

Important: This discussion assumes a servlet 2.2 or higher
environment, such as OC4J (servlet 2.3).

Invoking a Servlet from a JSP Page

As when invoking one JSP page from another, you can invoke a servlet from a JSP
page through the j sp: i ncl ude and j sp: f or war d action tags. (See "Standard
Actions: JSP Tags" on page 1-12.) Following is an example:

<jsp:include page="/servlet/MServlet" flush="true" />
When this statement is encountered during page execution, the page buffer is output
to the browser and the servlet is executed. When the servlet has finished executing,

control is transferred back to the JSP page and the page continues executing. This is the
same functionality as for j sp: i ncl ude actions from one JSP page to another.

Basic Programming Considerations 4-1

JSP-Servlet Interaction

And as with j sp: f or war d actions from one JSP page to another, the following
statement would clear the page buffer, terminate the execution of the JSP page, and
execute the servlet:

<jsp:forward page="/servlet/WServlet" />

Passing Data to a Servlet Invoked from a JSP Page

When dynamically including or forwarding to a servlet from a JSP page, you can use a
j sp: par amtag to pass data to the servlet (the same as when including or forwarding
to another JSP page).

You can use aj sp: par amtag withinaj sp: i ncl ude orj sp: f or war d tag. Consider
the following example:

<j sp:include page="/servlet/MServiet" flush="true" >
<j sp: param nanme="user nane" val ue="Smth" />
<j sp: par am nane="user enpno" val ue="9876" />
</jsp:include>

For more information about the j sp: par amtag, see "Standard Actions: JSP Tags" on
page 1-12.

Alternatively, you can pass data between a JSP page and a servlet through a JavaBean
of appropriate scope or through attributes of the HTTP request object. Using attributes
of the request object is discussed later, in "Passing Data Between a JSP Page and a
Servlet" on page 4-3.

Invoking a JSP Page from a Servlet

You can invoke a JSP page from a servlet through functionality of the standard
j avax. servl et . Request Di spat cher interface. Complete the following steps in
your code to use this mechanism:

1. Geta servlet context instance from the servlet instance:
Servl et Context sc = this.getServletContext();
2. Getarequest dispatcher from the servlet context instance, specifying the

page-relative or application-relative path of the target JSP page as input to the
get Request Di spat cher () method:

Request Di spat cher rd = sc. get Request Di spat cher ("/jsp/ nypage.jsp");
Prior to or during this step, you can optionally make data available to the JSP page

through attributes of the HTTP request object. See "Passing Data Between a JSP
Page and a Servlet" below for information.

3. Invoke thei ncl ude() orforward() method of the request dispatcher,
specifying the HTTP request and response objects as arguments. For example:

rd.include(request, response);

or:

rd. forward(request, response);

The functionality of these methods is similar to that of j sp: i ncl ude and
j sp: forwardtags. Thei ncl ude() method only temporarily transfers control,
execution returns to the invoking servlet afterward.

Note that the f or war d() method clears the output buffer.

4-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP-Servlet Interaction

Note: The request and response objects would have been obtained
earlier, using standard servlet functionality such as the doGet ()
method specified in the j avax. servl et. http. H t pSer vl et
class.

Passing Data Between a JSP Page and a Servlet

The preceding section, "Invoking a JSP Page from a Servlet", notes that when you
invoke a JSP page from a servlet through the request dispatcher, you can optionally
pass data through the HTTP request object. You can accomplish this using either of the
following approaches:

= You can append a query string to the URL when you obtain the request dispatcher,
using "?" syntax with name=val ue pairs. For example:

Request Di spatcher rd =

sc. get Request Di spat cher ("/j sp/ nypage. j sp?username=Sni th");
In the target JSP page (or servlet), you can use the get Par anet er () method of
the implicit r equest object to obtain the value of a parameter set in this way.

« Youcanuse theset Attri but e() method of the HTTP request object. For
example:

request.setAttribute("usernane”, "Snith");
Request Di spat cher rd = sc. get Request Di spat cher ("/j sp/ mypage.jsp");

In the target JSP page or servlet, you can use the get Att ri but e() method of the
implicit r equest object to obtain the value of a parameter set in this way.

Note: You can use the mechanisms discussed in this section
instead of the j sp: par amtag to pass data from a JSP page to a
servlet.

JSP-Servlet Interaction Samples

This section provides a JSP page and a servlet that use functionality described in the
preceding sections. The JSP page Jsp2Ser vl et . j sp includes the servlet
My Ser vl et , which includes another JSP page, wel cone. j sp.

Code for Jsp2Servlet.jsp

<HTM.>

<HEAD> <TITLE> JSP Calling Servlet Demo </ TITLE> </ HEAD>
<BCDY>

<l-- Forward processing to a servlet -->
<% request.setAttribute("enpid", "1234"); %
<jsp:include page="/servlet/MServlet?user=Snith" flush="true"/>

</ BODY>
</ HTM.>

Code for MyServlet.java

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.PrintWiter;

Basic Programming Considerations 4-3

JSP Data-Access Support and Features

inport java.io.lCException;
public class MyServlet extends HttpServlet {

public void doGet (HttpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException {
PrintWiter out= response.getWiter();
out. println("
User:" + request.getParaneter("user"));
out.println
(", Enployee nunmber:" + request.getAttribute("enpid') + "");
this. get Servl et Cont ext () . get Request Di spat cher
("/jsp/wel come.jsp").include(request, response);

Code for welcome.jsp

<HTM.>
<HEAD> <TI TLE> The Wl come JSP </TITLE> </ HEAD>
<BODY>

<H3> %l cone! </H3>

<P> Today is <% new java.util.Date() %. Have a nice day! </P>
</ BODY>

</ HTM.>

JSP Data-Access Support and Features

The following sections discuss OC4J JSP and Oracle features to consider when
accessing data:

« Introduction to JSP Support for Data Access

» JSP Data-Access Sample Using JDBC

« Use of IDBC Performance Enhancement Features
« EJB Calls from JSP Pages

» OracleXMLQuery Class

Introduction to JSP Support for Data Access

Because the JDBC API is simply a set of Java interfaces, JavaServer Pages technology
directly supports its use within JSP scriptlets.

Oracle JDBC provides several driver alternatives: 1) the JDBC OCI driver for use with
an Oracle client installation; 2) a 100%-Java JDBC Thin driver that can be used in
essentially any client situation, including applets; 3) a JDBC server-side Thin driver to
access one Oracle Database instance from within another Oracle Database instance;
and 4) a JDBC server-side internal driver to access the database within which the Java
code is running, such as from a Java stored procedure. It is assumed that you are
already at least somewhat familiar with JDBC basics, but you can refer to the Oracle
Database JDBC Developer's Guide and Reference.

The OC4J JSP container also supports EJB calls.

Additionally, there are SQL tags in the JavaServer Pages Standard Tag Library (JSTL),
and JavaBeans and custom SQL tags supplied with OC4J. These are all documented in
the Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

4-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features

JSP Data-Access Sample Using JDBC

The following example creates a query dynamically from search conditions the user
enters through an HTML form (typed into a box, and entered with an Ask Oracl e
button). To perform the specified query, it uses JDBC code in a method called
runQuery() thatis defined in a JSP declaration. It also defines a method,

f or mat Resul t (), within the JSP declaration to produce the output. The
runQuery() method uses the scot t schema with password ti ger.

The HTML | NPUT tag specifies that the string entered in the form be named cond.
Therefore, cond is also the input parameter to the get Par anet er () method of the
implicit r equest object for this HTTP request, and the input parameter to the
runQuery() method (which puts the cond string into the WHERE clause of the query).

Notes:

« Another approach to this example would be to define the
runQuery() methodin <% .. % scriptlet syntax instead of
<% ... % declaration syntax.

« This example uses the JDBC OCI driver, which requires an
Oracle client installation. If you want to run this sample, use an
appropriate JDBC driver and connection string.

<%@ page | anguage="java" inport="java.sql.*" %
<HTM.>
<HEAD> <TI TLE> The JDBCQuery JSP </ TITLE> </ HEAD>
<BODY BGCOLOR="whi t ">
<% String searchCondition = request.get Paraneter("cond");
if (searchCondition !=null) { %
<H3> Search results for <I> <% searchCondition % </I> </ H3>
 <% runQuery(searchCondition) % <HR>

<%} %
Enter a search condition:
<FORM METHOD="get ">
<I NPUT TYPE="text" NAME="cond" SIZE=30>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</ FORW>
</ BODY>
</ HTML>
<% - Declare and define the runQuery() nethod. --%
<% private String runQuery(String cond) throws SQLException {
Connection conn = null;
St at enent stnt nul | ;
Result Set rset = null;
try {
DriverManager.registerDriver(new oracle.jdbc.driver.COracleDriver());
conn = DriverManager. get Connection("jdbc:oracle:oci: @,
"scott", "tiger");

stnt = conn.createStatenent();
/'l dynanic query
rset = stnt.executeQuery ("SELECT enane, sal FROM scott.enp "+
(cond.equal s("") ? "" : "WHERE " + cond));
return (formatResult(rset));
} catch (SQLException e) {
return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
} finally {
if (rset!=null) rset.close();
if (stnmt!=null) stnt.close();

Basic Programming Considerations 4-5

JSP Data-Access Support and Features

if (conn!= null) conn.close();

}
}
private String formatResult(ResultSet rset) throws SQLException {
StringBuffer sb = new StringBuffer();
if (!rset.next())
sbh. append("<P> No matching rows.<P>\n");
el se { sb.append("<uUL>");
do { sb.append("" + rset.getString(1) +
" earns $ " + rset.getlnt(2)
} while (rset.next());
sh. append(" </ UL>");

+ ".\n");

}
return sh.toString();

}
%

The graphic below illustrates sample output for the following input:
sal >= 2500 AND sal < 5000

+ The JDBCQuery JSP - Netzcape

File Edit “iew Go Communicator Help

T{@T\aﬁad&%

Back Forward Feload Harme Search Metzcape Print SecLrity SIh:up

Wt " Bookmarks A Ll:n:atil:un:l j ﬁ' Ywhat's Helated
Search results for salf == 2300 AND sal < 3000

JONES earns § 2975.
BLAKE earns $§ 2850.
SCOTT earns $ 3000.
FORD earns § 3000.

Enter a search condition:

| Ask Oracle

Fil |

Use of JDBC Performance Enhancement Features

JSP applications in OC4J can use features for the following performance
enhancements, supported through Oracle JDBC extensions:

« Caching database connections

4-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features

« Caching JDBC statements

« Batching update statements

« Prefetching rows during a query
« Caching rowsets

Most of these performance features are supported by the Oracle ConnBean and
ConnCacheBean data-access JavaBeans (but not by DBBean). These beans are
described in the Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference.

Database Connection Caching

Creating a new database connection is an expensive operation that you should avoid
whenever possible. Instead, use a cache of database connections. A JSP application can
get a logical connection from a pre-existing pool of physical connections, and return
the connection to the pool when done.

You can create a connection pool at any one of the four JSP scopes—appl i cati on,
sessi on, page, orr equest . It is most efficient to use the maximum possible
scope—appl i cat i on scope if that is permitted by the Web server, or sessi on scope
if not.

The Oracle JDBC connection caching scheme, built upon standard connection pooling
as specified in the JDBC 2.0 standard extensions, is implemented in the
ConnCacheBean data-access JavaBean provided with OC4J. Alternatively, you can
use standard data-source connection pooling functionality, which is supported by the
ConnBean data-access JavaBean. These beans are described in the Oracle Application
Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

For information about the Oracle JDBC connection caching scheme, see the Oracle
Database JDBC Developer's Guide and Reference.

JDBC Statement Caching

Statement caching, an Oracle JDBC extension, improves performance by caching
executable statements that are used repeatedly within a single physical connection,
such as in a loop or in a method that is called repeatedly. When a statement is cached,
the statement does not have to be re-parsed, the statement object does not have to be
re-created, and parameter size definitions do not have to be recalculated each time the
statement is executed.

The Oracle JDBC statement caching scheme is implemented in the ConnBean and
ConnCacheBean data-access JavaBeans that are provided with OC4J. Each of these
beans has a st nt CacheSi ze property that can be set through aj sp: set Property
tag or the bean set St nt CacheSi ze() method. The beans are described in the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

For information about the Oracle JDBC statement caching scheme, see the Oracle
Database JDBC Developer's Guide and Reference.

Important: Statements can be cached only within a single physical
connection. When you enable statement caching for a connection
cache, statements can be cached across multiple logical connection
objects from a single pooled connection object, but not across
multiple pooled connection objects.

Basic Programming Considerations 4-7

JSP Data-Access Support and Features

Update Batching

The Oracle JDBC update batching feature associates a batch value (limit) with each
prepared statement object. With update batching, instead of the JDBC driver executing
a prepared statement each time its execution method is called, the driver adds the
statement to a batch of accumulated execution requests. The driver will pass all the
operations to the database for execution once the batch value is reached. For example,
if the batch value is 10, then each batch of ten operations will be sent to the database
and processed in one trip.

OC4J supports Oracle JDBC update batching directly, through the execut eBat ch
property of the ConnBean data-access JavaBean. You can set this property through a
j sp: set Property tag or through the setter method of the bean. If you use
ConnCacheBean instead, you can enable update batching through Oracle JDBC
functionality in the connection and statement objects you create. These beans are
described in the Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference.

For more information about Oracle JDBC update batching, see the Oracle Database
JDBC Developer's Guide and Reference.

Row Prefetching

For the population of query result sets, the Oracle JDBC row prefetching feature
enables you to determine the number of rows to prefetch into the client during each
trip to the database. This reduces the number of round-trips to the server.

OC4J supports Oracle JDBC row prefetching directly, through the pr eFet ch property
of the ConnBean data-access JavaBean. You can set this property through a

j sp: set Property tag or through the setter method of the bean. If you use
ConnCacheBean instead, you can enable row prefetching through Oracle JDBC
functionality in the connection and statement objects you create. These beans are
described in the Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference.

For more information about Oracle JDBC row prefetching, see the Oracle Database
JDBC Developer's Guide and Reference.

Rowset Caching

A cached rowset provides a disconnected, serializable, and scrollable container for
retrieved data. This feature is useful for small sets of data that do not change often,
particularly when the client requires frequent or continued access to the information.
By contrast, using a normal result set requires the underlying connection and other
resources to be held. Be aware, however, that large cached rowsets consume a lot of
memory on the application server.

In Oracle Database, the Oracle JDBC implementation provides a cached rowset
implementation. If you are using an Oracle JDBC driver, use code inside a JSP page to
create and populate a cached rowset, as follows:

CachedRowSet crs = new CachedRowSet () ;
crs.popul ate(rset); // rset is a previously created JDBC Resul t Set object.

Once the rowset is populated, the connection and statement objects used in obtaining
the original result set can be closed.

For more information about Oracle JDBC cached rowsets, see the Oracle Database JDBC
Developer's Guide and Reference.

4-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

JSP Data-Access Support and Features

EJB Calls from JSP Pages

JSP pages can call EJBs to perform additional processing or data access. A typical
application design uses JavaServer Pages as a front-end for the initial processing of
client requests, with Enterprise JavaBeans being called to perform the work that
involves reading from and writing to data sources. The following sections provide an
overview of EJB usage:

« Overview of Configuration and Deployment for EJBs
« Code Steps and Approaches for EJB Calls
« Use of the OC4J EJB Tag Library

Overview of Configuration and Deployment for EJBs

The configuration and deployment steps for calling EJBs from JSP pages are similar to
the steps for calling EJBs from servlets, which are described in the Oracle Application
Server Containers for J2EE Servlet Developer’s Guide. These steps include the following:

« Define an <ej b- r ef > element in the application web. xn file for each EJB called
from a JSP page.

« Createanej b-jar. xm deployment descriptor that contains an
<ent er pri se- beans> element with appropriate subelements, such as
<sessi on>or<entity>, that specify the types of EJBs. Within these
subelements, specify the name, class name, and other details for each called EJB.

« Package the ej b-j ar. xm file in the EJB archive. Deployment requirements are
very similar to the requirements for servlets.

Code Steps and Approaches for EJB Calls
The key steps required for a JSP page to invoke an EJB are the following:

1. Import the EJB package for the bean home and remote interfaces into each JSP
page that makes EJB calls. Use a page directive for this.

2. Use JNDI to look up the EJB home interface.
3. Create the EJB remote object from the home.
4. Invoke business methods on the remote object.

Because you can use almost any servlet code in a JSP page in the form of a scriptlet,
one straightforward way to call EJBs from a JSP page is to use the same code in a
scriptlet that you would use in a servlet. This is one way to accomplish steps 2, 3, and
4.

Alternatively, you can use tags from the EJB tag library provided with OC4J. This is
described in the next section, "Use of the OC4J EJB Tag Library". These tags simplify
the coding. Essentially, they allow you to treat Enterprise JavaBeans similarly to
regular JavaBeans, which are commonly used in JSP pages.

Use of the OC4J EJB Tag Library

Refer to the preceding section, "Code Steps and Approaches for EJB Calls". As in that
section, import the appropriate package in a page directive. Then use the OC4J EJB
tags as follows:

« Useatagli b directive to specify the tag prefix and the tag library descriptor
(TLD) file that you will use.

« For step 2 of the code steps, use an EJB useHone tag.

Basic Programming Considerations 4-9

JSP Resource Management

» Forstep 3 of the code steps, you can use an EJB cr eat eBean tag inside an EJB
useBean tag.

« Forstep 4 of the code steps, the EJB i t er at e tag enables you to apply business
methods to each member of a collection of EJB objects, usually returned by af i nd
method.

For more information about the EJB tag library, including detailed tag syntax, see the
Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

Deployment requirements are the same for the tag library approach as for the scriptlet
code approach. As with any tag library, the TLD and the library support classes (tag
handler classes and tag-extra-info classes) must be made accessible to your
application.

OracleXMLQuery Class

Theoracl e. xm . sql . query. Oracl eXM_Query class is part of the Oracle
Database XML-SQL utility for XML functionality in database queries. This class
requires file xsul2. j ar, which is also required for XML functionality in some of the
custom tags and JavaBeans provided with OC4J. This file is provided with Oracle
Database and Oracle Application Server.

For information about the Or acl eXM_Quer y class and other XML-SQL utility
features, refer to the Oracle XML Developer’s Kit Programmer’s Guide.

JSP Resource Management

The following sections discuss standard features and Oracle value-added features for
resource management:

« Standard Session Resource Management: HttpSessionBindingListener

« Overview of Oracle Value-Added Features for Resource Management

Standard Session Resource Management: HttpSessionBindingListener

A JSP page must appropriately manage resources acquired during its execution, such
as JDBC connection, statement, and result set objects. The standard

j avax. servl et . ht't p package provides the Ht t pSessi onBi ndi ngLi st ener
interface and Ht t pSessi onBi ndi ngEvent class to manage session-scope resources.
Through this mechanism, a session-scope query bean could, for example, acquire a
database cursor when the bean is instantiated and close it when the HTTP session is
terminated. (The example in "JSP Data-Access Sample Using JDBC" on page 4-5 opens
and closes the connection for each query, which adds overhead.)

This section describes use of the Ht t pSessi onBi ndi ngLi st ener val ueBound()
and val ueUnbound() methods.

Note: The bean instance must register itself in the event
notification list of the HTTP session object, but the j sp: useBean
statement takes care of this automatically.

The valueBound() and valueUnbound() Methods

An object that implements the Ht t pSessi onBi ndi ngLi st ener interface can
implement aval ueBound() method and aval ueUnbound() method, each of which
takesan Ht t pSessi onBi ndi ngEvent instance as input. These methods are called by

4-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Resource Management

the servlet container—the val ueBound() method when the object is stored in the
session, and the val ueUnbound() method when the object is removed from the
session or when the session reaches a timeout or becomes invalid. Usually, a developer
will use val ueUnbound() to release resources held by the object (in the example
below, to release the database connection).

"JDBCQueryBean JavaBean Code" below provides a sample JavaBean that implements
Ht t pSessi onBi ndi ngLi st ener and a sample JSP page that calls the bean.

JDBCQueryBean JavaBean Code

Following is the sample code for JDBCQuer yBean, a JavaBean that implements the
Ht t pSessi onBi ndi ngLi st ener interface. It uses the JDBC OCI driver for its
database connection; use an appropriate JDBC driver and connection string if you
want to run this example yourself.

JDBCQuer yBean gets a search condition through the HTML request (as described in
"UseJDBCQueryBean JSP Page" on page 4-12), executes a dynamic query based on the
search condition, and outputs the result.

This class also implements a val ueUnbound() method, as specified in the
Ht t pSessi onBi ndi ngLi st ener interface, that results in the database connection
being closed at the end of the session.

package nybeans;

inport java.sql.*;
inport javax.servlet.http.*;

public class JDBCQueryBean inpl enents HttpSessi onBi ndi ngLi st ener
{

String searchCond = "";

String result = null;

public void JDBCQueryBean() {
}

public synchronized String getResult() {
if (result !'=null) return result;
el se return runQuery();

}

public synchronized void set SearchCond(String cond) {
result = null;
this. searchCond = cond;

}

private Connection conn = null;

private String runQuery() {

StringBuffer sb = new StringBuffer();

Statement stnt = null;

Resul tSet rset = null;

try {

if (conn == null) {
DriverManager . registerDriver(new oracle.jdbc.driver.OracleDriver());
conn = DriverMnager. get Connection("jdbc:oracle:oci8 @,
"scott", "tiger");

Basic Programming Considerations 4-11

JSP Resource Management

stnt
rset

conn. createStat enent ();

stnt.executeQuery ("SELECT ename, sal FROM scott.enp "+
(searchCond. equal s("") ? "" : "WHERE " + searchCond));
result = formatResul t(rset);

return result;

} catch (SQLException e) {
return ("<P> SQL error: <PRE>" + e + " </PRE> </P>\n");

}
finally {
try {
if (rset I'=null) rset.close();
if (stmt !'=null) stnt.close();
}
catch (SQLException ignored) {}
}

}

private String formatResult(ResultSet rset) throws SQLException {
StringBuffer sb = new StringBuffer();
if (!rset.next())
sh. append("<P> No matching rows.<P>\n");
el se {
sh. append(" ");
do { sb.append("" + rset.getString(1l) +
" earns $ " + rset.getInt(2) + "\n");
} while (rset.next());
sh. append(" </ B></ UL>");

return sh.toString();
}

public void val ueBound(H t pSessi onBi ndi ngEvent event) {
/1 do nothing -- the session-scope bean is already bound

}

publi ¢ synchroni zed void val ueUnbound(Ht t pSessi onBi ndi ngEvent event) {
try {
if (conn !'=null) conn.close();
}
catch (SQLException ignored) {}
}
}

Note: The preceding code serves as a sample only. This is not
necessarily an advisable way to handle database connection
pooling in a large-scale Web application.

UseJDBCQueryBean JSP Page

The following JSP page uses the JDBCQuer yBean JavaBean defined in
"JDBCQueryBean JavaBean Code" above, invoking the bean with sessi on scope. It
uses JDBCQuer yBean to display employee names that match a search condition
entered by the user.

JDBCQuer yBean gets the search condition through the j sp: set Property tag in this
JSP page, which sets the sear chCond property of the bean according to the value of
the sear chCond request parameter input by the user through the HTML form. The

4-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Resource Management

HTML | NPUT tag specifies that the search condition entered in the form be named
sear chCond.

<j sp: useBean id="queryBean" cl ass="nybeans. JDBCQuer yBean" scope="session" />
<j sp: set Property name="queryBean" property="searchCond" />

<HTM.>
<HEAD> <TI TLE> The UseJDBCQueryBean JSP </ TITLE> </ HEAD>
<BODY BGCOLOR="whi t ">

<% String searchCondition = request. get Pararmet er ("searchCond");
if (searchCondition !=null) { %
<H3> Search results for : <I> <% searchCondition % </I> </ H3>
<% queryBean. get Resul t () %
<HR>

<%} %

Enter a search condition for the EMP table: </ B>

<FORM METHOD="get ">

<I NPUT TYPE="text" NAME="searchCond" VALUE="ename LIKE 'A% " SIZE="40">
<INPUT TYPE="submit" VALUE="Ask Oracle">

</ FORW>

</ BODY>
</ HTM.>

Following is sample input and output for this page:

The UseJDECQueryBean JSP - Netscape

File Edt “iew Go Communicator Help

I SIS NN S N R S A

Back Fomward Reload Home Search Metzcape Prirt Security Stop

wtv Bookmarks ¢ anation:l ﬂ @' Yhat's Related
Search results for : erurne LIKE '1%'

* ALLEN earns § 1600
* ADAMS earns § 1100

Enter a search condition for the EMP table:

Iena.me LIEE '&%' Ask Oracle |

=l |Document: Done

Advantages of HttpSessionBindingListener

In the preceding example, an alternative to the Ht t pSessi onBi ndi ngLi st ener
mechanism would be to close the connection inafi nal i ze() method in the
JavaBean. The fi nal i ze() method would be called when the bean is
garbage-collected after the session is closed. The Ht t pSessi onBi ndi ngLi st ener
interface, however, has more predictable behavior than afi nal i ze() method.
Garbage collection frequency depends on the memory consumption pattern of the

Basic Programming Considerations 4-13

Runtime Error Processing

application. By contrast, the val ueUnbound() method of the
Ht t pSessi onBi ndi ngLi st ener interface is called reliably at session shutdown.

Overview of Oracle Value-Added Features for Resource Management

OC4J JSP provides the JspScopelLi st ener interface for managing application-scope,
session-scope, request-scope, or page-scope resources in a servlet 2.3 environment
such as OC4J.

This mechanism adheres to servlet and JSP standards in supporting objects of page,
request, sessi on,orappl i cati on scope. To create a class that supports session
scope as well as other scopes, you can integrate JspScopeli st ener with

Ht t pSessi onBi ndi ngLi st ener by having the class implement both interfaces. For
page scope in OC4J environments, you also have the option of using an
Oracle-specific runtime implementation.

For information about configuration and how to integrate with
Ht t pSessi onBi ndi ngLi st ener, see the Oracle Application Server Containers for J2EE
JSP Tag Libraries and Utilities Reference.

Runtime Error Processing

While a JSP page is executing and processing client requests, runtime errors can occur
either inside the page or outside the page, such as in a called JavaBean. This section
describes error processing mechanisms and provides an elementary example.

Servlet and JSP Runtime Error Mechanisms

This section describes servlet 2.3 and JSP 1.2 mechanisms for handling runtime
exceptions, including the use of JSP error pages.

General Servlet Runtime Error Mechanism

Any runtime error encountered during execution of a JSP page is handled through the
standard Java exception mechanism in one of two ways:

= You can catch and handle exceptions in a Java scriptlet within the JSP page itself,
using standard Java exception-handling code.

« Exceptions that you do not catch in the JSP page will result in forwarding of the
request and uncaught exception, aj ava. | ang. Thr owabl e instance, to an error
resource. This is the preferred way to handle JSP errors. In this case, the exception
instance describing the error is stored in the r equest object through a
set Attri bute() call, usingj avax. servlet.jsp.jspExcepti on asthe
name.

You can specify the URL of an error resource by setting the er r or Page attribute in a
page directive in the originating JSP page. (For an overview of JSP directives,
including the page directive, see "Directives" on page 1-6.)

In a servlet 2.2 or higher environment, you can also specify a default error page in the
web. xm deployment descriptor through instructions such as the following:

<error-page>

<error-code>404</ error-code>

<l ocation>/error404. htm </l ocation>
</ error-page>

4-14 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Runtime Error Processing

See the Sun Microsystems Java Servlet Specification, Version 2.3 for more information
about default error resources.

JSP Error Pages

You have the option of using another JSP page as the error resource for runtime
exceptions from an originating JSP page. A JSP error page must have a page directive
setting i SEr r or Page="tr ue". An error page defined in this way takes precedence
over an error page declared in the web. xmi file.

The j ava. | ang. Thr owabl e instance describing the error is accessible in the error
page through the JSP implicit except i on object. Only an error page can access this
object. For information about JSP implicit objects, including the except i on object, see
"Implicit Objects" on page 1-10.

Be aware that if an originating JSP page has a page directive with

aut oFl ush="true" (the default setting), and the contents of the JspW i t er object
from that page have already been flushed to the response output stream, then any
further attempt to forward an uncaught exception to any error page might not be able
to clear the response. Some of the response might have already been received by the
browser.

See "JSP Error Page Example" below for an example of error page usage.

JSP Error Page Example

The following example, nul | poi nt er. j sp, generates an error and uses an error
page, nyerror. j sp, to output contents of the implicit except i on object.

Code for nullpointer.jsp
<HTM.>
<BODY>
<%@ page errorPage="nyerror.jsp" %
Nul'| pointer is generated bel ow
<%
String s=null;
s.length();
%
</ BODY>
</ HTM.>

Code for myerror.jsp

<HTM.>

<BODY>

<%@ page isErrorPage="true" %
Here is your error:

<% exception %

</ BODY>

</ HTML>

This example results in the following output:

Basic Programming Considerations 4-15

Runtime Error Processing

File Edit “iew Go Communicator Help

L

< » A & 2 W 3 & I N

Back Forward Reload Home Search Metzcape Frint Security Stom

‘- W‘ " Bookmarks A L-:u:atiu:un:l j 7 what's Related

Here 1z wour error java lang MullP omnterException

E | | Diocument; Dione

Note: The line "Null pointer is generated below:" in

nul | poi nter.j sp is not output when processing is forwarded to
the error page. This shows the difference between j sp: i ncl ude
andj sp: f or war d functionality. With j sp: f or war d, the output
from the "forward-to" page replaces the output from the
"forward-from" page.

4-16 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

D

JSP XML Support

Because of additional support for XML introduced in the JSP 1.2 specification,
JavaServer Pages can increasingly be seen as an effective model for producing XML
documents. With these enhancements, JSP technology becomes more complementary
to XML technology and more accessible to XML tools. Another benefit of JSP XML
support is that page validation becomes more powerful and comprehensive.

This chapter describes JavaServer Pages support for XML. This includes support for
XML-style equivalents to JSP syntactical elements, and the concept of the "XML view"
of a JSP page. These features were added in the JSP 1.2 specification, although the JSP
1.1 specification included optional support for JSP XML syntax and defined the syntax.

The chapter includes the following sections:

« JSP XML Documents and JSP XML View: Overview and Comparison
» Details of ISP XML Documents

« Details of the JSP XML View

For information about additional JSP support for XML and XSL, furnished in OC4)]
through custom tags, refer to the Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference.

For general information about XML, refer to the XML specification at the following
Web site:

http://ww. w3. or g/ XM/

JSP XML Documents and JSP XML View: Overview and Comparison

Traditional JSP constructs, such as <%@ page. . . > directives, <%@ i ncl ude... >
directives, <% . . % for scriptlets, <% . . . % for declarations, and <%. . . % for
expressions, are not syntactically valid within an XML document. This issue was first
addressed in the JSP 1.1 specification by defining equivalent XML-compatible syntax.
In JSP 1.1, however, support for this syntax by a JSP container was optional.

Beginning with the JSP 1.2 specification, there is more complete support for
XML-compatible JSP syntax, adding features and requiring support by compliant JSP
containers.

JSP XML Support 5-1

JSP XML Documents and JSP XML View: Overview and Comparison

Note: Prior to Oracle9iAS Release 2 (9.0.3), the OC4J JSP container
supported the optional XML-alternative syntax of the JSP 1.1
specification. The JSP container now replaces this implementation
with full XML support as prescribed by the current JSP
specification. The JSP 1.1 syntax itself remains unchanged, but there
are now additional aspects of JSP XML support, as described in this
chapter.

In addition, under the JSP 1.1 specification, you could intermix
traditional syntax and XML-alternative syntax within a page. This
is no longer true.

The term JSP XML document (called JSP document in the JSP specification) refers to a
JSP page that uses this XML-compatible syntax. The syntax includes, among other
things, a root element and elements that serve as alternatives to JSP directives,
declarations, expressions, and scriptlets. (Standard tag actions and custom tag actions
already follow XML conventions.) See "Details of JSP XML Documents" on page 5-3 for
details.

A JSP XML document is well formed in pure XML syntax and is namespace-aware. It
uses XML namespaces to specify the JSP XML core syntax and the syntaxes of any
custom tag libraries used. A traditional JSP page, by contrast, is typically not an XML
document.

A JSP XML document has the same file name extension as a traditional JSP page,

.] sp. However, it is recognizable by the JSP container as an XML document because
of its root element, <j sp: r oot >. Additionally, the semantic model for JSP XML
documents is the same as for traditional pages. A JSP XML document dictates the
same set of actions and results as a traditional page with equivalent syntax. Processing
of white space follows XSLT conventions. Once the nodes of a JSP XML document
have been identified, textual nodes that have only white space are dropped from the
document, except within<j sp: t ext > elements for template data. The content of

<j sp: t ext > elements is kept exactly as is.

Note: Template data consists of any text that is not interpreted by
the JSP translator.

In a JSP 1.2 environment, a JSP XML document can be processed directly by the JSP
container. You can also use a JSP XML document with XML development tools or
other XML tools, which will become increasingly important as such tools become more
popular and prevalent.

Another key feature of XML support in the JSP specification is the JSP XML view. The
specification defines this as "the mapping between a JSP page, written in either XML
syntax or traditional syntax, and an XML document describing it". The JSP container
generates it during translation.

In the case of a JSSP XML document, the JSP XML view is similar to the page source.
One difference is that the XML view is expanded according to any i ncl ude directives.
Another (optional) difference, for JSP containers that support it, is that ID attributes for
improved error reporting are added to all XML elements.

In the case of a traditional JSP page, the JSP container performs a series of
transformations to create the XML view from the page. See "Details of the JSP XML
View" on page 5-11 for details.

5-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Details of JSP XML Documents

The key function of the JSP XML view is its use for page validation. Beginning with
the JSP 1.2 specification, any tag library can have a <val i dat or > element in its TLD
file to specify a class that can perform validation. Such classes are referred to as
tag-library-validator (TLV) classes. The purpose of a TLV class is to validate any JSP
page that uses the tag library, verifying that the page adheres to any desired
constraints that you have implemented. A validator class uses the JSP XML view as
the source for its validation.

In summary, you can optionally use JSP XML syntax to create a JSP page that is
XML-compatible. The JSP XML view, in contrast, is a function of the JSP container, for
use in page validation.

Details of JSP XML Documents

This section describes the syntax of JSP XML documents in further detail. For a
complete description, refer to the Sun Microsystems JavaServer Pages Specification.

Important: You cannot intermix JSP traditional syntax and JSP
XML syntax in a single file. You can, however, make use of both
syntaxes together in a single translation unit through the use of
i ncl ude directives. For example, a traditional JSP page can
include a JSP XML document.

Note: A JSP XML document does not use a DOCTYPE statement.

JSP XML syntax includes the following:

« Arootelement, <j sp: root ...>, whichincludes a namespace specification for
the JSP XML core syntax and namespace specifications for any custom tag libraries
that are used

« JSP directive elements, for page and i ncl ude directives

Note: A separate mechanism, through xm ns attributes of the
root element, is equivalent to the use of t agl i b directives. "JSP
XML root Element and JSP XML Namespaces"” on page 5-5
describes this.

« JSP declaration elements

« JSP expression elements

« JSP scriptlet elements

« JSP standard action elements

« JSP custom action elements

« Atextelement, <jsp:text ... >, fortemplate (static) data
« Other XML elements, if desired, pertaining to template data

The following subsection describes each of these types of elements, followed by an
example comparing a traditional JSP page to the equivalent JSP XML document.

JSP XML Support 5-3

Details of JSP XML Documents

Summary Table of JSP XML Syntax

Table 5-1 summarizes JSP XML syntax, comparing it to JSP traditional syntax as

applicable.

Table 5-1 JSP XML Syntax Versus JSP Traditional Syntax

JSP XML Syntax

Corresponding JSP Traditional Syntax

Root element:

<j sp: root
xmns:jsp=...
xm ns: xxx = ..
version=. ..

/>

The root element indicates the standard JSP XML
namespace, XML namespaces for any custom tag
libraries, and a JSP version number (required).
See "JSP XML root Element and JSP XML
Namespaces" on page 5-5.

JSP page directive element:
<jsp:directive.page ... />

See "JSP XML Directive Elements" on page 5-6.

JSP i ncl ude directive element:
<jsp:directive.include ... />

See "JSP XML Directive Elements" on page 5-6.

JSP declaration element:

<j sp: decl arati on>
decl aration
</jsp: decl arati on>

See "JSP XML Declaration, Expression, and
Scriptlet Elements" on page 5-7.

JSP expression element:

<j sp: expr essi on>
expression
</j sp: expressi on>

See "JSP XML Declaration, Expression, and
Scriptlet Elements" on page 5-7.

The xm ns settings for tag libraries are
equivalent to JSP t agl i b directives.

