ORACLE

Oracle® Application Server Containers for J2EE
Servlet Developer's Guide

10g Release 2 (10.1.2)
Part No. B14017-01

November 2004

Oracle Application Server Containers for J2EE Servlet Developer’s Guide, 10g Release 2 (10.1.2)
Part No. B14017-01

Copyright © 2002, 2004, Oracle. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Tim Smith

Contributors: Bryan Atsatt, Ashok Banerjee, Bill Bishop, Olivier Caudron, Cania Chung, Olaf Heimburger,
Gerald Ingalls, James Kirsch, Sunil Kunisetty, Philippe Le Mouel, David Leibs, Sastry Malladi, Jasen Minton,
Debu Panda, Lenny Phan, Shiva Prasad, Paolo Ramasso, Charlie Shapiro, JJ Snyder, Joyce Yang, Serge Zloto,
Sheryl Maring, Ellen Siegal

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data”
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

SENA US YOUT COMMENES ..ottt ettt ettt et et eee ettt ettt en et et et et st et et et sesaranns vii
P T O C 8 ettt ettt ettt ettt ettt ettt ettt ettt ix
1N (T gL [T AN B Lo [1< g ot =TT iX
DocuMENtatioN ACCESSIDITITYciiiiieiiee et ix
] 1 U o1 {0 L= OSSPSR X
(2T E=N (Lo B B Ta Yot U] 3 41T | £SO Xi
(070 0 V7=1 1 (0] o 1 Xiii

1 Servlet Overview

INTrOAUCTION 10 SEIVIELS ... e ettt eb et sbe et 1-1
Review Of Serviet TECHNOIOQY ..o sre s 1-2
AAVANTAGES OF SEIVITSoviiiiiiii bbbt 1-2
The Servlet Interface and Request and Response ODJECES.......cccvivvviivieeiieeie e 1-3
Serviets and the SErvIet CONTAINET.........cc.ooi et neens 1-4
INtroduction tO SENVIEE SESSIONS.......eiiiiie et te et ne e re e ereenes 1-5
INtroduCtion O SENVIET CONTEXTSc.viiiiiiisiiieieiec et s se e saesae e erenes 1-6
Introduction to Servlet Configuration OBJECES.........ccciiiiiii i 1-8
INtrodUCTION O SENVIET FITEIS. .. ocuiieie ittt e renee s 1-8
INtroduction t0 EVENT LISTENEIS.cciiiieiiiieiees ettt sttt ene s 1-9
JSP Pages and Other J2EE COMPONENT TYPES.....ciiiiiiierieeieieeieie e e saesresaesreeseesseesaessaessesseenes 1-9

A FIFST SErVIET EXAMPIE ...t bbbttt 1-9
HEHO WOFIA COUE ...t ettt eb ettt en e 1-9
Compiling and Deploying the SEFVIET ... 1-10
RUNNING the SEIVIET ... et te e st e s te e benbeenbeenas 1-10

2 Servlet Development

OCA4J Standalone fOr DEVEIOPIMENTc.ooiiiiiii e 2-1
Overview: Using OC4J StANAAIONEcocoviieii et see e snennee 2-2
Key OCA4J Flags fOr DEVEIOPIMENTcoiiiiiiieieeeet e 2-3
Removal of tools.jar from OC4J Standalone............ccveiiiieiiiiicc e 2-4

Servlet Development Basics and Key CONSIAerations...........coccovvenieriniiineneencse e 2-4
SF Uaa] o] (= @foTo [T =1 o] o] - L (S 2-5
SEIVIEL LITECYCIE ... bbbttt abe e ene e 2-6
SEIVIET PrelOAOINGoovcviiiiiieitiieeie bbb ee ettt 2-6

Servlet Classloading and Application Redeployment............ccocooeieiiiineieinscieieesesee e 2-7

Serviet INformation EXChaNQEeccooviiiiii i sr e 2-10
Serviet INClUdeS aNd FOMWAIAS...........coviiieiieieess st sre e e 2-10
Servlet Thread Models and Related ConsSiderations............ccocviiiieiinciniesices e 2-11
Servlet Performance and MONITOMING........cooviiiiiiiiie e 2-12
JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages..........ccccccevvevieneveciicinennn, 2-13
AdditioNal Oracle FEATUIES..........oiiieie et s sb e 2-14
1107 N ol o || o1 FEOTR RSOOSR TSP PP PTPRTRPPPOO 2-14
L= VA [A 1= o T8 o o [g Vo SRRSO 2-17
Oracle JDeveloper Support for Serviet Development..........cccooiiiiiinneneceees 2-19
Introduction to OC4J Support for Open Source Frameworks...........cccoovvevvcieeie v svie e, 2-19
STV 1= 0 oL oo 4 o] o TSSO 2-19
Summary of URL COMPONENTS.......cociiiieie et ae e e sna e snaeseesreens 2-19
Servlet Invocation by Class Name During OC4J Development...........cccvervrninnensicnienns 2-22
Servlet Invocation in an Oracle Application Server Production Environment.................... 2-23
Servlet Invocation in an OC4J Standalone ENVIronNmMentcccceeveineiieinene e 2-25
ST RV [ST] o] o 1TSS 2-25
S Te TS T T I = el (o SRS STSPR 2-25
Features of the HttpSesSion INLEITACE...........covv i 2-28
SESSION CANCEIATION ...t bbbttt b bbbt es e e bbb 2-29
Session Replication in a Distributable APPlication ..., 2-29
SESSION SEIVIEL EXAMIPIE.. ..ot e seeare e 2-31
SEIVIEE SECUITLY ...ttt bbb bbbt bt b bt b ettt sb b e st et e s e ebenr e neeneas 2-33
USE OF SECUNILY FEALUIEScuviiiiiii ittt et e e et e et eere s e s aesraesreereesreas 2-34
Configuration of Oracle HTTP Server and OC4J fOr SSL.......cccooovivviiiiiie s 2-38
SSL Common Problems and SOIULIONSccoiiiiiiiii e 2-39
Additional Security CONSIAEIAtIONScciiiiiiieciiie e sae s 2-40

3 Servlet Filters and Event Listeners

1T VA L= T L T P 3-1
OVEIrVIEW OF SEIVIET FIITEIS ...t 3-1
How the Serviet Container INVOKES FIltErS ..o 3-2
Filtering of Forward or INCIUAE TarQELSccceuiiiiiiciere st ens 3-2
FIIE EXAMPIES ...ttt bt bbbt b bbbt b et nn s 3-3

EVENT LISTENEIS ...ttt bbbttt b bt eb e bt bbb e b s et e bbb e 3-11
Event Categories and LiStener INTErfacesccoiiiviriiiiiiiecse s 3-11
Typical EVENt LIStENEN SCENAIIOccvcviiiciecieie sttt st s sreereennees 3-12
Event Listener Declaration and INVOCAtIONc.coveieiriiiieiene s 3-13
Event Listener Coding and Deployment GUIdeliNgS.........ccccoevviiiie e 3-13
Event Listener Methods and Related CIaSSeScocoiiiiiiiiiiniiicere e 3-14
EVENT LIStENET SAMPIE ..ottt 3-16

4 JDBC and EJB Calls from Servlets

USE OF JIDBEC 1N SEIVIELS ...vieeeceee ettt st ne e e te s et et nne et nrenes 4-1
Database QUENY SEIVIEL..........coii ittt sttt e be e e e sbe et e neenneenes 4-1
Deployment and Testing of the Database QuUery Serviet.........c.cccoovviiveiieiini e 4-4

EJB Calls FrOmM SEIVIETS ..ottt bbbttt ettt ee b neenes 4-5

SEIVIET-EIB OVEIVIBWY ...ttt ettt ettt ettt e e et e s s bt e e sttt e e stee e s sabeessbbassabbesssstneesssbbesanes 4-6

(SN I o Tor= 1 0T (U o TSRS 4-8
EJB Remote Lookup within the Same APPLIiCation ... 4-14
EJB Remote Lookup Outside the Application ... 4-19

Deployment and Configuration Overview

General Overview of OC4J Deployment and Configurationc.cccovveveeiiinncneienseeee 5-1
Overview: OC4J Standalone Versus the Oracle Application Server Environment.................. 5-1
Overview of OC4J DeploymMeNt SCENAITOScooveviiriiriireiiee et 5-3
Using Oracle Deployment Tools Versus EXpert MOdES........c.ccovveiiivenieve e 5-4

Overview of Configuration FIlES ..o e 5-5
Introduction to OC4J and J2EE Configuration Filesccoe v 5-6
OC4J Top-Level Server Configuration File: server.Xml..........cccocoovviiviiiinie i 5-9
OC4J and J2EE AppPlication DESCIIPTOIScucviiiiriiieieiisie et 5-11
(O 10 NIF: Ta Lo IN YA =l SRV AV LT oI oY od] o] {0 TS 5-15
OCAIWED Site DESCIIPLONSveviiiteiiitiitite ettt ettt ettt eb e ettt sr et b et beebennenas 5-18
Example: Mappings to and from Web Site DeSCrPLOrSccvcvvvvevie i 5-19

APPHCATION PACKAGING ..oetieiieiieeice bbbttt b bbb 5-20
NP S SRAN o o] [Tor= Y a o] g TS] 4 (0 [od U | - USRS 5-21
EAR File and WAR File StFUCTUIES.........oiiiiiee et st se e eneenes 5-22

Deployment Scenarios to OC4J StandalOne ... e 5-23
Setting Up an Administrative User and PassWOrdcccocvevvieiiesieninsieeeese e eessee e e 5-24
Starting and Stopping OC4J StaNAIONE...........cooiiiiiiiice s 5-25
OC4] Default Application and Default Web Applicationcccccovveivievevn e 5-25
Deploying an EAR File to OCA4J StandalOone ..o 5-27
Deploying Files into a J2EE Application Structure on OC4J Standalone...............ccccceevvenneaee. 5-32
Deploying an Independent WAR File to OC4J Standalonecccooveveveiienonnnne e 5-32
Deploying Files into a Web Application Directory Structure on OC4J Standalone.............. 5-34
Application Undeployment or Redeployment in OC4J Standaloneccccocovvevicieiecnnn 5-36

OC4J Deployment in Oracle APPlIiCation SEIVEL ... 5-39
Overview of OC4J Deployment and Configuration in Oracle Application Server............... 5-39
OC4] Default Web Application in Oracle Application SErVEr ... 5-40
Application Undeployment and Redeployment in Oracle Application Server..................... 5-41

Configuration File Descriptions

Configuration for global-web-application.xml and orion-web.xmlc.cccooiiiiiic 6-1
Element Descriptions for global-web-application.xml and orion-web.xmlccccccvne. 6-1
DTD for global-web-application.xml and orion-web.Xmlccocooiiiniiniiinice 6-14
Hierarchical Representation of global-web-application.xml and orion-web.xml 6-18
Sample global-web-application. Xml SELHNGS........cccviiiirie s 6-19

Configuration for Web Site XIML FIleS........ccoiiiiieiieee st 6-20
Element Descriptions for Web Site XIML FIlES ..ot e 6-20
DTD fOor WeD Site XIML FIIESocuiiiiiiiieiee et et 6-28
Hierarchical Representation of Web Site XIML FileS ... 6-30
Sample default-Web-Site. XMl File........ccccoiiiii e 6-30

7 Configuration with Enterprise Manager

Web Module Configuration in Oracle Enterprise Manager 100ccovvireinnienenneresieseneenns 7-1
Application Server Control Console Page DesCriptionsccccccviveiiiieiici e 7-2
Application Server Control Console OC4J HOME PAge........ccccuevvereiviieie st eve e 7-2
Application Server Control Console OC4J Applications Page..........c.ccovevreiieiinncieieneeens 7-3
Application Server Control Console Deploy Application (EAR) Page.......cccccooevvivvvevveiviiennnnns 7-3
Application Server Control Console Deploy Web Application (WAR) Pagecc.cccveennne. 7-5
Application Server Control Console OC4J Administration Pagecccocevvvvinvievevecccie e, 7-6
Application Server Control Console Website Properties Page...........cccoveieiineiinneneienscnnnns 7-6
Application Server Control Console Web Module Page.......c..cccovevviiieieiie i 7-7
Application Server Control Console Web Module Properties Page...........cccccvevvvveneinnenienns 7-8
Application Server Control Console Web Module Mappings Page.........cccccevvveveieeveinennn. 7-10
Application Server Control Console Web Module Filtering and Chaining Page.................. 7-12
Application Server Control Console Web Module Environment Page ... 7-13
Application Server Control Console Web Module Advanced Properties Page 7-14

A Open Source Frameworks and Utilities

Configuration and Use of Jakarta Struts in OC4J ... A-1
OVErVIEW OF JAKAITA STIULS ... e A-2
Downloading the Struts Binary DistribUtioN ... A-2
Unpacking the Struts Binary DiStribDULION ..o A-2
Installing and Accessing Struts DOCUMENTALION..........cccoiiiiiiiiiicee e A-3
Installing the Struts Sample Web Application..........ccccvoiiiiiiiii e A-4
Deploying Your Own Application with the Struts FrameworkK...........ccccocoovveniiineninenene, A-5

Configuration and Use of Jakarta 10g4j in OC4J.......ccccco oo A-7
OVErVIEW OF JAKAITA TOG4]......c.vieiiiiiiiieeicic bbbt A-7
Downloading the log4j Binary DistribUtioN............ccccoiiiii i A-8
Unpacking the log4j Binary DiStriDULION...........cccciiieiiiecc e A-8
INstalling the 1094] LIDFary ... e A-8
Using 10g4j Configuration FIlESccoviiiiieceirecr et A-10
Enabling 10g4] DEDUG IMOGEcciuiiiiiiiiieireeee s A-13

B Third-Party Licenses

Index

vi

F N T ol T o I I I T YT TSRS B-1

The APache SOTIWAIE LICENSEc.iiiiiiiiiieiies et B-1

Send Us Your Comments

Oracle Application Server Containers for J2EE Servlet Developer’s Guide, 109
Release 2 (10.1.2)

Part No. B14017-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?

« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

« Electronic mail: appserverdocs_us@oracle.com

« FAX: (650) 506-7225. Attn: Java Platform Group, Information Development
Manager

« Postal service:

Oracle Corporation

Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 40p9

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

Vii

viii

Preface

This document introduces and explains the Oracle implementation of Java servlet
technology, specified by an industry consortium led by Sun Microsystems. It
summarizes standard features and covers Oracle implementation details and
value-added features. The discussion includes basic servlets, data-access servlets, and
servlet filters and event listeners.

Servlet technology is a component of the standard Java 2 Enterprise Edition (J2EE).
The J2EE component of the Oracle Application Server is known as the Oracle
Application Server Containers for J2EE (OC4)).

The OC4J servlet container in Oracle Application Server 10g Release 2 (10.1.2) is a
complete implementation of the Sun Microsystems Java Servlet Specification, Version 2.3.

This preface contains the following sections:
« Intended Audience

« Documentation Accessibility

« Structure

« Related Documents

« Conventions

Intended Audience

The guide is intended for J2EE developers who are writing Web applications that use
servlets and possibly JavaServer Pages (JSP). It provides the basic information you will
need regarding the OC4J servlet container. It does not attempt to teach servlet
programming in general, nor does it document the Java Servlet APl in detail.

You should be familiar with the current version of the Java Servlet Specification,
produced by Sun Microsystems. This is especially true if you are developing a
distributable Web application, in which sessions can be replicated to servers running
under more than one Java virtual machine (JVM).

If you are developing applications that primarily use JavaServer Pages, refer to the
Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive

Structure

technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://ww. oracl e. com accessi bility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in
this document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, JAWS may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

This document contains:

Chapter 1, "Servlet Overview"

Summarizes servlet technology and servlet development in general, introduces the
OC4] servlet container, and provides a simple "Hello World" example.

Chapter 2, "Servlet Development"

Describes how the OC4J servlet container supports servlet development and
invocation, including a discussion of key development considerations, a summary of
servlet SSL features, and related examples. This chapter also introduces the OC4J
standalone environment for the development stages.

Chapter 3, "Servlet Filters and Event Listeners”

Explains the use of filters to affect servlet input or output, and event listeners to track
session and application events and manage resources accordingly. These features were
introduced in version 2.3 of the servlet specification.

Chapter 4, "JDBC and EJB Calls from Servlets"
Provides examples for using JDBC calls and EJB calls from servlets.

Chapter 5, "Deployment and Configuration Overview"

Discusses how to build and deploy a Web application in OC4J, and provides an
overview of files for servlet and Web site configuration. This chapter is primarily
useful for OC4J standalone users but also considers Oracle Application Server.

Chapter 6, "Configuration File Descriptions"

Documents all the elements and attributes of the gl obal - web- appl i cati on. xm
and ori on-web. xm files for servlet configuration, and the

def aul t - web-si te. xm file (or other Web site XML files) for Web site
configuration. This level of detail is primarily useful for OC4J standalone users.

Chapter 7, "Configuration with Enterprise Manager"

Shows and describes Oracle Enterprise Manager 10g pages for servlet and Web site
configuration for deployment to an Oracle Application Server environment.

Appendix A, "Open Source Frameworks and Utilities"

Provides instructions for an OC4J standalone environment for installing and running
open source framework utilities you can employ with OC4J. For the OC4J 10.1.2
implementation, this consists of Struts and log4j from the Apache Jakarta Project.

Appendix B, "Third-Party Licenses"

Contains the Third-Party License for third-party products included with Oracle
Application Server and discussed in this document.

Related Documents

For more information, see the following Oracle resources.
Additional OC4J documents:
« Oracle Application Server Containers for J2EE Servlet Developer’s Guide

This book provides information about servlet development and the servlet
implementation and container in OC4J.

« Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide

This book provides information about JavaServer Pages development and the JSP
implementation and container in OC4J. This includes discussion of Oracle features
such as the command-line translator and OC4J-specific configuration parameters.

« Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information as well as detailed syntax and usage
information for tag libraries, JavaBeans, and other Java utilities provided with
OCA4J. There is also a summary of tag libraries from other Oracle product groups.

« Oracle Application Server Containers for J2EE Services Guide

This book provides information about standards-based Java services supplied
with OC4J, such as JTA, JNDI, JMS, JAAS, and the Oracle Application Server Java
Object Cache.

« Oracle Application Server Containers for J2EE Security Guide

This document (not to be confused with the Oracle Application Server 10g Security
Guide) describes security features and implementations particular to OC4J. This
includes information about using JAAS, the Java Authentication and
Authorization Service, as well as other Java security technologies.

« Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

This book provides information about Enterprise JavaBeans development and the
EJB implementation and container in OC4J.

Oracle Application Server TopLink documents:

« Oracle Application Server TopLink Getting Started Guide

« Oracle Application Server TopLink Mapping Workbench User’s Guide
« Oracle Application Server TopLink Application Developer’s Guide

Xi

Xi

Java-related documents for Oracle Database:

» Oracle Database Java Developer's Guide

» Oracle Database JDBC Developer's Guide and Reference

» Oracle Database JPublisher User's Guide

Additional Oracle Application Server documents:

= Oracle Application Server Administrator’s Guide

« Oracle Application Server Security Guide

« Oracle Application Server Certificate Authority Administrator’s Guide
« Oracle Application Server Performance Guide

« Oracle Enterprise Manager Concepts

« Oracle HTTP Server Administrator’s Guide

« Oracle Application Server Globalization Guide

« Oracle Application Server Web Cache Administrator’s Guide

« Oracle Application Server Web Services Developer’s Guide

= Oracle Application Server Upgrading to 10g Release 2 (10.1.2)

Oracle JDeveloper documentation:

« Oracle JDeveloper online help

= Oracle JDeveloper documentation on the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ product s/j dev/content. htm

Additional Oracle Database documents:

« Oracle XML Developer’s Kit Programmer’s Guide

= Oracle XML API Reference

« Oracle Database Application Developer's Guide - Fundamentals

« PL/SQL Packages and Types Reference

« PL/SQL User's Guide and Reference

« Oracle Database SQL Reference

= Oracle Database Net Services Administrator’s Guide

« Oracle Advanced Security Administrator's Guide

= Oracle Database Reference

Printed documentation is available for sale in the Oracle Store at:
http://oracl estore. oracl e.com

To download free release notes, installation documentation, white papers, or other

collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and of charge can be done at:

http://ww. oracl e. conl t echnol ogy/ nenber shi p/

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at:

http://ww. oracl e. com t echnol ogy/ docunent ati on

The following OTN Web site for Java servlets and JavaServer Pages is also available:

http://ww. oracl e. com t echnol ogy/tech/javal servl ets/

For further servlet information, refer to the Java Servlet Specification, Version 2.3 at the

following location:

http://jcp.org/about Java/ comuni typrocess/first/jsr053/index. htm

Resources from Sun Microsystems:

« Web site for Java servlet technology, including the latest specifications:

http://java. sun. coni product s/ servl et/ i ndex. htm

« Web site for JavaServer Pages, including the latest specifications:

http://java.sun.conf products/jsp/index. htm

= The servlet APl Javadoc:

http://java. sun. coni product s/ servl et/ 2. 3/javadoc/i ndex. htm

Conventions

The following conventions are used in this manual:

Convention

Meaning

Boldface text

Italics

Monospace
(fixed-w dth)
font

Italic nobnospace
(fixed-wi dth)
font

(]

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

Boldface type in text indicates a GUI component such as a link or
button to click.

Italic typeface indicates book titles or emphasis, or terms that are
defined in the text.

Monospace typeface within text indicates items such as executables,
file names, directory names, Java class names, Java method names,
variable names, other programmatic elements (such as JSP tags or
attributes, or XML elements or attributes), or database SQL
commands or elements (such as schema names, table names, or
column names).

Italic monospace font represents placeholders or variables.

Brackets enclose optional clauses from which you can choose one or
none.

A vertical bar represents a choice of two or more options. Enter one
of the options. Do not enter the vertical bar.

xiii

Xiv

1

Servlet Overview

Oracle Application Server Containers for J2EE (OC4J) enables you to develop and
deploy standard J2EE-compliant applications. Applications are packaged in standard
Enterprise archive (EAR) deployment files, which include standard Web archive
(WAR) files to deploy the Web modules, and Java archive (JAR) files for any Enterprise
JavaBeans (EJB) and application client modules in the application.

With Oracle Application Server 10g Release 2 (10.1.2), OC4J complies with Java 2
Platform Enterprise Edition Specification, v1.3, including full compliance with the Sun
Microsystems Java Servlet Specification, Version 2.3 in the OC4J servlet container. (Any
mention of the servlet specification in this manual refers to this version unless
otherwise noted.)

The most important concepts to understand about servilet development under OC4J
are how a Web application is built and how it is deployed. If you are new to servlets,
see Chapter 2, "Servlet Development”. If OC4J is a new development environment for
you, see Chapter 5, "Deployment and Configuration Overview", to learn how
applications are deployed under OC4J.

This chapter introduces the Java servlet and provides an example of a basic servlet. It
also briefly discusses how you can use servlets in a J2EE application to address some
server-side programming issues.

This chapter contains the following sections:
« Introduction to Servlets

« AFirst Servlet Example

Note: Sample servlet applications are included in the OC4J
demos, available from the following location on the Oracle
Technology Network (requiring an OTN membership, which is free
of charge):

http://ww. oracl e. com t echnol ogy/tech/javal/ oc4j/ denos/

Introduction to Servlets
The following sections offer a brief introduction to servlet technology:
» Review of Servlet Technology
« Advantages of Servlets
« The Servlet Interface and Request and Response Objects

= Servlets and the Servlet Container

Servlet Overview 1-1

Introduction to Servlets

« Introduction to Servlet Sessions

« Introduction to Servlet Contexts

= Introduction to Servlet Configuration Objects
« Introduction to Servlet Filters

« Introduction to Event Listeners

« JSP Pages and Other J2EE Component Types

Note: The terms Web module and Web application are
interchangeable in most uses and are both used throughout this
document. If there is a distinction, it is that "Web module" typically
indicates a single component, whether or not it composes an
independent application, while "Web application" typically
indicates a working application that may consist of multiple
modules or components.

Review of Servlet Technology

In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic Web pages. A servlet is a Java program that runs
in a Web server, as opposed to an applet that runs in a client browser. Typically, the
servlet takes an HTTP request from a browser, generates dynamic content (such as by
querying a database), and provides an HTTP response back to the browser.
Alternatively, the servlet can be accessed directly from another application component
or send its output to another component. Most servlets generate HTML text, but a
servlet may instead generate XML to encapsulate data.

More specifically, a servlet runs in a J2EE application server, such as OC4J. Servlets are
one of the main application component types of a J2EE application, along with
JavaServer Pages (JSP) and EJB modules, which are also server-side J2EE component
types. These are used in conjunction with client-side components such as applets (part
of the Java 2 Platform, Standard Edition specification) and application client programs.
An application may consist of any number of any of these components.

Prior to servlets, Common Gateway Interface (CGI) technology was used for dynamic
content, with CGI programs being written in languages such as Perl and being called
by a Web application through the Web server. CGI ultimately proved less than ideal,
however, due to its architecture and scalability limitations.

Advantages of Servlets

In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications, such as those accessing a database. One advantage of
running in the server is that the server is usually a robust machine with many
resources, making the program more scalable. Running in the server also results in
more direct access to the data. The Web server in which a servlet is running is on the
same side of the network firewall as the data being accessed.

Servlet programming also offers advantages over earlier models of server-side Web
application development, including the following:

« Servlets outperform earlier technologies for generating dynamic HTML, such as
server-side "includes" or CGI scripts. After a servlet is loaded into memory, it can
run on a single lightweight thread; CGI scripts must be loaded in a different
process for every request.

1-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

= Servlet technology, in addition to improved scalability, offers the well-known Java
advantages of security, robustness, object orientation, and platform independence.

« Servlets are fully integrated with the Java language and its standard APIs, such as
JDBC for Java database connectivity.

= Servlets are fully integrated into the J2EE framework, which provides an extensive
set of services that your Web application can use, such as Java Naming and
Directory Interface (JNDI) for component naming and lookup, Java Transaction
API (JTA) for managing transactions, Java Authentication and Authorization
Service (JAAS) for security, Remote Method Invocation (RMI) for distributed
applications, and Java Message Service (JMS). The following Web site contains
information about the J2EE framework and services:

http://java. sun. conlj2ee/ docs. ht m

« Aservlet handles concurrent requests (through either a single servlet instance or
multiple servlet instances, depending on the thread model), and servlets have a
well-defined lifecycle. In addition, servlets can optionally be loaded when OC4J
starts, so that any initialization is handled in advance instead of at the first user
request. See "Servlet Preloading” on page 2-6.

« The servlet request and response objects offer a convenient way to handle HTTP
requests and send text and data back to the client.

Because servlets are written in the Java programming language, they are supported on
any platform that has a Java virtual machine (JVM) and a Web server that supports
servlets. Servlets can be used on different platforms without recompiling. You can
package servlets together with associated files such as graphics, sounds, and other
data to make a complete Web application. This simplifies application development and
deployment.

In addition, you can port a servlet-based application from another Web server to OC4J
with little effort. If your application was developed for a J2EE-compliant Web server,
then the porting effort is minimal.

The Servlet Interface and Request and Response Objects

A Java servlet, by definition, implements the j avax. servl et . Ser vl et interface.
This interface specifies methods to initialize a servlet, process requests, get the
configuration and other basic information of a servlet, and terminate a servlet instance.

For Web applications, you can implement the Ser vl et interface by extending the
javax.servl et. http. H t pServl et abstract class. (Alternatively, for
protocol-independent servlets, you can extend the

javax. servl et. Generi cServl et class.) The Ht t pSer vl et class includes the
following methods:

« init(...):Initialize the servlet.

« destroy(...): Terminate the servlet.

« doCet(...):Execute an HTTP CET request.

« doPost(...):Execute an HTTP POST request.

« doPut (...):Execute an HTTP PUT request.

« doDel ete(...):Execute an HTTP DELETE request.

« service(...):Receive HTTP requests and, by default, dispatch them to the
appropriate doXXX() methods.

Servlet Overview 1-3

Introduction to Servlets

« getServletlnfo(...):Retrieve information about the servlet.

A servlet class that extends Ht t pSer vl et implements some or all of these methods,
as appropriate, overriding the original implementations as necessary to process the
request and return the response as desired. For example, most servlets override the
doGet () method, doPost () method, or both to process HTTP GET and POST
requests.

Each method takes as input an Ht t pSer vl et Request instance (an instance of a class
that implements the j avax. servl et. htt p. Ht t pSer vl et Request interface) and
an Ht t pSer vl et Response instance (an instance of a class that implements the

j avax.servlet.http. Ht pServl et Response interface).

The Ht t pSer vl et Request instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The Ht t pSer vl et Response instance provides HTTP-specific functionality
in sending the response, such as specifying the content length and MIME type and
providing the output stream.

Servlets and the Servlet Container

Unlike a Java client program, a servlet has no static mai n() method. Therefore, a
servlet must execute under the control of an external container.

Servlet containers, sometimes referred to as servlet engines, execute and manage servlets.
The servlet container calls servlet methods and provides services that the servlet needs
while executing. A servlet container is usually written in Java and is either part of a
Web server (if the Web server is also written in Java) or is otherwise associated with
and used by a Web server. OC4J includes a fully standards-compliant servlet container.

The servlet container provides the servlet with easy access to properties of the HTTP
request, such as its headers and parameters. When a servlet is called, such as when it is
specified by URL, the Web server passes the HTTP request to the servlet container. The
container, in turn, passes the request to the servlet. In the course of managing a servlet,
a servlet container performs the following tasks:

« Itcreates an instance of the servlet and calls itsi ni t () method to initialize it.

= Itconstructs a request object to pass to the servlet. The request includes, among
other things:

— Any HTTP headers from the client

— Parameters and values passed from the client (for example, names and values
of query strings in the URL)

— The complete URI of the servlet request
« It constructs a response object for the servlet.

« Itinvokesthe servlet ser vi ce() method. Note that for HTTP servlets, the
generic service method is usually overridden in the Ht t pSer vl et class. The
service method dispatches requests to the servietdoGet () or doPost () methods,
depending on the HTTP header in the request (GET or POST).

« ltcallsthedest roy() method of the servlet to discard it, when appropriate, so
that it can be garbage collected. (For performance reasons, it is typical for a servlet
container to keep a servlet instance in memory for reuse, rather than destroying it
each time it has finished its task. It would be destroyed only for infrequent events,
such as Web server shutdown.)

1-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

Figure 1-1 shows how a servlet relates to the servlet container and to a client, such as a
Web browser. When the Web listener is the Oracle HTTP Server (powered by Apache),
the connection to the OC4lJ servlet container goes through the nod_oc4j module. See

the Oracle HTTP Server Administrator’s Guide for details.

Figure 1-1 Servlets and the Servlet Container

Web
l I listener

Servlet Container

»

15anbay
Response

Servlet

Data Source

N

JDBC Connection

Introduction to Servlet Sessions

Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful way.
Servlet session tracking is similar in nature to session tracking in previous
technologies, such as CGl.

This section provides an introduction to servlet sessions. See "Servlet Sessions" on
page 2-25 for more information and examples.

Introduction to Session Tracking

Servlets provide convenient ways to keep the client and a server session in
synchronization, enabling stateful servlets to maintain session state on the server over
the whole duration of a client browsing session.

OC4J supports the following session-tracking mechanisms. See "Session Tracking" on
page 2-25 for more information.

Servlet Overview 1-5

Introduction to Servlets

= Cookies

The servlet container sends a cookie to the client, which returns the cookie to the
server upon each HTTP request. This process associates the request with the
session ID indicated by the cookie. This is the most frequently used mechanism
and is supported by any servlet container that adheres to the servlet specification.

« URL rewriting

Instead of using cookies, the servlet can call the encodeURL() method of the
response object, or the encodeRedi r ect URL() method for redirects, to append a
session ID to the URL path for each request. This process allows the request to be
associated with the session. This is the most frequently used mechanism for
situations in which clients do not accept cookies.

Introduction to the HttpSession Interface

In the standard servlet API, each client session is represented by an instance of a class
that implements the j avax. servl et. htt p. Ht t pSessi on interface. Servlets can
set and get information about the session in this Ht t pSessi on object, which must be
of application-level scope.

A servlet uses the get Sessi on() method of an Ht t pSer vl et Request object to
retrieve or create an Ht t pSessi on object for the user. This method takes a boolean
argument to specify whether a new session object should be created for the client if
one does not already exist within the application.

See "Features of the HttpSession Interface” on page 2-28 for more information.

Introduction to Servlet Contexts

A servlet context is used to maintain information for all instances of a Web application
within any single JVM (that is, for all servlet and JSP page instances that are part of the
Web application). There is one servlet context for each Web application running within
a given JVM; this is always a one-to-one correspondence. You can think of a servlet
context as a container for a specific application.

Servlet Context Basics

Any servlet context is an instance of a class that implements the
j avax. servl et . Servl et Cont ext interface, with such a class being provided with
any Web server that supports servlets.

A Ser vl et Cont ext object provides information about the servlet environment (such
as name of the server) and allows sharing of resources between servlets in the group,
within any single JVM. (For servlet containers supporting multiple simultaneous
JVMs, implementation of resource-sharing varies.)

A servlet context provides the scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct classloader and its
runtime objects are distinct from those of any other application. In particular, the

Ser vl et Cont ext object is distinct for an application, much as each Ht t pSessi on
object is distinct for each user of the application.

Beginning with version 2.2 of the servlet specification, most implementations can
provide multiple servlet contexts within a single host, which is what allows each Web
application to have its own servlet context. (Previous implementations usually
provided only a single servlet context with any given host.)

1-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Introduction to Servlets

How to Obtain a Servlet Context

Use the get Ser vl et Cont ext () method of a servlet configuration object to retrieve a
servlet context. See "Introduction to Servlet Configuration Objects" on page 1-8.

Servlet Context Methods

The Ser vl et Cont ext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that the
servlet can retrieve application-level environment and state information. Methods
specified in Ser vl et Cont ext include those listed here. For complete information,
refer to the Sun Microsystems Javadoc at the following location:

http://java. sun. coni product s/ servl et/ 2. 3/javadoc/i ndex. ht m

« void setAttribute(String name, bject val ue)

This method binds the specified object to the specified attribute name in the
servlet context. Using attributes, a servlet container can give information to the
servlet that is not otherwise provided through the Ser vl et Cont ext interface.

Note: For aservlet context, set Attri but e() is alocal operation
only. It is not intended to be distributed to other JVMs within a
cluster. (This is in accordance with the servlet specification.)

« bject getAttribute(String nane)

This method returns the attribute with the given name, or nul | if there is no
attribute by that name. The attribute is returned asaj ava. | ang. Obj ect
instance.

« java.util.Enuneration getAttributeNanes()

This method returns aj ava. uti | . Enuner at i on instance containing the names
of all available attributes of the servlet context.

« Vvoid renoveAttribute(String attrnane)
This method removes the specified attribute from the servlet context.
« String getlnitParanmeter(String name)

This method returns a string that indicates the value of the specified context-wide
initialization parameter, or nul | if there is no parameter by that name. This allows
access to configuration information that is useful to the Web application associated
with this servlet context.

« Enuneration getlnitParaneterNanes()

This method returnsaj ava. uti | . Enuner at i on instance containing the names
of the initialization parameters of the servlet context.

« Request Di spat cher get NanmedDi spat cher (String nane)

This method returns aj avax. servl et. Request Di spat cher instance that acts
as a wrapper for the specified servlet.

» Request Di spat cher get Request Di spatcher(String path)

This method returns aj avax. servl et. Request Di spat cher instance that acts
as a wrapper for the resource located at the specified path.

« String getReal Path(String path)

Servlet Overview 1-7

Introduction to Servlets

This method returns the real path, as a string, for the specified virtual path.
« URL getResource(String path)

This method returns aj ava. net . URL instance with a URL to the resource that is
mapped to the specified path.

« String getServerlnfo()
This method returns the name and version of the servlet container.
« String get Servl et Cont ext Nanme()

This method returns the name of the Web application with which the servlet
context is associated, according to the <di spl ay- nanme> element of the web. xni
file.

Introduction to Servlet Configuration Objects

A servlet configuration object contains initialization and startup parameters for a servlet
and is an instance of a class that implements the j avax. servl et. Servl et Confi g
interface. Such a class is provided with any J2EE-compliant Web server.

You can retrieve a servlet configuration object for a servlet by calling the

get Ser vl et Confi g() method of the servlet. This method is specified in the
j avax. servl et. Servl et interface, with a default implementation in the

j avax.servlet.http. H t pServl et class.

The Ser vl et Conf i g interface specifies the following methods:
« Servl et Cont ext get Servl et Cont ext ()

Retrieve a servlet context for the application. See "Introduction to Servlet
Contexts" on page 1-6.

« String get ServletNane()
Retrieve the name of the servlet.
« Enuneration getlnitParanet er Names()

Retrieve the names of the initialization parameters of the servlet, if any. The names
arereturnedinaj ava. util. Enunerati on instance of St ri ng objects. (The
Enurrer at i on instance is empty if there are no initialization parameters.)

« String getlnitParanmeter(String name)

This returns a St r i ng object containing the value of the specified initialization
parameter, or nul | if there is no parameter by that name.

Introduction to Servlet Filters

Request objects (instances of a class that implements Ht t pSer vl et Request) and
response objects (instances of a class that implements Ht t pSer vl et Response) are
typically passed directly between the servlet container and a servlet.

The servlet specification, however, allows serviet filters, which are Java programs that
execute on the server and can be interposed between the servlet (or group of servlets)
and the servlet container for special request or response processing.

If there is a filter or a chain of filters to be invoked before the servlet, these are called
by the container with the request and response objects as parameters. The filters pass
these objects, perhaps modified, or alternatively create and pass new objects, to the
next object in the chain using the doChai n() method.

1-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

A First Servlet Example

See "Servlet Filters" on page 3-1 for more information.

Introduction to Event Listeners

The servlet specification adds the capability to track key events in your Web
applications through event listeners. This functionality allows more efficient resource
management and automated processing based on event status.

When creating listener classes, you can implement standard interfaces for servlet
context lifecycle events, servlet context attribute changes, HTTP session lifecycle
events, and HTTP session attribute changes. A listener class can implement one, some,
or all of the interfaces as appropriate.

An event listener class is declared in the web. xm deployment descriptor and invoked
and registered upon application startup. When an event occurs, the servlet container
calls the appropriate listener method.

See "Event Listeners” on page 3-11 for more information.

JSP Pages and Other J2EE Component Types

In addition to servlets, an application may include other server-side components, such
as JSP pages and EJBs. It is especially common for servlets to be used in combination
with JSP pages in a Web application. Servlets are managed by the OC4J servlet
container; EJBs are managed by the OC4J EJB container; and JSP pages are managed by
the OC4J JSP container. These containers form the core of OC4J.

JSP pages also involve the servlet container, because the JSP container itself is a servlet
and is therefore executed by the servlet container. The JSP container translates JSP
pages into page implementation classes, which are executed by the JSP container and
are also essentially servlets.

Note: Wherever this manual mentions functionality that applies
to servlets, you can assume it applies to JSP pages as well unless
stated otherwise.

For more information about JSP pages and EJBs, see the following:

« JSP and EJB primer chapters in the Oracle Application Server Containers for J2EE
User’s Guide

« Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide

« Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

A First Servlet Example

Looking at a basic example is the best way to demonstrate the general framework for
writing a servlet.

Hello World Code

This servlet prints "Hi There!" back to the client. The comments note some of the basic
aspects of writing a servlet.

/1 You nust inport at |east the follow ng packages for any servlet you wite.
inport java.io.*;

Servlet Overview 1-9

A First Servlet Example

inport javax.servlet.*;
inport javax.servlet.http.*;

Il Extend HtpServlet, the base servlet inplenentation.
public class HelloServlet extends HtpServlet {

Il Querride the base inplenentation of doGet(), as desired.

public void doGet (HttpServletRequest req, HtpServletResponse resp)
throws ServletException, |CException {
Il Set the MME type for the response content.
resp. setContent Type("text/htm");

/] Get an output streamto use in sending the output to the client.
Servl et Qut put Stream out = resp. get Qut put Strean();

/'l Put together the HTM. code for the output.

out.println("<htm >");

out.println("<head><title>Hello World</title></head>");

out. println("<body>");

out.println("<hi>H There!</h1>");

out. println("</body></htm >");

-

Compiling and Deploying the Servlet

To try out the sample servlet code in an OC4J standalone environment, save it as

Hel | oServl et . javainthe/WEB- | NF/ cl asses directory of the OC4J default Web
application. (See "OC4J Default Application and Default Web Application" on

page 5-25.)

Next, compile the servlet. First verify that ser vl et . j ar, supplied with OC4J, is in
your classpath. This contains the Sun Microsystems j avax. ser vl et and
j avax. servl et . htt p packages.

Note: For convenience during development and testing, use the
OC4] auto-compile feature for servlet code. This is enabled through
the setting devel opnent ="t rue" in the <ori on- web- app>
element of the gl obal - web- appl i cati on. xnl file in the OC4J
configuration files directory. The sour ce- di r ect or y attribute
may also have to be set appropriately. With auto-compile enabled,
after you change the servlet source and save it in the appropriate
directory, the OC4J server automatically compiles and redeploys
the servlet the next time it is invoked.

See "Element Descriptions for global-web-application.xml and
orion-web.xml" on page 6-1 for more information about
devel opnment and sour ce-directory.

Running the Servlet

Assuming that the OC4J server is up and running and that invocation by class hame is
enabled with the ser vl et - webdi r built-in default setting of "/ ser vl et /", you can

invoke the servlet and see its output from a Web browser as follows, where host is the
name of the host that the OC4J server is running on and por t is the Web listener port:

http://host:port/servlet/HelloServlet

1-10 Oracle Application Server Containers for J2EE Servlet Developer's Guide

A First Servlet Example

(See "Servlet Invocation by Class Name During OC4J Development" on page 2-22 for
information about invocation by class name and about the OC4Jser vl et - webdi r
attribute.)

In an OC4J standalone environment, use port 8888 to access the OC4J Web listener
directly. (See "OC4J Standalone for Development" on page 2-1 for an overview.)

This example assumes that "/ " is the context path of the Web application, as is true by
default in OC4J standalone for the default Web application.

Important: The way of invoking servlets that is shown here
invokes directly by class name. This is suitable for a development
environment but presents a significant security risk. Do not
configure OC4J to operate in this mode in a production
environment. See "Servlet Invocation by Class Name During OC4J
Development” on page 2-22 and "Additional Security
Considerations" on page 2-40 for more information.

Servlet Overview 1-11

A First Servlet Example

1-12 Oracle Application Server Containers for J2EE Servlet Developer's Guide

2

Servlet Development

This chapter, consisting of the following sections, provides basic information for
developing servlets for OC4J and the Oracle Application Server. The first section
highlights the use of the standalone version of OC4J for convenience during your
development and testing phases.

« OC4] Standalone for Development

« Servlet Development Basics and Key Considerations
« Additional Oracle Features

« Servlet Invocation

« Servlet Sessions

= Servlet Security

0C4J Standalone for Development

This manual assumes you are using an OC4J standalone environment for at least your
initial development phases. This term refers to the use of a single OC4J instance
outside the Oracle Application Server environment and Oracle Enterprise Manager
10g. Using OC4J standalone is typically more convenient for early development.

The following sections provide some overview and key considerations:
« Overview: Using OC4J Standalone

« Key OC4J Flags for Development

« Removal of tools.jar from OC4J Standalone

To obtain OC4J standalone, download the oc4j _ext ended. zi p file from the Oracle
Technology Network (OTN) at the following location:

http://ww. oracl e. com t echnol ogy/tech/javal/ oc4j/content. htm

Servlet Development 2-1

0C4J Standalone for Development

Notes:

« To use OC4J standalone, you must have a supported version of
the Sun Microsystems JDK installed. A JDK is not provided
with the OC4J standalone product.

« During development, also consider the Oracle JDeveloper
visual development tool for development and deployment.
This tool offers many conveniences, as described in "Oracle
JDeveloper Support for Servlet Development" on page 2-19.

Overview: Using OC4J Standalone

You can start, manage, and control standalone OC4J instances through oc4j . j ar (the
OC4J standalone executable) and the adni n. j ar command-line utility, provided with
the standalone product. Deploying an EAR file and binding its Web module through
admi n. j ar result in automatic updates to key configuration files.

Note: Key aspects of the adni n. j ar utility are covered in
Chapter 5, "Deployment and Configuration Overview", particularly
in "Deploying an EAR File to OC4J Standalone" on page 5-27. For
further information, see the Oracle Application Server Containers for
J2EE Stand Alone User’s Guide.

During testing, it is also possible to manually install an EAR file or individual files
according to the J2EE directory structure, and to complete the process by manually
updating key configuration files, which triggers OC4J to unpack and deploy the
application.

If you have an independent Web application, you can deploy it as a WAR file (or as a
directory structure) within the OC4J default J2EE application, rather than using an
EAR file.

In addition, for a convenient testing mode, you can deploy individual servlets or JSP
pages to the OC4J default Web application.

An OC4J standalone environment, by default, includes the following key directories:

J2EE home: j 2ee/ hone, relative to where you install OC4J

Global configuration files directory: j 2ee/ home/ confi g

Default Web application root directory: j 2ee/ hone/ def aul t - web- app
Root target directory for deployed applications: j 2ee/ hone/ appl i cati ons

Root target directory for deployment descriptors (such as ori on- web. xm and
orion-application.xm):j2ee/ hone/ application-depl oynents

In the simplest case, deploying a test servlet to the OC4J default Web application
consists of placing the class file under the / VEB- | NF/ cl asses directory under the
default Web application root directory:.

Chapter 5 discussed more detailed deployment considerations, primarily targeting
OC4] standalone users. See the following sections in particular:

"General Overview of OC4J Deployment and Configuration" on page 5-1

"OC4] Default Application and Default Web Application" on page 5-25

2-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

0C4J Standalone for Development

"Deployment Scenarios to OC4J Standalone" on page 5-23

Additionally, for information about invoking a servlet in OC4J standalone, see "Servlet
Invocation in an OC4J Standalone Environment" on page 2-25.

For detailed information about adni n. j ar and about how to start, stop, configure,
and manage your standalone process, download the Oracle Application Server
Containers for J2EE Stand Alone User's Guide when you download

OC4J_ext ended. zi p.

Key OC4J Flags for Development

There are several OC4)J flags to be aware of during your development stages,
presumably while using OC4J standalone. Note that these flags work independently of
each other.

OC4Jcheck-f or - updat es flag

In the OC4Jserver. xnl file, the top-level <appl i cati on-server > element
includes a check- f or - updat es attribute that determines whether the OC4J task
manager automatically checks for updates to XML configuration files (including
server. xm itself), library JAR files, and JSP tag libraries. This is often referred to
as OC4J polling. The default setting, for use during development, is "t r ue". You
can disable polling as follows:

<application-server ... check-for-updates="false" ... >
</ application-server>

For example, during manual operations (considered "expert modes") during
development, you can install your application by hand, then manually update the
server.xm file, global appl i cati on.xm file,and ht t p- web-sit e. xnl file
as appropriate to define and bind your Web application. With the default
check-for-updates="true" setting, OC4J automatically detects the changes
and deploys your application (unpacking the EAR or WAR file in the process, if
applicable).

See "OC4J Top-Level Server Configuration File: server.xml" on page 5-9 for more
information about this file.

Important: The check- f or - updat es flag is used only in OC4)J
standalone. It is disregarded in an Oracle Application Server
environment, in which the Oracle Process Management and
Notification system (OPMN) and Distributed Configuration
Management subsystem (DCM) manage the OC4J file update
facilities.

adm n. j ar -updat eConfi g option

If you manually update OC4J XML configuration files while
check-for-udpat es="fal se", you can run the adni n. j ar utility with the
- updat eConf i g option to trigger a one-time check for updates:

% java -jar admn.jar -updateConfig

Servlet Development 2-3

Servlet Development Basics and Key Considerations

Important: If you want to re-enable checking after it had been
disabled, you must use the admi n. j ar - updat eConfi g option
after setting check- f or - udpat es="true", so that OC4J notices
this change. After that, automatic checking will be enabled again.

« Servletdevel oprent flag

For convenience during development and testing, use the devel oprment ="t r ue”
setting in the <or i on- web- app> element of the

gl obal - web- appli cati on. xm file orori on-web. xni file. With this setting,
whenever you update the servlet code under a particular directory—typically a

/ VEEB- | NF/ cl asses directory, or according to the sour ce- di r ect ory attribute
of <or i on- web- app>—the servlet is recompiled and redeployed automatically
the next time it is invoked. See "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-1 for more information
about the devel opnent and sour ce- di r ect ory attributes.

« JSPnmai n_node flag

This flag directs the mode of operation of the JSP container, particularly for
automatic retranslation of JSP pages and reloading of JSP-generated Java classes
that have changed. During development, use the r econpi | e (default) setting to
check timestamps of JSP pages and to retranslate and reload them if they have
been modified since they were last loaded. (Use the j ust r un setting to not check
any timestamps, such as for production mode.) See the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide for more
information about this flag and how to set it.

Removal of tools.jar from OC4J Standalone

The OC4J 9.0.3 standalone implementation provided the t ool s. j ar file from the Sun
Microsystems JDK 1.3.1. This file includes the j ava front-end executable and j avac
compiler executable, for example, among many other components.

The OC4J 10.1.2 standalone implementation no longer provides thet ool s. j ar file.
Therefore, you must install a JDK that OC4J supports before installing OC4J itself. The
JDK versions that OC4J supports for the OC4J 10.1.2 implementation are JDK 1.3.1 (for
OC4J standalone only) and JDK 1.4. Oracle Application Server 10g Release 2 (10.1.2)
includes JDK 1.4, so you should typically use this JDK version for OC4J standalone as
well. However, there are migration issues to consider, particularly the JDK 1.4
requirement that all invoked classes must be in packages. See "JDK 1.4 Considerations:
Cannot Invoke Classes Not in Packages" on page 2-13.

Notes: OC4J standalone uses j avac from the same directory in
which j ava is accessed through the command "j ava -j ar
ocdj . j ar", ensuring use of the appropriate j avac version.

Servlet Development Basics and Key Considerations

Most HTTP servlets follow a standard form. They are written as public classes that
extend the Ht t pSer vl et class. A servlet overrides thei nit () and destroy()
methods when code is required for initialization work at the time the servlet is loaded
by the container, or for finalization work when the container shuts down the servlet.
Most servlets override either the doGet () method or the doPost () method of

2-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

Ht t pSer vl et , to handle HTTP GET or POST requests appropriately. These two
methods take request and response objects as parameters.

This chapter provides sample servlets that are more advanced than the
Hel | oWbr | dSer vl et in"A First Servlet Example" on page 1-9.

The following sections cover features and issues to consider before developing your
applications:

Sample Code Template

Servlet Lifecycle

Servlet Preloading

Servlet Classloading and Application Redeployment
Servlet Information Exchange

Servlet Includes and Forwards

Servlet Thread Models and Related Considerations
Servlet Performance and Monitoring

JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

Sample Code Template
Here is a sample code template for servlet development:

public class nyServlet extends HtpServlet {

public void init(ServletConfig config) {
}

public void destroy() {
}

public void doGet (Ht tpServl et Request request, HtpServletResponse)
throws Servl et Exception, | COException {

}

public void doPost (H t pServl et Request request, Ht tpServl et Response)
throws Servl et Exception, | COException {

}

public String getServletinfo() {
return "Sone infornation about the servlet.";

}

You can optionally override thei nit (),destroy(),and get Servl et | nf o()
methods, but the simplest servlet just overrides either doGet () or doPost ().

The reason for overriding the i ni t () method would be to perform special actions
that are required only once in the servlet lifetime, such as the following:

Establishing data source connections

Getting initialization parameters from the servlet configuration object and storing
the values

Recovering persistent data that the servlet requires

Creating expensive session objects, such as hashtables

Servlet Development 2-5

Servlet Development Basics and Key Considerations

« Logging the servlet version to the | og() method of the Ser vl et Cont ext object

Servlet Lifecycle
Servlets have a predictable and manageable lifecycle:

=« When the servlet is loaded, its configuration details are read from web. xm . These
details can include initialization parameters.

= There is only one instance of a servlet, unless the single-threaded model is used.
See "Servlet Thread Models and Related Considerations" on page 2-11.

« Client requests invoke the ser vi ce() method of the generic servlet, which then
delegates the request to doGet () or doPost () (or another overridden
request-handling method), depending on the information in the request headers.

« Filters can be interposed between the container and the servlet to modify the
servlet behavior, either during request or response. See "Servlet Filters" on
page 3-1 for more information.

« A servlet can forward requests to other servlets or include output from other
servlets. See "Servlet Includes and Forwards" on page 2-10.

« Responses come back to the client through response objects, which the container
passes back to the client in HTTP response headers. Servlets can write to a
response object by usingaj ava.i o. Pri nt Witer or
j avax. servl et. Servl et Qut put St r eamobject.

« The container calls the dest r oy () method before the servlet is unloaded.

Servlet Preloading

Typically, the servlet container instantiates and loads a servlet class when it is first
requested. However, you can arrange the preloading of servlets through settings in the
server. xm file, the Web site XML file (such as def aul t - web-site. xm or

htt p-web-site. xnl), and the web. xm file. Preloaded servlets are loaded and
initialized when the OC4J server starts up or when the Web application is deployed or
redeployed.

Preloading requires the following steps:

1. \Verify that the relevant <appl i cat i on>element in the ser ver. xm file has the
attribute setting aut o- st art ="t rue". OC4J inserts this setting by default when
you deploy an application.

2. Specify the attribute setting | oad- on-start up="true" in the relevant
<web- app> subelement of the <web- si t > element of the Web site XML file. See
"Configuration for Web Site XML Files" on page 6-20 for information about the
elements and attributes of Web site XML files.

3. Forany servlet that you want to preload, there must be a <l oad- on- st art up>
subelement under the <ser vl et > element in the web. xni file for the Web
module.

Table 2-1 explains the behavior of the <l oad- on- st art up> element in web. xni .

2-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

Table 2-1 File web.xml <load-on-startup> Behavior

Value Range Behavior
Less than zero (<0) Servlet is not preloaded.
For example:

<l oad- on- st artup>- 1</ | oad- on- st art up>

Greater than or equal to zero (>=0) Servlet is preloaded. The order of its

loading, with respect to other

preloaded servlets in the same Web

<l oad- on- st art up>1</| oad- on- start up> application, is according to the
load-on-startup value, lowest number
first. (For example, 0 is loaded before
1, which is loaded before 2.)

For example:

Empty element The behavior is as if the

load-on-startup value is

I nt eger . MAX_VALUE, ensuring that

<l oad- on-startup/ > the servlet is loaded after any servlets
with load-on-startup values greater
than or equal to zero.

For example:

Note: OC4J supports the specification of startup classes and
shutdown classes. Startup classes are designated through the
<startup-cl asses>element of the server. xm file and are
called immediately after OC4J initializes. Shutdown classes are
designated through the <shut down- cl asses> element of
server. xm and are called immediately before OC4J terminates.

Be aware that startup classes are called before any preloaded
servlets.

See the Oracle Application Server Containers for J2EE User’s Guide for
information about startup classes and shutdown classes.

