
Oracle® Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide

10g Release 2 (10.1.2)

Part No. B15505-01

November 2004

Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide 10g Release 2 (10.1.2)

Part No. B15505-01

Copyright © 2002, 2004 Oracle. All rights reserved.

Primary Author: Sheryl Maring

Contributing Author: Kevin Hwang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xi

Preface ... xiii

Who Should Read This Guide? ... xiii
Documentation Accessibility ... xiii
Prerequisite Reading... xiii
Suggested Reading.. xiv
How This Guide Is Organized... xiv
Conventions ... xv

1 How Do Applications Use EJBs?

New Features of EJB 2.0 .. 1-1
Local Interface Support ... 1-1

Remote Access .. 1-2
Local Access ... 1-2
Local Interfaces and Container-Managed Relationships ... 1-2
Local Compared to Remote Access ... 1-2

Home Interface Business Methods .. 1-2
Message-Driven Beans .. 1-3
Enterprise JavaBeans Query Language (EJB QL) .. 1-3
CMP Relationships... 1-3

Oracle Application Server Object-Relational Mapping... 1-4
Third Party O-R Mappings - TopLink Integration... 1-4

CORBA Support - RMI-over-IIOP ... 1-5
Changes in Defaults for Oracle Application Server.. 1-6
Which Type of EJB Should You Use in Your Application? .. 1-6

What is a Session Bean?... 1-6
Retrieving the Context Using setSessionContext ... 1-7
What is a Stateless Session Bean? ... 1-8
What is a Stateful Session Bean?... 1-9

What is an Entity Bean?.. 1-10
Entity Beans are Uniquely Identified by a Primary Key.. 1-10
Managing the Persistent Data Within the Entity Bean... 1-11
Manage Your Persistent Data With Container-Managed Persistence 1-13

What is the Difference Between Session and Entity Beans? ... 1-14

iv

When Do You Use a Message-Driven Bean? .. 1-15
What Makes Up An EJB? ... 1-16

Interfaces for Bean Implementation is Based on Bean Type... 1-18
Parameter Passing Conventions for Your EJBs... 1-18
How to Handle Returned Parameter Objects ... 1-19

What Container Services Can You Use for EJBs? .. 1-19

2 How to Access EJBs

Steps for Accessing Any EJB .. 2-1
Client Installation of OC4J.JAR .. 2-2
Setting JNDI Properties ... 2-2

No JNDI Properties... 2-2
JNDI Properties File.. 2-2
JNDI Properties Within The Implementation... 2-3
JNDI Properties for OC4J Standalone .. 2-4

When Do You Use the Different Initial Context Factory Classes?.. 2-4
An Initial Context Factory Specific to DNS Load Balancing .. 2-5

How to Lookup the EJB Reference .. 2-5
Configuring the EJB Reference Information .. 2-6

Example of How a Client Invokes an EJB ... 2-6
Accessing an EJB in a Remote Server .. 2-10
Accessing an EJB in Another Application .. 2-11
JAAS Support for EJBs ... 2-12
Using the RIMInitialContextFactory Object.. 2-12
Recovering From Deadlock Conditions.. 2-12
Recovering From a NamingException While Accessing a Remote EJB...................................... 2-12
Recovering From NullPointerException While Accessing a Remote EJB 2-12

3 Implementing Session Beans

Developing Session Beans ... 3-2
Implement the Session Bean... 3-2

Creating the Home Interfaces ... 3-2
Creating the Component Interfaces ... 3-3
Implementing the Bean .. 3-4

Create the Deployment Descriptor.. 3-6
Archive the EJB Application... 3-7

Prepare the EJB Application for Assembly ... 3-7
Modify the Application.XML File.. 3-8
Create the EAR File.. 3-9

Deploy the Enterprise Application to OC4J.. 3-9
When Does Stateful Session Bean Passivation Occur?... 3-9

Object Types Enabled for Passivation.. 3-11
Storage of Passivated EJBs ... 3-11

Using Timers With Your Stateless Session Bean... 3-11

v

4 Entity Beans

Entity Bean Overview.. 4-1
Creating Entity Beans .. 4-2

Implement the Entity Bean Home Interface... 4-3
Implement the Entity Bean Component Interfaces ... 4-4
Implement the Entity Bean Class ... 4-4

How to Define and Use Primary Keys for Your Entity Bean ... 4-6
Defining the Entity Bean Primary Key in a Class.. 4-8
Defining an Auto-Generated Primary Key for Your Entity Bean ... 4-9

Create Data Consistency in Your Entity Bean by Using Persistence... 4-10
Tie Entity Beans Together Through Container-Managed Relationships 4-10
Managing the Entity Bean Lifecycle .. 4-11

Configuring Pool Sizes For Entity Beans .. 4-11
How to Avoid Database Resource Contention .. 4-12

Using Database Isolation Modes to Protect Against Resource Contention............................ 4-12
Configuring Entity Bean Concurrency Modes For Handling Resource Contention 4-13
Specifying Exclusive Write Access to the Database ... 4-14
Effects of the Combination of the Database Isolation and Bean Concurrency Modes 4-14

Differences Between Pessimistic and Optimistic/Serializable.. 4-15
Affects of Concurrency Modes on Clustering... 4-15

Using Transactions With Entity Beans .. 4-15
Providing Security for Your Entity Beans... 4-15
Using Timers With Your Entity Bean... 4-15

5 CMP Entity Beans

Persistence Fields ... 5-1
Default Mapping of Persistent Fields to the Database ... 5-2
Explicit Mapping of Persistent Fields to the Database ... 5-3

Configuring Lazy Loading on CMP Entity Bean Finder Methods ... 5-5
Conversion of CMP Types to Database Types.. 5-6

Simple Data Types ... 5-6
Serializable Classes .. 5-7
Other Entity Beans or Collections.. 5-7

6 Entity Relationship Mapping

Transaction Requirements .. 6-1
Defining Entity-To-Entity Relationships... 6-2

Choosing Cardinality and Direction ... 6-2
One-To-One Relationship Overview ... 6-2
One-To-Many or Many-To-One Relationship Overview.. 6-2
Many-To-Many Relationship Overview.. 6-3

Requirements in Defining Relationships.. 6-3
Define the Get/Set Methods for Each Relationship Field... 6-4
Set the Relationships in the Bean Implementation .. 6-4
Declare the Relationships in the Deployment Descriptor... 6-5
Decide Whether to Use the Cascade Delete Option... 6-8

vi

Mapping Object Relationship Fields to the Database .. 6-9
Default Mapping of Relationship Fields to the Database .. 6-9

Example of a Default Mapping of the One-To-One Relationship 6-11
Example of a Default Mapping of One-To-Many and Many-To-Many Relationships.. 6-11

Explicit Mapping of Relationship Fields to the Database ... 6-12
Quick Cookbook for Matching an Existing Database to the Bean Mappings................. 6-13
Steps for Modifying CMR Mapping Elements .. 6-13
Hand-Editing the orion-ejb-jar.xml File to Map Bean Relationships to Database Tables
6-14
One-To-One Relationship Explicit Mapping ... 6-16
Table Mapping For Primary Keys That Use AutoId... 6-21
Using a Foreign Key with the One-To-Many Relationship ... 6-21
Association Table Explicit Mapping for Relationships Overview.................................... 6-27
XML Structure for One-to-Many Relationship Mapping... 6-31
Using an Association Table with a One-to-Many Bidirectional Relationship 6-33
Using an Association Table in a One-to-Many Unidirectional Relationship.................. 6-35
Using an Association Table in Many-to-Many Relationships... 6-40

Using a Foreign Key in a Composite Primary Key .. 6-44
How to Override a Foreign Key Database Constraint ... 6-50
Performing Inner or Outer Joins on One-to-One Relationships ... 6-50
Batching SQL statements in your entity beans ... 6-50
How to map a CMP field and a CMR field to the same row in the database............................ 6-51
Synchronizing Data during Bean Creation .. 6-51

7 EJB Query Language

EJB QL Overview ... 7-2
Query Methods Overview .. 7-2

Finder Methods .. 7-2
Select Methods.. 7-3

Return Objects ... 7-3
Deployment Descriptor Semantics ... 7-4
Finder Method Example.. 7-5

Specifying Finder Methods With EJB QL Syntax .. 7-5
Define the Finder Method in the Home Interface .. 7-5
Define the Finder Method Definition in the Deployment Descriptor................................. 7-6
Relationship Finder Example.. 7-6

Specifying Finder Methods With OC4J-Specific Syntax... 7-7
Add the Finder Method to Home Interface .. 7-7
Add the Query to the OC4J-Specific Deployment Descriptor.. 7-7

Select Method Example... 7-9
Define the Select Method in the Bean Class .. 7-10
Define the Select Method Definition in the Deployment Descriptor 7-10

Oracle EJB QL Type Extensions: Date, Time, Timestamp, and SQRT .. 7-11

8 BMP Entity Beans

Creating BMP Entity Beans .. 8-2
Component and Home Interfaces ... 8-2

vii

BMP Entity Bean Implementation .. 8-3
The ejbCreate Implementation... 8-3
The ejbFindByPrimaryKey Implementation .. 8-6
Other Finder Methods ... 8-6
The ejbStore Implementation ... 8-7
The ejbLoad Implementation ... 8-7
The ejbPassivate Implementation .. 8-8
The ejbActivate Implementation.. 8-8
The ejbRemove Implementation .. 8-9

Modify XML Deployment Descriptors .. 8-9
Create Database Table and Columns for Entity Data... 8-10

9 Message-Driven Beans

MDB Overview ... 9-2
MDB Example ... 9-3

MDB Implementation Example ... 9-3
EJB Deployment Descriptor (ejb-jar.xml) for the MDB .. 9-7

MDB Using OracleAS JMS .. 9-9
Configure OracleAS JMS in the XML files .. 9-10

JMS Destination Object Configuration ... 9-10
Create the OC4J-Specific Deployment Descriptor to Use OracleAS JMS 9-10

OracleAS JMS ... 9-11
Specify the Destination and Connection Factory .. 9-11
Map Any Resource References to JNDI Names .. 9-12

Deploying the MDB .. 9-12
MDB Using Oracle JMS .. 9-13

Install and Configure the JMS Provider... 9-14
Create User and Assign Privileges ... 9-14
Create JMS Destination Objects ... 9-14

Configure the OC4J XML Files for the JMS Provider .. 9-16
Configure the DataSource... 9-16
Identify the JNDI Name of the Oracle JMS Data Source.. 9-16

Create the OC4J-Specific Deployment Descriptor to Use Oracle JMS..................................... 9-17
OracleAS JMS ... 9-17
Specify the Destination and Connection Factory .. 9-17
Map Any Resource References to JNDI Names .. 9-19

Deploy the MDB.. 9-20
Client Access of MDB... 9-20

Using an Explicit Name for the JNDI Lookup .. 9-21
Accessing OracleAS JMS Destination with Explicit JNDI Names 9-21
Accessing Oracle JMS Destination with Explicit JNDI Names ... 9-22
Steps for Sending a Message to an MDB .. 9-22

Using a Logical Name When Client Accesses the MDB.. 9-25
JNDI Naming for OracleAS JMS ... 9-26
JNDI Naming for Oracle JMS... 9-27
Client Sends JMS Message Using Logical Names... 9-27

Windows Considerations When Using MDBs .. 9-28

viii

Failover Scenarios When Using a RAC Database ... 9-28
Using Timers With Your MDB.. 9-29

10 Understanding Environment, Deployment, and Packaging

Directory Structure Recommendations for EJB Development... 10-1
Create the Deployment Descriptor .. 10-2
Archive the EJB Application ... 10-3
Prepare the EJB Application for Assembly .. 10-4

Modify the Application.XML File... 10-4
Create the EAR File... 10-5

Deploy the Enterprise Application to OC4J... 10-5
Out Of Memory Error During Deployment.. 10-5

Sharing Classes .. 10-6
Out of Memory During Execution.. 10-7
ClassCastException... 10-7
Static Block in an EJB .. 10-7
OC4J Instances Terminating Due To ping Timeout... 10-7

Configuring Environment References .. 10-8
Environment Variables... 10-9
Environment References To Other Enterprise JavaBeans ... 10-10

Examples of References to a Local Interface .. 10-10
Accessing EJBs Using Environment References.. 10-12
Examples of References to a Remote Interface .. 10-13

Environment References To Resource Manager Connection Factory References 10-14
JDBC DataSource ... 10-14
Mail Session .. 10-15
URL .. 10-17

11 Using Timers

How to Create Timers ... 11-1
Configuring Regularly Scheduled Timers (Cron Timers)... 11-2
How to Retrieve Information About the Timer... 11-4
How to Retrieve a Persisted Timer... 11-4
Executing the Timer Within the Scope of a Transaction .. 11-4
What Does a NoSuchObjectLocalException Mean with Timers?.. 11-4

12 Configuring EJB Application Security

Granting Permissions in Browser .. 12-1
Authenticating and Authorizing EJB Applications.. 12-1

Specifying Users and Groups.. 12-2
Specifying Logical Roles in the EJB Deployment Descriptor ... 12-3
Specifying Unchecked Security for EJB Methods... 12-5
Specifying the runAs Security Identity.. 12-5
Mapping Logical Roles to Users and Groups ... 12-6
Specifying a Default Role Mapping for Undefined Methods... 12-7
Specifying Users and Groups by the Client .. 12-8

ix

Specifying Credentials in EJB Clients .. 12-8
Credentials in JNDI Properties.. 12-8
Credentials in the InitialContext ... 12-9

13 EJB Clustering

EJB Clustering Overview ... 13-1
Stateless Session Clustering... 13-2
Stateful Session Bean Clustering... 13-2
Combination of HTTP and EJB Clustering.. 13-3

Enabling Clustering For EJBs ... 13-3
Configure the Multicast Address for EJB Clustering... 13-3
Configure EJB Replication for Stateful Session Beans ... 13-4

VM Termination Replication.. 13-4
End of Call Replication ... 13-4

EJB Clustering Includes JNDI Namespace Replication .. 13-4
Load Balancing Options... 13-5

Load Balancing Using Static Retrieval .. 13-5
DNS Load Balancing... 13-5

A XML Reference for ORION-EJB-JAR.XML

OC4J-Specific Deployment Descriptor for EJBs ... A-2
Enterprise Beans Section .. A-3

Session Bean Section.. A-3
Entity Bean Section .. A-6
Message Driven Bean Section .. A-11
AC4J Active EJB Section.. A-13
EJB 1.1 CMP Field Mapping Section ... A-14
Method Definition.. A-15

Assembly Descriptor Section... A-15
Element Description ... A-16

B Third Party Licenses

Apache HTTP Server .. B-1

Index

x

xi

Send Us Your Comments

Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide, 10g Release 2 (10.1.2)

Part No. B15505-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

� Did you find any errors?

� Is the information clearly presented?

� Do you need more information? If so, where?

� Are the examples correct? Do you need more examples?

� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

� Electronic mail: appserverdocs_us@oracle.com

� FAX: 650-506-7225 Attn: Oracle Java Platform Group, Information Development
Manager

� Postal service:

Oracle Corporation
Information Development Manager
500 Oracle Parkway, Mailstop 4op978
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xii

xiii

Preface

This guide gets you started building Enterprise JavaBeans for Oracle Application
Server Containers for J2EE (OC4J). It includes code examples to help you develop
your application.

Who Should Read This Guide?
Anyone developing Enterprise JavaBeans for OC4J will benefit from reading this
guide. Written especially for programmers, it will also be of value to architects,
systems analysts, project managers, and others interested in EJB applications. To use
this guide effectively, you must have a working knowledge of J2EE.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Prerequisite Reading
Before consulting this Guide, you should read the following:

� Any J2EE book that enables you to understand the basics of J2EE programming.

xiv

� The Oracle Application Server Containers for J2EE User’s Guide. This guide helps
you to understand the minimum requirements for a J2EE application in the OC4J
environment.

� The Sun Microsystems EJB 2.0 specification as a supplement to this guide. This
guide assumes that you already have a base understanding of the EJB 2.0
specification details.

Suggested Reading

Books
� Professional Java Server Programming, J2EE Edition, Wrox Press Ltd, 2000.

� Mastering Enterprise JavaBeans and the Java2 Platform Enterprise Edition, by Ed
Roman. Wily Computer Publishing, 1999.

� Designing Enterprise Applications with the Java2 Platform, Enterprise Edition,
Addison-Wesley, 2000.

� Core Java by Cornell & Horstmann, second edition, Volume II (Prentice-Hall, 1997)
demonstrates several Java concepts relevant to EJBs.

� The Developer's Guide to Understanding Enterprise JavaBeans, an overview of EJBs, is
available at http://www.Nova-Labs.com.

Online Sources
There are many useful online sources of information about Java. For example, you can
view or download guides and tutorials from the Sun Microsystems home page on the
Web:

http://www.sun.com

The current 2.0 EJB specification is available at:

http://java.sun.com/products/ejb/docs.html

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, see:

http://www.javasoft.com

How This Guide Is Organized
This guide consists of the following:

� Chapter 1, "How Do Applications Use EJBs?", presents a brief overview of EJBs.

� Chapter 2, "How to Access EJBs", discusses how to access an EJB from a servlet
within the application server or from outside the application server—either from
an EJB within another application server or from a local client. .

� Chapter 3, "Implementing Session Beans", discusses how to begin developing J2EE
applications.

� Chapter 4, "Entity Beans", discusses entity beans.

� Chapter 5, "CMP Entity Beans", discusses a CMP entity bean and advanced issues
connected with CMP entity beans.

xv

� Chapter 6, "Entity Relationship Mapping", discusses container-managed
relationships (CMR) within the entity bean for OC4J.

� Chapter 7, "EJB Query Language", provides an overview and examples of setting
up query methods that use EJB QL.

� Chapter 8, "BMP Entity Beans", discusses a BMP entity bean.

� Chapter 9, "Message-Driven Beans", discusses an MDB entity bean.

� Chapter 10, "Understanding Environment, Deployment, and Packaging", discusses
how to set up your development environment, as well as packaging and
deploying your applications.

� Chapter 12, "Configuring EJB Application Security", discusses EJB application
security.

� Chapter 11, "Using Timers", discusses the use of timers within different EJB types.

� Chapter 13, "EJB Clustering", discusses how to cluster EJBs across OC4J nodes.

� Appendix A, "XML Reference for ORION-EJB-JAR.XML" describes the
OC4J-specific deployment descriptor.

� Appendix B, "Third Party Licenses", contains the third party software licenses for
this product.

Conventions
The following conventions are used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

xvi

How Do Applications Use EJBs? 1-1

1
How Do Applications Use EJBs?

This chapter discusses EJB concepts that are specified fully in the J2EE specification.
The remainder of the chapters in this book show only the tasks necessary to develop
your EJBs.

For more details and examples of the concepts presented in this chapter, refer to books
written by Sun Microsystems that discuss EJBs and J2EE Blueprint Architecture
recommendations.

This chapter includes the following topics:

� New Features of EJB 2.0

� Changes in Defaults for Oracle Application Server

� Which Type of EJB Should You Use in Your Application?

� What Makes Up An EJB?

� What Container Services Can You Use for EJBs?

New Features of EJB 2.0
The following sections describe the new features to EJB 2.0:

� Local Interface Support

� Home Interface Business Methods

� Message-Driven Beans

� Enterprise JavaBeans Query Language (EJB QL)

� CMP Relationships

� CORBA Support - RMI-over-IIOP

Local Interface Support
Oracle Application Server provides complete support for local interfaces.

A client may access a session or an entity bean only through the methods defined in
the bean's interfaces which define the client's view of a bean. All other aspects of the
bean - method implementations, deployment descriptor settings, abstract schemas,
database access calls - are hidden from the client providing modularity and
encapsulation. Well designed interfaces simplify the development and maintenance of
J2EE applications by shielding clients from any complexities in the business logic and
also allowing the EJBs to change internally without affecting the clients. EJBs support
two types of client access - remote or local.

New Features of EJB 2.0

1-2 Enterprise JavaBeans Developer’s Guide

Remote Access
A remote client of an enterprise bean has the following traits:

1. It may run on a different machine and a different Java Virtual Machine (JVM) than
the enterprise bean it accesses.

2. It can be a Web component, a J2EE application client, or another enterprise bean.

3. To a remote client, the location of the enterprise bean is transparent. To create an
enterprise bean with remote access, you must code a remote interface and a home
interface. The remote interface defines the business methods that are specific to the
bean.

Local Access
A local client has these characteristics:

1. It must run in the same JVM as the enterprise bean it accesses.

2. It may be a web component or another enterprise bean.

3. To the local client, the location of the enterprise bean it accesses is not transparent.

4. It is often an entity bean that has a container-managed relationship with another
entity bean. To build an enterprise bean that allows local access, you must code a
local interface and a local home interface. The local interface defines the bean's
business methods and the local home interface defines its life-cycle and finder
methods.

Local Interfaces and Container-Managed Relationships
If an entity bean is the target of a container-managed relationship, then it must have
local interfaces. Further, if the relationship between the EJBs is bidirectional, both
beans must have local interfaces. Moreover, since they require local access, entity
beans that participate in a container-managed relationship must reside in the same EJB
container. The primary benefit of this locality is increased performance - local calls are
usually faster than remote calls.