<Y@page ... %

<Y%@include ... %

<% declaration %

<% expression %

5-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Details of JSP XML Documents

Table 5-1 (Cont.) JSP XML Syntax Versus JSP Traditional Syntax

JSP XML Syntax Corresponding JSP Traditional Syntax

JSP scriptlet element: <% code fragment %

<jsp:scriptlet>
code fragment
</jsp:scriptlet>

See "JSP XML Declaration, Expression, and
Scriptlet Elements"” on page 5-7.

JSP standard action, such asj sp: i ncl ude or JSP standard action

jsp:forward The traditional standard action syntax is
See "JSP XML Standard Action and Custom already XML-compatible.
Action Elements" on page 5-8.

JSP custom action (any custom tag) JSP custom action

See "JSP XML Standard Action and Custom The traditional custom action syntax is
Action Elements" on page 5-8. already XML-compatible.

JSP request-time attribute expression within a <foo: bar attr="<%expr%" />

standard or custom action:
<foo: bar attr="%expr% />

See "JSP XML Standard Action and Custom
Action Elements" on page 5-8.

Text element: Template data
<jsp:text>

</jsp:text>

This is for template data. See "JSP XML Text
Elements and Other Elements" on page 5-8.

Other XML elements. These can appear anywhere Template data
a<j sp: t ext > element can appear.

See "JSP XML Text Elements and Other Elements"
on page 5-8.

JSP XML root Element and JSP XML Namespaces

The <j sp: r oot > element has three primary functions:

« Itestablishes the document as a JSP XML document, instructing the JSP container
to treat it accordingly.

« ltidentifies, through xm ns attribute settings, required XML namespaces for the
JSP XML core syntax and any custom tag libraries.

« It specifies a JSP version number (required).

There is always one xm ns attribute to identify the namespace for the core JSP XML
syntax:

JSP XML Support 5-5

Details of JSP XML Documents

xm ns:jsp="http://java. sun. conf JSP/ Page"

Thisxm ns: j sp setting enables the use of standard elements defined in the JSP
specification.

You must also include an xmi ns attribute for each custom tag library you use,
specifying the tag library prefix and namespace—that is, pointing to the corresponding
TLD file for use in validating your tag usage. These xmm ns settings are equivalent to

t agl i b directives in a traditional JSP page.

You can use either a URN or a URI to point to the TLD file. The Sun Microsystems
JavaServer Pages Specification, Version 1.2 provides the following example, for tag library
prefixes eg and t enp:

<jsp:root xmns:jsp="http://java.sun.con’ JSP/ Page"
xm ns: eg="http://java. apache. or g/ t ontat / exanpl es-taglib"
xmns:tenp="urn:jsptld:/WEB-INF/tlds/my.tld"
version="1.2"

>

...body of docunent...
</jsp:root>

A URN indicates an application-relative path and must be of the form

"urn:jsptld: pat h", where the path is specified in the same way as the ur i attribute
inatagl i b directive. See "Overview: Specifying a Tag Library with the taglib
Directive" on page 8-11.

A URI can be a complete URL or it can be according to mapping in the <t agl i b>
element of the web. xm file or the <ur i > element of a TLD file. See "Use of web.xml
for Tag Libraries" on page 8-14 and "Packaging and Accessing Multiple Tag Libraries
in a JAR File" on page 8-13.

Also note the ver si on attribute in the example. This is a required attribute, specifying
the JSP version that the page uses (1.2 or higher).

JSP XML Directive Elements

There are JSP XML elements that are equivalent to page and i ncl ude directives. (The
t agl i b directives are replaced by xm ns settings in the <j sp: r oot > element, as the
preceding section, "JSP XML root Element and JSP XML Namespaces", describes.)

Transforming a page or i ncl ude directive to the equivalent JSP XML element is
straightforward, as shown in the following examples.

Example: page Directive
Consider the following page directive:

<%@page inport="java.io.*" %
This is equivalent to the following JSP XML element:

<jsp:directive.page inport="java.io.*" />

Example: include Directive
Consider the following i ncl ude directive:

<¥%@include file="/jspl/userinfopage.jsp" %

5-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Details of JSP XML Documents

This is equivalent to the following JSP XML element:

<jsp:directive.include file="/jsp/userinfopage.jsp" />

Note: The XML view of a page does not contain i ncl ude
elements, because statically included segments are copied directly

into the view.

JSP XML Declaration, Expression, and Scriptlet Elements

There are JSP XML elements that are equivalent to JSP declarations, expressions, and

scriptlets.

Transforming any of these constructs to the equivalent JSP XML element is

straightforward, as shown in the following examples.

Example: JSP Declaration
Consider the following JSP declaration:

<% public String func(int nyint) { if (nyint<10) return("...");

This is equivalent to the following JSP XML element:

<j sp: decl aration>

} %

<I[CDATAl public String func(int myint) { if (nyint<10) return("..."); }]]>

</jsp: decl aration>

The XML CDATA (character data) designation is used because the declaration includes
a "<" character, which has special meaning to an XML parser. (If you use an XML
editor to create your JSP XML pages, this would presumably be handled

automatically.) Alternatively, you could write the following, using the "& t ; " escape

character instead of "<":

<j sp: decl aration>

public String func(int nmyint) { if (myint &t; 10) return("..."); }

</jsp: decl aration>

Example: JSP Expression
Consider the following JSP expression:

<% (user==null) ? "" : user %
This is equivalent to the following JSP XML element:

<j sp: expression> (user==null) ? "" : user </jsp:expression>

Example: JSP Scriptlet
Consider the following JSP scriptlet:

<% if (pageBean.get NewName().equals("")) { %

This is equivalent to the following JSP XML element:

<jsp:scriptiet>if (pageBean.getNewName().equals("")) { </jsp:scriptlet>

JSP XML Support

5-7

Details of JSP XML Documents

JSP XML Standard Action and Custom Action Elements

Traditional syntax for JSP standard actions (such asj sp: i ncl ude, j sp: f or war d,
andj sp: useBean) and custom actions is already XML-compatible. In using standard
actions or custom actions in JSP XML syntax, however, be aware of the following
issues.

« A standard action or custom action element with an attribute that can accept a
request-time expression value can take that value through the following syntax:

" U%expr essi on%

Note that there are no angle brackets, "<" and ">", around this syntax and that
white space around expr essi on is not necessary. Evaluation of expr essi on,
after any applicable quoting as in any XML document, is the same as for any JSP
request-time expression.

= Any quoting must be according to the XML specification.

= You can introduce template data through <j sp: t ext > elements or through
chosen XML elements that are neither standard nor custom. See "JSP XML Text
Elements and Other Elements"”, which follows.

JSP XML Text Elements and Other Elements
A <j sp: t ext > element denotes template data in a JSP XML document;

<j sp:text>
...tenplate data...
</jsp:text>

When a JSP container encounters a <j sp: t ext > element, it passes the contents to the
current JSP out object (similar to the processing of an XSLT <xsl : t ext > element).

The JSP specification also allows, wherever a <j sp: t ext > element can appear, the
use of arbitrary elements (neither standard action elements nor custom action
elements) for template data. These arbitrary elements are processed in the same way as
<j sp: t ext > elements, with content being sent to the current JSP out object.

The following example is from the Sun Microsystems JavaServer Pages Specification,
Version 1.2.

Example: Other JSP XML Elements

Consider the following JSP XML document source text:
<hel | 0><j sp: scriptlet>int i=3;</jsp:scriptlet>

<hi >

<jsp:text> hi you all

</j sp: text><jsp:expression>i </ jsp: expressi on>

</ hi>

</ hel | 0>

This source text results in the following output from the JSP container:

<hel | 0> <hi > hi you all
3 </hi></hell o>

Note how the white space is treated.

5-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Details of JSP XML Documents

Sample Comparison: Traditional JSP Page Versus JSP XML Document

This section shows two versions of a JSP page, one in traditional syntax and one in
XML syntax.

For information about deploying and running this example, refer to the following Web
site:

http://ww. oracl e. com technol ogy/ tech/javal/ oc4j/htdocs/ howto-jsp-xm vi
ew. ht m

(You must register for an Oracle Technology Network membership, but it is free of
charge.)

Sample Traditional JSP Page
Here is the sample page in traditional syntax:

<Y%@ page session = "false" %

<j sp:useBean id = "picker" class = "oracle.jsp.sanple.lottery.LottoPi cker"
scope = "page" />

<% pi cker.setldentity(request.getRenoteAddr()); %

<HTM_>
<HEAD>

<TI TLE>Lott 0 Number Cenerator</ Tl TLE>
</ HEAD>

<BODY BACKGROUND="i mages/ cream j pg" BGCOLOR="#FFFFFF">

<HL ALI G\=" CENTER' ></ HL>

<HL ALI G\="CENTER'>Your Specially Pi cked</Hl>

<P ALI G\N="CENTER"><| MG SRC="i mages/ wi nni ngnunbers. gi f" WDTH="450" HEl GHT="69"
ALI GN="BOTTOM'

BORDER="0"></ P>

<p>

<P ALI G\="CENTER" >
<TABLE ALI G\N="CENTER" BCORDER="0" CELLPADDI NG="0" CELLSPACI NG="0">

<TR>
<%

int [] picks = picker.getPicks();

for (int i =0; i < picks.length; i++) {
%

<TD>
<IM5 SRC="i nmages/ bal | <% picks[i] %.gif" WDTH="68" HEl GHT="76"
ALI G\="BOTTOM' BORDER="0">
</ TD>

<%
}
%
</ TR>
</ TABLE>

</ P>

JSP XML Support 5-9

Details of JSP XML Documents

<P ALI G\=" CENTER' >

<I MG SRC="i mages/ pl ayrespon. gi f* WDTH="120" HEl GHT="73" ALl G\="BOTTOM'
BORDER="0" >

</ BCDY>
</ HTM.>

Sample JSP XML Document
Here is the same page in XML syntax:

<j sp: r oot
xm ns:jsp="http://java. sun. coml JSP/ Page"
version="1.2">

<jsp:directive. page session = "fal se" content Type="text/htm"/>

<jsp:useBean id = "picker" class = "oracle.jsp.sanple.lottery.LottoPicker"
scope = "page" />

<j sp:scriptlet>picker.setldentity(request.getRenoteAddr()); </jsp:scriptlet>

<j sp: t ext ><! [CDATA <HTM.>

<HEAD>
<TITLE>Lotto Nunmber Generator</TI TLE>
</ HEAD>

<BODY BACKGROUND='../basic/lottery/imges/creamjpg’ BGCOLOR=' #FFFFFF' >
<HL ALl G\F' CENTER ></ H1>

<HL ALI G\=' CENTER >Your Special |y Pi cked</H1>
<P ALI G\N=' CENTER ><I M5 SRC='../basic/lottery/images/ wi nni ngnunbers. gi f'
W DTH=' 450' HEI GHT=' 69" ALI G\=' BOTTOM BORDER='0' ></ P>

<P ALI G\=' CENTER >
<TABLE ALI G\=' CENTER BORDER='0' CELLPADDI NG='0' CELLSPACI NG='0' >
<TR>] | ></j sp: text>
<jsp:scriptlet>

int [] picks = picker.getPicks();

for (int i =0; i &t; picks.length; i++)

{

</jsp:scriptlet>
<j sp: t ext ><! [CDATA[<TD>

<IM5 SRC='../basic/lottery/imges/ball]]>
</jsp:text>
<j sp: expressi on>pi cks[i] </jsp: expressi on>
<jsp:text>

<I'[CDATA.gi f' WDTH=' 68" HEI GHT="'76' ALI G\=' BOTTOM BORDER='0' >

</ TD>]] ></| sp: text>
<jsp:scriptlet>

</jsp:scriptlet>

<j sp: t ext ><! [CDATA[</ TR>

</ TABLE>

</ P>

<P ALl G\=' CENTER >

<IM5 SRC="../basic/lottery/images/playrespon.gif' WDTH' 120" HEl GHT='73'

5-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Details of the JSP XML View

ALl G\=' BOTTOM BORDER=' 0' >
</ BODY>

</ HTML>]] ></j sp: t ext >
</jsp:root>

Details of the JSP XML View

When a container that complies with JSP 1.2 translates a JSP page, it creates an XML
version, known as the XML view, of the parsing result. The JSP specification defines
the XML view as being a mapping of a JSP page—either a traditional page or a JSP
XML document—into an XML document that describes it. The XML view can be used
by tag-library-validator classes in validating the page. (See "Validation and
Tag-Library-Validator Classes" on page 8-36.) The XML view of a page looks mostly
like the page as you would write it yourself if you were using JSP XML syntax, with a
couple of key differences, as described shortly.

These topics are covered in the following sections:

« Transformation from a JSP Page to the XML View

« The jsp:id Attribute for Error Reporting During Validation

« Example: Transformation from Traditional JSP Page to XML View

Refer to the Sun Microsystems JavaServer Pages Specification for further details.

Transformation from a JSP Page to the XML View

When translating a JSP page, the JSP container executes the following transformations
in creating the XML view, both for traditional JSP pages and for JSP XML documents:

« The container expands the XML view to include files brought in through i ncl ude
directives.

« A JSP container that supports the optional j sp: i d attribute, for improved error
reporting, inserts that attribute into each XML element in the page. See "The jsp:id
Attribute for Error Reporting During Validation" on page 5-12.

For a JSP XML document, these points constitute the key differences between the XML
view and the original page.

The JSP container executes the following additional transformations for traditional JSP
pages:
« Itadds the <j sp: r oot > element, with the standard xm ns attribute setting for

JSP XML syntax and the ver si on attribute for the JSP version. See "JSP XML root
Element and JSP XML Namespaces" on page 5-5.

« Itconverts each t agl i b directive into an additional xm ns attribute in the
<j sp: r oot > element. See "JSP XML root Element and JSP XML Namespaces" on
page 5-5.

« Itconverts each page directive into the equivalent element in JSP XML syntax. See
"JSP XML Directive Elements" on page 5-6.

« It converts each declaration, expression, and scriptlet into the equivalent element
in JSP XML syntax. See "JSP XML Declaration, Expression, and Scriptlet Elements"
on page 5-7.

« It converts request-time expressions into XML syntax. See "JSP XML Standard
Action and Custom Action Elements” on page 5-8.

JSP XML Support 5-11

Details of the JSP XML View

« ltcreates <j sp: t ext > elements for template data. See "JSP XML Text Elements
and Other Elements" on page 5-8.

« It converts JSP quotations into XML quotations.

« Itignores JSP comments: <% - comment - - %. They do not appear in the XML
view.

Notes:
= The XML view has no DOCTYPE statement.

« No "other XML elements", as described in "JSP XML Text
Elements and Other Elements" on page 5-8, appear in the XML
view. Only <j sp: t ext > elements are used for template data.

The jsp:id Attribute for Error Reporting During Validation

The JSP specification describes an optional j sp: i d attribute that the JSP container can
add to each XML element in the XML view. A container does not have to support this
feature to comply with JSP 1.2, but the OCA4J JSP container does support it.

The|j sp: i d attributes, if present, are used by tag-library-validator classes during
page validation. The purpose of these attributes is to provide improved error
reporting, possibly helping developers pinpoint where errors occur (depending on
how the JSP container implementsj sp: i d support).

Thej sp: i d attribute values must be generated by the container in a way that ensures
that each value, or ID, is unique across all elements in the XML view.

A tag-library-validator object can use these IDs in the Val i dat i onMessage objects
that it returns. (See "Validation and Tag-Library-Validator Classes" on page 8-36 for
background information about TLV classes.)

In the OC4J JSP implementation, when a Val i dat i onMessage object with IDs is
returned, each ID is transformed to reflect the tag name and source location of the
matching element.

Example: Transformation from Traditional JSP Page to XML View

This example shows traditional page source, followed by the XML view of the page as
generated by the OC4J JSP translator. The code displays the Oracle JSP version number
and configuration parameter values.

Traditional JSP Page
Here is the traditional JSP page:

<HTM.>
<HEAD>
<TITLE>JSP Information </ TI TLE>
</ HEAD>
<BODY BGCOLCR="#FFFFFF" >
JSP Versi on:

<% application.getAttribute("oracle.jsp.versionNunber") %

JSP Init Parameters:

<%
for (Enumeration paraNanes = config. getlnitParaneterNanes();
par aNanes. hashor eEl ements() ;) {

5-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Details of the JSP XML View

String paraNane = (String)paraNanes. next El enent ();

%
<Y%par aName% = <%config. get ! nitParaneter(paraNane) %

<%
}
%

</ BODY>

</ HTML>

XML View of JSP Page
Here is the corresponding XML view:

<jsp:root xmns:jsp="http://java.sun.com JSP/ Page" jsp:id="0" version="1.2">
<jsp:text jsp:id="1"><![CDATA] <HTM.>
<HEAD>
<TITLE>JSP I nformation </ Tl TLE>
</ HEAD>
<BODY BGCOLOR="#FFFFFF" >
JSP Version;
]]></j sp:text>
<j sp: expression jsp:id="2">
<[CDATAl application.getAttribute("oracle.jsp.versionNunber")]]>
</j sp: expressi on>
<jsp:text jsp:id="3"><![CDATAl

JSP Init Paraneters:

11>
</jsp:text>
<jsp:scriptlet jsp:id="4"><![CDATA
for (Enumeration paraNanes = config. getlnitParaneterNanes();
par aNanes. hasMor eEl enents() ;) {
String paraNane = (String)paraNanes. next El ement () ;
]11><l'jsp:scriptlet>
<jsp:text jsp:id="5"><![CDATA
11></jsp:text>
<j sp: expression jsp:id="6"><![CDATA] par aNane]] ></j sp: expressi on>
<jsp:text jsp:id="7"><I[CDATA[=]]></jsp:text>
<j sp: expression jsp:id="8">
<! [CDATA[confi g. get | ni t Par anet er (paraName)]] >
</ j sp: expressi on>
<jsp:text jsp:id="9"><![CDATA[

11></jsp:text>
<jsp:scriptlet jsp:id="10"><![CDATA

11></jsp:scriptlet>
<jsp:text jsp:id="11"><![CDATA
</ BODY>
</ HTM.>

]11></jsp:text>
</jsp:root>

JSP XML Support 5-13

Details of the JSP XML View

5-14 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

6

Additional Programming Considerations

This chapter discusses an assortment of programming strategies and tips for use in
developing JSP applications. The following sections are included:

» General JSP Programming Strategies

« Additional JSP Programming Tips

General JSP Programming Strategies

This portion discusses issues you should consider when programming JSP pages,
regardless of the particular target environment. The following sections are included:

« JavaBeans Versus Scriptlets
« Static Includes Versus Dynamic Includes

« When to Consider Creating and Using JSP Tag Libraries

Note: In addition to being aware of what is discussed in this
section, you should be aware of JSP translation and deployment
issues and behavior. See Chapter 7, "JSP Translation and
Deployment"”.

JavaBeans Versus Scriptlets

The section "Separation of Business Logic from Page Presentation: Calling JavaBeans"
on page 1-4 describes a key advantage of JavaServer Pages technology: Java code
containing the business logic and determining the dynamic content can be separated
from the HTML code containing the request processing, presentation logic, and static
content. This separation allows HTML experts to focus on presentation, while Java
experts focus on business logic in JavaBeans that are called from the JSP page.

A typical JSP page will have only brief snippets of Java code, usually for Java
functionality for request processing or presentation. The sample page in "JSP
Data-Access Sample Using JDBC" on page 4-5, although illustrative, is probably not an
ideal design. Data access, such as in the r unQuer y() method in the sample, is usually
more appropriate in a JavaBean. However, the f or mat Resul t () method in the
sample, which formats the output, is more appropriate for the JSP page itself.

Static Includes Versus Dynamic Includes

The i ncl ude directive, described in "Directives" on page 1-6, makes a copy of the
included page and copies it into a JSP page (the "including page") during translation.

Additional Programming Considerations 6-1

General JSP Programming Strategies

This is known as a static include (or translate-time include) and uses the following
syntax:

<v@include file="/jspl/userinfopage.sp" %

Thej sp: i ncl ude tag, described in "Standard Actions: JSP Tags" on page 1-12,
dynamically includes output from the included page within the output of the
including page during execution. This is known as a dynamic include (or runtime
include) and uses the following syntax:

<j sp:include page="/jsp/userinfopage.jsp" flush="true" />
For those familiar with C syntax, a static include is comparable to a #i ncl ude

statement. A dynamic include is similar to a function call. They are both useful, but
serve different purposes.

Note: You can use static includes and dynamic includes only
between pages in the same servlet context.

Logistics of Static Includes

A static include increases the size of the generated code for the including JSP page. It is
as though the text of the included page is physically copied into the including page, at
the point of the i ncl ude directive, during translation. If a page is included multiple
times within an including page, multiple copies are made.

A JSP page that is statically included is not required to be an independent, translatable
entity. It simply consists of text that will be copied into the including page. The
including page, with the included text copied in, must then be translatable. And, in
fact, the including page does not have to be translatable prior to having the included
page copied into it. A sequence of statically included pages can be fragments unable to
stand on their own.

Logistics of Dynamic Includes

A dynamic include does not significantly increase the size of the generated code for
the including page, although method calls, such as to the request dispatcher, will be
added. The dynamic include results in runtime processing being switched from the
including page to the included page, as opposed to the text of the included page being
physically copied into the including page.

A dynamic include does increase processing overhead, with the necessity of the
additional call to the request dispatcher.

A page that is dynamically included must be an independent entity, able to be
translated and executed on its own. Likewise, the including page must be independent
as well, able to be translated and executed without the dynamic include.

Advantages, Disadvantages, and Typical Uses of Dynamic and Static Includes

Static includes affect page size; dynamic includes affect processing overhead. Static
includes avoid the overhead of the request dispatcher that a dynamic include
necessitates, but may be problematic where large files are involved. (The service
method of the generated page implementation class has a 64 KB size limit. See
"Workarounds for Large Static Content or Significant Tag Library Usage" on page 6-6.)

Overuse of static includes can also make debugging your JSP pages difficult, making it
harder to trace program execution. Avoid subtle interdependencies between your
statically included pages.

6-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

General JSP Programming Strategies

Static includes are typically used to include small files whose content is used
repeatedly in multiple JSP pages. For example:

« Statically include a logo or copyright message at the top or bottom of each page in
your application.

« Statically include a page with declarations or directives, such as imports of Java
classes, that are required in multiple pages.

« Statically include a central "status checker" page from each page of your
application. (See "Use of a Central Checker Page" on page 6-5.)

Dynamic includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the output
of other pages. Dynamically included pages can be reused in multiple including pages
without increasing the size of the including pages.

Note: OC4J offers global includes as a convenient way to statically
include a file into multiple pages. See "Oracle JSP Global Includes"
on page 7-6.

When to Consider Creating and Using JSP Tag Libraries

Some situations dictate that the development team consider creating and using custom
tags. In particular, consider the following situations:

« JSP pages would otherwise have to include a significant amount of Java logic
regarding presentation and format of output.

=« You want to provide convenient JSP programming access to functionality that
would otherwise require the use of a Java API.

« Special manipulation or redirection of JSP output is required.

Replacing Java Syntax

Because JSP developers might not be experienced in Java programming, they might
not be ideal candidates for coding Java logic in the page—logic that dictates
presentation and format of the JSP output, for example.

This is a situation where JSP tag libraries might be helpful. If many of your JSP pages
will require such logic in generating their output, a tag library to replace Java logic
would be a great convenience for JSP developers.

Two examples of this are the JavaServer Pages Standard Tag Library (JSTL), supported
by OC4J, and the JSP Markup Language (JML) tag library that is provided with OC4J.
These libraries are discussed in the Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference.

Providing Convenient JSP Programming Access to API Features

Instead of having Web application programmers rely on Java APIs for using product
functionality or extensions from servlets or JSP scriptlets , you can provide a tag
library. A tag library can make the programmer’s task much more convenient, with
appropriate API calls being handled automatically by the tag handlers.

For example, tags as well as JavaBeans are provided with OC4J for e-mail and file
access functionality. There is also a tag library as well as a Java API provided with the
OC4J Web Object Cache.

Additional Programming Considerations 6-3

Additional JSP Programming Tips

Manipulating or Redirecting JSP Output

Another common situation for custom tags is if special runtime processing of the
response output is required. Perhaps the desired functionality requires an extra
processing step, or redirection of the output to somewhere other than the browser.

An example is to create a custom tag that you can place around a body of text whose
output will be redirected into a log file instead of to a browser, such as in the following
example, where cust is the prefix for the tag library and | og is one of the tags of the
library:

<cust: | og>
Today is <% new java.util.Date() %
Text to |og.
More text to |og.
Still nore text to |og.
</cust:|og>

Additional JSP Programming Tips

In addition to the general programming strategies described earlier, there are a variety
of programming tips to consider, as described in the following sections:

« Hiding JSP Pages from Direct Invocation

« Use of a Central Checker Page

« Workarounds for Large Static Content or Significant Tag Library Usage
« Method Variable Declarations Versus Member Variable Declarations

« Page Directive Characteristics

= JSP Preservation of White Space and Use with Binary Data

Hiding JSP Pages from Direct Invocation

There are situations, particularly in an architecture such as Model-View-Controller
(MVC), where you would want to ensure that some JSP pages are accessible only to
the application itself and cannot be invoked directly by users.

As an example, assume that the front-end or "view" page isi ndex. j sp. The user
starts the application through a URL request that goes directly to that page. Further
assume that i ndex. j sp includes a second page, i ncl uded. j sp, and forwards to a
third page, f or war ded. j sp, and that you do not want users to be able to invoke
these directly through a URL request.

A mechanism for this is to place i ncl uded. j sp and f or war ded. j sp in the
application / VEEB- | NF directory. When located there, the pages cannot be directly
invoked through URL request. Any attempt would result in an error report from the
browser.

The page i ndex. j sp would have the following statements:

<j sp:include page="VEB- I NF/included.jsp"/>
<jsp:forward page="VEB-| NF/f orwar ded. j sp"/>

The application structure would be as follows, including the standard cl asses
directory for any servlets, JavaBeans, or other classes, and including the standard | i b
directory for any JAR files:

i ndex. jsp

6-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Additional JSP Programming Tips

VAEB- | NF/
web. xmi
i ncluded. jsp
forwarded. j sp
cl asses/
lib/

Use of a Central Checker Page

For general management or monitoring of your JSP application, it might be useful to
use a central "checker” page that you include from each page in your application. A
central checker page could accomplish tasks such as the following during execution of
each page:

« Check session status.

« Check login status, such as checking the cookie to see if a valid login has been
accomplished.

« Check usage profile if a logging mechanism has been implemented to tally events
of interest, such as mouse clicks or page visits.

There are many more possible uses as well.

As an example, consider a session checker class, MySessi onChecker, that
implements the Ht t pSessi onBi ndi ngLi st ener interface. (See "Standard Session
Resource Management: HttpSessionBindingListener” on page 4-10.)

public class M/Sessi onChecker inplements HttpSessi onBindi ngLi st ener

{
val ueBound(Ht t pSessi onBi ndi ngEvent event)
{...}
val ueUnbound(Ht t pSessi onBi ndi ngEvent event)
{...}

}

You can create a checker page, suppose cent r al check. j sp, that contains something
like the following:

<j sp: useBean i d="sessioncheck" class="MSessionChecker" scope="session" />

In any page that includes cent r al check. j sp, the servlet container will call the

val ueUnbound() method implemented in the MySessi onChecker class as soon as
sessi oncheck goes out of scope at the end of the session. Presumably this is to
manage session resources. You could include cent r al check. j sp at the end of each
JSP page in your application.

Additional Programming Considerations 6-5

Additional JSP Programming Tips

Notes:

= OC4] offers global includes as a convenient way to statically
include a file into multiple pages. See "Oracle JSP Global
Includes" on page 7-6.

« Alternatively, you might consider servlet filters for this sort of
functionality. Servlet filters are described in the Oracle
Application Server Containers for J2EE Servlet Developer’s Guide.

Workarounds for Large Static Content or Significant Tag Library Usage

JSP pages with large amounts of static content (essentially, large amounts of HTML
code without content that changes at runtime) might result in slow translation and
execution.

There are two primary workarounds for this, either of which will speed translation:

« Put the static HTML into a separate file and use aj sp: i ncl ude tag to include its
output in the JSP page output at runtime. See "Standard Actions: JSP Tags" on
page 1-12 for information about the j sp: i ncl ude tag.

Important: A statici ncl ude directive would not work. It would
result in the included file being included at translation-time, with
its code being effectively copied back into the including page. This
would not solve the problem.

« Putthe static HTML into a Java resource file.

The JSP translator will do this for you if you enable the ext er nal _r esour ce
configuration parameter. This parameter is documented in "JSP Configuration
Parameter Descriptions” on page 3-13.

For pretranslation, the - ext r es option of the o] spc tool offers equivalent
functionality.

Note: Putting static HTML into a resource file might resultin a
larger memory footprint than the j sp: i ncl ude workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.

Another possible problem with JSP pages that have large static content, or more
commonly with JSP pages that have a great deal of tag library usage, is that most (if
not all) JVMs impose a 64 KB size limit on the code within any single method.
Although j avac would be able to compile it, the JVM would be unable to execute it.
Depending on the implementation of the JSP translator, this might become an issue for
a JSP page because generated Java code from essentially the entire JSP page source file
goes into the service method of the page implementation class. Java code is generated
to output the static HTML to the browser, and Java code from any scriptlets is copied
directly.

Similarly, it is possible for the Java scriptlets in a JSP page to be large enough to create
a size limit problem in the service method. If there is enough Java code in a page to
create a problem, however, then the code should be moved into JavaBeans.

6-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Additional JSP Programming Tips

If a large amount of tag library usage results in a size limit problem for a JSP page, a
common solution is to break the page into multiple pages and use j sp: i ncl ude tags
as appropriate.

Method Variable Declarations Versus Member Variable Declarations

In "Scripting Elements" on page 1-7, it is noted that JSP <% ... 9% declarations are
used to declare member variables, while method variables must be declared in <%
% scriptlets.

Be careful to use the appropriate mechanism for each of your declarations, depending
on how you want to use the variables:

« Avariable thatis declared in<% ... 9% JSP declaration syntax is declared at
the class level in the page implementation class that is generated by the JSP
translator. In this case, if declaring an object instance, the object can be accessed
simultaneously from multiple requests. Therefore, the object must be thread-safe,
unlessi sThreadSaf e="f al se" is declared in a page directive.

« Avariable that is declared in <% . . . % JSP scriptlet syntax is local to the service
method of the page implementation class. Each time the method is called, a
separate instance of the variable or object is created, so there is nho need for thread
safety.

Consider the following example, decl t est . j sp:

<HTM_>

<BODY>

<% doubl e f2=0.0; %

<% double f1=0.0; %
Vari able declaration test.
</ BODY>

</ HTM.>

This results in something like the following code in the page implementation class:

package ...;
inport ...;

public class decltest extends ... {

/1 ** Begin Declarations
doubl e f1=0.0; [l *** {1 declaration is generated here ***
/1 ** End Declarations

public void _jspService
(Ht pServl et Request request, HttpServl et Response response)
throws | OException, ServletException {

try {
out.println("<HTM.>");
out.println("<BODY>");
doubl e f2=0.0; [l *** 2 declaration is generated here ***
out.println("");
out.println("");
out.println("Variable declaration test.");
out.println("</BODY>");
out.println("</HTM.>");

out. flush();

Additional Programming Considerations 6-7

Additional JSP Programming Tips

}
catch(Exception e) {
try {
if (out '=null) out.clear();
}
catch(Exception clearException) {
}
finally {
if (out '=null) out.close();
}

Note: This code is provided for conceptual purposes only. Most of
the class is deleted for simplicity, and the actual code of a page
implementation class generated by the JSP translator would differ
somewhat.

Page Directive Characteristics
This section discusses the following page directive characteristics:

« A page directive is static and takes effect during translation. You cannot specify
parameter settings to be evaluated at runtime.

« Beginning with the JSP 1.2 specification, duplicate settings of directive attributes
are disallowed. In particular, this pertains to the page directive, although the
page directive i nport attribute is exempt from this limitation.

« Javai nport settings in page directives are cumulative within a JSP page or
translation unit.

Page Directives Are Static

A page directive is static; it is interpreted during translation. You cannot specify
dynamic settings to be interpreted at runtime. Consider the following examples.

Example 1 The following page directive is valid.
<%@ page content Type="text/htnm; charset=EUCIIS' %

Example 2 The following page directive is not valid and will result in an error.
(EUCJI Siis hard-coded here, but the example also holds true for any character set
determined dynamically at runtime.)

<% String s="EUCJI S"; %
<%@ page content Type="text/htm; charset=<%s%" %

For some page directive settings there are workarounds. Reconsidering the second
example, there is a set Cont ent Type() method that allows dynamic setting of the
content type, as described in "Dynamic Content Type Settings" on page 9-4.

Duplicate Settings of Page Directive Attributes Are Disallowed

The JSP specification states that a JSP container must verify that directive attributes,
with the exception of the page directive i nport attribute, are not set more than once
each within a single JSP translation unit (a JSP page plus anything it includes through

6-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Additional JSP Programming Tips

i ncl ude directives). In JSP 1.2, this effectively applies to page directives only, but in
future JSP versions there might be additional relevant directives.

For backward compatibility to the JSP 1.1 standard, where duplicate settings of
directive attributes are allowed, OC4J provides the f or gi ve_dup_dir_attr
configuration parameter. See "JSP Configuration Parameter Descriptions" on page 3-13
for information about this parameter. You might have previously coded a page with
multiple included segments that all set the page directive | anguage attribute to

"j ava", for example.

For clarity, be aware of the following points.

The JSP specification allows multiple page directives, as long as they set different
attributes.

The following are okay:

<%@ page buffer="none" %
<%@ page session="true" %

<%@ page buf fer="10kb" %
<%@include file="b.jsp" %

b.jsp

The following are not okay:

<%@ page buf fer="none" %
<%@ page buf f er ="10kb" %

or:

<%@ page buf fer="none" buffer="10kb" %

<%@ page buffer="10kb" %
<%@include file="b.jsp" %

b.jsp

A translation unit consists of a JSP page plus anything it includes through

i ncl ude directives, but not pages it includes through j sp: i ncl ude tags. Pages
included through j sp: i ncl ude tags are dynamically included at runtime, not
statically included during translation. See "Static Includes Versus Dynamic
Includes” on page 6-1 for more information.

Therefore, the following is okay:

<%@ page buf fer="10kb" %
<j sp:include page="b.jsp" />

Additional Programming Considerations 6-9

Additional JSP Programming Tips

b.jsp
<%@ page buffer="3kb" %

« Asnoted in the opening paragraph above, the page directive i nport attribute is
exempt from the limitation against duplicate attribute settings. See the next
section, "Page Directive import Settings Are Cumulative".

Page Directive import Settings Are Cumulative

The page directive i nport attribute is exempt from JSP 1.2 limitations on duplicate
directive attributes. Javai nmport settings in page directives within a JSP page or
translation unit (a JSP page plus anything included through i ncl ude directives) are
cumulative.

Within any single JSP page or translation unit, the following two examples are
equivalent:

<%@ page | anguage="j ava" %
<Y@page inport="java.io.*, java.sql.*" %

or:

<%@ page | anguage="j ava" %
<Y@page inport="java.io.*" %
<%@page inport="java.sql.*" %

After the first page directive i nport setting, the i nport setting in the second page
directive adds to the set of classes or packages to be imported, as opposed to replacing
the classes or packages to be imported.

JSP Preservation of White Space and Use with Binary Data

JSP containers generally preserve source code white space, including carriage returns
and linefeeds, in what is output to the browser. Insertion of such white space might
not be what the developer intended, and typically makes JSP technology a poor choice
for generating binary data.

White Space Examples

The following two JSP pages produce different HTML output, due to the use of
carriage returns in the source code.

Example 1: No Carriage Returns

The following JSP page does not have carriage returns after the Dat e() and
get Par anet er () calls. (The third and fourth lines, starting with the Dat e() call,
actually form a single wraparound line of code.)

nowhi t sp. j sp:

<HTM.>

<BODY>

<% new java.util.Date() % <% String user=request.getParameter("user"); % <%
(user==null) ? "" : user %

Ent er nane: </ B>

<FORM METHOD=get >

<I NPUT TYPE="text" NAME="user" Sl ZE=15>
<I NPUT TYPE="subm t" VALUE="Submt nane">
</ FOR\W>

6-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Additional JSP Programming Tips

</ BODY>
</ HTM.>

This code results in the following HTML output to the browser. Note that there are no
blank lines after the date.

<HTM_>

<BODY>

Tue May 30 20:07:04 PDT 2000

Ent er nane: </ B>

<FORM METHOD=get >

<INPUT TYPE="text" NAME="user" S|ZE=15>
<INPUT TYPE="submt" VALUE="Submit name">
</ FORW>

</ BODY>

</ HTM.>

Example 2: Carriage Returns

The following JSP page does include carriage returns after the Dat e() and
get Par anet er () calls.

whi t esp. j sp:

<HTML>

<BODY>

<% new java.util.Date() %

<% String user=request.getParameter("user"); %
<% (user==null) ? "" . user %

Ent er nane: </ B>

<FCRM METHCD=get >

<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Subnit name">
</ FORM>

</ BODY>

</ HTML>

This code results in the following HTML output to the browser.

