ORACLE

Oracle® Application Server Containers for J2EE
JSP Tag Libraries and Utilities Reference

10g Release 2 (10.1.2)
Part No. B14016-01

November 2004

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference, 10g Release 2 (10.1.2)
Part No. B14016-01

Copyright © 2002, 2004, Oracle. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Jesse Anton, Ellen Barnes, Julie Basu, Charlie Berger, Fred Bethke, Carolyn Bruse, Kelly Chan,
Matthieu Devin, Sumathi Gopalakrishnan, Ralph Gordon, Ping Guo, Hal Hildebrand, Christine Jacobs,
Nilesh Junnarkar, Susan Kraft, Sunil Kunisetty, Song Lin, Angie Long, Peter Lubbers, Sharon Malek, Sheryl
Maring, Kuassi Mensah, Jasen Minton, Charles Murray, Dmitry Nonkin, John O'Duinn, Sue Pelski, Olga
Peschansky, Shiva Prasad, Jerry Schwarz, Sanjay Singh, Ingrid Snedecor, Deborah Steiner, Gael Stevens,
Margaret Taft, George Tang, Jingwu Tang, Olaf van der Geest, YaQing Wang, Alex Yiu, David Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SENA US YOUT COMMENES ..ottt eeeet ettt et et et et ettt sttt ese e as et ar st s et et st e eans st st eeeeesenes iX
P T O C 8 ettt ettt ettt ettt ettt ettt ettt ettt Xi
1N (T gL [T AN B Lo [1< g ot =TT Xi
Documentation ACCESSIDIITYccviiiiiiii bbb Xii
] 1 (002 101 (=R Xii
R EEN (Lo B B 1o Yot U 3 41T 1 £ Xiii
(OL0] 0 V7=1 g (0] o 13 XV

1 Overview of Tag Libraries and Utilities

Overview of Tag Libraries and Utilities Provided with OCA4J..........cc.cooviiiiiiiniieinienneee e, 1-1
Tag Syntax Symbology and NOTES........ccc.eiiiiiicc e 1-2
Overview of Extended TYPe JAVABEANS..........ccociiiiiiiiitrie ettt 1-2
Overview of JspScopeListener for Event-Handling.........cccocooeiieiiiii v 1-3
Overview of Integration With XIML @nd XSL ..o 1-3
Summary of Data-Access JavaBeans and Tag Libraryccccceviiiiviiiiecie v 1-4
Summary of JSP Markup Language (JML) Custom Tag Libraryccccocvevviniiicinniniennn, 1-5
SUMMArY Of WED SEIVICES TAQS ...cvviiviiieiiiieie ettt sttt e e se et e st e e ne e sneeraesaaesaenneas 1-6
Summary of File Access and Mail TAGScovvvviiiiriiiirieie et 1-7
SUMMANY OF BIB TAUS . .tveieitetiiteiiet ettt bttt ettt 1-8
SUMMArY OF JSP ULHITY TAOS ...vvcviiiee ettt st nae e e nne e nneenes 1-9

Summary of Oracle Caching Support for Web Applications ... 1-9
Oracle Application Server and JSP Caching FEAtUIESccccvvceiieiiiinie s 1-10
Role of the JSP Web ObjJect CaChe.........c..ccoiiiiiiie e 1-11
Summary of Tag Libraries for Caching.......cc.ccccoveieiiiiici e e 1-12

Support for the JavaServer Pages Standard Tag LIDrarycccccocovveveieininiesie e 1-14
Overview and PhiloSOPhY Of JSTL ..o 1-14
Summary of JISTL EXPression LANGUAGEc..ccvviiireriiieeiiiinie et snese i neenas 1-15
Overview of JSTL Tags and Additional FEatures.............ccoiiiiiiiinncseneeese s 1-17
JSTL Usage Notes and Future ConSiderations...........cccvcvviviiiiicieesiee e seesee e e see s sneenees 1-20

Overview of Tag Libraries from Other Oracle COMpPONENtscccooviiiienienienne e 1-21
Oracle ADF Business Components Tag Library........cccccooeieiieiiiieiice e 1-21
Oracle JDeveloper User Interface Extension (UIX) Tag Library ..., 1-21
Oracle ADF Business Components UIX Tag Library.........c.coccoviieiiiiciccce e 1-22
Oracle Application Server Wireless Location Tag Libraryccccoreiniiininnenseienenns 1-22

Oracle Application Server MapViewer Tag LiDrary ... 1-22

Oracle Ultra Search Tag LIDIrary ..ot s 1-22
Oracle Application Server Portal Tag LIDrary ... 1-23
Oracle Business Intelligence Beans Tag Library ... 1-23
Oracle Application Server Multimedia Tag Library ..o 1-24

2 JavaBeans for Extended Types

(@ V=T RVAT=3 VYA o) N\ I 4 (=T oL [=To I 1Y/ o 1= USSR 2-1
JML Extended TYPe DESCIIPLIONScccooo ittt bbb 2-2
TYPE JMIBOOIEAN ...ttt e e st e et e e be et e be e s bebeenbeereenneaneas 2-2
TYPE IMINUMDET ...t b bbb bbbt b ettt 2-3
TYPE IMIFPNUMIDET ...t e ettt se e s be e besbe e nbesteesreenes 2-3
B4 8 L= 1 51 1 T S SR USPB 2-4
JML Extended TYPeS EXAMIPIE ..o 2-5

3 JSP Markup Language Tags

Overview of the JSP Markup Language (JML) Tag Library........ccccoeviiinniniinneee e, 3-1
JML Tag Library PRITOSOPRYcciiiii e re s 3-2
AV =T I O (=To o [S SSSRTR 3-2

JSP Markup Language (JML) Tag DeSCriptiONScccoeiieiiiienieeise et 3-2
Bean Binding Tag DeSCriPLiONS........cccvciiii et e ettt sresnee e 3-3
Logic and Flow Control Tag DeSCriptiONS.......c..cviiiiiiiiiiinesieeise e 3-5

4 Data-Access JavaBeans and Tags

JAVABEANS TOF DALA ACCESS ... vttt bbbt b bbb bt b e bbb e b sn b e 4-1
Introduction t0 Data-ACCESS JAVABEANSccociiiiiriiie ettt st e 4-1
Data-Access Support for Data Sources and Pooled Connectionsccoccvvviveevevievenieeneene 4-2
Data-Access JavaBean DeSCrPTIONScciiiriiiieee e 4-2

SQL TGS TOF DAt ACCESSvvivieiieieite ettt ee et e s e st esr e st e s be s te e abeeteesteessesteestesbeesbeeteeneeensenneanes 4-11
INtroduction t0 Data-ACCESS TAGS. . ..cvieiiririiirieririe sttt bbbttt sr bbb 4-11
Data-AccCess Tag DeSCrIPLIONSccviieiieieece et be et re b e e aesneeraesneas 4-12

5 XML and XSL Tag Support

Overview of Oracle Tags fOr XML SUPPOIT. ..ottt 5-1
XML Producers and XML CONSUMETSooiiiiirrireieeesrere s sne e sneseenesesnenens 5-1
Summary of OC4J Tags with XML FUNCLIONAIILYccocoiiiiiiiiiiiec e 5-2

DY 13 41 T I Vo [T OO 5-3
XML Utility Tag DESCHIPLIONScciriiiiiiiiiite ittt sttt sttt eb et 5-3
XML Utility Tag EXAMPIESooiiciicececse sttt st re e saeennns 5-6

6 JESI Tags for Edge Side Includes

Overview of Edge Side Includes Technology and Processingccceevevveniienniennenecnese e, 6-1
Edge Side Includes TEChNOIOQYccviiiiiiiece et ens 6-2
Oracle Application Server Web Cache and ESI ProCeSSOrcocceiiernerinense e 6-3

Overview oOf JEST FUNCLIONAITLYc.ocovii ettt enas 6-4

AAVANTAGES OF JEST TAGS ..veiviiiitiiieietit sttt bbb bbb 6-4

Overview of JESI Tags Implemented by Oracle ... 6-5
JEST USAGE IMOTEIS ...ttt ettt bbb ettt sb bbb 6-6
Invalidation of Cached ODJECTScciiiiii e 6-11
Personalization of Cached Pages ... 6-12
JESI FallDACK EXECULION ...t et et e 6-12
Oracle JESI Tag DESCIIPLIONSocviiiiic ettt st sta e te et e nteenaenaeeneeneas 6-13
Descriptions of Tags for Dynamic Caching.........coeoieiiiiriiiiiieee e 6-13
Descriptions of Tags and Subtags for Invalidation of Cached Objectscccocevevvvieivvennne. 6-25
Description of Tag for Page Personalization.............ccoccoeiiiiiieieinie e 6-32
JESI Tag Handling and JESI-t0-ESI CONVEISIONc.ccooviiiiiiiieciccese e 6-33
Example: JESI-to-ESI Conversion for Included Pagesccocooveiiiniineincine e 6-33
Example: JESI-to-ESI Conversion for a Template and Fragment...........cccoccooviveieiieeveceecine, 6-34

Web Object Cache Tags and API

Overview of the Web ObJECt CaCNEooiiiiic e 7-1
Benefits of the Web ObJect CaCheoov i e 7-2
Web Object Cache COMPONENTS. ..ot bbbt bt 7-3
CaChe POLICY @GN0 SCOPE.....cciiiiiii ettt ettt sttt et e e e sae e s aesteesteeteeste e e enteesrenreens 7-4

Key Functionality of the Web ObjJect CaChecooviiiiiiiieee s 7-4
Cache Block Naming: Implicit Versus EXPlCIt.........cccooiiiiiiiii e 7-4
Cloneable Cathe ODJECLScuiiii et e e e e e raesrenneens 7-5
Cache Block RUNtIME FUNCLIONAIITYcooiiiiiiiiiciccc e 7-6
Data Invalidation and EXPIrationcccceiiiieiinieiicee et e e sne s 7-7

Attributes for Policy Specification and USE...........ccoiiiiiiiiiiiiies s 7-7
Cache POLICY ALLFIDULES ...ttt e e e e s reesenreens 7-8
EXPiration POLCY ATIDULEScoiiiieeee e e 7-12

Web Object Cache Tag DeSCriPtiONS.......cccoci ittt s sr e re e e 7-14
CaChE Tag DESCIIPLIONS ...ttt bbbt bbbttt sbeneenas 7-15
Cache Invalidation Tag DeSCIIPLIONccouiii i e ste e e e 7-23

Web Object Cache AP DeSCHIPTIONSccoiiiiece ettt seesre e e 7-27
Cache Policy ODJECT CrEAtIONc.eviviiieiieieiisie ettt 7-27
(0= Tod a 1= = o] [0V 1Y/ =1 d To T TSR 7-28
Expiration Policy Object RELFIEVAl ..o 7-32
EXPIrationPOlICY METNOUSocviiiicic ettt enas 7-33
(@7 Tl 1= 2] [103 1 1Y/ 131 T T £ S SS 7-34
Tag Code VEISUS API COUEociiiieie sttt sttt sttt e et e e b e e nesnresae s 7-34

CACNE POLICY DESCIIPLON ...ttt et bbbt b ettt bbb en et 7-38
Cache Policy DESCIIPLONr DT Dccoiiiiiiieiieiee ettt s aa e s reeraesreesaens 7-38
Sample Cache POlICY DESCHIPLONccviiciie ettt ne e ane s 7-39
Cache Policy Descriptor Loading and RefreShing ... 7-39

(O 1ol g Tl R =T oo 1 o] gV B LTS ol i |] (o] RS S 7-40
Cache Repository DeSCHPION DTDcoieiiiiiiiieieieie ettt 7-40
Sample Cache RePOSITOrY DeSCIIPLONcuiiieiiee ettt eee e sne s 7-41

Configuration for Back-ENd REPOSITONYcouiiiiiiiiiirre e 7-41
Configuration Notes for Oracle Application Server Java Object Cachec.cccccoeveienen 7-41
Configuration Notes for File System Cache ...t 7-42

8 File Access and Mail Beans and Tags

File-Access JAVABEANS ANG TAGS.....ii ittt bbbt bbb eb bbbt 8-1
Overview of OC4J File-Access FUNCLIONAIITYcccooviiiiiicecee e e 8-1
File Upload and Download JavaBean and Class DesCriptions...........cccocvvvvvivieeviveieesieeseneenennns 8-4
File Upload and Download Tag DeSCHIPLIONSccccoeiiiiirieeiieiesiire e 8-12

Mail JaVABEaAN AN TAQceiiieiieiice st e et e e s e e e s st ereesreesaesreesrenre e re e e erean 8-18
General Considerations for the Mail JavaBean and Tagc.ccccvereiiiinenceineneesecees 8-19
MaATT ATTACHIMENTS ...t bbbt bbbt et sb et sae e 8-19
SendMailBean DeSCrIPTION ...t bbb bbb 8-21
The sendMail Tag DESCIIPLIONccviiiiiiiiice et eraennees 8-24

9 JSP Utilities and Utility Tags

JSP Event-Handling With JSPSCOPELISIENETccociiiiiiiiii e 9-1
General Use Of JSPSCOPELISIENETccuviiiiiiccice ettt nae e 9-1
Use of JspScopeListener in OC4J and Other Servlet 2.3 ENVIronments.........cccceeeevveviveenenenne 9-2
Examples UsSiNg JSPSCOPELISIENETcuiiieie ettt ettt resre e nreens 9-5

L I T PSPPSR 9-10
(=N S =T I o] g 1o [1 LA o o SRS 9-10
EJB Tag DESCHIPLIONS ...iiiieiecicce ettt st e e e e s neesaesneesaesreesaeseeste e e enseans 9-11
EJB Tag EXAMIPIES. ..ottt bbbt eb bbbt b et an e 9-14

LT o LT = LI A] 1 200 - Vo LSS 9-16
DIUSPIAY TAGS. .- vttt ettt b bbb bt b bbbt et et b et bt bt h bbbt 9-16
MISCEANEOUS ULIHTITY TGS .cviciiiiecieie ettt e e esre e sae e anes 9-18

10 Web Services Tags

OVEIrVIEW OF WED SEIVICES ..o et een 10-1
General Web SEIrVICES OVEIVIEBW........cciiiieiiiiieiieeeiste ettt sttt ebe bbb snesn e eneen 10-1
Overview of SOAP and Related FEAtUIES.........coii i 10-2
Overview of Web Services Description Language Key Elements...........c.cccoeeveiiiiiiinicinns 10-3
Overview of Web Service Messages and XML Schema Definitions..........ccccoovvvveiiineennnn, 10-4
WED SEIVICE EXAMPIE ...t nnes 10-4

OCAT WED SEIVICES TAGS. .. vevtreitirteieieteitete sttt sttt sttt bbb e b st btk eb e b e eb e e e bt sb b e ebe e ebesbe e neene s 10-7
Overview of OracleAS Web Services and the Tag Library Implementation..............c........... 10-7
Overview of Functionality of Web SErvices TagS.......ccccvuriirieiiieiieie e eie s 10-8
Web Services Tag DESCIIPTIONScouiiieiiiiiie ettt et 10-9
Web Services Tag EXAMPIESccoviieieee st nne e 10-15

A JML Compile-Time Syntax and Tags

JML Compile-Time SYNtaX SUPPOITcc.iiiiiiiiiie ettt e s e et e e sre e st esrsssaesreestesteesrens A-1
JML Bean References and Expressions, Compile-Time Implementationcc.ccccovevenene. A-1
Attribute Settings With JIML EXPreSSIONS ..ottt A-2

JML Compile-Time Tag SUPPOITci ittt ere e s e e sa e e tes e aesre s e srasneesneeseesreesaesreeseens A-3
The taglib Directive for Compile-Time JML SUPPOIT........ccooiiiiiiiiriieeeese e A-4
JML Tag Summary, Compile-Time Versus RUNTIME..........cccooviiiieien i A-4
Descriptions of Additional JML Tags, Compile-Time Implementation...........c.ccccoccovinninnns A-5

vi

B Third Party Licenses

APACNE HT TP SEIVEL ..ottt bbb bbbt b e bbbt bbbt B-1
The APache SOFtWAIE LICENSEccviiiicee ettt st et e sre e sne e B-1
- (= o PP P PR PR PSR B-2
The Jaxen SOTEWANE LICENSEccuv ittt ettt et sttt be e te b e et e ereenee et nnas B-2
S - 1 o TSRS B-3
THE SAXPALN LICENSE ...c.ii ittt sttt e et e et et e e ae s b e s be e st e s be e s besbeebeebeeebeenteneas B-3
Index

Vii

viii

Send Us Your Comments

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference, 10g Release 2 (10.1.2)

Part No. B14016-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?

« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserverdocs_us@oracle.com

« FAX: (650) 506-7225 Attn: Java Platform Group, Information Development
Manager

« Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Preface

JavaServer Pages (JSP) technology, as specified by an industry consortium led by Sun
Microsystems, is a component of the standard Java 2 Enterprise Edition (J2EE). The
J2EE component of the Oracle Application Server is known as the Oracle Application
Server Containers for J2EE (OC4J).

This document provides reference information as well as some conceptual material for
JSP tag libraries and utilities included with OC4J in Oracle Application Server 10g
Release 2 (10.1.2). These libraries generally conform to the JSP specification.

For general information about the OC4J JSP implementation, including the JSP tag
library framework, refer to the Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide.

This preface contains the following sections:
« Intended Audience

« Documentation Accessibility

« Structure

« Related Documents

« Conventions

Intended Audience

This document is intended for Web application developers using servlet and
JavaServer Pages technology. It assumes that working Web, servlet, and JSP
environments already exist, and that readers are already familiar with the following:

« General Web technology

« Java

« HTML

= Javaservlets

« JavaServer Pages

« Configuration of their Web server and servlet environments
« Oracle JDBC (for JSP applications accessing Oracle Database)

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for background information about standard JavaServer Pages
technology, the Oracle JSP implementation, and tag library support.

Xi

Documentation Accessibility

Structure

Xi

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessi bility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

This document contains:

Chapter 1, "Overview of Tag Libraries and Utilities"

This chapter provides an overview of the tag libraries documented in the remainder of
the manual, as well as overviews of tag libraries provided with other Oracle
components, outside of OC4J.

Chapter 2, "JavaBeans for Extended Types"

This chapter discusses JavaBeans provided with the JSP Markup Language (JML)
library that can be used as extended Java types.

Chapter 3, "JSP Markup Language Tags"

This provides JML syntax and tag descriptions, as well as an overview of the
philosophy behind the JML tag library.

Chapter 4, "Data-Access JavaBeans and Tags"
This documents JavaBeans and tags for database access.

Chapter 5, "XML and XSL Tag Support”

This chapter describes tags to use in handling XML documents and outputting or
transforming their data.

Chapter 6, "JESI Tags for Edge Side Includes"

This chapter describes the Oracle implementation of JESI tags to support Edge Side
Includes technology for Web caching.

Chapter 7, "Web Object Cache Tags and API"

This describes concepts, custom tags, the Java API, and XML descriptor files for the
Web Object Cache, an application-level Java caching interface provided with OC4J.

Chapter 8, "File Access and Mail Beans and Tags"

This chapter covers tags and JavaBeans for file access (uploading and downloading)
and e-mail.

Chapter 9, "JSP Utilities and Utility Tags"

This chapter discusses miscellaneous utility features included with OCA4J:
JspScopeli st ener for event-handling, tags for using EJBs, and general utility tags.

Chapter 10, "Web Services Tags"

This chapter describes the Web services tag library, which allows developers to create
JSP pages for use as client programs for Web services.

Appendix A, "IJML Compile-Time Syntax and Tags"

This chapter provides an overview of the compile-time implementation of the Oracle
JML sample tag library (the only way the library was supported in pre-JSP 1.1
releases), and documents tags not supported in the runtime implementation that is
documented in Chapter 3.

Appendix B, "Third Party Licenses"

This appendix includes the Third Party License for third party products included with
Oracle Application Server and discussed in this document.

Related Documents
For more information, see these Oracle resources:
Additional OC4J documents available from the Oracle Java Platform Group:
« Oracle Application Server Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

« Oracle Application Server Containers for J2EE Stand Alone User's Guide

This version of the user's guide is specifically for the standalone version of OC4J,
and is available when you download the standalone version from OTN. OC4J
standalone is used in development environments, but not typically in production
environments.

« Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J, including basic servlet development, use of
JDBC and EJBs, building and deploying applications, and servlet and Web site
configuration.

« Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide

This book provides information for JSP developers who want to run their pages in
OCA4J. It includes a general overview of JSP standards and programming

xiii

Xiv

considerations, as well as discussion of Oracle value-added features and steps for
getting started in the OC4J environment.

« Oracle Application Server Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

= Oracle Application Server Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server 10g Security
Guide), describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and Authorization
Service, as well as other Java security technologies.

« Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

This book provides information about the EJB implementation and EJB container
in OC4J.

Also available from the Oracle Java Platform group:

« Oracle Database Java Developer's Guide

« Oracle Database JDBC Developer's Guide and Reference

= Oracle Database JPublisher User's Guide

Available from the Oracle Application Server group:

« Oracle Application Server Administrator’s Guide

= Oracle Application Server Security Guide

= Oracle Application Server Performance Guide

« Oracle Enterprise Manager Concepts

= Oracle HTTP Server Administrator’s Guide

« Oracle Application Server Globalization Guide

« Oracle Application Server Web Cache Administrator’s Guide

« Oracle Application Server Web Services Developer’s Guide

= Oracle Application Server Upgrading to 10g Release 2 (10.1.2)
Available from the Oracle JDeveloper group:

« Oracle JDeveloper online help

« Oracle JDeveloper documentation on the Oracle Technology Network:

http://ww. oracl e. conlt echnol ogy/ product s/j dev/ content. htmni

Available from the Oracle Server Technologies group:

« Oracle XML Developer’s Kit Programmer’s Guide

= Oracle XML API Reference

« Oracle Database Application Developer's Guide - Fundamentals
« PL/SQL Packages and Types Reference

« PL/SQL User's Guide and Reference

« Oracle Database SQL Reference

» Oracle Database Net Services Administrator’s Guide

» Oracle Advanced Security Administrator's Guide

» Oracle Database Reference

Printed documentation is available for sale in the Oracle Store at

http://oracl estore. oracl e. com

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://ww. oracl e. com t echnol ogy/ menber shi p/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://ww. oracl e. com t echnol ogy/ docunent ati on

The following OTN Web site for Java servlets and JavaServer Pages is also available:

http://ww. oracl e. com technol ogy/tech/javalservlets/

The following resources are available from Sun Microsystems.
« Web site for JavaServer Pages, including the latest specifications:

http://java. sun. coni products/jsp/index. htm

= Web site for Java Servlet technology, including the latest specifications:

http://java. sun. coni product s/ servl et/ i ndex. ht m

=« | sSp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to | i st serv@ ava. sun. comwith the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname

It is recommended, however, that you request only the daily digest of the posted
e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions

The following conventions are also used in this manual:

Convention Meaning

Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

Italics Italic typeface indicates book titles or emphasis, or terms that are
defined in the text.

XV

XVi

Convention

Meaning

Monospace
(fixed-w dth)
f ont

Ital i c nonospace
(fixed-width)
font

<>

[]

Monospace typeface within text indicates items such as executables, file
names, directory names, Java class names, Java method names, variable
names, other programmatic elements (such as JSP tags or attributes, or
XML elements or attributes), or database SQL commands or elements
(such as schema names, table names, or column names).

Italic monospace font represents placeholders or variables.

Angle brackets enclose user-supplied names.

Brackets enclose optional clauses from which you can choose one or
none.

A vertical bar represents a choice of two or more options. Enter one of
the options. Do not enter the vertical bar.

1

Overview of Tag Libraries and Utilities

This manual documents tag libraries, JavaBeans, and other utilities supplied with
Oracle Application Server Containers for J2EE (OC4J) that are implemented according
to JSP standards. There is also a discussion of support for the JavaServer Pages
Standard Tag Library (JSTL), and a section summarizing tag libraries provided with
Oracle components outside of OC4J.

Oracle-specific features, as well as an introduction to the OC4J JSP container, standard
JSP technology, and standard JSP 1.2 tag library features, are covered in the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide.

This chapter consists of the following sections:

« Overview of Tag Libraries and Utilities Provided with OC4J
« Summary of Oracle Caching Support for Web Applications
« Support for the JavaServer Pages Standard Tag Library

« Overview of Tag Libraries from Other Oracle Components

Tags and JavaBeans introduced in the first section provide functionality in several
different areas, including type extensions, integration with XML/ XSL, database access,
and programming convenience.

Note: The Sample Applications chapter available in previous
releases has been removed. Applications that were listed there are
available in the OC4J demos, available from the following location
on the Oracle Technology Network (requiring an OTN
membership, which is free of charge):

http://ww. oracl e. com t echnol ogy/tech/j aval/ oc4j/ denos/

Overview of Tag Libraries and Utilities Provided with OC4J

The Oracle extensions that are introduced in the following sections are implemented
through tag libraries or custom JavaBeans that comply with JSP and JavaBeans
standards.

« Tag Syntax Symbology and Notes

« Overview of Extended Type JavaBeans

« Overview of JspScopeListener for Event-Handling
» Overview of Integration with XML and XSL

« Summary of Data-Access JavaBeans and Tag Library

Overview of Tag Libraries and Utilities 1-1

Overview of Tag Libraries and Utilities Provided with OC4J

Summary of JSP Markup Language (JML) Custom Tag Library
Summary of Web Services Tags

Summary of File Access and Mail Tags

Summary of EJB Tags

Summary of JSP Utility Tags

Be aware that some custom tag libraries provided with OC4)—XML, data-access, and
JML—pre-date the JavaServer Pages Standard Tag Library (JSTL) and have areas of
duplicate functionality. For standards compliance, it is now generally advisable to use
JSTL instead of these custom libraries. See "Support for the JavaServer Pages Standard
Tag Library" on page 1-14.

Oracle is not desupporting the existing libraries, however. For features in the custom
library that are not yet available in JSTL, where there seems to be general usefulness,
Oracle will try to have the features adopted into the JSTL standard as appropriate.

Notes:

« See "Summary of Oracle Caching Support for Web
Applications" on page 1-9 for information about tag libraries
provided with OC4J to support caching features.

« See the OC4J demos for sample applications using the features
introduced in this section. They can be downloaded from the
following location on the Oracle Technology Network
(requiring an OTN membership, which is free of charge):

http://ww. oracl e. com technol ogy/tech/javal/ oc4j/ denos/

Tag Syntax Symbology and Notes

For the syntax documentation in tag descriptions throughout this manual, note the
following:

Italic indicates that you must specify a value or string.
Optional attributes are enclosed in square brackets: [. . .]
Default values of optional attributes are indicated in bold.
Choices in attribute values are separated by vertical bars: |

Except where noted, you can use JSP runtime expressions to set tag attribute
values: "<% jspExpression %"

Tag descriptions in this manual use certain tag prefixes by convention; however,
you can designate any desired prefix in your t agl i b directives.

Overview of Extended Type JavaBeans

JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following standard type categories is fully suitable for use in JSP pages:

Primitive types such asi nt , f | oat , and doubl e

Values of these types cannot have a specified scope. They cannot be stored in a JSP
scope object (for page, r equest , sessi on, orappl i cati on scope), because
only objects can be stored in a scope object.

Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J

= Wrapper classes in the standard j ava. | ang package, such as | nt eger, Fl oat ,
and Doubl e

Values of these types are objects, so they can theoretically be stored in a JSP scope
object. However, they cannot be declared in aj sp: useBean action, because the
wrapper classes do not follow the JavaBean model and do not provide
zero-argument constructors.

Additionally, instances of the wrapper classes are immutable. To change a value,
you must create a new instance and assign it appropriately.

To work around these limitations, OC4J provides the Jm Bool ean, Jm Nunber,
Jm FPNunber ,and Jm St ri ng JavaBean classes in package or acl e. jsp.jm to
wrap the most common Java types.

For information, see Chapter 2, "JavaBeans for Extended Types".

Overview of JspScopeListener for Event-Handling

OC4J provides the JspScopeli st ener interface for lifecycle management of Java
objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the

javax. servlet. http. H t pSessi onBi ndi ngLi st ener interface, but this is for
session-based events only. The Oracle JspScopelLi st ener can be integrated with
Ht t pSessi onBi ndi ngLi st ener to manage session-based events, and can handle
page-based, request-based, and application-based events as well.

For information, see "JSP Event-Handling with JspScopeListener" on page 9-1.

Overview of Integration with XML and XSL

You can use JSP syntax to generate any text-based MIME type, not just HTML code. In
particular, you can dynamically create XML output. When you use JSP pages to
generate an XML document, however, you often want a stylesheet applied to the XML
data before it is sent to the client. This is difficult in JavaServer Pages technology,
because the standard output stream used for a JSP page is written directly back
through the server.

OC4J provides special tags to specify that all or part of a JSP page should be
transformed through an XSL stylesheet before it is output. Input can be from the tag
body or from an XML DOM obiject, and output can be to an XML DOM object to the
browser.

You can use these tags multiple times in a single JSP page if you want to specify
different style sheets for different portions of the page.

There is additional XML support as well:
« A utility tag converts data from an input stream to an XML DOM object.

« Several tags, for such features as caching and SQL operations, now can take XML
objects as input or send them as output.

XML utility tags are summarized in Table 1-1. Note that there is also XML
functionality in the dbOpen SQL tag and the cacheXM_Obj Web Object Cache tag. For
more information, see Chapter 5, "XML and XSL Tag Support".

You can find information about standard JSP 1.2 XML support in the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Overview of Tag Libraries and Utilities 1-3

Overview of Tag Libraries and Utilities Provided with OC4J

Table 1-1 Summary of XML Utility Tags
Tag Description Attributes
transform Output XML data with an XSL transformation, href
either to an HTTP client or a specified XML DOM fromXMLObjName
object. toXMLObjName
toWriter
styleSheet Same as t r ansf or mtag. href
fromXMLObjName
toXMLObjName
toWriter
parsexml Convert from an input stream to an XML DOM resource
object. toXMLObjName
validateResource
root

Summary of Data-Access JavaBeans and Tag Library

OC4J supplies a set of custom JavaBeans for use in accessing Oracle Database. The
following beans are provided in the or acl e. j sp. dbuti | package:

« ConnBean opens a database connection. This bean also supports data sources and
connection pooling.

«» ConnCacheBean uses the Oracle connection caching implementation for database
connections. (This requires JDBC 2.0.)

« DBBean executes a database query.

« Cur sor Bean provides general DML support for queries; UPDATE, | NSERT, and
DELETE statements; and stored procedure calls.

For information, see "JavaBeans for Data Access" on page 4-1.

For JSP programmers, OC4J also provides a custom tag library for SQL functionality,
wrapping the functionality of the JavaBeans. These tags are summarized in Table 1-2.
For further information, see "SQL Tags for Data Access" on page 4-11.

Table 1-2

Summary of Data-Access Tag Library

Tag

Description

Attributes

dbOpen

dbClose

dbQuery

Open a database connection. This tag also supports

data sources and connection pooling.

Close a database connection.

Execute a query.

dbCloseQuery Close the cursor for a query.

connld

scope
dataSource

user

password

URL
commitOnClose

connld
scope

queryld

connld

scope

output
maxRows
skipRows
bindParams
toXMLObjName

queryld

1-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J

Table 1-2 (Cont.) Summary of Data-Access Tag Library

Tag Description Attributes

dbNextRow Process the rows of a result set. queryld

dbExecute Execute any SQL statement (DML or DDL). connld
scope
output
bindParams

dbSetParam Set a parameter to bind into a dbQuery or name
dbExecut e tag. value
scope

dbSetCookie Set a cookie. name
value
domain
comment
maxAge
version
secure
path

Summary of JSP Markup Language (JML) Custom Tag Library

Although the JSP specification supports scripting languages other than Java, Java is
the primary language used. Even though JavaServer Pages technology is designed to
separate the dynamic/Java development effort from the static/HTML development
effort, it is a hindrance if the Web developer does not know any Java, especially in
small development groups where no Java experts are available.

OC4J provides custom tags as an alternative: the JSP Markup Language (JML). The
Oracle JML tag library provides an additional set of JSP tags so that you can script
your JSP pages without using Java statements. JML provides tags for variable
declarations, control flow, conditional branches, iterative loops, parameter settings,
and calls to objects. The JML tag library also supports XML functionality, as noted
previously.

The following example shows use of the JML f or tag, repeatedly printing "Hello
World" in progressively smaller headings (H1, H2, H3, H4, H5):

<m:ifor id="i" from"<% 1 %" to="<% 5 %" >
<H%i %>
Hel | o World!
</ Y% %>
</jm:for>

The JML tag library is summarized in Table 1-3. For more information, see Chapter 3,
"JSP Markup Language Tags".

Table 1-3 Summary of JSP Markup Language Tag Library

Tag Description Attributes
useVariable This tag offers a convenient alternative to the id
j sp: useBean tag for declaring simple variables. scope
type
value
useForm This tag provides a convenient syntax for declaring id
variables and setting them to values passed in scope
from the request. type
param

Overview of Tag Libraries and Utilities 1-5

Overview of Tag Libraries and Utilities Provided with OC4J

Table 1-3 (Cont.) Summary of JSP Markup Language Tag Library

Tag Description Attributes
useCookie This tag offers a convenient syntax for declaring id
variables and setting them to values contained in scope
cookies. type
cookie
remove This tag removes an object from its scope. id
scope
if This tag evaluates a single conditional statement. If condition
the condition is true, then the body of thei f tag is
executed.
choose The choose tag, with associated when and (None)
ot her wi se tags, provides a multiple conditional
statement.
when This is used with the choose tag. condition
otherwise This is optionally used with the choose and when (None)
tags.
for This tag provides the ability to iterate through a id
loop, as with aJava f or loop. from
to
foreach This tag provides the ability to iterate over a id
homogeneous set of values in a Java array, in
Enuner at i on instance, or Vect or instance. limit
type
return When this tag is reached, execution returns from (None)

the page without further processing.

flush This tag writes the current contents of the page (None)
buffer back to the client. This applies only if the
page is buffered; otherwise, there is no effect.

Note: Oracle JSP container versions preceding the JSP 1.1
specification use an Oracle-specific compile-time implementation of
the JML tag library. Oracle still supports this implementation as an
alternative to the standard runtime implementation, as
documented in Appendix A, "JML Compile-Time Syntax and Tags".

Summary of Web Services Tags

The Web services tag library provided with OC4J enables developers to conveniently
create JSP pages for Web service client applications. The implementation uses a
SOAP-based mechanism, supporting RPC-style or document-style services. A client
application would access a Web Services Description Language (WSDL) document,
then use the WSDL information to access the operations of a Web service.

The tag library also uses the Oracle implementation of the dynamic invocation API,
described in the Oracle Application Server Web Services Developer’s Guide. When a client
application acquires a WSDL document at runtime, the dynamic invocation API is the
vehicle for invoking any SOAP operation described in the WSDL document.

The Web services tag library is summarized in Table 1-4. For more information, see
Chapter 10, "Web Services Tags".

1-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J

Table 1-4 Summary of Web Services Tag Library

Tag

Description

Attributes

webservice

map

property

invoke

part

Create a Web service proxy. The tag requires the
URL of a WSDL document and uses either a
binding and SOAP location or a service name and

port in creating the proxy.

Use map tags nested within a webser vi ce tag to
have the Web service proxy add entries to the
SOAP mapping registry for type mapping between
SOAP/ XML and Java. Use one map tag for each

desired type mapping.

Optionally use this tag to specify a name/value
pair that defines any of several supported custom
properties for use by the Web service client

application.

Invoke an operation of a Web service. The i nvoke
tag gains access to a Web service proxy either by
being nested within a webser vi ce tag or by
accessing a Web service proxy scripting variable
created in awebser vi ce tag.

Use this tag if the operation being performed
requires input message part values, using one part

tag for each input part.

wsdlUrl

id

scope
binding
soapLocation
service

port

localName
namespaceUri
javaType
encodingStyle
java2zxmlClassName
xml2javaClassName

name
value

id

operation
webservice
inputMsgName
outputMsgName
xmIToWriter
toXMLObjName

name
value

Summary of File Access and Mail Tags
OC4J provides tag libraries for file access (uploading and downloading) and for

sending e-mail messages from an application.

For uploading files, you can use the ht t pUpl oad tag or the

oracl e.jsp.webutil.fileaccess. HttpUpl oadBean JavaBean. For
downloading, there is the ht t pDownl oad tag or the Ht t pDownl oadBean JavaBean.
Table 1-5 summarizes the file access tags. For more information, see "File-Access
JavaBeans and Tags" on page 8-1.

Table 1-5 Summary of File Access Tag Library

Tag

Description

Attributes

httpUploadForm

the files to upload.

For convenience, you can use this tag to create a
form in your application, using multipart
encoded form data, that allows users to specify

formsAction
maxFiles
fileNameSize
maxFileNameSize
includeNumbers
submitButtonText

Overview of Tag Libraries and Utilities 1-7

Overview of Tag Libraries and Utilities Provided with OC4J

Table 1-5 (Cont.) Summary of File Access Tag Library

Tag Description

Attributes

httpUpload Upload files from the client to a server. You can
upload into either a file system or a database.

httpDownload Download files from a server to the client. You
can download from either a file system or a
database.

destination
destinationType
connld

scope

overwrite
fileType

table
prefixColumn
fileNameColumn
dataColumn

servletPath
source
sourceType
connld

scope

recurse
fileType

table
prefixColumn
fileNameColumn
dataColumn

For sending e-mail messages, optionally with server-side or client-side attachments,
you can use theor acl e. j sp. webuti | . emai | . SendMai | Bean JavaBean or the

sendMai | tag. Table 1-6 summarizes the sendMai | tag. See "Mail JavaBean and Tag

on page 8-18 for more information.

Table 1-6 Summary of sendMail Tag

Tag Description

Attributes

sendMail Send an e-mail message from a JSP page. Tag
functionality includes globalization support.

host

sender

recipient

cc

bcc

subject
contentType
contentEncoding
serverAttachment
clientAttachment

Summary of EJB Tags

OC4J provides a custom tag library to simplify the use of Enterprise JavaBeans in JSP
pages. The functionality of the OC4J EJB tags follows the J2EE specification. The tags
allow you to instantiate EJBs by name, using configuration information in the

web. xmi file.

There are tags to create a home instance, create an EJB instance, and iterate through a
collection of EJBs. Table 1-7 summarizes the EJB tag library. See "EJB Tags" on

page 9-10 for more information.

1-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of Oracle Caching Support for Web Applications

Table 1-7 Summary of EJB Tag Library

Tag Description Attributes
useHome Look up the home interface for the EJB and create id
an instance of it. type
location
local
useBean Instantiate and use the EJB. The functionality is id
similar to that of the standard j sp: useBean tag type
for a JavaBean. value
scope
local
createBean For first instantiating an EJB, if you do not use the instance

val ue attribute of the EJB useBean tag, you must
nest an EJB cr eat eBean tag within the useBean
tag to do the work of creating the EJB instance.

iterate Iterate through a collection of EJB instances (more id
typical for entity beans). type
collection
max

Summary of JSP Utility Tags

OC4J has utility tags for displaying a date, displaying an amount of money in the
appropriate currency, displaying a number, iterating through a collection, evaluating
and including the tag body (depending on whether the user belongs to a specified
role), and displaying the last modification date of the current file. Table 1-8
summarizes these tags. See "General Utility Tags" on page 9-16 for more information.

Table 1-8 Summary of General Utility Tag Library

Tag Description Attributes
displayCurrency Display a specified amount of money, formatted as amount
currency for the locale. locale
displayDate Display a specified date, formatted appropriately date
for the locale. locale
displayNumber Display the specified number, for the locale and number
optionally in the specified format. locale
format
iterate Iterate through a collection. id
type
collection
max
ifinRole Evaluate the tag body and include it in the body of role

the JSP page, depending on whether the user isin include
the specified application role.

lastModified Display the date of the last modification of the locale
current file, in appropriate format for the locale.

Summary of Oracle Caching Support for Web Applications
This section provides the following information:

« Anintroduction to caching features supported by the Oracle Application Server in
general and the OC4J JSP container in particular

Overview of Tag Libraries and Utilities 1-9

Summary of Oracle Caching Support for Web Applications

A discussion of the role of the OC4J Web Object Cache in relation to other Oracle
Application Server caching components

A summary of tag libraries relating to caching features

The Oracle tag libraries introduced in this section comply with JSP standards.

Note: See the OC4J demos for sample applications using the
features introduced in this section. The can be downloaded from
the following location on the Oracle Technology Network:

http://ww. oracl e. conlt echnol ogy/tech/javal/ oc4j/ denos/

Oracle Application Server and JSP Caching Features
The Oracle Application Server and OC4J provide the following caching features:

Oracle Application Server Web Cache

This is an HTTP-level cache, maintained outside the application, providing very
fast cache operations. It is a content-based cache, capable of caching static data
(such as HTML, GIF, or JPEG files) or dynamic data (such as servlet or JSP results).
Given that it exists as a content-based cache outside the application, it cannot
cache objects (such as Java objects or XML DOM objects) in a Java object format. In
addition, post-processing operations applicable to cached data cannot be coded in
Java and are predefined by the cache itself.

The OracleAS Web Cache provides an ESI processor to support Edge Side
Includes, an XML-style markup language that allows dynamic content assembly
away from the Web server. This technology enables you to separate cacheable
pages into distinct cached objects, as desired. OC4J supports this technology
through its JESI tag library.

For an overview of Edge Side Includes and the OracleAS Web Cache, as well as
detailed documentation of the JESI tag library, see Chapter 6, "JESI Tags for Edge
Side Includes".

For additional information about the OracleAS Web Cache, see the Oracle
Application Server Web Cache Administrator’s Guide.

OC4J Web Object Cache

This is an application-level cache that is embedded and maintained within a Java
Web application. It is a hybrid cache, both Web-based and object-based. A custom
tag library or API enables you to define page fragment boundaries and to capture,
store, reuse, process, and manage the intermediate and partial execution results of
JSP pages and servlets as cached objects. Each page fragment can produce a
separate cache object. The produced objects can be HTML or XML text fragments,
XML DOM obijects, or Java serializable objects. These objects can be cached
conveniently in association with HTTP request and session semantics.
Alternatively, they can be reused outside HTTP, such as when an application
outputs cached XML objects through Simple Mail Transfer Protocol (SMTP), Java
Messaging Service (JMS), Advanced Queueing (AQ), or Simple Object Access
Protocol (SOAP).

For more information, see Chapter 7, "Web Object Cache Tags and API".
Oracle Application Server Java Object Cache

The Oracle Application Server Java Object Cache is a general-use Java cache to
manage Java objects within a process, across processes, and on local disk. By

1-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of Oracle Caching Support for Web Applications

managing local copies of objects that are difficult or expensive to retrieve or create,
the Java Object Cache can significantly improve application performance. By
default, the OC4J Web Object Cache uses the Oracle Application Server Java Object
Cache as its underlying cache repository.

For details about the Java Object Cache, see the Oracle Application Server Containers
for J2EE Services Guide.

Role of the JSP Web Object Cache

It is important to understand the role of the OC4J Web Object Cache in the overall
setup of a Web application. It works at the Java level and is closely integrated with the
HTTP environment of servlet and JSP applications. By contrast, the Oracle Application
Server Java Object Cache works at the Java object level, but is not integrated with
HTTP. As for the OracleAS Web Cache, it is well integrated with HTTP and is orders of
magnitude faster than the Web Object Cache, but it does not operate at the Java level
and cannot be directly invoked by Web application code. For example, it cannot apply
a style sheet to a cached DOM object within the J2EE container, reuse the cached result
in other protocols, or allow direct DOM operations. OracleAS Web Cache can,
however, apply a style sheet to text-based XML documents, as opposed to DOM
objects, that were cached from the original Web server through HTTP.

The Web Object Cache is not intended for use as the main Web cache for an
application. It is an auxiliary cache embedded within the same Java virtual machine
that is running your servlets and JSP pages. Because the retrieval path for cached
results in the Web Object Cache includes the JVM and the JSP and servlet engines, it
generally takes much longer to serve a page from the Web Object Cache compared to
the OracleAS Web Cache.

The Web Object Cache does not replace or eliminate the need for either the OracleAS
Web Cache or the Oracle Application Server Java Object Cache. It is a complementary
caching component in the overall framework of a Web application and should be used
together with the other caching products, as appropriate. In fact, the Web Object Cache
uses the Java Object Cache as its default repository. And through combined use of the
OC4J JESI tags and Web Object Cache tags, you can use the Web Object Cache and
OracleAS Web Cache together in the same page.

Web Object Cache Versus OracleAS Web Cache

Think of the OracleAS Web Cache as the primary caching component. It serves cached
pages directly to HTTP clients and handles large volumes of HTTP traffic quickly,
fitting the requirements of most Web sites. You can use the OracleAS Web Cache to
store complete Web pages or partial pages (through use of the JESI tags). Cached pages
can be customized, to a certain extent, before being sent to a client, including
cookie-replacement and page-fragment concatenation, for example.

It is advisable to use the OracleAS Web Cache as much as possible to speed up
response and reduce the load on the Web application server and back-end database.
The caching needs of a large percentage of Web pages can be addressed by the
OracleAS Web Cache alone.

As a complement to the OracleAS Web Cache, you can use the Web Object Cache to
capture intermediate results of JSP and servlet execution and subsequently reuse these
cached results in other parts of the Java application logic. It is not beneficial to use the
Web Object Cache in your Web application unless you can repeatedly reuse objects
after they are cached and you require post-processing on cached objects before they are
served to a client.

Overview of Tag Libraries and Utilities 1-11

Summary of Oracle Caching Support for Web Applications

Web Object Cache Versus Oracle Application Server Java Object Cache

In comparison to the Oracle Application Server Java Object Cache, the Web Object
Cache makes it much easier to store and maintain partial execution results in dynamic
Web pages. The Java Object Cache, being a pure object-based framework for any
general Java application, is not aware of any HTTP environment in which it might be
embedded. For example, its cache keys do not automatically depend on HTTP cookies
or sessions. When you directly use the Java Object Cache within a Web application,
you are responsible for creating any necessary interfacing with resulting Web pages.
The Java Object Cache provides only a programmatic way to specify cache
maintenance policies, whereas the Web Object Cache allows the alternative of
specifying policies through configuration files.

Summary of Tag Libraries for Caching

OC4J supplies two tag libraries for use with Oracle Application Server caching
features:

« JESI tag library
= Web Object Cache tag library

This section summarizes those libraries.

Summary of JESI Tag Library

OC4)J provides the JESI tag library as a convenient interface to ESI tags and Edge Side
Includes functionality for Web caching. Developers have the option of using ESI tags

directly in any Web application, but JESI tags provide additional convenience in a JSP

environment.

Table 1-9 summarizes the JESI tag library. See "Oracle JESI Tag Descriptions" on
page 6-13 for more information.

Table 1-9 Summary of JESI Tag Llbrary

Tag Description Attributes
control Control caching characteristics for JSP pages in the expiration
control/include usage model. You can use a JESI maxRemovalDelay
control tag in the top-level page or any included cache
page. control
include This tag, like a standard j sp: i ncl ude tag, page
enables you to dynamically insert output from the alt
included page into output from the including ignoreError
page. However, it results in the included page copyParam
being processed and assembled by the ESI flush
processor, typically inside OracleAS Web Cache.
param This is a subtag of the JESI i ncl ude tag. Youcan name
use one or more JESI par amtags to pass additional value
query parameters to the included page.
template Use this tag (together with JESI f r agnent tags) expiration
when you are splitting a JSP page into separate maxRemovalDelay
cache fragments. The JESI t enpl at e tag specifies cache
caching behavior for the aggregate page, outside control
any fragments.
fragment Use one or more JESI f r agnment tags within a JESI expiration

t enpl at e tag, between the JESI t enpl at e
start-tag and end-tag, to denote separately
cacheable fragments.

maxRemovalDelay
cache
control

1-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Summary of Oracle Caching Support for Web Applications

Table 1-9 (Cont.) Summary of JESI Tag Llbrary

Tag Description Attributes

codeblock This is a subtag of the JESI t enpl at e tag. You can execute
use JESI codebl ock tags to specify conditional
execution of code blocks within the template code.

invalidate Use this tag, with its JESI obj ect subtag, to url
explicitly invalidate one or more objects cached by username
OracleAS Web Cache. password
config
output
object Use this required subtag of the JESI i nval i date uri
tag to specify cached objects to invalidate, prefix
according to either the complete URI or a URI maxRemovalDelay
prefix.
cookie Optionally use this subtag of the JESI obj ect tag name
to use cookie information as a further criterion for value
invalidation.
header Optionally use this subtag of the JESI obj ect tag name

to use HTTP/1.1 header information as a further value
criterion for invalidation.

personalize Use this tag to allow page customization, by name
directing the ESI processor to perform cookie value default
substitution for every request for an object.

Summary of Web Object Cache Tag Library

The OC4J Web Object Cache is a mechanism that allows Web applications written in
Java to capture, store, reuse, post-process, and maintain the partial and intermediate
results generated by a dynamic Web page, such as a JSP page or servlet. The
programming interfaces it provides are a tag library (for use in JSP pages) and a Java
API (for use in servlets).

Table 1-10 summarizes the Web Object Cache tag library. See "Web Object Cache Tag
Descriptions" on page 7-14 for more information.

Table 1-10 Summary of Web Object Cache Tag Llbrary

Tag Description Attributes
cache Use this tag to cache an object, for example a policy
text fragment, in a JSP application. (Note, ignoreCache

however, that there are separate tags for caching invalidateCache

XML DOM objects or Java serializable objects.) scope
autoType
selectedParam
selectedCookies
reusableTimeStamp
reusableDeltaTime
name
expirationType
TTL
timelnaDay
daylnaWeek
daylnaMonth
writeThrough
printCacheBlocklInfo
printCachePolicy
cacheRepositoryName
reportException

Overview of Tag Libraries and Utilities 1-13

Support for the JavaServer Pages Standard Tag Library

Table 1-10 (Cont.) Summary of Web Object Cache Tag Llbrary

Tag

Description

Attributes

cacheXMLODbj

useCacheObj

cachelnclude

invalidateCache

Generally speaking, use this tag instead of the
cache tag if you are caching XML DOM
objects. The cacheXM_Cbj tag supports all the
cache tag attributes, as well as additional
XML-specific parameters.

Use this tag to cache any Java serializable
object. The useCacheCbj tag supports all the
cache tag parameters, as well as additional
attributes specific to its functionality.

This tag combines functionality of the cache
tag (but not the cacheXM.hj tag or
useCachebj tag) and the standard

j sp:include tag.

Use this tag to programmatically invalidate a
cache object. Most attributes of the

i nval i dat eCache tag behave the same way
as attributes of the same names in the cache
tag.

All attributes of the
cache tag, plus:
fromXMLObjName
toXMLObjName
toWriter

All attributes of the
cache tag, plus:

type
id
cacheScope

policy

page
printCacheBlockInfo
reportException

policy

ignoreCache

scope

autoType
selectedParam
selectedCookies
name
invalidateNameLike
page
autolnvalidateLevel
cacheRepositoryName
reportException

Support for the JavaServer Pages Standard Tag Library

With Oracle Application Server 10g Release 2 (10.1.2), the OC4J JSP product includes
an implementation of the JavaServer Pages Standard Tag Library (JSTL), as specified in
the Sun Microsystems JavaServer Pages Standard Tag Library, Version 1.0 specification.
The following sections provide an overview of JSTL features and OC4J support:

= Overview and Philosophy of JSTL

« Summary of JSTL Expression Language

« Overview of JSTL Tags and Additional Features
« JSTL Usage Notes and Future Considerations

For complete information about JSTL, refer to the specification at the following
location:

http://ww. j cp. org/ about Java/ communi t yprocess/first/jsr052/index. htm

Note: JSTL 1.0 requires a JSP 1.2 environment.

Overview and Philosophy of JSTL

JSTL is intended as a convenience for JSP page authors who are not familiar or not
comfortable with scripting languages such as Java. Historically, scriptlets have been
used in JSP pages to process dynamic data. With JSTL, the intent is for JSTL tag usage
to replace the need for scriptlets.

1-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Support for the JavaServer Pages Standard Tag Library

Readers who have used previous versions of the OC4J JSP product will recognize this
as similar to the goals of the Oracle JavaServer Pages Markup Language (JML) tag
library. While the JML tag library is still supported, use of the standard JSTL is
encouraged. Also see "JSTL Usage Notes and Future Considerations" on page 1-20.

Key JSTL features include the following:
« JSTL expression language (EL)

The expression language further simplifies the code required to access and
manipulate application data, making it possible to avoid request-time expressions
as well as scriptlets. See the next section, "Summary of JSTL Expression
Language".

« Core tags for expression language support, conditional logic and flow control,
iterator actions, and access to URL-based resources

« Tags for XML processing, flow control, and XSLT transformations
« SQL tags for database access
« Tags for I18N-capable internationalization and formatting
(The term "I18N" refers to an internationalization standard.)
Tag support is broken into four JSTL sublibraries according to the preceding functional
areas. Table 1-11 shows the standard TLD URI and prefix for each sublibrary.

Table 1-11 JSTL Sublibraries

Functionality URI Prefix
Core http://java.sun.comjstl/core c:
XML processing http://java. sun.conljstl/xmn X:
SQL database access http://java.sun.confjstl/sql sql:
118N internationalizationand http://java. sun.conmljstl/fnt fmt:
formatting

See "Overview of JSTL Tags and Additional Features" on page 1-17 for more
information.

Note: Given the constraints of having to work with JSP 1.2
containers, the JSTL 1.0 implementation was required to support
both the expression language model and the request-time
expression model. This dual support is accomplished through
parallel JSTL sublibraries. For each sublibrary (core, XML, SQL, and
118N) there are separate TLDs, and hence separate TLD URIs, for
the two versions.

It is expected that most users will want to use the expression
language model, corresponding to the URIs listed previously. To
use the request-time expression model, add " _rt " to each URI in
order to access the appropriate TLDs. By convention,add " _rt " to
each prefix as well ("c_rt: ", for example).

Summary of JSTL Expression Language

The JSTL expression language makes use of the fact that JSP scoped attributes and
request parameters are the preferred vehicles for passing information to and from JSP

Overview of Tag Libraries and Utilities 1-15

Support for the JavaServer Pages Standard Tag Library

pages. By using the JSTL expression language, you can avoid having to use JSP
scriptlets and request-time expressions.

In JSTL 1.0, the expression language can be used only in JSTL tag attribute values.

As an example, consider the following use of the JSTL c: i f tag to pick out
steel-making companies from a company list:

<c:if test="${conpany.industry == 'steel'}">
<lc:iif>

The rest of this section summarizes JSTL expression language syntax and documents
how to enable JSTL expression language evaluation in your OC4J JSP applications.

JSTL Expression Language Syntax

This following list offers a brief summary of key syntax features of the JSTL expression
language. This is followed by a few simple examples.

= Invocation

The JSTL expression language is invoked through ${ expr essi on} syntax. The
most basic semantic is that invocation of a named variable ${ f oo} yields the
same result as the method call PageCont ext . fi ndAttri but e(foo).

. Data structure access

To access data within JavaBeans and within collections such as lists, maps, and
arrays, the expression language supports the ". "and "[] " constructs. The ". "
construct allows access to properties whose names are standard Java identifiers.
The "[] " construct is for more generalized access, but for valid Java identifiers is

equivalent to the ". " construct. The expressions f oo. bar and f oo["bar "] yield
the same result, for example.

« Relational operators

The expression language supports the relational operators == (or eq), ! = (or ne), <
(orlt),>(orgt),<=(orle),>=(orge).
= Arithmetic operators

The expression language supports the arithmetic operators +, -, *,/ (or di v), %
(or nod, for remainder or modulo).

= Logical operators

The expression language supports the logical operators & (or and), | | (oror),!
(ornot), enpt y.

Example: Basic The following example shows fairly basic invocations of the expression
language, including the relational "<=" (less than or equal to) operator.

<c:if test="${auto.price <= customer.priceLimt}">
The <c:out val ue="${auto. makenodel }"/> is in your price range.
<lc:iif>

Example: Accessing Collections The following example, from the Sun Microsystems
JavaServer Pages Standard Tag Library, Version 1.0 specification, shows use of the ". " and
"[1" constructs:

<% - "productDir" is a Map object containing the description of
products, "preferences" is a Map object containing the
preferences of a user --%

1-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Support for the JavaServer Pages Standard Tag Library

product:

<c:out val ue="${productDir[product.custid]}"/>
shi ppi ng preference:

<c:out value="${user.preferences['shipping]}"/>

JSTL Expression Language Implicit Objects
JSTL offers the following implicit objects:

« pageScope: Allows access to page-scope variables.

« request Scope: Allows access to request-scope variables.

« sessi onScope: Allows access to session-scope variables.

« applicationScope: Allows access to application-scope variables.

« pageCont ext : Allows access to all properties of the page context of a JSP page.

« param Thisis aJava Map object where par anf " f 00"] returns the first string
value associated with the request parameter f 0o.

« paranVal ues: Use par anVal ues[" f 00"], for example, to return an array of all
string values associated with request parameter f 0o.

« header: Similarly to using par am you can use this to access the first string value
associated with a request header.

« header Val ues: Similarly to using par anVal ues, you can use this to access all
string values associated with a request header.

« i nitParam Allows access to context initialization parameters.

« cooki e: Allows access to cookies received in the request.

JSTL Expression Language Additional Features
The expression language also offers the following features:

« It can provide default values where failure to evaluate an expression is considered
to be recoverable.

« Where application data might not exactly match the type expected by a tag
attribute or expression language operator, there are rules to convert the type of the
resulting value to the expected type.

See the JSTL 1.0 specification for information.

Overview of JSTL Tags and Additional Features

The following sections provide a summary of JSTL tags and discuss some additional
JSTL features:

« Scoped Variables
« Configuration Data and the Config Class

« JSTL Tag Summary

Scoped Variables

JSTL tags make data available through JSP scoped attributes, referred to as scoped
variables, which are used in place of scripting variables. JSTL tags that can make data
available in this way have var and scope among their attributes, used as follows:

« Vvar:the variable that is to be exposed

Overview of Tag Libraries and Utilities 1-17

Support for the JavaServer Pages Standard Tag Library

= scope: the scope of the variable, either page (default), r equest , sessi on, or
application

The scope attribute would not be relevant for NESTED variables (which would always
have page scope), but variables in the JSTL are AT_END (available from the end-tag to
the end of the page).

The following example uses the core library iterator action tag f or Each and
expression language support tag out to expose the current item of an enpl oyees
collection:

<c: forEach var="enpl oyee" itens="${custoners}">
The current enployee is <c:out val ue="${custoner}"/>
</c:forEach>

Configuration Data and the Config Class

JSTL includes functionality to dynamically override JSP configuration data for a
particular scope, through a scoped variable. You can accomplish this using
functionality of the j avax. servl et.j sp.jstl.core. Confi g class.

According to the JSP specification, all scopes (page, r equest , sessi on, and

appl i cati on) that exist within a JSP page context should together form a single
namespace; that is, the name of a scoped variable should be unique across execution of
a page.

The Conf i g class has functionality to transparently manipulate configuration
parameter names to produce the effect that each scope has its own namespace.
Effectively, this enables you to set a configuration parameter for a particular scope
only.

See the JSTL 1.0 specification for information.

JSTL Tag Summary

Table 1-12 summarizes the JSTL tags, organized into functional groups. The JSTL
standard tag prefix is noted for each group.

Table 1-12 Summary of JavaServer Pages Standard Tag Library

Tag Group Description of Group Individual Tags

Core, EL support Includes tags to evaluate an expression and c:out
output the result to the current JspWi t er c:set
object, set the value of a scoped variable or c:remove
of a property of a target object, remove a c.catch
scoped variable, and catch a Thr owabl e
instance thrown by a nested action.

Core, conditional Includes tags to evaluate body contentifa c:if
test attribute evaluates ast r ue, and c.choose
specify mutually exclusive conditional c:when
execution paths. The when and c:otherwise
ot her wi se tags are used with the choose
tag.

Core, iterators Includes tags to iterate body execution over c:forEach
a collection of objects, or a specified c:forTokens

number of times, and iterate over a set of
tokens separated by supplied delimiters.

1-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Support for the JavaServer Pages Standard Tag Library

Table 1-12 (Cont.) Summary of JavaServer Pages Standard Tag Library

Tag Group

Description of Group

Individual Tags

Core, URL-related

XML, core

XML, flow control

XML, transforms

SQL

118N, internationalization

Includes tags to import the content of a
URL-based resource, create a URL using
appropriate rewriting rules, send an HTTP
redirect to the client, and add a request
parameter to a URL. The par amtag is a
subtag of thei nport,url,andredi rect
tags.

Includes tags to parse an XML document,
evaluate an XPath expression and output
the result to the current JIspW i t er object,
and evaluate an XPath expression and store
the result in a scoped variable. (See the
note after this table regarding XPath.)

Includes tags to evaluate a specified XPath
expression and render its content if the
expression evaluates as true, specify
mutually exclusive conditional execution
paths, and evaluate a specified XPath
expression and repeat body execution over
the result. The when and ot her wi se tags
are used with the choose tag.

Includes tags to apply an XSLT style sheet
transformation to a document, and set
transformation parameters. The par amtag
is a subtag of the t r ansf or mtag.

Includes tags to query a database, update a
database (UPDATE/| NSERT/DELETE),
establish a transaction context for queries
and updates, export a data source as a
scoped variable or data source
configuration variable, set the values for
parameter placeholders ("?") in a SQL
statement, and set the values for parameter
placeholders where the type is

java.util . Date. The par amand

dat ePar amtags are subtags of the query
and updat e tags.