Local Compared to Remote Access
The decision on whether to allow local or remote access depends on the following
factors:

1. Container-Managed Relationships - If an entity bean is the target of a
container-managed relationship, it must use local access.

2. Tight or Loose Coupling of Related Beans - tightly coupled beans depend on one
another. For example, a completed sales order must have one or more line items,
which cannot exist without the order to which they belong. The OrderEJB and
LineItemEJB beans that model this relationship are tightly coupled. Tightly
coupled beans are good candidates for local access. Since they fit together as a
logical unit, they probably call each other often and would benefit from the
increased performance that is possible with local access.

Home Interface Business Methods
Home interface business methods are used for public usage of methods that do not use
entity bean persistent data. If you want to supply methods that perform duties for you
that are not associated with any specific bean, a home interface business method
allows you to publicize this method.

New Features of EJB 2.0

How Do Applications Use EJBs? 1-3

Message-Driven Beans
You can implement EJB 2.0 message-driven beans with Oracle JMS. A full example is
provided in Chapter 9, "Message-Driven Beans".

Enterprise JavaBeans Query Language (EJB QL)
EJB QL defines the queries for the finder and select methods of an entity bean with
container-managed persistence. A subset of SQL92, EJB QL has extensions that allow
navigation over the relationships defined in an entity bean's abstract schema. The
abstract schema is part of an entity bean's deployment descriptor and defines the
bean's persistent fields and relationships. The term "abstract" distinguishes this
schema from the physical schema of the underlying datastore. The abstract schema
name is referenced by EJB QL queries since the scope of an EJB QL query spans the
abstract schemas of related entity beans that are packaged in the same EJB JAR file. For
an entity bean with container-managed persistence, an EJB QL query must be defined
for every finder method (except findByPrimaryKey). The EJB QL query determines
the query that is executed by the EJB container when the finder method is invoked.

Oracle Application Server provides complete support for EJB QL with the following
important features:

� Automatic Code Generation: EJB QL queries are defined in the deployment
descriptor of the entity bean. When the EJBs are deployed to Oracle Application
Server, the container automatically translates the queries into the SQL dialect of
the target data store. Because of this translation, entity beans with
container-managed persistence are portable -- their code is not tied to a specific
type of data store.

� Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL,
batched statement dispatch, and so on to make database access efficient.

� Support for Oracle and Non-Oracle Databases: Further, Oracle Application Server
provides the ability to execute EJB QL against any database - Oracle, MS
SQL-Server, IBM DB/2, Informix, and Sybase.

� CMP with Relationships: Oracle Application Server supports EJB QL for both
single entity beans and also with entity beans that have relationships, with
support for any type of multiplicity and directionality.

See Chapter 7, "EJB Query Language" for more information and examples.

CMP Relationships
The EJB 2.0 specification enables the specification of relationships between entity
beans. An entity bean can be defined so as to have a relationship with other entity
beans. For example, in a project management application the ProjectEJB and
TaskEJB beans would be related because a project is made up of a set of tasks. You
implement relationships differently for entity beans with bean-managed-persistence
than those entity beans that utilize container-managed-persistence. With
bean-managed persistence, the code that you write implements the relationships. With
container-managed persistence, the EJB container takes care of the relationships for
you. For this reason, relationships in entity beans with container-managed persistence
are often referred to as container-managed relationships.

� Relationship Fields - A relationship field in an EJB identifies a related bean. A
relationship field is virtual and is defined in the enterprise bean class with access

New Features of EJB 2.0

1-4 Enterprise JavaBeans Developer’s Guide

methods. Unlike a persistent field, a relationship field does not represent the
bean's state.

� Multiplicity in Container-Managed Relationships - There are four types of
multiplicities all of which are supported by Oracle Application Server:

– One-to-One - Each entity bean instance is related to a single instance of
another entity bean.

– One-to-Many - An entity bean instance is related to multiple instances of the
other entity bean.

– Many-to-One - Multiple instances of an entity bean may be related to a single
instance of the other entity bean. This multiplicity is the opposite of
one-to-many.

– Many-to-Many - The entity bean instances may be related to multiple
instances of each other.

� Direction in Container-Managed Relationships - The direction of a relationship
may be either bi-directional or unidirectional. In a bi-directional relationship, each
entity bean has a relationship field that refers to the other bean. Through the
relationship field, an entity bean's code can access its related object. If an entity
bean has a relative field, then we often say that it "knows" about its related object.
For example, if an ProjectEJB bean knows what TaskEJB beans it has and if
each TaskEJB bean knows what ProjectEJB bean it belongs to, then they have a
bi-directional relationship. In a unidirectional relationship, only one entity bean
has a relationship field that refers to the other. Oracle Application Server
supports both unidirectional and bi-directional relationships between EJBs.

� EJBQL and CMP With Relationships - EJB QL queries often navigate across
relationships. The direction of a relationship determines whether a query can
navigate from one bean to another. With Oracle Application Server, EJBQL queries
can traverse CMP Relationships with any type of multiplicity and with both
unidirectional and bi-directional relationships.

For more information, see Chapter 5, "CMP Entity Beans", Chapter 6, "Entity
Relationship Mapping", and Chapter 7, "EJB Query Language".

Oracle Application Server Object-Relational Mapping
Oracle Application Server furnishes, out of the box, its own persistence manager for
entity beans, which supplies both simple (1:1) mapping and complex relationship (1:n,
m:n) mapping. Oracle Application Server provides complete support for the EJB 2.0
O-R mapping specification.

For more information, see Chapter 6, "Entity Relationship Mapping".

Third Party O-R Mappings - TopLink Integration
Oracle Application Server integrates leading third party O-R mapping solutions
including TopLink for Java, with the EJB container. TopLink provides developers with
the flexibility to map objects and Enterprise Java Beans to a relational database schema
with minimal impact. TopLink for Java provides advanced mapping capabilities such
as bean/object identity mapping, type and value transformation, relationship
mapping (1:1, 1:n and m:n), object caching and locking, batch writing, and advanced
and dynamic query capabilities. TopLink offers a GUI mapping tool - the TopLink
Mapping Workbench - which simplifies the process of mapping J2EE components to
database objects. TopLink provides EJB 2.0 support, automatic or
developer-configured bi-directional relationship maintenance, automatic or
developer-configured cache synchronization session management via XML, and

New Features of EJB 2.0

How Do Applications Use EJBs? 1-5

optimistic read locking. Oracle Application Server is also integrated with other leading
O-R mapping solutions in the market.

For more information on TopLink, see the Oracle Application Server TopLink Getting
Started Guide.

CORBA Support - RMI-over-IIOP
RMI over IIOP is part of the J2EE 1.3 Specification and provides two important
benefits:

� RMI over IIOP provides the ability to write CORBA applications for the Java
platform without learning CORBA Interface Definition Language (IDL).

� IIOP eases legacy application and platform integration by allowing applications
written in C++, Smalltalk, and other CORBA supported languages to
communicate with J2EE components.

Oracle Application Server supports RMI-over-IIOP providing the following important
facilities:

� Automatic IDL Stub and Helper Class Generation - To work with CORBA
applications in other languages, IDL, CORBA stubs and skeletons can be
generated:

1. Automatically by Oracle Application Server when the J2EE Application is
deployed to it.

2. IDL can also be generated from J2EE interfaces using the rmic compiler with
the -idl option. Further, developers can use the rmic compiler with the
-iiop option to generate IIOP stub and tie classes, rather than Java Remote
Messaging Protocol (JRMP) stub and skeleton classes.

� Objects-By-Value - The Oracle Application Server RMI-IIOP implementation
provides flexibility by allowing developers to pass any serializable Java object
(Objects By Value) between application components.

� POA Support - The Portable Object Adapter (POA) is designed to provide an
object adapter that can be used with multiple ORB implementations with a
minimum of rewriting needed to deal with different vendors' implementations.
The POA is also intended to allow persistent objects -- at least, from the client's
perspective. That is, as far as the client is concerned, these objects are always alive,
and maintain data values stored in them, even though physically, the server may
have been restarted many times, or the implementation may be provided by many
different object implementations. Oracle Application Server provides complete
POA support.

� Interoperating with Other ORBs - The Oracle Application Server RMI-IIOP
implementation will interoperate with other ORBs that support the CORBA 2.3
specification. It will not interoperate with older ORBs, because these are unable to
handle the IIOP encodings for Objects By Value. This support is needed to send
RMI value classes (including strings) over IIOP. Oracle Application Server also
provides complete support for the Interoperable Naming, Security, and
Transactions elements in the J2EE 1.3 specification allowing developers to build
J2EE applications and interoperate them with J2EE applications on other
Application Servers and with legacy systems through CORBA.

See the RMI/Interoperability chapter in the Oracle Application Server Containers for J2EE
Services Guide for more information.

Changes in Defaults for Oracle Application Server

1-6 Enterprise JavaBeans Developer’s Guide

Changes in Defaults for Oracle Application Server
Default values in version 9.0.3 have been modified as follows:

� Lazy loading for CMP finder methods is now turned off as the default.

� For relationship mapping for a one-to-many relationship, the default scenario used
an association table. Now, the default is to use a foreign key. You can restore the
previous behavior to use an association table by default by starting OC4J with the
-DassociateUsingThirdTable=true system property.

� The default value for the trans-attribute for CMP 2.0 entity beans is changed
to Required. For more information, see the JTA chapter in the Oracle Application
Server Containers for J2EE Services Guide.

� The JTA two-phase commit (2pc) function does not work with Oracle Database
version 9.2. Instead, use Oracle Database version 9.2.0.4 or higher to enable the 2pc
functionality.

� The max-tx-retries default value is zero. See the EJB section in the Oracle
Application Server Performance Guide for more information.

� The max-instances default value is set to zero for all EJBs.

Which Type of EJB Should You Use in Your Application?
Enterprise JavaBeans (EJBs) can be one of three types: session beans, entity beans, or
message-driven beans.

� Session beans can be stateful or stateless and are used for business logic
functionality.

– Stateless session beans are used for business services. They do not retain client
state across calls.

– Stateful session beans do maintain state across client calls. Thus, these beans
manage business functions for a specific client for the life of that client.

� Entity beans are normally used for managing persistent data.

� Message-driven beans are used for receiving messages from a JMS queue or topic.

Each EJB type is described in the sections below:

� What is a Session Bean?

� What is an Entity Bean?

� When Do You Use a Message-Driven Bean?

What is a Session Bean?
A session bean implements one or more business tasks. A session bean might contain
methods that query and update data in a relational table. Session beans are often used
to implement services. For example, an application developer might implement one or
several session beans that retrieve and update inventory data in a database.

Session beans are transient because they do not survive a server crash or a network
failure. If, after a crash, you instantiate a bean that had previously existed, the state of
the previous instance is not restored. State can be restored only to entity beans.

A session bean implements the javax.ejb.SessionBean interface, which has the
following definition:

Which Type of EJB Should You Use in Your Application?

How Do Applications Use EJBs? 1-7

public interface javax.ejb.SessionBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();
public abstract void ejbPassivate();
public abstract void ejbRemove();
public abstract void setSessionContext(SessionContext ctx);

}

At a minimum, the session bean must implement the following methods, as specified
in the javax.ejb.SessionBean interface:

For more information on how to develop session beans, see Chapter 3, "Implementing
Session Beans".

Retrieving the Context Using setSessionContext
You use this method to obtain a reference to the context of the bean. Session beans
have session contexts that the container maintains and makes available to the beans.
The bean may use the methods in the session context to make callback requests to the
container.

The container invokes setSessionContext method, after it first instantiates the
bean, to enable the bean to retrieve the session context. The container will never call
this method from within a transaction context. If the bean does not save the session
context at this point, the bean will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionContext
object to the bean. The bean can then store the reference for later use. The following
example shows the bean saving the session context in the sessctx variable.

import javax.ejb.*;
import oracle.oas.ejb.*;

public class myBean implements SessionBean {
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
sessctx = ctx; // session context is stored in

// instance variable
}
// other methods in the bean

EJB Method Description

ejbCreate() The container invokes this method right before it creates the bean.
Stateless session beans must do nothing in this method. Stateful
session beans can initiate state in this method.

ejbActivate() The container invokes this method right after it reactivates the
bean.

ejbPassivate() The container invokes this method right before it passivates the
bean. You can turn off passivation for stateful session beans.

ejbRemove() A container invokes this method before it ends the life of the
session object. This method performs any required clean-up—for
example, closing external resources such as file handles.

setSessionContext
(SessionContext ctx)

This method associates a bean instance with its context
information. The container calls this method after the bean
creation. The enterprise bean can store the reference to the context
object in an instance variable, for use in transaction management.
Beans that manage their own transactions can use the session
context to get the transaction context.

Which Type of EJB Should You Use in Your Application?

1-8 Enterprise JavaBeans Developer’s Guide

}

The javax.ejb.SessionContext interface has the following definition:

public interface SessionContext extends javax.ejb.EJBContext {
 public abstract EJBObject getEJBObject();
}

And the javax.ejb.EJBContext interface has the following definition:

public interface EJBContext {
 public EJBHome getEJBHome();
 public Properties getEnvironment();
 public Principal getCallerPrincipal();
 public boolean isCallerInRole(String roleName);
 public UserTransaction getUserTransaction();
 public boolean getRollbackOnly();
 public void setRollbackOnly();
}

A bean needs the session context when it wants to perform the operations listed in
Table 1–1.

There are two types of session beans:

� What is a Stateless Session Bean?—Stateless session beans do not share state or
identity between method invocations. They are useful mainly in middle-tier
application servers that provide a pool of beans to process frequent and brief
requests.

� What is a Stateful Session Bean?—Stateful session beans are useful for
conversational sessions, in which it is necessary to maintain state, such as instance
variable values or transactional state, between method invocations. These session
beans are mapped to a single client for the life of that client.

For more information on how to develop session beans, see Chapter 3, "Implementing
Session Beans".

What is a Stateless Session Bean?
A stateless session bean does not maintain any state for the client. It is strictly a single
invocation bean. It is employed for reusable business services that are not connected to
any specific client, such as generic currency calculations, mortgage rate calculations,
and so on. Stateless session beans may contain client-independent, read-only state

Table 1–1 SessionContext Operations

Method Description

getEnvironment() Get the values of properties for the bean.

getUserTransaction() Get a transaction context, which allows you to demarcate
transactions programmatically. This is valid only for beans
that have been designated transactional.

setRollbackOnly() Set the current transaction so that it cannot be committed.

getRollbackOnly() Check whether the current transaction has been marked for
rollback only.

getEJBHome() Retrieve the object reference to the corresponding EJBHome
(home interface) of the bean.

Which Type of EJB Should You Use in Your Application?

How Do Applications Use EJBs? 1-9

across a call. Subsequent calls are handled by other stateless session beans in the pool.
The information is used only for the single invocation.

The EJB container maintains a pool of these stateless beans to service multiple clients.
An instance is taken out of the pool when a client sends a request. There is no need to
initialize the bean with any information. There is implemented only a single
create/ejbCreate with no parameters—containing no initialization for the bean
within these methods. There is no need to implement any actions within the
remove/ejbRemove, ejbPassivate, ejbActivate, and setSessionContext
methods. In addition, there is no need for the intended use for these methods in a
stateless session bean. Instead, these methods are used mostly for EJBs with state—for
stateful session beans and entity beans. Thus, these methods should be empty or
extremely simple.

For more information on how to develop session beans, see Chapter 3, "Implementing
Session Beans".

What is a Stateful Session Bean?
A stateful session bean maintains its state between method calls. Thus, there is one
instance of a stateful session bean created for each client. Each stateful session bean
contains an identity and a one-to-one mapping with an individual client. The state of
this type of bean is maintained across several calls through serialization of its state,
called passivation. This is why the state that you passivate must be serializable.
However, this information does not survive system crashes.

To maintain state for several stateful beans in a pool, it serializes the conversational
state of the least recently used stateful bean to a secondary storage. When the bean
instance is requested again by its client, the state is activated to a bean within the pool.
Thus, all resources are used performantly, and the state is not lost.

The type of state that is saved does not include resources. The container invokes the
ejbPassivate method within the bean to provide the bean with a chance to clean up
its resources, such as sockets held, database connections, and hash tables with static
information. All these resources can be reallocated and recreated during the
ejbActivate method.

Implementation Methods

Home Interface Extends javax.ejb.EJBHome and requires a single create()
factory method, with no arguments, and a single remove()
method.

Component Interface
(remote or local)

Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines
the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements SessionBean. This class must be declared as public,
contain a public, empty, default constructor, no finalize()
method, and implements the methods defined in the component
interface. Must contain a single ejbCreate method, with no
arguments, to match the create() method in the home interface.
Contains empty implementations for the container service methods,
such as ejbRemove, and so on.

Note: You can turn off passivation for stateful session beans.

Which Type of EJB Should You Use in Your Application?

1-10 Enterprise JavaBeans Developer’s Guide

If the bean instance fails, the state can be lost—unless you take action within your bean
to continually save state. However, if you must make sure that state is persistently
saved in the case of failovers, you may want to use an entity bean for your
implementation. Alternatively, you could also use the SessionSynchronization
interface to persist the state transactionally.

For example, a stateful session bean could implement the server side of a shopping
cart on-line application, which would have methods to return a list of objects that are
available for purchase, put items in the customer's cart, place an order, change a
customer's profile, and so on.

For more information on how to develop session beans, see Chapter 3, "Implementing
Session Beans".

What is an Entity Bean?
An entity bean is a complex business entity. An entity bean models a business entity or
models multiple actions within a business process. Entity beans are often used to
facilitate business services that involve data and computations on that data. For
example, an application developer might implement an entity bean to retrieve and
perform computation on items within a purchase order. Your entity bean can manage
multiple, dependent, persistent objects in performing its necessary tasks.

An entity bean is a remote object that manages persistent data, performs complex
business logic, potentially uses several dependent Java objects, and can be uniquely
identified by a primary key. Entity beans are normally coarse-grained persistent
objects, because they utilize persistent data stored within several fine-grained
persistent Java objects.

Entity beans are persistent because they do survive a server crash or a network failure.
When an entity bean is re-instantiated, the state of previous instances is automatically
restored.

For detailed information on how to create entity beans, see Chapter 4, "Entity Beans".

Entity Beans are Uniquely Identified by a Primary Key
Each entity bean has a persistent identity associated with it. That is, the entity bean
contains a unique identity that can be retrieved if you have the primary key—given

Implementation Methods

Home Interface Extends javax.ejb.EJBHome and requires one or more
create() factory methods, and a single remove() method.

Component Interface
(remote or local)

Extends javax.ejb.EJBObject for the remote interface and
javax.ejb.EJBLocalObject for the local interface. It defines
the business logic methods, which are implemented in the bean
implementation.

Bean implementation Implements SessionBean. This class must be declared as
public, contain a public, empty, default constructor, no
finalize() method, and implement the methods defined in the
remote interface. Must contain ejbCreate methods equivalent
to the create() methods defined in the home interface. That is,
each ejbCreate method is matched—by its parameter
signature—to a create method defined in the home interface.
Implements the container service methods, such as ejbRemove,
and so on. Also, implements the SessionSynchronization
interface for Container-Managed Transactions, which includes
afterBegin, beforeCompletion, and afterCompletion.

Which Type of EJB Should You Use in Your Application?

How Do Applications Use EJBs? 1-11

the primary key, a client can retrieve the entity bean. If the bean is not available, the
container instantiates the bean and repopulates the persistent data for you.

The type for the unique key is defined by the bean provider.

Managing the Persistent Data Within the Entity Bean
The persistence for entity bean data is provided both for saving state when the bean is
passivated and for recovering the state when a failover has occurred. Entity beans are
able to survive because the data is stored persistently by the container in some form of
data storage system, such as a database. Entity beans persist business data using one
of the two following methods:

� Automatically by the container using a container-managed persistent (CMP) entity
bean.

� Programmatically through methods implemented in a bean-managed persistent
(BMP) entity bean. These methods use JDBC or SQLJ to manage persistence.

An entity bean manages its data persistence through callback methods, which are
defined in the javax.ejb.EntityBean interface. When you implement the
EntityBean interface in your bean class, you develop each of the callback functions
as designated by the type of persistence that you choose: bean-managed persistence or
container-managed persistence. The container invokes the callback functions at
designated times.

The javax.ejb.EntityBean interface has the following definition:

public interface javax.ejb.EntityBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();

 public abstract void ejbLoad();
public abstract void ejbPassivate();
public abstract void ejbRemove();

 public abstract void ejbStore();
public abstract void setEntityContext(EntityContext ctx);

 public abstract voic unsetEntityContext();
}

The container expects these methods to have the following functionality:

Note: For more information on primary keys, see "How to Define
and Use Primary Keys for Your Entity Bean" on page 4-6.