<HTML>
<BODY>
Tue May 30 20:19:20 PDT 2000

Ent er nane: </ B>

<FCRM METHCD=get >

<I NPUT TYPE="text" NAME="user" SIZE=15>
<I NPUT TYPE="submt" VALUE="Subnit nane">
</ FORW>

</ BODY>

</ HTM.>

Note the two blank lines between the date and the "Enter name:" line. In this particular
case the difference is not significant, because both examples produce the same
appearance in the browser, as shown below. However, this discussion nevertheless
demonstrates the general point about preservation of white space.

Additional Programming Considerations 6-11

Additional JSP Programming Tips

File Edit

Wiew [Go Communicator Help

=

< » A & 2 W o & i N

Forward Reload Home Search Metzcape Frirt Security Stop

" Bockmarks A Lu:u:atiu:-n:l =] @17 what's Related

Tue May 20 20:1%:20 PDT 2000 Enter name:

Submit name

Fil

| Dacument; D ore

Reasons to Avoid Binary Data in JSP Pages

For the following reasons, JSP pages are a poor choice for generating binary data.
Generally, you should use servlets instead.

= JSP implementations are not designed to handle binary data. There are no
methods in the JspW i t er class for writing raw bytes.

« During execution, the JSP container preserves white space. White space is
sometimes unwanted, making JSP pages a poor choice for generating binary
output (a. gi f file, for example) to the browser or for other uses where white
space is significant.

Consider the following general example:

<% response.get Qutput Strean().wite(...binary data...) %
<% response. getQut put Strean().wite(...nmore binary data...) %

In this case, the browser will receive an unwanted newline character in the middle
of the binary data or at the end, depending on the buffering of your output buffer.

You can avoid this problem by not using a carriage return between the lines of
code, but this is an undesirable programming style.

Note: The preceding example is for illustrative purposes only and
might not be portable to future Oracle JSP versions or other JSP
containers.

Trying to generate binary data in JSP pages largely misses the point of JSP technology

anyway, which is intended to simplify the programming of dynamic textual content.

6-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

v

JSP Translation and Deployment

This chapter discusses operation of the OC4J JSP translator, then discusses the 0j spc
utility and situations where pretranslation is useful, followed by general discussion of
a number of additional JSP deployment considerations.

The following sections are included:
« Functionality of the JSP Translator
« The ojspc Pretranslation Utility

« JSP Deployment Considerations

Functionality of the JSP Translator

JSP translators generate standard Java code for a JSP page implementation class. This
class is essentially a servlet class wrapped with features for JSP functionality.

The following sections discuss general functionality of the JSP translator, focusing on
its behavior in on-demand translation scenarios such as in OC4J in the Oracle
Application Server:

« Features of Generated Code

« General Conventions for Output Names
» Generated Package and Class Names

» Generated Files and Locations

« Issuesin the Current Release

=« Oracle JSP Global Includes

Important: Implementation details in this section regarding
package and class naming, file and directory naming, output file
locations, and generated code are for illustrative purposes. The
exact details are subject to change from release to release.

Features of Generated Code

This section discusses general features of the page implementation class code that is
produced by the JSP translator in translating JSP source (typically . j sp files).

JSP Translation and Deployment 7-1

Functionality of the JSP Translator

Features of Page Implementation Class Code

When the JSP translator generates servlet code in the page implementation class, it
automatically handles some of the standard programming overhead. For both the
on-demand translation model and the pretranslation model, generated code
automatically includes the following features:

« Itextends a wrapper class provided by the JSP container that implements the
j avax. servl et.jsp. H t pJspPage interface, which extends the more generic
j avax. servl et.j sp. JspPage interface, which in turn extends the
j avax. servl et . Servl et interface.

« Itimplementsthe j spServi ce() method specified by the Ht t pJspPage
interface. This method, often referred to as the "service" method, is the central
method of the page implementation class. Code from any Java scriptlets,
expressions, and JSP tags in the JSP page is incorporated into this method
implementation.

« Itincludes code to request an HTTP session unless your JSP source code
specifically sets sessi on="f al se" in apage directive.

For introductory information about key JSP and servlet classes and interfaces, see
Appendix A, "Servlet and JSP Technical Background".

Member Variables for Static Text

The service method, _j spServi ce(), of the page implementation class includes
print statements—out . pri nt () or equivalent calls on the implicit out object—to
print any static text in the JSP page. The JSP translator places the static text itself in a
series of member variables in the page implementation class. The service method
out . print () statements reference these member variables to print the text.

Note: The OC4J ISP translator can optionally place the static text
in a Java resource file, which is advantageous for pages with large
amounts of static text. See "Workarounds for Large Static Content
or Significant Tag Library Usage" on page 6-6. You can request this
feature through the JSP ext er nal _r esour ce configuration
parameter for on-demand translation, or the oj spc - ext res flag
for pretranslation.

General Conventions for Output Names

The JSP translator follows a consistent set of conventions in naming output classes,
packages, files, and directories. However, this set of conventions and other implementation
details may change from release to release.

One fact that is not subject to change, however, is that the base name of a JSP page will
be included intact in output class and file names as long as it does not include special
characters. For example, translating MyPage123. j sp will always result in the string
"MyPagel23" being part of the page implementation class name, Java source file name,
and class file name.

In Oracle Application Server 10g Release 2 (10.1.2), the base name is preceded by an
underscore (*_"). Translating MyPage123. j sp results in the page implementation
class _MyPagel23 in the source file _MyPagel23. j ava, which is compiled into
_MyPagel23. cl ass.

Similarly, where path names are used in creating Java package names, each component
of the path is preceded by an underscore. Translating

7-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Functionality of the JSP Translator

/j spdir/ nyapp/ MyPagel23. j sp, for example, results in class _MyPagel123 being
in the following package:

_jspdir. _nyapp

The package name is used in creating directories for output . j ava and . cl ass files,
so the underscores are also evident in output directory names. For example, in
translating a JSP page in a directory such as webapp/ t est, the JSP translator by
default will create a directory such as webappdepl oynment/ _pages/ _t est for the
page implementation class source. All output directories are created under the
standard _pages directory, as described in "Generated Files and Locations" on

page 7-4.

If you include special characters in a JSP page name or path name, the JSP translator
takes steps to ensure that no illegal Java characters appear in the output class, package,
and file names. For example, translating My- nanme_f 0012. j sp results in
_My_2d_nane__f 0012 being the class name, in source file

_My_2d_name__f 0012.] ava. The hyphen is converted to a string of alpha-numeric
characters. (An extra underscore is also inserted before "f 0012".) In this case, you can
only be assured that alphanumeric components of the JSP page hame will be included
intact in the output class and file names. For example, you could search for "My",
"nanme”, or "f 0012".

These conventions are demonstrated in examples provided later in this chapter.

Generated Package and Class Names

Although the JSP specification defines a uniform process for parsing and translating
JSP text, it does not describe how the generated classes should be named. That is up to
each JSP implementation.

This section describes how the OC4J JSP translator creates package and class names
when it generates code during translation.

Note: For information about general conventions that the OC4J
JSP translator uses in naming output classes, packages, and files,
see "General Conventions for Output Names" on page 7-2.

Package Naming

In an on-demand translation scenario, the URL path that is specified when the user
requests a JSP page—specifically, the path relative to the document root or application
root—determines the package name for the generated page implementation class.
Each directory in the URL path represents a level of the package hierarchy:.

It is important to note, however, that generated package names are always lowercase,
regardless of the case in the URL.

Consider the following URL as an example:

http://host: port/HR expenses/login.jsp

In the current OC4J JSP implementation, this results in the following package
specification in the generated code:

package _hr. _expenses;

(Implementation details are subject to change in future releases.)

JSP Translation and Deployment 7-3

Functionality of the JSP Translator

No package name is generated if the JSP page is at the application root directory,
where the URL is as follows:

http://host:port/login.jsp

Class Naming
The base name of the . j sp file determines the class name in the generated code.

Consider the following URL example:

http://host: port/HR expenses/ User Login. j sp

In the current OC4J JSP implementation, this yields the following class name in the
generated code:

public class _UserlLogin extends ...

(Implementation details are subject to change in future releases.)

Be aware that the case (lowercase/uppercase) that users specify in the URL must
match the case of the actual . j sp file name. For example, they can specify

User Logi n. j sp if that is the actual file name, or user | ogi n. j sp if that is the actual
file name, but notuser | ogi n. j sp if User Logi n. j sp is the actual file name.

Currently, the translator determines the case of the class name according to the case of
the file name. For example:

« Thefile name User Logi n. j sp results in the class _User Logi n.
« Thefile name User | ogi n. j sp results in the class _User | ogi n.
« Thefile nameuser| ogi n. j sp results in the class _user | ogi n.

If you care about the case of the class name, then you must name the . j sp file
accordingly. However, because the page implementation class is invisible to the end
user, this is usually not a concern.

Generated Files and Locations

For on-demand translation scenarios, this section describes files that are generated by
the JSP translator and where they are placed. (For pretranslation scenarios, 0j spc
places files differently and has its own set of relevant options. See "Summary of ojspc
Output Files, Locations, and Related Options” on page 7-22.)

Wherever JSP configuration parameters are mentioned, see "JSP Configuration
Parameters" on page 3-11 for more information.

Note: For information about general conventions used in naming
output classes, packages, and files, see "General Conventions for
Output Names" on page 7-2.

Files Generated by the JSP Translator

This section lists files that are generated by the JSP translator. For the file name
examples, presume a file Foo. j sp is being translated.

Source files:

« A.javafile (for example, Foo. j ava) is produced for the page implementation
class.

Binary files:

7-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Functionality of the JSP Translator

« A.cl ass fileis produced by the Java compiler for the page implementation class.
The Java compiler is the JDK j avac by default, but you can specify an alternative
compiler using the JSP j avaccnd configuration parameter.

« A.res Javaresource file (for example, Foo. r es) is optionally produced for the
static page content if the ext er nal _r esour ce JSP configuration parameter is
enabled.

Note: The exact names of generated files for the page
implementation class might change in future releases, but will still
have the same general form. The names would always include the
base name, such as "Foo" in these examples, but might include
variations beyond that.

JSP Translator Output File Locations

The JSP translator places generated output files under a _pages directory that is
created under the JSP cache directory, which is specified in the

j sp- cache-di r ect ory attribute of the <or i on- web- app> element in either the
gl obal - web- appl i cation. xm file or the application ori on- web. xnl file. Here
is the general base location if you assume the default . / per si st ence" value of

j sp-cache-directory:

ORACLE_HOWE/ j 2eel hone/ app- depl oynent / app- name/ web- app- nane/ per si stence/ _pages/. ..

In OC4J standalone, here is the location relative to where OC4lJ is installed:

j 2eel hore/ app- depl oynent / app- nane/ web- app- name/ per si st ence/ _pages/ . ..

Note the following, and refer to "Key OC4J Configuration Files" on page 3-22 for
related information about the noted configuration files:

« Theapp-depl oynment directory is the OC4J deployment directory specified in
the OC4Jserver. xm file. (In OC4J standalone, this is typically the
appl i cati on-depl oynent s directory.)

« Also, app- nan® is the application name, according to an <appl i cat i on>
elementinserver. xm .

« Andweb- app- nane is the corresponding "Web application name", mapped to the
application name in a <web- app> element in the OC4J Web site XML file
(typically def aul t - web- si te. xnl file in Oracle Application Server or
htt p- web-si t e. xm in OC4J standalone).

The path under the _pages directory depends on the path of the . j sp file under the
application root directory.

As an example, in OC4J standalone, consider the page wel cone. j sp in the
exanpl es/j sp subdirectory under the OC4J standalone default Web application
directory. The path to this page would be as follows, relative to where OC4J is
installed:

j 2eel hone/ def aul t - web- app/ exanpl es/ j sp/ wel cone. j sp

Assuming the default application deployment directory, the JSP translator would place
the output files (_wel cone. j ava and _wel cone. cl ass) in the following directory:

j 2eel horre/ appl i cat i on- depl oynent s/ def aul t/ def aul t WebApp/ per si st ence/ _pages/ _exanpl es/ _j sp

Because the . j sp source file is in the exanpl es/ j sp subdirectory under the
application root directory, the JSP translator generates _exanpl es. _j sp as the

JSP Translation and Deployment 7-5

Functionality of the JSP Translator

package name and places the output files into an _exanpl es/ _j sp subdirectory
under the _pages directory.

Note the following for OC4J standalone:

« Theapplication-depl oynent s directory is the OC4J default deployment
directory.

« Also, def aul t is the OC4J default application name and def aul t WebApp is the
default Web application name, both used for JSP pages placed in the
def aul t - web- app directory.

Important: Implementation details, such as the location of
generated output files and use of "_" in output file names, are
subject to change in future releases.

Issues in the Current Release

In conditions where OC4J is heavily loaded and running out of resources, the JSP
translator may occasionally produce a zero-length . cl ass file, resulting in a "500
Internal Server Error". Use one of the following techniques to remedy the problem:

= Touch the appropriate JSP file so that it will be retranslated and recompiled.

« Remove the zero-length class file. (Its location will be noted in the error output.)

Oracle JSP Global Includes

The OCA4J JSP container provides a feature called global includes. You can use this
feature to specify one or more files to statically include into JSP pages in or under a
specified directory, through virtual JSP i ncl ude directives. During translation, the
JSP container looks for a configuration file,

/ VIEB- | NF/ oj sp- gl obal -i ncl ude. xm , that specifies the included files and the
directories for the pages.

This enhancement is particularly convenient for migrating applications that used
gl obal s. jsaortransl at e_par ans functionality in previous Oracle JSP releases.

Globally included files can be used for the following, for example:
« Global bean declarations (formerly supported through gl obal s. j sa)

=« Common page headers or footers

The ojsp-global-include.xml File

The oj sp- gl obal -i ncl ude. xm file specifies the names of files to include, whether
they should be included at the tops or bottoms of JSP pages, and the locations of JSP
pages to which the global includes should apply. This section describes the elements of
0j sp- gl obal -i ncl ude. xm .

<ojsp-global-include>

This is the root element of the 0j sp- gl obal -i ncl ude. xm file. It has no attributes.
Subelement of <oj sp- gl obal -i ncl ude>:

<incl ude>

<include ... >

7-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Functionality of the JSP Translator

Use the <i ncl ude> subelement of <oj sp- gl obal - i ncl ude> to specify a file to be
included and whether it should be included at the top or bottom of JSP pages.

Subelement of <i ncl ude>:

<i nto>

Attributes of <i ncl ude>:

« fil e:Specify the file to be included, such as"/ header. ht M " or
"/ VEEB- | NF/ gl obal beandecl arati ons. j sph". The file name setting must
start with a slash ("/). In other words, it must be application-relative, not
page-relative.

« position: Specify whether the file is to be included at the top or bottom of JSP
pages. Supported values are "t op" (default) and "bot t ont'.

<into ... >

Use this subelement of <i ncl ude> to specify a location (a directory, and possibly
subdirectories) of JSP pages into which the specified file is to be included. This element
has no subelements.

Attributes of <i nt 0>:

« directory: Specify adirectory. Any JSP pages in this directory, and optionally its
subdirectories, will statically include the file specified in the f i | e attribute of the
<i ncl ude> element. The di r ect or y setting must start with a slash ("/ "), such as
"/ dir1l". The setting can also include a slash after the directory name, such as
“/dirl/", oraslash will be appended internally during translation.

« subdi r: Use this to specify whether JSP pages in all subdirectories of the
di r ect or y should also have the file statically include. Supported values are
"t rue" (default) and "f al se".

Global Include Examples
This section provides examples of global includes.

Example: Header/Footer Assume the following oj sp- gl obal -i ncl ude. xnl file:

<?xm version="1.0" standal one='yes' ?>
<I DOCTYPE 0j sp- gl obal -i ncl ude SYSTEM ' oj sp- gl obal -i ncl ude. dtd' >

<0j sp- gl obal -incl ude>
<include file="/header.htm ">
<into directory="/dirl" />
</incl ude>
<include file="/footerl.htm" position="botton>
<into directory="/dirl" subdir="false" />
<into directory="/dirl/partl/" subdir="fal se" />
</i ncl ude>
<include file="/footer2.htm" position="bottoni>
<into directory="/dirl/part2/" subdir="fal se" />
</incl ude>
</ oj sp-gl obal -i ncl ude>

This example accomplishes three objectives:

« The header. ht m fileisincluded at the top of any JSP page in or under thedi r 1
directory. The result would be the same as if each . j sp file in or under this
directory had the following i ncl ude directive at the top of the page:

JSP Translation and Deployment 7-7

The ojspc Pretranslation Utility

<%@include file="/header.htm" %

« Thefooterl. htn fileis included at the bottom of any JSP page inthedi r 1
directory or its par t 1 subdirectory. The result would be the same as if each . | sp
file in those directories had the following i ncl ude directive at the bottom of the
page:
<Y%@include file="/footerl. html" %

« Thefooter2. htm fileisincluded at the bottom of any JSP page in the part 2

subdirectory of di r 1. The result would be the same as if each . j sp file in that
directory had the following i ncl ude directive at the bottom of the page:

<Y%@include file="/footer2. html" %

Note: If multiple header or multiple footer files are included into
a single JSP page, the order of inclusion is according to the order of
<i ncl ude> elements in the oj sp- gl obal -i ncl ude. xn file.

Example: translate_params Equivalent Code Assume the following
0j sp- gl obal -i ncl ude. xm file;

<?xm version="1.0" standal one='yes' ?>
<I DOCTYPE 0j sp- gl obal -incl ude SYSTEM ' oj sp- gl obal -i ncl ude. dtd' >

<o0j sp- gl obal -i ncl ude>

<include file="/WEB-INF/nls/parans.sf">

<into directory="/" />

</include>
</ oj sp- gl obal -i ncl ude>
And assume par ans. j sf contains the following:
<% request . set Char act er Encodi ng(response. get Char act er Encodi ng()); %
The par ans. j sf file (essentially, the set Char act er Encodi ng() method call) is
included at the top of any JSP page in or under the application root directory. In other
words, it is included in any JSP page in the application. The result would be the same

as if each . j sp file in or under this directory had the following i ncl ude directive at
the top of the page:

<¥%@include file="/WEB-1NF/nls/parns.jsf" %

The ojspc Pretranslation Utility

The oj spc utility is provided with OC4J for pretranslation of JSP pages. For
consideration of pretranslation scenarios, see "JSP Pretranslation" on page 7-26 and
"Deployment of Binary Files Only" on page 7-28.

The following sections discuss o] spc functionality:
« Overview of Basic ojspc Functionality

« Overview of ojspc Batch Pretranslation

« Option Summary Table for ojspc

« Command-Line Syntax for ojspc

« Option Descriptions for ojspc

7-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

The ojspc Pretranslation Utility

« Summary of ojspc Output Files, Locations, and Related Options

Important:

« When you pretranslate JSP pages, be aware that significant
differences between the development system and the runtime
system, such as a different operating system or JDK, could
cause problems.

« Foruseof oj spc,thetool s. | ar file from your JDK must be
in the classpath. This is taken care of automatically in an Oracle
Application Server installation.

« When using oj spc batch pretranslation in the current release,
do not place . j ava files in or under the the / VEB- | NF/ | i b or
/ VEEB- | NF/ ¢l asses directory. Placing . j ava files in or under
either of these directories may result in one or more duplicate
. ¢l ass files at the top level of the of the archive during batch
pretranslation.

Overview of Basic ojspc Functionality
For a JSP page, default functionality for oj spc is as follows:

« It takes a JSP file (typically . j sp), either directly as an argument or from an
archive file taken as an argument.

« Itinvokes the JSP translator to translate the JSP file into Java page implementation
class code, producing a . j ava file.

« Itinvokes the Java compiler to compile the . j ava file, producing a . cl ass file
for the page implementation class.

Under some circumstances (as is noted in the - ext r es option description later in this
chapter), oj spc options direct the JSP translator to produce a . r es Java resource file
for static page content, instead of putting this content into the page implementation
class.

Because 0j spc invokes the JSP translator, oj spc output conventions are the same as
for the translator in general, as applicable. For general information about JSP translator
output, including generated code features, general conventions for output names,
generated package and class names, and generated files and locations, see
"Functionality of the JSP Translator" on page 7-1.

Note: The oj spc command-line tool is a front-end utility that
invokes the or acl e. j sp. t ool . Jspc class.

Overview of ojspc Batch Pretranslation

Prior to Oracle9iAS Release 2 (9.0.3), 0] spc accepted only JSP files for translation.
Now, however, it can also accept archive files—JAR, WAR, EAR, or ZIP files—for batch
pretranslation.

Note: The oj spc utility does not depend on the file name
extension to determine whether a file is an archive file. It makes the
determination by examining the internal file structure.

JSP Translation and Deployment 7-9

The ojspc Pretranslation Utility

When the name of an archive file appears on the oj spc command line, oj spc by
default executes the following steps:

1. Opens the archive file.
2. Translates and compiles all . j sp and . j ava files in the archive file.

3. Adds the resulting . cl ass files and any Java resource files into a nested JAR file
inside the archive file, and discards . j ava files that were created in the process.
The . cl ass and resource files in the nested JAR file have directory paths such
that upon extraction, they will be located in the same directory as would be the
case if the original JSP files were translated after extraction.

By default, the mechanics are that the original archive file is extracted into a temporary
storage area, a temporary archive file is created, contents of the original archive file are
copied into the temporary file, output. cl ass and resource files from pretranslation
are added to a nested JAR file within the temporary file, the original archive file is
deleted, and the temporary file is given the name of the original file. The original
archive file is extracted in its entirety to ensure successful compilation of the translated
pages. Alternatively, you have the option of specifying a new output file name, which
will preserve the original archive file.

The nested JAR file is in the _pages directory of the resulting archive file. Its name
includes the base name of the resulting archive file (either the original archive file
name or a name according to the oj spc - out put option) and has the . j ar extension.
In the OC4J 10.1.2 implementation, assuming an archive output file name of

myar ch. war , for example, the nested JAR file name would be

__oracl e_jsp_nyarch. jar.Implementation details might change in future
releases, but the base name of the archive file will always be included in the nested
JAR file name.

File paths within the nested JAR file are according to Java package names and
according to specified file paths of JSP include and forward statements, as applicable
and as one would expect.

Note: The only support for nested archive files is a WAR file
within an EAR file. In this circumstance, the contents of the EAR
file are extracted, then the contents of the WAR file are extracted
and processed and the WAR file is updated appropriately, then the
other contents of the EAR file are processed and the EAR file is
updated appropriately.

There are o] spc settings for additional functionality, as follows:

= You can use the - bat chiMask option to specify file name extensions for
pretranslation and compilation. Whatever you specify is used instead of the
defaults (*. j spand *. j ava).

= You can use the - out put option to specify a new archive file name. By default,
0j spc updates the original archive file, adding output . cl ass files and any
resource files (and possibly deleting processed source files, according to the
- del et eSour ce option). If you want to be sure that the original archive file is
unaltered, then enable the - out put option. In this case, all contents of the original
archive file are copied into the specified output archive file, then the specified
output archive file is updated instead of the original file. The original archive file
is unaltered, and you would use the new file instead of the original file for
deployment.

7-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

The ojspc Pretranslation Utility

You can use the - del et eSour ce option if you do not want processed source files
to appear in the resulting archive file. If you do not also use the - out put option,
this effectively means that all processed source files are removed from the original
archive file after processing. If you do not use the - bat chiMask option, this
consistsof all . j sp and. j ava files. Otherwise, this consists of all files specified in
the - bat chMask setting.

For examples of these options, see the descriptions of those options under "Option
Descriptions for ojspc" on page 7-13.

Option Summary Table for ojspc

Table 7-1 summarizes the options supported by the oj spc pretranslation utility. These
options are further discussed in "Option Descriptions for ojspc” on page 7-13.

The second column notes comparable or related JSP configuration parameters for
on-demand translation environments, such as OC4J.

Table 7-1 Options for ojspc Pretranslation Utility
Related JSP
Configuration

Option Parameters Description Default

-addclasspath (None) Specify additional classpath entries for Empty (no
j avac. additional path

entries)

-appRoot (None) Specify the application root directory for Current
application-relative static i ncl ude directory
directives from the page.

-batchMask (None) For batch pretranslation, optionally specify *.j sp,
file masks for processing. *. java

-dir (or -d) (None) Specify the location where oj spc should Current
place generated binary files (. cl ass and directory
resource). Do not use this option for batch
pretranslation.

-deleteSource (None) For batch pretranslation, use this flag to fal se
direct that processed source files should be
removed from (or not copied to) the
resulting archive file.

-extend (None) Specify the class for the generated page Empty
implementation class to extend. Do not use
this option for batch pretranslation.

-extralmports extra_imports Use this to add imports beyond the JSP Empty
defaults.

-extres external_resource Use this flag to direct oj spc to generate an fal se
external resource file for static text from the
JSP file.

-forgiveDupDirAttr forgive_dup_dir_attr Use this flag to avoid JSP 1.2 translation fal se
errors if you have duplicate settings for the
same directive attribute within a single JSP
translation unit.

-help (or -h) (None) Use this flag to direct oj spc to display fal se
usage information.

-implement (None) Specify an interface for the generated page Empty

implementation class to implement. Do not
use this option for batch pretranslation.

JSP Translation and Deployment

7-11

The ojspc Pretranslation Utility

Table 7-1 (Cont.) Options for ojspc Pretranslation Utility

Related JSP
Configuration

Option Parameters Description Default

-noCompile javacemd Use this flag to direct oj spc to not compile fal se
the generated page implementation class.

-noTldXmlValidate no_tld_xml_validate Use this flag to disable XML validation of fal se
TLD files. By default, validation of TLD
files is performed.

-oldincludeFromTop old_include_from_top Use this flag to specify that page locations f al se
in nested i ncl ude directives are relative to
the top-level page, for backward
compatibility with Oracle JSP behavior
prior to Oracle9iAS Release 2.

-output (None) For batch pretranslation, optionally specify Original
the name of the output archive file. archive file

-packageName (None) Specify the package name for the generated Empty (with
page implementation class. package names

according to
.j spfile
location)

-reduceTagCode reduce_tag_code Use this flag to direct further reductionin fal se
the size of generated code for custom tag
usage.

-reqTimelntrospection req_time_introspection Enable this flag in order to allow fal se
request-time JavaBean introspection
whenever compile-time introspection is not
possible.

-srcdir (None) Specify the location where oj spc should Current
place generated source files (. j ava). Do directory
not use this option for batch pretranslation.

-staticTextInChars static_text_in_chars Use this flag to instruct the JSP translator to f al se
generate static text in JSP pages as
characters instead of bytes.

-tagReuse tags_reuse_default This specifies the mode for JSP tag handler runtime
reuse: r unt i e for the runtime model,
conpi l etime_with_rel easeor
conpi | eti ne for the compile-time model,
or none to disable tag handler reuse.

-verbose (None) Use this flag to direct oj spc to print status f al se
information as it executes.

-version (None) Use this flag to direct oj spc to display the fal se
JSP version number.

-xmlValidate xml_validate Use this flag to request XML validation of f al se

the web. xm file. By default, validation of
web. xm is not performed.

Command-Line Syntax for ojspc
Following is the general oj spc command-line syntax (where %is the system prompt):

% oj spc [option_settings] file_list

The file list can include JSP files and other source files (. j ava), or archive files (JAR,
WAR, EAR, or ZIP files).

7-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

The ojspc Pretranslation Utility

Be aware of the following syntax notes:

« If multiple JSP files are translated, they all must use the same character set, either
by default or through page directive settings.

« Use spaces between file names in the file list.

« Use spaces as delimiters between option names and option values in the option
list.

« Option names are not case sensitive but option values usually are (such as package
names, directory paths, class names, and interface names).

« Enable boolean options (flags), which are disabled by default, by simply typing
the option name in the command line. For example, type - ext r es, not - extres
true.

« Option settings and file names can actually be in any order, including
interspersed.

Here are two examples:

% oj spc -dir /nmyapp/ nybindir -srcdir /nyapp/nysrcdir -extres MyPage.jsp M/Page2.jsp

% oj spc -del et eSour ce nyapp. war

Option Descriptions for ojspc
This section describes the oj spc options in more detail.

-addclasspath
(fully qualified path; oj spc default: empty)

Use this option to specify additional classpath entries for j avac to use when
compiling generated page implementation class source. Otherwise, j avac uses only
the system classpath.

-appRoot
(fully qualified path; oj spc default: current directory)

Use this option to specify an application root directory. The default is your current
directory when you ran oj spc.

The specified application root directory path is used as follows:
« Forstatici ncl ude directives in the page being translated

The specified directory path is prepended to any application-relative
(context-relative) paths in the i ncl ude directives of the translated page.

« Indetermining the package of the page implementation class

The package will be based on the location of the file being translated relative to the
application root directory. The package, in turn, determines the placement of
output files. (See "Summary of ojspc Output Files, Locations, and Related Options"
on page 7-22.)

This option is necessary, for example, so that included files can still be found if you run
oj spc from some other directory.

Consider the following example.

« You want to translate the following file:

JSP Translation and Deployment 7-13

The ojspc Pretranslation Utility

[abc/ def/ ghi/test.jsp
= You runoj spc from the current directory, / abc, as follows (where %is a UNIX
prompt):
% cd [abc
% oj spc def/ghi/test.jsp
«» Thetest.jsp page has the followingi ncl ude directive:
<%@include file="/test2.jsp" %

« Thetest2.]sppageisinthe/ abc directory, as follows:

/abc/test2.jsp

This example requires no - appRoot setting because the default application root
setting is the current directory, which is the / abc directory. The i ncl ude directive
uses the application-relative / t est 2. j sp syntax (note the beginning "/), so the
included page will be found as/ abc/ t est 2. j sp.

The package in this case is _def . _ghi , based on the location of t est . j sp relative to
the current directory when you ran oj spc. (The current directory is the default
application root.) Output files are placed accordingly.

If, however, you run oj spc from some other directory, suppose / horme/ nydi r, then
you would need an - appRoot setting as in the following example:

% cd / hore/ nydi r
% oj spc - appRoot /abc /abc/def/ghi/test.|sp

The package is still _def . _ghi , based on the location of t est . j sp relative to the
specified application root directory.

Note: Itis typical for the specified application root directory to be
some level of parent directory of the directory where the translated
JSP page is located.

-batchMask
(file masks to batch-process in archive; oj spc default: see description)

For batch pretranslation, you can use this option to specify source files to process in an
archive file. By default, all . j sp and . j ava files are processed. File masks specified
through the - bat chMask option are used instead of (not in addition to) these defaults.

Place quotes around the list of file masks and use commas or semicolons as delimiters
within the list. White space before or after a file mask is ignored. You can include
directories in the mask.

The - bat chMask implementation includes complete support for standard wildcard
pattern-matching.

Given the default setting, the following two examples are equivalent:

% oj spc nyapp. war
% oj spc - batchMask "*.jsp,*.java" nyapp. war

This next example drops processing for . j ava files while adding processing for
. j spf and. j sph files:

7-14 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

The ojspc Pretranslation Utility

% oj spc - batchMask "*.jspf,*.jsph,*.jsp" nyapp. war

The following example does not process. j ava files, and only processes . j sp files
whose names start with "abc" and who are in subdirectories under the top level of the
archive file:

% oj spc - bat chMask "*/abc*.jsp" nyapp. zip

The following example is the same as the preceding example, but also processes. j sp
files whose names start with "abc" in the top level of the archive file:

% oj spc - bat chMask "abc*.jsp, */abc*.jsp" nyapp.jar

This final example specifically processes the file a. j spc, as well as any . j sp files that

start with "My" and are in a directory that is a subdirectory of mydi r / subdi r and

matches the pattern "t?st" (any character as the second character, such as "test", "tast",

or "tust"):

% oj spc - batchMask "nydir/subdir/t?st/M*.jsp, a.jspc" nyapp.ear

Important: File masks specified in this option are not
case-sensitive.

-deleteSource
(boolean; oj spc default: f al se)

For batch pretranslation, enable this flag if you do not want processed source files to
appear in the resulting archive file. Thisis . j sp and . j ava files by default, or else
only the files that match the file mask in the - bat chiMask option. Generated . j ava
files are also discarded, as usual.

If you do not use the - out put option, then the contents of the original archive file are
overwritten to remove any processed source files after processing. If you do use the

- out put option, then processed source files will not be copied to the specified output
archive file. (The original archive file is unaltered.)

Notes:

« Files whose names do not match the default file extensions (if
you do not use the - bat chMask option), or whose names do
not match the name masks specified using the - bat chMask
option, will not be discarded through the - del et eSour ce
option. You must delete these files manually from the resulting
archive file if desired. In particular, this applies to statically
included source files, which are not translatable on their own
and so should not use the . j sp extension or any other
extension that might result in an attempt to translate the files
on their own.

« Asinany situation where JSP source files are not deployed, if
you use - del et eSour ce, then the target JSP runtime
environment must be configured to operate properly without
having source files available. See "Configuring the OC4J JSP
Container for Execution with Binary Files Only" on page 7-28.

JSP Translation and Deployment 7-15

The ojspc Pretranslation Utility

-dir
(fully qualified path; oj spc default: current directory)

Use this option to specify a base directory for oj spc placement of generated binary
files—. cl ass files and Java resource files. (The . r es files produced for static content
by the - ext r es option are Java resource files.) As a shortcut, - d is also accepted.

The specified path is taken as a file system path (not an application-relative or
page-relative path), and the directory must already exist.

Subdirectories under the specified directory are created automatically, as appropriate,
depending on the package. See "Summary of ojspc Output Files, Locations, and
Related Options" on page 7-22 for more information.

The default is to use the current directory (your current directory when you executed
0j spc).

It is recommended that you use this option to place generated binary files into a clean
directory so that you easily know what files have been produced.

Notes:
« Do notuse-dir for batch pretranslation.

= Inenvironments such as Windows that allow spaces in
directory names, enclose the directory name in quotes.

-extend
(fully qualified Java class name; oj spc default: empty)

Use this option to specify a Java class that the generated page implementation class
will extend.

Note: Do not use - ext end for batch pretranslation.

-extralmports
(import list; o] spc default: empty)

As described in "Default Package Imports" on page 3-7, the OC4J JSP container has a
smaller default list of packages that are imported into each JSP page than was the case
prior to Oracle9iAS Release 2 (9.0.3). This is in accordance with the JSP specification.
You can avoid updating your code, however, by specifying package names or fully
qualified class names for any additional imports through the - ext r al npor t s option.
Be aware that the names must be in quotes, and either comma-delimited or
semicolon-delimited, as in the following example:

% oj spc -extralnports "java.util.*,java.io.*" foo.jsp

7-16 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

The ojspc Pretranslation Utility

Notes:

« White space within the quotes, before or after package names
or class names, is ignored.

« Inan on-demand translation scenario, the JSP extr a_i mports
configuration parameter provides the same functionality.

« Asan alternative to using - ext r al nport s, you can use global
includes. See "Oracle JSP Global Includes" on page 7-6.

-extres
(boolean; oj spc default: f al se)

Enabling this flag instructs oj spc to place static content of the page into a Java
resource file instead of into the service method of the generated page implementation
class.

The resource file name is based on the JSP page name. In the current OC4J JSP
implementation, it will be the same core name as the JSP name (unless special
characters are included in the JSP name), but with an underscore ("_") prefixand . r es
suffix. Translation of MyPage. j sp, for example, would create _MyPage. res in
addition to normal output. The exact implementation for name generation might
change in future releases, however.

The resource file is placed in the same directory as output . cl ass files.

If there is a lot of static content in a page, this technique will speed translation and
might speed execution of the page. For more information, see "Workarounds for Large
Static Content or Significant Tag Library Usage" on page 6-6.

Note: In an on-demand translation scenario, the JSP
ext er nal _r esour ce configuration parameter provides the same
functionality.

-forgiveDupDirAttr
(boolean; oj spc default: f al se)

Enabling this flag avoids translation errors in JSP 1.2 (or higher) if you have duplicate
settings for the same directive attribute within a single JSP translation unit (a JSP page
plus anything it includes through i ncl ude directives).

The JSP specification directs that a JSP container must verify that directive attributes,
with the exception of the page directive i nport attribute, are not set more than once
each within a single JSP translation unit. See "Duplicate Settings of Page Directive
Attributes Are Disallowed" on page 6-8 for more information.

The JSP 1.1 specification did not specify such a limitation. OC4J offers the
-forgi veDupDi r At t r option for backward compatibility.

Note: In an on-demand translation scenario, the JSP
forgi ve_dup_dir_attr configuration parameter provides the
same functionality.