Includes tags to store a specified locale in
the locale configuration variable, create an
118N localization context for use within the
tag, create a localization context and store it
for use outside the tag, look up a localized
message in a resource bundle, and set the
request character encoding. The par amtag
can be used with the nessage tag to
replace a parameter in the message tag.

c:import
c.url
c:redirect
c:param

Xparse
X:out
X:set

X:if
Xx:choose
x:when
x:otherwise
x:forEach

x:transform
X:param

sql:query
sql:update
sql:transaction
sql:setDataSource
sql:driver
sql:param
sql:dateParam

fmt:locale
fmt:bundle
fmt:message
fmt:param
fmt:requestEncoding

Overview of Tag Libraries and Utilities 1-19

Support for the JavaServer Pages Standard Tag Library

Table 1-12 (Cont.) Summary of JavaServer Pages Standard Tag Library

Tag Group Description of Group Individual Tags
118N, formatting Includes tags to specify a time zone for fmt:timeZone
formatting or parsing, store a specified fmt:setTimeZone

time zone in a scoped variable or time zone fmt:formatNumber
configuration variable, format a numeric fmt:parseNumber
value as appropriate for a locale or special fmt:formatDate
customization, parse the string fmt:parseDate
representation of a numeric value that had

been formatted for a locale or special

customization, format a date or time for a

locale or special customization, and parse

the string representation of a date or time

that had been formatted for a locale or

special customization.

Note: JSTL tags for XML processing are based on XPath (XML
Path), a W3C recommendation. XPath provides a concise notation
for specifying and selecting parts of an XML document. Refer to the
following Web site for information:

http://ww. w3. or g/ TR/ xpat h

JSTL Usage Notes and Future Considerations
Be aware off the following considerations:

The Oracle Application Server 10g Release 2 (10.1.2) JSTL implementation is based
on the Jakarta 1.0.3 JSTL version and is suitable for use with OC4J. See the
following location for more information about Jakarta:

http://jakarta. apache.org/taglibs/doc/standard-doc/intro. htn

The custom JML, XML, and data-access (SQL) tag libraries provided with OC4J
pre-date JSTL and have areas of duplicate functionality. For standards compliance,
it is now generally advisable to use JSTL instead of the custom libraries, and
Oracle plans to desupport the JML library in a future release. For features in the
custom libraries that are not yet available in JSTL, where there seems to be general
usefulness, Oracle will try to have the features adopted into the JSTL standard as
appropriate.

For the filter functionality of JSTL XML tags to work in OC4J, you must set the
SAX driver when starting OC4J. Otherwise, the JSTL demo Fi | t er. j sp gives the
following exception:

javax.servlet.jsp. JspException: Systemproperty org.xnl.sax.driver not
specified

When starting OC4J standalone, use the following option in the command line:
-Dorg. xm . sax. dri ver=oracl e. xn . parser. v2. SAXPar ser

When starting Oracle Application Server, you can specify this setting through the
system properties.

1-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle Components

Overview of Tag Libraries from Other Oracle Components

A number of other Oracle components, outside OC4J, provide JSP tag libraries. The
following sections summarize these libraries:

« Oracle ADF Business Components Tag Library

« Oracle JDeveloper User Interface Extension (UIX) Tag Library

« Oracle ADF Business Components UIX Tag Library

« Oracle Application Server Wireless Location Tag Library

« Oracle Application Server MapViewer Tag Library

« Oracle Ultra Search Tag Library

« Oracle Application Server Portal Tag Library

« Oracle Business Intelligence Beans Tag Library

« Oracle Application Server Multimedia Tag Library

The Oracle tag libraries introduced in this section comply with JSP standards.

The following discussion assumes some prior knowledge of the underlying
components.

Oracle ADF Business Components Tag Library

Oracle Application Development Framework (Oracle ADF), offered as part of Oracle
JDeveloper, includes the component technology Oracle ADF Business Components.
This includes a library of custom Business Components data tags.

These data tags provide a simple tag-based approach for interaction with Business
Components data sources, allowing complete access to business components with
viewing, editing, and full DML control capabilities. The tag-based approach to
building JSP applications with Business Components does not require extensive Java
programming and is very much like coding an HTML page.

For more information, refer to the Oracle JDeveloper online help or to the following
location on the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ products/j dev/content. htm

Oracle JDeveloper User Interface Extension (UIX) Tag Library

Oracle JDeveloper provides a set of custom tags known as User Interface Extension
(UIX) tags. The tags invoke UIX controls, generating the HTML to render tabs, buttons,
tables, headers, and other layout and navigational components that implement the
Oracle browser look and feel.

The tags are included on several palette pages: UIX JSP Border Layout, UIX JSP Form,
UIX JSP Layout, UIX JSP Message Components, UIX JSP Page Layout, UIX JSP Simple
Components, and UIX JSP Table.

For more information, refer to the Oracle JDeveloper online help or to the following
location on the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ products/j dev/content. htm

Overview of Tag Libraries and Utilities 1-21

Overview of Tag Libraries from Other Oracle Components

Oracle ADF Business Components UIX Tag Library

UIX JSP pages can include both Business Components data tags and Business
Components UIX convenience tags that simplify the presentation of data.

The Business Components UIX convenience tags rely on an Appl i cat i onModul e
data tag to get the data source from the Business Components application module. In
addition to the Business Components UIX tags, you can use the (non-UIX) Business
Components tags in UIX JSP pages.

For more information, refer to the Oracle JDeveloper online help or to the following
location on the Oracle Technology Network:

http://wwmv. oracl e. com t echnol ogy/ product s/j dev/ content. ht mi

Oracle Application Server Wireless Location Tag Library
Developers of location-based applications need specialized services for the following:

« Geocoding: associating geographical coordinates with addresses

« Mapping: providing a graphical map for a point, set of points, route, or driving
maneuver

« Routing: providing driving directions

« Business directories ("yellow pages"): listing businesses by region and by either
category or name

« Traffic: providing information about accidents, construction, and other incidents
that affect traffic flow

The OracleAS Wireless location application components compose an API for
performing geocoding, providing driving directions, and looking up business
directories. Service proxies are included that map existing key providers to the API,
and additional providers are expected to be accommodated in the future.

For JSP developers, a tag library is provided. For more information, refer to the Oracle
Application Server Wireless Developer’s Guide.

Oracle Application Server MapViewer Tag Library

The OracleAS MapViewer is a programmable tool for rendering maps using spatial
data managed by Oracle Spatial or Oracle Locator (also referred to as Locator).
OracleAS MapViewer provides tools that hide the complexity of spatial data queries
and cartographic rendering, while providing customizable options for more advanced
users. These tools can be deployed in a platform-independent manner and are
designed to integrate with map-rendering applications.

For convenience, OracleAS MapViewer includes a JSP tag library that you can use to
submit map requests.

For more information, see the Oracle Application Server MapViewer User’s Guide.

Oracle Ultra Search Tag Library

Oracle Ultra Search provides a custom tag library for use by developers in
incorporating content search functionality into JSP applications. The library includes
the following functionality:

« The ability to retrieve search attributes, groups, languages, and lists of values
(LOVs) for rendering the advance query form

1-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle Components

« The ability to iterate through the resulting hit set and retrieve document attributes
and properties for rendering the result page

« The ability to perform a search with "relevance boosting" and an estimation of the
total hit count

For more information, see the Oracle Ultra Search User’s Guide. Alternatively, refer to
the Oracle Ultra Search online documentation, under Oracle Ultra Search JSP Tag
Library.

Oracle Application Server Portal Tag Library

With OracleAS Portal, developers can accomplish the following:

« Build and deploy Internet portals to deliver relevant information and applications
to customers, employees, and partners.

« Develop portals rapidly, without code, using productive online tools.
« Increase user productivity with single sign-on and self-service publishing.
« Add value quickly with over 250 prebuilt portlets based on open standards.

The OracleAS Portal tag library provides further convenience for developers building
customizable Internet portals. A developer can create internal JSP pages, which are
stored inside the Portal database and downloaded when the portal is executed, or
external JSP pages, which are stored in the file system, or some combination.

For more information, refer to Oracle9i Application Server Portal: Adding JSPs, available
through the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ docunent ati on

Oracle Business Intelligence Beans Tag Library

The Oracle Business Intelligence Beans (OracleBl Beans) product consists of Java
components, utilities, and a JSP tag library that enable rapid development of analytical
applications. OracleBI Beans applications leverage the capabilities of OLAP in Oracle
Database. Using OracleBI Beans, you can develop both HTML-client and Java-client
applications.

Note: The OracleBl Beans product is a component of the Oracle
Developer Suite (OracleDS) and is for use with Oracle JDeveloper.

OracleBI Beans includes the following groups of Java components:
« Presentation beans: beans that let you view, manipulate, and print data
« OLAP beans: beans that interact with an Oracle OLAP data source

« Persistence service: a set of Java packages that support the storage and retrieval of
object definitions in the OracleBl Beans Catalog

For further developer convenience, OracleBl Beans includes a JSP tag library. You can
use JDeveloper to create OracleBl Beans JSP pages. A JDeveloper wizard prompts you
for information related to the tag that you want to use and inserts the coded tag in the
JSP page.

For more information, refer to the OracleBl Beans online help. Under "Building Web
Modules", click "Using JSP Tags", then "List of Bl Beans JSP Tags".

Overview of Tag Libraries and Utilities 1-23

Overview of Tag Libraries from Other Oracle Components

Oracle Application Server Multimedia Tag Library

Oracle Application Server provides the Multimedia Tag Library, a custom JSP tag
library for use by developers and Web page authors when generating multimedia
HTML tags in JSP pages and uploading multimedia data into interMedia objects.

Oracle interMedia enables Oracle Database to store, retrieve, manage, and manipulate
images, audio, video, and other media data, while integrating it with other enterprise
information. Specifically, Oracle interMedia supports media storage, media retrieval,
media management, and manipulation of media data managed by Oracle and stored
in binary large objects, file-based large objects, URLs that contain media data, and
specialty servers. Oracle interMedia is accessible to applications through relational and
object interfaces.

Oracle interMedia uses object types that are similar to Java classes to describe media
data. These interMedia objects have a common media data storage model. Oracle
interMedia also provides Java classes to enable users to write Java applications using
interMedia objects. There are also Oracle interMedia Java classes for servlets and
JavaServer Pages to facilitate retrieving and uploading media data from and to Oracle
Database instances.

The Multimedia Tag Library includes a set of tags for retrieving media data and a set
for uploading media data. The Multimedia JSP tags for media retrieval include a set of
common attributes and tag-specific media-render-attributes. The common attributes
are: custom-retrieval-attributes, database-connection-attributes,
media-access-attributes, media-cache-control-attributes, and
table-and-column-attributes. The media-render-attributes are described with each
media retrieval tag.

See Oracle Application Server Multimedia Tag Library for JSP User’s Guide and Reference for
additional information about the Multimedia JSP tags.

1-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

2

JavaBeans for Extended Types

This chapter describes JavaBeans provided with OC4J for use as extended types. For
JSP pages, these types offer advantages over Java primitive types or j ava. | ang

types.
The chapter consists of the following sections:

« Overview of IML Extended Types
« JML Extended Type Descriptions

Overview of JML Extended Types

JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following type categories is fully suitable for use in JSP pages:

« Primitive typessuchasi nt,fl oat,and doubl e

Values of these types cannot have a specified scope. They cannot be stored in a JSP
scope object (for page, r equest , sessi on, or appl i cat i on scope), because
only objects can be stored in a scope object.

« Wrapper classes in the standard j ava. | ang package, such as | nt eger, Fl oat ,
and Doubl e

Values of these types are objects, so they can theoretically be stored in a JSP scope
object. However, they cannot be declared in aj sp: useBean action, because the
wrapper classes do not follow the JavaBean model and do not provide
zero-argument constructors.

Additionally, instances of the wrapper classes are immutable. To change a value,
you must create a new instance and assign it appropriately.

To work around these limitations, OC4J provides the following JavaBean classes in the
oracl e.j sp.jm package to act as wrappers for the most common Java types:

« Jnl Bool ean to represent a bool ean value
« Jml Nunber to representani nt value

« Jnml FPNumber to represent a doubl e value
« Jml Stringtorepresenta String value

Each of these classes has a single attribute, val ue, and includes methods to get the
value, set the value from input in various formats, test whether the value is equal to a
value specified in any of several formats, and convert the value to a string.

Alternatively, instead of using the get Val ue() and set Val ue() methods, you can
use the j sp: get Property andj sp: set Property tags, as with any other bean.

JavaBeans for Extended Types 2-1

JML Extended Type Descriptions

The following example creates a Jm Nunber instance called count that has
appl i cati on scope:

<j sp: useBean i d="count" class="oracle.jsp.jm.Jn Nunber" scope="application" />

Later, assuming that the value has been set elsewhere, you can access it as follows:
<h3> The current count is <%-count.getVal ue() % </ h3>

The following example creates a Jm Nunber instance called maxSi ze that has
request scope, and sets it using set Property:

<j sp: useBean i d="naxSi ze" class="oracle.jsp.jnm.Jm Nunber" scope="request" >
<j sp: setProperty name="nmaxSi ze" property="val ue" val ue="<% 25 %" />
</ j sp: useBean>

JML Extended Type Descriptions

This section documents the public methods of the four extended types—Jmi Bool ean,
Jm Nunber, Jm FPNunber , and Jm St ri ng—followed by an example.

Note: To use the IML extended types, verify that the
oj sputil.j ar fileisinstalled and in your classpath. This file is
supplied with OC4J.

Type JmIBoolean

A Jm Bool ean object represents a Java bool ean value.

The get Val ue() and set Val ue() methods get or set the val ue property of the
bean as a Java bool ean value.

« bool ean getVal ue()
« Vvoid setVal ue(bool ean)

The set TypedVal ue() method has several signatures and can set the val ue
property from a string (such as "t r ue" or "f al se"), aj ava. | ang. Bool ean value, a
Java bool ean value, or a Jm Bool ean value. For the string input, conversion of the
string is performed according to the same rules as for the val ueOf () method of the
j ava. | ang. Bool ean class.

« Vvoid setTypedVal ue(String)

« Vvoid setTypedVal ue(Bool ean)

« Vvoid setTypedVal ue(bool ean)

« void setTypedVal ue(Jm Bool ean)

The equal s() method tests whether the val ue property is equal to the specified Java
bool ean value.

« bool ean equal s(bool ean)

Thet ypedEqual s() method has several signatures and tests whether the val ue
property has a value equivalent to a specified string (such as "t r ue" or "f al se"),
j ava. | ang. Bool ean value, or Jm Bool ean value.

« bool ean typedEqual s(String)

«» bool ean typedEqual s(Bool ean)

2-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Extended Type Descriptions

« bool ean typedEqual s(Jnl Bool ean)

Thet oSt ri ng() method returns the val ue property asaj ava. | ang. String
value, either "t rue" or "f al se".

« String toString()

Type JmINumber

A Jm Nunber object represents a 32-bit number equivalent to a Java i nt value.

The get Val ue() and set Val ue() methods get or set the val ue property of the
bean as aJavai nt value.

« int getValue()
« Vvoid setValue(int)

The set TypedVal ue() method has several signatures and can set the val ue
property from a string, aj ava. | ang. | nt eger value, aJavai nt value, ora

Jm Number value. For the string input, conversion of the string is performed
according to the same rules as for the decode() method of the j ava. | ang. | nt eger
class.

« Vvoid setTypedVal ue(String)

« Vvoid setTypedVal ue(Il nteger)

« void setTypedVal ue(int)

« Vvoid set TypedVal ue(Jm Nunber)

The equal s() method tests whether the val ue property is equal to the specified Java
i nt value.

« bool ean equal s(int)

The t ypedEqual s() method has several signatures and tests whether the val ue
property has a value equivalent to a specified string (such as "1234"),
java. l ang. I nt eger value, or 3Jm Nunber value.

« bool ean typedEqual s(Stri ng)
« bool ean typedEqual s(I nteger)
« bool ean typedEqual s(Jm Nunber)

Thet oSt ri ng() method returns the val ue property as an equivalent
java. |l ang. Stri ng value (such as "1234"). This method has the same functionality
asthet oString() method of thej ava. | ang. | nt eger class.

= String toString()

Type JmIFPNumber

A Jm FPNumber object represents a 64-bit floating point number equivalent to a Java
doubl e value.

The get Val ue() and set Val ue() methods get or set the val ue property of the
bean as a Java doubl e value.

« doubl e getVal ue()

« Vvoid setVal ue(doubl e)

JavaBeans for Extended Types 2-3

JML Extended Type Descriptions

The set TypedVal ue() method has several signatures and can set the val ue
property from a string (such as "3. 57"), aj ava. | ang. | nt eger value, aJavai nt
value, aj ava. | ang. Fl oat value,alJavaf| oat value,aj ava. | ang. Doubl e value,
aJava doubl e value, or a Jnl FPNunber value. For the string input, conversion of the
string is according to the same rules as for the val ueO () method of the

j ava. | ang. Doubl e class.

« Vvoid setTypedVal ue(String)

« Vvoid setTypedVal ue(l nteger)

« Vvoid setTypedVal ue(int)

« Vvoid setTypedVal ue(Fl oat)

« Vvoid setTypedVal ue(float)

« Vvoid setTypedVal ue(Doubl e)

« Vvoid setTypedVal ue(doubl e)

« Vvoid setTypedVal ue(Jm FPNunber)

The equal s() method tests whether the val ue property is equal to the specified Java
doubl e value.

« bool ean equal s(doubl e)

Thet ypedEqual s() method has several signatures and tests whether the val ue
property has a value equivalent to a specified string (such as "3. 57"),

java. | ang. | nt eger value, Javai nt value, j ava. | ang. Fl oat value, Java f| oat
value, j ava. | ang. Doubl e value, Java doubl e value, or Jm FPNunber value.

« bool ean typedEqual s(String)

« bool ean typedEqual s(I nteger)

« bool ean typedEqual s(int)

« bool ean typedEqual s(Fl oat)

« bool ean typedEqual s(fl oat)

«» bool ean typedEqual s(Doubl e)

« bool ean typedEqual s(Jm FPNunber)

Thet oSt ri ng() method returns the val ue property asaj ava. |l ang. Stri ng
value (such as "3. 57"). This method has the same functionality asthet oSt ri ng()
method of the j ava. | ang. Doubl e class.

= String toString()

Type JmlString

AJml String object representsaj ava. | ang. Stri ng value.

The get Val ue() and set Val ue() methods get or set the val ue property of the
beanasaj ava. | ang. Stri ng value. If the input in a set Val ue() call is null, then
the val ue property is set to an empty (zero-length) string.

« String getVal ue()

« Vvoid setValue(String)

Thet oSt ri ng() method is functionally equivalent to the get Val ue() method.
« String toString()

2-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Extended Type Descriptions

The set TypedVal ue() method sets the val ue property according to the specified
Jm St ring value. If the Jm St ri ng value is nul |, then the val ue property is set to
an empty (zero-length) string.

« void setTypedVval ue(Jm Stri ng)

The i senpt y() method tests whether the val ue property is an empty (zero-length)
string: "

« boolean i sEnpty()

The equal s() method has two signatures and tests whether the val ue property is
equal to a specified j ava. | ang. Stri ng value orJm St ri ng value.

« bool ean equal s(String)

« bool ean equal s(Jm String)

JML Extended Types Example

This example illustrates the use of IML extended type JavaBeans for management of
simple types at scope. The page declares four session objects, one for each JML type.
The page presents a form that enables you to enter values for each of these types. Once
new values are submitted, the form displays both the new values and the previously

set values. In the process of generating this output, the page updates the session
objects with the new form values.

<jsp:useBean id = "subnmitCount" class = "oracle.jsp.jm.Jm Nunber" scope = "session" />

<jsp:useBean id = "bool" class = "oracle.jsp.jm.Jnl Bool ean" scope = "session" >
<j sp:setProperty name = "bool" property = "value" param = "fBool ean" />
</j sp: useBean>

<jsp:useBean id = "nunt class
<j sp: set Property nane
</j sp: useBean>

"oracle.jsp.jm.Jm Nunber" scope = "session" >
“nunt property = "value" param = "fNunmber" />

<jsp:useBean id = "fpnunmt class = "oracle.jsp.jm.Jm FPNunber" scope = "session" >
<j sp:setProperty name = "fpnun property = "value" param = "fFPNunber" />
</j sp: useBean>

<jsp:useBean id = "str" class
<j sp: set Property name
</ j sp: useBean>

"oracle.jsp.jm.Jm String" scope = "session" >
"str" property = "value" param= "fString" />

<HTML>

<HEAD>
<META HTTP- EQUI V="Cont ent - Type" CONTENT="t ext/ht m ; CHARSET=i so- 8859- 1" >
<META NAME="GENERATCR' Content="Visual Page 1.1 for Wndows">
<TI TLE>Ext ended Dat at ypes Sanpl e</ TI TLE>

</ HEAD>

<BODY BACKGROUND="i nages/ bg. gi f* BGCOLOR="#FFFFFF" >

<%if (submtCount.getValue() >1) { %
<h3> Last subnitted val ues </ h3>

<l'i> bool: <% bool .getVal ue() %
 num <% num getVal ue() %
 fpnum <% fpnum getVal ue() %

JavaBeans for Extended Types 2-5

JML Extended Type Descriptions

 string: <% str.getValue() %

<%}

if (submtCount.getValue() >0) { %

"bool " property = "value" param= "fBool ean" />
"nuni' property = "value" param = "fNunmber" />
“fpnunt' property = "val ue" param = "fFPNurmber" />
"str" property = "value" param= "fString" />

<j sp: set Property name
<j sp: set Property nane
<j sp: set Property nane
<j sp: set Property nane

<h3> New submitted val ues </ h3>

<l'i> bool: <jsp:getProperty name="hool " property="val ue" />
 num <jsp:getProperty name="nuni property="val ue" />
 fpnum <jsp:getProperty nane="fpnuni property="value" />
<l'i> string: <jsp:getProperty name="str" property="val ue" />
<ful>

<%} %

<j sp: setProperty name = "subnitCount" property = "value" value = "<% submitCount.getValue() + 1
%ll />

<FCRM ACTI ON="i ndex. j sp" METHOD="POST" ENCTYPE="appli cati on/ x- wwf or murl encoded" >

<P> <pre>

bool ean test: <INPUT TYPE="text" NAME="fBool ean" VALUE="<% bool . get Val ue() %" >
nunber test: <INPUT TYPE="text" NAME="fNumber" VALUE="<% num get Val ue() %" >

fpnunber test: <INPUT TYPE="text" NAME="fFPNumber" VALUE="<% fpnum getVal ue() %" >
string test: <INPUT TYPE="text" NAME="fString" VALUE= "<% str.getValue() %" >

</ pre>

<P> <I NPUT TYPE="submit">

</ FORM>

</ BODY>

</ HTML>

2-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

3

JSP Markup Language Tags

This chapter documents the Oracle JSP Markup Language (JML) tag library, which
provides a set of JSP tags to allow developers to script JSP pages without using Java
statements. The JML library provides tags for variable declarations, control flow,
conditional branches, iterative loops, parameter settings, and calls to objects.

The chapter consists of the following sections:
« Overview of the JSP Markup Language (JML) Tag Library
« JSP Markup Language (JML) Tag Descriptions

Note: The library described here, which uses a standard runtime
implementation, is also supported through an Oracle-specific
compile-time implementation. The compile-time syntax and tags
are documented in Appendix A, "JML Compile-Time Syntax and
Tags". General considerations in using compile-time tags instead of
runtime tags are discussed in the Oracle Application Server Containers
for J2EE Support for JavaServer Pages Developer’s Guide.

Overview of the JSP Markup Language (JML) Tag Library

OC4J supplies the JSP Markup Language (JML) tag library, developed according to JSP
standards. JML tags are intended to simplify coding syntax for JSP developers who are
not proficient with Java. There are two main categories of JML tags: logic/flow control
and bean binding.

These topics are covered in the following sections:

« JML Tag Library Philosophy

« JML Tag Categories

Note the following requirements for using JML tags:

« Verify that the file oj sputi | . j ar is installed and in your classpath. This file is
provided with the OC4J installation, in the "well-known" tag library directory.

« The tag library descriptor, j m . t | d, must be available to the application, and any
JSP page using the library must have an appropriate t agl i b directive. In an
Oracle Application Server installation, the TLD is inoj sputil .jar.Theuri
value forj m . t I d is the following:

http://xm ns.oracle.comj2eeljsp/tid/ojsp/jm.tld

JSP Markup Language Tags 3-1

JSP Markup Language (JML) Tag Descriptions

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about t agl i b directives, the well-known tag
library directory, TLD files, and the meaning of ur i values.

Note: The custom JML tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. For standards compliance, it is now
generally advisable to use JSTL instead. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-14.

Oracle is not desupporting the existing library, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try to have
the features adopted into the JSTL standard as appropriate.

JML Tag Library Philosophy

JavaServer Pages technology is intended for two separate developer communities:
= Those whose primary skill is Java programming

« Those whose primary skill is in designing static content, particularly in HTML,
and who may have limited scripting experience

The JML tag library is designed to allow most Web developers, with little or no
knowledge of Java, to assemble JSP applications with a full complement of program
flow-control features.

This model presumes that the business logic is contained in JavaBeans that are
developed separately by a Java developer.

JML Tag Categories

The JML tag library covers a feature set split into two functional categories, as
summarized in Table 3-1.

Table 3-1 JML Tag Functional Categories

Tag Categories Functionality Tags

Bean binding tags The purpose of these tags is to useVariable
declare or undeclare a JavaBean ata useForm
specified JSP scope. See "Bean useCookie
Binding Tag Descriptions" on remove
page 3-3.

Logic/flow control tags These tags offer simplified syntaxto if
define code flow, such as for choose..when..[otherwise]
iterative loops or conditional foreach
branches. See "Logic and Flow return
Control Tag Descriptions" on flush
page 3-5.

JSP Markup Language (JML) Tag Descriptions

The following sections document the JML tags that are supported in the current JSP
runtime implementation:

« Bean Binding Tag Descriptions

« Logic and Flow Control Tag Descriptions

3-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions

Notes:

« The prefix "jml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Bean Binding Tag Descriptions
The following sections document JML tags used for bean-binding operations:

« JML useVariable Tag
« JML useForm Tag
« JML useCookie Tag

« JML remove Tag

JML useVariable Tag
This tag offers a convenient alternative to the j sp: useBean tag for declaring simple

variables.
Syntax
<jm:useVariable id = "beanl nst anceName"
[scope = "page" | "request" | "session" | "application"]
type = "string" | "boolean" | "nunber" | "fpnunber"
[value = "stringLiteral"] />

Attributes
« i d (required): Specifies the variable being declared.

« scope: Defines the duration or scope of the variable (as with aj sp: useBean
tag). The default scope is page.

« type (required): Specifies the type of the variable. Type specifications refer to
Jm St ring,Jm Bool ean, Jm Nunber, or Jm FPNunber .

« val ue: Use this to set the variable directly in the declaration, as either a string
literal or a JSP expression enclosed in <% . . . % syntax. If this attribute is not
specified, then the value remains the same as when it was last set (if it already
exists) or is initialized with a default value. If it is specified, then the value is
always set, regardless of whether this declaration instantiates the object or merely
acquires it from the named scope.

Example Consider the following example:

<jm:useVariable id = "isValidUser" type = "bool ean" value = "<% dbConn.isValid() %" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "isValidUser" class = "oracle.jsp.jm.Jm Bool ean" scope = "session" />
<jsp:setProperty name="isValidUser" property="value" value = "<% dbConn.isValid() %" />

JSP Markup Language Tags 3-3

JSP Markup Language (JML) Tag Descriptions

JML useForm Tag

This tag provides a convenient syntax for declaring variables and setting them to
values passed in from the request.

Syntax

<jm:useFormid = "beanl nstanceName"
[scope = "page" | "request" | "session" | "application"]
[type = "string" | "boolean" | "number" | "fpnunber"]

param = "request Par anet er Nane" />

Attributes
« i d (required): Specifies the variable being declared or referenced.

« scope: Defines the duration or scope of the variable (as with aj sp: useBean
tag). The default is "page".

« type: Specifies the type of the variable. Type specifications refer to Jm St ri ng,
Jm Bool ean, Jnl Nunber, or Jm FPNunber . The default is "st ri ng".

« par am(required): Specifies the name of the request parameter whose value is used
in setting the variable. If the request parameter exists, then the variable value is
always updated, regardless of whether this declaration brings the variable into
existence. If the request parameter does not exist, then the variable value remains
unchanged.

Example The following example sets a session variable named user of the type
Jm St ri ng to the value of the request parameter named user .

<jm:useFormid = "user" type = "string" param= "user" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jm.Jn String" scope = "session" />
<j sp:setProperty name="user" property="val ue" param = "user" />

JML useCookie Tag

This tag offers a convenient syntax for declaring variables and setting them to values
contained in cookies.

Syntax

<jm:useCookie id = "beanl nst anceNanme"
[scope = "page" | "request" | "session" | "application"]
[type = "string" | "boolean" | "nunber" | "fpnunber"]

cooki e = "cooki eNane" />

Attributes
« i d(required): Specifies the variable being declared or referenced.

« scope: Defines the duration or scope of the variable. This attribute is optional; the
default is "page".

« type:ldentifies the type of the variable. Type specifications referto Jm Stri ng,
Jm Bool ean, Jm Number, or IJm FPNunber . The defaultis "stri ng".

= cooki e (required): Specifies the name of the cookie whose value is used in setting
this variable. If the cookie exists, then the variable value is always updated,

3-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions

regardless of whether this declaration brings the variable into existence. If the
cookie does not exist, then the variable value remains unchanged.

Example The following example sets a request variable named user of the type
Jml St ri ng to the value of the cookie named user .

<jm:useCookie id = "user" type = "string" cookie = "user" scope = "request" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jm .Jm String" scope = "request” />

<%
Cooki es [] cookies = request. get Cookies();
for (int i =0; i < cookies.length; i++) {
if (cookies[i].getName().equal s("user")) {
user. set Val ue(cooki es[i].getValue());
break;
}
}
%

JML remove Tag
This tag removes an object, typically a bean, from its scope.

Syntax
<jm:remove id = "beanl nstanceNane"
[scope = "page" | "request" | "session" | "application"] />
Attributes
« i d (required): Specifies the name of the bean being removed.

« scope: Specifies the scope of the bean being removed. If not specified, then scopes
are searched in the following order: 1) page, 2) r equest , 3) sessi on, 4)
appl i cati on. The first object whose name matchesi d is removed.

Example The following example removes the session user object:

<jm:remove id = "user" scope = "session" />

This is equivalent to the following:

<% sessi on. renoveVal ue("user"); %

Logic and Flow Control Tag Descriptions
The following sections document JML tags that are used for logic and flow control:

« JML if Tag

« JML choose...when...[otherwise] Tags
« JML for Tag

« JML foreach Tag

« JML return Tag

« JML flush Tag

JSP Markup Language Tags 3-5

JSP Markup Language (JML) Tag Descriptions

These tags, which are intended for developers without extensive Java experience, can
be used in place of Java logic and flow control syntax such as iterative loops and
conditional branches.

JML if Tag

This tag evaluates a single conditional statement. If the condition is true, then the body
of thei f tag is executed.

Syntax

<jn:if condition = "<% jspExpression %" >
...body of jm:if tag (executed if the condition is true)...
<jm:if>

Attributes

= condi ti on (required): Specifies the conditional expression to be evaluated.

Example The following e-commerce example displays information from a user's
shopping cart. The code checks to see if the variable holding the current T-shirt order
is empty. If not, then the size that the user has ordered is displayed. Assume cur r TS is
of typeJm Stri ng.

<fm:if condition = "<% !currTS.isEmty() %" >
<S>(size: <% currTS. getVal ue().toUpperCase() %)</ S>
<jm:if>

JML choose...when...[otherwise] Tags

The choose tag, with associated when and ot her wi se tags, provides a multiple
conditional statement.

The body of the choose tag contains one or more when tags, where each when tag
represents a condition. For the first when condition that is true, the body of that when
tag is executed. A maximum of one when body is executed.

If the when conditions are all false, and if the optional ot her wi se tag is specified,
then the body of the ot her wi se tag is executed.
Syntax

<jm : choose>
<jm:when condition = "<% jspExpression %" >
...body of 1st jm:when tag (executed if the condition is true)...
</jm:when>

[...optional additional when tags...]
[<jm:otherw se>
...body of jm:otherwise tag (executed if all when conditions false)...
</jm:otherwise>]
</jm:choose>
Attributes The when tag uses the following attribute:
= condi ti on (required): Specifies the conditional expression to be evaluated.
The choose and ot her wi se tags have no attributes.

Example The following e-commerce example displays information from a user's
shopping cart. This code checks to see if anything has been ordered. If so, the current

3-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions

order is displayed; otherwise, the user is asked to shop again. (This example omits the
code to display the current order.) Presume or der edl t emis of the type Jnl Bool ean.

<jm : choose>
<jm :when condition = "<% orderedltem getVal ue() %" >
You have changed your order:
- output the current order --
</jn:when>
<jm:otherw se>
Are you sure we can't interest you in sonething, cheapskate?
</jn: ot herwi se>
</jm :choose>

JML for Tag
This tag provides the ability to iterate through a loop, as with a Java f or loop.

The i d attribute is a local loop variable of the type j ava. | ang. | nt eger that
contains the value of the current range element. The range starts at the value expressed
in the f r omattribute and is incremented by one after each execution of the body of the
loop, until it exceeds the value expressed in the t o attribute.

Once the range has been traversed, control goes to the first statement following the
f or end-tag.

Note: Descending ranges are not supported. The f r omvalue must
be less than or equal to the t o value.

Syntax

<jm:for id = "l oopVariabl e"
from= "<% jspExpression %"
to = "<% jspExpression %" >
...body of jnm:for tag (executed once at each val ue of range, inclusive)...
</jm:for>

Attributes

« i d (required): This is the name of the loop variable, which holds the current value
in the range. Thisisaj ava. | ang. | nt eger value and can be used only within
the body of the tag.

« from(required): Specifies the start of the range. This is an expression that must
evaluate to a Java i nt value.

« to (required): Specifies the end of the range. This is an expression that must
evaluate to a Javai nt value.

Example The following example repeatedly prints "Hello World" in progressively
smaller headings (H1, H2, H3, H4, H5).

<jm:for id="i" from"<% 1 %" to="<% 5 %" >
<H%i %>
Hel | o Worl d!
</ K% %>
</jm:for>

JSP Markup Language Tags 3-7

JSP Markup Language (JML) Tag Descriptions

JML foreach Tag

This tag provides the ability to iterate over a homogeneous set of values. The body of
the tag is executed once for each element in the set. If the set is empty, then the body is
not executed.

The i d attribute is a local loop variable containing the value of the current set element.
Its type is specified in the t ype attribute. The specified type should match the type of
the set elements, as applicable.

This tag currently supports iterations over the following types of data structures:
« Javaarray
« java.util.Enuneration

= java.util.Vector

Syntax

<jm:foreach id = "l oopVariabl "
in = "<% jspExpression %"
limt = "<% jspExpression %"

type = "package. cl ass" >
...body of jnl:foreach tag (executes once for each element in data structure)...
</jn:foreach>

Attributes

= i d(required): This is the name of the loop variable, which holds the value of the
current element at each step of the iteration. It can be used only within the body of
the tag. Its type is the same as specified in the t ype attribute.

= i n(required): Specifies a JSP expression that evaluates to a Java array,
Enuner at i on object, or Vect or object containing the set of values over which to
iterate.

« |limt (required): Specifies a JSP expression that evaluates to a Java i nt value
defining the maximum number of iterations, regardless of the number of elements
in the set.

« type (required): Specifies the type of the loop variable. This should match the
type of the set elements, as applicable.

Example The following example iterates over the request parameters.

<jm:foreach id="nane" in="<% request.getParanmeterNanes() %" type="java.lang.String" >
Parameter: <% nane %
Val ue: <% request. get Paranet er (nane) %

</jn:foreach>

Alternatively, if you want to handle parameters with multiple values:

<jm:foreach id="name" in="<% request.getParaneterNames() %" type="java.lang.String" >

Paraneter: <% name %

Value: <jnm:foreach id="val" in="<%request. getParaneterVal ues(nane) %"

type="java.lang. String" >
<% val % :
</jm:foreach>

</jn:foreach>

JML return Tag
When this tag is reached, execution returns from the page without further processing.

3-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions

Syntax

<jm:return />

Attributes

None.

Example The following example returns without processing the page if the timer has
expired.

<jm:if condition="<% timer.isExpired() %" >
You did not conplete in tine!
<jm:return />

<jm:if>

JML flush Tag
This tag writes the current contents of the page buffer back to the client. This applies

only if the page is buffered; otherwise, there is no effect.
Syntax
<jm:flush />

Attributes
None.

Example The following example flushes the current page contents before performing
an expensive operation.

<jm:flush />
<% nyBean. expensi veQper ation(out); %

JSP Markup Language Tags 3-9

JSP Markup Language (JML) Tag Descriptions

3-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

A

Data-Access JavaBeans and Tags

This chapter describes JavaBeans and tags provided with OC4J for use in accessing a
database from servlets and JSP pages.

The chapter consists of the following sections:
« JavaBeans for Data Access

« SQL Tags for Data Access

JavaBeans for Data Access

The OC4J product includes a set of JavaBeans that you can use to access a database.
The following sections describe the beans:

« Introduction to Data-Access JavaBeans
« Data-Access Support for Data Sources and Pooled Connections

« Data-Access JavaBean Descriptions

Note: The JavaBeans described here are used by the tags
discussed in "SQL Tags for Data Access" on page 4-11. Generally
speaking, these beans and tags can be used with non-Oracle
databases, assuming you have appropriate JDBC driver classes;
however, numerous features described below, as noted, are
Oracle-specific.

Introduction to Data-Access JavaBeans

OC4J supplies a set of custom JavaBeans for database access. The following beans are
included in the or acl e. j sp. dbut i | package:

« ConnBean opens a database connection. This bean also supports data sources and
connection pooling. See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-2 for related information.

« ConnCacheBean uses the Oracle JDBC connection caching implementation for
database connections. This requires JDBC 2.0.

« DBBean executes a database query. It also has its own connection mechanism, but
does not support data sources.

« Cur sor Bean provides general DML support for queries; UPDATE, | NSERT, and
DELETE statements; and stored procedure calls.

Data-Access JavaBeans and Tags 4-1

JavaBeans for Data Access

This section presumes a working knowledge of Oracle JDBC. Consult the Oracle
Database JDBC Developer's Guide and Reference as necessary.

To use the data-access JavaBeans, verify that the file oj sputi | . j ar isinstalled and in
your classpath. This file is provided with the OC4]J installation. For XML-related
methods and functionality, you will also need the file xsul2. j ar (for IDK 1.2.x or
higher), which is provided with Oracle Application Server.

You will also need appropriate JDBC driver classes installed and in your classpath,
such as oj dbc14. j ar for Oracle Database and JDK 1.4.

Note: The Oracle data-access JavaBeans implement the Oracle
JspScopeli st ener interface for event notification. Refer to "JSP
Event-Handling with JspScopeListener” on page 9-1 for information
about this interface.

Data-Access Support for Data Sources and Pooled Connections

The data-access JavaBeans, as well as the data-access tag library, support the use of
data sources to specify connection properties. This is also how support for connection
pooling is implemented. This mechanism supports both Oracle connection objects and
OC4J connection objects.

To use a data source in a JSP page, you must define the data source, its INDI name,
and its connection and pooling properties. In OC4J, do this in a<dat a- sour ce>
element in the dat a- sour ces. xml file. Here is an example:

<dat a- sour ce
cl ass="oracl e. j dbc. pool . Oracl eDat aSour ce"
nane="j dbc/ ej bpool / Or acl eDS"
| ocati on="j dbc/ Connecti onDS"
ej b-1ocati on="j dbc/ ej bpool / Or acl eDS"
url="j dbc: oracl e: t hi n: @vyhost: 1521/ nyservi ce"
user name="scott"
passwor d="ti ger"
m n- connect i ons="3"
max- connect i ons="50"
wai t-ti meout =" 10"
inactivity-timeout="30" />

It is advisable to use only the ej b- | ocat i on JNDI name in the JNDI lookup for an
emulated data source. See the Oracle Application Server Containers for J2EE Services
Guide for more information about data sources.

Data-Access JavaBean Descriptions

The following sections describe attributes and methods of the data-access
JavaBeans—ConnBean, ConnCacheBean, DBBean, and Cur sor Bean—and
concludes with an example that uses a data source:

« ConnBean for a Database Connection

= ConnCacheBean for Connection Caching

« DBBean for Queries Only

« CursorBean for DML and Stored Procedures

« Example: Using ConnBean and CursorBean with a Data Source

4-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access

ConnBean for a Database Connection

Useoracl e. jsp.dbutil.ConnBean to establish a simple database connection, one
that uses no connection pooling or caching.

Note: For queries only, if you do not require a data source, it is
simpler to use DBBean, which has its own connection mechanism.

ConnBean has the following properties. The user, passwor d, and URL properties are
not required if you use a data source.

dat aSour ce: JNDI name for a data source location

This is valid only for an environment that supports data sources. See "Data-Access
Support for Data Sources and Pooled Connections" on page 4-2 for information
about how to set up a data source in OC4J.

user : user ID for database schema

passwor d: user password

URL: database connection string

st nt CacheSi ze: cache size for Oracle JDBC statement caching

Setting st mt CacheSi ze enables Oracle JDBC statement caching.

execut eBat ch: batch size for Oracle JDBC update batching

Setting execut eBat ch enables Oracle JDBC update batching.

pr eFet ch: number of statements to prefetch in Oracle JDBC row prefetching
Setting pr eFet ch enables Oracle JDBC row prefetching.

comni t OnCl ose: "t rue” or "f al se" for whether to execute conmi t when the
connection is closed

The value of conmi t OnCl ose indicates whether an automatic commi t should be
executed when the connection is closed. A "t r ue" setting resultsinaconm t ; a
"f al se" setting resultsinar ol | back. Prior to Oracle9iAS Release 2, an
automatic commi t was always executed, but in current releases the default is an
automatic r ol | back. The comnri t OnCl ose property allows for backward
compatibility to ease migration.

Be aware that there can be an application-wide commi t - on- ¢l ose setting in the
application web. xm file, but the setting of the ConnBean property is not
automatically dependent on that setting. If a JSP pages uses ConnBean instead of
a dbOpen tag, the value of the commi t - on- ¢l ose context parameter should be
retrieved and then explicitly set as the conmi t OnCl ose value in the ConnBean
instance. For reference, here is a sample web. xnl entry that sets the

conmi t - on- cl ose context parameter:

<cont ext - par anp
<param name>commi t - on- cl ose</ par am name>
<par am val ue>t rue</ par am val ue>

</ cont ext - par anp

Note: See the Oracle Database JDBC Developer's Guide and Reference
for information about statement caching, update batching, and row
prefetching.

Data-Access JavaBeans and Tags 4-3

JavaBeans for Data Access

ConnBean provides the following setter and getter methods for these properties:

« void setDataSource(String)

« String getDat aSource()
« void setUser(String)
« String getUser()

« Vvoid setPassword(String)

« String getPassword()

« void setURL(String)

« String getURL()

« void setStntCacheSize(int)
« int getStntCacheSize()

« void set ExecuteBatch(int)

« int getExecuteBatch()

« void setPreFetch(int)

« int getPreFetch()

« void setComitOnCl ose(String)
« String get Conmit OnC ose()

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnBean properties with aj sp: set Property action
instead of using the setter method directly.

Use the following methods to open and close a connection or to verify its status:

« Vvoid connect ()

Establish a database connection using ConnBean property settings.

« void close()

Close the connection and any open cursors.

« bool ean i sConnectionC osed()

Determine if the connection is closed.

Use the following method to open a cursor and return a Cur sor Bean object:

« CursorBean get CursorBean(int, String)

or:

« CursorBean get CursorBean(int)

Input the following:

One of the following i nt constants to specify the type of JDBC statement you
want: Cur sor Bean. PLAI N_STMT for a St at enent object,

Cur sor Bean. PREP_STM for a Pr epar edSt at ement object, or

Cur sor Bean. CALL_STMT for a Cal | abl eSt at enent object

A string specifying the SQL operation to execute (optional)

4-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access

Alternatively, you can specify the SQL operation in the Cur sor Bean method
call that executes the statement.

See "CursorBean for DML and Stored Procedures” on page 4-8 for information about
Cur sor Bean functionality.

ConnCacheBean for Connection Caching

Useoracl e.jsp.dbutil.ConnCacheBean to use the Oracle JDBC connection
caching mechanism, using JDBC 2.0 connection pooling, for your database
connections. Refer to the Oracle Database JDBC Developer®s Guide and Reference for
information about connection caching.

Note: To use data sources or simple connection objects, use
ConnBean instead.

ConnCacheBean has the following properties:

= user:user ID for database schema

« passwor d: user password

« URL: database connection string

« maxLi m t: maximum number of connections allowed by this cache
« M nLi m t: minimum number of connections existing for this cache

If you use fewer than this number, there will also be connections in the idle pool of
the cache.

« st CacheSi ze: cache size for Oracle JDBC statement caching

Setting st nt CacheSi ze enables the Oracle JDBC statement caching feature. Refer
to the Oracle Database JDBC Developer*'s Guide and Reference for information about
Oracle JDBC statement caching features and limitations.

« cacheSchene: type of cache
This is indicated by one of the followingi nt constants.

— DYNAM C_SCHEME: New pooled connections can be created above and beyond
the maximum limit, but each one is automatically closed and freed as soon as
the logical connection instance that it provided is no longer in use.

— FI XED_WAI T_SCHEME: When the maximum limit is reached, any new
connection waits for an existing connection object to be released.

— FI XED_RETURN_NULL_SCHEME: When the maximum limit is reached, any
new connection fails, returning nul | , until connection objects have been
released.

The ConnCacheBean class includes the following getter and setter methods for its
properties:

« void setUser(String)

« String getUser ()

« Vvoid setPassword(String)
« String getPassword()

« void set URL(String)

Data-Access JavaBeans and Tags 4-5

JavaBeans for Data Access

« String get URL()

« void setMaxLinit(int)

« int getMaxLinmt()

« void setMnLinit(int)

« int getMnLinmt()

« void setStntCacheSize(int)
« int getStntCacheSize()

« void setCacheSchene(int)

Specify ConnCacheBean. DYNAM C_SCHEME, ConnCacheBean. FI XED WAl T_
SCHEME, or ConnCacheBean. FI XED_RETURN_NULL_SCHEME.

= int getCacheSchene()

Returns ConnCacheBean. DYNAM C_SCHEME, ConnCacheBean. FI XED WAI T_
SCHEME, or ConnCacheBean. FI XED_RETURN_NULL_SCHEME.

The ConnCacheBean class also inherits properties and related getter and setter
methods from the or acl e. j dbc. pool . Or acl eDat aSour ce class. This provides
getter and setter methods for the following properties: dat abaseNane,

dat aSour ceNane, descri pti on, net wor kPr ot ocol , port Nunber, ser ver Nane,
and dri ver Type. For information about these properties and their getter and setter
methods, see the Oracle Database JDBC Developer's Guide and Reference.

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnCacheBean properties with aj sp: set Property
action instead of using the setter method directly.

Use the following methods to open and close a connection:
« Connection getConnection()

Get a connection from the connection cache using ConnCacheBean property
settings.

« void close()
Close all connections and any open cursors.

Although the ConnCacheBean class does not support Oracle JDBC update batching
and row prefetching directly, you can enable these features by calling the

set Def aul t Execut eBat ch(i nt) and set Def aul t RowPr ef et ch(i nt) methods
of the Connect i on object that you retrieve from the get Connecti on() method.
Alternatively, you can use the set Execut eBat ch(i nt) and

set RowPr ef et ch(ii nt) methods of JDBC statement objects that you create from the
Connect i on object. (Update batching is supported only in prepared statements.)
Refer to the Oracle Database JDBC Developer*s Guide and Reference for information about
these features.

Note: When you use ConnCacheBean, use normal Connect i on
object functionality to create and execute statement objects (unlike
the case with ConnBean).

4-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access

DBBean for Queries Only
Useoracl e. jsp.dbutil.DBBean to execute queries only.

Notes:

« DBBean has its own connection mechanism but does not
support data sources. If you require a data source, use
ConnBean instead.

« Use Cur sor Bean for any other DML operations (UPDATE,
| NSERT, DELETE, or stored procedure calls).

DBBean has the following properties:

= user:user ID for database schema
« passwor d: user password

« URL: database connection string
DBBean provides the following setter and getter methods for these properties:
« void setUser(String)

« String getUser()

« Vvoid setPassword(String)

« String getPassword()

« void setURL(String)

« String get URL()

Note: As with any JavaBean you use in a JSP page, you can set
any of the DBBean properties with aj sp: set Proper t y statement
instead of using the setter method directly.

Use the following methods to open and close a connection:
« Vvoid connect ()
Establish a database connection using DBBean property settings.
« void close()
Close the connection and any open cursors.
Use either of the following methods to execute a query:
« String get Result AsHTM.Tabl e(Stri ng)

Input a string that contains the SELECT statement. This method returns a string
with the HTML commands necessary to output the result set as an HTML table.
SQL column names (or aliases) are used for the table column headers.

« String getResul t ASXMLString(String)

Input a string with the SELECT statement. This method returns the result set as an
XML string, using SQL names (or aliases) for the XML tags.

Data-Access JavaBeans and Tags 4-7

JavaBeans for Data Access

CursorBean for DML and Stored Procedures

Useoracl e.jsp.dbutil. CursorBean for SELECT, UPDATE, | NSERT, or DELETE
operations, or stored procedure calls, on a simple connection. It uses a previously
defined ConnBean object for the connection.

You can specify a SQL operation in a ConnBean object get Cur sor Bean() call or
through a call to one of the cr eat e() , execut e(), or execut eQuer y() methods of
a Cur sor Bean object as described below.

Cur sor Bean supports scrollable and updatable cursors, update batching, row
prefetching, and query timeout limits. For information about these Oracle JDBC
features, see the Oracle Database JDBC Developer's Guide and Reference.

Note: To use connection caching, use ConnCacheBean and
normal Connect i on object functionality. Do not use Cur sor Bean.

Cur sor Bean has the following properties:

« execut eBat ch: batch size for Oracle JDBC update batching
Setting this property enables Oracle JDBC update batching.

« preFet ch: number of statements to prefetch in Oracle JDBC row prefetching
Setting this property enables Oracle JDBC row prefetching.

« queryTi nmeout : number of seconds for the driver to wait for a statement to
execute before issuing a timeout

« result Set Type: scrollability of the result set
This is indicated by one of the following i nt constants.

— TYPE_FORWARD_ONLY (default): Use this for a result set that can scroll only
forward (using the next () method) and cannot be positioned.

— TYPE_SCRCOLL_I NSENSI TI VE: Use this for a result set that can scroll forward
or backward and can be positioned, but is not sensitive to underlying data
changes.

— TYPE_SCROLL_SENSI Tl VE: Use this for a result set that can scroll forward or
backward, can be positioned, and is sensitive to underlying data changes.

« resultSet Concurrency: updatability of the result set
This is indicated by one of the following i nt constants.

— CONCUR_READ_ONLY (default): Use this for a result set that is read-only
(cannot be updated).

— CONCUR_UPDATABLE: Use this for a result set that is updatable.

You can set these properties with the following methods to enable Oracle JDBC
features, as desired:

« void set ExecuteBatch(int)
=« int getExecuteBatch()

« void setPreFetch(int)

« int getPreFetch()

« void setQeryTineout (int)

4-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access

« int getQueryTi neout ()
« void setResultSetConcurrency(int)

Specify Cur sor Bean. CONCUR_READ ONLY or Cur sor Bean. CONCUR_
UPDATABLE.

« int getResultSetConcurrency()

Returns Cur sor Bean. CONCUR_READ_ONLY or Cur sor Bean. CONCUR _
UPDATABLE.

« Vvoid setResultSet Type(int)

Specify Cur sor Bean. TYPE_FORWARD_ONLY, Cur sor Bean. TYPE_SCROLL _
I NSENSI TI VE, or Cur sor Bean. TYPE_SCROLL_SENSI Tl VE.

« int getResultSetType()

Returns Cur sor Bean. TYPE_FORWARD_ONLY, Cur sor Bean. TYPE_SCROLL _
I NSENSI TI VE, or Cur sor Bean. TYPE_SCROLL_SENSI TI VE.

Note: As with any JavaBean you use in a JSP page, you can set
any of the Cur sor Bean properties with aj sp: set Property
action instead of using the setter method directly.

To execute a query once a Cur sor Bean instance has been defined inaj sp: useBean
statement, you can use Cur sor Bean methods to create a cursor in one of two ways.
Use the following methods to create the cursor and supply a connection in separate
steps:

« Vvoid create()

« Vvoid set ConnBean(ConnBean)

Alternatively, use the following method to combine the process into a single step:
« Vvoid create(ConnBean)

Set up the ConnBean object as described in "ConnBean for a Database Connection" on
page 4-3.

Use the following method to specify and execute a query (using a JDBC plain
St at enent object behind the scenes):

» ResultSet executeQuery(String)
Input a string that contains the SELECT statement.

Alternatively, if you want to format the result set as an HTML table or XML string, use
either of the following methods instead of execut eQuery():

« String getResul t AsHTM.Tabl e(Stri ng)

Returns a string with HTML statements to create an HTML table for the result set.
Specify a string with the SELECT statement.

« String getResul t AsXMLString(String)

Returns the result set data in an XML string. Specify a string with the SELECT
statement.

To execute an UPDATE, | NSERT, or DELETE statement once a Cur sor Bean instance
has been defined in aj sp: useBean action, you can use Cur sor Bean methods to
create a cursor in one of two ways. Use the following methods to create the cursor,

Data-Access JavaBeans and Tags 4-9

JavaBeans for Data Access

specifying a statement type as an integer and specifying a SQL statement as a string,
and supply a connection:

« void create(int, String)

« Vvoid set ConnBean(ConnBean)

Alternatively, use the following method to combine the process into a single step:
« Vvoid create(ConnBean, int, String)

Set up the ConnBean object as described in "ConnBean for a Database Connection” on
page 4-3.

Thei nt input takes one of the following constants to specify the type of JDBC
statement you want: Cur sor Bean. PLAI N_STMT for a St at enent object,

Cur sor Bean. PREP_STM for a Pr epar edSt at enent object, or

Cur sor Bean. CALL_STMT for a Cal | abl eSt at emrent object. The St ri ng inputisto
specify the SQL statement.

Use the following method to execute the | NSERT, UPDATE, or DELETE statement. You
can ignore the bool ean return value.

« bool ean execute()

Alternatively, for update batching, use the following method, which returns the
number of rows affected.

« int executeUpdate()

Note: Specify the SQL operation either during statement creation
or during statement execution, but not both. The execut e() and
execut eUpdat e() methods can optionally take a string to specify
a SQL operation. This is also true of the cr eat e() method, as well
as the get Cur sor Bean() method in ConnBean.

Additionally, Cur sor Bean supports Oracle JDBC functionality such as

regi st er Qut Par anet er () for callable statements, set XXX() methods for
prepared statements and callable statements, and get XXX() methods for result sets
and callable statements.

Use the following method to close the database cursor:

« void close()

Example: Using ConnBean and CursorBean with a Data Source

This following is a sample JSP page that uses ConnBean with a data source to open a
connection, then uses Cur sor Bean to execute a query.

<%@page inport="java.sql.*, oracle.jsp.dbutil.*" %
<j sp: useBean i d="cbean" class="oracle.jsp.dbutil.ConnBean" scope="session">
<j sp: set Property name="chean" property="dataSource"
val ue="<%r equest . get Par anet er (" dat asour ce") %"/ >
</ j sp: useBean>
<%try {
cbean. connect ();
String sql ="SELECT ename, sal FROM scott.enp ORDER BY enane";
Cur sorBean cb = chean. get Cur sor Bean (Cursor Bean. PREP_STMI, sql);
out. println(ch.getResul t AsSHTM.Tabl e());
ch. cl ose();
chean. cl ose();

4-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access

%

} catch (SQLException e) {
out.println("<P>" + "There was an error doing the query:");
out.println("<PRE>" + e + "</PRE>\n<P>"); }

SQL Tags for Data Access

OC4J includes a set of tags you can use in JSP pages to execute SQL commands to
access a database. The following sections describe the tags:

Introduction to Data-Access Tags

Data-Access Tag Descriptions

Note: The custom SQL tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. For standards compliance, it is now
generally advisable to use JSTL instead. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-14.

Oracle is not desupporting the existing library, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try to have
the features adopted into the JSTL standard as appropriate.

Introduction to Data-Access Tags

OC4J supplies a custom tag library for SQL functionality, consisting of the following
tags:

dbOpen: Open a database connection. This tag also supports data sources and
connection pooling. See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-2 for related information.

dbCl ose: Close a database connection.

dbQuer y: Execute a query.

dbC oseQuer y: Close the cursor for a query.

dbNext Row: Process the rows of a result set.

dbExecut e: Execute any SQL statement (DML or DDL).

dbSet Par am Set a parameter to bind into a dbQuer y or dbExecut e tag.
dbSet Cooki e: Set a cookie.

Note the following requirements for using SQL tags:

You will need the appropriate JDBC driver file, such as oj dbc14. j ar for JDK 1.4,
installed and in your classpath.

Verify that the file oj sputi | . j ar is installed and in your classpath. This file is
provided with the OC4J installation, in the "well-known" tag library directory.

The tag library descriptor, sgl t agl i b. t | d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD isin oj sputil.jar.Theuri
value for sql t agl i b. t| d is the following:

http://xm ns.oracle.comj2eel/jsp/tld/ojsp/sgltaglib.tld

Data-Access JavaBeans and Tags 4-11

SQL Tags for Data Access

For general information about JSP tag library usage, including tag library descriptor
files, t agl i b directives, the well-known tag library directory, and the meaning of ur i
values, refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide.

Notes:

« The data-access tags use the beans described in "JavaBeans for
Data Access" on page 4-1. Generally speaking, these beans and
tags can be used with non-Oracle databases, assuming you
have appropriate JDBC driver classes; however, numerous
features described below, as noted, are Oracle-specific.

« Forapplications using the data-access tags, consider using the
dbSet Par amtag to supply only parameter values rather than
textual completion of the SQL statement itself. This avoids the
possibility of what is referred to as "SQL poisoning", where
users might enter additional SQL in addition to the expected
value.

Data-Access Tag Descriptions

The following sections provide detailed syntax for the data-access tags and an example
using dbOpen and dbQuer y tags with a data source:

« SQL dbOpen Tag

« SQL dbClose Tag

« SQL dbQuery Tag

« SQL dbCloseQuery Tag

« SQL dbNextRow Tag

« SQL dbExecute Tag

« SQL dbSetParam Tag

« SQL dbSetCookie Tag

« Example: Using dbOpen and dbQuery with a Data Source

Notes:

« The prefix "sql:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in yourt agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

SQL dbOpen Tag

Use the dbOpen tag to open a database connection for subsequent SQL operations
through such tags as dbQuer y and dbExecut e. Do this by specifying a data source
location, in which case connection caches are supported, or by specifying the user,
password, and URL individually. See "Data-Access Support for Data Sources and
Pooled Connections" on page 4-2 for information about how to set up a data source in
OC4).

4-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access

The

implementation uses or acl e. j sp. dbut i | . ConnBean instances. For simple

connections, but not connection caches, you can optionally set ConnBean properties
such as st mt CacheSi ze, pr eFet ch, and bat chSi ze to enable those Oracle JDBC
features. See "ConnBean for a Database Connection" on page 4-3 for more information.

The

ConnBean object for the connection is created in an instance of the tag-extra-info

class of the dbQpen tag. Refer to the Oracle Application Server Containers for J2EE
Support for JavaServer Pages Developer’s Guide for information about the standard JSP
tag library framework and tag-extra-info classes.

Syntax
<sql : dbOpen
[connld = "connection_id"]
[scope = "page" | "request" | "scope" | "application"]
[dataSource = "JND _name"]
[user = "usernang"

password = "password"
URL = "databaseURL"]
comitOnd ose = "true" | "false"] >

</ sql : dbOpen>

Nested code that you want to execute through this connection can go into the tag
body, between the dbOpen start-tag and end-tag.

Note: You must set either the dat aSour ce attribute or the user,
passwor d, and URL attributes. Optionally, you can use a data
source to specify a URL, then use the dbOpen tag user and
passwor d attributes separately.

When a data source is used, and is for a cache of connections, the
first use of the cache initializes it. If you specify the user and
password through the dbQOpen tag user and passwor d attributes,
that will initialize the cache for that user and password. Subsequent
uses of the cache are for the same user and password.

Attributes

connl d: Optionally use this to specify an ID name for the connection. You can
then reference this ID in subsequent tags such as dbQuer y or dbExecut e.
Alternatively, you can nest dbQuer y and dbExecut e tags inside the dbOpen tag.
You can also reference the connection ID in a dbC ose tag when you want to close
the connection.

You can still specify a connection ID if you nest dbQuery or dbExecut e tags
inside the dbOpen tag. In this case, the connection will be found through the
connection ID. With the scope attribute, it is possible to have multiple
connections using the same connection ID but different scopes.

If you specify a connection ID, then the connection is not closed until you close it
explicitly with adbC ose tag. Without a connection ID, the connection is closed
automatically when the dbOpen end-tag is encountered.

scope (used only with a connl d): Use this to specify the desired scope of the
connection instance. The default is page scope.

Data-Access JavaBeans and Tags 4-13

SQL Tags for Data Access

If you specify a scope setting in a dbQpen tag, then you must specify the same
scope setting in any other tag—dbQuery, dbExecut e, or dbCl ose—that uses the
same connection ID.