Servlet Classloading and Application Redeployment

The following sections describe OC4J features and some important considerations
regarding servlet classloading and application loading:

« OC4)Web Application Redeployment and Class Reloading Features
» Loading WAR File Classes Before System Classes in OC4]
« Sharing Cached Java Objects Across OC4J Servlets in Oracle Application Server

0C4J Web Application Redeployment and Class Reloading Features

In OC4J, any of the following circumstances, depending on OC4J polling, results in
redeployment of a Web application and, upon request, reloading of servlet classes and
any dependency classes.

Servlet Development 2-7

Servlet Development Basics and Key Considerations

Notes:

« "OC4] polling" refers to the automatic checking of library JAR
files and XML configuration files by the OC4J task manager for
updates. In an Oracle Application Server environment, this is
controlled by OPMN and DCM. In OC4J standalone, it is
controlled by the server. xm check-f or - updat es flag (set
to "t r ue" by default), described in "Key OC4J Flags for
Development” on page 2-3.

« Inthis discussion, "redeployment” of a Web application refers
to the process in which OC4J removes the Web application from
its execution space, removes the classloader associated with
execution of the Web application, reparses web. xm and
ori on-web. xm , and reinitializes servlet listeners, filters, and
mappings.

If aservlet. cl ass file under / VEB- | NF/ cl asses changes, such as by
recompilation, then when the servlet is next requested, the associated Web
application is redeployed and the servlet class and any dependency classes are
reloaded. This action does not depend on OC4J polling. Note that nothing
happens until the servlet is next requested. Also note that if only non-servlet

. ¢l ass files under / VEEB- | NF/ cl asses change, nothing is reloaded.

Note: Changing a servlet class file in a directory location specified
ina<cl asspat h>elementin gl obal - web-appl i cati on. xm
orori on-web. xm has the same effect as changing a servlet class
file in/ VEB- | NF/ cl asses. However, changing a JAR file or
dependency class file (such as for a JavaBean) in a <cl asspat h>
location has no effect.

If the web. xmi file changes, or a library JAR file in/ VEB- | NF/ | i b changes, and
OC4J polling is enabled, then the associated Web application is redeployed the
next time the OC4J task manager runs, which by default is once each second. Any
servlet class in the Web application and any dependency classes are reloaded upon
the next request for the servlet. Alternatively, if polling is not enabled, you can
trigger one-time polling and the resulting redeployment and reloading by using
the adm n. j ar - updat eConf i g option.

Be aware of the following important considerations:

In the preceding scenarios, a servlet and its dependency classes are reloaded
immediately, instead of upon next request, if the servlet is set to be preloaded. This
is according to | oad- on- st ar t up settings. See "Servlet Preloading" on page 2-6.

OC4J servlet reloading functionality does not extend to JSP page implementation
classes. Changing a JSP page implementation . cl ass file does not result in any
reloading. JSP recompilation and reloading behavior is determined by the JSP
mai n_node flag, as described in the Oracle Application Server Containers for J2EE
Support for JavaServer Pages Developer’s Guide.

Classes in Web modules of a parent application are not visible to child
applications, although other classes of the parent application (such as EJBs, for
example) are visible.

2-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Development Basics and Key Considerations

=« Youcanuse <l i brary>elements in the global appl i cati on. xm file or
server.xm file to specify directories or JAR or ZIP files for shared code. Upon
startup, OC4J loads all classes in any JAR or ZIP file specified in any <l i br ar y>
element, and all classes in any JAR or ZIP file in any directory specified in any
<l i brary>element.

To avoid unnecessary overhead, you should use <l i br ar y> elements somewhat
sparingly, specify particular JAR or ZIP files instead of entire directories wherever
possible, and, where directories are specified, minimize the number of JAR or ZIP
files in those directories.

By default, appl i cati on. xm includesa<I i br ar y> element for the
j 2eel/ hone/ appl i b directory.

Note: Changing a JAR or ZIP file specified ina <l i brary>
element, or a JAR or ZIP file in a directory specified in a

<l i br ary> element, does not by itself result in redeployment of
any Web applications or reloading of classes. The OC4J task
manager does not poll these shared library locations.

Loading WAR File Classes Before System Classes in OC4J

The servlet specification recommends, but does not require, loading local classes, which
are classes in the WAR file, before system classes, which are any other classes in the
environment. Note that "classes in the WAR file" may include classes from the WAR
file manifest classpath. By default, the OC4J servlet container does not load local
classes first, but this is configurable through the <web- app- cl ass- | oader > element
in gl obal - web- appl i cati on. xm ororion-web. xm . This element has two
attributes:

« search-1local -cl asses-first:Setthisto"t rue"tosearch and load WAR file
classes before system classes. The default setting is "f al se".

« include-war-manifest-class-pat h: Set thisto "f al se" to not include the
classpath specified in the WAR file manifest Cl ass- Pat h attribute when
searching and loading classes from the WAR file, regardless of the
search-1 ocal -cl asses-fi rst setting. The default setting is "t rue".

Notes:

« If both attributes are set to "t r ue", the overall classpath is
constructed so that classes physically residing in the WAR file
are loaded prior to any classes from the WAR file manifest
classpath. So you can assume that in the event of any conflict,
classes physically residing in the WAR file will take precedence.

« For compliance with the servlet specification, you cannot use
search-1 ocal -cl asses-fi rst functionality in loading
classesinj ava. * orj avax. * packages.

Also see "Element Descriptions for global-web-application.xml and orion-web.xml" on
page 6-1.

Sharing Cached Java Objects Across OC4J Servlets in Oracle Application Server

To take advantage of the distributed functionality of the Oracle Application Server
Java Object Cache, or to share a cached object between servlets, some minor

Servlet Development 2-9

Servlet Development Basics and Key Considerations

modification to an application deployment is necessary. Any user-defined objects that
will be shared between servlets or distributed between JVMs must be loaded by the
system classloader; however, by default, objects loaded by a servlet are loaded by the
context classloader. Objects loaded by the context classloader are visible only to the
servlets within the servlet context corresponding to that classloader. The object
definition will not be available to other servlets or to the cache in another JVM. If an
object is loaded by the system classloader, however, the object definition will be
available to other servlets and to the cache on other JVMs.

With OC4J, the system classpath is derived from the manifest of the oc4j . j ar file
and any associated . j ar files, including cache. j ar. The classpath in the
environment is ignored. To include a cached object in the classpath for OC4J, do one of
the following with the . cl ass file, assuming an Oracle Application Server
environment:

« Copy ittothe ORACLE_HOVE/ j avacache/ cachedobj ect s/ cl asses directory.
« Addittothe ORACLE_HOWVE/ j avacache/ cachedobj ect s/ share. j ar file.

Both the cl asses directory and the shar e. j ar file are included in the manifest for
cache. j ar, and are therefore included in the system classpath.

For information about the Oracle Application Server Java Object Cache, see the Oracle
Application Server Containers for J2EE Services Guide.

Servlet Information Exchange

A servlet typically receives information from one or more sources, including the
following:

« Parameters from the request object
« HTTP session object
= Servlet context object

« Sources of data outside the servlet (for example: databases, file systems, or
external sensors)

The servlet adds information to the response object; the container sends the response
back to the client.

Servlet Includes and Forwards

Many servlets use other servlets in the course of their processing, either by "including
another servlet or "forwarding" to another servlet.

In servlet terminology, a servlet include is the process by which a servlet includes
response from another servlet within its own response. Processing and response are
initially handled by the originating servlet, then are turned over to the included
servlet, then revert back to the originating servlet once the included servlet is finished.

With a servlet forward, processing is handled by the originating servlet up to the point
of the forward call, at which point the response is reset and the target servlet takes
over processing of the request. When a response is reset, any HTTP header settings
and any information in the output stream are cleared from the response. After a
forward, the originating servlet must not attempt to set headers or write to the
response. Also note that if the response has already been committed, then a servlet
cannot forward to or include another servlet.

To forward to or include another servlet, you must obtain a request dispatcher for that
servlet, using either of the following servlet context methods:

2-10 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Development Basics and Key Considerations

«» Request Di spat cher get Request Di spatcher(String path)
« Request Di spat cher get NanedDi spatcher (String nane)

For get Request Di spat cher (), input the path of the target servlet. For
get NanedDi spat cher (), input the name of the target servlet, according to the
<ser vl et - nane> element for that servlet in the web. xm file.

In either case, the returned object is an instance of a class that implements the

j avax. servl et . Request Di spat cher interface. (Such a class is provided by the
servlet container.) The request dispatcher is a wrapper for the target servlet. In general,
the duty of a request dispatcher is to serve as an intermediary in routing requests to
the resource that it wraps.

A request dispatcher has the following methods to effect any includes or forwards:

« Vvoid include(Servl et Request request,
Servl et Response response)

« void forward(Servl et Request request,
Servl et Response response)

AS you can see, you pass in your request and response objects when you call these
methods.

Notes:

« When aservlet forwards to or includes another servlet, default
OC4J functionality enforces web. xnl security constraints on
the target servlet as well as the originating servlet. This does
not comply with the servlet specification, but you can disable
this behavior through the <aut hent i cat e- on- di spat ch>
elementin gl obal - web- appl i cati on. xm or
ori on-web. xm . See "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-1 for
information about this element.

« When aservlet forwards to or includes another servlet, the
default behavior is that any filters that apply to the originating
servlet are not executed on the target servlet, but this behavior
is configurable. See "Filtering of Forward or Include Targets" on
page 3-2.

Servlet Thread Models and Related Considerations

For a servlet in a nondistributable environment, a servlet container uses only one
servlet instance for each servlet declaration. In a distributable environment, a
container uses one servlet instance for each servlet declaration in each JVM. Therefore,
a servlet container, including the OC4J servlet container, generally processes
concurrent requests to a servlet by using multiple threads for multiple concurrent
executions of the servlet ser vi ce() method.

Servlet developers must keep this in mind, making provisions for simultaneous
processing through multiple threads and designing their servlets so that access to
shared resources is somehow synchronized or coordinated. Shared resources fall into
two main areas:

« In-memory data, such as instance or class variables

« External objects, such as files, database connections, and network connections

Servlet Development 2-11

Servlet Development Basics and Key Considerations

One option is to synchronize the ser vi ce() method as a whole; however, this may
adversely affect performance.

A better approach is to selectively protect instance or class fields, or access to external
resources, through synchronization blocks.

As perhaps a last resort, the servlet specification supports a single-thread model. If a
servlet implements the j avax. servl et . Si ngl eThr eadModel interface, the servlet
container must guarantee that there is never more than one request thread at a time in
the servi ce() method of any instance of the servlet. OC4J typically accomplishes
this by creating a pool of servlet instances, with a separate instance handling each
concurrent request. This process has significant performance impact on the servlet
container, however, and should be avoided if at all possible. Furthermore, the

Si ngl eThr eadModel interface will be deprecated in version 2.4 of the servlet
specification.

For general information about multithreading, see the Sun Microsystems Java Tutorial
on Multithreaded Programming at the following Web site:

http://java. sun.conf Series/ Tutorial/javal/threads/ multithreaded. ht m

Servlet Performance and Monitoring

The following sections list servlet performance considerations and introduce the
Oracle Application Server Dynamic Monitoring Service (DMS):

« General Performance Considerations
« Oracle Application Server Dynamic Monitoring Service

For general OC4J performance information, including coverage of DMS and the
dnst ool for performance metrics, refer to the Oracle Application Server Performance
Guide.

General Performance Considerations

This section summarizes issues, mostly documented elsewhere in this manual, that
may impact performance:

« Consider the optimal expiration setting for Web pages in your application. You can
set the expiration for pages that match a given URL pattern, using the
<expiration-setting>subelementof <ori on-web-app>in
gl obal - web-appl i cati on. xm ororion-web. xni . (See "Element
Descriptions for global-web-application.xml and orion-web.xml" on page 6-1.) A
more appropriate setting decreases load on the application and improves
performance.

« Be aware of performance implications relating to how multiple concurrent
requests are synchronized or coordinated, and also be aware of related
considerations regarding thread models. See "Servlet Thread Models and Related
Considerations” on page 2-11.

= There are performance implications related to how session state is replicated in a
distributable environment. Replication is triggered each time there is a
set Attri bute() call on the session object, so large numbers of such calls in a
servlet may impact performance. In addition, be aware that for performance
reasons, OC4J does not wait to confirm successful replication of session state. See
"Session Replication in a Distributable Application" on page 2-29.

= Servlet configuration parameters can significantly affect performance. For
information aboutthefi | e- modi fi cati on-check-i nterval attribute of the

2-12 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Development Basics and Key Considerations

<ori on- web- app> element, see "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-1. For information
about the use- keep- al i ves attribute of the <web- si t e> element, see "Element
Descriptions for Web Site XML Files" on page 6-20.

« Additional JSP-related configuration parameters can significantly affect
performance. See "Element Descriptions for global-web-application.xml and
orion-web.xml" on page 6-1 for information about the si npl e-j sp- mappi ng
and enabl e- j sp- di spat cher - short cut attributes of the <ori on- web- app>
element.

« OC4Jstandalone supports a mode of "shared" operation for a single application
through multiple Web sites, where a site is defined as a particular host and port.
This feature is particularly intended for secure applications in which some but not
all communications require HTTPS. Running the noncritical communications
through an HTTP port improves performance. See "Element Descriptions for Web
Site XML Files" on page 6-20 for information about the shar ed attribute of the
<web- app> element.

« Ifyou ever use OC4J standalone as a production environment (although this is not
typical), remember to disable the ser ver . xm check- f or - updat es flag. See
"Key OC4J Flags for Development" on page 2-3.

Oracle Application Server Dynamic Monitoring Service

In an Oracle Application Server environment, DMS adds performance-monitoring
features to several components, including OC4J. The goal of DMS is to provide
information about runtime behavior through built-in performance measurements so
that users can diagnose, analyze, and debug any performance problems. DMS
provides this information in a package that can be used at any time, including during
live deployment. Data are published through HTTP and can be viewed with a
browser.

Standard configuration for the DMS servlets, such as the spy servlet and monitoring
agent, is in the global appl i cat i on. xml file and the def aul t - web- si t e. xmi file.

Inthe OC4J appl i cati on. xni file, the Web modules dns and dns0 and the paths to
their WAR files are specified. The def aul t - web- si t e. xm file specifies that these
Web modules are deployed to the OC4J default application and binds them to their
context paths. Do not directly alter any of these DMS configurations.

Use the Oracle Enterprise Manager 10g to access DMS, display DMS information, and,
if appropriate, alter DMS configuration.

JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

Among the migration considerations in moving to a Sun Microsystems JDK 1.4
environment, which is the environment shipped with Oracle Application Server 10g
Release 2 (10.1.2), one is of particular importance to servilet and JSP developers.

To address security concerns and ambiguities with previous JDK versions, Sun
Microsystems modified the Java compiler to reject import statements that import a
type from the "unnamed namespace". So essentially, you cannot invoke a class (a
method of a class) that is not within a package. Any attempt to do so will result in a
fatal error at compilation time.

This issue especially affects JSP developers who invoke JavaBeans from their JSP
pages, because such beans are often outside of any package (although version 2.0 of
the JSP specification now requires beans to be within packages, to satisfy the new
compiler requirements). Where JavaBeans outside of packages are invoked, JSP

Servlet Development 2-13

Additional Oracle Features

applications that were built and executed in an OC4J 9.0.3 / JDK 1.3.1 environment
will no longer work in an OC4J 10.1.2 / JDK 1.4 environment.

Until you update your application so that all JavaBeans and other invoked classes are
within packages, you can avoid this issue by reverting back to a JDK 1.3.1 environment
for OC4J standalone. Note that JDK 1.3.x is not supported in a full Oracle Application
Server 10.1.2 environment.

Notes:

« Thej avac - sour ce compiler option allows JDK 1.3.1 code to
be processed seamlessly by the JDK 1.4 compiler, but this
option does not account for the "classes not in packages" issue.

« Onlythe JDK 1.3.1 and JDK 1.4 compilers are supported and
certified by OC4J. It is possible to specify an alternative
compiler by adding a <j ava- conpi | er > element to the
server. xm file, and this may provide a workaround for the
"classes not in packages" issue, but no other compilers are
certified or supported by Oracle for use with OC4J.
(Furthermore, do not update the ser ver . xni file directly in an
Oracle Application Server environment. Instead, use the Oracle
Enterprise Manager 10g.)

For more information about the "classes not in packages" issue and other JDK 1.4
compatibility issues, refer to the following Web site:

http://java.sun.conij2se/ 1. 4/ conpatibility. htm

In particular, click the link "Incompatibilities Between Java 2 Platform, Standard
Edition, v1.4.0 and v1.3".

Additional Oracle Features

The followings sections describe additional features, mostly Oracle-specific, to
consider in developing and running servlets in OC4J:

« 0OC4J Logging
« Servlet Debugging
« Oracle JDeveloper Support for Servlet Development

« Introduction to OC4J Support for Open Source Frameworks

0C4J Logging

The following sections provide an overview of OC4J logging features:
« OC4J Logs

« Oracle Diagnostic Logging Versus Text-Based Logging

« Additional Oracle Application Server Log Files

2-14 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Additional Oracle Features

Note: Logging features discussed here are for log messages from
the OC4J server. It is also possible to use open source frameworks
and utilities with OC4J, such as those from the Apache Jakarta
Project. This includes log4j, a complementary technology that you
can use to insert log statements in your own code. See
"Configuration and Use of Jakarta log4j in OC4J" on page A-7.

0C4J Logs

Several logs are available in OC4J. Because they are not specific to servlets, they are
documented elsewhere, but this section provides a summary list and appropriate
cross-references. For each log, you have the option of using text-based logging or ODL
logging. (See the next section, "Oracle Diagnostic Logging Versus Text-Based
Logging".) Note that for ODL, log file names always take the form | ogN. xmi , where N
is an integer. For text-based logging, you must specify the log file names.

For each log there is a configuration element in the appropriate OC4J configuration file
to enable text-based logging, and a separate element to enable ODL logging. The
presence of a logging configuration element enables the associated type of logging.

OC4J supports the following logs:
« Application log

There is a log for each application deployed, as configured in
orion-application.xm . For text-based logging, a typical name is
application.log.

« Global application log

There is a log for global logging for all applications, including the default
application, as configured in the OC4J global appl i cati on. xm file. For
text-based logging, a typical name is gl obal - appl i cati on. | og.

« JMSlog

There is a log for Java Message Service (JMS) functionality, as configured in
j me. xm . For text-based logging, a typical name isj ns. | og.

« RMllog

There is a log for remote method invocation functionality, as configured in
rm . xm . For text-based logging, a typical nameisrm . | og.

« Serverlog

There is a server-wide log, as configured in ser ver . xm . For text-based logging,
atypical nameis server. | og.

« Web site access log

There is a Web site access log (one log file for each Web site to log all accesses of
the site), as configured in the Web site XML file. For text-based logging, a typical
name is htt p- access. | og.

Note: For Web site access logging, you can use only one type of
logging, not both.

Servlet Development 2-15

Additional Oracle Features

Configuration of the Web access log is covered in this manual. Under "Element
Descriptions for Web Site XML Files" on page 6-20, see the information about the
<access-| og>and <odl - access- | og> subelements of the <web- si t e> element.

The Oracle Application Server Containers for J2EE User’s Guide has information about
how to enable logging to the other OC4] files.

Oracle Diagnostic Logging Versus Text-Based Logging

For each of the logs listed in the preceding section, "OC4J Logs", you have the option
of using Oracle Diagnostic Logging (ODL), which offers some advantages over
text-based logging.

ODL provides standardized logging across all components of OC4J, creating the log
files in an XML format that can be loaded to a repository for reporting and viewing.
You can view ODL logs from Oracle Enterprise Manager 10g, for example.

With ODL, it is also easier to manage the size and number of your log files. In many
situations, text-based logging results in the need to periodically shut down the OC4J
server and manually clean up the files.

To configure ODL logging for the Web site access log file, use the

<odl - access- | og> subelement of the <web- si t e> element in the Web site XML
file. To use text-based logging, use the <access- | og> subelement of the

<web- si t e>element instead.

For each of the other OC4J logs, use the <od| > subelement of the <I og> element in
the appropriate XML configuration file if you want to use ODL logging. To use
text-based logging, use the <f i | e> subelement of the <I og> element instead.

Note: Web site access logs commonly use standard XLF or CLF
format (extended log file format or common log file format). Users
can split the files according to a specified time period, such as time
of day or day of month. ODL Web site logs, however, do not
support XLF or CLF format and you cannot split files by time
period. When you reach the maximum size of an ODL log file, a
new file is automatically created. (Log file names are | ogl. xmi ,

| 0g2. xml , and so on.)

See the Oracle Application Server Containers for J2EE User’s Guide for additional
information about ODL.

Additional Oracle Application Server Log Files

In addition to the OC4J log files discussed previously, Oracle Application Server
supports the following log files:

« OPMN log file (one log file for each OC4J instance, for Oracle Process
Management and Notification functionality)

« ons. | og (OPMN notification system log, configured in opmm. xni)
« ipm]l og (OPMN process management log, configured in opm. xm)

OPMN manages Oracle HTTP Server and OC4J processes within an application server
instance.

For information about Oracle Application Server log file management, refer to Oracle
Application Server Administrator’s Guide.

2-16 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Additional Oracle Features

Servlet Debugging

This discussion summarizes debugging features and considerations for servlet
developers, with appropriate cross-references for additional information. It consists of
the following sections:

« OC4J Debugging Flags
« Setting OC4J Debugging Flags
« Timing Considerations for Debugging in Oracle Application Server

» Debugging Through JDeveloper and Other IDEs

0C4J Debugging Flags
OC4J supports several flags to enable debugging output for its subsystems.

Here are the HTTP debugging flags:

« http.error. debug for all HTTP errors; otherwise some are consumed without
being reported

« http.cluster. debug for debugging statements regarding HTTP clustering and
session persistence

« http.session. debug for HTTP session errors and lifecycle statements
« http.request. debug for information from HTTP request stream
« http.redirect. debug for information about HTTP redirects

« debug. http. cont ent Lengt h to print explicit content-length calls as well as
extra sendEr r or information

« http.virtual directory. debug to print the enforced virtual directory
mappings upon startup

« http.nmethod.trace. al | owto enable thetraceHTTP() method

Here are the AJP debugging flags (for Oracle Application Server with Oracle HTTP
Server only):

« aj p. debug to print the incoming AJP stream
« aj p.io.debug to print the AJP response from the server

The AJP flags do not produce user-friendly output, but are necessary for debugging
some AJP issues.

Here are the JDBC debugging flags:

« dat asour ce. ver bose for information about the creation of data sources and
database connections

«] dbc. debug for detailed information about JDBC calls

Here is the EJB debugging flag:

« €jb.cluster.debug for information about EJB clustering
Here are the RMI debugging flags:

« rm.debug for information about remote method invocations
« rm.verbose for detailed information about RMI calls

Here is the Web services debugging flag:

« Ws. debug for information about Web services

Servlet Development 2-17

Additional Oracle Features

Setting OC4J Debugging Flags
The debugging flags are enabled through Java option settings such as the following:

- Dhtt p. sessi on. debug=t rue

If you are using OC4J standalone, specify option settings in the Java command line
when you start OC4J. In an Oracle Application Server environment, use Oracle
Enterprise Manager 10g. Specify option settings in the Java Options field under
Command Line Options in the Application Server Control Console Server Properties
Page for the OC4J instance. To get to this page, select Server Properties under Instance
Properties in the Administration Page for the OC4J instance. See "Application Server
Control Console OC4J Administration Page" on page 7-6. See the Oracle Application
Server Containers for J2EE User’s Guide for further information.

Timing Considerations for Debugging in Oracle Application Server

Because of the way OPMN functions, there are timing issues to consider when
debugging in an Oracle Application Server environment. Specifically, whenever
debugging results in the halting of a process, OPMN terminates that process after the
halt goes beyond the timeout period.

To remedy this situation, you must set an appropriate timeout value, using the
<t i meout > element in the opm. xm file.

For information about opm. xm , particulaly for starting and stopping Oracle
Application Server, refer to the Oracle Application Server Administrator’s Guide.

Debugging Through JDeveloper and Other IDEs

If you use Oracle JDeveloper as your development environment, you can take
advantage of its debugging features.

For debugging, JDeveloper offers local and remote debugging of JSP pages, servlets,
and other Java source files. You can start by setting breakpoints in the source files
within JDeveloper and running a debugging session with the source selected. While
debugging an application such as a servlet in JDeveloper, you have complete control
over the execution flow and can view and modify variable values, as well as perform
advanced application performance monitoring, such as viewing class instance counts
and memory usage. JDeveloper will follow calls from your application into other
source files or offer to generate stub classes for class sources that are not available.
Remote debugging, after the code to be debugged is launched and the JDeveloper
debugger is attached to it, is similar to local debugging.

See "Oracle JDeveloper Support for Servlet Development" on page 2-19 for a general
summary of JDeveloper features for servilet development.

Note: Other key IDE vendors offer plug-in modules that allow
seamless integration with OC4J. This provides developers with the
capability to build, deploy, and debug J2EE applications running on
OC4J directly from within the IDE. You can refer to the following
Web site for more information:

http://wwv. oracl e. conit echnol ogy/ product s/i as/ 9i as_part
ners. htm

(To access the preceding Web site, you must have an Oracle
Technology Network membership, but it is free of charge.)

2-18 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Invocation

Oracle JDeveloper Support for Servlet Development

Visual Java programming tools now typically support servlet coding. In particular,
Oracle JDeveloper supports servlet development and includes the following features:

« Wizards to help generate servlet code

« Integration of the OC4J servlet container to support the full application
development cycle: editing, debugging, and running servlets

« Debugging of deployed servlets

« An extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

« Support for incorporating custom JavaBeans

« Adeployment option for servlet applications that rely on Oracle Application
Development Framework (Oracle ADF) Business Components

Also see "Debugging Through JDeveloper and Other IDES" on page 2-18.

For general information about JDeveloper, refer to the JDeveloper online help or to the
following site on the Oracle Technology Network:

http://ww. oracl e. com t echnol ogy/ products/jdev/content. htm

Introduction to OC4J Support for Open Source Frameworks

OC4J supports some common open source utilities and frameworks. For Oracle
Application Server 10g Release 2 (10.1.2), this document discusses support for two in
particular:

« Jakarta Struts
« Jakarta log4j

The focus is on configuring and using these open source utilities in the OC4J
standalone environment. See Appendix A, "Open Source Frameworks and Utilities".

Servlet Invocation

A servlet is invoked by the container when a request for the servlet arrives from a
client. The client request may come from a Web browser or a Java client application, or
from another servlet in the application using the request forwarding mechanism, or
from a remote object on a server. A servlet is requested through its URL mapping.

The following sections cover servlet invocation, including some special OC4] features
for invoking a servlet by class name in a development or testing scenario:

« Summary of URL Components
« Servlet Invocation by Class Name During OC4J Development
= Servlet Invocation in an Oracle Application Server Production Environment

« Servlet Invocation in an OC4J Standalone Environment

Summary of URL Components

Before discussing servlet invocation, it is useful to summarize the components of a
URL. Here is the generic construct (though note that pat hi nf o is usually empty):

protocol ://host: port/context pat h/ servl et pat h/ pat hi nfo

Servlet Development 2-19

Servlet Invocation

You could also have additional information following any delimiters, such as request
parameter settings following a question mark ("?") delimiter:

protocol ://host: port/contextpath/servl et path/ pat hi nf o?paranrval ue
Table 2-2 describes the components of the generic construct.

Table 2-2 URL Components

Component Description

Protocol The network protocol to be used when invoking the Web application.
Examples are htt p, htt ps,ftp, and or m (for EJBs).

Host The network name of the server that the Web application is running
on. If the Web client is on the same system as the application server,
you can use | ocal host . Otherwise, use the host name (as defined in
/ et c/ host s on a UNIX system, for example), such as:

www, exanpl e. com

Port The port that the Web server listens on. If a URL does not specify a
port, most browsers assume port 80 for HTTP protocol or port 443 for
HTTPS.

For OC4J, the port number is specified in the por t attribute of the
<web- si t e>element in the Web site XML file, such as

def aul t - web-si te. xm for an Oracle Application Server
environment or ht t p- web- si t e. xm for OC4J standalone. (For
each port, there must be one associated protocol, according to the
<web- si t e>element pr ot ocol attribute.)

Context path The designated root path for the servlet context. You specify the
context path when you deploy an application. For OC4J, the specified
context path is reflected in the setting of the r oot attribute of the
<web- app> element (a subelement of <web- si t e>) in the Web site
XML file.

Each servlet context is associated with a directory path in the server
file system.

The <web- app> element also indicates the J2EE application name
(and EAR file name) through its appl i cat i on attribute, and the
Web module name (and WAR file name) through its nane attribute.
The J2EE application name, Web module name, and context path are
all mapped together in this way. Here is an example:

<web- app application="o0jspdenos" name="oj spdenos-web"
root ="/ oj spdenos" />

2-20 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Invocation

Table 2-2 (Cont.) URL Components

Component

Description

Servlet path

Path information

The designated path, beyond the context path, for the particular
servlet you want to invoke. You specify the servlet path through
standard mappings in the application web. xmi file. A servlet class is
mapped to an arbitrary servlet name through <ser vl et - cl ass>
and <ser vl et - nane> subelements of a<ser vl et > element. The
servlet name is mapped to a servlet path through <ser vl et - nane>
and <ur | - pat t er n> subelements of a<ser vl et - mappi ng>
element. (You can map a single servlet class to multiple servlet names
and multiple servlet paths.) Here is an example:

<web- app>
<servl| et >
<servl et - nane>l ogout </ servl et - nane>
<servlet-class>
oracl e.security.jazn.sanples. http. Logout

</servlet-class>
</servlet>

<servl et - mappi ng>
<servl et - nane>l ogout </ servl et - nane>
<ur| -pattern>/|ogout/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

(This is typically empty.) Beyond the context path and servlet path, a
URL can contain additional information that is supplied to the serviet
through the HTTP request object. Such information is presumably
understood by the servlet. This information is separate from any
request parameter settings or other URL components that follow
delimiters such as question marks. Such delimiters would follow any
path information.

Note:

The name specified in a <ser vl et - name> element is the

name you input to the servlet context get NamedDi spat cher ()
method if you want a request dispatcher for that servlet.

For more information about the OC4J configuration elements and attributes discussed
in Table 2-2, see "Element Descriptions for Web Site XML Files" on page 6-20. For
information about elements and attributes of the web. xmi file, refer to the serviet

specification

Consider the following sample URL.:

http:// ww. exanpl e. com 8888/ f oo/ bar / mypat h/ MySer vl et/ i nfol/info2?user=Any

In the process of invoking a servlet according to a URL supplied by a client browser,
the servlet container takes the following steps:

1. Itexamines everything in the URL after the port number, then examines its own
configuration settings (such as in a Web site XML file) for recognized context
paths, then determines what part of the URL is the context path.

Assume for this example that / f oo/ bar is the context path.

Servlet Development 2-21

Servlet Invocation

2. Itexamines everything in the URL after the context path, then examines the servlet
mappings in the web. xm file for recognized servlet paths, then determines what
part of the URL is the servlet path.

At this point, the servlet can be invoked. The servlet container does not use any
information beyond the servlet path.

Assume for this example that/ mypat h/ MySer vl et is the servlet path.

3. If anything remains in the URL after the servlet path and preceding any URL
delimiters (such as "?" in this example, which delimits request parameter settings),
that portion of the URL is taken as extra information and is passed to the servlet
through the HTTP request object.

Assume for this example that/ i nf 01/ i nf 02 is the extra path information.

Note that the context path, servlet path, and any path information can all be
"compound" components, with one or more forward-slashes in between parts. The
preceding example shows this. In many cases, the context path may be simple, such as
just f 00, and the servlet path may also be simple, such as just MySer vl et , and any
path information may be simple as well. But it is impossible to know by just looking at
a URL what part of it is the context path, what part is the servlet path, and what part is
extra path information (if any). You must examine the configuration in the Web site
XML file and web. xm file to determine this.

Notes:

« See the Oracle Application Server Containers for J2EE User’s Guide
or Oracle Application Server Containers for J2EE Stand Alone User’s
Guide for information about defined ports and what listeners
they are mapped to, and for information about how to alter
these settings.

« Cookie names are based on the host name, port number, and
path (just the context path by default, but possibly including
the servlet path as well).

« The concepts of servlet contexts and context paths were
introduced in version 2.2 of the servlet specification.

= You can retrieve the context path, servlet path, and path
information through the get Cont ext Pat h(),
get Ser vl et Pat h(), and get Pat hl nf o() methods of the
HTTP request object.

Servlet Invocation by Class Name During OC4J Development

For a development or testing scenario in OC4J, there is a convenience mechanism for
invoking a servlet by class name. For security reasons, use this mechanism only while
developing your application.

The servl et - webdi r attribute in the <or i on- web- app> element of the

gl obal - web- appl i cati on. xnl file orori on-web. xnl file defines a special URL
component used to invoke servlets by class name. This URL component follows the
context path in the URL, and anything following this URL component is assumed to
be a servlet class name, including applicable package information, within the
appropriate servlet context. The servlet class name appears instead of a servlet path in
the URL. (Technically, the ser vl et - webdi r value is the servlet path and acts as a

2-22 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Invocation

servlet itself, and the class name of the servlet you wish to execute is taken as path
information.)

Generally speaking, for any given application, OC4J behavior for invocation by class
name is determined by the ser vl et - webdi r setting in the or i on- web. xm file for
that application, if there is a setting. But note the following:

« Any setting of ser vl et - webdi r in the gl obal - web- appl i cati on. xn file
acts as a default value (as is true with configuration settings in
gl obal - web- appl i cati on. xm in general). If there isnoservl et - webdi r
setting in gl obal - web- appl i cati on. xnl , however, then the default value is
"" (empty quotes). This setting disables invocation by class name. The default
value is used in the event that ori on- web. xm is not provided with the
application deployment, or does not have a ser vl et - webdi r setting.

= You can disable servlet invocation by class name in either of two ways:

— Set the system property ht t p. webdi r. enabl e to a value of f al se. This
results in any ser vl et - webdi r setting being ignored.

— Setaservl et-webdir value of "" (empty quotes), either through
gl obal - web-application.xm ororion-web. xm .

For information about OC4J system properties, see the Oracle Application Server
Containers for J2EE Stand Alone User’s Guide, or the Oracle Application Server Containers
for J2EE User’s Guide for an Oracle Application Server environment. See the Oracle
Application Server Release Notes for your platform for information about the default
value of the ht t p. webdi r . enabl e system property and any default setting of
servl et - webdi r inthe gl obal - web- appl i cati on. xnl file that is shipped with
OC4).

The following URL invokes a servlet called Sessi onSer vl et by its class name,
assuming a setting of ser vl et - webdi r ="/ servl et/ ". In this example, assume
Sessi onSer vl et isin package f 0o. bar and executes in the OC4J default Web
application. Also assume a context path of "/ " (the default for the default Web
application in OC4J standalone).

http://ww. exanpl e. com 8888/ servl et/ foo. bar. Sessi onSer vl et
This mechanism applies to any servlet context, however, and not just for the default

Web application. If the context path is f 0o, for example, the URL to invoke by class
name is as follows:

http://ww. exanpl e. com 8888/ f oo/ servl et/ foo. bar. Sessi onSer vl et

Important: Allowing the invocation of servlets by class name
presents a significant security risk. Do not configure OC4J to
operate in this mode in a production environment. See "Additional
Security Considerations" on page 2-40 for information.

Servlet Invocation in an Oracle Application Server Production Environment

The following sections describe Oracle HTTP Server and OC4J features for servlet
invocation in an Oracle Application Server Environment:

« Key Features for Invocation in Oracle Application Server

« Use of Perceived Front-End Hosts by OC4J

Servlet Development 2-23

Servlet Invocation

Key Features for Invocation in Oracle Application Server

In an Oracle Application Server production environment, OC4J should always be
accessed through the Oracle HTTP Server. Oracle HTTP Server uses AJP (Apache JServ
protocol) to communicate to OC4J, but this is invisible to the end user.

When a servlet is requested, the OC4J servlet container interprets the URL, as
"Summary of URL Components” on page 2-19 describes.

Whatever port number you use is mapped to AJP protocol through a <web- si t e>
element in the def aul t - web- si t e. xm file. (This is the typical name, but Web site
XML file names are defined according to settings in the ser ver . xni file and can be
changed as desired.) The port mapping is defined through the port and pr ot ocol
attributes of the <web- si t e> element, with port set as desired and pr ot ocol setto
"aj p13". By default, port 7777 is for access through the Oracle HTTP Server with
Oracle Application Server Web Cache enabled.

Whenever you use Enterprise Manager to deploy an application, you are prompted for
a URL mapping. The mapping you specify results in a new OC4J) mount point in
nod_oc4j . conf. If you specify a URL mapping of "/ mypat h", for example, this is
the context path of your Web application and is defined as a new OC4J mount point.
Then you invoke a servlet with a URL such as the following:

htt p: // wwmw. exanpl e. com 7777/ mypat h/ MySer vl et

See "Application Server Control Console Deploy Application (EAR) Page" on page 7-3
and "Application Server Control Console Deploy Web Application (WAR) Page" on
page 7-5 for information about the Enterprise Manager EAR and WAR deployment

pages.

For an overview of deployment to Oracle Application Server, see "OC4J Deployment
in Oracle Application Server" on page 5-39. For further information, see the Oracle
Application Server Containers for J2EE User’s Guide. For general information about
Enterprise Manager, see Oracle Enterprise Manager Concepts.

See the Oracle HTTP Server Administrator’s Guide for information about Oracle HTTP
Server configuration, mount points, and the nrod_oc4j . conf file.

Use of Perceived Front-End Hosts by OC4J

An additional element in the def aul t - web- si t e. xm file (or other Web site XML
file) is relevant in servlet invocation. The <f r ont end> subelement of the

<web- si t e>element can specify a perceived front-end host and port of the Web site
as seen by HTTP clients. When the site is behind a load balancer or firewall, the

<f r ont end> specification is necessary to provide appropriate information to the Web
application for functionality such as URL rewriting. Attributes are host , for the name
of the front-end server (such as " www. exanpl e. cont'), and port, for the port
number of the front-end server (such as " 8080"). Using this front-end information,
the back-end server that is actually running the application knows to refer to

www. exanpl e. com instead of to itself, in any URL rewriting. This way, subsequent
requests properly come in through the front-end again, instead of trying to access the
back-end directly.

The specified front-end host and port settings are also reflected back to the servlet
and are the values you receive if you call the get Ser ver Nane() or
get Server Port () method of the HTTP request object.

2-24 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Sessions

Servlet Invocation in an OC4J Standalone Environment

In OC4J standalone, a Web site uses HTTP protocol without going through the Oracle
HTTP Server and AJP, and is configured according to settings in the

ht t p- web- si te. xm file. (This is the typical name, but Web site XML file names are
according to settings in the ser ver . xm file and can be changed as desired.)

When a servlet is requested, the OC4J servlet container interprets the URL, as
"Summary of URL Components" on page 2-19 describes.

Whatever port number you use is mapped to HTTP protocol through a <web- si t e>
element in the ht t p- web- si t e. xm file (or other Web site XML file, as applicable).
The port mapping is defined through the port and pr ot ocol attributes of the
<web- si t e> element, with port set as desired and pr ot ocol setto"http". By
default, port 8888 is for direct access to OC4J through its own Web listener.

In OC4J standalone, the default context path is "/ " to use HTTP protocol for an
application deployed to the OC4J default Web application. Here is an example:

http:// ww. exanpl e. com 8888/ MySer vl et

If you are not using the default Web application, specify the context path while
deploying the application. You can either do this through the adm n. j ar utility, or by
manual deployment and manual edits of the ht t p- web- si t e. xm file (not
recommended). Deployment for OC4J standalone is discussed in "Deployment
Scenarios to OC4J Standalone" on page 5-23, but for complete information see the
Oracle Application Server Containers for J2EE Stand Alone User’s Guide. That document
also has information about OC4J port settings and other default settings.

If you specify "/ mypat h" as the context path, for example, you will invoke the servlet
with a URL such as the following:

http://ww. exanpl e. com 7777/ nypat h/ MySer vl et

Servlet Sessions

Servlet sessions were introduced in "Introduction to Servlet Sessions" on page 1-5. The
following sections provide details and examples:

« Session Tracking

« Features of the HttpSession Interface

« Session Cancellation

« Session Replication in a Distributable Application

« Session Servlet Example

Session Tracking

This section provides an overview of servlet session tracking and features, then
describes the OC4J implementation.

Overview of Session Tracking

The HTTP protocol is stateless by design. This is fine for stateless servlets that simply
take a request, perform a few computations, output some results, and then in effect go
away. But most server-side applications must keep some state information and
maintain a dialogue with the client. The most common example of this is a shopping
cart application. A client accesses the server several times from the same browser and
visits several Web pages. The client decides to buy some of the items offered for sale at

Servlet Development 2-25

Servlet Sessions

the Web site and clicks the BUY ITEM buttons. If each transaction were being served
by a stateless server-side object, and the client provided no identification on each
request, it would be impossible to maintain a filled shopping cart over several HTTP
requests from the client. In this case, there would be no way to relate a client to a
server session, so even writing stateless transaction data to persistent storage would
not be a solution.

Session tracking involves identifying user sessions by ID numbers and tying requests
to their session through use of the ID number. This process is typically performed
using cookies or URL rewriting.

The OC4J servlet container, to comply with the servlet specification, implements
session tracking through HTTP session objects, which are instances of a class that
implements the j avax. servl et. htt p. Ht t pSessi on interface.

When a servlet creates an HTTP session object (through the request object
get Sessi on() method), the client interaction is considered to be stateful.

An HTTP session object has scope over the Web application only. You cannot use
session objects to share data between applications. Nor can you use session objects to
share data between different clients of the same application. There is one HTTP session
object for each client in each application.

Note: To share information between clients or applications, you
can store such persistent data in a database if you need the
protection, transactional safety, and backup that a database offers.
Alternatively, you can save persistent information on a file system
or in a remote object.

Cookies

Several approaches have been used to add a measure of statefulness to the HTTP
protocol. The most widely accepted is the use of cookies, used to transmit an identifier
between server and client, in conjunction with stateful servlets that can maintain
session objects. Session objects are simply dictionaries that store values (Java objects)
together with their associated keys (Java strings).

Cookie usage is as follows:

1. With the first response from a stateful servlet after a session is created, the server
(container) sends a cookie with a session identifier back to the client, often along
with a small amount of other useful information (all less than 4 KB). The container
sends the cookie, named JSESSI ONI D, in the HTTP response header.

2. Upon each subsequent request from the same Web client session (assuming the
client supports cookies), the client sends the cookie back to the server as part of the
request, and the server uses the cookie value to look up session state information
to pass to the servlet.

3. With subsequent responses, the container sends the updated cookie back to the
client.

The servlet code is not required to do anything to send a cookie; the container handles
this. Sending cookies back to the server is handled automatically by the Web browser,
unless the user disables cookies.

The container uses the cookie for session maintenance. A servlet can retrieve cookies
using the get Cooki es() method of the Ht t pSer vl et Request object and can
examine cookie attributes using the accessor methods of the

j avax. servl et. http. Cooki e objects.

2-26 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Sessions

URL Rewriting

An alternative to using cookies is URL rewriting, through the encodeURL() method
of the response object. In this mechanism, the session ID is encoded into the URL path
of a request. See "Session Servlet Example" on page 2-31 for an example of URL
rewriting.

The name of the path parameter isj sessi oni d, as in the following example:
http://host: port/nyapp/index. ht m ?j sessi oni d=6789

The value of the rewritten URL is used by the server to look up session state
information to pass to the servlet, which is similar to the functionality of cookies.

Although cookies are typically enabled, the only way for you to ensure session
tracking is to use encodeURL() in your servlets, or encodeRedi r ect URL() for
redirects.

Note: To comply with the servlet specification, calls to the
encodeURL() and encodeRedi rect URL() methods resultin no
action if cookies are enabled.

Other Session Tracking Methods

Other techniques have been used in the past to relate client and server sessions,
including server hidden form fields and user authentication mechanisms to store
additional information. Oracle does not recommend these techniques in OC4J
applications. They have many drawbacks, including performance penalties and loss of
confidentiality.

Session Tracking in OC4J

For session-tracking in OC4J, the servlet container first attempts to accomplish
tracking through cookies. If cookies are disabled, the server can maintain session
tracking only by using the encodeURL() method of the response object, or the
encodeRedi r ect URL() method for redirects. You must include the encodeURL()
or encodeRedi rect URL() calls in your servlet if cookies may be disabled.

You can use the following setting in the gl obal - web- appl i cati on. xm or
ori on-web. xm file to disable the use of session cookies:

<sessi on-tracki ng cooki es="di sabled" ... >
</ session-tracki ng>

Cookies are enabled by default.

Servlet Development 2-27

Servlet Sessions

Notes:

« OC4J does not support auto-encoding, in which session I1Ds are
automatically encoded into the URL by the servlet container.
This is a nonstandard and expensive process.

« AnencodeURL() orencodeRedirect URL() call will not
encode the session ID into the URL if the cookie mechanism is
found to be working properly.

« TheencodeURL() method replaces the serviet 2.0
encodeUr | () method (note capitalization), which is
deprecated.

Features of the HttpSession Interface

The servlet container uses HTTP session objects—instances of a class that implements
thej avax. servlet. http. H t pSessi on interface—in tracking and managing user
sessions. The Ht t pSessi on interface specifies the following public methods to get
and set session information:

void setAttribute(String nane, Object val ue)
This method binds the specified object to the session, under the specified name.
Obj ect getAttribute(String nane)

This method retrieves the object that is bound to the session under the specified
name (or nul | if there is no match).

Depending on the configuration of the servlet container and the servlet itself, sessions
may expire automatically after a set amount of time or may be invalidated explicitly
by the servlet. Servlets can manage session lifecycle with the following methods,
specified by the Ht t pSessi on interface:

void invalidate()
This method immediately invalidates the session, unbinding any objects from it.
voi d set Maxl nactivel nterval (int interval)

This method sets a session timeout interval, in seconds, as an integer. A negative
value indicates no timeout. A value of 0 results in an immediate timeout.

bool ean i sNew()

This method returns t r ue within the request that created the session; it returns
f al se otherwise.

| ong getCreationTime()

This method returns the time when the session object was created, measured in
milliseconds since midnight, January 1, 1970.

| ong get Last AccessedTi me()

This method returns the time of the most recent request associated with the client
session, measured in milliseconds since midnight, January 1, 1970. If the client
session has not yet been accessed, this method returns the session creation time.

For an example of how a servlet can use an HTTP session object, see "Session Servlet
Example” on page 2-31.

2-28 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Sessions

For complete information about Ht t pSessi on methods, refer to the Sun
Microsystems Javadoc at the following location:

http://java. sun. coni product s/ servl et/ 2. 3/javadoc/i ndex. ht m

Session Cancellation

HTTP session objects persist for the duration of the server-side session. A session is
either terminated explicitly by the servlet or it "times out" after a certain period and is
cancelled by the container.

Cancellation Through a Timeout

The default session timeout for the OC4J server is 20 minutes. You can change this for
a specific application by setting the <sessi on-ti meout > subelement under the
<sessi on- confi g>element of web. xm . Specify the timeout in minutes, as an
integer. For example, to reduce the session timeout to five minutes, add the following
lines to the application web. xm file:

<sessi on- confi g>
<sessi on-ti meout >5</ sessi on-ti neout >
</ session-confi g>

According to the servlet specification, a negative value specifies the default behavior
that a session never times out. For example:

<sessi on- confi g>
<sessi on-ti meout >- 1</ sessi on-ti meout >
</ session-config>

A value of 0 results in an immediate timeout.

Cancellation by the Servlet

A servlet explicitly cancels a session by invoking the i nval i dat e() method on the
session object. You must obtain a new session object by invoking the get Sessi on()
method of the Ht t pSer vl et Request object.

Session Replication in a Distributable Application

The session object of a stateful servlet can be replicated to other OC4J servers in a
load-balanced cluster island. If the server handling a request to a servlet should fail,
the request can "failover" to another JVM on another server in the cluster island, and
the session state will still be available.

The following sections provide more information:
« Overview of Session Replication and Requirements
« Possible Clustering Error Conditions and Related Environment Flags

« Session Replication Details and Logistics

Overview of Session Replication and Requirements

To enable replication of the session state of an application between OC4J servers, you
must mark the Web application as distributable, by use of the standard

<di st ri but abl e>element in the web. xm file. The presence of this subelement of
the <web- app> element, as follows, specifies that the application is distributable:

<web-app ... >

Servlet Development 2-29

Servlet Sessions

<di stributable/>

</ web- app>

Note: Inan Oracle Application Server environment, accomplish

this through Oracle Enterprise Manager 10g. See the discussion of
clustering in the Oracle Application Server Containers for J2EE User’s
Guide for details.

Objects that are stored by a servlet in the Ht t pSessi on object are replicated. For
replication to work properly, objects must be serializable (directly or indirectly
implementing the j ava. i 0. Seri al i zabl e interface) or remoteable (directly or
indirectly implementing the j ava. r m . Renot e interface). Furthermore, any objects
that are referenced by objects in the session object must themselves be serializable or
remoteable.

Possible Clustering Error Conditions and Related Environment Flags

Replicated data is sent asynchronously to the other OC4J servers in the cluster island.
For performance reasons, OC4J does not wait to confirm successful replication.
Therefore, either of the following scenarios is possible, though highly unlikely:

« Broadcast latency, where session replication messages are not received and
processed by the other OC4J servers before a client is rerouted:

1. Aclient sends a request and receives a response from the OC4J server.

2. The server broadcasts a replication message to the other OC4J servers in the
cluster island with the updated state for the client.

3. The client sends another request before the broadcast of the updated state has
been received and processed by all OC4J servers.

4. The original server fails, and the client is rerouted to one of the OC4J servers
that does not yet have the new state information, resulting in the client
receiving old data.

« Failure before response to client, where a server fails after it has broadcast its
replication message to other servers, but before it has completed its response to the
client:

1. Aclient sends a request to the OC4J server.

2. The server broadcasts a replication message to the other OC4J servers in the
cluster island with the updated state for the client.

3. The server fails, however, before completing its response to the client. This
results in the client being unaware of the processing completed by the server,
even though other OC4J servers are aware.

Because of the possible error scenarios, OC4J and Oracle HTTP Server maintain session
affinity, meaning they make every effort to always route requests and responses
through the same OC4J JVM. The session cookie, JSESSI ONI D, maintains the
required, detailed routing information across HTTP requests to ensure that subsequent
requests through Oracle HTTP Server are dispatched to the originating JVM wherever
possible.

In addition, the OC4J 10.1.2 implementation supports two environment flags that you
can use to reduce the risk of either error scenario occurring:

2-30 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Sessions

« cluster.thread. priority:By default, OC4J clustering threads run with the
same priority as the other main OC4J threads. You can, however, set this flag to
any integer value from 6 through 10 to give clustering threads higher priority, with
10 being the highest priority.

« cluster.failover. del ay: In the event that an OC4J server fails, this flag
results in a delay of the specified number of milliseconds before a client is rerouted
to an alternate server. The default is no delay. A setting between 7000 and 9000 is
probably sufficient to avoid the first of the error scenarios described above.

Session Replication Details and Logistics

For a distributable application, session replication is triggered each time there is a

set Attri but e() call on the session object. The name and value specified in the call
are serialized and replicated, with the serialized value being stored using the specified
name as the key. The value is deserialized only upon first access by a failed-over
servlet.

Note that you must explicitly call set Att ri but e() whenever you update a data
item belonging to the session object. For example, if you call get At tri but e() on the
session object to retrieve a bean and then call a method on the bean to change its state,
you must then call set Att ri but e() on the session object to update the bean in the
session. This is in contrast to the situation in a nondistributable environment, in which
the bean is passed to you by reference and updated directly within the session object
as soon as you call the method on the bean.

Also note the performance implications of this functionality. A servlet with a large
number of set At tri but e() calls may have lower performance because of the small
overhead introduced when performing state replication.

Note: You can observe the runtime status of replication and
session state updates by enabling the OC4J debugging flags

htt p. sessi on. debug and htt p. cl ust er. debug. See "OC4J
Debugging Flags" on page 2-17 and "Setting OC4J Debugging
Flags" on page 2-18.

Session Servlet Example

The following Sessi onSer vl et code implements a servlet that establishes an
Ht t pSessi on object and prints data held by the request and session objects.

SessionServlet Code

inport java.io.*;

inport javax.servlet.*;

i nport javax.servlet.http.*;
inport java.util.Date;

public class SessionServlet extends HtpServlet {

public void doGet (HtpServletRequest req, HttpServletResponse res)
throws ServletException, |CException {

/] CGet the session object. Create a newone if it doesn't exist.
Ht t pSessi on session = req. get Session(true);

res. set Content Type("text/htm");
PrintWiter out = res.getWiter();

Servlet Development 2-31

Servlet Sessions

out.println("<head><title>" + "SessionServlet Qutput " +
"</title></head><body>");
out.println("<hl> SessionServlet Qutput </hl>");

Il Set up a session hit counter. "sessionservlet.counter" is just the
/'l conventional way to create a key for the value to be stored in the
/'l session object "dictionary".

Integer ival =
(I'nteger) session.getAttribute("sessionservlet.counter");
if (ival == null) {
ival = new Integer(1);
}
el se {
ival = new Integer(ival.intValue() + 1);
}

/1 Save the counter val ue.
session.set Attribute("sessionservlet.counter", ival);

/'l Report the counter val ue.
out.println(" You have hit this page " +
ival + " times.<p>");

/] This statement provides a target that the user can click
Il to activate URL rewriting. It is not done by default.
out.printIn("dick <a href=" +
res.encodeURL(H tpWils. get Request URL(req).toString()) +
">here");
" to ensure that session tracking is working even " +
"if cookies aren't supported.
");
out.printIn("Note that by default URL rewiting is not enabled" +

" due to its large overhead.");

out. println(

/] Report data fromrequest.
out.println("<h3>Request and Session Data</h3>");
out.println("Session IDin Request: " +
req. get Request edSessi onl d());
out.println("
Session IDin Request is froma Cookie: " +
req. i sRequest edSessi onl dFr onCooki e()) ;
out.println("
Session IDin Request is fromthe URL: " +
req. i sRequest edSessi onl dFromJRL());
out.println("
Valid Session ID. " +
req. i sRequest edSessi onl dval i d());

/] Report data fromthe session object.
out. println("<h3>Sessi on Data</h3>");
out.println("New Session: " + session.isNew));
out.println("
 Session ID: " + session.getld());
out.printIn("
 Creation Time: " + new Date(session.getCreationTine()));
out.println("
Last Accessed Time: " +
new Dat e(sessi on. get Last AccessedTinme()));
out.println("</body>");
out.close();

}

public String getServletinfo() {
return "A sinple session servliet";

}
}

2-32 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Security

Deploying and Testing

In OC4J standalone, save the preceding code into a file Sessi onServl et . j avain
the OC4J default Web application / VEB- | NF/ cl asses directory. By default, the
default Web application root directory isj 2ee/ hone/ def aul t - web- app. (See "OC4J
Default Application and Default Web Application” on page 5-25 for more information.)

For convenience, use the devel opnment ="t r ue" setting in the <ori on- web- app>
element of the gl obal - web-appl i cati on. xm file. See "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-1 for more information
about the devel opnent flag.

Figure 2-1 shows the output of this servlet when a Web browser that has cookies
enabled invokes it the second time in a session. Experiment with different Web
browser settings—for example, by disabling cookies—then select the HREF that causes
URL rewriting.