JSP Translation and Deployment 7-17

The ojspc Pretranslation Utility

-help
(boolean; oj spc default: f al se)

Use this option to have oj spc display usage information and then exit. As a shortcut,
- h is also accepted.

-implement
(fully qualified Java interface name; oj spc default: empty)

Use this option to specify a Java interface that the generated page implementation
class will implement.

Note: Do notuse-i nmpl ement for batch pretranslation.

-noCompile
(boolean; oj spc default: f al se)
Enabling this flag directs oj spc to not compile the generated page implementation

class Java source. This is in case you want to compile it later for some reason, such as
with an alternative Java compiler.

Note: Inan on-demand translation scenario, the JSP j avaccnd
configuration parameter provides related functionality. It enables
you to specify a complete Java compiler command line, optionally
using an alternative compiler.

-noTldXmlValidate
(boolean; oj spc default: f al se)

Enable this flag if you do not want XML validation of tag library descriptor (TLD) files
of the application. By default, validation of TLD files is performed.

See "Overview of TLD File Validation and Features" on page 8-6 for related
information.

Note: Inan on-demand translation scenario, the JSP
no_tld xm _val i dat e configuration parameter provides the
same functionality.

-oldIncludeFromTop
(boolean; oj spc default: f al se)

This is for backward compatibility with Oracle JSP versions prior to Oracle9iAS
Release 2, for functionality of i ncl ude directives. If you enable this flag, page
locations in nested i ncl ude directives are relative to the top-level page. Otherwise,
page locations are relative to the immediate parent page, which complies with the JSP
specification.

Note: Inan on-demand translation scenario, the JSP
ol d_i ncl ude_f rom_t op configuration parameter provides the
same functionality.

7-18 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

The ojspc Pretranslation Utility

-output
(archive file name; oj spc default: none)

For batch pretranslation, use the - out put option if you want to specify a new archive
file for output instead of updating the original archive file. In this case, all contents of
the original archive file are copied into the specified archive file, then the output

. ¢l ass files and any resource files from pretranslation are placed into a nested JAR
file within the specified file (and source files are deleted from the specified file if

- del et eSour ce is enabled). The original archive file is unaltered and you would use
the new file instead of the original file for deployment. (See "Overview of ojspc Batch
Pretranslation™ on page 7-9 for information about the nested JAR file.)

Without the - out put option, the original archive file is updated; no new archive file is
created.

Here is an example of - out put usage:

% oj SpC - out put myappout . war nyapp. war

-packageName
(fully qualified package name; oj spc default: per . j sp file location)

Use this option to specify a package name for the generated page implementation
class, using Java "dot" syntax.

Without setting this option, the package name is determined according to the location
of the . j sp file relative to your current directory when you ran oj spc.

Consider an example where you run oj spc from the / myappr oot directory, while
the . j sp fileisinthe/ myappr oot/ src/j spsrc directory (where %is a UNIX
prompt):

% cd / myappr oot
% oj spc - packageNane nyroot. nypackage src/jspsrc/Foo.jsp

This results in myr oot . nypackage being used as the package name.

If this example did not use the - packageNamne option, the JSP translator (in its current
implementation) would use _src. _j spsr c as the package name by default. (Be
aware that such implementation details are subject to change in future releases.)

-reduceTagCode
(boolean; oj spc default: f al se)

The Oracle JSP implementation reduces the size of generated code for custom tag
usage, but enabling this flag results in even further size reduction. There might be
performance consequences regarding tag handler reuse, however. See "Tag Handler
Code Generation" on page 8-32.

Note: In an on-demand translation scenario, the JSP
reduce_t ag_code configuration parameter provides the same
functionality.

-reqTimelntrospection
(boolean; oj spc default: f al se)

Enabling this flag allows request-time JavaBean introspection whenever compile-time
introspection is not possible. When compile-time introspection is possible and

JSP Translation and Deployment 7-19

The ojspc Pretranslation Utility

succeeds, however, there is no request-time introspection regardless of the setting of
this flag.

As a sample scenario for request-time introspection, assume a tag handler returns a
genericj ava. | ang. Obj ect instance in the Vari abl el nf o instance of the
tag-extra-info class during translation and compilation, but actually generates more
specific objects during request-time (runtime). In this case, if

-reqTi mel ntrospecti on is enabled, the JSP container will delay introspection until
request-time. (See "Scripting Variables, Declarations, and Tag-Extra-Info Classes" on
page 8-32 for information about use of Var i abl el nf 0.)

An additional effect of this flag is to allow a bean to be declared twice, such as in
different branches of ani f. . t hen. . el se loop. Consider the example that follows.
Without - r eqTi mel nt r ospect i on being enabled, this code would cause a parse
exception. With it enabled, the code will work without error:

<%if (cond) { %

<j sp: useBean i d="foo" class="pkgA Fool" />
<%} else { %

<j sp: useBean i d="foo" class="pkgA Foo2" />
<%} %

Note: In an on-demand translation scenario, the JSP
req_time_introspection configuration parameter provides
the same functionality.

-sredir
(fully qualified path; oj spc default: current directory)

Use this option to specify a base directory location for oj spc placement of generated
source files (. j ava files).

The specified path is taken simply as a file system path, not an application-relative or
page-relative path. The directory must already exist.

Subdirectories under the specified directory are created automatically, as appropriate,
depending on the package. See "Summary of ojspc Output Files, Locations, and
Related Options" on page 7-22 for more information.

The default is to use the current directory (your current directory when you executed
0j spc).

It is recommended that you use this option to place generated source files into a clean
directory so that you conveniently know what files have been produced.

Notes:
« Do notuse-srcdir forbatch pretranslation.

« Inenvironments such as Windows that allow spaces in
directory names, enclose the directory name in quotes.

-staticTextInChars
(boolean; oj spc default: f al se)

7-20 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

The ojspc Pretranslation Utility

Enabling this flag directs the JSP translator to generate static text in JSP pages as
characters instead of bytes. The default setting is f al se, which improves performance
in outputting static text blocks.

Enable this flag if your application requires the ability to change the character
encoding dynamically during runtime, such as in the following example:

<% response. set Cont ent Type("text/htm; charset=UTF-8"); %

Note: In an on-demand translation scenario, the JSP
static_text_in_chars configuration parameter provides the
same functionality.

-tagReuse
(mode for tag handler reuse; oj spc default: runt i ne)

Use this option to specify the mode of tag handler reuse (tag handler instance
pooling), as follows:

« Use the setting none to disable tag handler reuse. You can override this in any
particular JSP page by setting the JSP page context attribute
oracl e.j sp.tags. reuse toavalue of t rue.

« Use the default setting r unt i me to enable the runtime model of tag handler reuse.
You can override this in any particular JSP page by setting the JSP page context
attribute or acl e. j sp. t ags. reuse to avalue of f al se.

« Use the setting conpi | et i ne to enable the compile-time model of tag handler
reuse in its basic mode.

« Usethesetting conpil eti me_with_rel ease to enable the compile-time model
of tag handler reuse in its "with release” mode, where the tag handler r el ease()
method is called between usages of a given tag handler within a given page.

Notes:

« Ifyou use avalue of runt i me, and your code allows the JSP
container to continue processing a JSP page in the event that
custom tags cause exceptions, you may encounter subsequent
occurrences of Cl assCast Except i on. In this event, change
the -t agReuse value to conpi | et i ne or
conpi l etinme_wi th_rel ease.

« If you switch from the runtime model (- t agReuse value of
runti ne) to the compile-time model (- t agReuse value of
conpi letinmeorconpil etime_with_rel ease), or from
the compile-time model to the runtime model, you must
retranslate the JSP pages.

« For backward compatibility, a setting of t r ue is also supported
and is equivalent to a setting of r unt i e, and a setting of
f al se is supported and is equivalent to a setting of none.

« Inanon-demand translation scenario, the JSP
tags_reuse_def aul t configuration parameter provides the
same functionality.

JSP Translation and Deployment 7-21

The ojspc Pretranslation Utility

See "Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse" on
page 8-30 for more information about tag handler reuse.

-verbose
(boolean; oj spc default: f al se)

Enabling this flag directs oj spc to report its translation steps as it executes.

The following example shows - ver bose output for the translation of myerror.j sp.
(In this example, oj spc is run from the directory where nyer ror. j sp is located;
assume %is a UNIX prompt.)

% oj spc -verbose nyerror.jsp
Translating file: nyerror.jsp
1 JSP files translated successfully.
Conpi ling Java file: ./ _nyerror.java

-version
(boolean; oj spc default: f al se)

Use this option to have oj spc display the JSP version number and then exit.

-xmlValidate
(boolean; oj spc default: f al se)
Enable this flag if you want XML validation of the application web. xm file. Because

the Tomcat JSP reference implementation does not perform XML validation, this flag is
disabled by default.

Note: In an on-demand translation scenario, the JSP
xm _val i dat e configuration parameter provides the same
functionality.

Summary of ojspc Output Files, Locations, and Related Options

By default, oj spc generates the same set of files that are generated by the JSP
translator in an on-demand translation scenario and places them in or under your
current directory, from which you ran oj spc (not considering batch pretranslation).

Here are the files:

« A.javasource file (for batch pretranslation, this is discarded after compilation)
« A.cl ass file for the page implementation class

« Optionally, a Java resource file (. r es) for the static text of the page

For more information about files that are generated by the JSP translator, see
"Generated Files and Locations" on page 7-4.

To summarize some of the commonly used options described under "Option
Descriptions for ojspc” on page 7-13, you can use the following oj spc options to affect
file generation and placement:

« -appRoot to specify an application root directory

« -srcdir to place source files in a specified location (not relevant for batch
pretranslation)

7-22 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

JSP Deployment Considerations

« -dir toplace binary files—. cl ass files and Java resource files—in a specified
location (not relevant for batch pretranslation)

« -noConpi | e to not compile the generated page implementation class source
As aresult of this, no . cl ass files are produced.
« -extres to put static text into a Java resource file

For output file placement, not considering batch pretranslation, the directory structure
underneath the current directory (or directories specified by the -di r and - srcdi r
options, as applicable) is based on the package. The package is based on the location of
the file being translated relative to the application root, which is either the current
directory or the directory specified in the - appRoot option.

For example, suppose you run oj spc as follows (where %is a UNIX prompt):
% cd /abc
% oj spc def/ghi/test.jsp

Then the package is _def . _ghi and output files will be placed in the directory
[abc/ _def/ _ghi,where the _def/ _ghi subdirectory structure is created as part of
the process.

If you specify alternate output locations through the - di r and - sr cdi r options, a
_def/ _ghi subdirectory structure is created under the specified directories.

Now presume that you run oj spc from some other directory, as follows:

% cd / hone/ nydir
% oj spc - appRoot /abc /abc/ def/ ghi/test.jsp

The package is still _def . _ghi , according to the location of t est . j sp relative to the
specified application root. Output files will be placed in the directory

/[horre/ nydir/ _def/ _ghi orina_def/ _ghi subdirectory under locations
specified through the - di r and - sr cdi r options. In either case, the _def / _ghi
subdirectory structure is created as part of the process.

JSP Deployment Considerations

The following sections cover general deployment considerations and scenarios, mostly
independent of your target environment:

« Overview of EAR/WAR Deployment
« Application Deployment with Oracle JDeveloper
« JSP Pretranslation

« Deployment of Binary Files Only

Overview of EAR/WAR Deployment

This section provides an overview of OC4J deployment features and standard WAR
deployment features.

See Oracle Application Server Containers for J2EE User’s Guide for detailed information
about deployment to OC4J in an Oracle Application Server environment.

0OC4J Deployment Features

In OC4J, deploy each application through a standard EAR (Enterprise archive) file.
The name of the application and the name and location of the EAR file are specified

JSP Translation and Deployment 7-23

JSP Deployment Considerations

through an <appl i cat i on> element in the OC4Jserver. xn file. This file is in the
OC4J configuration files directory.

Note: In Oracle Application Server, directory paths are
configurable; in OC4J standalone, the configuration files directory
isj 2ee/ hone/ confi g by default.

In an Oracle Application Server environment, use Enterprise Manager for deployment
and configuration and do not update ser ver . xnml or other configuration files
directly. Refer to the Oracle Application Server Containers for J2EE User’s Guide for
information.

In an OC4J standalone development environment, OC4J supports the admi n. j ar tool
for deployment. This modifies ser ver. xm , ht t p- web- si t e. xm , and other
configuration files for you, based on settings you specify to the tool. Or you can
modify the configuration files manually (not generally recommended). Note that if
you modify configuration files in Oracle Application Server without going through
Enterprise Manager, you must run the dcntt | tool, using its updat eConfi g
command, to inform Oracle Application Server Distributed Configuration
Management (DCM) of the updates. (This does not apply in an OC4J standalone
mode, where OC4J is being run apart from Oracle Application Server.)

Thedcntt | tool is documented in the Oracle Application Server Administrator’s Guide.
The EAR file includes the following:

« Astandard appl i cati on. xm configuration file, in/ META- | NF

« Optionally,anori on-application. xm configuration file, in/ META- | NF

« A standard WAR (Web archive) file

The WAR file includes the following:

« Astandard web. xnl configuration file, in / VEB- | NF

In the web. xm file for any particular application, you can override global settings
for individual configuration parameters or for the definition of the JSP servlet
(oracl e.jsp.runtimev2. JspServl et by default). Each application uses its
own instance of the JSP servlet.

« Optionally,anori on-web. xnm configuration file, in / VEB- | NF

« Classes necessary to run the application (servlets, JavaBeans, and so on), under
/ VEEB- | NF/ cl asses and in JAR filesin/ VEB- I NF/ | i b

= JSP pages and static HTML files

See the Oracle Application Server Containers for J2EE User’s Guide for more information
about deployment to Oracle Application Server. See the Oracle Application Server
Containers for J2EE Stand Alone User’s Guide for deployment to a standalone
environment and for information about adni n. j ar . Also see "Key OC4J
Configuration Files" on page 3-22 for a summary of important configuration files in
OC4).

Standard WAR Deployment

The JSP specification (since JSP 1.1) supports the packaging and deployment of Web
applications, including JavaServer Pages, according to the servlet specification (since
servlet 2.2).

7-24 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

JSP Deployment Considerations

In typical implementations, you can deploy JSP pages through the WAR mechanism,
creating WAR files through the JAR utility. The JSP pages can be delivered in source
form and are deployed along with any required support classes and static HTML files.

According to the servlet specification, a Web application includes a deployment
descriptor file, web. xm , that contains information about the JSP pages and other
components of the application. The web. xni file must be included in the WAR file.

The servlet specification also defines an XML DTD for web. xm deployment
descriptors and specifies exactly how a servlet container must deploy a Web
application to conform to the deployment descriptor.

Through these logistics, a WAR file is the best way to ensure that a Web application is
deployed into any standard servlet environment exactly as the developer intends.

Deployment configurations in the web. xm deployment descriptor include mappings
between servlet paths and the JSP pages and servlets that will be invoked. You can
specify many additional features in web. xm as well, such as timeout values for
sessions, mappings of file name extensions to MIME types, and mappings of error
codes to JSP error pages.

For more information about standard WAR deployment, see the Sun Microsystems
Java Servlet Specification.

Note: In OC4J, you typically deploy a WAR file within an EAR
file. If you deploy a WAR file directly, OC4J transparently wraps it
in an EAR file.

Application Deployment with Oracle JDeveloper

Oracle JDeveloper supports many types of deployment profiles, including simple
archive, J2EE application (EAR file), J2EE EJB module (EJB JAR file), J2EE Web module
(WAR file), J2EE client module (client JAR file), tag library for JSP 1.2 (tag library JAR
file), business components EJB session bean profile, and business components archive
profile.

When creating an Oracle ADF Business Components Web application using Oracle
JDeveloper, a J2EE Web module deployment archive is generated, containing both the
Oracle ADF Business Components and the Web application files.

The JDeveloper deployment wizards create all the necessary code to deploy business
components as a J2EE Web module. Typically, a JSP client accesses the Business
Components application in a J2EE Web Module configuration. The JSP client can also
use data tags, data Web beans, or UIX tags to access the business components. (See the
Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference for
an overview of the Business Components and UIX tag libraries.)

A J2EE Web module is packaged as a WAR file that contains one or more Web
components (servlets and JSP pages) and web. xm , the deployment descriptor file.

JDeveloper lets you create the deployment profile containing the Web components and
the web. xn file, and packages them into a standard J2EE EAR file for deployment.
JDeveloper takes the resulting EAR file and deploys it to one or more Oracle
Application Server instances.

For information about JDeveloper, refer to the JDeveloper online help or to the
following site on the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ product s/ j dev/content. htm

JSP Translation and Deployment 7-25

JSP Deployment Considerations

JSP Pretranslation

JSP pages are typically used in an on-demand scenario, where pages are translated as
they are invoked, in a sequence that is invisible to the user. Another approach is to
pretranslate JSP pages, which offers at least two advantages:

« It saves users the translation overhead the first time a page is invoked.

= Itensures that the developer or deployer, instead of users, will see any translation
or compilation errors.

You also might want to pretranslate pages so that you can deploy binary files only, as
discussed in "Deployment of Binary Files Only" on page 7-28.

OC4J users can employ the Oracle o] spc utility, either specifying individual files for
pretranslation or specifying archive files JAR, WAR, EAR, or ZIP) for batch
pretranslation. There is also a standard j sp_pr econpi | e mechanism. These topics
are covered in the following sections:

« Techniques for Page Pretranslation with ojspc
« Batch Pretranslation with ojspc
« Standard JSP Pretranslation without Execution

Also see "The ojspc Pretranslation Utility" on page 7-8 for detailed information about
this utility.

Techniques for Page Pretranslation with ojspc
When you pretranslate with oj spc (not considering batch pretranslation), use the

- di r option to set an appropriate output base directory for placement of generated
binary files.

Consider the example in "JSP Translator Output File Locations" on page 7-5, where the
JSP page is located in the exanpl es/ j sp subdirectory under the OC4J standalone
default Web application directory:

j 2eel horre/ def aul t - web- app/ exanpl es/j sp/ wel cone. j sp

A user would invoke this with a URL such as the following:

http://host: port/exanpl es/jsp/wel cone.jsp

(This is just a general example and does not consider OC4J configuration for the
context path.)

In an on-demand translation scenario for this page, as explained in the example, the
JSP translator would by default use the following base directory for placement of
generated binary files:

j 2eel home/ appl i cati on- depl oynent s/ def aul t/ def aul t WebApp/ per si st ence/ _pages/ _exanpl es/ _j sp

When you pretranslate, set your current directory to the application root directory,
then in 0] spc setthe _pages directory as the output base directory. This results in the
appropriate package name and file hierarchy. Continuing the example (where %is a
UNIX prompt, OC4J _HOME is the directory where OC4J is installed, and the oj spc
command wraps around to a second line):

% cd OCAJ_HOWH j 2ee/ home/ def aul t - web- app
% oj spc exanpl es/ j sp/ wel cone. j sp
-dir OC4J_HOVH j 2eel hore/ appl i cati on- depl oyment s/ def aul t/ def aul t WebApp/ per si st ence/ _pages

7-26 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

JSP Deployment Considerations

(This assumes you specify the appropriate OC4J _HOVE directory.) The oj spc
command translates exanpl es/ j sp/ wel cone. j sp and specifies the _pages
directory as the base output directory.

The URL noted above specifies an application-relative path of

exanpl es/j sp/ wel cone. j sp, so at execution time the JSP container looks for the
binary files in an _exanpl es/ _j sp subdirectory under the _pages directory. This
subdirectory would be created automatically by oj spc if itis run as in the above
example.

At execution time, the JSP container would find the pretranslated binaries and would
not have to perform translation, assuming that either the source file was not altered
after pretranslation, or the JSP mai n_node flag is settoj ust r un.

Note: OC4J]JSP implementation details, such as use of
underscores ("_") in output directory names, are subject to change
from release to release. This documentation applies specifically to
Oracle Application Server 10g Release 2 (10.1.2).

Batch Pretranslation with ojspc

There are oj spc features for batch pretranslation of JSP files in archive files (JAR,
WAR, EAR, or ZIP files). When you specify an archive file on the oj spc command
line, by default all . j sp and . j ava files in the contents will be pretranslated and
compiled, as appropriate, and the archive file will be updated to include the output
. ¢l ass files and any Java resource files (but not generated . j ava files). You would
then deploy the resulting archive file.

In addition to this basic functionality, you can use key oj spc options as follows:

= You can use the - bat chiask option to specify file name extensions for
pretranslation and compilation. Whatever you specify is instead of the defaults
(*.jspand*.java).

= You can use the - out put option to specify a new archive file name. By default,
0j spc updates the original archive file, adding output . cl ass files and any
resource files (and possibly deleting processed source files, according to the
- del et eSour ce option). If you want to be sure that the original archive file is
unaltered, then enable the - out put option. In this case, all contents of the original
archive file are copied into the specified archive file, then the specified file is
updated instead of the original file. The original archive file is unaltered, and you
would use the new file instead of the original file for deployment.

= You can use the - del et eSour ce option if you do not want processed source files
to appear in the resulting archive file. If you do not also use the - out put option,
this effectively means that all processed source files are removed from the original
archive file after processing. If you do not use the - bat chiask option, this
consists of all . j sp and . j ava files. Otherwise, this consists of all files specified in
the - bat chivask setting.

Standard JSP Pretranslation without Execution

It is also possible to specify JSP pretranslation without execution when you invoke the
page in an on-demand scenario. Accomplish this as follows:

1. Enable the JSP pr econpi | e_check configuration parameter. (See "JSP
Configuration Parameters" on page 3-11.)

JSP Translation and Deployment 7-27

JSP Deployment Considerations

2. Enable the standard j sp_pr econpi | e request parameter when you invoke the
JSP page from the browser.

Following is an example of using j sp_preconpi | e:

http://host:port/foo.jsp?j sp_preconpile=true

or:

http://host:port/foo.jsp? sp_preconpile

(The "=t r ue" is optional.)

Refer to the Sun Microsystems JavaServer Pages Specification for more information about
this mode of operation.

Deployment of Binary Files Only

You can avoid exposing your JSP source, for proprietary or security reasons, by
pretranslating the pages and deploying only the translated and compiled binary files.
Pages that are pretranslated, either from previous execution in an on-demand
translation scenario or by using oj spc, can be deployed to any standard J2EE
environment. This involves two steps:

1. You must archive and deploy the binary files appropriately.

2. Inthe target environment, the JSP container must be configured to run pages
without the JSP source being available.

Archiving and Deploying the Binary Files
You must take steps to create and archive the binary files in an appropriate hierarchy.

« If you pretranslate with oj spc, you must first set your current directory to the
application root directory. After running oj spc, archive the output files using the
0j spc output directory as the base directory for the archive. See "The ojspc
Pretranslation Utility" on page 7-8 for general information about this utility.

= If you are archiving binary files produced during previous execution in an
on-demand translation environment, then archive the output directory structure,
typically under the _pages directory.

In the target environment, place the archive JAR file in the / WEB- | NF/ | i b directory.
Alternatively, restore the archived directory structure under the appropriate directory,
typically under the _pages directory.

Configuring the OC4J JSP Container for Execution with Binary Files Only

If you have deployed binary files to an OC4J environment, set the JSP configuration
parameter mai n_node to the value j ust run or r el oad to execute JSP pages without
the original source.

Without this setting, the JSP translator will always look for the JSP source file to see if
it has been modified more recently than the page implementation . cl ass file, and
will terminate with a "file not found" error if it cannot find the source file.

With mai n_node set appropriately, the user can invoke a page with the same URL
that would be used if the source file were in place.

For how to set configuration parameters in the OC4J environment, see "Setting JSP
Configuration Parameters in OC4J" on page 3-19.

7-28 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

38

JSP Tag Libraries

This chapter discusses custom tag libraries, covering the basic framework that vendors
can use to provide their own libraries. There is also discussion of Oracle extensions
and a comparison of standard runtime tags versus vendor-specific compile-time tags.
The chapter consists of the following sections:

« Overview of the Tag Library Framework

« Tag Library Descriptor Files

« Tag Library and TLD Setup and Access

« Tag Handlers

« OC4JJSP Tag Handler Features

« Scripting Variables, Declarations, and Tag-Extra-Info Classes
« Validation and Tag-Library-Validator Classes

« Tag Library Event Listeners

« End-to-End Custom Tag Examples

« Compile-Time Tags

The chapter offers a detailed overview of standard tag library functionality. For
complete information, refer to the Sun Microsystems JavaServer Pages Specification. For
information about the tag libraries provided with OC4J, see the Oracle Application
Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

Custom tag syntax largely follows XML conventions. For general information about
XML, you can find the specification at the following Web site:

http://ww. w3. or g/ XM/

Overview of the Tag Library Framework

JavaServer Pages technology allows vendors to create custom JSP tag libraries. A tag
library defines a collection of custom actions. The tags can be used directly by
developers in manually coding a JSP page, or automatically by Java development
tools.

This section provides an overview of the JSP tag library framework as well as a
summary of tag library features introduced in the JSP 1.2 specification.

For information beyond what is provided here regarding tag libraries and the standard
JavaServer Pages tag library framework, refer to the following resources:

« Sun Microsystems JavaServer Pages Specification

JSP Tag Libraries 8-1

Overview of the Tag Library Framework

Sun Microsystems Javadoc for the j avax. servl et. j sp. t agext package, at the
following Web site:

http://java. sun.com j2ee/sdk_1. 3/ techdocs/ api/javax/ servlet/jsp/tagext/package-sunmmary. html

Overview of a Custom Tag Library Implementation

A custom tag library is made accessible to a JSP page through at agl i b directive of
the following general form:

<v@taglib uri="URI" prefix="prefix" %

Note the following points about implementation and usage of a tag library:

The tags of a library are defined in a tag library descriptor (TLD) file, as "Tag Library
Descriptor Files" on page 8-5 describes.

The URI in thet agl i b directive is a pointer to the TLD file, as "Overview:
Specifying a Tag Library with the taglib Directive" on page 8-11 discusses. It is
possible to use URI shortcuts, as "Use of web.xml for Tag Libraries" on page 8-14
explains.

The prefix in the t agl i b directive is a string of your choosing that you use in
your JSP page with any tag from the library.

Assume that the t agl i b directive specifies a prefix or acust :

<v@taglib uri="URI" prefix="oracust" %

Further assume that there is a tag, nyt ag, in the library. You might use nyt ag as
follows:

<oracust:nytag attr1="...", attr2="..." />

Using the or acust prefix informs the JSP translator that nyt ag is defined in the
TLD file that can be found through the URI specified in the abovet agl i b
directive.

The entry for a tag in the TLD file provides specifications about use of the tag,
including whether the tag uses attributes (as nyt ag does), and the names of those
attributes.

The semantics of a tag—the actions that occur as the result of using the tag—are
defined in a tag handler class, as "Tag Handlers" on page 8-20 describes. Each tag
has its own tag handler class, and the class name is specified in the TLD file.

A tag attribute can be of any standard Java type or an object type—either the
genericj ava. | ang. Qbj ect or a user-defined type.

You typically set an attribute of a standard Java type as a string value. The
appropriate conversion is handled automatically.

You can also set an attribute of type Obj ect with a string value. The string is
converted to an Obj ect instance and passed in to the corresponding setter
method in the tag handler instance. This feature complies with the JSP
specification.

An attribute of a user-defined type must be set using a request-time expression
that returns an instance of the type.

The TLD file indicates whether a tag uses a body.

A tag without a body is used as in the following example:

8-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Overview of the Tag Library Framework

<oracust:mytag attr1="...", attr2="..." />

By contrast, a tag with a body is used as in the following example:

<oracust:nytag attrl1="...", attr2="..." >
... body. ..
</ oracust: nyt ag>

A custom tag action can create one or more server-side objects that are available
for use by the tag itself or by other JSP scripting elements, such as scriptlets. These
objects are known as scripting variables.

You can declare a scripting variable through a <var i abl e> element in the TLD
file or through a tag-extra-info class. See "Scripting Variables, Declarations, and
Tag-Extra-Info Classes" on page 8-32 for more information.

A tag can create and use scripting variables with syntax such as in the following
example, which creates the object myobj :

<oracust:mytag i d="nyobj" attrl="...", attr2="..." />

The TLD file can optionally declare a tag-library-validator class for use with the tag
library. This class would have logic to validate any JSP page that uses the tag
library, according to specified constraints. See "Validation and
Tag-Library-Validator Classes" on page 8-36.

The TLD file can optionally declare one or more event listeners for use with the tag
library. This functionality is offered as a convenient alternative to declaring
listeners in the application web. xmi file. See "Tag Library Event Listeners" on
page 8-39.

The tag handler of a nested tag can access the tag handler of an outer tag, in case
this is required for any of the processing or state management of the nested tag.
See "Access to Outer Tag Handler Instances" on page 8-29.

The remainder of this chapter provides details about these topics.

Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications

The JSP 1.2 specification introduced features for improved tag library support in the
following areas:

Tag library descriptor features

Features are outlined in the next section, "Summary of TLD File Changes Between
the JSP 1.1 and 1.2 Specifications". "Tag Library Descriptor Files" on page 8-5
describes TLD features in detail.

Support for multiple tag libraries and their TLD files in a single JAR file

According to the JSP 1.1 specification, you could not have multiple TLD files
packaged in a single JAR file. The JSP 1.2 specification supports this, however. See
"Tag Handlers" on page 8-20.

Tag handler features

Features are summarized in "Summary of Tag Handler Changes Between the JSP
1.1 and 1.2 Specifications" on page 8-5. Tag handler features are described in detail
in "Tag Handlers" on page 8-20.

Tag library validators

JSP Tag Libraries 8-3

Overview of the Tag Library Framework

This feature was introduced in the JSP 1.2 specification. See "Validation and
Tag-Library-Validator Classes" on page 8-36.

Tag library event listeners

This feature was also introduced in the JSP 1.2 specification. See "Tag Library
Event Listeners" on page 8-39.

Support for tag attributes of type Obj ect

The JSP 1.2 specification introduced support for tag attributes of type
j ava. |l ang. Obj ect . The OC4J JSP container supports this feature, as described
in the previous section, "Overview of a Custom Tag Library Implementation®”.

Important: In Oracle Application Server 10g Release 2 (10.1.2), the
OC4] JSP container by default expects JSP 1.1, not JSP 1.2, tag syntax
and usage. To use JSP 1.2 features described in the following
sections, specify the JSP 1.2 TLD DTD, as shown in "Overview of
TLD File Validation and Features" on page 8-6.

Summary of TLD File Changes Between the JSP 1.1 and 1.2 Specifications

The following list is a summary of features in TLD syntax and functionality that were
introduced in the JSP 1.2 specification. These changes were not available prior to
Oracle9iAS Release 2 (9.0.3). "Tag Library Descriptor Files" on page 8-5 includes
information about these features.

The <val i dat or > element and its subelements, allowing you to declare a
tag-library-validator class for the tag library

The <l i st ener > element and its subelement, allowing you to declare event
listeners for the tag library

The <var i abl e> subelement, and its own subelements, under the <t ag>
element, allowing you to declare scripting variables directly through the TLD

The <t ype> subelement under the <at t r i but e> subelement of the <t ag>
element, for noting the datatype of the attribute

The <di spl ay- name>, <l ar ge-i con>, and <snal | -i con> elements, and also
subelements of the same name under the <t ag> element, for use by authoring
tools

Renamed elements since the JSP 1.1 specification, as follows:

— The<i nf 0> element, and the subelement of the same name under the <t ag>
element, were renamed to <descri pti on>.

— The<tlibversi on>element was changed to <t | i b- ver si on>.
— The<j spver si on>element was changed to <j sp- ver si on>.
— The<short nanme> element was changed to <shor t - nanme>.

— The<tagcl ass>, <t ei cl ass>, and <bodycont ent > subelements under
the <t ag> element were changed to <t ag- cl ass>, <t ei - cl ass>, and
<body- cont ent >.

8-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files

Notes:

« The OCA4J JSP container enables XML validation of TLD files
separately from validation of the web. xni file. Validation of TLD
files is enabled by default; validation of web. xm is disabled by
default. (See "JSP Configuration Parameter Descriptions" on
page 3-13 for information about theno_t 1 d_xml _val i dat e and
xm _val i dat e parameters.) In Oracle9iAS Release 2 (9.0.2) and
prior, TLD files and web. xm were all validated through the
xm _val i dat e parameter, which was disabled by default.

« OC4J provides a sample XSL template that you can use with a
standard XSLT program, such as or axsl , to convert a JSP
1.1-compliant TLD file into one that is JSP 1.2-compliant. This
template is located in the m sc directory in the OC4J demos
directory structure. You can find the demos through the following
location:

http://ww. oracl e. com t echnol ogy/tech/j aval/ oc4j / denos/

Summary of Tag Handler Changes Between the JSP 1.1 and 1.2 Specifications

The JSP 1.1 specification documented two interfaces to be implemented by tag
handlers: Tag for tags without bodies, and Body Tag for tags with bodies. The JSP 1.2
specification introduced the | t er at i onTag interface, for tags that call for iteration
through a tag body, but do not require access to the tag body content through a body
content object. | t er at i onTag extends Tag and is extended by BodyTag.

Also as of the JSP 1.2 specification, the i nt constant EVAL_BODY_TAG, which indicates
that there is a tag body to be processed, is deprecated and replaced by
EVAL_BODY_AGAI Nand EVAL_BODY_BUFFERED. EVAL_BODY_AGAI Nis used with
tags that iterate through a tag body, to specify that iteration should continue.
EVAL_BODY_BUFFERED is used with tags that require access to body content, to direct
that a BodyCont ent object be created.

The JSP 1.2 specification also introduced the Tr yCat chFi nal | y interface, which any
tag handler can implement for improved data integrity and resource management
when exceptions occur.

The JSP 1.2 changes were not available prior to Oracle9iAS Release 2 (9.0.3). "Tag
Handlers" on page 8-20 includes information about these new features.

Tag Library Descriptor Files

A tag library descriptor (TLD) file is an XML-style document that defines a tag library
and its individual tags. The name of a TLD file has the . t | d extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library. The t agl i b directive in a JSP page informs the JSP
container where to find the TLD file. (See "Overview: Specifying a Tag Library with the
taglib Directive" on page 8-11.)

The following sections provide an overview and general information about TLD file
syntax and usage, referring ahead to other sections as appropriate for more
information about related topics:

=« Overview of TLD File Validation and Features

« Use of the tag Element

JSP Tag Libraries 8-5

Tag Library Descriptor Files

« Other Key Elements and Their Subelements: validator and listener
For complete information, refer to the Sun Microsystems JavaServer Pages Specification.

See "Example: Using the IterationTag Interface and a Tag-Extra-Info Class" on
page 8-43 for a sample TLD file.

Note: By default, the OC4J JSP container performs XML
validation of TLD files. To disable this, set the

no_tld_xm _val i dat e JSP configuration parametertot r ue. See
"JSP Configuration Parameter Descriptions” on page 3-13 for more
information. For pretranslation, use the oj spc

-noTl dXm Val i dat e option, described in "Option Descriptions
for ojspc” on page 7-13.

Overview of TLD File Validation and Features

The OC4J JSP container uses the DOCTYPE declaration of a TLD file to determine
which TLD DTD version to validate against, unless TLD validation has been disabled.
By default in Oracle Application Server 10g Release 2 (10.1.2), the JSP container
assumes the JSP 1.1 TLD DTD. To use the JSP 1.2 TLD DTD, list the following as the
system ID (DTD location):

http://java.sun.conm dtd/ web-jsptaglibrary_1 2.dtd

Here is an example:

<IDCCTYPE taglib
PUBLIC "-//Sun M crosystens, Inc.//DTD JSP Tag Library 1.2//EN'
"http://java. sun.com dtd/ web-jsptaglibrary_1 2. dtd">

When TLD validation is enabled, the XML parser must be able to reference the
appropriate DTD, which it can do with the above DOCTYPE declaration for JSP 1.2.
TLD validation is enabled if the]SSP no_t | d_xm _val i dat e parameter has its
default f al se setting, or, for pretranslation, if the oj spc - noTl dXm Val i dati on
flag is not used.

Note: According to the JSP specification, use an absolute URL to
specify the system ID. If a TLD file does not use a public external

DOCTYPE declaration with an absolute URL, the default in Oracle
Application Server 10g Release 2 (10.1.2) is to assume that the JSP
1.1 TLD DTD is intended.

A TLD file provides definitions for the tag library as a whole as well as for each
individual tag. For each tag, it defines the tag name, its attributes (if any), its scripting
variables (if any), and the name of the class that handles tag semantics. See "Use of the
tag Element" on page 8-7.

For the library as a whole, TLD definitions can include a tag-library-validator class
and event listeners. See "Other Key Elements and Their Subelements: validator and
listener" on page 8-10.

A TLD file also provides additional definitions for the library as a whole, as follows.

8-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files

Note: The<tag>, <val i dat or >, and <l i st ener >elements and
the elements listed below are top-level subelements under the
<t agl i b> root element of the TLD file.