« dat aSour ce (required if you do not set the user, passwor d, and URL
attributes): Optionally use this to specify the INDI name of a data source for
database connections. First set up the data source in the OC4J
dat a- sour ces. xm file. (See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-2.) The dat aSour ce setting should correspond to the
| ocati on name, ej b-1 ocati on name, or pool ed-1 ocati on name in a
<dat a- sour ce>element in dat a- sour ces. xm .

A data source must specify a URL setting, but does not have to specify a
user/password pair. You can use the dbOpen tag user and passwor d attributes
instead.

This attribute is supported only in OC4J environments.

Note: Itisadvisable to use only the ej b-1 ocati on JNDI name in
the JNDI lookup for an emulated data source. See the Oracle
Application Server Containers for J2EE Services Guide for more
information about data sources.

« user (required if no user/password pair is specified through a data source): This
is the user name for a database connection.

If a user name is specified through both a data source and the user attribute, the
user attribute takes precedence. It is advisable to avoid such duplication, because
conflicts could arise if the data source is a pooled connection with existing logical
connections using a different user name.

« passwor d (required if no user/password pair is specified through a data source):
This is the user password for a database connection.

Note that you do not have to hardcode a password into the JSP page, which would
be an obvious security concern. Instead, you can get the password and other
parameters from the r equest object, as follows:

<sql : dbQpen connl d="connl" user='<%r equest . get Parameter ("user") %'
passwor d=' <%r equest . get Par anet er ("password") %' URL="url" />

As with the user attribute, if a password is specified through both a data source
and the passwor d attribute, the passwor d attribute takes precedence.

« URL (required if no data source is specified): This is the URL for a database
connection. If a URL is supplied through a data source, the dbQpen tag URL
attribute is ignored.

« conmm t Ond ose: Set this to "t r ue" for an automatic SQL commit when the
connection is closed or goes out of scope. The default "f al se" setting results in an
automatic SQL rollback.

As a convenience, if you want to specify application-wide automatic comi t or
r ol | back behavior, set the parameter name comi t - on- cl ose in the
application web. xm file, as in the following example:

<cont ext - par an
<par am name>commi t - on- cl ose</ par am nanme>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par anp

4-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access

The comni t OnCl ose setting in a dbOpen tag takes precedence over the
commi t - on- cl ose setting in web. xm .

Note: In previous releases, the behavior is always to commit
automatically when the connection is closed. The commi t OnCl ose
attribute offers backward compatibility to simplify migration.

SQL dbClose Tag

Use the dbC ose tag to close a connection associated with the optional connl d
parameter specified in a dbOpen tag. If connl d is not used in the dbQpen tag, then
the connection is closed automatically when the dbQpen end-tag is reached; a

dbd ose tag is not required.

Note that by using the JspScopeLi st ener utility provided with OC4J, you can have
the connection closed automatically with session-based event-handling. Refer to "JSP
Event-Handling with JspScopeListener" on page 9-1 for information.

Syntax

<sql : dbC ose connld = "connection_i d"
[scope = "page" | "request" | "scope" | "application"] />

Attributes

« connl d (required): This is the ID for the connection being closed, specified in the
dbOpen tag that opened the connection.

« scope: This is the scope of the connection instance. The default is "page"”, but if
the dbOpen tag specified a scope other than page, you must specify that same
scope in the dbCl ose tag.

SQL dbQuery Tag

Use the dbQuer y tag to execute a query, outputting the results either as a JDBC result
set, HTML table, XML string, or XML DOM object. Place the SELECT statement (one
only) in the tag body, between the dbQuer y start-tag and end-tag.

Thistag usesan or acl e. j sp. dbuti | . Cur sor Bean object for the cursor, so you can
set properties such as the result set type, result set concurrency, batch size, and
prefetch size, if desired. See "CursorBean for DML and Stored Procedures” on page 4-8
for information about Cur sor Bean functionality.

For XML usage, this tag acts as an XML producer. See "XML Producers and XML
Consumers" on page 5-1 for more information. Also see "Example Using the transform
and dbQuery Tags" on page 5-7.

Syntax

<sql : dbQuery

queryld = "query_id"]

connld = "connection_id"]

scope = "page" | "request" | "scope" | "application"]
output = "HTM." | "XM" | "JDBC']

maxRows = "number”]

ski pRows = "nunber"]

bi ndParans = "val ue" |

[
[
[
[
[
|
[toXM.Obj Name = "obj ect name” | >

Data-Access JavaBeans and Tags 4-15

SQL Tags for Data Access

<s

... SELECT statenent (one only)...

gl : dbQuery>

Important:

« Do not terminate the SELECT statement with a semicolon. This
currently results in a syntax error.

« ThedbQuery tag does not currently support LOB columns.

Attributes

4-16 Oracle Applicatio

quer yl d: You can use this to specify an ID name for the cursor. This is required if
you want to process the results using a dbNext Row tag.

If the quer y| d parameter is present, then the cursor is not closed until you close it
explicitly with a dbCl oseQuery tag. Without a query 1D, the cursor is closed
automatically when the dbQuer y end-tag is encountered. This is not a
request-time attribute, meaning it cannot take a JSP expression value.

connl d: This is the ID for a database connection, according to the connl d setting
in the dbOpen tag that opened the connection. If you do not specify connl d in a
dbQuery tag, then the tag must be nested within the body of a dbCpen tag and
will use the connection opened in the dbOpen tag. This is not a request-time
attribute.

scope: This is the scope of the connection instance. The default is "page", but if
the associated dbOpen tag specified a scope other than page, you must specify
that same scope in the dbQuer y tag. This is not a request-time attribute.

out put : This is the desired output format, one of the following.
— HTM specifies that the result set is to be output as an HTML table (default).

— XM specifies that the result set is to be output as an XML string, or an XML
DOM object if an object name is specified in the t oXMLCObj Nane attribute.

— JDBCspecifies that the result set is to be output as a JDBC Resul t Set object
that can be processed using the dbNext Rowtag to iterate through the rows.

max Rows: This is the maximum number of rows of data to display. The default is
all rows.

ski pRows: This is the number of data rows to skip in the query results before
displaying results. The default is 0.

bi ndPar ans: Use this to bind a parameter into the query. The following example
is from an application that prompts the user to enter an employee number, using
bi ndPar ans to bind the specified value into the enpno field of the query:

<sqgl : dbQuery connl d="conl1" bi ndPar ans="enpno" >
select * from EMP where enpno=?
</ sql : dbQuery>

Alternatively, you can set a parameter value with the dbSet Par amtag to bind it
in through the bi ndPar ans attribute. See "SQL dbSetParam Tag" on page 4-18.

t oXMLObj Name: Specify an XML object name if you want to output the results as
an XML DOM obiject. To use this, you must also set out put to "XM.".

n Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access

SQL dbCloseQuery Tag

Use the dbCl oseQuer y tag to close a cursor associated with the optional queryl d
parameter specified in a dbQuery tag. If quer yl d is not specified in the dbQuer y tag,
then the cursor is closed automatically when the dbQuer y end-tag is reached; a

dbCl oseQuery tag is not required.

Syntax
<sql : dbCl oseQuery queryld = "query_id" />

Attributes

« queryld (required): The ID for the cursor to be closed, specified in the dbQuery
tag that opened the cursor.

SQL dbNextRow Tag

Use the dbNext Rowtag to process each row of a result set obtained in a dbQuery tag
and associated with the specified quer yl d. Place the processing code in the tag body;,
between the dbNext Rowstart-tag and end-tag. The body is executed for each row of
the result set.

To use the dbNext Rowtag, the dbQuer y tag must set out put to "JDBC" and specify a
queryl d for the dbNext Rowtag to reference.

The result set object is created in an instance of the tag-extra-info class of the dbQuery
tag. Refer to the Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide for information about the standard JSP tag library framework and
tag-extra-info classes.

Syntax

<sql : dbNext Row queryld = "query_id" >
... Row processing...
</ sql : dbNext Row >

Attributes

« queryl d (required): This is the ID of the cursor containing the results to be
processed, specified in the dbQuer y tag that opened the cursor.

Example The following example shows the combined use of a dbOpen, dbQuery, and
dbNext Rowtag.

<sql : dbOpen connl d="conl" URL="j dbc: oracl e: thin: @yhost: 1521/ nmyservi ce"
user="scott" password="tiger">
</ sql : dbCpen>
<sql : dbQuery connld="conl" output="jdbc" queryld="nyquery">
select * from EMP
</ sql : dbQuery>
<sql : dbNext Row queryl d="nyquery">
<% nyquery.getString(1l) %
</ sql : dbNext Row>
<sql : dbCl oseQuery queryl d="myquery" />
<sql : dbCl ose connld="conl" />

SQL dbExecute Tag

Use the dbExecut e tag to execute a single DML or DDL statement. Place the
statement in the tag body, between the dbExecut e start-tag and end-tag.

Data-Access JavaBeans and Tags 4-17

SQL Tags for Data Access

This tag uses an or acl e. j sp. dbut i | . Cur sor Bean object for the cursor. See
"CursorBean for DML and Stored Procedures” on page 4-8 for information about
Cur sor Bean functionality.

Syntax

<sql : dbExecut e
[connld = "connection_id"]
[scope = "page" | "request" | "scope" | "application"]
[output = "yes" | "no"]
[bindParans = "value" | >

...DML or DDL statenment (one only)...

</ sql : dbExecute >

Important:

= Do not terminate the DML or DDL statement with a semicolon.
This currently results in a syntax error.

«» ThedbExecut e tag does not currently support LOB columns.

Attributes

= connl d: This is the ID of a database connection, according to the connl d setting
in the dbOpen tag that opened the connection. If you do not specify connl d ina
dbExecut e tag, then the tag must be nested within the body of a dbOpen tag and
will use the connection opened in the dbOCpen tag.

= scope: This is the scope of the connection instance. The default is "page”, but if
the dbOpen tag specified a scope other than page, you must specify that same
scope in the dbExecut e tag.

= output:Ifout put="yes", then for DML statements the HTML string "number
row[s] affected” will be output to the browser to notify the user how many
database rows were affected by the operation. For DDL statements, the statement
execution status will be printed. The default is "no".

= bi ndPar ans: Use this to bind a parameter into the SQL statement. The following
example is from an application that prompts the user to enter an employee
number, using bi ndPar ans to bind the specified value into the enpno field of the
DELETE statement:

<sqgl : dbExecute connl d="conl" bi ndParans="enpno">
del ete from EMP where enpno=?
</ sql : dbExecut e>

Alternatively, you can set a parameter value with the dbSet Par amtag to bind it
in through the bi ndPar ans attribute. See the next section, "SQL dbSetParam Tag".

SQL dbSetParam Tag

You can use this tag to set a parameter value to bind into a query, through the
dbQuery tag, or to bind into any other SQL operation, through the dbExecut e tag.

4-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access

Note: For applications using the data-access tags, consider using
the dbSet Par amtag to supply only parameter values rather than
textual completion of the SQL statement itself. This avoids the
possibility of what is referred to as "SQL poisoning", where users
might enter more SQL code in addition to the expected value.

Syntax

<sql : dbSet Par am name = "param nane"
val ue = "paramval ue"
[scope = "page" | "request" | "scope" | "application"] />

Attributes
« name (required): This is the name of the parameter to set.
« val ue (required): This is the desired value of the parameter.

« scope: This is the scope of the bind parameter. The default is page scope.

Example The following example uses a dbSet Par amtag to set the value of a
parameter named i d2. This value is then bound into the SQL statement in the
dbExecut e tag.

<sql : dbSet Par am name="i d2" val ue=' <%r equest . get Par ameter ("id") %"
scope="sessi on" />
Resul t:
<HR>
<sql : dbOpen dat aSour ce="<% dataSrcStr %" >
<sql : dbExecut e output ="yes" bi ndParans="id2 name job sal ">
insert into enp(enpno, ename, deptno, job, sal)
values (?, ?, 20, ?, ?)
</sql : dbExecut e>
</ sql : dbQpen>
<HR>

SQL dbSetCookie Tag

You can use this tag to set a cookie. The dbSet Cooki e tag wraps functionality of the
standard j avax. servl et. htt p. Cooki e class.

Syntax

<sql : dbSet Cooki e name = "cooki e_nange"
[value = "cookie_val ue"]
[domain = "donmai n_name"]
[comrent = "coment"]
[maxAge = "age"]
[version = "protocol _version"]
[secure = "true" | "false"]
[path = "path"] />

Attributes
« name (required): This is the name of the cookie.

« val ue: Thisis the desired value of the cookie. Because it is permissible to have a
null-value cookie, this attribute is not required.

Data-Access JavaBeans and Tags 4-19

SQL Tags for Data Access

« donai n: This is the domain name for the cookie. The form of the domain name is
according to the RFC 2019 specification.

« conment : This is for acomment describing the purpose of the cookie.

« maxAge: This is the maximum allowable age of the cookie, in seconds. Use a
setting of "- 1" for the cookie to persist until the browser is shut down.

« version: This is the version of the HTTP protocol that the cookie complies with.

« secur e: This informs the browser whether the cookie should be sent using a
secure protocol, such as HTTPS.

« pat h: This specifies a file system path for the cookie, the location to which the
client should return the cookie.

Example

<sql : dbSet Cooki e name="cl d" val ue=' <%r equest . get Paraneter("id") %"
maxAge=' 800000" />

Example: Using dbOpen and dbQuery with a Data Source

This section provides a sample JSP page that uses a dbQpen tag with a data source to
open a connection, then uses a dbQuer y tag to execute a query.

<v@taglib uri="
http://xm ns. oracl e. com j 2ee/j sp/tld/ oj sp/
sqltaglib.tld" prefix="sql" %
<HTM.>
<BODY>
<sql : dbOpen dat aSour ce=' <%r equest . get Par anet er (" dat asour ce") %'
connl d="conl">
</ sql : dbQpen>
<sql : dbQuery connl d="conl">
SELECT * FROM enp CORDER BY ename
</sql : dbQuery>
<sql : dbCl ose connl d="conl" />
</ BCDY>
</ HTM.>

4-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

D

XML and XSL Tag Support

This chapter describes tags provided with OC4J that you can use for XML data and
XSL transformation, and summarizes additional XML functionality in other OC4J tags.
These tags are implemented according to the JSP specification.

The chapter consists of the following sections:
« Overview of Oracle Tags for XML Support
« XML Utility Tags

Note: See the Oracle Application Server Containers for J2EE Support
for JavaServer Pages Developer’s Guide for additional information
about XML-related functionality for JSP pages.

Overview of Oracle Tags for XML Support

The following sections provide an overview of tags supplied with OC4J that have
XML functionality. This includes tags that can take XML DOM objects as input,

generate XML DOM objects as output, transform XML documents according to a
specified stylesheet, and parse data from an input stream to an XML DOM object.

« XML Producers and XML Consumers
« Summary of OC4J Tags with XML Functionality

Note: The custom XML tag library provided with OC4J pre-dates
the JavaServer Pages Standard Tag Library (JSTL) and has areas of
duplicate functionality. For standards compliance, it is now
generally advisable to use JSTL instead. See "Support for the
JavaServer Pages Standard Tag Library" on page 1-14.

Oracle is not desupporting the existing library, however. For
features in the custom library that are not yet available in JSTL,
where there seems to be general usefulness, Oracle will try to have
the features adopted into the JSTL standard as appropriate.

XML Producers and XML Consumers
An XML-related operation can be classified as either of the following, or as both:

« XML producer, which outputs an XML object

« XML consumer, which takes an XML object as input

XML and XSL Tag Support 5-1

Overview of Oracle Tags for XML Support

Similarly, an XML-related tag can be classified as an XML producer, an XML
consumer, or both. XML producers can pass XML objects to XML consumers either
explicitly or implicitly; the latter is also known as anonymous passing.

For explicit passing between XML-related tags, there is at oXM_Cbj Nane attribute in
the producer tag and a f r onXMLCbj Narme attribute in the consumer tag. Behind the
scenes, the passing is done through theget Attri bute() andset Attri bute()
methods of the standard JSP pageCont ext object. The following example uses
explicit passing:

<sqgl : dbQuery out put="XM." toXM.Cbj Nanme="foo" ... >

... SQL query...
</ sql : dbQuery>

<0j sp: cacheXMLQbj fromXM.Cbj Name="fo0" ... />

For implicit passing between XML-related tags, do not use the t oXM.Obj Narne and

f r omXMLCbj Nane attributes. The passing is accomplished through direct interaction
between the tag handlers, typically in a situation with a nested tag. The following
example uses implicit passing:

<0j sp: cacheXM.Qhj ... >
<sql : dbQuery out put ="XM." >
...SQL query...

</ sql : dbQuery>
</ oj sp: cacheXM.hj >

Here, the XML produced in the dbQuer y tag is passed to the cacheXM_Chj tag
directly, without being stored to the pageCont ext object.

For a tag to be able to function as a consumer with implicit passing, the tag handler
implements the OC4J I npl i ci t XMLObj Consuner interface:

interface InplicitXWM.Cbj Consuner
{

}

voi d setInplicitFromXM.Qj ();

Summary of OC4J Tags with XML Functionality

For the tag libraries supplied with OC4J, Table 5-1 summarizes the tags that can
function as XML producers or consumers.

Table 5-1 OC4J Tags with XML Functionality

Producer /

Tag Library Consumer Related Attributes Tag Information

transform / XML Both fromXMLObjName "XML transform and

styleSheet toXMLObjName styleSheet Tags for
XML/XSL Data
Transformation" on page 5-4

parsexml XML Producer toXMLObjName "XML parsexml Tag to
Convert from Input Stream”
on page 5-5

cacheXMLObj Web Object Both fromXMLObjName "Web Object Cache

Cache toXMLObjName cacheXMLObj Tag" on

page 7-18

dbQuery SQL Producer toXMLObjName "SQL dbQuery Tag" on
page 4-15

5-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags

Table 5-1 (Cont.) OC4J Tags with XML Functionality

Producer /
Tag Library Consumer Related Attributes Tag Information
invoke Web Services Producer toXMLObjName "Web Services invoke Tag"

on page 10-13

Notes:

« The XMLt ransformand st yl eSheet tags are equivalent
and produce identical results.

« For convenience, the cacheXM_.Obj tag is defined in the XML
tag library descriptor file (xm . t | d) as well as the Web Object
Cache tag library descriptor file (j wcache. t | d).

XML Utility Tags
The following sections describe XML utility tags supplied with OC4J:
« XML Utility Tag Descriptions
« XML Utility Tag Examples
Note the following requirements for the XML utility tag library:

« The XML tag library requires oj sputi |l .jar,xm parserv2.jar, and
xsul2.j ar to be installed and in your classpath. These files are supplied with
OC4J). The oj sputi | . j ar file is located in the "well-known" tag library directory.

« Thetag library descriptor, xm . t | d, must be available to the application, and any
JSP page using the library must have an appropriate t agl i b directive. In an
Oracle Application Server installation, the TLD isinoj sputi |l .jar.Theuri
value for xm . t | d is the following:

http://xm ns. oracle.com j2ee/jsp/tld/ojsp/xm.tld
You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer

Pages Developer’s Guide for information about t agl i b directives, the well-known tag
library directory, TLD files, and the meaning of uri values.

Notes:

« The prefix "xml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See '"Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

XML Utility Tag Descriptions
The following sections describe XML utility tags:

« XML transform and styleSheet Tags for XML/XSL Data Transformation

« XML parsexml Tag to Convert from Input Stream

XML and XSL Tag Support 5-3

XML Utility Tags

Important: Tag attributes are request-time attributes, meaning
they can take JSP expressions as input, unless otherwise noted.

XML transform and styleSheet Tags for XML/XSL Data Transformation

Many uses of XML and XSL for dynamic JSP pages require an XSL transformation to
occur in the server before results are returned to the client. Oracle provides two
synonymous tags in the XML library to simplify this process. You can output the result
directly to the HTTP client or, alternatively, you can output to a specified XML DOM
object. Use either the t r ansf or mtag or the st yl eSheet tag, as described and shown
in this section. The two tags have identical effects.

Each tag acts as both an XML producer and an XML consumer. They can take as input
either of the following:

= An XML DOM obiject
« The tag body, containing JSP commands and static text that produce the XML code

The tags can output to either or both of the following, with the specified stylesheet
being applied in either case:

« An XML DOM obiject
« The output writer to the browser, in which case the specified stylesheet is applied

When you use the tag body for input, the tag applies to what is between the start-tag
and end-tag. You can have multiple XSL transformation blocks within a page, with
each block bounded by its own t r ansf or mor st yl eSheet tag, specifying its own
hr ef pointer to the appropriate style sheet.

Syntax

<xm : transform href="xsl Ref"
[fromXM.Obj Nane = "obj ect nane" |
[toXM.Cbj Name = "obj ect name"]
[towiter = "true" | "false"] >

[...body...]
</[xm:transform>

or:

<xm : styl eSheet href="xsl Ref"
[fromXM.bj Nane = "obj ect nane" |
[toXM.Cbj Name = "obj ect name"]
[toWwiter = "true" | "false"] >

[...body...]
</xm :styl eSheet >

Attributes

« href (required): Specify the XSL stylesheet to use for the XML data
transformation. This is required whether you are outputting to an XML object
(where you can have transformation without formatting) or to the browser.

Note the following regarding the hr ef attribute:

5-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags

— It can refer to either a static XSL stylesheet or a dynamically generated one.
For example, it can refer to a JSP page or servlet that generates the stylesheet.

— Itcan be afully qualified URL (htt p: // host: port/ path),an
application-relative JSP reference (starting with "/ "), or a page-relative JSP
reference (not starting with "/). Refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide for
information about application-relative and page-relative paths.

— Its value can be a static Java string constant literal, or it can be dynamically
specified through a standard JSP request-time expression.

« fronXM.Obj Name: Use this to specify an input XML DOM object if input is from
a DOM object instead of from the tag body. If there is both a tag body and a
f r omXMLCbj Nane specification, f r omXMLCbj Nane takes precedence.

« t oXM.Obj Name: Use this to specify the name of an output XML DOM object if
output is to a DOM object, instead of or in addition to going to the JSP writer
object for output to the HTTP client. This is not required if there is an implicit XML
consumer, such as a tag within which the t r ansf or mor st yl eSheet tagis
nested.

« toWiter:Thisis"true"or"fal se"toindicate whether output goes to the JSP
writer object for output to the HTTP client. This can be instead of or in addition to
output to a DOM object. The default is "t r ue", for backward compatibility. (Prior
to Oracle9iAS Release 2, this was the only output choice; there was no
t oXMLCbj Nane attribute.)

XML parsexml Tag to Convert from Input Stream

The XML tag library supplies an XML producer utility tag, par sexni , that converts
from an input stream to an XML DOM obiject. This tag can take input from a specified
resource or from the tag body.

Syntax

<xni : par sexni
[resource = "xmresource"]
[toXM.Obj Nane = "object name"]
[validateResource = "dtd_path"]
[root = "dtd_root_element"] >

[...body...]

</ xn : parsexm >

Attributes

« resource: Use this to specify an XML resource if input is from a resource instead
of from the tag body. For example:

resource="/dir1/hello.xm"

If there is both a tag body and a specified resource, the resource takes precedence.

« t oXM.Obj Nane: Specify the name of the XML DOM object where the output will
go. This is not required if there is an implicit XML consumer, such as a tag within
which the par sexml tag is nested.

« validat eResour ce: For XML validation, you can specify the path to the
appropriate DTD. Alternatively, the DTD can be embedded in the XML resource.
This is not a request-time attribute.

XML and XSL Tag Support 5-5

XML Utility Tags

« root: If validating, specify the root element in the DTD for validation. This is not a
request-time attribute. If you specify val i dat eResour ce without specifying
r oot , the default root is the top-level of the DTD.

XML Utility Tag Examples
The following sections provide examples that use XML utility tags:
« Example Using the transform Tag
« Example Using the transform and dbQuery Tags

« Examples Using the transform and parsexml Tags

Example Using the transform Tag

This section provides a sample XSL stylesheet and a sample JSP page that uses the

t ransf or mtag to filter its output through the stylesheet. This is a simplistic example,
with the XML in the page being static. A more realistic example might use the JSP
page to dynamically generate all or part of the XML before performing the
transformation.

Sample Stylesheet: hello.xsl

<?xm version="1.0"?7>
<xsl:styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{' >

<xsl:tenpl ate natch="page">
<htm >
<head>
<title>
<xsl:val ue-of select="title"/>
</title>
</ head>
<body bgcol or="#ffffff">
<xsl : appl y-tenpl ates/ >
</ body>
</htnl >
</xsl:tenpl ate>

<xsl:tenplate match="title">
<hl align="center">
<xsl : appl y-tenpl at es/ >
</ h1>
</xsl:tenpl ate>

<xsl:tenpl ate match="paragraph">
<p align="center">
<>
<xsl : appl y-tenpl ates/ >
<[i>
</ p>
</xsl:tenpl ate>

</ xsl:styl esheet >

Sample JSP Page: hello.jsp

<%@ page session = "false" %
<¥@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/xm.tld"

5-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags

prefix="xm" %
<xm :transformhref="style/hello.xsl" >

<page>
<title>Hel lo</title>
<cont ent >
<paragraph>This is ny first XM./XSL file!</paragraph>
</content>
</ page>

</ xn :transfornme

This example results in the following output:

Hello - Netscape

Hello

This is my first XMLIXSL file!

= =B=| |Document: Done

Example Using the transform and dbQuery Tags

This example returns a result set from a dbQuer y tag, using at r ansf or mtag to filter
the query results through the XSL style sheet r owset . xsl (code below). It uses a
dbOpen tag to open a connection, with the connection string being obtained either
from the r equest object or through the useDat aSour ce. j sp page (code below).
Data passing from the dbOpen tag to the t r ansf or mtag is done implicitly. For
related information, see "SQL dbQuery Tag" on page 4-15 and "SQL dbOpen Tag" on
page 4-12.

JSP Page

<%@page inport="oracle.sql.*, oracle.jdbc.driver.*, oracle.jdbc.*, java.sql.*" %
<Y@taglib uri="http://xmns.oracle.conj2ee/jsp/tld/ ojsp/xm.tld"
prefix="xm" %
<Y@taglib uri="http://xmns.oracle.conlj2eel/jsp/tld/ojsp/sqltaglib.tld"
prefix="sql" %

<%
String dataSrcStr=request.getParameter("dataSrcStr");
if (dataSrcStr==null) {
dataSrcStr=(String)session. getVal ue("dataSrcStr");
} else {
session. put Val ue("dataSrcStr", dataSrcStr);

}

if (dataSrcStr==null) { %
<jsp:forward page="../../sql/useDataSource.jsp" />
<%

}

XML and XSL Tag Support 5-7

XML Utility Tags

%
<h3>Tr ansf orm DBQuery Tag Exanpl e</h3>
<xm :transform href="styl e/rowset.xsl" >
<sqgl : dbCpen connl d="connl" dat aSource="<% dataSrcStr %" />
<sql : dbQuery connl d="connl" output="xm" queryld="myquery" >
sel ect ENAME, EMPNO from EMP order by ename
</sql : dbQuery>
<sql : dbd oseQuery queryl d="nyquery" />
<sql : dbd ose connl d="connl" />
</xm : transfornp

Note: For the dbOpen tag in this example, assume that the data
source specifies the user name and password as well as the URL.

rowset.xsl

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf ornmi >
<xsl:tenpl ate match="RONBET" >
<ht m ><body>
<h1>A Sinple XM./XSL Transformation</hl>
<tabl e border="2">
<xsl:for-each sel ect =" ROW >
<tr>
<t d><xsl : val ue-of sel ect="@unl'/></td>
<t d><xsl:val ue-of sel ect="ENAME'/></td>
<t d><xsl : val ue-of sel ect="EMPNO'/></t d>
<[tr>
</ xsl: for-each>
</t abl e>
</ body></ ht ml >
</xsl:tenpl ate>
</ xsl:styl esheet >

useDataSource.jsp

<body bgcol or =" #FFFFFF" >

Pl ease enter a suitable JDBC connection string, before you try the above
deno</ B>
<pre>
To use a data source that you have set up in data-sources.xm, enter the
data source string below. Once you have set the data source string it
will remain in effect until the session tines out.
</ pre>
<%
String dataSrcStr;
dat aSrcStr=request. get Paraneter("dataSrcStr");
if (dataSrcStr==null) {
dataSrcStr=(String)session.getValue("dataSrcStr");

}
if (dataSrcStr==null) {

dataSrcStr="j dbc/ Oracl eCoreDS"; // default data source string
}

session. put Val ue("dataSrcStr", dataSrcStr);
%
<FORM METHOD=get ACTI ON="<% request. get Paraneter ("nextaction") %" >

5-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags

<INPUT TYPE="text" NAME="dataSrcStr" SIZE=40 val ue="<%dat aSrcStr%" >
<INPUT TYPE="submt" VALUE="Change Data Source String" >

</ FORW>

Examples Using the transform and parsexml| Tags

This section provides two examples that take output from a par sexm tag and filter it
through at r ansf or mtag, using the XSL stylesheet emai | . xsl . In each case, data is
collected by the par sexm tag handler from a specified resource XML file, then
passed explicitly from the par sexm tag to thet r ansf or mtag through the t oxm 1
XML object.

The first example uses the XML resource emai | . xm and the DTD enmi | . dt d. No
root attribute is specified, so validation is from the top-level element, <emai | >.

The second example uses the XML resource ermai | W t hDt d. xm , which has the DTD
embedded in the file. The r oot attribute explicitly specifies that validation is from the
element <emai | >.

The filesenmi | . xm ,emai | . dtd,emni | Wt hDtd. xm , and emai | . xsl are also
listed below.

Example 1 for transform and parsexml

<Y@taglib uri="http://xmns.oracle.conj2ee/jsp/tld/ ojsp/xm.tld"
prefix="xm" %
<h3>XM. Parsing Tag Email| Exanpl e</h3>
<xm : transform fromXM.Cbj Name="t oxm 1" href="styl e/ email.xsl">
<xm : parsexm resource="style/email.xm" validateResource="style/email.dtd"
t oXM.Cbj Nane="t oxm 1" >
</xm : parsexm >
</xm :transfornp

Example 2 for transform and parsexml

<Y@taglib uri="http://xmns.oracle.conlj2eel/jsp/tld/ojsp/xm.tld"
prefix="xm" %
<h3>XM. Parsing Tag Emai | Exanpl e</ h3>
<xm : transform fronXM.Cbj Name="t oxm 1" href="style/enail.xsl">
<xm : parsexm resource="style/emai |l WthDtd.xn" root="email"
t oXM.Qbj Nane="t oxm 1" >
</xm : parsexm >
</ xm : transfornp

email.xml

<emai | >

<r eci pi ent >Manager </ r eci pi ent >

<copyt 0>j sp_dev</ copyt 0>

<subj ect >XML Bug fi xed</ subj ect >

<bugno>BUG 1109876! </ bugno>

<body>for reuse tag and checked in the |atest version!</body>
<sender >Devel oper </ sender >

</ email >

email.dtd

<I'ELEMENT emai | (reci pient, copyto, subj ect, bugno, body, sender) >
<! ELEMENT reci pi ent (#PCDATA) >

<! ELEMENT copyto (#PCDATA) >

<! ELEMENT subj ect (#PCDATA)>

XML and XSL Tag Support 5-9

XML Utility Tags

<! ELEMENT bugno (#PCDATA) >
<! ELEMENT body (#PCDATA) >
<! ELEMENT sender (#PCDATA) >

emailWithDtd.xml

<I DOCTYPE emai | [

< ELEMENT emai | (recipient, copyto, subject, bugno, body, sender) >
<! ELEMENT reci pi ent (#PCDATA) >

<l ELEMENT copyto (#PCDATA) >

<! ELEMENT subj ect (#PCDATA)>

<l ELEMENT bugno (#PCDATA) >

<! ELEMENT body (#PCDATA) >

<! ELEMENT sender (#PCDATA)>]>

<emi | >

<r eci pi ent >Manager </ r eci pi ent >

<copyt 0>j sp_dev</ copyt 0>

<subj ect >XML Bug fi xed</ subj ect >

<bugno>BUG 1109876! </ bugno>

<body>for reuse tag and checked in the latest version!</body>
<sender >Devel oper </ sender >

</ email >

email.xsl

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf orni >
<xsl:tenplate match="enuil">
<ht ml ><body>
To: <xsl:val ue-of select="recipient"/>
CC. <xsl:val ue-of select="copyto"/>
Subj ect : <xsl :val ue-of select="subject"/> ...
<xsl : val ue- of sel ect="body"/> !!
Thanks <xsl :val ue-of sel ect="sender"/>
</ body></ ht ni >
</ xsl:tenpl ate>
</ xsl :styl esheet >

5-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

6

JESI Tags for Edge Side Includes

This chapter describes the Edge Side Includes for Java (JESI) tag library that is
supplied with OC4J. These tags operate on top of an Edge Side Includes (ESI)
framework that is available in the Oracle Application Server Web Cache to provide ESI
caching functionality in a JSP application.

The chapter consists of the following sections:

« Overview of Edge Side Includes Technology and Processing
« Overview of JESI Functionality

« Oracle JESI Tag Descriptions

« JESI Tag Handling and JESI-to-ESI Conversion

For an overview of Web caching, including a discussion of the OracleAS Web Cache,
the Oracle Application Server Java Object Cache, and the OC4J Web Object Cache, see
"Summary of Oracle Caching Support for Web Applications” on page 1-9.

Note: The JESI specification is not yet finalized. Although every
effort has been made to comply with the latest working version, it
is not possible to assure that the OC4J 10.1.2 implementation will

fully comply with the final version of the JESI specification.

Overview of Edge Side Includes Technology and Processing

JESI tags, which are used to break down dynamic content of JSP pages into cacheable
components, are based upon the Edge Side Includes architecture and markup
language.

Although the use of JESI tags does not depend on any particular ESI processor or
caching system, a typical scenario among Oracle customers is to use the OracleAS Web
Cache and its ESI processor.

The following sections provide background information about some of the underlying
technology upon which the Oracle JESI tags are based.

« Edge Side Includes Technology
« Oracle Application Server Web Cache and ESI Processor

This discussion provides only a brief overview of the ESI architecture and language.
For additional information about ESI technology, refer to the following Web site:

http://ww. esi.org

JESI Tags for Edge Side Includes 6-1

Overview of Edge Side Includes Technology and Processing

Edge Side Includes Technology

This section introduces the features of ESI technology and the concept of ESI surrogates.

Introduction to ESI

Edge Side Includes is an XML-style markup language that allows dynamic content
assembly at the "edge" of the network, away from the origin Web server, and is
designed to take advantage of available tools such as Web caches and content delivery
networks (CDNs) to improve performance for users.

ESI provides a way to reduce the load on Web and application servers by promoting
processing on intermediaries, known as surrogates or reverse proxies, that understand
the ESI language and act on behalf of the Web server. ESI content is intended for
processing somewhere between the time it leaves the originating Web server and the
time it is displayed in the user's browser. A surrogate is commanded through HTTP
headers. Such a surrogate can be referred to as an ESI processor and can be included as
part of the functionality of a Web cache.

ESI lends itself to a partial-page caching methodology, where each dynamic portion of
a Web page can be cached individually and retrieved separately and appropriately.

Using the ESI markup tags, a developer can define aggregate Web pages and the
cacheable components that are to be retrieved and assembled, as appropriate, by the
ESI processor for viewing in the HTTP client. Think of an aggregate page, which is the
resource associated with the URL that a user specifies, as a container for assembly. This
includes retrieval and assembly instructions that are specified through the ESI tags.

Important: Do not use ESI tags directly in a page where you use
JESI tags.

More About Surrogates

Because surrogates act on behalf of Web servers, where page content is owned, they
allow content owners to have sufficient control over their behavior. In this way, they
offer greater potential for performance improvements than would otherwise be
available.

The caching process in surrogates operates similarly to the caching process in HTTP,
using similar freshness and validation mechanisms as the foundation. However,
surrogates also possess additional control mechanisms.

Key ESI Features
Version 1.0 of the ESI language includes the following key areas of functionality:

= Inclusion

An ESI processor assembles fragments of dynamic content, retrieved from the
network, into aggregate pages to output to the user. Each fragment can have its
own meta data to control its caching behavior. See Figure 6-1 below.

= Support of variables

ESI supports the use of variables that are based on HTTP request attributes. ESI
statements can use variables during processing or can output them directly into
the processed markup.

« Conditional processing

6-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Edge Side Includes Technology and Processing

ESI allows the use of boolean comparisons for conditional logic in determining
how pages are processed.

« Error handling and alternative processing

Some ESI tags support specification of a default resource or an alternative resource
(or both), such as an alternate Web page, if the primary resource cannot be found.

Figure 6-1 ESI Include Model

Contents of ESI cache

Template: Assembled Page
static text :
<esi:include/> §MIC text)
static text agment
<esi:include/> by, §MIC text ,
static text agment
static text
Fragment 1 t
Fragment 2 T

Oracle Application Server Web Cache and ESI Processor

This section introduces the OracleAS Web Cache and its ESI processor. See the Oracle
Application Server Web Cache Administrator’s Guide for more information.

Introduction to Oracle Application Server Web Cache

Oracle offers OracleAS Web Cache to help e-businesses manage Web site performance
issues. It is a content-aware server accelerator, or reverse proxy server, that improves the
performance, scalability, and availability of Web sites that run on the Oracle
Application Server.

By storing pages from frequently accessed URLSs in memory, OracleAS Web Cache
eliminates the need to repeatedly process requests for those URLs on the application
Web server. Unlike legacy proxy servers that handle only static documents, OracleAS
Web Cache caches both static content and dynamically generated content from one or
more application Web servers. As the result of more frequent cache hits, performance
enhancement is greater than with legacy proxies and the load on application servers is
less.

Conceptually, OracleAS Web Cache is positioned in front of application Web servers,
caching their content and sending that content to Web browsers that request it. When
Web browsers access the Web site, they send HTTP protocol or HTTPS protocol
requests to OracleAS Web Cache, which, in turn, acts as a virtual server for the
application Web servers. If the requested content has expired, has been invalidated, or
is no longer accessible, then OracleAS Web Cache retrieves the new content from the
application Web servers.

Steps in Oracle Application Server Web Cache Usage
Here are the steps for typical browser interaction with OracleAS Web Cache:

JESI Tags for Edge Side Includes 6-3

Overview of JESI Functionality

1. A browser sends a request to the Web site of a company.

2. Therequest, in turn, generates a request to the Domain Name System (DNS) for
the IP address of the Web site.

3. DNS returns the IP address of OracleAS Web Cache.
4. The browser sends the request for the Web page to OracleAS Web Cache.

5. If the requested content is in its cache, then OracleAS Web Cache sends the content
directly to the browser. This is known as a cache hit.

6. If OracleAS Web Cache does not have the requested content, or if the content is
outdated or invalid, then the Web cache hands off the request to the application
Web server. This is known as a cache miss.

7. The application Web server sends the content through OracleAS Web Cache.

8. OracleAS Web Cache sends the content to the client and makes a copy of the page
in cache.

Note: A page that is stored in the cache is removed at some point
after it becomes invalid or outdated.

Oracle Application Server Web Cache ESI Processor

OracleAS Web Cache includes an ESI processor to support the use of the Edge Side
Includes markup language in caching. (See "Edge Side Includes Technology" on
page 6-2.)

Web developers in an OracleAS Web Cache environment can use the ESI language
directly in their applications; however, for JSP developers, there are several reasons to
use the JESI tag library that is provided as a convenient JSP interface to the ESI
language. See "Advantages of JESI Tags" on page 6-4.

Overview of JESI Functionality
The following sections introduce JESI functionality and the Oracle implementation:
« Advantages of JESI Tags
« Overview of JESI Tags Implemented by Oracle
« JESI Usage Models
« Invalidation of Cached Objects
« Personalization of Cached Pages
« JESI Fallback Execution
You can access the proposed JESI specification at the following Web site:

http://ww. esi.org

Advantages of JESI Tags

OC4)J provides the JESI tag library as a convenient interface to ESI tags and Edge Side
Includes functionality for Web caching. Developers have the option of using ESI tags
directly in any Web application, but JESI tags provide additional convenience for JSP
pages. Here are the main advantages in using JESI tags instead of using ESI tags
directly:

6-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality

=« Standard JSP framework and convenient features

— JESI tags allow use of the familiar and convenient features of JSP
programming. For example, you can reference included pages according to
page-relative or application-relative locations, instead of the complete URL or
file path.

— You can pass dynamic values to JESI tag attributes.
— You can use JESI tags in combination with tags from other JSP tag libraries.
« JESI shortcut syntax

JESI tags support convenient syntax and tag attributes for specifying meta data
information (such as expiration for cached pages), explicitly invalidating pages as
appropriate, and personalizing pages using cookie information.

« Application-level configuration files

The JESI tag library can use application-level configuration files for convenient
specification of deployment-time parameters and application default settings that
are appropriate to a particular environment. In this way, you can deploy to
different environments that have diverse needs and set appropriate defaults
without changing application code. For example, you can use such a configuration
file to preset the cache server URL, user name, and password for invalidation
requests.

Overview of JESI Tags Implemented by Oracle

The Oracle implementation of JESI is layered on top of the standard ESI framework. It
also conforms with the pending (as of the OC4J 10.1.2 implementation) JESI standard,
JSR-128, which is sponsored by the Java Community Process (JCP) organization. For
more information about the JCP organization and the status of JSR-128, go to the
following location:

http://ww.jcp.org

Because the JESI tag library is a standard implementation, note the following:

« An application that uses JESI tags does not depend on the OC4J JSP container. It is
portable to any standard JSP container. (Outside of OC4J, you can use either the
reference implementation to be provided with JSR-128, or the JESI implementation
that is provided with the JSP container you are using, if applicable.)

« Even though this document discusses the OracleAS Web Cache and its ESI
processor in particular, the JESI tag library does not depend on any particular
caching environment and can work with any ESI processor that conforms to the
ESI 1.0 specification.

The Oracle JESI tag library supports the following tags:

« JESlIcontrol,bJESIi ncl ude, JESI par am JESI t enpl at e, JESI f r agnent , and
JESI codebl ock for dynamic caching of page content

« JESIi nval i dat e (and subtags) for explicit invalidation of cached objects, when
appropriate

« JESIpersonal i ze for page customization through cookies

JSP developers use these tags (such as JESI i ncl ude) instead of corresponding ESI
tags (such as esi : i ncl ude). The usefulness and convenience of this is discussed in
"Advantages of JESI Tags" on page 6-4.

JESI Tags for Edge Side Includes 6-5

Overview of JESI Functionality

Note: The Oracle JESI tag library is implemented according to
general standards for JSP custom tag libraries. For information
about the standard JavaServer Pages tag library framework, refer to
the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide.

JESI Usage Models

There are two models for how to use JESI tags to define aggregate pages and their
cacheable components:

« Control/include model
« Template/fragment model

This section describes these models and concludes with some special notes about the
JESIi ncl ude tag.

Control/Include Model

The control/include approach to using JESI tags is modular, typically bringing most (or
all) cacheable content into the aggregate page as included pages. This is particularly
convenient when you are developing new pages. Use this model as follows:

« Usethe JESIcontrol tag in the top-level page to set caching parameters for
content outside the included content, as applicable.

« Use JESIi ncl ude tags to bring in dynamic content.

« UsealESIcontrol tag inside each included page to set caching parameters for
those pages, as appropriate.

Each included file is a distinct cacheable object (although caching can be disabled
according to tag settings), and any content in the top-level page is also a distinct object.

Both tags are optional, depending on the situation. A page can have a JESI cont r ol
tag without any JESI i ncl ude tags. In fact, this is a simple way to convert an existing
page for JESI use. There is also no requirement for a JESI cont r ol tag in a page that
uses JESI i ncl ude tags. The ESI processor will be appropriately notified of the
presence of the JESI i ncl ude tags, regardless. And there is no requirement for an
included page to have a JESI cont r ol tag.

The cacheability of a page, either top-level or included, is determined as follows.

« IfthereisalJESIcontrol tag, cacheability depends on attribute settings or on the
default attribute values, as applicable.

« Ifthereisno JESIcontrol tag, cacheability depends on configuration settings of
the ESI processor.

= TheJESIcont rol tag in the top-level page has no effect on included pages.
See the following sections for tag syntax and examples:

= "JESI control Tag" on page 6-14

= "JESl include Tag" on page 6-15

« "JESI param Tag" on page 6-17

« "Examples: Control/Include Model" on page 6-18

6-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality

Template/Fragment Model

In the template/fragment approach, content is contained in a single page and you split
the page into separately cacheable fragments as desired. This model is particularly
convenient when you are converting existing pages for JESI use and want certain
portions to be separate cacheable components. Use this model as follows:

« Usethe JESIt enpl at e tag to enclose the aggregate of all visible content. This tag
sets caching parameters for the content outside the fragments. There must be no
visible content outside the t enpl at e tag.

« Use JESI fragnent tags as desired, between the t enpl at e start-tag and end-tag,
to define fragments within the aggregate, to be cached separately.

« Optionally use JESI i ncl ude tags as well, either at the template level or the
fragment level.

« Optionally use codebl ock tags within the template tag, outside of any fragments,
to mark conditional execution of blocks of code.

The JESI t enpl at e tag and JESI f r agnent tag are always used together. If you do
not need separate fragments in a page, use the JESI cont r ol tag instead of the JESI
t enpl at e tag.

Each fragment is a distinct, cacheable object. Any content at the template level, outside
any fragments, is a distinct, cacheable object. Any page that is included through a JESI
i ncl ude tag is also a distinct, cacheable object. Cacheability is determined as follows.

« The cacheability of the template (content outside any fragments) depends on the
JESI t enpl at e tag attribute settings or on the default attribute values, as
applicable.

« Similarly, the cacheability of a fragment depends on the attribute settings of the
JESI f ragment tag or on the default attribute values, as applicable.

« The cacheability of an included page is determined as follows.

— IfthereisaJESI cont r ol tag, cacheability depends on attribute settings or on
the default attribute values, as applicable.

— Ifthereisno JESI cont r ol tag, cacheability depends on configuration settings
of the ESI processor.

Note: Itis permissible for the template/fragment model to be
used in a response that has already processed a JESI cont r ol tag.
This might be required, for example, in a case where conditional
generation of the aggregate response can include response from any
of a set of alternative pages. In this case, the JSP container uses the
attribute settings of the cont r ol tag, ignores the attribute settings
of the t enpl at e tag, but notes the fact that thereisat enpl at e
tag properly enclosing any f r agnent tags, as required. As is
always the case in the template/fragment model, there must be no
cacheable content outside the t enpl at e tag.

Because the template and fragments are independent, cacheable objects, they can
expire at different times in the ESI processor. When a cache miss occurs or an object
that has expired is requested, the ESI processor makes a request to the origin server
(OC4J in the case of Oracle Application Server) for a fresh copy.

If a requested object is a JESI template, the JSP container executes code in the page that
is outside any fragments. In output that is generated by the JSP translator, the

JESI Tags for Edge Side Includes 6-7

Overview of JESI Functionality

translator also places ESI markup that designates where all the fragments should be
included. The code that is contained in the JESI fragments will not be executed at that
time. Figure 6-2, which follows, illustrates this.

Figure 6-2 JESI Request for Template

recuest for template
template: | part !
S h
I
fragment 1
P template:”| part 2
R !
O response: template
C Jragment 2
E temmplate: pars 1
S template: | part 3
?) “gsidnchide . 7 esi fragment=I1/=
R temmplate: pars 2 :
JSP execution on

<gsignciude .. 7 esi_fragment=2/= Origin Server

template: pars 3

When a fragment expires, the ESI processor makes a request to the origin server for
that particular fragment. To execute a fragment, the OC4J JSP container executes the
template code (code outside of any fragments) plus the code of the fragment being
requested. The template code is executed to allow a fragment to rely on certain side
effects, such as declaration or initialization of variables.

The output of the fragment code is returned in the response; the output of the template
code is discarded. Upon receiving the response, the ESI processor will cache the
updated copy of the fragment. Figure 6-3, which follows, illustrates this.

6-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality

Figure 6-3 JESI Request for Fragment

= e

HownwmaoowHd

B

recuest for fragment 1

iemplate:| part !
oeuipui suppressed

Fragment 1

template:| part 2
ouiput sufpmssed

Jragment 2

tomplatey part 3
ouiput s@pmssed

response; fragment 1

fragment 1 b

F 3

JSP execution on

Origin Server

Note: To avoid needlessly repeating the execution of expensive
template code, strategically place the code within JESI codebl ock
tags. Configure each codebl ock tag according to when you want
the code within it to be executed (whenever the template is
requested, whenever a fragment is requested, or always).

Remember this behavior when choosing code placement and expiration policies for
your templates and fragments. In particular, because template code is executed in
every update request, be aware of where you place any expensive code. Do not place
an expensive computation at the template level unless it must be executed every time
or is appropriately placed within a codebl ock tag. Otherwise, place expensive
computation in a fragment that has as long an expiration time as possible.

Figure 6-4 shows one codebl ock tag scenario, in which the code block is to be
executed only when a fragment is requested. In this figure, the request is for the
template, so the code block is not executed.

Figure 6-5 shows another codebl ock tag scenario, in which the code block is still to
be executed only when a fragment is requested. This time, however, the request is for
the fragment, so the code block is executed.

JESI Tags for Edge Side Includes 6-9

Overview of JESI Functionality

Figure 6—4 JESI codeblock Fragment Execution with Request for Template

request for template

template
_ <jesircadebiock
SKP| loxecute= “fragment =

' I

zempfc%

skip fragement
' I

template

¥

Fy

Figure 6-5 JESI codeblock Fragment Execution with Request for Fragment

request for fragment

.
r'|

I
template

<jesicadeblock

execute= "fragment >
|

[
template

Jragment

template

)

Additionally, remember that no two fragments are ever executed during the same
request. For example, you should not declare or set the value of a scriptlet variable in
one fragment and depend on that variable or the set value in another fragment. If a
variable is needed in more than one fragment, then it should be declared and set in the
template code (possibly inside a codebl ock tag). Similarly, do not set a request or
session attribute in one fragment and then try to read it in another fragment. Such
"page-global logic" should also be placed at the template level.

-
|

Finally, remember that the different fragments of a page will be refreshed at different
times, according to invalidation messages and expiration settings. Typically, in a

6-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality

well-tuned application, most fragments would be served from the ESI cache, having to
be regenerated only infrequently.

Note: You can intersperse JESI t enpl at e, JESI f r agnent , and
JESIi ncl ude tags with j sp: i ncl ude tags if the JESI tags follow
JESI rules and are properly nested with respect to each other. For
example, you can have a page with a JESI t enpl at e tag, have a

j sp: i ncl ude tag within the t enpl at e tag, and have JESI

f ragnent tags in the included page. You can also use the JESI

t enpl at e tag within an included page if there is no other

t enmpl at e tag at a higher level, and if all output to the response
buffer is within the t enpl at e tag.

See the following sections for tag syntax and examples:

"JESI template Tag" on page 6-20

"JESI fragment Tag" on page 6-21

"JESI include Tag" on page 6-15

"JESI codeblock Tag" on page 6-22

"Examples: Template/Fragment Model" on page 6-23

Notes About JESI and JSP Includes

In using either the control/Zinclude or template/fragment model, be aware of the
following notes regarding the JESI i ncl ude statement:

A nested JESI inclusion is supported, either as a JESI i ncl ude statement that
includes a page that, in turn, has its own JESI i ncl ude statement, or as a JESI
i ncl ude statement inside a fragment that is defined with a JESI f r agnent
statement.

In the second case, for example, the ESI processor executes the following steps:
1. It requests the content of the aggregate page.
2. It locates the content of the fragment in the cache (if applicable) or requests it.

3. It locates the content of the included page in the cache (if applicable) or
requests it.

Despite conceptual similarities between the JESI i ncl ude tag and the standard

j sp: i ncl ude tag, there are situations in which you should not substitute a JESI
include tag for aj sp: i ncl ude tag when you convert a JSP page for caching.
Because the ESI processor uses separate HTTP requests, you are unable to pass an
HTTP request or response object between one page and a page it includes through
aJESI i ncl ude tag. If the code in the included page requires access to the request
or response object of the originating page, then you should consider using the JESI
template/fragment model and putting the code in a JESI f r agnent tag (within
the JESI t enpl at e tag of the aggregate page) instead of using the JESI i ncl ude
tag.

Invalidation of Cached Objects

There might be situations where cached objects must be explicitly invalidated due to
external circumstances, such as changes to relevant data in a database. There might

JESI Tags for Edge Side Includes 6-11

Overview of JESI Functionality

also be situations where execution of one page might invalidate the data of cached
objects corresponding to another page.

For this reason, JESI provides the JESI i nval i dat e tag and related subtags. These
tags allow you to invalidate pages based on appropriate combinations of the
following:

« Full URI or URI prefix
« Cookie name-value pair (optional)
« HTTP/1.1 request header name-value pair (optional)

Invalidation messages are in an XML-based format and specify the URLSs to be
invalidated. These messages are initiated by the JSP container when it executes the
JESIi nval i dat e tag, and transmitted to the cache server over HTTP using a POST
method. The cache server then replies with an invalidation response, sent back over
HTTP.

See "Descriptions of Tags and Subtags for Invalidation of Cached Objects" on page 6-25
for tag syntax and examples.

Personalization of Cached Pages

Dynamic Web pages frequently display customized information tailored to each
individual user. For example, a welcome page might display the user's name and a
special greeting, or current quotes for stocks the user owns.

For this kind of tailored output, the Web page depends on cookie information, which
can be provided through the JESI per sonal i ze tag. Without this tag to inform the
ESI processor of the need to perform cookie substitution, the Web page cannot be
shared by multiple users at the ESI level.

See "Description of Tag for Page Personalization” on page 6-32 for tag syntax and
examples.

JESI Fallback Execution

If no ESI processor is available for a page that uses JESI tags (such as on a system
without OracleAS Web Cache, or in which Web Cache or its ESI processor is down),
then the OC4J JSP container steps in to assemble the pages appropriately. Essentially, it
takes over and provides the most crucial functionality to execute the pages properly.
Caching does not take place, nor does error-checking of JESI tag attribute values.

In these circumstances, the JSP container processes the particular JESI tags as follows:
« Itignores JESI contr ol tags.

« Itexecutes JESIi ncl ude tags as though they are j sp: i ncl ude tags, and the
associated JESI par amtags as though they are j sp: par amtags. Note that any
scriptlet code that is nested within a JESI i ncl ude tag will still be executed.

Note: In this circumstance, unlike with JESI i ncl ude
functionality, there is no longer a separate response object for an
included page.

« Itchecks JESIt enpl at e and f r agrment tags for proper nesting, but otherwise
ignores them and executes all their tag bodies during a single request.

« Itunconditionally executes any code in JESI codebl ock tags.

6-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

« ItignoresJESIi nval i dati on tags and all subtags.

« For JESI personal i ze tags, it inserts the cookie value into the response body if
the cookie previously existed. If the cookie did not previously exist and a default
value is specified in the per sonal i ze tag, then the JSP container inserts the
default value into the response body:. If the cookie did not previously exist and no
default value is specified, then the per sonal i ze tag has no effect.

Oracle JESI Tag Descriptions

The following sections describe the syntax and attributes of the JESI tags provided
with OC4J, followed by usage examples:

« Descriptions of Tags for Dynamic Caching

« Descriptions of Tags and Subtags for Invalidation of Cached Objects
« Description of Tag for Page Personalization

Note the following requirements for the JESI tag library:

« The Oracle JESI tag library, a standard JavaServer Pages tag library
implementation, is included in the oj sputi | . j ar file, which is provided with
OC4J and is located in the "well-known" tag library directory. Verify that this file is
installed and in your classpath.

« Thetag library descriptor, j esi t agl i b. t| d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD is in the oj sputi | . j ar file.
Theuri value forjesitaglib.tldisthe following:

http://xm ns.oracle.comj2eeljsp/tid/ojsp/jesitaglib.tld
Refer to the Oracle Application Server Containers for J2EE Support for JavaServer Pages

Developer’s Guide for information about t agl i b directives, the well-known tag library
directory, TLD files, and the meaning of uri values.

Notes:

« The prefix "jesi:" is used in the tag syntax here. This is by
convention and is not required. You can specify any desired
prefix in your t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Descriptions of Tags for Dynamic Caching

The following sections cover the use of JESI tags for dynamic caching, document their
syntax and attributes, and provide examples:

« JESI control Tag

« JESlinclude Tag

« JESI param Tag

« Examples: Control/Include Model
« JESI template Tag

« JESI fragment Tag

JESI Tags for Edge Side Includes 6-13

Oracle JESI Tag Descriptions

« JESI codeblock Tag
« Examples: Template/Fragment Model

See "JESI Usage Models" on page 6-6 for overviews of the control/include and
template/fragment models.

JESI control Tag

The JESI cont r ol tag controls caching characteristics for JSP pages in the
control/include usage model. You can use a JESI cont r ol tag in the top-level page or
any included page, but it is not mandatory. For any page without a JESI cont r ol tag
in the control/include model, cacheability is according to the configuration settings of
the ESI processor. (See "JESI Usage Models" on page 6-6.)

Because action resulting from the JESI cont r ol tag sets the HTTP response header,
this tag should appear as early as possible in the page, before any other JESI tags or
any buffer flushes in the page.

Note the following:

« All attributes of the JESI cont r ol tag are optional. If you use a tag without any
settings, then, by default, the cacheability of a response has an expiration setting of
24 hours, with immediate removal of expired objects.

« If you want caching behavior to be determined by the configuration of the ESI
processor, then do not use a JESI cont r ol tag for the page in question.

« ThelJESIcontrol tag of an originating page (a page with a JESI i ncl ude tag) has
no effect on included pages. Use a JESI cont r ol tag in each included page as
well, as necessary.

« If the JSP container encounters multiple JESI cont r ol tags while generating a
single response, then only the first one is processed. The rest are ignored. Note that
a page that is included through a JESI i ncl ude tag (where such a page might
have its own JESI cont r ol tag) results in a separate response.

« If the JSP container has already encountered a JESI t enpl at e tag when it
encounters a JESI cont r ol tag while still generating the same response, then the
cont rol tagisignored.

« Ifapage with a JESI cont r ol tag depends on request parameters, consider
whether you must cache different versions of the page, depending on the request
guery string. Another alternative is to not cache the page at all (set cache="no")
if you anticipate that too many different request parameter values will result in too
many cached versions of the page.

Syntax

<jesi:control

expiration = "value"]

maxRenmoval Del ay = "val ue"]

cache = "yes" | "no" | "no-renote"]
control = "uninterpreted_string"] />

[
[
[
[

Attributes

« expiration: Specifies the lifetime, in seconds, of the cached object. The default is
86400 (24 hours).

« maxRenoval Del ay: Specifies the maximum time, in seconds, that the ESI
processor continues to store the cached object after it has expired. The default is 0,
for immediate removal.

6-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

« cache: Specifies whether the response corresponding to the tag is cacheable. A
"yes" setting (the default) enables caching. Alternatively, you can set cache to
"no" to disable caching, or to "no- r enot e" to enable caching only on the closest
cache (instead of on a remote ESI processor or content delivery network).

One reason to make a page noncacheable, for example, is if you are using a JESI
i ncl ude tag with copyPar an="yes" . See "JESI include Tag" below.

« contr ol : The value of this attribute is appended without change to the
Sur r ogat e- Cont r ol response header that was created during processing of the
JESI cont r ol tag. The OracleAS Web Cache ESI processor does not use this
attribute; however, it would be useful if you are using another ESI processor for
your application and want to pass it any additional proprietary information in the
header.

Notes:

« Do not confuse the cont r ol attribute name with the cont r ol
tag name.

« "JESI Tag Handling and JESI-to-ESI Conversion" on page 6-33
includes some discussion of the Sur r ogat e- Cont r ol header.

JESI include Tag

The JESI i ncl ude tag, as with a standard j sp: i ncl ude tag, allows dynamic
insertion of output from the included page into output from the originating page. It
does so by directing the ESI processor to process and assemble the included pages.
Each included page is a separate cacheable object (but might not be cached, depending
on settings).

You can use this tag in either the control/include model or the template/fragment
model, in any of the following scenarios:

« By itself, without a JESI cont r ol tag or JESIt enpl at e and f r agnent tags
« Inthe control/include model, after a JESI cont r ol tag

« Inthe template/fragment model, within a JESI f r agnent tag, or within the JESI
t enpl at e tag but outside any fragments

(See "JESI Usage Models" on page 6-6.)

In addition, it is permissible to nest JESI includes, either by using a JESI i ncl ude tag
inside a page that is itself included through a JESI i ncl ude tag, or by using a JESI
i ncl ude tag inside a page that is included through a standard j sp: i ncl ude tag.

The cacheability of an included page is determined as follows:

« IfthereisaJESI contr ol tag, cacheability depends on attribute settings or on the
default attribute values, as applicable.

« Ifthereisno JESI contr ol tag, cacheability depends on configuration settings of
the ESI processor.

Syntax
<jesi:include page = "uri"
[alt ="alternate_uri"]
[ignoreError = "true" | "false"]
[flush ="true" | "false"]
[copyParam = "true" | "false"] >

JESI Tags for Edge Side Includes 6-15

Oracle JESI Tag Descriptions

...optional jesi:paramtags, related scriptlets...

</jesi:include>

Notes:

« Aswithstandard j sp: i ncl ude tags and their optional
j sp: par amsubtags, you can use JESI par amtags nested
within a JESI i ncl ude tag to specify new parameters that will
be sent to the originating page (the page with the JESIi ncl ude
tag). See "JESI param Tag" on page 6-17 for tag syntax. In
addition, the body of a JESI i ncl ude tag can contain scriptlet
code to be used in evaluating the added parameters. Output
from the scriptlet code, however, and from the body of any JESI
i ncl ude tag in general, is discarded.