Figure 2-1 Session Servlet Display

¥ SessionServlet Dutput - Netscape

File Edit “iew Go Communicator Help

Biach Fopward Reload Hiome Search Metzcape Frint Security Shop Stop m

w‘ " Bookmarks £ Location:l d @' Wwhat's Related

SessionServlet Qutput

Tou hawve hit this page 2 times.

Click here to ensure that session tracking 15 worling even if coclies aren't supported.
Mote that by default TEL rewriting is not enabled due to itz large overhead.

Request and Session Data

Zesston ID i Bequest: 295e32774 %aed clbabeefde 15af34d412
Zession ID i Bequest iz from a Coolie: true

Zession ID i Bequest iz from the TTEL: falze

Walid Session ID: true

Session Data

Mew Session: false

Zesston ID: 2%0eB32774%aed c0babeefide 1 3af2dd12

Creation Time: Tue Aug 28 03:37:55 Gh{T-05:00 2001

Last Accessed Tine: Tue Aug 28 05:37:5%9 GWT-03:.00 2001

[=B= |Document: Done T H2 A

Servlet Security

OC4J supports Secure Socket Layer (SSL) communication between Oracle HTTP
Server and OC4J in an Oracle Application Server environment, using secure AJP. This
is the secure version of Apache JServ Protocol, the protocol Oracle HTTP Server uses
to communicate with OC4J. The following sections provide details:

« Use of Security Features
« Configuration of Oracle HTTP Server and OC4J for SSL
» SSL Common Problems and Solutions

This discussion is followed by a section of general security considerations:

Servlet Development 2-33

Servlet Security

» Additional Security Considerations

Notes:

= Secure communication between a client and Oracle HTTP
Server is independent of secure communication between Oracle
HTTP Server and OCA4J. (Also note that the secure AJP protocol
used between Oracle HTTP Server and OC4J is not visible to
the end user.) This section covers only secure communication
between Oracle HTTP Server and OCA4J.

« Inaddition, OC4J standalone supports SSL communication
directly between a client and OC4J, using HTTPS. See the
Oracle Application Server Containers for J2EE Stand Alone User’s
Guide, available when you download the standalone version
from OTN.

See the following documents for additional information about Oracle Application
Server security and Oracle HTTP Server.

« Oracle Application Server Security Guide (including information about secure
protocol between a client and Oracle HTTP Server)

= Oracle Application Server Containers for J2EE Security Guide (including an overview
of SSL keys, certificates, and related concepts)

= Oracle HTTP Server Administrator’s Guide

Use of Security Features

The following sections discuss how to use SSL features with OC4J and Oracle HTTP
Server:

« Using Certificates with OC4J and Oracle HTTP Server

= Requesting Client Authentication

Using Certificates with OC4J and Oracle HTTP Server

The steps below are for using keys and certificates for SSL communication in OC4J.
These are server-level steps, typically executed prior to deployment of an application
that will require secure communication, perhaps when you first set up an Oracle
Application Server instance.

Note that a keystore stores certificates, including the certificates of all trusted parties,
for use by a program. Through its keystore, an entity such as OC4J (for example) can
authenticate other parties, as well as authenticate itself to other parties. Oracle HTTP
Server uses what is called a wallet for the same purpose.

InJava, a keystore isaj ava. securi ty. KeySt or e instance that you can create and
manipulate using the keyt ool utility that is provided with the Sun Microsystems
JDK. The underlying physical manifestation of this object is a file. Go to the following
Web site for information about keyt ool :

http://java.sun.confj2se/ 1. 3/ docs/ t ool docs/ wi n32/ keyt ool . ht ni

The Oracle Wallet Manager has functionality for Oracle wallets that is equivalent to
the functionality of keyt ool for keystores.

Here are the steps in using certificates between OC4J and Oracle HTTP Server:

2-34 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Security

1. Use keyt ool to generate a private key, public key, and unsigned certificate.You
can place this information into either a new keystore or an existing keystore.

2. Obtain a signature for the certificate, using either of the following two approaches.
Generate your own signature:

a. Usekeyt ool to "self-sign" the certificate. This is appropriate if your clients
trust you as, in effect, your own certificate authority.

Alternatively, obtain a signature from a recognized certificate authority:

a. Using the certificate from Step 1, use keyt ool to generate a certificate request,
which is a request to have the certificate signed by a certificate authority.

b. Submit the certificate request to a certificate authority.

c. Receive the signature from the certificate authority, and import it into the
keystore, again using keyt ool . In the keystore, the signature is matched with
the associated certificate.

Note: Oracle Application Server includes Oracle Application
Server Certificate Authority (OCA). OCA allows customers to
create and issue certificates for themselves and their users,
although these certificates would probably be unrecognized outside
a customer’s organization without prior arrangements. See the
Oracle Application Server Certificate Authority Administrator’s Guide
for information about OCA.

The process for requesting and receiving signatures is up to the particular certificate
authority you use. Because that is outside the scope and control of Oracle Application
Server, the documentation does not cover it. You can go to the Web site of any
certificate authority for information. (Any browser should have a list of trusted
certificate authorities.) Here are the Web addresses for VeriSign, Inc. and Thawte, Inc.,
for example:

http://ww. verisign. com
http://ww.t hawt e. com

For SSL communication between OC4J and Oracle HTTP Server, execute the preceding
steps for Oracle HTTP Server, but use a wallet and Oracle Wallet Manager instead of a
keystore and the keyt ool utility. See the Oracle Application Server Security Guide for
information about wallets and the Oracle Wallet Manager.

In addition to steps 1 and 2 above, execute the following steps as necessary:

1. If the OCA4J certificate is signed by an entity that Oracle HTTP Server does not
yet trust, obtain the certificate of the entity and import it into Oracle HTTP Server.
The specifics depend on whether the OC4J certificate in question is self-signed, as
follows.

If OC4J has a self-signed certificate (essentially, Oracle HTTP Server does not yet
trust OC4)):

a. From OC4J, use keyt ool to export the OC4J certificate. This step places the
certificate into a file that is accessible to Oracle HTTP Server.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the OC4J
certificate.

Servlet Development 2-35

Servlet Security

Alternatively, if OC4J has a certificate that is signed by another entity (that Oracle
HTTP Server does not yet trust):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From Oracle HTTP Server, use Oracle Wallet Manager to import the certificate
of the entity.

2. If the Oracle HTTP Server certificate is signed by an entity that OC4J does not
yet trust, and OC4J is in a mode of operation that requires client authentication
(as "Requesting Client Authentication" on page 2-37 discusses):

a. Obtain the certificate of the entity in any appropriate way, such as by
exporting it from the entity. The exact steps vary widely, depending on the
entity.

b. From OC4J, use keyt ool to import the certificate of the entity.

Note: During communications over SSL between Oracle HTTP
Server and OC4J, all data on the communications channel between
the two is encrypted. The following steps are executed: 1) The OC4J
certificate chain is authenticated to Oracle HTTP Server during
establishment of the encrypted channel. 2) Optionally, if OC4J is in
client-authentication mode, Oracle HTTP Server is authenticated to
OC4J. This process also occurs during establishment of the
encrypted channel. 3) Any further communication after this initial
exchange will be encrypted.

Example: Creating an SSL Certificate and Generating Your Own Signature This
example corresponds to Step 2 above, in the mode where you generate your own
signature by using keyt ool to self-sign the certificate.

First, create a keystore with an RSA private/public keypair, using the keyt ool
command. The following example (in which %is the system prompt) uses the RSA
keypair algorithm to generate a keystore to reside in a file named nykeyst or e, which
has a password of 123456 and is valid for 21 days:

% keyt ool -genkey -keyal g "RSA" -keystore nykeystore -storepass 123456 -validity 21

Note the following:

« Thekeyst or e option specifies the name of the file in which the keys are stored.
« Thest or epass option sets the password for protecting the keystore.

« Thevali dity option sets the number of days for which the certificate is valid.
The keyt ool prompts you for more information, as follows:

What is your first and last nane?
[Unknown] : Test User
VWat is the name of your organizational unit?
[Unknown]: Support
What is the nanme of your organization?
[Unknown]: Oracle
VWat is the name of your City or Locality?
[Unknown] : Redwood Shores
What is the name of your State or Province?
[Unknown]: CA

2-36 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Security

VWhat is the two-letter country code for this unit?
[Unknown]: US

I's <CN=Test User, OU=Support, O=Cracle, L=Reading, ST=Berkshire, C=GB> correct?
[no]: vyes

Enter key password for <nykey>
(RETURN i f sane as keystore password):

Note: To determine your two-letter country code, use the ISO
country code list at the following URL.:

http://ww. bcpl . net/ ~j spat h/i socodes. ht m

The nykeyst or e file is created in the current directory. The default alias of the key is
nykey.

Requesting Client Authentication

OC4J supports a client authentication mode in which the server explicitly requests
authentication from the client before the server communicates with the client. In an
Oracle Application Server environment, Oracle HTTP Server acts as the client to OC4J.

For client authentication, Oracle HTTP Server must have its own certificate and
authenticates itself by sending a certificate and a certificate chain that ends with a root
certificate. You can configure OC4J to accept only root certificates from a specified list
in establishing a chain of trust back to a client.

A certificate that OC4J trusts is called a trust point. In the certificate chain from Oracle
HTTP Server, the trust point is the first certificate OC4J encounters that matches one in
its own keystore. There are three ways to establish trust:

« The client certificate is in the keystore.

= One of the intermediate CA certificates in the certificate chain from Oracle HTTP
Server is in the keystore.

« The root CA certificate in the certificate chain from Oracle HTTP Server is in the
keystore.

OC4J verifies that the entire certificate chain, up to and including the trust point, is
valid to prevent any forged certificates.

If you request client authentication with the needs- cl i ent - aut h attribute, perform
the following steps. See "OC4J Configuration Steps for SSL" on page 2-38 for how to
configure this attribute.

1. Decide which of the certificates in the chain from Oracle HTTP Server is to be your
trust point. Ensure that you either have control over the issuance of certificates
using this trust point or that you trust the certificate authority as an issuer.

2. Import the intermediate or root certificate in the server keystore as a trust point for
authentication of the client certificate.

Note: If you do not want OC4J to accept certain trust points, make
sure these trust points are not in the keystore.

3. Execute the steps to create the client certificate (documented in "Using Certificates
with OC4J and Oracle HTTP Server" on page 2-34). The client certificate includes

Servlet Development 2-37

Servlet Security

the intermediate or root certificate that is installed in the server. If you wish to
trust another certificate authority, obtain a certificate from that authority.

4. Save the certificate in a file on Oracle HTTP Server.

5. Provide the certificate for the Oracle HTTP Server initiation of the secure AJP
connection.

Configuration of Oracle HTTP Server and OC4J for SSL

For secure communication between Oracle HTTP Server and OC4J, configuration steps
are required at each end, as the following sections discuss:

« Oracle HTTP Server Configuration Steps for SSL
«» OC4J Configuration Steps for SSL

Oracle HTTP Server Configuration Steps for SSL

In Oracle HTTP Server, verify proper SSL settings in nod_oc4j . conf for secure
communication. SSL must be enabled, with a wallet file and password specified, as
follows:

Cc4j Enabl eSSL on
Ccdj SSLVal letFile wall et _path
Cc4j SSLVAI | et Password pwd

Thewal | et _pat h value is a directory path to the wallet file, without a file name.
(The wallet file name is already known.) The pwd value is the wallet password.

For more information about the nod_oc4j . conf file, see the Oracle HTTP Server
Administrator’s Guide.

0C4J Configuration Steps for SSL

Inthedef aul t - web-si te. xm file (or other Web site XML file, as appropriate), you
must specify appropriate SSL settings under the <web- si t e> element.

1. Turnon the secur e flag to specify secure communication, as follows:

<web-site ... secure="true" ... >
</ web-site>
Setting secur e="t r ue" specifies that the AJP protocol should use an SSL socket.

2. Usethe<ssl -confi g>subelement and its keyst or e and
keyst or e- passwor d attributes to specify the path and password for the
keystore, as follows:

<web-site ... secure="true" ... >

<ssl-config keystore="path_and_file" keystore-password="pwd" />
</ web-site>

The <ssl - conf i g> element is required whenever the secur e flag is set to
"true".

The pat h_and_fi | e value can indicate either an absolute or relative directory
path and includes the file name. A relative path is relative to the location of the
Web site XML file.

2-38 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Security

3. Optionally, to specify that client authentication is required, turn on the
needs- cl i ent - aut h flag. This is an attribute of the <ssl - conf i g> element.

<web-site ... secure="true" ... >

<ssl-config keystore="path_and_file" keystore-password="pwd"
needs-client-auth="true" />
</web-site>

This step sets up a mode in which OC4J accepts or rejects a client entity, such as
Oracle HTTP Server, for secure communication, depending on its identity. The
needs- cl i ent - aut h flag instructs OC4J to request the client certificate chain
upon connection. If OC4J recognizes the root certificate of the client, then the client
is accepted.

The keystore that is specified in the <ssl - conf i g> element must contain the
certificates of any clients that are authorized to connect to OC4J through secure
AJP and SSL.

Here is an example that sets up secure communication with client authentication:

<web-site display-name="0C4J Wb Site" protocol ="aj pl3" secure="true" >
<defaul t -web-app application="default" nane="def aul t WebApp" root="/j2ee" />
<access-1og path="../log/ def aul t - web-access.|og" />
<ssl-config keystore="../keystore" keystore-password="wel cone"
needs-client-auth="true" />
</ web-site>

Only the portions in bold are specific to security. The protocol value is always

"aj p13" for communication through Oracle HTTP Server, whether or not you use
secure communication. A protocol value of aj p13 with secur e="f al se" indicates
AJP protocol; aj p13 with secur e="t rue" indicates secure AJP protocol.

For more information about elements and attributes of the <web- si t e> and
<ssl - confi g> elements, see "Element Descriptions for Web Site XML Files" on
page 6-20.

Also see "Requesting Client Authentication” on page 2-37 for related information.

SSL Common Problems and Solutions

This section discusses some common SSL errors and their causes and remedies,
followed by a brief discussion of general SSL debugging.

SSL Common Errors

The following errors may occur when using SSL certificates:

Keytool Error: java.security.cert.CertificateException: Unsupported encoding
Cause: There is trailing white space, which the keyt ool utility does not allow.
Action: Delete all trailing white space. If the error still occurs, add a hewline in
your certificate reply file.

Keytool Error: KeyPairGenerator not available
Cause: You are probably using the keyt ool utility from an older JDK.

Action: Use the keyt ool utility from the latest JDK on your system. To ensure
that you are using the latest JDK, specify the full path for this JDK.

Keytool Error: Failed to establish chain from reply

Servlet Development 2-39

Servlet Security

Cause: The keyt ool utility cannot locate the root CA certificates in your
keystore, and therefore cannot build the certificate chain from your server key to
the trusted root certificate authority.

Action: Execute the following command:

keytool -keystore keystore -inport -alias cacert -file cacert.cer
(keytool -keystore keystore -import -alias intercert -file inter.cer)

If you use an intermediate CA keyt ool utility, then execute this command:

keystore keystore -genkey -keyal g RSA -alias serverkey
keytool -keystore keystore -certreq -file ny.host.comcsr

Get the certificate from the Certificate Signing Request (CSR), then execute the
following command:

keytool -keystore keystore -inport -file ny.host.comcer -alias serverkey

No available certificate corresponds to the SSL cipher suites that are enabled
Cause: Something is wrong with your certificate.

Action: Determine and rectify the problem.

General SSL Debugging

While you are developing in OC4J standalone, you can display verbose debug
information from the Java Secure Socket Extension (JSSE) implementation. To get a list
of options, start OC4J as follows:

java - D avax. net. debug=hel p -jar oc4j.jar

Start it as follows to enable full verbosity:

java - D avax. net.debug=all -jar oc4j.jar

This will display the browser request header, server HTTP header, server HTTP body,
content length (before and after encryption), and SSL version.

Additional Security Considerations

In addition to the SSL functionality discussed previously, the following are
considerations for the security of your Web application running in the OC4J serviet
container:

« Inthegl obal -web-application. xm fileorori on-web. xm file, use the
<j azn- web- app> subelement of <or i on- web- app> to configure the OracleAS
JAAS Provider and Single Sign-On (SSO) properties for servlet execution. These
features must be set appropriately in order to invoke a servlet under the privileges
of a particular security subject. This element is described under "Element
Descriptions for global-web-application.xml and orion-web.xml" on page 6-1.

« OC4Jincludes standard support for security constraints and security roles through
the <securi t y-rol e>element of the web. xm deployment descriptor. For
general information, refer to the servlet specification. OC4J also offers related
support through the gl obal - web- appl i cation. xm file
<security-rol e- mappi ng> element. See "Configuration for
global-web-application.xml and orion-web.xml" on page 6-1 for details about
elements and attributes of gl obal - web- appl i cati on. xmi .

2-40 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Servlet Security

Invocation by class name should be considered only in a development
environment, because there is a significant security risk when users are allowed to
invoke servlets in this way.

Invocation by class name can bypass standard security constraints unless this is
specifically addressed in the web. xm file. In addition, when a servlet is invoked
by class, any exception it throws may reveal the physical path of the servlet
location, which is highly undesirable.

To resolve security issues, particularly in a production environment, you can
disable servlet invocation by class name in either of two ways:

— Set the system property ht t p. webdi r. enabl e to a value of f al se. This
setting results in any ser vl et - webdi r setting being ignored.

— Setaservl et-webdir value of "" (empty quotes), either through
gl obal - web-application.xm ororion-web. xm .

(Invocation by class name is described in "Servlet Invocation by Class Name
During OC4J Development" on page 2-22, including additional information about
servl et - webdi r settings.)

The following configuration in or i on- web. xm , for example, would disable
invocation by class name:

<orion-web-app ... servlet-webdir="" ... >
</ ori on- web- app>

To guard against the guessing or "hacking" of session ID humbers for destructive
purposes, OC4J uses j ava. security. Secur eRandomfunctionality to generate
random session ID numbers.

Servlet Development 2-41

Servlet Security

2-42 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

3

Servlet Filters and Event Listeners

This chapter describes the following servlet features:
« Servlet Filters

= Event Listeners

Servlet Filters

Servlet filters are used for preprocessing Web application requests and postprocessing
responses, as described in the following sections:

= Overview of Servlet Filters
= How the Servlet Container Invokes Filters
« Filtering of Forward or Include Targets

« Filter Examples

Overview of Servlet Filters

When the servlet container calls a method in a servlet on behalf of the client, the HTTP
request that the client sent is, by default, passed directly to the servlet. The response
that the servlet generates is, by default, passed directly back to the client, with its
content unmodified by the container. In this scenario, the servlet must process the
request and generate as much of the response as the application requires.

But there are many cases in which some preprocessing of the request for servlets
would be useful. In addition, it is sometimes useful to modify the response from a
class of servlets. One example is encryption. A servlet, or a group of servlets in an
application, may generate response data that is sensitive and should not go out over
the network in clear-text form, especially when the connection has been made using a
nonsecure protocol such as HTTP. A filter can encrypt the responses. Of course, in this
case the client must be able to decrypt the responses.

A common scenario for a filter is one in which you want to apply preprocessing or
postprocessing to requests or responses for a group of servlets, not just a single servlet.
If you need to modify the request or response for just one servlet, there is no need to
create a filter—just do what is required directly in the servlet itself.

Note that filters are not servlets. They do not implement and override Ht t pSer vl et
methods such as doCet () or doPost () . Rather, a filter implements the methods of
thej avax. servl et. Fi |l t er interface. The methods are:

= init()
« destroy()

Servlet Filters and Event Listeners 3-1

Servlet Filters

« doFilter()

How the Servlet Container Invokes Filters

Figure 3-1 shows how the servlet container invokes filters. On the left is a scenario in
which no filters are configured for the servlet being called. On the right, several filters
(1, 2, ..., N) have been configured in a chain to be invoked by the container before the
servlet is called and after it has responded. The web. xml file specifies which servlets
cause the container to invoke the filters.

Figure 3-1 Servlet Invocation with and without Filters

Web Web
listener listener
Y f
w
Servlet Container Servlet Container
A Il‘ A
3 g :& :
2 2 ©filter1 :
g © : :
! |
- filter2
Serviet | |
- filterN: &
v [
Serviet

The order in which filters are invoked depends on the order in which they are
configured in the web. xm file. The first filter in web. xm is the first one invoked
during the request, and the last filter in web. xm is the first one invoked during the
response. Note the reverse order during the response.

Note: Be careful in coordinating any use of multiple filters, in case
of possible overlap in functionality or in what the filters are
overwriting.

Filtering of Forward or Include Targets

In the OC4J 10.1.2 implementation, when a servlet is filtered, any servlets that are
forwarded to or included from the filtered servlet are not filtered by default. You can
change this behavior, however, through the following environment setting:

oracle.j2ee.filter.on.dispatch=true

3-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Filters

This flag is set to f al se by default.

Note: This flag is a temporary mechanism for the current release.
Future releases will adhere to version 2.4 of the servlet
specification, which directs that servlets that are forwarded to or
included from a filtered servlet are not filtered by default. But in
compliance with the specification, this behavior will be
configurable through the web. xni file.

See "Servlet Includes and Forwards" on page 2-10 for general information about
including and forwarding.

Filter Examples
This section lists and describes three servlet filter examples.

Filter Example 1

This section provides a simple filter example. Any filter must implement the three
methods in the j avax. servl et . Fi | t er interface or must extend a class that
implements them. So the first step is to write a class that implements these methods.
This class, which we will call MyGeneri cFi | t er, can be extended by other filters.

Generic Filter Here is the generic filter code. Assume that this generic filter is part of a
package com exanpl e. fi |l t er and set up a corresponding directory structure.

This is an elementary example of an empty (or "pass-through") filter and could be used
as a template.

package com exanple.filter;
inport javax.servlet.*;

public class M/GenericFilter inplenents javax.servliet.Filter {
public FilterConfig filterConfig; /11

public void doFilter(final ServletRequest request, 112
final ServletResponse response,
FilterChain chain)
throws java.io.lOException, javax.servlet.ServletException {

chai n. doFi | ter(request, response); /13
}
public void init(final FilterConfig filterConfig) { /14
this.filterConfig = filterConfig;
}
public void destroy() { /15
}

}

Save this code in a file called MyGeneri cFi | t er. j ava in the package directory. The
numbered code notes refer to the following:

1. This code declares a variable to save the filter configuration object.
2. ThedoFi |l ter () method contains the code that implements the filter.

3. Inthe generic case, just call the filter chain.

Servlet Filters and Event Listeners 3-3

Servlet Filters

4. Thei nit () method saves the filter configuration in a variable.

5. Thedestroy() method can be overridden to accomplish any required
finalization.

Filter Code: HelloWorldFilter.java This filter overrides the doFi | t er () method of the
MyGeneri cFi | t er class above. It prints a message on the console when it is called on
entrance, then adds a new attribute to the servlet request, then calls the filter chain. In
this example there is no other filter in the chain, so the container passes the request
directly to the servlet. Enter the following code in a file called

Hel | oWri dFilter.java:

package comacne.filter;
inport javax.servlet.*;

public class HelloWrldFilter extends M/GenericFilter {
private FilterConfig filterConfig;

public void doFilter(final ServletRequest request,
final ServletResponse response,
Fi I terChain chain)
throws java.io.|CException, javax.servlet.ServletException {
Systemout.printin("Entering Filter");
request.set Attribute("hello","Hello Wrld!");
chain. doFi | ter(request, response);
Systemout.printIn("Exiting Hel | oVrldFilter");
}
}

JSP Code: filter.jsp To keep the example simple, the "servlet" to process the filter output
is written as a JSP page. Here it is:

<HTM.>

<HEAD>

<TITLE>Fi | ter Exanple 1</ TITLE>
</ HEAD>

<BODY>

<HR>

<P><%request . get Attribute("hello0") %</ P>
<P>Check your consol e output!</P>
<HR>

</ BODY>

</ HTM.>

The JSP page gets the new request attribute, hel | o, that the filter added, and prints its
value on the console. Putthefil t er.j sp page in the root directory of the OC4J
standalone default Web application, and make sure your console window is visible
when you invoke fi |l ter.jsp from your browser.

Setting Up Example 1 To test the filter examples in this chapter, use the OC4J standalone
default Web application. Configure the filter in the web. xm file in the default Web
application / VEEB- | NF directory (j 2ee/ hone/ def aul t - web- app/ VEEB- | NF, by
default).

You will need the following entries in the <web- app> element:

<I-- Filter Exanple 1 -->
<filter>
<filter-name>hel | oWorl d</filter-name>

3-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Filters

<filter-class>comacne.filter.HellowrldFilter</filter-class>
</[filter>
<filter-nmappi ng>
<filter-nanme>hel | oWorld</filter-name>
<url-pattern>/filter.jsp</url-pattern>
</filter-nmappi ng>
<I-- end Filter Exanple 1 -->

The <f i | t er > element defines the name of the filter and the Java class that
implements the filter. The <f i | t er - mappi ng> element defines the URL pattern that
specifies which targets the <f i | t er - nane> element should apply to. In this simple
example, the filter applies to only one target: the JSP code infil ter.j sp.

Running Example 1 Invokefilter.j sp from your Web browser. The console output
should look like this:

host nane% Entering Filter
Exiting Hell oVrldFilter

The Web browser output is similar to that shown in Figure 3-2, which follows.

Figure 3-2 Example 1 Output

3 Filter Example 1 - Netscape

File Edit “iew Go Communicator Help

Back Forward Reload Hizre Search Metscape Frint Securty Em

" Bockmaks Ji Location:l = @17 what's Relatad

Hello Worldl

Check your console output!

@ =4D'=| |Document: Done

Filter Example 2

You can configure a filter with initialization parameters in the web. xml file. This
section provides a filter example that uses the following web. xm entry, which
demonstrates a parameterized filter:

<l-- Filter Exanple 2 -->

Servlet Filters and Event Listeners 3-5

Servlet Filters

<filter>
<filter-name>message</filter-nanme>
<filter-class>comacne.filter.MessageFilter</filter-class>
<init-paranp
<par am nane>nmessage</ par am name>
<param val ue>A message for you! </ param val ue>
</init-paran>
</filter>
<filter-mappi ng>
<filter-nane>nessage</filter-nane>
<url-pattern>/filter2.jsp</url-pattern>
</filter-mpping>
<I-- end Filter Exanple 2 -->

Here, the filter named nessage has been configured with an initialization parameter,
also called message. The value of the message parameter is "A message for you!"

Filter Code: MessageFilter.java Following is the code to implement the message filter
example. Note that it uses the MyGeneri cFi | t er class from "Filter Example 1" on
page 3-3.

package comacne.filter;
inport javax.servlet.*;

public class MessageFilter extends MyGenericFilter {
public void doFilter(final ServletRequest request,
final ServletResponse response,
Fi I terChain chain)
throws java.io.lOException, javax.servlet.ServletException {
Systemout.println("Entering MessageFilter");
String nmessage = filterConfig.getlnitParaneter("message");
request.set Attribute("message", message);
chain. doFi | ter (request, response);
Systemout.println("Exiting MessageFilter");
}
}

This filter uses the fi | t er Conf i g object that was saved in the generic filter. The
filterConfig.getlnitParaneter() method returns the value of the
initialization parameter.

JSP Code: filter2.jsp As in the first example, this example uses a JSP page to implement
the "servlet" that tests the filter. The filter named in the <ur | - pat t er n> tag above is
filter2.]sp.Hereisthecode, which you can enter into afilefil ter2.jspinthe
OC4J standalone default Web application root directory:

<HTM.>

<HEAD>

<TI TLE>Lesson 2</ TI TLE>

</ HEAD>

<BODY>

<HR>

<P><%r equest . get Attri but e(" nessage") %</ P>
<P>Check your consol e output!</P>
<HR>

</ BODY>

</ HTM.>

3-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Filters

Running Example 2 Verify that the filter configuration has been entered in the web. xm
file, as shown above. Then access the JSP page with your browser. The console output
is similar to the following:

Aut o- depl oying file:/private/tssmth/appserver/default-web-app/ (Assenbly had been
updated). ..

Entering MessageFilter

Exiting MessageFilter

Note the message from the server showing that it redeployed the default Web
application after the web. xm file was edited, and note the messages from the filter as
it was entered and exited. The Web browser output is similar to that shown in

Figure 3-3, which follows.

Figure 3-3 Example 2 Output

e

#+ Filter Example 2 - Netscape

e Edit Yiew Go Communicator Help

Back Fopward Feload Hime Search Metscape Frint Security Eﬂ

' wt " Bookmarks ‘3& Location:l j @' What's Related

A message for youl

Checl your console output!

’E == |Document: Done

Filter Example 3

A particularly useful function for a filter is to manipulate the response to a request. To
accomplish this, use the standard

javax.servl et. http. Ht pServl et ResponseW apper class, a custom

j avax. servl et. Servl et Qut put St r eamobiject, and a filter. To test the filter, you
also need a target to be processed by the filter. In this example, the target that is
filtered is a JSP page.

Create three new classes to implement this example:

« FilterServl et QutputStream This class is a new implementation of
Ser vl et Qut put St r eamfor response wrappers.

Servlet Filters and Event Listeners 3-7

Servlet Filters

« GenericResponseW apper: This class is a basic implementation of the response
wrapper interface.

« PrePost Fil ter:Thisclass implements the filter.

This example uses the Ht t pSer vl et ResponseW apper class to wrap the response
before it is sent to the target. This class is an object that acts as a wrapper for the

Ser vl et Response object (using a Decorator design pattern, as described in software
design textbooks). It is used to wrap the real response so that it can be modified after
the target of the request has delivered its response.

The HTTP servlet response wrapper developed in this example uses a custom servlet
output stream that lets the wrapper manipulate the response data after the servlet (or
JSP page, in this example) is finished writing it out. Normally, this cannot be done after
the servlet output stream has been closed (essentially, after the servlet has committed
it). That is the reason for implementing a filter-specific extension to the

Ser vl et Qut put St r eamclass in this example.

Output Stream: FilterServletOutputStream.java The Fi | t er Ser vl et Qut put St r eamclass
is used to manipulate the response of another resource. This class overrides the three
writ e() methods of the standard j ava. i 0. Qut put St r eamclass.

Here is the code for the new output stream:
package comacne.filter;
inport javax.servlet.*;

inport javax.servlet.http.*;
inport java.io.*;

public class FilterServletQutputStreamextends ServletQutput Stream {
private DataQut put Stream stream

public FilterServletQutputStreanm Qutput Stream output) {
stream = new Dat aQut put St r ean{ out put) ;
}

public void wite(int b) throws | OException {
streamwite(bh);

}

public void wite(byte[] b) throws I|OException {
streamwite(b);

}

public void wite(byte[] b, int off, int len) throws | CException {
streamwite(b,off,len);

}
}

Save this code in the following directory, under the default Web application root
directory (j 2ee/ hone/ def aul t - web- app by default), and compile it:

I VEB- | NF/ ¢l asses/ conf acne/filter
Servlet Response Wrapper: GenericResponseWrapper.java To use the custom
Ser vl et Qut put St r eamclass, implement a class that can act as a response object.

This wrapper object is sent back to the client in place of the original response that was
generated.

3-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Servlet Filters

The wrapper must implement some utility methods, such as to retrieve the type and
length of its content. The Gener i cResponseW apper class accomplishes this:

package com acne.filter;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

public class CenericResponseW apper extends Ht tpServl et ResponseW apper {
private ByteArrayQutput Stream out put;
private int contentLength;
private String content Type;

public GenericResponseW apper (H t pServl et Response response) {
super (response);
out put =new Byt eArrayQut put St rean() ;

}

public byte[] getData() {
return output.toByteArray();
}

public ServletQutputStream get Qut put Stream() {
return new FilterServletQutputStrean(output);

}

public PrintWiter getWiter() {
return new PrintWiter(getQutputStrean(),true);

}

public void setContentLength(int length) {
this.contentLength = I ength;
super . set Cont ent Lengt h(1 engt h) ;

}

public int getContentlLength() {
return contentLength;

}

public void setContent Type(String type) {
this. content Type = type;
super . set Cont ent Type(type);

}

public String get ContentType() {
return contentType;

}
}

Save this code in the following directory, under the default Web application root
directory (j 2ee/ hone/ def aul t - web- app by default), and compile it:

/| VEB- | NF/ ¢l asses/ comlacne/filter

Writing the Filter This filter adds content to the response after that target is invoked.
This filter extends the filter from "Generic Filter" on page 3-3.

Here is the filter code, PrePost Fil ter.j ava:

Servlet Filters and Event Listeners 3-9

Servlet Filters

package comacne. filter;

inport javax.servlet.*;
inport javax.servlet.http.*;
inport java.io.*;

public class PrePostFilter extends MyGenericFilter {

public void doFilter(final ServletRequest request,
final ServletResponse response,
Fi | terChain chain)

throws | CException, ServletException {

Qut put Stream out = response. get Qut put St reant();

out.write("<HR>PRE<HR>". get Bytes());

Generi cResponseW apper wrapper =

new Generi cResponseW apper ((H t pSer vl et Response) response);

chai n. doFil ter(request, wapper);

out.wite(wapper.getbData());

out. wite("<HR>POST<HR>". get Bytes());

out. cl ose();

}

}

Save this code in the following directory, under the default Web application root
directory (j 2ee/ hone/ def aul t - web- app by default), and compile it:

| VEB- | NF/ ¢l asses/ comf acne/ filter

As in the previous examples, create a simple JSP page:

<HTM.>

<HEAD>

<TITLE>Fi | ter Exanple 3</TITLE>

</ HEAD>

<BODY>

This is a testpage. You shoul d see

this text when you invoke filter3.jsp,

as well as the additional material added

by the PrePostFilter.

</ BODY>

</ HTM.>

Save thisJSP code infi | t er 3. j sp in the root directory of the default Web
application.

Configuring the Filter Add the following <fi | t er > element to web. xm , after the
configuration of the message filter:

<I-- Filter Exanple 3 -->

<filter>
<filter-nane>prePost</filter-nane>
<di spl ay- name>pr ePost </ di spl ay- nane>
<filter-class>comacme.filter.PrePostFilter</filter-class>

</filter>

<filter-nmappi ng>
<filter-name>prePost</filter-nanme>
<url-pattern>/filter3.jsp</url-pattern>

</filter-mapping>

<I-- end Filter Exanple 3 -->

3-10 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Running Example 3 Invoke the servlet in your Web browser. You will see a page that

looks similar to the page in Figure 3-4, which follows.

Figure 3-4 Example 3 Output

32 Filter Example 3 - Netscape

File Edit Yiew Go Communicator Help

Back Fopwad Feload Hime Search Metzcape Frint Security

<

w‘ " Bookmarks Location:l

= @17 what's Related

PRE
This 15 a testpage. T ou should see
this text when vou inwolee filter3 15p,
as well as the additional material added
by the PrePostFilter.
POST
| (== | |Document: Done

Event Listeners

Event Listeners

The servlet specification includes the capability to track key events in your Web
applications through event listeners. This functionality allows more efficient resource
management and automated processing based on event status. The following sections

describe servlet event listeners:

« Event Categories and Listener Interfaces

« Typical Event Listener Scenario

« Event Listener Declaration and Invocation

« Event Listener Coding and Deployment Guidelines
« Event Listener Methods and Related Classes

« Event Listener Sample

Event Categories and Listener Interfaces

There are two levels of servlet events:

« Servlet context-level (application-level) event

Servlet Filters and Event Listeners 3-11

Event Listeners

This event involves resources or state held at the level of the application serviet
context object.

« Session-level event

This event involves resources or state associated with the series of requests from a
single user session; that is, associated with the HTTP session object.

Each of these two levels has two event categories:
« Lifecycle changes
« Attribute changes

You can create one or more event listener classes for each of the four event categories.
A single listener class can monitor multiple event categories.

Create an event listener class by implementing the appropriate interface or interfaces
of thej avax. servl et package orj avax. servl et. htt p package. Table 3-1
summarizes the four categories and the associated interfaces.

Table 3-1 Event Listener Categories and Interfaces

Event Category Event Descriptions Java Interface

Servlet context Servlet context creation, at which javax.servlet.
lifecycle changes point the first request can be serviced ServletContextListener

Imminent shutdown of the servlet
context

Servlet context Addition of servlet context attributes javax.servlet.

attribute changes Removal of servlet context attributes ServletContextAttributeListener

Replacement of servlet context

attributes
Session lifecycle Session creation javax.servlet.http.
changes Session invalidation HttpSessionListener
Session timeout
Session attribute Addition of session attributes javax.servlet.http.
changes HttpSessionAttributeListener

Removal of session attributes

Replacement of session attributes

Typical Event Listener Scenario

Consider a Web application comprising servlets that access a database. A typical use of
the event listener mechanism would be to create a servlet context lifecycle event
listener to manage the database connection. This listener may function as follows:

1. The listener is notified of application startup.

2. The application logs in to the database and stores the connection object in the
servlet context.

3. Servlets use the database connection to perform SQL operations.

4. The listener is notified of imminent application shutdown (shutdown of the Web
server or removal of the application from the Web server).

5. Prior to application shutdown, the listener closes the database connection.

3-12 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Event Listeners

Event Listener Declaration and Invocation

Event listeners are declared in the application web. xm deployment descriptor
through <l i st ener > elements under the top-level <web- app> element. Each listener
has its own <l i st ener > element, with a<l i st ener - cl ass> subelement specifying
the class name. Within each event category, event listeners should be specified in the
order in which you would like them to be invoked when the application runs.

After the application starts up and before it services the first request, the servlet
container creates and registers an instance of each listener class that you have declared.
For each event category, listeners are registered in the order in which they are
declared. Then, as the application runs, event listeners for each category are invoked in
the order of their registration. All listeners remain active until after the last request is
serviced for the application.

Upon application shutdown, session event listeners are notified first, in reverse order
of their declarations, then application event listeners are notified, in reverse order of
their declarations.

Here is an example of event listener declarations, from the Sun Microsystems Java
Servlet Specification, Version 2.3:

<web- app>
<di spl ay- name>M/Li st eni ngAppl i cati on</di spl ay- name>
<l i stener>
<li stener-class>com acne. MyConnect i onManager </ | i st enercl ass>
</listener>
<l i stener>
<listener-class>om acne. M/Loggi nghbdul e</|i stener-cl ass>
</listener>
<servl et >
<di spl ay- name>Regi strat i onServl et </ di spl ay- name>

</servlet>
</ web- app>

Assume that MyConnect i onManager and MyLoggi nghMbdul e both implement the
Ser vl et Cont ext Li st ener interface, and that MyLoggi ngMbdul e also implements
the Ht t pSessi onLi st ener interface.

When the application runs, both listeners are notified of servlet context lifecycle
events, and the MyLoggi ngModul e listener is also notified of session lifecycle events.
For servlet context lifecycle events, the MyConnect i onManager listener is notified
first, because of the declaration order.

Event Listener Coding and Deployment Guidelines
Be aware of the following rules and guidelines for event listener classes:

« Inamultithreaded application, attribute changes may occur simultaneously. There
is no requirement for the servlet container to synchronize the resulting
notifications; the listener classes themselves are responsible for maintaining data
integrity in such a situation.

« Each listener class must have a public zero-argument constructor.

« Each listener class file must be packaged in the application WAR file, either under
[/ VEEB- | NF/ cl asses orinalJAR filein/ WEB- | NF/ | i b.

Servlet Filters and Event Listeners 3-13

Event Listeners

Note: Inadistributed environment, the scope of event listeners is
one for each deployment descriptor declaration for each JVM.
There is no requirement for distributed Web containers to
propagate servlet context events or session events to additional
JVMs. The servlet specification discusses this.

Event Listener Methods and Related Classes

This section contains event listener methods that are called by the servlet container
when a servlet context event or session event occurs. These methods take different
types of event objects as input, so these event classes and their methods are also
discussed.

ServletContextListener Methods, ServletContextEvent Class
The Ser vl et Cont ext Li st ener interface specifies the following methods:

« void contextlnitialized(ServletContextEvent sce)

The servlet container calls this method to notify the listener that the servlet context
has been created and the application is ready to process requests.

« Vvoid contextDestroyed(Servl et ContextEvent sce)

The servlet container calls this method to notify the listener that the application is
about to be shut down.

The servlet container creates aj avax. servl et. Ser vl et Cont ext Event object that
is input for calls to Ser vl et Cont ext Li st ener methods. The

Ser vl et Cont ext Event class includes the following method, which your listener can
call:

« Servl et Context get Servl et Context ()

Use this method to retrieve the servlet context object that was created or is about
to be destroyed, from which you can obtain information as desired. See
"Introduction to Servlet Contexts" on page 1-6 for information about the

j avax. servl et. Servl et Cont ext interface.

ServletContextAttributeListener Methods, ServletContextAttributeEvent Class

The Ser vl et Cont ext Attri but eLi st ener interface specifies the following
methods:

« Vvoid attribut eAdded(Servl et Context Attri but eEvent scae)

The servlet container calls this method to notify the listener that an attribute was
added to the servlet context.

« void attributeRenoved(ServletContextAttributeEvent scae)

The servlet container calls this method to notify the listener that an attribute was
removed from the servlet context.

« void attribut eRepl aced(Servl et ContextAttri buteEvent scae)

The servlet container calls this method to notify the listener that an attribute was
replaced in the servlet context.

The container createsaj avax. servl et. Servl et Cont ext At tri but eEvent object
that is input for calls to Ser vl et Cont ext At tri but eLi st ener methods. The

3-14 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Event Listeners

Ser vl et Cont ext Att ri but eEvent class includes the following methods, which
your listener can call:

« String getName()

Use method this to get the name of the attribute that was added, removed, or
replaced.

« bject getValue()

Use this method to get the value of the attribute that was added, removed, or
replaced. In the case of an attribute that was replaced, this method returns the old
value, not the new value.

HttpSessionListener Methods, HttpSessionEvent Class
The Ht t pSessi onLi st ener interface specifies the following methods:

« Vvoid sessionCreated(HttpSessi onEvent hse)

The servlet container calls this method to notify the listener that a session was
created.

« Vvoid sessionDestroyed(HttpSessi onEvent hse)

The servlet container calls this method to notify the listener that a session was
destroyed.

The container creates aj avax. servl et. http. H t pSessi onEvent object that is
input for calls to Ht t pSessi onLi st ener methods. The Ht t pSessi onEvent class
includes the following method, which your listener can call:

« H tpSession getSession()

Use this method to retrieve the session object that was created or destroyed, from
which you can obtain information as desired. See "Introduction to Servlet
Sessions" on page 1-5 for information about the

javax. servl et. http. H t pSessi on interface.

HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class
The Ht t pSessi onAttri but eLi st ener interface specifies the following methods:

« void attributeAdded(HttpSessi onBi ndi ngEvent hsbe)

The servlet container calls this method to notify the listener that an attribute was
added to the session.

« void attributeRenoved(HttpSessi onBi ndi ngEvent hsbe)

The servlet container calls this method to notify the listener that an attribute was
removed from the session.

« Vvoid attributeRepl aced(Htt pSessi onBi ndi ngEvent hshbe)

The servlet container calls this method to notify the listener that an attribute was
replaced in the session.

The container createsaj avax. servl et . http. Ht t pSessi onBi ndi ngEvent object
that is input for calls to Ht t pSessi onAt t ri but eLi st ener methods. The

Ht t pSessi onBi ndi ngEvent class includes the following methods, which your
listener can call:

« String get Name()

Servlet Filters and Event Listeners 3-15

Event Listeners

Use this method to get the name of the attribute that was added, removed, or
replaced.

« Object getVal ue()

Use this method to get the value of the attribute that was added, removed, or
replaced. In the case of an attribute that was replaced, this method returns the old
value, not the new value.

«» HttpSession get Session()

Use this method to retrieve the session object that had the attribute change.

Event Listener Sample

This section provides code for a sample that uses a servlet context lifecycle and session
lifecycle event listener. This includes the following components:

« SessionLi f eCycl eEvent Exanpl e: This is the event listener class,
implementing the Ser vl et Cont ext Li st ener and Ht t pSessi onLi st ener
interfaces.

» SessionCreateServl et: This servlet creates an HTTP session.
« SessionDestroyServl et: This servlet destroys an HTTP session.

= i ndex.jsp: Thisisthe application welcome page (the user interface), from which
you can invoke Sessi onCr eat eSer vl et or Sessi onDestroyServl et.

« web. xnl : This is the deployment descriptor, in which the servlets and listener
class are declared.

To download and run this application, go to the following link:

http://ww. oracl e. com t echnol ogy/tech/javal/ oc4j/htdocs/oc4j-howto. htm

If you do not already have an Oracle Technology Network membership, select the
membership link at the following address:

http://ww. oracl e. com t echnol ogy/

Memberships are free of charge.

Welcome Page: index.jsp

Here is the welcome page, the user interface that enables you to invoke the
session-creation servlet by clicking the Create New Session link, or to invoke the
session-destruction servlet by clicking the Destroy Current Session link.

<Y%@age session="fal se" %

<H2>0C4J - HtpSession Event Listeners </ H2>

<p>

Thi s exanpl e denonstrates the use of the HtpSession Event and Listener that is
new with the Java Servlet 2.3 API.

</ P>

<p>

[Create New Sessi on</ A>]
[Destroy Current Session]

</ P>

<p>

Aick the Create link above to start a new HtpSession. An HttpSession
|istener has been configured for this application. The servler container
will send an event to this |istener when a new session is created or
destroyed. The output fromthe event listener will be visible in the

3-16 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Event Listeners

consol e wi ndow from where OC4J was started.
</ P>

Note: No new session object is created if you click the Create New
Session link again after having already created a session from the
same client, unless the session has reached a timeout limit or you
have explicitly destroyed it in the meantime.

Deployment Descriptor: web.xml

The servlets and the event listener are declared in the web. xml file. This results in
Sessi onLi f eCycl eEvent Exanpl e being instantiated and registered upon
application startup. Because of this, the servlet container automatically calls its
methods, as appropriate, upon the occurrence of servlet context or session lifecycle
events. Here are the web. xml entries:

<web- app>
<li stener>
<l'i stener-cl ass>Sessi onLi f eCycl eEvent Exanpl e</| i stener-cl ass>
</listener>
<servl et >
<servl et - nane>sessi oncr eat e</ ser vl et - name>
<servl et-cl ass>Sessi onCreat eServl et </ servl et - cl ass>
</servlet>
<servl et >
<servl et - name>sessi ondest r oy</ servl et - nane>
<servl et-cl ass>Sessi onDest roySer vl et </ servl et -cl ass>
</servlet>
<wel cone-file-list>
<wel cone-fil e>i ndex.j sp</wel come-file>
</wel come-file-list>
</ web- app>

Listener Class: SessionLifeCycleEventExample

This section shows the listener class. Its sessi onCr eat ed() method is called by the
servlet container when an HTTP session is created, which occurs when you click the

Create New Session link ini ndex. j sp. When sessi onCr eat ed() is called, it calls
the |l og() method to print a "CREATE" message indicating the ID of the new session.

The sessi onDest r oyed() method is called when the HTTP session is destroyed,
which occurs when you click the Destroy Current Session link. When

sessi onDest royed() iscalled, it calls thel og() method to print a "DESTROY"
message indicating the ID and duration of the terminated session.

inport javax.servlet.http.*;
inport javax.servlet.*;

public class SessionLifeCycl eEvent Exanpl e
i npl ements Servl et Cont ext Li stener, HttpSessionListener

{

I* Alistener class nust have a zero-argunent constructor: */
public SessionLifeCycl eEvent Exanpl e()

{
}

Servl et Cont ext servl et Cont ext ;

Servlet Filters and Event Listeners 3-17

Event Listeners

/* Methods fromthe ServletContextListener */
public void contextlnitialized(ServletContextEvent sce)

{
servl et Cont ext = sce.get ServletContext();
}
public void contextDestroyed(Servl et Cont extEvent sce)
{
}

/* Methods for the HtpSessionListener */
public void sessi onCreated(HtpSessi onEvent hse)

{
| og(" CREATE", hse);
}
public void sessionDestroyed(HttpSessi onEvent hse)
{
Ht t pSessi on _session = hse. get Session();
long _start = _session.getCreationTine();
long _end = _session. get Last AccessedTi me();
String _counter = (String)_session.getAttribute("counter");
| og(" DESTROY, Session Duration:"
+ (_end - _start) + "(nms) Counter:" + _counter, hse);
}
protected void log(String msg, HtpSessionEvent hse)
{
String _ID = hse.getSession().getld();
log("SessionlD:" + _ID + " "+ nsQ);
}
protected void log(String nsg)
{
Systemout.printIn("[" + getdass().getNane() + "] " + nsQ);
}

Session Creation Servlet: SessionCreateServlet.java

This servlet is invoked when you click the Create New Session link ini ndex. j sp. Its
invocation results in the servlet container creating a request object and associated
session object. Creation of the session object results in the servlet container calling the
sessi onCr eat ed() method of the event listener class.

inport java.io.*;
inport java.util.Enumeration;
inport java.util.Date;

inport javax.servlet.*;
inport javax.servlet.http.*;

public class SessionCreateServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, |COException

{

/] Get the session object
Ht t pSessi on session = req. get Session(true);

3-18 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Event Listeners

/] set content type and other response header fields first
res. set Content Type("text/htm");

Il then wite the data of the response
PrintWiter out = res.getWiter();

String _sval = (String)session.getAttribute("counter");
int _counter=1;

if(_sval!=null)

{
_count er=Integer. parselnt(_sval);
_count er ++;

session.set Attribute("counter”, String.val ued(_counter));

out.println("<HEAD><TI TLE> " + "Session Created Successfully ..

Look at OC4J Consol e to see whether the HttpSessionEvent invoked "

+ "</ TI TLE></ HEAD><BODY>") ;
out. println("<P>[Rel oad</ A>] ");
out.println("[Destroy Session]");
out.println("<h2>Session created Successful |l y</h2>");
out.println("Look at the OC4J Console to see whether the H'tpSessi onEvent

was i nvoked");
out. println("<h3>Session Data:</h3>");
out.println("New Session: " + session.isNew));
out.println("
Session ID " + session.getld());
out.println("
Creation Tinme: " + new Date(session.getCreationTine()));
out.println("
Last Accessed Tine: " +
new Dat e(sessi on. get Last AccessedTime()));

out.println("
Nunber of Accesses: " + session.getAttribute("counter"));

Session Destruction Servlet: SessionDestroyServlet.java

This servlet is invoked when you click the Destroy Current Session link in

i ndex. j sp. Its invocation results in a call to the i nval i dat e() method of the
session object. This, in turn, results in the servlet container calling the

sessi onDest royed() method of the event listener class.

inport java.io.*;
inport java.util.Enumeration;

inport javax.servlet.*;
inport javax.servlet.http.*;

public class SessionDestroyServlet extends HttpServliet {

public void doGet (HttpServletRequest req, HtpServletResponse res)
throws ServletException, |CException
{
/1 Get the session object
H t pSessi on session = req. get Session(true);
/1 Invalidate Session
session.invalidate();

/] set content type and other response header fields first

Servlet Filters and Event Listeners 3-19

Event Listeners

res. setContent Type("text/htm");

/1 then wite the data of the response
PrintWiter out = res.getWiter();

out. println("<HEAD><TITLE> " + "Session Destroyed Successfully ..
Look at OCAJ Console to see whether the HttpSessionEvent invoked "
+ "</ TI TLE></ HEAD><BODY>") ;
out.println("<P>[Restart]");
out.println("<h2> Session Destroyed Successful | y</h2>");
out.println("Look at the OC4J Console to see whether the
H t pSessi onEvent was invoked");

out. cl ose();

3-20 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

A

JDBC and EJB Calls from Servlets

Dynamic Web applications typically access a database to provide content. This chapter,
consisting of the following sections, shows how servlets can use JDBC—the Java
standard for database connectivity—and Enterprise JavaBeans—used for secure,
transactional server-side processing:

= Use of IDBC in Servlets

= EJB Calls from Servlets

Use of JDBC in Servlets

A servlet can access a database using a JDBC driver. The recommended way to use
JDBC is to employ an OC4J data source to get the database connection. See Oracle
Application Server Containers for J2EE Services Guide for information about OC4J data
sources. For more information about JDBC, see the Oracle Database JDBC Developer®s
Guide and Reference.

Database Query Servlet

Part of the power of servlets comes from their ability to retrieve data from a database.
A servlet can generate dynamic HTML by getting information from a database and
sending it back to the client. A servlet can also update a database, based on
information passed to it in the HTTP request.

The example in this section shows a servlet that gets some information from the user
through an HTML form and passes the information to a servlet. The servlet completes
and executes a SQL statement, querying the sample Human Resources (HR) schema to
get information based on the request data.

A servlet can get information from the client in many ways. This example reads a
query string from the HTTP request.

Note: For simplicity, this example makes the following
assumptions:

« Adatabase is installed and accessible through | ocal host at
port 1521.

= You are using OC4J standalone and the OC4J default Web
application, with the default context root of "/ .

JDBC and EJB Calls from Servlets 4-1

Use of JDBC in Servlets

HTML Form

The Web browser accesses a form in a page served through the Web listener. Copy the
following HTML into afile, Enpl nf o. ht m :

<htm >

<head>
<title>Query the Enpl oyees Table</title>
</ head>

<body>

<f orm met hod=GET ACTI ON="/ ser vl et/ Get Enpl nf 0" >

The query is

SELECT LAST_NAME, EMPLOYEE_ | D FROM EMPLOYEES WHERE LAST NAME LI KE ?. <p>

Enter the WHERE cl ause ? paraneter (use %for wldcards).

Exanpl e: ' S%:

<input type=text nane="queryVal">

<p>

<i nput type=submt>

</form

</ body>
</htm >

Then save this file in the root directory of the OC4J default Web application
(i 2ee/ homre/ def aul t - web- app by default).

Servlet Code: GetEmplnfo

The servlet that the preceding HTML page calls takes the input from a query string.
The input is the completion of the WHERE clause in the SELECT statement. The servlet
then appends this input to construct the database query. Much of the code in this
servlet consists of the JDBC statements required to connect to the database server and
retrieve and process the query rows.

This servlet makes use of thei ni t () method to perform a one-time lookup of a data
source, using JNDI. The data source lookup assumes a data source such as the
following has been defined in the dat a- sour ces. xmi file in the OC4J configuration
files directory. (Verify an appropriate service name is used for the URL.)

<dat a- sour ce
cl ass="com everni nd. sql . Dri ver Manager Dat aSour ce"
name="Cr acl eDS"
| ocati on="j dbc/ Oracl eCor eDS"
xa- | ocation="j dbc/ xa/ Oracl eXADS"
ej b-1ocation="jdbc/ Oracl eDS"
connection-driver="oracle.jdbc.driver.Oacl eDriver"
usernanme="hr"
passwor d="hr"
url ="j dbc: oracl e: thin: @ocal host: 1521/ nyser vi ce"
i nactivity-timeout="30"

/>

It is advisable to use only the ej b- | ocat i on JNDI name in the JNDI lookup for an
emulated data source. See the Oracle Application Server Containers for J2EE Services
Guide for more information about data sources.