« Therequired <t | i b-ver si on> element specifies the version number of the tag
library (whatever version number you want to give it).

« Therequired <j sp-ver si on> element specifies the JSP version upon which this
tag library depends (such as 1.2).

« The <uri > element can specify a string value that uniquely identifies this tag
library. In particular, this is useful in situations where multiple tag libraries and
their TLD files are packaged in a single JAR file. See "Packaging and Accessing
Multiple Tag Libraries in a JAR File" on page 8-13.

« Therequired <short - name> element specifies a convenient default name for the
library, for possible use by authoring tools. You could also use the short name as a
preferred tag prefix for the library, for use in the t agl i b directive.

« There are also additional elements that you can use, typically for authoring tools:
the <di spl ay- nanme> element for a display name of the tag library, and the
<l arge-i con>and <smal | -i con> elements for the file names (. j pg or. gi f)
of a large icon, a small icon, or both. Icon file locations are relative to the TLD file.

« The<descri pti on>element can provide a description of the tag library.

Note: Several descriptive elements were added to the JSP 1.2 TLD
DTD. In addition to the <descri pti on> element directly under
the root <t agl i b> element, there are <descri pti on>
subelements under the <t ag>, <vari abl e>,and <attri but e>
elements. There is also an <exanpl e> subelement under the

<t ag> element. These subelements can provide information for
developers who wish to use the tag library. In particular, a TLD can
be processed, such as through an XSLT style sheet, to provide
developer documentation from the material in the descriptive
elements. This information can be displayed in the help windows of
tools such as Oracle JDeveloper, for example.

Use of the tag Element

Each tag of a tag library is specified in a <t ag> element under the root <t agl i b>
element of the TLD file. There must be at least one <t ag> element in a TLD file. This
section describes its usage and subelements.

Subelements of the tag Element
The subelements of a <t ag> element define a tag, as follows:

« The required <name> subelement specifies the name of the tag.

« The required <t ag- cl ass> subelement specifies the name of the corresponding
tag handler class. See "Tag Handlers" on page 8-20 for information about tag
handler classes.

« The <body- cont ent > subelement indicates how the tag body (if any) should be
processed. See the example and accompanying discussion in "Sample tag Element
and Use of Its body-content Subelement” on page 8-9.

JSP Tag Libraries 8-7

Tag Library Descriptor Files

« Each<vari abl e> subelement (if any), with its further subelements, defines a
scripting variable. See "Scripting Variables, Declarations, and Tag-Extra-Info
Classes" on page 8-32 for information about scripting variables. The <vari abl e>
element is for relatively uncomplicated situations, where the logic for the scripting
variable does not require a tag-extra-info class. The variable name is specified
through either the <nane- gi ven> subelement, to specify the name directly, or the
<nanme-from at tri but e>subelement, to specify the name of a tag attribute that
specifies the variable name. There is also a <vari abl e- cl ass> subelement to
specify the class of the variable, a <scope> subelement to specify the scope of the
variable, and a <decl ar e> subelement to specify whether the variable is to be
newly defined. See "Variable Declaration Through TLD variable Elements” on
page 8-33 for more information. Another subelement under <vari abl e> is an
optional <descri pt i on> element.

« Each<tei - cl ass> subelement (if any) specifies the name of a tag-extra-info class
that defines a scripting variable. This is for situations where declaring the variable
through a <vari abl e> element is not sufficient. See "Variable Declaration
Through Tag-Extra-Info Classes" on page 8-34 for more information.

« Each<attri but e>subelement (if any), with its further subelements, provides
information about an attribute of the tag—a parameter that you can specify when
you use the custom tag. Subelements of <at t ri but e> include the <nane>
element to specify the attribute name, the <t ype> element to optionally note the
Java type of the attribute value, the <r equi r ed> element to specify whether the
attribute is required (default f al se), and the <r t expr val ue> element to specify
whether the attribute can accept runtime expressions as values (default f al se).
See the example and accompanying discussion below. Another subelement under
<attri bute>isan optional <descri pti on>element.

Notes: As of Oracle Application Server 10g Release 2 (10.1.2), the
OC4J JSP container ignores the <t ype> element. It is for
informational use only, for anyone examining the TLD file.
Additionally, note the following:

« For literal attribute values, where <r t expr val ue> specifies
f al se, the <t ype> value (if any) should always be
java.lang. Stri ng.

« When<rtexprval ue> specifiest r ue, then the type of the tag
handler property corresponding to this tag attribute determines
what you should specify for the <t ype> value (if any).

= Aswith the tag library as a whole, each tag can have its own <di spl ay- nane>,
<l arge-icon> and <snal | -i con> subelements for use by authoring tools.

« The<descri pti on>subelement can provide a description of the tag.

« The<exanpl e> subelement can provide an example of how to use the tag.

8-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide

Tag Library Descriptor Files

Notes:

« A custom tag name must qualify as an NMITOKEN according to
the XML specification. For example, it cannot start with a
numeric character.

« Attribute names must follow naming conventions for XML
attributes, and their setter methods in tag handler classes must
follow the JavaBeans specification.

Sample tag Element and Use of Its body-content Subelement
Here is a sample TLD file entry for a tag nyact i on:

<t ag>
<nane>nyact i on</ nane>
<t ag- cl ass>exanpl es. Mact i onTag</t ag- cl ass>
<t ei - cl ass>exanpl es. Myact i onTagExt ral nf o</ tei - cl ass>
<body- cont ent >JSP</ body- cont ent >
<attribute>
<nane>at t r 1</ name>
<requi red>t rue</ requi red>
<lattribute>
<attribute>
<nane>at t r 2</ name>
<requi r ed>f al se</required>
<rtexprval ue>true</rtexprval ue>
<lattribute>
</tag>

According to this entry, the tag handler class is Myact i onTag and the tag-extra-info
class is Myact i onTagExt r al nf 0. The attribute at t r 1 is required; the attribute
at tr 2 is optional and can take a runtime expression as its value.

The <body- cont ent > element indicates how the tag body (if any) should be
processed. There are three choices:

« Avalue of enpt y indicates that the tag uses no body. In this case, the OC4J JSP
translator will return an exception if there is a tag body.

« A value of JSP (the default) indicates that the tag body should be processed as JSP
source code and translated.

« Avalue oft agdependent indicates that the tag body should not be translated.
Any text in the body is treated as template data.

Consider the following example:

<f 0o: bar >
<%bl ah%
</ foo: bar>

If the bar tag has a <body- cont ent > value of JSP, then the body is processed by the
JSP translator, and the expression is evaluated. With a <body- cont ent > value of

t agdependent , the JSP translator does not process the body. In this case, the
characters "<", "%, "=", and ">" have no special meaning—they are treated as literal
characters, along with the rest of the body, and are part of the JSP out object passed
straight through to the tag handler.

There are additional considerations for JSP XML documents. In this case, because the
document is parsed by the XML parser, it is not appropriate to implement support for

JSP Tag Libraries 8-9

Tag Library Descriptor Files

a value of t agdependent . This value is essentially meaningless in a JSP XML
document.

One reason for this is that in XML, there is already a convenient mechanism for
escaping body content—using the CDATA token. But beyond that, there are many
scenarios where it would actually be undesirable to pass content straight through as a
t agdependent implementation would do. Consider an example using a tag for SQL
queries, with traditional syntax:

<foosql:query ... >
select ... where salary > 1000
</foosql : query>

Compare this to the following JSP XML syntax:

<foosqgl : query ... >
<I [CDATA sel ect ... where salary > 1000]]>
</ foosql : query>

In the traditional syntax, a <body- cont ent > value of t agdependent would result
in the query statement being passed straight through to the JSP out object,
presumably the desired result.

In the XML syntax, the CDATA token (or, alternatively, a "> ;" escape character) is
required, because otherwise the character ">" has special meaning to the XML parser.

In this example, if an implementation of t agdependent were used, the entire body
would be passed through to the out object:

<I[CDATA sel ect ... where salary > 1000]]>

But presumably, the information that should really be passed through is only the SQL
query itself:

select ... where salary > 1000

This is what would happen by processing the body through a <body- cont ent >
value of JSP, and using the CDATA token for the XML parser. This is more appropriate
behavior than what would happen with at agdependent implementation.

See "Details of JSP XML Documents"” on page 5-3 for more information about JSP XML
syntax.

Other Key Elements and Their Subelements: validator and listener

The TLD <val i dat or > and <l i st ener > elements were introduced in the JSP 1.2
specification.

A <val i dat or > element and its subelements specify information about a
tag-library-validator (TLV) class that can validate JSP pages that use this tag library. The
<val i dat or > element has three subelements: <val i dat or - cl ass>,

<descri pti on> and<i ni t - paranm. The <i ni t - par am> subelement has the same
functionality as <i ni t - par an subelements within <ser vl et > elements in the
web. xn file. It has <par am nane> and <par am val ue> subelements to specify
each parameter. See "Validation and Tag-Library-Validator Classes" on page 8-36 for
more information.

A<l istener>elementand its <l i st ener - cl ass> subelement specify an event
listener for use with the tag library, such as in creating and destroying resource pools
used by the library. See "Tag Library Event Listeners" on page 8-39 for more
information.

8-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Library and TLD Setup and Access

Tag Library and TLD Setup and Access

The following sections discuss the packaging, placement, and access of tag libraries
and their TLD files:

« Overview: Specifying a Tag Library with the taglib Directive

« Specifying a Tag Library by Physical Location

« Packaging and Accessing Multiple Tag Libraries in a JAR File

« Use of web.xml for Tag Libraries

« Oracle Extensions for Tag Library Sharing and Persistent TLD Caching
« Example: Multiple Tag Libraries and TLD Files in a JAR File

Notes:

« Itis highly recommended to place TLD files under the application
/ VEB- | NF directory. In future releases this will be enforced.

« Ifyou use tag library JAR files at the application level that are
intended to supersede JAR files in the well-known tag library
location (global level), then you must specify that the application
class loader search local classes first. In the application
ori on-web. xm file, in the <web- app- cl ass- | oader >
element, set the sear ch- | ocal - cl asses-fi rst attributeto a
value of "t rue".

« In OC4J standalone, if you add a tag library JAR file to the
/ VEB- | NF/ | i b directory while OC4J is running, you must use a
tags_reuse_def aul t flag value of "none" or "conpi | eti ne"
to avoid a C assCast Except i on. You must also force
retranslation of relevant JSP pages (such as by touching the . j sp
files or removing the corresponding . cl ass files).

Overview: Specifying a Tag Library with the taglib Directive

This section summarizes the use of t agl i b directives, comparing functionality under
the JSP 1.1 specification to functionality under the JSP 1.2 and later specifications.

Import a custom library into a JSP page by using at agl i b directive of the following
general form:

<Y@taglib uri="UR" prefix="prefix" %
The pr ef i x setting specifies a string of characters that stipulates when tags from this

library are being used. For example, if myt ag is in a library that has a specified prefix
of oracust, use nyt ag as follows:

<oracust:nytag attrl="..." attr2="..." >

</ oracust: nyt ag>

Note: Prefixes must follow the naming conventions of the XML
namespaces specification.

JSP Tag Libraries 8-11

Tag Library and TLD Setup and Access

The JSP 1.1 specification stated that the uri setting can indicate a file location as in
either of the following scenarios, either directly or through a "shortcut” URI:

« It can indicate the physical location, within a WAR file structure, of the TLD file
that defines the desired tag library.

« It can indicate the physical location of the JAR file that contains the components
and TLD file of the desired tag library. Under the JSP 1.1 specification, there can be
only one tag library and only one TLD file in the JAR file.

See "Specifying a Tag Library by Physical Location" on page 8-12 for more information.

Beginning with the JSP 1.2 specification, the ur i setting can still indicate the physical
location of a TLD file or the location of a JAR file containing one tag library and its
TLD file, but it can also be used as follows:

« It can specify one of multiple tag libraries packaged in a single JAR file, by
specifying a value that matches the <ur i > element value in one of the TLD files in
the JAR file. In this case, the ur i setting is intended to be a unique key, not a
pointer to a physical location.

As under JSP 1.1, you can also use a shortcut URI.

See "Packaging and Accessing Multiple Tag Libraries in a JAR File" on page 8-13 for
more information. For information about shortcut URIs, see "Use of web.xml for Tag
Libraries" on page 8-14.

Specifying a Tag Library by Physical Location

As first defined in the JSP 1.1 specification, the t agl i b directive of a JSP page can
fully specify the name and physical location, within a WAR file structure, of the TLD
file that defines a particular tag library, as in the following example:

<Y@taglib uri="/WEB-|NF oracustontags/tlds/nytld.tld" prefix="oracust" %
Specify the location as application-relative by starting with "/ " as in this example. See
"Requesting a JSP Page" on page 1-21 for discussion of application-relative syntax.

Be aware that the TLD file should be in the / WEB- | NF directory or a subdirectory.

Alternatively, as also defined since the JSP 1.1 specification, the t agl i b directive can
specify the name and application-relative physical location of a JAR file instead of a
TLD file, where the JAR file contains a single tag library and the TLD file that defines
it. In this scenario, the JSP 1.1 specification mandated that the TLD file must be located
and named as follows in the JAR file:

VETA-INF/ taglib.tld

The JSP 1.1 specification also mandated that the JAR file must be located in the
/ VEEB- | NF/ | i b directory.

Here is an example of at agl i b directive that specifies a tag library JAR file:
<Y@taglib uri="/WEB-INF/lib/nytaglib.jar" prefix="oracust" %

Also see "Packaging and Accessing Multiple Tag Libraries in a JAR File", following,
which describes a scenario introduced in the JSP 1.2 specification.

8-12 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Library and TLD Setup and Access

Note: In either scenario discussed in this section, thet agl i b
directive can specify a "shortcut” URI that corresponds to the
complete URI value according to settings in the web. xm file. See
"Use of web.xml for Tag Libraries" on page 8-14.

Packaging and Accessing Multiple Tag Libraries in a JAR File

The preceding section, "Specifying a Tag Library by Physical Location”, discusses the
JSP 1.1 scenarios of using at agl i b directive to specify a TLD file by physical location,
or to specify a JAR file that contains a single tag library and its TLD file.

Adding to these scenarios, the JSP 1.2 specification introduced the packaging of
multiple tag libraries, and the TLD files that define them, in a single JAR file. Inside
the JAR file, these TLD files must be located under the / META- | NF directory or a
subdirectory.

A single TLD file in a JAR file can be packaged as/ META- | NF/ tagl i b.tl d, oryou
can use another name as desired. (In JSP 1.1, the t agl i b. t | d naming convention was
a requirement.)

In a JAR file with multiple TLD files, the TLD files must be uniquely named or be in
different subdirectories under META- | NF.

Here are a couple of possibilities, for example, for packaging three TLD files in a JAR
file:

META- | NF/ abct ags. t1d
META- | NF/ deftags. tld
META- | NF/ ghi tags. tld

or:

META- I NF/ abc/taglib.tld
META- | NF/ def/taglib.tld
META- | NF/ ghi /taglib.tld

In each TLD file, there is a <ur i > element under the root <t agl i b> element. Use this
feature as follows:

« The <uri > element must specify a value that is to be matched by the ur i setting
of at agl i b directive in any JSP page that wants to use the corresponding tag
library.

« Toavoid unintended results, each <ur i > value should be unique across all <ur i >
values in all TLD files on the server.

The value of the <ur i > element can be arbitrary. It is simply used as a key and does
not indicate a physical location. By convention, however, its value is of the form of a
physical location, such as in the following example:

<uri>http:// ww. myconpany. cont j 2ee/ j sp/t!ld/ myproduct/mytags.tld</uri>

A <uri > value must follow the XML namespace convention.

A JAR file with multiple TLD files must be placed in the / WEB- | NF/ | i b directory or
in an OC4J "well-known" tag library location as described in "Oracle Extensions for
Tag Library Sharing and Persistent TLD Caching" on page 8-15. During translation, the
JSP container searches these two locations for JAR files, searches each JAR file for TLD
files, and accesses each TLD file to find its <ur i > element.

JSP Tag Libraries 8-13

Tag Library and TLD Setup and Access

Notes:

« A<uri>element and the corresponding t agl i b directive can
specify a "shortcut” URI setting. This corresponds to settings in
the web. xm file, as "Use of web.xml for Tag Libraries" on
page 8-14 explains.

=« AISP 1.2-compliant container, such as the OC4J JSP container,
supports the multiple TLD file packaging mechanism for JSP
1.1 TLD files as well as JSP 1.2 TLD files.

Example: URI Settings for Multiple Tag Libraries in a JAR File
Consider a JAR file, nyappt ags. j ar, that includes the following TLD files:

META- | NF/ nytaglibl.tld
META-| NF/ nytaglib2.tld
Assume that nyt agl i b1. t | d specifies the following:

<taglib>
<tlib-version>1.0</tlib-version>
<j sp-versi on>1. 2</j sp-versi on>
<short - nane>shorty</short - nane>
<uri>http://ww.foo.comjsp/nytaglibl</uri>
<descri pti on>exanpl e TLD</description>
<t ag>
<name>nyt agl</ nane>

</tag>
</taglib>
To use myt agl or any other tag defined in myt agl i b1. t |1 d, aJSP page could have
the following t agl i b directive:
<v¥@taglib uri="http://wwn foo.conjsp/nytaglibl" prefix="myprefixl" %
URI values in this scenario (multiple tag libraries in a single JAR file) are used as
keywords only. They can be arbitrary.

For a more complete example, see "Example: Multiple Tag Libraries and TLD Files in a
JAR File" on page 8-18.

Use of web.xml for Tag Libraries

The Sun Microsystems Java Servlet Specification describes a standard deployment
descriptor for servlets: the web. xmi file. JSP pages can use this file in specifying the
location or URI identifier of a JSP TLD file.

For JSP tag libraries, the web. xm file can include <t agl i b> elements and two
subelements:

« <taglib-uri>
« <taglib-Ilocation>

For the scenario of an individual TLD file, or the scenario of a JAR file that contains a
single tag library and its TLD file, the <t agl i b- | ocat i on> subelement indicates the
application-relative physical location (by starting with "/ *) of the TLD file or tag

8-14 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Library and TLD Setup and Access

library JAR file. See "Specifying a Tag Library by Physical Location" on page 8-12 for
related information.

For the scenario of a JAR file that contains multiple tag libraries and their TLD files, a
<t agl i b-1 ocat i on> subelement indicates the unique identifier of a tag library. In
this case, the <t agl i b- | ocat i on> value actually indicates a key, not a location, and
corresponds to the <ur i > value in the TLD file of the desired tag library. See
"Packaging and Accessing Multiple Tag Libraries in a JAR File" on page 8-13 for
related information.

The <t agl i b- uri > subelement indicates a shortcut URI to use int agl i b directives
in your JSP pages, with this URI being mapped to the physical location or URI
identifier specified in the accompanying <t agl i b- | ocat i on> subelement.

Following is a sample web. xm entry for a TLD file:

<taglib>

<taglib-uri>/oracustontags</taglib-uri>

<taglib-1ocation> WEB-|NF/ oracustontags/tlds/nytld.tld</taglib-I|ocation>
</taglib>

This entry makes / or acust ont ags equivalent to
/ VEEB- | NF/ or acustont ags/tlds/nytld.tldintagli b directives in your JSP

pages.
Given this example, the following directive in your JSP page results in the JSP

container finding the / or acust ont ags URI inweb. xm and, therefore, finding the
accompanying name and location of the TLD file (myt | d. t | d):

<Y@taglib uri="/oracustontags" prefix="oracust" %
This statement enables you to use any of the tags of this custom tag library in a JSP
page.

See the Sun Microsystems Java Servlet Specification and the Sun Microsystems JavaServer
Pages Specification for more information about the web. xm deployment descriptor.

Important: Generally speaking, the <t agl i b>element in

web. xm is required in the case of a TLD file that is located in a JSP
"well-known" tag library location and has <I i st ener > elements.
This is the only way that the TLD file can be found and accessed in
order to activate its listeners. This is not the case, however, if you
use persistent TLD caching. See "Oracle Extensions for Tag Library
Sharing and Persistent TLD Caching" on page 8-15 and "Tag
Library Event Listeners" on page 8-39.

Oracle Extensions for Tag Library Sharing and Persistent TLD Caching

As an extension of standard JSP "well-known URI" functionality described in the JSP
specification, the OC4J JSP container supports the use of one or more directories,
known as well-known tag library locations, where you can place tag library JAR files to
be shared across multiple Web applications.

There is also a persistent caching feature for TLD files, with a global cache for TLD
files in any well-known tag library locations, as well as an application-level cache for
any application that uses TLD caching.

JSP Tag Libraries 8-15

Tag Library and TLD Setup and Access

The use of TLD caching speeds performance at application startup and during JSP
page translation. You might typically turn it off, however, under either of the following
circumstances:

= Your application does not use tag libraries.
or:

= You have pretranslated the JSP pages and none of the TLD files use <l i st ener >
elements for tag library event listeners. (See "Tag Library Event Listeners" on
page 8-39.)

The following sections provide additional information:
« TLD Caching and Well-Known Tag Library Locations
« TLD Cache Features and Files

TLD Caching and Well-Known Tag Library Locations

TLD caching is enabled or disabled through the j sp- cache-t | ds attribute of the
<ori on- web- app> element, at a global level through this attribute in the

gl obal - web-appl i cati on. xm file, or at an application level through this attribute
in the application or i on- web. xml file.

By default, TLD caching is enabled at a global level through the default setting

j sp-cache-tl ds="true" in gl obal - web- appl i cati on. xm . This is also the
default setting in the ori on- web. xm file of each application, but you can disable
TLD caching for any particular application with a setting of

j sp-cache-tl ds="fal se" inori on-web. xn . This overrides the global setting.

Alternatively, you can disable TLD caching at a global level with a "f al se" setting in
gl obal - web-appl i cati on. xm , then optionally enable TLD caching for any
particular application with a "t r ue" setting in ori on- web. xm .

A setting of "st andar d" searches for TLD files only in / VEEB- | NF or subdirectories
other than/ VEB- | NF/ cl asses or/ VEEB- | NF/ 1 i b. The "t r ue" setting, by contrast,
searches all application files for TLD files.

Note: By default, ori on-web. xm inheritsitsj sp-cache-tl ds
setting from gl obal - web-appl i cation. xmnl .

If TLD caching is enabled, you can specify one or more well-known tag library
locations using a semicolon-delimited list of directory paths in the

j sp-taglib-Iocations attribute of the <ori on- web- app> element in

gl obal - web- appl i cati on. xm . See "OC4J Configuration Parameters for JSP" on
page 3-20 for additional information about this attribute.

Important: Usethej sp-taglib-1ocations attribute only in
gl obal - web-appli cation. xm ,notinori on-web. xnl .

If TLD caching is disabled, the well-known tag library location is limited to a single
directory, using functionality that existed prior to the availability of TLD caching. In
this case, the well-known location is determined by thewel | _known_t agl i b_| oc
JSP configuration parameter. See "JSP Configuration Parameters" on page 3-11 for
additional information about this parameter.

8-16 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Library and TLD Setup and Access

In an Oracle Application Server environment, the default well-known location is
ORACLE_HQOVE/ j 2ee/ home/ j sp/ | i b/ taglib (assuming ORACLE HOVE is
defined).

Important:

« For any application to pick up files in the well-known location
or locations, the directory or directories that are specified in
j sp-taglib-1ocations orthe directory that is specified in
wel | _known_t agl i b_| oc must be added to the pat h
attribute setting of the <l i br ar y> element in the OC4J global
appl i cation. xnl fileinthe configuration files directory
(j 2eel/ horre/ conf i g by default in OC4J standalone). See the
Oracle Application Server Containers for J2EE User’s Guide for
information about appl i cati on. xnl .

« IfaTLD file is present both in the well-known location and
under the / VEB- | NF directory of an application, the
/ VEEB- | NF copy takes precedence and is used.

« IfTLD files with the same URI value are present in or under the
/ VEEB- | NF directory and also in a JAR file in the
/ VEB- | NF/ |'i b directory, the decision of which one to use is
indeterminate. Avoid this situation.

TLD Cache Features and Files

For any application that uses TLD caching, whether it is enabled at the global level or
at the application level, there are two levels of caching, and two aspects of caching at
each level.

Caching levels:

There is a global cache for TLD files that are in JAR files in any well-known tag
library locations.

There is an application-level cache for TLD files under the application / VEB- | NF
directory.

At the application level, tag library JAR files, which include TLD files, must be in
the / WEB- | NF/ | i b directory. Individual TLD files can be directly in / WEB- | NF or
in any subdirectory, but preferably notin/ WEB- 1 NF/ | i b or

/ V\EEB- | NF/ cl asses.

Caching aspects at each level:

There is a file containing resource information for the relevant location—the
well-known location for the global cache, or / VEB- | NF or / VEB- | NF/ | i b for the
application-level cache. Because of this feature, JAR files do not have to be scanned
more than once. The file contains two types of entries:

— Thereis a list of all resources (tag library JAR files) that includes a timestamp
for each resource so that any change to any resource can be detected. There is
also an indication ("t rue" or "f al se") of whether each resource includes a
TLD file.

— Thereisalist of TLD files, where each entry consists of a TLD name, TLD URI
value if present, and tag library listeners if present. (See "Tag Library Event
Listeners" on page 8-39.)

JSP Tag Libraries 8-17

Tag Library and TLD Setup and Access

« Thereis a serialized DOM representation of each TLD file. Because of this feature,
TLD files do not have to be parsed more than once.

The global cache is always located in a directory called t | dcache, parallel to the
configuration directory. Thet | dcache directory contains the following:

« Thereisafile, _d obal Tl dCache, that contains resource information, as
described above, for any well-known locations.

« There are DOM representations of the TLD files that are in well-known locations.
For each TLD file that is in a JAR file in a well-known location, the DOM
representation is in a subdirectory according to the name of the JAR file, with afile
name according to the name of the TLD file. For example, ifemai | . t | d is found
inoj sputil.jar inawell-known location, then its DOM representation would
be in the following file (file name enmi | in directory oj sputil _jar):

ORACLE_HOWE/ j 2ee/ hone/ jsp/ I'i b/ taglib/ persistence/ojsputil_jar/ensil

This is for an Oracle Application Server environment, where ORACLE_HOVE is
defined. In OC4J standalone, the j 2ee directory is relative to where OC4J is
installed.

The application-level cache is in the directory indicated by the

j sp- cache-di r ect ory setting in either gl obal - web- appl i cati on. xnl or
orion-web. xm . (See "OC4J Configuration Parameters for JSP" on page 3-20 for
information aboutj sp- cache- di r ect ory.) This directory contains the following:

« Thereisafile, Tl dCache, that contains resource information, as described above,
for TLD files under the / VEB- | NF directory—either in JAR files in
/ VEEB- | NF/ | i b, or individually in / WEB- | NF or any subdirectory, but preferably
not/WEB- | NF/ |i b or/ VEB- | NF/ cl asses.

« There are DOM representations of the TLD files under / VEB- | NF. For TLD files
that are in JAR files in the / VEB- | NF/ | i b directory, the DOM representations go
into subdirectories under the directory indicated by j sp- cache-di rectory,in
the same type of scheme as described for the global cache. For individual TLD files
under / VEB- | NF, the DOM representations go directly in the
j sp- cache-di rect ory location.

Notes:

« TLD changes at the global level are reflected only after OC4J is
restarted.

= TLD changes at the application level are reflected immediately
in an OC4J standalone environment, but only after the
application is restarted in an Oracle Application Server
environment.

= You can increase the OC4J verbosity level to see information
regarding construction of TLD caches and regarding any TLD
URIs that are duplicated. Level 4 provides some information;
level 5 provides additional information. You can use Oracle
Enterprise Manager 10g to set the verbosity level. The default
level is 3.

Example: Multiple Tag Libraries and TLD Files in a JAR File

This section presents an example of tag library packaging. This is a situation where
multiple tag libraries are packaged in a single JAR file. The JAR file includes tag

8-18 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Library and TLD Setup and Access

handler classes, tag-library-validator classes, and TLD files for multiple libraries. The
following shows the contents and structure of the JAR file:

exanpl es/ Basi cTagParent . cl ass
exanpl es/ Exanpl eLoopTag. cl ass
exanpl es/ Basi cTagChi | d. cl ass
exanpl es/ Basi cTagTLV. cl ass
exanpl es/ TagEl enFil ter. cl ass
exanpl es/ XMLVi ewTagTLV. cl ass
exanpl es/ TagFil ter. cl ass
exanpl es/ XMLVi ewTag. cl ass
META- | NF/ xm view t1d

META- | NF/ exanpl etag. t1d
META- | NF/ basic.tld

META- | NF/ MANI FEST. MF

Key TLD File Entries for Multiple-Library Example
This section illustrates the <ur i > elements of the TLD files.

The basi c. t | d file includes the following:

<taglib>

<tlib-version>1l.0</tlib-version>

<j sp-versi on>1. 2</j sp-versi on>

<short - nane>basi c</ short - nane>

<uri>http://xmns.oracl e.conj2ee/jsp/tld/ denos/basic.tld</uri>

</taglib>

The exanpl et ag. t | d file includes the following:
<taglib xmns="http://java. sun. conf JSP/ TagLi braryDescri ptor">

<tlib-version>1.0</tlib-version>

<j sp-versi on>1. 2</j sp-versi on>

<short - name>exanpl e</ short - nane>
<uri>http://xmns.oracle.conj2eeljsp/tld/ denos/ exanpl etag.tld</uri>

</taglib>

The xm vi ew. t | d file includes the following:

<taglib>

<tlib-version>1.0</tlib-version>

<j sp-versi on>1. 2</j sp-versi on>

<short - nane>deno</ short - name>
<uri>http://xmns.oracle.conj2eeljsp/tld/ denos/ xm view tld</uri>

</taglib>

JSP Tag Libraries 8-19

Tag Handlers

Key web.xml File Entries for Multiple-Library Example

This section shows the <t agl i b> elements of the web. xm deployment descriptor.
These map the full URI values, as seen in the <ur i > elements of the TLD files in the
previous section, to shortcut URI values used in the JSP pages that access these
libraries.

<taglib>
<tagl i b-uri>/oral oop</taglib-uri>
<taglib-location>http://xm ns.oracle.conij2ee/jsp/tld/ demos/exanpletag.tld
</taglib-location>

</taglib>

<taglib>
<taglib-uri>/orabasic</taglib-uri>
<taglib-location>http://xm ns.oracle.conij2eeljsp/tld/ demos/basic.tld
</taglib-location>

</taglib>

<taglib>
<taglib-uri>/oraxm view/taglib-uri>
<taglib-location>http://xm ns.oracle.conlj2eeljsp/tld/ demos/xmviewtld
</taglib-location>

</taglib>

JSP Page taglib Directives for Multiple-Library Example

This section shows the appropriate t agl i b directives, which reference the shortcut
URI values defined in the web. xm elements listed in the preceding section.

The page basi cl. j sp includes the following directive:

<¥@taglib prefix="basic" uri="/orabasic" %

The page exanpl et ag. j sp includes the following directive:

<Y@taglib prefix="exanple" uri="/oral oop" %

The page xnl vi ew. j sp includes the following directive:

<v@taglib prefix="deno" uri="/oraxmview' %

Tag Handlers

The following sections describe tag handlers, which define the semantics of actions that
result from the use of custom tags:

« Overview of Tag Handlers

« Attribute Handling, Conversions from String Values
« Custom Tag Processing, with or without Tag Bodies
= Summary of Integer Constants for Body Processing
« Simple Tag Handlers without Iteration

« Simple Tag Handlers with Iteration

« Tag Handlers That Access Body Content

« TryCatchFinally Interface

« Access to Outer Tag Handler Instances

8-20 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Handlers

Overview of Tag Handlers

A tag handler is an instance of a Java class that directly or indirectly implements the
standard j avax. servl et . j sp. t agext . Tag interface. Depending on whether there
is a tag body and how that body is to be processed, the tag handler implements one of
the following interfaces, in the j avax. servl et . j sp. t agext package:

« Tag: This interface defines the basic methods for all tag processing, but does not
include tag body processing.

« IterationTag: This interface extends Tag and is for iterating through a tag
body.

« BodyTag: This interface extends | t er at i onTag and is for accessing the tag body
content itself.

A tag handler class might implement one of these interfaces directly, or might extend a
class (such as one of the support classes provided by Sun Microsystems) that
implements one of them.

Each custom tag has its own handler class. By convention, the name of the tag handler
class for a tag abc, for example, is AbcTag.

The TLD file of a tag library specifies the name of the tag handler class for each tag in
the library. See "Tag Library Descriptor Files" on page 8-5.

A tag handler instance is typically created by the JSP page implementation instance, by
use of a zero-argument constructor, and is a server-side object used at request-time.
The tag handler has properties that are set by the JSP container, including the page
context object for the JSP page that uses the custom tag, and a parent tag handler
object if the use of this tag is nested within an outer tag. A tag handler, as applicable,
supports parameter-passing, evaluation of the tag body, and access to other objects in
the JSP page, including other tag handlers.

"Example: Using the IterationTag Interface and a Tag-Extra-Info Class" on page 8-43
includes code for a sample tag handler class.

Note: The JSP specification does not mandate whether multiple
uses of the same custom tag within a JSP page should use the same
tag handler instance or different instances. This is left to the
discretion of JSP vendors. See "OC4J JSP Tag Handler Features" on
page 8-30 for information about the Oracle implementation.

Attribute Handling, Conversions from String Values

A tag handler class has an underlying property for each attribute of the custom tag.
These properties are somewhat like JavaBean properties, with at least a setter method.

Recall that there are two approaches in setting a tag attribute:

« The first approach is where the attribute is a non-request-time attribute, set using a
string literal value:

nrtattr="string"

For a non-request-time attribute, if the underlying tag handler property is not of
type St ri ng, the JSP container will try to convert the string value to a value of the
appropriate type.

JSP Tag Libraries 8-21

Tag Handlers

Because tag attributes correspond to bean-like properties, their processing, such as
for these type conversions from string values, is similar to that of bean properties.
See "Bean Property Conversions from String Values" on page 1-17.

« The second approach is where the attribute is a request-time attribute that is set
using a request-time expression:

rtattr="<%expressi on%"
For request-time attributes, there is no conversion. A request-time expression can
be assigned to the attribute, and to its corresponding tag handler property, for any

property type. This would apply to a tag attribute whose type is user-defined, for
example.

Custom Tag Processing, with or without Tag Bodies

A custom tag, as with a standard JSP tag, might or might not have a body. In the case
of a custom tag, even when there is a body, its content might not have to be accessed
by the tag handler.

There are four scenarios:
1. There is no body.

In this case you need only a single tag, not a start-tag and end-tag. Following is a
general example:

<oracust:nytag attr1="...", attr2="..." />

This is equivalent to the following, which is also permissible:

<oracust:nytag attrl="...", attr2="..." ></oracust:abcdef>

In this case, the tag handler should implement the Tag interface.
The <body- cont ent > setting for this tag in the TLD file should be enpt y.

2. There is a body; access of the body content by the tag handler is not required; the
body is executed no more than once.

In this case, there is a start-tag and an end-tag with a body of statements in
between, but the tag handler does not process the body. Body statements are
passed through for normal JSP processing only. Following is a general example of
this scenario:

<foo:if cond="<% ... %" >

...body executed if cond is true, but body content not accessed by tag
handl er. ..

</[foo:if>

In this case, the tag handler should implement the Tag interface.

The <body- cont ent > setting for this tag in the TLD file should be JSP (the
default) or t agdependent , depending on whether the body content should be
translated or treated as template data, respectively.

3. There is a body; access of the body content by the tag handler is not required; the
body is executed multiple times (iterated).

This is the same as the second scenario, except there is iterative processing of the
tag body.

<foo:nyiteratetag ... >
...body executed nultiple times, according to attribute or other settings, but

8-22 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Handlers

body content not accessed by tag handler...
</foo: nyiteratetag>

In this case, the tag handler should implement the | t er at i onTag interface.

The <body- cont ent > setting for this tag in the TLD file should be JSP (the
default) or t agdependent , depending on whether the body content should be
translated or treated as template data, respectively.

There is a body that must be processed by the tag handler.

Again, there is a start-tag and an end-tag with a body of statements in between;
however, the tag handler must access the body content.

<oracust:nybodytag attr1="...", attr2="..." >
... body accessed and processed by tag handler...
</ oracust : nybodyt ag>

In this case, the tag handler should implement the Body Tag interface.

The <body- cont ent > setting for this tag in the TLD file should be JSP (the
default) or t agdependent , depending on whether the body content should be
translated or treated as template data, respectively.

Notes:

« Inthe first scenario, where there is no body, the action is known
as an empty action. In the second, third, and fourth scenarios,
where there is a body, the action is known as a non-empty action.

« Inthe first, second, and third scenarios, where no body content
processing is required by the tag handler, the handler is known
as a simple tag handler.

« For additional information about the <body- cont ent >
element, see "Use of the tag Element" on page 8-7.