« Insome cases, JESIi ncl ude tags behave differently from
j sp: i ncl ude tags. This is because the JESI i ncl ude tag
results in separate request and response objects for the included
page. A JESI i ncl ude tag is not suitable, for example, when
the originating page sets a request attribute and the included
page reads this attribute from the request object.

« For backward compatibility, the deprecated "copypar ani form
of the copyPar amattribute is accepted. The change from
copypar amto copyPar amwas made to comply with the
proposed JESI specification. It is likely that copypar amwill be
desupported at some point.

Attributes

« page (required): Specifies the URI of the JSP page to be included, either a
page-relative or application-relative location. (Refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide regarding syntax
for page-relative and application-relative locations.) A full "http://..."or
"https://..."URL is supported as well.

The URI can optionally specify additional query parameters and values to pass to
the included page, but using JESI par amsubtags is a preferred mechanism for
this. See "JESI param Tag" on page 6-17.

« al t: Specifies a URI for an alternate page that is to be included if the page that is
specified in the page attribute cannot be found. Syntax is the same as for the page
attribute.

= ignoreError: Setthisto "t r ue" for continued processing of the originating page,
even if no included page can be accessed (neither the page page nor the al t
page). The defaultis "f al se".

« flush: This attribute is ignored, but is allowed in order to ease migration from
j sp: i ncl ude syntax.

« copyPar am If the included page makes use of request parameters, set this to
"t r ue" if you want to copy parameters and their values from the HTTP request
string of the originating page to the included page. The default value is "f al se".

6-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

If request parameters are significant to the included page and

copyPar ame"true", then either the originating page should not be cached
(cache="no" inthe JESI contr ol , JESIt enpl at e, or JESI f ragnent tag), or
multiple versions of the originating page should be cached, according to
parameter settings.

As an example, avoid scenarios such as the following:

<jesi:control cache="yes"/>
<jesi:include page="arf.jsp" copyParan="true" />

The reason is that if a copy of this originating page is served from the cache, and if
parameters of this subsequent request are different than those of the original
request, then the page will not execute on the server or have a chance to properly
copy new parameters into ar f . j sp. This would result in clients being served

arf . j sp generated from incorrect parameters.

However, this scenario would not be problematic in certain circumstances, such as
either of the following:

— Thearf.] sp page does not use the request parameters.

— Appropriate versions of the originating page and ar f . j sp are cached in the
ESI processor, based on URL parameters. See the Oracle Application Server Web
Cache Administrator’s Guide for more information.

JESI param Tag

The JESI par amtag is an optional subtag of the JESI i ncl ude tag. These tags work
together in the same way that standard j sp: i ncl ude andj sp: par amtags work
together.

You can use one or more JESI par amsubtags to pass additional query parameters to
the target page of the JESI i ncl ude tag. Doing this is more straightforward than the
alternative, which is to specify parameters in the page URI of the JESI i ncl ude tag. If
you use both mechanisms, then parameters from par amtags are appended after
parameters from the i ncl ude tag page URI. Any parameters that are copied from the
original request, through ani ncl ude tag copyPar am="yes" setting, are appended
after parameters from JESI par amtags.

See "Example 5: Control/Include with param Tag" on page 6-19 for a sample.

Note: Be aware that the parameter name and value will be
evaluated when the originating page (the page with the JESI

i ncl ude and par amtags) is generated. If, afterward, the
originating page is cached in an ESI processor, then the name and
value of the parameter, passed down to the included page, remain
unchanged until the originating page is regenerated. (This is similar
to the treatment of request parameters that are copied from the
request through a copyPar an¥"t r ue" setting.)

Syntax

<jesi:include page = "uri" ... >
<j esi : param nanme="par am nange"
val ue="paramval ue" />

</jesi:include>

JESI Tags for Edge Side Includes 6-17

Oracle JESI Tag Descriptions

Attributes
= name (required): Specifies the name of the parameter.

= Vval ue (required): Specifies the value of the parameter.

Examples: Control/Include Model
This section provides examples of JESI tag usage in the control/include model.

Example 1: Control/Include The following example employs default cache settings; no
JESI cont r ol tag is necessary. The JESI i ncl ude tags specify no alternate files, and a
"file not found" error will halt processing. The f | ush attribute is permissible, but
ignored.

<¥@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/jesitaglib.tld"
prefix="jesi" %

<htm >

<body>

<j esi:include page="stocks.jsp" flush="true" />

<p>

<hr>

<jesi:include page="/weather.jsp" flush="true" />

<p>

<hr>

<jesi:include page="../sales.jsp" flush="true" />

</ body>

</htn >

Example 2: Control/Include This example uses the JESI cont r ol tag to specify
nondefault cache settings for maxRenoval Del ay and expi r at i on. In addition, it
explicitly enables caching of the page, though this is already enabled by default. The
first JESIi ncl ude tag specifies an alternate page in case or der . j sp cannot be
retrieved by the ESI processor, and specifies that processing should continue even if
neither page can be retrieved. The second JESI i ncl ude tag specifies no alternate
page; processing will halt if the page cannot be retrieved.

<v@taglib uri="http://xmns.oracle.conij2ee/jsp/tld/ojsp/jesitaglib.tld"
prefix="jesi" %

<j esi:control maxRenoval Del ay="1000" expiration="300" cache="yes"/>
<jesi:include page="order.jsp" alt="alt.jsp" ignoreError="true"/>
<jesi:include page="comit.jsp" />

Example 3: Control/include This example is of an aggregate page with conditional output.
A cookie represents the identity of a customer. If no cookie is found, the user will be
shown a generic welcome page with general product information. If a cookie is found,
the user will be shown a list of products according to the user profile. This list is
brought into the page through a JESI i ncl ude statement.

The JESI cont r ol tag also sets nondefault values for rexRenoval Del ay and
expi rati on and explicitly enables caching for the page.

<¥@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/jesitaglib.tld"
prefix="jesi" %

<jesi:control maxRenoval Del ay="1000" expiration="300" cache="yes"/>
<%
String customer | d=Cooki eltil.get Cooki eVal ue(request,"custonerid");
if (customerld==null) {
/'l some unknown cust omer

6-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

%
<j esi:include page="genericwel cone.jsp" />
<%
}
el se {
/1 a known customer; trying to retrieve recomrended products fromprofiling
String reconmendedPr oduct sDescPages[] =
ProfileUtil.get RecommendedPr oduct sDescURL(custonerld);
for (int i=0; i < recomendedProductsDescPages. |ength; i++) {
%
<j esi:include page="<%recommendedProduct sDescPages[i] %" />
<%
}

}
%

Example 4: Control/include This example illustrates the use of JESI i ncl ude statements
with request parameters. Assume that the main page is accessed through the following
URL:

http://host: port/applicationl/main.jsp?p2=abc

The main page takes the parameter setting p2=abc. Here is that page:

<Y@taglib uri="http://xmns.oracle.conj2ee/jsp/tld/ ojsp/jesitaglib.tld"
prefix="jesi" %

<htm >

<jesi:control cache="no" />

<jesi:include page="a.jsp?pl=vl" />

<h3>hello ...</h3>

<jesi:include page="bh.jsp" />

<h3>world ...</h3>

<jesi:include page="c.jsp?pl=v2" copyParam="true" />

</htm >

The a. j sp page takes the parameter setting p1=v1. The c. j sp page takes the setting
pl=v2 as well as the setting p2=abc, as a result of the copyPar amsetting and the p2
setting in the URL for the main page.

Additionally, the top-level page is noncacheable, according to the cache="no"
setting. In fact, remember that you should use the copyPar amsetting in a JESI

i ncl ude tag only when the originating page is noncacheable, because the request
attributes might change from one request to the next. Remember, too, that the
cache="no" setting has no effect on the included pages. They are still cacheable by
default. In other words, each is cacheable unless it has its own JESI cont r ol tag with
cache="no" for some reason.

Example 5: Control/Include with param Tag This example illustrates use of a JESI par amtag
to add runtime values as new parameters to the included page request. Assume the
main page is accessed through a URL such as the following, taking the parameter
setting p1=v1:

http://host: port/application/main.jsp?pl=vl

Here is the page:

<jesi:control cache="yes" />
<jesi:include page="a.jsp" >
<% String v2 = null;
i f(request.get Parameter("pl").equal s("vl")
v2 = "vl set";

JESI Tags for Edge Side Includes 6-19

Oracle JESI Tag Descriptions

el se
v2 = "v2 unset";
%
<j esi:param name="p2" val ue="<%v2%" />
</jesi:include>

JESI template Tag

Use the JESI t enpl at e tag to specify caching behavior for the template content,
outside any fragments, in the template/fragment usage model. (See "JESI Usage
Models" on page 6-6.) The corresponding HTTP header will be set according to the ESI
specification. The content outside the fragments is referred to here as the template
content and is a separate cacheable object, and the content of each fragment set aside
with a JESI f r agnment tag is a separate cacheable object.

Important: All response output must be generated between the

t enpl at e start-tag and end-tag. Place the JESI t enpl at e start-tag
as early in the page as possible. It must appear before any JESI

f ragnent tags or any buffer flushes in the page. It must also
appear before any other visible output content such as text, HTML
markup, new lines, or white space. Place the JESIt enpl at e
end-tag as late in the page as possible, after any JESI f r agnment
tags and any other visible output content.

Always use the JESI t enpl at e tag together with JESI f r agnent tags. If you have no
need for separate fragments, then use a JESI cont r ol tag instead of aJESIt enpl at e
tag.

Note the following:

« All attributes of the JESI t enpl at e tag are optional. If you use a tag without any
settings, then, by default, the cacheability of a response has an expiration setting of
24 hours, with immediate removal of expired objects.

« Inthe template/fragment model, you cannot delegate decisions about cacheability
to the ESI processor. You must have a JESI t enpl at e tag, and cacheability of the
template content is according to the t enpl at e tag attribute settings or default
values, as applicable. Similarly, each fragment must be set aside with a JESI
f ragnent tag, and cacheability of each fragment is according to its f ragnent tag
attribute settings or default values.

= Do not use multiple JESI t enpl at e tags in a single JSP page. In addition, do not
use additional JESI t enpl at e tags in pages that are included, through
j sp: i ncl ude functionality, into the same response object. In either case, an
exception will result.

« Itis permissible to place a JESIt enpl at e tag inside a page that is included
through a standard j sp: i ncl ude tag, as long as there isno t enpl at e tag in any
higher-level pages and you follow any other relevant restrictions that are
mentioned in this section.

« If the JSP container has already encountered a JESI cont r ol tag when it
encounters a JESI t enpl at e tag while still generating the same response, then
any attributes of the t enpl at e tag are ignored and caching is according to the
control tag.

6-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

Note: In this situation, the t enpl at e tag is not ignored
completely. When the template/fragment model is used in a page
that also has a JESI cont r ol tag (which can happen if a page with
atenpl at e tag is included dynamically, and usually
conditionally), the JSP container notes the fact that there is a

t erpl at e tag properly enclosing any f r agnment tags, as required.

« TheJESIt enpl at e tag cacheability settings have no effect on the enclosed
fragments; fragments provide their own settings (or default values).

« If request parameters are significant to a fragment, then either the enclosing
template content should not be cached (cache="no" in the JESIt enpl at e tag),
or separate versions of the template content should be cached, according to
parameter values. Different versions of the fragment should also be cached,
according to parameter values.

In the background, a fragment involves an additional request, as with a page
included through a JESI i ncl ude tag. Request parameters (if any) are always
passed from the template to the fragment, equivalent to JESI i ncl ude tag
functionality with a setting of copyPar am="t r ue" . (This kind of issue is also
discussed in "JESI include Tag" on page 6-15.)

The JESI t enpl at e tag has the same attributes, with the same usage, as the JESI
control tag.
Syntax

<jesi:tenplate
[expiration = "val ue"]

[maxRenoval Del ay = "val ue"]
[cache = "yes" | "no" | "no-renote"]
[control = "uninterpreted_string"] >

...page content, jesi:fragnment tags, optional jesi:include tags, optional
j esi:codebl ock tags. .

</jesi:tenpl ate>

Attributes

For attribute descriptions, see "JESI control Tag" on page 6-14.

JESI fragment Tag

Use one or more JESI f ragnent tags within a JESI t enpl at e tag, between the JESI
t enmpl at e start-tag and end-tag, in the template/fragment model. (See "JESI Usage
Models" on page 6-6.) Each JESI f r agnment tag defines a separate fragment of the JSP
page, as desired, for caching behavior. Each fragment is a separate cacheable object.

When a particular fragment is requested for inclusion into the aggregate response
through the ESI mechanism, the ESI processor retrieves only that fragment.

The JESI f r agnent tag has the same attributes, with the same usage, as the JESI
control and JESIt enpl at e tags.

Note the following:

« Each JESI f ragnment tag specifies its own caching instructions to the ESI
processor. Cacheability is according to the specified attribute settings or the

JESI Tags for Edge Side Includes 6-21

Oracle JESI Tag Descriptions

default values, as applicable. The settings of the surrounding JESI t enpl at e tag
have no effect on the fragments.

=« You cannot nest a JESI f ragnent tag within another JESI f r agnent tag.

« Unlike with the control/include model, it is not possible to delegate caching
instructions to the ESI processor in the template/fragment model, given that a
t enpl at e tag, and f r agnent tags as applicable, are required. Caching is always
according tot enpl at e or f ragment tag attribute settings or the default values.

« Aslong as you follow the restrictions mentioned in this section, it is permissible to
place a JESI f ragnment tag inside a page that is included through a standard
j sp:include tag. The JESIt enpl at e tag that encloses the JESI f r agrment tag
can appear in the same included page or in a higher level page such as the page
containing thej sp: i ncl ude statement.

Syntax

<j esi: fragment
[expiration = "value"]
[maxRenoval Del ay = "val ue"]
[cache = "yes" | "no" | "no-renote"]
[control = "uninterpreted_string" | >

...JSP code fragment...
</jesi:fragnment>

Attributes

For attribute descriptions, see "JESI control Tag" on page 6-14.

JESI codeblock Tag

In the template/fragment model, you can optionally use one or more JESI codebl ock
tags within template code, outside of any fragments, to mark conditional execution of
particular blocks of code. Each codebl ock tag surrounds a block of code and specifies
when it should be executed:

« Only when the template is requested

or:

« Only when a fragment (any fragment) is requested

or:

« Always (whether a template or fragment is requested)

Without use of this tag, all template code is executed with every request—with each
request for the template as well as with each request for any fragment, although
template output is discarded in the case of a request for a fragment.

Although it is important to execute the template whenever a fragment is requested—to
allow fragments to depend on template code side effects such as variable declaration
or initialization—there might be blocks of code that are not critical to fragments. You
can place any such code block into a codebl ock tag with a specification to execute
the block only when the template is requested.

Alternatively, there might be blocks of template code that are potentially vital to all
fragments, but not to the template itself. You can place any such code block into a
codebl ock tag with a specification to execute the block only when any fragment is
requested.

6-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

Note: Itis advisable to not generate any visible output within a
JESI codebl ock tag. This is to avoid unexpected behavior due to
differences in execution between requests for the template and
requests for fragments. If execut e="t enpl at e" (or "al ways")
and the template is requested, then the code is executed and the
content is output, as presumably intended. However, if

execut e="fragment" (or"al ways") and the request is for a
fragment, then the code is executed but the entire output of the
template is suppressed, as is always the case when a fragment is
requested. See Figure 6-3 in "Template/Fragment Model" on

page 6-7.
Syntax
<jesi:tenplate ... >
<j esi:codebl ock execute = "tenplate" | "fragment" | "al ways" >

...request-dependent JSP content...
</jesi:codebl ock>

</jesi:tenpl ate>

Attributes

« execut e (required): Specify the value "t enpl at e" to execute the code block only
when the template is requested. Specify the value "f r agnent " to execute the code
block only when any fragment is requested. A setting of "al ways" results in the
code block being executed with every request for the page, and is equivalent to not
using a codebl ock tag at all.

Examples: Template/Fragment Model
This section contains examples of JESI tag usage in the template/fragment model.

Example 1: Template/Fragment This is a general example showing use of the JESI

t enpl at e and JESI f ragnent tags. Because only the expi r ati on attribute is setin
any of the tags, all other settings are according to defaults. The setting of the cache
attribute defaults to "yes", so the template and all three fragments are cached.

The template content (outside the fragments) uses an expiration of 3600 seconds,
according to the JESI t enpl at e tag. This applies to all the HTML blocks because they
are outside the fragments. JSP code block #1 is cached with an expiration setting of 60;
JSP code block #2 is cached with the default expiration setting; and JSP code block #3 is
cached with an expiration setting of 600.

<v@taglib uri="
http://xm ns.oracle.com j2eeljsp/tldlojsp/
jesitaglib.tld"
prefix="jesi" %
<jesi:tenplate expiration="3600">
. HTML bl ock #1...
<j esi:fragment expiration="60">
...JSP code bl ock #1...
</jesi:fragnent>
. HTML bl ock #2...
<j esi : fragment >
... JSP code block #2...
</jesi:fragment>

JESI Tags for Edge Side Includes 6-23

Oracle JESI Tag Descriptions

... HTM. block #3...
<jesi:fragment expiration="600">
...JSP code bl ock #3...
</jesi:fragment>
... HTM. bl ock #4...
</jesi:tenplate>

Example 2: Template/Fragment This example employs JESI i ncl ude tags inside the
fragments. The following are the cacheable objects for this page:

« Each included page
« Each fragment, outside of the page it includes

« The aggregate of the HTML blocks, which are all at the template level outside any
fragments

<Y@taglib uri="
http://xm ns. oracl e. com j 2ee/j sp/tld/ oj sp/
jesitaglib.tld"
prefix="jesi" %
<j esi:tenplate expiration="3600">
.HTML bl ock #1...
<j esi:fragment expiration="60">
...JSP code bl ock #1...
<j esi:include page="stocks.jsp" />
</jesi:fragment>
.HTM. bl ock #2...
<j esi: fragment >
...JSP code bl ock #2...
<j esi:include page="/weather.jsp" />
</jesi:fragment>
.HTML bl ock #3...
<jesi:fragment expiration="600">
...JSP code bl ock #3...
<jesi:include page="../sales.jsp" />
</jesi:fragment>
...HTM. bl ock #4...
</jesi:tenplate>

Example 3: Template/Fragment with Codeblock This is a conceptual example of how you
can use the codebl ock tag in the template/fragment model. In this case, to improve
performance, the code that connects to the database would be placed in the code block
so that it is not reexecuted needlessly.

<v@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/jesitaglib.tld"
prefix="jesi" %
<jesi:tenpl ate>
Vel cone to the Frequent Flyer Home page!
<j esi : codebl ock execute="fragnent" >
/* Open a dat abase connection and store it in the variable dbConn. */
</jesi: codebl ock>
BEST DEALS
<jesi:fragment expiration="600" nmaxRenoval Del ay="180">
...in Air Travel
/* Select the three cheapest USA donestic round-trip fares, using the database
connection stored in dbConn. */
</jesi:fragnent>

<jesi:fragment expiration="600" maxRenoval Del ay="180">
...in Accommodati ons

6-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

/* select the three best hotel deals, using the database connection stored in
dbConn. */
</jesi:fragnment>

Cick here to access your current M|eage account <...>
</jesi:tenpl ate>

Descriptions of Tags and Subtags for Invalidation of Cached Objects

Use the JESI i nval i dat e tag and the following subtags, as appropriate, to explicitly
invalidate cached objects in the ESI processor:

« JESlobject
« JESI cooki e (subtag of JESI obj ect)
« JESI header (subtag of JESI obj ect)

The following sections cover the syntax of these tags, the JESI configuration file (which
can be used to specify the user name, password, and URL to log in for invalidation),
and some examples:

« JESlinvalidate Tag

« JESI Configuration File

« JESI object Subtag

« JESI cookie Subtag

« JESI header Subtag

« Examples: Page Invalidation

See "Invalidation of Cached Objects" on page 6-11 for an overview.

JESI invalidate Tag

Use the JESI i nval i dat e tag with its JESI obj ect subtag to explicitly invalidate one
or more cached objects.

Use the subtags as follows:

« Use the required JESI obj ect subtag to specify what to invalidate, according to
the URI or URI prefix.

« Optionally use JESI cooki e subtags or JESI header subtags (or both) of the JESI
obj ect tag to specify further criteria for what to invalidate, according to cookie or
HTTP header information.

Syntax

<jesi:invalidate
[url ="url"
username = "user_name"
password = "password"]
[config = "configfilenanme"]
[output = "browser"] >

Required subtag (described in "JESI object Subtag" on page 6-28):

<jesi:object ... >

Optional subtag of JESI obj ect (described in "JESI cookie Subtag" on page 6-29):

<jesi:cookie ... />

JESI Tags for Edge Side Includes 6-25

Oracle JESI Tag Descriptions

Optional subtag of JESI obj ect (described in "JESI header Subtag" on page 6-30):

<j esi:header ... />
</jesi:object>
</jesi:invalidate>

Either specify the user, password, and URL all through their individual attributes, or
all in the configuration file that is either referred to in the conf i g attribute or is found
in the default location. The default location is/ VEB- | NF/ j esi . xm or, for backward
compatibility, / VEB- | NF/ conf i g. xm . See "JESI Configuration File" on page 6-27 for
information about the file. If the user name, password, and URL are specified through
the configuration file as well as through the attribute settings, then the attribute
settings take precedence.

If you specify a <user > element for the OracleAS Web Cache "invalidator" account in
the OC4Jj azn- dat a. xmi file, then you can use special syntax in the passwor d
attribute to refer to the information in j azn- dat a. xm instead of specifying the
password in clear text. The password is specified inj azn- dat a. xm in an obfuscated
form. See the user nanme and passwor d attribute descriptions below. See the Oracle
Application Server Containers for J2EE Security Guide for information about the

j azn-dat a. xmi file.

Note: Itis permissible to have multiple obj ect tags within an
i nval i dat e tag.

Attributes

= url: Specifies the URL of the cache server. If this attribute is omitted, then you
must specify the URL, as well as the user name and password, in the JESI
configuration file.

« user namne: Specifies the user name for logging in to the cache server to perform
invalidation. OracleAS Web Cache typically requires an "invalidator" user name. If
this attribute is omitted, then you must specify the user name, as well as the
password and URL, in the JESI configuration file.

If the OC4Jj azn-dat a. xil file contains a <user > element for the OracleAS
Web Cache "invalidator" account, then you can use that account name for the
user namne value, such as:

user nane="inval i dat or"

« passwor d: Specifies the password for logging in to the cache server to perform
invalidation. If this attribute is omitted, then you must specify the password, as
well as the user name and URL, in the JESI configuration file.

If the OC4Jj azn-dat a. xm file contains a <user > element for the OracleAS
Web Cache "invalidator" account, then you can get the de-obfuscated password
from that file by using special right-arrow syntax with a dash ("- ") and right-carrot
(">") followed by the invalidator account name, such as:

passwor d="->i nval i dat or"

« confi g: Specifies a JESI configuration file, using either an application-relative or a
page-relative location. You can use this file to provide the cache server URL, user
name for invalidation, and password instead of using the corresponding tag
attributes. Note the following:

6-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

— You can use a configuration file in the default location instead of specifying
one through the conf i g attribute. See "JESI Configuration File" on page 6-27.

— No configuration file is consulted if user name, passwor d, and ur | are all
specified through tag attributes.

« out put: Optionally sets an output device to receive the invalidation response
from the cache server. Currently, the only supported setting is "br owser ", which
wraps the Web cache response with HTML formatting to show the message in the
user's Web browser. If you do not set this parameter, then the invalidation
response will not be displayed.

JESI Configuration File

The proposed JESI specification supports the use of a configuration file. Currently, you
can use a configuration file only to specify the user name, password, and URL for
invalidation. (Alternatively, you can specify the user name, password, and URL
through attributes of each JESI i nval i dat e tag. See "JESI invalidate Tag" on

page 6-25.)

A JESI configuration file must have a <j esi - conf i g> top-level element, an
<i nval i dat i on> subelement under that, and <user nane>, <passwor d>, and
<ur | > subelements under the <i nval i dat i on> element.

Note: For backward compatibility, the deprecated elements

<0j sp-confi g>and <web- cache> are currently acceptable
instead of <j esi - confi g>and <i nval i dat i on>, respectively.
The new elements are to comply with the proposed JESI
specification. It is likely that the <oj sp- confi g> and

<web- cache> will be desupported in a future release.

In the current implementation there are two possible default files, or you can place the
file anywhere within your application and specify its name and location through the
confi g attribute of the i nval i dat e tag, specifying either an application-relative or a
page-relative location.

The preferred default file is/ VEB- | NF/ j esi . xm , which conforms with the
proposed JESI specification. For backward compatibility, the previous default file,
/ VEEB- | NF/ confi g. xm , is also supported.

The following precedence is used to obtain the user name, password, and URL for
invalidation:

1. Ifthe JESIi nval i dat e tag specifies the user nane, passwor d, and ur | attribute
settings (all three), then those values are used.

Note: Ifthei nval i dat e tag specifies one or two of these
attributes but not all three, an exception is raised. An exception is
also raised if one or more of the attribute values is an empty string
or null.

2. If you do not specify user nane, passwor d, and ur| inthei nval i dat e tag, but
the conf i g attribute specifies a configuration file, then values from the specified
configuration file are used.

3. If you do not specify user nane, passwor d, url ,and confi g in the
i nval i dat e tag, then the JSP container attempts to use a default configuration

JESI Tags for Edge Side Includes 6-27

Oracle JESI Tag Descriptions

file. First, the container searches for / VEB- | NF/ j esi . xrm and uses the settings
from that file if it is found. If that file is not found, then the container searches for
/ VEEB- | NF/ conf i g. xnl and uses the settings from that file if it is found.

Notes: Ifthei nval i dat e tag does not specify the user name,
password, and URL, an exception is thrown under either of the
following circumstances:

« Ifatany point a configuration file is found that does not specify
all three attributes

« If no configuration file is found

If the OC4Jj azn- dat a. xnl file contains a <user > element for the OracleAS Web
Cache "invalidator" account, you can that account name in the JESI configuration file
and get the password from j azn- dat a. xm by using special right-arrow syntax with
a dash (- ") and right-carrot (">"), followed by the invalidator account name. See
"Example 2: Configuration File Obtaining Password from jazn-data.xml" below.

Example 1: Configuration File with Clear Text for Password The following example shows a
configuration file that is used instead of the ur | , user nane, and passwor d attributes
to set the URL and login information:

<?xm version="1.0" ?>
<j esi-config>
<invalidation>
<url >http://yourhost.yourconpany.com 4001</ ur| >
<user name>i nval i dat or </ user nane>
<passwor d>i nvpwd</ passwor d>
</invalidation>
</jesi-config>

Example 2: Configuration File Obtaining Password from jazn-data.xml The following example,
instead of using clear text to specify the password, uses special "- >" syntax to obtain
the de-obfuscated password from the j azn- dat a. xmi file. This example assumes

j azn-dat a. xm contains a <user > element for the OracleAS Web Cache
"invalidator" account:

<?xm version="1.0" ?>
<j esi-config>
<inval i dati on>
<url >http://yourhost.yourconpany. com 4001</ ur| >
<user name>i nval i dat or </ user nanme>
<passwor d>- >i nval i dat or </ passwor d>
</invalidation>
</jesi-config>

JESI object Subtag

Use the required JESI obj ect subtag of the JESI i nval i dat e tag to specify cached
objects to invalidate, according to either the complete URI or a URI prefix. Optionally,
use JESI cooki e subtags or JESI header subtags (or both) to specify further criteria
for invalidation, based on cookie or HTTP header information.

Specify either the complete URI or the URI prefix in the ur i attribute setting. Whether
this field is interpreted as a full URI or as a prefix depends on the setting of the
pref i x attribute.

6-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

Syntax

<jesi:object uri = "uri_or_uriprefix"
[maxRenoval Del ay = "val ue"]
[prefix ="yes" | "no"] >

Optional subtag (described in "JESI cookie Subtag" on page 6-29):

<jesi:cookie ... />

Optional subtag (described in "JESI header Subtag” on page 6-30):

<jesi:header ... />
</jesi:object>

Here is the syntax if you do not use either subtag:

<jesi:object uri = "uri_or_uriprefix"
[maxReroval Del ay = "val ue"]
[prefix = "yes" | "no"] />
Notes:

« Itis permissible to have multiple obj ect tags within an
i nval i dat e tag.

« Itis permissible to have multiple cooki e tags or header tags
within an obj ect tag.

Attributes

« uri (required): Specifies either the complete URI of the page whose corresponding
cached obiject is to be invalidated (if pr ef i x="no"), or a URI prefix that specifies
objects for multiple pages to be invalidated according to location (if
prefix="yes").

If a prefix is specified, then cached objects for all pages under that location are
invalidated. For example, for a prefix of "/ abc/ def ", cached objects for all pages
in the corresponding directory and any subdirectories are invalidated.

« prefix:Setthisto"yes"iftheuri attribute is to be interpreted as a URI prefix
only. Use the default "no" setting if the uri value is to be interpreted as a complete
URI.

« maxRenoval Del ay: Specifies the maximum delay, in seconds, between the time
when a cached object is invalidated and the time when it is removed and,
therefore, can no longer be served by the ESI processor. This delay is 0 by default,
for immediate removal.

JESI cookie Subtag

Use one or more JESI cooki e subtags of the JESI obj ect tag (which is a subtag of the
JESIi nval i dat e tag) if you want to use cookie information as further criteria for
invalidation. This cookie information is in addition to the URI or URI prefix setting in
the JESI obj ect tag, and possibly in addition to JESI header tags as well. The

cooki e tag is useful for invalidating objects that have had multiple versions cached,
based on cookie information.

The cooki e tag has no body.

JESI Tags for Edge Side Includes 6-29

Oracle JESI Tag Descriptions

Syntax

<j esi : cooki e nane = "cooki e_nanme"
[value = "cookie_value"] />

Notes:

« Itis permissible to have multiple cooki e tags within an
obj ect tag.

« Unlike most other JESI tag attributes, it is permissible for the
val ue attribute to have a null or empty-string value.

Attributes
« nane (required): This is the name of the cookie.
« val ue: This is the value of the cookie.

For each use of the cooki e subtag, the request URL of the object to be invalidated
must have a cookie that matches the nane attribute setting and, if specified, the val ue
attribute setting.

JESI header Subtag

Use one or more JESI header subtags of the JESI obj ect tag (which is a subtag of the
JESli nval i dat e tag) if you want to use HTTP/1.1 header information as further
criteria for invalidation. This header information is in addition to the URI or URI
prefix setting in the JESI obj ect tag, and possibly in addition to JESI cooki e tags as
well. The header tag is useful for invalidating objects that have had multiple versions
cached, based on header information.

The header tag has no body.

Syntax

<j esi : header nane = "header_nane"
val ue = "header _val ue" />

Note: Itis permissible to have multiple header tags within an
obj ect tag.

Attributes
= nhamne (required): This is the name of the HTTP/1.1 header.
« val ue (required): This is the value of the HTTP/1.1 header.

For each use of the header subtag, the request URL of the object to be invalidated
must have a header that matches the nanme and val ue attribute settings.

Examples: Page Invalidation

This section provides examples of page invalidation using the JESI i nval i dat e tag,
its JESI obj ect subtag, and the JESI cooki e subtag of the JESI obj ect tag.

Example 1: Page Invalidation This example invalidates a single object in the ESI processor,
specified by its complete URI. (By default, the ur i attribute of the obj ect tag

6-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions

specifies a full URI, not a URI prefix.) The JESIi nval i dat e tag also specifies the URL
for the cache server, and the user name and password for the invalidation account. In
addition, it specifies that the invalidation response from the cache server should be
displayed in the user's browser.

<jesi:invalidate url="http://yourhost.yourconpany.com 4001"
usernane="i nval i dat or" password="i nvpwd"
out put =" br owser ">

<jesi:object uri="/inages/logo.gif"/>
</jesi:invalidate>

Example 2: Page Invalidation This example is equivalent to "Example 1: Page
Invalidation" immediately above, but uses a configuration file to specify the cache
server URL and login information.

<jesi:invalidate config="/nyconfig.xm" output="browser">
<jesi:object uri="/images/logo.gif"/>
</jesi:invalidate>

The JESIi nval i dat e tag specifies an application-relative location for the
configuration file. As an example, suppose myconfi g. xm has the following content:

<?xm version="1.0" ?>
<j esi -confi g>
<invalidation>
<url>http://yourhost.your company. com 4001</ ur| >
<user nanme>i nval i dat or </ user nane>
<passwor d>i nvpwd</ passwor d>
</invalidation>
</jesi-config>

Example 3: Page Invalidation This example invalidates all objects in the ESI processor,
according to the URI prefix "/ ". It does not specify that the invalidation response
should be displayed in the browser, so it will not be displayed at all.

<jesi:invalidate url="http://yourhost.yourconpany.com 4001"
user name="i nval i dator" passwor d="i nvpwd" >
“[" prefix="yes"/>
</jesi:invalidate>

Example 4: Page Invalidation This example invalidates a single object but allows it to be
served stale for up to 30 minutes (1800 seconds).

<jesi:invalidate url="http://yourhost.yourconpany.com 4001"
user name="i nval i dator" passwor d="i nvpwd" >
<jesi:object uri="/images/|ogo.gif" maxRenoval Del ay="1800"/>
</jesi:invalidate>

Example 5: Page Invalidation This example specifies the same object for invalidation as
"Example 1: Page Invalidation™ on page 6-30, but specifies that it should be invalidated
only if its request URL has a cookie named user _t ype with the value cust oner.

JESI Tags for Edge Side Includes 6-31

Oracle JESI Tag Descriptions

<jesi:invalidate url="http://yourhost.yourconpany.com 4001"
usernanme="i nval i dat or" password="i nvpwd">
<j esi:object uri="/imges/logo.gif">
<j esi:cooki e name="user _type" val ue="custoner"/>
</jesi:object>
</jesi:invalidate>

Description of Tag for Page Personalization

To allow page customization when sharing the same cached page between multiple
users, the ESI processor must be informed of dependencies by the page on cookie and
session information. Cookie value replacement, for example, occurs in the ESI
processor instead of in the Web server.

JESI personalize Tag

Use the JESI per sonal i ze tag to allow page customization, by directing the ESI
processor to substitute cookie values from a current request before serving a cached

page.

The effect of this tag is to insert an ESI placeholder with the cookie name and value
into the response body. If the cookie that is specified in the nane attribute is found in
the request and has a non-null value, its value is used. If the cookie is not found in the
request or has a null value, but a value is specified through the def aul t attribute,
then a new cookie is created and the def aul t value is used. If the cookie did not
previously exist and no def aul t value is specified, the tag has no effect.

The per sonal i ze tag has no body.

Syntax

<j esi: personal i ze name = "cooki e_nane"
[default = "default_value"] />

Notes:

«» For backward compatibility, the deprecated "val ue" form of
the def aul t attribute is accepted. The change from val ue to
def aul t was made to comply with the proposed JESI
specification. It is likely that val ue will be desupported in a
future release.

« OC4J automatically places single quotes around the specified
def aul t (or val ue) setting to comply with the ESI
specification. Prior to the OC4J 9.0.4 implementation, you had
to include the single quotes as part of your setting.

Attributes

« nhane (required): Specifies the name of the cookie whose value is used as the basis
for personalizing the page.

« defaul t:Thisisan optional default value in case the cookie is not found or has a
null value.

6-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI Tag Handling and JESI-to-ESI Conversion

Example: Page Personalization
The following example shows usage of the JESI per sonal i ze tag:

<j esi:personalize name="user _id" defaul t="guest" />

The corresponding ESI tag that is generated allows the ESI processor to find the
necessary information. In this case, it looks for a cookie named user _i d and retrieves
its value. If it cannot find the cookie, it uses a default value of "guest ".

Handling this cookie-value replacement in the ESI processor allows the ESI processor
to serve multiple customized pages from a single cached copy, without involving the
application server.

JESI Tag Handling and JESI-to-ESI Conversion

JESI tag handler classes, supplied as part of the JESI tag library with OC4J, provide the
bridge from JSP functionality to ESI functionality. Tag handlers generate ESI tags from
JESI tags and, as appropriate, generate HTTP requests for invalidation, set HTTP
response headers, and so on. Be aware, however, that there is not always a simple
one-to-one mapping between JESI tags and ESI tags, or between JESI tag attributes and
ESI tag attributes.

Example: JESI-to-ESI Conversion for Included Pages
As an example of JESI-to-ESI conversion, consider the following JSP code:

<p>BEA N</ p>

<jesi:control cache="no"/>

<jesi:include page="stocks.jsp" flush="true" />

<p>

<hr>

<jesi:include page="/weather.jsp" copyParam="true" flush="true" />

<p>

<hr>

<jesi:include page="../sales.jsp?tax=local " copyParane"true" flush="true" />
<p>END</ p>

Assume that this JSP code is part of a page with the following URL.:
http://host: port/applicationl/top.jsp

Further assume the following request:

http://host: port/applicationl/top.jsp?city=Washi ngton_DC

In this case, the JESI i ncl ude tag handler generates ESI markup such as in the
following response.

In the response header:

Surrogate-Control : content="ESI/1.0", max-age=86400+0, no-store

In the response body:
<p>BEG N</ p>
<esi:include src="/applicationl/stocks.jsp"/>

<p>
<hr>
<esi:include src="/weather.jsp?city=Wshi ngton_DC'/ >

JESI Tags for Edge Side Includes 6-33

JESI Tag Handling and JESI-to-ESI Conversion

<p>
<hr >
<esi:include src="/sal es.sp?tax=l ocal &ity=Washi ngt on_DC'/ >

<p>END</ p>

This response is read by the ESI processor before being delivered to the client. A

Surr ogat e- Cont r ol header alerts the ESI processor that the response body contains
ESI markup; therefore, the caching mechanism looks inside the response body for ESI

tags. In addition, the Sur r ogat e- Cont r ol header sets the cache directive to

no- st or e, according to the cache="no" attribute setting. Expiration and maximum

delay interval have no impact in this case.

In response to each of the three esi : i ncl ude tags, the ESI processor makes an
additional request to the URL that is specified. Each response is included into the
top-level page, and only after that is the assembled page delivered to the client. Note
that the client receives one response, but the cache initially makes four requests to
obtain it. This might seem like a lot of overhead; however, the overall efficiency will be
improved if many additional requests also use the same included pages, such as

weat her . j sp. No requests for these pages are required, because they are cached
separately on the ESI processor.

Example: JESI-to-ESI Conversion for a Template and Fragment

Suppose that when employees connect to a corporate intranet site, the content of their
pages is dynamic except for a few features that are present in every response. In
particular, there is always a footer displaying the stock chart and latest business
headlines for the company, and the business headlines are obtained from an external
business news site. Because all returned pages will have to include the same
information, and it is expensive to obtain, it is more efficient to cache the footer in the
ESI processor.

The remainder of the page response is dynamic, incorporating the stock fragment in a
slightly different way each time. To avoid having to rewrite the page, you can mark the
footer as a JESI fragment and the enclosing page as a JESI template.

Also assume that a charity campaign is in progress and that the organizers want to
display a bar chart showing their goal amount and the current donation amount as
part of all corporate pages. This information is stored in a special database table and is
updated twice a day. The chart is a good candidate to be an additional JESI fragment.
Therefore, you would add a JESI t enpl at e tag at the top of the page and use JESI

f ragnent tags to enclose the fragments that are to be cached as separate entities.

Assume that the URL to the corporate page is as follows:

htt p: / / waw. bi gcor p. cont enpl oyee_page. j sp

Further assume that you have modified the page as follows:

<v@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/jesitaglib.tld"
prefix="jesi" %
<jesi:tenplate cache="no" >

<p>BEGQ N</ p>

. sone dynani c page content...
<j esi: fragnent>
This_is_the_body_of Charity_Chart
</jesi:fragnment>

. sone nore dynamic content...
<j esi:fragment>

6-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI Tag Handling and JESI-to-ESI Conversion

Thi s_i s_t he_body_of _Busi ness_Foot er
</jesi:fragment>

</jesi:tenpl ate>

<p>END</ p>

When the page is requested, an HTTP response is generated as follows.
In the response header:

Surrogate-Control: content="ESI/1.0", max- age=86400+0, no-st ore

In the response body:

<p>BEG N</ p>
. sone dynam c page content...
<esi:include src="/enpl oyee_page.sp?__esi_fragnent=1"/>
. sone nore dynam ¢ content...
<esi:include src="/enpl oyee_page.jsp?__esi _fragment=2"/>
<p>END</ p>

As with the JESI i ncl ude example in "Example: JESI-to-ESI Conversion for Included
Pages" on page 6-33, the ESI processor is alerted by the Sur r ogat e- Cont r ol
response header. Note the no- st or e directive, generated because of the cache="no"
setting in the JESI t enpl at e tag.

The ESI processor makes two additional requests, where it fetches and caches the two
fragments. After that, the composite page is returned to the employee. When the
employee works with the page again, the dynamic content will be newly generated
but the chart and the footer will be served from the cache.

Note: Surrogat e- Control headers are consumed by the ESI
processor and are not seen in the final response to the client.

JESI Tags for Edge Side Includes 6-35

JESI Tag Handling and JESI-to-ESI Conversion

6-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

v

Web Object Cache Tags and API

This chapter describes the Web Object Cache, an application-level caching mechanism
supplied with OC4J. For Web applications written in Java, you can use the Web Object
Cache in conjunction with the Oracle Application Server Web Cache for increased
speed and scalability.

The chapter consists of the following sections:
« Overview of the Web Object Cache

« Key Functionality of the Web Object Cache
« Attributes for Policy Specification and Use
« Web Object Cache Tag Descriptions

« Web Object Cache API Descriptions

« Cache Policy Descriptor

« Cache Repository Descriptor

« Configuration for Back-End Repository

For an overview of Web caching, including a discussion of the OracleAS Web Cache
and Oracle Application Server Java Object Cache, see "Summary of Oracle Caching
Support for Web Applications” on page 1-9.

Overview of the Web Object Cache

The OC4J Web Object Cache is a mechanism that allows Web applications written in
Java to capture, store, reuse, post-process, and maintain the partial and intermediate
results generated by a dynamic Web page, such as a JSP or servlet. For programming
interfaces, it provides a tag library and a Java API.

The Web Object Cache works at the Java level and is closely integrated with the HTTP
environment of JSP and servlet applications. Cached objects might consist of HTML or
XML fragments, XML DOM objects, or Java serializable objects.

With the Web Object Cache programming interfaces, you can split Web pages into
page blocks that define separate cache objects for finer control of caching. (The terms
block and object are used somewhat interchangeably in this sense.) In this way, the
application itself can control life span and other behavior of individual cache entities
during runtime. Application developers have the best understanding of the life cycle
patterns of their application Web pages, so are best suited to determine how to split
pages into cache blocks. You can specify maintenance policies for cached objects either
declaratively in an external file, the cache policy descriptor, or programmatically within
the application itself.

Web Object Cache Tags and APl 7-1

Overview of the Web Object Cache

The following sections provide an overview of the Web Object Cache:
« Benefits of the Web Object Cache

= Web Object Cache Components

» Cache Policy and Scope

Benefits of the Web Object Cache

Note: The Web Object Cache is useful in particular scenarios and
does not replace the need for other caching mechanisms, including
the OracleAS Web Cache. For an overview of the Web Object Cache
and how it relates to the OracleAS Web Cache and the Oracle
Application Server Java Object Cache, including a discussion of
when it is appropriate to use each one, see "Summary of Oracle
Caching Support for Web Applications” on page 1-9.

Using the Web Object Cache can significantly reduce the amount of time spent in
constructing page blocks or Java objects in dynamic applications, such as those with
expensive intermediate operations like querying a database and formatting or
transforming the results. Subsequent queries pull the information out of the cache, so
the query and formatting do not have to be repeated.

Furthermore, developers can closely control the cache programmatically, through API
calls or custom JSP tags. This can include controlling when cache entries are created,
what they are named, when they expire, which users can see which cached data, and
what operations can be applied to cached data before the results are served to the user.

Some kinds of Web applications benefit more than others by using the Web Object
Cache, depending on the nature and use of their data. For example, applications such
as catalog and directory browsing, delayed stock quotes, and personalized portals
would particularly benefit. Applications such as real-time stock trading or real-time
stock quotes, however, would not benefit, because the data has to be updated so
frequently that the overhead of the caching operations would outweigh the benefits.
(In these circumstances, however, the OracleAS Web Cache might still be useful
because of its lighter overhead.)

In general, the Web Object Cache is most useful in the following situations:

« For special post-processing on cached data objects, such as XSLT or XML DOM
operations

« Forsharing data in a non-HTTP situation, such as reusing cached XML data or
Java objects and sending the data to others through SMTP, JMS, AQ, or SOAP

« For special storage needs, such as storing cached data in a file system or database
for persistent storage of data with a long lifetime

« For application-specific authorization, allowing different users to have different
access rights to different data items, such as for a Web-based groupware
application

The application can have its own authorization scheme. The Web Object Cache is
embedded within Java authorization logic.

Using the Web Object Cache in JSP pages is particularly convenient. JSP code
generation can save much of the development effort.

7-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of the Web Object Cache

Web Object Cache Components

The Web Object Cache consists of two main components:
« Cache repository
« Cache programming interfaces

This section also provides a brief introduction to the Oracle Application Server Java
Object Cache, which is the default cache repository of the Web Object Cache.

Cache Repository

The cache repository is the component that is responsible for data storage, data
distribution, and cache expiration. There can be multiple repository implementations
for a programmable Web cache (such as the Web Object Cache), depending on the tier
and platform. For example, the file system might be used for secondary storage in the
middle tier, and database tables might be used for primary storage in the database tier.

The Web Object Cache uses the Oracle Application Server Java Object Cache as its
default repository. The Java Object Cache is a general-purpose Java caching service
and API designed for application use, with objects being accessible by name.

The Java Object Cache is a powerful and flexible programming facility. There are no
restrictions on the types of objects that can be cached or the original source of the
objects. The management of each object is easily customizable. Each object has a set of
attributes such as the following:

« How the object is loaded into the cache

= Where the object is stored (in memory, on disk, or both)
« The lifetime, also known as the time-to-live, of the object
« Whom to notify when the object is invalidated

Objects can be invalidated as a group or individually.

For more information about the Java Object Cache, see the Oracle Application Server
Containers for J2EE Services Guide.

Note: See "Configuration for Back-End Repository"” on page 7-41
for information about configuring the Java Object Cache or afile
system as the back-end repository for the Web Object Cache.

Cache Programming Interfaces

The front-end caching interfaces are used through JSP pages and servlets to handle
HTTP processing and to direct the semantics relating to the cache policy (rules and
specifications determining how the cache works).

The OC4J Web Object Cache programming interfaces can be further divided as
follows:

=« Web Object Cache API

This is the common layer across servlets and JSP pages, dealing with the HTTP
semantics and cache policy. This layer communicates with the cache repository.

« Web Object Cache tag library

This is a convenient wrapper, using JSP custom tag functionality, for the Web
Object Cache API. Use custom tags in a JSP page to control the caching, with the
API being called through the underlying tag handler classes.

Web Object Cache Tags and APl 7-3

Key Functionality of the Web Object Cache

This chapter describes these programming interfaces and their interaction with the
cache repository. Cache tags are described in "Web Object Cache Tag Descriptions” on
page 7-14. The underlying cache policy API is described in "Web Object Cache API
Descriptions" on page 7-27. In servlets, you will use the underlying API; in JSP pages,
you will typically use the more convenient tags.

Cache Policy and Scope

The cache policy is a set of specifications determining details of the cache and how it
will behave. This includes the following:

« Cache scope

« Cache block naming rules
« Data expiration rules

« Cache repository name

You can set cache policy specifications (as described in "Attributes for Policy
Specification and Use" on page 7-7) through any of the following:

» Cache tag attributes (for JSP pages)
See "Web Object Cache Tag Descriptions" on page 7-14.

» Cache policy methods (for servlets)
See "Web Object Cache API Descriptions” on page 7-27.

« External cache policy descriptor files (for JSP pages or servlets)
See "Cache Policy Descriptor" on page 7-38.

A cache policy object—an instance of the or acl e. j sp. j wcache. CachePol i cy
class—is created with policy settings based on these inputs. Because the expiration
policy is part of the cache policy, each CachePol i cy object includes an attribute that
is an instance of the or acl e. j sp. j wcache. Expi rati onPol i cy class.

Cache data can be of either session scope, where it is available to only the current HTTP
session, or application scope, where it is available to all users of the application.

For example, consider an online banking application that caches the account balance.
Only the current user is interested in this information, so sessi on scope is
appropriate.

By contrast, consider an online store with a welcome page that issues the same general
product recommendations to all users. In this case, it is appropriate for the page to use
a cache that has appl i cat i on scope.

Key Functionality of the Web Object Cache
The following sections discuss key areas of functionality of the Web Object Cache:
« Cache Block Naming: Implicit Versus Explicit
« Cache Block Runtime Functionality

« Data Invalidation and Expiration
Cache Block Naming: Implicit Versus Explicit

A cache block is associated with a cache block name, which can be determined either
implicitly by the caching policy (generally advisable) or explicitly by your application

7-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Key Functionality of the Web Object Cache

code. For retrieval, to avoid regenerating the page fragment in question, there is a
lookup of the cache block name.

For implicit naming, there are two inputs:
« Cache policy

A cache policy API layer performs naming logic.
« HTTP request object

The caching logic borrows corresponding semantics from the standard Java serviet
API.

For most situations, implicit naming will result in names that are sufficiently
informative, because the HTTP request usually includes all the inputs to the Web
application (inputs that determine what the application should generate).

Explicit naming might be desirable in some cases, however, such as when a group of
users needs to share the same data. In this case, because relevant identification
information might not be available directly from the user's HTTP request, an implicit
cache name would not be useful. Instead, you can write code to explicitly generate a
cache name that identifies the group. Preferably, the name-generation logic should still
use only request parameters as input, not other states existing inside the application.
This makes the semantics easier to follow and the code easier to debug.

Following is an example of explicit naming. In the cache tag, note the nane attribute
with a JSP expression that calls soneMet hod() to set the cache block name:

<oj sp: cache policy="/WEB-1NF/policyl.cpd"
name="<% sonme(hj . soneMet hod() %" >

...static text...

<% // dynanic content ... %

</ oj sp: cache>

In the following example, because there is no nane attribute in the cache tag, the
cache block name will be determined implicitly according to the HTTP request and the

cache policy:

<oj sp: cache policy="/WEB-INF/ policy2.cpd" >
...static text...

<%// dynamic content ... %

</ oj sp: cache>

See "More About Cache Block Naming and the autoType Attribute" on page 7-10 for
more information.

Note: Cache blocks can be nested. In this case, the logic of the
inner cache block will be executed only when the content of the
outer block must be regenerated.

Cloneable Cache Objects

The OC4J Web Object Cache provides an interface,

oracl e.j sp. jwcache. d oneabl eCacheObj , that you can implement in
serializable cache objects that you want to be cloneable. For mutable objects that are
cached without being serialized, cloning is useful in providing a complete and
hierarchical copy of the cache object. This section explains the usefulness of
cloneability, first covering some necessary background information.

Web Object Cache Tags and APl 7-5

Key Functionality of the Web Object Cache

Memory-Oriented Repositories Versus Secondary Storage Repositories

There are two categories of repositories that can be used as the back-end of the Web
Object Cache:

= Secondary storage cache repository such as a file system repository

« Memory-oriented cache repository such as the Oracle Application Server Java
Object Cache, the default repository of the Web Object Cache

A secondary storage repository requires Java serialization during cache operations.
During storage to the cache, objects are serialized into the repository; during retrieval
from the cache, they are deserialized into memory. Therefore, as a result of the
serialization/deserialization process, a complete and distinct copy of the cache object
is automatically created during each cache operation.

This is not the case when you store or retrieve cache objects to or from a
memory-oriented repository. With a memory-oriented repository, the identical object
in the user application will be stored to the cache, or the identical object in the cache
will be retrieved for the user. By default, no copy is made. If there are multiple
retrievals, all retrievals share the same object.

Advantages in Cloning Copies of Cache Objects

In many cases in your applications, you will want to ensure that different retrievals
use different copies of a cache object. There are two key reasons for this:

« If the identical cache object is shared across multiple retrievals, changes made to
the data in one place might unintentionally affect values retrieved and used
elsewhere.

« If the identical cache object is shared across multiple retrievals, then multiple Java
threads might access the same object simultaneously. This would result in thread
safety issues if the original object design was not thread-safe. Perhaps, for
example, the object was originally intended for page-scope or request-scope usage
only, where there could be only one thread for each object. This thread-behavior
assumption would be violated.

To avoid these possible problems, use complete and hierarchical copies when you
store and retrieve generic Java serializable data to or from a memory-oriented
repository. "Complete and hierarchical" means copying not just the direct members
referenced by the object, but also any indirect variables that are referenced. For
example, assume an object xyz hasaj ava. util. Vect or instance as a member
variable. Cloning a complete and hierarchical copy involves copying not just the
Vect or instance itself, but also all mutable objects or elements referenced by the
Vect or instance.

Use of the CloneableCacheObject Interface

If you implement the Cl oneabl eCacheOhj ect interface and its cl oneCachebj ()
method in your cache objects, then the Web Object Cache will automatically call

cl oneCacheObj () to make a complete and hierarchical copy of each cache object
whenever it is stored to or retrieved from a memory-oriented cache repository.

Cache Block Runtime Functionality

During runtime, when a Web Object Cache cache tag is encountered, the tag handler
checks whether a corresponding cache object exists and was created recently enough
to reuse. If so, the code in the body of the tag is not executed; instead, the cache object
is reused. But if the cache object does not exist or is too old, the tag body code will be

7-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use

executed to generate a new object (page fragment, XML DOM object, or Java
serializable object). Then this freshly generated object will be captured, such as
through special buffer writing or object passing, and stored into the cache.

If computations in content generation are costly, such as for a complicated database
guery, and the life span of the cache is appropriate, so that the cached data is reusable,
then the Web Object Cache can save significant amounts of time and system resources.
Application speed and throughput will be greatly improved.

Data Invalidation and Expiration

You can set up cache blocks to expire after a specified duration or at a specified time,
or they can be invalidated explicitly by a method call or tag invocation.

Cache Block Expiration

Because cache blocks mainly consist of semi-static fragments of information, the
Oracle implementation does not require a tightly coherent expiration model. A looser
model typically provides acceptable results and requires less synchronization
overhead.

There are two categories of expiration for data in Web Object Cache blocks:

« Duration (time-to-live): Expiration occurs after data has been in the cache for a
specified amount of time.

« Fixed time/day: Expiration occurs regularly at a set time, such as at a specified
time each day or on a specified day each week.

Expiration details are determined by the settings of attributes in an instance of the
oracl e.jsp. jweache. Expi rati onPol i cy class. This Expi rati onPol i cy
object is an attribute of the CachePol i cy object associated with the cache block. See
"Expiration Policy Attributes" on page 7-12.

In JSP pages, you can set Expi r at i onPol i cy attributes through attributes of the
Web Object Cache cache tags. In servlets, you can use methods of the

Expi rati onPol i cy object directly. (See "ExpirationPolicy Methods" on page 7-33.)
Alternatively, you can set Expi rat i onPol i cy attributes through a cache policy
descriptor. (See "Cache Policy Descriptor" on page 7-38.)

Cache Block Invalidation

Instead of depending on expiration to invalidate a cache, you can invalidate it
explicitly in one of the following ways:

« Usethei nval i dat eCache tag. See "Web Object Cache invalidateCache Tag" on
page 7-23.

« Usetheoverloaded i nval i dat eCache(),i nval i dat eCachelLi ke(), or
i nval i dat eCacheQ her Pat hLi ke() method of a CachePol i cy instance to
explicitly invalidate one or more cache blocks. See "CachePolicy Methods" on
page 7-28.

Attributes for Policy Specification and Use

This section describes cache policy attributes—specifically, attributes of the

CachePol i cy and Expi rat i onPol i cy classes. You can set these attributes through
custom tags in JSP pages, directly through the provided Java API in servlets, or
through a cache policy descriptor file.

Web Object Cache Tags and APl 7-7

Attributes for Policy Specification and Use

Cache Policy Attributes

Cache policies, introduced in "Cache Policy and Scope" on page 7-4, consist of the
details that determine how cache blocks behave. You can set cache policy attributes in
several ways, as described in subsequent sections:

= InJSP pages through custom tags

See "Web Object Cache Tag Descriptions" on page 7-14.
= Inserviets through method calls

See "CachePolicy Methods" on page 7-28.
= Through a cache policy descriptor file

See "Cache Policy Descriptor" on page 7-38.

Specification of cache policy settings results in the creation of a cache policy object,
which includes an expiration policy object as one of its attributes. Following is
abbreviated code for the CachePol i cy class (in package or acl e. j sp. j wcache), for
illustration purposes only, showing the names of the cache policy attributes:

cl ass CachePolicy

{
bool ean i gnoreCache;
int scope;
int autoType;
String sel ectedParaneters[];
String sel ectedCookies[];
Dat e reusabl eTi meSt anp;
I ong reusabl eDel t aTi ne;
Expi rationPolicy expirationPolicy;
String cacheReposit or yNaneg;
bool ean report Excepti on;

Note: The names documented below for integer constants are for
servlet usage. Different names can be used for the Web Object
Cache tags. See "Web Object Cache cache Tag" on page 7-15.

Cache Policy Attribute Descriptions
Table 7-1 describes cache policy object attributes.

Table 7-1 Cache Policy Attribute Descriptions

Attribute Type Description

ignoreCache boolean This is for use during development only. When
making frequent code changes, set thistot r ue to
disable the cache, typically so that results that
were generated prior to your changes will not be
returned.

Default: f al se

scope int Specifies the scope of the cache. Use the integer
constant SCOPE_SESSI ON for the cache block to
be accessible only to the current HTTP session, or
SCOPE_APP for the cache block to be accessible to
all HTTP sessions of the application.

Default: SCOPE_APP

7-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use

Table 7-1 (Cont.) Cache Policy Attribute Descriptions

Attribute

Type

Description

autoType

selectedParameters[]

selectedCookies[]

reusableTimeStamp

int

String []

String([]

java.util.Date

Specifies whether the cache block is named
explicitly or implicitly and how properties of the
HTTP request are used in cache block naming
(for implicit naming). The name is relevant in
determining when the cache is reused for
subsequent requests. See "More About Cache
Block Naming and the autoType Attribute" on
page 7-10.

Default: implicitly, according to the URI plus all
parameters plus selected cookies (TYPE_URI _
ALLPARAM)

These are selected request parameter names used
in cache block naming, used in conjunction with
aut oType. See "More About Cache Block
Naming and the autoType Attribute" on

page 7-10.

Default: nul |

These are selected cookie names used in cache
block naming, used in conjunction with

aut oType. See "More About Cache Block
Naming and the autoType Attribute" on

page 7-10.

Default: nul |

This is an absolute time limit for cache usability,
where any cache block created prior to that time
will not be reused. Instead, data is regenerated
but the cache block is unaltered. See "More About
reusableTimeStamp and reusableDeltaTime" on
page 7-12.

Note the following regarding
reusabl eTi meSt anp:

« Itcan be expressed as milliseconds between
midnight, January 1, 1970 and the desired
absolute time limit, or as a
java. util. Dat e instance. Additional
convenient formats are available through the
cache tag. (See "Web Object Cache Tag
Descriptions" on page 7-14.)

« Ittakes precedence over
reusabl eDel t aTi ne.

« Ifitsvalue is set as the integer constant
REUSABLE_ALWAYS or the string constant
REUSABLE | GNORED, then cache entries are
always reusable, for as long as they remain
in the cache.

« Itis not available through the XML cache
policy descriptor file.

Default: always reusable

Web Object Cache Tags and API

7-9

Attributes for Policy Specification and Use

Table 7-1 (Cont.) Cache Policy Attribute Descriptions

Attribute Type Description

reusableDeltaTime long This is a relative time limit for cache usability,
where a cache block is not reused if the difference
between cache block creation time and current
time is greater than r eusabl eDel t aTi ne.
Instead, data is regenerated but the cache block is
unaltered. See "More About reusableTimeStamp
and reusableDeltaTime" on page 7-12.

Note the following regarding
reusabl eDel t aTi ne:

« Itis specified in seconds.

« Thereusabl eTi neSt anp attribute
overrides it.

« Ifitsvalue is set as the integer constant
REUSABLE_ALWAYS or the string constant
REUSABLE_| GNORED, then cache entries are
always reusable, for as long as they remain
in the cache.

Default: always reusable

expirationPolicy ExpirationPolicy This is an expiration policy object (an instance of
oracl e.jsp.jwache. Expirati onPol i cy),
which specifies circumstances under which the
repository will remove cache blocks from storage.

Default: the default expiration policy object

For information about expiration policy objects,
parameters, and defaults, see "Expiration Policy
Attributes" on page 7-12.

cacheRepositoryName String This is the name of the cache repository. Each
cache policy can use its own repository.

The configurations of cache repositories are
defined in the / WEB- | NF/ wcache. xm file.

Default: "DefaultCacheRepository"

reportException boolean A f al se setting of this attribute results in most
cache operation failures being silent, without any
exception being reported to the browser.

Default: t r ue

More About Cache Block Naming and the autoType Attribute

As discussed in "Cache Block Naming: Implicit Versus Explicit" on page 7-4, cache
blocks can be named either implicitly, sometimes called auto-naming, or explicitly,
sometimes called user-naming.

More specifically, there are six ways for cache blocks to be named. Explicit naming is
the first way. Specify this with an aut oTy pe setting of TYPE_USERSPECI FI ED (an
integer constant).

The other five ways are variations of implicit naming:

= Implicit naming with only the request URI being used in the name
Specify this with an aut oType setting of TYPE_URI _ONLY.

= Implicit naming according to the following:

Request URI + query string + selected cookies

7-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use

Specify this with an aut oType setting of TYPE_URI _ QUERYSTR. Specify the
cookies in the sel ect edCooki es[] attribute.