This example also assumes the following data source definition in the web. xm file:

<resource-ref>

4-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Use of JDBC in Servlets

<r es- aut h>Cont ai ner </ r es- aut h>

<res-ref-nane>j dbc/ O acl eDS</ r es-r ef - name>

<res-type>j avax. sql . Dat aSour ce</res-type>
</resource-ref>

Here is the servlet code:

inport javax.servlet.*;

i nport javax.servlet.http.*;

inport javax.naming.*; // for JNDI

inport javax.sql.*; /1 extended JDBC interfaces (such as data sources)
inport java.sql.*; /1 standard JDBC interfaces

inport java.io.?*;

public class CetEnplnfo extends HtpServlet {

Dat aSource ds = null;
Connection conn = null;

public void init() throws ServletException {
try {
Initial Context ic = new Initial Context(); // JNDI initial context
ds = (DataSource) ic.lookup("jdbc/CracleDS"); // JNDI | ookup
conn = ds. get Connection(); // database connection through data source
}
catch (SQLException se) {
throw new Servl et Exception(se);
}
catch (Nam ngException ne) {
throw new Servl et Exception(ne);
1
}

public void doGet (HtpServletRequest req, HttpServletResponse resp)
throws ServletException, |COException {

/* Get the user-specified WHERE cl ause fromthe HITP request, then */
/* construct the SQ query. */
String queryVal = req.getParaneter("queryval");
String query =
"sel ect last_nane, enmployee_id fromenpl oyees " +
"where last_name |ike " + queryVal;

resp. set Content Type("text/htm");

PrintWiter out = resp.getWiter();
out.println("<htm>");
out.println("<head><title>GetEnplnfo</title></head>");
out. print!ln("<body>");

/* Create a JDBC statement object, execute the query, and set up *|
/* HTM. table formatting for the output. */
try {

Statement stnt = conn.createStatement();
Resul t Set rs = stnt.executeQuery(query);

out.println("<table border=1 w dth=50%");
out.println("<tr><th w dth=75%Last Name</th><th w dt h=25%Enpl oyee " +
"ID</th></tr>");

/* Loop through the results. Use the ResultSet getString() and *|

JDBC and EJB Calls from Servlets 4-3

Use of JDBC in Servlets

/* getInt() methods to retrieve the individual data items. */
i nt count =0;
while (rs.next()) {
count ++;
out.println("<tr><td>" + rs.getString(l) + "</td><td>" +rs.getint(2) +
"<ftd></tr>");

}

out.println("</table>");
out.println("<h3>" + count + " rows retrieved</h3>");

rs.close();
stnt.close();

}
catch (SQLException se) {
se.print StackTrace(out);

}

out.println("</body></htm>");
}

public void destroy() {

try {
conn. cl ose();

}
catch (SQLException se) {

se. print StackTrace();
}
}
}

Deployment and Testing of the Database Query Servlet

To deploy this example, save the HTML file in the root directory of the OC4J default
Web application (j 2ee/ horre/ def aul t - web- app by default) and save the Java
servlet in the / V\EB- | NF/ cl asses directory of the default Web application. The

Cet Enpl nf 0. j ava file is automatically compiled when the servlet is invoked by the
form.

To test the example directly through the OC4J listener, such as in OC4J standalone,
invoke the Enpl nf 0. ht m page from a Web browser as follows:

http://host: 8888/ Enpl nfo. htm

This assumes "/ " is the context path of the OC4J standalone default Web application.

Complete the form and click Submit Query.

Note: For general information about invoking servlets in OC4J,
see "Servlet Invocation” on page 2-19.

When you invoke Enpl nf 0. ht nl , you will see browser output similar to that shown
in Figure 4-1, which follows.

4-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

Figure 4-1 Employee Information Query

Get Some Information - Netscape

File Edit “iew Go Communicator Help

14 ¥ 3 4 e m o &£ B 3N

Biach Fopward Reload Hiome Search Metzcape Frint Security Shop Stop
w‘ " Bookmarks £ Location:l j @' Wwhat's Related
The rquery is
SELECT LAST MAWE, EMPLOYEE ID FROM EMPLOYEES WHERE LAST NAWE
LIKE 7.

Enter the WHEEE clause ¥ parameter (use %4 for wildcards).
Ezxample: '2%"

Submit Query |

’E == | |Document: Done

Entering " S% in the form and clicking Submit Query calls the Get Enpl nf o servlet.
The output looks like what is shown in Figure 4-2, which follows.

Figure 4-2 Employee Information Results

GetEmplnfo - Netscape

Edit iew Go Communicator Help
13 Y 3 4 . @ o3 s O BN
Back Fonward Reload Hiarme Search Metscape Print Security Shap Stop
wtv Bookmarks A Location:l j @'W’hat's Related
Employee
Last Name I]J:DY
[Sciarra [111
[Stiles [133
[Seo [138
[Suly [157
[Smith [159
[Sewall [161
[Smith [171
[Sultivan [182
[Sarchand [184
9 rows retrieved. =
[[=B=| |Document: Dane A

EJB Calls from Servlets

A servlet can call Enterprise JavaBeans to perform additional processing. A typical
application design often uses servlets as a front-end to do the initial processing of
client requests, with EJBs being called to perform the business logic that accesses or

JDBC and EJB Calls from Servlets 4-5

EJB Calls from Servlets

updates a database. Container-managed-persistence (CMP) entity beans, in particular,
are well-suited for such tasks.

The following sections discuss and provide examples for typical scenarios for the use
of EJBs from servlets:

= Servlet-EJB Overview

« EJB Local Lookup

« EJB Remote Lookup within the Same Application
« EJB Remote Lookup Outside the Application

Important: Examples in this section assume you are using OC4J in
standalone mode during development. This may affect the URL for
a JNDI lookup, as compared to the URL in an Oracle Application

Server environment, but otherwise has no effect on the servlet code.

Notes:

« For detailed information about EJB features and for servlet-EJB
examples in an Oracle Application Server environment, refer to
the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

« OC4J provides an EJB tag library to make accessing EJBs from
JSP pages more convenient. See the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference for
information.

Servlet-EJB Overview

The following sections provide an overview of considerations for the use of EJBs from
servlets:

= Servlet-EJB Scenarios

= EJB Local Interfaces Versus Remote Interfaces

Servlet-EJB Scenarios
The servlet-EJB examples in this chapter cover three scenarios:

« Local lookup: The servlet calls an EJB that is co-located, meaning it is in the same
application and on the same host, running in the same JVM. The servlet and EJB
would have been deployed in the same EAR file, or in EAR files with a
parent/child relationship. The example uses EJB local interfaces, which were
introduced in version 2.0 of the EJB specification. See "EJB Local Lookup" on
page 4-8.

« Remote lookup within the same application: The servlet calls an EJB that is in the
same application, but on a different host. (The same application is deployed to
both hosts.) This requires EJB remote interfaces. This would be the case for a
multitier application where the servlet and EJB are in the same application, but on
different tiers. See "EJB Remote Lookup within the Same Application” on
page 4-14.

4-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

« Remote lookup outside the application: The servlet calls an EJB that is not in the
same application. This is a remote lookup and requires EJB remote interfaces. The
EJB may be on the same host or on a different host, but is not running in the same
JVM. See "EJB Remote Lookup Outside the Application" on page 4-19.

Servlet-EJB communications use JNDI for lookup and RMI for the EJB calls, over either
ORMI (the Oracle implementation of RMI) or IIOP (the standard and interoperable
Internet Inter-Orb Protocol). For the JNDI initial context factory, the examples in this
document use the Appl i cati onl ni ti al Cont ext Fact ory class, which supports
EJB references in web. xm , and the RM | ni t i al Cont ext Fact ory class, which does
not. Depending on the situation, another possibility is

Applicationdientlnitial ContextFactory,which supports EJB references in
theapplication-client.xm file. For more information about the use of INDI and
RMI with EJBs, refer to the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide.

A remote lookup requires a JINDI environment to be set up, including the URL and a
user name and password. This setup is typically in the servlet code, as shown in "EJB
Remote Lookup Outside the Application" on page 4-19, but for a lookup in the same
application it can be inthe r mi . xm file instead.

Remote lookup within the same application on different hosts also requires proper
setting of the r enot e flag in the ori on- appl i cati on. xm file for your application
on each host, as shown in "Use of the Remote Flag" on page 4-14.

As in any application where EJBs are used, there must be an entry for each EJB in the
ej b-jar.xm file.

Note: The examples here consider only an ORMI scenario. For
information about using I1OP, see the Oracle Application Server
Containers for J2EE Enterprise JavaBeans Developer’s Guide.

EJB Local Interfaces Versus Remote Interfaces

In version 1.1 of the EJB specification, an EJB always had a remote interface extending
thej avax. ej b. EJBObj ect interface, and a home interface extending the

j avax. ej b. EJBHon® interface. In this model, all EJBs are defined as remote objects,
adding unnecessary overhead to EJB calls in situations where the servlet or other
calling module is co-located with the EJB.

Note: The OC4J copy- by- val ue attribute (of the

<sessi on- depl oynent > element of the ori on-ej b-j ar. xm
file) is also related to avoiding unnecessary overhead, specifying
whether to copy all incoming and outgoing parameters in EJB calls.
See the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for information.

Version 2.0 of the EJB specification added support for local interfaces for co-located
lookups. In this case, the EJB has a local interface that extends the

j avax. ej b. EJBLocal Obj ect interface, in contrast to having a remote interface. In
addition, a local home interface that extends the j avax. ej b. EJBLocal Hone
interface is specified, in contrast to having a home interface.

Any lookup involving EJB remote interfaces uses RMI and has additional overhead
such as for security. RMI and other overhead are eliminated when you use local
interfaces.

JDBC and EJB Calls from Servilets 4-7

EJB Calls from Servlets

Notes:

= An EJB can have both local and remote interfaces. The
examples in this section use either local interfaces or remote
interfaces, but not both.

« The term local lookup in this document refers to a co-located
lookup, in the same JVM. Do not confuse "local lookup" with
"local interfaces”. Although local interfaces are typically used in
any local lookup, there may be situations in which remote
interfaces are used instead. (Local lookups had to be performed
this way prior to version 2.0 of the EJB specification.)

EJB Local Lookup

This section presents an example of a single servlet, Hel | oSer vl et , that calls a single
co-located EJB, Hel | oBean, using local interfaces. This is the simplest servlet-EJB
scenario.

Here are the key steps of the servlet code:

1. Import the EJB package for access to the bean home and remote interfaces. Also
note the imports of j avax. nani ng for JNDI, and j avax. r m for RMI.

Print the message from the servlet.
Create an output string, with an error default.
Use JNDI to look up the EJB local home interface.

Create the EJB local object from the local home.

o o~ w N

Invoke the hel | oWor | d() method on the local object, which puts the EJB output
message in a Java string.

7. Print the message from the EJB.

The following sections cover all aspects of the sample:
« Servlet-EJB Application Code for Local Lookup

« Configuration and Deployment for Local Lookup
« Invocation of the Servlet-EJB Application

For further discussion and another complete example of using local interfaces, see the
OC4J How-To document at the following location:

http://ww. or acl e. conl t echnol ogy/tech/j ava/ oc4j/ htdocs/ howto-ejb-1ocal -interfac
es. htn

Servlet-EJB Application Code for Local Lookup

This section has code for a servlet that calls a co-located EJB, using local interfaces.
This includes servlet code, EJB code, and EJB interface code. Note the bold passages in
particular.

Servlet Code: HelloServlet This section has the servlet code. For a local lookup, the
default JINDI context is used.

By default, this servlet uses Appl i cati onl ni ti al Cont ext Fact ory for the JNDI
initial context factory. Therefore, the web. xm file is searched for EJB references. The

4-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

EJB Calls from Servlets

j ava: conp syntax for the JNDI lookup indicates there is a reference defined within
the application for the EJB, in this case in the web. xm file.

See Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide
for information about JNDI initial context factory classes.

package nyServl et;

/1 Step 1. Inport the EJB package.

i nport nyEj b. *;

inport java.io.*;

i nport javax.servlet.*;

inport javax.servlet.http.*;

i nport javax.nam ng. *; [l for JNDI

inport javax.rm.?; /1 for RM, including Portabl eRenotehj ect
i nport javax.ejb. CreateException;

public class HelloServlet extends HttpServlet {

public void doGet (HtpServletRequest request, H tpServletResponse response)
throws Servl et Exception, |CException {

response. set Cont ent Type(“text/htm");
PrintWiter out = response.getWiter();

out.println("<htm ><head><title>Hello from Servlet</title></head>");
/1 Step 2: Print a message fromthe servlet.
out. println("<body><hl>Hello fromhello servlet!</hl></body>");

/I Step 3: Create an output string, with an error default.

String s = "If you see this nessage, the ejb was not invoked properly!!";
/] Step 4: Use JNDI to look up the EJB | ocal home interface.
try {

Initial Context ic = new Initial Context();
Hel | oLocal Home hlh = (Hel | oLocal Hone)i c. | ookup
("java: conp/ env/ ej b/ Hel | oBean");

Il Step 5: Create the EJB local interface object.
Hel [oLocal hl = (HelloLocal)hlh.create();
[l Step 6: Invoke the helloWrld() nethod on the local object.
s = hl.helloWrld();
} catch (NaningException ne) {
Systemout. printin("Could not |ocate the bean.");
} catch (CreateException ce) {
Systemout. printin("Could not create the bean.");
} catch (Exception e) {
/1 Unexpected exception; send back to client for now.
throw new Servl et Exception(e);
}
/] Step 7: Print the message fromthe EJB.
out.println("
" + s);
out.println("</htm >");
}
}

EJB Code: HelloBean Stateful Session Bean The EJB, as shown here, implements a single
method, hel | oWbr | d() , that returns a greeting to the caller. The local home and local
EJB interface code is also shown below.

package nyEj b;

JDBC and EJB Calls from Servlets 4-9

EJB Calls from Servlets

inport javax.ejb.*;

public class HelloBean inplenments SessionBean

{
public String hellowrld () {

return "Hello fromnyE b. Hel | oBean";
}

public void ejbCreate () throws O eateException {}
public void ejbRemove () {}

public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}

public void ejbPassivate () {}

}

EJB Interface Code: Local Home and Local Interfaces Here is the code for the local home
interface:

package nyE b;

i nport javax.ejb. EJBLocal Hone;
inport javax.ejb. CreateException;

public interface Hel | oLocal Hone extends EJBLocal Honme

{
}

public HelloLocal create () throws O eateException;

Here is the code for the local interface:

package nyEjb;
i mport javax. ej b. EJBLocal Ovj ect;

public interface HelloLocal extends EJBLocal Qbject

{
}

public String helloWrld ();

Configuration and Deployment for Local Lookup

This section discusses the deployment steps and configuration for the Servlet-EJB local
lookup sample application. In the descriptor files, note the bold passages in particular.
To deploy this application, you will need an EAR file that contains the following:

= A WAR (Web archive) file that includes the servlet code and web. xm Web
descriptor

=« AnEJBJAR archive file that includes the EJB code and ej b-j ar. xnm EJB
descriptor

« Theapplication.xm application-level descriptor

See Chapter 5, "Deployment and Configuration Overview", for an overview of
deployment to OC4J. See the Oracle Application Server Containers for J2EE User’s Guide
for detailed information.

Web Descriptor and Archive Create a standard web. xml Web descriptor as follows. Note
the <ej b- 1 ocal - r ef > element and its <l ocal - hone> and <l ocal > subelements
for the use of local interfaces.

<?xm version="1.0"7?>

4-10 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

<! DOCTYPE WEB- APP PUBLI C "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
“http://java.sun. com dtd/ web-app_2_3.dtd">

<web- app>
<di spl ay- name>Hel | oSer vl et </ di spl ay- name>
<description> Hel | oServlet </description>
<servl et>
<servl et - name>Ser vl et Cal | i ngEj b</servl et - nane>
<servlet-class>myServlet. Hel | oServl et</servl et-cl ass>
</ servlet>
<servl et - mappi ng>
<servl et - name>Ser vl et Cal | i ngEj b</servl et - nane>
<ur| - pattern>/Doubl eHel | o</ url - pattern>
</ servl et - mappi ng>
<wel cone-file-list>
<wel cone-file> index. htm </welcone-file>
</wel cone-file-list>
<ej b-1ocal -ref>
<ej b-ref - name>ej b/ Hel | oBean</ ej b-r ef - nane>
<ej b-ref -type>Sessi on</ ej b-ref -type>
<l ocal - home>nyEj b. Hel | oLocal Home</ | ocal - hone>
<l ocal >nyE b. Hel | oLocal </ ocal >
</ ejb-local -ref>
</ web- app>

Next, create the standard J2EE directory structure for Web application deployment,
then move the web. xm Web deployment descriptor and the compiled servlet class
file into the structure. After you create and populate the directory structure, create a
WAR file named myapp- web. war (for example) to contain the files. Here are the WAR
file contents:

META- | NF/

META- | NF/ MANI FEST. MF

VAEB- | NF/

VEEB- | NF/ cl asses/

VEB- | NF/ cl asses/ mySer vl et/

VEB- | NF/ cl asses/ myServl et/ Hel | oServl et . cl ass
VEB- | NF/ web. xm

(The JAR utility automatically creates the MANI FEST. M- file.)

EJB Descriptor and Archive Create a standard ej b-j ar . xm EJB descriptor as follows.
Note that the <ej b- r ef - name> value in the web. xn file above corresponds to the
<ej b- nane> value here. In this example, they use the same name, which is a good
practice but is not required. The Web tier can specify any reference name, which is
independent of the JINDI name.

Also note the <l ocal - hone> and <| ocal > elements, for the use of local interfaces.
These must be the same entries as in the web. xm file.

<?xnml version="1.0"?>
<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, Inc.//DTD Enterprise JavaBeans
2.0//EN'" "http://java.sun.com dtd/ejb-jar_2_0.dtd">
<ejb-jar>
<enterpri se-beans>
<sessi on>
<description>Hel | o Bean</descri ption>
<ej b- name>ej b/ Hel | oBean</ ej b- name>
<l ocal - home>nyEj b. Hel | oLocal Hone</ | ocal - home>
<l ocal >nyEj b. Hel | oLocal </ | ocal >

JDBC and EJB Calls from Servlets 4-11

EJB Calls from Servlets

<ej b- cl ass>nyEj b. Hel | oBean</ e] b- cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transaction-type>Contai ner</transaction-type>
</ sessij on>

</enterprise-beans>

<assenbl y- descri pt or>

</ assenbl y- descri pt or>

</ejb-jar>

Create a JAR file named myapp- €j b. j ar (for example) with the standard J2EE
structure to hold the EJB components. Here are the JAR file contents:

META- | NF/

META- | NF/ MANI FEST. MF
META- | NF/ €] b-j ar. xm

myEj b/

nyEj b/ Hel | oBean. cl ass

nyEj b/ Hel | oLocal Hone. cl ass
nyEj b/ Hel | oLocal . cl ass

(The JAR utility automatically creates the MANI FEST. M file.)

Application-Level Descriptor To deploy the application, create a standard application
deployment descriptor, appl i cati on. xm . This file describes the modules in the
application.

<?xm version="1.0"?>
<I' DOCTYPE application PUBLIC "-//Sun M crosystens, Inc.//DTD J2EE Application
1.3//EN" "http://java.sun.con dtd/application_1_3.dtd">

<appl i cation>
<di spl ay- nane>Servl et _cal | i ng_ej b_exanpl e</ di spl ay- nane>
<nodul e>
<weh>
<web- uri >myapp- web. war </ web- uri >
<cont ext - root >/ myapp</ cont ext - r oot >
</ web>
</ modul e>
<nodul e>
<ej b>nyapp-ej b.jar</ ej b>
</ modul e>
</ appl i cation>

The <cont ext - r oot > element is required, but in an OC4J standalone environment it
is ignored. The context path is actually specified through the r oot attribute of the
appropriate <web- app> element in ht t p- web- si t e. xm , as shown in "Deployment
Configuration" below. For consistency, and to avoid confusion, use the same setting for
<cont ext - r oot > as for the <web- app>r oot attribute.

Finally, create an EAR file named nyapp. ear (for example) with the standard J2EE
structure to hold the application components. Here are the EAR file contents:

META- | NF/

META- | NF/ MANI FEST. MF
META- | NF/ appl i cation. xm
myapp-ej b.jar

nyapp- web. war

(The JAR utility automatically creates the MANI FEST. MF file.)

4-12 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

Deployment Configuration To deploy the application, the following entry is added to the
server.xm file inthe OC4J configuration files directory, specifying the appropriate
path information:

<application

nane="nyapp"

pat h="your _pat h/li b/ myapp. ear"
/>

If you use the admi n. j ar - depl oy option to deploy the application, this entry is
made automatically. (See "Using admin.jar to Deploy the EAR File" on page 5-27.)

The next step is to bind the Web module to a Web site. You will need the following
entry in the Web site XML file (typically ht t p- web- si t e. xm in OC4J standalone) in
the OC4J configuration files directory:

<web- app
appl i cati on="myapp"
name="nyapp- web"
root ="/ nyapp"

/>

If you use the adni n. j ar - bi ndWebApp option after deploying the application, this
entry is made automatically. (See "Using admin.jar to Bind the Web Application" on
page 5-28.)

Invocation of the Servlet-EJB Application
According to the configuration of this example, you can invoke the servlet as follows,
assuming a host nyhost . By default, OC4J standalone uses port 8888.

http://myhost : 8888/ nyapp/ Doubl eHel | o

The context path, myapp, is according to the relevant <web- app> element r oot
setting in the Web site XML file. The servlet path, Doubl eHel | o, is according to the
relevant <ur | - patt er n>element in the web. xmi file.

Figure 4-3, which follows, shows the application output to a Web browser. The output
from the servlet is printed in H1 format at the top, then the output from the EJB is
printed in text format below that.

JDBC and EJB Calls from Servlets 4-13

EJB Calls from Servlets

Figure 4-3 Output from HelloServlet

#+- Hello from Servlet - Netscape

e Edit iew Go Communicator Help

Biach Fopward Reload Hiome Search Metzcape Frint Security Shop Stop m

w‘ " Bookmarks £ Location:l d @' Wwhat's Related

Hello from hello servlet!

Hello from myEjh HelloBean

’E == | |Document: Done

EJB Remote Lookup within the Same Application

This section adapts the preceding Hel | oSer vl et /7Hel | oBean example for remote
lookup within the same application, where the servlet and EJB are in the same
application but on different tiers. The discussion highlights use of the
orion-application.xm filer enot e flag, which determines where EJBs are
deployed and searched for, and necessary changes to the code and descriptor files.

In this example, the default Appl i cati onl ni ti al Cont ext Fact ory is used for the
JNDI context, as in the preceding local lookup example. An alternative would be to
use RM I ni ti al Cont ext Fact ory, as discussed in the next example, "EJB Remote
Lookup Outside the Application" on page 4-19.

Use of the Remote Flag

In OC4J, to perform a remote EJB lookup within the same application but on different
tiers (where the same application has been deployed to both tiers), you must set the
EJB r enot e flag appropriately on each tier. When this flag is set to "t r ue", beans will
be looked up on a remote server instead of the EJB service being used on the local
server.

Ther enot e flag is an attribute in the <ej b- nodul e> subelement of an
<ori on-appli cati on>elementintheorion-application.xm file. The default
setting is r enot e="f al se". Here is an example of setting it to "t r ue™

<orion-application ... >
<ej b-nodul e remote="true" ... />

</ orion-application>

4-14 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

The suggested steps are illustrated in Figure 4-4 and described below.

Figure 4-4 Setup for Remote Lookup within Application

serer 1 serer 2

rancte=true rencte=falss=
deﬁne ramohe location no definiticn of
in <s=srver:darent rrmibe location

1. Deploy the application EAR file to both servers, with ar enot e flag value of
"f al se". If you provide an ori on- appl i cati on. xm file, it is suggested that it
either have the r enot e flag explicitly setto " f al se", or no r enot e flag setting
at all, in which case its value is "f al se" by default. If you do not provide
orion-application.xm , OC4J generates the file automatically with the
r enot e flag disabled.

2. Setrenpte="true" intheorion-application.xm fileforyour application
on server 1, the servlet tier. Given this setting, the servlet will not look for EJBs on
server 1.

3. Ensurethatrenot e="fal se" intheori on-application.xm fileforyour
application on server 2, the EJB tier. Given this setting, the servlet will look for
EJBs on server 2.

4. Usea<server>elementintherm . xm file on server 1 to specify the remote
host, server 2, where the servlet will look for the EJB. This includes the host name
and port as well as a user name and password for authentication:

<rm-server ... >

<server host="renote_host" port="renote_port" username="user_name"
passwor d="password" />

</rm -server>

If there are <ser ver > elements for multiple remote servers, the OC4J container
will search all of them for the target EJB.

Note: Intherm . xm configuration, use the default
administrative user name for the remote host, and the
administrative password set up on the remote host through the
OC4J-install option. This avoids possible JAZN configuration
issues. See "Setting Up an Administrative User and Password" on
page 5-24.

JDBC and EJB Calls from Servlets 4-15

EJB Calls from Servlets

5. Ensure that your deployment and configuration file changes are picked up by
OC4J on each server. You can accomplish this (on each server) in any of the
following ways:

— Ifthecheck-f or- updat es flag is enabled
— Byusingtheadni n. jar - updat eConfi g option
— By restarting the server

See "Key OC4J Flags for Development" on page 2-3 for information about
check- f or - updat es and - updat eConfi g.

Note: Remember that this discussion assumes an OC4J standalone
environment during development. In an Oracle Application Server
environment, any configuration must be through Enterprise
Manager or the dcntt | command-line utility. If updating
orion-application. xm is not feasible after deployment, you
would have to create and deploy two separate EAR files, one with
anorion-application.xm filewithrenote="true" and one
with anori on-application.xnl filewithrenote="fal se".

Servlet EJB calls in an Oracle Application Server environment are
discussed in the Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

Servlet-EJB Application Code for Remote Lookup in the Same Application

This section has code for a servlet-EJB sample using remote lookup of an EJB
component within the same application. This includes servlet code, EJB code, and EJB
interface code. Note the bold passages in particular.

Servlet Code: HelloServlet This section contains the servlet code. In this example, the
code and configuration are fundamentally the same as in the local lookup example,
with two exceptions:

= This example uses remote interfaces instead of local interfaces.

« Thisexample uses thej avax. r m . Port abl eRenpt eObj ect. narrow() static
method to ensure that objects can be cast to the desired type. This was not
required in the local lookup example, but is mandatory for any remote lookup.

Again, the default Appl i cati onl ni ti al Cont ext Fact ory is used for the JNDI
initial context factory, the j ava: conp syntax is used for the lookup, and the web. xm
file is searched for EJB references.

This example assumes that the r mi . xm file on the servlet tier has been set up to
specify the host, port, user name, and password for the remote lookup, as shown in the
preceding section, "Use of the Remote Flag". With this assumption, there is no need to
set up a JNDI context (URL, user name, and password) in the servlet code.

package nyServl et;

Il Step 1. Inport the EJB package.

import nyEb. *;

inport java.io.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

i nport javax.nam ng.*; /1 for JNDI

inport javax.rm.?*; /I for RM, including Portabl eRenot ethj ect

4-16 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

inport javax. ej b. Oreat eExcepti on;
i nport java.rni.RenmoteException;

public class HelloServlet extends HttpServlet {

public void doGet (HtpServletRequest request, HitpServletResponse response)
throws ServletException, |COException {

response. set Cont ent Type(“text/htm");
PrintWiter out = response.getWiter();

out.println("<htm ><head><title>Hello from Servlet</title></head>");
[l Step 2: Print a message fromthe servlet.
out. println("<body><hl>Hello fromhello servlet!</hl></body>");

/I Step 3: Create an output string, with an error default.

String s = "If you see this message, the ejb was not invoked properly!!";
/I Step 4: Use JNDI to look up the EJB hone interface.
try {

Initial Context ic = new Initial Context();
bj ect homehj ect = ic.|ookup("java:conp/env/ejb/ Hel | oBean");
Hel | oHome hh = (Hel | oHone)

Por t abl eRenot eCbj ect . nar r ow(honeoj ect, Hel | oHorre. cl ass) ;

Il Step 5: Create the EJB local interface object.
Hel | oRemot e hr = (Hel | oRenot e)
Port abl eRenot eChj ect . narrow hh. create(), Hel | oRenot e. cl ass) ;
Il Step 6. Invoke the helloWrld() method on the local object.
s = hr.helloWrld();
} catch (NaningException ne) {
Systemout. println("Could not |ocate the bean.");
} catch (CreateException ce) {
Systemout. println("Could not create the bean.");
} catch (RenoteException ce) {
Systemout. printin("Error during execution of remote call.");
} catch (Exception e) {
/1 Unexpected exception; send back to client for now.
throw new Servl et Exception(e);
}
[l Step 7: Print the nessage fromthe EJB.
out.println("
" + s);
out.println("</htm>");
}
}

EJB Code: HelloBean Stateful Session Bean The EJB code for a remote lookup within the
same application is similar to that for a local lookup, but adds a Renot eExcept i on.
The home and remote EJB interface code is also shown below.

package myEj b;
i mport javax.ejh. *;

public class HelloBean inplements SessionBean

{
public String helloWrld () {
return "Hello fromnyE b. Hel | oBean";

}

public void ejbCeate () throws CreateException {}

JDBC and EJB Calls from Servlets 4-17

EJB Calls from Servlets

public void ejbRenove () {}
public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}
public void ejbPassivate () {}
}

EJB Interface Code: Home and Remote Interfaces Here is the code for the home interface.
Extend EJBHome (instead of EJBLocal Home as when local interfaces are used). Also,
a Renpt eExcepti on is added.

package nyE b;

inport java.rm.RenmoteException;
i nport javax.ejb. EJBHone;

i nport javax.ejb. Creat eExcepti on;

public interface Hell oHome extends EJBHome
{

}

public Hell oRenote create () throws RenoteException, CreateException;

Here is the code for the remote interface. Extend EJBObj ect (instead of
EJBLocal Obj ect as when local interfaces are used). As with the home interface
above, the use of Renpt eExcept i on is added.

package nyEj b;

i nport java.rni.RenoteException;
i nport javax. ej b. EJBObj ect;

public interface Hel | oRenpte extends EJBObj ect
{

}

public String helloWrld () throws RenoteException;

Configuration for Remote Lookup in the Same Application

This section highlights web. xm and ej b-j ar. xm entries to use with remote
interfaces. You can compare the highlighted passages to parallel passages in the local
interface example.

Notes:

« Theweb. xm and ej b-jar. xnl files are the same for
deployment to each host.

« Theserver. xm entry on each host is the same as for the local
lookup example, as shown in "Deployment Configuration" on
page 4-13. This is handled automatically if you use the
admi n. j ar - depl oy option to deploy the application. The
htt p- web-si t e. xm entry on the servlet tier is the same as
for the local lookup example, but is not applicable on the EJB
tier.

The r enpt e flag must also be set appropriately in ori on-appl i cati on. xm on
each host, as discussed in "Use of the Remote Flag" on page 4-14.

4-18 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

Web Descriptor The contents of web. xri for this example are as follows. Note the
<ej b- r ef > element and its <home> and <r enot e> subelements, for use of remote
interfaces.

<?xm version="1.0"?>
<! DOCTYPE WEB- APP PUBLIC "-//Sun M crosystenms, Inc.//DTD Wb Application 2.3//EN
“http://java.sun. com dtd/ web-app_2_3.dtd">

<web- app>
<di spl ay- name>Hel | oSer vl et </ di spl ay- name>
<description> Hel | oServlet </description>
<servl et>
<servl et - name>Ser vl et Cal | i nggj b</servl et - nane>
<servlet-class>myServlet. Hel | oServl et</servlet-class>
</servlet>
<servl et - mappi ng>
<servl et - name>Ser vl et Cal | i nggj b</servl et - nane>
<url - pattern>/Doubl eHel | o</ url - pattern>
</ servl et - mappi ng>
<wel come-file-list>
<wel cone-file> index. htm </welcone-file>
</wel come-file-list>
<ej b-ref>
<ej b-ref - nane>ej b/ Hel | oBean</ ej b-r ef - nane>
<ej b-ref -type>Sessi on</ ej b-ref -type>
<honme>nyE b. Hel | oHone</ home>
<r enot e>nyEj b. Hel | oRenot e</ r enot e>
</ejb-ref>
</ web- app>

EJB Descriptor For this example, the contents of ej b-j ar. xm are as follows. Note the
<home> and <r enot e> elements, for the use of remote interfaces.

<?xnml version="1.0"?>
<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, Inc.//DTD Enterprise JavaBeans
2.0//EN'" "http://java.sun.conm dtd/ejb-jar_2 0.dtd">
<ejb-jar>
<enterpri se-beans>
<sessi on>
<description>Hel | o Bean</descri ption>
<ej b- name>ej b/ Hel | oBean</ ej b- name>
<hone>nyEj b. Hel | oHome</ hone>
<renot e>nyEj b. Hel | oRenot e</r enot e>
<ej b-cl ass>nyEj b. Hel | oBean</ ej b- cl ass>
<sessi on-type>St at ef ul </ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
</ sessi on>
</ enterprise-beans>
<assenbl y-descri pt or>
</ assenbl y-descri pt or>
</ejb-jar>

EJB Remote Lookup Outside the Application

This section adapts the preceding Hel | oSer vl et /Hel | oBean example for remote
lookup to a different application (deployed to a different OC4J instance), highlighting
necessary changes to the code and descriptor files.

JDBC and EJB Calls from Servlets 4-19

EJB Calls from Servlets

Instead of using the default JNDI initial context factory,
Applicationlnitial ContextFact ory, this example uses
RM | nitial ContextFactory.

The r enpt e flag discussed in the preceding section, "EJB Remote Lookup within the
Same Application” on page 4-14, is not relevant.

Servlet-EJB Application Code for Remote Lookup Outside the Application

This section has code for a servlet-EJB sample using remote lookup outside the
application. This includes servlet code, EJB code, and EJB interface code. Note the bold
passages in particular.

Servlet Code: HelloServlet This section contains the servlet code. In this scenario, the
specification of URL, user, and password must be in the servlet code. (In the example
of a remote lookup within the same application, there is an assumption that this
information is specified in ther m . xm file.) A step is added to the servlet code here
to set up the JNDI environment for the lookup. In this code, the following are static
fields of the j avax. nani ng. Cont ext interface, which is implemented by the

j avax. nam ng. I ni ti al Cont ext class:

« Thel NI TI AL_CONTEXT_FACTORY setting specifies the initial context factory to
use, RM | ni ti al Cont ext Fact ory in this case.

« The SECURI TY_PRI NCI PAL setting specifies the identity of the principal (user
name) for authenticating the caller to the service.

« The SECURI TY_CREDENTI ALS setting specifies the password of the principal for
authenticating the caller to the service.

« The PROVI DER_URL setting specifies the URL, or a comma-delimited list of URLS,
for the lookup. The information after the port number corresponds to the
application name as defined in the ser ver. xm file, "myapp" in this example.

When RM | ni ti al Cont ext Fact ory is used, there is ho j ava: conp syntax in the
JNDI lookup of the remote EJB component you wish to connect to, and the lookup
must use the EJB name as specified in the ej b-j ar. xnl file. The web. xm file is not
accessed, so any EJB references there will be ignored for the lookup.

package nyServl et;

/1l Step 1: Inport the EJB package.

inport nyEjb.*;

inport java.io.*;

inport java.util.?*;

inport javax.servlet.*;

inport javax.servlet.http.*;

i nport javax.nam ng.*; /1 for JNDI

inport javax.rm.?*; /I for RM, including Portabl eRenot ethj ect
i nport javax.ejb. Creat eExcepti on;

inport java.rm . RenoteException

public class HelloServlet extends HtpServlet {

public void doGet (HtpServletRequest request, HtpServletResponse response)
throws ServletException, |CException {

response. set Cont ent Type("text/htm");
PrintWiter out = response.getWiter();

out.println("<htm ><head><title>Hello from Servlet</title></head>");

4-20 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

/1 Step 2: Print a message fromthe servlet.
out. println("<body><hl>Hello fromhello servlet!</hl></body>");

/IStep 2.5: Set up JNDI properties for renote call
Hasht abl e env = new Hashtabl e();
env. put (Context. | NI TI AL_CONTEXT_FACTCRY,
"com evermind. server.rm.RMInitial ContextFactory");
env. put (Cont ext. SECURI TY_PRI NCI PAL, "admin");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "wel cone");
env. put (Cont ext. PROVIDER_URL, "ormi://nyhost:port/nyapp");

[l Step 3. Create an output string, with an error default.

String s = "If you see this message, the ejb was not invoked properly!!";
/I Step 4: Use JNDI to look up the EJB hone interface.
try {

Initial Context ic = new Initial Context(env);
(hj ect honeoj ect = ic.lookup("ejb/HelloBean");
Hel oHone hh = (Hel | oHone)
Por t abl eRenot e(bj ect . nar r ow(homeChj ect, Hel | oHone. cl ass);

/] Step 5. Create the EJB renpte interface.
Hel | oRenote hr = (Hel | oRenot)
Port abl eRenot eChj ect . narrow(hh. create(), Hel |l oRenote. cl ass);
Il Step 6: Invoke the helloWrld() nethod on the renote object.
s = hr.helloWrld();
} catch (NaningException ne) {
Systemout. printin("Could not |ocate the bean.");
} catch (CreateException ce) {
Systemout. printin("Could not create the bean.");
} catch (RenoteException ce) {
Systemout. printin("Error during execution of remote call.");
} catch (Exception e) {
/1 Unexpect ed exception; send back to client for now.
throw new Servl et Exception(e);
}
/1 Step 7: Print the nessage fromthe EJB.
out.println("
" + s);
out.println("</htnm>");
}
}

Notes:

« Inthe JNDI properties setup, use the default administrative
user name for the remote host, and the administrative
password set up on the remote host through the OC4J
-i nstall option. This avoids possible JAZN configuration
issues. See "Setting Up an Administrative User and Password"
on page 5-24.

« For an Oracle Application Server environment, because of
OPMN dynamic port assignments, use "opmm: orm ://..."
syntax instead of "ormi : / /. .. " syntax for the ORMI URL.

« In OC4J standalone cluster mode, use "l ookup: orm ://..."
syntax.

JDBC and EJB Calls from Servlets 4-21

EJB Calls from Servlets

EJB Code: HelloBean Stateful Session Bean The EJB code for a remote lookup outside the
application, including the bean code and the interface code, is identical to that for a
remote lookup within the application, including the use of Renbt eExcept i on.

package nyEjb;
inport javax.ejb.*;

public class HelloBean inplenments SessionBean

{
public String hellowWrld () {

return "Hello fromnyE b. Hel | oBean";
}

public void ejbCreate () throws CreateException {}
public void ejbRemove () {}

public void setSessionContext (SessionContext ctx) {}
public void ejbActivate () {}

public void ejbPassivate () {}

}
EJB Interface Code: Home and Remote Interfaces Here is the code for the home interface:
package nyE b;

inport java.rm.RenoteException;
i nport javax.ejb. EJBHone;
i nport javax.ejb. Creat eExcepti on;

public interface Hell oHome extends EJBHome
{

public Hell oRenbte create () throws RenoteException, CreateException;
}

Here is the code for the remote interface.

package nyE b;

inport java.rm.RenmoteException;
i nport javax.ejb. EJBObj ect;

public interface Hel |l oRenbte extends EJBObj ect
{

}

public String helloWrld () throws RenoteException;

Configuration and Deployment for Remote Lookup Outside the Application

This section highlights ej b-j ar. xm entries that are specific to remote lookup. These
entries are identical to those for remote lookup within the application. You can
compare the highlighted passages to parallel passages in the other examples.

Because the servlet uses RM | ni t i al Cont ext Fact ory for the JNDI initial context
factory, the web. xnml file is not relevant.

4-22 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

EJB Calls from Servlets

Note: Theej b-jar.xml fileis the same for deployment to each
host.

The server. xm entry on the local host is identical to that for the
local lookup example, as shown in "Deployment Configuration” on
page 4-13. This is handled automatically if you use theadm n. j ar
- depl oy option to deploy the application. The ser ver . xm file
on the remote host is configured as appropriate for the remote
application. The ht t p- web- si t e. xm entry on the local host is
identical to that for the local lookup example, but is not applicable
on the remote host.

EJB Descriptor and Archive The contents of ej b-j ar. xm are as follows. Note the
<hone> and <r enpt e> elements, for use of remote interfaces.

<?xnml version="1.0"?>
<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, Inc.//DTD Enterprise JavaBeans
1.12//EN' "http://java.sun.condtd/ejb-jar_2_0.dtd">
<ejb-jar>
<enterpri se-beans>
<sessi on>
<description>Hel | o Bean</description>
<ej b- name>ej b/ Hel | oBean</ ej b- name>
<hone>nyEj b. Hel | oHone</ hone>
<renot e>nyEj b. Hel | oRenot e</r enot e>
<ej b-cl ass>nyEj b. Hel | oBean</ ej b- cl ass>
<sessi on-type>St at ef ul </ sessi on-t ype>
<transaction-type>Contai ner</transaction-type>
</ sessi on>
</ enterprise-beans>
<assenbl y-descri pt or>
</ assenbl y-descri pt or >
</ejb-jar>

Deployment Notes for Remote Lookup Outside the Application Complete the following steps:

1. To deploy the remote EJBs, place them in a separate EAR file, and deploy them to
the appropriate OC4J server. The server you deploy to is reflected in the
PROVI DER_URL in the servlet code.

2. Ensure that the remote and home interfaces are available to the calling servlet. For
simplicity, you can make the whole EJB JAR file available in either of the following
ways:

« Placeitinthe/WEB- | NF/ | i b directory of the WAR file.

« Place itanywhere, as desired, and point to it through a <l i br ar y>element in
theorion-application. xm file of the application.

JDBC and EJB Calls from Servlets 4-23

EJB Calls from Servlets

4-24 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

D

Deployment and Configuration Overview

This chapter provides an overview of OC4J configuration, packaging, and deployment
for servlet developers, primarily in an OC4J standalone environment. It includes the
following sections:

« General Overview of OC4J Deployment and Configuration
« Overview of Configuration Files

« Application Packaging

« Deployment Scenarios to OC4J Standalone

« OC4]) Deployment in Oracle Application Server

General Overview of OC4J Deployment and Configuration

Because this is a developer’s guide, much of it is intended for use in an OC4J
standalone environment, which is convenient for application development stages.
OC4J standalone comprises a single OC4J instance outside the Oracle Application
Server environment. Most of this chapter is specific to configuration and deployment
in a standalone environment, where you are developing on the same system you are
deploying to.

When your application is ready for enterprise use, you can deploy it to the Oracle
Application Server environment. This chapter gives an overview of deployment and
configuration in Oracle Application Server, and Chapter 7, "Configuration with
Enterprise Manager", offers additional information . Your primary information source
for using OC4J in an Oracle Application Server environment, however, should be the
Oracle Application Server Containers for J2EE User’s Guide.

The following sections provide some overview:
« Overview: OC4J Standalone Versus the Oracle Application Server Environment
« Overview of OC4J Deployment Scenarios

« Using Oracle Deployment Tools Versus Expert Modes

Overview: OC4J Standalone Versus the Oracle Application Server Environment

Many OC4J features discussed in this manual, particularly in this chapter, are for use
in OC4J standalone only, during development. In Oracle Application Server, which
offers enterprise management features for large-scale production environments, it is
critical to maintain controls to prevent actions that may compromise the server during
operation. Because this is not such a concern while you are developing in a standalone

Deployment and Configuration Overview 5-1

General Overview of OC4J Deployment and Configuration

environment, there are fewer restrictions on what you can or should do in OC4J
standalone.

OC4J standalone provides the admi n. j ar command-line utility for deploying,
configuring, and managing applications. It is also possible, especially for early testing,
to manually deploy files and manually update configuration files. In particular, for
initial testing, you can use the OC4J default Web application for individual servlet
files, JSP pages, and dependency classes.

Note: Key admi n. j ar commands are discussed under
"Deployment Scenarios to OC4J Standalone” on page 5-23.

For initial considerations when using OC4J standalone for development, including use
of the OC4Jdevel opnent flag to trigger automatic recompilation and reloading of
modified servlets, see "OC4J Standalone for Development" on page 2-1.

In an enterprise production environment, OC4J is contained within Oracle Application
Server, which takes over management of the J2EE enterprise systems. Oracle
Application Server can oversee multiple clustered OC4J processes and is managed
through the Oracle Enterprise Manager 10g. Through Enterprise Manager, you can
manage and configure your OC4J processes across multiple application server
instances and hosts. Thus, you cannot locally manage your OC4J process by using the
admi n. j ar tool or by manually updating configuration files, because this will conflict
with the management provided by Enterprise Manager.

Table 5-1 summarizes OC4J deployment and configuration features, comparing OC4J
standalone to OC4J in Oracle Application Server.

Table 5-1 OCA4J in Standalone Versus Oracle Application Server: Deployment

Feature OC4J Standalone OC4J in Oracle Application Server

Deployment vehicle Use adm n. j ar or manually Use Enterprise Manager or dcnct | .
place files.

Configuration vehicle Useadni n. j ar or manually Use Enterprise Manager or dcnct | .
update files. Do not manually update files.

Deployment packaging Use an EAR file, a WAR file, Use an EAR file or a WAR file.
loose files in a J2EE
application directory
structure, or loose files in a
Web application directory

structure.
Default J2EE application The OC4] default J2EE When you deploy an independent
or J2EE application application is available to WAR file, OC4J automatically
wrapper contain independent WAR creates a J2EE application and an
files. You do not have to EAR file to wrap it.

create an EAR file for simple
Web applications.

Default Web application The OC4J default Web Not applicable.
application allows
deployment of servlets
through placement of files
under the default root
directory. No configuration is
required.

5-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

General Overview of OC4J Deployment and Configuration

Table 5-1 (Cont.) OCA4J in Standalone Versus Oracle Application Server: Deployment

Feature 0OC4J standalone

0OC4J in Oracle Application Server

Automatic reloading of
application or Web
application

JAR file under

[VEB- | NF/ |'i b.

Automatic recompilation
and reloading

Modify appl i cati on. xm ,
web. xm , servlet code under
/ VEB- | NF/ cl asses, or

Use devel opnent ="t rue"
(or set JSP mai n_node to

Not applicable/appropriate.

Not applicable/appropriate.

"r econpi | e" for JSP pages).

Table 5-2 summarizes OC4J features and practices relating to Web sites, again
comparing OC4J standalone to OC4J in Oracle Application Server.

Table 5-2 OC4J in Standalone Versus Oracle Application Server: Web Sites

Feature 0OC4J Standalone OC4J in Oracle Application Server
Web server OC4] Oracle HTTP Server

Protocol HTTP / HTTPS AJP / secure AJP

Default port to invoke 8888 7777 (for Oracle HTTP Server and

Web applications

Web site XML file htt p-web-site. xm

Oracle Application Server Web
Cache)

def aul t -web-site. xm

Note:

In Oracle Application Server, use Enterprise Manager or

dcntt |, but do not attempt to use both simultaneously to target
the same OC4J instance or instances, or do not use both for different

parts of the same deployment.

Overview of OC4J Deployment Scenarios

OC4J supports the standard J2EE application structure and deployment vehicles. This
includes the use of an EAR file to deploy a complete J2EE application, which may
include Web modules, EJB modules, application client modules, and resource adapter
modules (used for connector factories). There can be zero or more of each type of
module. It is also possible to use an independent WAR file to deploy an independent
Web application. (For a complete application that includes a Web module, the WAR
file is included inside the EAR file.) For more information about these features, refer to
the J2EE specification and servlet specification, available at the following Web sites:

http://java. sun. conlj 2ee/ docs. ht m

http://jcp.org/aboutJava/ comuni typrocess/first/jsr053/index. htm

Before deploying a J2EE application, you must complete the following steps:

1. Create all components of the application, such as static HTML files, servlets, JSP

pages, and EJBs.

2. Create J2EE descriptors, such as appl i cati on. xm and web. xnml , and, as
desired, create OC4J descriptors, such as or i on-appl i cati on. xm and
ori on-web. xm . If you do not create the OC4J descriptors, they will be
generated automatically during deployment of a J2EE application, which is
sufficient if you do not need anything beyond default settings.

Deployment and Configuration Overview 5-3

General Overview of OC4J Deployment and Configuration

3. Package the application components and descriptors according to the J2EE
application structure. If you provide ori on- appl i cati on. xm , place it with
application. xm . If you provide ori on-web. xni , place it with web. xm .
Although it is possible to deploy loose files into the appropriate directory
structure, it is more typical to deploy applications in EAR or WAR files. See
"Application Packaging" on page 5-20.

Note: In Oracle Application Server, deployment and
configuration through Enterprise Manager results in the
appropriate OC4J configuration files being created or updated
automatically.

After you have packaged your application, there are several scenarios for deployment,
as discussed later in this chapter.

In an OC4J standalone environment, your options include the following:

« Deploy an EAR file. See "Deploying an EAR File to OC4J Standalone” on
page 5-27.

« Manually deploy files for a complete J2EE application into an application directory
structure. See "Deploying Files into a J2EE Application Structure on OC4)J
Standalone" on page 5-32.

« Deploy an independent WAR file. See "Deploying an Independent WAR File to
OC4] Standalone" on page 5-32.

= Manually deploy files for an independent Web application into a Web application
directory structure. See "Deploying Files into a Web Application Directory
Structure on OC4J Standalone" on page 5-34. This includes the option of
conveniently deploying servlets or JSP pages into the OC4J default Web
application during initial testing. (See "OC4J Default Application and Default Web
Application" on page 5-25.)

In an Oracle Application Server environment, use Enterprise Manager to deploy and
configure your applications. See "Overview of OC4J Deployment and Configuration in
Oracle Application Server” on page 5-39.

Note: You can also use an IDE, such as Oracle JDeveloper, for
developing, packaging, deploying, and configuring your
application. See "Oracle JDeveloper Support for Servlet
Development" on page 2-19 for an introduction and overview.

Using Oracle Deployment Tools Versus Expert Modes

This discussion considers two modes of operation when deploying and configuring
applications for OC4J. One can be called supported client mode, using tools provided by
Oracle for either OC4J standalone or Oracle Application Server. The other, used during
development and testing phases and in OC4J standalone only, can be called expert
mode. In expert mode, you are manipulating files directly—manually placing EAR
files, WAR files, or loose files on the system, and manually updating configuration
descriptors. These modes are summarized in Table 5-3.

5-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Overview of Configuration Files

Table 5-3 Tools or Vehicles for Supported Client Mode and Expert Mode

Tool or Vehicle for OC4J Tool or Vehicle for OC4J in Oracle
Mode Standalone Application Server
Supported client admn.jar Enterprise Manager or dcnct |
mode
Expert mode Direct manipulation of server files Not applicable/appropriate

In expert mode, you are operating outside the safeguards and constraints of the OC4J
and Oracle Application Server tools.

In OC4J standalone, Oracle generally assumes that you will either deploy with

adm n. j ar and not manually update files, or you will manually update files and not
deploy with adm n. j ar. Crossing between these scenarios may cause unpredictable
results.

In Oracle Application Server, do not try to directly manipulate server files. The Oracle
Application Server Distributed Configuration Management subsystem (DCM)
maintains a repository of configuration information. This repository—not
configuration files on the file system—contains the true configuration settings.
Enterprise Manager and the dcntt| command-line tool work in concert with DCM so
that the configuration repository is properly updated when you use either of these
tools.

Overview of Configuration Files

There are several categories and levels of configuration files—both OC4J-specific and
J2EE-standard, and both at the global level and the application level—for configuring
OC4J and an OC4J application.

While developing and testing your application in an OC4J standalone environment,
you can manipulate these configuration files either manually or through the

admi n. j ar utility, which OC4J provides. For example, the admi n. j ar - depl oy
command automatically updates ser ver . xm to add the specified J2EE application to
OC4J, and the admi n. j ar - bi ndWebApp command automatically updates the
specified Web site XML file to bind the specified Web module to the Web site.

Important: In an Oracle Application Server environment, nearly
all configuration is accomplished through Oracle Enterprise
Manager 10g. Do not directly manipulate the configuration files
discussed here. Doing so would undermine enterprise management
and cause undesirable results.

Key adni n. j ar commands are discussed later in this chapter, where applicable. See
the Oracle Application Server Containers for J2EE Stand Alone User’s Guide for further
details about the admi n. j ar utility.

The following sections introduce OC4J and application configuration files:
« Introduction to OC4J and J2EE Configuration Files

« OC4]) Top-Level Server Configuration File: server.xml

« OC4Jand J2EE Application Descriptors

« OC4J)and J2EE Web Descriptors

« OC4J) Web Site Descriptors

Deployment and Configuration Overview 5-5

Overview of Configuration Files

« Example: Mappings to and from Web Site Descriptors
Refer to the following for additional information:

« For the use of Enterprise Manager to configure OC4J in an Oracle Application
Server environment, see the Oracle Application Server Containers for J2EE User’s
Guide.

« For the use of Enterprise Manager to configure servlets and Web modules in
particular, see Chapter 7, "Configuration with Enterprise Manager", later in this
manual.

« To configure OC4J standalone, see the Oracle Application Server Containers for J2EE
Stand Alone User’s Guide, available with the OC4J download from the Oracle
Technology Network.

Introduction to OC4J and J2EE Configuration Files

You can divide the OC4J and J2EE configuration files into five categories:

= Server configuration (OC4J-specific), with the overall top-level OC4J configuration
file and server-level configuration files for security, data sources, RMI, JMS, and
load balancing

= Global configuration (OC4J-specific), with a global application descriptor, a global
Web descriptor, and a global descriptor for resource adapters

= Web site configuration (OC4J-specific)

= J2EE application-level configuration, with standard J2EE application, Web, EJB,
application-client, and resource adapter (connector factory) descriptors

« OC4J-specific application-level configuration, with OC4J application, Web, EJB,
application-client, and resource adapter (connector factory) descriptors

The global files can affect anything running on the OC4J server and can establish
defaults for both J2EE and OCA4J-specific features at the application level and the
Web-site level. The J2EE files can override any defaults for standard J2EE features and
establish additional J2EE-standard settings. The OC4J-specific application-level files
can override defaults in the corresponding global files, override settings in the
corresponding J2EE files, and add OC4J-specific features and settings.

Of particular interest to servlet developers are the top-level OC4J server configuration
file (server. xm), the application descriptors (OC4J global, J2EE application-level,
and OC4)J application-level), the Web descriptors (OC4J global, J2EE application-level,
and OC4J application-level), and the OC4J Web site descriptors. Each of these topics is
discussed in more detail shortly.

Server-level and global configuration files are located in the j 2ee/ hone/ confi g
directory by default. OC4J looks there for the ser ver . xml file. The server. xm file
specifies the locations of the other server-level and global files (by default, the same
directory). In OC4J standalone, the configuration file directory is configurable through
the j ava -confi g command-line option.

The following discussion summarizes the preceding five configuration file categories.

Summary of Server, Global, and Web Site Configuration Files

Theserver. xnl file is located in the j 2ee/ hone/ conf i g directory and specifies
locations of the other server configuration files and the Web site configuration files,
which are also inj 2ee/ home/ conf i g by default.

5-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Overview of Configuration Files

Server Configuration The files in this category are OC4J-specific, configuring different
aspects of the OC4J server.

« server. xm : This parent file for all OC4J configuration includes elements
pointing to other server-level and global configuration files, all Web sites on the
server, and all applications on the server (including the OC4J default application).
See "OC4J Top-Level Server Configuration File: server.xml" below.

« jazn. xm : This configuration file for Oracle Application Server Java
Authentication and Authorization Service (JAAS) Provider (OracleAS JAAS
Provider) specifies the directory path to the server-level j azn- dat a. xni file.