Summary of Integer Constants for Body Processing

The tag handler interfaces that are described in the following sections specify methods
that you must implement, as applicable, to return appropriate i nt constants,
depending on the situation.

The possible return values from the doSt ar t Tag() method, which is defined in the
Tag interface and inherited by the | t er at i onTag and Body Tag interfaces, are as
follows:

SKI P_BODY: Use this value if there is no body or if evaluation of the body should
be skipped.

EVAL_BODY_I NCLUDE: Use this value to evaluate the body and pass it through to
the current JSP out object. There is no special processing of the body content; no
body content object is created.

EVAL_BODY_BUFFERED (for Body Tag classes only): Use this value to create a
BodyCont ent object for the content of the tag body, used for evaluation and
processing of the content.

EVAL_BODY_TAG This is deprecated (formerly used if there is a body that
requires special processing by the tag handler). Use EVAL_BODY_AGAI Nor

JSP Tag Libraries 8-23

Tag Handlers

EVAL_BODY_BUFFERED, which both have the same i nt value as
EVAL_BODY_TAG

The possible return values from the doAf t er Body () method, defined in the
I t erati onTag interface and inherited by the BodyTag interface, are as follows:

« SKI P_BODY: Use this value to skip evaluation of the body or, when iterating
through the body;, to stop iterating.

«» EVAL_BODY_AGAI N Use this value to continue iterating through the body.

The possible return values from the doEndTag() method, defined in the Tag interface
and inherited by the | t er at i onTag and Body Tag interfaces, are as follows:

« SKI P_PAGE: Use this value to skip the rest of the page after the tag. This
completes the request.

« EVAL_PAGE: Use this value to evaluate the remainder of the page after the tag.

Simple Tag Handlers without Iteration

For a custom tag that does not have a body, or has a body whose content does not
require access and special processing by the tag handler, the tag handler is referred to
as a simple tag handler. The tag handler class can implement the following standard
interface:

« javax.servlet.jsp.tagext. Tag

However, if there is a tag body that is to be iterated, then the tag handler should
implement the | t er at i onTag interface instead. See "Simple Tag Handlers with
Iteration” on page 8-25.

The standard j avax. servl et.jsp. tagext. TagSupport class implements the
Tag interface, but also implements the | t er at i onTag interface. Because of this, it is
inefficient to use the TagSupport class for a tag that does not iterate through the tag
body. This is especially important to consider when migrating code from a JSP 1.1
environment to a JSP 1.2 environment, in case you created tag handlers that extended
TagSuppor t under JSP 1.1. For simple tag handlers not requiring body iteration, it is
best to implement the Tag interface from scratch.

The Tag interface defines methods for the following key functions:
« Set up the JSP page context object (pageCont ext property).

« Setor get the parent tag handler—the handler for the closest enclosing tag, if
applicable (par ent property).

« Set up the tag attributes.

« Conditionally process the tag body, as appropriate, according to the return value
of thedoSt art Tag() method. (See immediately following.)

« Conditionally process the remainder of the JSP page after the tag, as appropriate,
according to the return value of the doEndTag() method. (See immediately
following.)

= Release state information.

For complete information, see the Sun Microsystems Tag interface Javadoc at:

http://java. sun. conlj 2ee/ sdk_1. 3/t echdocs/ api /j avax/ servl et/j sp/tagext/ Tag. ht m

In particular, the Tag interface specifies the following key methods:
« doStartTag()

8-24 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Handlers

« doEndTag()

The tag developer provides code for these methods in the tag handler class, as
appropriate, to be executed as the start-tag and end-tag, respectively, are encountered.
The JSP page implementation class generated by the JSP translator includes
appropriate calls to these methods.

Implement action processing—whatever you want the action tag to accomplish—in
thedoSt art Tag() method. The doEndTag() method implements any appropriate
post-processing. In the case of a tag without a body, essentially nothing happens
between the execution of these two methods.

The Tag interface also specifies getter and setter methods for the pageCont ext and
par ent properties. The JSP page implementation instance invokes the

set PageCont ext () and set Par ent () methods before invoking the

doSt art Tag() and doEndTag() methods.

The doSt art Tag() method returns an i nt value. For a tag handler class
implementing the Tag interface, this value is one of the following:

« SKI P_BODY: Do not evaluate the body, if any. This is the only option if the TLD
file specifies a <body- cont ent > setting of enpt y for the tag associated with this
handler.

« EVAL_BODY_| NCLUDE: Evaluate the body and pass it through to the current JSP
out object.

The doEndTag() method also returns an i nt value, one of the following:

« SKI P_PAGE: Skip the rest of the page after the tag. If the request was originally
from another page, from which the current page was forwarded to or included,
only the remainder of the current page evaluation is skipped.

« EVAL_PAGE: Evaluate the remainder of the page after the tag.

Simple Tag Handlers with Iteration

For a custom tag that has a body that does not require access and special processing by
the tag handler, but does require repeated reevaluation such as for iteration, the tag
handler class can implement the following standard interface:

« javax.servlet.jsp.tagext.lterationTag

The | t er ati onTag interface extends the Tag interface. A class that implements the
| t erati onTag interface is still known as a simple tag handler.

The following standard support class implements the | t er at i onTag interface, as
well asthej ava. i 0. Seri al i zabl e interface, and can be used as a base class:

« javax.servlet.jsp.tagext.TagSupport

In addition to implementing appropriate methods from the Tag and | t er ati onTag
interfaces, the TagSupport class includes a convenience method,

fi ndAncest or Wt hd ass(), that calls the get Par ent () method defined in the
Tag interface.

JSP Tag Libraries 8-25

Tag Handlers

Note: Itis not advisable to extend the TagSupport class if your
tag handler does not have to support body iteration. Because
TagSupport implements the | t er at i onTag interface, there is
looping logic that would be unnecessary. In addition to being
generally inefficient, this increases the likelihood of methods
exceeding a Java 64K size limit.

Thel t er at i onTag interface inherits basic tag-handling functionality, including the
doSt art Tag() and doEndTag() methods, from the Tag interface. See "Simple Tag
Handlers without Iteration" on page 8-24.

Thel t er ati onTag interface also defines the following additional key method:
« doAfterBody()

This method is called after each evaluation of the tag body, to see if the body should be
evaluated again. It returns one of the following i nt values:

« SKI P_BODY: Stop iterating; do not reevaluate the tag body. Call doEndTag()
instead. The SKI P_BQDY setting is also used when the body is not to be evaluated
in the first place, and is the only option if the TLD file specifies a
<body- cont ent > setting of enpt y for the tag associated with this handler.

« EVAL_BODY_AGAI N Continue iterating; reevaluate the tag body. After the body is
evaluated, the doAf t er Body () method is called again.

Notes:

« IntheJSP 1.1 specification, the doAf t er Body() method was
defined in the BodyTag interface. Moving this method
definition to the I t er at i onTag interface, beginning with the
JSP 1.2 specification, allows a simple iteration tag handler to
avoid the overhead of maintaining a BodyCont ent object.

« Foracomplete example of | t er at i onTag usage, see
"Example: Using the IterationTag Interface" on page 8-41.

Tag Handlers That Access Body Content

For a custom tag with body content that the tag handler must be able to access, the tag
handler class can implement the following standard interface:

« javax.servlet.jsp.tagext.BodyTag

The following standard support class implements the Body Tag interface, as well as
thej ava.io. Seri al i zabl e interface, and can be used as a base class:

« javax.servlet.]sp.tagext.BodyTagSupport

This class implements appropriate methods from the Tag, | t er ati onTag, and
BodyTag interfaces.

8-26 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Handlers

Note: Do not use the BodyTag interface (or BodyTagSuppor t
class) if your tag handler does not actually require access to the
body content. This would result in the needless overhead of
creating and maintaining a BodyCont ent object. Depending on
whether iteration through the body is required, use the Tag
interface or the | t er at i onTag interface (or TagSupport class)
instead.

BodyTag Features

The BodyTag interface inherits basic tag-handling functionality from the Tag
interface, including the doSt art Tag() and doEndTag() methods and their defined
return values. It also inherits functionality from the | t er at i onTag interface,
including the doAf t er Body () method and its defined return values. See "Simple Tag
Handlers without Iteration” on page 8-24 and "Simple Tag Handlers with Iteration" on
page 8-25.

Along with its inherited features, the Body Tag interface adds functionality to capture
execution results from the tag body. Evaluation of a tag body is encapsulated in an
instance of the j avax. servl et.j sp. t agext . BodyCont ent class. The page
implementation object creates this instance as appropriate. See "BodyContent Objects"
on page 8-28.

As with the Tag interface, the doSt ar t Tag() method specified in the BodyTag
interface supportsi nt return values of SKI P_BODY and EVAL_BODY_| NCLUDE. For

BodyTag, this method also supports an i nt return value of EVAL_BODY_BUFFERED.
To summarize the meanings:

= SKI P_BODY: Do not evaluate the body.

« EVAL_BODY_| NCLUDE: Evaluate the body and pass it through to the JSP out
object without the body content being made available to the tag handler. This is
essentially the same behavior as in an EVAL_BODY_| NCLUDE scenario with a tag
handler that implements the | t er at i onTag interface.

« EVAL_BODY_ BUFFERED: Create a BodyCont ent object for processing of the tag
body content.

The BodyTag interface also adds definitions for the following methods:

« set BodyCont ent () : Set the bodyCont ent property (a BodyCont ent instance)
of the tag handler.

« dol ni t Body() : Prepare to evaluate the tag body.

If the doSt art Tag() method returns EVAL_BODY_BUFFERED, the JSP page
implementation instance executes the following steps, in order:

1. Itcreates a BodyCont ent instance.

2. Itcallsthe set BodyCont ent () method of the tag handler, to pass the
BodyCont ent instance to the tag handler.

3. ltcallsthe dol ni t Body() method of the tag handler to perform initialization, if
any, related to the BodyCont ent instance.

These steps occur before the tag body is evaluated. While the body is evaluated, the
JSP out object will be bound to the BodyCont ent object.

JSP Tag Libraries 8-27

Tag Handlers

After each evaluation of the body, as for tag handlers implementing the
I t erati onTag interface, the page implementation instance calls the tag handler
doAf t er Body() method. This involves the following possible return values:

« SKI P_BODY: Stop iterating; do not reevaluate the tag body. Call doEndTag()
instead. The JSP out object is restored from the page context.

« EVAL_BODY_AGAI N Continue iterating; reevaluate the tag body. When the body
is evaluated, it is passed through to the current JSP out object. After the body is
evaluated, the doAf t er Body () method is called again.

Once evaluation of the body is complete, for however many iterations are appropriate,
the page implementation instance invokes the tag handler doEndTag() method.

BodyContent Objects

For tag handlers implementing the Body Tag interface, evaluation results from the tag
body are made accessible to the tag handler through an instance of the

j avax. servl et.]jsp.tagext. BodyCont ent class. This class extends the
javax.servlet.jsp.JspWiter class.

A BodyCont ent instance is created through the pushBody() method of the JSP page
context.

The Body Cont ent class, in addition to inheriting JspW i t er features, adds methods
to accomplish the following:

« Returnits contentsas aj ava. i 0. Reader object (get Reader () method).
« Writeitscontentsintoaj ava. i 0. Wit er object (witeQut () method).
« Convertits contents into a St ri ng object (get St ri ng() method).

« Clear its contents (cl ear Body() method).

Typical uses for a Body Cont ent object include the following:

« Convertits contents into a St ri ng instance and then use the string as a value for
an operation.

« Write its contents into the JSP out object that was active as of when the start-tag
was encountered.

TryCatchFinally Interface

For data integrity and resource management when exceptions occur during tag
processing, the JSP 1.2 specification introduced the

javax.servl et.jsp.tagext. TryCat chFi nal | y interface. Implementing this
interface in your tag handlers is particularly useful for tags that must handle errors
and for ensuring the proper release of resources.

The TryCat chFi nal | y interface specifies the following methods:
« Vvoid doCatch(java.lang. Throwabl e t hrow)

This method can be invoked on a tag handler when a Thr owabl e error occurs
during evaluation of a tag body or during a call to the doSt art Tag(),
doEndTag(), doAft er Body(), ordol ni t Body() method. The Thr owabl e
object that was encountered is taken as input by the doCat ch() method. This
method would not be invoked if the Thr owabl e error occurs during a call to a
setter method.

The doCat ch() method can throw an exception (the original Thr owabl e
exception or a new exception) to be propagated through an error chain.

8-28 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Handlers

« void doFinally()

This method is invoked regardless of whether a Thr owabl e error, as discussed for
the doCat ch() method, occurs. It would not be invoked, however, if a
Thr owabl e error occurs during a call to a setter method.

The doFi nal | y() method should not throw an exception.

Following is a typical Tr yCat chFi nal | y invocation (from the Sun Microsystems
JavaServer Pages Specification, Version 1.2):

h = get a Tag(); // get a tag handler, perhaps from pool

h. set PageContext (pc); // initialize as desired
h. set Parent (nul |);
h. set Foo("fo00");

Il tag invocation protocol; see Tag.java

try {
h.doStart Tag(). ..

h. doEndTag(). . .
} catch (Throwable t) {
/* React to exceptional condition; invoked if exception occurs between
doStartTag() and doEndTag(). */
h. doCat ch(t);

} finally {
/'l restore data invariants and release pre-invocation resources
h. doFi nal 1 y();

I* doFinally() is alnmost always called, unless Throwabl e error occurs
during setter method, or Java thread termnates. */

Access to Outer Tag Handler Instances

Where nested custom tags are used, the tag handler instance of the nested tag has
access to the tag handler instance of the outer tag, which might be useful in any
processing and state management performed by the nested tag.

This functionality is supported through the static f i ndAncest or Wt hCl ass()
method of the j avax. servl et.j sp. t agext. TagSupport class. Even though the
outer tag handler instance is not named in the JSP page context, it is accessible because
it is the closest enclosing instance of a given tag handler class.

Consider the following JSP code example:

<foo:barl attr="abc" >
<foo:bar2 />
</ foo: bar 1>

Within the code of the bar 2 tag handler class (class Bar 2Tag, by convention), you can
have a statement such as the following:

Tag barltag = TagSupport.findAncestorWthC ass(this, BarlTag.class);

The fi ndAncest or Wt hd ass() method takes the following as input:

« Thethi s object that is the class handler instance from which
fi ndAncestor Wt hCl ass() was called (a Bar 2Tag instance in the example)

« The name of the bar 1 tag handler class (presumed to be Bar 1Tag in the
example), asaj ava. | ang. d ass instance

JSP Tag Libraries 8-29

0C4J JSP Tag Handler Features

Thefi ndAncest or Wt hCl ass() method returns an instance of the appropriate tag
handler class, in this case Bar 1Tag, asaj avax. servl et. j sp.tagext. Tag
instance.

It is useful for a Bar 2Tag instance to have access to the outer Bar 1 Tag instance in
case the Bar 2Tag needs the value of a bar 1 tag attribute or needs to call a method on
the Bar 1Tag instance.

OC4J JSP Tag Handler Features

This section describes OC4J JSP extended features for tag handler pooling and code
generation size reduction. It covers the following topics:

« Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse

« Tag Handler Code Generation

Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse

To improve performance, you can specify that tag handler instances be reused within
each JSP page. This is sometimes referred to as tag handler instance pooling. As of Oracle
Application Server 10g Release 2 (10.1.2), there are two models for this:

« Runtime model: The logic and patterns of tag handler reuse is determined at
runtime, during execution of the JSP pages. Tag handler reuse is within
appl i cati on scope.

= Compile-time model: The logic and patterns of tag handler reuse is determined at
compile-time, during translation of the JSP pages. This is an effective way to
improve performance for an application with very large numbers of tags within
the same page (hundreds of tags, for example).

The JSPt ags_reuse_def aul t configuration parameter is relevant in either case. See
"JSP Configuration Parameters" on page 3-11 for further information about this
parameter and how to set it.

Key Points Regarding Tag Handler Reuse
Be aware of the following points about tag handler reuse:

« Inthe current implementation, the defaultt ags_r euse_def aul t setting is
runt i me, for use of the runtime model.

« If you switch from the runtime model (t ags_r euse_def aul t value of
runt i nme) to the compile-time model (t ags_r euse_def aul t value of
conpiletimeorconpiletime_wth_rel ease), or from the compile-time
model to the runtime model, you must retranslate the JSP pages.

« The JSP container also supports tag handler reuse in a servlet 2.0 environment. In
that environment, the defaultt ags_r euse_def aul t setting is none, for no tag
handler reuse.

= Any given tag handler instance processes only one request at a time.

Enabling or Disabling the Runtime Model for Tag Handler Reuse
The runtime model can be enabled in either of two ways:

« Usethe defaultt ags_reuse_def aul t value of runt i ne. (For backward
compatibility, a setting of t r ue is also supported and is equivalent torunt i ne.)

or:

8-30 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

0C4J JSP Tag Handler Features

«» Iftags_reuse_defaul t hasavalue of none, you can override this in any
particular JSP page by setting the or acl e. j sp. t ags. r euse attribute in the JSP
page context to t r ue. For example:

pageCont ext.setAttribute("oracle.jsp.tags. reuse", new Bool ean(true));

You can also disable the runtime model in either of two ways:

« Settags_reuse_default toavalue of none. This also disables the
compile-time model. (For backward compatibility, a setting of f al se is also
supported and is equivalent to none.)

or:

« Iftags_reuse_def aul t hasavalue of runti me, you can override this in any
particular JSP page by setting the or acl e. j sp. t ags. r euse attribute in the JSP
page context to f al se. For example:

pageContext.setAttribute("oracle.jsp.tags.reuse", new Bool ean(fal se));

Notes:

« Remember to retranslate your JSP pages when switching from
the compile-time model to the runtime model for tag handler
reuse.

« You can use separate or acl e. j sp. t ags. r euse settings in
different pages, or even in different sections of the same page.

« Theoracle.jsp.tags.reuse attribute is ignored with a
tags_reuse_def aul t setting of conpi | eti me or
conmpiletinme_wi th_rel ease.

Enabling or Disabling the Compile-Time Model for Tag Handler Reuse
You can switch to the compile-time model for tag-handler reuse in one of two ways:

« Setthetags_reuse_defaul t configuration parameter to conpi | eti ne.
or:

« Setthetags_reuse_def aul t configuration parameter to
conpi l etinme_wi th_rel ease.

Aconpil etime_w t h_rel ease setting results in the tag handler r el ease()
method being called between uses of the same tag handler within the same page. This
method releases state information, with details according to the tag handler
implementation. If the tag handler is coded in such a way as to assume a release of
state information between tag usages, for example, then a

conpi | etime_wi th_rel ease setting would be appropriate. If you are unsure about
the implementation of the tag handler and about which compile-time setting to use,
you might consider experimentation.

To disable the compile-time model, sett ags_r euse_def aul t to a value of none.
This also disables the runtime model.

JSP Tag Libraries 8-31

Scripting Variables, Declarations, and Tag-Extra-Info Classes

Notes:

=« Remember to retranslate your JSP pages when switching from
the runtime model to the compile-time model for tag handler
reuse.

=« The page contextor acl e. j sp. t ags. r euse attribute is
ignored withat ags_r euse_def aul t setting of
conpiletimeorconpiletime_wth_rel ease.

Tag Handler Code Generation

The Oracle JSP implementation reduces the code generation size for custom tag usage.
In addition, there is a JSP configuration flag, r educe_t ag_code, that you can set to
t r ue for even further size reduction.

Be aware, however, that when this flag is enabled, the code generation pattern does
not maximize tag handler reuse. Although you can still improve performance by
settingt ags_reuse_defaul t totrue as described in "Disabling or Enabling
Runtime or Compile-Time Tag Handler Reuse" on page 8-30, the effect is not
maximized whenr educe_t ag_codeisalsotrue.

See "JSP Configuration Parameters" on page 3-11 for further information about these
parameters and how to set them.

Scripting Variables, Declarations, and Tag-Extra-Info Classes

A custom tag action can create one or more server-side objects, known as scripting
variables, that are available for use by the tag itself or by other scripting elements, such
as scriptlets and other tags. A scripting variable can be defined either through a
<vari abl e>element in the TLD file of the tag library, for elementary cases, or
through a tag-extra-info class, for cases where the logic for the scripting variable is
more complex.

This section covers the following topics:

= Using Scripting Variables

= Scripting Variable Scopes

= Variable Declaration Through TLD variable Elements

« Variable Declaration Through Tag-Extra-Info Classes

Using Scripting Variables

Obijects that are defined explicitly in a custom tag can be referenced in other actions
through the JSP page context, using the object ID as a handle. Consider the following
example:

<oracust:foo id="myobj" attrl="..." attr2="..." />
This statement results in the object myobj being available to scripting elements in the
page, according to the declared scope of nyobj . (See "Scripting Variable Scopes” on

page 8-33.) The i d attribute is a translation-time attribute. You can specify a variable in
one of two ways:

8-32 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Scripting Variables, Declarations, and Tag-Extra-Info Classes

« Provide a<vari abl e> element for the variable in the TLD file, to specify the
name and type of the variable along with additional information. See "Variable
Declaration Through TLD variable Elements" on page 8-33.

« Create a tag-extra-info class, to specify the name and type of the variable along
with additional information and related logic. Specify the tag-extra-info class
name in a <t ei - cl ass> element in the TLD file. See "Variable Declaration
Through Tag-Extra-Info Classes" on page 8-34.

Generally, the more convenient <var i abl e> mechanism will suffice.

The JSP container enters myobj into the page context, where it can later be obtained by
other tags or scripting elements using syntax such as the following:

<oracust:bar ref="nyobj" />

The myobj object is passed through the tag handler instances for the f oo and bar
tags. All that is required is knowledge of the name of the object (myobj).

Note: Inthe example,i d and ref are merely sample attribute
names; there are no special predefined semantics for these attribute
names. It is up to the tag handler to define attribute names and
create and retrieve objects in the page context.

Scripting Variable Scopes

Specify the scope of a scripting variable in the <var i abl e> element or tag-extra-info
class of the tag that creates the variable. It can be one of the following i nt constants:

« NESTED: Use this setting for the scripting variable to be available between the
start-tag and end-tag of the action that defines it.

« AT_BEG N: Use this setting for the scripting variable to be available from the
start-tag to the end of the page.

« AT_END: Use this setting for the scripting variable to be available from the end-tag
to the end of the page

Variable Declaration Through TLD variable Elements

The JSP 1.1 specification mandated that use of a scripting variable for a custom tag
requires the creation of a tag-extra-info (TEI) class. See "Variable Declaration Through
Tag-Extra-Info Classes" on page 8-34. The JSP 1.2 specification, however, introduced a
simpler mechanism—a <var i abl e>element in the TLD file where the associated tag
is defined. This is sufficient for most cases, where logic related to the variable is simple
enough to not require use of a TEI class.

The <vari abl e> element is a subelement under the <t ag> element that defines the
tag that uses the variable.

You can specify the name of the variable in one of two ways:

« Usea<nane- gi ven> subelement under <vari abl e> to specify the variable
name directly.

or:

« Usea<nane-fromattribute>subelement under <vari abl e> to specify a
tag attribute whose value, at translation-time, will specify the variable name.

JSP Tag Libraries 8-33

Scripting Variables, Declarations, and Tag-Extra-Info Classes

Along with <nane- gi ven>and <nane-from at tri but e>, the <vari abl e>
element has the following subelements:

« The<vari abl e- cl ass> element specifies the class of the variable. The default is
java.lang. Stri ng.

« The<decl ar e> element specifies whether the variable is to be a newly declared
variable, in which case the JSP translator will declare it. The defaultist r ue. If
f al se, then the variable is assumed to have been declared earlier in the JSP page
through a standard mechanism such as aj sp: useBean action, a JSP scriptlet, a
JSP declaration, or some custom action.

«» The<scope> element specifies the scope of the variable: NESTED, AT_BEG N, or
AT_END, as described in "Scripting Variable Scopes" on page 8-33. The default is
NESTED.

Here is an example that declares two scripting variables for a tag myact i on. Note that
details within the <t ag> element that are not directly relevant to this discussion are
omitted:

<t ag>
<name>nyact i on</ nanme>

<attribute>
<name>at t r 2</ name>
<requi red>true</required>
<[attribute>
<variabl e>
<narme- gi ven>f 0o_gi ven</ nane- gi ven>
<decl ar e>f al se</ decl ar e>
<scope>AT_BEQ N</ scope>
</vari abl e>
<vari abl e>
<name-fromattribute>attr2</name-fromattribute>
<vari abl e-cl ass>j ava. | ang. | nt eger </ vari abl e-cl ass>
</vari abl e>
</tag>

The name of the first variable is hardcoded as f oo_gi ven. By default, it is of type
St ri ng. Itis not to be newly declared, so is assumed to exist already, and its scope is
from the start-tag to the end of the page.

The name of the second variable is according to the setting of the required at t r 2
attribute. It is of type | nt eger . By default, it is to be newly declared and its scope is
NESTED, between the myact i on start-tag and end-tag.

See "Tag Library Descriptor Files" on page 8-5 for more information about related TLD
syntax.

Variable Declaration Through Tag-Extra-Info Classes

For a scripting variable with associated logic that is at least somewhat complicated, the
use of a<vari abl e> element in the TLD file to declare the variable might be
insufficient. In this case, you can specify details regarding the scripting variable in a
subclass of the j avax. servl et. j sp. t agext. TagExt r al nf o abstract class. This
manual refers to such a subclass as a tag-extra-info class. Tag-extra-info classes support
additional validation of tag attributes and provide additional information about
scripting variables to the JSP runtime.

8-34 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Scripting Variables, Declarations, and Tag-Extra-Info Classes

The JSP container uses tag-extra-info instances during translation. The TLD file
specifies any tag-extra-info classes to use for scripting variables of a given tag. Use
<t ei - cl ass> elements, as in the following example:

<t ag>
<nane>| oop</ name>
<t ag- cl ass>exanpl es. Exanpl eLoopTag</t ag- cl ass>
<t ei - cl ass>exanpl es. Exanpl eLoopTagTEl </t ei - cl ass>
<body- cont ent >JSP</ body- cont ent >
<description>for |oop</description>
<attribute>

<lattribute>
</tag>
The following are related classes, also in the j avax. servl et . j sp. t agext package:

« TagDat a: An instance of this class contains translation-time attribute value
information for a tag instance.

« Vari abl el nf o: Each instance of this class contains information about a scripting
variable that is declared, created, or modified by a tag at runtime.

« Tagl nf o: An instance of this class contains information about the relevant tag.
The class is instantiated from the TLD file and is available only at translation time.
Tagl nf o has methods such as get TagNane() , get TagC assNane(),
get BodyCont ent (), get Di spl ayNane(),and get I nfoString().

You can refer to the following location for further information:

http://java. sun.conlj2ee/ sdk_1. 3/techdocs/ api/javax/servl et/jsp/tagext/package-sumrary. htm

Note: Itis uncommon to use Tagl nf o instances in a
tag-extra-info implementation, although it might be useful if you
want to map a single tag-extra-info class to multiple tag libraries
and TLD files, for example.

The following methods of the TagExt r al nf o class are related:
« bool ean isValid(TagData data)

The JSP translator calls this method for translation-time validation of the tag
attributes, passing it a TagDat a instance.

« Variablelnfo[] getVariabl el nfo(TagData dat a)

The JSP translator calls this method during translation, passing it a TagDat a
instance. This method returns an array of Var i abl el nf o instances, with one
instance for each scripting variable the tag creates.

« Vvoid setTagl nfo(Tagl nfo info)

Calling this method sets a Tagl nf o instance as an attribute of the tag-extra-info
class. This method is typically called by the JSP container.

« Taglnfo getTaglnfo()

Use this method to retrieve the Tagl nf o attribute of the tag-extra-info class,
assuming the Tagl nf o attribute was previously set.

JSP Tag Libraries 8-35

Validation and Tag-Library-Validator Classes

The tag-extra-info class constructs each Var i abl el nf o instance with the following
information regarding the scripting variable:

« Itsname
« Its Java type (not a primitive type)

=« A boolean value indicating whether the variable is to be newly declared, in which
case the JSP translator will declare it

« ltsscope

Important: As of the OC4J 10.1.2 implementation, you can have
the get Vari abl el nf o() method return either a fully qualified
class name (FQCN) or a partially qualified class name (PQCN) for
the Java type of the scripting variable. FQCNSs were required in
previous releases, and are still preferred to avoid confusion in case
there are duplicate class names between packages. Primitive types
are not supported.

See "Sample Tag-Extra-Info Class: ExampleLoopTagTEl.java" on page 8-45 for sample
code of a tag-extra-info class.

Validation and Tag-Library-Validator Classes

The JSP 1.2 specification introduced a feature to optionally associate a "validator" class
with each tag library. These classes are referred to as tag-library-validator (TLV) classes.
The purpose of a TLV class is to validate any JSP page that uses the tag library,
verifying that the page adheres to any constraints that you wish to impose through
your implementation of the TLV class. Although it is probably typical for a TLV class
to check for constraints regarding use of the associated tag library only, there is no
limitation. The TLV class can check any aspect of a JSP page.

A tag-library-validator class must be a subclass of the
j avax. servl et.jsp.tagext. TagLi braryVal i dat or class.

The following sections discuss tag library validation and TLV classes:
« TLD validator Element

» Key TLV-Related Classes and the validation() Method

=« TLV Processing

=« Validation Mechanisms

TLD validator Element

To specify a TLV class for a tag library, use a <val i dat or > element in the TLD file.
The <val i dat or > element has the following subelements:

« The<val i dat or - cl ass> subelement specifies the TLV class name.

« The<descri pti on>subelement can be used to provide documentation about
the TLV class.

« The<init-parant subelement and its own subelements—<par am nanme> and
<par am val ue>—can be used to set initialization parameters for the TLV class.
This is similar to how <i ni t - par an® subelements work within <ser vl et >

8-36 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Validation and Tag-Library-Validator Classes

elements in the application deployment descriptor (web. xn). There is also an
optional <descri pti on> subelement under the <i ni t - par ane element.

The following <val i dat or > element examples are from the Sun Microsystems
JavaServer Pages Standard Tag Library, Version 1.0 specification.

Example 1

This is an example of a TLV class (Scr i pt Fr eeTLV) that can disallow JSP
declarations, JSP scriptlets, JSP expressions, and runtime expressions according to the
settings of its initialization parameters. In this case, JSP expressions and runtime
expressions will be allowed, but not JSP declarations or JSP scriptlets.

<val i dat or >
<val i dat or-cl ass>
javax.servlet.jsp.jstl.tlv.ScriptFreeTLV
</val i dator-cl ass>
<init-paranp
<param nane>al | owDecl ar at i ons</ par am narme>
<par am val ue>f al se</ par am val ue>
</init-paranp
<init-paranp
<param nane>al | owScri pt| et s</ par am nane>
<par am val ue>f al se</ par am val ue>
</init-paranp
<init-paranp
<par am name>al | owExpr essi ons</ par am name>
<par am val ue>t r ue</ par am val ue>
</init-paranp
<init-paranp
<par am name>al | owRTEXxpr essi ons</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paranmp
</val i dat or >

Example 2

This is an example of a TLV class (Per mi t t edTagLi bsTLV) that allows tag library
usage only as specified in its initialization parameter. The use of the tag library with
which the TLV class is associated is allowed implicitly. In addition, the TLV class
allows the libraries specified in a list, with entries separated by white space, in its
initialization parameter setting. In this case, it allows only the cor e, xm , f nt , and
sql JSTL libraries.

<val i dat or >
<val i dat or - cl ass>
javax.servlet.jsp.jstl.tlv.PermttedTaglibsTLV
</validator-class>
<init-paranp
<param nane>perm ttedTagl i bs</ par am name>
<param val ue>
http://java.sun.conjstl/core
http://java.sun.comjstl/xm
http://java.sun.conm jstl/fnt
http://java.sun.conjstl/sql
</ param val ue>
</init-paranp
</val i dat or >

JSP Tag Libraries 8-37

Validation and Tag-Library-Validator Classes

Key TLV-Related Classes and the validation() Method

As the introduction mentions, a TLV class is a subclass of the
j avax. servl et.jsp.tagext. TagLi braryVal i dat or class.

The following related classes are also in the j avax. servl et . j sp. t agext package:

« PageDat a: An instance of this class is generated by the JSP translator and
contains information corresponding to the XML view of the page being translated.

« ValidationMessage: An instance of this class contains an error message from a
TLV instance, being returned through the TLV val i dat e() method.

Here is the key method of a TLV class:

« ValidationMessage[] validate
(String prefix, String uri, PageData page)

The JSP container calls this method each time it encounters at agl i b directive
that points to a TLD file that has a <val i dat or > element. The method takes as
input the tag library prefix, the TLD URI, and the PageDat a object (XML view) of
the page. If errors are encountered during validation, the val i dat e() method
returns an array of validation messages. Because the OC4J JSP container supports
the optional j sp: i d attribute, the j sp: i d values are included in the validation
messages.

See the next section, "TLV Processing"”, for more information.

TLV Processing

As eacht agl i b directive is encountered in a JSP page during translation, the JSP
container searches the associated TLD file for a <val i dat or > element that specifies a
TLV class. If one is found, the container executes the following steps during the
translation. See the preceding section, "Key TLV-Related Classes and the validation()
Method", for background information about classes and methods discussed here.

1. The TLV class is instantiated, with initialization parameter settings according to
any <i ni t - par an® subelements of the <val i dat or > element.

2. The XML view of the JSP page is exposed to the TLV instance. (See "Details of the
JSP XML View" on page 5-11.)

3. Theval i dat e() method of the TLV instance is called to validate the JSP page.
(See the next section, "Validation Mechanisms".) If this method encounters any
errors, it returns an array of Val i dat i onMessage instances. If there are no
errors, the method can return nul | or an empty Val i dat i onMessage[] array.

Note: The OC4JJSP container implements an optional JSP 1.2
feature for improved reporting of validation errors—the j sp: i d
attribute. See "The jsp:id Attribute for Error Reporting During
Validation" on page 5-12 for information.

1. Each time a custom tag belonging to this library (the library associated with the
TLV class) is encountered, it is checked for a tag-extra-info class. If one is specified,
then it is instantiated by the JSP container and itsi sVal i d() method is called to
validate the attributes of the tag. The i sVal i d() method returnst r ue if this
validation is successful, or f al se if not.

8-38 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Tag Library Event Listeners

Validation Mechanisms

The XML view of a JSP page cannot generally be validated against a DTD and does not
include a DOCTYPE statement. There are various namespace-aware mechanisms that
you can use for validation. One mechanism in particular is the W3C XML Schema
language. Refer to the W3C Web site for information:

http://ww. w3. org/ XM/

More elementary mechanisms might be suitable as well, such as simply verifying that
only a certain set of elements are used in a JSP page, or that a certain set of elements
are not used in a page.

Tag Library Event Listeners
The servlet specification describes the use of the following types of event listeners:

« Servlet context listener, implementing interface
j avax. servl et. Servl et Cont ext Li st ener

« Servlet context attribute listener, implementing interface
javax.servl et. Servl et Context Attri but eLi st ener

« HTTP session listener, implementing interface
javax.servl et. http. H t pSessi onLi st ener

« HTTP session attribute listener, implementing interface
javax.servlet. http. Ht pSessi onAttri buteLi st ener

In servlet 2.3 functionality, you can specify event listeners in the application web. xm
file. As a result of this, they are registered with the servlet container and notified of
relevant state changes. Servlet context listeners, for example, are notified of changes in
the application Ser vl et Cont ext object, such as application startup or shutdown. See
the Oracle Application Server Containers for J2EE Servlet Developer’s Guide for additional
information about the event listeners.

The JSP 1.2 specification, for convenience in packaging and deploying tag libraries,
introduced support for <l i st ener > elements in TLD files. You can use these
elements to specify event listeners, as an alternative to specifying them in the

web. xm file. The following sections describe these features:

« TLD listener Element
« Activation of Tag Library Event Listeners

« Access of TLD Files for Event Listener Information

TLD listener Element

Ina TLD file, each <l i st ener > element is at the top level underneath the root

<t agl i b>element. The <l i st ener > element has one subelement, the required

<l i st ener - cl ass> element, which specifies the listener class to be instantiated. This
would be a class that implements the Ser vl et Cont ext Li st ener,

Servl et Context Attri but elLi st ener, Htt pSessi onLi st ener, or

Ht t pSessi onAtt ri but eLi st ener interface.

Following is an example:

<taglib>

<l'istener>
<l'i st ener - cl ass>nypkg. MySer vl et Cont ext Li st ener</ | i st ener - cl ass>

JSP Tag Libraries 8-39

End-to-End Custom Tag Examples

</listener>
</taglib>

Activation of Tag Library Event Listeners

When an application starts, the servlet container will make a call to the JSP container
to perform the following:

1. Find and access TLD files.
2. Read TLD files to find their <l i st ener > elements.
3. Instantiate and register the listeners.