« Implicit naming according to the following:
Request URI + all parameters + selected cookies (default)

Specify this with an aut oType setting of TYPE_URI _ ALLPARAM Specify the
cookies in the sel ect edCooki es[] attribute.

« Implicit naming according to the following:
Request URI + selected parameters + selected cookies

Specify this with an aut oType setting of TYPE_URI _ SELECTEDPARAM Specify
the parameters in the sel ect edPar anet er s[] attribute and the cookies in the
sel ect edCooki es[] attribute.

« Implicit naming according to the following:
Request URI + all but excluded parameters + selected cookies

Specify this with an aut oType setting of TYPE_URI _ EXCLUDEDPARAM Specify
the cookies in the sel ect edCooki es[] attribute and the excluded parameters in
the sel ect edPar anet er s[] attribute.

As an example, assume that you have developed a JSP page, wel con®. j sp, with a
personalized greeting for each user. The data with the personalized greeting is the only
cache block in the page. Further assume that you have specified "request URI +
selected parameters + selected cookies" naming, with user as the only selected
parameter for cache block naming and no selected cookies for naming.

Now assume the page is requested as follows:

http://host: port/a.jsp?user=Any

In this case, a. j sp?user =Any becomes the cache block name.

Now assume that the page is later requested by another user, as follows:
http://host:port/a.jsp?user=Brian

This will not reuse the "Amy" cache, because the value of user is different. Instead, a
new cache block is created with a. j sp?user =Br i an as the name.

Now assume a later request by the first user, as follows:
http://host:port/a.jsp?mypar=3&user =Any

Because the user is again Amy, this request will reuse the first cache, displaying Amy's
customized information without having to regenerate it. The my par parameter is
irrelevant to the caching mechanism because it was not included in the

sel ect edPar anet er s[] list of the cache policy object, presumably because the
value of mypar is not relevant in terms of cacheable page output.

Now assume the following subsequent request:
http://host:port/a.jsp?yourpar=4&user=Brian&hel | o=t rue&f oo=harfly

Because the user is again Brian, this request will reuse the second cache, displaying
Brian's customized information without having to regenerate it. The your par, hel | o,

and f oo parameters are irrelevant to the caching mechanism because they were not
included in the sel ect edPar anet er s[] list of the cache policy object.

Web Object Cache Tags and APl 7-11

Attributes for Policy Specification and Use

More About reusableTimeStamp and reusableDeltaTime

Be aware that the concept of reusable is different than the concept of time-to-live (TTL)
and is intended for more advanced use. Time-to-live, which controls the general
lifetime of a cache, is described in "Expiration Policy Attributes" on page 7-12. Usually
time-to-live is all that is required to appropriately limit the use of cached data.

The attributes for reusability—r eusabl eTi meSt anp and

r eusabl eDel t aTi ne—are intended for more specialized use and do not affect the
expiration or invalidation of cached data. As an example, consider a situation where
different users have different requirements for how up-to-date a Web report is.
Assume that most users can accept a report produced anytime within the past day, and
that they all want to be looking at the same version so they can compare figures. An
appropriate TTL value, then, would be "one day".

Also presume, however, that there is a small group of privileged users for whom the
data is much more time-sensitive. They want to have information that is no more than
one hour old.

In this case, although TTL is set to "one day" for all users, there can be a

r eusabl eDel t aTi ne setting of "one hour" for the privileged users, which will result
in the cache not being used for them if the data is more than one hour old. Remember,
though, thatr eusabl eTi neSt anp and r eusabl eDel t aTi e do not expire the
cache or otherwise affect it. The cached data can still be used for non-privileged users,
according to the time-to-live.

It is up to the application logic to set appropriate values of r eusabl eTi meSt anp and
reusabl eDel t aTi ne for the privileged user group.

Expiration Policy Attributes

Expiration policies are introduced in "Data Invalidation and Expiration" on page 7-7.
Expiration policies contain the details that determine when cache blocks expire, at
which point their data should no longer be used and the data should be regenerated
instead. (Note that for most discussion, you can think of the expiration policies as
being part of the cache policies.) Expi r ati onPol i cy attributes, as with

CachePol i cy attributes, can be set in any of the following ways:

= InJSP pages through custom tags

See "Web Object Cache Tag Descriptions” on page 7-14.
« Inserviets through method calls

See "ExpirationPolicy Methods" on page 7-33.
= Through a cache policy descriptor file

See "Cache Policy Descriptor" on page 7-38.

The following abbreviated code for the Expi r at i onPol i cy class (in package
oracl e. j sp.jwcache), provided for illustration purposes only, shows the names of
the expiration policy attributes:

cl ass ExpirationPolicy
{
int expirationType;
long TTL;
| ong ti mel naDay;
int dayl naWek;
i nt dayl nahbnt h;
bool ean writeThrough;

7-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use

Table 7-2 describes the expiration policy object attributes.

Note:

The names documented below for integer constants are for

servlet usage. Different names can be used for the Web Object
Cache tags. See "Web Object Cache cache Tag" on page 7-15.

Table 7-2 Expiration Policy Attribute Descriptions

Attribute

Type

Description

expirationType

TTL

timelnaDay

daylnaWeek

int

long

long

int

This is the type of expiration policy and is one of the
following, where TYPE_XXX values are integer
constants:

. Time-to-live, to expire after a certain amount of
time according to the TTL attribute, specified
with an expi rati onType setting of TYPE_TTL

« Daily, to expire within a day at a certain time
according to the t i el naDay attribute, specified
with an expi r at i onType setting of TYPE_

DAI LY

=« Weekly, to expire within a week on a certain day
at a certain time according to the dayl naWek
andti mel naDay attributes, specified with an
expi rati onType setting of TYPE_WEEKLY

« Monthly, to expire within a month on a certain
date at a certain time according to the
dayl naMont h and ti nel naDay attributes,
specified with an expi r at i onType setting of
TYPE_MONTHLY

Default: time-to-live

This is time-to-live, the amount of time the cache
block is good for, expressed in seconds. The value
must be a positive number.

Default: 300 (5 minutes)

This is the time of day used for daily, weekly, or
monthly expiration, expressed in seconds from
midnight, where 0 is 00:00:00 (midnight) and 86399 is
23:59:59.

Default: 300 (00:05:00); ignored if
expirati onType=TYPE_TTL

This is the day of the week for weekly expiration, at
the specified t i mel naDay. Possible values are
VEEKLY_SUNDAY, VEEKLY_MONDAY, VEEKLY_
TUESDAY, VEEKLY_WEDNESDAY, WEEKLY_
THURSDAY, VEEKLY_FRI DAY, or WEEKLY_ SATURDAY
(integer constants).

Default: Wednesday:; ignored unless
expi rati onType=TYPE_WEEKLY

Web Object Cache Tags and API

7-13

Web Object Cache Tag Descriptions

Table 7-2 (Cont.) Expiration Policy Attribute Descriptions

Attribute Type Description

daylnaMonth int This is the date of the month for monthly expiration,
such as 10 for the 10th of each month, at the specified
ti mel nabay. The maximum setting is the number of
days in the month when the cache block is created.
For example, if a cache block is created in June and
dayl naMbnt h has a setting of 31, then its effective
value will be 30.

Default: 10; ignored unless
expi rationType=TYPE_MONTHLY

writeThrough boolean This flag specifies whether the cache repository
should treat the cache entry as a write-through cache,
writing it immediately into secondary storage such as
a file system or database. Set thisto t r ue for
write-through mode. A write-through cache will
survive a server restart or power failure.

With a f al se setting, the cache entry is treated as a
delayed-write cache, which is appropriate for caches
that have a short life span, such as 5 or 10 minutes,
and are not overly expensive to recompute.

Note that some cache repositories might not support
write-through mode; others might always use
write-through mode.

Default: t rue

Web Object Cache Tag Descriptions

From JSP pages, you can specify cache policy settings, expiration policy settings, and
explicit invalidation through custom tags provided with OC4J. The following sections
describe the tags:

« Cache Tag Descriptions
« Cache Invalidation Tag Description
Note the following requirements for the Web Object Cache tag library:

=« The Web Object Cache classes are in the file oj sputi | . j ar, which is supplied
with OC4J and is located in the "well-known" tag library directory. Verify that this
file is installed and in your classpath.

= To use the Oracle Application Server Java Object Cache as the back-end repository,
the file cache. j ar must be installed and in your classpath. This file also comes
with OC4J. In the OC4J 10.1.2 implementation, cache. j ar is listed in the
manifest classpath of oc4j . j ar . If the Web Object Cache tag library is loaded by
OC4)J, then no action on your part is necessary.

« Thetag library descriptor, j wcache. t | d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD isinoj sputi |l .jar. Theuri
value for j wcache. t | d is the following:

http://xm ns. oracl e. com j 2ee/j sp/tld/oj sp/jwcache.tld

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about t agl i b directives, the well-known tag
library directory, TLD files, and the meaning of ur i values.

7-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions

Notes:

« The prefix "ojsp:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Cache Tag Descriptions
This section describes the following tags:

cache
This tag is for general character-based caching (HTML or XML fragments).
cacheXM. bj

This tag is for caching XML objects; its parameters are a superset of the cache tag
parameters. Because the Web Object Cache is particularly useful when
post-processing XML documents, you will likely use the cacheXM_Cbj tag more
often than the cache tag.

useCachej

This tag is for general caching of Java serializable objects. Some of the semantics
and syntax are patterned after the standard j sp: useBean tag.

cachel ncl ude

This tag combines the functionality of the cache tag with that of the standard
j sp:i ncl ude tag.

This section also describes conditional execution of code within the cache tags,
possible resulting problems, the workaround of dividing cache blocks into individual
JSP pages, and, optionally, using the cachel ncl ude tag to combine the pages
together appropriately.

Web Object Cache cache Tag

This section documents the syntax and attributes of the cache tag, which you can use
to set up general caching in a JSP application, in contrast to the caching of XML objects
or Java serializable object.

Note: For caching XML obijects, use the cacheXM.Cbj tag
instead. For caching Java serializable objects, use the useCacheQbj
tag. These tags support all the cache tag attributes described here.
See "Web Object Cache cacheXMLObj Tag" on page 7-18 and "Web
Object Cache useCacheObj Tag" on page 7-20.

Syntax
<0j sp: cache
[policy = "filename"]
[ignoreCache = "true" | "false"]
[invalidateCache = "true" | "false"]
[scope = "application" | "session"]
[autoType = "user" | "URI" | "UR _query" | "URl _allParan' |

"URl _sel ectedParant | "URI _excl udedParani]

Web Object Cache Tags and APl 7-15

Web Object Cache Tag Descriptions

[selectedParam = "space-delinited_string_of _paraneter_names"]
[sel ectedCookies = "space-delimted_string_of_cooki e_nanes"]
[reusableTineStanp = "yyyy.mmdd hh:mmss z" |
"yyyy.mmdd hh:mmss" | "yyyy.mmdd"| "ignored"]
reusabl eDel taTime = "number” | "ignored"]
name = "bl ockname"]
expirationType = "TTL" | "daily" | "weekly" | "monthly"]
TTL = "nunber"]
timel nabay = "nunber"]
dayl naWek = "Sunday" | "Monday" | "Tuesday" | "Wednesday" |
"Thursday" | "Friday" | "Saturday"]
dayl naMonth = "nunber"]
writeThrough = "true" | "false"]
print CacheBl ockinfo = "true" | "false"]
printCachePolicy = "true" | "fal se"]
cacheReposi toryNane = "name"]
reportException = "true" | "false"] >

—_——————

—_—————

.. Code for cache bl ock...

</ oj sp: cache>

Note: Key default values are as follows: TTL 300 seconds,
dayl naMbnt h 10 (10th of the month), cache repository name
Def aul t CacheReposi tory.

Attributes

Most of the parameters of the cache tag correspond to attributes in the CachePol i cy
or Expi rat i onPol i cy class, described earlier in this chapter (as referenced below).

pol i cy: Optionally use this to specify a cache policy descriptor, the settings of
which would be used in defining the cache policy. You can use a cache policy
descriptor instead of using the various individual cache tag attribute settings, or to
establish default values that you can optionally override through tag attribute
settings.

Specify the descriptor file name according to JSP application-relative syntax. You
can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about application-relative syntax.

Here is a simple example of a cache policy descriptor:

<l--
test-policy.cpd
-->

<cachePol i cy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" ti nel naDay="00: 10: 00"
writeThrough="true" />
</ cachePol i cy>

See "Cache Policy Descriptor" on page 7-38 for more information.
i gnor eCache: See "Cache Policy Attributes” on page 7-8.

i nval i dat eCache: Enable this flag for the corresponding cache block (any
pre-existing cache block with the same name) to first be invalidated. This is
particularly useful where implicit cache block naming is used, but can also be used

7-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions

for explicit names by specifying the cache block name in the nane attribute of the
cache tag. The default setting is "f al se".

Note: Do not confuse this attribute with the more general-purpose
i nval i dat eCache tag. See "Web Object Cache invalidateCache
Tag" on page 7-23. The i nval i dat eCache attribute is for more
specialized or advanced use to invalidate individual cache blocks.

=« scope: See "Cache Policy Attributes" on page 7-8.

« aut oType: See "Cache Policy Attributes" on page 7-8. The correspondence
between tag attribute settings and class attribute values (integer constants) is as
follows:

— The user setting is equivalent to TYPE_USERSPEC! FI ED.
— URI isequivalentto TYPE_URI _ONLY.
— URI _query isequivalent to TYPE_URI _ QUERYSTR.
— URI _al | Par amis equivalent to TYPE_URI _ALLPARAM
— URI _sel ect edPar amis equivalent to TYPE_URI _ SEL ECTEDPARAM
— URI _excl udedPar amis equivalent to TYPE_URI _ EXCL UDEDPARAM
« sel ect edPar am See "Cache Policy Attributes" on page 7-8.
« sel ect edCooki es: See "Cache Policy Attributes" on page 7-8.
« reusabl eTi meSt anp: See "Cache Policy Attributes" on page 7-8.
« reusabl eDel t aTi ne: See "Cache Policy Attributes" on page 7-8.

= nane: Where you use explicit cache-block naming, use the name parameter to
specify the block name.

« expirationType: See "Expiration Policy Attributes" on page 7-12.
« TTL: See "Expiration Policy Attributes" on page 7-12.

« tinmel naDay: See "Expiration Policy Attributes" on page 7-12.

« dayl naWeek: See "Expiration Policy Attributes" on page 7-12.

« dayl naMbnt h: See "Expiration Policy Attributes" on page 7-12.

« WiteThrough: See "Expiration Policy Attributes" on page 7-12.

« print CacheBl ockl nf o (for debugging): Enabling this parameter results in
printing of the internal cache name, creation time, and expiration time of the cache
block, within HTML or XML comment constructs. The default setting is "f al se".

« printCachePol i cy (for debugging): Enabling this parameter results in printing
of the values of all cache policy attributes for this cache block, within HTML or
XML comment constructs. The default setting is "f al se".

« cacheReposi t or yNane: See "Cache Policy Attributes” on page 7-8.
« reportException: See "Cache Policy Attributes" on page 7-8.

Attribute Usage Notes

« The nan® attribute is relevant only when aut oType is set to user.

Web Object Cache Tags and APl 7-17

Web Object Cache Tag Descriptions

The sel ect edPar amattribute is relevant only when aut oType is set to URI _
sel ect edPar amor URI _excl udedPar am

The sel ect edCooki es attribute is not relevant when aut oType is set to user
or URI .

Theti mel naDay attribute is not relevant when expi rat i onType issetto TTL.

The dayl naWeek attribute is relevant only when expi rat i onType is set to
weekl y.

The dayl naMont h attribute is relevant only when expi r at i onType is set to
mont hl y.

Example: cache Tag

This example lists and caches a set of items, using the cache tag.

<Y@taglib uri="http://xmns.oracle.conlj2eeljsp/tld/ ojsp/jwache.tld"

prefix="o0jsp" %

<title>listitemjsp</title>
<%

%

String item d=request.getParanmeter("itenid");

if (itemd==null) {
out.println("Pl ease select a category fromthe above drop down box.");
return;

}

<% long | 1=(new java.util.Date()).getTine(); %
<0j sp: cache aut oType="URl _sel ect edPar ani' sel ect edParan"itemn d"

>

print CacheBl ockl nf o="true" print CachePolicy="true"
pol i cy="/WEB- | NF/t est-policy.cpd"

ItemList: <% item d %

Time: <% new java.util.Date() %

<j sp: useBean class="java. util.Hashtable" id="table" scope="application" />
<hr >
<%

Vector list=(Vector) table.get(itenid);

if (list==null) {

out.printIn("No such item");

}
el se {
for (int i=0; i<list.size(); i++) {
%
<% list.elenmentAt(i) %

<%
}
}
%
ti mestanp: <% new java.util.Date() %

</ oj sp: cache>

<% long | 2=(new java.util.Date()).getTine(); %
Tinme for general cache operation:<% [2-11 %

Web Object Cache cacheXMLObj Tag

Generally speaking, use the cacheXM_Obj tag instead of the cache tag if you are
caching XML DOM objects.

7-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions

The cacheXM_Obj tag supports all the cache tag attributes described in "Web Object
Cache cache Tag" on page 7-15, as well as the attributes described here.

Syntax (in addition to that of the cache tag)

<0j sp: cacheXM.Qbj

[fromXM.Cbj Nane = "obj ect name"]
[toXM.Chbj Name = "obj ect nane"]
[towiter = "true" | "false"] >

[...Code for cache block...]

</ oj sp: cacheXM.Qnj >

Notes:

« This tag can optionally be in the form of a single tag with no
body, in which case the f r omXM_.Cbj Nane attribute can be
used for input instead:

<oj sp: cacheXM.Qbj ... fronXM.Cbj Name="..." ... />

« For convenience, this tag is duplicated in the XML tag library,
being defined in the xm . t | d tag library descriptor file.

« Thistag can act as both an XML producer and an XML
consumer. Do not use f r onXMLCbj Nane and t oXM.Chj Name
if the XML object is being passed implicitly. (See "XML
Producers and XML Consumers" on page 5-1.)

Attributes (in addition to those of the cache tag)

f r omXMLObj Nane: For explicit passing, specify the name of the XML input object
being passed to the cache (from the pageCont ext object).

t oXMLCbj Nane: For explicit passing, specify the name of the XML output object
being passed from the cache (to the pageCont ext object).

toWi ter:Setthisto "t rue" towrite the XML object to a JSP writer to output
directly to the user's browser. The default value is "f al se".

Note: The cacheXM.Obj tag is one of several custom tags
supplied with OC4J that are XML-related, meaning these tags
sometimes (or always) take an XML object as input or create one as
output. Other such tags include the SQL library dbQuery tag,
which can output query results as an XML DOM obiject, and the
XML library t ransf or mand st yl eSheet tags, which can take an
XML object as input and use XSLT transformation to create another
XML object or a JSP writer as output. These tags are consistent in
having a f r omXMLObj Nane attribute and at oXM_Cbj Nane
attribute for explicit passing of XML data. For general information,
see "XML Producers and XML Consumers" on page 5-1.

Example: cacheXMLObj Tag

Web Object Cache Tags and APl 7-19

Web Object Cache Tag Descriptions

This example uses Web Object Cache tags, JESI tags, and tags from the XML and SQL
tag libraries. (For JESI tag descriptions, see "Oracle JESI Tag Descriptions” on

page 6-13. For a description of the XML t r ansf or mtag, see "XML Utility Tags" on
page 5-3. For SQL tag descriptions, see "SQL Tags for Data Access" on page 4-11.)

The SQL dbOpen and SQL dbQuer y tags connect to the database and execute a query.
The cacheXM.Obj tag caches the XML DOM object produced by the query. In
subsequent executions (for output through different stylesheets, for example), the
guery does not have to be reexecuted, because the DOM object can be retrieved from
the Web Object Cache. The XML t r ansf or mtag outputs the query results according
to an XML stylesheet, specified through a variable. The JESI f r agnent tag encloses
HTML output to be cached, which does not require application-level caching. The JESI
t enpl at e tag disables caching outside the fragment, through the cache="no"
setting.

<jesi:tenplate cache="no">
<% String userStyl eLoc="styl e/rowset.xsl"; %
<h3>Transform DBQuery Tag Exanpl e</h3>
<h4>Current Time=<% new java.util.Date() %</h4>
<jesi:fragnment expiration="60">
<I-- You can cache HTM. in Oracl eAS Wb Cache with JES|

or you can cache it in Oacle Wb oject Cache -->
<h4>Cached Ti me=<% new java.util.Date() %-</h4>
<sql : dbQpen connl d="connl" dataSource="<% dataSrcStr %" />
<xm :transform href="<% userStyl eLoc %" >
<% - The XML DOM object is produced by dbQuery

And, the DOM object is cached in Oracle Wb Cbject Cache.

XSLT is performed on the cached object. --%

<oj sp: cacheXM.Cbj TTL="60" toWiter="false">

<sql : dbQuery connl d="connl" output="xm" queryld="myquery" >
sel ect ENAME, EMPNO from EMP
</sql : dbQuery>

</ oj sp: cacheXM.Qnj >
</xn : transfornp
<sql : dbd oseQuery queryl d="nyquery" />
<sqgl : dbC ose connl d="conl" />
</jesi:fragment>
</jesi:tenplate>

Web Object Cache useCacheObj Tag
Use the useCacheObj tag to cache any Java serializable object.

The useCacheObj tag supports all the cache tag attributes described in "Web Object
Cache cache Tag" on page 7-15, as well as the attributes described here.

Syntax (in addition to that of the cache tag)
<0j sp: useCacheQbj
t ype="cl assnange"
id = "instancenanme"
[cacheScope = "application" | "session" | >

...Code for cache bl ock...

</ 0j sp: useCache(vj >

7-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions

Note: Thei dandt ype attributes are not request-time attributes,
so cannot be set using JSP runtime expressions.

Attributes (in addition to those of the cache tag)
« type (required): Specify the class name of the Java object to cache.
« i d (required): Specify the instance name of the Java object to cache.

« cacheScope: This attribute has the same usage as the scope attribute in the
cache and cacheXM.Obj tags. See "Cache Policy Attributes" on page 7-8.

Thet ype andi d attributes here are used similarly to the t ype (orcl ass)andi d
attributesinaj sp: useBean tag.

Example: useCacheObj Tag

<0j sp: useCacheChj id="a2" policy="/WEB-|N-/ test-policy.cpd"
type="exanpl es. RStrArray" >
<%
Il create a tenp witeable array
WetrArray tnpa2=new WstrArray(3);
tmpa2. set Str (2, request. get Paraneter("testing4"));
tmpa2. set Str(1,"def");
tmpa2.set Str(0, (new java.util.Date()).toString());
Il create a readonly copy for the cache
a2=new RStrArray(tnpa2);
Il storing the a2 into pagecontext
/'l so useCacheChj tag can pick it up
pageCont ext.setAttribute("a2", a2);
%
</ oj sp: useCachej >

Conditional Execution of Code Inside the Cache Tags

Be aware that code inside a cache tag (cache, cacheXM.Obj , or useCacheQbj) is
executed conditionally. In particular:

= Any code inside a cache tag is executed only when the associated cache block is
not reused.

Consider the following example:

<% String str=null; %
<% oj sp: useCacheQoj ... >
<% str = "abc"; //...nore Java code...%
</ oj sp: useCachej >
<%out.print(str.length()); // My cause null pointer exception

If the cache is available and reused, the code to properly initialize the string str is
not executed.

« Ifyou put a method-based variable declaration inside a cache tag, the variable is
not available outside the tag.

Consider the following example:

<0j sp: useCacheChj ... >

<% String str = "abc"; //...nore Java code...%
</ 0j sp: useCachej >
<%// String str will not be available here %

Web Object Cache Tags and API 7-21

Web Object Cache Tag Descriptions

If you are using the cache tag (not cacheXM_Obj or useCachebj), it might be
helpful to break your cache blocks into separate JSP pages so that you would be less
likely to fall into this type of situation. In this case, each cache block would be
represented by its own URI and you could use dynamic-include functionality to
combine the pages together as desired.

To make this more convenient, Oracle also provides the cachel ncl ude tag, described
in the following section, "Web Object Cache cachelnclude Tag".

Web Object Cache cachelnclude Tag

The cachel ncl ude tag combines functionality of the cache tag (but not the
cacheXM.(bj tag or useCacheObj tag) and the standard j sp: i ncl ude tag.

There are a number of advantages in putting cache blocks into separate pages and
using cachel ncl ude, including general considerations of modularity and clarity as
well as the issues discussed in the preceding section, "Conditional Execution of Code
Inside the Cache Tags".

Be aware of the following limitations, however:

= You cannot use a runtime JSP expression in the cachel ncl ude tag.
= You must use implicit cache-block naming for the cache block.

« Thereisnofl ush parameter, unlike for the j sp: i ncl ude tag.

If any of these limitations presents a problem, then use separate cache and
j sp: i ncl ude tags.

Also be aware of an important difference between the cachel ncl ude tag and the JESI
i ncl ude tag. (See "JESI include Tag" on page 6-15 for information about that tag.)
Because the OracleAS Web Cache is in a different caching layer than the Web Object
Cache, the including page and included page for a JESI i ncl ude tag cannot share the
same request object. There is no such limitation with the cachel ncl ude tag,
however. The including page and included page share the same request object, so
beans and attributes of r equest scope can be passed between the two pages.

Syntax

<0j sp: cachel ncl ude
policy = "fil enane"

page = "UR"
[printCacheBl ockinfo = "true" | "false"]
[reportException = "true" | "false"] >

...Code for cache bl ock...

</ oj sp: cachel ncl ude>

Note: For the cachel ncl ude tag, because pol i cy and page are
not request-time attributes, you do not have the option of
determining their values through JSP expressions. (Be aware that
pol i cy is a request-time attribute for the cache, cacheXM.bj ,
and useCache(bj tags.)

Attributes

7-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions

« policy (required): You must use a cache policy descriptor file to specify cache
policy settings; individual parameter settings are not supported.

« page (required): Use the page attribute to specify the URI of the page to
dynamically include, as with a standard j sp: i ncl ude tag.

« printCacheBl ockl nf o (for debugging): See "Web Object Cache cache Tag" on
page 7-15.

« reportException: See "Cache Policy Attributes" on page 7-8.

Attribute Usage Notes
Consider the following cachel ncl ude tag usage:

<oj sp: cachel ncl ude page="anot her Page.j sp" policy="foo.cpd" >

This is equivalent to the following:
<oj sp: cache policy="foo.cpd" >
<% pageCont ext . i ncl ude(" anot her Page. j sp"); %
</ oj sp: cache>
It is also equivalent to the following:

<j sp:include page="anot her Page.jsp" flush="true" />

Assume anot her Page. j sp consists of the following:

<o0j sp: cache policy="foo.cpd" >
... anot herPage. jsp contents...
</ oj sp: cache>

Cache Invalidation Tag Description
This section describes how to use the i nval i dat eCache tag.

Web Object Cache invalidateCache Tag

To explicitly invalidate a cache block through program logic, you can use the
i nval i dat eCache tag. This section documents the syntax and attributes of this tag.

Notes:

« Theinval i dat eCache tag does not accept new cookies; it can
use only existing cookies of the current HTTP request. For
information about inputting new cookies, see "CachePolicy
Methods" on page 7-28.

« Do notconfuse thei nval i dat eCache tag with the
i nval i dat eCache attribute of the cache tags. The attribute is
of more limited use, to invalidate the pre-existing cache object.

Syntax

<oj sp:inval i dat eCache
[policy = "filenane"]

[ignoreCache = "true" | "false"]
[scope = "application" | "session"]
[autoType = "user" | "URI" | "UR _query" | "URl _allParan' |

"URl _sel ectedParant | "UR _excl udedParant]

Web Object Cache Tags and API 7-23

Web Object Cache Tag Descriptions

sel ect edParam = "space-del i nited_string_of _paraneter_names"]

sel ect edCooki es = "space-delinited_string_of _cookie_names"]

name = "bl ockname"]

i nval i dat eNaneLi ke = "true" | "false"]

page = "URI"]

autol nval i dat eLevel = "application" | "page" | "parani | "cookie"]
cacheReposi toryNane = "nanme"]

reportException = "true" | "false"] />

————————

Note: The default value of aut ol nval i dat eLevel dependson
specifics of the page URI. See "Use of page and
autolnvalidateLevel" on page 7-25.

Attributes

Most parameters of the i nval i dat eCache tag also exist in the cache and
cacheXM.(bj tags and are used in the same way, as described earlier in this chapter
(and as referenced below).

= policy: See "Web Object Cache cache Tag" on page 7-15.
= i gnoreCache: See "Cache Policy Attributes" on page 7-8.
=« scope: See "Cache Policy Attributes" on page 7-8.

« aut oType: See "Cache Policy Attributes" on page 7-8. The correspondence
between tag attribute settings and class attribute values (integer constants) is as
follows:

— Theuser setting is equivalent to TYPE_USERSPECI FI ED.

— URI isequivalentto TYPE_URI _ONLY.

— URI _query isequivalent to TYPE_URI _ QUERYSTR

— URI _al | Par amis equivalent to TYPE_URI _ALLPARAM

— URI _sel ect edPar amis equivalent to TYPE_URI _ SEL ECTEDPARAM

— URI _excl udedPar amis equivalent to TYPE_URI _ EXCL UDEDPARAM
« sel ect edPar am See "Cache Policy Attributes" on page 7-8.
«» sel ect edCooki es: See "Cache Policy Attributes” on page 7-8.

« nane: Use this with i nval i dat eNaneLi ke to invalidate one or more cache
blocks that were named through explicit cache-block naming, according to the
instructions in "Use of name and invalidateNameLike" below.

« invalidateNaneLi ke: Use this with nane to invalidate one or more cache
blocks that were named through explicit cache-block naming, according to the
instructions in "Use of name and invalidateNameLike" below. The default setting
is"f al se".

« page: Specify a page-relative or application-relative URI. Use this with
aut ol nval i dat eLevel to invalidate one or more cache blocks that were named
through implicit cache-block naming, according to the instructions in "Use of page
and autolnvalidateLevel" below.

« autolnvalidat eLevel : Use this with page to invalidate one or more cache
blocks that were named through implicit cache-block naming, according to the
instructions in "Use of page and autolnvalidateLevel" below.

7-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions

cacheReposi t or yName: See "Cache Policy Attributes" on page 7-8.
report Excepti on: See "Cache Policy Attributes" on page 7-8.

Use of name and invalidateNameLike To invalidate one or more cache blocks that were
named through explicit cache-block naming, use the nane and
i nval i dat eNameLi ke attributes together, as follows:

Ifi nval i dat eNaneLi ke="f al se", then use the name parameter to specify the
name of a single cache block to invalidate.

Ifi nval i dat eNaneLi ke="t r ue", and the underlying cache repository supports
wild card characters, then you can use the wildcard "*" character in the nane
parameter to invalidate multiple cache blocks whose names fit the criteria. (The
Oracle Application Server Java Object Cache currently does not support wild card
characters.)

Use of page and autolnvalidateLevel To invalidate one or more cache blocks that were
named through implicit cache-block naming, use the page and
aut ol nval i dat eLevel attributes together.

Use the page attribute to specify the appropriate URI of the Web page. With implicit
naming, cache block names are based on Web page URIs.

Use aut ol nval i dat eLevel to specify the scope of invalidation—appl i cati on
scope, page scope, par anet er scope, or cooki e scope—as follows:

If aut ol nval i dat eLevel ="appl i cati on", then all cache blocks associated
with the application that the page belongs to will be invalidated.

For example, if there is an application under the / mycont ext context path, and
aut ol nval i dat eLevel =" appl i cati on", then all cache entries of all pages
under htt p: // host : port/ nycont ext will be invalidated.

Here is a corresponding usage example:

<oj sp:inval i dateCache page="/" autolnvalidatelLevel ="application" />

Ifaut ol nval i dat eLevel =" page", then all cache block entries associated with
the page will be invalidated. Consider the following example:

http://host: port/mycontext/ mypage0l.jsp?foo=bar

For this request, if aut ol nval i dat e=" page", then all cache entries of
nmypage01l. j sp will be invalidated, regardless of what request parameters and

cookies they are associated with. This includes cache blocks associated with the
following, for example:

http://host: port/nycont ext/nypageOl.jsp?pl=vl

Here is a corresponding usage example:
<oj sp:invalidateCache page="/nypageOl.jsp" autolnvalidateLevel ="page" />
If aut ol nval i dat eLevel =" par anf, then all cache entries of the page that have

the identical selected parameter names and values will be invalidated, regardless
of what cookies they are associated with.

For example, consider the following:

<oj sp:invalidateCache policy="/WEB-| N/ cl. cpd"
page="/ mypage01. j sp?f oo=bhar"
aut ol nval i dat eLevel ="param' />

Web Object Cache Tags and API 7-25

Web Object Cache Tag Descriptions

In this case, cache blocks associated with the following, for example, will not be
invalidated:

http://host: port/nycontext/mypage0l.j sp?foo=bar 2
However, cache blocks associated with the following will be invalidated,
regardless of what cookies they are associated with:

http://host: port/nycontext/nypage0l. j sp?f oo=bar

Continuing this example, consider the following:

http://host: port/nycontext/nypage0l. j sp?foo=bar&pl=vl

Cache blocks associated with this request will be invalidated if c1. cpd selects the
f oo HTTP request parameter only, and the cache blocks are stored under the same
cache policy, c1. cpd. However, the cache objects will not be invalidated if they
were not stored under c1. cpd, or if c1. cpd also selects the pl parameter.

« Ifautol nval i dat eLevel =" cooki e", then the only cache entries invalidated
are those associated with the same page, same selected parameters and values,
and same cookies.

Note: If the page URI includes a question mark, then the default
aut ol nval i dat eLevel ispar am If there is no question mark,
then the default is page.

Example: Use of Cache Invalidation Tag
This section provides a brief example of cache invalidation.

Example: invalidateCache Tag

The following page adds an item to a list of items previously cached, then invalidates
the cache. The list will presumably be re-cached later with the new item.

<Y@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/jwache.tld"
prefix="ojsp" %
<title>added.jsp</title>
<j sp: useBean class="java. util.Hashtable" id="tabl e" scope="application" />
<%
String item d=request.getParanmeter("itenid");
String addltemrrequest. getParaneter("addltent);
Vector list=(Vector) table.get(itemd);
if (list==null) {
|'ist=new Vector();
table.put(itemd,list);
}
l'ist.addEl ement (addlten);
%
<% addltem % was added into category <% itemd %</ b>.

<% String viewPage="listitemjsp?itenid="+itemd; %
<% long | 1=(new java.util.Date()).getTine(); %
<o0j sp:inval i dat eCache page="<% vi ewPage %" autolnvalidateLevel ="parant
pol i cy="/WEB- | NF/t est-policy.cpd"
/>
<% long |2=(new java.util.Date()).getTine(); %
Exi sting cache entry has been invalidated.

Invalidation took <% [2-11 % nilliseconds.

7-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions

<jsp:include page="<% viewPage %" flush="true" />

Select items

or

Add itens

Web Object Cache API Descriptions

From servlets, you can use CachePol i cy methods to modify cache policy settings or
to invalidate a cache block, and Expi r at i onPol i cy methods to modify expiration
settings. This requires creating a cache policy object and retrieving its expiration policy
object attribute, which the JSP cache tag handlers do automatically.

The following sections describe the API:
« Cache Policy Object Creation

« CachePolicy Methods

« Expiration Policy Object Retrieval

« ExpirationPolicy Methods

= CacheBlock Methods

« Tag Code Versus APl Code

The Web Object Cache classes discussed here are in the or acl e. j sp. j wcache
package and are supplied in the file oj sputi | . j ar, which comes with OCA4J. Verify
that this file is installed and in your classpath. Also, to use the Oracle Application
Server Java Object Cache as the back-end repository, the file cache. j ar must be
installed and in your classpath. This file also comes with OC4J.

For more information about the classes, interfaces, and methods described in this
section, see the Javadoc that is supplied with OC4J.

Cache Policy Object Creation

There are two approaches to creating a CachePol i cy object:
« Use the static | ookupPol i cy() method of the CacheCl i ent Uti | class.

« Use one of the public CachePol i cy constructors.

Note: Cache policy objects are not resource objects, such as
database connections or cursors, so you can manipulate them
without life-cycle or resource management concerns.

Using the lookupPolicy() Method

In most situations, the most convenient way to create a CachePol i cy object is
through the static | ookupPol i cy() method of the CacheC i ent Uti | class, asin
the following example:

CachePol i cy cachePol i cyQhject = oracle.jsp.jwache. CacheCientUil .| ookupPolicy
(servletConfig, request, "/WEB-INF/foo.cpd");

Web Object Cache Tags and API 7-27

Web Object Cache API Descriptions

Input a servlet configuration object (aj avax. servl et . Ser vl et Confi g instance), a
request object (aj avax. servl et. http. H t pSer vl et Request instance), and the
URI path, relative to the application root, of an XML cache policy descriptor file.

Here is a simple example of a cache policy descriptor file:

<I--
test-policy.cpd
>

<cachePol i cy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" ti nel naDay="00: 10: 00"
writeThrough="true" />
</ cachePol i cy>

See "Cache Policy Descriptor" on page 7-38 for more information.

Using a CachePolicy Constructor

The CachePol i cy class has three public constructors: a simple constructor requiring
only a servlet configuration object, a "copy" constructor that copies another
CachePol i cy object, and a "copy" constructor with a given servlet configuration
object, as follows:

public CachePolicy(javax.servlet.ServletConfig config)
public CachePol i cy(CachePolicy cPolicy)

public CachePolicy(javax.servlet.ServletConfig config,
CachePol i cy cPolicy)

CachePolicy Methods

Several utility methods are available in CachePol i cy objects, as well as getter and
setter methods for key attributes.

CachePolicy Method Signatures and Common Parameters

The following abbreviated code, for illustration purposes only, contains signatures for
key methods available in CachePol i cy objects.

See "Cache Policy Attributes" on page 7-8 for a discussion of relevant attributes.

cl ass CachePol i cy
{
bool ean i sRecent (CacheBl ock bl ock);
voi d put Cache(hj ect data, HtpServletRequest req, Sectionld sectionld);
voi d put Cache(Obj ect data, HtpServletRequest req, String specifiedNane);
voi d put Aut oCacheFor O her Pat h(hj ect data, HttpServl et Request req,
String otherPath, StringSectionid sectionld);
voi d put Aut oCacheFor O her Pat h(Cbj ect data, HttpServl et Request req,
String otherPath, Cookie[] newCookies, StringSectionid sectionld);
CacheBl ock get Cache(Ht t pServl et Request req, Sectionld sectionld);
CacheBl ock get Cache(Htt pServl et Request req, String specifiedNane);
CacheBl ock get Aut oCacheFor &t her Pat h(Ht t pSer vl et Request req,
String otherPath, StringSectionld sectionld);
CacheBl ock get Aut oCacheFor & her Pat h(Ht t pSer vl et Request req,
String otherPath, Cookie[] newCookies, StringSectionld sectionld);
voi d invalidateCache(HttpServl et Request req, Sectionld sectionld);
voi d invalidateCache(HttpServl et Request req, String specifiedNanme);
voi d inval i dat eCacheLi ke(H t pServl et Request req, String specifiedNane);

7-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions

}

voi d inval i dat eCacheLi ke(Ht t pServl et Request req, int autolnvalidatelLevel);
voi d invalidateCacheLi ke(Htt pServl et Request req, String specifiedNane,
int autolnvalidatelLevel);
voi d invalidateCacheQ her Pat hLi ke(Htt pServl et Request req, String otherPath);
voi d inval i dat eCacheCQt her Pat hLi ke(Ht t pSer vl et Request req, String ot herPat h,
Cooki e[] newCooki es, int autolnvalidateLevel);
Date getCurrentTime();

These methods use several common parameters:

req,aj avax. servl et. http. H t pSer vl et Request instance
This is the current HTTP request object.
newCooki es, aj avax. servl et. http. Cooki e[] array

This is an array of new cookies. If you pass in new cookies, they are used in cache
operations that use the ot her Pat h parameter (such as the

put Aut oCacheFor O her Pat h() method), assuming the cache policy selects
some cookies and invalidation is at the cookie level. If you do not pass in new
cookies, then cookies of the current HTTP request are used instead.

speci f i edNamne, a Java string

For explicit cache-block naming, this is the name—either the desired cache block
name if you are creating a new cache block, or the existing cache block name if you
are retrieving an existing cache block.

sectionld,anoracl e.jsp.jwcache. Secti onl d instance, specifically a
StringSectionl d or Nunber Sect i onl d instance

For implicit cache-block naming, this is a counter that is used in tracking cache
blocks. In JSP pages, it is used, incremented, and maintained by JSP cache tag
handlers. It is stored in the JSP pageCont ext object.

Sect i onl d is an interface that is implemented by two classes:
StringSectionl d and Nunber Sect i onl d. Where St ri ngSecti onl d is
specified in a method signature, you must use an instance of that class. Where
Sect i onl d is specified, you can use an instance of either class, but should
typically use St ri ngSecti onl d. The Nunber Sect i onl d class is primarily
intended for use by JSP tag handlers.

In a servlet, you must create a section ID instance manually. "Servlet Page:
DemoCacheServlet.java” on page 7-36 demonstrates the use of a
StringSecti onl d instance.

Note: When you constructa St ri ngSecti onl d instance, the
string must begin with an alphabetic (not numeric) character.

ot her Pat h, a Java string

This is the URI of another JSP page that has an associated cache block that you
want to store, retrieve, or invalidate.

aut ol nval i dat eLevel , an integer

For implicit cache-block naming, you can use this to specify a level of invalidation,
either appl i cati on, page, par anet er, or cooki e. Use the CachePol i cy
integer constant AUTO | NVALI DATE_APP_LEVEL, AUTO | NVALI DATE_PAGE

Web Object Cache Tags and API 7-29

Web Object Cache API Descriptions

LEVEL, AUTO | NVALI DATE_PARAM LEVEL, or AUTO_ | NVALI DATE_COOKI E_
LEVEL.

CachePolicy Method Descriptions
The CachePol i cy methods function as follows:

i sRecent ()

This method checks the timestamp of the specified cache block and determines
whether it is recent enough, given the current time and the values of the cache
policy reusabl eTi meSt anp and r eusabl eDel t aTi e attributes.

put Cache(...)

Use this method to place an object into the cache repository. The dat a parameter
is any serializable Java object you want to cache that will not require any further
modification or mutation. In JSP pages, the JSP cache tag handler calls

put Cache() to cache a BodyCont ent instance. The cacheXM_Cbj tag handler
calls it to cache an XML DOM obiject. In a servlet or useCacheQbj tag, the cache
target object can be any Java serializable object.

You must also provide an HTTP request object, along with a cache block name (for
explicit naming) or a section ID (for implicit naming).

Note: The put Cache() method does nothing if the cache policy
i gnor eCache attribute is setto "t rue".

put Aut oCacheFor Gt her Pat h(. . .)

Place the specified object into the cache repository according to a specified
string-based section ID and a specified page path, optionally using specified
cookies as well. You must also input an Ht t pSer vl et Request object. The cache
policy must not use explicit naming (in other words, must not have

aut oType=TYPE_USERSPECI FI ED).

get Cache(...)

Use this method to retrieve a cached item from the repository, in the form of an
CacheBl ock instance. You can specify the cache block name (for explicit naming)
or the section ID (for implicit naming). You must also provide an HTTP request
object.

Note: The get Cache() method does nothing if the cache policy
i gnor eCache attribute ist r ue.

get Aut oCacheFor O her Pat h(. . .)

Retrieve a cached item from the repository according to a specified string-based
section ID and a specified page path, optionally using specified cookies as well.
You must also input an Ht t pSer vl et Request object. The cache policy must not
use explicit naming, otherwise an exception is thrown. (In other words, you cannot
have aut oType=TYPE_USERSPEC! FI ED)

i nval i dateCache(...)

Use this method to invalidate a single cache block. Invalidation is according to the
HTTP request object and also according to the specified cache block name (for
explicit naming) or section ID (for implicit naming).

7-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions

i nval i dat eCachelLi ke(...)

Use this method to invalidate multiple cache blocks. If you use explicit cache-block
naming and the cache repository supports wild-card naming, you can input the
speci fi edName parameter with "*" wild card characters. The Oracle Application
Server Java Object Cache currently does not support wild card characters.

If you use implicit cache-block haming, you must specify the

aut ol nval i dat eLevel parameter to determine, in combination with the

Ht t pSer vl et Request object and optionally the speci fi edName parameter,
what cache blocks are invalidated. The aut ol nval i dat eLevel parameter has
the same functionality as in a JSP i nval i dat eCache tag, as explained in "Web
Object Cache invalidateCache Tag" on page 7-23 (using information from the
request object, instead of using information from the page parameter of the

i nval i dat eCache tag).

i nval i dat eCacheQt her Pat hLi ke(...)

Use this method to invalidate cache blocks associated with the URI you provide in
the ot her Pat h parameter. In the signature taking only a request object and the
URI, the aut ol nval i dat eLevel parameter is set automatically according to the
URI. It is set to par amlevel if there is a question mark ("?") in the URI or to page
level otherwise.

The detailed signature of this method enables you to specifically control the
aut ol nval i dat eLevel setting and the cookies used in invalidation.

getCurrent Ti me()

Retrieve the current time value, asaj ava. uti | . Dat e instance, of the underlying
cache repository specified in this cache policy.

CachePolicy Getter and Setter Methods

You can use the following methods to retrieve or alter CachePol i cy object attributes.
See "Cache Policy Attributes" on page 7-8 for a discussion of these attributes.

bool ean get | gnoreCache()

voi d set | gnoreCache(bool ean i gnoreCache)

voi d setlgnoreCache(String ignoreCacheStr)

i nt get Scope()

voi d set Scope(int scope)

For scope values, use the integer constants SCOPE_APP and SCOPE_SESSI ON.
i nt getAutoType()

voi d set Aut oType(int autoType)

For aut oType values, use the integer constants TYPE_USERSPECI FI ED, TYPE _
URI _ONLY, TYPE_URI _QUERYSTR, TYPE_URI _ALLPARAM TYPE_URI _
SELECTEDPARAM and TYPE_URI _ EXCLUDEDPARAM

String[] getSel ectedParam()

voi d set Sel ect edParan(String[] sel ectedParaneters)
voi d set Sel ect edParam(String sel ect edParanttr)
String[] getSel ect edCooki es()

voi d set Sel ect edCooki es(String[] sel ectedCooki es)

Web Object Cache Tags and APl 7-31

Web Object Cache API Descriptions

« Vvoid setSel ectedCookies(String sel ect edCooki esStr)
«» Date getReusabl eTi meStanp()

« Vvoid setReusabl eTi meSt anp(Dat e reusabl eTi neSt anp)
« Vvoid setReusabl eTi mreSt anp(| ong reusabl eTi neSt anp)

Forr eusabl eTi meSt anp values, the integer constant REUSABLE_ALWAYS
indicates that the cache is always reusable.

« |l ong get Reusabl eDel t aTi ne()
« Vvoid set Reusabl eDel t aTi me(l ong reusabl eDel t aTi ne)

Forr eusabl eDel t aTi ne values, the integer constant REUSABLE _ALWAYS
indicates that the cache is always reusable.

« ExpirationPolicy getExpirationPolicy()

« Vvoid setExpirationPolicy(ExpirationPolicy
expi rationPolicy)

« String get CacheRepositoryNane()

«» void setCacheRepositoryName(String repoNane)

« bool ean get ReportException()

«» void setReportException (bool ean reportException)

« void setReportException (String reportExceptionStr)

The following methods are also available, but are primarily intended for use by the
Web Object Cache tag handlers:

« Vvoid setScope(String scopeStr)

For scope values, there are the string constants SCOPE_APP_STRand SCOPE_
SESSI ON_STR

« Vvoid setAutoType(String autoTypeStr)
« Vvoid setReusabl eTi reStanp(String reusabl eTi mreStanpStr)

Forr eusabl eTi meSt anp values, the string constant REUSABLE_| GNORED
indicates that the cache is always reusable.

«» void setReusabl eDel taTi ne(String reusabl eDel t aTi meStr)

For r eusabl eDel t aTi me values, the string constant REUSABLE_| GNORED
indicates that the cache is always reusable.

Expiration Policy Object Retrieval

Each CachePol i cy object has an Expi r at i onPol i cy attribute. If you want to set
expiration policies for a cache block, you can use the get Expi rati onPol i cy()
method of its CachePol i cy object, as in the following example:

CachePol i cy cachePolicyChj = CacheQientUtil.lookupPolicy
(config, request, "/VEB-INF/ nmypolicy.cpd");
ExpirationPol i cy expPolicyChj = cachePolicyChj.getExpirationPolicy();

7-32 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions

ExpirationPolicy Methods

The Expi rati onPol i cy class has getter and setter methods for its attributes, as
follows. For descriptions of these attributes, see "Expiration Policy Attributes” on
page 7-12.

int getExpirationType()

voi d set ExpirationType(int expirationType)
voi d set Expirati onType(String expirationTypeStr)
| ong get TTL()

void set TTL(long ttl)

| ong get Ti mel nabay()

voi d set Ti mel nabay(| ong ti nmel nabay)

voi d set Ti mel nabDay(String timelnaDayStr)

i nt get Dayl naWeek()

voi d set Dayl naWeek(i nt dayl naWeek)

voi d set Dayl naWeek(String dayl naWwekStr)

i nt get Dayl naVont h()

voi d set Dayl naMont h(i nt dayl naMont h)

bool ean get Wi teThrough()

voi d set Wi teThrough(bool ean writeThrough)
voi d setWiteThrough(String witeThroughStr)

Additionally, the Expi rat i onPol i cy class has the following utility method:

| ong get ExpirationTi ne(l ong createTi ne)

Given the creation time of a cache block expressed in milliseconds since midnight
January 1, 1970, this method calculates and returns the expiration time, also in
milliseconds since midnight January 1, 1970. That is, the timestamp when
expiration should occur, according to the expiration policy.

The Expi r at i onPol i cy class also defines the following integer constants for the
expirati onType attribute:

TYPE_TTL
TYPE_DAI LY
TYPE_WEEKLY
TYPE_MONTHLY

And the following integer constants are defined for the dayl naWek attribute:

VEEKLY_SUNDAY
VEEKLY_MONDAY
WEEKLY_TUESDAY
WEEKLY_WVEDNESDAY
WEEKLY_THURSDAY
WEEKLY_FRI DAY

Web Object Cache Tags and APl 7-33

Web Object Cache API Descriptions

« WEEKLY_SATURDAY

CacheBlock Methods

You can use the get Cache() method of a CachePol i cy object to retrieve the
associated CacheBl ock object, as documented in "CachePolicy Methods" on
page 7-28 and shown in "Servlet Page: DemoCacheServlet.java" on page 7-36.

The following abbreviated code, for illustrative purposes only, shows the key methods
of theor acl e. j sp. j weache. CacheBl ock class:

cl ass CacheBl ock

{
long get reationTine();

| ong get ExpirationTime();
Serializable getData();
}

Here are brief descriptions of these methods:

« getCreationTi me(): Returns the timestamp indicating when the cache block
was created.

« get ExpirationTi ne(): Returns the timestamp indicating the expiration time of
the cache block.

« getDat a() : Returns the cache block data.

Note: Creation time and expiration time are expressed in
milliseconds since midnight, January 1, 1970.

Tag Code Versus API Code

This example presents code for three approaches to an application that caches and
presents timestamp output from two cache fragments:

« Thefirst approach, t agcode. j sp, is a simple JSP page that uses the Oracle Web
Object Cache tags.

« Thesecond approach, ser vl et code. j sp, is a more involved JSP page that uses
the Web Object Cache API inside a Java scriptlet instead of using the Web Object
Cache tags.

« The third approach, DenoCacheSer vl et . j ava, uses the Web Object Cache API
inside a servlet.

Following the three code samples is a listing of the cache policy descriptor,
test-policy. cpd.

In each approach, the application will cache the two fragments it displays. You can
reload repeatedly, but the times displayed in the fragments will not change until the
cached fragments expire. The first fragment takes 25 seconds to expire, getting the
25-second time-to-live value from the TTL setting in the cache policy descriptor
(test-policy. cpd). The second fragment takes 15 seconds to expire, overriding the
cache policy descriptor time-to-live value with a value set directly in the page code.

Output for the sample applications looks something like the following:

fragment#1 (expires in 25 seconds based on TTL val ue test-policy)
Sun May 27 15:20:46 PDT 2001

7-34 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions

fragment#2 (expires in 15 seconds because TTL overrides test-policy val ue)
Sun May 27 15:20:46 PDT 2001

Simple JSP Page: tagcode.jsp
<Y@taglib uri="http://xmns.oracle.conlj2eeljsp/tldl/ojsp/jwache.tld"
prefix="oj sp" %

<title>tagcode.jsp</title>

<pre>

tagcode. j sp

<oj sp: cache policy="/WEB-|NF/test-policy.cpd" >
fragnent#1 (expires in 25 seconds based on TTL val ue test-policy)
<% new java.util.Date() %

</ oj sp: cache>

<o0j sp: cache policy="/WEB-INF/test-policy.cpd" TTL="15" >
fragment#2 (expires in 15 seconds because TTL overrides test-policy val ue)
<% new java.util.Date() %

</ oj sp: cache>

</ pre>

Scriptlet JSP Page: servletcode.jsp

Code notes are the same as for the servlet version in the next section, "Servlet Page:
DemoCacheServlet.java".

<%@ page inport="oracle.jsp.jwache.*, java.io.*" %
<title>servletcode.jsp</title>
<pre>
servl etcode. j sp
<%
CachePol i cy cachePolicyj = CachedientUtil.lookupPolicy(config,request,
"/ WEB-INF/ test-policy.cpd"); // Note A
StringSectionld sectionld=new StringSectionld("sl"); /I Note B
CacheBl ock cacheBl ockObj =nul | ;

cacheBl ockOnj = cachePol i cy(hj . get Cache(request, sectionld); // Note C
if (!cachePolicynj.isRecent(cacheBl ockChj)) { // Note D

Char ArrayWiter newQut=new CharArrayWiter();

PrintWiter pw=new PrintWiter(newQut);

/1 actual logic within a cache block
pw. println
("fragnent#1 (expires in 25 seconds based on TTL val ue test-policy)");
pw.println(new java.util.Date());
/1 which generates content into the "out" object

if (cacheBlockGbj == null) { // Note E
cachePol i cyQhj . put Cache(newCut . t oChar Array(), request, sectionl d);
Il Note F

}

out.write(newQut.toCharArray());
/1l witing out newy created data back to the original witer

}
el se {

out.wite((char[])cacheBl ockQj.getData());

/1 witing the existing cached data to the witer
}

sectionld=new StringSectionld("s2");
long tinmeTolive = 15; /1 now set TTL to 15 on this bl ock

Web Object Cache Tags and APl 7-35

Web Object Cache API Descriptions

ExpirationPolicy expirationPolicy = cachePolicyChj.get ExpirationPolicy();
expirationPol icy.set TTL(ti meToLi ve);
cachePol i cyQhj . set Expi rationPol i cy(expirationPolicy);
cacheBl ockObj = cachePol i cyQhj . get Cache(request, sectionld);
if (!cachePolicyQj.isRecent(cacheBl ockj)) {
CharArrayWiter newQut=new CharArrayWiter();
PrintWiter pw=new PrintWiter(newQut);

/1 actual logic within a cache bl ock
pw. println
("fragnent#2 (expires in 15 seconds because TTL overrides test-policy value)");
pw. println(new java.util.Date());
/'l which generates content into the "out" object

if (cacheBlockbj == null) {
cachePol i cyQbj . put Cache(newCut . t oChar Array(), request, sectionl d);
}

out.wite(newQut.toCharArray());

Il witing out newy created data back to the original witer
}
el se {

out.wite((char[])cacheBl ockQj. getData());

Il witing the existing cached data to the witer

}

%
</ pre>

Servlet Page: DemoCacheServlet.java
Code notes are explained at the end of the code.

package denoPkg;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.|CException;

inport java.io.PrintWiter;
inport java.io.CharArrayWiter;

i mport oracle.jsp.jwache. CachePol i cy;

i nport oracle.jsp.jwache. ExpirationPolicy;
inmport oracle.jsp.jwcache. StringSectionld,;
import oracle.jsp.jwache. CacheBl ock;

i mport oracle.jsp.jwache. CachedientWil;

public class DenoCacheServlet extends HttpServlet{

public void service(HtpServl et Request request, HttpServletResponse response)
throws ServletException, |CException
{
/] standard witer object fromservlet engine
PrintWiter out=response.getWiter();
Servl et Config config=get Servl et Config();

try {
CachePol i cy cachePolicyChj = CacheCientUtil.lookupPolicy(config,request,

"/WEB- I NF/ test-policy.cpd"); // Note A
StringSectionld sectionld=new StringSectionld("sl"); Il Note B

7-36 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache API Descriptions

CacheBl ock cacheBl ockQbj =nul | ;

cacheBl ockbj = cachePol i cyQhj . get Cache(request, sectionld); // Note C
if (!cachePolicyj.isRecent(cacheBl ockGhj)) { // Note D

Char ArrayWiter newQut=new Char ArrayWiter();

PrintWiter pw=new PrintWiter(newQut);

Il actual logic within a cache block

pw. println("fragnment#1");

pw. println(new java.util.Date());

/'l which generates content into the "out" object

if (cacheBlockCbj == null) { // Note E
cachePol i cyQhj . put Cache(newQut . t oChar Array(), request, sectionld);
Il Note F

}

out.wite(newQut.toCharArray());

Il witing out neWwy created data back to the original witer
t
el se {

out.wite((char[])cacheBl ockChj.getData());

Il writing the existing cached data to the witer

}

sectionld=new StringSectionld("s2");
long timeTolLive = 15; /1 now set TTL to 15 on this bl ock
ExpirationPolicy expirationPolicy = cachePolicyQhj.getExpirationPolicy();
expirationPolicy.setTTL(ti meToLive);
cachePol i cyQhj . set Expi rationPol i cy(expirationPolicy);
cacheBl ockQnj = cachePol i cyQbj . get Cache(request, sectionld);
if (!cachePolicyj.isRecent(cacheBl ockOhj)) {
Char ArrayWiter newQut=new Char ArrayWiter();
PrintWiter pw=new PrintWiter(newQut);

/] actual logic within a cache block

pw. println("fragnment#2");

pw. println(new java.util.Date());

/1 which generates content into the "out" object

if (cacheBlockCbj == null) {
cachePol i cyQhj . put Cache(newQut . t oChar Array(), request, sectionld);
}

out.wite(newQut.toCharArray());
/1l witing out newy created data back to the original witer

}

el se {
out.wite((char[])cacheBl ockChj.getData());
/1l witing the existing cached data to the witer

}

catch (Throwabl e th) {
/'l your exception handling code here
th. printStackTrace(out);

Web Object Cache Tags and API 7-37

Cache Policy Descriptor

Code Notes The following notes describe some of the key functionality of the preceding
example:

« The cache policy object is created in the | ookupPol i cy() call (Note A), with
attribute settings according to the cache policy descriptor t est - pol i cy. cpd.

« Thesection ID is created for each cache block (Note B), as required for implicit
cache-block naming. See "CachePolicy Methods" on page 7-28 for information
about section IDs.

« The cache block is retrieved from the repository through the get Cache() method
of the cache policy object (Note C) and placed into the repository through the
put Cache() method, according to the section ID in each case.

« TheisRecent () call determines if the cache block is recent enough to use (Note
D). If so, the cached data is retrieved through the get Dat a() method of the cache
block. (See "CacheBlock Methods" on page 7-34.) If not, a special Pri nt Wi ter
object is created to buffer the output and save it back to the cache repository. If the
cache block object is not found (is null, Note E), then the put Cache() method of
the cache policy object is called to create a new cache block (Note F).

Cache Policy Descriptor: test-policy.cpd

This cache policy descriptor is used by all three approaches to the sample application:
t agcode. j sp, servl et code. j sp,and DenoCacheServl et . j ava:

<l--
test-policy.cpd
-->

<cachePol i cy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" ti nel naDay="00: 10: 00"
writeThrough="true" />
</ cachePol i cy>

Cache Policy Descriptor

You can optionally use an XML-style cache policy descriptor to specify attribute
settings for the CachePol i cy and Expi r at i onPol i cy objects. In any JSP pages or
servlets that you use, you would then specify the cache policy descriptor through the
pol i cy attribute of acache, cacheXM.Obj , useCacheObj , cachel ncl ude, or

i nval i dat eCache tag.

The following sections provide the cache policy descriptor DTD, a sample cache policy
descriptor, and information about loading and refreshing the cache policy descriptor:

» Cache Policy Descriptor DTD
= Sample Cache Policy Descriptor

» Cache Policy Descriptor Loading and Refreshing

Cache Policy Descriptor DTD

This section provides a listing of the Web Object Cache cache policy descriptor DTD,
cachepolicy. dtd.