= jazn-dat a. xm : This server-level JAAS file contains user name and role
information for the XML-based provider. There is also an application-level
version. This file is not used if OracleAS JAAS Provider uses the LDAP-based
provider instead.

« dat a- sour ces. xm : This file contains data source definitions for database
connections.

« rm.xm :This file contains configuration features for remote method invocation.
« jme. xm : This file contains configuration features for the Java Message Service.
0C4J Global Configuration Files in this category are OC4J-specific, defining settings for

OC4J global features such as the default application and determining default settings
for corresponding application-level configuration files.

« application.xnl: This file is the OC4J-specific global application descriptor.
See "OC4J and J2EE Application Descriptors" on page 5-11.

Note: Do not confuse the OC4J global application descriptor with
the J2EE-standard application-level descriptor appl i cati on. xmi .
They are both used to define Web modules and have other similar
features, but the OC4J global application descriptor uses an
OC4J-specific DTD.

« gl obal -web-application.xm : This file is the OC4J-specific global Web
descriptor. See "OC4J and J2EE Web Descriptors” on page 5-15.

» 0c4j-connectors. xn : This file is the OC4J-specific global descriptor for
resource adapters (for connector factories).

Web Site Configuration Each Web site that is recognized by the server has a Web site
XML file to configure it. There is just one Web site in Oracle Application Server. There
is typically one Web site in OC4J standalone, but you can use a second Web site for
"shared" applications, such as those in which some communication is through HTTP
and some through HTTPS. It is also possible for there to be no Web sites, if the OC4J
instance is not used for Web modules. See "OC4J Web Site Descriptors” on page 5-18.

« defaul t-web-site.xmn : Thisfile is the default Web site descriptor in an Oracle
Application Server environment.

« http-web-site. xnl: This file is the default Web site descriptor in an OC4J
standalone environment.

« Additional Web site XML files: Create a separate Web site XML file, named as
desired, for any additional Web site.

Deployment and Configuration Overview 5-7

Overview of Configuration Files

Summary of Application-Level Configuration Files

J2EE configuration files are included within the standard application structure. If you
include OC4J application-level configuration files in your EAR or WAR file, they also
go within the application structure. See "J2EE Application Structure" on page 5-21.
Upon deployment of a J2EE application, the OC4J files are either copied (if you
included them) or generated (if you did not include them) in the deployment
directory, typically under j 2ee/ hone/ appl i cati on- depl oynent s.

J2EE Application-Level Configuration Files in this category are all application-level and are
defined by the J2EE specification.

« application.xmn: Thisfile is the J2EE-standard application descriptor. See
"OC4J and J2EE Application Descriptors” on page 5-11.

Note: Do not confuse the J2EE application descriptor with the
OC4J global application descriptor appl i cati on. xm . They are
both used to define Web modules and have other similar features,
but have separate and distinct DTDs.

« web. xnl : This file is the J2EE-standard Web descriptor. See "OC4J and J2EE Web
Descriptors” on page 5-15.

« ejb-jar.xm: This file is the J2EE-standard EJB descriptor.

« application-client.xm:Thisfile is the J2EE-standard descriptor for
application clients.

« ra.xm:Thisfile is the J2EE-standard descriptor for resource adapters (for
connector factories).

0OC4J Application-Level Configuration Files in this category are OC4J-specific at the
application level. They configure OC4J-specific functionality to complement standard
functionality from the corresponding J2EE descriptor, and override default settings
from the corresponding server-level or global descriptor.

« orion-application.xn :This file is the OC4J-specific application descriptor.
See "OC4J and J2EE Application Descriptors” on page 5-11.

« orion-web. xnl : This file is the OC4J-specific Web descriptor. See "OC4J and
J2EE Web Descriptors" on page 5-15.

« orion-ejb-jar.xm:This file is the OC4J-specific EJB descriptor.

=« jazn-data. xm : This application-level JAAS file contains user name and role
information for the XML-based provider. There is also a server-level version. This
file is not used if OracleAS JAAS Provider uses the LDAP-based provider instead.

« orion-application-client.xn:Thisfileis the OC4J-specific descriptor for
application clients.

« o0c4j-ra.xm : This file is the OC4J-specific descriptor for resource adapters (for
connector factories).

Additional Information See the following documents for more information about the

preceding descriptors:

= Oracle Application Server Containers for J2EE User’s Guide for information about
server. xm and load balancing

5-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Overview of Configuration Files

Oracle Application Server Containers for J2EE Services Guide for information about
data sources, RMI, JMS, and resource adapters in OC4J, and related descriptors

Oracle Application Server Containers for J2EE Security Guide for information about
security and JAAS in OC4J, and related descriptors

Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide
for information about EJB development and the J2EE and OC4J EJB descriptors

OC4J Top-Level Server Configuration File: server.xml

The OC4Jserver. xm file, located in the OC4Jj 2ee/ hone/ confi g directory by
default, is the starting point for configuration of the OC4J server and all J2EE
applications, Web applications, and Web sites for the server. In particular, note the
following:

The attributes of the top-level <appl i cat i on- ser ver > element specify, among
other things, the target directory for deployed EAR files and where they are
unpacked (determined by the appl i cati on- di r ect ory setting), and the target
directory for copied or generated OC4J descriptors (determined by the

depl oynent - di r ect ory setting).

Note: A key <application-server > attribute in the OC4J
10.1.2 implementation is check- f or - updat es, to automatically
check OC4J XML configuration files for updates. See "Key OC4J
Flags for Development" on page 2-3.

The <gl obal - appl i cat i on> element specifies the OC4J global application,
otherwise known as the default application, which, by default, is the parent of all
other applications. The namne attribute defines its name; the pat h attribute
specifies what to use as the OC4J global application descriptor. See "OC4J Default
Application and Default Web Application” on page 5-25 for a discussion of the
OC4] default application.

The <gl obal - web- app- conf i g> element, through its pat h attribute, specifies
what to use as the OC4J global Web application descriptor.

There is a <web- si t e> element for each Web site recognized by the server, with
the pat h attribute specifying what to use as the corresponding Web site XML file.
OC4J comes with one such element already configured.

There is an <appl i cat i on> element for each J2EE application deployed to the
server. The nane attribute specifies the desired J2EE application name. The pat h
attribute reflects where the EAR file is deployed and unpacked, or where
application files exist that have already been unpacked (or were manually placed).
In either case, the nane attribute is typically the same as the EAR file name
without the . ear extension. In the first case, the pat h attribute specifies the full
path to the EAR file, including the EAR file name. In the second case, the path
attribute specifies the top-level directory of the extracted files.

The <r m - conf i g> element, through its pat h attribute, specifies what to use as
the OC4J RMI descriptor.

The <j ms- conf i g> element, through its pat h attribute, specifies what to use as
the OC4J JMS descriptor.

Deployment and Configuration Overview 5-9

Overview of Configuration Files

Note: In Oracle Application Server, port settings in the RMI
descriptor (r mi . xm by default) and JMS descriptor (j ms. xm by
default) are overridden.

Theserver. xnl file is discussed in detail in the Oracle Application Server Containers
for J2EE User’s Guide, but an example is also provided here:

<?xnm version="1.0"?>

<! DOCTYPE appl i cation-server PUBLIC "-//Evermnind//DTD Oion
Appl i cation-server//EN'
"http://xmns.oracl e.confias/dtds/application-server.dtd">

<application-server application-directory="../applications"
depl oynent -di rectory="../application-depl oynents"
connector-directory="../connectors"

<rm-config path="./rm.xm" />
<jms-config path="./jms.xm" />
<l og>
<file path="../log/server.log" />
</l og>
<transaction-config timeout="250000" />
<gl obal - application name="default" path="application.xm" />
<application name="petstore" path="../applications/petstore.ear" ... />
<gl obal - web- app-confi g path="gl obal - web- appl i cation.xm" />
<web-site default="true" path="./default-web-site.xm" />
<web-site path="../nyconfig/ny-web-site.xm" />
<cluster id="-1406559522" />
</ appl i cation-server>

Figure 5-1, which follows, illustrates the mappings between the ser ver. xnl file,
other XML files including Web site XML files, and J2EE EAR files. Note that in this
figure, the <appl i cat i on>elementsinserver. xm point to top-level directories of
extracted EAR files instead of pointing to intact EAR files.

5-10 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Overview of Configuration Files

Figure 5-1 Mappings from the server.xml File

Serverxml
RMLxml
= =application
<RMI..> o= "EAR "
path=". Jmy.opps "=
<TMS...»
JMS. xml o pplicitine
rme="EAR2"
<mrah-cie parert="EAR1™
l;:‘lmfhrebmlml"- path=". fmyippe"
<applicatior.
<mrab-cie- n.E:P.'e="Eﬁ.R3"
path="trebeite 2 xml™ parer="EAR 1™
b path=". Jmyhpps"S=
wiehsite1.xml
el app-
application="EAR1" b — —— o ——— — —
name=""eb_Tfadale"
root="Ysome Trl" f»
el app-
application="FEAR3"
pame="1"eb_Module" N— -1 - —— =
root="Yarwother T = I
wehsite2 . xml 1
<mreh-app- — =— —

applicatiom="EAR 2"
rame="areh_mod_E"
root="Yzome Tl />

0OC4J and J2EE Application Descriptors

An application descriptor specifies the components of a J2EE application, such as EJB
and Web modules, and can specify additional configuration for the application as well.

OC4J uses three categories of application descriptors. The following sections discuss
each of them, then summarize their relationships to each other:

« Standard J2EE Application Descriptors

« OC4J Global Application Descriptor

« OC4J-Specific Application Descriptors

« Summary of Relationships Between Application Descriptors

The server. xm file points to the application descriptor of each application on OC4J,
either directly or indirectly. In the case of a typical J2EE application, ser ver . xm
points to the EAR file (or extracted EAR top-level directory) and, therefore, to the

appl i cation. xnl filethat the EAR file contains. In the case of the OC4J global
application, the ser ver . xm file points directly to the OC4J global application
descriptor.

See the Oracle Application Server Containers for J2EE User’s Guide for more information
about application descriptors in OC4J.

Deployment and Configuration Overview 5-11

Overview of Configuration Files

Standard J2EE Application Descriptors

The J2EE standard defines the concept and DTD of an application descriptor, called
appl i cation. xm , that you must include in the / META- | NF directory of the EAR
file of a J2EE application. The application descriptor acts as a manifest of the modules
contained in the application, possibly with additional configuration information as
well, and in some development environments can be created automatically for you.
See the J2EE specification for more information.

Here is an example for an application with an EJB module, a Web module, and a client
module:

<?xnm version="1.0" ?>
<! DOCTYPE application (View Source for full doctype...)>
<appl i cation>
<di spl ay- name>st at ef ul , appl i cation: </ di spl ay- name>
<descri ption>
A sanpl e J2EE application that uses a renote stateful session
bean to call a local entity bean.
</ descri pti on>
<nodul e>
<ej b>stateful -ejb.jar</ejb>
</ modul e>
<nodul e>
<web>
<web- uri >st at ef ul - web. war </ web- uri >
<cont ext - r oot >/ st at ef ul </ cont ext - r oot >
</ web>
</ nodul e>
<nmodul e>
<java>stateful -client.jar</java>
</ modul e>
</ appl i cation>

0C4J Global Application Descriptor

The OC4J-specific global application descriptor is defined by an OC4J-specific DTD,
orion-application. dtd. This is the descriptor for the OC4J global application, as
specified by the <gl obal - appl i cati on>elementin the server. xm file. This
element specifies the global application name, def aul t by default, and the global
application descriptor name, appl i cati on. xnml by default and usually located in the
same directory as ser ver . xm .

The OC4J global application is usually referred to as the "default application” and, by
default, is the parent application of all other applications in the OC4J instance.

Note: The standard J2EE application descriptor and the OC4J
global application descriptor are both named appl i cati on. xm ,
despite being defined by different DTDs. Do not confuse the two.
The standard appl i cati on. xm file is not applicable to the OC4J
default application.

Following is an abbreviated sample appl i cat i on. xm file for the OC4J default
application. Note that it specifies the name of a Web application, def aul t WebApp,
which by convention is bound to one or more Web sites as the default Web application.

Do not confuse the OC4J default J2EE application with the default Web application
that it contains. See "OC4J Default Application and Default Web Application" on
page 5-25 for related information.

5-12 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Overview of Configuration Files

<?xm version="1.0" standal one="yes' ?>
<! DOCTYPE orion-application PUBLIC "-//Everm nd//DTD J2EE Application runtinme
1.2//EN" "http://xm ns.oracl e. confias/dtds/orion-application.dtd">

<l-- The global application config that is the parent of all the other
applications in this server. -->

<orion-application autocreate-tabl es="true"
def aul t - dat a- sour ce="j dbc/ Or acl eDS" >
<web- nodul e i d="def aul t WebApp" path="../../hone/ def aul t - web- app" />
<connectors path="./oc4j-connectors.xm"/>

<I-- Path to the libraries that are installed on this server
These will accesible for the servlets, EJBs etc -->
<library path="../../hone/lib" />
<I-- Path to the taglib directory that is shared

anong different applications. -->
<library path="../../hone/jsp/lib/taglib" />

<l og>
<file path="../log/gl obal -application.log" />
</l og>

<dat a- sour ces pat h="dat a-sources.xm" />
<namespace- access>
<read-access>
<nanmespace- resour ce root="">
<security-rol e- mappi ng>
<group name="admi nistrators" />
</security-rol e-mappi ng>
</ namespace-r esour ce>
</read- access>
<write-access>
<nanespace-resour ce root="">
<security-rol e- mappi ng>
<group name="admi ni strators" />
</security-rol e-mappi ng>
</ namespace-r esour ce>
</wite-access>
</ nanespace-access>
</ orion-application>

0C4J-Specific Application Descriptors

In addition to the standard application descriptor, appl i cati on. xm , there is an
OC4J-specific application-level application descriptor, ori on- appl i cati on. xm .
This descriptor is defined by the same DTD as the OC4J global application descriptor.
You can provide an ori on- appl i cati on. xm file as well asan appl i cati on. xni
file, also in the / META- | NF directory of your EAR file. The
orion-application.xn filecan add OC4J-specific configuration.

Including an ori on-appl i cati on. xnl file in your EAR file is optional. If you
include it, OC4J copies it into the deployment directory during deployment (under

j 2eel/ hone/ appl i cat i on- depl oynent s by default). Otherwise, OC4J generates
one for you in the deployment directory, using default settings from the OC4J global
application descriptor (assuming the OC4J default application is the parent
application, as is the case by default) and the appl i cati on. xm file in the EAR file.
See "J2EE Application Structure" on page 5-21 for information about where
orion-application.xn fitsin the application structure.

Deployment and Configuration Overview 5-13

Overview of Configuration Files

Note: When OC4J copies ori on-appli cation. xmnl , it may
make changes to the file but these changes are transparent. For
example, an attribute setting that specifies the default value may be
ignored or removed.

In most circumstances, you should use or i on- appl i cati on. xm only to define
OC4J-specific configuration such as security role mappings. Also note that if OC4J
generates the file, it creates <web- nodul e> elements to reflect the modules specified
in the J2EE appl i cati on. xm file.

The following example shows some OC4J-specific configuration and defines the same
EJB, Web, and client modules as defined in the example of the standard
appl i cation.xm filein"Standard J2EE Application Descriptors" on page 5-12:

<?xm version="1.0"?>
<! DOCTYPE orion-application PUBLIC "-//Evermnind//DTD J2EE Application runtinme
1.2//EN" "http://xm ns.oracl e.com i as/ dtds/orion-application.dtd">

<orion-application defaul t-data-source="jdbc/ Oacl eDS">
<ej b-nodul e rempte="fal se" path="stateful-ejb.jar" />
<web- nodul e id="stateful -web" path="stateful-web.war" />
<client-nodul e path="stateful-client.jar" auto-start="false" />
<per si stence pat h="persi stence" />
<l og>
<file path="application.log" />
</l og>
<nanespace- access>
<read- access>
<nanespace- r esource root="">
<security-rol e-mappi ng name="& t;jndi-user-rol e>">
<group name="users" />
</security-rol e- mappi ng>
</ namespace- r esour ce>
</ read- access>
<write-access>
<nanespace- r esource root="">
<security-rol e-mappi ng nane="&t;jndi-user-role>">
<group nane="users" />
</security-rol e- mappi ng>
</ namespace- r esour ce>
</wite-access>
</ nanespace- access>
</orion-application>

Summary of Relationships Between Application Descriptors

To summarize the relationship between J2EE application descriptors, the OC4J global
application descriptor, and OC4J application-level application descriptors:

« Foratypical J2EE application, the key application descriptor is the standard J2EE
application descriptor, appl i cati on. xm . This file acts as a manifest for the
modules of a J2EE application and must be placed in the / META- | NF directory of
the J2EE application EAR file.

« If you want to deploy a standalone WAR file (rather than a WAR file within an
EAR file), you can use the OC4J default application, or global application, as the
containing application. (See "OC4J Default Application and Default Web
Application” on page 5-25.) In this case, the OC4J global application descriptor,

5-14 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Overview of Configuration Files

also called appl i cati on. xm but defined by an OC4J-specific DTD, becomes
relevant because no J2EE standard appl i cati on. xm file is associated with a
standalone WAR file.

« You can optionally include an or i on- appl i cati on. xm descriptor for
additional OC4J configuration, such as for security role mappings. The
orion-application.xm file may also specify additional modules, beyond
those specified in the J2EE appl i cati on. xri file, and can even override
modules specified in appl i cati on. xm (though this is not advisable). The
orion-application.xmn file would also be in the/ META- | NF directory of the
EAR file. If you do not include this file, it is created automatically during
deployment, using defaults from the OC4J global application descriptor (assuming
the default application is the parent of your application, which is true by default).
The orion-application. xm descriptors are defined according to the same
DTD as the OC4J global application descriptor.

0OC4J and J2EE Web Descriptors

A Web descriptor specifies and configures a set of J2EE Web components: static pages,
servlets, and JSP pages. The Web components may together form an independent Web
application and be deployed in a standalone WAR file. More typically, however, they
will form just part of an overall J2EE application, being deployed in a WAR file within
the EAR file of the J2EE application.

OC4J uses three categories of Web descriptors. The following sections discuss each of
them and summarize the relationships between them:

« Standard J2EE Web Descriptors
« OC4J Global Web Application Descriptor
« OC4J-Specific Web Descriptors

« Summary of Relationships Between Web Descriptors

Standard J2EE Web Descriptors

The servlet specification defines the concept and DTD of a Web descriptor, called
web. xm , that you must include in the / WEB- | NF directory of the associated WAR
file. The web. xni file specifies and configures the Web components of the WAR file,
as well as other components, such as EJBs, that the Web components may call. See the
servlet specification for more information.

Here is a sample web. xni file specifying, among other things, a servlet, the servlet
mapping, and a local EJB lookup:

<?xm version="1.0"?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
“http://java.sun. com dtd/ web-app_2_3.dtd">

<web- app>
<di spl ay- name>st at ef ul , web- app: </ di spl ay- name>
<description>no description</description>
<wel come-file-list>
<wel cone-fil e>i ndex. ht m </ wel corme-fil e>
</wel come-file-list>

<ej b-local -ref>
<ej b-r ef - nane>Car t Bean</ ej b- r ef - nane>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<l ocal - home>cart. Cart Hone</| ocal - home>

Deployment and Configuration Overview 5-15

Overview of Configuration Files

<l ocal >cart. Cart </l ocal >
</ ej b-1ocal -ref>

<servl et >
<servl et - name>cart </ ser vl et - name>
<servlet-class>cart. Cart Servlet</servlet-class>
<init-paranp
<par am nane>par ani</ par amt nane>
<par am val ue>1</ par am val ue>
</init-paranp
</servl et>
<servl et - mappi ng>
<servl et - name>cart </ ser vl et - name>
<url-pattern>/cart</url-pattern>
</ servl et - mappi ng>
<security-role>
<rol e-nane>user s</r ol e- name>
</security-rol e>
</ web- app>

0C4J Global Web Application Descriptor

Theserver.xm file, through its <gl obal - web- app- conf i g> element, specifies
the OC4J global Web application descriptor. It is typically

gl obal - web- appl i cati on. xm , in the same directory as ser ver . xm . This
descriptor defines default behavior for Web applications in OC4J.

The global Web application descriptor is defined by the DTD or i on- web. dt d. This is
the same DTD as for the application-level OC4J-specific Web descriptor,
orion-web. xn , described in the next section, "OC4J-Specific Web Descriptors".

The ori on-web. dt d is a superset of the standard DTD for web. xmi . There is a
<web- app> subelement of the <or i on- web- app> top-level element in

ori on-web. dt d, which has the same specification as the top-level <web- app>
element of web. xm . There are also many other subelements of <or i on- web- app>
for specifying and configuring OC4J-specific features.

For any default settings you specify within the <web- app> element in

gl obal - web- appl i cati on. xnl , you can add to or, optionally, override these
settings through <web- app> settings in web. xnl . You can then add to or, optionally,
override the resulting settings through <web- app> settings in or i on- web. xmi .

Note: Avoid using the <web- app> element in

gl obal - web-appli cati on. xm orori on-web. xm . Because it
is customary to look in web. xm for any <web- app> entries,
having such entries elsewhere could be confusing and may cause
difficulty during troubleshooting.

For any default settings you specify outside the <web- app> element in
gl obal - web-appl i cati on. xm , you can add to or, optionally, override these
settings through parallel settings in or i on- web. xni .

For detailed information about the elements and attributes of the OC4J global Web
application descriptor, including the DTD and a hierarchical representation, see
"Configuration for global-web-application.xml and orion-web.xml" on page 6-1.

See "Sample global-web-application.xml Settings" on page 6-19 for an abbreviated
sample gl obal - web-appl i cation. xm file.

5-16 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Overview of Configuration Files

0C4J-Specific Web Descriptors

In addition to the standard Web descriptor, web. xm , and the OC4J global Web
application descriptor, gl obal - web- appl i cati on. xm (which establishes default
behavior), there is an OC4J-specific application-level Web descriptor,

orion-web. xm .

The ori on-web. xm descriptor is defined by the DTD or i on-web. dt d. This is the
same DTD as for the global Web application descriptor that was described in the
previous section, "OC4J Global Web Application Descriptor".

You can provide an or i on- web. xml file as well as the web. xni file, also in the

/ VEEB- | NF directory of your WAR file. Use or i on- web. xm to add to or, optionally,
override any default settings in gl obal - web- appl i cati on. xni , as well as to add
to or override any settings in web. xm .

Including an ori on-web. xm file in your WAR file (inside the EAR file) is optional. If
you include it, OC4J copies it into the deployment directory during deployment
(under the j 2ee/ hone/ appl i cati on- depl oynent s directory by default).
Otherwise, OC4J generates or i on- web. xm for you in the deployment directory,
using default settings from gl obal - web- appl i cati on. xm . Additionally, some
web. xm settings will influence the generation of or i on- web. xnl . For example,

<r esour ce-r ef >entries in web. xm will result in corresponding

<r esour ce-r ef - mappi ng> entriesin ori on- web. xm . See "J2EE Application
Structure” on page 5-21 for information about where or i on- web. xm fits in the
application structure.

Note: When OC4J copies ori on- web. xm , it may make changes
to the file but these changes are transparent. For example, an
attribute setting that specifies the default value may be ignored or
removed.

For detailed information about the elements and attributes of the OC4J-specific Web
descriptor, including the DTD and a hierarchical representation, see "Configuration for
global-web-application.xml and orion-web.xmlI" on page 6-1.

A sample ori on-web. xnl file follows:

<?xm version="1.0" ?>
<! DOCTYPE ori on-web-app (View Source for full doctype...)>
<ori on-web- app j sp-cache-directory="./persistence" tenporary-directory="./tenp"
servl et-webdir="/servlet/" default-buffer-size="2048"
devel opnent ="fal se" directory-browsi ng="deny"
file-nmodification-check-interval ="1000" jsp-tineout="0 (never)">
<ej b-ref - mappi ng name="Enpl oyeeBean" />
<security-rol e-mappi ng name="users">
<group name="users" />
</ security-rol e-mappi ng>
<l--
<web- app>
There are no <web-app> entries in this sanple.
</ web- app>
-->
</ ori on- web- app>

Summary of Relationships Between Web Descriptors

You can think of the relationship between gl obal - web- appl i cati on. xm ,
web. xm , and or i on-web. xml as follows:

Deployment and Configuration Overview 5-17

Overview of Configuration Files

1. Thegl obal - web- appl i cati on. xnl file establishes defaults for any Web
application in OC4J.

2. Theweb. xm file overlays anything defined in the <web- app> element of
gl obal - web- appl i cati on. xnl , adding to and possibly overriding any Web
components and other settings defined there.

3. Theorion-web. xnm file overlays everything, adding to and possibly overriding
any settings from gl obal - web- appl i cati on. xnml and web. xmi .

OC4J Web Site Descriptors

Each Web site in OC4J is defined and configured through a Web site XML file. The key
functions of a Web site XML file are the following:

« It binds specified Web modules to the Web site, identifying each Web module to
bind, the J2EE application it belongs to, and the context path portion of the URL to
use in accessing it.

« It defines key settings for the Web site, such as the host name, port number, and
protocol. The protocol setting should indicate AJP (Apache JServ Protocol) in an
Oracle Application Server environment, and HTTP in a standalone environment.

Theserver. xnl file indicates the number of Web sites that OC4J recognizes, by
including a <web- si t e> element for each site. Each of these elements specifies the
path and file name for the corresponding Web site XML file, as in the following sample
server. xml entries:

<web-site path="./defaul t-web-site.xm" />
<web-site path="nydir/ny-web-site.xm" />

In Oracle Application Server, there is just one Web site. In OC4J standalone, there is
typically one Web site, but you can use a second Web site for "shared" applications,
such as where some communication is through HTTP and some through HTTPS. (For
information about shared applications, see the description of the <web- app> element
shar ed attribute in "Element Descriptions for Web Site XML Files" on page 6-20.)

A Web site XML file contains a <web- app> element for each Web module to bind to
the Web site. At a minimum, each <web- app> element has the following:

« Anapplicati on attribute to specify the name of the J2EE application to which
the Web module belongs (the same as the EAR file name without the . ear
extension)

= Anane attribute to specify the name of the Web module (the same as the WAR file
name without the . war extension)

« Aroot attribute to specify the context path on this Web site to which the Web
module is to be bound

There is also a <def aul t - web- app> element for the default Web application. The
default Web application is useful in OC4J standalone during development, as
discussed in "OC4J Default Application and Default Web Application” on page 5-25. In
Oracle Application Server, it is used for some system-level functionality but is not
otherwise meaningful. See "OC4J Default Web Application in Oracle Application
Server" on page 5-40.

5-18 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Overview of Configuration Files

Important:

« Theroot setting overrides the setting of the
<cont ext - r oot > element for this Web module in the
appli cation. xm descriptor for the containing J2EE
application. The <cont ext - r oot > element is required in
application. xnl , butisnot used by OCA4J. See "Example:
Mappings to and from Web Site Descriptors"”, which follows.

« Aroot setting of "/ " overrides the OC4J default Web
application. This setting (or a null setting, which is converted to
"/ ") is not allowed by the adni n. j ar utility when binding a
Web application to the Web site.

By default, OC4J comes configured with one Web site XML file: ht t p- web-si t e. xmi
in OC4J standalone, or def aul t - web- si t e. xml in Oracle Application Server.

See "Configuration for Web Site XML Files" on page 6-20 for detailed information
about the elements and attributes of Web site XML files, including the DTD and a
hierarchical representation.

See "Sample default-web-site.xml File" on page 6-30 for an example, in this case a
sample def aul t - web- si t e. xrmi file for an Oracle Application Server environment.

Example: Mappings to and from Web Site Descriptors

This example shows how an entry in server . xm points to a Web site descriptor
(Web site XML file), and how a <web- app> element in the Web site XML file points to
a Web module. The <web- app> element binds the Web module to the Web site. The
Web module is defined in the appl i cat i on. xm file (also shown) of the containing
J2EE application.

The server . xm file includes an <appl i cat i on> element for the relevant J2EE
application (which contains the desired Web module) and includes a <web- si t e>
element specifying the Web site XML file for the desired Web site:

<application-server ... >
.<;31pr i cati on name="nyear" path="../nyapps/nyear.ear" />
.<\.Néb-site pat h="ny-web-site.xm" />

</ appl i cation-server>

The Web site XML file, my- web- si t e. xni , configures the Web site and has a

<web- app> element that specifies the J2EE application that contains the Web module,
the name of the Web modaule itself, and the root context path for accessing the Web
module:

<web-site protocol ="http" port="8888" display-name="MW Wb Site"
host="[ALL] " | og-request-info="fal se" secure="fal se">

<web-app application="nyear" nane="nywebnodl" root="/somelr|"
| oad- on-startup="fal se" max-inactivity-tinme="no shutdown"
shared="fal se" />

</ web-site>

Deployment and Configuration Overview 5-19

Application Packaging

See "Element Descriptions for Web Site XML Files" on page 6-20 for information about
the <web- si t e> and <web- app> attributes shown here.

Note: For a Web application (WAR file) that is deployed to the
OC4] default application instead of being deployed within an EAR
file, the <web- app> element appl i cat i on attribute indicates the
name of the OC4J default application (def aul t by default) instead
of indicating an EAR file name.

See "OC4J] Default Application and Default Web Application” on
page 5-25 for general information about the default application.

The J2EE appl i cat i on. xm file in myear . ear specifies the Web module:

<application ... >

<nmodul e>
<web>
<web- ur i >mywebnmodl. war </ web- uri >
<cont ext - root >/ someUr | </ cont ext - r oot >
</ web>
</ modul e>

</ appl i cation>

Notes:

« Thevalue of ther oot attribute of the <web- app> element in
my- web- si t e. xm overrides the value of the
<cont ext - r oot >elementin application. xm .Asa
convention, though, use the same setting in both places.

« A Web application deployed to the OC4J default application is
defined in the OC4J global application descriptor.

= Inan Oracle Application Server environment, the
def aul t -web-si te. xm file, by default, sets up a Web site
that accesses OC4J through the Oracle HTTP Server and AJP
(Apache JServ protocol), using a protocol setting of "aj p13"
and a port setting of "0". However, OPMN, the Oracle Process
Management and Notification system, overrides this port
setting.

« Inan OC4J standalone environment, the ht t p- web- si t e. xni
file, by default, sets up a Web site that accesses the OC4J
listener directly, using a protocol setting of "ht t p" and a port
setting of "8888".

Application Packaging

OC4J supports standard J2EE archive files for deployment, including WAR files for
Web modules and EAR files for overall J2EE applications. The following sections
review the structure of these files:

« J2EE Application Structure
« EAR File and WAR File Structures

5-20 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Application Packaging

J2EE Application Structure

This section reviews the standard J2EE application structure, which you can use as
your development structure as appropriate. This discussion also shows the relative
locations of optional OC4J-specific descriptors. If you do not include the OCA4J-specific
descriptors in your deployment, OC4J generates them for you when you deploy a J2EE
application, using values from corresponding OC4J global descriptors and J2EE
descriptors as defaults.

J2EEAppNane/

META- | NF/
application.xn
orion-application. xm (optional)

EJBModul eNane/
(EJB cl asses, according to package)
META- | NF/
gj b-jar. xm
orion-ejb-jar.xm (optional)

VebMbdul eNarmre/
(static files, such as index.htm)
(JSP pages)

VEEB- | NF/
web. xm
orion-web. xm (optional)
cl asses/
(servlet classes, according to package)
l'ib/

(JAR files for dependency cl asses)

d i ent Mbdul eNane/
(client classes, according to package)
META- | NF/
application-client.xn
orion-application-client.xnl

Resour ceAdapt er Modul eName/
META- | NF/
ra.xn
(JAR files for required cl asses)
(required static files or other files)

The Web portion is marked in bold type. This portion reflects the structure of WAR
files used to deploy Web modules. At the top level are static pages (such as
i ndex. ht m), JSP pages, and the / VEB- | NF directory.

Deployment and Configuration Overview 5-21

Application Packaging

Notes:

« This structure is defined in the J2EE specification and related
specifications. The J2EE specification is at the following
location:

http://java. sun. conij 2ee/ docs. ht ni

« See "OC4J and J2EE Application Descriptors” on page 5-11 for
an overview of appl i cati on. xm and
orion-application.xm.

« See"OC4Jand J2EE Web Descriptors" on page 5-15 for an
overview of web. xm and ori on-web. xm .

= See the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for information about
ej b-jar.xm andorion-ejb-jar.xm.

» See the Oracle Application Server Containers for J2EE User’s Guide
for information about appl i cation-client.xm and
orion-application-client.xnl.

EAR File and WAR File Structures

In J2EE, a WAR file is typically contained within an EAR file. In the example in the
preceding section, the EAR file, J2EEAppNane. ear, would have its/ META- | NF
directory at the top level, along with Web module WAR files, EJB module JAR files,
client application JAR files, and resource adapter RAR files (zero or more of each, as
applicable):

META- | NF/
appl i cation. xn
orion-application.xm (optional)
EJBMobdul eNane. j ar
VebModul eNane. war
d i ent Mbdul eNarre. j ar
Resour ceAdapt er Mbdul eNarre. r ar

Sample EAR and WAR File

This example shows the structure of the archive files for a simple Web application. The
EAR file contains a WAR file, which contains a single servlet.

Following are the contents of uti | i ty. ear. If there were EJB, client application, or
resource adapter modules, the associated JAR files would be at the same level as the
WAR file. Optionally, you could also include an ori on- appl i cati on. xm filein the
/ META- | NF directory. Instead, in this example, one would be generated by OC4J
during deployment.

META- | NF/ MANI FEST. MF
META- | NF/ appl i cation. xm
utility_web.war

Here are the contents of uti | i t y_web. war . Optionally, you could also include an
ori on-web. xm file in the / VEEB- | NF directory. Instead, in this example, one would
be generated by OC4J during deployment.

META- | NF/ MANI FEST. MF
VEB- | NF/ ¢l asses/ Test St at usServl et . cl ass

5-22 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

VEB- | NF/ web. xm
i ndex. ht nl

Notes:

« This document assumes you have some J2EE development
experience and a means of creating EAR and WAR files, either
by using the JAR utility directly, or through an IDE such as
Oracle JDeveloper, or by using the ant utility and a
bui | d. xm file. See the following site for information about
ant:

http://ant.apache. org

« The MANI FEST. MF files are created automatically by the JAR
utility.

Deployment Scenarios to OC4J Standalone

This section reviews some preliminary considerations and then discusses several
scenarios for deployment to OC4J standalone. The primary deployment scenario is to
use the adm n. j ar utility after you package your application in an EAR file. The EAR
file optionally contains Web module WAR files, EJB module JAR files, client
application JAR files, and resource adapter RAR files (zero or more of each). See
"Application Packaging" on page 5-20 for more information about structure and
packaging.

The use of EAR files for OC4J deployment, and features of the admi n. j ar utility, are
covered extensively in the Oracle Application Server Containers for J2EE Stand Alone
User’s Guide. Key features are discussed here.

In addition, this section considers alternative deployment scenarios that you may find
useful during development, such as manually creating and populating a J2EE
application structure or deploying an independent WAR file into the OC4J default
application.

Note: In these alternative deployment scenarios, in which you
manually place and update files, you are considered to be in "expert
mode". You are operating outside the safeguards and constraints of
the OC4J and Oracle Application Server tools. See "Using Oracle
Deployment Tools Versus Expert Modes" on page 5-4.

This section includes the following subjects:

« Setting Up an Administrative User and Password

« Starting and Stopping OC4J Standalone

« OC4] Default Application and Default Web Application

« Deploying an EAR File to OC4J Standalone

« Deploying Files into a J2EE Application Structure on OC4J Standalone

« Deploying an Independent WAR File to OC4J Standalone

« Deploying Files into a Web Application Directory Structure on OC4J Standalone

Deployment and Configuration Overview 5-23

Deployment Scenarios to OC4J Standalone

= Application Undeployment or Redeployment in OC4J Standalone

Setting Up an Administrative User and Password

Before using the adni n. j ar utility to deploy an application in OC4J standalone, you
must have a user with administrative privileges.

Thej 2ee/ hone/ confi g/ j azn-dat a. xnm file determines security privileges for
user accounts. By default, there is a user adni n with administrative privileges, as
specified in the following sample j azn- dat a. xm entry:

<rol e>
<name>adni ni st r at or s</ name>
<di spl ay- nanme>Real m Adni n Rol e</ di spl ay- nane>
<description>Adm nistrative role for this real m</description>
<menber s>
<menber >
<type>user</type>
<name>adni n</ nanme>
</ menber >
</ menber s>
</rol e>

For the default administrative user adni n, the default password is wel cone, as in the
following sample j azn- dat a. xm entry:

<user s>

<user>
<name>adni n</ name>
<di spl ay- name>0C4J Adni ni st rat or </ di spl ay- name>
<descri ption>0C4J Adm ni strator</description>
<credenti al s> wel come</ credenti al s>

</ user>

</ user s>
(The file is automatically rewritten later to obfuscate the specified password.) See the

Oracle Application Server Containers for J2EE Security Guide for more information about
thej azn- dat a. xmi file, especially regarding the <cr edent i al s> element.

Important: You cannot use the admi n. j ar utility in an Oracle
Application Server environment. It is for use in OC4J standalone
only.

Note: If you are still using the deprecated pri nci pal s. xni file
for security, the administrative account password is determined
through the OC4J - i nst al | command:

% java -jar ocdj.jar -install

(Assume %is the system prompt and j 2ee/ hone is your current
directory.) You will be prompted for the desired password.

5-24 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

Starting and Stopping OC4J Standalone

This section provides a quick review of how to start and stop OC4J standalone.
Assume %is the system prompt and j 2ee/ hone is your current directory.

Issue the following command to start OC4J:
% java -jar ocdj.jar [options]
See the Oracle Application Server Containers for J2EE Stand Alone User’s Guide for a
discussion of OC4J command-line options.
Issue the following command to stop OC4J:
% java -jar admn.jar orm://oc4j _host:ocdj orm _port
adm nuser adm npassword - shut down
For the admi n. j ar - shut down command, note the following:

« In OC4J standalone, you can get the OC4J ORMI port number from the
j 2ee/ home/ confi g/ rmi . xm file, where there will be an entry such as the
following:

<rm-server port="23791" host="[ALL]">

« See the previous section, "Setting Up an Administrative User and Password", for
information about adni nuser and adm npasswor d.

OC4J Default Application and Default Web Application

The following sections discuss features and configuration of the OC4J default
application and default Web application. Some of the OC4J standalone deployment
scenarios described later will use these features.

« Use of the Default Application and Default Web Application
« Configuration of the Default Application and Default Web Application

Note: Use of the default application and default Web application
for deployment during testing is a useful OC4J convenience feature,
but is considered to be an expert mode because you are manually
placing application files and sometimes manually updating
configuration files. See "Using Oracle Deployment Tools Versus
Expert Modes" on page 5-4.

Use of the Default Application and Default Web Application

OCA4J is installed with a default configuration that includes a default application (also
known as the global application). The default application is, by default, the parent of all
other J2EE applications in OCA4J.

In OC4J, a Web application must be contained within a parent J2EE application.
Usually, a WAR file is deployed within an EAR file that defines the parent J2EE
application. If you want to deploy an independent WAR file, you can deploy to the
OC4J default application instead. By default, the OC4Jser ver . xml file specifies the
location and name of the global application descriptor that defines the default
application.

In a typical OC4J installation, the default application contains a default Web application.
The name and root directory path of the default Web application are specified in the
global application descriptor, and the default Web application is bound to a Web site

Deployment and Configuration Overview 5-25

Deployment Scenarios to OC4J Standalone

through the ht t p- web- si t e. xml file for OC4J standalone
(def aul t - web- si t e. xm in Oracle Application Server). In OC4J standalone, the
default context path for the default Web application is "/ ".

Also by default in OC4J standalone, the root directory of the default Web application is
j 2ee/ hone/ def aul t - web- app. To deploy to the default Web application, place
your JSP pages and class files under this directory in the standard Web application
directory structure: static pages and JSP pages at the top level, servlet classes under

j 2ee/ hone/ def aul t - web- app/ VEEB- | NF/ cl asses, and library JAR files in

j 2eel/ hone/ def aul t - web- app/ VEEB- | NF/ | i b. Also see "Using a Web Application
Directory Structure in the Default Web Application” on page 5-34.

Note: The default Web application, in addition to being invoked
by use of the context path "/ ", is invoked if the context path
mapping of any requested URL fails. This occurs if a requested
URL has no matching context path in any <web- app> element

r oot attribute in the Web site XML file.

Configuration of the Default Application and Default Web Application

This section details the default configurations for the OC4J default application and
default Web application.

The server.xml Configuration for Default Application In server. xm , the

<gl obal - appl i cat i on> element specifies the OC4J default application. The nane
attribute specifies its name, and the pat h attribute specifies what to use as the OC4J
global application descriptor:

<application-server ... >
<gl obal - application name="defaul t" path="application.xm" />
</ appl i cati on-server>

The application.xml Configuration for Default Web Application The specified descriptor for
the default application (or global application), appl i cati on. xm , specifies the name
and root directory path of the default Web application, which is contained in the
default application:

<orion-application ... >
<web- modul e i d="def aul t WebApp" path="../../home/def aul t - web- app" />
</ orion-application>

To deploy to the default Web application, place your files under this directory
according to the standard Web application structure.

Binding of Default Web Application in Web Site XML File By default, the default Web
application is bound to a Web site in the ht t p- web-si t e. xm file for OC4J
standalone (def aul t - web- si t e. xm in Oracle Application Server).

Although most OC4J Web applications are bound to a Web site through <web- app>
subelements of a <web- si t e>element in the Web site XML file, the default Web
application is instead configured through the <def aul t - web- app> subelement of
<web-site>.

5-26 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

In OC4J standalone, the default context path of the default Web application is"/ ",
without ar oot attribute being required. Here is an example:

<web-site ... >

<defaul t - web-app application="default" name="defaul t VebApp"
| oad-on-startup="true" shared="fal se" />

</ web-si te>

See "Configuration for Web Site XML Files" on page 6-20 for detailed information
about elements and attributes of Web site XML files.

Note: The <def aul t - web- app> element is required in any Web
site XML file.

Deploying an EAR File to OC4J Standalone

The following sections describe the process of deploying an EAR file in OC4]
standalone using the admi n. j ar utility.

This discussion assumes that if you modify your code, you would then repackage it
and redeploy it.

Using admin.jar to Deploy the EAR File
After you have packaged your application into an EAR file, you can use the OC4J
adm n. j ar utility to deploy it, using the following syntax:

% java -jar admn.jar orm://oc4j _host:ocdj _orm _port
admi nuser adni npasswor d
-deploy -file path/filenane. ear
- depl oyment Nane appnane

This command uses RMI to communicate with OC4J. Note the following:

« See "Starting and Stopping OC4J Standalone" on page 5-25 for information about
the ORMI port.

« See "Setting Up an Administrative User and Password" on page 5-24 for
information about adm nuser and adm npasswor d.

« For-file,specify the path to the EAR file, including the file name.

« For-depl oynent Nane, specify the desired application name, by convention the
same as the EAR file name without the . ear extension.

Note: During development, assuming you develop and run on the
same system, you will deploy locally. However, admi n. j ar is also
capable of deploying remotely.

By default, a deployment results in the following:

« The EARfile is copied to the j 2ee/ hore/ appl i cat i ons directory. This
directory is set as the default through the appl i cati on- di r ect ory attribute of
the <appl i cati on- server > elementin the ser ver. xm file.

« The EAR file is unpacked beneath the j 2ee/ horre/ appl i cat i ons directory.

Deployment and Configuration Overview 5-27

Deployment Scenarios to OC4J Standalone

» The OC4J-specific descriptors—at a minimum, or i on- appl i cati on. xm and
orion-web. xm for a Web application in an EAR file—are copied or generated
under the j 2ee/ honre/ appl i cati on- depl oynent s directory. This directory is
set as the default through the depl oynent - di r ect or y attribute of the
<appl i cati on-server>elementinthe server. xm file. These descriptors are
copied from the EAR file if they exist there; otherwise, OC4J generates them.

« An<application>elementisadded to the server. xm file. This element
specifies the application name, according to the - depl oynent Name setting in
admi n. j ar, and specifies the path to where the EAR file was deployed,

j 2ee/ hone/ appl i cati ons by default.

See "Sample Deployment” on page 5-29 for an example.

Note: The target directories are configurable. See the Oracle
Application Server Containers for J2EE Stand Alone User’s Guide for
additional information about admi n. j ar, including the
-target Pat hand - depl oynment Di r ect or y options.

Using admin.jar to Bind the Web Application

After you have deployed your application, you can use the OC4J admi n. j ar utility to
bind the associated Web application to a Web site:

% java -jar admin.jar orm://oc4j_host:ocdj orm _port
admi nuser adni npasswor d
- bi ndWebApp appnane webappname websit enane contextpath

As with the - depl oy command, the - bi ndWebApp command uses RMI to
communicate with OC4J. Note the following:

« See "Starting and Stopping OC4J Standalone™ on page 5-25 for information about
the ORMI port.

« See "Setting Up an Administrative User and Password" on page 5-24 for
information about adm nuser and admi npasswor d.

= Theappnane is the application name, according to the - depl oynment Name
setting when you deployed it.

« Thewebappnane is the name of the Web application. This is the WAR file name
without the . war extension.

=« Thewebsi t enane is indicated by the Web site XML file name for the desired site,
without the . xm extension (for example, ht t p- web- si t e in OC4J standalone).

= Specify the desired context path portion of the URL for invoking the Web
application.

Note: A context path setting of "/ *, which overrides the OC4J
default Web application, is disallowed by the adm n. j ar utility
when binding a Web application to the Web site. A setting of null,
which is converted to "/ ", is also disallowed.

As a result of this command, a <web- app> element is added to the specified Web site
XML file, indicating the application name, the Web application name, and the context
path.

See the next section, "Sample Deployment", for an example.

5-28 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

Sample Deployment

This example illustrates the result of deploying theuti | i ty. ear file shown in "EAR
File and WAR File Structures" on page 5-22, then binding its Web application. Here are
the admi n. j ar commands, assuming %is the system prompt, j 2ee/ hone is the
current directory, and the EAR file isinj 2ee/ home/ deno:

% java -jar admn.jar orm://nyhost: 23791 adnin wel come
-deploy -file deno/utility.ear -deploymentNane utility

% java -jar admn.jar orm://nyhost: 23791 adnin wel come
-bi ndWebApp utility utility_web http-web-site /utilroot
Note the following:

« The OC4J host name in this example is myhost ; the port setting is 23791 in
j 2ee/ home/ config/rm . xm .

« Inthis example, the administrative account name is adni n and the password is
wel cone.

« The Web application name withinutility. ear isutility_web, based on the
WAR file name, utility_web. war.

« The-bi ndWebApp commandisto bindutility_web tothe Web site defined by
j 2ee/ home/ confi g/ htt p- web-si t e. xm . This assumes the following entry is
inthe server. xm file, as is the case by default:

<web-site path="http-web-site.xm" />
« The desired context path portion of the URL to invoke the Web application is
“lutilroot".

The - depl oy command results in the following entry in server. xm , as a
subelement of the top-level <appl i cat i on- server > element:

<application name="utility" path="../applications/utility.ear"
auto-start="true" />

The aut o- st art attribute specifies whether this application should be automatically
restarted each time OC4J is restarted.

The - bi ndWebApp command results in the following entry in ht t p- web-site. xm ,
as a subelement of the top-level <web- si t e> element:

<web-app application="utility" name="utility_web" root="/utilroot"
| oad-on-startup="fal se" max-inactivity-time="no shutdown" shared="fal se" />

(See "Element Descriptions for Web Site XML Files" on page 6-20 for information about
the | oad- on- startup, max-inactivity-tinme,and shar ed attributes.)

Deployment and Configuration Overview 5-29

Deployment Scenarios to OC4J Standalone

Notes:

« Remember that the value of the r oot attribute of the
<web- app>elementin htt p- web- si t e. xm overrides the
value of the <cont ext - r oot > element in
appl i cation. xm . As a convention, though, use the same
value in both places.

« Information about the resulting server . xni and
htt p- web- si te. xm entries is provided as informative
background. You should not have any reason to update these
files manually when you use admi n. j ar.

After the deployment of uti | i ty. ear, the directory structure for key files is as
follows, assuming default settings for the target directories:

j 2eel hone/
appl i cati on-depl oynment s/
utility/
orion-application.xn
utility_web/
ori on-web. xn
applications/
utility.ear
utility/
utility_web. war
VETA- | NF/
application. xn
utility_web/
i ndex. ht m
VETA- | NF/
VAEB- | NF/
web. xm
cl asses/
Test StatusServl et. cl ass

Theserver.xm andhtt p-web-site.xmn filesareinthej 2ee/ honme/ confi g
directory.

Ifori on-application.xm andorion-web. xm existinthe EAR file, they are
copied from there into the directories shown above. Otherwise, OC4J generates them
into the directories shown above, using default settings from the corresponding OC4J
global descriptors and J2EE descriptors.

Descriptors for Sample Deployment

The deployment in the preceding section uses the following descriptors. Passages of
particular interest to servlet developers are marked in bold type.

The application.xml File The standard appl i cati on. xm descriptor is supplied by the
developer. Some IDEs, such as Oracle JDeveloper, will create this for you.

<?xm version="1.0" ?>
<! DOCTYPE application (View Source for full doctype...)>
<appl i cation>
<di spl ay- nane>Web Servi ces Deno</di spl ay- name>
<nodul e>
<web>
<web-uri>utility_web.war</web-uri>

5-30 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

<cont ext-root>/j2eel/utility</context-root>
</ web>
</ modul e>
</ application>

Remember that the <cont ext - r oot > element here is overridden by the r oot
attribute of the <web- app> element in the Web site XML file.

The web.xml File The standard web. xm descriptor is supplied by the developer.

<?xm version="1.0" ?>
<! DOCTYPE web-app (View Source for full doctype...)>
<web- app>
<di spl ay- name>\Web Servi ces Exanpl e</ di spl ay- nane>
<description>A few exanpl es of web service publication</description>
<wel cone-file-list>
<wel cone-fil e>i ndex. ht M </ wel cone-file>
</wel come-file-list>
<servl| et >
<servl et - name>Test St at us</ servl et - name>
<servl et-class>Test St atusServl et </ servl et-cl ass>
</servlet>
<servl et - mappi ng>
<servl et - name>Test St at us</ servl et - name>
<url -pattern>/TestStatusServlet</url-pattern>
</ servl et - mappi ng>
</ web- app>

The orion-application.xml File Because the ori on-appl i cati on. xnml descriptor is not
included in the EAR file in this example, it is generated by OC4J. Most of the file is
omitted here, but note that the <web- modul e> element mirrors the entry in the
application. xm file.

<?xm version="1.0" ?>

<! DOCTYPE orion-application (View Source for full doctype...)>

<orion-application depl oyment-version="10.1.2.0.0"
def aul t - dat a- sour ce="j dbc/ Or acl eDS"
treat-zero-as-null="true" autocreate-tables="true"
aut odel et e-t abl es="f al se">

<web-nodul e id="utility_web" path="utility_web.war" />
</orion-application>

The orion-web.xml File Because the ori on- web. xm descriptor is not included in the
WAR file (within the EAR file) in this example, it is generated by OC4J. It is not shown
here because there are no entries specific to the example.

Invoking the Sample Application

Given the information for the sample deployment in the preceding sections, in which
/util root isspecified as the context path in the admi n. j ar - bi ndWWebApp
command and / Test St at usSer vl et is specified as the servlet path in web. xm |
you invoke the application as follows:

http://host:port/utilroot/TestStatusServlet

Deployment and Configuration Overview 5-31

Deployment Scenarios to OC4J Standalone

Deploying Files into a J2EE Application Structure on OC4J Standalone

Instead of deploying an EAR file, you can manually deploy the file structure and then
update the server. xm and Web site XML files. This is an expert mode. (See "Using
Oracle Deployment Tools Versus Expert Modes" on page 5-4.)

Look again at "Sample Deployment" on page 5-29, but assume that you manually
create the j 2ee/ hone/ appl i cations/ utility directory and manually populate
the application directory structure underneath:

j 2eel horre/ appl i cations/utility/
META- | NF/
application. xm
utility_web/
i ndex. ht m
META- | NF/
VEB- | NF/
web. xm
cl asses/
Test StatusServl et. cl ass

Further assume that you update the server . xmi file as follows:

<application nane="utility" path="../applications/utility"
auto-start="true" />

And you update the ht t p- web- si t e. xii file as follows:

<web- app application="utility" name="utility_web" root="/utilroot"
| oad-on-startup="fal se" nax-inactivity-time="no shutdown" shared="fal se" />

Note that the pat h attribute in the <appl i cat i on>elementin server. xm is
"..lapplications/utility"insteadof"../applications/utility.ear".
This is because there is no EAR file, just the directory structure under theutility
directory.

By default in OC4J standalone, when you update ser ver . xm , OC4J detects the
change, deploys the application, and copies or generates the ori on- web. xni file and
orion-application.xmnl fileunderthe appl i cati on-depl oynent s directory as
follows:

j 2eel home/
appl i cati on- depl oynent s/
utility/
orion-application.xm
utility_web/
orion-web. xm

However, if OC4J update-checking is disabled, you must manually inform OC4J of
your configuration updates, using the admni n. j ar - updat eConf i g option. Checking
is enabled through the server. xm check-f or - updat es flag. See "Key OC4J Flags
for Development" on page 2-3.

Deploying an Independent WAR File to OC4J Standalone

"Deploying an EAR File to OC4J Standalone" on page 5-27 discusses using the

adm n. j ar utility to deploy an EAR file, including a WAR file within an EAR file for
a Web module. For convenience during testing, it is also possible to manually deploy
an independent WAR file, using the OC4J default application as the containing
application. (A Web application must always be part of a parent J2EE application in

5-32 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

OC4J.) This is an expert mode. See "Using Oracle Deployment Tools Versus Expert
Modes" on page 5-4.

See "OC4J Default Application and Default Web Application” on page 5-25 for
background information.

Use the following steps to deploy an independent WAR file to the OC4J default
application:

1. Place your WAR file in the desired directory.

2. Update the OC4J global appl i cati on. xm file to add a <web- nodul e> element
to specify the Web application name and the location of the WAR file.

3. Update the appropriate Web site XML file, typically ht t p- web-site. xm in
OC4J standalone, to add a <web- app> element to bind the Web application to the
Web site.

The following example illustrates deployment of a WAR file to the default application.

Note: In Oracle Application Server, all applications are deployed
in EAR files. If you use the Application Server Control Console
Deploy Web Application Page in Enterprise Manager, which
prompts you for a WAR file, then an EAR file is transparently
created to contain the WAR file.

Example: Web Application Name in OC4J Default Application

This example shows entries in server . xni , the Web site XML file, and the OC4J
global appl i cati on. xm file for a Web application, mywebnod1, within the OC4J
default application. Note the following:

« The pat h attribute of the <web- si t e> elementin server. xm specifies the path
and name of the Web site XML file, ht t p- web- si t e. xml in this example.

« The nane attribute of the <gl obal - appl i cati on>elementinserver. xm
specifies the name of the OC4J default application and corresponds to the
appl i cati on attribute of the <web- app> elementin htt p- web-site. xm .

« The pat h attribute of the <gl obal - appl i cati on>elementinserver. xm
points to the OC4J global appl i cati on. xni file.