This is a convenient way to manage application-level and session-level resources that
are associated with the usage of a particular tag library. The functionality is essentially
the same as for servlet context listeners specified in the web. xmi file.

Notes:

« Forevent listeners specified in TLD files, the order in which the
listeners are registered is undefined, but they are all registered
prior to application startup and they are all registered after
listeners that are specified in the web. xm file.

« IfaTLD file is present within the WAR file structure, it will be
scanned for listeners, and any listeners will be registered, even
if the associated tag library is not actually used in the
application.

Access of TLD Files for Event Listener Information

You must take certain standard measures to ensure that the JSP container can access
TLD files to find their <l i st ener > elements. For general information about TLD file
location, accessibility, and packaging, see "Tag Library and TLD Setup and Access" on
page 8-11. That section includes information about OC4J well-known tag library
locations.

Also, generally speaking, for any TLD in the well-known tag library directory, you
must specify the tag library in a <t agl i b> element in the application web. xni file if
you want the application to activate any listeners specified in the TLD file. Without
this step, TLD files in the shared directory are not accessed to search for their

<l i st ener > elements. This is to protect against needless performance impact for any
application that does not use a tag library that happens to be in the shared directory.
The <t agl i b> element in web. xm is not required, however, if you are using
persistent TLD caching (described in "Oracle Extensions for Tag Library Sharing and
Persistent TLD Caching" on page 8-15).

End-to-End Custom Tag Examples

The following sections provide complete examples of custom tag usage, including
sample JSP pages, tag handler classes, and tag library descriptor files:

« Example: Using the IterationTag Interface

« Example: Using the IterationTag Interface and a Tag-Extra-Info Class

8-40 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

End-to-End Custom Tag Examples

Note: These examples are for illustrative purposes only and do
not necessarily reflect the most realistic or efficient approaches.

Example: Using the IterationTag Interface

This sample shows the use of a custom tag, nmyl t er at or , to make the current item in
a collection available as a scripting variable. It defines a scripting variable through a
<vari abl e>elementin the TLD file.

For complete information about this example, including unpacking and deploying it,
refer to the following Oracle Technology Network Web site:

http://ww. oracl e. conft echnol ogy/tech/javal/ oc4j/ htdocs/ howto-jsp-iterationtag. htnl

(You must register for membership, but registration is free of charge.)

Sample JSP Page: exampleiterator.jsp
The following JSP page uses the nyl t er at or tag:

<%@ page content Type="text/htn ; charset=w ndows- 1252" %
<HTM.>

<HEAD>

<TI TLE>

JSP 1.2 IterationTag Sanple

</ TI TLE>

</ HEAD>

<Y@taglib uri="/WEB-INF/ exanpleiterator.tld" prefix="it"%
<BCDY>

<%java.util.Vector vector = new java.util.Vector();
vector. addEl enent ("One");
vector. addEl ement (" Two");
vect or. addEl ement (" Three");
vector. addE ement (" Four");
vector. addEl ement ("Fi ve");
%
Col lection to Iterate over is <%vector% <p>

Iterating ...

<it:nylterator collection="<% vector%" >
Item <% it ente</ B>

<lit:nylterator>
</ p>
</ BODY>
</ HTM.>

Sample Tag Handler Class: MylteratorTag.java

In this sample tag handler class, Myl t er at or Tag, the doSt art Tag() method checks
whether the collection is null. If not, it retrieves the collection object. If the iterator
contains at least one element, then doSt art Tag() makes the first item in the
collection available as a page-scope object and returns EVAL_BODY_| NCLUDE. This
alerts the JSP container to add the contents of the tag body to the response object and
to call the doAf t er Body() method.

This class extends the tag handler support class TagSuppor t , which implements the
It erationTag interface.

package oracle.taglib;

JSP Tag Libraries 8-41

End-to-End Custom Tag Examples

inport java.util.*;
inport javax.servlet.jsp.*;
inport javax.servlet.jsp.tagext.*;

/**

* MylteratorTag extends TagSupport. The TagSupport class in JSP 1.2 inplenments
the IterationTag
*/

public class MylteratorTag extends TagSupport
{

private lterator iterator;
private Collection _collection;

public void setCol | ection(Collection collection)

{
}

this. _collection = collection;

public int doStartTag() throws JspTagException
{
if (_collection == null)

{

t hrow new JspTagException("No col | ection with name
+ _collection
+ " found");

}

iterator = _collection.iterator();
if (iterator.hasNext())

{
pageContext.setAttribute("itent, iterator.next());
return EVAL_BODY_| NCLUDE;

}

el se

{

}
}

public int doAfterBody()
{

return SKI P_BODY;

if (iterator.hasNext())

{
pageContext.setAttribute("itenl, iterator.next());

return EVAL_BODY_AGAI N,
}

el se

{
return SKI P_BODY;

}

8-42 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

End-to-End Custom Tag Examples

Sample Tag Library Descriptor File: exampleiterator.tld

Here is a sample TLD file to define the myl t er at or tag. This example takes
advantage of the JSP 1.2 feature allowing definition of scripting variables directly in
TLD files through <var i abl e> elements. This TLD file defines the scripting variable
i temoftypejava. |l ang. Obj ect . (InalJSP 1.1 environment, this would require use
of a tag-extra-info class.) The variable is to be newly declared.

The nyl t er at or tag has an attribute col | ect i on to specify the collection. This
attribute is required and can be set as a runtime expression. The tag also has a
<body- cont ent > value of JSP, which means the JSP translator should process and
translate the body code.

For JSP 1.2 syntax, be sure to specify the JSP 1.2 tag library DTD path.

<?xm version = '1.0" encoding = 'w ndows-1252" ?>

<IDOCTYPE taglib
PUBLIC "-//Sun M crosystens, Inc.//DTD JSP Tag Library 1.2//EN'
“http://java.sun.conf dtd/web-jsptaglibrary_1_2.dtd">

<taglib>
<tlib-version>1. 0</tlib-version>
<j sp-versi on>1. 2</j sp- ver si on>
<short - nane>i t er at e</ short - nane>
<description>This tag lib inplenents new JSP 1.2 IterationTag
i nterface</ description>
<t ag>
<nane>nyl t er at or </ name>
<tag-cl ass>oracle.taglib. MIteratorTag</tag-class>
<body- cont ent >JSP</ body- cont ent >
<attribute>
<name>col | ecti on</ nane>
<requi red>t rue</requi red>
<rtexprval ue>true</rtexprval ue>
</attribute>
<vari abl e>
<name- gi ven>i t enx/ nane- gi ven>
<vari abl e- cl ass>j ava. | ang. Obj ect </ vari abl e- cl ass>
<decl ar e>t rue</ decl ar e>
<I-- default scope: nested -->
<description>Scripting Variable item</description>
</vari abl e>
</tag>
</taglib>

Example: Using the IterationTag Interface and a Tag-Extra-Info Class

This section provides an end-to-end example of the definition and use of a custom tag,
| oop, that is used to iterate through the tag body a specified number of times. It
defines a scripting variable through a tag-extra-info class.

This example includes the following:

« JSP source code for a page that uses the tag
= Source code for the tag handler class

= Source code for the tag-extra-info class

« TLDfile

JSP Tag Libraries 8-43

End-to-End Custom Tag Examples

Note: Sample code here uses extended datatypes in the

oracl e.jsp.jm package. For information, refer to the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Sample JSP Page: exampletag.jsp
Following is a sample JSP page, exanpl et ag. j sp, that uses the | oop tag, specifying
that the outer loop is to be executed five times and the inner loop three times:

<v@taglib uri="/WEB-|NF/ exanpl etag.tld" prefix="foo" %
<% int nunk5; %

<pre>

<foo:10op index="i" count="<%nunte">

bodylhere: i expr: <%i%

i property: <jsp:getProperty name="i" property="value" />

<foo:lo0op index="j" count="3">
body2here: | expr: <%j %
i property: <jsp:getProperty name="i" property="value" />
j property: <jsp:getProperty name="j" property="val ue" />
</foo: | oop>

</ foo: | oop>

</ pre>

Sample Tag Handler Class: ExampleLoopTag.java

This section provides source code for the tag handler class, Exanpl eLoopTag. Note
the following:

« Thetag handler class extends the standard TagSupport class to implement the
| terationTag interface.

« ThedoStart Tag() method returns the integer constant EVAL_BODY_| NCLUDE
so that the tag body (essentially, the loop) is processed.

« After each pass through the loop, the doAf t er Body() method increments the
counter. It returns EVAL_BODY_AGAI Nif there are more iterations left, and
SKI P_BODY after the last iteration.

« This class does not define adoEndTag() method. The underlying
implementation from TagSupport is used.

Here is the code:

package exanpl es;

inport javax.servlet.jsp.*;

inport javax.servlet.jsp.tagext.*;
inport java.util.Hashtable;

inport java.io.Witer;

inport java.io.lCOException;

inmport oracle.jsp.jm.Jn Nunber;

public class Exanpl eLoopTag
ext ends TagSupport
{

String index;
int count;
int i;

8-44 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

End-to-End Custom Tag Examples

Sample Tag-Extra-Info Class: ExampleLoopTagTEl.java

Jm Nunber i b;

public Exanpl eLoopTag() {
resetAttr();

}

public void release() {
resetAttr();

}

private void resetAttr() {
i ndex=nul | ;
count =0;
i =0;
i b=nul | ;

}

public void setlndex(String index)

{

thi s. i ndex=i ndex;

public void setCount(String count)
{

this. count =l nteger. parsel nt(count);

}

public int doStartTag() throws JspException {
i b=new Jm Nunber ();
pageCont ext . set Attri but e(index, ib);
i+
i b.setValue(i);
return EVAL_BCDY_I NCLUDE;

}

public int doAfterBody() throws JspException {
if (i >= count) {
return SKIP_BODY;
} else
pageCont ext.setAttribute(index, ib);
i ++;
ib.setValue(i);
return EVAL_BCDY_AGAI N,

This section provides the source code for the tag-extra-info class that describes the
scripting variable used by the | oop tag.

A Var i abl el nf o instance is constructed that specifies the following for the variable:

The variable name is according to the i ndex attribute.

The variable is of the type oracl e. j sp. j m . Jml Nunber, which you must

specify as a fully qualified class name.

The variable is to be newly declared (by the JSP translator).

The variable scope is NESTED.

JSP Tag Libraries 8-45

End-to-End Custom Tag Examples

In addition, the tag-extra-info class has ani sVal i d() method that determines
whether the count attribute is valid. It must be an integer.

package exanpl es;
inport javax.servlet.jsp.tagext.*;
public class Exanpl eLoopTagTEl extends TagExtralnfo {

public Variablelnfo[] getVariablelnfo(TagData data) {
return new Variabl el nfo[]

{
new Vari abl el nfo(data.getAttributeString("index"),
"oracle.jsp.jm .Jm Nunber"”,
true,
Vari abl el nf 0. NESTED)
b

}

public bool ean isValid(TagData data)

{
String countStr=data.get AttributeString("count");

if (countStr!=null) // for request-tine case

{
try {
int count=Integer.parselnt(countStr);
}
cat ch (Nunber For mat Exception e)
{
return fal se;
}
}
return true;

Sample Tag Library Descriptor File: exampletag.tld

This section presents the TLD file for the tag library. In this example, the library
consists of only one tag, | oop.

This TLD file follows JSP 1.2 syntax, specifying the following for the | oop tag:
« Thetag handler class is exanpl es. Exanpl eLoopTag.
« The tag-extra-info class is exanpl es. Exanpl eLoopTagTEl .

« Thebody-cont ent specification is JSP. This means that the JSP translator
should process and translate the body code.

= There are attributes i ndex and count , both required. The count attribute can be
a request-time JSP expression.

Here is the TLD file:

<?xm version = '1.0'" encoding = '|SO 8859-1" ?>
<! DOCTYPE taglib PUBLIC "-//Sun M crosystens, Inc.//DTD JSP Tag Library 1.2//EN'
“http://java. sun.com dtd/ web-jsptaglibrary_1 2.dtd">
<taglib>
<tlib-version>1.0</tlib-version>
<j sp-version>1. 2</j sp-versi on>
<short - nane>si npl e</ short - nane>
<description>
A sinple tab library for the exanples

8-46 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Compile-Time Tags

</ description>
<l-- exanple tag -->
<l-- for loop -->
<t ag>
<nane>| oop</ nane>
<t ag- cl ass>exanpl es. Exanpl eLoopTag</ t ag- cl ass>
<t ei - cl ass>exanpl es. Exanpl eLoopTagTEl </t ei - cl ass>
<body- cont ent >JSP</ body- cont ent >
<descri ption>for |oop</description>
<attribute>
<nane>i ndex</ nane>
<required>true</required>
<lattribute>
<attribute>
<name>count </ name>
<required>true</required>
<rtexprval ue>true</rtexprval ue>
</attribute>
</tag>
</taglib>

Compile-Time Tags

Standard tag libraries, as described in the JSP specification, use a runtime support
mechanism. They are typically portable, not requiring any particular JSP container.

It is also possible, however, for vendors to support custom tags through
vendor-specific functionality in their JSP translators. Such tags are not portable to
other containers.

It is generally advisable to develop standard, portable tags that use the runtime
mechanism, but there might be scenarios where tags using a compile-time mechanism
are appropriate, as this section discusses.

General Compile-Time Versus Runtime Considerations

The JSP specification describes a runtime support mechanism for custom tag libraries.
This mechanism, using an XML-style TLD file to specify the tags, is covered earlier in
this chapter. Creating and using a tag library that adheres to this model generally
assures that the library will be portable to any standard JSP environment.

There are, however, reasons to consider compile-time implementations:
« A compile-time implementation can produce more efficient code.

« A compile-time implementation allows the developer to catch errors during
translation and compilation, instead of the user seeing them at runtime.

JSP Compile-Time Versus Runtime JML Library

OC4J provides a portable tag library called the JSP Markup Language (JML) library.
This library uses the standard JSP 1.2 runtime mechanism.

However, the JML tags are also supported through a compile-time mechanism. This is
because the tags were first introduced with JSP implementations that preceded the JSP
1.1 specification, which is when the runtime mechanism was introduced. The
compile-time tags are still supported for backward compatibility.

The general advantages and disadvantages of compile-time implementations apply to
the Oracle JML tag library as well. There might be situations where it is advantageous

JSP Tag Libraries 8-47

Compile-Time Tags

to use the compile-time JML implementation. There are also a few additional tags in
that implementation, and some additional expression syntax that is supported.

The Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference
describes both the runtime version and the compile-time version of the JML library.

8-48 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

9

JSP Globalization Support

The JSP container in OC4J provides standard globalization support (also known as
National Language Support, or NLS) according to the JSP specification, and also offers
extended support for servlet environments that do not support multibyte parameter
encoding.

Standard Java support for localized content depends on the use of Unicode for
uniform internal representation of text. Unicode is used as the base character set for
conversion to alternative character sets. (The Unicode version depends on the JDK
version. You can find the Unicode version through the Sun Microsystems Javadoc for
thej ava. | ang. Char act er class.)

This chapter describes key aspects of JSP support for globalization and
internationalization. The following sections are included:

« Content Type Settings
« JSP Support for Multibyte Parameter Encoding

Note: For detailed information about Oracle Application Server
Globalization Support, see the Oracle Application Server Globalization
Guide.

Content Type Settings

The following sections cover standard ways to statically or dynamically specify the
content type for a JSP page. There is also discussion of an Oracle extension method
that enables you to specify a non-IANA (Internet Assigned Numbers Authority)
character set for the JSP writer object.

« Content Type Settings in the page Directive
« Dynamic Content Type Settings
» Oracle Extension for the Character Set of the JSP Writer Object

Content Type Settings in the page Directive

The page directive has two attributes, pageEncodi ng and cont ent Type, that affect
the character encoding of the JSP page source (during translation) or response (during
runtime). The cont ent Type attribute also affects the MIME type of the response. The
function of each attribute is as follows:

= You can use cont ent Type to set the character encoding of the page source and
response, and the MIME type of the response.

JSP Globalization Support 9-1

Content Type Settings

= You can use pageEncodi ng to set the character encoding of the page source. The
main purpose of this attribute, which was introduced in the JSP 1.2 specification, is
to allow you to set a page source character encoding that is different than the
response character encoding. However, this setting also acts as a default for the
response character encoding if there is no cont ent Type attribute that specifies a
character set.

There is more information about the relationship between cont ent Type and
pageEncodi ng later in this section.

Use the following syntax for cont ent Type:

content Type="TYPE; charset=character_set"

Alternatively, to set the MIME type while using the default character set:
cont ent Type="TYPE"

Use the following syntax for pageEncodi ng:

pageEncodi ng="charact er _set"

Use the following syntax to set everything:

<Y%@page ... contentType="TYPE; charset=character_set"
pageEncodi ng="character_set" ... %

TYPE is an IANA MIME type; char act er _set isan IANA character set. When
specifying a character set through the cont ent Ty pe attribute, the space after the
semicolon is optional.

Here are some examples of cont ent Type and pageEncodi ng settings:

<%@ page | anguage="j ava" content Type="text/htm" %

or:

<%@ page | anguage="j ava" content Type="text/htn; charset=l SO 8859-1" %

or:

<%@ page | anguage="java" content Type="text/htn; charset=l SO 8859-1"
pageEncodi ng="US-ASCI | " %

Without any page directive settings, default settings are as follows:

« Thedefault MIME type ist ext / ht m for traditional JSP pages; itist ext / xm for
JSP XML documents.

« The default for the page source character encoding (for translation) is
| SO 8859- 1 (also known as Latin-1) for traditional JSP pages; it is UTF- 8 or
UTF- 16 for JSP XML documents.

« The default for the response character encoding is | SO 8859- 1 for traditional JSP
pages; it is UTF- 8 or UTF- 16 for JSP XML documents.

The determination of UTF- 8 versus UTF- 16 is according to "Autodetection of
Character Encodings"” in the XML specification, at the following location:

http://ww. wW3. org/ TR/ REG xm . ht m

Be aware, however, that there is a relationship between pageEncodi ng and
cont ent Type regarding character encodings, as documented in Table 9-1.

9-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

Content Type Settings

Table 9-1 Effect of pageEncoding and contentType on Character Encodings

pageEncoding contentType Page Source Response Encoding

Status Status Encoding Status Status

Specified Specified According to According to
pageEncodi ng cont ent Type

Specified Not specified According to According to
pageEncodi ng pageEncodi ng

Not specified Specified According to According to
cont ent Type cont ent Type

Not specified Not specified According to default According to default

Be aware of the following important usage notes.

A page directive that sets cont ent Type or pageEncodi ng should appear as
early as possible in the JSP page.

When a page is a JSP XML document, any pageEncodi ng setting is ignored. The
JSP container will instead use the XML encoding declaration of the document.
Consider the following example:

<?xm version="1.0" encodi ng="EUG JP" ?>

<jsp:root xmns:jsp="http://java.sun.com JSP/ Page" version="1.2">
<jsp:directive.page content Type="text/htm ;charset=Shift _Jis" />
<jsp:directive. page pageEncodi ng="UTF-8" />

The effective page encoding would be EUC- JP, not UTF- 8.

You should use pageEncodi ng only for pages where the byte sequence
represents legal characters in the target character set.

You should use cont ent Type only for pages or response output where the byte
sequence represents legal characters in the target character set.

The target character set of the response output (as specified by cont ent Type, for
example) should be a superset of the character set of the page source. For example,
UTF- 8 is the superset of Bi g5, but | SO 8859- 1 is not.

The parameters of a page directive are static. If a page discovers during execution
that a different character set specification is necessary for the response, it can do
one of the following:

— Use the servlet response object API to set the content type during execution, as
described in "Dynamic Content Type Settings" on page 9-4.

or:
— Forward the request to another JSP page or to a servlet.

A traditional JSP page source (not a JSP XML document) written in a character set
other than | SO 8859- 1 must set the appropriate character set in a page directive
(through the cont ent Type or pageEncodi ng attribute). The character set for the
page encoding cannot be set dynamically, because the JSP container has to be
aware of the setting during translation.

This manual, for simplicity, assumes the typical case that the page text, request
parameters, and response parameters all use the same encoding (although other
scenarios are technically possible). Request parameter encoding is controlled by
the browser, although Netscape and Internet Explorer browsers follow the setting
you specify for the response parameters.

JSP Globalization Support 9-3

Content Type Settings

The IANA maintains a registry of MIME types at the following site:

ftp://wwmv isi.edu/in-notes/ianalassignments/ media-types/ nedi a-types
The IANA maintains a registry of character encodings at the following site. Use the
indicated "preferred MIME name" if one is listed:

http://wwv. i ana. or g/ assi gnnment s/ char acter-sets

You should use only character sets from the IANA list, except for any additional

Oracle extensions as described in "Oracle Extension for the Character Set of the JSP
Writer Object" on page 9-5.

Dynamic Content Type Settings

For situations where the appropriate content type for the HTTP response is not known
until runtime, you can set it dynamically in the JSP page. The standard

j avax. servl et . Servl et Response interface specifies the following method for
this purpose:

voi d set Content Type(j ava.lang. String contenttype)

Important: To use dynamic content type settings in an OC4J
environment, you must enable the JSP stati c_text _in_chars
configuration parameter. See "JSP Configuration Parameters" on
page 3-11 for a description.

The implicitr esponse object of a JSP page is a
javax.servlet. http. H t pServl et Response instance, where the
Ht t pSer vl et Response interface extends the Ser vl et Response interface.

The set Cont ent Type() method input, like the cont ent Type setting in a page
directive, can include a MIME type only, or both a character set and a MIME type. For
example:

response. set Content Type("text/htm ; charset=UTF-8");

or:

response. set Content Type("text/htm");

As with a page directive, the default MIME type ist ext / ht m for traditional JSP
pages ort ext / xm for JSP XML documents, and the default character encoding is
| SO 8859- 1.

Set the content type as early as possible in the page, before writing any output to the
JspW it er object.

The set Cont ent Type() method has no effect on interpreting the text of the JSP page
during translation. If a particular character set is required during translation, that must
be specified in a page directive, as described in "Content Type Settings in the page
Directive" on page 9-1.

9-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

JSP Support for Multibyte Parameter Encoding

Note: Inservlet 2.2 and higher environments, such as OC4J, the
response object has a set Local e() method that takes a
java. util.Local e object as input and sets the character set
based on the specified locale. For example, the following method
call results in a character set of Shi ft_JI S

response. set Local e(new Local e("ja", "JP"));

For dynamic specification of the character set, the most recent call
to set Cont ent Type() orset Local e() takes precedence.

Oracle Extension for the Character Set of the JSP Writer Object

In standard usage, the character set of the content type of the r esponse object, as
determined by the page directive cont ent Type parameter or the

response. set Cont ent Type() method, automatically becomes the character set of
the JSP writer object as well. The JSP writer object is a

javax.servl et.jsp. JspWi ter instance.

There are some character sets, however, that are not recognized by IANA and therefore
cannot be used in a standard content type setting. For this reason, OC4J provides the
static set Wi t er Encodi ng() method of theoracl e.jsp.util.PublicUtil
class:

static void setWiterEncodi ng(JspWiter out, String encoding)

You can use this method to specify the character set of the JSP writer directly,
overriding the character set of the r esponse object. The following example uses Bi g5
as the character set of the content type, but specifies M5950, a non-IANA Hong Kong
dialect of Bi g5, as the character set of the JSP writer:

<%@ page content Type="text/htm; charset=Bi g5" %
<%oracle.jsp.util.PublicWil.setWiterEncoding(out, "M950"); %

Note: Use the set Wit er Encodi ng() method as early as
possible in the JSP page.

JSP Support for Multibyte Parameter Encoding

The servlet specification has a method, set Char act er Encodi ng(), in the

j avax. servl et. Servl et Request interface. This method is useful in case the
default encoding of the servlet container is not suitable for multibyte request
parameters and bean property settings, such as for a get Par anet er () call in Java
codeoraj sp: set Property tag to set a bean property in JSP code.

The set Char act er Encodi ng() method and equivalent Oracle extensions affect
parameter names and values, specifically:

« Request object get Par anet er () method output

« Request object get Par anet er Val ues() method output
« Request object get Par anet er Nanmes() method output
= | sp:setProperty settings for bean property values

These topics are covered in the following sections:

JSP Globalization Support 9-5

JSP Support for Multibyte Parameter Encoding

» Standard setCharacterEncoding() Method

= Overview of Oracle Extensions for Older Servlet Environments

Standard setCharacterEncoding() Method

Beginning with the servlet 2.3 specification, the set Char act er Encodi ng() method
is specified in the j avax. servl et . Ser vl et Request interface as the standard
mechanism for specifying a nondefault character encoding for reading HTTP requests.
The signature of this method is as follows:

voi d set Charact er Encodi ng(j ava. | ang. String enc)
throws java.io. UnsupportedEncodi ngException

The enc parameter is a string specifying the name of the desired character encoding
and overrides the default character encoding. Call this method before reading request
parameters or reading input through the get Reader () method, which is also
specified in the Ser vl et Request interface.

There is also a corresponding getter method:

String get CharacterEncodi ng()

Overview of Oracle Extensions for Older Servlet Environments

In pre-2.3 servlet environments, the set Char act er Encodi ng() method is not
available. For such environments, Oracle provides two alternative mechanisms:

« oracle.jsp.util.PublicUtil.setRegCharacterEncoding() static
method (preferred)

« transl ate_par ans configuration parameter (or equivalent code)

9-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

A

Servlet and JSP Technical Background

This appendix provides technical background on servlets and JavaServer Pages.
Although this document is written for users who are well grounded in serviet
technology, the servlet information here might be a useful refresher for some.

Standard JavaServer Pages interfaces, implemented automatically by generated JSP
page implementation classes, are briefly discussed as well. Most readers, however, will
not require this information.

The following sections are included:

» Background on Servlets

« Web Application Hierarchy

» Standard JSP Interfaces and Methods

Note: For more information about servlets and the OC4J servlet
container, refer to the Oracle Application Server Containers for J2EE
Servlet Developer’s Guide.

Background on Servlets

Because JSP pages are translated into Java servlets, a brief review of servlet technology
might be helpful. Refer to the Sun Microsystems Java Servlet Specification for more
information about the concepts discussed here.

For information about the methods this section discusses, refer to Sun Microsystems
Javadoc at the following location:

http://java. sun. coni product s/ servl et/ 2. 3/javadoc/i ndex. htm

Review of Servlet Technology

In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic HTML pages. A servlet is a Java program that
runs in a Web server, as opposed to an applet, which is a Java program that runs in a
client browser. The servlet takes an HTTP request from a browser, generates dynamic
content (such as by querying a database), and provides an HTTP response back to the
browser.

Prior to servlets, CGl (Common Gateway Interface) technology was used for dynamic
content, with CGI programs being written in languages such as Perl and being called
by a Web application through the Web server. CGI ultimately proved less than ideal,
however, due to its architecture and scalability limitations.

Servlet and JSP Technical Background A-1

Background on Servlets

Servlet technology, in addition to improved scalability, offers the well-known Java
advantages of object orientation, platform independence, security, and robustness.
Servlets can use all standard Java APIls, including the JDBC API (for Java database
connectivity, of particular interest to database programmers).

In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications such as those accessing a database. One advantage is that
a servlet runs in the server, which is usually a robust machine with many resources,
minimizing use of client resources. An applet, by contrast, is downloaded into the
client browser and runs there. Another advantage is more direct access to the data. The
Web server in which a servlet is running is on the same side of the network firewall as
the data being accessed. An applet running on a client machine, outside the firewall,
requires special measures (such as signed applets) to allow the applet to access any
server other than the one from which it was downloaded.

The Servlet Interface

A Java servlet, by definition, implements the standard j avax. servl et . Servl et
interface. This interface specifies methods to initialize a servlet, process requests, get
the configuration and other basic information of a servlet, and terminate a servlet
instance.

For Web applications, you can implement the Ser vl et interface by extending the
standard j avax. servl et. http. Ht pServl et abstract class. The Ht t pSer vl et
class includes the following methods:

« init(...)anddestroy(...):toinitialize and terminate the servlet,
respectively

« doGet(...):for HTTP GET requests

« doPost(...):for HTTP POST requests

« doPut(...):for HTTP PUT requests

« doDelete(...):for HTTP DELETE requests

« service(...):toreceive HTTP requests and, by default, dispatch them to the
appropriate doXXX() methods

« getServletlnfo(...):foruseby the servlet to provide information about
itself

A servlet class that extends Ht t pSer vl et must implement some of these methods, as
appropriate. Each method takes as input a standard

j avax.servlet.http. Ht pServl et Request instance and a standard
javax.servlet.http. Ht pServl et Response instance.

The Ht t pSer vl et Request instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The Ht t pSer vl et Response instance provides HTTP-specific functionality
in sending the response, such as specifying the content length and MIME type and
providing the output stream.

Servlet Containers

Servlet containers, sometimes referred to as servlet engines, execute and manage servlets.
A servlet container is usually written in Java and is either part of a Web server (if the
Web server is also written in Java) or otherwise associated with and used by a Web
server.

A-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Background on Servlets

When a servlet is called (such as when a servlet is specified by URL), the Web server
passes the HTTP request to the servlet container. The container, in turn, passes the
request to the servlet. In the course of managing a servlet, a simple container performs
the following:

« ltcreates an instance of the servlet and calls itsi ni t () method to initialize it.
« ltcallsthe servi ce() method of the servlet.

« Itcallsthe destroy() method of the servlet to discard it when appropriate, so
that it can be garbage-collected.

For performance reasons, it is typical for a servlet container to keep a servlet
instance in memory for reuse, rather than destroying it each time it has finished its
task. It would be destroyed only for infrequent events, such as Web server
shutdown.

If there is an additional servlet request while a servlet is already running, servlet
container behavior depends on whether the servlet uses a single-thread model or a
multiple-thread model. In a single-thread case, the servlet container prevents multiple
simultaneous ser vi ce() calls from being dispatched to a single servlet instance.
Multiple separate servlet instances are spawned instead. In a multiple-thread model,
the container can make multiple simultaneous ser vi ce() calls to a single servlet
instance, using a separate thread for each call, but the servlet developer is responsible
for managing synchronization.

Servlet Sessions

Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful way.
Servlet session-tracking is similar in nature to HTTP session-tracking in previous
technologies, such as CGI.

HttpSession Interface

In the standard servlet API, each user is represented by an instance of a class that
implements the standard j avax. servl et. http. Ht t pSessi on interface. Servlets
can set and get information about the session in this Ht t pSessi on object, which must
be of application-level scope.

A servlet uses the get Sessi on() method of an Ht t pSer vl et Request object
(which represents an HTTP request) to retrieve or create an Ht t pSessi on object for
the user. This method takes a boolean argument to specify whether a new session
object should be created for the user if one does not already exist.

The Ht t pSessi on interface specifies the following methods to get and set session
information:

« public void setAttribute(String nane, Object val ue)
This method binds the specified object to the session, under the specified hame.
« public Object getAttribute(String nane)

This method retrieves the object that is bound to the session under the specified
name (or nul | if there is no match).

Note: Older servlet implementations use put Val ue() and
get Val ue() instead of set Attri but e() and
get Attri but e(), with the same signatures.

Servlet and JSP Technical Background A-3

Background on Servlets

Depending on the implementation of the servlet container and the servlet itself,
sessions can expire automatically after a set amount of time or can be invalidated
explicitly by the servlet. Servlets can manage session lifecycle with the following
methods, specified by the Ht t pSessi on interface:

= public boolean invalidate()

This method immediately invalidates the session and unbinds any objects from it.
« public bool ean set Maxl nactivelnterval (int interval)

This method sets a timeout interval, in seconds, as an integer.
« public bool ean isNew()

This method returns t r ue within the request that created the session; it returns
f al se otherwise.

« public boolean getCreationTi me()

This method returns the time when the session object was created, measured in
milliseconds since midnight, January 1, 1970.

« public boolean getlLast AccessedTi ne()

This method returns the time of the last request associated with the client,
measured in milliseconds since midnight, January 1, 1970.

Session Tracking

The Ht t pSessi on interface supports alternative mechanisms for tracking sessions.
Each involves some way to assign a session ID. A session ID is an intermediate handle
that is assigned and used by the servlet container. Multiple sessions by the same user
can share the same session ID, if appropriate.

The following session-tracking mechanisms are supported:
= Cookies

The servlet container sends a cookie to the client, which returns the cookie to the
server upon each HTTP request. This associates the request with the session 1D
indicated by the cookie. This is the most frequently used mechanism and is
supported by any servlet container that adheres to the servlet 2.2 or higher
specification.

« URL rewriting

The servlet container appends a session ID to the URL path, as in the following
example:

http://host: port/nyapp/index. htm ?j sessi oni d=6789

This is the most frequently used mechanism where clients do not accept cookies.

Servlet Contexts

A servlet context is used to maintain state information for all instances of a Web
application within any single JVM (that is, for all servlet and JSP page instances that
are part of the Web application). This is similar to the way a session maintains state
information for a single client on the server; however, a servlet context is not specific to
any single user and can handle multiple clients. There is usually one servlet context for
each Web application running within a given JVM. You can think of a servlet context
as an application container.

A-4 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Background on Servlets

Any servlet context is an instance of a class that implements the standard
j avax. servl et. Servl et Cont ext interface, with such a class being provided with
any Web server that supports servlets.

A Ser vl et Cont ext object provides information about the servlet environment (such
as name of the server) and allows sharing of resources between servlets in the group,
within any single JVM. (For servlet containers supporting multiple simultaneous
JVMs, implementation of resource-sharing varies.)

A servlet context maintains the session objects of the users who are running the
application and provides a scope for the running instances of the application. Through
this mechanism, each application is loaded from a distinct classloader and its runtime
objects are distinct from those of any other application. In particular, the

Ser vl et Cont ext object is distinct for an application, as is the Ht t pSessi on object
for each user of the application.

Beginning with the servlet 2.2 specification, most implementations can provide
multiple servlet contexts within a single host, which is what allows each Web
application to have its own servlet context. (Previous implementations usually
provided only a single servlet context with any given host.)

The Ser vl et Cont ext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that the
servlet can retrieve application-level environment and state information.

Note: In early versions of the servlet specification, the concept of
servlet contexts was not sufficiently defined. Beginning with
version 2.1(b), however, the concept was further clarified, and it
was specified that an HTTP session object could not exist across
multiple servlet context objects.

Application Lifecycle Management Through Event Listeners

The servlet 2.2 specification first provided limited application lifecycle management
through the standard Java event-listener mechanism. HTTP session objects can use
event listeners to make objects stored in the session object aware of when they are
added or removed. Because the typical reason for removing objects within a session
object is that the session has become invalid, this mechanism allows the developer to
manage session-based resources. Similarly, the event-listener mechanism also allows
the managing of page-based and request-based resources.

The servlet 2.3 specification introduced additional support for event listeners, defining
interfaces you can implement for event listeners that can be informed of changes in the
servlet context lifecycle, servlet context attributes, the HTTP session lifecycle, and
HTTP session attributes. See the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide for more information.

Servlet Invocation

A servlet, like an HTML page, can be directly invoked through a URL. The servlet is
launched according to how servlets are mapped to URLs in the Web server
implementation. Following are the possibilities:

« A specific URL can be mapped to a specific servlet class.

= An entire directory can be mapped so that any class in the directory is executed as
a servlet. For example, the / ser vl et directory can be mapped so that any URL of
the form/ servl et/ servl et _name executes a servlet.

Servlet and JSP Technical Background A-5

Web Application Hierarchy

A file name extension can be mapped so that any URL specifying a file whose
name includes that extension executes a servlet.

This mapping would be specified as part of the Web server configuration. In OC4J, this
is according to settings in the gl obal - web- appl i cati on. xm file.

A servlet can also be invoked indirectly, like a JSP page, such as through a
jsp:includeorjsp:forward tag. See "Invoking a Servlet from a JSP Page" on
page 4-1.

Web Application Hierarchy

The entities relating to a Web application (which consists of some combination of
servlets and JSP pages) do not follow a simple hierarchy but can be considered in the
following order:

1.

Servlet objects (including page implementation objects)

There is a servlet object for each servlet and for each JSP page implementation in a
running application (and possibly more than one object, depending on whether a
single-thread or multiple-thread execution model is used). A servlet object
processes request objects from a client and sends response objects back to the
client. A JSP page, as with servlet code, specifies how to create the response
objects.

You can think of multiple servlet objects as being within a single request object in
some circumstances, such as when one page or servlet includes or forwards to
another.

A user will typically access multiple servlet objects in the course of a session, with
the servlet objects being associated with the session object.

Servlet objects, as well as page implementation objects, indirectly implement the
standard j avax. servl et . Ser vl et interface. For servlets in a Web application,
this is accomplished by subclassing the standard

javax. servlet. http. Ht pServl et abstract class. For JSP page
implementation classes, this is accomplished by implementing the standard

j avax. servl et.jsp. H t pJspPage interface.