Table 1–2 A Description of the EJB Bean Implmentation Methods

EJB Method Description

ejbCreate You must implement an ejbCreate method corresponding to
each create method declared in the home interface. When the
client invokes the create method, the container first invokes
the constructor to instantiate the object, then it invokes the
corresponding ejbCreate method. The ejbCreate method
performs the following:

� creates any persistent storage for its data, such as database
rows

� intializes a unique primary key and returns it

ejbPostCreate The container invokes this method after the environment is set.
For each ejbCreate method, an ejbPostCreate method
must exist with the same arguments. This method can be used to
initialize parameters within or from the entity context.

Which Type of EJB Should You Use in Your Application?

1-12 Enterprise JavaBeans Developer’s Guide

Create the Entity Bean Using ejbCreate and ejbPostCreate An entity bean is similar to a
session bean because certain callback methods, such as ejbCreate, are invoked at
specified times. Entity beans use callback functions for managing its persistent data,
primary key, and context information. The following diagram shows what methods
are called when an entity bean is created.

Figure 1–1 Creating the Entity Bean

Retrieve the Entity Bean Context With setEntityContext An entity bean instance uses this
method to retain a reference to its context. Entity beans have contexts that the
container maintains and makes available to the beans. The bean may use the methods
in the entity context to retrieve information about the bean, such as security, and
transactional role. Refer to the Enterprise JavaBeans specification from Sun

ejbRemove The container invokes this method before it ends the life of the
session object. This method can perform any required clean-up,
for example closing external resources such as file handles.

ejbStore The container invokes this method right before a transaction
commits. It saves the persistent data to an outside resource, such
as a database.

ejbLoad The container invokes this method when the data should be
reinitialized from the database. This normally occurs after
activation of an entity bean.

setEntityContext Associates the bean instance with context information. The
container calls this method after the bean creation. The
enterprise bean can store the reference to the context object in an
instance variable, for use in transaction management. Beans that
manage their own transactions can use the session context to get
the transaction context.

You can also allocate any resources that will exist for the lifetime
of the bean within this method. You should release these
resources in unsetEntityContext.

unsetEntityContext Unset the associated entity context and release any resources
allocated in setEntityContext.

ejbActivate The container calls this method directly before it activates an
object that was previously passivated. Perform any necessary
reaquisition of resources in this method.

ejbPassivate The container calls this method before it passivates the object.
Release any resources that can be easily re-created in
ejbActivate, and save storage space. Normally, you want to
free resources that cannot be passivated, such as sockets or
database connections. Retrieve these resources in the
ejbActivate method.

Table 1–2 (Cont.) A Description of the EJB Bean Implmentation Methods

EJB Method Description

Client Entity Bean

create

<Bean> constructor
ejbCreate(...)
 primary key constructor
ejbSetEntityContext()
ejbPostCreate(...){{

Which Type of EJB Should You Use in Your Application?

How Do Applications Use EJBs? 1-13

Microsystems for the full range of information that you can retrieve about the bean
from the context.

The container invokes the setEntityContext method, after it first instantiates the
bean, to enable the bean to retrieve the context. The container will never call this
method from within a transaction context. If the bean does not save the context at this
point, the bean will never gain access to the context.

When the container calls this method, it passes the reference of the EntityContext
object to the bean. The bean can then store the reference for later use. The following
example shows the bean saving the context in the this.ctx variable.

public void setEntityContext(EntityContext ctx) { this.ctx = ctx; }

Remove the Entity Bean With ejbRemove When the client invokes the remove method, the
container invokes the methods shown in Figure 1–2.

Figure 1–2 Removing the Entity Bean

Manage the Persistent Data With ejbStore and ejbLoad In addition, the ejbStore and
ejbLoad methods are called for managing your persistent data. These are the most
important callback methods—for bean-managed persistent beans. Container-managed
persistent beans can leave these methods empty, because the persistence is managed
by the container.

� The ejbStore method is called by the container before the object is passivated or
whenever a transaction is about to end. Its purpose is to save the persistent data to
an outside resource, such as a database.

� The ejbLoad method is called by the container before the object is activated or
whenever a transaction has begun, or when an entity bean is instantiated. Its
purpose is to restore any persistent data that exists for this particular bean
instance.

Manage Your Persistent Data With Container-Managed Persistence
You can choose to have the container manage your persistent data for the bean. You do
not have to implement some of the callback methods to manage persistence for your
bean's data, because the container stores and reloads your persistent data to and from
the database. When you use container-managed persistence, the container invokes a
persistence manager class that provides the persistence management business logic. In
addition, you do not have to provide management for the primary key: the container
provides this key for the bean.

� Callback methods—The container still invokes the callback methods, so you can
add logic for other purposes. At the least, you must provide an empty
implementation for all callback methods.

Note: You can also use the setEntityContext and
unsetEntityContext methods to allocate and destroy any
resources that will exist for the lifetime of the instance.

O
_1

07
4

Client

remove ejbUnsetEntityContext()
ejbRemove()

Entity Bean

Which Type of EJB Should You Use in Your Application?

1-14 Enterprise JavaBeans Developer’s Guide

� Primary key—The primary key fields in a CMP bean must be declared as
container-managed persistent fields in the deployment descriptor. All fields within
the primary key are restricted to be either primitive, serializable, and types that
can be mapped to SQL types.

The following table details the implementation requirements for the callback functions
of the bean class:

What is the Difference Between Session and Entity Beans?
The major differences between session and entity beans are that entity beans involve a
framework for persistent data management, a persistent identity, and complex

Note: For more information on primary keys, see "How to Define
and Use Primary Keys for Your Entity Bean" on page 4-6.

Callback Method Functionality Required

ejbCreate You must initialize all container-managed persistent fields,
including the primary key.

ejbPostCreate You have the option to provide any additional initialization,
which can involve the entity context.

ejbRemove No functionality for removing the persistent data from the outside
resource is required. You must at least provide an empty
implementation for the callback, which means that you can add
logic for performing any cleanup functionality you require.

ejbFindByPrimaryKey No functionality is required for returning the primary key to the
container. The container manages the primary key—after it is
initialized by the ejbCreate method. You still must provide an
empty implementation for this method.

ejbStore No functionaltiy is required for saving persistent data within this
method. The persistent manager saves all persistent data to the
database for you. However, you must provide at least an empty
implementation.

ejbLoad No functionality is required for restoring persistent data within
this method. The persistence manager restores all persistent data
for you. However, you must provide at least an empty
implementation.

setEntityContext Associates the bean instance with context information. The
container calls this method after the bean creation. The enterprise
bean can store the reference to the context object in an instance
variable, for use in transaction management. Beans that manage
their own transactions can use the session context to get the
transaction context.

You can also allocate any resources that will exist for the lifetime
of the bean within this method. You should release these resources
in unsetEntityContext.

unsetEntityContext Unset the associated entity context and release any resources
allocated in setEntityContext.

Note: For more information on container-managed persistence,
see Chapter 5, "CMP Entity Beans".

Which Type of EJB Should You Use in Your Application?

How Do Applications Use EJBs? 1-15

business logic. The following table illustrates the different interfaces for session and
entity beans. Notice that the difference between the two types of EJBs exists within the
bean class and the primary key. All of the persistent data management is done within
the bean class methods.

When Do You Use a Message-Driven Bean?
Message-Driven Beans (MDB) provide an easier method to implement asychronous
communication than using straight JMS. MDBs were created to receive asynchronous
JMS messages. The container handles much of the setup required for JMS queues and
topics. It sends all messages to the interested MDB.

Previously, EJBs could not send or receive JMS messages. It took creating MDBs for an
EJB-type object to receive JMS messages. This provides all of the asynchronous and
publish/subscribe abilities to an enterprise object that is able to be synchronous with
other Java objects.

The purpose of an MDB is to exist within a pool and to receive and process incoming
messages from a JMS queue. The container invokes a bean from the queue to handle
each incoming message from the queue. No object invokes an MDB directly: all
invocation for an MDB comes from the container. After the container invokes the
MDB, it can invoke other EJBs or Java objects to continue the request.

A MDB is similar to a stateless session bean because it does not save conversational
state and is used for handling multiple incoming requests. Instead of handling direct
requests from a client, MDBs handle requests placed on a queue. Figure 1–3
demonstrates this by showing how clients place requests on a queue. The container
takes the requests off of the queue and gives the request to an MDB in its pool.

Figure 1–3 Message Driven Beans

J2EE Subject Entity Bean Session Bean

Local interface Extends
javax.ejb.EJBLocalObject

Extends
javax.ejb.EJBLocalObject

Remote interface Extends
javax.ejb.EJBObject

Extends javax.ejb.EJBObject

Local Home interface Extends
javax.ejb.EJBLocalHome

Extends
javax.ejb.EJBLocalHome

Remote Home
interface

Extends javax.ejb.EJBHome Extends javax.ejb.EJBHome

Bean class Extends
javax.ejb.EntityBean

Extends
javax.ejb.SessionBean

Primary key Used to identify and retrieve
specific bean instances

Not used for session beans. Stateful
session beans do have an identity,
but it is not externalized.

O
_1

07
5

Clients

JMS Queue EJB Container

Pool of MDBs

What Makes Up An EJB?

1-16 Enterprise JavaBeans Developer’s Guide

MDBs implement the javax.ejb.MessageDrivenBean interface, which also
inherits the javax.jms.MessageListener methods. Within these interfaces, the
following methods must be implemented:

The container handles JMS message retrieval and acknowledgment. Your MDB does
not have to worry about JMS specifics. The MDB is associated with an existing JMS
queue. Once associated, the container handles dequeuing messages and sending
acknowledgments. The container communicates the JMS message through the
onMessage method.

What Makes Up An EJB?
An EJB has two client interfaces that a client uses to create and use an EJB:

� Component interface (remote or local)—The component interface specifies the
business methods that the clients of the object can invoke.

� Home interface—The home interface defines EJB life cycle methods, such as a
method to create and retrieve a reference to the bean object.

The client uses both of these interfaces when invoking a method on a bean.

Method Description

onMessage(msg) The container dequeues a message from the JMS
queue associated with this MDB and gives it to this
instance by invoking this method. This method
must have an implementation for handling the
message appropriately.

setMessageDrivenContext(ctx) After the bean is created, the
setMessageDrivenContext method is invoked.
This method is similar to the EJB
setSessionContext and setEntityContext
methods.

ejbCreate() This method is used just like the stateless session
bean ejbCreate method. No initialization should
be done in this method. However, any resources
that you allocate within this method will exist for
this object.

ejbRemove() Delete any resources allocated within the
ejbCreate method.

Note: For more information on MDBs and how to implement
them, see Chapter 9, "Message-Driven Beans".

What Makes Up An EJB?

How Do Applications Use EJBs? 1-17

Figure 1–4 Events in a Stateless Session Bean

Figure 1–4 demonstrates a stateless session bean and corresponds to the following
steps:

1. The client, which can be a standalone Java client, servlet, JSP, or an applet,
retrieves the home interface of the bean—normally through JNDI.

2. The client invokes the create method on the home interface reference (home
object). This creates the bean instance and returns a reference to the component
interface (remote or local interface) of the bean.

3. The client invokes a method defined in the component interface (remote or local
interface), which delegates the method call to the corresponding method in the
bean instance (through a stub).

4. The client can destroy the bean instance by invoking the remove method that is
defined in the component interface (remote or local interface). Some beans, such as
stateless session beans, cannot call the remove method. In this case, the container
removes the bean.

For an example of a stateless session bean implementation, see "Developing Session
Beans" on page 3-2.

When developing an EJB, you create the following four major components:

� the home interface

� the component interface (remote or local interface)

� the implementation of the bean

� a deployment descriptor for each EJB

Component Description

The home interface Specifies the interface to an object that the container itself
implements: the home object. The home interface contains the life
cycle methods, such as the create() methods that specify how
a bean is created.

The component interface
(remote or local)

Specifies the business methods that you implement in the bean.
The bean must also implement additional container service
methods. The EJB container invokes these methods at different
times in the life cycle of a bean.

myapp EJB

create

ejbCreate

invoke
methods

Home
Interface

Remote
Interface

Bean Instance

setX(...){}

getX(...){}

O
_1

03
6

Servlet

mBean x=home.create();

.

.

.

setX(42, "hiya");

r3=getX();

What Makes Up An EJB?

1-18 Enterprise JavaBeans Developer’s Guide

Development issues for your EJBs are discussed in the following sections:

� Interfaces for Bean Implementation is Based on Bean Type

� Parameter Passing Conventions for Your EJBs

� How to Handle Returned Parameter Objects

Interfaces for Bean Implementation is Based on Bean Type
Your bean implements the methods within either the SessionBean, EntityBean, or
MessageDrivenBean interface. The implementation contains logic for lifecycle
methods defined in the home interface, business methods defined in the component
interface (remote or local), and container callback functions defined in the
SessionBean, EntityBean, or MessageDrivenBean interface.

See the following chapters for details on each bean type:

� Chapter 3, "Implementing Session Beans"

� Chapter 4, "Entity Beans"

� Chapter 9, "Message-Driven Beans"

Parameter Passing Conventions for Your EJBs
When you implement an EJB or write the client code that calls EJB methods, you must
be aware of the parameter-passing conventions used with EJBs.

A parameter that you pass to a bean method—or a return value from a bean
method—can be any Java type that is serializable. Java primitive types, such as int,
double, are serializable. Any non-remote object that implements the
java.io.Serializable interface can be passed. A non-remote object that is passed
as a parameter to a bean or returned from a bean is passed by value, not by reference.
So, for example, if you call a bean method as follows:

public class theNumber {
 int x;
}
...
bean.method1(theNumber);

then method1() in the bean receives a copy of theNumber. If the bean changes the
value of theNumber object on the server, this change is not reflected back to the client,
because of pass-by-value semantics.

If the non-remote object is complex—such as a class containing several fields—only
the non-static and non-transient fields are copied.

When passing a remote object as a parameter, the stub for the remote object is passed.
A remote object passed as a parameter must extend remote interfaces.

The bean implementation Contains the Java code that implements the methods defined in
the home interface (life cycle methods), component interface
(business methods), and the required container methods
(container callback functions).

The deployment
descriptor

Specifies attributes of the bean for deployment. These designate
configuration specifics, such as environment, interface names,
transactional support, type of EJB, and persistence information.

Component Description

What Container Services Can You Use for EJBs?

How Do Applications Use EJBs? 1-19

The next section demonstrates parameter passing to a bean, and remote objects as
return values.

How to Handle Returned Parameter Objects
The EmployeeBean getEmployee method returns an EmpRecord object, so this
object must be defined somewhere in the application. In this example, an EmpRecord
class is included in the same package as the EJB interfaces.

The class is declared as public and must implement the java.io.Serializable
interface so that it can be passed back to the client by value, as a serialized remote
object. The declaration is as follows:

package employee;

public class EmpRecord implements java.io.Serializable {
 public String ename;
 public int empno;
 public double sal;
}

What Container Services Can You Use for EJBs?
One of the advantages of using EJBs is that the EJB container provides security and
transaction services for you. These services, as well as RMI/IIOP, JNDI, Data Source,
and JMS, are documented in the following books:

Note: The java.io.Serializable interface specifies no
methods; it just indicates that the class is serializable. Therefore,
there is no need to implement extra methods in the EmpRecord
class.

Table 1–3 Location of Information for J2EE Subjects

J2EE Subject The Subject is Documented in this OC4J Documentation Book

JTA Oracle Application Server Containers for J2EE Services Guide

Data Source Oracle Application Server Containers for J2EE Services Guide

JNDI Oracle Application Server Containers for J2EE Services Guide

JMS Oracle Application Server Containers for J2EE Services Guide

RMI and RMI/IIOP Oracle Application Server Containers for J2EE Services Guide

Security Oracle Application Server Containers for J2EE Security Guide

CSiV2 Oracle Application Server Containers for J2EE Security Guide

JCA Oracle Application Server Containers for J2EE Services Guide

Java Object Cache Oracle Application Server Containers for J2EE Services Guide

Web Services Oracle Application Server Web Services Developer’s Guide

HTTPS Oracle Application Server Containers for J2EE Services Guide

What Container Services Can You Use for EJBs?

1-20 Enterprise JavaBeans Developer’s Guide

How to Access EJBs 2-1

2
How to Access EJBs

This chapter demonstrates how to access an EJB from a servlet within the application
server or from outside the application server—either from an EJB within another
application server or from a local client.

� Steps for Accessing Any EJB

� Example of How a Client Invokes an EJB

� Accessing an EJB in a Remote Server

� Accessing an EJB in Another Application

� Recovering From Deadlock Conditions

� Recovering From a NamingException While Accessing a Remote EJB

� Recovering From NullPointerException While Accessing a Remote EJB

You can download examples from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos on the OTN
Web site.

Steps for Accessing Any EJB
To access an EJB from a client, you must do the following:

1. If you are remote, download the oc4j.jar file.

2. Set up JNDI properties for the connection, if necessary.

3. Determine which InitialContextFactory you will use for the connection.

4. Retrieve an EJB using either the JNDI name or an EJB reference, which is
configured in the deployment descriptor.

These subjects are discussed in the following sections:

� Client Installation of OC4J.JAR

� Setting JNDI Properties

� When Do You Use the Different Initial Context Factory Classes?

� How to Lookup the EJB Reference

� Configuring the EJB Reference Information

� Example of How a Client Invokes an EJB

Steps for Accessing Any EJB

2-2 Enterprise JavaBeans Developer’s Guide

Client Installation of OC4J.JAR
In order to access EJBs, the client-side must download oc4j_client.zip file from
http://www.oracle.com/technology/software/products/ias/devuse.ht
ml. Unzip the JAR into a directory that is in your CLASSPATH. This JAR contains the
classes necessary for client interaction. If you download this JAR into a browser, you
must grant certain permissions. See "Granting Permissions in Browser" on page 12-1
for a list of these permissions.

Setting JNDI Properties
If the client is collocated with the target, the client exists within the same application as
the target, or the target exists within its parent, then you do not need a JNDI properties
file. Else, you must initialize your JNDI properties either within a jndi.properties
file, in the system properties, or within your implementation, before the JNDI call. The
following sections discuss these three options:

� No JNDI Properties

� JNDI Properties File

� JNDI Properties Within The Implementation

� JNDI Properties for OC4J Standalone

To specify credentials within the JNDI properties, see "Specifying Credentials in EJB
Clients" on page 12-8.

No JNDI Properties
A servlet that is collocated with the target bean automatically accesses the JNDI
properties for the node. Thus, accessing the EJB is simple: no JNDI properties are
required.

//Get the Initial Context for the JNDI lookup for a local EJB
InitialContext ic = new InitialContext();
//Retrieve the Home interface using JNDI lookup
Object helloObject = ic.lookup("java:comp/env/ejb/HelloBean");

This is also true if the target bean is in the same application or an application that has
been deployed as this application's parent. See the Oracle Application Server Containers
for J2EE User’s Guide for more information on how to set the parent of the application.

JNDI Properties File
If setting the JNDI properties within the jndi.properties file, set the properties as
follows. Make sure that this file is accessible from the CLASSPATH.

Factory
See "When Do You Use the Different Initial Context Factory Classes?" on page 2-4 for
discussion on the initial context factory to use.

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory

Note: A full description of how to use JNDI, see the JNDI chapter
in the Oracle Application Server Containers for J2EE Services Guide.

Steps for Accessing Any EJB

How to Access EJBs 2-3

Location
All ports, including the RMI port, are dynamically set by OPMN when each OC4J
instance starts. When you specify the following URL in the client JNDI properties, the
client-side OC4J retrieves the dynamic ports for the instance, and chooses one from the
list for communication.

java.naming.provider.url=
 opmn:ormi://<opmn_host>:<opmn_port>:<oc4j_instance>/<application-name>

The OPMN host name and port number is retrieved from the opmn.xml file. In most
cases, OPMN is located on the same machine as the OC4J instance. However, you
must specify the host name in case it is located on another machine. The OPMN port
number is optional; if excluded, the default is port 6003. The OPMN port is specified in
opmn.xml.

The OC4J instance name is defined in the Enterprise Manager.

Security
When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the jndi.properties file
deployed with the client's code.

java.naming.security.principal=<username>
java.naming.security.credentials=<password>

JNDI Properties Within The Implementation
Set the properties with the same values, only with a different syntax. For example,
JavaBeans running within the container pass their credentials within the
InitialContext, which is created to look up the remote EJBs.

� In the java.naming.provider.url, the "opmn:ormi" location string is
provided. Both OPMN and OC4J are located on the same host. The OPMN default
port is used, so the port number is not specified.

� In the java.naming.factory.initial, the
ApplicationClientInitialContextFactory object is used.

To pass JNDI properties within the Hashtable environment, set these as shown
below:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url",
 "opmn:ormi://opmnhost:oc4j_inst1/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/ejb/HelloBean");

// Narrow the reference to a HelloHome.
HelloHome empHome =
 (HelloHome) PortableRemoteObject.narrow(homeObject,
 HelloHome.class);

Steps for Accessing Any EJB

2-4 Enterprise JavaBeans Developer’s Guide

JNDI Properties for OC4J Standalone
The rules for which initial context factory are the same for OC4J standalone
applications. However, since OC4J standalone does not use OPMN, the location URL
cannot use the opmn:ormi:// prefix. Instead, the ormi:// prefix is used.