« The nane attribute of the <web- app> elementin ht t p- web- si t e. xnm indicates
a Web application, nywebnod1, within the OC4J default application and
corresponds to the i d attribute of a <web- nodul e> element in the OC4J global
application. xn file. Both of these attributes typically correspond to the WAR
file name without the . war extension.

« Theglobal applicati on. xm file must specify the name and location of the
WAR file, through the pat h attribute of the <web- nodul e> element, because
there is no containing EAR file.

The following entries are in the server . xm file (no changes required):

<application-server ... >
<gl obal - application name="defaul t" path="application.xm" />
<web-site path="http-web-site.xm" />

</ application-server>

Deployment and Configuration Overview 5-33

Deployment Scenarios to OC4J Standalone

Place the bold entry into the Web site XML file, ht t p-web-site. xm :

<web-site protocol ="http" port="8888" display-name="HTTP Wb Site"
host ="[ALL]" | og-request-info="fal se" secure="fal se">

<web- app application="default" name="nywebnodl" root="/soneUrl"
| oad-on-startup="fal se" max-inactivity-time="no shutdown"
shared="fal se" />

</ web-site>

(See "Element Descriptions for Web Site XML Files” on page 6-20 for information about
the <web- si t e>and <web- app> attributes shown here.)

Place the bold entry into the OC4J global appl i cati on. xm file:

<orion-application ... >
<web- nodul e i d="nywebnodl" path="../myhone/ nywebnodl. war" />

</ orion-application>

Note: By default in OC4J standalone, editing the global
application. xm file automatically results in the WAR file being
unpacked beneath the directory in which you placed it. The
orion-web. xm file, if you included one, is copied from the WAR
file to the deployment directory (under

j 2ee/ hone/ appl i cati on- depl oynent s by default). If you did
not include ori on-web. xm , one is generated for you in the
deployment directory.

However, automatic detection of configuration changes depends on
theserver. xm check-f or - updat es flag, which is set to

"t r ue" by default. If this flag is disabled, you can trigger a one-time
check through the adm n. j ar - updat eConf i g option. See "Key
OC4J Flags for Development" on page 2-3.

Deploying Files into a Web Application Directory Structure on OC4J Standalone

The previous section discusses how to deploy an independent WAR file to the OC4J
default application. Alternatively, you can manually set up the J2EE Web application
directory structure instead of using a WAR file. Again, this involves the OC4J default
application. The simplest way to do this is to also use the OC4J default Web
application, but you can optionally define a new Web application under the default
application. See "OC4J Default Application and Default Web Application” on page 5-25
for background information.

Each of these scenarios is an expert mode. (See "Using Oracle Deployment Tools
Versus Expert Modes" on page 5-4.) The following sections discuss them in detail:

« Using a Web Application Directory Structure in the Default Web Application
« Using a Web Application Directory Structure in an Alternative Web Application

Using a Web Application Directory Structure in the Default Web Application

By default, OC4J is configured with a default application and with a default Web
application contained in the default application. To use the default Web application for
your test files, put them in the standard Web application directory structure under the

5-34 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

j 2ee/ homre/ def aul t - web- app directory (the default directory for the default Web
application).

Perform the following steps:

1. Check relevant configuration in the ser ver. xm file. First, you should see the
following entry to define the name and specify the application descriptor for the
default application:

<gl obal - appl i cation name="defaul t" path="application. xm" />

You should also see the following entry to specify the Web site XML file:
<web-site path="./http-web-site.xm" />

2. Look in the OC4J global appl i cati on. xm descriptor. You should see the
following entry to define the default Web application name and specify its root
directory:

<web- nodul e i d="def aul t WebApp" path="../../hone/ def aul t - web-app" />

3. Look in the Web site XML file indicated in server. xm (http-web-site.xnm,
by default, in OC4J standalone). You should see the following entry to define
def aul t WebApp as the default Web application for the Web site. (As noted
earlier, "/ " is the context path for the default Web application in OC4J standalone,
without the necessity of ar oot attribute in the <def aul t - web- app> element.)

<def aul t - web-app application="defaul t" name="def aul t WebApp" />

4. Given this configuration, deploy your files as follows:

j 2eel hone/ def aul t - web- app/
i ndex. ht ni
VAEB- | NF/
web. xm
cl asses/
Test Servl et . cl ass

No further action is necessary before you invoke the servlet.

Using a Web Application Directory Structure in an Alternative Web Application

In the previous section, the OC4J default Web application, def aul t WebApp, is used to
deploy a Web application directory structure. Alternatively, you can define some other
Web application that will also be contained in the OC4J default application. This is
useful if you want functionality similar to that of the default Web application, but
deploying to a clean directory.

Here are the steps to define a Web application, my Def aul t WebApp, within the default
application:

1. Add a<web- nodul e> element to the OC4J global appl i cati on. xmi file. This
defines the name and specifies the root directory of a new OC4J Web application.
The entry for the OC4J default Web application is also shown for comparison:

<web- nodul e i d="def aul t WebApp" path="../../home/ def aul t - web-app" />
<web- nodul e i d="mnyDef aul t WebApp" pat h="../../hone/ ny-defaul t - web-app" />

2. Add a<web- app> element to the Web site XML file, ht t p- web-si t e. xm . This
ties the Web application to a context path. The <def aul t - web- app> element for
the OC4J default Web application is also shown for comparison:

<def aul t - web-app application="defaul t" name="def aul t \ebApp" />

Deployment and Configuration Overview 5-35

Deployment Scenarios to OC4J Standalone

<web-app application="defaul t" name="nyDefaul t WebApp" root="/nydefroot" />

3. Given this configuration, deploy your files as follows. No further action is
necessary before you invoke the servlet.

j 2eel home/ ny- def aul t - web- app/
i ndex. ht ni
VEB- | NF/
web. xm
cl asses/
Test Servl et . cl ass

Application Undeployment or Redeployment in OC4J Standalone

During testing, you will presumably have to modify and redeploy your application.
The following sections describe undeployment and redeployment features for OC4J
standalone:

« Using admin.jar to Undeploy an Application

« Using admin.jar to Redeploy an Application

« Manually Redeploying a WAR File

« Triggering Application Redeployment after File Manipulation

Using admin.jar to Undeploy an Application

If you are finished using an application, you can use admi n. j ar to undeploy it as
follows:

% java -jar admin.jar orm://oc4j_host:oc4j _orm _port
admi nuser adm npassword
-undepl oy appnane

This removes associated entries in ser ver . xim and the Web site XML file, as well as
removing all directories and files that were created and copied. See "Starting and
Stopping OC4J Standalone” on page 5-25 for information about the ORMI port. See
"Setting Up an Administrative User and Password" on page 5-24 for information about
adm nuser and adnm npasswor d.

To undeploy the uti | i ty. ear application shown in "Sample Deployment" on
page 5-29, for example:

% java -jar admin.jar orm://nyhost: 23791 admn wel cone -undeploy utility

Note: There is no need to undeploy an application before
redeploying it. The admi n. j ar - undepl oy option is for
permanent removal.

Using admin.jar to Redeploy an Application

As when you initially deploy an application to OC4J standalone, use the admi n. j ar
- depl oy command to redeploy it. There is no difference to the user. The utility
automatically effectively undeploys it first so that you will have a clean start. See
"Deploying an EAR File to OC4J Standalone” on page 5-27 for information about the
- depl oy command.

Before redeploying, you must repackage your EAR file to pick up any updated files. If
you updated OC4J descriptors on the server, such as ori on- web. xnl and

5-36 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Deployment Scenarios to OC4J Standalone

orion-application.xm ,and want to keep the changes, then you must include
these in the EAR file as well. Previously copied or generated OC4J descriptors are lost
if there has been any update to the EAR file.

Manually Redeploying a WAR File

Deploying an independent WAR file to the OC4J default application is described in
"Deploying an Independent WAR File to OC4J Standalone" on page 5-32. If you want
to redeploy, you must reverse the steps you took to deploy, repackage the WAR file,
and repeat the deployment steps. This is an expert mode. (See "Using Oracle
Deployment Tools Versus Expert Modes" on page 5-4.)

To summarize:

1. Comment out your updates to the global appl i cati on. xm file and the
htt p- web-si t e. xnl file (or other Web site XML file).

2. Update or repackage the WAR file with your updates. If there is anything in
ori on-web. xn that you want to save, then include it in the WAR file.

3. Place the new WAR file back in the original target directory, overwriting the
original if it is still there.

4. Uncomment the updates in appl i cati on. xm and ht t p- web-site. xni .
Updating appl i cati on. xm causes OC4J to unpack the WAR file and copy or
generate the ori on- web. xm file as during the initial deployment.

Triggering Application Redeployment after File Manipulation

Depending on OC4J polling, which is enabled by default in OC4J standalone, there are
several ways to trigger a redeployment of your application when you modify files in
place on the server. (This is an expert mode. See "Using Oracle Deployment Tools
Versus Expert Modes" on page 5-4.)

« Modify servlet class files under / VEB- | NF/ ¢l asses.

If you update a servlet . cl ass file under/ V\EB- | NF/ cl asses, then upon the
next request, the servlet and its dependency classes are reloaded and the Web
application is redeployed, regardless of whether OC4J polling is enabled.

Notes:

« Aservlet and its dependency classes are reloaded immediately,
instead of upon next request, if the servlet is set to be
preloaded. This is according to | oad- on- st ar t up settings.
See "Servlet Preloading" on page 2-6.

« Changing a servlet class file in a directory location specified in
a<cl asspat h>elementin gl obal - web- appl i cati on. xm
ororion-web. xn has the same effect as changing a servlet
class file in / VEEB- | NF/ cl asses. However, changing a JAR
file or a dependency class (such as a JavaBean) in a
<cl asspat h> location has no effect. See the description of the
<cl asspat h>element in "Element Descriptions for
global-web-application.xml and orion-web.xml" on page 6-1.

« Modify standard descriptors (anything that changes the timestamp).

If you modify web. xm while polling is enabled, the Web application is
redeployed the next time the OC4J task manager runs, which by default is once

Deployment and Configuration Overview 5-37

Deployment Scenarios to OC4J Standalone

each second. Servlets and dependency classes in the Web application are reloaded
upon the next request.

If you modify appl i cati on. xm while polling is enabled, the J2EE application is
redeployed. Servlets and dependency classes in the Web application are reloaded
upon the next request.

« Modify library JAR files under / VEB- | NF/ | i b.

If you modify a JAR file in/ VEB- | NF/ | i b while polling is enabled, the Web
application is redeployed the next time the OC4J task manager runs. Servlets and
dependency classes in the Web application are reloaded upon the next request.

« Setthe OC4Jdevel opnent flag to "t rue".

The devel opnent flag is an attribute of the <or i on- web- app> element in

gl obal - web- appli cati on. xm and ori on-web. xn . If devel opnent is set
to"true", then the OC4J server checks a particular directory (the application

/ VEEB- | NF/ cl asses directory by default) for updates to servlet source files. If a
source file has changed since the last request, then OC4J will, upon the next
request, recompile the servlet, redeploy the Web application, and reload the servlet
and any dependency classes. See the description of devel opnent under "Element
Descriptions for global-web-application.xml and orion-web.xml" on page 6-1 for
further information.

« For JSP applications, set the JSP mai n_node flag to "r econpi | e".

See the Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide for information.

« Stop and restart OC4J.
See "Starting and Stopping OC4J Standalone" on page 5-25.

In OC4J standalone, polling is controlled through the server . xm

check- f or - updat es flag, which is set to "t r ue" by default. Alternatively, you can
use the admi n. j ar - updat eConf i g option to trigger one-time polling. See "Key
OC4] Flags for Development" on page 2-3.

Notes: Be aware of a few points in any of the preceding scenarios:

« Inthis discussion, "redeployment” of a Web application refers
to the process in which OC4J removes the Web application from
its execution space, removes the classloader that was associated
with execution of the Web application, reparses web. xm and
ori on-web. xm , and reinitializes servlet listeners, filters, and
mappings.

« Toensure a clean start, shut down and restart OC4J after the
redeployment. See "Starting and Stopping OC4J Standalone" on
page 5-25.

« Redeployment does not significantly affect OC4J descriptors
suchasorion-application.xm andorion-web.xm in
the server deployment directory. After you trigger reloading,
the previously copied or generated files will keep any
nondefault settings that you have specified.

5-38 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

0C4J Deployment in Oracle Application Server

OC4J Deployment in Oracle Application Server

This section considers deployment and redeployment scenarios to OC4J in an Oracle
Application Server environment.

In Oracle Application Server, you must use either Enterprise Manager or parallel
commands in the dcnct | command-line utility for starting, stopping, configuring,
and deploying applications. Both these tools are coordinated with the Oracle
Application Server Distributed Configuration Management subsystem (DCM). You
cannot use the OC4J standalone utility adm n. j ar for managing OC4J instances in an
Oracle Application Server instance. In addition, do not manually update configuration
files in Oracle Application Server. (See "Using Oracle Deployment Tools Versus Expert
Modes" on page 5-4.)

Note: In Oracle Application Server, use either Enterprise Manager
ordcntt | . Do not attempt to use both simultaneously to target the
same OC4J instance or instances, and do not use both for different
parts of the same deployment.

The following sections are included here:
« Overview of OC4J Deployment and Configuration in Oracle Application Server
« OC4] Default Web Application in Oracle Application Server

« Application Undeployment and Redeployment in Oracle Application Server

Overview of OC4J Deployment and Configuration in Oracle Application Server

The Enterprise Manager pages for deploying and configuring Web modules are
discussed in Chapter 7, "Configuration with Enterprise Manager". See the Oracle
Application Server Containers for J2EE User’s Guide for further information about using
Enterprise Manager or the dcntt | command-line utility with OCA4J.

The deployment scenarios discussed earlier in this chapter, using adm n. j ar ora
manual deployment of application files, do not apply in an Oracle Application Server
environment. Enterprise Manager includes pages for deploying an EAR file or a WAR
file, as described in "Application Server Control Console Deploy Application (EAR)
Page" on page 7-3 and "Application Server Control Console Deploy Web Application
(WAR) Page" on page 7-5. In Oracle Application Server, do not manually deploy EAR
or WAR files, or deploy loose files, as described in some of the scenarios for OC4J
standalone.

In Oracle Application Server, copying EAR or WAR files, unpacking these files into a
directory structure, and copying or generating the OC4J descriptors (such as
orion-web. xm and ori on-applicati on. xm) are generally handled
automatically and transparently through Enterprise Manager.

Deployment to Oracle Application Server through Enterprise Manager or dcnct |
automatically registers Web applications with Oracle HTTP Server and results in a
new mount point in the nrod_oc4j . conf file. AURL mapping you specify in
Enterprise Manager, such as "/ mypat h/ myapp", defines the mount point. Mount
points determine which URL requests are routed from Oracle HTTP Server to OC4J for
processing. In this case, any URL request starting with "/ nypat h/ nyapp" (after the
host and port) is handed off to OC4J.

Deployment and Configuration Overview 5-39

0C4J Deployment in Oracle Application Server

Notes:

« InOracle Application Server, all applications are deployed in
EAR files. If you use the Application Server Control Console
Deploy Web Application Page in Enterprise Manager, which
prompts you for a WAR file, an EAR file is transparently
created to contain the WAR file.

« Do not specify a context path of "/ " when deploying to OC4J.

Several Enterprise Manager pages, also described in Chapter 7, are available for
configuring servlet or Web site parameters. Manipulating settings in these pages
results in appropriate configuration updates being made automatically. The
configuration files discussed earlier in this chapter are used by OC4J in Oracle
Application Server, but this is largely transparent and there are additional logistics to
consider:

« The Oracle Process Management and Notification subsystem (OPMN)
dynamically overrides some of the settings in the configuration files, as well as
some system properties and environment variables.

« The DCM subsystem maintains a repository of configuration information. This
repository, rather than the configuration files, contains the true configuration
settings.

For these reasons, it is imperative that you not attempt to update configuration
manually in Oracle Application Server.

If for some reason you must modify configuration files without going through
Enterprise Manager, you must run adcntt | update command to inform DCM of the
changes. This will affect all instances of OC4J managed by DCM and should be
avoided.

OPMN and DCM basics are covered in the Oracle Application Server Administrator’s
Guide. The dcntt| tool is documented in the Oracle Application Server Administrator’s
Guide as well. Also see the Oracle Enterprise Manager Concepts for further information
about Enterprise Manager.

0C4J Default Web Application in Oracle Application Server

The default Web application in OC4J standalone is of potential use during
development and is discussed in "OC4J Default Application and Default Web
Application” on page 5-25. OC4J has a default Web application in an Oracle
Application Server environment as well, but it is not for developer use.

In Oracle Application Server, there is just one Web site, and the root namespace is
owned by Oracle HTTP Server, not OC4J. The concept of an OC4J default Web
application in an Oracle Application Server environment is not sensible in the way
that it is for OC4J standalone, in which OCA4J itself owns any Web sites. Furthermore,
in OC4J standalone, the default Web application is used by manipulating files
manually, which is not appropriate in Oracle Application Server.

In Oracle Application Server, as noted elsewhere, routing from Oracle HTTP Server to
OC4J is accomplished through mount points in the nod_oc4j . conf file. Each time
you deploy an application to OC4J in Oracle Application Server (as described in
"Application Server Control Console Deploy Application (EAR) Page" on page 7-3 and
"Application Server Control Console Deploy Web Application (WAR) Page"” on

5-40 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

0C4J Deployment in Oracle Application Server

page 7-5), the URL that you specify as the context path results in the specification of
that URL as another mount point.

One default OC4J mount point and context path, / j 2ee, with a default Web
application, def aul t WebApp, exists for OC4J system use only. For example, if a
request has a URL pattern that matches an OC4J mount point and, therefore, results in
routing to OC4J, but the specified Web application cannot be found, then OC4J uses
this default Web application to print an error message. This context path and default
Web application are specified in the <def aul t - web- app> element in

def aul t - web- si t e. xm . This element is required, but is not of direct use to
developers.

Application Undeployment and Redeployment in Oracle Application Server

Oracle Enterprise Manager 10g includes features to undeploy or redeploy an
application. The following sections introduce these features:

« Using Enterprise Manager to Undeploy an Application
« Using Enterprise Manager to Redeploy an Application

Note: Using Enterprise Manager in Oracle Application Server,
you can undeploy or redeploy an application through the
Application Server Control Console OC4J Applications Page by
selecting it from the applications list and then clicking the
appropriate button. In either case, if you initially deployed a
standalone WAR file, it was automatically wrapped in an EAR file
during the deployment process. Therefore, it appears in the
applications list.

Using Enterprise Manager to Undeploy an Application

If you are finished using a J2EE application in Oracle Application Server, you can
undeploy it through the Application Server Control Console OC4J Applications Page
in Enterprise Manager. Select the application from the applications list (using the
corresponding radio button) and click the Undeploy button. This process removes all
directories and files that were created and copied, and updates the server
configuration appropriately.

See "Application Server Control Console OC4J Applications Page" on page 7-3 to see
what the page looks like and for further information.

Note: There is no need to undeploy an application before
redeploying it. The Enterprise Manager Undepl oy feature is for
permanent removal.

Using Enterprise Manager to Redeploy an Application

You can redeploy a J2EE application in Oracle Application Server through the
Application Server Control Console OC4J Applications Page in Enterprise Manager.
Select the application from the applications list (using the corresponding radio button)
and click the Redeploy button. You will be prompted for the path to the EAR file.

See "Application Server Control Console OC4J Applications Page" on page 7-3 to see
what the page looks like and for further information.

Deployment and Configuration Overview 5-41

0C4J Deployment in Oracle Application Server

During redeployment, if you have not changed the EAR file since the previous
deployment, then server configuration settings are maintained from the previous
deployment. This is particularly relevant for settings in the OC4J descriptors, such as
orion-application.xm andorion-web. xm , given that standard configuration,
such as through appl i cati on. xm and web. xm , is presumably in your EAR file
anyway.

If you have changed the EAR file, however, then the previous server configuration is
discarded. It is replaced with information from the EAR file, such as from the OC4J
descriptors (if present) and applicable default values. In this scenario, if you have
made OC4J-specific configuration changes on the server, then you should make the
same changes to the OC4J descriptors in the EAR file, in order to keep those changes.

After redeployment, you can check the OC4J servlet and Web site configuration pages,
described in Chapter 7, "Configuration with Enterprise Manager”, to verify whether
desired configurations settings have been maintained.

5-42 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

6

Configuration File Descriptions

This chapter describes the elements and attributes of OC4J configuration files for
servlets and Web sites. It includes the following sections:

Configuration for global-web-application.xml and orion-web.xml

Configuration for Web Site XML Files

Note: The detailed discussion in this chapter regarding
configuration files and their elements and attributes assumes an
OC4J standalone development environment. In an Oracle
Application Server environment using Enterprise Manager,
configuration is through Application Server Control Console Web
module pages, and many of the files and their properties are
invisible to the user. For considerations in configuring and
deploying a production application with Enterprise Manager in
Oracle Application Server, see Chapter 7, "Configuration with
Enterprise Manager".

Configuration for global-web-application.xml and orion-web.xml

The following sections provide detailed information about the
gl obal - web- appl i cation.xm andori on-web. xm configuration files:

Element Descriptions for global-web-application.xml and orion-web.xml
DTD for global-web-application.xml and orion-web.xml
Hierarchical Representation of global-web-application.xml and orion-web.xml

Sample global-web-application.xml Settings

For an overview of these files, see "OC4J and J2EE Web Descriptors" on page 5-15.

Element Descriptions for global-web-application.xml and orion-web.xml

This section describes the elements and attributes of the
gl obal - web- application.xm andorion-web. xm files.

The element descriptions in this section apply to either

gl obal - web- appl i cati on. xml or an application-specific ori on- web. xm
configuration file. The gl obal - web- appl i cati on. xml file configures the global
application and sets defaults; the ori on- web. xm file can override these defaults for
a particular application deployment, as appropriate.

Configuration File Descriptions 6-1

Configuration for global-web-application.xml and orion-web.xml

<orion-web-app ... >
This is the root element for specifying OC4J-specific configuration of a Web
application.

Notes:

« Theautorel oad- | sp- pages and aut or el oad-j sp- beans
attributes of the <ori on- web- app> element are not currently
supported by the OC4J JSP container. You can use the JSP
mai n_node configuration parameter for functionality
equivalent to that of aut or el oad-j sp- pages. See the Oracle
Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide for information about this parameter.

« The<servlet-filter>subelementand the
docunent -r oot , get - | ocal e-front user,
i nternationalize-resources,and
def aul t - mi nme-t ype attributes are no longer supported.

Subelements of <or i on- web- app>:

<cl asspat h>

<cont ext - par am nappi ng>
<ni me- mappi ngs>
<virtual -directory>
<access- mask>

<cl uster-config>
<servl et - chai ni ng>
<request-tracker>
<sessi on-t racki ng>

<r esour ce-r ef - mappi ng>
<env-entry- mappi ng>
<security-rol e- mappi ng>
<ej b-ref - mappi ng>
<expiration-setting>

<j azn- web- app>

<web- app- cl ass- | oader >
<aut henti cat e- on- di spat ch>
<web- app>

Attributes of <or i on- web- app>:

« default-buffer-size: Specifies the default size of the output buffer for servlet
responses, in bytes. The defaultis " 2048" .

Note: The def aul t - buf f er - si ze attribute does not affect JSP
buffer size.

«» defaul t-charset: This attribute specifies the ISO character set to use by
default. The defaultis"i so- 8859- 1".

« depl oynent - ver si on: This attribute specifies the version of OC4J under which
this Web application was deployed. If this value does not match the current
version, then the application is redeployed. This is an internal server value and should
not be changed.

6-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration for global-web-application.xml and orion-web.xm|

devel opnent : This attribute is a convenience flag during development. If

devel opnent issetto"true", then the OC4J server checks a particular directory
for updates to servlet source files. If a source file has changed since the last
request, then OC4J will, upon the next request, recompile the servlet, redeploy the
Web application, and reload the servlet and any dependency classes.

The directory is determined by the setting of the sour ce- di r ect or y attribute
(described next). Supported values for devel oprment are"true" and"f al se"
(default).

Note: The OC4J JSP container does not currently support the
devel opnent flag. It is for servlets only. Use the JSP nai n_node
flag for similar functionality for JSP pages, as documented in the
Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide. Features of the old Orion JSP container that
relate to the devel opnent flag do not apply to the OC4J JSP
container.

sour ce-di rect ory: For situations in which the devel opment attribute is set to
"true",thesource-directory setting specifies where to look for servlet
source files to auto-compile. The default is "/ VEB- | NF/ src" if it exists,
otherwise "/ VEEB- | NF/ cl asses".

di rect ory- br owsi ng: Specifies whether to allow directory browsing for a URL
thatends in "/ ". Supported values are " al | ow' and " deny" (default).

Assume the following circumstances:
— Thereisnoindex. ht m file in the application root directory.
— There is no welcome file defined in the web. xm file.

Ifdi rect ory-browsi ngissetto "al | ow' under these circumstances, then a
URL ending in "/ " results in the contents of the corresponding directory being
displayed in the user’s browser.

Ifdi rect ory- browsi ng is set to "deny" under these circumstances, then a URL
ending in "/ " results in an error indicating that the directory contents cannot be
displayed.

If there is a defined welcome file or there is an i ndex. ht m file in the application
root directory, then the contents of that file are displayed, regardless of the
di rect ory- br owsi ng setting.

file-nodification-check-interval:Thisattribute applies to static files
such as HTML files and is the amount of time, in milliseconds, for which a
file-modification check is valid. Within that time period since the last check,
further checks are not necessary. Zero or a negative number specifies that a check
always occurs. The default is " 1000". For performance reasons, a very large value
("1000000", for example) is recommended in a production environment.

j sp-print-null:Setthisflag to "f al se"to print an empty string instead of the
default "null" string for null output from a JSP page. The default is "t r ue".

j sp-ti meout : Specify an integer value, in seconds, after which any JSP page will
be removed from memory if it has not been requested. This frees up resources in
situations in which some pages are called infrequently. The default value is 0
(zero), for no timeout.

Configuration File Descriptions 6-3

Configuration for global-web-application.xml and orion-web.xml

=] sp-cache-directory: This attribute specifies the JSP cache directory, which is
used as a base directory for output files from the JSP translator. It is also used as a
base directory for application-level TLD caching. The default value is
". I persi st ence", relative to the deployment directory of the application.

=] sp-cache-tl ds: This flag indicates whether persistent TLD caching is enabled
for JSP pages. TLD caching is implemented both at a global level, for TLD files in
"well-known" tag library locations, and at an application level, for TLD files under
the VEEB- | NF directory. Use a "t r ue" or "on" setting, which is the default, to search
for TLD files among all application files. A setting of "st andar d" searches for
TLD files only in/ VEB- | NF and subdirectories other than / VEB- | NF/ cl asses
or/ VEEB- | NF/ | i b. A setting of "f al se" or "of f " disables this feature.
Well-known locations are according to the j sp-t agl i b-1 ocat i ons attribute.

« jsp-taglib-locations:If persistent TLD caching is enabled for JSP pages
(through the j sp- cache-t | ds attribute), youcanusej sp-tagl i b-1 ocations
to specify a semicolon-delimited list of one or more directories to use as
"well-known" locations. Tag library JAR files can be placed in these locations for
sharing across multiple JSP pages and Web applications, and for TLD caching.

You can specify any combination of absolute directory paths or relative directory
paths. Relative paths would be under ORACLE_HOVE if ORACLE_HOVE is defined,
or under the current directory (from which the OC4J process was started) if
ORACLE_HQVE is not defined. The default value is as follows:

— ORACLE_HQOVE/ j 2ee/ homne/ j sp/ i b/taglib/ if ORACLE_HOVE is defined.
or:

- ./jsp/lib/ltaglibif ORACLE HOVE is not defined.

Important: Usethej sp-taglib-1ocations attribute only in
gl obal - web- appli cati on. xm ,notinori on-web. xm .

« sinple-jsp-nmappi ng: Set this flag to "t rue" if "*. j sp" is mapped to only the
oracle.jsp.runtinmev2.JspServl et front-end JSP servlet in the <ser vl et >
elements of any Web descriptors affecting your application
(gl obal - web-application.xm ,web. xm ,and ori on-web. xm). This
allows performance improvements for JSP pages. The default setting is "f al se".

« enabl e-j sp-di spat cher-shortcut: A"t rue" setting, which is the case by
default, results in significant performance improvements by the OC4J JSP
container, especially in conjunction with a "t r ue" setting for the
si npl e- j sp- mappi ng attribute. This is particularly true for JSP pages with
numerous|j sp: i ncl ude statements. Use of the "t r ue” setting assumes, however,
that if you define JSP files with <j sp-f i | e>elements in web. xn , then you have
corresponding <ur | - pat t er n> specifications for those files.

Note: Processing related to thej sp-print-nul |,

j sp-timeout,jsp-cache-directory,jsp-cache-tlds,
jsp-taglib-locations,sinple-jsp-nmappi ng, and

enabl e- j sp-di spat cher-short cut attributes are handled by
the OC4J JSP container. For more information about these attributes
and related features, see the Oracle Application Server Containers for
J2EE Support for JavaServer Pages Developer’s Guide.

6-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration for global-web-application.xml and orion-web.xm|

per si st ence- pat h: Indicates where to store servlet Ht t pSessi on objects for
persistence across server restarts or application redeployments. Specify a relative
path, which will be relative to an OC4J temporary storage area under the

appl i cati on-depl oynment s directory. There is no default value. If no value is
defined, then there is no persistence of session objects across restarts or
redeployments.

Session objects must be serializable (directly or indirectly implementing the
java.io. Serializabl e interface) or remoteable (directly or indirectly
implementing the j ava. r m . Renot e interface) for this feature to work.

The per si st ence- pat h attribute is ignored if OC4J clustering is enabled,
according to the <cl ust er - conf i g> subelement of the <ori on- web- app>
element.

servl et - webdi r: Specifies the path for invoking a servlet by class name.
Anything appearing after this path in a URL is assumed to be a class name,
including the package, as appropriate.

This feature is typically for use in an OC4J standalone environment during
development and testing. For deployment, use the standard web. xm
mechanisms for defining the context path and servlet path.

Here is an example of servlet invocation by class name, assuming a setting of
servl et-webdir="/servlet/":

http:// ww. exanpl e. com 8888/ servl et/ foo. bar. Sessi onSer vl et

Important:

« Anyservlet-webdir setting that starts with a slash ("/ ")
enables invocation by class name. This presents a significant
security risk and should not be used in a production
environment. You can disable invocation by class name with a
setting of ser vl et - webdi r ="" (empty quotes) or by setting
the OC4J system property ht t p. webdi r. enabl e to a value of
fal se.

« Theservl et-webdir attribute for an application takes its
default value from gl obal - web- appl i cati on. xni if there
is a setting there. If there is no setting in
gl obal - web- appl i cati on. xm , then the default value is

Also see "Servlet Invocation by Class Name During OC4J
Development” on page 2-22 and "Additional Security
Considerations” on page 2-40.

t enporary-directory: This is the path to a temporary directory that can be
used by servlets and JSP pages for scratch files. The path can be either absolute or
relative to the deployment directory. The default setting is". / t enp".

A servlet may use a temporary directory, for example, to write information to disk
as a user is entering data in a form (perhaps for interim or short-term storage
before the information is written to a database).

The specified directory can then be recalled from the servlet context, where it is
available through the attribute j avax. servl et. cont ext .t enpdi r,as in the
following example.

Configuration File Descriptions 6-5

Configuration for global-web-application.xml and orion-web.xml

File file = (File)application.getAttribute("javax.servlet.context.tenpdir");

Ajava.i o. Fi | e objectis returned, from which you can obtain directory
information and contents.

<classpath ... >

Use this element to inform OC4J of additional code locations for Web application
classloading—either library files or locations for individual class files.

Attribute of <cl asspat h>:

« pat h: You can specify one or more locations, separated by commas or semicolons,
where a location can be either of the following:

— The complete path to a JAR or ZIP file, including the file name
— Adirectory path

In either case, you can use an absolute path or a path that is relative to the
configuration file location (gl obal - web- appl i cati on. xm or
ori on-web. xm , as applicable).

If you specify a directory path, the classloader recognizes only individual class
files in the specified directory, not JAR or ZIP files (unless those are specified
separately).

For example, assume the following setting inor i on-web. xm :

<cl asspath path=/abc/def/libl.jar,/abc/def/zipl.jar,/abc/def,mydir />

The classloader recognizes the following:
— Thelibl.jar and zi pl.j ar libraries (but no other libraries in / abc/ def)
— Anyclassfilesin/ abc/ def

— Anyclass files in mydi r, relative to the location of or i on- web. xml

<context-param-mapping ... >deploymentValue</context-param-mapping>

Inori on-web. xm , this element overrides the value of a cont ext - par amsetting in
the web. xmi file. It is used to keep the EAR assembly clean of deployment-specific
values. The new value is specified in the tag body.

Attribute of <cont ext - par am nappi ng>:

« hane: This attribute specifies the name of the cont ext - par amsetting to
override.

<mime-mappings ... >
This element defines the path to a file containing MIME mappings to use.

Attribute of <m me- mappi ngs>:

= pat h: This attribute specifies the path or URL for the file, either absolute or
relative to the location of the or i on- web. xm file.

<virtual-directory ... >

This element adds a virtual directory mapping for static content, working in a way
that is conceptually similar to symbolic links on a UNIX system, for example. The
virtual directory enables you to make the contents of the real document root directory
available to the application without physically residing in the Web application WAR

6-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration for global-web-application.xml and orion-web.xm|

file. This would be useful, for example, to link an enterprise-wide error page into
multiple WAR files.

Attributes of <vi rtual -di rect ory>:

« real-path: Thisisareal path,suchas/usr/ 1 ocal /real pat hin UNIX or
C. \testdir inWindows.

« Vvirtual - pat h: This is a virtual path to map to the specified real path.

<access-mask ... >

Use subelements of <access- nask> to specify optional access masks for this
application. You can use host names or domains to filter clients, through

<host - access> subelements, or you can use IP addresses and subnets to filter
clients, through <i p- access> subelements, or you can do both.

Subelements of <access- mask>:

<host - access>
<i p-access>

Attribute of <access- nask>:

« def aul t: Specifies whether to allow requests from clients not identified through a
<host - access> or <i p- access> subelement. Supported values are " al | ow"
(default) and " deny" . Use separate node attributes for the <host - access> and
<i p- access> subelements to specify whether to allow requests from clients that
are identified through those subelements.

<host-access ... >

This subelement of <access- mask> specifies a host name or domain from which to
allow or deny access.

Attributes of <host - access>:

« domai n: Specifies the host or domain.

« node: Specifies whether to allow or deny access from the specified host or
domain. Supported values are "al | ow' (default) or "deny".

<ip-access ... >

This subelement of <access- mask> specifies an IP address and subnet mask from
which to allow or deny access.

Attributes of <i p- access>:

= i p: Specifies the IP address, as a 32-bit value (example: " 123. 124. 125. 126").
« net mask: Specifies the relevant subnet mask (example: " 255. 255. 255. 0").

« node: Specifies whether to allow or deny access from the specified IP address and
subnet mask. Supported values are "al | ow' (default) or "deny".

<cluster-config ... >

Use this element if, and only if, you want to use OC4J clustering. Remove it or
comment it out otherwise. Clustered applications have their HTTP session data
replicated between clusters in the cluster island. Objects in the HTTP session data
must be serializable (directly or indirectly implementing the

java.io. Seri al i zabl e interface) or remoteable (directly or indirectly
implementing the j ava. r m . Renot e interface) for the session replication to work.

Configuration File Descriptions 6-7

Configuration for global-web-application.xml and orion-web.xml

See the Oracle Application Server Performance Guide for general information about
clustering.

Attributes of <cl ust er - conf i g>:

« host: This is the multicast host/IP for transmitting and receiving cluster data. The
defaultis " 230. 230. 0. 1".

« i d: Thisisthe ID (number) of this cluster node to identify itself within the cluster.
The default is based on the local machine IP.

= port:Thisis the port through which to transmit and receive cluster data. The
defaultis"9127".

<servlet-chaining ... >

This element specifies a servlet to call when the response of the current servlet is set to
a specified MIME type. The specified servlet is called after the current servlet. This is
known as servlet chaining, for filtering or transforming certain kinds of output.

Note: Servlet chaining is an older mechanism with essentially the
same functionality as standard servlet filtering, which was
introduced in version 2.3 of the servlet specification. Use servlet
filtering instead. See "Servlet Filters" on page 3-1.

Attributes of <ser vl et - chai ni ng>:

« m nme-type: Specifies the MIME type to trigger the chaining, such as
"text/htm ",

« servl et - nane: Specifies the servlet to call when the specified MIME type is
encountered. The servlet name is tied to a servlet class through its definition in the
<web- app> element of gl obal - web- appl i cati on. xm ,web. xm , or
ori on-web. xm .

<request-tracker ... >

This element specifies a servlet to use as a request tracker. Request trackers are useful
for logging information, for example.

You must define any request trackers inori on-web. xni , not
gl obal - web- appl i cati on. xnl , because a <r equest -t r acker > element points
to a servlet defined within the same application.

A request tracker is invoked for each separate request sent from a browser to the
server, at the time that the corresponding response is committed (immediately before
the response is actually sent).

There can be multiple request trackers, each one defined in a separate
<request -t racker >element.

Attribute of <r equest -t r acker >:

« servl et - nanme: Specifies the servlet to invoke. You can specify either the servlet
name or the class name, according to the corresponding <ser vl et - name> or
<ser vl et - cl ass> element (both of which are subelements of a <ser vl et >
element) in the web. xm file.

6-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration for global-web-application.xml and orion-web.xm|

<session-tracking ... >

This element specifies the session-tracking settings for this application. Session
tracking is accomplished through cookies, assuming a cookie-enabled browser.

Notes:

« Ifcookies are disabled, session tracking can be achieved only if
your servlet explicitly calls the encodeURL() method of the
response object, or the encodeRedi r ect URL() method for
redirects.

« OC4J does not support auto-encoding, in which session IDs are
automatically encoded into the URL by the servlet container.
This process is nonstandard and expensive. Therefore, OC4J
does not support the <sessi on-t r acki ng> attributes
aut oencode- url s and aut oencode- absol ut e- url s. Also
see "Session Tracking in OC4J" on page 2-27.

For general information about servlet sessions, see "Servlet Sessions™” on page 2-25.

The servlet to use as the session tracker is specified through a subelement.

Subelement of <sessi on-t racki ng>:

<session-tracker>

Attributes of <sessi on-t racki ng>:

aut oj oi n- sessi on: Specifies whether users should be assigned a session as
soon as they log in to the application. Supported valuesare "t rue" and "f al se"
(default).

cooki es: Specifies whether to send session cookies. Supported values are
"enabl ed" (default) and " di sabl ed".

cooki e- domai n: Specifies the desired domain for cookies. You can use this
attribute to track a single client or user over multiple Web sites. The setting must

start with a period (. "). For example:

<sessi on-tracki ng cooki e-domai n=". us. oracl e. cont' />

In this case, the same cookie is used and reused when the user visits any site that
matches the ". us. or acl e. cont domain pattern, such as
webservl. us. oracl e. comorwebserv2. us. oracl e. com

The domain specification must consist of at least two elements, such as
".us.oracl e.conmfor". oracl e. cont. A setting of ". comt', for example, is
illegal.

Here are two scenarios in which cookie domain functionality is useful:

— You can use it to share session state between nodes of a Web application
running on different hosts.

— In OC4J standalone, you can use it for a shared application, when
shared="true" ina<web- app> element in the Web site XML file. In such
an application, some requests go through a secure port and some go through a
nonsecure port, with each port denoting a separate Web site. You would want
the same cookie used regardless of which port is being used. In this scenario,
using cooki e- donmi n is unnecessary, however, if you use the default ports
of 80 for HTTP and 443 for HTTPS. The client would already recognize these

Configuration File Descriptions 6-9

Configuration for global-web-application.xml and orion-web.xml

as different ports of the same Web site, and only a single cookie would be
used.

= Ccooki e- max- age: This number is sent with the session cookie and specifies a
maximum interval (in seconds) for the browser to save the cookie. By default, the
cookie is kept in memory during the browser session and discarded afterward.

<session-tracker ... >

This subelement of <sessi on-t r acki ng> specifies a servlet to use as a session
tracker. Session trackers are useful for logging information, for example.

You must define any session trackers in ori on-web. xmi , not
gl obal - web-appli cati on. xm , because a <sessi on- t r acker > element points
to a servlet defined within the same application.

A session tracker is invoked as soon as a session is created; specifically, at the same
time as the invocation of the sessi onCr eat ed() method of the HTTP session
listener (an instance of a class implementing the

javax.servlet.http. Ht pSessi onLi st ener interface).

There can be multiple session trackers, each one defined in a separate
<sessi on-tracker>element.

Attribute of <sessi on-tracker >:

« servl et - name: Specifies the servlet to invoke. You can specify either the servlet
name or the class name, according to the corresponding <ser vl et - name> or
<ser vl et - cl ass> element (both of which are subelements of a <ser vl et >
element) in the web. xm file.

<resource-ref-mapping ... >

Use this element to declare a reference to an external resource such as a data source,
JMS queue, or mail session. This ties a resource reference name to a JNDI location
when deploying.

Subelement of <r esour ce- r ef - mappi ng>:

<l ookup- cont ext >

Attributes of <r esour ce- r ef - mappi ng>:

« | ocati on: Specifies the JNDI location from which to look up the resource. For
example:

| ocati on="j dbc/ TheDS"

= nane: Specifies the resource reference name, which matches the name of a
resour ce-ref elementin the web. xm file. For example:

name="j dbc/ TheDSVar"

<lookup-context ... >

This subelement of <r esour ce-r ef - mappi ng> specifies an optional INDI context
(j avax. nam ng. Cont ext instance) that will be used to retrieve the resource. This is
useful when connecting to third-party modules, such as a third-party JMS server, for
example. Either use the INDI context implementation supplied by the resource vendor,
or, if none exists, write an implementation that negotiates with the vendor software.

Subelement of <I ookup- cont ext >:

<context-attribute>

6-10 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for global-web-application.xml and orion-web.xm|

Attribute of <| ookup- cont ext >:

« | ocati on: Specifies the name to look for in the "foreign” (such as third-party)
JNIDI context when retrieving the resource.

<context-attribute ... >

This subelement of <l ookup- cont ext > (which is a subelement of
<r esour ce-r ef - mappi ng>) specifies an attribute to send to the "foreign", such as
third-party, JNDI context.

The only mandatory attribute in INDI isj ava. nam ng. factory.initial,whichis
the class name of the context factory implementation.

Attributes of <cont ext - attri but e>:
« name: Specifies the name of the attribute.

« val ue: Specifies the value of the attribute.

<env-entry-mapping ... >deploymentValue</env-entry-mapping>

Inorion-web. xni , this element overrides the value of an env- ent r y setting in the
web. xm file. Itis used to keep the EAR assembly clean of deployment-specific values.
The new value is specified in the tag body.

Attribute of <env- ent ry- nappi ng>:

« nane: Specifies the name of the env- ent r y setting to override.

<security-role-mapping ... >

This element maps a security role to specified users and groups or to all users. It maps
to a security role of the same name in the web. xm file. The i npl i esAl | attribute or
an appropriate combination of subelements—<gr oup>, <user >, or both—should be

used.

See the Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide for additional information about the <securi ty-r ol e- mappi ng> element in
OC4J configuration files.

Subelements of <securi ty-rol e- mappi ng>:
<group>

<user >

Attributes of <securi ty-rol e- mappi ng>:

« i npliesAll: Specifies whether this mapping implies all users. Supported values
are"true" or"fal se" (default).

« hane: Specifies the name of the security role. It must match a name specified in a
<r ol e- name> subelement of a <security-rol e>elementinweb. xm .

Configuration File Descriptions 6-11

Configuration for global-web-application.xml and orion-web.xml

Important: OC4J has an automatic security mapping feature. By
default, if a security role defined in web. xnl has the same name as
an OC4J group defined in j azn- dat a. xn1 (or other valid user
managers), then OC4J maps them. However, this feature is
completely disabled if you do any explicit mapping through the
<security-rol e- mappi ng>element. If you use
<security-rol e-mappi ng> at all, OC4J assumes that you want
explicit mapping only. This is to prevent unintended implicit
mappings when a user may intend to declare explicit mappings
only.

<group ... >
Use this subelement of <securi t y-r ol e- mappi ng> to specify a group to map to the
security role of the parent <securi t y-r ol e- mappi ng> element. All the members of
the specified group are included in this role.

Attribute of <gr oup>:

= hame: Specifies the name of the group.

<user ... >

Use this subelement of <securi ty-r ol e- nappi ng> to specify a user to map to the
security role of the parent <security-rol e- mappi ng> element.

Attribute of <user >:

« nhamne: Specifies the name of the user.

<ejb-ref-mapping ... >
This element creates a mapping between an EJB reference, defined in an <ej b-r ef >
element, and a JNDI location when deploying.

The <ej b- r ef > element can appear within the <web- app> element of
ori on-web. xm orweb. xm and is used to declare a reference to an EJB.

Attributes of <ej b- r ef - mappi ng>:
« | ocati on: Specifies the INDI location from which to look up the EJB home.

= name: Specifies the EJB reference name, which matches the <ej b- r ef - nane>
setting of the <ej b-r ef > element.

<expiration-setting ... >

This element sets the expiration for a given set of resources; that is, how long before
the resources would expire in the browser. (The browser reloads an expired resource
upon the next request for it.) This is useful for caching policies, such as for not
reloading images as frequently as documents.

Attributes of <expi rati on-setti ng>:

« expires: Specifies the number of seconds before expiration, or " never " for no
expiration. The default setting is "0" (zero), for immediate expiration.

« url-pattern:Specifies the URL pattern that the expiration applies to, such as in
the following example:

url-pattern="*.gif"

6-12 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for global-web-application.xml and orion-web.xm|

<jazn-web-app ... >

Use this element to configure the OracleAS JAAS Provider and Single Sign-On (SSO)
properties for servlet execution. You must set these features appropriately to invoke a
servlet under the privileges of a particular security subject.

Attributes of <j azn- web- app>:

« aut h- met hod: Supported values are "BASI C" (for basic J2EE authentication, the
default) and "SSO'. Use "SSO' to employ Oracle Application Server Single Sign-On
for HTTP client authentication. Use "BASI C' mode if your application uses a
custom Logi nModul e instance.

« runas-node: Setrunas- node to "t r ue" to invoke the servlet using the
privileges of a particular subject. A subject is defined by an instance of the
j avax. security. aut h. Subj ect class and includes a set of facts regarding a
single entity, such as a person. Such facts include identities and security-related
attributes, such as passwords and cryptographic keys.

With the default r unas- node="f al se" setting, doaspri vi | eged- node is
ignored.

« doasprivil eged- node: Assuming r unas- node="tr ue", use the default
"t r ue" setting of doaspri vi | eged- node to use privileges of a particular subject
without being limited by the access-control restrictions of the server.

Values of r unas- node="t r ue" and doaspri vi | eged- node="true" resultin
use of the static Subj ect . doAsPri vi | eged() method when the servlet is
invoked. Values of r unas- node="t rue" and

doasprivil eged- node="f al se" result in use of the static Subj ect . doAs()
method. In either case, the JAAS Provider passes in the Subj ect instance in the
method call.

When the doAsPri vi | eged() method is used, the JAAS Provider invokes the
method with a null j ava. security. AccessCont r ol Cont ext instance. This is
to start the action freshly and execute the servlet without the restrictions of the
current server AccessCont r ol Cont ext instance. When the doAs() method is
used, an AccessCont r ol Cont ext instance is retrieved from the current thread
(from the server).

For additional information about JAAS and the features described for this element, see
the Oracle Application Server Containers for J2EE Security Guide. You can also refer to Sun
Microsystems documentation at the following location:

http://java.sun.conlj2se/ 1. 4.1/ docs/ gui de/ security/jaas/ JAASRef Gui de. ht il

<web-app-class-loader ... >

Use this element for classloading instructions. See "Loading WAR File Classes Before
System Classes in OC4J" on page 2-9 for additional information.

Attributes of <web- app- cl ass- | oader >:

« search-1local -cl asses-first:Setthisto"t rue"tosearch and load WAR file
classes before system classes. The default setting is "f al se".

« include-war-manifest-class-pat h: Setthis to "f al se" to not include the
classpath specified in the WAR file manifest Cl ass- Pat h attribute when
searching and loading classes from the WAR file, regardless of the
search-1 ocal -cl asses-fi rst setting. The default setting is "t rue™.

Configuration File Descriptions 6-13

Configuration for global-web-application.xml and orion-web.xml

Notes:

« If both attributes are set to "t r ue”, the overall classpath is
constructed so that classes physically residing in the WAR file
are loaded prior to any classes from the WAR file manifest
classpath. So you can assume that in the event of any conflict,
classes physically residing in the WAR file will take precedence.

« To comply with the servlet specification,
sear ch-1ocal - cl asses-first functionality cannot be
used in loading classes inj ava. * orj avax. * packages.

<authenticate-on-dispatch ... >
Use this element to disable OC4J authentication of forward or include targets.

Attributes of <aut hent i cat e- on- di spat ch>:

« Vval ue: Set this to "f al se" to disable authentication of forward or include targets,
which complies with the servlet specification. The default value is "t rue" to
protect against security violations for applications developed against previous
OC4J versions.

<web-app ... >

This element is used as in the standard web. xnl file; see the servlet specification for
details. In gl obal - web- appl i cati on. xm , defaults for <web- app> settings can be
established. In web. xmi , application-specific <web- app> settings can override the
defaults. Inori on- web. xnl , deployment-specific <web- app> settings can override
the settings in web. xm .

DTD for global-web-application.xml and orion-web.xml

This section provides the OC4J-specific portion of the DTD for the

gl obal - web- appli cati on. xm andori on-web. xm filesin the OC4J 10.1.2
implementation. This does not include the DTD portion for the standard <web- app>
element of the web. xm file. (The DTD for gl obal - web- appli cati on. xnl and
orion-web. xm isa superset of the standard web. xm DTD.)

<IENTI TY % CHARSET " CDATA" >

<IENTI TY % WEBPATH " CDATA" >

<IENTI TY % NUMBER " CDATA" >

<IENTITY % HOST " CDATA">

<IENTI TY % PATH " CDATA">

<IENTI TY % CLASSNAME " CDATA">

<I-- Agroup that this security-role-mapping inplies. le all the nenbers of the
specified group are included in this role. -->

<! ELEMENT group (#PCDATA)>

<l ATTLI ST group name CDATA #| MPLI ED

>

<l-- An attribute sent to the context. The only mandatory attribute in JNDI is
the 'java.nam ng.factory.initial' which is the classname of the context factory

6-14 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for global-web-application.xml and orion-web.xm|

i npl enentation. -->
< ELEMENT context-attribute (#PCDATA)>
<I ATTLI ST context-attribute name CDATA #l MPLI ED
val ue CDATA #l MPLI ED
>

<I-- Defines the relative/absolute path to a file containing mnme-mappings to
use. -->

<! ELEMENT mi ne- mappi ngs (#PCDATA) >

<! ATTLI ST mi me- mappi ngs path CDATA #l MPLI ED

>

<I-- Specifies a codebase where classes used by this application (such as
servl ets/beans) can be found. -->

<! ELEMENT cl asspath (#PCDATA) >

<I ATTLI ST cl asspath path CDATA #REQUI RED

>

<I'-- The specification of an optional javax.naning.Context inplenentation used
for retrieving the resource. This is useful when hooking up with 3rd party
modul es, such as a 3rd party JMS server for instance. E ther use the context
i npl enentation supplied by the resource vendor or if none exists wite an

i npl enentation which in turn negotiates with the vendor software. -->

<! ELEMENT | ookup-context (context-attribute+)>

<I ATTLI ST | ookup- context |ocation CDATA #l MPLI ED

>

<I-- Specifies a servlet to use as request-tracker; request-trackers are invoked
for every request and are useful for |ogging purposes, for exanple -->

< ELEMENT request -tracker (#PCDATA)>

<I ATTLI ST request-tracker servlet-name CDATA #l MPLI ED

>

<I'-- The resource-ref elenent is used for the declaration of a reference to

an external resource such as a datasource, JMS queue, nmail session or simlar.
The resource-ref-mapping ties this to a JNDI-1ocation when deploying. -->

<! ELEMENT resour ce-ref - mappi ng (| ookup- cont ext ?) >

<I ATTLI ST resource-ref-mappi ng | ocation CDATA #| MPLI ED

nane CDATA #REQUI RED

>

<I-- Tag that is defined if the application is to be clustered. Custered
appl i cations have their ServletContext and session data

shared between the apps in the cluster, the values have to be either
Serializable or be remote RM-objects (inplement java.rni.Renote). -->
<! ELEMENT cl uster-config (#PCDATA) >

< ATTLI ST cl uster-config host %i0ST; "230.0.0.1"

i d CDATA "based on local IP"

port 9NUMBER, "9127"

>

<I'-- Specifies an optional access-mask for this application, hostnanes and

i p/ subnets can be used to filter out allowed clients of this application. -->
<! ELEMENT access-mask (host-access*, ip-access*)>

<I ATTLI ST access-mask default (allow deny) "allow

>

<l-- Overrides the value of an env-entry in the assenbly descriptor. It is used

to keep the .ear (assenbly) clean from depl oyment-specific values. The body is
the value. -->

Configuration File Descriptions 6-15

Configuration for global-web-application.xml and orion-web.xml

<! ELEMENT env-entry-mappi ng (#PCDATA) >
< ATTLI ST env-entry-mappi ng name CDATA #| MPLI ED
>

<I-- Specifies the Expires setting for a given set of resources, useful for
caching policies (for instance for browsers not to rel oad i mages as frequently
as docurents). -->

<! ELEMENT expiration-setting (#PCDATA)>

< ATTLI ST expiration-setting expires CDATA #l MPLI ED

url-pattern CDATA #| MPLI ED

>

<I'-- Overrides the value of a context-paramin the assenbly descriptor. It is
used to keep the .ear (assenbly) clean from depl oynent-specific values. The
body is the value. -->

<l ELEMENT cont ext - par am mappi ng (#PCDATA) >

<I ATTLI ST cont ext - par am nappi ng nane CDATA #l MPLI ED

>

<I'-- Session-tracking settings for this application. -->

<l ELEMENT session-tracking (session-tracker*)>

<l ATTLI ST session-tracki ng autoencode-absol ute-urls (true|false) "false"
aut oencode-urls (true|false) "true"

aut oj oi n-session (true|false) "fal se"

cooki e- domai n CDATA #| MPLI ED

cooki e- max-age Y9NUMBER, "in nenmory only"

cooki es (enabl ed| di sabl ed) "enabl ed"

>

<I-- Auser that this security-role-mpping inplies. -->
<! ELEMENT user (#PCDATA) >

<! ATTLI ST user name CDATA #l MPLI ED

>

<l-- Adds a virtual directory mapping, used to include files that doesnt
physical 'y reside bel ow the docunent root anmong the web-exposed files. -->

< ELEMENT virtual -directory (#PCDATA)>

< ATTLI ST virtual -directory real -path %ATH, #l MPLI ED

virtual -path %PATH #l MPLI ED

>

<I-- Specifies an ip/netmask who is allowed access. -->
< ELEMENT i p-access (#PCDATA) >

<I ATTLI ST i p-access ip CDATA #REQUI RED

mode (al | ow deny) #REQU RED

net mask CDATA #l MPLI ED

>

<I'-- Specifies a servlet to use as chainer for a specified mme-type. Useful to
filter/transformcertain kinds of output. -->

<! ELEMENT ser vl et - chai ni ng (#PCDATA) >

<I ATTLI ST servl et-chaining m nme-type CDATA #l MPLI ED

servl et-name CDATA #| MPLI ED

>

<I'-- Specifies a domain or netmask who is allowed access. -->
<! ELEMENT host - access (#PCDATA) >

< ATTLI ST host -access donmain CDATA #REQUI RED

mode (al | ow deny) #REQU RED

>

6-16 Oracle Application Server Containers for J2EE Servlet Developer's Guide

Configuration for global-web-application.xml and orion-web.xm|

<I-- The ejb-ref element is used for the declaration of a reference to

anot her enterprise bean's home. The ejb-ref-mapping ties this to JNDI -l ocation
when depl oying. -->

<! ELEMENT ej b-ref - mappi ng (#PCDATA) >

<I ATTLI ST ej b-ref-mappi ng | ocati on CDATA #| MPLI ED

nane CDATA #REQUI RED

>

<I'-- The runtime mapping (to groups and users) of a role. Maps to a
security-role of the sane nanme in the assenbly descriptor. -->

<l ELEMENT securi ty-rol e-mappi ng (group*, user*)>

<I ATTLI ST security-rol e-mapping inmpliesAl| CDATA #l MPLI ED

name CDATA #| MPLI ED

>

<I-- Specifies a servlet to use as session-tracker; session-trackers are invoked
as soon as a session is created and are useful for |ogging purposes, for
exanple -->

<I ELEMENT session-tracker (#PCDATA)>

<I ATTLI ST session-tracker servlet-name CDATA #| MPLI ED

>

<I'-- JAZN configuration -->

<! ELEMENT j azn-web- app (#PCDATA) >

< ATTLI ST j azn-web-app aut h- met hod CDATA #| MPLI ED
runas-node (true | false) "false"

doasprivil eged-node (true | false) "true"

>

<I'-- Web-app cl assl oader configuration -->

<! ELEMENT web- app-cl ass-| oader EMPTY>

<l ATTLI ST web- app-cl ass- | oader

search-local -cl asses-first (true | false) "fal se"

i ncl ude- war - mani f est - cl ass-path (true | false) "true"
>

<I'-- Authentication of forward/include targets -->
<! ELEMENT aut henti cat e- on-di spat ch EMPTY>

<! ATTLI ST aut henti cat e- on-di spat ch

value (true | false) "true"

>

<I-- This file contains the orion-specific configuration for a web-application.
The path to the file is located at
ORI ON_HOME/ appl i cati on- depl oynent s/ depl oyment Nane/ war nane(. war)/ ori on-web. xni
or (web-app-root/)WEB- | NF orion-web.xm if no deployment-directory is specified
inserver.xm. -->
<! ELEMENT orion-web-app (classpath*, context-param mapping*, m ne-nmappings*,
virtual -directory*, access-mask?, cluster-config?, servlet-chaining*,
request-tracker*, session-tracking?, resource-ref-mpping*,
security-rol e-mappi ng*, env-entry-mappi ng*, ej b-ref-mppi ng*,
expiration-setting*, web-app?, jazn-web-app?, web-app-class-|oader?,
aut hent i cat e- on-di spat ch?)>
<I ATTLI ST orion-web-app aut orel oad-j sp-beans (true|false) "true"
aut or el oad-j sp-pages (true|false) "true"
defaul t-buf fer-si ze CDATA "2048"
defaul t-charset %CHARSET; "iso-8859-1"
depl oynent - ver si on CDATA #| MPLI ED
devel opment (true|fal se) "fal se"

Configuration File Descriptions 6-17

Configuration for global-web-application.xml and orion-web.xml

directory-browsing (allow deny) "deny"
file-nodification-check-interval YNUMVBER "1000"

j sp-cache-directory CDATA #l MPLI ED

j sp-cache-tlds (true|on|standard|fal seloff) "true"
jsp-taglib-locations CDATA #l MPLI ED

jsp-print-null (true|false) "true"

jsp-timeout YNUMBER, "O (never)"

sinpl e-jsp-mapping (true|false) "false"

enabl e-j sp-di spat cher-shortcut (true|false) "true"
persi st ence-path CDATA #| MPLI ED

servl et-webdir 9%ATH, “/servlet/"

source-directory CDATA #l MPLI ED
tenporary-directory CDATA #l MPLI ED

>

Hierarchical Representation of global-web-application.xml and orion-web.xml

This section contains a representation of the hierarchy of the
gl obal - web-appli cati on. xm and ori on-web. xnl files.