Request and response objects

These objects represent the individual HTTP requests and responses that are
generated as a user runs an application.

A user will typically generate multiple requests and receive multiple responses in
the course of a session. The request and response objects are not contained in the
session, but are associated with the session.

As a request comes in from a client, it is mapped to the appropriate servlet context
object (the one associated with the application the client is using) according to the
virtual path of the URL. The virtual path will include the root path of the
application.

A request object implements the standard
javax. servlet. http. HtpServl et Request interface.

A response object implements the standard
j avax. servlet. http. Ht pServl et Response interface.

Session objects

A-6 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Web Application Hierarchy

Session objects store information about the user for a given session and provide a
way to identify a single user across multiple page requests. There is one session
object for each user.

There can be multiple users of a servlet or JSP page at any given time, each
represented by their own session object. All these session objects, however, are
maintained by the servlet context that corresponds to the overall application. In
fact, you can think of each session object as representing an instance of the Web
application associated with a common servlet context.

Typically, a session object will sequentially make use of multiple request objects,
response objects, and page or servlet objects, and no other session will use the
same objects; however, the session object does not actually contain those objects.

A session lifecycle for a given user starts with the first request from that user. It
ends when the user session terminates (such as when the user quits the application
or there is a timeout).

HTTP session objects implement the j avax. servl et . http. Ht pSessi on
interface.

Note: Prior to the 2.1(b) version of the servlet specification, a
session object could span multiple servlet context objects.

Servlet context object

A servlet context object is associated with a particular path in the server. This is
the base path for modules of the application associated with the servlet context,
and is referred to as the application root.

There is a single servlet context object for all sessions of an application in any
given JVM, providing information from the server to the servlets and JSP pages
that form the application. The servlet context object also allows application
sessions to share data within a secure environment isolated from other
applications.

The servlet container provides a class that implements the standard

j avax. servl et. Servl et Cont ext interface, instantiates this class the first time
a user requests an application, and provides this Ser vl et Cont ext object with
the path information for the location of the application.

The servlet context object typically has a pool of session objects to represent the
multiple simultaneous users of the application.

A servlet context lifecycle starts with the first request (from any user) for the
corresponding application. The lifecycle ends only when the server is shut down
or otherwise terminated.

For additional introductory information about servlet contexts, see "Servlet
Contexts" on page A-4.

Servlet configuration object

The servlet container uses a servlet configuration object to pass information to a
servlet when itis initialized. The i ni t () method of the Ser vl et interface takes a
servlet configuration object as input.

The servlet container provides a class that implements the standard
j avax. servl et. Servl et Confi g interface and instantiates it as necessary.

Servlet and JSP Technical Background A-7

Standard JSP Interfaces and Methods

Included within the servlet configuration object is a servlet context object (also
instantiated by the servlet container).

Standard JSP Interfaces and Methods

Two standard interfaces, both in the j avax. ser vl et . j sp package, are available to
be implemented in code that is generated by a JSP translator:

« JspPage
« HttpJspPage

JspPage is a generic interface that is not intended for use with any particular
protocol. It extends the j avax. servl et . Ser vl et interface.

Ht t pJspPage is an interface for JSP pages using the HTTP protocol. It extends
JspPage and is typically implemented directly and automatically by any servlet class
generated by a JSP translator.

JspPage specifies the following methods for use in initializing and terminating
instances of the generated class:

= jsplnit()
« jspDestroy()

If you want any special initialization or termination functionality, you must provide a
JSP declaration to override the relevant method, as in the following example:

<% void jsplnit()
{

}

...your inplementation code...
%

Ht t pJspPage adds specification of the following method:
= _jspService()

Code for this method is typically generated automatically by the translator and
includes the following:

« Code from scriptlets in the JSP page
« Code resulting from any JSP directives
« Any static content of the page

(JSP directives provide information for the page, such as specifying the Java language
for scriptlets and providing package imports. See "Directives" on page 1-6.)

As with the Ser vl et methods, the _j spSer vi ce() method takes an
Ht t pSer vl et Request instance and an Ht t pSer vl et Response instance as input.

The JspPage and Ht t pJspPage interfaces inherit the following methods from the
Ser vl et interface:

= init()

«» destroy()

= service()

« getServletConfig()
= getServletlnfo()

A-8 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Standard JSP Interfaces and Methods

Refer back to "The Servlet Interface" on page A-2 for a discussion of the Ser vl et
interface and its key methods.

Servlet and JSP Technical Background A-9

Standard JSP Interfaces and Methods

A-10 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’'s Guide

B

Third Party Licenses

This appendix includes the Third Party License for third party products included with
Oracle Application Server and discussed in this manual. Topics include:

« Apache HTTP Server

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software, and
the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

The Apache Software License

-
*

The Apache Software License, Version 1.1

Copyright (c) 2000-2002 The Apache Software Foundation. All rights
reserved.

Redi stribution and use in source and binary forms, with or wthout
modi fication, are pernmitted provided that the foll owing conditions
are net:

1. Redistributions of source code nust retain the above copyright
notice, this list of conditions and the followi ng disclainer.

2. Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the following disclainer in
the docunentation and/or other materials provided with the
distribution.

3. The end-user docunentation included with the redistribution,
if any, must include the fol |l owi ng acknow edgnent:
"Thi s product includes software devel oped by the
Apache Software Foundation (http://ww. apache.org/)."
Alternately, this acknow edgnent nay appear in the software itself,
if and wherever such third-party acknow edgments normal |y appear.

4. The nanes "Apache" and "Apache Software Foundation" nust
not be used to endorse or pronote products derived fromthis

R T T I T

Third Party Licenses B-1

Apache HTTP Server

R R T R I

* %k ok % ok kX

sof tware without prior witten pernission. For witten
perm ssion, please contact apache@pache. org.

5. Products derived fromthis software may not be called "Apache",
nor may "Apache" appear in their name, wthout prior witten
perm ssion of the Apache Software Foundation.

TH' S SOFTWARE | S PROVIDED " "AS IS'' AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, I NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
CF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAI MED. | N NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON CR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT
LIMTED TO, PROCUREMENT COF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THECRY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARISING I N ANY WAY OUT
CF THE USE OF TH S SOFTWARE, EVEN |IF ADVI SED OF THE PCSSI Bl LI TY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many

i ndividuals on behalf of the Apache Software Foundation. For nore
information on the Apache Software Foundation, please see

<http: //ww. apache. or g/ >.

Portions of this software are based upon public domain software
originally witten at the National Center for Superconputing Applications,
University of Illinois, U bana-Chanpaign.

B-2 Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

Symbols

_jspService() method, A-8

A

action tags

forward tag, 1-16

getProperty tag, 1-14

in JSP XML pages, 5-8

include tag, 1-15

overview of standard actions, 1-12

param tag, 1-15

plugintag, 1-16

setProperty tag, 1-14

useBean tag, 1-13
activation.jar, Java activation files for e-mail, 3-9
addclasspath, ojspc option, 7-13
application events

servlet application lifecycles, A-5
application hierarchy, A-6
application object (implicit), 1-10
application root functionality, 3-2
application scope (JSP objects), 1-12
Application Server Control

introduction, 3-23

JSP Properties Page, 3-23

supported JSP parameters, 3-24

unsupported JSP parameters, 3-25
application support

servlet application lifecycles, A-5
application-relative path, 1-21
application.xml, OC4J configuration file, 3-22
appRoot, ojspc option, 7-13
autoreload-jsp-pages, autoreload-jsp-beans (not

supported), 3-22

B

batch pretranslation

ojspc -batchMask option, 7-14

ojspc -deleteSource option, 7-15

ojspc -output option, 7-19

overview of ojspc batch features, 7-9
batch updates--see update batching
batchMask, ojspc option, 7-14

Index

bc14, 3-9

binary data, reasons to avoid in JSP, 6-12
binary file deployment, 7-28

binary file location, ojspc d option, 7-16

C

cache jar, for Java Object Cache, 3-9
caching support, overview, 2-11
call servlet from JSP, JSP from servlet, 4-1
check_page_scope config param, 3-13
checker pages, 6-5
class naming, translator, 7-4
classpath
JSP classpath functionality, 3-2
code, generated by translator, 7-1
comments (in JSP code), 1-9
compilation
default settings, related options, 3-4
in-process vs. out-of-process, 3-4
javaccmd config param, 3-15
ojspc noCompile option, 7-18
use_old_compiler config param, 3-18
config object (implicit), 1-11
configuration
JSP configuration in Enterprise Manager, 3-23
JSP configuration parameters, 3-11
JSP container setup, 3-10
JSP-related OC4J configuration parameters, 3-20
key JAR and ZIP files, 3-9
key OC4] configuration files, 3-22
setting JSP configuration parameters, 3-19
setting JSP-related OC4J configuration
parameters, 3-22
connection caching, overview, 4-7
containers
JSP containers, 1-19
servlet containers, A-2
content type settings
dynamic (setContentType method), 9-4
static (page directive), 9-1
context path, 3-2
context-relative path, 1-21
cookies, A-4
custom tags--see tag libraries

Index-1

D

d, ojspc option (binary output dir), 7-16
data-access features, 4-4
data-sources.xml, OC4J configuration file, 3-22
debug_mode config param, 3-13
debugging
debug_mode config param, 3-13
emit_debuginfo config param, 3-13
through JDeveloper, 2-9
declarations
member variables, 1-7
method variable vs. member variable, 6-7
XML declaration elements, 5-7

default-web-site.xml, OC4J configuration file, 3-22

deleteSource, ojspc option, 7-15

demo location, OTN, 1-1

deployment, general considerations
deploying pages with JDeveloper, 7-25
deployment of binary files only, 7-28

general pretranslation without execution, 7-27

ojspc for batch pretranslation, 7-27
ojspc for page pretranslation, 7-26
overview, 7-23
WAR deployment, 7-23
directives
forgive_dup_dir_attr config param, 3-14
include directive, 1-6
ojspc forgiveDupDirAttr option, 7-17
overview, 1-6
page directive, 1-6
taglib directive, 1-7
XML directive elements, 5-6
DMS support, 2-10
dynamic include
actiontag, 1-15
for large static content, 6-6
logistics, 6-2
vs. static include, 6-1
Dynamic Monitoring Service--see DMS

E

EAR file, 3-22,7-23
EJBs

calling from JSP pages, 4-9

use of OC4J EJB tag library, 4-9
emit_debuginfo config param, 3-13
empty actions (tag libraries), 8-23
enable-jsp-dispatcher-shortcuts flag, 3-21
Enterprise Manager

JSP Properties Page, 3-23

supported JSP parameters, 3-24

unsupported JSP parameters, 3-25
error processing (runtime), 4-14
event-handling

servlet application lifecycles, A-5

with HttpSessionBindingListener, 4-10
exception object (implicit), 1-11
execution models for JSP pages, 1-19
execution of a JSP page, 1-19

Index-2

explicit JSP objects, 1-9
expressions
expression syntax, 1-8
XML expression elements, 5-7
extend, ojspc option, 7-16
extensions
DMS support, 2-10
overview of caching support, 2-11
overview of global includes, 2-10
overview of Oracle-specific extensions, 2-10
overview of programmatic extensions, 2-9
summary of portable extensions, 2-9
external resource file
for static text, 6-6
through external_resource parameter, 3-14
through ojspc extres option, 7-17
external_resource config param, 3-14
extra_imports config param, 3-14
extralmports, ojspc option, 7-16
extres, ojspc option, 7-17

F

fallback tag (with plugin tag), 1-17
Feiner, Amy (welcome), 1-2
file naming conventions, JSP files, 3-7
files
generated by translator, 7-4
key JAR and ZIP files, 3-9
locations, ojspc d option, 7-16
locations, ojspc srcdir option, 7-20
locations, translator output, 7-5
forgive_dup_dir_attr config param, 3-14
forgiveDupDirAttr, ojspc option, 7-17
forward tag, 1-16

G

generated code, by translator, 7-1
generated output names, by translator, 7-2
getProperty tag, 1-14
global includes (Oracle extension)
general use, 7-6
globalization support
charset settings of JSP writer, 9-5
content type settings (dynamic), 9-4
content type settings (static), 9-1
multibyte parameter encoding, 9-5
overview, 9-1
global-web-application.xml, OC4J configuration
file, 3-22

H

help, ojspc option, 7-18

hiding JSP pages (e.g., MVC architecture), 6-4
HttpJspPage interface, A-8

HttpSession interface, A-3
HttpSessionBindingListener, 4-10

id attribute (XML view), 5-12
implement, ojspc option, 7-18
implicit JSP objects
overview, 1-10
using implicit objects, 1-11
imports, default packages, 3-7
include directive, 1-6
include tag, 1-15
interaction, JSP-servlet, 4-1
invoke servlet from JSP, JSP from servlet, 4-1

J

JavaBeans
use for separation of business logic, 1-4
use with useBean tag, 1-13
vs. scriptlets, 6-1
javacemd config param, 3-15
JDBC in JSP pages
performance enhancements, 4-6
sample of use, 4-5
JDeveloper
JSP support, 2-8
use for deploying JSP pages, 7-25
JDK 1.4 considerations, 3-8
jndi jar, for data sources and EJBs, 3-9
jsp fallback tag (with plugin tag), 1-17
jsp forward tag, 1-16
jsp getProperty tag, 1-14
jsp id attribute (XML view), 5-12
jsp include tag, 1-15
jsp param tag, 1-15
jsp plugin tag, 1-16
jsp root element (XML syntax), 5-5
jsp setProperty tag, 1-14
jsp text element (XML syntax), 5-8
JSP translator--see translator
jsp useBean tag
syntax, 1-13
JSP XML document, 5-2
JSP XML syntax--see XML syntax
JSP XML view--see XML view
jsp-cache-directory setting, 3-20, 7-5
jsp-cache-tlds flag, 3-20, 8-16
JspPage interface, A-8
jsp-print-null flag, 3-20
jspService() method, A-8
JSP-servlet interaction
invoking JSP from servlet, request dispatcher, 4-2
invoking servlet from JSP, 4-1
passing data, JSP to servlet, 4-2
passing data, servlet to JSP, 4-3
sample code, 4-3
jsp-taglib-locations setting, 3-21, 8-16
jsp-timeout flag, 3-20
JspWriter object, 1-10
JSTL, overview of support, 2-11
jta.jar, for Java Transaction API, 3-9

L

listeners, tag libraries, 8-39

M

mail.jar, for e-mail from applications, 3-9

member variable declarations, 6-7

method variable declarations, 6-7

Model-View-Controller, hiding JSP pages, 6-4

mods, Apache, 2-2

multibyte parameter encoding
general/standard, 9-5

MVC architecture, hiding JSP pages, 6-4

N

namespaces (XML syntax), 5-5

naming conventions, JSP files, 3-7

National Language Support--see Globalization
Support

NLS--see Globalization Support

no_tld_xml_validate config param, 3-16

noCompile, ojspc option, 7-18

non-empty actions (tag libraries), 8-23

noTldXmlValidate, ojspc option, 7-18

null data, print mode, 3-20

O

objects and scopes (JSP objects), 1-9
0oCc4)
general overview, 2-2
overview of JSP implementation, 2-5
standalone, 2-5
ojdbc14 jar, for JDBC, 3-9
ojspc pretranslation tool
command-line syntax, 7-12
option descriptions, 7-13
option summary table, 7-11
output files, locations, related options, 7-22
overview, 7-8
overview of basic functionality, 7-9
overview of batch pretranslation, 7-9
use for batch pretranslation, 7-27
use for page pretranslation, 7-26
ojsp.jar, for JSP container, 3-9
ojsputil.jar, for JSP tag libraries and utilities, 3-9
old_include_from_top config param, 3-16
oldIncludeFromTop, ojspc option, 7-18
on-demand translation (runtime), 1-20
optimization--see performance
Oracle Application Server
brief overview, 2-1
JSP support, 2-1
Oracle Enterprise Manager--see Enterprise Manager
Oracle HTTP Server
overview, use of Apache mods, 2-2
Oracle platforms supporting JSP
JDeveloper, 2-8
Oracle Application Server, 2-1

Index-3

out object (implicit), 1-10 resource management

output files overview of JSP extensions, 4-14
generated by translator, 7-4 standard session management, 4-10
locations, 7-5 response objects
locations and related options, ojspc, 7-22 JSP implicit response object, 1-10
ojspc d option (binary location), 7-16 overview, A-6
ojspc srcdir option (source location), 7-20 retranslation or reloading at runtime, 3-3

output names, conventions, 7-2 root element (XML syntax), 5-5

output, ojspc option, 7-19 row prefetching, 4-8

rowset caching, 4-8

P

package imports, default, 3-7 S

package naming sample applications
by translator, 7-3 custom tag definition and use, 8-43
ojspc packageName option, 7-19 demo location, OTN, 1-1

packageName, ojspc option, 7-19 HttpSessionBindingListener sample, 4-11

page directive IterationTag definition and use, 8-41
characteristics, 6-8 JSP-servlet interaction, 4-3
contentType setting for globalization support, 9-1 traditional vs. XML syntax, 5-9
overview, 1-6 transformation to XML view, 5-12

page implementation class scopes (JSP objects), 1-11
generated code, 7-2 scripting elements
overview, 1-20 comments, 1-9

page object (implicit), 1-10 declarations, 1-7

page scope (JSP objects), 1-11 expressions, 1-8

pageContext object (implicit), 1-10 overview, 1-7

page-relative path, 1-21 scriptlets, 1-8

param tag, 1-15 scripting variables (tag libraries)

parent property (tag handlers), 8-24 declaration through TEl class, 8-34

performance declaration through TLD, 8-33
configuration considerations, 3-6 scopes, 8-33
OC4J and Oracle Application Server features, 3-6 using, 8-32
programmatic considerations, 3-5 scriptlets
use of pretranslation, 3-6 scriptlet syntax, 1-8

persistent caching for TLD files, 8-15 vs. JavaBeans, 6-1

plugin tag, 1-16 XML scriptlet elements, 5-7

precompile_check config param, 3-16 security

prefetching rows--see row prefetching general considerations, 3-5

pretranslation server.xml, OC4J configuration file, 3-22
ojspc utility, 7-8 service method, JSP, A-8
without execution, general, 7-27 servlet containers, A-2

print null flag, 3-20 servlet contexts

programming considerations overview, A-4
additional tips, 6-4 servlet context objects, A-7
general strategies, 6-1 servlet path, 3-2

servlet sessions
R HttpSession interface, A-3
session tracking, A-4
reduce_tag_code config param, 3-16 servlet-JSP interaction

reduceTagCode, ojspc option, 7-19 invoking JSP from servlet, request dispatcher, 4-2

reg_time_introspection config param, 3-16 invoking servlet from JSP, 4-1

reqTimelntrospection, ojspc option, 7-19 passing data, JSP to servlet, 4-2

request dispatcher (JSP-servlet interaction), 4-2 passing data, servlet to JSP, 4-3

request objects sample code, 4-3
JSP implicit request object, 1-10 servlets
overview, A-6 application lifecycle management, A-5

request scope (JSP objects), 1-11 request and response objects, A-6

RequestDispatcher interface, 4-2 review of servlet technology, A-1

requesting a JSP page, 1-21 servlet configuration objects, A-7

Index-4

servlet containers, A-2

servlet context objects, A-7

servlet contexts, A-4

servlet interface, A-2

servlet invocation, A-5

servlet objects, A-6

servlet sessions, A-3

session objects, A-6

technical background, A-1
session events

with HttpSessionBindingListener, 4-10
session objects

JSP implicit session object, 1-10

overview, A-6
session scope (JSP objects), 1-11
session tracking, A-4
setCharacterEncoding() method, 9-6
setContentType() method, globalization support, 9-4
setProperty tag, 1-14
setproperty_onerr_continue config param, 3-17
setWriterEncoding() method, globalization

support, 9-5

shortcut URI (tag librarires), 8-15
simple tag handlers (tag libraries)

with body iteration, 8-25

without body iteration, 8-24
simple-jsp-mapping flag, 3-21
source file location, ojspc srcdir option, 7-20
srcdir, ojspc option, 7-20
standalone version of OC4J, 2-5
statement caching, 4-7
static include

directive, 1-6

logistics, 6-2
vs. dynamic include, 6-1
static text

external resource file, 6-6

external resource, ojspc extres option, 7-17

external_resource parameter, 3-14

in member variables, 7-2

workaround for large static content, 6-6
static_text_in_chars config param, 3-17
staticTextInChars, ojspc option, 7-20
syntax (overview), 1-5

T

tag handlers (tag libraries)
access to outer tag handlers, 8-29
accessing body content, 8-26
body processing, 8-22
changes between JSP 1.1 and 1.2, 8-5
constants for body processing, 8-23
empty actions, 8-23
non-empty actions, 8-23
OC4J tag handler code generation, 8-32
OC4J tag handler instance reuse / pooling, 8-30
overview, 8-21
sample tag handler classes, 8-41, 8-44
simple tag handlers, with body iteration, 8-25

simple tag handlers, without body iteration, 8-24

tag libraries

defining and using, end-to-end example, 8-43
IterationTag, end-to-end example, 8-41
multiple tag libraries in a JAR file, 8-13
namespaces, XML support, 5-5

overview of functionality, 1-18

overview of standard implementation, 8-2
persistent caching for TLD files, 8-15
runtime vs. compile-time implementations, 8-47
scripting variables, 8-32

sharing across applications, 8-15

single tag library in a JAR file, 8-12
standard framework, 8-1

strategy, when to create, 6-3

tag handlers, 8-20

tag library descriptor files, 8-5

tag library listeners, 8-39

tag library namespaces (XML syntax), 5-5
taglib directive, 8-11

tag-library-validator classes, 8-36
web.xml use, 8-14

well-known location, 8-15

tag library descriptor files

changes between JSP 1.1and 1.2, 8-4

defining shortcut URI in web.xml, 8-15

listener element and subelements, 8-10

overview of functionality, 8-6

persistent caching, 8-15

sample files, 8-43, 8-46

specifying individual TLD, 8-12

specifying single TLD in a JAR file, 8-12

specifying TLDs for multiple tag libraries in a JAR
file, 8-13

tag element and subelements, 8-7

taglib directive, 8-11

TLD validation config param, 3-16

TLD validation ojspc option, 7-18

validator element and subelements, 8-10

tag-extra-info classes (tag libraries)

general use, getVariablelnfo() method, 8-34
sample tag-extra-info class, 8-45

taglib directive

general use, 8-11
syntax, 1-7

tag-library-validator classes, 8-36
tagReuse, ojspc option, 7-21
tags_reuse_default config param, 3-17
template data, 5-2

text element (XML syntax), 5-8
timeout settings

for OC4J, 3-20

tips

avoid JSP use with binary data, 6-12
JavaBeans vs. scriptlets, 6-1

JSP preservation of white space, 6-10
method vs. member variable declaration, 6-7
page directive characteristics, 6-8

static vs. dynamic includes, 6-1

using a "checker" page, 6-5

Index-5

when to create tag libraries, 6-3 xml_validate config param, 3-19

workaround, large static content, 6-6 xmlparserv2.jar, for XML validation, 3-9
TLD file--see tag library descriptor file xmlValidate, ojspc option, 7-22
translation, on-demand (runtime), 1-20 xsul2.jar for XML, 3-9
translator

generated class names, 7-4

generated code features, 7-1

generated files, 7-4

generated member variables, static text, 7-2
generated names, general conventions, 7-2
generated package names, 7-3

Oracle JSP global includes, 7-6

output file locations, 7-5

U

update batching, 4-8

URL rewriting, A-4
use_old_compiler config param, 3-18
useBean tag, 1-13

Vv

validation, tag libraries, 8-36
variable element (tag libraries), 8-33
verbose, ojspc option, 7-22

version, ojspc option, 7-22

W

WAR deployment, 7-23

WAR file, 3-22,7-23

Web application hierarchy, A-6
web.xml, usage for tag libraries, 8-14
well-known location (tag libraries), 8-15

X

XML support
JSP XML document, 5-2
JSP XML documents and JSP XML view,
overview, 5-1
JSP XML syntax, 5-3
XML validation config param, 3-19
XML validation ojspc option, 7-22
XML view, 5-11
XML syntax
custom action elements, 5-8
declaration elements, 5-7
directive elements, 5-6
expression elements, 5-7
root element and tag library namespaces, 5-5
sample, traditional vs. XML syntax, 5-9
scriptlet elements, 5-7
standard action elements, 5-8
summary table of JSP XML syntax, 5-4
text element and other elements, 5-8
XML view
jsp id attribute for validation, 5-12
sample transformation, 5-12
transformation from JSP page to XML view, 5-11

Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 General JSP Overview
	Introduction to JavaServer Pages
	What a JSP Page Looks Like
	Convenience of JSP Coding Versus Servlet Coding
	Servlet Code
	JSP Code

	Separation of Business Logic from Page Presentation: Calling JavaBeans
	JSP Pages and Alternative Markup Languages

	Overview of JSP Syntax Elements
	Directives
	page directive
	include directive
	taglib directive

	Scripting Elements
	Declarations
	Expressions
	Scriptlets
	Comments

	JSP Objects and Scopes
	Explicit Objects
	Implicit Objects
	Using an Implicit Object
	Object Scopes

	Standard Actions: JSP Tags
	jsp:useBean tag
	jsp:setProperty tag
	jsp:getProperty tag
	jsp:param tag
	jsp:include tag
	jsp:forward tag
	jsp:plugin tag

	Bean Property Conversions from String Values
	Typical Property Conversions
	Conversions for Property Types with Property Editors

	Custom Tag Libraries

	JSP Execution
	JSP Containers in a Nutshell
	JSP Execution Models
	On-Demand Translation Model
	Pretranslation Model

	JSP Pages and On-Demand Translation
	Requesting a JSP Page
	Directly Requesting a JSP Page
	Indirectly Requesting a JSP Page

	2 Overview of the Oracle JSP Implementation
	Overview of the Oracle Application Server and JSP Support
	Overview of the Oracle Application Server
	Oracle HTTP Server and mod_oc4j
	Overview of OC4J
	OC4J General Features
	OC4J Services
	OC4J Containers
	OC4J Standalone

	Overview of the JSP Implementation in OC4J
	History and Integration of JSP Containers
	JSP Front-End Servlet and Configuration
	OC4J JSP Features for JSP 1.2
	Configurable JSP Extensions in OC4J
	Portability Across Servlet Environments

	Oracle JDeveloper JSP Support
	Overview of Oracle Value-Added Features
	Summary of Tag Libraries and Utilities Provided with OC4J
	Overview of Oracle-Specific Features
	Global Includes
	Support for Dynamic Monitoring Service
	Enhanced Servlet 2.0 Support

	Overview of Tags and API for Caching Support
	Support for the JavaServer Pages Standard Tag Library

	3 Getting Started
	Some Initial Considerations
	Application Root Functionality
	Classpath Functionality
	Runtime Retranslation or Reloading
	JSP Compilation Considerations
	JSP Security Considerations
	JSP Performance Considerations
	Programmatic Considerations for Optimization
	Configuration Optimizations
	The ojspc Utility for Pretranslation
	Additional OC4J and Oracle Application Server Performance Features

	Default Package Imports
	JSP File Naming Conventions
	Removal of tools.jar from OC4J Standalone
	JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

	Key Support Files Provided with OC4J
	JSP Configuration in OC4J
	JSP Container Setup
	JSP Configuration Parameters
	JSP Configuration Parameter Summary Table
	JSP Configuration Parameter Descriptions
	Setting JSP Configuration Parameters in OC4J

	OC4J Configuration Parameters for JSP
	JSP-Related OC4J Configuration Parameter Descriptions
	Setting JSP-Related OC4J Configuration Parameters

	Key OC4J Configuration Files
	JSP Configuration in Oracle Enterprise Manager 10g
	Application Server Control Console JSP Properties Page
	Configuration Parameters Supported by the JSP Properties Page
	Configuration Parameters Not Supported by the JSP Properties Page

	4 Basic Programming Considerations
	JSP-Servlet Interaction
	Invoking a Servlet from a JSP Page
	Passing Data to a Servlet Invoked from a JSP Page
	Invoking a JSP Page from a Servlet
	Passing Data Between a JSP Page and a Servlet
	JSP-Servlet Interaction Samples
	Code for Jsp2Servlet.jsp
	Code for MyServlet.java
	Code for welcome.jsp

	JSP Data-Access Support and Features
	Introduction to JSP Support for Data Access
	JSP Data-Access Sample Using JDBC
	Use of JDBC Performance Enhancement Features
	Database Connection Caching
	JDBC Statement Caching
	Update Batching
	Row Prefetching
	Rowset Caching

	EJB Calls from JSP Pages
	Overview of Configuration and Deployment for EJBs
	Code Steps and Approaches for EJB Calls
	Use of the OC4J EJB Tag Library

	OracleXMLQuery Class

	JSP Resource Management
	Standard Session Resource Management: HttpSessionBindingListener
	The valueBound() and valueUnbound() Methods
	JDBCQueryBean JavaBean Code
	UseJDBCQueryBean JSP Page
	Advantages of HttpSessionBindingListener

	Overview of Oracle Value-Added Features for Resource Management

	Runtime Error Processing
	Servlet and JSP Runtime Error Mechanisms
	General Servlet Runtime Error Mechanism
	JSP Error Pages

	JSP Error Page Example
	Code for nullpointer.jsp
	Code for myerror.jsp

	5 JSP XML Support
	JSP XML Documents and JSP XML View: Overview and Comparison
	Details of JSP XML Documents
	Summary Table of JSP XML Syntax
	JSP XML root Element and JSP XML Namespaces
	JSP XML Directive Elements
	Example: page Directive
	Example: include Directive

	JSP XML Declaration, Expression, and Scriptlet Elements
	Example: JSP Declaration
	Example: JSP Expression
	Example: JSP Scriptlet

	JSP XML Standard Action and Custom Action Elements
	JSP XML Text Elements and Other Elements
	Example: Other JSP XML Elements

	Sample Comparison: Traditional JSP Page Versus JSP XML Document
	Sample Traditional JSP Page
	Sample JSP XML Document

	Details of the JSP XML View
	Transformation from a JSP Page to the XML View
	The jsp:id Attribute for Error Reporting During Validation
	Example: Transformation from Traditional JSP Page to XML View
	Traditional JSP Page
	XML View of JSP Page

	6 Additional Programming Considerations
	General JSP Programming Strategies
	JavaBeans Versus Scriptlets
	Static Includes Versus Dynamic Includes
	Logistics of Static Includes
	Logistics of Dynamic Includes
	Advantages, Disadvantages, and Typical Uses of Dynamic and Static Includes

	When to Consider Creating and Using JSP Tag Libraries
	Replacing Java Syntax
	Providing Convenient JSP Programming Access to API Features
	Manipulating or Redirecting JSP Output

	Additional JSP Programming Tips
	Hiding JSP Pages from Direct Invocation
	Use of a Central Checker Page
	Workarounds for Large Static Content or Significant Tag Library Usage
	Method Variable Declarations Versus Member Variable Declarations
	Page Directive Characteristics
	Page Directives Are Static
	Duplicate Settings of Page Directive Attributes Are Disallowed
	Page Directive import Settings Are Cumulative

	JSP Preservation of White Space and Use with Binary Data
	White Space Examples
	Reasons to Avoid Binary Data in JSP Pages

	7 JSP Translation and Deployment
	Functionality of the JSP Translator
	Features of Generated Code
	Features of Page Implementation Class Code
	Member Variables for Static Text

	General Conventions for Output Names
	Generated Package and Class Names
	Package Naming
	Class Naming

	Generated Files and Locations
	Files Generated by the JSP Translator
	JSP Translator Output File Locations

	Issues in the Current Release
	Oracle JSP Global Includes
	The ojsp-global-include.xml File
	Global Include Examples

	The ojspc Pretranslation Utility
	Overview of Basic ojspc Functionality
	Overview of ojspc Batch Pretranslation
	Option Summary Table for ojspc
	Command-Line Syntax for ojspc
	Option Descriptions for ojspc
	-addclasspath
	-appRoot
	-batchMask
	-deleteSource
	-dir
	-extend
	-extraImports
	-extres
	-forgiveDupDirAttr
	-help
	-implement
	-noCompile
	-noTldXmlValidate
	-oldIncludeFromTop
	-output
	-packageName
	-reduceTagCode
	-reqTimeIntrospection
	-srcdir
	-staticTextInChars
	-tagReuse
	-verbose
	-version
	-xmlValidate

	Summary of ojspc Output Files, Locations, and Related Options

	JSP Deployment Considerations
	Overview of EAR/WAR Deployment
	OC4J Deployment Features
	Standard WAR Deployment

	Application Deployment with Oracle JDeveloper
	JSP Pretranslation
	Techniques for Page Pretranslation with ojspc
	Batch Pretranslation with ojspc
	Standard JSP Pretranslation without Execution

	Deployment of Binary Files Only
	Archiving and Deploying the Binary Files
	Configuring the OC4J JSP Container for Execution with Binary Files Only

	8 JSP Tag Libraries
	Overview of the Tag Library Framework
	Overview of a Custom Tag Library Implementation
	Overview of Tag Library Changes Between the JSP 1.1 and 1.2 Specifications
	Summary of TLD File Changes Between the JSP 1.1 and 1.2 Specifications
	Summary of Tag Handler Changes Between the JSP 1.1 and 1.2 Specifications

	Tag Library Descriptor Files
	Overview of TLD File Validation and Features
	Use of the tag Element
	Subelements of the tag Element
	Sample tag Element and Use of Its body-content Subelement

	Other Key Elements and Their Subelements: validator and listener

	Tag Library and TLD Setup and Access
	Overview: Specifying a Tag Library with the taglib Directive
	Specifying a Tag Library by Physical Location
	Packaging and Accessing Multiple Tag Libraries in a JAR File
	Example: URI Settings for Multiple Tag Libraries in a JAR File

	Use of web.xml for Tag Libraries
	Oracle Extensions for Tag Library Sharing and Persistent TLD Caching
	TLD Caching and Well-Known Tag Library Locations
	TLD Cache Features and Files

	Example: Multiple Tag Libraries and TLD Files in a JAR File
	Key TLD File Entries for Multiple-Library Example
	Key web.xml File Entries for Multiple-Library Example
	JSP Page taglib Directives for Multiple-Library Example

	Tag Handlers
	Overview of Tag Handlers
	Attribute Handling, Conversions from String Values
	Custom Tag Processing, with or without Tag Bodies
	Summary of Integer Constants for Body Processing
	Simple Tag Handlers without Iteration
	Simple Tag Handlers with Iteration
	Tag Handlers That Access Body Content
	BodyTag Features
	BodyContent Objects

	TryCatchFinally Interface
	Access to Outer Tag Handler Instances

	OC4J JSP Tag Handler Features
	Disabling or Enabling Runtime or Compile-Time Tag Handler Reuse
	Key Points Regarding Tag Handler Reuse
	Enabling or Disabling the Runtime Model for Tag Handler Reuse
	Enabling or Disabling the Compile-Time Model for Tag Handler Reuse

	Tag Handler Code Generation

	Scripting Variables, Declarations, and Tag-Extra-Info Classes
	Using Scripting Variables
	Scripting Variable Scopes
	Variable Declaration Through TLD variable Elements
	Variable Declaration Through Tag-Extra-Info Classes

	Validation and Tag-Library-Validator Classes
	TLD validator Element
	Example 1
	Example 2

	Key TLV-Related Classes and the validation() Method
	TLV Processing
	Validation Mechanisms

	Tag Library Event Listeners
	TLD listener Element
	Activation of Tag Library Event Listeners
	Access of TLD Files for Event Listener Information

	End-to-End Custom Tag Examples
	Example: Using the IterationTag Interface
	Sample JSP Page: exampleiterator.jsp
	Sample Tag Handler Class: MyIteratorTag.java
	Sample Tag Library Descriptor File: exampleiterator.tld

	Example: Using the IterationTag Interface and a Tag-Extra-Info Class
	Sample JSP Page: exampletag.jsp
	Sample Tag Handler Class: ExampleLoopTag.java
	Sample Tag-Extra-Info Class: ExampleLoopTagTEI.java
	Sample Tag Library Descriptor File: exampletag.tld

	Compile-Time Tags
	General Compile-Time Versus Runtime Considerations
	JSP Compile-Time Versus Runtime JML Library

	9 JSP Globalization Support
	Content Type Settings
	Content Type Settings in the page Directive
	Dynamic Content Type Settings
	Oracle Extension for the Character Set of the JSP Writer Object

	JSP Support for Multibyte Parameter Encoding
	Standard setCharacterEncoding() Method
	Overview of Oracle Extensions for Older Servlet Environments

	A Servlet and JSP Technical Background
	Background on Servlets
	Review of Servlet Technology
	The Servlet Interface
	Servlet Containers
	Servlet Sessions
	HttpSession Interface
	Session Tracking

	Servlet Contexts
	Application Lifecycle Management Through Event Listeners
	Servlet Invocation

	Web Application Hierarchy
	Standard JSP Interfaces and Methods

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