The ORMI default port number is 23791, which can be modified in config/rmi.xml.
Thus, set the URL in the jndi.properties, in one of the two ways:

java.naming.provider.url=ormi://<hostname>/<application-name>
or

java.naming.provider.url=ormi://<hostname>:23791/<application-name>\

 When you access EJBs in a remote container, you must pass valid credentials to this
container. Stand-alone clients define their credentials in the jndi.properties file
deployed with the client's code.

java.naming.security.principal=<username>
java.naming.security.credentials=<password>

If you set the properties within the bean implementation, then set them with the same
values, just with different syntax. For example, JavaBeans running within the
container pass their credentials within the InitialContext, which is created to look up
the remote EJBs.

To pass JNDI properties within the Hashtable environment, set these as shown below:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url", "ormi://myhost/ejbsamples");
env.put("java.naming.factory.initial",
 "com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "guest");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
Object homeObject = ic.lookup("java:comp/env/ejb/HelloBean");

// Narrow the reference to a HelloHome.
HelloHome helloHome =
 (HelloHome) PortableRemoteObject.narrow(homeObject,
 HelloHome.class);

When Do You Use the Different Initial Context Factory Classes?
The type of initial context factory that you use depends on who the client is. The initial
context factory creates the initial context class for the client.

� If the client is a pure Java client outside of the OC4J container, use the
ApplicationClientInitialContextFactory class.

� If the client is an EJB or servlet client within the OC4J container, use the
ApplicationInitialContextFactory class. The
ApplicationInitialContextFactory class is the default class; thus, each
time you create a new InitialContext without specifying any initial context
factory class, your client uses the ApplicationInitialContextFactory class.

� If the client is an administrative class that is going to manipulate or traverse the
JNDI tree, use the com.evermind.server.RMIInitialContextFactory
class.

� If the client is going to use DNS load balancing, use the
RMIInitialContextFactory class.

Steps for Accessing Any EJB

How to Access EJBs 2-5

For example, if you have a pure Java client, then you set the initial context factory class
("java.naming.factory.initial") to
ApplicationClientInitialContextFactory. The following example sets the
initial context factory in the environment, but you could also put this in the JNDI
properties file.

env.put("java.naming.factory.initial",
"com.evermind.server.ApplicationClientInitialContextFactory");

If the client is an EJB or a servlet calling an EJB in the same application, you can use
the default by not setting the JNDI properties with a initial context factory and uses
the ApplicationInitialContextFactory object by executing the following:

InitialContext ic = new InitialContext();

If you decide to use the RMIInitialContextFactory class, you must use the JNDI
name in the lookup and not a logical name defined in the <ejb-ref> in your XML
configuration file.

An Initial Context Factory Specific to DNS Load Balancing
To use DNS for load balancing, you must do the following:

1. Within DNS, map a single host name to several IP addresses. Each of the port
numbers must be the same for each IP address. Set up the DNS server to return the
addresses either in a round-robin or random fashion.

2. Turn off DNS caching on the client. For UNIX machines, you must turn off DNS
caching as follows:

a. Kill the NSCD daemon process on the client.

b. Start the OC4J client with the -Dsun.net.inetaddr.ttl=0 option.

3. Within each client, use any initial context factory to create an initial context. You
can use either the opmn:ormi:// or the ormi:// prefix in the provider URL.
Use opmn:ormi:// syntax for Oracle9iAS applications and the ormi:// for
standalone OC4J applications.

4. Set the dedicated.rmicontext property to true.

Each time the lookup occurs on the DNS server, the DNS server hands back a one of
the many IP addresses that are mapped to it.

Example 2–1 RMIInitialContextFactory Example

java.naming.factory.initial=
 com.evermind.server.rmi.RMIInitialContextFactory
java.naming.provider.url=opmn:ormi://myserver:oc4j_inst/applname
java.naming.security.principal=admin
java.naming.security.credentials=welcome
dedicated.rmicontext=true

How to Lookup the EJB Reference
Before you start implementing your call to the EJB in your client, you should consider
the following for the JNDI retrieval of the EJB reference of the bean:

� Within your client code, you retrieve an EJB reference to the target bean in order to
execute methods on that bean. Do you want to set up a logical name for the target
bean or use the JNDI name?

Example of How a Client Invokes an EJB

2-6 Enterprise JavaBeans Developer’s Guide

– Use the logical name: Modify the client XML configuration file to set up the
<ejb-ref> element with the target bean information. The logical name
specified in the <ejb-ref-name> element is used in the JNDI lookup. See
"Configuring the EJB Reference Information" on page 2-6 for more information
on the <ejb-ref> and <ejb-ref-name> elements.

– Use the actual name: The actual name of the bean is used in the JNDI lookup.
This name has been specified in the target bean's ejb-jar.xml XML
deployment descriptors in the <ejb-name> element.

� The method for accessing EJBs depends on where your client is located relative to
the bean it wants to invoke.

– Is the client is collocated with the target bean? Deployed in the same
application? Or is the target bean part of an application that is this client's
parent? You do not need to set up any JNDI properties.

– Otherwise, you must set up JNDI properties. There are two methods for
setting up JNDI properties. See "Setting JNDI Properties" on page 2-2 for more
information

Configuring the EJB Reference Information
Specify the EJB reference information for the remote EJB in the <ejb-ref> or
<ejb-local-ref> elements in the client's XML file:

� application-client.xml: The client is a pure-Java client, invoking the bean
outside of the container.

� ejb-jar.xml: The client is another EJB.

� web.xml: The client is a servlet or JSP.

For example, if a client wants to access the remote interface of the Hello example,
then the client's XML would define the following:

<ejb-ref>
<ejb-ref-name>ejb/HelloBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>hello.HelloHome</home>
<remote>hello.Hello</remote>

</ejb-ref>

If the client wants to access the local interface of the Hello example, then the client's
XML would define the following:

<ejb-ref>
<ejb-ref-name>ejb/HelloBean</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>hello.HelloLocalHome</local-home>
<local>hello.HelloLocal</local>

</ejb-ref>

OC4J maps the logical name to the actual JNDI name on the client-side. The
server-side receives the JNDI name and resolves it within its JNDI tree.

Example of How a Client Invokes an EJB
All EJB clients implement the following steps to instantiate a bean, invoke its methods,
and destroy the bean:

Example of How a Client Invokes an EJB

How to Access EJBs 2-7

1. Look up the home interface through a JNDI lookup. Follow JNDI and the EJB
specification conventions for retrieving the bean reference, including setting up
JNDI properties if the bean is remote to the client. See "How to Lookup the EJB
Reference" on page 2-5.

2. Narrow the returned object from the JNDI lookup to the home interface, as
follows:

a. When accessing the remote interface, use the
PortableRemoteObject.narrow method to narrow the returned object.

b. When accessing the local interface, cast the returned object with the local
home interface type.

3. Create instances of the bean in the server through the returned object. Invoking the
create method on the home interface causes a new bean to be instantiated and
returns a bean reference.

4. Invoke business methods, which are defined in the component (remote or local)
interface.

5. After you are finished, invoke the remove method. This will either remove the
bean instance or return it to a pool. The container controls how to act on the
remove method.

These steps are demonstrated in Example 2–2.

Example 2–2 A Servlet Acting as a Local Client

The following example is executed from a servlet that is collocated with the Hello
bean. Thus, the session bean uses the local interface, and the JNDI lookup does not
require JNDI properties.

package hello;

import javax.servlet.http.*;
import javax.servlet.*;
import javax.ejb.*;
import javax.naming.*;
import java.io.IOException;

public class HelloServlet extends HttpServlet
{
 HelloLocalHome helloHome;
 HelloLocal hello;

Note: For entity beans that are already instantiated, you can
retrieve the bean reference through one of its finder methods.

Note: The JNDI name is specified in the <ejb-local-ref>
element in this session bean EJB deployment descriptor as follows:

 <ejb-local-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.HelloLocal</local>
</ejb-local-ref>

Example of How a Client Invokes an EJB

2-8 Enterprise JavaBeans Developer’s Guide

 public void init() throws ServletException
 {
 try {
 // 1. Retreive the Home Interface using a JNDI Lookup
 // Retrieve the initial context for JNDI.
 // No properties needed when local
 Context context = new InitialContext();

 // Retrieve the home interface using a JNDI lookup using
 // the java:comp/env bean environment variable
 // specified in web.xml
 helloHome = (HelloLocalHome)
 context.lookup("java:comp/env/ejb/HelloBean");

 //2. Narrow the returned object to be an HelloHome object.
 // Since the client is local, cast it to the correct object type.
 //3. Create the local Hello bean instance, return the reference
 hello = (HelloLocal)helloHome.create();

 } catch(NamingException e) {
 throw new ServletException("Error looking up home", e);
 } catch(CreateException e) {
 throw new ServletException("Error creating local hello bean", e);
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 try
 {
 out.println("<html>");
 out.println("<body>");
 //4. Invoke a business method on the local interface reference.
 out.println(hello.sayHello("James Earl"));
 out.println("</body>");
 out.println("</html>");
 } catch(EJBException e) {
 out.println("EJBException error: " + e.getMessage());
 } catch(IOException e) {
 out.println("IOException error: " + e.getMessage());
 } finally {
 out.close();
 }
 }
}

Note:: You can download this example on OTN from the OC4J
sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Example of How a Client Invokes an EJB

How to Access EJBs 2-9

Example 2–3 A Java Client as a Remote Client

The following example is executed from a pure Java client that is a remote client. Any
remote client must set up JNDI properties before retrieving the object, using a JNDI
lookup.

The jndi.properties file for this client is as follows:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://opmnhost:oc4j_inst1/helloworld
java.naming.security.principal=admin
java.naming.security.credentials=welcome

The pure Java client that invokes Hello remotely is as follows:

package hello;

import javax.ejb.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import java.io.*;
import java.util.*;
import java.rmi.RemoteException;

/*
 * A simple client for accessing an EJB.
 */

public class HelloClient
{
 public static void main(String[] args)
 {
 System.out.println("client started...");
 try {
 // Initial context properties are set in the jndi.properties file
 //1. Retrieve remote interface using a JNDI lookup*/
 Context context = new InitialContext();

 // Lookup the HelloHome object. The reference is retrieved from the
 // application-local context (java:comp/env). The variable is
 // specified in the application-client.xml).
 Object homeObject = context.lookup("java:comp/env/Helloworld");

 //2. Narrow the reference to HelloHome. Since this is a remote
 // object, use the PortableRemoteObject.narrow method.
 HelloHome home = (HelloHome) PortableRemoteObject.narrow
 (homeObject, HelloHome.class);

 //3. Create the remote object and narrow the reference to Hello.

Note: The JNDI name is specified in the <ejb-ref> element in
the this client's application-client.xml file—as follows:

 <ejb-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 </ejb-ref>

Accessing an EJB in a Remote Server

2-10 Enterprise JavaBeans Developer’s Guide

 Hello remote =
 (Hello) PortableRemoteObject.narrow(home.create(), Hello.class);

 //4. Invoke a business method on the remote interface reference.
 System.out.println(remote.sayHello("James Earl"));

 } catch(NamingException e) {
 System.err.println("NamingException: " + e.getMessage());
 } catch(RemoteException e) {
 System.err.println("RemoteException: " + e.getMessage());
 } catch(CreateException e) {
 System.err.println("FinderException: " + e.getMessage());
 }
 }
}

Accessing an EJB in a Remote Server
A multi-tier situation exists when you have the servlets executing in one server which
are to connect and communicate with EJBs in another server. Both the servlets and
EJBs are contained in the same application. When you deploy the application to two
different servers, the servlets normally look for the local EJB first.

In Figure 2–1, the HelloBean application is deployed to both server 1 and 2. In order
to ensure that the servlets only call out from server 1 to the EJBs in server 2, you must
set the remote attribute appropriately in the application before deploying on both
servers.

Figure 2–1 Multi-Tier Example

The remote attribute in the <ejb-module> element in orion-application.xml
for the EJB module denotes whether the EJBs for this application are deployed or not.

1. In server 1, you must set remote=true in the <ejb-module> element of the
orion-application.xml file and then deploy the application. The EJB module
within the application will not be deployed. Thus, the servlets will not look for the
EJBs locally, but will go out to the remote server for the EJB requests.

2. In server 2, you must set remote=false in the <ejb-module> element of the
orion-application.xml file and then deploy the application. The application,
including the EJB module, is deployed as normal. The default for the remote

Note: You can download this example on OTN from the OC4J
sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

employeeBean

remote=true

O
_1

04
6

server 1

define remote location
in <server> element

FJB

employeeBean

remote=true

server 2

no definaition of
 remote location

servlet

Accessing an EJB in Another Application

How to Access EJBs 2-11

attribute is false; thus, simply ensure that the remote attribute is not true and
redeploy the application.

3. In the <server> element of the rmi.xml file of server 1, configure the location of
server 2, which is the remote server. Provide the hostname, port number,
username, and password of the remote server, as follows:

<server host=<remote_host> port=<remote_port> username=<username>
password=<password> />

If multiple remote servers are configured, the OC4J container searches all remote
servers for the intended EJB application.

Example 2–4 Servlet Accessing EJB in Remote OC4J Instance

The following servlet uses the JNDI name for the target bean: HelloBean. This servlet
provides the JNDI properties in an RMIInitialContext object. The environment is
initialized as follows:

� The INITIAL_CONTEXT_FACTORY is initialized to a
RMIInitialContextFactory.

� Instead of creating a new InitialContext, it is retrieved.

� The actual JNDI name is used in the lookup.

� The remote location URL is
opmn:ormi://host:oc4j_inst/application. The OPMN port number uses
the default and is omitted.

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "opmn:ormi://theirhost:oc4j_inst/myapp");
env.put(Context.SECURITY_PRINCIPAL, "admin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.evermind.server.rmi.RMIInitialContextFactory");

Context ic =
new com.evermind.server.rmi.RMIInitialContextFactory().
getInitialContext(env);

Object homeObject = ic.lookup("ejb/HelloBean");

// Narrow the reference to a HelloHome.
HelloHome helloHome =
 (HelloHome) PortableRemoteObject.narrow(homeObject,
 HelloHome.class);

Accessing an EJB in Another Application
Normally, you cannot have EJBs communicating across EAR files, that is, across
applications that are deployed in separate EAR files. The only way for an EJB to access
an EJB that was deployed in a separate EAR file is to declare it to be the parent of the
client. Only children can invoke methods in a parent.

For example, there are two EJBs, each deployed within their EAR file, called sales
and inventory, where the sales EJB needs to invoke the inventory EJB to check
to see if enough widgets are available. Unless the sales EJB defines the inventory
EJB to be its parent, the sales EJB cannot invoke any mehtods in the inventory EJB,
because they are both deployed in separate EAR files. So, define the inventory EJB

JAAS Support for EJBs

2-12 Enterprise JavaBeans Developer’s Guide

to be the parent of the sales EJB and the sales EJB can now invoke any method in
its parent.

You can only define the parent during deployment with the deployment wizard. See
the "Deploying Applications" section in the "Configuration and Deployment" chapter
in Oracle Application Server Containers for J2EE User’s Guide on how to define the parent
application of a bean. For broader issues on how to package your classes for method
invocation, see "Directory Structure Recommendations for EJB Development" on
page 10-1.

JAAS Support for EJBs
If you invoke any EJB from an application client outside the EJB container, then Java
Authentication and Authorization Service (JAAS) is not supported for the EJB.
However, if you call the EJB from a servlet within the OC4J instance, then JAAS is
supported.

Using the RIMInitialContextFactory Object
If you access an EJB in an application from an EJB in a different application, then you
cannot use the RMIInitialContextFactory object. In this scenario, you must use a
parent-child relationship between these applications, and you must use the default
initial context factory object.

Recovering From Deadlock Conditions
If the call sequence of several beans cause a deadlock scenario, the OC4J container
notices the deadlock condition and throws a Remote exception that details the
deadlock condition in one of the offending beans.

Recovering From a NamingException While Accessing a Remote EJB
If you are trying to remotely access an EJB and you receive an
javax.naming.NamingException error, your JNDI properties are probably not
initialized properly.

Recovering From NullPointerException While Accessing a Remote EJB
When accessing a remote EJB from a Web application, you receive the following error:
"java.lang.NullPointerException: domain was null ". In this case, you
must set an environment property in your client while accessing the EJB set
dedicated.rmicontext to true.

The following demonstrates how to use this additional environment property:

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.evermind.server.rmi.RMIInitialContextFactory");
env.put (Context.SECURITY_PRINCIPAL, "admin");
env.put (Context.SECURITY_CREDENTIALS, "admin");
env.put (Context.PROVIDER_URL, "ormi://myhost-us/ejbsamples");
env.put ("dedicated.rmicontext", "true"); // for 9.0.2.1 and above
Context context = new InitialContext (env);

See "Load Balancing Options" on page 13-5 for more information on
dedicated.rmicontext.

Implementing Session Beans 3-1

3
Implementing Session Beans

After you have installed Oracle Application Server Containers for J2EE (OC4J) and
configured the base server and default Web site, you can start developing J2EE
applications. This chapter assumes that you have a working familiarity with simple
J2EE concepts and a basic understanding for EJB development.

The following subjects describe how to develop and deploy EJB applications with
OC4J:

� Developing Session Beans—Developing and testing an EJB module within the
standard J2EE specification.

� Prepare the EJB Application for Assembly—Before deploying, you must modify an
XML file that acts as a manifest file for the enterprise application.

� Deploy the Enterprise Application to OC4J—Archive the enterprise Java
application into an Enterprise ARchive (EAR) file and deploy it to OC4J.

� When Does Stateful Session Bean Passivation Occur?

� Using Timers With Your Stateless Session Bean

This chapter demonstrates how to develop a stateless session bean. You can download
the stateless session bean example from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos/ on the OTN
Web site.

Developing Session Beans

3-2 Enterprise JavaBeans Developer’s Guide

Developing Session Beans
You develop EJB components for the OC4J environment in the same way as in any
other standard J2EE environment. Here are the steps to develop EJBs:

1. Implement the Session Bean—Develop your EJB with its home interfaces,
component interfaces, and bean implementation

2. Create the Deployment Descriptor—Create the standard J2EE EJB deployment
descriptor for all beans in your EJB application.

3. Archive the EJB Application—Archive your EJB files into a JAR file.

Implement the Session Bean
When you implement a session bean, create the following:

1. The home interfaces for the bean. The home interface defines the create method
for your bean.

a. The remote home interface extends javax.ejb.EJBHome.

b. The local home interface extends javax.ejb.EJBLocalHome.

2. The component interfaces for the bean.

a. The remote interface declares the methods that a client can invoke remotely. It
extends javax.ejb.EJBObject.

b. The local interface declares the methods that a collocated bean can invoke
locally. It extends javax.ejb.EJBLocalObject.

3. The bean implementation includes the following:

a. The implementation of the business methods that are declared in the
component interfaces.

b. The container callback methods that are inherited from the
javax.ejb.SessionBean

c. The ejb* methods that match the home interface create methods:

* For stateless session beans, provide an ejbCreate method with no
parameters.

* For stateful session beans, provide an ejbCreate method with
parameters matching those of the create method as defined in the home
interfaces.

Creating the Home Interfaces
The home interfaces (remote and local) are used to create the bean instance; thus, they
define the create method for your bean. The session bean can define the create
method in the following ways:

For each create method, a corresponding ejbCreate method is defined in the bean
implementation.

EJB Type Create Parameters

Stateless Session Bean Can have only a single create method, with no parameters.

Stateful Session Bean Can have one or more create methods, each with its own defined
parameters.

Developing Session Beans

Implementing Session Beans 3-3

Remote Invocation Any remote client invokes the EJB through its remote interface. The
client invokes the create method that is declared within the remote home interface.
The container passes the client call to the ejbCreate method—with the appropriate
parameter signature—within the bean implementation. You can use the parameter
arguments to initialize the state of the new EJB object.

1. The remote home interface must extend the javax.ejb.EJBHome interface.

2. All create methods may throw the following exceptions:

� javax.ejb.CreateException

� javax.ejb.EJBException or another RuntimeException

Example 3–1 Remote Home Interface for Session Bean

The following code sample illustrates a remote home interface for a stateless session
bean called HelloHome.

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome
{
 public Hello create() throws CreateException, RemoteException;
}

Local Invocation An EJB can be called locally from a client that exists in the same
container. Thus, a collocated bean, JSP, or servlet invokes the create method that is
declared within the local home interface. The container passes the client call to the
ejbCreate method—with the appropriate parameter signature—within the bean
implementation. You can use the parameter arguments to initialize the state of the new
EJB object.

1. The local home interface must extend the javax.ejb.EJBLocalHome interface.

2. All create methods may throw the following exceptions:

� javax.ejb.CreateException

� javax.ejb.EJBException or another RuntimeException

Example 3–2 Local Home Interface for Session Bean

The following code sample shows a local home interface for a stateless session bean
called HelloLocalHome.