Note: For simplicity of presentation, end-tags are omitted.

<orion-web-app defaul t-buffer-size="..." default-charset="..
depl oynent -version="..." devel opnent="..."
source-directory="..." directory-browsing="..."
file-nodification-check-interval="..."

jsp-print-null="..." jsp-timeout="..." jsp-cache-directory="..."
jsp-cache-tlds="..." jsp-taglib-locations="..."
si mpl e-j sp-mappi ng="..." enabl e-j sp-di spatcher-shortcut="..."
persi stence-path="..." servlet-webdir="..."
tenporary-directory="...">
<classpath path="...">
<cont ext - par am mappi ng name="...">
<ni me- mappi ngs path="...">
<virtual -directory real-path="..." virtual -path="...">
<access-mask default="...">
<host - access domain="..." node="...">
<ip-access ip="..." netmask="..." node="...">
<cluster-config host="..." id="..." port="...">
<servl et-chaining mne-type="..." servlet-name="...">
<request-tracker servlet-name="...">
<sessi on-tracki ng autoj oi n-session="..." cookies="..."
cooki e-domai n="..." cooki e-max-age="...">
<session-tracker servlet-name="...">
<resource-ref-nmapping location="..." name="...">
<l ookup-context location="...">
<context-attribute name="..." value="...">
<env-entry-mappi ng name="...">
<security-role-mapping inpliesAll="..." name="...">
<group nanme="...">
<user nane="...">
<ej b-ref-mapping location="..." name="...">
<expiration-setting expires="..." url-pattern="...">
<j azn-web- app aut h-nethod="..." runas-nmode="..."
doasprivi | eged- node="...">
<web- app- cl ass- | oader search-local -classes-first="..."
i ncl ude-war - mani f est - cl ass-path="...">

<aut henti cat e- on-di spatch val ue="...">

6-18 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for global-web-application.xml and orion-web.xm|

<web-app> AS | N STANDARD VEB. XML

Sample global-web-application.xml Settings

This is an abbreviated example of a default gl obal - web- appl i cati on. xm file,
showing some <or i on- web- app> attribute settings, mime-mapping settings, and
setup and mapping of the JSP and RMI front-end servlets (all possibly subject to
change in the shipped product):

<?xm version="1.0" standal one='yes' ?>
<! DOCTYPE ori on-web-app PUBLIC '//Everm nd//Crion web-application'
"http://xmns. oracl e.conlias/dtds/orion-web.dtd >

<ori on-web-app
j sp-cache-directory="./persistence"
servl et-webdir="/servlet"
devel opment ="f al se"
j sp-tineout="0"
jsp-taglib-locations="./jsp/lib/taglib"

<l-- The mnme-mappings for this server -->
<m ne- mappi ngs pat h="./n ne.types" />

<web- app>

<servl et>
<servl et - name>j sp</ servl et - nane>
<servl et-class>oracl e.jsp.runtinev2. JspServl et</servlet-class>
<l oad- on- st art up>0</ | oad- on- st art up>
<I'-- you can disable page scope listener if you
don't need this function. -->
<init-param
<par am name>check_page_scope</ par am name>
<par am val ue>tr ue</ par amval ue>
<linit-paranmp
<l-- you can set main_nmode to "justrun" to speed up
JSP dispatching, if you don't need to reconpile
your JSP anynore. You can al ways switch your
mai n_node. Pl ease see our doc for details -->
<l--
<init-param
<par am nane>mai n_node</ par am nane>
<par am val ue>j ust run</ par am val ue>
</init-paranp
>
</ servlet>

<servl et - nappi ng>
<servl et - name>j sp</ servl et - nanme>
<url-pattern>/*. jsp</url-pattern>
</ servl et - mappi ng>
<servl et - nappi ng>
<servl et - name>j sp</ servl et - nanme>
<url-pattern>/*. JSP</url-pattern>
</ servl et - mappi ng>

<servl et>

<servl et - nane>r m </ ser vl et - name>
<servl et-cl ass>

Configuration File Descriptions

the

6-19

Configuration for Web Site XML Files

com evernind. server.rm . RM Ht t pTunnel Servl et
</ servlet-class>
</servlet>
<servl et - mappi ng>
<servl et - name>r ni </ servl et - name>
<url-pattern>/*.tunnel rni</url-pattern>
</ servl et - mappi ng>

</ web- app>
</ ori on-web-app>

Configuration for Web Site XML Files

The following sections provide detailed information about Web site XML
configuration files, including def aul t - web- si t e. xn , for an Oracle Application
Server environment, and ht t p- web- si t e. xnl , for an OC4J standalone environment:

« Element Descriptions for Web Site XML Files

= DTD for Web Site XML Files

« Hierarchical Representation of Web Site XML Files
« Sample default-web-site.xml File

For an overview of these files, see "OC4J Web Site Descriptors"” on page 5-18.

Element Descriptions for Web Site XML Files

The element descriptions in this section apply to any OC4J Web site XML file,
including def aul t - web- si t e. xm (Oracle Application Server) and
htt p-web-site. xnm (OC4Jstandalone).

<web-site ... >
This is the root element for configuring an OC4J Web site.

Subelements of <web- si t e>:

<description>
<frontend>

<web- app>

<def aul t - web- app>
<user - web- apps>
<access-1 og>

<odl - access- | og>
<ssl-config>

Attributes of <web- si t e>:

« cluster-island: A cluster island is two or more Web servers that share session
failover state for replication. Use the cl ust er - i sl and attribute when clustering
the Web tier between multiple OC4J instances in Oracle Application Server. If this
attribute is set to a cluster island ID (number spawning from 1 and up), then this
Web site will participate as a back-end server in the island specified by the ID. The
ID is a chosen number that depends on your clustering configuration. If only one
island is used, the ID is always 1.

See the Oracle Application Server Performance Guide for general information about
clustering.

6-20 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for Web Site XML Files

di spl ay- name: You can use this attribute to specify a user-friendly or informal
Web site name.

host : Specifies the host for this Web site, as either a DNS host name or an IP
address. If a server is a "multi-home" machine (having multiple IP addresses), you
can use the "[ALL] " setting to listen to all IP addresses. They would all be
combined into this single Web site.

| og- r equest - i nf 0: Specifies whether to write information about the incoming
request into the Web site log if an error occurs. Supported values are "t r ue" and
"fal se" (default). The Web site log is enabled through either the <access- | og>
or <odl| - access- | og> element, described later in this section. ("OC4J Logging"
on page 2-14 provides additional information about enabling logs, including the
Web site log.)

max- r equest - si ze: Sets a maximum size, in bytes, for incoming requests. If a
client sends a request that exceeds this maximum, it will receive a "request entity
too large" error. The default maximum is 15000.

secur e: Specifies whether to support Secure Socket Layer (SSL) functionality.
Supported values are "t rue" and " f al se" (default). For a protocol setting of
"aj p13" (used in an Oracle Application Server environment), a "t r ue" setting
results in secure AJP protocol between Oracle HTTP Server and OC4J. For a
protocol setting of "ht t p" (used in OC4J standalone), a "t r ue" setting results in
HTTPS protocol between the client and OC4J.

Also note that asecur e="t rue" setting requires that you use the

<ssl - confi g> element (a subelement under the <web- si t e> element) to
specify the keystore path and password. This element is documented later in this
section.

Note: SSL and HTTPS features are also available through Oracle
HTTP Server for communication between Oracle HTTP Server and
the client. For information, see Oracle Application Server Security
Guide.

pr ot ocol : Specifies the protocol that the Web site is using. Possible values are
"http" and"aj p13" (for AJP, the default). In a production environment with
Oracle Application Server, you should use only the "aj p13" setting. The AJP
protocol is for use with Oracle HTTP Server and nod_oc4j . Note that each
protocol must have a corresponding port, and each port must have a
corresponding protocol.

The "ht t p" setting is for OC4J standalone.

To use either an "aj p13" or "ht t p" setting in secure mode (SSL), you must set the
secur e flag to "t r ue" and use the <ssl - conf i g> subelement to specify the
keystore path and password. This element is documented later in this section.

por t : Specifies the port number for this Web site. Each port must have a
corresponding protocol, and each protocol must have a corresponding port. In
OC4J standalone, a por t setting of 8888 is used by default for direct access to the
OC4] listener, but you can change this as desired.

In an Oracle Application Server environment, this port setting is overridden by
OPMN, the Oracle Process Management and Notification system. Oracle
Application Server uses port 7777 by default for access through Oracle HTTP
Server with Oracle Application Server Web Cache enabled.

Configuration File Descriptions 6-21

Configuration for Web Site XML Files

Important: Ina UNIX environment, port numbers less than 1024
require root privileges for access. Also note that if there is no port
specification from the client browser, port 80 is assumed for HTTP
protocol and port 443 for HTTPS.

« use- keep-alives: Typical behavior for a servlet container is to close a
connection once a request has been completed. With a use- keep- al i ves setting
of "t rue", however, a connection is maintained across requests. For AJP protocol,
connections are always maintained and this attribute is ignored. For other
protocols, the defaultis "t r ue" ; disabling it may cause significant performance
loss.

« Virtual - host s: This optional setting is useful for virtual sites sharing the same
IP address. The value is a comma-delimited list of host names tied to this Web site.

<description>This is the description</description>
You can use the body of this element for a brief description of the Web site.

<frontend ... >

This element specifies a perceived front-end host and port of this Web site as seen by
HTTP clients. When the site is behind a load balancer or firewall, the <f r ont end>
specification is necessary to provide appropriate information to Web application code
for functionality such as URL rewriting. Using the host and port specified in the

<f r ont end> element, the back-end server running the application knows to refer to
the front-end, instead of to itself, in any URL rewriting. This way, subsequent requests
properly come in through the front-end again, instead of trying to access the back-end
directly.

Attributes of <f r ont end>:
= host: Specifies the host name of the front-end server, such as " ww. acre. cont'.

« port: Specifies the port number of the front-end server, such as " 80" .

<web-app ... >

This element binds a particular Web module to this Web site. It specifies the name of a
J2EE application archive (EAR file name minus the . ear extension) from the

server. xm file, and the name of a Web module within the J2EE application. The
Web module is defined in the J2EE appl i cati on. xm file in the application EAR file
(or possibly inthe ori on- applicati on. xm file in the EAR file). The Web module
is bound at the location specified by the <web- app> elementr oot attribute.

Note: Itis possible to deploy a WAR file by itself, instead of
within an EAR file. In OC4J standalone, such Web applications are
added to the OC4J default application. (In OC4J, there must always
be a parent application of some sort.) See "OC4J Default
Application and Default Web Application” on page 5-25 for more
information.

In this scenario, the Web site XML file <web- app> element
specifies the name of the default application rather than the name
of a J2EE application archive. More details are provided in the
attribute descriptions and examples that follow.

6-22 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for Web Site XML Files

Mapping to and from Web site XML files, particularly with respect to the

appl i cati on and nane attributes, is shown in examples elsewhere in this document.
See "Example: Mappings to and from Web Site Descriptors" on page 5-19 (for a typical
scenario of deploying a WAR file within an EAR file) and "Deploying an Independent
WAR File to OC4J Standalone" on page 5-32 (for the scenario of deploying a WAR file
by itself to the OC4J default application).

Attributes of <web- app>:

appl i cati on: Specifies the J2EE application archive name, which is the EAR file
name without the . ear extension, and which corresponds to the nane attribute of
an <appl i cati on>elementinthe server. xm file.

Notes: If you deploy a WAR file by itself in OC4J standalone,
using the OC4J default application as the parent, then the

appl i cati on attribute instead reflects the name of the default
application, according to the <gl obal - appl i cati on>elementin
the server. xn file.

| oad- on- st art up: This is an optional attribute to specify whether this Web
module should be preloaded on application startup. Otherwise, it is loaded upon
the first request for it. Supported values are "t r ue" and " f al se" (default).

Preloading of individual servlets, through <l oad- on- st ar t up> elements in the
application web. xnl file, is possible only if this <web- app> element

| oad- on- st art up attribute is enabled. See "Servlet Preloading"” on page 2-6 for
more information.

max-i nactivity-time: Thisis an optional integer attribute to specify the
number of minutes of inactivity after which OC4J will shut down the Web module.
By default, a Web module is never shut down due to inactivity.

name: Specifies the name of a Web module within the specified J2EE application,
and corresponds to the <web- ur i > value (without the . war extension) of a
<web> subelement of a <modul e> element in the J2EE appl i cati on. xm file.
The J2EE appl i cati on. xni file is in the EAR file.

Configuration File Descriptions 6-23

Configuration for Web Site XML Files

Notes:

« Ifyou deploy a WAR file by itself in OC4J standalone, using the
OC4)] default application as the parent, then the nane attribute
instead reflects the value of the i d attribute of a
<web- modul e> element in the OC4J global
application. xm file. Thisisthe applicati on. xm file for
the OC4J default application, but be aware that it is not a
standard J2EE file; it is OC4J-specific. Also note that thei d
attribute, as with the nane attribute of the <web- app>
element, does not have the . war extension.

= Anapplication can also have an or i on- appl i cati on. xni
file in the EAR file, with <web- nodul e> elements that define
additional Web modules, or even override Web modules
defined in the J2EE appl i cati on. xm file (although
overriding is not advised). The nane attribute can reflect the i d
value of a <web- nodul e> elementin
ori on-appl i cation. xm , instead of reflecting a
<web- uri > value in the J2EE appl i cati on. xm file.

« Theorion-application.xm fileusesthesame DTD as the
OC4J global appl i cati on. xm file; namely,
orion-application. dtd.

= root: Specifies the path to which the Web module is to be bound, which defines
the context path portion of the URL used to invoke the module. For example, if the
Web module Cat al ogApp at Web site ww. exanpl e. comis bound to the r oot
setting "/ cat al 0g", then it can be invoked as follows:

http: // wwv. exanpl e. coni cat al og

Important:

« Ther oot attribute overrides the <cont ext - r oot > value of
the corresponding <web> element in the J2EE
application. xm file. Even though the <cont ext - r oot >
element is mandatory inan appl i cati on. xnl file, its value is
not used by OC4J.

« Specifying ar oot setting of "/ " will override the OC4J default
Web application. This setting or a null setting is not allowed by
the admi n. j ar utility when binding a Web application to the
Web site.

« shar ed: Allows sharing of a published Web module between Web sites, when a
Web site is defined by a particular pairing of a protocol and a port. Supported
valuesare"true" and"f al se" (default). Sharing implies the sharing of
everything that makes up a Web application, including sessions, servlet instances,
and context values. An example is to share a Web application in OC4J standalone
between an HTTP site and an HTTPS site at the same context path, when SSL is
required for some but not all the communications. (Performance is improved by
encrypting only sensitive information, rather than all information.)

6-24 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for Web Site XML Files

If an HTTPS Web application is marked as shared, its session tracking strategy
reverts from SSL session tracking to session tracking through cookies or URL
rewriting. This could possibly make the Web application less secure, but may be
necessary to work around issues such as SSL session timeouts not being properly
supported in some browsers.

Important: Use shar ed="t rue" only in OC4J standalone.

<default-web-app ... >

This element creates a reference to the default Web application of this Web site. For
users, it is meaningful only in an OC4J standalone environment. See "OC4J Default
Application and Default Web Application” on page 5-25 for more information.

In an Oracle Application Server environment, the OC4J default Web application has
system-level functionality but is not otherwise meaningful. See "OC4J Default Web
Application in Oracle Application Server" on page 5-40.

The <def aul t - web- app> element uses the same attributes as the <web- app>
element described immediately preceding, but note that the default setting of
| oad-on-startupis"true”.

<user-web-apps ... >

Use this element to support user directories and applications. Each user has his or her
own Web module and associated web- appl i cati on. xnl file. User applications are
reached at/ user nane/ from the server root.

Attributes of <user - web- apps>:

« Mmax-inactivity-time: Optional integer attribute to specify the number of
minutes of inactivity after which OC4J will shut down the Web module. By
default, a Web module is never shut down due to inactivity.

« pat h: Specifies a path to specify the local directory of the user application,
including a wildcard for the user name. The default path setting in UNIX, for
example, is "/ horre/ user nane", where user nane is replaced by the particular
user name.

<access-log ... >

Use this element to enable text-based access logging for this Web site and to specify
information about the access log, including the path, file name, and what information
is included. The log file is where incoming requests (each access of the Web site) are
logged.

Alternatively, use the <odl - access- | og> element (described immediately
following) for ODL logging. See "Oracle Diagnostic Logging Versus Text-Based
Logging" on page 2-16 for information about ODL.

Note: Do not use both <access-1 og>and <odl - access-1 0g>;
you can use only one type of logging. (The last element in the Web
site XML file would take precedence, but do not count on this
behavior.)

Attributes of <access- | og>:

Configuration File Descriptions 6-25

Configuration for Web Site XML Files

« format: Specifies one or more of several supported variables that result in
information being prepended to log entries. Supported variables are $t i ne
$request, $i p, $host, $pat h, $si ze, $net hod, $pr ot ocol , $user,
$status, $referer, $ti ne, $agent, $cooki e, $header, and $mi ne. Between
variables, you can type in any separator characters that you want to appear
between values in the log message. The default setting is as follows:

"$ip - $user - [$tine] '$request’ $status $size"

As an example, this results in log messages such as the following (with the second
message wrapping around to a second line):

148.87.1.180 - - [06/Nov/2001:10:23:18 -0800] 'GET / HTTP/ 1.1 200 2929
148.87.1.180 - - [06/Nov/2001: 10: 23: 53 -0800] ' CGET
/ webservi ces/ st at eful Test HTTP/ 1.1 200 301

In this example, the user is null, the time is in brackets (as specified in the f or nat
setting), the request is in single-quotes (as specified), and the status and size in the
first message are 200 and 2929, respectively.

= pat h: Specifies the path and name of the access log. This can be an absolute path
or a path relative to the j 2ee/ horre/ conf i g directory. The default setting in
def aul t -web-si te. xm isthe following:

path="../1 og/ def aul t - web- access. | 0g"

Note: Note the difference between the pat h attribute of
<access- | og>, which specifies a path and file name, and the
pat h attribute of <odl - access- | 0g>, which specifies a path
only. (ODL log file names are fixed.)

« split: Specifies how often to begin a new access log. Supported values are
"none" (never, which is the default), " hour ", " day", " week", or " nont h". Fora
value other than " none", logs are named according to the suf f i x attribute.

« suffi x: Specifies timestamp information to append to the base file name of the
logs (as specified in the pat h attribute) if splitting is used, to make a unique name
for each file. The format used is that of j ava. t ext . Si npl eDat eFor mat , and
symbols used in suf f i x settings are according to the symbology of that class. For
information about Si npl eDat eFor nat and the format symbols it uses, refer to
the Sun Microsystems Javadoc at the following location:

http://java. sun.conlj2se/ 1. 4. 2/ docs/ api /
The default suf f i x setting is " - yyyy- Mt dd" . These characters are
case-sensitive, as described in the Si nmpl eDat eFor nat documentation.

As an example, assume the following <access- | og> element (using the default
suf fi x value):

<access-1og path="c:\foo\web-site.log" split="day" />

Log files are named such as in the following example:
c:\foo\web-site-2001-11-17.1 09

6-26 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for Web Site XML Files

<odl-access-log ... >

Use this element to enable ODL-based access logging for the Web site and to specify
information about the access logs, including the path, and maximum values for the
size of each file and the total size of all files in the log directory. The log files are where
incoming requests (each access of the Web site) are logged.

Alternatively, use the <access- | og>element (described immediately preceding) for
text-based logging.

See "Oracle Diagnostic Logging Versus Text-Based Logging" on page 2-16 for
information about ODL.

Note: Do not use both <access-| og>and <odl - access- | og>;
you can use only one type of logging or the other. (The last element
in the Web site XML file would take precedence, but do not count
on this behavior.)

Attributes of <odl - access- | og>:

« pat h: Specifies the path to the access log directory. This can be an absolute path or
a path relative to the j 2ee/ horre/ conf i g directory. For example:

path="../1 og/ def aul t - web- access"
The initial log file name in this directory is| ogl. xm . As the maximum file size

(specified by the max- fi | e- si ze attribute) is reached, subsequent log files are
named | og2. xm , 1 0g3. xm , and so on.

Note: Note the difference between the pat h attribute of
<access- | 0g>, which specifies a path and file name, and the
pat h attribute of <odl - access- | og>, which specifies a path
only. (ODL log file names are fixed.)

« max-fil e-size: Specifies the maximum size of each log file, in Kilobytes.

« max-directory-si ze: Specifies the maximum total size, in kilobytes, of all log
files in the directory specified in the pat h attribute.

<ssl-config ... >

This element specifies SSL configuration settings, if applicable. You must use it
whenever you set the secur e attribute of the <web- si t e>elementto"true".

See "Servlet Security” on page 2-33 for related information.
Subelement of <ssl - confi g>:

<property>

Attributes of <ssl - conf i g>:

« keyst ore: Arelative or absolute path to the keystore database (a binary file) used
by this Web site to store certificates and keys for the user base in this installation.
The path value includes the file name. A relative path is relative to the location of
the Web site XML file.

A keystore isaj ava. securi ty. KeySt or e instance and can be created and
maintained using the keyt ool utility, provided with the Sun Microsystems JDK.

Configuration File Descriptions 6-27

Configuration for Web Site XML Files

« keystore-passwor d: The required password to open the keystore.

= needs-client-aut h: Indicates whether the entity that is a client to OC4J, such
as Oracle HTTP Server, must submit a certificate for authorization so it can
communicate with OC4J. Supported values are "t r ue" for "client authentication"
(certificate required), and " f al se" (default, no certificate required).

= provider: You can use this attribute to specify a provider if you are using JSSE
(Java Secure Socket Extension). By default, OC4J usually employs the Sun
Microsystems implementation of SSL, using an instance of the following for the
provider:

comsun. net.ssl.internal.ssl.Provider

However, OC4J employs the Oracle SSL implementation in some cases, such as for
SOAPandhttp _client.

« factory: If youare not using JSSE, use the f act or y attribute to specify an
implementation of SSLSer ver Socket Fact or y. The default setting is:

"JSSE: com everm nd. ssl. JSSESSLSer ver Socket Fact or y"

If you use a third-party SSLSer ver Socket Fact or y implementation, you can
use <pr opert y> subelements of the <ssl - conf i g> element to send parameters
to the factory.

<property ... >
Use <pr opert y> subelements of the <ssl - conf i g> element to pass parameters to a
third-party SSLSer ver Socket Fact or y implementation, if applicable.

Attributes of <pr operty>:
= name: The name of a parameter to pass to the factory.

= Vval ue: The value of the specified parameter.

DTD for Web Site XML Files

This section provides the DTD for Web site XML configuration files, including
defaul t-web-site.xm and http-web-site.xmnl,inthe OC4J10.1.2
implementation.

<IENTI TY % WEBPATH " CDATA" >

<IENTI TY % NUMBER " CDATA" >

<IENTITY % HOST " CDATA"'>

<IENTITY % BOOLEAN "true| fal se">

<IENTITY % PATH " CDATA" >

<I-- When enabl ed user dirs/apps will be supported. Each user has his own
private web-application (and connected web-application. xm file).
The user apps are reached at /~username/ fromthe server root. -->

<! ELEMENT user - web-apps (#PCDATA) >

< ATTLI ST user-web-apps max-inactivity-tinme CDATA "no shut down"

path 9%PATH; #l MPLI ED

>

<l-- Reference to the default <a class="link"

6-28 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for Web Site XML Files

href ="web. xm . ht M " >web- appl i cati on of this site. This application will be
bound to the root of the site. -->

<! ELEMENT def aul t -web-app (#PCDATA) >

<I ATTLI ST defaul t-web-app application CDATA #l MPLI ED

| oad-on-startup (true|false) "true"

max-inactivity-time YNUMBER, #| MPLIED

nane CDATA #| MPLI ED

root 9MEBPATH, #| MPLIED

shared (true|fal se) "fal se"

>

<l-- A short description of this web-site. -->
<l ELEMENT descri ption (#PCDATA)>

<I'-- Relative/absolute path to the access-log for this site, this is where
incomng requests will be |ogged. -->

<! ELEMENT access-|og (#PCDATA) >

<! ATTLI ST access-log format CDATA "S$ip - $user - [$tine] '$request' $status
$si ze"

path CDATA #| MPLI ED

split (none| hour|day| week| nonth) "none"

suf fix CDATA #l MPLI ED

>

<l-- An ODL formated log file. The max-file-size is the maximm nunber of
kilobytes a single log file is allowed to grow to. The max-directory-size is
t he maxi mum nunber of kilobytes that the directory is allowed to contain. -->

<! ELEMENT odl - access-10g (#PCDATA) >

<l ATTLI ST odl -access-1o0g path CDATA #REQU RED max-fil e-si ze CDATA #l MPLI ED
max- di rect ory-si ze CDATA #| MPLI ED>

<I-- Reference to a web-application.
This application will be bound at the location specified by the 'root’
attribute. -->

<! ELEMENT web-app (#PCDATA) >

<I ATTLI ST web-app application CDATA #l MPLI ED

| oad-on-startup (true|false) "false"

max-inactivity-time Y%NUMBER, "no shutdown”

name CDATA #| MPLI ED

root 9NEBPATH, #| MPLI ED

shared (true|false) "fal se"

>

<l-- Aconfiguration paranmeter. -->

<! ELEMENT property (#PCDATA)>

<! ATTLI ST property nane CDATA #| MPLI ED
val ue CDATA #l MPLI ED

>

<I'-- Specifies SSL-configuration settings. These settings are used if
secure="true" is specified on the site.
If a 3rd party SSLServer Socket Factory inplenentation is used then x property
tags can be defined to send arbitary argunents to the factory. -->
< ELEMENT ssl -config (property*)>
<I ATTLI ST ssl-config factory CDATA
"com everm nd. server . JSSESSLSer ver Socket Fact ory"
keyst ore CDATA #l MPLI ED
keyst ore- password CDATA #| MPLI ED
needs-client-auth (true|fal se) "fal se"
provi der CDATA #l MPLI ED

Configuration File Descriptions 6-29

Configuration for Web Site XML Files

<I'-- The frontend tag describes which IP, port, and so on that HTTP clients
perceive this site to be. This is needed when acting behind a | oad bal ancer or
firewall in order to provide the correct info to web-app code when rewiting
URLS -->

<! ELEMENT frontend (#PCDATA) >

< ATTLI ST frontend host CDATA #l MPLI ED

port CDATA #l MPLI ED

>

<I-- This file contains the configuration for a web-site. -->

< ELEMENT web-site (description?, frontend?, default-web-app, web-app*,
user -web- apps?, access-log?, odl-access-l0g?, ssl-config?)>

< ATTLI ST web-site cluster-island CDATA #l MPLI ED

di spl ay-name CDATA #l MPLI ED

protocol CDATA #l MPLI ED

host 9%HOST; "[ALL]"

| og-request-info (true|false) "fal se"

max- r equest - si ze CDATA #| MPLI ED

port 9WNUVBER "80"

secure (true|false) "fal se"

use-keep-al i ves CDATA #| MPLI ED

virtual -hosts CDATA #| MPLI ED

>

Hierarchical Representation of Web Site XML Files

This section contains a representation of the hierarchy of Web site XML configuration
files, including def aul t - web-site. xm and htt p-web-site. xn .

Note: For simplicity of presentation, end-tags are omitted.

<web-site cluster-island="..." display-name="..." host="..."
| og-request-info="..." max-request-size="..." secure="..."
protocol ="..." port="..." use-keep-alives="..."
virtual -hosts="...">
<description>
<frontend host="..." port="...">
<web-app application="..." |oad-on-startup="..."
max-inactivity-tinme="..." name="..." root="..." shared="...">
<def aul t - web-app application="..." |oad-on-startup="..."
mex-inactivity-time="..." name="..." root="..." shared="...">
<user - web- apps max-inactivity-time="..." path="...">
<access-log format="..." path="..." split="..." suffix="...">
<odl -access-log path="..." max-file-size="..." nmax-directory-size="...">
<ssl-config keystore="..." keystore-password="..."
needs-client-auth="..." provider="..." factory="...">
<property nane="..." value="...">

Sample default-web-site.xml File

This is a sample def aul t - web- si t e. xm file, similar to the default file provided
with OC4J for an Oracle Application Server environment:

<?xm version="1.0" standal one='yes' ?>
<! DOCTYPE web-site PUBLIC "Oracl e Application Server XML Web-site"
"http://xmns.oracl e. confias/dtds/web-site.dtd">

6-30 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration for Web Site XML Files

<web-site host="nyhost" port="0" protocol ="aj p13"
di spl ay-nane="Default Oracle Application Server Java WbSite"
cluster-island="1" >

<I'-- Uncomment the follow ng |ine when using clustering -->

<I-- <frontend host="your _host _nane" port="80" /> -->

<lI-- The default web-app for this site, bound to the root -->
<defaul t - web-app application="default" nane="def aul t VébApp" root="/j2ee" />
<web-app application="defaul t" name="dns" root="/dnsoc4j" />

<web-app application="defaul t" name="adm n_web" root="/adni noc4j" />

<I'-- Access Log, where requests are logged to -->
<access-log path="../1og/defaul t-web-access.log" />

<I'-- Uncomment this if you want to use ODL | ogging capabilities

<odl -access-1og path="../1og/ def aul t - web-access" max-file-size="1000"
max- di rect ory-si ze="10000"/ >

-->

</ web-site>

Configuration File Descriptions 6-31

Configuration for Web Site XML Files

6-32 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

v

Configuration with Enterprise Manager

In an Oracle Application Server environment, configuration of Web modules is
performed through Oracle Enterprise Manager 10g. This chapter describes key
features of Enterprise Manager for servlet and Web site configuration. It includes the
following sections:

« Web Module Configuration in Oracle Enterprise Manager 10g

« Application Server Control Console Page Descriptions

Web Module Configuration in Oracle Enterprise Manager 10g

The direct use of gl obal - web- appl i cati on. xm ,ori on-web. xm ,and

def aul t - web-si te. xm elements and attributes, described in Chapter 6, is for
development and deployment in an OC4J standalone environment. In an Oracle
Application Server environment, such as for production deployment, use Enterprise
Manager for Web module configuration and deployment.

Oracle Enterprise Manager 10g Application Server Control Console is the
administration console for an Oracle Application Server instance. It enables you to
monitor real-time performance, manage Oracle Application Server components and
instances, and configure these components and instances. This includes any instances
of OC4J. In particular, Application Server Control Console includes pages to configure
servlets and Web sites. Application Server Control Console comes with your Oracle
Application Server installation. Log in as thei as_adm n user.

This chapter covers relevant Application Server Control Console pages for managing
and configuring Web modules in an OC4J instance within Oracle Application Server.
Some of the pages allow you to alter gl obal - web- appl i cation. xnm ,

ori on-web. xm , and def aul t - web- si t e. xnl settings. Other pages display
web. xm settings, which you can override through or i on- web. xm settings.

Each page description notes the corresponding elements and attributes in web. xm |
ori on-web. xm /gl obal - web-application.xnl ,ordefaul t-web-site.xnl.
The elements and attributes for gl obal - web- appl i cati on. xm or

orion-web. xm are documented in "Element Descriptions for
global-web-application.xml and orion-web.xmlI" on page 6-1. The

def aul t - web- si te. xm elements and attributes are covered in "Element
Descriptions for Web Site XML Files" on page 6-20. For information about web. xm
elements, refer to the servlet specification.

See the Oracle Application Server Containers for J2EE User’s Guide for additional
information about using Enterprise Manager with OC4J.

Configuration with Enterprise Manager 7-1

Application Server Control Console Page Descriptions

Application Server Control Console Page Descriptions

The following sections discuss key Application Server Control Console pages in
Enterprise Manager for servlet and Web site configuration and deployment:

« Application Server Control Console OC4J) Home Page

« Application Server Control Console OC4J Applications Page

« Application Server Control Console Deploy Application (EAR) Page

« Application Server Control Console Deploy Web Application (WAR) Page
« Application Server Control Console OC4J Administration Page

« Application Server Control Console Website Properties Page

« Application Server Control Console Web Module Page

« Application Server Control Console Web Module Properties Page

« Application Server Control Console Web Module Mappings Page

« Application Server Control Console Web Module Filtering and Chaining Page
« Application Server Control Console Web Module Environment Page

=« Application Server Control Console Web Module Advanced Properties Page

Application Server Control Console OC4J Home Page

When you first access an Oracle Application Server instance through Application
Server Control Console in Enterprise Manager, you reach the Oracle Application
Server Instance Home Page. Through this page, you can drill down to any of the
running OC4J instances by selecting the name of the instance (home, for example) in
the System Components table. Application Server Control Console then displays the
0OC4J) Home Page for that instance.

Figure 7-1 shows portions of the OC4J Home Page for the hore instance.

Figure 7-1 Application Server Control Console OC4J Home Page

0OC4J: home

Home | Applications Adrministration

Page Refreshed Jul 3, 2003 3:00:50 PM E‘

General Status
A Status Up [Stop) (Restart) CPU Usage (%) 0.13
) Start Time Jul 2, 2003 6:47:35 PM Memory Usage (MB) 67.98
“Wirtual Machines 1 Heap Usage (MB) 26.04
JDBC Usage Response - Servlets and JSPs

Active Sessions 0
Active Feguests 1
Request Processing Time (seconds) 0.005
Requests per Second 0.16

Open JOBC Connections
Total JDBC Connections
Active Transactions
Transaction Commits
Transaction Rollbacks

oo o

Response - EJBs

Active EJB Methods 0
Method Execution Time (seconds) 0.00
Method Execution Rate (per second) 0.00

Home | Applications Administration

From the OC4J Home Page, you can do the following:

7-2 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Console Page Descriptions

« Click Applications to access the Application Server Control Console OC4]

Applications Page.

« Click Administration to access the Application Server Control Console OC4J

Administration Page.

Application Server Control Console OC4J Applications Page

OC4J: home

Figure 7-2 shows the OC4J Applications Page, which enables you to deploy
applications. You can reach this page by clicking Applications from the OC4J Home
Page.

In particular, relating to topics covered in this manual, note the following:
« Clicking the Deploy EAR file button accesses the Deploy Application Page.
« Clicking the Deploy WAR file button accesses the Deploy Web Application Page.

Figure 7-2 Application Server Control Console OC4J Applications Page

Home | Applications | Administration

Page Refreshed Jul 3, 2003 3:03:51 PM [§5

Default Application Name default
Default Application Path application.xml

Deployed Applic

SelectName

= |FAQAPP SB

ations
(Deploy EAR file) (Deploy WAR file)

. Edit) | Undeploy) | Redeplay)
Request
Processing Active
Parent Active Time EJB
Path Application | Requests| (seconds)| Methods
fapplications/FAQAPF_SE. ear default 1] 0.00]

Home | Applications | Administration

Application Server Control Console Deploy Application (EAR) Page

Figure 7-3 shows the key portion of the Application Server Control Console Deploy
Application Page, which is the page for deploying an EAR file. Drill down to this page
from the Applications Page of an OC4J instance by clicking the Deploy EAR file
button.

Configuration with Enterprise Manager 7-3

Application Server Control Console Page Descriptions

Figure 7-3 Application Server Control Console Deploy Application Page

Deploy Application

For a J2EE application to be successfully deployed on the OC4J container, the application has to be assembled correctly as an Enterprise Archive (gar)
file, with all the needed application and module deployment descriptors. The OC4J container generates default OC4J specific deployment descriptors
when the application is deployed. If you have custom OC4J specific deployment descriptors that you wish to use, you need to include these in the ear
file.

Select the J2EE application { ear file) to be deployed.

J2EE Application I Browse... |

Specify a unique application name for this application.

Application Name |
Select the parent for this application.
Parent Application Idefault 'l
Cancel } Continue }

In the Deploy Application Page, click the Browse button to select an EAR file to
deploy, then specify the desired J2EE application name, which is typically the same as
the EAR file name without the . ear extension. You can also specify a parent
application, but it is typical to use the OC4J default application as the parent.

Deployment results in a new <appl i cat i on> element being entered in the
server. xm file.

When you click the Continue button, the Deploy Application: URL Mapping for Web
Modules Page appears. This page enables you to set a URL context path for the Web
application that the J2EE application contains. Figure 7-4 shows this page, with the
default context path for the Web application of a J2EE application named utility.
Clicking the Next button enables you to review your entries and then deploy.

Specifying a URL context path results in an entry in the def aul t - web-si te. xn file
to bind the Web application to the Web site. This is accomplished through a new
<web- app> subelement of the <web- si t e> element. In addition, the

nod_oc4j . conf configuration file for the Oracle HTTP Server nod_oc4j Apache
mod is updated with appropriate mount points.

Note: In specifying the context path, the following forms are
treated equivalently:

somelr |
[sonmeUr |
/soneUr |/

7-4 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Console Page Descriptions

Figure 7-4 Application Server Control Console Deploy Application: URL Mapping Page

URL Mappings for Weh Modules Review

Deploy Application: URL Mapping for Web Modules
Aweb module needs to be mapped to an URL pattern in the default web site before it can be accessed. The following table lists all the web modules

found in your application. Specify the URL mapping for each of these modules.

Name URL Mapping
Web Services Example = |[fj2eeafutility

Cancel) Step1 of 2 | Mext) Finish }

Application Server Control Console Deploy Web Application (WAR) Page

Figure 7-5 contains the key portion of the Application Server Control Console Deploy
Web Application Page, which is the page for deploying an independent WAR file. Drill
down to this page from the Applications Page of an OC4lJ instance by clicking the
Deploy WAR file button.

Note: When you deploy an independent WAR file, it is wrapped
in an EAR file transparently.

Figure 7-5 Application Server Control Console Deploy Web Application Page

Deploy Web Application

Select the Web Application {.war file) you wish to deploy. This web application will be wrapped into a J2EE application i.ear file) befare
deplaoyrment.

Web Application I Browse... |

Specify the name you would like this application to be called and the URL to map this web application to.

Application Name |
Map to URL |

| Cancel) . Deploy ;I

In the Deploy Web Application Page, click the Browse button to select a WAR file to
deploy. Then specify a desired J2EE application name along with a URL context path
to map to the Web application. Transparently, a J2EE application by the specified
application name is created to contain the Web application. In OC4J, any Web
application must be contained in a J2EE application.

As with an EAR file, the deployment results in a new <appl i cati on>element in the
server.xm file. Additionally, to bind the Web application to the Web site, a new
<web- app> subelement is added to the <web- si t e> element in the

def aul t - web-si te. xm file. Finally, the rod_oc4j . conf configuration file for the
Oracle HTTP Server nod_oc4j Apache mod is updated with appropriate mount
points.

Configuration with Enterprise Manager 7-5

Application Server Control Console Page Descriptions

Note: In specifying the context path, the following forms are
treated equivalently:

somelr |
/ sonelr|
/soneUrl/

Application Server Control Console OC4J Administration Page

Figure 7-6 shows the OC4J Administration Page, which enables you to access OC4J
instance properties. You can reach this page by clicking Administration from the OC4J
Home Page.

Clicking Website Properties under Instance Properties accesses the Website Properties
Page, through which you can access a variety of pages to update Web module
properties.

Figure 7-6 Application Server Control Console OC4J Administration Page

0OC4J: home

Home Applications | Administration
Page Refreshed Jul 3, 2003 3:02:48 PM E‘

Instance Properties

Server Properties OC4J applications have a hierarchical parent-child relationship to
Website Properties facilitate administration through inheritance. A child application
JEP Container Properties inherits certain attributes from its parent application such as
Replication Properties principals and JMDI objects including data sources, JMS providers
Advanced Properties and EJBs. When an OC4J application is deployed, you specify the
parent application. The Default Application is the top of the parent

Application Defaults hierarchy.

Data Sources

Security
JWS Providers

Global Web Module
Horme Applications | Administration

Application Server Control Console Website Properties Page

Figure 7—7 shows the key portion of the Application Server Control Console Website
Properties Page for an OC4J instance. Drill down to this page by clicking Website
Properties under Instance Properties in the OC4J Administration Page.

7-6 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Console Page Descriptions

Figure 7-7 Application Server Control Console Website Properties Page

Website Properties
Refreshed at Monday, July 15, 2002 2:42:14 PM PDT 5:.
Default Web Module
Marne defaultWebApp

Application default
Load on startup true

URL Mappings for Web Modules

|1—3 of 3 'l
Load on
Name Application URL Binding startup
cabo B4 fcabo -
dms default fdmsocd [
weha B4 fwebapp -

| Bevert ;l | Apphy)

Among other things, this page enables you to specify whether each application should
be loaded automatically when OC4J starts. (Otherwise, an application is not loaded
until the first request for it.) This corresponds to the | oad- on- st ar t up attribute of
the appropriate <web- app> subelement of the <web- si t e> element in the

def aul t - web-si te. xnl file. (For general information about loading an application
at OC4J startup, see "Servlet Preloading” on page 2-6.)

From the Website Properties Page, drill down to the Web Module Page for any
particular Web module. In the preceding sample page, for example, you can click
webapp to drill down to the Web Module Page for that module.

Application Server Control Console Web Module Page

Figure 7-8 contains the key portion of the Application Server Control Console Web
Module Page for the module webapp. Drill down to the Web Module Page for a
particular module by clicking the module name in the Website Properties Page.

Configuration with Enterprise Manager 7-7

Application Server Control Console Page Descriptions

Figure 7-8 Application Server Control Console Web Module Page

Web Module: webapp

Refreshed at Wednesday, July 17, 2002 6:11:35 PM PDT E=j

General Response and Load
Status Loaded Active Sessions 3
URL Binding /webapp Active Requests 0
Referenced EJBs Request Client Time (secs) 0
Request Load Time (secs) 0
Request Overhead Time (secs) 0
Requests per Second 0
Requests Processed 11
Servlets/JSPs A Beturn to Top
|1-1 of 1 vl
Request
Client |Requests|
Name Active [Time [per Startup
Status |Type |Source Requests|isecs) |Second |Priority|
EmDEeret Loaded Servlet oracle jbo.server.emd EMDServet 0 0 0
Administration A Return to Tap
Properties Security
General General
Mappings

Filtering and Chaining
Environrnent

Advanced Properties

From the Web Module Page, you can access several categories of Web module
properties through the following links, under Properties in the Administration section
of the page:

« General to drill down to the Web Module Properties Page
« Mappings to drill down to the Web Module Mappings Page

« Filtering and Chaining to drill down to the Web Module Filtering and Chaining
Page

« Environment to drill down to the Web Module Environment Page

« Advanced Properties to drill down to the Web Module Advanced Properties Page

Application Server Control Console Web Module Properties Page

Figure 7-9 and Figure 7-10 show portions of the Application Server Control Console
Web Module Properties Page for a particular module. Drill down to this page by
clicking General under Properties in the Administration section of the Web Module
Page.

7-8 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Application Server Control Console Page Descriptions

Figure 7-9 Application Server Control Console Web Module Properties Page (1 of 2)

Properties
Refreshed at Wednesday, July 17, 2002 6:11:57 PM POT E=j

General

Digplay Mame
Description BC4J Web Application
Distributable true
Document Root ../

Sendet Directory Ia’ser\fletf

Temporary Directary I.Itemp

Response Buffer Size (bytes) I2D4B
Eile Check Interval {milliseconds) |1DDD

Session Configuration A Return to Top

Use Cookies |Yes ¥

Session Auto Join Mo

-

Session Timeout (minutes) |30

Cookie Max Age (seconds) I

Cookie Domain I

Session Storage Directary I

Figure 7-10 Application Server Control Console Web Module Properties Page (2 of 2)

Class Paths A Return to Top
Specifies where java classes used by this application can be found.

Select Path
(Mo items found)

. Add Class Path)

Session Trackers A Return to Top
Specifies a servlet to use as a session tracker. Session trackers are invoked as soon as a session is created and
are useful for logging purposes.

Select Servlet Name

(Mo items found)
| Add Session Tracker)

Virtual Directories A Return to Top
Yirtual directories may be used to expose web files that don't physically reside below the document root.
Select Real Path Virtual Path

(Mo items found)

L Add Yirtual Directony)

Tag Libraries A Return to Tap
Atag library is & collection of custor tags that encapsulate functionality used within JSP pages.

Name Location
(Mo items found in J2EE deployment descriptor)

Configuration with Enterprise Manager 7-9

Application Server Control Console Page Descriptions

These settings corrrespond to or i on- web. xm elements as follows.
In the General section:

= Servlet Directory corresponds to the ser vl et - webdi r attribute of the
<ori on- web- app> element.

« Temporary Directory corresponds to the t enpor ar y- di r ect or y attribute of the
<ori on- web- app> element.

« Response Buffer Size corresponds to the def aul t - buf f er - si ze attribute of the
<ori on- web- app> element.

» File Check Interval corresponds to thefi | e- nodi fi cati on- check-i nterval
attribute of the <ori on- web- app> element.

In the Session Configuration section:

« Use Cookies corresponds to the cooki es attribute of the <sessi on-t racki ng>
element, which is a subelement of the <or i on- web- app> element.

« Session Auto Join corresponds to the aut oj oi n- sessi on attribute of the
<sessi on-tracki ng>element.

= Session Timeout corresponds to the <sessi on-t i neout > subelement of the
<sessi on- conf i g>subelement of the standard <web- app> element. You can
use a <web- app> subelement under <or i on- web- app>inori on-web. xn for
deployment-specific overrides of <web- app> settings in the application web. xm
file.

« Cookie Max Age corresponds to the cooki e- max- age attribute of the
<sessi on-tracki ng>element.

« Cookie Domain corresponds to the cooki e- domai n attribute of the
<sessi on-tracki ng>element.

= Session Storage Directory corresponds to the per si st ence- pat h attribute of the
<ori on- web- app> element.

In the Class Paths section:

« Adding a classpath here corresponds to setting the pat h attribute of a
<cl asspat h> subelement of the <or i on- web- app> element.

In the Session Trackers section:

« Adding a session tracker here corresponds to setting the ser vl et - nane attribute
of a<sessi on-tracker > element, which is a subelement of the
<sessi on-tracki ng>element.

In the Virtual Directories section:

« Adding a virtual directory here corresponds to setting ther eal - pat h and
vi rt ual - pat h attributes of a <vi rt ual - di r ect or y> subelement of the
<ori on- web- app> element.

In the Tag Libraries section:

= This section lists JSP tag libraries used in the application, according to contents of
the WAR file.

Application Server Control Console Web Module Mappings Page

Figure 7-11 and Figure 7-12 contain portions of the Application Server Control
Console Web Module Mappings Page for a particular module. Drill down to this page

7-10 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Application Server Control Console Page Descriptions

by clicking Mappings under Properties in the Administration section of the Web
Module Page.

Figure 7-11 Application Server Control Console Web Module Mappings Page (1 of 2)

Mappings

Refreshed at Sunday, July 14, 2002 31707 PM PDT EEj

Servlet Mappings

Defines a mapping between a servlet and a url pattern.

Servlet Name URL Pattern
(Mo items found in J2EE deployment descriptor)

MIME Mappings

Defines a mapping between and an extension and a mime type.

A Return to Top

|1-2 of 2 vI
MIME Type Extension
textfhtml html
text/plain tt

Figure 7-12 Application Server Control Console Web Module Mappings Page (2 of 2)

Welcome Files
Welcome files will be served to the user for incoming requests without a file specified (an existing directory is

A Return to Top

specified).

File Name

(Mo iterns found in J2EE deployrment descriptor)

Error Pages A Return to Tap
Defines a mapping between an error code or java exception type and the location of a resource.

Error Code/Exception Class Location

(Mo items found in J2EE deployment descriptor)

The following settings all correspond to subelements of the <web- app> element in the
web. xm file. You can use a <web- app> subelement under <or i on- web- app>in
ori on-web. xm for deployment-specific overrides of these settings. You can use the
Advanced Properties Page for this purpose—see "Application Server Control Console
Web Module Advanced Properties Page” on page 7-14.

In the Servlet Mappings section:

« Aservlet name or URL pattern specified here corresponds to the
<servl et - name> or <ur| - pat t er n> subelement of a <ser vl et - nappi ng>
subelement of the <web- app> element.

In the MIME Mappings section:

« A MIME type and extension specified here correspond to settings in the
<m ne-type>and <ext ensi on> subelements of a <m ne- mappi ng>
subelement of the <web- app> element.

Configuration with Enterprise Manager 7-11

Application Server Control Console Page Descriptions

In the Welcome Files section:

« A file name specified here corresponds to the setting in a<wel come-fil e>
subelement of the <wel conme-fil e-1i st > subelement of the <web- app>
element.

In the Error Pages section:

« Anerror code and location specified here correspond to settings in the
<error-code>and <l ocat i on> subelements of an <er r or - page> subelement
of the <web- app> element.

= Anexception class and location specified here correspond to settings in the
<exception-type>and <l ocat i on> subelements of an <err or - page>
subelement of the <web- app> element.

Application Server Control Console Web Module Filtering and Chaining Page

Figure 7-13 displays the key portion of the Application Server Control Console Web
Module Filtering and Chaining Page for a particular module. Drill down to this page
by clicking Filtering and Chaining under Properties in the Administration section of
the Web Module Page.

Figure 7-13 Application Server Control Console Web Module Filtering and Chaining
Page

Filtering and Chaining

Refreshed at Sunday, July 14, 2002 3:42:355 PM PDT EEj

Servlet Filtering

Specifies a servlet to use as a filter. Fiters are invoked for every regquest and have the option of handling the
request or simply ignaring it and passing it on for normal processing.

Select URL Pattern Servlet Name
(Mo items found)

| Add Filter)

Servlet Chaining

Specifies a senlet to use as chainer for a specified mime-type. Useful to filtertransform certain kinds of output.

Select MIME Type Servlet Name
(Mo items found)

. Add Chain)
(Revert) (apply)

These settings correspond to or i on- web. xn elements as follows.
In the Servlet Filtering section:

= Adding afilter here is equivalent to setting the <ser vl et - nane> or
<url - pattern>subelementofa<filter-mppi ng>subelement under the
<web- app> element. The servlet name you specify is tied to a servlet class
through its standard configuration in the web. xm file.

In the Servlet Chaining section:

7-12 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Application Server Control Console Page Descriptions

« Adding a chain here is equivalent to setting the ser vl et - nane and ni ne- t ype
attributes of a <ser vl et - chai ni ng> subelement of the <or i on- web- app>
element. The servlet name you specify is tied to a servlet class through its standard
configuration in the web. xm file.

Note: Servlet chaining is an older mechanism with essentially the
same functionality as standard servlet filtering, which was
introduced in version 2.3 of the servlet specification. It is advisable
to use servlet filtering instead. See "Servlet Filters" on page 3-1.

Application Server Control Console Web Module Environment Page

Figure 7-14 shows the key portion of the Application Server Control Console Web
Module Environment Page for a particular module. Drill down to this page by clicking
Environment under Properties in the Administration section of the Web Module Page.