<l--
cachepolicy.dtd
-->

<l--

7-38 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Cache Policy Descriptor

This DID is used to validate any (Oracle progranmmable web)
cache policy descriptors (for exanple, "/WEB-INF/foo.cpd").
>

<l--
The cachePolicy element is the root el enment of cache policy descriptors.

configuration descriptor.
-->

<! ELEMENT cachePolicy (
sel ect edParant, sel ect edCooki e*,
reusabl eTi meSt anp?, reusabl eDel t aTi me?,
cacheReposi t oryName?, expirationPolicy?) >

<I ATTLI ST cachePolicy ignoreCache (true | false) "false" >
<I ATTLI ST cachePol i cy scope (application | session) "application" >
<! ATTLI ST cachePol i cy autoType
(user | URI | URI _query |
URl _all Param| URl _sel ectedParam| UR _excl udedParam)
"UR _al | Parant >
<l ATTLI ST cachePolicy reportException (true | false) "true" >

<! ELEMENT sel ect edPar am (#PCDATA) >

<! ELEMENT sel ect edCooki e (#PCDATA) >

<! ELEMENT reusabl eTi neSt anp (#PCDATA) >
<! ELEMENT reusabl eDel t aTi me (#PCDATA) >
<I ELEMENT cacheReposi toryName (#PCDATA) >

<! ELEMENT expirationPolicy EMPTY >

<I ATTLI ST expirationPolicy expirationType (TTL | daily | weekly | monthly)
"TTL" >

<I ATTLI ST expirationPolicy TTL CDATA "300" >

<I ATTLI ST expirationPolicy timelnaDay CDATA #l MPLI ED >

<I ATTLI ST expirationPolicy dayl naWeek
(Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday)
"Vednesday" >

<I ATTLI ST expirationPolicy dayl naMonth CDATA "10" >

<I ATTLI ST expirationPolicy witeThrough (true | false) "true" >

Sample Cache Policy Descriptor

This section provides an example of a simple cache policy descriptor that sets the TTL
and ti nel naDay attributes.

<l--
test-policy.cpd
-->

<cachePol i cy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" ti melnaDay="00: 10: 00"
writeThrough="true" />
</ cachePol i cy>

Cache Policy Descriptor Loading and Refreshing

To create a CachePol i cy object from an XML cache policy descriptor file, there must
be a call to the static | ookupPol i cy() method of the Cached i ent Uti | class. For
JSP pages, this is handled automatically. For servlets, you must include the

Web Object Cache Tags and APl 7-39

Cache Repository Descriptor

| ookupPol i cy() call in your code. See "Servlet Page: DemoCacheServlet.java" on
page 7-36.

If the caching policy has not been previously loaded, the | ookupPol i cy()
invocation results in the XML descriptor being parsed and used in constructing a new
CachePol i cy object and an Expi r ati onPol i cy attribute of this object. See "Cache
Policy Object Creation” on page 7-27 for information about the | ookupPol i cy()
method.

The CachePol i cy object is stored indirectly under the Ser vl et Cont ext object
associated with your application. When the same caching policy is requested again,
the stored policy object will be returned without the descriptor being reread or
re-parsed. For performance reasons, because the cache policy descriptor files are
seldom changed, as well as for security reasons, OC4J does not provide descriptor
auto-reloading functionality. The resulting cache policy object is stored in the
middle-tier JVM for faster access.

The CachePol i cy object will be valid until the servlet context is destroyed or
someone calls the staticr ef r eshPol i cy() method of the CacheCl i ent Uti | class.
This method has the same calling sequence as the | ookupPol i cy() method. For
example:

oracl e.jsp.jwache. CacheCientWil.refreshPolicy
(servletConfig, request, "/VEB-1NF/ foo.cpd");

When you alter and refresh the caching policy, active cache blocks are not affected.

Cache Repository Descriptor

Use an XML-style cache repository descriptor to specify what to use as the back-end
cache repository for the Web Object Cache and how to configure it. The following
sections list the DTD for cache repository descriptors, as well as a sample cache
repository descriptor:

« Cache Repository Descriptor DTD

« Sample Cache Repository Descriptor

Note: By default, the Web Object Cache uses the Oracle
Application Server Java Object Cache as its cache repository.

Cache Repository Descriptor DTD

This section provides a listing of the Web Object Cache cache repository descriptor
DTD, wcache. dt d.

<l--

Copyright 2000 Oracle Corporation

wcache. dtd

-->

<l--

This DID is used to validate "/WEB-1NF/ wcache. xml ", which is used to hold
web cache repositories configuration information for

Oracl e progranmabl e web cachi ng conponents.

>

<l - -

The wcache-config element is the root el enent of web cache repositories
configuration descriptor.

7-40 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Configuration for Back-End Repository

>
<! ELEMENT wcache-config (cache-repository*)>

<! ELEMENT cache-repository
(cache-repository-name, cache-repository-cl ass,init-parant)>

<! ELEMENT cache-repository-name (#PCDATA)>
<I ELEMENT cache-repository-class (#PCDATA) >

<! ELEMENT i ni t- param (par am nane, par am val ue) >
<! ELEMENT par am name (#PCDATA) >
<! ELEMENT par am val ue (#PCDATA) >

Sample Cache Repository Descriptor
This section lists the cache repository descriptor provided with OC4J.

Note: The DTD does not include r epor oot , which is a
specific-use parameter that only a file system cache implementation
requires.

<wcache- confi g>

<cache-reposi tory>
<cache-reposi t ory- name>Def aul t CacheReposi t or y</ cache-r eposi t or y- nanme>
<cache-repository-cl ass>
oracl e.jsp.jwcache. repository.inpl.OCSRepol npl
</ cache-repository-class>
</ cache-repository>

<cache-reposi tory>
<cache-reposi t ory- nanme>Si npl eFSRepo</ cache-r eposi t or y- nanme>
<cache-repository-cl ass>
oracl e.jsp.jwcache. repository.inpl.Sinpl eFSRepositoryl npl
</ cache-repository-class>
<init-paranp
<par am name>r epor oot </ par am nane>
<param val ue>/ t np/ r epor oot </ par am val ue>
</init-paranp
</ cache-repository>

</wcache- confi g>

Configuration for Back-End Repository

This section describes how to configure the Oracle Application Server Java Object
Cache or afile system as the back-end repository for the OC4J Web Object Cache.

Configuration Notes for Oracle Application Server Java Object Cache

The OC4Jserver. xm file must have a <j avacache- conf i g> element to specify
the Java Object Cache configuration file. This is a subelement of the
<appl i cati on-server > element. By default, the entry is as follows:

<application-server ... >

Web Object Cache Tags and APl 7-41

Configuration for Back-End Repository

<j avacache-config path="../../../javacache/adnin/javacache. xm" />
</ appl i cation-server>

As shown, and assuming the default configuration file directory location (where
server. xm islocated), the default is for OC4J instances to share the same Java
Object Cache configuration file, j avacache. xnl , in the ORACLE _

HOWVE/ j avacache/ admi n directory.

Here is a sample Java Object Cache configuration file:

<?xm version="1.0" encodi ng="UTF-8"?>
<cache-configuration
xm ns="http://wwmv. oracl e. conf oracl e/ i as/ cache/ confi gurati on"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM.Schema- i nst ance" >
<l oggi ng>
<l ocati on>j avacache. | og</ | ocati on>
<l evel >ERROR</ | evel >
</l oggi ng>
<conmuni cati on>
<i sDistributed>true</isDistributed>
<coor di nat or di scovery-port="7000"/>
</ comuni cat i on>
<persi st ence>
<l ocat i on>di skcache</| ocati on>
<di sksi ze>32</ di sksi ze>
</ persi stence>
<max- obj ect s>1000</ max- obj ect s>
<max- si ze>48</ max- si ze>
<cl ean-int erval >30</cl ean-i nt erval >
</ cache-configuration>

For more information about the Java Object Cache, its configuration, and the

j avacache. xnl file, see the Oracle Application Server Containers for J2EE Services
Guide. For more information about the ser ver . xni file, refer to the Oracle Application
Server Containers for J2EE User’s Guide.

Configuration Notes for File System Cache

To use a file system as the back-end repository, edit the cache repository descriptor,
wcache. xm , to setr epor oot to specify a root directory for the file system cache.
This file is located in the / VVEB- | NF directory where the OC4J samples are installed.
See "Cache Repository Descriptor" on page 7-40 for general information and for an
example of a cache repository descriptor that sets ar epor oot value.

For example, for a UNIX system:

<init-paranp

<par am nane>r epor oot </ par am name>

<par am val ue>/ mydi r/ r eposi t or yr oot </ par am val ue>
</init-paranp

Alternatively, for a Windows system:

<init-paran>

<par am nane>r epor oot </ par am name>

<par am val ue>c: \ nydi r\repositoryroot </ param val ue>
</init-paranm

7-42 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

38

File Access and Mail Beans and Tags

This chapter covers OC4J tags and JavaBeans for file access (uploading and
downloading) and for e-mail. The e-mail tag and JavaBean make use of the file access
functionality for attachments. The chapter is organized as follows:

« File-Access JavaBeans and Tags

« Mail JavaBean and Tag

File-Access JavaBeans and Tags

OC4J provides a standards-compliant tag library and JavaBeans that add convenient
file upload and file download functionality for JSP pages and servlets. Files can be
uploaded to or downloaded from a file system or database.

The following sections document the file-access tags and beans:
« Overview of OC4J File-Access Functionality
« File Upload and Download Tag Descriptions

« File Upload and Download JavaBean and Class Descriptions

Overview of OC4J File-Access Functionality

Developers have the option of using either custom tags or JavaBeans to program
applications that allow users to upload or download files. In either case, the
application is presumably programmed so that users specify through the browser
where files come from on the client system for uploading or where they go to on the
client system for downloading. For JSP pages for uploading, OC4J supplies a
convenience tag, ht t pUpl oadFor m to create a form to use in specifying where the
files come from.

For processing an upload, including specifying the destination file system or database
location, use the Ht t pUpl oadBean JavaBean or the ht t pUpl oad tag. For processing
a download, including specifying the source file system or database location, use

Ht t pDownl oadBean or the ht t pDownl oad tag. The beans extend

Ht t pFi | eAccessBean, which is not intended for public use. All of the beans are in
theoracl e.jsp.webutil.fil eaccess package.

Overview of File Uploading

For user specification in a JSP page of where uploaded files will come from, you can
use the ht t pUpl oadFor mtag to create a form. This tag lets users select the files for
uploading and creates the necessary multipart HTTP request. You also have the option
of using a standard HTML form to create the request.

File Access and Mail Beans and Tags 8-1

File-Access JavaBeans and Tags

Use the Ht t pUpl oadBean JavaBean or the ht t pUpl oad tag to receive and process
the multipart form-encoded data stream and write the files to the appropriate location,
either in the file system or a database. There is functionality to let you decide whether
previous data will be overwritten if the target file or database row already exists.

Note: The maximum file size for any upload is 2 GB.

File System Destination If the destination is in a file system, you must provide a
properties file that designates a base directory. The properties file must be named

fil eaccess. properti es, mustbe located in the / VEB- | NF directory of your
application, and must have afi | eaccess. basedi r entry that indicates an absolute
directory path. Here is an example:

fileaccess. basedir=/tnp

Note: On a Windows system, you must still use a forward-slash,
not a back-slash, for the directory path:

fil eaccess. basedir=c:/tnp

Furthermore, the specified drive (C. in this case) must be the same
drive on which OC4J is installed.

There should be subdirectories as appropriate under the base directory, such as a
subdirectory for each authorized user. Destination subdirectories under the base
directory must be specified through an attribute of the upload bean or tag. All
directories and subdirectories must already exist and be writable; they cannot be
created or made writable through OC4J functionality.

Database Destination If the destination is in a database, you can optionally use a default
table, fi | eaccess, that you create through the supplied f i | eaccess. sql script, or
you can use any other previously existing table containing the required column types.
In either case, you must provide a connection to the database, as an instance of either
oracl e.jsp. dbutil.ConnBean or the standard j ava. sgl . Connect i on. You can
provide a ConnBean instance explicitly, or in a JSP page you also have the option of
providing it implicitly as a result of nesting the ht t pUpl oad tag inside a dbQpen tag.
(For information about the ConnBean JavaBean and dbOpen tag, see Chapter 4,
"Data-Access JavaBeans and Tags".)

Note: Thejava. sql . Connecti on type is currently supported
for the file-access beans only, not the tags.

You are also required to specify a destination through an attribute of the upload bean
or tag. The destination is simply a Java string value that will be placed in the prefix
column of the database table. The prefix is equivalent to a file system path.

File data is written to a database as either a BLOB or a CLOB. You can specify which
through an upload bean or tag attribute.

If you do not use the defaultf i | eaccess table, you must use attributes of the upload
bean or tag to specify the database table name and the names of the columns that will
contain the file data, the file prefix, and the file name. Any other table you use must
adhere to the pattern of f i | eaccess, as follows:

8-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

« It must have a concatenated unique key consisting of the column that holds the file
name and the column that holds the prefix.

« It must have a BLOB or CLOB column for the file data.

=« Any column other than the file data column must allow null data.

Notes:

« When you use a ConnBean instance, the connection will be
closed automatically at the end of the scope designated in the
j sp: useBean tag that invokes it. There is no such
functionality for a Connect i on instance.

« ConnBean uses and requires the JspScopelLi st ener
interface. See "JSP Event-Handling with JspScopeListener” on
page 9-1 for information about that utility.

Security Considerations for Uploading For uploading to a database, the database table
does not have a column to indicate a particular authorized user for any given file.
Therefore, without precaution, each user can see files that were uploaded by other
users, without having to know the file prefixes. To prevent this, you can prepend an
appropriate user name to each prefix.

Overview of File Downloading
Use the Ht t pDownl oadBean JavaBean or the ht t pDownl oad tag as follows:

« To allow users to specify the file system source directory or the database prefix to
match for file retrieval

Note the following:
— Matching the prefix for downloads from a database is case-sensitive.

— Matching the source directory for downloads from a file system is
case-sensitive in a case-sensitive operating system, such as UNIX.

— There is currently no support for specifying file names, either partial or
complete.

= To obtain and display a list of the files that are available for download

Once presented with a list of available files, the user can download them one at a
time from the list.

There is also functionality to specify whether you want recursive downloading, where
files in subdirectories or with additional database prefix information will also be
available for download. For database downloading, a prefix is equivalent to a file
system path and can be used to group files into a hierarchy. As an example of recursive
downloading from a database, assume you have specified / user as the prefix.
Recursive downloading would find matches for files with any prefixes starting with
"/user”,suchas"/ user/bill"and"/ user/ mary", and also such as "/ user 1",
"/user2","/user1/tont, and "/ user 2/ susan".

For downloading files from a file system, utilize the mechanism described in
"Overview of File Uploading"” on page 8-1. Use the fi | eaccess. properti es file to
specify a base directory and use attributes in the download bean or tag to specify the
rest of the file path.

File Access and Mail Beans and Tags 8-3

File-Access JavaBeans and Tags

For downloading files from a database, as with uploading files to a database, you must
provide an instance of or acl e. j sp. dbuti | . ConnBean or

j ava. sqgl . Connect i on. In addition, if you are not using the defaultfi | eaccess
table (that you can create using the supplied f i | eaccess. sql script), you must
provide all the necessary information about the database table and columns. Specify
this information through attributes of the download bean or tag.

The actual downloading of the files is accomplished by Downl oadSer vl et , supplied
with OC4J. In using the download tag, specify the path of this servlet through a tag
attribute. For a file system source, hyperlinks are automatically created to the servlet
so that the user can select a link for each file in order to download the file. For a
database source, the servlet will fetch the selected CLOB or BLOB data that forms the
file contents. (See "The Download Servlet” on page 8-12.)

Security Considerations for Downloading For downloading, consider limiting the users'
ability to see what is in the source (server-side) file system or database. Without
precaution, the following scenarios are possible:

« For file system downloading, a source value of "* " (perhaps specified through user
input) would mean that all directories under the base directory would be available
for downloading, with the names of all the files presumably being displayed for
the user to choose from.

« Forrecursive downloading from a database, all files having a prefix beginning
with the sour ce string (perhaps specified through user input) would be available
for downloading, with the names of all these files presumably being displayed. A
source of "*" matches all prefixes.

If this is of concern, you can consider protective measures such as the following:
« Not accepting sour ce values of "* " when downloading from file systems
« Not allowing recursive downloading from databases

« Automatically prepending the sour ce value with a partial directory path or
prefix string, such as a user name, to restrict the areas to which users have access

File Upload and Download JavaBean and Class Descriptions

This section describes attributes and methods of the file upload and download
JavaBeans provided with OC4J: Ht t pUpl oadBean and Ht t pDownl oadBean,
respectively.

There is also brief discussion of Downl oadSer vl et , provided with OC4J to perform
the actual file downloading, and the class Fi | eAccessExcept i on that is used by the
file-access JavaBeans for exceptions relating to file uploads and downloads.

To comply with the JavaBean specification, the file upload and download JavaBeans
provide no-argument constructors.

Note: To use the file upload and download JavaBeans, verify that
the file oj sputi | . j ar isinstalled and in your classpath. This file
is provided with OC4J.

The HttpUploadBean

Theoracle.jsp.webutil.fileaccess. Ht pUpl oadBean JavaBean provides
numerous setter methods for specifying information used for the uploading. It also
includes most corresponding getter methods. Once you have set all the required and

8-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

appropriate attributes, use the upl oad() method to perform the upload. There is also
a method to display the names of the files that were uploaded, typically so you can
provide an informative message to the browser.

Ht t pUpl oadBean, as with Ht t pDownl oadBean, extends Ht t pFi | eAccessBean,
which itself is not intended for public use.

See "Overview of File Uploading" on page 8-1 for related information.

Summary of Required Attributes

The following list summarizes required attributes for Ht t pUpl oadBean:

« Always required: dest i nati on

« Also required for uploads to a database: dest i nati onType, connecti on

« Also required for uploads to a database table other than the defaultfi | eaccess
table: t abl e, prefi xCol um, fi | eNaneCol urm, dat aCol umm

« Alsorequired for uploads to a database table using a CLOB column for file data:
fileType

In addition, for an upload to a file system, you must call the set BaseDi r () method
to provide a servlet context and HTTP request object so that the bean can find the
fileaccess. properti es file that specifies the base directory.

Methods
Here are descriptions of the public methods of Ht t pUpl oadBean.

Note: Many of the attributes and setter methods for
Ht t pUpl oadBean are the same as for Ht t pDownl oadBean.

« void upload(javax.servlet.http. H tpServl et Request req)
throws FileAccessException

Once all required and appropriate bean attributes have been set, use this method
for the upload. The r eq parameter is the HTTP request instance containing the
multipart form-encoded files. For a JSP page, use the implicit r equest object.

« void setBaseDir(javax.servlet. Servl et Context sc,
j avax. servl et. http. H t pServl et Request req)
throws Fil eAccessException

For an upload to a file system, use this method to determine what to use as a base
directory. It gets this information from the f i | eaccess. properti es file in your
application / VEB- | NF directory, which it finds through the servlet context input
parameter. The baseDi r setting, together with the dest i nat i on setting,
specifies the absolute path to the upload directory.

The r eq parameter is the servlet request instance to use in requesting the base
directory information. For JSP pages, use the implicit r equest object.

This method is not relevant for database uploads.
« void setDestination(String destination)
This method is always required.

For an upload to a file system, dest i nat i on and the base directory together
specify the absolute path to the upload directory.

File Access and Mail Beans and Tags 8-5

File-Access JavaBeans and Tags

For an upload to a database, dest i nat i on is used as the file prefix. (There is no
"base directory".) The prefix is equivalent to a file system path and can be used to
group files into a hierarchy. It is permissible to include separator characters such

as". "and "/ " in the destination string.

Note: Typically, the dest i nati on value will be based at least
partially on user input.

« Vvoid setDestinationType(String destinationType)
throws Fil eAccessException

« Vvoid setDestinationType(int destinationType)
throws Fil eAccessException

Use the overloaded set Dest i nati onType() method to specify whether the
upload is to a file system or a database.

To upload to a database, set dest i nati onType to one of the following: the string
"dat abase", the defined St ri ng constant Fi | eAccessUt i | . DATABASE, the

i nt value 1, or the defined i nt constant Fi | eAccessUti| . LOCATI ON_TYPE
DATABASE.

Uploading to a file system is the default, but if you want to specify this explicitly,
setdest i nati onType to one of the following: the string "f i | esyst ent, the
defined St ri ng constant Fi | eAccessUti | . FI LESYSTEM the i nt value 0, or
the defined i nt constant Fi | eAccessUti | . LOCATI ON_TYPE_FI LESYSTEM

Fil eAccessUtil isintheoracle.jsp.webutil.fil eaccess package.
« String getDestinationType()

Retrieve the destination information. Note there is a getter method for the string
version only.

« void setOverwite(String overwite)
throws Fil eAccessException

« void setOverwrite(bool ean overwite)

Use the overloaded set Over wri t e() method to overwrite existing files or
update rows with the same file name and prefix. This is relevant for both file
system and database uploads.

Overwriting is enabled by default, but you can enable it explicitly with an

over w i t e setting of the string "t r ue" or the boolean value t r ue. Disable
overwriting with a setting of the string "f al se" or the boolean value f al se.
String settings are case-insensitive. No settings are accepted other than those listed
here.

«» void setFileType(String fil eType)
throws Fil eAccessExcepti on

« void setFileType(int fileType) throws Fil eAccessException

For an upload to a database, use the overloaded set Fi | eType() method to
specify whether the data is to be stored in a BLOB for binary data (the default) or a
CLOB for character data. For a CLOB, setfi | eType to one of the following: the
string "char act er ", the defined St ri ng constant

Fil eAccessUti | . CHARACTER FI LE, or thei nt value 1. To explicitly specify a
BLOB, setfi | eType to one of the following: the string "bi nar y", the defined

8-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

Stringconstant Fi | eAccessUti | . Bl NARY_FI LE, or the int value 0. String
settings are case-insensitive. No settings are accepted other than those listed here.

Fil eAccessUti| isintheoracle.jsp. webutil.fileaccess package.
String getFileType()

Retrieve the file type information. Note there is a getter method for the string
version only.

voi d set Tabl e(String tabl eNane)

For an upload to a database table other than the default f i | eaccess table, use
this method to specify the table name.

String get Tabl e()
Retrieve the table name.
voi d set PrefixCol um(String prefixCol umNane)

For an upload to a database table other than the defaultf i | eaccess table, use
this method to specify the name of the column containing the file prefix. (In

fil eaccess,thiscolumnnameisfil eprefix.) Thedesti nati on value will
be written into this column.

String getPrefixCol um()
Retrieve the name of the column containing the file prefix.
voi d set Fi |l eNameCol uim(String fil eNameCol utmNane)

For an upload to a database table other than the defaultf i | eaccess table, use
this method to specify the name of the column containing the file name. (In

fil eaccess, thiscolumn nameisfi | enane.) File names will include any file
name extensions.

String getFil eNameCol um()
Retrieve the name of the column containing the file name.
voi d set Dat aCol um(String dataCol umNane)

For an upload to a database table other than the defaultf i | eaccess table, use
this method to specify the name of the BLOB or CLOB column containing the file
contents. (Infi | eaccess, this column name isdat a.)

String getDataCol um()

Retrieve the name of the column containing the file contents.
voi d set Connecti on(ConnBean conn)

voi d set Connection(java. sql . Connecti on conn)

For an upload to a database table (default table or otherwise), use this overloaded
method to provide a database connection. You can provide an instance of either
oracl e.j sp. dbutil . ConnBean or the standard j ava. sql . Connecti on
type. For information about the ConnBean JavaBean, see "ConnBean for a
Database Connection" on page 4-3.

If you use a Connect i on instance, you must explicitly open and close it. For a
ConnBean instance, this is handled automatically.

java. util.Enuneration getFil eNanes()

File Access and Mail Beans and Tags 8-7

File-Access JavaBeans and Tags

This method returns an Enunrer at i on instance containing the names of the files
that were uploaded. (This functionality is not available through the ht t pUpl oad

tag.)
Example: This example uses a plain HTML form to specify a file to upload to a file
system, then uses a JSP page that employs Ht t pUpl oadBean for the upload.

Here is the HTML form, which specifies beanUpl oadExanpl e. j sp for its action and
will generate the multipart upload stream.

Note: Remember to set the base directory appropriately for
uploads to a file system. See "File System Destination" on page 8-2.

<ht m ><body>

<form acti on="beanUpl oadExanpl e. j sp" ENCTYPE="nul ti part/formdata" met hod=PCST>

 File to upload: <INPUT TYPE="FILE'" NAMVE="File" SIZE="50" MAXLENGTH="120" >

<| NPUT TYPE="SUBM T" NAVE="Submit" VALUE="Send"> </form

</ body></ ht m >

And here is the beanUpl oadExanpl e. j sp page.

<%@ page | anguage="j ava"
inport="java.util.*, oracle.jsp.webutil.fileaccess.*" %
<ht i ><body>
<% String userdir = "fileaccess"; % // user's part of the upload directory
<j sp: useBean i d="upbean"
class="oracle.jsp.webutil.fileaccess. HtpUpl oadBean" >
<j sp: set Property name="upbean" property="destination"
val ue="<% userdir %" />
</j sp: useBean>
<% upbean. set BaseDir (application, request);
upbean. upl oad(request);
Enurreration fileNames = upbean. get Fi | eNanes();
while (fileNames. hasMoreEl enents()) { %

<% (String)fileNames. nextEl ement() %
<%} %

Done!
</ body></ ht ni >

The HttpDownloadBean

Theoracle.jsp. webutil.fileaccess. H t pDownl oadBean JavaBean provides
numerous setter methods for specifying information used for downloading. It also
includes most corresponding getter methods. Once you have set all the required and
appropriate attributes, use the | i st Fi | es() method to list the files available for
download. The actual downloading is accomplished through Downl oadSer vl et
supplied with OC4J, one file at a time. See "The Download Servlet" on page 8-12.

Note: You must construct the URL for Downl oadSer vl et in
your application code.

Ht t pDownl oadBean, as with Ht t pUpl oadBean, extends Ht t pFi | eAccessBean,
which itself is not intended for public use.

See "Overview of File Uploading" on page 8-1 for related information.

Summary of Required Attributes

8-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

The following list summarizes required attributes for Ht t pDownl oadBean:

Always required: sour ce
Also required for uploads to a database: sour ceType, connecti on

Also required for downloads from a database table other than the default
fil eaccess table:tabl e, prefi xCol um, fil eNameCol umrm, dat aCol umm

Also required for downloads from a database table using a CLOB column for file
data:fil eType

In addition, for a download from a file system, you must call the set BaseDi r ()
method to provide a servlet context and HTTP request object so that the bean can find
thefil eaccess. properti es file that specifies the base directory.

Methods

Here are descriptions of the public methods of Ht t pDownl oadBean.

Note: Many of the attributes and setter methods for
Ht t pDownl oadBean are the same as for Ht t pUpl oadBean.

void listFiles(javax.servlet.http. HttpServl et Request req)
throws Fil eAccessException

Once all required and appropriate bean attributes have been set, use this method
to list the files available for download. These are files in the source directory or
matching the source database prefix. The r eq parameter is the HTTP response
instance. For a JSP page, use the implicit r equest object.

For use from the file list, you can create HREF links to Downl oadSer vl et ,
passing it each file and file prefix, allowing users to select the link for each file they
want to download.

Note: Thel i st Fil es() method writes the file names to
memory and to the JSP page or servlet. If you later want to access
the file names again, use the get Fi | eNanes() method to read
them from memory.

java. util.Enuneration getFil eNanmes()

This method returns an Enuner at i on instance containing the names of the files
that are available for download. It requires that the | i st Fi | es() method was
already called. The |l i st Fi | es() method writes the file names to memory and to
the JSP page or servlet. The get Fi | eNanes() method reads them from memory.

voi d set BaseDir(j avax. servl et. Servl et Cont ext sc,
javax. servlet. http. Ht pServl et Request req)
throws Fil eAccessException

For a download from a file system, use this method to determine what to use as
the base directory. It gets this information from the f i | eaccess. properti es
file in your application / VEEB- | NF directory, which it finds through the servlet
context input parameter. The baseDi r setting, together with the sour ce setting,
specifies the absolute path to the directory from which files will be downloaded.

The sc parameter is the servlet context instance for the application. For JSP pages,
use the implicit appl i cat i on object.

File Access and Mail Beans and Tags 8-9

File-Access JavaBeans and Tags

The r eq parameter is for the HTTP request instance to use in requesting the base
directory information. For JSP pages, use the implicitr equest object.

A base directory is not relevant for downloads from a database.
« Vvoid setSource(String source)
This is always required.

For a download from a file system, sour ce and the base directory together
specify the absolute path to the directory from which files will be downloaded. If
sour ce is setto ™ ", then all directories under the base directory will be available
for downloading.

For a download from a database, sour ce is used as the file prefix. (The base
directory is not relevant.) The prefix is equivalent to a file system path and can be
used to group files into a hierarchy. If recursive downloading is enabled (through
the set Recur se() method), "% will be appended onto the sour ce value, and
the VHERE clause for the query will contain an appropriate LI KE clause. Therefore,
all files with prefixes that are partially matched by the sour ce value will be
available for download. If you want to match all rows in the database table, set
source to ™"

Note: Typically, the sour ce value will be based at least partially
on user input.

« Vvoid setSourceType(String sourceType)
throws Fil eAccessException

« Vvoid setSourceType(int sourceType)
throws Fil eAccessException

Use the overloaded set Sour ceType() method to specify whether the download
is from a file system or a database.

To download from a database, set sour ceType to one of the following: the string
"dat abase", the defined St ri ng constant Fi | eAccessUt i | . DATABASE, the

i nt value 1, or the defined i nt constant Fi | eAccessUti|. LOCATI ON_TYPE_
DATABASE.

Downloading from a file system is the default, but if you want to specify this
explicitly, set sour ceType to one of the following: the string "f i | esyst ent’, the
defined St ri ng constant Fi | eAccessUti | . FI LESYSTEM thei nt value 0, or
the defined i nt constant Fi | eAccessUti | . LOCATI ON_TYPE_FI LESYSTEM

Fil eAccessUtil isintheoracle.jsp.webutil.fil eaccess package.
« String get SourceType()

Retrieve the source type information. Note there is a getter method for the string
version only.

« Vvoid setRecurse(String recurse) throws Fil eAccessException
« Vvoid setRecurse(bool ean recurse)

Use the overloaded set Recur se() method to enable or disable recursive
downloading functionality, where files in file system subdirectories or with
additional database prefix information will also be listed as available for
downloading. As an example of this functionality from a database, assume
sour ce is setto "/ user ". Recursiveness would also find matches for files with

8-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

prefixes such as "/ user/bi || "and "/ user/ mary", and also such as "/ user 1",
"/user2","/ user 1/ tont,and "/ user 2/ susan".

Recursiveness is enabled by default, but you can enable it explicitly with a

r ecur se setting of the string "t r ue" or the boolean t r ue. Disable the recursive
functionality with a setting of the string "f al se" or the boolean f al se. String
settings are case-insensitive. No settings are accepted other than those listed here.

void setFil eType(String fil eType)
throws Fil eAccessException

void setFil eType(int fileType) throws Fil eAccessException

For a download from a database, use the overloaded set Fi | eType() method to
specify whether the data is stored in a BLOB for binary data (the default) or a
CLOB for character data. For a CLOB, setfi | eType to one of the following: the
string "char act er ", the defined St r i ng constant

Fi | eAccessUti| . CHARACTER FI LE, or thei nt value 1. To explicitly specify a
BLOB, set fi | eType to one of the following: the string "bi nar y", the defined
Stringconstant Fi | eAccessUti|. Bl NARY_FI LE, or the i nt value 0. String
settings are case-insensitive. No settings are accepted other than those listed here.

Fi |l eAccessUtil isintheoracle.jsp.webutil.fil eaccess package.
String getFil eType()

Retrieve the file type information. Note there is a getter method for the string
version only.

voi d set Tabl e(String tabl eNane)

For a download from a database table other than the defaultfi | eaccess table,
use this method to specify the table name.

String get Tabl e()
Retrieve the table name.
voi d setPrefixColum(String prefixCol umNanme)

For a download from a database table other than the defaultfi | eaccess table,
use this method to specify the name of the column containing the file prefix. (In
fil eaccess,thiscolumnnameisfil eprefix.)

String getPrefixCol um()
Retrieve the name of the column containing the file prefix.
voi d set Fil eNameCol um(String fil eNameCol urmNane)

For a download from a database table other than the default fi | eaccess table,
use this method to specify the name of the column containing the file name. (In
fil eaccess, thiscolumnnameisfi | enane.) The file name includes any file
name extension.

String getFil eNameCol um()
Retrieve the name of the column containing the file name.
voi d set Dat aCol um(String dataCol utmNane)

For a download from a database table other than the default fi | eaccess table,
use this method to specify the name of the BLOB or CLOB column that holds the
file contents. (Infi | eaccess, this column name is dat a.)

String get Dat aCol um()

File Access and Mail Beans and Tags 8-11

File-Access JavaBeans and Tags

Retrieve the name of the column containing the file contents.
«» void setConnection(ConnBean conn)
« void setConnection(java.sqgl.Connection conn)

For a download from a database table (default table or otherwise), use this method
to provide a database connection. You can provide an instance of either

oracl e.jsp.dbutil. ConnBean or the standard j ava. sql . Connecti on
type. For information about the ConnBean JavaBean, see "ConnBean for a
Database Connection" on page 4-3.

If you use a Connect i on instance, you must explicitly open and close it. For a
ConnBean instance, this is handled automatically.

Example This example is a JSP page that uses Ht t pDownl oadBean for a download
from a file system. Note that the page must construct the URL for the download
servlet.

<%@ page | anguage="java" inport="java.util.*, oracle.jsp.webutil.fileaccess.*" %
<ht ml ><body>
<% String servletPath = "/servlet/downl oad/"; // path to the downl oad servlet

String userDir = "fileaccess/"; /] user part of download directory
%
<j sp: useBean i d="dbean"

cl ass="oracl e.j sp. webutil.access. H t pDownl oadBean" >

<j sp: set Property nane="dbean" property="source" val ue='<%userDir %' />
</j sp: useBean>
<% dbean. setBaseDir(application, request);

dbean. listFiles(request); %
The following files were found:
<% Enuneration fileNames = dbean. getFi| eNanes();
while (fileNames. hashoreEl enents()) {
String name = (String)fileNames. nextEl enent(); %

<a href="<% servletPath + name %" > <% name %-

<%) %

Done!
</ body></ ht ni >

The Download Servlet

To use download functionality, through either Ht t pDownl oadBean or the

ht t pDownl oad tag, you must have the class

oracle.jsp.webutil.fileaccess. Downl oadSer vl et available in your Web
server. Its mapping in your Web server must be reflected in your servlet path settings,
either through the ser vl et Pat h attribute if you use the ht t pDownl oad tag, or in
your application code if you use Ht t pDownl oadBean.

FileAccessException Class

Theoracle.jsp.webutil.fil eaccess. Fil eAccessExceptionclassisa
convenience class supplied with OC4J for file-access exception-handling. It wraps the
functionality of the standard j ava. sql . SQLExcept i on and

java.io. | OExcepti on classes. It handles exceptions from either of the file-access
beans in addition to handling SQL and 1/0 exceptions.

File Upload and Download Tag Descriptions

For file uploading, OC4J supplies the ht t pUpl oad tag. This tag, in turn, uses
Ht t pUpl oadBean. For convenience, you can also use the ht t pUpl oadFor mtag in

8-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

programming the form through which users specify the files to upload, or you can
code the form manually.

For file downloading, OC4J provides the custom ht t pDownl oad tag.This tag uses
Ht t pDownl oadBean. This section describes these tags and their attributes.

Note the following requirements for the file upload and download tags:

« Verify that the file oj sputi | . j ar isinstalled and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

« Thetag library descriptor, fi | eaccess. t| d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD isin oj sputil.jar.Theuri
value for fi | eaccess. t|d is the following:

http://xm ns. oracle.con j2ee/jsp/tld/ojsp/fileaccess.tld
You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer

Pages Developer’s Guide for information aboutt agl i b directives, the well-known tag
library directory, TLD files, and the meaning of uri values.

Notes:

« The prefix "fileaccess:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See '"Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

The httpUploadForm Tag

For convenience, you can use the ht t pUpl oadFor mtag to create a form in your
application, using multipart encoded form data, that allows users to specify the files to
upload.

Syntax

<fileaccess: httpUpl oadForm f ornsAction = "action”
[maxFiles = "nmax_nunber"]
[fileNameSize = "file_input_box_num chars"]
[maxFileNaneSize = "max_fil e_name_num chars"]
[includeNunbers = "true" | "false"]
[submitButtonText = "button_| abel text"] />

Note: The htt pUpl oadFor mtag can optionally use a body. For
example, the body might consist of a user prompt.

Attributes

« fornsAction (required): This is to indicate the action that will be performed after
the form is submitted. For example, f or nsAct i on could be the name of a JSP
page that uses Ht t pUpl oadBean or the ht t pUpl oad tag.

« maxFi | es: Use this if you want to specify the number of input lines you want to
appear in the form. The default is 1.

File Access and Mail Beans and Tags 8-13

File-Access JavaBeans and Tags

« fileNameSi ze: Use this if you want to specify the character-width of the file
name input box (or boxes). The default is 20 characters.

« maxFi | eNameSi ze: Use this if you want to specify the maximum number of
characters allowed in a file name. The default is 80 characters.

« includeNunbers: Set this to "t r ue" if you want the file name input boxes to be
numbered. The default setting is "f al se".

= submi t Butt onText : Use this if you want to specify the text that appears on the
"submit" button of the form. The default is "Send".

The httpUpload Tag

This tag wraps the functionality of the Ht t pUpl oadBean JavaBean, paralleling its
attributes. See "Overview of File Uploading" on page 8-1 and "The HttpUploadBean"
on page 8-4 for related information.

Syntax

<fileaccess: httpUpl oad destination = "dir_path_or_prefix"

[destinationType = "filesystent | "database"]
connld = "id"]
scope = "request” | "page" | "session" | "applicaton"]
overwite = "true" | "false"]
fileType = "character” | "binary"]

table = "tabl e_name"]

prefixCol um = "col utm_name"]
fileNameCol um = "col unn_name"]
dat aCol um = "col unmn_nane" | />

————————

Note: For uploads to a file system, the base directory is
automatically retrievable by the tag handler from the JSP page
context.

Attributes

« destinati on (required): For uploading to a file system, this indicates the path,
beneath the base directory supplied in the
/ VEEB- | NF/ fi | eaccess. properti es file, of the directory into which files will
be uploaded. For uploading to a database, dest i nat i on indicates the file prefix,
conceptually equivalent to a file system path.

Note: Typically, the dest i nati on value will be based at least
partially on user input.

« destinationType: Set this to "dat abase" for uploading to a database. The
default is to upload to a file system, but you can also explicitly set it to
"fil esyst ent. These values are case-insensitive.

= connl d: For uploading to a database, use this attribute to provide a ConnBean
connection ID for the database connection to be used. Or, alternatively, use the
ht t pUpl oad tag inside a dbCpen tag to implicitly use the dbQpen connection.
For information about the ConnBean JavaBean and dbOpen tag provided with
OC4), see Chapter 4, "Data-Access JavaBeans and Tags".

8-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

« scope: For uploading to a database, use this attribute to specify the scope of the
ConnBean instance for the connection. The scope setting here must match the
scope setting when the ConnBean instance was created, such as in a dbQpen tag.
If the ht t pUpl oad tag is nested inside a dbOpen tag, then there is no need to
specify connl d or scope. In this case, information will be taken from the dbOpen
tag. Otherwise, the default scope setting is "page".

« overwite:Setthisto"fal se"if you do not want to overwrite existing files that
have the same paths and names as the files you are uploading, or if you do not
want to update rows with the same file name and prefix for database uploading.
In this case, an error will be generated if a file already exists. By default,
overwriteissetto"t rue"andhtt pUpl oad overwrites files.

« fileType: Foruploading to a database, set this attribute to "char act er " for
character data, which will be written into a CLOB. The default setting is "bi nar y"
for binary data, which will be written into a BLOB.

« tabl e: For uploading to a database table other than the defaultfi | eaccess
table, use this attribute to specify the table name.

« prefixCol um: For uploading to a database table other than the default
fil eaccess table, use this attribute to specify the name of the column containing
file prefixes. This column is where the dest i nat i on values will be written.

« fil eNanmeCol um: For uploading to a database table other than the default
fil eaccess table, use this attribute to specify the name of the column containing
file names.

« dat aCol um: For uploading to a database table other than the default
fi | eaccess table, use this attribute to specify the name of the column containing
file contents.

Example This example has a page that uses the ht t pUpl oadFor mtag to create the
HTML form for specifying files to upload. The ht t pUpl oadFor mtag specifies

ht t pUpl oadExanpl e. j sp as its forms action. The ht t pUpl oadExanpl e. j sp page
uses the ht t pUpl oad tag to upload to the defaultf i | eaccess table in a database.

Here is the page for the HTML form:

<%@ page | anguage="j ava" inport="java.io.*" %
<v@taglib uri="http://xmns.oracle.conj2ee/jsp/tld/ ojsp/fileaccess.tld"
prefix="upl oad" %
<htnl > <body>
<fileaccess: httpUpl oadForm
fornsActi on="htt pUpl oadExanpl e. j sp"
maxFi | es=' <% request. get Paranet er ("MxFil es") %'
i ncludeNunbers="true" fileNaneSize="50" naxFileNameSi ze="120" >

 File:
</fileaccess: httpUpl oadFor n»
</ body> </htn >

And following is the ht t pUpl oadExanpl e. j sp page. Note that the ht t pUpl oad
tag gets its database connection as a result of being inside a dbQpen tag. Also note that
useDat aSour ce. j sp is used to obtain the connection, if necessary. See
"useDataSource.jsp" on page 5-8.

<%@ page | anguage="j ava" %

<Y@taglib uri="http://xmns.oracle.conj2eel/jsp/tld/ojsp/fileaccess.tld"
prefix="upl oad" %

<v@taglib uri="http://xmns.oracle.comj2ee/jsp/tld/ojsp/sqgltaglib.tld"
prefix="sql" %

File Access and Mail Beans and Tags 8-15

File-Access JavaBeans and Tags

<% String dataSrcStr=request.getParanmeter("dataSrcStr"); // get conn string
if (dataSrcStr==null) { dataSrcStr=(String)session.getValue("dataSrcStr"); }
el se { session.putValue("dataSrcStr", dataSrcStr); }
if (dataSrcStr==null) { %
<j sp:forward page="useDat aSource. jsp" />
<%} %
<ht m ><body>
<sql : dbQpen dat aSour ce="<% dataSrcStr %" >
<fileaccess: httpUpl oad destinationType = "database"
destinati on="t agexanpl e" />
</ sql : dbOpen>
Done! </body></htn >

Note: For the dbOpen tag in this example, assume that the data
source specifies the user name and password as well as the URL.

The httpDownload Tag

This tag wraps the functionality of the Ht t pDownl oadBean JavaBean, paralleling its
attributes. See "Overview of File Downloading" on page 8-3 and "The
HttpDownloadBean" on page 8-8 for related information.

Syntax

<fileaccess: httpDownl oad servletPath = "path"
source = "dir_path_or_prefix"

sourceType = "filesystent | "database"]

connld = "id"]

scope = "request"” | "page" | "session" | "applicaton"]
recurse = "true" | "false"]

fileType = "character” | "binary"]

table = "tabl e_name"]

prefixCol um = "col utm_name"]
fileNameCol um = "col unn_nane"]
dat aCol um = "col unmn_nane" | />

—_——— —— — ———

Notes:

« Thehtt pDownl oad tag can optionally use a body. For
example, the body might consist of a user prompt.

« For downloads from a file system, the base directory is
automatically retrievable by the tag handler from the JSP page
context.

Attributes

« servl et Pat h (required): This is the path to the Oracle Downl oadSer vl et ,
which executes the actual download of each file. For example, if
Downl oadSer vl et has been installed in the application app and mapped to the
name downl oad, then use "/ app/ downl oad/ ", with leading and trailing slashes,
as the ser vl et Pat h setting. The ht t pDownl oad tag handler uses this path in
constructing the URL to Downl oadSer vl et .

See "The Download Servlet" on page 8-12 for more information about this servlet.

8-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags

sour ce (required): For downloading from a file system, this attribute indicates
the path, beneath the base directory supplied in the file

/ VEEB- | NF/ fi | eaccess. properti es, of the directory from which files are
retrieved. A value of "* " results in all directories under the base directory being
available.

For downloading from a database, this attribute indicates the file prefix,
conceptually equivalent to a file system path. If recursive downloading is enabled
(through the r ecur se attribute), "% will be appended onto the sour ce value,
and the WHERE clause for the query will contain an appropriate LI KE clause.
Therefore, all files with prefixes that are partially matched by the source value will
be available for download. If you want to match all rows in the database table, set
source to"",

Note: Typically, the sour ce value is based at least partially on
user input.

sour ceType: Set this to "dat abase" for downloading from a database. The
default is to download from a file system, or you can explicitly set this to
"fil esystent.

connl d: For downloading from a database, use this attribute to provide a
ConnBean connection ID for the database connection to be used. Or, alternatively,
you can use the ht t pDownl oad tag inside a dbOpen tag to implicitly use the
dbOpen connection. For information about the ConnBean JavaBean and dbQpen
tag provided with OC4J, see Chapter 4, "Data-Access JavaBeans and Tags".

scope: For downloading from a database, use this attribute to specify the scope of
the ConnBean instance for the connection. The scope setting here must match the
scope setting when the ConnBean instance was created, such as in a dbOpen tag.
If the ht t pDownl oad tag is nested inside a dbQpen tag, then there is no need to
specify connl d or scope. In this case, information will be taken from the dbOpen
tag. Otherwise, the default scope setting is "page".

recur se: Set this to "f al se" if you do not want recursive downloading
functionality, where files in file system subdirectories or with additional database
prefix information will also be listed as available for download. As an example of
this functionality from a database, assume you have set sour ce to "/ user".
Recursiveness would also find matches for files with prefixes such as
“/user/bill"and"/ user/ mary", and also such as "/ user 1", "/ user 2",
"luser 1/ tont, and "/ user 2/ susan". The default mode is recursiveness, or you
can enable it explicitly with a setting of "t r ue".

fil eType: For downloading from a database, set this attribute to "char acter ™
for character data, which will be retrieved from a CLOB. The default setting is
"bi nar y" for binary data, which will be retrieved from a BLOB.

t abl e: For downloading from a database table other than the default
fi | eaccess table, use this attribute to specify the table name.

pr ef i xCol um: For downloading from a database table other than the default
fil eaccess table, use this attribute to specify the name of the column containing
file prefixes, which is where sour ce values are stored.

fil eNameCol umm: For downloading from a database table other than the default
fil eaccess table, use this attribute to specify the name of the column containing
file names. File names include any file name extensions.

File Access and Mail Beans and Tags 8-17

Mail JavaBean and Tag

» dat aCol um: For downloading from a database table other than the default
fil eaccess table, use this attribute to specify the name of the column that stores
the file contents.

Example This example is a JSP page that uses the ht t pDownl oad tag to download
from the default f i | eaccess table of a database. The tag body content ("
: ") will
be output before each file name in the list of files available for download. Note that
you must specify the Downl oadSer vl et servlet path in the ht t pDownl oad tag. The
tag handler will use it in constructing the URL to Downl oadSer vl et , which performs
the actual downloading.

<%@ page | anguage="java" %
<¥@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/fileaccess.tld"
prefix="downl oad" %
<v@taglib uri="http://xmns.oracle.conij2ee/jsp/tld/ojsp/sqltaglib.tld"
prefix="sql" %
<% String dataSrcStr=request.get Paraneter("dataSrcStr");
if (dataSrcStr==null) { dataSrcStr=(String)session.getValue("dataSrcStr");}
el se { session. putVal ue("dataSrcStr", dataSrcStr);}
if (dataSrcStr==null) { %
<jsp:forward page="useDataSource.sp" />
<%} %
<htm > <body>
<% String servletPath = "/servlet/dowl oad/"; %
<sql : dbQpen dat aSource="<% dataSrcStr %" >
<fileaccess: httpDownl oad sourceType = "database"
source="t agexanpl e" servletPath = '<% servletPath %' >

:
</fil eaccess: httpDownl oad>
</ sql : dbOpen>

Donel!
</ body> </ htm >

Note: For the dbOpen tag in this example, assume that the data
source specifies the user name and password as well as the URI.

Mail JavaBean and Tag

It is often useful to send e-mail messages from a Web application, based on Web site
status or user actions, for example. Sun Microsystems has specified a
platform-independent and protocol-independent framework for this through its

j avax. mai | package and subpackages, known as the JavaMail API.

For further convenience, Oracle supplies a JavaBean and JSP custom tag based on the
JavaMail API to use in providing e-mail functionality through your servlets or JSP
pages. The bean and tag, as with other JavaBeans and custom tags supplied with
OC4), are implemented according to JSP and servlet standards.

The following sections describe the mail JavaBean and tag:
= General Considerations for the Mail JavaBean and Tag
= Mail Attachments

= SendMailBean Description

« The sendMail Tag Description

8-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag

For more information about the JavaMail API, refer to the following Sun Microsystems
Web site:

http://java. sun. conif products/javamail/ 1.2/ docs/javadocs/i ndex. ht m

General Considerations for the Mail JavaBean and Tag

Be aware of the following points, which apply to use of either the mail JavaBean
(SendMai | Bean) or the mail tag (sendMai |):

« Thefilesmai |l .| ar, containing the JavaMail packages, and j af . j ar, for the
JavaBeans Activation Framework, must be in your classpath for mail functionality.
These files are provided with OC4.J.

« Toenable support for attachments, the file sendnmai | . pr operti es must exist,
with an appropriate setting, in the application / V\EB- | NF directory. See "Enabling
Attachments” on page 8-19.

« There is no particular limit to the size of an e-mail message, other than limits of the
JVM, system memory, or mail server.

« Setting up default mail sessions is specific to the particular Web server. The current
implementations of the mail bean and tag do not support automatic use of the
default mail session. As an alternative, you can write your own code to obtain the
default mail session if one exists for your platform, and to make the session
available to the mail bean or tag.

Mail Attachments

The mail bean and tag support the sending of attachments with e-mail messages. (This
support was introduced in the OC4J 9.0.3 implementation.) There are three modes of
operation:

« No support for attachments

= Support for attaching one or more files that are on the OC4J server machine,
known as server-side attachments

= Support for attaching one file that is on the client machine, known as a client-side
attachment

For a client-side attachment, the file is automatically uploaded to the server machine
as part of the process. Multiple client-side attachments are not supported.

Enabling Attachments

Whether attachments are enabled, and which kind of attachments, is determined by a
sendnmai | . properti es file in the application / VEB- | NF directory. A file with the
following content disables attachments:

emmi | attachnent perm ssions
sendmi | . at t achnent =none

You must create this file in / VEB- | NF and update it appropriately for any OC4J
instance that will use mail attachments.

Any single application can support server-side attachments or client-side attachments,
but not both.

To enable server-side attachments, change the setting to ser ver , as follows:

sendnmai | . att achnent =server

File Access and Mail Beans and Tags 8-19

Mail JavaBean and Tag

To enable client-side attachments, change the setting tocl i ent :

sendmai | . attachnent =cl i ent

Having multiple settings is an error condition.

Note: The absence of asendmai | . properti es file is treated as
equivalent to the presence of sendmai | . properti es with a
setting of none. Mail attachments are disabled in this case.

Sending Attachments

For the mail tag, if server-side attachments are enabled, use the ser ver At t achment
tag attribute if you want to specify one or more server-side files to attach to a message.
If client-side attachments are enabled, use the cl i ent At t achment tag attribute if
you want to specify a client-side file to attach to a message (maximum of one file). See
"The sendMail Tag Description" on page 8-24. Note that either one of the two
attachment modes, but not both, can be supported for any single application.

For both the server attachment mode and the client attachment mode, the mail bean
includes methods to specify or retrieve the name (or names) of the file (or files) to
attach. See information about set Server At t achrment (),

get Server Attachnment (),setd i ent Attachment (), and

getCl i ent Attachment () in"SendMailBean Method Descriptions™ on page 8-21.

With either the mail tag or mail bean, a list of server-side files to attach can be either
comma-delimited or semicolon-delimited, but not space-delimited (given that spaces
are allowed in file names in some operating systems).

Attachment Usage Notes

Be aware of the following usage notes for mail attachments, applying to both the mail
tag and mail bean.

« Foraclient-side file attachment, the file-access ht t pUpl oad tag is used behind
the scenes. The file is uploaded to a temporary location on the OC4J server
machine, then deleted once the message has been sent. Any limitations or
requirements of the ht t pUpl oad tag apply to a client-side mail attachment as
well. See "File Upload and Download Tag Descriptions” on page 8-12.

« Many e-mail servers have somewhat restrictive size limitations, often
approximately 4 MB for any one attachment. The only restrictions for the mail tag
or bean are according to disk or memory limitations of the server machine.

« Ifaproblem is encountered with any attachment, the e-mail message is
terminated.

« Path names are not exposed to the mail recipient in either the server attachment or
client attachment mode. Only the file name itself is indicated.

« For server-side attachments, attaching multiple files of the same name (but
obviously with different paths) is supported. How this is handled at the recipient
end, regarding any possible file renaming to avoid conflict, is according to the mail
client being used. Similarly, in either attachment mode, the mail client might
rename a file if an attachment has the same name as an attachment to a previous
message. This is all beyond the scope and control of the OC4J mail attachment
feature.

= You cannot use wild-card characters for file names.

8-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag

SendMailBean Description

Theoracle.jsp.webutil.emil.SendMai | Bean JavaBean is supplied with OC4]
to support e-mail functionality from servlet or JSP applications. To use it in a JSP page,
you can instantiate it through the standard j sp: useBean tag. (For JSP applications,
however, you would typically use the sendMai | tag instead of SendMai | Bean. See
"The sendMail Tag Description” on page 8-24.)

SendMailBean Requirements

To use SendMai | Bean, verify that the files oj sputil.jar,mail.jar,and
activation. jar areinstalled and in your classpath. These files are supplied with
OC4).

When you use SendMai | Bean in your code, you must provide the following:
« Message sender
Use the set Sender () method to specify the sender.
« Primary recipient (or recipients) of the message
Use the set Reci pi ent () method to specify the primary recipient (or recipients).

« Valid JavaMail session object (j avax. mai | . Sessi on), either directly or
indirectly

There are three ways to supply a JavaMail session:

— Usethe set Host () method to specify a host system. In this case, a JavaMail
session object will be created automatically.

— Usetheset Mai | Sessi on() method to provide a JavaMail session object
directly.

— For JSP applications, use the set Sessi on() method to specify the name of a
JavaMail session object that already exists and is accessible through a "session
string, j avax. mai | . Sessi on object” pair in the JSP page context. In this
case, you must supply the page context instance as an input parameter when
you call the sendMessage() method to send the e-mail message.

All other SendMai | Bean attributes are optional.

SendMailBean Method Descriptions

This section lists and describes SendMai | Bean methods to send mail messages, close
mail sessions, and set or get bean attributes.

Note: To comply with the JavaBean specification, SendMai | Bean
has a no-argument constructor.

Here are the public SendMai | Bean methods:

« Vvoid sendMessage()

« void sendMessage(j avax. servlet.jsp. PageCont ext)
Use the sendMessage() method to send the e-mail message.

If you use the set Sessi on() method to supply a JavaMail session, then you
must use the sendMessage(PageCont ext) signature and provide the page
context instance that holds the specified mail session instance.

File Access and Mail Beans and Tags 8-21

Mail JavaBean and Tag

If you use the set Mai | Sessi on() or set Host () method to supply a JavaMail
session, then you do not have to provide a page context in using the
sendMessage() method.

Also be aware, however, that specifying a page context instance might be relevant
in determining the character set of an e-mail message with a "text" content type. If
you provide no page context when invoking the sendMessage() method, then
the default character set is | SO 8859- 1. If you do provide a page context, then the
default character set is that of the r esponse object of the page context. Also note
that you can specify the content type and character set directly through the

set Cont ent Type() method.

« void close()

Use this method if you want to release the resources of the JavaMail session
instance from the SendMai | Bean instance. This method does not actually close
the session.

« void setBcc(String s)

Specify a space-delimited or comma-delimited list of any IDs (e-mail addresses or
aliases) to receive blind copies of the message. These IDs will be suppressed from
the message Cc field.

« String getBcc()
Retrieve the list of IDs to receive blind copies of the message.
« void setCc(String s)

Specify a space-delimited or comma-delimited list of any IDs (e-mail addresses or
aliases) to receive copies of the message. These IDs will appear in the message Cc
field.

« String getCc()
Retrieve the list of IDs to receive copies of the message.
« void setContent(String s)
Specify the contents of the e-mail message.
« String getContent()
Retrieve the contents of the e-mail message.
« Vvoid setContentEncoding(String s)

Specify the content encoding of the e-mail message. Specify "base64" or "B" for
base64 encoding, "quot ed- pri nt abl e" or "Q' for quoted-printable encoding,
"7bi t " for seven-bit encoding, or "8bi t " for eight-bit encoding. These content
encodings are part of the JavaMail and RFC 2047 standards. Entries are
case-insensitive.

The default content encoding setting is "nul | “, in which case the encoding of the
message and headers will be determined by the content. If most characters to be
encoded are in ASCII, then quoted-printable encoding will be used; otherwise,
base64 encoding will be used.

« String get Content Encodi ng()
Retrieve the content encoding of the message.

« Vvoid setContent Type(String s)

8-22 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag

Specify the MIME type and optionally the character set of the message, such as in
the following examples:

set Content Type("text/htm ");
set Content Type("text/htm; charset=US-ASCI|");

The default MIME type setting is "t ext / pl ai n", but you cannot specify a
character set without explicitly specifying that or some other "t ext / xxxx" MIME
type setting.

The default character set depends on whether you provide a JSP page context
instance when you call the sendMessage() method to send the e-mail message.
If you provide no page context, then the default character set is | SO- 8859- 1. If
you do provide a page context, then the default character set is that of the

r esponse object of the page context.

String getContent Type()
Retrieve the MIME type (and character encoding, if applicable) of the message.
void setHost(String s)

One of the ways to supply a JavaMail session is to specify a mail server host name,
in which case SendMai | Bean will obtain a session automatically. Use the

set Host () method for this purpose, providing a mail host name such as

"gmai | . oracl ecor p. conf.

See "SendMailBean Requirements" on page 8-21 for an overview of supplying the
JavaMail session.

String getHost ()
Retrieve the specified mail server host name.
voi d set Mai | Sessi on(j avax. mail . Sessi on sessobj)

One of the ways to supply a JavaMail session is to provide the session object
directly. Use the set Mai | Sessi on() method for this purpose, providing a
j avax. mai | . Sessi on instance.

See "SendMailBean Requirements" on page 8-21 for an overview of supplying the
JavaMail session.

javax. mai |l . Sessi on get Mai | Sessi on()
This returns a JavaMail session that you had previously set.
voi d setRecipient(String s)

Specify a space-delimited or comma-delimited list of IDs (e-mail addresses or
aliases) of the primary recipients of the message. These I1Ds will appear in the To
field of the message. You must specify at least one recipient.

String getRecipient()
Retrieve the list of IDs of the primary recipients of the message.
voi d set Sender (String s)

Specify the ID (e-mail address or alias) of the message sender. This ID will appear
in the From field of the message. You must specify the sender.

String get Sender ()

Retrieve the ID of the message sender.

File Access and Mail Beans and Tags 8-23

Mail JavaBean and Tag

« Vvoid setSession(String s)

One of the ways to supply a JavaMail session is to provide the name of a

j avax. mai | . Sessi on instance that already exists in the JSP page context object.
Use the set Sessi on() method for this purpose, specifying the name of the
session instance.

In this case, when you use the sendMessage() method to send the e-mail
message, you must provide thej avax. servl et . j sp. PageCont ext instance as
input.

See "SendMailBean Requirements"” on page 8-21 for an overview of supplying the
JavaMail session.

« String getSession()
Retrieve the name of the session instance.
« Vvoid setSubject(String s)
Specify the subject line of the message.
« String get Subject()
Retrieve the subject line of the message.
« Vvoid setServerAttachment(String s)

Specify a comma-delimited or semicolon-delimited list of file names (including
paths), for server-side files to attach to an e-mail message. These must be files on
the OC4J server machine. Server-side attachments must be enabled in the
sendnmai | . properti es file.

« String getServerAttachment ()

Retrieve the file name list for server-side files to attach to the message. This might
be useful in presenting a user confirmation page, for example.

« void setdientAttachment (String s)

Specify the path and file name of the client-side file to attach to the e-mail message
(maximum of one). This must be a file on the user's client machine. Client-side
attachments must be enabled in the sendnai | . properti es file.

« String getdientAttachment ()

Retrieve the name of the client-side file to attach to the message. This might be
useful in presenting a user confirmation page, for example.

Note: Regarding mail attachments, see "Mail Attachments" on
page 8-19 for related information. Be aware that for any one
application, you can use server-side attachments or client-side
attachments but not both.

The sendMail Tag Description

As a convenience for JSP developers, OC4J supplies the sendMai | tag to provide
e-mail functionality for a JSP page. The following sections describe the tag:

« The sendMail Tag Syntax
« The sendMail Tag Attribute Descriptions
« Sample Application for sendMail Tag

8-24 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag

Be aware of the following requirements for the sendMai | tag:

« Verify that the filesoj sputil.jar,mail.jar,andactivation.jar are
installed and in your classpath. These files are supplied with OC4J;
oj sputil.jar isin the "well-known" tag library directory.

« Inthe current implementation, the sendMai | tag has its own tag library
descriptor, emai | . t | d. This must be available to the application, and any JSP
page using the tag must have an appropriate t agl i b directive. In an Oracle
Application Server installation, the TLD isin oj sputi |l .jar. Theuri value for
emai | . t1d is the following:

http://xm ns. oracle.conj2ee/jsp/tld/ojsp/emil.tld
You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer

Pages Developer’s Guide for information aboutt agl i b directives, the well-known tag
library directory, TLD files, and the meaning of uri values.