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome
{
 public HelloLocal create() throws CreateException, EJBException;
}

Creating the Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

Developing Session Beans

3-4 Enterprise JavaBeans Developer’s Guide

Creating the Remote Interface The remote interface defines the business methods that a
remote client can invoke. Here are the requirements for developing the remote
interface:

1. The remote interface of the bean must extend the javax.ejb.EJBObject
interface, and its methods must throw the java.rmi.RemoteException
exception.

2. You must declare the remote interface and its methods as public for remote
clients.

3. The remote interface, all its method parameters, and return types must be
serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshals the object on both
ends.

4. Any exception can be thrown to the client, as long as it is serializable. Runtime
exceptions, including EJBException and RemoteException, are transferred
back to the client as remote runtime exceptions.

Example 3–3 Remote Interface Example for Hello Session Bean

The following code sample shows a remote interface called Hello with its defined
methods, each of which will be implemented in the stateless session bean.

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface Hello extends EJBObject
{
 public String sayHello(String myName) throws RemoteException;
}

Creating the Local Interface The local interface defines the business methods of the bean
that a local (collocated) client can invoke.

1. The local interface of the bean must extend the javax.ejb.EJBLocalObject
interface.

2. You declare the local interface and its methods as public.

Example 3–4 Local Interface for Hello Session Bean

The following code sample contains a local interface called HelloLocal with its
defined methods, each of which will be implemented in the stateless session bean.

package hello;

import javax.ejb.*;

public interface HelloLocal extends EJBLocalObject
{
 public String sayHello(String myName) throws EJBException;
}

Implementing the Bean
The bean contains the business logic for your application. It implements the following
methods:

Developing Session Beans

Implementing Session Beans 3-5

1. The signature for each of these methods must match the signature in the remote or
local interface, except that the bean does not throw the RemoteException. Since
both the local and the remote interfaces use the bean implementation, the bean
implementation cannot throw the RemoteException.

2. The lifecycle methods are inherited from the SessionBean interface. These
include the ejb<Action> methods, such as ejbActivate, ejbPassivate, and
so on.

3. The ejbCreate methods that correspond to the create method(s) that are
declared in the home interfaces. The container invokes the appropriate
ejbCreate method when the client invokes the corresponding create method.

4. Any methods that are private to the bean or package used for facilitating the
business logic. This includes private methods that your public methods use for
completing the tasks requested of them.

Example 3–5 Hello Stateless Session Bean Implementation

The following code shows the bean implementation for the Hello example.

package hello;

import javax.ejb.*;

public class HelloBean implements SessionBean
{
 public SessionContext ctx;

 public HelloBean()
 { // constructor
 }

 public void ejbCreate() throws CreateException
 { // when bean is created
 }

 public void ejbActivate()
 { // when bean is activated
 }

 public void ejbPassivate()
 { // when bean is deactivated
 }

 public void ejbRemove()
 { // when bean is removed
 }

 public void setSessionContext(SessionContext ctx)
 { this.ctx = ctx;
 }

 public void unsetSessionContext()

Note: You can download the stateless session bean example from
the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Developing Session Beans

3-6 Enterprise JavaBeans Developer’s Guide

 { this.ctx = null;
 }

 public String sayHello(String myName) throws EJBException
 {
 return ("Hello " + myName);
 }
}

Create the Deployment Descriptor
After implementing and compiling your classes, you must create the standard J2EE
EJB deployment descriptor for all beans in the module. The XML deployment
descriptor (defined in the ejb-jar.xml file) describes the EJB module of the
application. It describes the types of beans, their names, and attributes. The structure
for this file is mandated in the DTD file, which is provided at "
http://java.sun.com/dtd/ejb-jar_2_0.dtd".

Any EJB container services that you want to configure is also designated in the
deployment descriptor. For information about data sources and JTA, see the Oracle
Application Server Containers for J2EE Services Guide. For information about security, see
the Oracle Application Server Containers for J2EE Security Guide.

After creation, place the deployment descriptors for the EJB application in the
META-INF directory that is located in the same directory as the EJB classes. See
Figure 3–1 for more information.

The following example shows the sections that are necessary for the Hello example,
which implements both a remote and a local interface.

Example 3–6 XML Deployment Descriptor for Hello Bean

The following is the deployment descriptor for a version of the Hello example that
uses a stateless session bean. This example defines both the local and remote
interfaces. You do not have to define both interface types; you may define only one of
them.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <display-name>hello</display-name>
 <description>
 An EJB app containing only one Stateless Session Bean
 </description>
 <enterprise-beans>
 <session>
 <description>no description</description>
 <display-name>HelloBean</display-name>
 <ejb-name>HelloBean</ejb-name>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 <local-home>hello.HelloLocalHome</local-home>

Note: You can download this example on OTN from the
OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Prepare the EJB Application for Assembly

Implementing Session Beans 3-7

 <local>hello.HelloLocal</local>
 <ejb-class>hello.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>HelloBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 <security-role>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

Archive the EJB Application
After you have finalized your implementation and created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should include
all EJB application files and the deployment descriptor.

For example, to archive your compiled EJB class files and XML files for the Hello
example into a JAR file, perform the following in the ../hello/ejb_module
directory:

% jar cvf helloworld-ejb.jar .

This archives all files contained within the ejb_module subdirectory within the JAR
file.

Prepare the EJB Application for Assembly
To prepare the application for deployment, you do the following:

1. Modify the application.xml file with the modules of the enterprise Java
application.

2. Archive all elements of the application into an EAR file.

These steps are described in the following sections:

Note: You can download this example on OTN from the OC4J
sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Note: If you have included a Web application as part of this
enterprise Java application, follow the instructions for building the
Web application in the Oracle Application Server Containers for J2EE
User’s Guide .

Prepare the EJB Application for Assembly

3-8 Enterprise JavaBeans Developer’s Guide

� Modify the Application.XML File

� Create the EAR File

Modify the Application.XML File
The application.xml file acts as the manifest file for the application and contains a
list of the modules that are included within your enterprise application. You use each
<module> element defined in the application.xml file to designate what
comprises your enterprise application. Each module describes one of three things: EJB
JAR, Web WAR, or any client files. Respectively, designate the <ejb>, <web>, and
<java> elements in separate <module> elements.

� The <ejb> element specifies the EJB JAR filename.

� The <web> element specifies the Web WAR filename in the <web-uri> element,
and its context in the <context> element.

� The <java> element specifies the client JAR filename, if any.

As Figure 3–1 shows, the application.xml file is located under a META-INF
directory under the parent directory for the application. The JAR, WAR, and client JAR
files should be contained within this directory. Because of this proximity, the
application.xml file refers to the JAR and WAR files only by name and relative
path—not by full directory path. If these files were located in subdirectories under the
parent directory, then these subdirectories must be specified in addition to the
filename.

Figure 3–1 Archive Directory Format

For example, the following example modifies the <ejb>, <web>, and <java> module
elements within application.xml for the Hello EJB application that also contains a
servlet that interacts with the EJB.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.2//EN" "http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application>
 <display-name>helloworld j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Helloworld Session Bean
 on the server and calls from java/servlet/JSP clients.
 </description>
 <module>
 <ejb>helloworld-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>helloworld-web.war</web-uri>

When Does Stateful Session Bean Passivation Occur?

Implementing Session Beans 3-9

 <context-root>/helloworld</context-root>
 </web>
 </module>
 <module>
 <java>helloworld-client.jar</java>
 </module>
</application>

Create the EAR File
Create the EAR file that contains the JAR, WAR, and XML files for the application.
Note that the application.xml file serves as the EAR manifest file.

To create the helloworld.ear file, execute the following in the hello directory
contained in Figure 3–1:

% jar cvf helloworld.ear .

This step archives the application.xml, the helloworld-ejb.jar, the
helloworld-web.war, and the helloworld-client.jar files into the
helloworld.ear file.

Deploy the Enterprise Application to OC4J
After archiving your application into an EAR file, deploy the application to OC4J. See
the Oracle Application Server Containers for J2EE User’s Guide for information on how to
deploy your application.

When Does Stateful Session Bean Passivation Occur?
Passivation enables the container to preserve the conversational state of an inactive
idle bean instance by serializing the bean and its state into a secondary storage and
removing it from memory. Before passivation, the container invokes the
ejbPassivate() method enabling the bean developer to clean up held resources,
such as database connections, TCP/IP sockets, or any resources that cannot be
transparently passivated using object serialization. The object types that can be
serialized and passivated are listed at the end of this section.

When a client invokes one of the methods of the passivated bean instance, the
preserved conversational state data is activated, by de-serializing the bean from
secondary storage and brought back into memory. Before activation, the container
invokes the ejbActivate() method so that the bean developer can restore the
resources released during ejbPassivate(). For more information on passivation,
see the EJB specification.

Passivation is enabled by default. You can turn off passivation for stateful session
beans by setting the <sfsb-config> element in the server.xml file to false. A
stateful session bean can passivate only certain object types, as designated in "Object
Types Enabled for Passivation" on page 3-11. If you do not prepare your stateful
session beans for passivation by releasing all resources and only allowing state to exist
within the allowed object types, then passivation will fail everytime. If you do not
want to change your object types and do not mind not passivating the object, you can

Note: OC4J passivates only stateful session beans. Stateless
session beans have no state to passivate and entity beans should
have their state saved within the database.

When Does Stateful Session Bean Passivation Occur?

3-10 Enterprise JavaBeans Developer’s Guide

disable passivation. In another case, you may want to disable passivation for
performance reasons: passivation carries an overhead with it, and if you desire speed
and are not really worried about resources, then you can turn passivation off.

An example of how to turn off passivation is as follows:

<sfsb-config enable-passivation="false"/>

Passivation is invoked based on any combination of the following criteria:

� idle timeout expires

You can set an idle timeout in seconds for each bean. When this timeout expires,
passivation occurs. Set the idletime attribute in <session-deployment> to
the appropriate number of seconds. Default: 300 seconds. (5 minutes). To disable,
specify "never."

� out of resources

Each of the following attributes in <session-deployment> define resource
thresholds, when to check for those thresholds, and number of beans to passivate
when the threshold is met.

– memory-threshold - This attribute defines a threshold for how much used
JVM memory is allowed before passivation should occur. Specify an integer
that is translated as a percentage. When reached, beans are passivated, even if
their idle timeout has not expired. Default: 80%. To disable, specify "never."

– max-instances-threshold - This attribute defines a threshold for how
many active beans exist in relation to the max-instances attribute
definition. Specify an integer that is translated as a percentage. For example, if
you define that the max-instances is 100 and the
max-instances-threshold is 90%, then when the active bean instances
reaches past 90, passivation of beans occurs. Default: 90%. To disable, specify
"never."

– resource-check-interval - The container checks all resources at this time
interval. At this time, if any of the thresholds have been reached, passivation
occurs. Default: 180 seconds (3 minutes). To disable, specify "never."

– passivate-count - This attribute is an integer that defines the number of
beans to be passivated if any of the resource thresholds have been reached.
Passivation of beans is performed using the least recently used algorithm.
Default: one-third of the max-instances attribute. You can disable this
attribute by setting the count to zero or a negative number.

� The number of bean instances allowed is reached

This number is set within the <session-deployment> max-instances
attribute. The max-instances attribute controls the number of bean instances
allowed in memory. When this value is reached, the container attempts to
passivate the oldest bean instance from memory. If unsuccessful, the container
waits the number of milliseconds set in the call-timeout attribute to see if a
bean instance is removed from memory, either thru another passivation, calling
the bean remove() method, or bean expiration, before a
TimeoutExpiredException is thrown back to the client. Leave the

Note: See the <sfsb-config> element defined in the
server.xml section of the Oracle Application Server Containers for
J2EE User’s Guide appendix for more information.

Using Timers With Your Stateless Session Bean

Implementing Session Beans 3-11

max-instances value at zero to allow an infinite number of bean instances.
Default is 0, which is infinite.

� OC4J instance termination

All bean instances in the container's memory that are not passivated are serialized
to the secondary storage. Upon OC4J start-up, these passivated beans are restored
back to memory.

If the passivation serialization fails, then the container attempts to recover the bean
back to memory as if nothing happened. No future passivation attempts will occur for
any beans that fail passivation. Also, if activation fails, the bean and its references are
completely removed from the container.

If new bean data is propagated to a passivated bean in a cluster, then the bean instance
data is overwritten by the propagated data.

Object Types Enabled for Passivation
For serialization (during passivation) to the secondary storage to be successful, the
conversational state of a bean must consist of only primitive values and the following
special types:

� serializable objects

� null

� a reference to a component interface (EJBObject or EJBLocalObject)

� a reference to a home interface (EJBHome or EJBLocalHome)

� a reference to the SessionContext object

� a reference to the environment naming context

� a reference to the UserTransaction interface

� a reference to a resource manager connection factory

The bean developer is responsible for ensuring that all fields are of these types within
the ejbPassivate() method. Any transient or non-serializable field should be set to
null in this method.

Storage of Passivated EJBs
When OC4J passivates the stateful session bean, it is placed in the directory and
filename designated by the persistence-filename attribute of the
<session-deployment> element in the OC4J deployment descriptor. Passivation
uses space within this directory to store the passivated beans. The default is the
application-deployments/persistence directory. If passivation allocates large
amounts of disk space, you may need to change the directory to a place on your
system where you have the space available or turn off passivation.

Using Timers With Your Stateless Session Bean
Your stateless session bean can set up a timer where OC4J calls the bean at a specified
time, after a specified elapsed time, or at specified intervals. These timers are for use in
modeling of application-level processes, not for real-time events. For more information
on how to set up timers, see Chapter 11, "Using Timers".

At this time, your stateful session beans cannot use timers.

Using Timers With Your Stateless Session Bean

3-12 Enterprise JavaBeans Developer’s Guide

Entity Beans 4-1

4
Entity Beans

This chapter demonstrates Entity Bean development with a basic configuration and
deployment. Download the entity bean example from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos/ on the OTN Web site.

This chapter demonstrates the following:

� Entity Bean Overview

� Creating Entity Beans

� How to Define and Use Primary Keys for Your Entity Bean

� Create Data Consistency in Your Entity Bean by Using Persistence

� Tie Entity Beans Together Through Container-Managed Relationships

� Managing the Entity Bean Lifecycle

� How to Avoid Database Resource Contention

� Using Transactions With Entity Beans

� Providing Security for Your Entity Beans

� Using Timers With Your Entity Bean

See Chapter 8, "BMP Entity Beans", for an example of how to create a simple bean-
managed persistent entity bean. For a description of persisting object relationships
between EJBs, see Chapter 6, "Entity Relationship Mapping".

Entity Bean Overview
With EJB 2.0 and the local interface support, most developers agree that entity beans
should be paired with a session bean, servlet, or JSP that acts as the client interface.
The entity bean is a coarse-grain bean that encapsulates functionality and represents
data and dependent objects. Thus, you decouple the client from the data so that if the
data changes, the client is not affected. For efficiency, the session bean, servlet, or JSP
can be collocated with entity beans and can coordinate between multiple entity beans
through their local interfaces. This is known as a session facade design. See the
http://java.sun.com/ Web site for more information on session facade design.

An entity bean can aggregate objects together and effectively persist data and related
objects under the umbrella of transactional, security, and concurrency support through
the container. This and the following chapters focus on how to use the persistence
functionality of the entity bean.

Creating Entity Beans

4-2 Enterprise JavaBeans Developer’s Guide

An entity bean manages persistent data in one of two ways: container-managed
persistence (CMP) and bean-managed persistence (BMP). The primary difference
between the two is as follows:

� Container-managed persistence—The EJB container manages data by saving it to a
designated resource, which is normally a database. For this to occur, you must
define the data that the container is to manage within the deployment descriptors.
The container manages the data by saving it to the database. For details on
container-managed persistence and how to use it in your entity bean, see
Chapter 5, "CMP Entity Beans".

� Bean-managed persistence—The bean implementation manages the data within
callback methods. All the logic for storing data to your persistent storage must be
included in the ejbStore method and reloaded from your storage in the
ejbLoad method. The container invokes these methods when necessary. For
details on bean-managed persistence and how to implement it within your entity
bean, see Chapter 8, "BMP Entity Beans".

Creating Entity Beans
The following steps are an overview of what you must do in creating an entity bean,
which are similar to the steps for the session bean, described in Chapter 3,
"Implementing Session Beans".

1. Create the home interfaces for the bean. The home interface defines the create
and finder methods, including findByPrimaryKey, for your bean. See
"Implement the Entity Bean Home Interface"page 3.

2. Create the component interfaces for the bean. The component interfaces declare
the methods that a client can invoke. See "Implement the Entity Bean Component
Interfaces"page 4.

3. Define the primary key for the bean. The primary key identifies each entity bean
instance and is a serializable class. You can use a simple data type class, such as
java.lang.String, or define a complex class, such as one with two or more
objects as components of the primary key. See "How to Define and Use Primary
Keys for Your Entity Bean"page 6.

4. Implement the bean. See "Implement the Entity Bean Class"page 4.

5. Create the bean deployment descriptor. The deployment descriptor specifies
properties for the bean through XML elements. This step is where you identify the
data within the bean that is to be managed by the container. See "Persistence
Fields"page 1 for more information on persistence fields. If these fields describe
relationships to other objects, see Chapter 6, "Entity Relationship Mapping".

Any EJB Container services that you want to configure is also designated in the
deployment descriptor. For information about data sources and JTA, see the
Oracle Application Server Containers for J2EE Services Guide. For information about
security, see the Oracle Application Server Containers for J2EE Security Guide.

If the persistent data is saved to or restored from a database and you are not using
the defaults provided by the container, then you must ensure that the correct
tables exist for the bean. In the default scenario, the container creates the table and
columns for your data based on deployment descriptor and datasource
information.

6. Create an EJB JAR file containing the bean, component interface, home interface,
and the deployment descriptors. Once created, configure the application.xml
file, create an EAR file, and deploy the EJB to OC4J.

Creating Entity Beans

Entity Beans 4-3

The following sections demonstrate a simple CMP entity bean. This example continues
the use of the employee example, as in other chapters—without adding complexity.

� Implement the Entity Bean Home Interface

� Implement the Entity Bean Component Interfaces

� Implement the Entity Bean Class

Implement the Entity Bean Home Interface
The home interface is primarily used for retrieving the bean reference, on which the
client can request business methods.

� The local home interface extends javax.ejb.EJBLocalHome.

� The remote home interface extends javax.ejb.EJBHome.

The home interface must contain a create method, which the client invokes to create
the bean instance. The entity bean can have zero or more create methods, each with
its own defined parameters. All entity beans must define one or more finder methods,
where at least one is a findByPrimaryKey method. Optionally, you can develop
other finder methods, which are named find<name>, for the bean.

In addition to creation and retrieval methods, you can provide home interface business
methods within the home interface. The functionality within these methods cannot
access data of a particular entity object. Instead, the purpose of these methods is to
provide a way to retrieve information that is not related to a single entity bean
instance. When the client invokes any home interface business method, an entity bean
is removed from the pool to service the request. Thus, this method can be used to
perform operations on general information related to the bean.

Our employee example provides the local home interface with a create,
findByPrimaryKey, findAll, and calcSalary methods. The calcSalary
method is a home interface business method that calculates the sum of all employee
salaries. It does not access the information of a particular employee, but performs a
SQL inquiry against the database for all employees.

Example 4–1 Entity Bean Employee Home Interface

The employee home interface provides a method to create the component interface. It
also provides two finder methods: one to find a specific employee by an employee
number and one that finds all employees. Last, it supplies a home interface business
method, calcSalary, to calculate how much all employees cost the business.

The home interface is required to extend javax.ejb.EJBHome and define the
create and findByPrimaryKey methods.

package employee;

import javax.ejb.*;
import java.rmi.*;

public interface EmployeeLocalHome extends EJBLocalHome
{

 public EmployeeLocal create(Integer empNo) throws CreateException;

 // Find an existing employee
 public EmployeeLocal findByPrimaryKey (Integer empNo) throws FinderException;

 //Find all employees

Creating Entity Beans

4-4 Enterprise JavaBeans Developer’s Guide

 public Collection findAll() throws FinderException;

 //Calculate the Salaries of all employees
 public float calcSalary() throws Exception;
}

Implement the Entity Bean Component Interfaces
The entity bean component interfaces are the interfaces that the customer sees and
invokes methods upon. The component interface defines the business logic methods
for the entity bean instance.

� The local component interface extends javax.ejb.EJBLocalObject.

� The remote component interface extends javax.ejb.EJBObject.

The employee entity bean example exposes the local component interface, which
contains methods for retrieving and updating employee information.

package employee;

import javax.ejb.*;

public interface EmployeeLocal extends EJBLocalObject
{
 public Integer getEmpNo();
 public void setEmpNo(Integer empNo);

 public String getEmpName();
 public void setEmpName(String empName);

 public Float getSalary();
 public void setSalary(Float salary);
}

Implement the Entity Bean Class
The entity bean class implements the following methods:

� The target methods for the methods that are declared in the home interface, which
include the following:

– The ejbCreate and ejbPostCreate methods with parameters matching
the associated create method defined in the home interface.

– Finder methods, other than ejbFindByPrimaryKey and ejbFindAll, that
are defined in the home interface. The container generates the
ejbFindByPrimaryKey and ejbFindAll method implementations—
although you must still provide an empty method for each of these.