Figure 7-14 Application Server Control Console Web Module Environment Page

Environment

Refreshed at Sunday, July 14, 2002 3:47:22 PM POT |55

Servlet Context Parameters
Overrides the value of the web application's servlet context initialization parameters.

Name Value Deployed Value

(Mo items found in J2EE deployment descriptor)

Environment Entries A Return to Top
Overrides the value of environment entries specified in the assembly descriptar.

Name Type Description Value Deployed Value

(Mo iterns found in J2EE deployment descriptar)

Resource References A Return to Top

Associates the declaration of a reference to an external resource such as a datasource, JMS gueue ar mail
session with a JMDI-location when deploying.

JHNDI Lookup
Name Type Authorization Description Location Context

(Mo items found in J2EE deployment
descriptar)

I Bevert.) | Apply)

This page includes settings for servlet context parameter overrides, environment entry
overrides, and resource references. The overrides indicate settings in the
orion-web. xm file that override corresponding web. xmm settings.

These settings correspond to web. xm and ori on-web. xm elements as follows.
In the Servlet Context Parameters section:

« This section displays settings of web. xim <cont ext - par an® elements that can
be overridden for this deployment, along with any Deployed Value overrides that
have already been specified. Enter a new value in the Deployed Value column to

Configuration with Enterprise Manager 7-13

Application Server Control Console Page Descriptions

specify a new override. Doing so creates a <cont ext - par am nappi ng> entry in
orion-web. xm .

In the Environment Entries section:

« This section displays settings of web. xm <env- ent r y> elements that can be
overridden for this deployment, along with any Deployed Value overrides that
have already been specified. Enter a new value in the Deployed Value column to
specify a new override. Doing so creates an <env- ent r y- mappi ng> entry in
orion-web. xm .

In the Resource References section:

« This section displays a combination of web. xm and ori on-web. xni settings.
The name and type of a resource reference correspond to <r es- r ef - nanme> and
<r es-t ype> subelements under a <r esour ce- r ef > subelement of the
<web- app>element in the web. xm file. The JNDI location and lookup context
correspond to settings under a <r esour ce- r ef - mappi ng> element and its
<l ookup- cont ext > subelement, under the <ori on- web- app> element in the
ori on-web. xm file.

Application Server Control Console Web Module Advanced Properties Page

Figure 7-15 shows the key portion of the Application Server Control Console Web
Module Advanced Properties Page for a particular module. Drill down to this page by
clicking Advanced Properties under Properties in the Administration section of the
Web Module Page.

You can use the Web Module Advanced Properties Page to edit ori on- web. xm or
gl obal - web- appl i cati on. xm for any settings not covered by the previously
discussed Application Server Control Console Web module pages. In fact, you can
make any ori on- web. xm or gl obal - web- appl i cati on. xm entries through the
Advanced Properties Page; however, use the previously described pages whenever
possible because of their error handling and reporting features.

7-14 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Application Server Control Console Page Descriptions

Figure 7-15 Application Server Control Console Web Module Advanced Properties Page

& Warning

Changes to most OC4) server configuration files will trigger an automatic restart. Typographic errors in the content of a configuration
file can prevent the server from restarting. Click Help for information about restoring your ariginal settings.

Edit orion-web.xml
This configuration file is located at arion-web.xml

<?uml wersion = "1.0'7= ;I
<IDOCTYPE arion-web-app PUBLIC "-/Evermind/0TD Orion YWeb Application

2.3/EN" "http:fxmins. oracle. com/fias/dtds/arion-web. dtd"=

=otion-web-app deployment-version="3.0.2.0.0" jsp-cache-directory="/persistence” temporary-directory="./termp"

internationalize-resources="false" default-mime-type="application/octet-stream” semlet-webdir="/sernlet/">
<forion-web-app=

[

| Revert) | Apply)

Configuration with Enterprise Manager 7-15

Application Server Control Console Page Descriptions

7-16 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

A

Open Source Frameworks and Utilities

There are common open source frameworks and utilities that you can use with OC4Jin
Oracle Application Server 10g Release 2 (10.1.2). This appendix describes how to
configure and use two of them in particular: Jakarta Struts 1.0.2 and Jakarta log4j 1.2.8.

The focus of this discussion is to assist you in configuring and using these open source
utilities in the OC4J standalone environment. The following sections cover the details:

« Configuration and Use of Jakarta Struts in OC4J
« Configuration and Use of Jakarta log4j in OC4J

Important:

« The packaging and configuration instructions in this document
are written for an OC4J standalone installation. In an Oracle
Application Server installation, use the management tools
provided, such as Enterprise Manager and the dcntt |
command line utility, to accomplish the same tasks. Avoid
manual modifications to configuration files in an Oracle
Application Server environment.

« The open source utilities and frameworks discussed here are
not supported directly by Oracle. In addition, there has been no
formal testing or certification of these utilities and frameworks
with the OC4J product. For assistance in employing these
frameworks, use the regular forums available in the open
source community.

Configuration and Use of Jakarta Struts in OC4J

The following sections cover steps for using Jakarta Struts in an OC4J standalone
environment:

« Overview of Jakarta Struts

» Downloading the Struts Binary Distribution

« Unpacking the Struts Binary Distribution

« Installing and Accessing Struts Documentation

« Installing the Struts Sample Web Application

« Deploying Your Own Application with the Struts Framework

Open Source Frameworks and Utilities A-1

Configuration and Use of Jakarta Struts in OC4J

Note: Oracle JDeveloper includes a wizard that simplifies Struts
usage.

Overview of Jakarta Struts

Jakarta Struts is an open source framework to assist with the development of Web
applications using open standards such as Java servlets, JavaServer Pages, and XML.
Struts supports a modular application development model based on the
Model-View-Controller (MVC) pattern. With Struts, you can create an extensible
development environment for your application, based on industry standards and
proven design models.

The sections that follow describe how to install the Struts libraries, documentation,
and sample applications in an OC4J standalone environment. This document does not
cover how to build applications with Struts. See the user guide, installation guide, and
other documentation on the official Struts Web site, including the following locations:

http://jakarta. apache.org/struts

http://jakarta. apache.org/struts/I| earning. htn

Note: Struts is part of the Apache Jakarta Project, sponsored by
the Apache Software Foundation.

Downloading the Struts Binary Distribution
The Struts 1.0.2 distribution is available at the following location:

http://jakarta. apache.org/ builds/jakarta-struts/rel ease/vl.0.2/

Download the archive file from this location, choosing the appropriate format (ZIP file
or compressed TAR file) for your platform, and save it to your local file system.

Note: You can deploy the Struts 1.1 Beta releases to OC4J using
the same steps as in deploying the 1.0.2 release. Due to the
increased functionality in Struts 1.1, additional library files are
supplied with the distribution. The instructions given here
generally apply to deploying an application using Struts 1.1, aside
from the additional library files and tag libraries in Struts 1.1.

Unpacking the Struts Binary Distribution

Use the appropriate tool for your platform, such as WinZip or TAR, to unpack the
archive file of the Struts 1.0.2 binary distribution that you downloaded. This creates
the following directory structure:

jakarta-struts-1.0.2/1 NSTALL
jakarta-struts-1.0.2/ LI CENSE
jakarta-struts-1.0.2/ READVE

jakarta-struts-1.
jakarta-struts-1.
jakarta-struts-1.
jakarta-struts-1.
jakarta-struts-

.2/ 1ibljdbc2_0-stdext.jar
.2/1iblstruts.jar

L2/ liblstruts.tld
.2/liblstruts-bean.tld
.2/lib/struts-config_1_0.dtd

PR PR
o O O oo

A-2 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration and Use of Jakarta Struts in OC4J

jakarta-struts-1.
jakarta-struts-
jakarta-struts-
jakarta-struts-
jakarta-struts-1.
jakarta-struts-1.

jakarta-struts-1.
jakarta-struts-
jakarta-struts-
jakarta-struts-
jakarta-struts-
jakarta-struts-1.

.2/1ib/struts-formtld
.2/1ib/struts-htm .tld
.2/1iblstruts-logic.tld
.2/1iblstruts-tenplate.tld
.2/ i b/ web-app_2_2.dtd
.2/1'i b/ web-app_2_3.dtd

PR PPPPR
O OO O O o

. 2/ webapps/ st rut s- bl ank. war

. 2/ webapps/ st rut s- docunent at i on. war

. 2/ webapps/ strut s- exanpl e. war

. 2/ webapps/ strut s-exerci se-taglib. war
. 2/ webapps/ struts-tenpl at e. war

. 2/ webapps/ st rut s- upl oad. war

PR PPPPR
O OO O O o

Installing and Accessing Struts Documentation

The Struts documentation is supplied as a Web application in a WAR file in the
webapps directory of the Struts archive. Use the following steps to deploy the Struts
documentation Web application to the OC4J default application.

Configuration files are in the j 2ee/ horre/ conf i g directory.

1.

In the OC4J global application descriptor, appl i cati on. xnl , add a new
<web- nodul e> element for the st r ut s- docunent at i on. war file. Place this
element after any <web- nodul e> elements already in the file.

Specify the path to the directory in which the Struts binary distribution was
extracted. Here is a sample entry:

<orion-application ... >

<web- modul e id="struts-docunentation”
pat h="your path/jakarta-struts-1.0.2/ webapps/struts-docurmentation. war" />

</ orion-application>

In the Web site XML file, ht t p- web-si t e. xm , add a new <web- app> element
to bind the documentation Web application to a URL context path. Place this
element after any <web- app> elements already in the file. Here is a sample entry
specifying / st r ut s/ doc as the URL context path for the Struts documentation:

<web-site ... >

<web-app application="default" name="struts-documentation"
root="/struts/doc" />

</ web-site>

Note the appl i cati on="def aul t " setting to use the OC4J default application.
Any Web application deployed to OC4J must be contained in a J2EE application.
Typically, this is accomplished by packaging the Web application WAR file inside a
J2EE application EAR file. For convenience, however, you can use an OC4J default
application in deploying a standalone WAR file, as in this case.

Start OC4J from the command line:

%java -jar oc4j.jar

You will see output similar to the following:

Aut 0- unpacki ng /javaljakarta-struts-1.0.2/ webapps/ struts-docunentation. war
. done.

Open Source Frameworks and Utilities A-3

Configuration and Use of Jakarta Struts in OC4J

Oracle Application Server (10.1.2.0.0) Containers for J2EE initialized

Unpacking st r ut s- docunent at i on. war results in the creation and population
of the st rut s- docunent at i on directory and subdirectories under the
jakarta-struts-1.0.2/ webapps directory.

4. Access the documentation according to the URL context path you specified in
http-web-site. xnl:

http://host: 8888/ struts/doc

The Struts documentation welcome page appears, as in the following graphic:

#7 The Struts Framework Project - Netscape [_IC]x]
File Edit Yiew Go Communicator Help
<« 2 3 /4 = & & @ @
Back Fonwerd Reload Home Search Metscape Print Security Shop Stop)
7w Bookmaks i Location [=]

ma Project StrUts

http://jakarta.apache.org

Welcome Welcome to Struts 1.0.2

Home
Kickstant FAQ “Welcome tf’ the Struts Fr@ework! jI'hE goal of this project 1s to provide an open source framework
useful in building web applications with Java Servlet and JavaServer Pages (J5P) technelogy. Struts

User Cuids
SR encourages application architectures based on the Model-View- Controller (MVC) design paradigm,
Resoutces colloquially known as Mode! 2 in discussions on various servlet and JSP related mailing hists.
Wiho We Are
Dovinloads Struts includes the following primary areas of functionality:
Binaries

+ A controller servlet that dispatches requests to appropnate Action classes prowided by the
application developer.

Getting Started » ISP custom tag libraries, and associated support in the controller servlet, that assists
developers i creating interactive form-based applications.

+ Tty classes to support XML parsing, automatic population of JavaBeans properties based
on the Java reflection APTs, and internationalization of prompts and messages

Fource Code

Installation

Eelease Motes

Javadoc

Mailing Lists Struts is part of the Jakarta Project, spensored by the Apache Software Foundation. The official
Bug Database Strute home page is at hitp/fjakarta apache org/struts
Developer Learning About Struts
Guides
Eean Tags The Kickstart FAQ quickly answers the most common questions about Strute B
| (== |Document: Done = i EL AR Eal A 2

Installing the Struts Sample Web Application

The Struts binary distribution also provides a sample Web application in a WAR file in
the webapps directory. As with the documentation Web application, you can deploy
the Struts sample Web application to the OC4J default application. Use the following
steps. Configuration files are in the j 2ee/ home/ conf i g directory.

1. Inthe OC4J global application descriptor, appl i cati on. xnl , add a new
<web- nodul e> element for the st r ut s- exanpl e. war file. Specify the path to
the directory in which the Struts binary distribution was extracted. Here is a
sample entry:

<web- nodul e id="struts-exanple"
pat h="your _pat h/j akarta-struts-1.0.2/ webapps/struts-exanple.war" />

Place this immediately after the <web- nodul e> element you created for
struts-docunentation. war.

2. Inthe Web site XML file, ht t p- web- si t e. xm , add a new <web- app> element
to bind the sample Web application to a URL context path. Here is a sample entry

A-4 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration and Use of Jakarta Struts in OC4J

that specifies / st r ut s/ exanpl e as the URL context path for the Struts
documentation:

<web-app application="default" name="struts-exanple"
root ="/struts/exanple" />

Place this immediately after the <web- app> element you created for the
documentation Web application.

As with the documentation Web application, the appl i cati on="defaul t"
setting uses the OC4J default application to contain the sample Web application.

3. Start OC4J from the command line:

% java -jar ocdj.jar

You will see output similar to the following:

Aut o- unpacki ng /javaljakarta-struts-1.0.2/ webapps/ struts-exanpl e. war
... done.
Oracle Application Server (10.1.2.0.0) Containers for J2EE initialized

Unpacking st r ut s- exanpl e. war results in the creation and population of the
st rut s- exanpl e directory and subdirectories under the
jakarta-struts-1.0.2/ webapps directory.

4. Access the sample Web application according to the URL context path you
specified in ht t p- web-site. xm :

http://host: 8888/ struts/exanple

The Struts sample application welcome page appears, as in the following graphic:

b

#+ MailReader Demonstration Application [Struts 1.0) - Netscape

le Edit “iew Go Communicator Help

v o A & 2 m oS & O F N

Back Forward Reload Home Search Metzcape Frint Security Shop Stop

wf " Bookmarks A Location:l =]
MailR eader Demonstration Application Options

» Fepister with the MailR eader Demonstration Application
* Log on to the MailFeader Demonstration Application

A Walking Tour of the Example Application

Powered by

Struts

Ei |Document: Done £ B2 | s

Deploying Your Own Application with the Struts Framework

When deploying your own applications using the Struts framework, you must
package the Struts library artifacts within your own WAR file and configure the

Open Source Frameworks and Utilities A-5

Configuration and Use of Jakarta Struts in OC4J

standard web. xm deployment descriptor with the required entries for the Struts
components. Your Web application will be constructed and packaged as a WAR file.

Note: A good example of a WAR file configured to use Struts is
provided in the webapps folder of the Struts archive file as

st rut s- bl ank. war . This example serves as a useful template
when constructing your own Web applications.

1. Copy the Struts library from the Struts | i b directory to the/ VEB- I NF/ | i b
directory of your application. The following example is for a UNIX environment
(from the directory in which you unpacked the archive file), where "% is the
system prompt:

%cp jakarta-struts-1.0.2/lib/struts.jar web-inf/lib

2. Copy the Struts tag library descriptor files (all . t | d files, for JSP tag libraries)
from the Struts | i b directory to your / VEB- | NF directory:
%cp jakarta-struts-1.0.2/1ib/*.t1d web-inf

Note: These steps, using a JSP 1.1 methodology, describe only one
way to access JSP tag library descriptor files. Other options are
available in a JSP 1.2 environment such as in OC4J. See the Oracle
Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide for information.

3. Add Struts servlet and tag library entries to the web. xm file.

a. Add the servlet definition element for the Struts controller. (You can optionally
specify an application-wide MessageResour ce file to use, the name and
location of the Struts configuration file, and additional properties such as
debugging levels.) The <ser vl et > element is a subelement of the top-level
<web- app> element.

<servl et>
<servl et - name>acti on</ servl et - nane>
<servl et-cl ass>org. apache. struts. action. ActionServl et </servl et -cl ass>
<init-paranr
<par am nane>appl i cati on</ par am nane>
<param val ue>Appl i cat i onResour ces</ param val ue>
</init-paranp
<init-parane
<par am nane>conf i g</ param nane>
<param val ue>/ WEB- | NF/ st r ut s- confi g. xm </ par am val ue>
</init-paranp
</servlet>

b. Add a servlet mapping element for the Struts controller servlet. This step
maps the servlet name (mapped to the servlet class in the <ser vl et > element
above) to a URL servlet path. The <ser vl et - mappi ng> elementis a
subelement of the top-level <web- app> element.

<servl et - mappi ng>
<servl et - name>acti on</ servl et - nane>
<url-pattern>*. do</url-pattern>

</ servl et - mappi ng>

A-6 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration and Use of Jakarta log4j in OC4J

c. Add entries for the Struts tag libraries. These entries assume the TLD files
were placed in the / VVEB- | NF directory as shown in Step 2. The <t agl i b>
element is a subelement of the top-level <web- app> element.

<taglib>
<taglib-uri> VEB- | NF/ struts-bean.tld</taglib-uri>
<taglib-location> WEB- | NF/ struts-bean.tld</taglib-location>
</taglib>

<taglib>
<taglib-uri> VEB-INF/ struts-htm.tld</taglib-uri>
<taglib-location> WEB-INF/struts-htm .tld</taglib-location>
</taglib>

<taglib>
<taglib-uri> WEB-INF/ struts-logic.tld</taglib-uri>
<taglib-location> WEB-1NF/struts-logic.tld</taglib-|ocation>
</taglib>

You now have a Web application that can support the deployment of applications that
utilize the Struts framework.

After the remainder of the Web application—including JSP pages, servlets, Struts
components, and other files—has been added to the WAR file, the application can be
deployed to OC4J.

Note: Additional steps are required to use Struts within your
applications. You must also create the Action classes and other
components used by Struts at runtime and make corresponding
entries in the Struts configuration file, st rut s- confi g. xm .
These points are not OC4J-specific and are beyond the scope of this
document. See the learning guide on the Struts Web site for more
information:

http://jakarta.apache. org/struts/|earning. htm

Configuration and Use of Jakarta log4j in OC4J

The following sections cover considerations for using Jakarta log4j in an OC4J
standalone environment:

Overview of Jakarta log4j

Downloading the log4j Binary Distribution
Unpacking the log4j Binary Distribution
Installing the log4j Library

Using log4j Configuration Files

Enabling log4j Debug Mode

Overview of Jakarta log4j

The log4j framework is an open source project that provides an efficient and flexible
API to support runtime logging operations for Java applications. It enables developers
to insert log statements into their code, incorporating messages at different levels of
alarm as desired. Log4j also enables system administrators to separately define the

Open Source Frameworks and Utilities A-7

Configuration and Use of Jakarta log4j in OC4J

level of logging they wish to see from the application at runtime, without requiring
changes to the supplied application code.

Features of log4j allow you to enable logging at runtime without having to modify the
application binary file. Statements can remain in shipped code without incurring
significant performance cost. Logging is controlled through a configuration file
without requiring changes to the application binary.

The sections that follow describe how to install the log4j library and configure it for
use with OC4J. Use of the extensive log4j API is not OC4J-specific, so is not covered in
this document. See the documentation on the official log4j Web site, including the
following locations:

http://jakarta.apache.org/l og4j/docs/index. htm

http://jakarta. apache. org/| og4j/docs/ docunent ati on. ht m

Note: The log4j framework is part of the Apache Jakarta Project,
sponsored by the Apache Software Foundation.

Downloading the log4j Binary Distribution

The log4j distribution is available at the following location:
http://jakarta. apache. org/| og4j/docs/ downl oad. ht m

Download the archive file from this location, choosing the appropriate format (ZIP file
or compressed TAR file) for your platform, and save it to your local file system.

Unpacking the log4j Binary Distribution
Use the appropriate tool for your platform, such as WinZip or TAR, to unpack the
log4j archive file that you downloaded. This creates and populates the following
directory structure:

jakarta-log4j-1.2.8/
bui I d/
contrib/

di st/
cl asses/

i b) h
docs/

exanpl es/

srcl/
(Some of the directory structure is not shown; there are many further subdirectories.)

Installing the log4j Library

To enable J2EE applications to use log4j functionality, the log4j library must be made
available by the classloaders of OC4J. You can accomplish this in several ways,
depending on your specific operational requirements. For example, you can install the
log4j library at a system or global application level, making it available to all

A-8 Oracle Application Server Containers for J2EE Servlet Developer’'s Guide

Configuration and Use of Jakarta log4j in OC4J

applications deployed to the container. Alternatively, you can package the log4j library
as a library of a specific application (or applications). Different approaches have
different operating characteristics, such as the way in which the automatic loading of
configuration files works. For more details about possible approaches and their
advantages and disadvantages, refer to the log4j Web site and user mailing lists.

The following sections cover three techniques to make log4j available to OC4J:

« Usethe log4j Library at a Global Application Level

« Package the log4j Library as a Web Application Library

« Package the log4j Library as a Shared Library for EJB and Web Applications

Use the log4j Library at a Global Application Level

To install the log4j library at a global application level in OC4J, copy the

| og4j - 1. 2. 8. j ar file from the log4j! i b directory to thej 2ee/ hone/ appli b
directory. By default, a <l i br ar y> element in the

j 2ee/ honme/ confi g/ appli cation. xm global application descriptor makes this
directory available for libraries that are to be shared between all applications deployed
to the OC4J instance. At runtime, OC4J automatically loads all libraries in the appl i b
directory. The following example is for a UNIX environment (from the directory in
which you unpacked the archive file), where "% is the system prompt:

%cp jakarta-1og4j-1.2.8/dist/lib/log4j-1.2.8.jar j2eel hone/applib

Notes:

« Beaware of the overhead in using this approach. If you do not
want the log4j library to always be loaded, do not use the
appl i b directory.

« Do notusethe appl i b directory for log4j in an Oracle
Application Server environment. Oracle Enterprise Manager
10g also uses log4j, and placing your copy at the global
application level may cause version conflicts for Enterprise
Manager.

Package the log4j Library as a Web Application Library

To package the log4j library for a specific Web application, copy the

| og4j - 1. 2. 8. j ar file from the log4j ! i b directory into the / VEB- I NF/ | i b
directory of your Web application. At runtime, the servlet container makes the log4j
library available to the Web application through a Web application classloader. The
following example is for a UNIX environment (from the directory in which you
unpacked the archive file), where "% is the system prompt:

%cp jakarta-log4j-1.2.8/dist/lib/logdj-1.2.8.jar web-inf/lib

Package the log4j Library as a Shared Library for EJB and Web Applications

When you have an application that comprises EJB components and Web components
that all use log4j, you can package the log4j library as a single shared library that both
sets of components can use.

The J2EE classloading mechanism implies that a Web application deployed within the
same EAR file as an EJB application has access to classes available in the EJB

Open Source Frameworks and Utilities A-9

Configuration and Use of Jakarta log4j in OC4J

classloader. Making log4j a library of the EJB application also makes it a library of the
Web application.

The EJB classloader, as well as the Web classloader, can access any libraries specified in
the Cl ass- Pat h attribute of the META- | NF/ Mani f est . nf file of the EAR file. The
library JAR files are loaded relative to the file (such as the EAR file) with the

Cl ass- Pat h entry, so they are stored in the same directory as that file. Using this
facility, it is possible to place the log4j JAR file in the same directory as the EJB JAR file
and reference it in the manifest file as a required library. This also makes the log4j
library accessible to the Web applications inside the same EAR file, because they have
visibility of the classes of the EJB components.

Figure A-1 illustrates the classloading hierarchy for a J2EE application.

Figure A-1 J2EE Classloading Hierarchy

|4l Resource-Adapters |

| All EJBs |

] f

| Web-Module 1 | | Web-Module 2 |

Using log4j Configuration Files

The log4j framework enables you to control logging behavior through settings
specified in an external configuration file, allowing you to make changes to the
logging behavior without modifying application code.

There are three common ways to use the external configuration files. Each approach
defines what the configuration files are named and how they are located by the J2EE
application server at runtime.

The following sections describe the three approaches:
« Use the Default Files for Automatic log4j Configuration
« Use Alternative Files for Automatic log4j Configuration

« Programmatically Specify External Configuration Files

Use the Default Files for Automatic log4j Configuration

By default, log4j uses a configuration file named | og4j . properti es orl og4j . xni
to determine its logging behavior. It automatically attempts to load these files from the
classloaders available to it at runtime. If it finds both files, then | og4j . xmi takes
precedence.

To use an automatic configuration file, place it in a directory location that falls within
the classpath used by OC4J. This includes, in order of loading precedence:

1. Global application level:j 2ee/ home/ appl i b
2. Web application level: / WEB- | NF/ cl asses

A-10 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration and Use of Jakarta log4j in OC4J

Note: A log4j runtime is configured only once, using the
automatic configuration files, when the first call is made to the

or g. apache. | og4j . Logger class. If you install the log4j library
at the global application level, by placing it in the

j 2eel/ honme/ appl i b directory, then you can use only one
automatic configuration file to define all the log levels, appenders,
and other log4j properties for all the applications running on your
server. If you install the log4j library separately for each Web
application, in each / VEB- | NF/ | i b directory, then the log4j logger
is initialized separately for each Web application. This enables you
to use separate automatic log4j configuration files for each Web
application. Visit the following log4j Web site and see the log4j user
mailing list for more information:

http://ww. nai |l -archi ve. conl | og4j -user @ akart a. apache. or g/

Use Alternative Files for Automatic log4j Configuration

You can choose alternative file names instead of using the default names for automatic
configuration of log4j. To do this, specify an additional runtime property when OC4J is
started, as follows, where "% is the system prompt and ur | designates the location of
the configuration file to use:

% java - Dl og4j.configuration=url
If the specified value for the | 0og4j . confi gur ati on property is a fully formed URL,
log4j loads the URL directly and uses that as the configuration file.

If the specified value is not a correctly formed URL, log4j uses the specified value as
the name of the configuration file to load from the classloaders it has available.

For example, assume OC4J is started as follows (where this is a single wraparound
command line):

% java - Dl og4j.debug=true -D og4j.configuration=file:///d:\tenp\foobar.xn
-jar oc4j.jar
In this case, log4j tries to load the file d: \ t enp\ f oobar . xm as its configuration file.
As another example, assume OCA4J is started as follows:
% java - Dl og4j.debug=true -Dl og4j.configuration=foobar.xm -jar oc4j.jar
In this case, log4j tries to load f oobar . xm from the classloaders it has available. This

works in the same manner as using the default automatic configuration file
| og4j . xm , but using the specified file name instead.

Note: This approach, although offering an additional level of
flexibility, does require all external configuration files for all
deployed applications to have the same name.

Programmatically Specify External Configuration Files

Instead of relying on the automatic configuration file loading mechanism, some
applications use a programmatic approach to load the external configuration file. In
this case, the path to the configuration file is supplied directly within the application
code. This allows different file names to be used for each application. The log4j utility

Open Source Frameworks and Utilities A-11

Configuration and Use of Jakarta log4j in OC4J

loads and parses the specified configuration file (either an XML document or a
properties file) to determine required logging behavior.

Here is an example:

public void init(ServletContext context) throws ServletException

{
/1 Load the barfoo.xm file as the log4j external configuration file.
DOVConf i gur at or ("barfoo. xm");
| ogger = Logger . get Logger (Log4JExanpl e. cl ass) ;

}

In this case, log4j tries to load bar f co. xm from the same directory from which OC4J
was started.

Using the programmatic approach provides the most flexibility to developers and
system administrators. A configuration file can be of any arbitrary name and be
loaded from any location. System administrators can still make changes to the logging
behavior without requiring application code changes through the external
configuration file.

To provide even further flexibility, and to avoid coding a specific name and location
into an application, a useful technique is to supply the file name and location as
parameters inside the standard web. xm deployment descriptor. The servlet or JSP
page reads the values of the parameters specifying the location and name of the
configuration file, and dynamically constructs the location from which to load the
configuration file. This process allows system administrators to choose both the name
and location of the configuration file to use.

Here is a sample web. xm entry specifying the name and location of the configuration
file:

<cont ext - par an

<par am nane>| og4j - confi g-fil e</ par am nane>

<par am val ue>/ web- i nf/ cl asses/ app2- | og4j - confi g. xm </ par am val ue>
</ cont ext - par anp

The application reads the location value from the deployment descriptor, constructs a
full path to the file on the local file system, and loads the file. Following is some
sample code:

public void init(ServletContext context) throws ServletException
{
/*
* Read the path to the config file fromthe web.xm file,
* shoul d return sonething line /web-inf/xxx.xm or web-inf/classes/xxx.xm.
*/
String configPath = context.getlnitParaneter("log4j-config-file");

/*
* This loads the file based on the base directory of the web application
*as it is deployed on the application server.
*/
String real Path = context. get Real Pat h(confi gPath);
if(real Path!=null)
DOMConf i gur ator. confi gure(real Pat h);
_logger = Logger. get Logger (Log4JExanpl e. cl ass);

}

A-12 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

Configuration and Use of Jakarta log4j in OC4J

Note: Itis a good practice to place files that define behavior, and
that should not be accessible to clients from an HTTP request,
directly into the / VEB- | NF directory of the Web application. (Do
not use a subdirectory of / WEB- | NF.) This appliesto | og4j . xm ,
for example. The servlet specification requires contents of the

/ VIEB- | NF directory to be inaccessible to clients.

Enabling log4j Debug Mode

When deploying an application on OC4J that uses log4j and external configuration
files, it is sometimes helpful to view how log4j is trying to find and load the requested
configuration files. To facilitate this, log4j provides a debug mode that displays how it
is loading (or attempting to load) its configuration files.

To turn on log4j debug mode, specify an additional runtime property when you start
OC4], as follows (where "% is the system prompt):

% java - Dl og4j.debug=true -jar oc4j.jar

OC4J displays output similar to the following:

Oracle Application Server (10.1.2.0.0) Containers for J2EE initialized
log4j: Trying to find [l og4j.xm] using context classloader [C assLoader:
[[D:\nyprojects\java\l og4j\appl\ webappl\ VEB- | NF\ cl asses],

[D:\'myproj ects\java\l og4j\appl\ webappl\VWEB- I NF\ | ib/log4j-1.2.7.jar]]].
logdj: Using URL [file:/D:/nyprojects/javallogdj/appl/ webappl/ VEB- | NF/ cl asses/
log4j.xm] for automatic |og4j configuration.

| ogdj: Preferred configurator class: org.apache.|og4j.xnl.DOMConfi gurator
| og4j: Systemproperty is :null

| og4j : Standard Document Bui | der Fact ory search succeded.

| og4j : DocunentBuil derFactory is: oracle.xnl.jaxp. JXDocunment Bui | der Factory
log4j: URL to log4j.dtd is [classloader:/org/apache/l og4j/xm /| og4j.dtd].
| og4j: debug attribute= "null".

l og4j: Ignoring debug attribute.

| og4j: Threshold ="null".

| og4j: Level value for root is [debug].

| og4j: root |evel set to DEBUG

l ogd4j: Cass name: [org.apache. | og4dj.Fil eAppender]

log4j: Setting property [file] to [d:/tenp/webappl.out].

| ogdj: Setting property [append] to [false].

| og4j: Parsing |ayout of class: "org.apache.|og4j.PatternLayout"

| ogdj: Setting property [conversionPattern] to [%% 5p %l{ DDY MM yyyy}
d{HH nm ss} [% 10c] [%] %] .

| ogdj: setFile called: d:/tenp/webappl.out, false

| og4j: setFile ended

| og4j : Adding appender naned [FileAppender] to category [root].

Note: You can also use the debug attribute of the

| og4j : confi gur ati on tag in an external configuration file to
enable debug output. However, this does not display the loading
operations that take place, so does not offer the best service for
resolving problems in loading configuration files.

Open Source Frameworks and Utilities A-13

Configuration and Use of Jakarta log4j in OC4J

A-14 Oracle Application Server Containers for J2EE Servlet Developer’s Guide

B

Third-Party Licenses

This appendix contains the Third-Party License for third-party products included with
Oracle Application Server and discussed in this manual. Topics include:

Apache HTTP Server

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software, and
the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

The Apache Software License

-
*

R T T I T

The Apache Software License, Version 1.1

Copyright (c) 2000-2002 The Apache Software Foundation. All rights
reserved.

Redi stribution and use in source and binary forms, with or wthout
modi fication, are pernmitted provided that the foll owing conditions
are net:

1. Redistributions of source code nust retain the above copyright

notice, this list of conditions and the followi ng disclainer.

Redi stributions in binary formmust reproduce the above copyright
notice, this list of conditions and the following disclainer in
the docunentation and/or other materials provided with the
distribution.

. The end-user docunmentation included with the redistribution,

if any, must include the fol |l owi ng acknow edgnent:

"Thi s product includes software devel oped by the

Apache Software Foundation (http://ww. apache.org/)."
Alternately, this acknow edgnent nay appear in the software itself,
if and wherever such third-party acknow edgments normal |y appear.

. The names "Apache" and "Apache Software Foundation" nust

not be used to endorse or pronote products derived fromthis

Third-Party Licenses B-1

Apache HTTP Server

R R T R I

* %k ok % ok kX

sof tware without prior witten pernission. For witten
perm ssion, please contact apache@pache. org.

5. Products derived fromthis software may not be called "Apache",
nor may "Apache" appear in their name, wthout prior witten
perm ssion of the Apache Software Foundation.

TH' S SOFTWARE | S PROVIDED " "AS IS'' AND ANY EXPRESSED OR | MPLI ED
WARRANTI ES, I NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES
CF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAI MED. | N NO EVENT SHALL THE APACHE SOFTWARE FOUNDATI ON CR

I TS CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (1 NCLUDI NG, BUT NOT
LIMTED TO, PROCUREMENT COF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF
USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THECRY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY,
OR TORT (I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARISING I N ANY WAY OUT
CF THE USE OF TH S SOFTWARE, EVEN |IF ADVI SED OF THE PCSSI Bl LI TY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many

i ndividuals on behalf of the Apache Software Foundation. For nore
information on the Apache Software Foundation, please see

<http: //ww. apache. or g/ >.

Portions of this software are based upon public domain software
originally witten at the National Center for Superconputing Applications,
University of Illinois, U bana-Chanpaign.

B-2 Oracle Application Server Containers for J2EE Servlet Developer's Guide

A

admin.jar utility
admin user/password, 5-24
bindWebApp command, 5-28
deploy command, 5-27
redeploy command, 5-36
undeploy command, 5-36
AJP (Apache JServ Protocol), 2-24
AJP (Apache JServ Protocol), secure, 2-33
AJPS, 2-33
Apache Jakarta Project open source frameworks,
config and use, A-1
Apache JServ Protocol (AJP), 2-24
Apache JServ Protocol (AJP), secure, 2-33
application descriptors, 5-11,5-14
application packaging, 5-20
Application Server Control
Deploy J2EE Application Page, 7-3
Deploy Web Application Page, 7-5
introduction, 7-1
OC4J) Administration Page, 7-6
OC4J Applications Page, 7-3
OC4) Home Page, 7-2
Web Module Advanced Properties Page, 7-14
Web Module Environment Page, 7-13

Web Module Filtering and Chaining Page, 7-12

Web Module Mappings Page, 7-10

Web Module Page, 7-7

Web Module Properties Page, 7-8

Website Properties Page, 7-6
application structure, 5-21
application.xml config file

example, 4-12,5-30

OC4J/global, 5-12

standard/application-level, 5-12
authentication

also see security

disabling for forward/include targets, 2-11
autoencode-xxx attributes (not supported), 6-9
auto-encoding (not supported), 2-28

autoreload-jsp-xxx attributes (not supported), 6-2

B

buffer size, output buffer, 6-2

Index

C

caching, sharing Java Object Cache objects, 2-
cancellation of session, 2-29
chaining, servlets, 6-8
classloading, servlets
loading WAR classes before system classes,
OC4J class reloading, 2-7
sharing cached Java objects across OC4J
servlets, 2-9
clustering (OC4J), 6-7,6-20
code template, 2-5
co-location of servlet and EJB, 4-6
configuration
application descriptors, 5-11, 5-14
for servlet invocation, 2-23
global-web-application.xml, 6-1
orion-web-app element, 6-2
orion-web.xml, 6-1
overview, OC4J and J2EE config files, 5-6
server.xml file, 5-9
Web descriptors, 5-15, 5-17
Web site descriptors, 5-18
web-app element, 6-14
web-site element, 6-20
container, servlet, 1-4
context path, 2-19
cookies, 1-6
cookies, use in servlets, 2-26

9

2-9

D
data source, OC4J, 4-1
DCM, 5-40

DCM (Distributed Configuration Management), 5-5

dcmctl utility, Oracle Application Server, 5-2,
5-39
debugging
general SSL debugging, 2-40
OC4J debugging flags, 2-17
through JDeveloper, 2-18
timing considerations in Oracle Application
Server, 2-18
default application in OC4J standalone, 5-25
default Web application
deployment, standalone, 5-34

5-3,

Index-1

in OC4J standalone, 5-25
in Oracle Application Server, 5-40
default-web-site.xml config file
DTD, 6-28
element descriptions, 6-20
hierarchical representation, 6-30
sample file, 6-30
demo location, OTN, 1-1
deployment
admin user/password, 5-24
application packaging, 5-20
application structure, 5-21
EAR and WAR structure, 5-22
EAR file, standalone, 5-27
into J2EE application structure, standalone, 5-32
of EJB sample servlet, 4-10
of JIDBC sample servlet, 4-4
overview of scenarios, 5-3
overview, standalone vs. Oracle Application
Server, 5-1
sample, EAR file, 5-29
scenarios to OC4J standalone, 5-23
to Oracle Application Server, overview, 5-39
to Web module directory structure,
standalone, 5-34
tools vs. expert modes, 5-4
WAR file, standalone, 5-32
destroy() servlet method, 1-3,2-5
distributable application, 2-29
Distributed Configuration Management (DCM), 5-5,
5-40
DMS (Dynamic Monitoring Service), 2-13
doDelete() servlet method, 1-3
doFilter() filter method, 3-2
doGet() servlet method, 1-3
doPost() servlet method, 1-3
doPut() servlet method, 1-3
Dynamic Monitoring Service (DMS), 2-13

E

EAR file
deployment, standalone, 5-27
structure, 5-22
EJB calls from servlets
co-location, 4-6
configuration, 4-10, 4-18, 4-22
deployment, 4-10
local (co-located) lookup, 4-8
local interfaces vs. remote interfaces, 4-7
lookup categories, 4-6
remote lookup outside application, 4-19
remote lookup within application, 4-14
servlet-EJB scenarios, 4-6
use of remote flag, 4-14
ejb-jar.xml config file
for servlet EJB calls, 4-11, 4-19, 4-23
enable-jsp-dispatcher-shortcuts flag, 6-4
Enterprise Manager
Application Server Control Deploy J2EE

Index-2

Application Page, 7-3

Application Server Control Deploy Web
Application Page, 7-5

Application Server Control OC4J Administration

Page, 7-6
Application Server Control OC4J Applications
Page, 7-3

Application Server Control OC4) Home Page, 7-2

Application Server Control Web Module
Advanced Properties Page, 7-14

Application Server Control Web Module
Environment Page, 7-13

Application Server Control Web Module Filtering
and Chaining Page, 7-12

Application Server Control Web Module
Mappings Page, 7-10

Application Server Control Web Module
Page, 7-7

Application Server Control Web Module
Properties Page, 7-8

Application Server Control Website Properties
Page, 7-6

Application Server Control, introduction, 7-1

Web module configuration, 7-1

event listeners

coding and deployment guidelines, 3-13

declaration, invocation, use of web.xml, 3-13

event categories, 3-11

event listener interfaces, 3-11

introduction, 1-9

methods and related classes, 3-14

sample code, 3-16

typical scenario, 3-12

expert modes, config and deploy, 5-4

F

filters
filter example #1, 3-3
filter example #2, 3-5
filter example #3, 3-7
generic code, 3-3
HelloWorldFilter, 3-4
introduction, 1-8
invocation by servlet container, 3-2
overview, 3-1
using a JSP page, 3-4
forwards (forwarding to another servlet), 2-10
front-end host, OC4J features, 2-24

G

GET, HTTP request, 2-5
getServletinfo() servlet method, 1-3,2-5
global-web-application.xml config file
DTD, 6-14
element descriptions, 6-1
hierarchical representation, 6-18
overview, 5-16
sample file, 6-19

H

HTTPS, 6-21
HttpServlet class, 1-3
HttpSession interface, 1-6
HttpSessionAttributeListener interface, 3-15
HttpSessionBindingEvent class, 3-15
HttpSessionEvent class, 3-15
HttpSessionListener interface, 3-15
http-web-site.xml config file
DTD, 6-28
element descriptions, 6-20
hierarchical representation, 6-30

includes (including another servlet), 2-10
init() servlet method, 1-3,2-5
invoking a servlet
by name (OC4J-specific), 2-22
context path routing info for OHS, 2-24
OC4J standalone, 2-25
Oracle Application Server production
environment, 2-23
summary of URL components, 2-19
use of front-end host by OC4J), 2-24

J
J2EE, 13
JAAS, 1-3

Jakarta open source frameworks, config and
use, A-1

Java Object Cache, sharing objects, 2-9

JDBC in servlets, 4-1

JDK 1.4 considerations, 2-13

IMS, 1-3

JNDI, 1-3

JSP parameters
jsp-cache-directory, 6-4
jsp-cache-tlds, 6-4
jsp-print-null, 6-3
jsp-taglib-locations, 6-4
jsp-timeout, 6-3
simple-jsp-mapping, 6-4

JTA, 1-3

L

lifecycle, servlet, 2-6
listeners--see event listeners
load-on-startup, OC4J, 2-6
logging
additional Oracle Application Server log
files, 2-16
log4j (Apache Jakarta Project), config and
use, A-7
OC4lJ log files, 2-15
ODL (Oracle Diagnostic Logging), 2-16

M

mod_oc4j module, 1-5

O

ODL (Oracle Diagnostic Logging), 2-16
open source frameworks and utilities, A-1
OPMN, 2-16, 5-40

Oracle Diagnostic Logging (ODL), 2-16

Oracle Enterprise Manager--see Enterprise Manager

Oracle Process Management and Notification
(OPMN), 2-16, 5-40
orion-application.xml config file
example, 5-31
overview, 5-13
orion-web-app element, configuration, 6-2
orion-web.xml config file
DTD, 6-14
element descriptions, 6-1
example, 5-31
hierarchical representation, 6-18
overview, 5-17
output buffer size, 6-2

P

performance, servlets, 2-12
POST, HTTP request, 2-5
preloading, servlets in OC4J), 2-6

R

redeployment

in Oracle Application Server with Enterprise

Manager, 5-41

manually redeploy WAR, standalone, 5-37

standalone, 5-36

triggering application reloading, standalone, 5-37

remote flag, for servlet-EJB calls, 4-14
replication of session state, 2-29
RMI, 1-3

S

sample servlets
demo location, OTN, 1-1
EJB local lookup, 4-8

EJB remote lookup outside application, 4-19
EJB remote lookup within application, 4-14

event listeners, 3-16

filter example #1, 3-3

filter example #2, 3-5

filter example #3, 3-7

HelloWorldServlet, 1-9

JDBC query, 4-1

session servlet, 2-31
Secure Socket Layer--see SSL
security

additional considerations, 2-40

introduction, 2-33

Index-3

OC4J and OHS configuration, 2-38
requesting client authentication, 2-37
SSL common problems and solutions, 2-39
SSL debugging, 2-40
using certificates with OC4J and OHS, 2-34
server.xml config file, 4-13
server.xml file (config), 5-9
service() servlet method, 1-3
servlet chaining, 6-8
servlet configuration object, 1-8
servlet container, 1-4
servlet context, 1-6
servlet filters
filter example #1, 3-3
filter example #2, 3-5
filter example #3, 3-7
generic code, 3-3
HelloWorldFilter, 3-4
invocation by servlet container, 3-2
overview, 3-1
using a JSP page, 3-4
Servlet interface, 1-3
servlet path, 2-19
ServletContextAttributeEvent class, 3-14
ServletContextAttributeListener interface, 3-14
ServletContextEvent class, 3-14
ServletContextListener interface, 3-14
session
cancellation, 2-29
details and examples, 2-25
introduction, 1-5
replication of state, 2-29
session servlet example, 2-31
session-tracking element, 6-9
timeout, 2-29
tracking, 1-5,2-25
tracking, in OC4J, 2-27
shutdown, OC4J, 5-25
single-thread model, servlets, 2-12
SSL, 2-33,6-21
starting OC4J, 5-25
stopping OC4J), 5-25
Struts (Apache Jakarta Project), config and use,

T

template, servlet code, 2-5
thread models in servlets, 2-11
timeout of session, 2-29
tracking of sessions, 2-25

U

undeployment
in Oracle Application Server with Enterprise
Manager, 5-41
standalone, 5-36
URL components, summary, 2-19
URL rewriting, 1-6, 2-27

Index-4

w

WAR file
deployment, standalone, 5-32
structure, 5-22
Web descriptors, 5-15, 5-17
Web module vs. Web application, 1-2
Web site descriptors, 5-18
Web site XML config files
bind Web module to Web site, 4-13
DTD, 6-28
element descriptions, 6-20
hierarchical representation, 6-30
mappings to and from, 5-19
overview, 5-18
web-app element, configuration, 6-14
web-site element, configuration, 6-20
web.xml config file
declaring event listeners, 3-13
example, 5-31
for servlet EJB calls, 4-10, 4-19
overview and example, 5-15

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	1 Servlet Overview
	Introduction to Servlets
	Review of Servlet Technology
	Advantages of Servlets
	The Servlet Interface and Request and Response Objects
	Servlets and the Servlet Container
	Introduction to Servlet Sessions
	Introduction to Session Tracking
	Introduction to the HttpSession Interface

	Introduction to Servlet Contexts
	Servlet Context Basics
	How to Obtain a Servlet Context
	Servlet Context Methods

	Introduction to Servlet Configuration Objects
	Introduction to Servlet Filters
	Introduction to Event Listeners
	JSP Pages and Other J2EE Component Types

	A First Servlet Example
	Hello World Code
	Compiling and Deploying the Servlet
	Running the Servlet

	2 Servlet Development
	OC4J Standalone for Development
	Overview: Using OC4J Standalone
	Key OC4J Flags for Development
	Removal of tools.jar from OC4J Standalone

	Servlet Development Basics and Key Considerations
	Sample Code Template
	Servlet Lifecycle
	Servlet Preloading
	Servlet Classloading and Application Redeployment
	OC4J Web Application Redeployment and Class Reloading Features
	Loading WAR File Classes Before System Classes in OC4J
	Sharing Cached Java Objects Across OC4J Servlets in Oracle Application Server

	Servlet Information Exchange
	Servlet Includes and Forwards
	Servlet Thread Models and Related Considerations
	Servlet Performance and Monitoring
	General Performance Considerations
	Oracle Application Server Dynamic Monitoring Service

	JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

	Additional Oracle Features
	OC4J Logging
	OC4J Logs
	Oracle Diagnostic Logging Versus Text-Based Logging
	Additional Oracle Application Server Log Files

	Servlet Debugging
	OC4J Debugging Flags
	Setting OC4J Debugging Flags
	Timing Considerations for Debugging in Oracle Application Server
	Debugging Through JDeveloper and Other IDEs

	Oracle JDeveloper Support for Servlet Development
	Introduction to OC4J Support for Open Source Frameworks

	Servlet Invocation
	Summary of URL Components
	Servlet Invocation by Class Name During OC4J Development
	Servlet Invocation in an Oracle Application Server Production Environment
	Key Features for Invocation in Oracle Application Server
	Use of Perceived Front-End Hosts by OC4J

	Servlet Invocation in an OC4J Standalone Environment

	Servlet Sessions
	Session Tracking
	Overview of Session Tracking
	Cookies
	URL Rewriting
	Other Session Tracking Methods
	Session Tracking in OC4J

	Features of the HttpSession Interface
	Session Cancellation
	Cancellation Through a Timeout
	Cancellation by the Servlet

	Session Replication in a Distributable Application
	Overview of Session Replication and Requirements
	Possible Clustering Error Conditions and Related Environment Flags
	Session Replication Details and Logistics

	Session Servlet Example
	SessionServlet Code
	Deploying and Testing

	Servlet Security
	Use of Security Features
	Using Certificates with OC4J and Oracle HTTP Server
	Requesting Client Authentication

	Configuration of Oracle HTTP Server and OC4J for SSL
	Oracle HTTP Server Configuration Steps for SSL
	OC4J Configuration Steps for SSL

	SSL Common Problems and Solutions
	SSL Common Errors
	General SSL Debugging

	Additional Security Considerations

	3 Servlet Filters and Event Listeners
	Servlet Filters
	Overview of Servlet Filters
	How the Servlet Container Invokes Filters
	Filtering of Forward or Include Targets
	Filter Examples
	Filter Example 1
	Filter Example 2
	Filter Example 3

	Event Listeners
	Event Categories and Listener Interfaces
	Typical Event Listener Scenario
	Event Listener Declaration and Invocation
	Event Listener Coding and Deployment Guidelines
	Event Listener Methods and Related Classes
	ServletContextListener Methods, ServletContextEvent Class
	ServletContextAttributeListener Methods, ServletContextAttributeEvent Class
	HttpSessionListener Methods, HttpSessionEvent Class
	HttpSessionAttributeListener Methods, HttpSessionBindingEvent Class

	Event Listener Sample
	Welcome Page: index.jsp
	Deployment Descriptor: web.xml
	Listener Class: SessionLifeCycleEventExample
	Session Creation Servlet: SessionCreateServlet.java
	Session Destruction Servlet: SessionDestroyServlet.java

	4 JDBC and EJB Calls from Servlets
	Use of JDBC in Servlets
	Database Query Servlet
	HTML Form
	Servlet Code: GetEmpInfo

	Deployment and Testing of the Database Query Servlet

	EJB Calls from Servlets
	Servlet-EJB Overview
	Servlet-EJB Scenarios
	EJB Local Interfaces Versus Remote Interfaces

	EJB Local Lookup
	Servlet-EJB Application Code for Local Lookup
	Configuration and Deployment for Local Lookup
	Invocation of the Servlet-EJB Application

	EJB Remote Lookup within the Same Application
	Use of the Remote Flag
	Servlet-EJB Application Code for Remote Lookup in the Same Application
	Configuration for Remote Lookup in the Same Application

	EJB Remote Lookup Outside the Application
	Servlet-EJB Application Code for Remote Lookup Outside the Application
	Configuration and Deployment for Remote Lookup Outside the Application

	5 Deployment and Configuration Overview
	General Overview of OC4J Deployment and Configuration
	Overview: OC4J Standalone Versus the Oracle Application Server Environment
	Overview of OC4J Deployment Scenarios
	Using Oracle Deployment Tools Versus Expert Modes

	Overview of Configuration Files
	Introduction to OC4J and J2EE Configuration Files
	Summary of Server, Global, and Web Site Configuration Files
	Summary of Application-Level Configuration Files

	OC4J Top-Level Server Configuration File: server.xml
	OC4J and J2EE Application Descriptors
	Standard J2EE Application Descriptors
	OC4J Global Application Descriptor
	OC4J-Specific Application Descriptors
	Summary of Relationships Between Application Descriptors

	OC4J and J2EE Web Descriptors
	Standard J2EE Web Descriptors
	OC4J Global Web Application Descriptor
	OC4J-Specific Web Descriptors
	Summary of Relationships Between Web Descriptors

	OC4J Web Site Descriptors
	Example: Mappings to and from Web Site Descriptors

	Application Packaging
	J2EE Application Structure
	EAR File and WAR File Structures
	Sample EAR and WAR File

	Deployment Scenarios to OC4J Standalone
	Setting Up an Administrative User and Password
	Starting and Stopping OC4J Standalone
	OC4J Default Application and Default Web Application
	Use of the Default Application and Default Web Application
	Configuration of the Default Application and Default Web Application

	Deploying an EAR File to OC4J Standalone
	Using admin.jar to Deploy the EAR File
	Using admin.jar to Bind the Web Application
	Sample Deployment
	Descriptors for Sample Deployment
	Invoking the Sample Application

	Deploying Files into a J2EE Application Structure on OC4J Standalone
	Deploying an Independent WAR File to OC4J Standalone
	Deploying Files into a Web Application Directory Structure on OC4J Standalone
	Using a Web Application Directory Structure in the Default Web Application
	Using a Web Application Directory Structure in an Alternative Web Application

	Application Undeployment or Redeployment in OC4J Standalone
	Using admin.jar to Undeploy an Application
	Using admin.jar to Redeploy an Application
	Manually Redeploying a WAR File
	Triggering Application Redeployment after File Manipulation

	OC4J Deployment in Oracle Application Server
	Overview of OC4J Deployment and Configuration in Oracle Application Server
	OC4J Default Web Application in Oracle Application Server
	Application Undeployment and Redeployment in Oracle Application Server
	Using Enterprise Manager to Undeploy an Application
	Using Enterprise Manager to Redeploy an Application

	6 Configuration File Descriptions
	Configuration for global-web-application.xml and orion-web.xml
	Element Descriptions for global-web-application.xml and orion-web.xml
	DTD for global-web-application.xml and orion-web.xml
	Hierarchical Representation of global-web-application.xml and orion-web.xml
	Sample global-web-application.xml Settings

	Configuration for Web Site XML Files
	Element Descriptions for Web Site XML Files
	DTD for Web Site XML Files
	Hierarchical Representation of Web Site XML Files
	Sample default-web-site.xml File

	7 Configuration with Enterprise Manager
	Web Module Configuration in Oracle Enterprise Manager 10g
	Application Server Control Console Page Descriptions
	Application Server Control Console OC4J Home Page
	Application Server Control Console OC4J Applications Page
	Application Server Control Console Deploy Application (EAR) Page
	Application Server Control Console Deploy Web Application (WAR) Page
	Application Server Control Console OC4J Administration Page
	Application Server Control Console Website Properties Page
	Application Server Control Console Web Module Page
	Application Server Control Console Web Module Properties Page
	Application Server Control Console Web Module Mappings Page
	Application Server Control Console Web Module Filtering and Chaining Page
	Application Server Control Console Web Module Environment Page
	Application Server Control Console Web Module Advanced Properties Page

	A Open Source Frameworks and Utilities
	Configuration and Use of Jakarta Struts in OC4J
	Overview of Jakarta Struts
	Downloading the Struts Binary Distribution
	Unpacking the Struts Binary Distribution
	Installing and Accessing Struts Documentation
	Installing the Struts Sample Web Application
	Deploying Your Own Application with the Struts Framework

	Configuration and Use of Jakarta log4j in OC4J
	Overview of Jakarta log4j
	Downloading the log4j Binary Distribution
	Unpacking the log4j Binary Distribution
	Installing the log4j Library
	Use the log4j Library at a Global Application Level
	Package the log4j Library as a Web Application Library
	Package the log4j Library as a Shared Library for EJB and Web Applications

	Using log4j Configuration Files
	Use the Default Files for Automatic log4j Configuration
	Use Alternative Files for Automatic log4j Configuration
	Programmatically Specify External Configuration Files

	Enabling log4j Debug Mode

	B Third-Party Licenses
	Apache HTTP Server
	The Apache Software License

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W