The sendMail Tag Syntax
The sendMai | tag has the following syntax:

<mai | : sendMhi | host = "SMIP_host _nane" | session = "JavaMail_sessi on_nane"
sender = "sender _address”
recipient = "prinary_recipient_|Ds"

cc = "cc_recipient_IDs"]
bcec = "bee_recipient _IDs"]
subj ect = "subject_line"]
content Type = "M ME_type; [charset=charset]"]
content Encodi ng = "B"|"base64"|"Q'| "quot ed- pri nt abl e"|
"Thit"|"8bit"]
"server_file_list" |
"client_file"] >

—_——— ——

[serverAttachnent
client Attachment

E-mai | body
</ ﬁai | :sendMai | >
sendMail Tag Usage Notes Be aware of the following when using the sendMai | tag:

« Thesender andreci pi ent attributes are required, and either the host or
sessi on attribute is required.

« Multiple recipients, cc targets, or bcc targets are space-delimited or
comma-delimited.

« Useofserver Attachnent assumes server-side attachments are enabled in the
sendmai | . properti es file. Similarly, use of cl i ent Att achrment assumes
client-side attachments are enabled in sendrmai | . properti es. Only one mode
can be enabled for a single application. See "Enabling Attachments" on page 8-19.

» File namesinthe server At t achment setting can be comma-delimited or
semicolon-delimited, but not space-delimited.

« The e-mail body can contain JSP syntax, which will be processed by the JSP
translator.

« Attributes used by the tag are typically input by the user in form fields. All
attributes accept request-time expressions.

« The prefix "mail:" is used in the tag syntax here. This is by convention but is not
required. You can specify any desired prefix in your t agl i b directive.

File Access and Mail Beans and Tags 8-25

Mail JavaBean and Tag

« See "Tag Syntax Symbology and Notes" on page 1-2 for general information about
tag syntax conventions in this manual.

The sendMail Tag Attribute Descriptions
The sendMai | tag supports the following attributes:

« host (required if sessi on is not specified): This is the appropriate mail host
name, such as "grai | . or acl ecor p. coni'. This is used in creating a JavaMail
session object for the mail message. Alternatively, you can determine a JavaMail
session through the sessi on attribute.

« session (required if host is not specified): This is the name of an existing
JavaMail session object that can be retrieved from the JSP page context.
Alternatively, you can determine a JavaMail session through the host attribute.

= sender (required): This is the ID (e-mail address or alias) of the sender of the
message. This ID will appear in the From field of the message.

« recipient (required): This is a space-delimited or comma-delimited list of IDs of
the primary recipients of the message. These IDs will appear in the To field of the
message.

« cc: Thisis a space-delimited or comma-delimited list of IDs to receive a copy of
the message. These IDs will appear in the Cc field of the message.

« bcc : Thisis a space-delimited or comma-delimited list of IDs to receive a blind
copy of the message. These IDs will be suppressed from the Cc field.

=« subj ect: This is the subject line of the message.

« cont ent Type: This is for the MIME type of the message, and optionally a
character set as well, as in the following examples:

content Type="text/htm"
content Type="text/htnm ; charset=US-ASC | "

The default MIME type setting is "t ext / pl ai n", but you cannot specify a
character set without explicitly specifying that or some other t ext / xxxx MIME

type.

The default character set is that of the r esponse object of the JSP page context.
« cont ent Encodi ng: Specify "B" or "base64" for base64 encoding, "Q' or

"quot ed- pri nt abl e" for quoted-printable encoding, "7bi t " for seven-bit

encoding, or "8bi t " for eight-bit encoding. These are standard JavaMail and RFC
2047 encodings. Entries are case-insensitive.

The default content encoding setting is "nul | ", in which case the encoding of the
message and headers will be determined by the content. If most characters to be
encoded are in ASCII, then quoted-printable encoding will be used. Otherwise,
base64 encoding will be used.

=« ServerAttachment: Thisis a comma-delimited or semicolon-delimited list of
server-side files to attach to the e-mail message. Server-side attachments must be
enabled in the sendnai | . properti es file.

Here is an example:

server Att achnent ="/t np/ confi rm pdf, / hone/ schedul e. doc"

8-26 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag

« clientAttachment: This is the name of a client-side file (maximum of one) to
attach to the e-mail message. Client-side attachments must be enabled in the
sendmai | . properti es file.

Here is an example:

clientAttachment ="c:\finance\ budget 02. x| s"

Note: Regarding e-mail attachments, see "Mail Attachments" on
page 8-19 for related information. Be aware that for any one
application, you can use server-side attachments or client-side
attachments but not both.

Sample Application for sendMail Tag

This sample application illustrates use of the sendMai | tag with no attachments.
During the first execution cycle through the page, before the user has specified the
sender (or anything else), the HTML form is displayed for user input. During the next
execution cycle through the page, after the user has sent the input, the sendMai | tag
is executed. This page also uses an error page, er r or . j sp (shown below), to display
any exceptions that are thrown.

<%@ page | anguage="j ava" errorPage="error.jsp" %
<v@taglib uri="http://xmns.oracle.confj2ee/jsp/tld/ ojsp/enail.tld"
prefix="mail" %
<%
if (request.getParaneter("sender")==null) {
%
<HTM.>
<HEAD><TI TLE>SendMai | Sanpl e</ Tl TLE></ HEAD>
<FORM METHOD=post >
<TABLE BORDER=0 CELLSPACI NG=0 CELLPADDI NG=0 W DTH="20% >
<TR><TD>Host : </ TD><TD><I NPUT TYPE="text" name="host" ></ TD></ TR>
<TR><TD>From </ TD><TD><I NPUT TYPE="text" name="sender" ></TD></TR>
<TR><TD>To: </ TD><TD><I NPUT TYPE="text" name="recipient" ></TD></TR>
<TR><TD>Cc: </ TD><TD><I NPUT TYPE="text" name="cc" ></TD></ TR>
<TR><TD>Bcc: </ TD><TD><I NPUT TYPE="text" nanme="bcc" ></TD></TR>
<TR><TD>Subj ect : </ TD><TD><I NPUT TYPE="text" name="subject"
VALUE="H "></ TD></ TR>
</ TABLE>

<TEXTAREA nane="body" ROAB=4 COLS=30>"How are you! "</ TEXTAREA>

<I NPUT TYPE="submit" val ue="Send">
</ FORW>
<%
}
el sef
%
<BODY BGCOLOR="#FFFFFF" >
<P>Resul t:
<HR>
<mai | : sendMai | host =" <%r equest . get Paranet er ("host ") %"
sender =" <%r equest . get Par anet er (" sender") %'
reci pi ent =" <%tr equest . get Paraneter ("reci pi ent") %'
cc=' <%request . get Parameter ("cc") %'
bce=" <%request . get Par amet er (" bcc") %'
subj ect =" <%request . get Par armet er (" subj ect ") %' >
<Yrequest . get Paranet er (" body") %
</ mai | : sendMai | >

File Access and Mail Beans and Tags 8-27

Mail JavaBean and Tag

Sent out Successfully!
<HR>

</ BODY>

<%

}

%

</ HTM.>

Here is the error page, error. j sp:

<%@ page | anguage="j ava" i sErrorPage="true" %
<HTM.>

Error: <% exception.get Message() %

</ HTM.>

When you run this application, you will initially see the following default screen:

endMail Sample - Netzcape

File Edit “iews Go Communicator Help

4 F A D o & O 8 N

) Back Forwerd Reload Hame Search Metscape Print Security Shop Stop
' J"Bookmarks \A{, Gntn:l j
Host: I =
From: |

To: |

Ce |

Bee |

Subjeu:t:lHi

"How are you!"™ ;I

g _>I_I

Send |

[(== |Document: Done

And here is sample user input for a message from bri an. wri ght @r acl e. comto
bl odney. t r eehut @r acl e. comthrough the host gnai | . or acl ecor p. com

8-28 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag

endMail 5ample - Hetscape

File Edt “iew Go Communicator Help

I SR

Back Fonward Feload Home

2 M = & @

Search Metzcape Frint Secuity Shop Stop

wtv Bookmarks & Go to:l

Host: Ig‘mail .oraclecorp. com

From: Ihrian. wrightforacle.

To: [olodney.treshut@orac
Cc: |

Beeo |

SukjectlHi

Thanks for the painting.

Sendl

-]

il

[(== |Document; Done

File Access and Mail Beans and Tags 8-29

Mail JavaBean and Tag

8-30 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

9

JSP Utilities and Utility Tags

This chapter, consisting of the following sections, documents various OC4J utility
features for JSP pages:

« JSP Event-Handling with JspScopeListener
« EJBTags
« General Utility Tags

JSP Event-Handling with JspScopeListener

In standard servlet and JSP technology, only session-based events are supported.
Oracle extends this support to page-based, request-based, and application-based
events through the JspScopelLi st ener interface and JspScopeEvent class in the
oracl e. j sp. event package.

JspScopeli st ener functionality is documented in the following sections,
concluding with examples:

« General Use of JspScopeListener
« Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments

« Examples Using JspScopeListener

General Use of JspScopelListener

For Java objects in your application, implement the JspScopelLi st ener interface in
the appropriate class, then attach objects of that class to a JSP scope using tags such as
j sp: useBean.

When the end of a scope is reached, objects that implement JspScopelLi st ener and
have been attached to the scope will be notified. The JSP container accomplishes this
by sending a JspScopeEvent instance to such objects through the out Of Scope()
method specified in the JspScopelLi st ener interface.

This event listener mechanism significantly benefits developers who want to always
free object resources that are of page orr equest scope, regardless of error conditions.
It frees these developers from having to surround their page implementations with
Javatry/cat ch/fi nal | y blocks.

Properties of the JspScopeEvent object include the following:

= Scope that is ending, represented by one of the i nt constants PAGE _SCOPE,
REQUEST _SCOPE, SESSI ON_SCOPE, or APPLI CATI ON_SCOPE

You can retrieve this scope with the following JspScopeEvent method:

JSP Utilities and Utility Tags 9-1

JSP Event-Handling with JspScopeListener

public int getScope()
Container object that is the repository for objects at this scope, one of the implicit
objects page, r equest,sessi on,orapplication

This is the object that manages the relevant scope. You can retrieve this object with
the following JspScopeEvent method:

public java.lang. Gbj ect getContainer()

Name of the object to which the notification pertains

This is the name of the instance of the class that implements JspScopelLi st ener.
The instance of this class is an attribute of either the page, r equest , sessi on, or
appl i cati on object (as applicable), so this instance name is the attribute name.
You can retrieve this name with the following JspScopeEvent method:

public String getNang()
JSP implicitappl i cat i on object

You can retrieve this with the following JspScopeEvent method:
public ServletContext getApplication()

The JspScopeEvent class has a constructor as follows:

public JspScopeEvent (ServletContext sc, Chject container, String nane,

int scope)

Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments

JspScopeli st ener uses different mechanisms to support the different scopes,
though all are implemented according to servlet and JSP standards.

For pages running in an OC4J environment, there is also an OC4J-specific runtime
implementation for page scope, for convenience.

These features are covered in the following sections:

Requirements for JspScopeL.istener

Runtime and Tag Implementations to Support Page Scope
Servlet Filter Implementation to Support Request Scope
Listener Class Implementation to Support Application Scope

Integration with HttpSessionBindingListener to Support Session Scope

Requirements for JspScopeListener
The JspScopelLi st ener implementation requires the following:

Theoracl e.jsp. event. JspScopeli st ener interface and JspScopeEvent
class, and the classes of the or acl e. j sp. event. i npl package, all of which are
supplied in the oj sp. j ar file

A servlet 2.3 or higher environment (such as OC4J)

Runtime and Tag Implementations to Support Page Scope

For OC4J environments, there is support for page scope functionality through an
Oracle-specific runtime implementation. Enable this by setting the JSP

9-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling with JspScopeListener

check_page_scope configuration parameter tot r ue. The default is f al se, for
performance reasons.

For portability to other environments, there is also an implementation to support page
scope through a custom tag, checkPageScope. Put the appropriate code between the
checkPageScope start-tag and end-tag. This tag, with no attributes, is defined as
follows:

<I'-- The checkPageScope tag -->
<t ag>
<name>checkPageScope</ nane>
<tagcl ass>oracle.jsp.jm.tagext.CheckPageScopeli st ener Tag</t agcl ass>
<bodycont ent >JSP</ bodycont ent >
<i nfo>
To provide the notification |ogic for any
JspScopeli stener stored in page scope.
This tag is not needed on OCAJ.
</info>
</tag>

Here is an example of its use:

<Y@taglib uri="http://xmns.oracle.conlj2eel/jsp/tlid/ojsp/jm.tld"
prefix="jm" %

<j m : checkPageScope>

pagescope. j sp

<j sp:useBean id="tb" class="testpkg. TestData" />

<%

/* testpkg. TestData inplenents oracle.jsp.event.JspScopeli stener.
checkPageScope tag will provide the notification logic for any
JspScopeli stener stored in page scope.

This tag is not needed on OC4J.

*/

Il some nore JSP / code here ...

%
<% new java.util.Date() %
</jm : checkPageScope>

Note: The checkPageScope tag is currently part of the Oracle
JML tag library, which is included in the oj sputi | . j ar fileand
requires the j m . t | d tag library descriptor file. An appropriate
t agl i b directive is shown in the preceding example. See
"Overview of the JSP Markup Language (JML) Tag Library" on
page 3-1 for related information.

Servlet Filter Implementation to Support Request Scope

Objects of r equest scope are supported through a servlet filter. The filtering applies
to any servlets matching a specified URL pattern.

For support of event-handling for request-scope objects, add an entry such as the
following to the web. xm file for your application, or to or i on- web. xn or

gl obal - web- appl i cati on. xm as appropriate. To ensure proper operation of the
JspScopeli st ener functionality, this setting must be after any other fi |l t er
settings.

<filter>
<filter-nane>Request Filter</filter-name>
<filter-class>oracle.jsp.event.inpl.RequestScopeFilter</filter-class>

JSP Utilities and Utility Tags 9-3

JSP Event-Handling with JspScopeListener

</filter>
<I-- Define filter mappings for the defined filters -->
<filter-nmappi ng>
<filter-name>Request Filter</filter-name>
<url-pattern>/jsp/*</url-pattern>
</filter-nappi ng>

Note: Inthis particular example, "/ j sp/ *" is the URL pattern
covered by the filter. Users can choose other patterns instead, such
as"/*.jsp"or"/ *",

Listener Class Implementation to Support Application Scope

Objects with appl i cat i on scope are supported through a servlet context listener
implementation class, in accordance with the servlet specification.

For support of event-handling for application-scope objects, add an entry such as the
following to the web. xm file for your application. To ensure proper operation of the
JspScopeli st ener functionality, this setting must be after any other | i st ener
settings.

<l'i stener>
<li stener-cl ass>oracl e.jsp.event.inpl.AppScopeli stener</Iistener-class>
</listener>

For an application-scope object, in addition to notification upon the conclusion of the
application and servlet context, there is notification when an attribute is replaced in
the servlet context or removed from the servlet context. For example, the listener

out OfF Scope() method of an application-scope object is called in either of the
following circumstances, assuming a servlet context object ct x:

ctx.setAttribute("name", "Smth");
ctx.setAttribute("name, "Jones");

or:

ctx.setAttribute("name", "Smth");

ctx.removeAttribute("nanme");

Note: This functionality was not available prior to Oracle9iAS
Release 2.

Integration with HttpSessionBindingListener to Support Session Scope

For session-scope objects, you can write a class that implements both the

JspScopeli st ener interface and the standard

javax.servlet. http. Htt pSessi onBi ndi ngLi st ener interface. This would
give you the flexibility of supporting instances of this class for other scopes as well. If
instances would never be used outside of sessi on scope, however, there is no need to
implement JspScopeli st ener.

In the integration scenario, the val ueUnbound() method, specified in the
Ht t pSessi onBi ndi nglLi st ener interface, should call the out Of Scope() method
that is specified in the JspScopeli st ener interface.

9-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling with JspScopeListener

Following is a basic example:

inport oracle.jsp.event.inpl.*;
inport javax.servlet.*;
inport javax.servlet.http.*;

class Sanpl eQbj inplements HttpSessionBindi ngli stener, JspScopeLi st ener

{
public void val ueBound(Ht t pSessi onBi ndi ngEvent e)
{
Systemout . println("The object inplements the JspScopeli stener also");
}
public void val ueUnBound(Htt pSessi onBi ndi ngEvent e)
{
try
{
out Of Scope(new JspScopeEvent (nul |, (Qbj ect) e. get Sessi on(),
e. getName(), j avax. servl et . j sp. PageCont ext . SESSI ON_SCOPE)) ;
} catch (Throwable e) {}
public voi d out O Scope(JspScopeEvent e)
{...}
}

Examples Using JspScopeListener

This section provides two examples of JspScopelLi st ener usage: a JSP page and
accompanying JavaBean, then a servlet.

Example: JSP Page Using JspScopeListener

This example consists of a JavaBean, ScopeDi spat cher, that implements the
JspScopeli st ener interface, and a JSP page that uses ScopeDi spat cher
instances for request-scope and application-scope functionality.

bookcatalog.jsp The bookcat al 0g. j sp page allows users to search for a book in the
catalog or insert a new book entry. The catalog is kept in a hashtable that is initially
read from the local file stream.

At the end of a request, if a new book has been submitted: 1) the book is entered into
the application-level cat al og hashtable; 2) the book count is incremented.

At the end of execution of the application, the cat al og hashtable is sent back to the
local file stream, the number of newly inserted books is shown, and query results are
displayed if there was a book search.

<Y@page inport="java.util.*" %

<%@ page inport="java.io.*" %

<% static int newbookCount = 0; %

<% static Hashtable catal og; %

<% bool ean bookAdded = fal se; %

<htm >

<head>

<title> BookStore Price catalog </title>
</ head>

<body bgcol or="white">

<tabl e col or ="#FFFFCC' wi dt h="100% border="1" cel | spacing="0" cel | paddi ng="0" >
<tr>

JSP Utilities and Utility Tags 9-5

JSP Event-Handling with JspScopeListener

<t d>

<form acti on="bookcat al og. j sp" >

 BookNane

<input type="text" name="booknane">

<input type="subnit" value="Cet the Price">
</fornmp

</td>

<t d>

<form act i on="bookcat al og. j sp" >
BookNane</ b>

<input type="text" nane="new_book">

Pri ce

<input type="text" nane="price">

<input type="subnit" value="Add to Catal 0g">
</fornmp

</td>

</tr>

</tabl e>

<%
String booknane = request. getParaneter ("bookname");
catal og = (Hashtable) application.getAttribute("pricelist");
if (catalog == null)
{

try{
bj ect I nput Stream oi n = new Qbj ect | nput St ream

(new Fil el nput Strean("bookcat al og.out"));
bj ect obj = oin.readject();
catal og = (Hashtable) obj;
oi n.close();
}
cat ch(Exception e) {
catal og = new Hashtable();}
application.setAttribute("pricelist",catalog);

}
if (bookname !'= null)
{
String price = (String) catal og. get (booknane.trin());
if (price !'=null)
{
out.println("<h2>Book : " +bookname+ "</ h2>");
out.println("<h2>Price: "+price +"</h2>");
}
el se
out.println("<h2> Sorry, the Book : " + booknane + " is not available in
t he catal og</ h2>");
}
%

<% - declare the event dispatchers --%
<j sp:useBean id = "requestD spatcher"
class = "oracle.jsp.sanple. event. ScopeDi spatcher”
scope = "request" >
<j sp:setProperty name = "requestDi spatcher" property = "page"
value = "<% this %" />
<j sp:setProperty name = "requestDi spatcher” property
value = "request _nEnd" />

" met hodNane"

</j sp: useBean>

9-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling with JspScopeListener

<j sp: useBean id = "appDi spatcher"”
class = "oracl e.jsp.sanpl e. event. ScopeDi spat cher"
scope = "application" >
<j sp: set Property name = "appDi spatcher" property = "page"
value = "<% this %" />
<j sp: setProperty name = "appDi spatcher" property
val ue = "application_OnEnd" />

"met hodNange"

</jsp: useBean>
<%
/'l request_OnEnd Event Handl er
public void request_OnEnd(H t pServl et Request request) {
/1 acquire beans
String newbook = request.getParaneter("new_book");
bookAdded = fal se;
if ((newbook !'= null) && (!newbook.equal s("")))

{
cat al og. put (newbook, request . get Parameter ("price"));
newbookCount ++;
bookAdded = true;
}
}
%
<%
public void application_OnEnd(ServletContext application)
{
try
{
(hj ect Qut put Stream os = new CObj ect Qut put St rean(
new Fi | eQut put St ream("bookcat al og. out"));
0s.witeQhject(catalog);
os. flush();
0s. cl ose();
}
catch (Exception e)
{}
}
%
<%

i f (bookAdded)
out.println("<h2> The New book i s been added in the catalog </ h2>");
%
<% - Page inplenentation goes here --%
<h2> Total nunber of books added is <% newbookCount %</h2>

</ body>
</htm >

ScopeDispatcher.java

package oracl e.jsp. sanpl e. event;
inport java.lang.reflect.*;
inport oracle.jsp.event.*;

public class ScopeDi spatcher extends Object inplements JspScopelistener {
private (bject page;
private String methodNane;
private Method method;

public ScopeDispatcher() {

JSP Utilities and Utility Tags 9-7

JSP Event-Handling with JspScopeListener

}

public Cbject getPage() {
return page;

}

public void setPage(Ohject page) {
this. page = page;
}

public String get Met hodName() {
return net hodNane;

}

public void set MethodName(String m throws NoSuchMet hodExcepti on,
C assNot FoundException {
met hod = verifyMethod(n;
met hodNane = m

}

public voi d out Of Scope(JspScopeEvent ae) {
int scope = ae.get Scope();

if ((scope == javax.servlet.jsp.PageCont ext. REQUEST_SCOPE ||
scope == javax.servl et.jsp. PageCont ext . APPLI CATI ON_SCOPE)
&& method !'= null) {
try {
bj ect args[] = {ae.getContainer()};
met hod. i nvoke(page, args);
} catch (Exception e) {
/1 catch all and continue

}
}

private Method verifyMethod(String m) throws NoSuchMet hodExcepti on,
C assNot FoundException {
if (page == null) throw new NoSuchMet hodExcepti on(
"A page hasn't been set yet.");

/1 Don't know whether this is a request or page handler so try one then
/1 the other

Cass ¢ = page.getdass();

O ass pTypes[] = {Oass.forName("javax.servlet. ServletContext")};

try {
return c.getDecl aredMethod(m pTypes);
} catch (NoSuchMet hodException nsne) {
/1 fall through and try the request signature

}

pTypes[0] = C ass.forName("javax.servlet.http.HtpServl et Request");
return c.getDecl aredMet hod(m pTypes);

9-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling with JspScopeListener

Example: Servlet Using JspScopeListener

This section contains a sample servlet that uses JspScopelLi st ener functionality for
a request-scope object. The nested class DBScopeCbj implements the
JspScopeli st ener interface.

inport java.io.lCException;
inport java.io.PrintWiter;
inport java.util.Enumeration;

i nport javax.servlet.*;

inport javax.servlet.http.*;
inport oracle.jsp.event.*;
inport oracle.jsp.event.inpl.*;

public class Request ScopeServlet extends HttpServlet {
PrintWiter out;

public void doGet (Ht tpServl et Request request, HttpServl et Response response)
throws Servl et Exception, |CException
{

out = response. getWiter();
out.println("<htm>");
out. println("<body>");
out. println("<head>");
out.println("<title> Request ScopeServlet! </title>");
out.println("</head>");
response. set Cont ent Type("text/htm");
DBScopeChbj aobj = new DBScopebj ();
request.set Attribute("dbcon", aobj);
request.set Attribute("nanme", "scott");
request.set Attribute("conpany", "oracle");
request.setAttribute("city","sanmteo");
Enureration en = request.getAttributeNames();
out.println("
 Request Attributes :

");
whil e (en. hasMreE ements()) {
String key = (String)en.nextE enent();
bj ect value = request.getAttribute(key);
out.println(key +" " + valuet+"
");
}
out. println("</body>");
out.println("</htnm>");
}

cl ass DBScopehj inplements JspScopeli stener

{
public void initDBConnection()

{

/1 can create a mninmumnunber of predefined
/1 DBConnecti ons

}

DBScopeQhj ()
{

/] if DBconnection is available in the connection
/'l pool then pickup fromthe pool and give the handle.

}

public voi d out Of Scope(JspScopeEvent e)

{
Servl et Context ctx = e.getApplication();

JSP Utilities and Utility Tags 9-9

EJB Tags

out.println

(" <B»***");
out.println("
 JspScopeEvent
");
out.println("<BLINK");

out.println
("
 In out O Scope nethod for the Request Attribute
");
out.printIn("Name = " +e.getNane() + "
");
out. println("</BLINK>");
out.println

("***<B»") .
’

/'l logging in the context also

ctx.log
ctx.log

"***") .

" JspScopeEvent ");
ctx.log(" In outOf Scope nethod for the Request Attribute ");
ctx.log("Name = " +e.getNane());

CtX | Og("***") .
. ’

——0—0—3

r et ur nDBConnection();

}

public void returnDBConnection()

{
}

/I Can return the handle to the connection pool

EJB Tags

OC4J provides a custom tag library to simplify the use of Enterprise JavaBeans in JSP
pages. The library includes tags to create a home instance, create an EJB instance, and
iterate through a collection of EJBs.

The functionality of the OC4J EJB tags follows the J2EE specification. The tags allow
you to instantiate EJBs by name, using configuration information in the web. xm file.
One of the tags is a useBean tag, with functionality similar to that of the

j sp: useBean tag for invoking a regular JavaBean.

The following sections document the tags, concluding with examples:
« EJB Tag Configuration

« EJB Tag Descriptions

« EJB Tag Examples

EJB Tag Configuration

Use an <ej b-r ef > element in your application web. xm file for each EJB you will
use, as in the following example:

<ej b-ref>
<ej b-ref - name>ej b/ DemoSessi on</ gj b-r ef - nane>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<home>ej bdeno. DenoSessi onHone</ horme>
<r enot e>ej bdeno. DenoSessi on</ r enot e>
</ejb-ref>

The <ej b-r ef > element and its subelements, or <ej b- | ocal - r ef > to use local
interfaces, are used according to the servlet specification. Briefly, this is as follows:

9-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags

« The <ej b-r ef - name> subelement specifies a reference name that can be used by
other components of a J2EE application to access this component. For example,
this name could be used in a location value.

« The<ej b-ref -type> subelement specifies the category of EJB.

« The <honme> subelement specifies the package and type of the EJB home interface.
Alternatively, use the <l ocal - home> subelement for EJB local interfaces.

« The <r enpt e> subelement specifies the package and type of the EJB remote
interface. Alternatively, use the <I ocal > subelement for EJB local interfaces.

These values are reflected in attribute values of the EJB tags.

See the Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide for additional information about EJB development and configuration.

EJB Tag Descriptions

This section provides syntax and attribute descriptions for the OC4J EJB tags. Be aware
of the following requirements:

« Verify that the file oj sputi | .] ar is installed and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

« The tag library descriptor, ej bt agl i b. t 1 d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD isiin oj sputil.jar.Theuri
value for ej bt agl i b. t| d is the following:

http://xm ns.oracle.comj2eel/jsp/tld/ojsp/ejbtaglib.tld
You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer

Pages Developer’s Guide for information aboutt agl i b directives, the well-known tag
library directory, TLD files, and the meaning of ur i values.

Notes:

« The prefix "ejb:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

The following sections provide information about the EJB tags:
« EJBuseHome Tag

« EJBuseBean Tag

« EJB createBean Tag

«» EJBiterate Tag

When first creating an EJB instance, you will have to use a useHone tag to create a
home interface instance. Then use the following as appropriate:

« Tocreate asingle EJB instance: a useBean tag, and either the useBean tag val ue
attribute or a nested cr eat eBean tag

« To create a collection of EJB instances and iterate through them (more typical for
entity beans): ani t er at e tag

JSP Utilities and Utility Tags 9-11

EJB Tags

After an EJB instance is created, it is placed in the appropriate scope object. You will
need only a useBean tag to access it subsequently.

EJB useHome Tag
The useHone tag looks up the home interface for the EJB and creates an instance of it.

Syntax

<ej b: useHome id = "hone_i nstance_nane"
type = "home_interface_type"
| ocation = "home_| ookup_name"
[local = "true" | "false"] />

This tag uses no body.

Attributes

« i d(required): Specify a name for the home interface instance. This can be for
either a local or remote home interface, depending on the setting of the | ocal
attribute. The instance is accessible from the start-tag to the end of the page.

« type (required): This is for the name (Java type) of the home interface.

« | ocation (required): This is a JINDI name used to look up the home interface of
the desired EJB within the application.

« | ocal:Setthisto "t r ue" to use the local home interface. The default value is
"fal se", to use the remote home interface. If | ocal ="t rue" for the useHone
tag, this must also be the case for the useBean tag.

Example

<ej b: useHone i d="aonHonme" type="com acne. at m ej b. Account Oaner Manager Hone"
| ocation="j ava: conp/ env/ ej b/ account Oamner Manager" />

EJB useBean Tag

Use the EJB useBean tag for instantiating and using the EJB. Thei d, t ype, and
scope attributes are used as in a standard j sp: useBean tag that instantiates a
regular JavaBean.

You can use one of two mechanisms when you first instantiate the EJB:
« Theval ue attribute

or:

« Anested EJB cr eat eBean tag

When using a nested cr eat eBean tag, the EJB instance is implicitly returned into the
val ue attribute of the parent useBean tag. Once the EJB is instantiated, val ue
attributes and nested cr eat eBean tags are unnecessary for subsequent useBean tags
using the same EJB instance.

Note: See "EJB iterate Tag" on page 9-13 for how to use a collection
of EJB instances.

Syntax

<ej b: useBean id = "EJB_i nstance_nange"
type = "EJB cl ass_name"

9-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags

[value = "<%Chj ect %"]
[scope = "page" | "request” | "session" | "application"]
[local ="true" | "false"] >

. nested createBean tag for first instantiation, if no value attribute ...
</ ej b: useBean>

Attributes
« i d (required): Specify an instance name for the EJB.
« type (required): Specify the class name for the EJB.

« val ue: When first instantiating the EJB, if you do not use a nested cr eat eBean
tag, you can use the val ue attribute to return an EJBCbj ect instance to narrow.
This is a mechanism for instantiating the EJB.

« scope: Specify the scope of the EJB instance. The default scope setting is "page".

« | ocal :Setthisto "t r ue" to use the local home interface. The default value is
"fal se", to use the remote home interface. If| ocal ="tr ue" for the useBean
tag, this must also be the case for the useHon® tag.

Note: You cannotusel ocal ="true" if scope="session" ina
distributable application.

Example This example shows the use of an EJB that has already been instantiated.

<ej b: useBean id="bean" type="com acne. M/Bean" scope="session" />

EJB createBean Tag

For first instantiating an EJB, if you do not use the val ue attribute of the EJB useBean
tag, you must nest an EJB cr eat eBean tag within the useBean tag to do the work of
creating the EJB instance. This will be an EJBObj ect instance. The instance is
implicitly returned into the val ue attribute of the parent useBean tag.

Syntax

<ej b: createBean instance = "<%bj ect %" />

This tag uses no body.

Attributes

« instance (required): This is to return the EJB, a created EJBCbj ect instance.
Example In this cr eat eBean tag, the cr eat e() method of the EJB home interface
instance creates an instance of the EJB.

<ej b: useBean i d="bean" type="com acne. M/Bean" scope="sessi on">
<ej b: creat eBean i nstance="<%hone. create() %" />
</ j b: useBean>

EJB iterate Tag

Use this tag to iterate through a collection of EJB instances. This is more typical for
entity beans, because standard finder methods for entity beans return collections.

JSP Utilities and Utility Tags 9-13

EJB Tags

In the start-tag, obtain the collection through finder results from the home interface. In
the tag body, iterate through the collection as appropriate.

Note: See "EJB useBean Tag" on page 9-12 for how to use a single
EJB instance.

Syntax

<ejb:iterate id = "EJB_i nstance_nange"
type = "EJB cl ass_name"
collection = "<%Col | ecti on%"
[max = "<%lnteger%" | >

body ...
</ejb:iterate>
The body is evaluated once for each EJB in the collection.

Attributes

« i d(required): This is an iterator variable, the EJB instance name for each iteration.
« type (required): This is the EJB class name.

« collection (required): This is to return the EJB collection.

« max: Optionally specify a maximum number of beans to iterate through.

Example

<ejb:iterate id="account" type="com acne.atm ejb. Account"
col | ecti on="<%account Manager. get Oaner Account s() %"
max="100" >
<j sp: get Property nane="account" property="id" />
</ejb:iterate>

EJB Tag Examples

This section provides examples of EJB tag usage, one using a session bean and one
using an entity bean.

EJB Tag Session Bean Example
This example relies on the following configuration in the application web. xm file:

<ej b-ref>
<ej b-ref - name>ej b/ DemoSessi on</ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>ej bdeno. DenoSessi onHone</ home>
<r enot e>ej bdeno. DenoSessi on</ r enot e>
</ejb-ref>

Here is the sample code:

<%@ page inport="ejbdeno. *" %

<Y@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/ejbtaglib.tld"
prefix="ejb" %

<htm >

<head> <title>Use EJB from JSP</title> </ head>

<body>

9-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags

<ej b: useHonme id="home" type="ej bdenn. DenbSessi onHonme"
| ocati on="j ava: conp/ env/ ej b/ DenmoSessi on" />
<ej b: useBean id="dem" type="ej bdenn. DennSessi on" scope="sessi on" >
<ej b: createBean i nstance="<%hone. create() %" />
</ ej b: useBean>

<headi ng2> Enterprise Java Bean: </headi ng2>
<p> My nane is "<%deno. get Nane() %". </ b></p>
</ body>
</htm >

This sample code accomplishes the following:

« Itcreates the hone instance of the EJB home interface. Note that the t ype value of
the useHone tag matches the value of the <honme> subelement of the <ej b-r ef >
element in the web. xm file. Also, the | ocat i on value of useHon® reflects the
value of the <ej b- r ef - name> subelement of the <ej b- r ef > element.

« ltusesthe hone. creat e() method to create the deno instance of the EJB. Note
that the t ype value of the useBean tag matches the value of the <r enpt e>
subelement of the <ej b-r ef > element in the web. xm file.

« ltusesthe deno. get Nane() method to print a user name.

EJB Tag Entity Bean Example
This example relies on the following configuration in the application web. xni file:

<ejb-ref>
<ej b-r ef - name>ej b/ DenpEnt i ty</ ej b-r ef - name>
<ej b-ref-type>Entity</ejb-ref-type>
<hone>ej bdeno. DenoEnt i t yHone</ home>
<r enot e>ej bdeno. DenoEnti t y</ r enot e>
</ejb-ref>

Here is the sample code:

<%@ page inport="ej bdem. *" %

<Y@taglib uri="http://xmns.oracle.conlj2ee/jsp/tldlojsp/ejbtaglib.tld"
prefix="ejb" %

<htm >

<head> <title>lterate over EJBs fromJSP</title> </head>

<body>

<ej b: useHone id="home" type="ej bdeno. DenpEntityHone"
| ocati on="j ava: conp/ env/ ej b/ DemoEntity" />
<%int i=0; %
<ejb:iterate id="dem" type="ejbdenp. DenpEntity"
col | ecti on="<%hone. findAl | () %" max="3" >
 <headi ng2> Bean #<%++i %: </ heading2>
 My nane is "<%denv. get Name()+"_"+ derp.getld()%". </|i>
</ejb:iterate>
</ body>
</htm >

This sample code accomplishes the following:

« It creates the home instance of the EJB home interface. Note that the t ype value of
the useHone tag matches the value of the <hone> subelement of the <ej b-r ef >
element in the web. xm file. Also, the | ocat i on value of useHone reflects the
value of the <ej b- r ef - nane> subelement of the <ej b- r ef > element.

JSP Utilities and Utility Tags 9-15

General Utility Tags

« ltusesthehone. fi ndAl I () method to return a collection of EJBs. Note that the
t ype value inthe i t er at e tag matches the value of the <r enot e> subelement of
the <ej b- r ef > element in the web. xml file.

« Ititerates through the collection, always using deno for the current instance, and
using the deno. get Nane() and deno. get | d() methods to output information
from each EJB.

General Utility Tags

OC4J provides miscellaneous utility tags to perform a number of operations. The
following sections contain details about the tags:

« Display Tags
= Miscellaneous Utility Tags
Note the following requirements for the utility tags:

« Verify that the file oj sputi | . j ar isinstalled and in your classpath. This file is
provided with OC4J, in the "well-known" tag library directory.

« Thetag library descriptor,uti | t agl i b. t | d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD isinoj sputil.jar.Theuri
value forutil taglib. tld isthe following:

http://xm ns.oracl e.com j2eel/jsp/tld/ojsp/utiltaglib.tld
You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer

Pages Developer’s Guide for information about t agl i b directives, the well-known tag
library directory, TLD files, and the meaning of ur i values.

Notes:

« The prefix "util:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Display Tags
The following sections document syntax and attributes of the display tags:
« Utility displayCurrency Tag
« Utility displayDate Tag
« Utility displayNumber Tag
Utility displayCurrency Tag
This tag displays a specified amount of money, formatted as currency appropriate for

the locale. If no locale is specified, then the r equest object will be searched for a
locale. If none is found there, the system default locale is used.

Syntax

<util:displayCurrency amount = "<%Doubl e%"

9-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

General Utility Tags

[locale = "<%Local e%" | />
This tag uses no body.

Attributes
« anount (required): Specify the amount to format.

« | ocal e: Optionally specify a locale, asaj ava. uti |l . Local e instance.

Example

<util:displayCQurrency anount="<%account.get Bal ance() %"
| ocal e="<%account. get Local e() %" />

Utility displayDate Tag
This tag displays a specified date, formatted appropriately for the locale. If no locale is
specified, the system default locale is used.
Syntax
<util:displayDate date = "<%Dat e%"
[locale = "<%Local e%" | />

This tag uses no body.

Attributes
« dat e (required): Specify the date to format, asaj ava. uti | . Dat e instance.

« | ocal e: Optionally specify a locale,asaj ava. uti |l . Local e instance.

Example

<util:displayDate date="<%account. get Date() %"
| ocal e="<%account . get Local e() %" />

Utility displayNumber Tag
This displays the specified number appropriately for the locale and optionally in the
specified format. If no locale is specified, the system default locale is used.

Syntax

"<%Doubl e%"
"<%Local e%" |
"<Y%Format%"] />

<util:displayNunber number
[locale
[format

This tag uses no body.

Attributes
« nunber (required): Specify the number to format.
« | ocal e: Optionally specify the locale,as aj ava. uti | . Local e instance.

« format: Optionally specify a format, asaj ava. t ext . For mat instance.

Example

<util:displayNunber nunber="<%shoe. get Si ze() %" />

JSP Utilities and Utility Tags 9-17

General Utility Tags

Miscellaneous Utility Tags
The following sections document syntax and attributes of the general utility tags:

« Utility ifinRole Tag
« Utility lastModified Tag

Utility iterate Tag

Use this tag to iterate through a collection. Obtain the collection in the start-tag and
iterate through the collection in the body.

Syntax
<util:iterate id = "instance_nanme"
type = "cl ass_nane"
col lection = "<%Col | ecti on%"
[max = "<%lnteger%" | >
body ...
</util:iterate>

The body is evaluated once for each element in the collection.

Attributes
= i d(required): This is an iterator variable, the instance name for each iteration.

« type (required): This is the class name; the collection is a set of instances of this
type.

« coll ection (required): This is the collection itself.

« max: Optionally specify a maximum number of elements to iterate through.

Example

<util:iterate id="contact" type="com acne.connections. Contact"
col | ecti on="<%conpany. get Cont act s() %" >
<j sp: get Property name="contact" property="name"/>
</util:iterate>

Utility ifinRole Tag

Use this tag to evaluate the tag body and include it in the body of the JSP page,
depending on whether the user is in the specified application role. The tag handler
executes thei sUser | nRol e() method of the r equest object.

The concept of "role" is according to the servlet specification. Roles are defined in
<r ol e> elements in the application web. xmi file.

Syntax

<util:iflnRole role = "<%String%"
[include = "true" | "false"] >

body to include ...
<futil:iflnRole>

Attributes

9-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

General Utility Tags

« rol e (required): Specify the role to check, to see if the user included in this role.

« include:Usea"true"setting (the default) to include the body only if the user is
in the role. Use a "f al se" setting to include the body only if the user is not in the
role.

Example

<util:iflnRole role="users" include="true">
Logged in as <%request. get Renot eUser () %

<formaction="1| ogout.jsp">
<input type="subnit" val ue="Log out">

</formm
<futil:iflnRole>
<util:iflnRole role="users" include="false">

<for m met hod="POST" >
Usernane: <input name="j_username" type="text">

Password: <input nanme="j_password" type="password">

<input type="submt" value="Log in">
</formp

<futil:iflnRole>

Utility lastModified Tag

This tag displays the date of the last modification of the current file, appropriately
formatted for the locale. If no locale is specified, then the r equest object will be
searched for a locale. If none is found there, the system default locale is used.

Syntax

<util:lastMdified
[locale = "<%Local e%" | />

This tag uses no body.

Attributes

« | ocal e: Optionally specify the locale,as aj ava. uti | . Local e instance.

Example
<util:lastMdified />

JSP Utilities and Utility Tags 9-19

General Utility Tags

9-20 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

10

Web Services Tags

Oracle furnishes a tag library with OC4J that enables developers to create JSP pages for
use as client programs for Web services. This chapter describes the tag library and
consists of the following sections:

=« Overview of Web Services
« OC4J)Web Services Tags

This chapter is written with the assumption that you are already familiar with Web
services, Simple Object Access Protocol (SOAP), and the Web Services Description
Language (WSDL); however, some overview is provided here. There are also
references to additional documents, including related specifications from the World
Wide Web Consortium (W3C).

The OC4J Web services tag library is based on Oracle Application Server Web Services.
See the Oracle Application Server Web Services Developer’s Guide for information.

Overview of Web Services
The following sections provide a quick overview of Web services concepts:
= General Web Services Overview
« Overview of SOAP and Related Features
« Overview of Web Services Description Language Key Elements
« Overview of Web Service Messages and XML Schema Definitions

« Web Service Example

General Web Services Overview

Web services are sets of procedures, or actions, that can be invoked by a client over the
Internet, regardless of the computing platform. Web services consist of loosely coupled
components over a distributed computing environment following a widely adopted
set of standards such as SOAP, WSDL, and UDDI (all discussed later in this chapter).
As an example, there might be a "World Cup Soccer" service that consists of actions to
get scores, schedules, and standings.

A Web service must have the following features:

« It must be able to describe itself, such as its functionality and its input and output
attributes. A Web service describes itself through an XML-style WSDL document.
See "Overview of Web Services Description Language Key Elements" on page 10-3.

Web Services Tags 10-1

Overview of Web Services

« It must make itself generally available so that client applications can access it. The
standard way to do this is to be listed in a Universal Description, Discovery, and
Integration (UDDI) directory. Public UDDI directories are available to aggregate
groups of businesses or users (or perhaps to anyone on the Internet), while private
UDDI directories are available only within a particular business or group.

« Aclient application must be able to invoke it through a standard protocol once the
application has found and examined it. A leading protocol for Web services is
Simple Object Access Protocol (SOAP). With SOAP, the Web service is behind a
SOAP server at the server end and the client application goes through a SOAP
server at the client end. Data exchanges are "SOAP-enveloped" and can gain access
through firewalls. This SOAP exchange is conceptually similar to a Remote
Method Invocation (RMI) exchange, except that RMI exchanges cannot go through
firewalls. See "Overview of SOAP and Related Features" on page 10-2 for a brief
overview of SOAP.

= Once invoked, it must return a response to provide requested results to the client
application. This is performed through the same standard protocol, such as SOAP.

For more information about Web services, particularly OracleAS Web Services, you
can refer to the Oracle Application Server Web Services Developer’s Guide.

For related specifications, refer to the following Web sites for the W3C SOAP
specification, W3C WSDL specification, and UDDI specification, respectively:

http://ww. w3. or g/ TR/ SOAP
http://ww. w3. or g/ TR wsdl

http://wwv. uddi . org/ speci fication. htnm

Overview of SOAP and Related Features

This section offers a brief overview of SOAP. See the W3C Simple Object Access Protocol
(SOAP) 1.1 specification for details.

SOAP is a lightweight, XML-based protocol for exchanging typed and structured data
over the Internet or other distributed environments. Among other features, SOAP
supports remote procedure call (RPC) and message-oriented data exchanges.

In a message-oriented implementation, data is exchanged through a modular
packaging and encoding model. A message is a WSDL component that specifies input
data parts and output data parts associated with an operation. See "Overview of Web
Service Messages and XML Schema Definitions" on page 10-4 for more information.

RPC is an alternative to sockets, with the communication interface being at the level of
procedure calls. It is as though you are calling a local procedure, but arguments of the
call are actually packaged and sent to a remote target. The RPC mechanism uses a
request/response methodology, where an end-point receives a procedure-oriented
message and sends back a corresponding response.

Using SOAP with RPC is independent of the protocol binding. Where HTTP is the
protocol binding, HTTP requests correspond to RPC calls, and HTTP responses
correspond to RPC responses.

Key aspects of SOAP include the following.

= SOAP envelope construct: The envelope encloses a SOAP header and SOAP body
and indicates what is in a message, whether it is required, and who should process
it.

10-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Web Services

SOAP encoding rules: Encoding rules define serialization mechanisms for the
exchange of instances of the datatypes used in an application.

SOAP RPC representation: The RPC representation specifies a convention for
representing RPC calls and responses.

Overview of Web Services Description Language Key Elements

A Web service is described using the XML-based Web Services Description Language
ina WSDL (. wsdl) document.

Following are some key WSDL terms.

Operation: An operation is a particular action performed by a service, such as any

of the "get scores”, "get schedules", and "get standings" examples for a World Cup
service.

Message: A message is an abstract definition that specifies the data that is being
input and output for an operation.

Port type: A port type is an abstract definition of the operations supported by a
service.

Binding: A binding is a protocol and data format specification for one or more
operations supported by a service. A binding mechanism maps the generic or
abstract definition of a Web service to a concrete implementation, including data
encoding, message protocol, and communication protocol.

Port: A port is a single end-point, a combination of a binding and a network
address. Essentially, a port is the concrete manifestation of the capabilities
described by a port type. In a SOAP-based implementation, a port is a SOAP
location.

To be more precise than previously, a Web service is really a collection of related
ports, or end-points, not just a collection of abstract actions or operations.

The WSDL specification outlines the general structure of a WSDL document, which
includes the following key elements. Refer to the W3C Web Services Description
Language (WSDL) 1.1 specification for complete information.

A <t ypes> element, through one or more <schema> subelements, contains
descriptions of the data that is exchanged in messages used by the operations of
the service.

A <nessage> element provides an abstract definition of data being sent as input
or output for an operation.

A <port Type> element, through one or more <oper at i on> subelements,
contains abstract definitions of the operations of the Web service. An

<oper at i on> element specifies the message that is used for input and the
message that is used for output for the operation.

A <bi ndi ng> element, also through <oper at i on> subelements, binds each
operation to the particular protocol and data formats to be used.

A <servi ce> element defines the ports, or end-points, of the Web service. Within
the <ser vi ce> element is one or more <por t > subelements, where each <port >
element ties a binding to an address to define the end-point.

Web Services Tags 10-3

Overview of Web Services

Overview of Web Service Messages and XML Schema Definitions

Messages define parameters used by the operations, or methods, of a Web service. A
message is a typed definition of the data being communicated, consisting of one or
more parts. Each part corresponds to a logical entity, such as a "Purchase Order" part
and an "Invoice" part. For each part, there are type specifications for the associated
data items.

In a SOAP-based implementation, such as for OracleAS Web Services, the datatypes
used by a message are defined through the XML Schema Definition (XSD) language,
which supports predefined simple types as well as user-defined complex types.

With an implementation that uses XSD, the syntax for defining a message is as follows:

<nessage hanme="nnt oken" >
<part nanme="nntoken" [type="gnane"] [el enent="gname"] />
</ message>

In this syntax, the el emrent attribute refers to where an XSD complex type is defined
using XSD syntax, the t ype attribute indicates an XSD simple type, "nnt oken”
indicates a standard XML name token, and "gnane" indicates a standard XML
gualified name. There can be zero or more messages, and zero or more parts for each
message.

For a SOAP encoding style of encoded, only simple types are allowed, so the

el emrent attribute is not used. For an encoding style of | i t er al , you can have
simple types or complex types, so a <part > element can use either the t ype attribute
or the el errent attribute, but not both.

Here is an example of a message definition, from "Example: WSDL Definition", which
follows shortly:

<nmessage name="Cet Last TradePri cel nput">
<part nane="body" el enent="xsdl: TradePri ceRequest"/>
</ message>

Cet Last TradePri cel nput is the name of the message, which is an input message
(as the name implies). In this case, the el enent attribute refers to a namespace where
a complex type, Tr adePr i ceRequest, is defined. Here is an example of such a
definition (also part of "Example: WSDL Definition" below):

<el ement nane="TradePri ceRequest">
<conpl exType>
<all>
<el ement name="ticker Synbol " type="string"/>
<el ement name="conpanyNane" type="string"/>
</all>
</ conpl exType>
</ el enent >

An XML schema primer is available from W3C at the following location:
http://ww. w3. org/ TR/ xm schema- 0/

Web Service Example

This example shows the WSDL definition of a Web service, illustrating the input and
output messages embedded in an HTTP request and HTTP response, respectively.

10-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Web Services

Example: WSDL Definition

The W3C Web Services Description Language (WSDL) 1.1 specification provides the
following example of a WSDL document that defines a stock quote service taking a
ticker symbol as input and returns the current stock price as output. Note this uses a
SOAP encoding style of | i t er al , so complex types are allowed (and used).

<?xnm version="1.0"?>
<definitions nanme="StockQuote"

t arget Namespace="htt p: // exanpl e. coni st ockquot e. wsdl "
xm ns:tns="http://exanpl e. con st ockquot e. wsdl "
xm ns: xsd1="http://exanpl e. conf st ockquot e. xsd"
xm ns: soap="http://schenmas. xnl soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xnl soap. or g/ wsdl /">

<t ypes>
<schema t ar get Namespace="htt p: // exanpl e. coni st ockquot e. xsd"
xm ns="http:// ww. w3. org/ 2000/ 10/ XM.Schema" >
<el ement nane="TradePri ceRequest">
<conpl exType>
<all>
<el ement name="ti cker Synbol " type="string"/>
<lall>
</ conpl exType>
</ el enent >
<el ement name="TradePrice">
<conpl exType>
<all>
<el ement nane="price" type="float"/>
<lall>
</ conpl exType>
</ el enent >
</ schema>
</types>

<message nanme="Cet Last TradePricel nput">
<part name="body" el enent="xsdl: TradePri ceRequest"/>
</ message>

<message nanme="Cet Last TradePriceQut put">
<part name="body" el enent="xsdl: TradePrice"/>
</ message>

<port Type nane="St ockQuot ePort Type">
<operation nane="Cet Last TradePri ce">
<i nput message="tns: Cet Last TradePri cel nput"/>
<out put nessage="tns: Get Last TradePriceCQut put"/>
</ operati on>
</ port Type>

<bi ndi ng nane="St ockQuot eSoapBi ndi ng" type="tns: St ockQuot ePort Type" >
<soap: bi ndi ng styl e="docunent”
transport="http://schemas. xm soap. org/ soap/ http"/>
<oper ation name="Get Last TradePrice">
<soap: operation soapAction="http://exanpl e.coni Get Last TradePrice"/>
<i nput >
<soap: body use="literal"/>
</input >
<out put >
<soap: body use="literal"/>

Web Services Tags 10-5

Overview of Web Services

</ out put >
</ operati on>
</ bi ndi ng>

<servi ce name="St ockQuot eServi ce">
<docunentati on>My first service</docunentation>
<port nane="StockQuotePort" binding="tns: St ockQuot eBi ndi ng" >
<soap: address location="http://exanpl e. con stockquote"/>
</port>
</ service>

</ definitions>

This WSDL definition first specifies the Get Last Tr adePri cel nput and
Cet Last TradePri ceCut put input and output messages, then ties them to the
operation Get Last Tr adePr i ce, then defines a binding and a port for that operation.

Notes:

« This example has all aspects of the Web service definition,
including the XML schema definitions for data exchanges, in
the same document. Alternatively, st ockquot e. xsd, for
example, could be a separate XSD document instead of a
namespace within this document. The W3C WSDL
specification illustrates this. Be aware, however, that the OC4J
Web services tag library does not support WSDL documents
that use <i nport > elements to import other WSDL
documents.

« The example uses a document-style binding. The OC4J 10.1.2
implementation of the Web services tag library supports
RPC-style and document-style bindings. In the document-style
case, the output response object is an XML document of type
XMLEI erment . In the RPC-style case, the output object might be
of any type.

Example: SOAP Messages Embedded in HTTP Request and Response

Corresponding to the Web service defined in the preceding example, this section
shows what the messages would look like, with the soap-enveloped input message
embedded in an HTTP request, and the soap-enveloped output message embedded in
an HTTP response. These examples are also from the W3C Web Services Description
Language (WSDL) 1.1 specification.

Here is a request:

POST / StockQuote HTTP/ 1.1

Host: wwwu stockquot eserver.com
Content-Type: text/xm; charset="utf-8"
Content -Length: nnnn

SOAPAct i on: "SOAP_URI"

<soapenv: Envel ope xn ns: soapenv="http://schenmas. xm soap. or g/ soap/ envel ope/ " >
<soapenv: Body>
<m Get Last TradePrice xm ns: me"xm ns_URI ">
<m ti cker Synbol >DI S</ mti cker Synbol >
</ m Cet Last TradePri ce>
</ soapenv: Body>
</ soapenv: Envel ope>

10-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

0C4J Web Services Tags

In this example, xm ns_URI is a URI value used to identify the namespace where the
Get Last Tr adePr i ce operation and its messages are defined, such as the WSDL
document in the preceding "Example: WSDL Definition". This is also where

ti cker Synbol is defined. The request is for a stock quote for Walt Disney Company.
SOAP_URI is the URI for the SOAP action HTTP header for the HTTP binding of
SOAP.

And here is the response:

HTTP/ 1.1 200 &K
Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: nnnn

<soapenv: Envel ope xnl ns: soapenv="http://schenas. xm soap. or g/ soap/ envel ope/ " >
<soapenv: Body>
<m Cet Last TradePri ceResponse xm ns: nm=" Some_URI ">
<mprice>34.5</mprice>
</ m Get Last TradePri ceResponse>
</ soapenv: Body>
</ soapenv: Envel ope>

By convention, the response for an operation Xxxx is called XxxxResponse. Some_
URI is a URI value used to identify the namespace where the
Get Last TradePri ceResponse operation is defined.

OC4J Web Services Tags

The following sections provide an overview and details of the Web services tag library,
as well as an overview of OracleAS Web Services, upon which the tag library
implementation is based.

« Overview of OracleAS Web Services and the Tag Library Implementation
« Overview of Functionality of Web Services Tags
= Web Services Tag Descriptions

« Web Services Tag Examples

Overview of OracleAS Web Services and the Tag Library Implementation

The Web services tag library provided with OC4J enables developers to conveniently
create JSP pages for Web service client applications. The implementation uses a
SOAP-based mechanism. A client application would access the WSDL document, then
use the WSDL information to access the operations of a Web service.

The tag library also uses the Oracle implementation of the dynamic invocation API,
described in the Oracle Application Server Web Services Developer’s Guide. When a client
application acquires a WSDL document at runtime, the dynamic invocation API is the
vehicle for invoking any SOAP operation described in the WSDL document. The tag
handler uses the APl when sending a SOAP request that invokes a Web service and
when handling the SOAP response.

The Oracle dynamic invocation API consists of classes and interfaces in the
oracl e.j2ee.ws.client andoracl e.j2ee.ws.client.wsdl packages.

The oracl e. j 2ee. ws. cl i ent package includes the following.

« \WebServi ceProxyFact ory: Given a WSDL document (through a Java input
stream that contains the document or through the URL of the document), a

Web Services Tags 10-7

0C4J Web Services Tags

WebSer vi cePr oxyFact ory instance can use the name of a service and the name
of one of its ports, as specified in the WSDL document, to create a

WebSer vi cePr oxy instance (an instance of a class that implements the

WebSer vi cePr oxy interface).

WebSer vi cePr oxy: Use this interface in representing a service defined in a
WSDL document. Each WebSer vi cePr oxy instance is based on the location of
the WSDL document and, optionally, on additional qualifiers that identify which
service and port should be used. A WebSer vi cePr oxy class exposes methods to
determine the WSDL port type, including the syntax and signatures of all
operations exposed by the WSDL document, and to invoke the defined operations.

WebSer vi ceMet hod: Use this interface in invoking a Web service method, or
operation.

Theoracl e.j 2ee. ws. client.wsdl package includes the following.

Oper at i on: This interface represents a WSDL operation.

Message: This interface represents a message used in the input or output of an
operation.

Par t : This interface represents a message part.
I nput : This interface represents an input message.

CQut put : This interface represents an output message.

Note: The dynamic invocation APl is packaged in dsv2. j ar in
the ORACLE_HOWVE/ | i b directory. Also note that the SOAP
implementation requires soap. j ar in the ORACLE_HOVE/ soap
directory.

Overview of Functionality of Web Services Tags

This section provides an overview of the OC4J Web services tag library and its
functionality. The tag library includes support for the following:

Binding to a Web service

Using a Web service operation through SOAP requests and SOAP responses
Defining input and output message parts

Mapping SOAP/ XML datatypes to Java types

Setting custom properties for use by the client application

The tag library supports invoking operations defined in WSDL documents that use the
W3C XML schema version whose namespace is the following:

http://ww. w3. or g/ 2001/ XM_.Schema

The Web services tag library includes the webser vi ce tag, optionally with nested
map and pr operty tags, and the i nvoke tag, optionally with nested part tags. They
are used as follows.

webser vi ce: Use this tag to create a Web service proxy. The tag requires the URL

of a WSDL document and then uses one of the following combinations:

— A binding and SOAP location, useful for a WSDL document identified in a

UDDI registry

10-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

0C4J Web Services Tags

— Aservice name and port, provided through tag attributes or through the first
service and its first port from the WSDL document

« map: The Web service proxy uses this tag, if specified, to add an entry to the SOAP
mapping registry, which is a registry that maps local SOAP/XML types to Java
types. Any number of map tags can be nested within awebser vi ce tag, one tag
for each desired type mapping.

« property: Optionally, use this tag to define any of several supported custom
properties for use by the Web service client application. Each pr operty tag must
be nested within the webser vi ce tag; the property will have the same scope as
the parent Web service.

« i nvoke: Use this tag to invoke an operation of the Web service. Ani nvoke tag
accesses a Web service proxy either by being nested within a webser vi ce tag, or
through a scripting variable.

« part:Ifan operation has input message parts, use part tags, nested within an
i nvoke tag, to define the message parts. Use one part tag for each part.

Notes:

« Thetag library does not support the use of <i nport > elements
within WSDL documents to import other WSDL documents.

« Custom bindings, including custom HTTP bindings or custom
MIME bindings, are not supported.

Because the OC4J Web services tag library implementation is based
on the OracleAS Web Services implementation, any additional
limitations of OracleAS Web Services also apply to the tag library.

Web Services Tag Descriptions

The following sections supply detailed descriptions of the OC4J Web services tags, a
standards-compliant JavaServer Pages tag library implementation, including syntax
documentation:

« Web Services webservice Tag

« Web Services map Tag

« Web Services property Tag

« Web Services invoke Tag

« Web Services part Tag

Note the following requirements for the Web services tag library:

« The Web services tag library is included in the oj sputi | . j ar file. This file is
provided with OC4J, in the "well-known" tag library directory. Verify that this file
is installed and in your classpath.

« Thetag library descriptor, wst agl i b. t | d, must be available to the application,
and any JSP page using the library must have an appropriate t agl i b directive. In
an Oracle Application Server installation, the TLD isin oj sputil.jar.Theuri
value for wst agl i b. t I d is the following:

http://xm ns. oracle.com j2ee/jsp/tld/ojsp/wstaglib.tld

Web Services Tags 10-9

0C4J Web Services Tags

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for information about t agl i b directives, the well-known tag
library directory, TLD files, and the meaning of ur i values.

For an example that uses the tags described in this section, see "Web Services Tag
Examples" on page 10-15.

Notes:

« The prefix "ws:" is used in the tag syntax here. This is by
convention, but is not required. You can specify any desired
prefix in the t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Web Services webservice Tag

Use this tag to create a Web service proxy, an instance of a class that implements the
oracle.j2ee.ws.client.WbServi ceProxy interface. The tag requires the URL
of a WSDL document and uses a binding and SOAP location or a service name and
port, as follows:

1. First, if tag attributes provide a binding and SOAP location, the tag handler uses
them in creating the proxy. Tag attributes for service name and port are ignored in
this case.

2. If no binding and SOAP location are provided, the tag handler uses a service name
and port, as follows:

a. If aservice name and port are provided through tag attributes, then the tag
handler uses them in creating the proxy.

b. If no service name and port are provided, the tag handler uses the first service
in the WSDL document and the first port listed for that service.

Using a binding and SOAP location is particularly useful for a Web service whose
WSDL document is accessed through a UDDI registry. In that case, the binding and
location can be determined through UDDI queries and supplied to the tag through
request-time expressions.

After the Web service proxy is created, it will use any nested map tags to add entries to
the SOAP mapping registry. See the next section, "Web Services map Tag".

Syntax
<ws: webservice wsdl Url = "WSDL_URL_of _Web_servi ce"
id = "variable_name_for_Web_service_proxy"]
scope = "page" | "request" | "session" | "application"]

bi ndi ng = "SOAP_bi ndi ng_i nformati on"]
soaplLocation = "SOAP_endpoi nt _URL"]
service = "service_name_i n_WsDL"]
port = "port_name_for_service"] >

...body / nested tags...