– any home interface business methods, which are prepended with ejbHome in
the bean implementation. For example, the calcSalary method is
implemented in the ejbHomeCalcSalary method.

� The business logic methods that are declared in the component interfaces.

� The methods that are inherited from the javax.ejb.EntityBean interface.

However, with container-managed persistence, the container manages most of the
target methods and the data objects, thereby leaving little for you to implement.

package employee;

Creating Entity Beans

Entity Beans 4-5

import javax.ejb.*;
import java.rmi.*;

public abstract class EmployeeBean implements EntityBean
{

 private EntityContext ctx;

 // Each CMP field has a get and set method as accessors
 public abstract Integer getEmpNo();
 public abstract void setEmpNo(Integer empNo);

 public abstract String getEmpName();
 public abstract void setEmpName(String empName);

 public abstract Float getSalary();
 public abstract void setSalary(Float salary);

 public void EmployeeBean()
 {
 // Constructor. Do not initialize anything in this method.
 // All initialization should be performed in the ejbCreate method.
 // The passivate() method may destroy these attributes when pooling
 }

 public float ejbHomeCalcSalary() throws Exception
 {
 Collection c = null;
 try {
 c = ((EmployeeLocalHome)this.ctx.getEJBLocalHome()).findAll();

 Iterator i = c.iterator();
 float totalSalary = 0;
 while (i.hasNext())
 {
 EmployeeLocal e = (EmployeeLocal)i.next();
 totalSalary = totalSalary + e.getSalary().floatValue();
 }
 return totalSalary;
 }
 catch (FinderException e) {
 System.out.println("Got finder Exception "+e.getMessage());
 throw new Exception(e.getMessage());
 }
 }

 public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
 throws CreateException
 {
 setEmpNo(empNo);
 setEmpName(empName);
 setSalary(salary);
 return new EmployeePK(empNo);
 }

 public void ejbPostCreate(Integer empNo, String empName, Float salary)
 throws CreateException
 {
 // Called just after bean created; container takes care of implementation
 }

How to Define and Use Primary Keys for Your Entity Bean

4-6 Enterprise JavaBeans Developer’s Guide

 public void ejbStore()
 {
 // Called when bean persisted; container takes care of implementation
 }

 public void ejbLoad()
 {
 // Called when bean loaded; container takes care of implementation
 }

 public void ejbRemove() throws RemoveException
 {
 // Called when bean removed; container takes care of implementation
 }

 public void ejbActivate()
 {
 // Called when bean activated; container takes care of implementation.
 // If you need resources, retrieve them here.
 }

 public void ejbPassivate()
 {
 // Called when bean deactivated; container takes care of implementation.
 // if you set resources in ejbActivate, remove them here.
 }

 public void setEntityContext(EntityContext ctx)
 {
 this.ctx = ctx;
 }

 public void unsetEntityContext()
 {
 this.ctx = null;
 }
}

How to Define and Use Primary Keys for Your Entity Bean
Each entity bean instance has a primary key that uniquely identifies it from other
instances. You must declare the primary key (or the fields contained within a complex
primary key) as a container-managed persistent field in the deployment descriptor. All
fields within the primary key are restricted to either primitive, serializable, or types
that can be mapped to SQL types. You can define your primary key in one of two
ways:

� Define the type of the primary key to be a well-known type. The type is defined in
the <prim-key-class> in the deployment descriptor. The data field that is
identified as the persistent primary key is identified in the <primkey-field>
element in the deployment descriptor. The primary key variable that is declared
within the bean class must be declared as public.

Note: The entire CMP entity bean example (cmpapp.jar) is
available on OTN from the OC4J sample code page at http://
www.oracle.com/technology/tech/java/oc4j/demos/ on
the OTN Web site.

How to Define and Use Primary Keys for Your Entity Bean

Entity Beans 4-7

� Define the type of the primary key as a serializable object within a <name>PK class
that is serializable. This class is declared in the <prim-key-class> element in
the deployment descriptor. This is an advanced method for defining a primary key
and is discussed in "Defining the Entity Bean Primary Key in a Class"page 8.

� Specify an auto-generated primary key: If you specify a java.lang.Object as
the primary key class type in <prim-key-class>, but do not specify the primary
key name in <primkey-field>, then the primary key is auto-generated by the
container. See Defining an Auto-Generated Primary Key for Your Entity
Beanpage 9 for more information.

For a simple CMP, you can define your primary key to be a well-known type by
defining the data type of the primary key within the deployment descriptor.

The employee example defines its primary key as a java.lang.Integer and uses
the employee number (empNo) as its primary key.

<enterprise-beans>
 <entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.EmployeeLocalHome</local-home>
 <local>employee.EmployeeLocal</local>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
...
</enterprise-beans>

Once defined, the container creates a column in the entity bean table for the primary
key and maps the primary key defined in the deployment descriptor to this column.

Within the orion-ejb-jar.xml file, the primary key is mapped to the underlying
database persistence storage by mapping the CMP field or primary key field defined
in the ejb-jar.xml file to the database column name. In the following orion-ejb-
jar.xml fragment, the EmpBean persistence storage is defined as the EMP table in the
database that is defined in the jdbc/OracleDS data source. Following the <entity-
deployment> element definition, the primary key, empNo, is mapped to the EMPNO
column in the Emp table, and the empName and salary CMP fields are mapped to
EMPNAME and SALARY columns respectively in the EMP table.

<entity-deployment name="EmpBean" ...table="EMP"
 data-source="jdbc/OracleDS"... >
 <primkey-mapping>
 <cmp-field-mapping name="empNo" persistence-name="EMPNO" />
 </primkey-mapping>

Note: The entire CMP entity bean example (cmpapp.jar) is
available on OTN from the OC4J sample code page at http://
www.oracle.com/technology/tech/java/oc4j/demos/ on
the OTN Web site.

How to Define and Use Primary Keys for Your Entity Bean

4-8 Enterprise JavaBeans Developer’s Guide

 <cmp-field-mapping name="empName" persistence-name="EMPNAME" />
 <cmp-field-mapping name="salary" persistence-name="SALARY" />

Defining the Entity Bean Primary Key in a Class
If your primary key is more complex than a simple data type, your primary key must
be a class that is serializable of the name <name>PK. You define the primary key class
within the <prim-key-class> element in the deployment descriptor.

The primary key variables must adhere to the following:

� Be defined within a <cmp-field><field-name> element in the deployment
descriptor. This enables the container to manage the primary key fields.

� Be declared within the bean class as public and restricted to be either primitive,
serializable, or types that can be mapped to SQL types.

� The names of the variables that make up the primary key must be the same in both
the <cmp-field><field-name> elements and in the primary key class.

Within the primary key class, you implement a constructor for creating a primary key
instance. Once the primary key class is defined in this manner, the container manages
the class.

The following example places the employee number within a primary key class.

package employee;

public class EmployeePK implements java.io.Serializable
{
 public Integer empNo;

 public EmployeePK()
 {
 this.empNo = null;
 }

 public EmployeePK(Integer empNo)
 {
 this.empNo = empNo;
 }
}

The primary key class is declared within the <prim-key-class> element, and each
of its variables are declared within a <cmp-field><field-name> element in the
XML deployment descriptor, as follows:

<enterprise-beans>
 <entity>
 <description>no description</description>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.LocalEmployeeHome</home>
 <local>employee.LocalEmployee</remote>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>employee.EmployeePK</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>

How to Define and Use Primary Keys for Your Entity Bean

Entity Beans 4-9

 <cmp-field><field-name>salary</field-name></cmp-field>
 </entity>
</enterprise-beans>

Once defined, the container creates a column in the entity bean table for the primary
key and maps the primary key class defined in the deployment descriptor to this
column.

The CMP fields are mapped in the orion-ejb-jar.xml in the same manner as
described in "How to Define and Use Primary Keys for Your Entity Bean"page 6. With
a complex primary key, the mapping contains more than a single field; thus, the
<cmp-field-mapping> element of the <primkey-mapping> element contains
another subelement: the <fields> element. All of the fields of a primary key are each
defined in a separate <cmp-field-mapping> element within the <fields>
element, as shown below.

<primkey-mapping>
 <cmp-field-mapping>
 <fields>
 <cmp-field-mapping name="empNo" persistence-name="EMPNO" />
 </fields>
 </cmp-field-mapping>
</primkey-mapping>

Special mapping needs to happen if you have a complex primary key that contains a
foreign key. See "Using a Foreign Key in a Composite Primary Key"page 44 for
directions.

Defining an Auto-Generated Primary Key for Your Entity Bean
If you specify a java.lang.Object as the primary key class type in <prim-key-
class>, but do not specify the primary key name in <primkey-field>, then the
primary key is auto-generated by the container.

The employee example defines its primary key as a java.lang.Object. Thus, the
container auto-generates the primary key.

<enterprise-beans>
 <entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.EmployeeLocalHome</local-home>
 <local>employee.EmployeeLocal</local>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Object</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 </entity>
...
</enterprise-beans>

Once defined, the container creates a column called autoid in the entity bean table for
the primary key of type LONG. The container uses random numbers for the primary
key values. This is generated in the orion-ejb-jar.xml for the bean, as follows:

Create Data Consistency in Your Entity Bean by Using Persistence

4-10 Enterprise JavaBeans Developer’s Guide

<primkey-mapping>
 <cmp-field-mapping name="auto_id"
 persistence-name="autoid"/>
</primkey-mapping>

Create Data Consistency in Your Entity Bean by Using Persistence
There are two methods for managing the persistent data within an entity bean: bean-
managed (BMP) and container-managed persistence (CMP). The main difference
between BMP and CMP beans is defined by who manages the persistence of the entity
bean's data. With CMP beans, the container manages the persistence—the bean
deployment descriptor specifies how to map the data and where the data is stored.
With BMP beans, the logic for saving the data and where it is saved is programmed
within designated methods. These methods are invoked by the container at the
appropriate moments.

In practical terms, the following table provides a definition for both types, and a
summary of the programmatic and declarative differences between them:

For more information on container-managed persistence, see Chapter 5, "CMP Entity
Beans"; for information on bean-managed persistence, see Chapter 8, "BMP Entity
Beans".

Tie Entity Beans Together Through Container-Managed Relationships
The EJB 2.0 specification enables the specification of relationships between entity
beans. An entity bean can be defined so as to have a relationship with other entity
beans. You implement relationships differently for entity beans with bean-managed-
persistence than those entity beans that utilize container-managed-persistence. With
bean-managed persistence, the code that you write implements the relationships. With
container-managed persistence, the EJB container takes care of the relationships for

Management Issues Bean-Managed Persistence Container-Managed Persistence

Persistence management You are required to implement the
persistence management within the
ejbStore, ejbLoad, ejbCreate, and
ejbRemove EntityBean methods.
These methods must contain logic for
saving and restoring the persistent data.

For example, the ejbStore method
must have logic in it to store the entity
bean's data to the appropriate database.
If it does not, the data can be lost.

The management of the persistent data is
done for you. That is, the container invokes
a persistence manager on behalf of your
bean.

You use ejbStore and ejbLoad for
preparing the data before the commit or for
manipulating the data after it is refreshed
from the database. The container always
invokes the ejbStore method right before
the commit. In addition, it always invokes
the ejbLoad method right after reinstating
CMP data from the database.

Finder methods allowed The findByPrimaryKey method and
other finder methods are allowed.

The findByPrimaryKey method and
other finder methods clause are allowed.

Defining CMP fields N/A Required within the EJB deployment
descriptor. The primary key must also be
declared as a CMP field.

Mapping CMP fields to
resource destination

N/A Required. Dependent on persistence
manager.

Definition of persistence
manager

N/A Required within the Oracle-specific
deployment descriptor. See the next section
for a description of a persistence manager.

Managing the Entity Bean Lifecycle

Entity Beans 4-11

you. For this reason, relationships in entity beans with container-managed persistence
are often referred to as container-managed relationships.

� Relationship Fields - A relationship field in an EJB identifies a related bean. A
relationship field is virtual and is defined in the enterprise bean class with access
methods. Unlike a persistent field, a relationship field does not represent the
bean's state.

� Multiplicity in Container-Managed Relationships - There are four types of
multiplicities all of which are supported by Oracle Application Server:

– One-to-One - Each entity bean instance is related to a single instance of
another entity bean.

– One-to-Many - An entity bean instance is related to multiple instances of the
other entity bean.

– Many-to-One - Multiple instances of an entity bean may be related to a single
instance of the other entity bean. This multiplicity is the opposite of one-to-
many.

– Many-to-Many - The entity bean instances may be related to multiple
instances of each other.

� Direction in Container-Managed Relationships - The direction of a relationship
may be either bi-directional or unidirectional. In a unidirectional relationship, only
one entity bean has a relationship field that refers to the other. In a bi-directional
relationship, each entity bean has a relationship field that refers to the other bean.
Through the relationship field, an entity bean's code can access its related object. If
an entity bean has a relative field, then we often say that it "knows" about its
related object. Oracle Application Server supports both unidirectional and bi-
directional relationships between EJBs.

� EJBQL and CMP With Relationships - EJB QL queries often navigate across
relationships. The direction of a relationship determines whether a query can
navigate from one bean to another. With Oracle Application Server, EJBQL queries
can traverse CMP Relationships with any type of multiplicity and with both
unidirectional and bi-directional relationships.

For more information, see Chapter 5, "CMP Entity Beans" for container-managed
persistence, Chapter 6, "Entity Relationship Mapping" for CMR relationships, and
Chapter 7, "EJB Query Language" for EJB QL.

Managing the Entity Bean Lifecycle
You can manage the entity bean lifecycle through configuring pool sizes for your
entity beans. This subject is covered in the following section:

� Configuring Pool Sizes For Entity Beans

Configuring Pool Sizes For Entity Beans
You can set the minimum and maximum number of the bean instance pool, which
contains EJB implementation instances that currently do not have assigned state.
While the bean instance is in pool state, it is generic and can be assigned to a wrapper
instance.

You can set the pool number with the following attributes of the <entity-
deployment> element.

How to Avoid Database Resource Contention

4-12 Enterprise JavaBeans Developer’s Guide

� The max-instances attribute sets the maximum entity bean instances to be
allowed in the pool. An entity bean is set to a pooled state if not associated with a
wrapper instance. Thus, it is generic.

The default is 0, which means infinite. If you wanted to set the maximum bean
implementation instances to 20, you would do as follows:

<entity-deployment ... max-instances="20"
 ...
</entity-deployment>

� The min-instances attribute sets the minimum number allowed in the pool as
follows:

<entity-deployment ... min-instances="2"
 ...
</entity-deployment>

How to Avoid Database Resource Contention
In order to avoid resource contention and overwriting each others changes to database
tables while allowing concurrent execution, entity bean concurrency and database
isolation modes are provided.

� Using Database Isolation Modes to Protect Against Resource Contention

� Configuring Entity Bean Concurrency Modes For Handling Resource Contention

� Specifying Exclusive Write Access to the Database

� Effects of the Combination of the Database Isolation and Bean Concurrency Modes

� Affects of Concurrency Modes on Clustering

Using Database Isolation Modes to Protect Against Resource Contention
The java.sql.Connection object represents a connection to a specific database.
Database isolation modes are provided to define protection against resource
contention. When two or more users try to update the same resource, a lost update can
occur. That is, one user can overwrite the other user's data without realizing it. The
java.sql.Connection standard provides four isolation modes, of which Oracle
only supports two of these modes. These are as follows:

� TRANSACTION_READ_COMMITTED: Dirty reads are prevented; non-repeatable
reads and phantom reads can occur. This level only prohibits a transaction from
reading a row with uncommitted changes in it.

� TRANSACTION_SERIALIZABLE: Dirty reads, non-repeatable reads and phantom
reads are prevented. This level includes the prohibitions in
TRANSACTION_REPEATABLE_READ and further prohibits the situation where one
transaction reads all rows that satisfy a WHERE condition, a second transaction
inserts a row that satisfies that WHERE condition, and the first transaction rereads
for the same condition, retrieving the additional "phantom" row in the second
read.

Note: You cannot set the isolation level to serializable if you are
using a non-emulated data source. If you do, the non-emulated
data source will not work.

How to Avoid Database Resource Contention

Entity Beans 4-13

You can configure one of these database isolation modes for a specific bean. That is,
you can specify that when the bean starts a transaction, the database isolation mode
for this bean be what is specified in the OC4J-specific deployment descriptor. Specify
the isolation mode on what is important for the bean: parallel execution or data
consistency. The isolation mode for this bean is set for the entire transaction.

The isolation mode can be set for each entity bean in the isolation attribute of the
<entity-deployment> element. The values can be committed or serializable.
The default is committed. To change it to serializable, configure the following in
the orion-ejb-jar.xml for the intended bean:

<entity-deployment ... isolation="serializable"
 ...
</entity-deployment>

There is always a trade-off between performance and data consistency. The
serializable isolation mode provides data consistency; the committed isolation
mode provides for parallel execution.

If you do not set an isolation mode, you receive the mode that is configured in the
database. Setting the isolation mode within the OC4J-specific deployment descriptor
temporarily overrides the database configured isolation mode for the life of the global
transaction for this bean. That is, if you define the bean to use the serializable
mode, then the OC4J container will force the database to be serializable for this
bean only until the end of the transaction.

You can specify both entity bean concurrency modes and database isolation modes,
where the combination effects the outcome of your resource contention. See "Effects of
the Combination of the Database Isolation and Bean Concurrency Modes"page 14 for
more information.

Configuring Entity Bean Concurrency Modes For Handling Resource Contention
OC4J also provides concurrency modes for handling resource contention and parallel
execution within container-managed persistence (CMP) entity beans. Bean-managed
persistence entity beans manage the resource locking within the bean implementation
themselves. The concurrency modes configure when to block to manage resource
contention or when to execute in parallel.

The concurrency modes are as follows:

� PESSIMISTIC: This manages resource contention and does not allow parallel
execution. Only one user at a time is allowed to execute the entity bean at a single
time.

Note: There is a danger of lost updates with the serializable
mode if the max-tx-retries element in the OC4J-specific
deployment descriptor is greater than zero. The default for this
value is zero. If this element is set to greater than zero, then the
container retries the update if a second blocked client receives a
ORA-8177 exception. The retry would find the row unlocked and
the update would occur. Thus, the second client's update succeeds
and overwrites the first client's update. If you use serializable,
you should consider leaving the max-tx-retries element as zero
for data consistency.

How to Avoid Database Resource Contention

4-14 Enterprise JavaBeans Developer’s Guide

� OPTIMISTIC: Multiple users can execute the entity bean in parallel. It does not
monitor resource contention; thus, the burden of the data consistency is placed on
the database isolation modes.

� READ-ONLY: Multiple users can execute the entity bean in parallel. The container
does not allow any updates to the bean's state.

To enable the CMP entity bean concurrency mode, add the appropriate concurrency
value of "pessimistic", "optimistic", or "read-only" to the locking-mode
attribute of the <entity-deployment> element in the OC4J-specific deployment
descriptor (orion-ejb-jar.xml). The default is "optimistic". To modify the
concurrency mode to pessimistic, do the following:

<entity-deployment ... locking-mode="pessimistic"
 ...
</entity-deployment>

These concurrency modes are defined per bean and the effects of locking apply on the
transaction boundaries.

Parallel execution requires that the pool size for wrapper and bean instances are set
correctly. For more information on how to configure the pool sizes, see "Configuring
Environment References"page 8.

You can specify both entity bean concurrency modes and database isolation modes,
where the combination effects the outcome of your resource contention. See "Effects of
the Combination of the Database Isolation and Bean Concurrency Modes"page 14 for
more information.

Specifying Exclusive Write Access to the Database
The exclusive-write-access attribute of the <entity-deployment> element
states that this is the only bean that accesses its table in the database and that no
external methods are used to update the resource. It informs the OC4J instance that
any cache maintained for this bean will only be dirtied by this bean. Essentially, if you
set this attribute to true, you are assuring the container that this is the only bean that
will update the tables used within this bean. Thus, any cache maintained for the bean
does not need to constantly update from the back-end database.

This flag does not prevent you from updating the table; that is, it does not actually lock
the table. However, if you update the table from another bean or manually, the results
are not automatically updated within this bean.

The default for this attribute is false. Because of the effects of the entity bean
concurrency modes, this element is only allowed to be set to true for a read-only
entity bean. OC4J will always reset this attribute to false for pessimistic and
optimistic concurrency modes.

<entity-deployment ... exclusive-write-access="true"
 ...
</entity-deployment>

Effects of the Combination of the Database Isolation and Bean Concurrency Modes
For the pessimistic and read-only concurrency modes, the setting of the
database isolation mode does not matter. These isolation modes only matter if an
external source is modifying the database.

If you choose optimistic with committed, you have the potential to lose an
update. If you choose optimistic with serializable, you will never lose an

Using Timers With Your Entity Bean

Entity Beans 4-15

update. Thus, your data will always be consistent. However, you can receive an ORA-
8177 exception as a resource contention error.

Differences Between Pessimistic and Optimistic/Serializable
An entity bean with the pessimistic concurrency mode does not allow multiple
clients to execute a bean (either on the same or on different instances of the same
primary key). Only one client is allowed to execute the instance at any one moment.

An entity bean with the optimistic concurrency mode allows multiple instances of
the bean implementation to execute in parallel. However, it could result in potential
lost updates (and conflicts), because two different transactions may update the same
row simultaneously.

Setting the transaction isolation mode to serializable allows the detection of
conflicts when they occur. At that moment, the update from one of the transactions
raises a SQLException and that transaction is rolled back.

Optionally, you may set the tx-retries attribute of the <entity-deployment>
element to a value more than one, so that the transaction is retried.

Affects of Concurrency Modes on Clustering
All concurrency modes behave in a similar manner whether they are used within a
standalone or a clustered environment. This is because the concurrency modes are
locked at the database level. Thus, even if a pessimistic bean instance is clustered
across nodes, the moment one instance tries to execute, the database locks out all other
instances.

Using Transactions With Entity Beans
All entity beans with CMP and CMR relationships must be involved in a transaction.
As such, you cannot define any entity bean with a transaction attribute of NEVER,
SUPPORTS, or NOT_REQUIRED as this would put the entity outside of a transaction.

For more information on how to use, configure, and manage transactions for entity
beans, see the JTA chapter in the Oracle Application Server Containers for J2EE Services
Guide.

Providing Security for Your Entity Beans
OC4J provides security for your entity beans—whether you are interested in Java2
security or OracleAS JAAS Provider. However, you still have to configure the type of
security that you desire. For more information, see the Oracle Application Server
Containers for J2EE Security Guide.

Using Timers With Your Entity Bean
Your entity bean can set up a timer where OC4J calls the bean at a specified time, after
a specified elapsed time, or at specified intervals. These timers are for use in modeling
of application-level processes, not for real-time events. For more information on how
to set up timers, see Chapter 11, "Using Timers".

Using Timers With Your Entity Bean

4-16 Enterprise JavaBeans Developer’s Guide

CMP Entity Beans 5-1

5
CMP Entity Beans

This chapter demonstrates simple Container Managed Persistence (CMP) EJB
development with a basic configuration and deployment. Download the CMP entity
bean example (cmpapp.jar) from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos/ on the OTN
Web site.

This chapter demonstrates the following:

� Persistence Fields

� Configuring Lazy Loading on CMP Entity Bean Finder Methods

� Conversion of CMP Types to Database Types

See Chapter 8, "BMP Entity Beans", for an example of how to create a simple
bean-managed persistent entity bean. For a description of persisting object
relationships between EJBs, see Chapter 6, "Entity Relationship Mapping".

Persistence Fields
The persistent data in your CMP bean can be one of the following:

� Persistence field—Simple data type that is persisted to a database table. This field
is a direct attribute of the bean.

� Relationship field—Relationship to another bean.

Each type results in its own complex rules of how to configure. This section discusses
persistence fields. For information on relationship fields, see Chapter 6, "Entity
Relationship Mapping".

In CMP entity beans, you define the persistent data both in the bean instance and in
the deployment descriptor.

� Get/Set methods in the bean instance: For each persistence and relationship field,
both a get and a set method is created. For persistence fields, the data type of the
parameter returned from the get method and passed into the set method defines
the simple data type of the field. The name of the field is designated by the name
of the get and set methods.

The following XML shows the get and set methods for the employee name
persistence field. A String is passed back from the get method and into the set
method. Thus, the String is the simple data type of the field. If you remove the
"get" and "set" from the method names and then lower the case of the first letter,
you have the persistence field name. In this case, empName is the persistence field
name.

Persistence Fields

5-2 Enterprise JavaBeans Developer’s Guide

public abstract String getEmpName() throws RemoteException;
public abstract void setEmpName(String empName) throws RemoteException;

� The deployment descriptor defines these fields as persistent. Each field name must
be defined in a <cmp-field><field-name> element in the EJB deployment
descriptor. In the employee example, three persistence data fields are defined in
the data accessor methods: empNo, empName, and salary.

These fields are defined as persistent fields in the ejb-jar.xml deployment
descriptor within the <cmp-field><field-name> element, as follows:

<enterprise-beans>
 <entity>
 <display-name>Employee</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.EmployeeLocalHome</local-home>
 <local>employee.EmployeeLocal</local>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>Employee</abstract-schema-name>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
...
</enterprise-beans>

For these fields to be mapped to a database, you can do one of the following:

� Accept the defaults for these fields and avoid more deployment descriptor
configuration. See "Default Mapping of Persistent Fields to the Database" on
page 5-2 on how the default mapping occurs.

� Map the persistent data fields to columns in a table that exists in a designated
database. The persistent data mapping is configured within the
orion-ejb-jar.xml file. See "Explicit Mapping of Persistent Fields to the
Database" on page 5-3 for more information.

Default Mapping of Persistent Fields to the Database
If you simply define the persistent fields in the ejb-jar.xml file, then OC4J provides
the following mappings of these fields to the database:

� Database—The default database as set up in your OC4J instance configuration. For
the JNDI name, use the <location> element for emulated data sources and
<ejb-location> element for non-emulated data sources.

Upon installation, the default database is a locally installed Oracle database that
must be listening on port 1521 with a SID of ORCL. To customize the default
database, change the first configured database to point to your database.

Note: The entire CMP entity bean example (cmpapp.jar) is
available on OTN from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Persistence Fields

CMP Entity Beans 5-3

� Table—The container automatically creates a default table where the name of the
table is guaranteed to be unique. For all future redeployments, copy the generated
orion-ejb-jar.xml file with this table name into the same directory as your
ejb-jar.xml file. Thus, all future redeployments have the same table names as
first generated. If you do not copy this file over, different table names may be
generated.

The table name is constructed with the following names, where each is separated
by an underscore (_):

– EJB name defined in <ejb-name> in the deployment descriptor.

– JAR file name, including the .jar extension. However, all dashes (-) and
periods (.) are converted to underscores (_) to follow SQL conventions. For
example, if the name of your JAR file is employee.jar, then employee_jar
is appended to the name.

– Application name: This is the name of the application name, which you define
during deployment.

If the constructed name is greater than thirty characters, the name is truncated at
twenty-four characters. Then six characters made up of an alphanumeric hash
code is appended to the name.

For example, if the EJB name is EmpBean, the JAR file is empl.jar, and the
application name is employee, then the default table name is EmpBean_empl_
jar_employee.

� Column names—The columns in the entity bean table each have the same name as
the <cmp-field> elements in the designated database. The data types for the
database, translating Java data types to database data types, are defined in the
specific database XML file, such as oracle.xml.

Explicit Mapping of Persistent Fields to the Database
As "Default Mapping of Persistent Fields to the Database" on page 5-2 discusses, your
persistent data can be automatically mapped to a database table by the container.
However, if the data represented by your bean is more complex or you do not want to
accept the defaults that OC4J provides for you, then you can map the persistent data to
an existing database table and its columns within the orion-ejb-jar.xml file. Once
the fields are mapped, the container provides the persistence storage of the persistent
data to the indicated table and rows.

For explicit mapping, Oracle recommends that you do the following:

1. Deploy your application with only the ejb-jar.xml elements configured.

Note: See the Data Source chapter in the Oracle Application Server
Containers for J2EE Services Guide for more information on
configuring Data Source objects.

Note: Auto-creation of tables in third-party databases may fail for
certain data types unless the persistent-type mapping for
VARCHAR is defined in the orion-ejb-jar.xml as follows:

<cmp-field-mapping name="../"
 persistence-name="..."
 persistence-type="varchar(10)" />

Persistence Fields

5-4 Enterprise JavaBeans Developer’s Guide

OC4J creates an orion-ejb-jar.xml file for you with the default mappings in
them. It is easier to modify these fields than to create them from scratch. This
provides you a method for choosing all or part of the modifications that are
discussed in this section.

2. Modify the <entity-deployment> element in the orion-ejb-jar.xml file to
use the database table and columns you specify.

Once you define persistent fields, each within its own <cmp-field> element, you can
map each to a specific database table and column. Thus, you can map CMP fields to
existing database tables. The mapping occurs with the OC4J-specific deployment
descriptor: orion-ejb-jar.xml.

The explicit mapping of CMP fields is completed within an <entity-deployment>
element. This element contains all mapping for an entity bean. However, the attributes
and elements that are specific to CMP field mapping is as follows:

<entity-deployment name="..." location="..."
table="..." data-source="...">
<primkey-mapping>

<cmp-field-mapping name="..." persistence-name="..." />
</primkey-mapping>
<cmp-field-mapping name="..." persistence-name="..." />

...
</entity-deployment>

You can configure the following within the orion-ejb-jar.xml file:

1. Configure the <entity-deployment> element for every entity bean that
contains CMP fields that will be mapped within it.

2. Configure a <cmp-field-mapping> element for every field within the bean that
is mapped. Each <cmp-field-mapping> element must contain the name of the
field to be persisted.

a. Configure the primary key in the <primkey-mapping> element contained
within its own <cmp-field-mapping> element.

b. Configure simple data types (such as a primitive, simple object, or serializable
object) that are mapped to a single field within a single
<cmp-field-mapping> element. The name and database field are fully
defined within the element attributes.

Element or Attribute Name Description

name Bean name, which is defined in the ejb-jar.xml file in the
<ejb-name> element.

location JNDI location

table Database table name

data-source Data source for the database where the table resides

primkey-mapping Definition of how the primary key is mapped to the table.

cmp-field-mapping The name attribute specifies the <cmp-field> in the
deployment descriptor, which is mapped to a table column in the
persistence-name attribute.

Configuring Lazy Loading on CMP Entity Bean Finder Methods

CMP Entity Beans 5-5

Example 5–1 Mapping Persistent Fields to a Specific Database Table

The following example demonstrates how to map persistent data fields in your bean
instance to database tables and columns by mapping the employee persistence data
fields to the Oracle database table EMP.

� The bean is identified in the <entity-deployment> name attribute. The JNDI
name for this bean is defined in the location attribute.

� The database table name is defined in the table attribute. And the database is
specified in the data-source attribute, which should be identical to the
<ejb-location> name of a DataSource defined in the data-sources.xml
file.

� The bean primary key, empNo, is mapped to the database table column, EMPNO,
within the <primkey-mapping> element.

� The bean persistent data fields, empName and salary, are mapped to the
database table columns ENAME and SAL within the <cmp-field-mapping>
element.

<entity-deployment name="EmpBean" location="emp/EmpBean"
wrapper="EmpHome_EntityHomeWrapper2" max-tx-retries="3"
table="emp" data-source="jdbc/OracleDS">
<primkey-mapping>

<cmp-field-mapping name="empNo" persistence-name="empno" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ename" />
<cmp-field-mapping name="salary" persistence-name="sal" />

 ...
</entity-deployment>

After deployment, OC4J maps the element values to the following:

Configuring Lazy Loading on CMP Entity Bean Finder Methods
Each finder method retrieves one or more objects. In the default scenario (which is set
to NO lazy loading), the finder method causes a single SQL select statement to be
executed against the database. For a CMP bean, one or more objects are retrieved with
all of their CMP fields. So, for example, with the findAllEmployees method, this
finder retrieves all employee objects with all of the CMP fields in each employee
object.

If you turn on lazy loading, then only the primary keys of the objects retrieved within
the finder are returned. Then, only when you access the object within your
implementation, the OC4J container uploads the actual object based on the primary
key. With the findAllEmployees finder method example, all of the employee
primary keys are returned in a Collection. The first time you access one of the
employees in the Collection, OC4J uses the primary key to retrieve the single
employee object from the database. You may want to turn on the lazy loading feature
if the number of objects that you are retrieving is so large that loading them all into
your local cache would be a performance degradation.

Bean Database

emp/EmpBean EMP table, located at jdbc/OracleDS in the data-sources.xml file

empNo EMPNO column as primary key

empName ENAME column

salary SAL column

Conversion of CMP Types to Database Types

5-6 Enterprise JavaBeans Developer’s Guide

You have a performance consideration with lazy loading. If you retrieve multiple
objects, but you only use a few of them, then you should turn on lazy loading. In
addition, if you only use objects through the getPrimaryKey method, then you
should also turn on lazy loading.

To turn on lazy loading in the findByPrimaryKey method, set the
findByPrimaryKey-lazy-loading attribute to true, as follows:

<entity-deployment ... findByPrimaryKey-lazy-loading="true" ... >

To turn on lazy loading in any custom finder method, set the lazy-loading attribute to
true in the <finder-method> element for that custom finder, as follows:

<finder-method ... lazy-loading="true" ...>
 ...
</finder-method>

Conversion of CMP Types to Database Types
In defining the container-managed persistent fields in the <cmp-field> and the
primary key types, you can define simple data types and Java user classes that are
serializable.

� Simple Data Types

� Serializable Classes

� Other Entity Beans or Collections

Simple Data Types
The following table provides a list of the supported simple data types, which you can
provide in the persistence-type attribute, with the mapping of these types to SQL
types and to Oracle database types. None of these mappings are guaranteed to work
on non-Oracle databases.

Table 5–1 Simple Data Types

Known Type (native) SQL type Oracle type

java.lang.String VARCHAR(255) VARCHAR2(255)

java.lang.Integer[] INTEGER NUMBER(20,0)

java.lang.Long[] INTEGER NUMBER(20,0)

java.lang.Short[] INTEGER NUMBER(10,0)

java.lang.Double[] DOUBLE PRECISION NUMBER(30,0)

java.lang.Float[] FLOAT NUMBER(20,5)

java.lang.Byte[] SMALLINT NUMBER(10,0)

java.lang.Character[] CHAR CHAR(1)

java.lang.Boolean[] BIT NUMBER(1,0)

java.util.Date DATETIME DATE

java.sql.Date DATE DATE

java.util.Time DATE DATE

java.sql.Timestamp TIMESTAMP TIMESTAMP

java.lang.String CLOB CLOB

Conversion of CMP Types to Database Types

CMP Entity Beans 5-7

The Date and Time map to DATE in the database, because the DATE contains the time.
The Timestamp, however, maps to TIMESTAMP in the database, which gives the time
in nanoseconds.

Mapping java.sql.CLOB and java.sql.BLOB directly is not currently supported
because these objects are not serializable. However you can map a String or char[]
and byte[] to database column type CLOB and BLOB respectively. Mapping a
char[] to a CLOB or a byte[] to a BLOB can only be done with an Oracle database.
The Oracle JDBC API was modified to handle this operation.

There is a 4 KB limit when mapping a serialized object to a BLOB type over the JDBC
Thin driver.

When String and char[] variables map to a VARCHAR2 in the database, it can only
hold up to 2K. However, you can map String object or char[] larger than 2K to a
CLOB by doing the following:

1. The bean implementation uses the String or char[] objects.

2. The persistence-type attribute of the <cmp-field-mapping> element
defines the object as a CLOB, as follows:

<cmp-field-mapping name="stringdata" persistence-name="stringdata"
 persistence-type="CLOB" />

In the same manner, you can map a byte[] in the bean implementation to a BLOB, as
follows:

<cmp-field-mapping name="bytedata" persistence-name="bytedata"
 persistence-type="BLOB" />

Serializable Classes
In addition to simple data types, you can define user classes that implement
Serializable. These classes are stored in a BLOB in the database.

Other Entity Beans or Collections
You should not define other entity beans or Collections as a CMP type. Instead,
these are relationships and should be defined within a CMR field.

� A relationship to another entity bean is always defined in a <cmr-field>
relationship.

� Collections promote a "many" relationship and should be configured within a
<cmr-field> relationship. Other types, such as Lists, are sub-interfaces of
Collections. Oracle recommends that you use Collections.

char[] CLOB CLOB

byte[] BLOB BLOB

java.io.Serializable (4KB limit) LONGVARBINARY BLOB

Note: You can modify the mapping of these data types in the
config/database-schema/<db>.xml XML configuration files.

Table 5–1 (Cont.) Simple Data Types

Known Type (native) SQL type Oracle type

Conversion of CMP Types to Database Types

5-8 Enterprise JavaBeans Developer’s Guide

Entity Relationship Mapping 6-1

6
Entity Relationship Mapping

This chapter discusses how to develop entity-to-entity relationships. As a developer,
you can approach entity relationships from either of the following viewpoint:

� EJB development—You can use UML diagrams to design the entity beans, and the
cardinality and direction of the relationship between each bean, from the
perspective of the EJB objects.

� Database development—You can use ERD diagrams to design the database tables,
complete with the cardinality and direction designated by primary and foreign
keys, that support the entity beans. The focus is on how the database maps each
entity bean and the relationships between them.

This chapter starts by discussing entity relationships from the EJB development
viewpoint. Next, it demonstrates how the deployment descriptor maps to database
tables. If you want to design with the database development viewpoint, skip to
"Mapping Object Relationship Fields to the Database" on page 6-9.

This chapter covers the following topics:

� Transaction Requirements

� Defining Entity-To-Entity Relationships

� Mapping Object Relationship Fields to the Database

� Using a Foreign Key in a Composite Primary Key

� How to Override a Foreign Key Database Constraint

Transaction Requirements
All entity beans with CMP and CMR relationships must be involved in a transaction.
As such, you cannot define any entity bean with a transaction attribute of NEVER,
SUPPORTS, or NOT_REQUIRED as this would put the entity outside of a transaction.

Note: An object-relationship entity bean example
(ormapdemo.jar) is available on OTN from the OC4J sample code
page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Defining Entity-To-Entity Relationships

6-2 Enterprise JavaBeans Developer’s Guide

Defining Entity-To-Entity Relationships
The following sections describe what an entity bean relationship can be and how to
define them.

� Choosing Cardinality and Direction

� Requirements in Defining Relationships

Choosing Cardinality and Direction
Cardinality refers to the number of entity objects on each side of the relationship.
Thus, you can define the following types of relationship between EJBs:

� one-to-one

� one-to-many or many-to-one (dependent on the direction)

� many-to-many

In addition, each relationship can unidirectional or bidirectional. For example, a
unidirectional relationship can be from an employee to an address. With the employee
information, you can retrieve an address. However, with an address, you cannot
retrieve the employee. An example of a bidirectional relationship is with a
employee/projects example. Given a project number, you can retrieve the employees
working on the project. Given an employee number, you can retrieve all projects that
the employee is working on. Thus, the relationship is valid in both directions.

You can use a unidirectional relationship when you want to reuse the target from
multiple entities. For example, both a husband and a wife may work for the same
company. Both of their employee records could point to the same home phone number
in a unidirectional relationship. You could not have this situation in a bidirectional
relationship.

You define the cardinality and direction of the relationship between two beans in the
deployment descriptor.

One-To-One Relationship Overview
A one-to-one relationship is the simplest relationship between two beans. One entity
bean relates only to one other entity bean. If our company office contains only cubicles,
and only a single employee can sit in each cubicle, then you have a one-to-one
relationship: one employee in one designated cubicle. You define a unidirectional
definition for this relationship as follows:

employee —> cubicle

However, if you have a cubicle number and want to determine who is assigned to it,
you can assign a bidirectional relationship. This would enable you to retrieve the
employee and find what cubicle he/she sits in. In addition, you could retrieve the
cubicle number and determine who sits there. You define this bidirectional one-to-one
relationship as follows:

employee <—> cubicle

One-To-Many or Many-To-One Relationship Overview
In a one-to-many relationship, one object can reference several instances of another. A
many-to-one relationship is when many objects reference a single object. For example,
an employee can have multiple addresses: a home address and an office address. If
you define these relationships as unidirectional from the perspective of the employee,
then you can look up the employee and see all of his/her addresses, but you cannot

Defining Entity-To-Entity Relationships

Entity Relationship Mapping 6-3

look up an address to see who lives there. However, if you define this relationship as
bidirectional, then you can look up any address and see who lives there.

Many-To-Many Relationship Overview
A many-to-many relationship is complex. For example, each employee can be working
on several projects. And each projects has multiple employees working on it. Thus,
you have a many-to-many cardinality. The direction does not matter in this instance.
You have the following cardinality:

employees <—> projects

In a many-to-many relationship, many objects can reference many objects. This
cardinality is the most difficult to manage.

Requirements in Defining Relationships
Here are the restrictions imposed on defining your relationships:

� You can define relationships only between CMP 2.0 entity beans.

� You must declare both EJBs in the relationship within the same deployment
descriptor.

� Each relationship can use only the local interface of the target EJB.

The following are the requirements to define each cardinality type and its direction:

1. Define the abstract accessor methods (get/set methods) for each relationship
field. The naming follows the same rules as for the persistence field abstract
accessor methods. For example, getAddress and setAddress methods are
abstract accessor methods for retrieving and setting an address.

2. Set the relationships in the bean implementation. The primary key must always be
set in the ejbCreate method; the foreign key can be set anytime after the
ejbCreate method, but not within it.

3. Define each relationship—its cardinality and direction—in the deployment
descriptor. The relationship field name is defined in the <cmr-field-name>
element. This name must be the same as the abstract accessor methods, without
the get/set and the first letter in lower case. For example, the
<cmr-field-name> would be address to compliment the
getAddress/setAddress abstract accessor methods.