</ ws: webservi ce>

Note: The scope attribute cannot take request-time expressions.

10-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

0C4J Web Services Tags

Attributes

« wsdl Url (required): Use this attribute to specify a URL where the WSDL for the
desired Web service can be accessed.

« i d:If the Web service is to be accessed by an i nvoke tag that is not nested within
the webser vi ce tag, use the i d attribute to specify the name for a
WebSer vi cePr oxy scripting variable so that the variable can be referenced by the
i nvoke tag. The specified name must be a valid Java identifier. When you use the
i d attribute, the specified variable will be declared automatically with scope AT _
END (available from the webser vi ce end-tag to the end of the JSP page).

« scope: Optionally, specify the scope of the webser vi ce tag. The default setting is
"page".

« bi ndi ng: In scenario #1 above, use the bi ndi ng attribute to specify the SOAP
binding information for a SOAP location (end-point URL) that you specify
through the soapLocat i on attribute. You must use these attributes together. The
binding information is as defined in the WSDL document, specifying concrete
protocol and data format specifications for the operations and messages defined
by a particular port type.

=« soaplocati on: In scenario #1 above, use soapLocat i on to specify a SOAP
location (end-point URL) as defined in the WSDL document, for which the
binding information specified through the bi ndi ng attribute applies. You must
use these attributes together.

= Service: Inscenario #2a above, use the ser vi ce attribute to specify the name of
a service defined in the WSDL document. You must use this attribute with the
port attribute, but both are ignored if you use bi ndi ng and soapLocati on.

« port:Inscenario#2a above, use the port attribute to specify a port for the service
that is specified through the ser vi ce attribute. You must use these attributes
together. The Web service proxy will use the specified port. The port address will
be as specified in the corresponding <ser vi ce> element in the WSDL document.
The servi ce and port attributes are ignored if you use bi ndi ng and
soaplLocati on.

Web Services map Tag

For interoperability, a mapping mechanism is necessary to map WSDL-defined
SOAP/XML datatypes to the Java types used in JSP pages of a Java client application.
This is possible through the OracleAS Web Services SOAP mapping registry.

You can have any number of map tags nested within a webser vi ce tag, to have the
Web service proxy add entries to the registry. Use one nap tag for each desired type
mapping.

The registry is an instance of the XM_JavaMappi ngRegi st ry class of the
or g. apache. soap. util.xm package. A WebSer vi cePr oxy instance has a
get XM_LMappi ngRegi st ry() method to access the registry.

The nap tag includes attributes to specify the encoding style, serializer, deserializer,
and namespace URI to facilitate the type mapping. The Web services tag library
supports custom serializers and deserializers, if you want to create your own.

Important: When using a map tag, you must nest it within a
webservi ce tag.

Web Services Tags 10-11

0C4J Web Services Tags

Syntax

<ws: map | ocal Name = "l ocal _name_of _SOAPXM._t ype"
namespaceUri = "UR _of _namespace_f or _SOAPXM__t ype"
javaType = "Java_type_to_nap"
encodi ngStyl e = "URL_of _SOAP_encodi ng_st yl e"
java2xm G assNanme = "Java_to_XM._serializer"
xm 2j avaCl assNane = "XM__to_Java_deseri al i zer" />

Attributes

« | ocal Nan®e (required): Specify the local name of the SOAP/XML datatype, such
as SOAPSt r uct , for example.

« nanespaceUri (required): Specify a valid URI for the namespace of the
SOAP/XML datatype. The following is an example:

http://soapint erop. or g/ xsd

« javaType (required): Specify the Java type which you want to map to the
SOAP/XML type. The types must be legally mappable.

« encodi ngSt yl e (required): Specify a valid URI for a SOAP encoding style. The
following is an example:

http://schenas. xm soap. or g/ soap/ encodi ng

« java2xml C assNane (required): Specify the class name with the functionality
for serializing the data for Java-to-XML conversion. This can be a custom class.
The following is an example:

or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer

« xmnl 2j avaCl assNane (required): Specify the class name with the functionality
for deserializing the data for XML-to-Java conversion. This can be a custom class.
The following is an example:

or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer

Web Services property Tag

You can optionally use this tag to specify a name/value pair that defines any of several
supported custom properties for use by the Web service client application. For
example, you could use pr oper t y tags to specify an HTTP proxy host and proxy port
if a proxy is required for access through a network firewall. The following properties
are supported:

« http. proxyHost: Use this property to specify the host name of an HTTP proxy
server.

« http. proxyPort: Use this property to specify a port number of an HTTP proxy
server.

» javax. net.ssl.KeyStore: Use this property to specify the full path of an
Oracle security wallet file.

Important: When using a pr opert y tag, you must nest it within a
webser vi ce tag. The property will have the same scope as the
parent Web service.

Syntax

10-12 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

0C4J Web Services Tags

<ws: property name="http. proxyHost" | "http.proxyPort" | "javax.net.ssl.KeyStore"
value = "property_val ue" />

Attributes

« property (required): Specify the property you want to set; it must be one of the
supported properties listed in the tag syntax.

« val ue (required): Specify the desired value of the property—a host name, port
number, or full path to an Oracle wallet file.

Web Services invoke Tag

Use this tag to invoke an operation of the Web service. The tag handler will call the
remote Web service operation by passing an input message in a SOAP request, then
will wait for the SOAP response. You must specify the operation, as well as an object
ID for the object that will contain the returned response. The tag handler uses the
operation name to find the operation in the WSDL document.

The i nvoke tag gains access to a Web service proxy in one of two ways:
« Thei nvoke tag is nested within the webser vi ce tag that establishes the proxy.

« Theinvoke tag uses its webser vi ce attribute to access a WebPr oxySer vi ce
scripting variable created through a webser vi ce tag i d attribute.

In a situation where there are overloaded operations (two operations of the same name
using different I/0 messages), the i nvoke tag has attributes to specify the input and
output message names for the desired operation. In this case, for RPC-style bindings,
the specified input and output message names are used to form the RPC signature of
the operation. Otherwise, the RPC signature is the default according to the WSDL
document.

If the output message has multiple parts, then the returned result is an array of
message parts (all within a single SOAP response).

The i nvoke tag can act as an XML producer, supporting explicit passing of an XML
output object through the t oXMLCbj Nane attribute. This is useful if the i nvoke tag is
nested inside other kinds of tags such as Web Object Cache tags or the XML

t r ansf or mtag. Also note that an XML output object can be written to the

JspW i t er object of the JSP page for output directly to the user's browser. This is
enabled through the xm ToW i t er attribute.

Notes:
« Waiting for the SOAP response is a blocking function.

« The scope of the output result object, identified by thei d
attribute, is the same as the scope of the proxy object defined in
the webser vi ce tag for the Web service. For an i nvoke tag
nested within a webser vi ce tag, this scope is from the
webser vi ce start-tag to the webser vi ce end-tag. However,
the i d object can still be accessed outside the webser vi ce tag
through use of the fi ndAt t ri but e() method of the JSP page
context object.

Syntax

<ws:invoke id = "variabl e_name_for_out put _resul t"
operation = "operation_to_invoke"

Web Services Tags 10-13

0C4J Web Services Tags

[webservice = "variabl e_name_of _Web_service_proxy"]
[inputMsgNanme = "name_of _i nput _nessage"]

[out put MsgName = "name_of _out put_nessage"]

[xm ToWiter = "true" | "false"]

[toXM.Cbj Name = "obj ect name" | >

...body / nested tags...

</ ws:invoke>

Attributes

« i d(required): Specify a scripting variable name for the output result object. The
specified name must be a valid Java identifier. See the note preceding the tag
syntax above for information about the scope of the i d object.

= operati on (required): Specify an operation to be executed (an operation from the
WSDL document).

= webservi ce: Use this attribute if you want to specify the name of a
WebSer vi cePr oxy scripting variable corresponding to the service to invoke. This
is not necessary if the i nvoke tag is nested inside the webser vi ce tag that
accesses the desired service.

= 1 nput MsgNane: Optionally specify the input message name—the name of a
wsdl : i nput tag in the WSDL document—for the operation. This is only
necessary if there are overloaded operations (operations with the same name that
use different message names).

= out put MsgNane: Optionally specify the output message name—the name of a
wsdl : out put tag in the WSDL document—for the operation. This is necessary
only if there are overloaded operations (operations with the same name that use
different message names).

« xml ToWit er: For adocument-style Web service, and if the output is an XML
object, set this attribute to "t r ue" if you want to output the XML to the
JspW i t er output object of the JSP page. The default setting is "f al se".

« t oXMLCbj Name: For a document-style Web service, and if you want to explicitly
pass the output in an XML object, use this attribute to specify the name of the
object.

Web Services part Tag

Use this tag, nested within an i nvoke tag, if the operation being performed requires
input message part values, using one part tag for each input part.

How to specify the part value might depend on whether you are using an RPC-style or
document-style Web service. For RPC-style, you must use the val ue attribute. For
document-style, you have the option of passing the value through an XML request
element in the tag body.

Note: If you use both a tag body and the val ue attribute, the tag
body is ignored.

Syntax

<ws:part nanme = "part_nange"
[value = "part_value"] >

10-14 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

0C4J Web Services Tags

...optional body, with request element, for docunent-style...
</ws: part>

Attributes
« name (required): Specify the name of the input part (a valid Java identifier).

« val ue: Specify the value of the input part. This is required for an RPC-style Web
service. For a document-style Web service, you can use the tag body instead.

Web Services Tag Examples

This section provides a template for use of the Web services tag library, a sample JSP
page to invoke an RPC-style Web service, and a sample page to invoke a
document-style Web service.

Web Services Example: Usage Template

<HTM.>
<HEAD>
<TITLE>Ti t| e</ TI TLE>
</ HEAD>
<BCDY>
<H2>This is sanple HTM. text. </ H2>
<Y@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ ojsp/wstaglibrary.tld"
prefix="ws" %
<ws: webservice i d="mws"
wsdl Ur | ="wsdl url "

{
bi ndi ng="" soaplLocation="" | service="" port=""
}
{
scope="page | request | session | application"
}
>

<ws: property name="property" value="string"/>

<ws: map encodi ngStyl e="http://schenas. xnl soap. or g/ soap/ encodi ng/ "
| ocal name="SOAPSt r uct "
namespaceUri ="http://soapi nterop. or g/ xsd"
j avaType="M/SoapSt r uct Bean"
j ava2xni Gl assNanme="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
xm 2j avad assNane="or g. apache. soap. encodi ng. soapenc. BeanSeri al i zer"
/>

</ ws: webservi ce>

<ws:invoke id="result" webservice="nyws" operation="add" input MsgNane=""
out put MsgNanme="">
<ws: part name="part_nane" value="{string | <% expression %}"/>

</ws:invoke>

<% =result %
</ BODY>
</ HTM.>

Web Services Example: Sample JSP Page for RPC-Style Web Service

<%@ page content Type="text/htm "%
<v@taglib uri="http://xmns.oracle.conmj2eeljsp/tldlojsp/wstaglib.tld"

Web Services Tags 10-15

0C4J Web Services Tags

prefix="ws" %
<HTM.>
<HEAD>
<META HTTP- EQUI V="Cont ent - Type" CONTENT="text/htm; ">
</ HEAD>
<BODY>
<%
String item D = request. get Paraneter("item D');
%
<ws: webservice i d="ebay"
wsdl Ur I ="htt p: // www. xmet hods. net / sd/ 2001/ EBayWat cher Ser vi ce. wsdl *
bi ndi ng="eBayWat cher Bi ndi ng"
soapLocation="http://services. xnet hods. net: 80/ soap/ servl et/rpcrouter”
scope="page" >
<ws: property name="http. proxyHost" val ue="wwaw proxy. us. oracl e. coni'/ >
<ws: property name="http. proxyPort" val ue="80"/>
</ ws: webser vi ce>
<ws:invoke id="price" webservice="ebay" operation="getCurrentPrice">
<ws: part name="auction_i d" val ue="<%item D¥%"/>
</ws: i nvoke>

Action price for eBay Item# <UFitem D% is :
</ B>
<p>
$<% price%
@
<% new java. util.Date()%
</ P>
</ BCDY>
</ HTM.>

Web Services Example: Sample JSP Page for Document-Style Web Service

<%@ page content Type="text/xm ;"%

<Y%@page inport= oracle.xn.parser.v2 XM.E enent;" %

<Y@taglib uri="http://xmns.oracle.conlj2ee/jsp/tld/ojsp/wstaglib.tld"
prefix="ws" %

<v@taglib uri="http://xmns.oracle.conij2ee/jsp/tld/ ojsp/xm.tld"
prefix="xm" %

<ws: webservi ce id="bookServi ce"
wsdl Url ="http://hosting. msugs. ch/ cheeso9/ books/ books. asmx?WsDL"
bi ndi ng="_LookyBookSer vi ceSoap"
soapLocation ="http://hosting.nsugs. ch/ cheeso9/ books/ books. asnx"
scope="sessi on">

</ ws: webservi ce>

<ws:invoke id="bookResult"
operation="Get I nfo"
webser vi ce="bookServi ce" >
<ws: part name="parameters">
<Getlnfo xm ns="http://dinoch.dyndns. or g/ webservi ces/" >
<| SBN>Sonel SBNNunber </ | SBN>
</ Get | nf o>
</ws: part>
</ ws:invoke>
<%
XM.Node resul t Node = (XM.Node) bookResul t;
resul t Node. Error! Bookmark not defined. (new java.io.PrintWiter(out));
%

10-16 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

0C4J Web Services Tags

</ BODY>
</ HTM.>

Web Services Tags 10-17

0C4J Web Services Tags

10-18 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

A

JML Compile-Time Syntax and Tags

The JSP tag library framework was introduced in the JSP 1.1 specification. Oracle JSP
releases prior to the implementation of the JSP 1.1 specification could support JML
tags only as Oracle-specific translator extensions. This is referred to as compile-time tag
support in this manual.

JSP releases with OC4J continue to support the compile-time JML implementation;
however, it is generally advisable to use the standards-compliant runtime
implementation whenever possible. The runtime implementation is documented in
Chapter 3, "JSP Markup Language Tags".

This appendix discusses features of the compile-time implementation that are not in
common with the runtime implementation, and consists of the following sections:

« JML Compile-Time Syntax Support
« JML Compile-Time Tag Support

For a general discussion of when it might be advantageous to use a compile-time
implementation, refer to the Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide.

JML Compile-Time Syntax Support

The following sections describe Oracle-specific bean reference syntax and expression
syntax supported by the compile-time JML implementation for specifying tag attribute
values:

« JML Bean References and Expressions, Compile-Time Implementation
« Attribute Settings with JIML Expressions

This functionality requires the OC4J JSP translator; it is not portable to other JSP
environments.

JML Bean References and Expressions, Compile-Time Implementation

A bean reference is any reference to a JavaBean instance that results in accessing either a
property or a method of the bean. This includes a reference to a property or method of
a bean where the bean itself is a property of another bean.

This becomes cumbersome, because standard JavaBeans syntax requires that
properties be accessed by calling their accessor methods rather than by direct
reference. For example, consider the following direct reference:

a.b.c.d. dolt()

This must be expressed as follows in standard JavaBeans syntax:

JML Compile-Time Syntax and Tags A-1

JML Compile-Time Syntax Support

a.getB().getC().getD().dolt()

The Oracle compile-time JML implementation, however, offers abbreviated syntax, as
described in the following subsections.

JML Bean References
Oracle-specific syntax supported by the compile-time JML implementation allows

bean references to be expressed using direct dot (".") notation. Note that standard bean
property accessor method syntax is also still valid.

Consider the following standard JavaBean reference:

cust oner. get Name()

In JML bean reference syntax, you can express this in either of the following ways:

cust oner. get Name()

or:

cust omer. nanme

JavaBeans can optionally have a default property whose reference is assumed if no
reference is explicitly stated. You can omit default property names in JML bean

references. In the example above, if nane is the default property, then the following
are all valid JML bean references:

cust oner. get Name()

or:

cust oner. nane

or:

cust oner

Most JavaBeans do not define a default property. Of those that do, the most significant
are the JML datatype JavaBeans described in Chapter 2, "JavaBeans for Extended
Types".

JML Expressions

JML expression syntax supported by the compile-time JML implementation is a
superset of standard JSP expression syntax, adding support for the JIML bean reference
syntax documented in the preceding section.

A JML bean reference appearing in a JML expression must be enclosed in the
following syntax:

$[IM._bean_ref erence]

Attribute Settings with JML Expressions

Tag attribute documentation under "JSP Markup Language (JML) Tag Descriptions" on
page 3-2 notes standards-compliant syntax. You can set attributes, as documented
there, for either the runtime or the compile-time JML implementation and even for
non-Oracle JSP environments.

If you intend to use only the Oracle-specific compile-time implementation, however,
you can set attributes using JML bean references and JML expression syntax, as

A-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support

documented in the preceding section, "JML Bean References and Expressions,
Compile-Time Implementation”. Note the requirements that follow.

Wherever Chapter 3 documents an attribute that accepts either a string literal or
an expression, you can use a JML expression inits $[. . .] syntax inside standard
JSP <%. . . % syntax.

Consider an example using the JML useVar i abl e tag. You would use syntax
such as the following for the runtime implementation:

<jm:useVariable id = "isValidUser" type = "bool ean" value = "<% dbConn.isValid() %" scope = "session" />

You can alternatively use syntax such as the following for the compile-time
implementation (the val ue attribute can be either a string literal or an expression):

<jm :useVariable id = "isValidUser" type = "bool ean" val ue = "<% $[dbConn.valid] %" scope = "session" />

Wherever Chapter 3 documents an attribute that accepts an expression only, you
can use a JML expression inits $[. . .] syntax without being nested in <%-. . . %
syntax.

Consider an example using JML choose. . . when tags. You would use something
such as the following syntax for the runtime implementation (presuming
or der edl t emis a Jnl Bool ean instance):

<jm : choose>
<jm:when condition = "<% orderedl tem getVal ue() %" >
You have changed your order:
-- outputs the current order --
</jnl:when>
<jm:otherw se>
Are you sure we can't interest you in something?
</jn :otherwise>
</jn:choose>

You can alternatively use syntax such as the following for the compile-time
implementation, where the condi t i on attribute can be an expression only:

<jm: choose>
<jnm :when condition = "$[orderediten]” >
You have changed your order:
-- outputs the current order --
</jm :when>
<jm:otherw se>
Are you sure we can't interest you in something?
</jm :otherw se>
</jn:choose>

JML Compile-Time Tag Support

This section presents the following:

Documentation of the t agl i b directive that you must use for compile-time JML
support

Summary of all compile-time tags, noting which are desupported in the runtime
implementation

Description of tags supported by the compile-time implementation that are
desupported in the runtime implementation

Tags still supported in the runtime implementation are documented in "JSP
Markup Language (JML) Tag Descriptions" on page 3-2.

JML Compile-Time Syntax and Tags A-3

JML Compile-Time Tag Support

Note: In most cases, JML tags that are desupported in the runtime
implementation have standard JSP equivalents. Some of the
compile-time tags, however, were desupported because they have
functionality that is difficult to implement when adhering to the
current JSP specification.

The taglib Directive for Compile-Time JML Support

The Oracle compile-time JML support implementation uses a custom class,
OpenJspRegi st er Li b, to implement JML tag support.

In a JSP page using JML tags with the compile-time implementation, thet agl i b
directive must specify the fully qualified hame of this class, instead of specifying a
TLD file as in standard JSP tag library usage:

<Y@taglib uri="oracle.jsp.parse. QpenJspRegi sterLib" prefix="jm" %
For information about usage of the t agl i b directive for the JML runtime

implementation, see "Overview of the JSP Markup Language (JML) Tag Library" on
page 3-1.

JML Tag Summary, Compile-Time Versus Runtime

Most JML tags are available in both the runtime model and the compile-time model;
however, there are exceptions, as summarized in the following tables.

Table A-1 Bean-Binding Tags: Compile-Time Model Versus Runtime Model

Supported in Oracle Supported in Oracle Runtime
Tag Compile-Time Implementation? Implementation?
useBean Yes No; use j sp: useBean.
useVariable Yes Yes
useForm Yes Yes
useCookie Yes Yes
remove Yes Yes

Table A-2 Bean Manipulation Tags: Compile-Time Model Versus Runtime Model

Supported in Oracle Supported in Oracle Runtime
Tag Compile-Time Implementation? Implementation?
getProperty Yes No; use j sp: get Property.
setProperty Yes No; usej sp: set Property.
set Yes No
call Yes No
lock Yes No

Table A-3 Control Flow Tags: Compile-Time Model Versus Runtime Model

Supported in Oracle Supported in Oracle Runtime
Tag Compile-Time Implementation? Implementation?
if Yes Yes

A-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support

Table A-3 (Cont.) Control Flow Tags: Compile-Time Model Versus Runtime Model

Tag

Supported in Oracle

Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?

choose
for
foreach
return
flush
include

forward

Yes
Yes
Yes; t ype attribute is optional.
Yes
Yes
Yes

Yes

Yes

Yes

Yes; t ype attribute is required.
Yes

Yes

No; usej sp: i ncl ude.

No; use j sp: f orwar d.

Table A—-4 XML Tags: Compile-Time Model Versus Runtime Model

Tag

Supported in Oracle

Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?

transform

styleSheet

Deprecated
Deprecated

Yes

Yes

Table A-5 Utility Tags: Compile-Time Model Versus Runtime Model

Tag

Supported in Oracle

Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?

print

plugin

Yes; use double-quotes to specify a No; use JSP expressions.

string literal.

Yes

No; usej sp: pl ugi n.

Note:

Since Oracle9iAS Release 2 (9.0.3), thet r ansf or mand

st yl eSheet tags are deprecated in the compile-time

implementation.

Descriptions of Additional JML Tags, Compile-Time Implementation

The following sections provide detailed descriptions of JML tags that are still
supported by the JIML compile-time implementation but are not supported by the JML
runtime implementation. The tags supported in the runtime implementation are
documented under "JSP Markup Language (JML) Tag Descriptions" on page 3-2.

« JML useBean Tag

« JML getProperty Tag
« JML setProperty Tag
« JML set Tag

« JML call Tag

« JML lock Tag

« JML include Tag

« JML forward Tag

« JML print Tag

JML Compile-Time Syntax and Tags A-5

JML Compile-Time Tag Support

« JML plugin Tag

Notes:

« The prefix "jml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your t agl i b directive.

« See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

JML useBean Tag

This tag declares an object to be used in the page, locating the previously instantiated
object at the specified scope by name if it exists. If it does not exist, the tag creates a
new instance of the appropriate class and attaches it to the specified scope by name.

The syntax and semantics are the same as for the standard j sp: useBean tag, except
that wherever a JSP expression is valid inj sp: useBean usage, either a JML
expression or a JSP expression is valid in JML useBean usage.

You can refer to the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for an overview of the j sp: useBean tag.

Syntax

<jm:useBean id = "beanl nstanceName"
[scope ="page" | "request" | "session" | "application"]
cl ass ="package. cl ass" |
type = "package. cl ass" |
class ="package. cl ass" type = "package. cl ass" |
beanNane = "package.class" | "<% jnl Expression %" type = "package.class" />

Alternatively, you can have additional nested tags, such as set Pr operty tags, and
use a</j m : useBean> end-tag.
Attributes

In addition to specifying i d, you must specify cl ass, t ype (or cl ass andt ype), or
beanNarme.

Refer to the Sun Microsystems JavaServer Pages Specification for detailed information
aboutj sp: useBean attributes and their syntax.

Example
<jm:useBean id = "isValidUser" class = "oracle.jsp.jm.Jn Bool ean" scope = "session" />
JML getProperty Tag

This tag is functionally identical to the standard j sp: get Property tag. It prints the
value of the bean property into the response.

For general information about get Pr oper t y usage, refer to the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

Syntax

<jm:getProperty nane = "beanl nstanceName"
property = "propertyNane" />

A-6 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support

Attributes

« nane (required): This is the name of the bean whose property is being retrieved.
« property (required): This is the name of the property being retrieved.

Example The following example outputs the current value of the sal ary property.
Assume sal ary is of type Jm Nunber .

<jm:getProperty name="sal ary" property="val ue" />

This is equivalent to the following:

<% sal ary. getVal ue() %

JML setProperty Tag

This tag covers the functionality supported by the standard j sp: set Property tag
and adds functionality to support JML expressions. In particular, you can use JML
bean references.

For general information about set Pr oper ty usage, refer to the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

Syntax

<jnm:setProperty name = "beanl nstanceNang"
property =" * " |
property = "propertyName" [param = "paraneterNane"] |
property = "propertyName"
[value = "stringLiteral™ | "<% jn Expression %"] />

Attributes
« name (required): This is the name of the bean whose property is being set.
« property (required): This is the name of the property being set.

« val ue: Thisis an optional parameter that lets you set the value directly instead of
from a request parameter. The JML set Pr opert y tag supports IML expressions
in addition to standard JSP expressions to specify the value.

Example The following example updates sal ar y with a six percent raise. Assume
sal ary is of type Jm Nunber.

<jm:setProperty nane="sal ary" property="val ue" val ue="<% $[salary] * 1.06 %" />

This is equivalent to the following:

<% sal ary. set Val ue(sal ary. get Val ue() * 1.06); %

JML set Tag

This tag provides an alternative for setting a bean property, using syntax that is more
convenient than that of the set Property tag.

Syntax
<jm:set name = "beanl nstanceNane. propertyNane"

value = "stringLiteral" | "<% jm Expression %" />
Attributes

JML Compile-Time Syntax and Tags A-7

JML Compile-Time Tag Support

= name (required): This is a direct reference (JML bean reference) to the bean
property to be set.

« val ue (required): This is the new property value. It is expressed either as a string
literal, a JML expression, or a standard JSP expression.

Example Each of the following examples updates sal ary with a six percent raise.

Assume sal ary is of type Jrml Nurnber .

<jm:set nane="sal ary.val ue" value="<% sal ary.getValue() * 1.06 %" />

or:

<jm:set nane="sal ary.val ue" value="<% $[sal ary.value] * 1.06 %" />

or:

<jm:set nane="sal ary" val ue="<% $[salary] * 1.06 %" />

These are equivalent to the following:

<% sal ary. set Val ue(sal ary. getVal ue() * 1.06); %

JML call Tag
This tag provides a mechanism to invoke bean methods that return nothing.

Syntax

<jm:call method = "beanl nst anceNarme. net hodName(paraneters)” />

Attributes

« et hod (required): This is the method call as you would write it in a scriptlet,
except that the beanl nst ancenane. nmet hodName portion of the statement can
be written as a JML bean reference if enclosed in JML expression $[. ..] syntax.

Example The following example redirects the client to a different page:

<jm:call name='response. sendRedirect("http://ww.oracle.comf")" />

This is equivalent to the following:

<% response. sendRedi rect ("http://ww. oracle.com"); %

JML lock Tag

This tag allows controlled, synchronous access to the named object for any code that
uses it within the tag body.

Generally, JSP developers need not be concerned with concurrency issues. However,
because application-scope objects are shared across all users running the application,
access to critical data must be controlled and coordinated.

You can use the JML | ock tag to prevent concurrent updates by different users.

Syntax

<jm:lock name = "beanl nstanceNane" >
...body. ..
</jnm:lock>

Attributes

A-8 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support

« hame (required): This is the name of the object that should be locked during
execution of code in the | ock tag body.

Example In the following example, pageCount is an application-scope Jm Nunber
value. The variable is locked to prevent the value from being updated by another user
between the time this code gets the current value and the time it sets the new value.

<jm:lock name="pageCount" >
<jm:set nane="pageCount.val ue" val ue="<% pageCount.getValue() + 1 %" />
</jm:lock>

This is equivalent to the following:

<% synchr oni zed(pageCount)
{

}
%

pageCount . set Val ue(pageCount . get Val ue() + 1);

JML include Tag

This tag includes the output of another JSP page, a servlet, or an HTML page in the
response of the including page (the page invoking i ncl ude). It provides the same
functionality as the standard j sp: i ncl ude tag except that the page attribute can also
be expressed as a JIML expression.

For general information about i ncl ude usage, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.
Syntax
<jm:include page = "relativeURL" | "<% jm Expression %"

flush = "true" | "false" />
Attributes
For general information about i ncl ude attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification.

Example The following example includes the output of t abl e. j sp, a presentation
component that renders an HTML table based on data in the query string and request
attributes.

<jm:include page="table.jsp?maxRows=10" flush="true" />

JML forward Tag

This tag forwards the request to another JSP page, a servlet, or an HTML page. It
provides the same functionality as the standard j sp: f or war d tag except that the
page attribute can also be expressed as a JML expression.

For general information about f or war d usage, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Syntax
<jm:forward page = "relativeURL" | "<% jnl Expression %" />

Attributes

JML Compile-Time Syntax and Tags A-9

JML Compile-Time Tag Support

For general information about f or war d attributes, refer to the Sun Microsystems
JavaServer Pages Specification.
Example

<jm:forward page="al t page.jsp" />

JML print Tag

This tag provides essentially the same functionality as a standard JSP expression: <%=
expr % . A specified JIML expression or string literal is evaluated and the result is
output into the response. With this tag, the JML expression does not have to be
enclosed in <% ... 9% syntax; however, a string literal must be enclosed in
double-quotes.

Syntax

<jm:print eval = ""stringLiteral"" | "jm Expression" />

Attributes

« eval (required): Specifies the string or expression to be evaluated and output.
Examples Either of the following examples outputs the current value of sal ar y, which
is of type Jm Nunber :

<jm:print eval ="$[salary]" />

or:

<jm:print eval ="sal ary.getValue()" />

The following example prints a string literal:

<jm:print eval = "Your string here"' />

JML plugin Tag
This tag has functionality identical to that of the standard j sp: pl ugi n tag.

For general information about pl ugi n usage, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide or the Sun
Microsystems JavaServer Pages Specification.

A-10 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

B

Third Party Licenses

This appendix includes the Third Party License for third party products included with
Oracle Application Server and discussed in this manual. Topics include:

Apache HTTP Server
Jaxen

SAXPath

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software, and
the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

The Apache Software License

-
*

I R

The Apache Software License, Version 1.1

Copyright (c) 2000-2002 The Apache Software Foundation. All rights
reserved.

Redi stribution and use in source and binary forms, with or wthout
modi fication, are pernmitted provided that the foll owing conditions
are net:

1. Redistributions of source code nust retain the above copyright

notice, this list of conditions and the followi ng disclainer.

Redistributions in binary formmust reproduce the above copyright
notice, this list of conditions and the following disclainer in
the docunentation and/or other materials provided with the

di stribution.

. The end-user docunmentation included with the redistribution,

if any, must include the follow ng acknow edgnent:

"This product includes software devel oped by the

Apache Software Foundation (http://wm. apache.org/)."
Alternately, this acknow edgnent nay appear in the software itself,
if and wherever such third-party acknow edgments normally appear.

Third Party Licenses B-1

Jaxen

Jaxen

4. The names "Apache" and "Apache Software Foundation" nust
not be used to endorse or promote products derived fromthis
sof tware without prior witten pernission. For witten
perm ssion, please contact apache@pache. org.

5. Products derived fromthis software may not be called "Apache",
nor may "Apache" appear in their nane, wthout prior witten
perm ssion of the Apache Software Foundation.

TH' S SOFTWARE | S PROVIDED ""AS IS'' AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, I NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
CF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAI MED. | N NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON CR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT
LIMTED TO, PROCUREMENT COF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; CR BUSI NESS | NTERRUPTI ON) HOMEVER CAUSED AND
ON ANY THECRY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY,
CR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY QUT
CF THE USE OF TH S SOFTWARE, EVEN |IF ADVI SED OF THE PCSSI Bl LI TY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many

i ndividuals on behalf of the Apache Software Foundation. For nore
information on the Apache Software Foundation, please see

<htt p: // ww. apache. or g/ >.

Portions of this software are based upon public domain software
originally witten at the National Center for Superconputing Applications,
University of Illinois, U bana-Chanpaign.

T T T T R R R

Oracle is required to provide the text of the third-party license, but the third-party
program will be subject to the Oracle license, and Oracle will NOT provide warranties
and technical support for the third-party technology.

This program contains third-party code from Jaxen. Under the terms of the Jaxen
license, Oracle is required to provide the following notices. Note, however, that the
Oracle program license that accompanied this product determines your right to use
the Oracle program, including the Jaxen software, and the terms contained in the
following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the Jaxen software is provided by Oracle "AS
IS" and without warranty or support of any kind from Oracle or Jaxen.

The Jaxen Software License

Copyright (C) 2000-2002 bob mcwhirter & James Strachan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

B-2 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

SAXPath

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

3. The name "Jaxen" must not be used to endorse or promote products derived from
this software without prior written permission. For written permission, please
contact license@jaxen.org.

4. Products derived from this software may not be called "Jaxen”, nor may "Jaxen"
appear in their name, without prior written permission from the Jaxen Project
Management (pm@jaxen.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the Jaxen Project (http://www.jaxen.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.jaxen.org/.

THIS SOFTWARE IS PROVIDED “AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE Jaxen AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf
of the Jaxen Project and was originally created by bob mcwhirter and James Strachan .
For more information on the Jaxen Project, please see http://www.jaxen.org/.

SAXPath

Oracle is required to provide the text of the third-party license, but the third-party
program will be subject to the Oracle license, and Oracle will NOT provide warranties
and technical support for the third-party technology.

This program contains third-party code from SAXPath. Under the terms of the
SAXPath license, Oracle is required to provide the following notices. Note, however,
that the Oracle program license that accompanied this product determines your right
to use the Oracle program, including the SAXPath software, and the terms contained
in the following notices do not change those rights. Notwithstanding anything to the
contrary in the Oracle program license, the SAXPath software is provided by Oracle
"AS IS" and without warranty or support of any kind from Oracle or SAXPath.

The SAXPath License

Copyright (C) 2000-2002 werken digital. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

Third Party Licenses B-3

SAXPath

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution.

3. The name "SAXPath" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission,
please contact license@saxpath.org.

4. Products derived from this software may not be called "SAXPath", nor may
"SAXPath" appear in their name, without prior written permission from the
SAXPath Project Management (pm@saxpath.org).

In addition, we request (but do not require) that you include in the end-user
documentation provided with the redistribution and/or in the software itself an
acknowledgment equivalent to the following: "This product includes software
developed by the SAXPath Project (http://www.saxpath.org/)." Alternatively, the
acknowledgment may be graphical using the logos available at
http://www.saxpath.org/.

THIS SOFTWARE IS PROVIDED “"AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE SAXPath AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. This software consists of voluntary contributions
made by many individuals on behalf of the SAXPath Project and was originally
created by bob mcwhirter and James Strachan . For more information on the SAXPath
Project, please see http://www.saxpath.org/. */

B-4 Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

A

application events (JspScopelListener), 9-1
attachments (mail JavaBean and tag), 8-19

B

bean references, compile-time JML, A-2
binding (Web services), 10-3

C

cache block (Web Object Cache)

expiration, 7-7

invalidation, 7-7

methods, 7-34

naming, 7-4,7-10

runtime functionality, 7-6
cache policy (Web Object Cache)

and scope, 7-4

attributes, 7-8

creation, 7-27

descriptor, 7-38

methods, 7-28
cache repository descriptor, Web Object Cache, 7-40
cache tag (Web Object Cache), 7-15, 7-21
cachelnclude tag (Web Object Cache), 7-22
cacheXMLODbj tag (Web Object Cache), 7-18, 7-21
caching

Edge Side Includes, 6-2

JESI tags for Edge Side Includes, 6-4

Oracle Application Server and JSP caching

features, overview, 1-10
Oracle Application Server Java Object
Cache, 1-10

Oracle Web Object Cache, 7-1

OracleAS Web Cache, 6-3
call tag, compile-time JML, A-8
checkPageScope tag (JspScopeListener), 9-2
choose tag, JML, 3-6
cloneable cache objects (Web Object Cache), 7-5
codeblock tag (JESI), 6-22
compile-time JML tags

syntax support, A-1

tag summary and descriptions, A-3

taglib directive, A-4

Index

compile-time tag support, A-1
configuration file for invalidation, JESI, 6-27
ConnBean JavaBean (for connection), 4-3
ConnCacheBean JavaBean (for connection
cache), 4-5
connection caching
through ConnCacheBean JavaBean, 4-5
through data sources, 4-2
control tag (JESI), 6-14
control/include model (JESI tags)
examples, 6-18
overview, 6-6
cookie tag (JESI), 6-29
createBean tag (EJB), 9-13
CursorBean JavaBean (for DML), 4-8

D

data sources, support for data-access beans and
tags, 4-2
data-access JavaBeans
ConnBean for connection, 4-3
ConnCacheBean for connection cache, 4-5
CursorBean for DML, 4-8
DBBean for queries, 4-7
overview, 4-1
support for data sources, connection pooling, 4-2
data-access tags--see SQL tags
DBBean JavaBean (for queries), 4-7
dbClose SQL tag, close connection, 4-15
dbCloseQuery SQL tag, close cursor, 4-17
dbExecute SQL tag, DML/DDL, 4-17
dbNextRow SQL tag, process results, 4-17
dbOpen SQL tag, open connection, 4-12
dbQuery SQL tag, execute query, 4-15
dbSetCookie SQL tag, 4-19
dbSetParam SQL tag, 4-18
demo location, OTN, 1-1
displayCurrency tag (utility), 9-16
displayDate tag (utility), 9-17
displayNumber tag (utility), 9-17
download file features--see file access
DownloadServlet (file access, downloads), 8-12

Index-1

E

G

Edge Side Includes
JESI-ESI conversion, 6-33
overview, 6-2
EJB tags
configuration, 9-10
descriptions, 9-11
examples, 9-14
tag library descriptor file, 9-11
ESI--see Edge Side Includes
event-handling (JspScopeListener), 9-1
expiration policy (Web Object Cache)
attributes, 7-12
methods, 7-33
retrieval, 7-32
expiration, Web Object Cache, 7-7
explicit cache block naming, Web Object Cache,
7-10
expression language (JSTL), 1-15
extensions
JML types, descriptions, 2-2
JML types, overview, 2-1
overview of data-access JavaBeans, 1-4
overview of extended types, 1-2
overview of JML tag library, 1-5
overview of JspScopeListener, 1-3
overview of portable extensions, 1-1
overview of SQL tag library, 1-4
overview of XML/XSL support, 1-3

=

7-4,

file access tags and beans
DownloadServlet, 8-12
example, httpDownload tag, 8-18
example, HttpDownloadBean, 8-12
example, HttpUploadBean, 8-8
example, httpUploadForm and httpUpload

tags, 8-15

FileAccessException, 8-12
httpDownload tag, 8-16
HttpDownloadBean, 8-8
httpUpload tag, 8-14
HttpUploadBean, 8-4
httpUploadForm tag, 8-13
overview, 8-1
recursive downloading, 8-3

security considerations for downloading, 8-4

security considerations for uploading, 8-3
tag library descriptor file, 8-13
file download features--see file access
file upload features--see file access
fileaccess table, fileaccess.sql script, 8-2
FileAccessException (file access), 8-12
fileaccess.properties file, 8-2
flush tag, JML, 3-9
for tag, ML, 3-7
foreach tag, JML, 3-8
forward tag, compile-time JML, A-9
fragment tag (JESI), 6-21

Index-2

getCache() method (Web Object Cache), 7-28
getProperty tag, compile-time JML, A-6

H

header tag (JESI), 6-30

httpDownload tag (file access, download), 8-16
HttpDownloadBean (file access, download), 8-8
httpUpload tag (file access, upload), 8-14
HttpUploadBean (file access, upload), 8-4
httpUploadForm tag (file access, upload), 8-13

if tag, IML, 3-6
ifiInRole tag (utility), 9-18
implicit cache block naming, Web Object Cache, 7-4,
7-10
include tag (JESI), 6-15
include tag, compile-time JML, A-9
invalidate tag (JESI), 6-25
invalidateCache tag (Web Object Cache), 7-23
invalidateCacheXXX() methods (Web Object
Cache), 7-28
invalidation
JESI invalidation examples, 6-30
JESI invalidation of cached objects, 6-11
Web Object Cache, 7-7
invoke tag (Web services), 10-13
iterate tag (EJB), 9-13
iterate tag (utility), 9-18

J

Java Object Cache--see Oracle Application Server Java
Obiject Cache
JavaBeans
bean references, compile-time JML, A-2
for file access, 8-4
JML bean binding tags, 3-3
Oracle data-access beans, 4-1
SendMailBean, 8-21
JavaServer Pages Standard Tag Library--see JSTL
jesi codeblock tag, 6-22
jesi control tag, 6-14
jesi cookie tag, 6-29
jesi fragment tag, 6-21
jesi header tag, 6-30
jesi include tag, 6-15
jesi invalidate tag, 6-25
jesi object tag, 6-28
jesi param tag, 6-17
jesi personalize tag, 6-32
JESI tags
configuration file for invalidation, 6-27
control/include examples, 6-18
control/include model, 6-6
example, personalization of cached pages, 6-33
invalidation, 6-11

invalidation examples, 6-30
invalidation tag and subtags, 6-25
JESI includes, functionality, 6-11
overview of Oracle implementation, 6-5
personalization of cached pages, 6-12
personalization tag, cached pages, 6-32
tag descriptions, 6-13
tag handling, JESI-ESI conversion, 6-33
tag library descriptor file, 6-13
tags for dynamic caching, 6-13
template/fragment examples, 6-23
template/fragment model, 6-7
usage models, 6-6
jesi template tag, 6-20
jml call tag, compile-time JML, A-8
jml choose tag, 3-6
JML expressions, compile-time JML
attribute settings, A-2
syntax, A-2
jml flush tag, 3-9
jml for tag, 3-7
jml foreach tag, 3-8
jml forward tag, compile-time JML, A-9
jml getProperty tag, compile-time JML, A-6
jmliftag, 3-6
jml include tag, compile-time JML, A-9
jml lock tag, compile-time JML, A-8
jml otherwise tag, 3-6
jml plugin tag, compile-time JML, A-10
jml printtag, A-10
jml remove tag, 3-5
jmlreturntag, 3-8
jml set tag, compile-time JML, A-7
jml setProperty tag, compile-time JML, A-7
JML tags
attribute settings, compile-time JML, A-2
bean references, compile-time JML, A-2
descriptions, additional compile-time tags, A-5
descriptions, bean binding tags, 3-3
descriptions, logic/flow control tags, 3-5
expressions, compile-time JML, A-2
overview, 3-1
philosophy, 3-2
requirements, 3-1
summary of tags, categories, 3-2
summary, compile-time vs. runtime, A-4
tag library descriptor file, 3-1
taglib directive, compile-time JML, A-4
JML types
example, 2-5
JmlIBoolean, 2-2
JmIFPNumber, 2-3
JmINumber, 2-3
JmIString, 2-4
overview, 2-1
jml useBean tag, compile-time JIML, A-6
jml useCookie tag, 3-4
jml useForm tag, 3-4
jml useVariable tag, 3-3
jmlwhen tag, 3-6

JmlIBoolean extended type, 2-2
JmIFPNumber extended type, 2-3
JmINumber extended type, 2-3
JmIString extended type, 2-4
JSP Markup Language--see JML
JspScopeEvent class, event handling, 9-1
JspScopelListener

application scope support, 9-4

examples, 9-5

general use, 9-1

overview, 9-1

page scope support, 9-2

request scope support, 9-3

requirements, 9-2

sample application, 9-5

session scope, integration with

HttpSessionBindingListener, 9-4

use in OC4J / servlet 2.3, 9-2
JSTL

expression language, 1-15

overview, 1-14

scoped variables, 1-17

tag summaries, 1-18

L

lastModified tag (utility), 9-19
lock tag, compile-time JIML, A-8
lookupPolicy() method (Web Object Cache), 7-27

M

mail JavaBean and tag
attachments, 8-19
general considerations, 8-19
introduction, 8-18
sendMail tag description, 8-24
SendMailBean description, 8-21
tag library descriptor file, 8-25

map tag (Web services), 10-11

message (Web services), 10-2,10-3, 10-4

O

Object Caching Service for Java--see Oracle
Application Server Java Object Cache
object tag (JESI), 6-28
operation (Web services), 10-3
Oracle Application Server Java Object Cache
as default Web Object Cache repository, 7-3
configuration notes, 7-41
introduction, 1-10
versus Web Object Cache, 1-12
OracleAS Web Cache
ESI processor, 6-4
introduction, 1-10, 6-3
steps in usage, 6-3
versus Web Object Cache, 1-11
otherwise tag, IML, 3-6

Index-3

P

page events (JspScopeListener), 9-1

param tag (JESI), 6-17

parsexml tag for XML output, 5-5

part tag (Web services), 10-14

parts, message (Web services), 10-4
personalization (customization), JESI, 6-12
personalize tag (JESI), 6-32

plugin tag, compile-time JML, A-10

port (Web services), 10-3

port type (Web services), 10-3

print tag, JML, A-10

property tag (Web services), 10-12
putCache() method (Web Object Cache), 7-28

R

recursive downloading (file access tags and
beans), 8-3
remove tag, JIML, 3-5
request events (JspScopeListener), 9-1
resource management
application (JspScopeListener), 9-1
page (JspScopeListener), 9-1
request (JspScopeListener), 9-1
session (JspScopeListener), 9-1
return tag, JML, 3-8
row prefetching, through ConnBean, 4-3
RPC (Web services), 10-2
runtime functionality, Web Object Cache, 7-6

S

sample applications

demo location, OTN, 1-1

JML types example, 2-5

JspScopeListener, event-handling, 9-5

sendMail tag, 8-27

Web services tags, 10-15

XML transform and dbQuery tag example, 5-7

XML transform and parsexml tag example, 5-9

XML transform tag example, 5-6
section IDs (Web Object Cache), 7-29
security considerations

file download tags and beans, 8-4

file upload tags and beans, 8-3
sendMail tag

attribute descriptions, 8-26

sample application, 8-27

syntax, 8-25
SendMailBean, 8-21
session events (JspScopeListener), 9-1
set tag, compile-time JML, A-7
setProperty tag, compile-time JIML, A-7
SOAP (Web services), 10-2
SQL tags

overview, tag list, 4-11

requirements, 4-11

support for data sources, connection pooling, 4-2

tag library descriptor file, 4-11

Index-4

SQL tags (JSTL), 1-18
statement caching
through ConnBean, 4-3
through ConnCacheBean, 4-5

styleSheet tag for XML transformation,

surrogates (Edge Side Includes), 6-2

T

5-4

tag libraries
for file access, 8-12
for other Oracle components, 1-21
JESI tags, descriptions, 6-13
JESI tags, overview, 6-4
Oracle JML tag descriptions, 3-2
Oracle JML tags, overview, 3-1
Oracle SQL tags, 4-11
sendMail tag, 8-24
syntax and symbology notes, 1-2
XML tags, 5-3
tag library descriptor files
for EJB tags, 9-11
for JESI tags, 6-13
for Oracle file access tags, 8-13
for Oracle JML tags, 3-1
for Oracle mail tag, 8-25
for Oracle SQL tags, 4-11
for Oracle XML tags, 5-3
for utility tags, 9-16
for Web Object Cache tags, 7-14
for Web services tags, 10-9
template code (JESI), 6-20
template tag (JESI), 6-20
template/fragment model (JESI tags)
examples, 6-23
overview, 6-7
transform tag for XML transformation,
types
JML types example, 2-5
JmlIBoolean extended type, 2-2
JmIFPNumber extended type, 2-3
JmINumber extended type, 2-3
JmIString extended type, 2-4

5-4

Oracle JML extended types, descriptions, 2-2
Oracle JML extended types, overview, 2-1

overview of Oracle type extensions,

U

1-2

UDDI (Web services), 10-2

update batching, through ConnBean,
upload file features--see file access
useBean tag (EJB), 9-12

useBean tag, compile-time JML, A-6
useCacheObj tag (Web Object Cache),
useCookie tag, IML, 3-4

useForm tag, JML, 3-4

useHome tag (EJB), 9-12
useVariable tag, IML, 3-3

utility tags

43

7-20, 7-21

introduction, 9-16
tag library descriptor file, 9-16

w

Web Object Cache
benefits, 7-2
cache block methods, 7-34
cache block naming, 7-4, 7-10
cache block runtime functionality, 7-6
cache policy and scope, 7-4
cache policy attributes, 7-8
cache policy creation, 7-27
cache policy descriptor, 7-38
cache policy methods, 7-28
cache repository descriptor, 7-40
cachetag, 7-15
cache tag examples, 7-26
cachelnclude tag, 7-22
cacheXMLObj tag, 7-18
cloneable cache objects, 7-5
configuration notes for file system cache, 7-42

configuration notes for Oracle Application Server

Java Object Cache, 7-41

data invalidation and expiration, 7-7
expiration policy attributes, 7-12
expiration policy methods, 7-33
expiration policy retrieval, 7-32
invalidateCache tag, 7-23
overview, 7-1
overview, cache repository, 7-3
overview, programming interfaces, 7-3
role, versus other caches, 1-11
section IDs, 7-29
servlet API descriptions, 7-27
servlet example, 7-36
tag descriptions, 7-14
tag library descriptor file, 7-14
useCacheObjtag, 7-20

Web services
binding, 10-3
general overview, 10-1
message, 10-2, 10-3, 10-4
operation, 10-3
OracleAS Web Services overview, 10-7
port type, 10-3
RPC, 10-2
SOAP, 10-2
tags (also see "Web services tags”), 10-7
uDDI, 10-2
WSDL, 10-2,10-3, 10-5
XML schema definitions, 10-4

Web services invoke tag, 10-13

Web services map tag, 10-11

Web services parttag, 10-14

Web services property tag, 10-12

Web services tags
descriptions, 10-9
example, 10-15
functionality overview, 10-8

overview, 10-7

tag library descriptor file, 10-9
Web services webservice tag, 10-10
webservice tag (Web services), 10-10
WebServiceProxy interface, 10-8
when tag, JML, 3-6
WSDL (Web services), 10-2, 10-3, 10-5

X

XML schema definitions (Web services), 10-4
XML/ XSL tags
parsexml tag for XML output, 5-5
styleSheet tag for XML transformation, 5-4
summary of related OC4J tags, 5-2
tag library descriptor file, 5-3
transform and dbQuery tag example, 5-7
transform and parsexml tag example, 5-9
transform tag example, 5-6
transform tag for XML transformation, 5-4
XML producers and consumers, 5-1
XML/XSL tags (JSTL), 1-18
XPath (XML Path, JSTL), 1-20
XSD--see XML schema definitions

Index-5

Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Overview of Tag Libraries and Utilities
	Overview of Tag Libraries and Utilities Provided with OC4J
	Tag Syntax Symbology and Notes
	Overview of Extended Type JavaBeans
	Overview of JspScopeListener for Event-Handling
	Overview of Integration with XML and XSL
	Summary of Data-Access JavaBeans and Tag Library
	Summary of JSP Markup Language (JML) Custom Tag Library
	Summary of Web Services Tags
	Summary of File Access and Mail Tags
	Summary of EJB Tags
	Summary of JSP Utility Tags

	Summary of Oracle Caching Support for Web Applications
	Oracle Application Server and JSP Caching Features
	Role of the JSP Web Object Cache
	Web Object Cache Versus OracleAS Web Cache
	Web Object Cache Versus Oracle Application Server Java Object Cache

	Summary of Tag Libraries for Caching
	Summary of JESI Tag Library
	Summary of Web Object Cache Tag Library

	Support for the JavaServer Pages Standard Tag Library
	Overview and Philosophy of JSTL
	Summary of JSTL Expression Language
	JSTL Expression Language Syntax
	JSTL Expression Language Implicit Objects
	JSTL Expression Language Additional Features

	Overview of JSTL Tags and Additional Features
	Scoped Variables
	Configuration Data and the Config Class
	JSTL Tag Summary

	JSTL Usage Notes and Future Considerations

	Overview of Tag Libraries from Other Oracle Components
	Oracle ADF Business Components Tag Library
	Oracle JDeveloper User Interface Extension (UIX) Tag Library
	Oracle ADF Business Components UIX Tag Library
	Oracle Application Server Wireless Location Tag Library
	Oracle Application Server MapViewer Tag Library
	Oracle Ultra Search Tag Library
	Oracle Application Server Portal Tag Library
	Oracle Business Intelligence Beans Tag Library
	Oracle Application Server Multimedia Tag Library

	2 JavaBeans for Extended Types
	Overview of JML Extended Types
	JML Extended Type Descriptions
	Type JmlBoolean
	Type JmlNumber
	Type JmlFPNumber
	Type JmlString
	JML Extended Types Example

	3 JSP Markup Language Tags
	Overview of the JSP Markup Language (JML) Tag Library
	JML Tag Library Philosophy
	JML Tag Categories

	JSP Markup Language (JML) Tag Descriptions
	Bean Binding Tag Descriptions
	JML useVariable Tag
	JML useForm Tag
	JML useCookie Tag
	JML remove Tag

	Logic and Flow Control Tag Descriptions
	JML if Tag
	JML choose...when...[otherwise] Tags
	JML for Tag
	JML foreach Tag
	JML return Tag
	JML flush Tag

	4 Data-Access JavaBeans and Tags
	JavaBeans for Data Access
	Introduction to Data-Access JavaBeans
	Data-Access Support for Data Sources and Pooled Connections
	Data-Access JavaBean Descriptions
	ConnBean for a Database Connection
	ConnCacheBean for Connection Caching
	DBBean for Queries Only
	CursorBean for DML and Stored Procedures
	Example: Using ConnBean and CursorBean with a Data Source

	SQL Tags for Data Access
	Introduction to Data-Access Tags
	Data-Access Tag Descriptions
	SQL dbOpen Tag
	SQL dbClose Tag
	SQL dbQuery Tag
	SQL dbCloseQuery Tag
	SQL dbNextRow Tag
	SQL dbExecute Tag
	SQL dbSetParam Tag
	SQL dbSetCookie Tag
	Example: Using dbOpen and dbQuery with a Data Source

	5 XML and XSL Tag Support
	Overview of Oracle Tags for XML Support
	XML Producers and XML Consumers
	Summary of OC4J Tags with XML Functionality

	XML Utility Tags
	XML Utility Tag Descriptions
	XML transform and styleSheet Tags for XML/XSL Data Transformation
	XML parsexml Tag to Convert from Input Stream

	XML Utility Tag Examples
	Example Using the transform Tag
	Example Using the transform and dbQuery Tags
	Examples Using the transform and parsexml Tags

	6 JESI Tags for Edge Side Includes
	Overview of Edge Side Includes Technology and Processing
	Edge Side Includes Technology
	Introduction to ESI
	More About Surrogates
	Key ESI Features

	Oracle Application Server Web Cache and ESI Processor
	Introduction to Oracle Application Server Web Cache
	Steps in Oracle Application Server Web Cache Usage
	Oracle Application Server Web Cache ESI Processor

	Overview of JESI Functionality
	Advantages of JESI Tags
	Overview of JESI Tags Implemented by Oracle
	JESI Usage Models
	Control/Include Model
	Template/Fragment Model
	Notes About JESI and JSP Includes

	Invalidation of Cached Objects
	Personalization of Cached Pages
	JESI Fallback Execution

	Oracle JESI Tag Descriptions
	Descriptions of Tags for Dynamic Caching
	JESI control Tag
	JESI include Tag
	JESI param Tag
	Examples: Control/Include Model
	JESI template Tag
	JESI fragment Tag
	JESI codeblock Tag
	Examples: Template/Fragment Model

	Descriptions of Tags and Subtags for Invalidation of Cached Objects
	JESI invalidate Tag
	JESI Configuration File
	JESI object Subtag
	JESI cookie Subtag
	JESI header Subtag
	Examples: Page Invalidation

	Description of Tag for Page Personalization
	JESI personalize Tag
	Example: Page Personalization

	JESI Tag Handling and JESI-to-ESI Conversion
	Example: JESI-to-ESI Conversion for Included Pages
	Example: JESI-to-ESI Conversion for a Template and Fragment

	7 Web Object Cache Tags and API
	Overview of the Web Object Cache
	Benefits of the Web Object Cache
	Web Object Cache Components
	Cache Repository
	Cache Programming Interfaces

	Cache Policy and Scope

	Key Functionality of the Web Object Cache
	Cache Block Naming: Implicit Versus Explicit
	Cloneable Cache Objects
	Memory-Oriented Repositories Versus Secondary Storage Repositories
	Advantages in Cloning Copies of Cache Objects
	Use of the CloneableCacheObject Interface

	Cache Block Runtime Functionality
	Data Invalidation and Expiration
	Cache Block Expiration
	Cache Block Invalidation

	Attributes for Policy Specification and Use
	Cache Policy Attributes
	Cache Policy Attribute Descriptions
	More About Cache Block Naming and the autoType Attribute
	More About reusableTimeStamp and reusableDeltaTime

	Expiration Policy Attributes

	Web Object Cache Tag Descriptions
	Cache Tag Descriptions
	Web Object Cache cache Tag
	Web Object Cache cacheXMLObj Tag
	Web Object Cache useCacheObj Tag
	Conditional Execution of Code Inside the Cache Tags
	Web Object Cache cacheInclude Tag

	Cache Invalidation Tag Description
	Web Object Cache invalidateCache Tag
	Example: Use of Cache Invalidation Tag

	Web Object Cache API Descriptions
	Cache Policy Object Creation
	Using the lookupPolicy() Method
	Using a CachePolicy Constructor

	CachePolicy Methods
	CachePolicy Method Signatures and Common Parameters
	CachePolicy Method Descriptions
	CachePolicy Getter and Setter Methods

	Expiration Policy Object Retrieval
	ExpirationPolicy Methods
	CacheBlock Methods
	Tag Code Versus API Code
	Simple JSP Page: tagcode.jsp
	Scriptlet JSP Page: servletcode.jsp
	Servlet Page: DemoCacheServlet.java
	Cache Policy Descriptor: test-policy.cpd

	Cache Policy Descriptor
	Cache Policy Descriptor DTD
	Sample Cache Policy Descriptor
	Cache Policy Descriptor Loading and Refreshing

	Cache Repository Descriptor
	Cache Repository Descriptor DTD
	Sample Cache Repository Descriptor

	Configuration for Back-End Repository
	Configuration Notes for Oracle Application Server Java Object Cache
	Configuration Notes for File System Cache

	8 File Access and Mail Beans and Tags
	File-Access JavaBeans and Tags
	Overview of OC4J File-Access Functionality
	Overview of File Uploading
	Overview of File Downloading

	File Upload and Download JavaBean and Class Descriptions
	The HttpUploadBean
	The HttpDownloadBean
	The Download Servlet
	FileAccessException Class

	File Upload and Download Tag Descriptions
	The httpUploadForm Tag
	The httpUpload Tag
	The httpDownload Tag

	Mail JavaBean and Tag
	General Considerations for the Mail JavaBean and Tag
	Mail Attachments
	Enabling Attachments
	Sending Attachments
	Attachment Usage Notes

	SendMailBean Description
	SendMailBean Requirements
	SendMailBean Method Descriptions

	The sendMail Tag Description
	The sendMail Tag Syntax
	The sendMail Tag Attribute Descriptions
	Sample Application for sendMail Tag

	9 JSP Utilities and Utility Tags
	JSP Event-Handling with JspScopeListener
	General Use of JspScopeListener
	Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments
	Requirements for JspScopeListener
	Runtime and Tag Implementations to Support Page Scope
	Servlet Filter Implementation to Support Request Scope
	Listener Class Implementation to Support Application Scope
	Integration with HttpSessionBindingListener to Support Session Scope

	Examples Using JspScopeListener
	Example: JSP Page Using JspScopeListener
	Example: Servlet Using JspScopeListener

	EJB Tags
	EJB Tag Configuration
	EJB Tag Descriptions
	EJB useHome Tag
	EJB useBean Tag
	EJB createBean Tag
	EJB iterate Tag

	EJB Tag Examples
	EJB Tag Session Bean Example
	EJB Tag Entity Bean Example

	General Utility Tags
	Display Tags
	Utility displayCurrency Tag
	Utility displayDate Tag
	Utility displayNumber Tag

	Miscellaneous Utility Tags
	Utility iterate Tag
	Utility ifInRole Tag
	Utility lastModified Tag

	10 Web Services Tags
	Overview of Web Services
	General Web Services Overview
	Overview of SOAP and Related Features
	Overview of Web Services Description Language Key Elements
	Overview of Web Service Messages and XML Schema Definitions
	Web Service Example
	Example: WSDL Definition
	Example: SOAP Messages Embedded in HTTP Request and Response

	OC4J Web Services Tags
	Overview of OracleAS Web Services and the Tag Library Implementation
	Overview of Functionality of Web Services Tags
	Web Services Tag Descriptions
	Web Services webservice Tag
	Web Services map Tag
	Web Services property Tag
	Web Services invoke Tag
	Web Services part Tag

	Web Services Tag Examples
	Web Services Example: Usage Template
	Web Services Example: Sample JSP Page for RPC-Style Web Service
	Web Services Example: Sample JSP Page for Document-Style Web Service

	A JML Compile-Time Syntax and Tags
	JML Compile-Time Syntax Support
	JML Bean References and Expressions, Compile-Time Implementation
	JML Bean References
	JML Expressions

	Attribute Settings with JML Expressions

	JML Compile-Time Tag Support
	The taglib Directive for Compile-Time JML Support
	JML Tag Summary, Compile-Time Versus Runtime
	Descriptions of Additional JML Tags, Compile-Time Implementation
	JML useBean Tag
	JML getProperty Tag
	JML setProperty Tag
	JML set Tag
	JML call Tag
	JML lock Tag
	JML include Tag
	JML forward Tag
	JML print Tag
	JML plugin Tag

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Jaxen
	The Jaxen Software License

	SAXPath
	The SAXPath License

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W
	X