4. If you want cascade delete, then declare the cascade delete option for the
one-to-one, one-to-many, and many-to-one relationships. The cascade delete is
always specified on the slave side of the relationship, so that when the master
entity is deleted, all of the slave entities related to it are subsequently deleted. For
example, when an employee has multiple phone numbers, the cascade delete is
defined on the phone numbers side. Then, when the employee is deleted, all of the
related phone numbers are also deleted.

The following sections provides an example of how to implement each of these
requirements:

� Define the Get/Set Methods for Each Relationship Field

� Set the Relationships in the Bean Implementation

� Declare the Relationships in the Deployment Descriptor

� Decide Whether to Use the Cascade Delete Option

Defining Entity-To-Entity Relationships

6-4 Enterprise JavaBeans Developer’s Guide

Define the Get/Set Methods for Each Relationship Field
Each relationship field must have the abstract accessor methods defined for it. In a
relationship that sets or retrieves only a single entity, the object type passed back and
forth must be the local interface of the target entity bean. In a relationship that sets or
retrieves multiple objects, the object type passed back and forth is a Set or
Collection containing local interface objects.

Example 6–1 Definition of Abstract Accessor Methods for the Employee Example

In this example, the employee has an employee number and a single address. You can
retrieve the employee number and address only through the employee. This defines
one-to-one relationships that is unidirectional from the perspective of the employee.
Then the abstract accessor methods for the employee bean are as follows:

public Integer getEmpNo();
public void setEmpNo(Integer empNo);
public AddressLocal getAddress();
public void setAddress(AddressLocal address);

Because the cardinality is one-to-one, the local interface of the address entity bean is
the object type that is passed back and forth in the abstract accessor methods.

The cardinality and direction of the relationship are defined in the deployment
descriptor.

Example 6–2 Definition of One-To-Many Abstract Accessor Methods

If the employee example included a one-to-many relationship, the abstract accessor
methods would pass back and forth a Set or Collection of objects, each of which
contains target bean local interface objects. When you have a "many" relationship,
multiple records are being passed back and forth.

A department contains many employees. In this one-to-many example, the abstract
accessor methods for the department retrieves multiple employees. Thus, the abstract
accessor methods pass a Collection or a Set of employees, as follows:

public Collection getDeptEmployees();
public void setDeptEmployees(Collection deptEmpl);

Set the Relationships in the Bean Implementation
Once you have defined the get/set relationship methods, use them in the bean
implementation to set up the relationships. All primary key relationships must be set
within the ejbCreate method, as shown in "Implement the Entity Bean Class" on
page 4-4. If you use a foreign key, as described in "Using a Foreign Key in a Composite
Primary Key" on page 6-44, you can set the foreign key as early as the
ejbPostCreate method.

When you set the primary key in the ejbCreate, the set methods populate the CMP
fields that you define in the deployment descriptor. At the end of the ejbCreate
method, these fields are written out to the appropriate database row.

The employee has a primary key of the employee number. The following sets the
primary key for the department:

public Integer ejbCreate(Integer empNo) throws CreateException
{
 setEmpNo(empNo);
 return empNo;
}

Defining Entity-To-Entity Relationships

Entity Relationship Mapping 6-5

Declare the Relationships in the Deployment Descriptor
You define the relationships between entity beans in the same deployment descriptor
the entity beans are declared. All entity-to-entity relationships are defined within the
<relationships> element and you can define multiple relationships within this
element. Each specific entity-to-entity relationship is defined within an
<ejb-relation> element. The following XML demonstrates two entity-to-entity
relationships defined within an application:

<relationships>
 <ejb-relation>
 ...
 </ejb-relation>
 <ejb-relation>
 ...
 </ejb-relation>
</relationships>

The following XML shows the full element structure for relationships:

<relationships>
 <ejb-relation>
 <ejb-relation-name> </ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name> </ejb-relationship-role-name>
 <multiplicity> </multiplicity>
 <relationship-role-source>
 <ejb-name> </ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name> </cmr-field-name>
 <cmr-field-type> </cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

Table 6–1 describes the usage for each of these elements.

Note: An object-relationship entity bean example is available on
OTN from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Table 6–1 Description of Relationship Elements of the Deployment Descriptor

Deployment Descriptor Element Description

<ejb-relation> Each entity-to-entity relationship is described in a single
<ejb-relation> element.

<ejb-relation-name> A user-defined name for the entity-to-entity relationship.

<ejb-relationship-role> Each entity within the relationship is described within its own
<ejb-relationship-role>. Thus, there are always two
<ejb-relationship-role> entities within the
<ejb-relation>.

<ejb-relationship-role-name> A user-defined name to describe the role or involvement of the
entity bean in the relationship.

Defining Entity-To-Entity Relationships

6-6 Enterprise JavaBeans Developer’s Guide

These relationships can be one-to-one, one-to-many, or many-to-many. The cardinality
is defined within the <multiplicity> element. Each bean defines its cardinality
within its own relationship. For example,

� One-to-one: For one employee to have a relationship with one address, the
employee bean is declared with a <multiplicity> of one, and the address bean
is declared with a <multiplicity> of one.

� One-to-many, many-to-one: For one department to have a relationship with
multiple employees, the department bean is declared with a <multiplicity> of
one, and the employee bean is declared with a <multiplicity> of many. For
many employees to belong to a department, you define the same
<multiplicity>.

� Many-to-many: For each employee to have a relationship with multiple projects
and each project to have multiple employees working on it, the employee bean is
declared with a <multiplicity> of many, and the project is declared with a
<multiplicity> of many.

The direction of the relationship is defined by the presence of the <cmr-field>
element. The reference to the target entity is defined within the <cmr-field>
element. If the relationship is unidirectional, then only one entity within the
relationship contains a reference to a target. In this case, the <cmr-field> element is
declared in the source entity and contains the target bean reference. If the relationship
is bidirectional, both entities should declare a reference to each other's bean within a
<cmr-field> element.

The following demonstrates how to declare direction in the one-to-one employee and
address example:

� Unidirectional: Define the <cmr-field> element within the employee bean
section that references the address bean. Do not define a <cmr-field> element in
the address bean section of the relationship.

� Bidirectional: Define a <cmr-field> element in the employee bean section that
references the address bean. In addition, define a <cmr-field> element in the
address bean section that references the employee bean.

Once you understand how to declare the cardinality and direction of the entity
relationships, configuring the EJB deployment descriptor for each relationship is
simple.

<multiplicity> The declaration of the cardinality for this entity. The value is
"one" or "many."

<relationship-role-source><ejb-name> The name of the entity bean. This must equal an EJB name
defined in an <entity><ejb-name> element in the
ejb-jar.xml file.

<cmr-field><cmr-field-name> A user-defined name to represent the target bean reference. This
name must match the abstract accessor methods. For example, if
the abstract accessor fields are getAddress() and
setAddress(), the CMR field must be address.

<cmr-field><cmr-field-type> Optional. If "many", this type should be a Collection or Set.
This is only specified for the "many" side to inform if a
Collection or a Set is returned.

Table 6–1 (Cont.) Description of Relationship Elements of the Deployment Descriptor

Deployment Descriptor Element Description

Defining Entity-To-Entity Relationships

Entity Relationship Mapping 6-7

Example 6–3 One-To-One Relationship Example

The employee example defines a one-to-one unidirectional relationship in which each
employee has only one address. This relationship is unidirectional because you can
retrieve the address from the employee, but you cannot retrieve the employee from the
address. Thus, the employee object has a relationship to the address object.

The ejb-jar.xml file is configured for this example, as follows:

<enterprise-beans>
 <entity>
 ...
 <ejb-name>EmpBean</ejb-name>
 <local-home>employee.EmpHome</local-home>
 <local>employee.Emp</local>
 <ejb-class>employee.EmpBean</ejb-class>
 ...
 </entity>
 <entity>
 ...
 <ejb-name>AddressBean</ejb-name>
 <local-home>employee.AddressHome</local-home>
 <local>employee.Address</local>
 <ejb-class>employee.AddressBean</ejb-class>
 ...
 </entity>
</enterprise-beans>
...
<relationships>
 <ejb-relation>
 <ejb-relation-name>Emp-Address</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emp-has-Address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source><ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>address</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Address-has-Emp
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source><ejb-name>AddressBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

The ejb-jar.xml file has defined the following:

� Configure each <entity> element within the <enterprise-beans> section for
each of the entity beans involved in the relationship. For this example, these
include an <entity> element for the employee with an <ejb-name> of
EmpBean and an <entity> element for the address with an <ejb-name> of
AddressBean.

� Configure the <ejb-relationship> element within the <relationships>
section for the one-to-one relationship. For this example, it defines the following:

Defining Entity-To-Entity Relationships

6-8 Enterprise JavaBeans Developer’s Guide

– An <ejb-relationship-role> element for the employee bean that defines
its cardinality as "one" in its <multiplicity> element. The
<relationship-role-source> element defines the <ejb-name> as
EmpBean, which is the same name in the <entity> element.

– An <ejb-relationship-role> element for the address bean that defines
its cardinality as "one" in its <multiplicity> element. The
<relationship-role-source> element defines the <ejb-name> as
AddressBean, which is the same name in the <entity> element.

� Configure a <cmr-field> element in the EmpBean relationship that points to the
AddressBean. The <cmr-field> element defines address as the
AddressBean reference. This element name matches the get and set method
names, which are named getAddress and setAddress. These methods identify
the local interface of the address entity bean as the data type that is returned from
the get method and passed in on the set method.

Decide Whether to Use the Cascade Delete Option
When you have relationships between entity beans and the master entity bean is
deleted, what happens to the slave beans? If you specify cascade delete, the deletion of
a master entity bean automatically deletes all of its slave relationship entity beans. You
specify the cascade delete option in the slave relationship definition, which is the
object that is deleted automatically.

For example, an employee has a relationship with an address object. The address
object specifies cascade delete. When the employee, as master in this relationship, is
deleted, the address, the slave, is also deleted.

In some instances, you do not want a cascade delete to occur. If you have a department
that has a relationship with multiple employees within the department, you do not
want all employees to be deleted when you delete the department.

You can only specify a cascade delete on a relationship if the master entity bean has a
<multiplicity> of one. Thus, in a one-to-one, the master is obviously a "one". You
can specify a cascade delete in a one-to-many relationship, but not in a many-to-one or
many-to-many relationship.

Example 6–4 Cascade Delete Requested in the Employee Example

The following deployment descriptor shows the definition of a one-to-one relationship
with the employee and his/her address. When the employee is deleted, the slave
entity bean—the address—is automatically deleted. You ensure the deletion by
specifying the <cascade-delete/> element in the slave entity bean of the
relationship. In this case, specify the <cascade-delete/> element in the
AddressBean definition.

<relationships>
 <ejb-relation>
 <ejb-relation-name>Emp-Address</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emp-has-Address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>

Note: An object-relationship entity bean example is available on
OTN from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-9

 <relationship-role-source><ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>address</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Address-has-Emp
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <cascade-delete/>
 <relationship-role-source><ejb-name>AddressBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

Mapping Object Relationship Fields to the Database
Each entity bean maps to a table in the database. Each of its persistent and relationship
fields are saved within a database table in columns. For these fields to be mapped to a
database, do one of the following:

� Accept the defaults for these fields and avoid more deployment descriptor
configuration. See "Default Mapping of Relationship Fields to the Database" on
page 6-9 to learn how the default mapping occurs. The tables are automatically
created for the bean based on the information in the ejb-jar.xml file.

� Map the fields to columns in a table that already exists in a designated database.
The persistent data mapping is configured within the orion-ejb-jar.xml file.
See "Explicit Mapping of Relationship Fields to the Database" on page 6-12 for
more information.

Default Mapping of Relationship Fields to the Database

When you declare relationship fields in the ejb-jar.xml file, OC4J provides default
mappings of these fields to the database when it auto-generates the
orion-ejb-jar.xml file. The default mapping for relationships is the same as for
the persistent fields, as described in "Default Mapping of Persistent Fields to the
Database" on page 5-2.

In summary, these defaults include:

Note: This section discusses how OC4J maps relationship fields to
the database. Chapter 5, "CMP Entity Beans" discusses persistent
field mapping.

Note: For all future redeployments, copy the auto-generated
orion-ejb-jar.xml file with this table name into the same
directory as your ejb-jar.xml file from the J2EE_
HOME/application-deployments directory. Thus, all future
redeployments have the same table names as first generated. If you
do not copy this file over, different table names may be generated.

Mapping Object Relationship Fields to the Database

6-10 Enterprise JavaBeans Developer’s Guide

� Database—The default database as set up in your OC4J instance configuration.

� Default table—Each entity bean in the relationship represents data in its own
database table. The name of the entity bean table makes an effort to be unique, and
so it is constructed with the following names, where each is separated by an
underscore (_):

– EJB name defined in <ejb-name> in the deployment descriptor.

– JAR file name, including the .jar extension. However, all dashes (-) and
periods (.) are converted to underscores (_) to follow SQL conventions. For
example, if the name of your JAR file is employee.jar, then employee_jar
is appended to the name.

– Application name: You define the application name during deployment.

If the constructed name is greater than thirty characters, the name is truncated at
twenty-four characters. An underscore and then five characters made up of an
alphanumeric hash code is appended to the name for uniqueness.

For example, if the EJB name is EmpBean, the JAR file is empl.jar, and the
application name is employee, then the default table name is EmpBean_empl_
jar_employee.

� Column names in each table—The container generates columns in each table
based on the <cmp-field> and <cmr-field> elements defined in the
deployment descriptor. A column is created for each <cmp-field> element that
relates to the entity bean data. In addition, a column is created for each
<cmr-field> element that represents a relationship. In a unidirectional
relationship, only a single entity in the relationship defines a <cmr-field> in the
deployment descriptor. In a bidirectional relationship, both entities in the
relationship define a <cmr-field>.

For each <cmr-field> element, the container creates a foreign key that points to
the primary key of the relevant object, as follows:

– In the default one-to-one relationship, the foreign key is created in the
database table for the source EJB and is directed to the primary key of the
target database table. For example, if one employee has one address, then the
foreign key is created within the employee table that points to the primary key
of the address table. For more information, see "Example of a Default Mapping
of the One-To-One Relationship" on page 6-11.

– The default for one-to-many relationships uses a foreign key as described in
"Using a Foreign Key with the One-To-Many Relationship" on page 6-21.

– The default for many-to-many relationships creates an association table (a
third table). The association table contains two foreign keys, where each points
to the primary key of one of the entity tables. For more information, see
"Example of a Default Mapping of One-To-Many and Many-To-Many
Relationships" on page 6-11.

Since the <cmp-field> and <cmr-field> elements represent Java data types,
they may not convert to database types in the manner you believe that they
should. See "Conversion of CMP Types to Database Types" on page 5-6 for a table
of how the conversion occurs. However, you can modify the translation rules for
converting Java data types to database data types in the specific database XML
files, which are located in j2ee/home/config/database-schemas. This
directory includes all database files. The Oracle database conversion file is named
oracle.xml.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-11

� Primary key generation—Both entity tables contain a primary key. The primary
key can be defined or auto-generated. See "How to Define and Use Primary Keys
for Your Entity Bean" on page 4-6 for a full description.

– Defined primary key: The primary key is generated as designated in the
<primkey-field> element as a simple data type or a class. Thus, the column
name is the same as the name in the <primkey-field> element.

– Composite primary key: The primary key is defined within a class, and is
made up of several fields. Each field within the composite primary key is
represented by a column in the database table, where each is considered part
of the primary key in the table.

– Auto-generated primary key: If you specify a java.lang.Object as the
primary key class type in <prim-key-class>, but do not specify the
primary key name in <primkey-field>, then the primary key is
auto-generated by the container. The column is named AUTOID.

Example of a Default Mapping of the One-To-One Relationship
The one-to-one entity relationship is managed between the entity tables with a foreign
key. Figure 6–1 demonstrates the default table mapping of a one-to-one unidirectional
relationship between the employee and address bean.

Figure 6–1 One-To-One Employee Relationship Example

� The container generates the table names based on the entity bean names, the JAR
file the beans are archived in, and the application name that they are deployed
under. If the JAR filename is empl.jar and the application name is employee,
then the table names are EmpBean_empl_jar_employee and AddressBean_
empl_jar_employee.

� The container generates columns in each table based on the <cmp-field> and
<cmr-field> elements declared in the deployment descriptor.

– The columns for the EmpBean table are empno, empname, and salary. A
foreign key is created called address, from the <cmr-field> declaration,
that points to the primary key column of the AddrBean table.

– The columns for the AddressBean table are an auto-generated long primary
key and columns for street, city, state, and zip.

� The primary key for the employee table is designated in the deployment
descriptor as empno. The AddressBean is configured for an auto-generated
primary key by specifying only <primkey-class> of java.lang.Object.

Example of a Default Mapping of One-To-Many and Many-To-Many Relationships
As described in "One-To-Many or Many-To-One Relationship Overview" on page 6-2,
one bean, such as a department, can have a relationship to multiple instances of
another bean, such as employees. There are several employees in each department.
Since this is a bidirectional relationship, you can look up the department from the

autoid street city zipstate

EmpBean_emp1_jar_employee AddressBean_emp1_jar_employee

empno empName salary FK:address

Mapping Object Relationship Fields to the Database

6-12 Enterprise JavaBeans Developer’s Guide

employee. The relationships between the DeptBean and EmpBean is represented by
CMR fields, employees and dept, as shown in Figure 6–2.

Figure 6–2 One-to-Many Bean Relationship

How this relationship is mapped to database tables depends on your choices. The
default method adds a foreign key to the table that defines the "many" side of the
relationship—in this case, the table that represents the EmpBean. The foreign key
points back to the department to which each employee belongs.

Figure 6–3 shows the department<—>employee example, where each employee
belongs to only one department and each department can contain multiple employees.
The department table has a primary key. The employee table has a primary key to
identify each employee and a foreign key to point back to the employee's department.
If you want to find the department for a single employee, a simple SQL statement
retrieves the department information from the foreign key. To find all employees in a
department, the container performs a JOIN statement on both the department and
employee tables and retrieves all employees with the designated department number.

Figure 6–3 Default Mapping for One-To-Many Bean Relationship Example

"Using a Foreign Key with the One-To-Many Relationship" on page 6-21 details how
the deployment descriptors are configured for this behavior to occur. To keep the same
defaults for all future redeployments, copy the auto-generated orion-ejb-jar.xml
file with the default table name into the same directory as your ejb-jar.xml file
from the J2EE_HOME/application-deployments directory. Thus, all future
redeployments have the same table names as first generated. If you do not copy this
file over, different table names may be generated. To modify the defaults, copy the file
over and follow the directions in "Using a Foreign Key with the One-To-Many
Relationship" on page 6-21.

Explicit Mapping of Relationship Fields to the Database
As "Default Mapping of Relationship Fields to the Database" on page 6-9 discusses,
your relationship fields can be automatically mapped to the database tables by the
container. However, if you do not want to accept the defaults that OC4J provides for
you or if you need to map the fields to an existing database table, then you can map
the relationships between entity beans to an existing database table and its columns in
the orion-ejb-jar.xml file.

"Explicit Mapping of Persistent Fields to the Database" on page 5-3 discusses how to
explicitly map CMP fields. This section is about mapping CMR fields and so builds on
that information to show how the relationship mapping occurs.

EmpBeanDeptBean dept*employees

O
_1

09
0

DEPT EMP

PK:DEPT_NO DNAME PK:EMP_NO FK:EDEPT_NOENAME SAL

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-13

This chapter provides two levels of information about the orion-ejb-jar.xml
elements:

� A quick, direct guide for identifying the fields in which you would modify if you
mapped to an existing database. See "Quick Cookbook for Matching an Existing
Database to the Bean Mappings" on page 6-13.

� An education on all elements used in the CMR mapping and directions on
modifying them. See "Steps for Modifying CMR Mapping Elements" on page 6-13.

Quick Cookbook for Matching an Existing Database to the Bean Mappings
If you want to know how to modify the orion-ejb-jar.xml file without
understanding what each of the elements are for in this XML file and you do not want
to use JDeveloper, then do the following:

1. Deploy your bean with the autocreate-tables element set to false in the
orion-application.xml file.

2. Copy the orion-ejb-jar.xml file from the application-deployments/
directory to your development directory.

3. Modify the data-source element to be the correct data source. Note that all
beans that are associated with each other must use the same data source.

4. Modify the table attribute to be the correct table. Make sure that it is the correct
table for the bean that is defined in the <entity-deployments> element.

5. Modify the persistence-name attributes to the correct column for each bean
persistence type, whether a CMP or CMR field.

6. Set the autocreate-tables element in orion-application.xml file to true.

7. Rearchive your application and redeploy.

Steps for Modifying CMR Mapping Elements
If JDeveloper does not provide the mapping that you need or if you wish to manage
the XML on your own, then you should perform the following steps:

Important: You modify elements and attributes of the
<entity-deployment> element in the orion-ejb-jar.xml
file to explicitly map relationship fields. JDeveloper was created to
manage the complex mapping between the entity beans and the
database tables. Thus, JDeveloper validates the deployment
descriptors and prevents inconsistencies. You are allowed to
modify the orion-ejb-jar.xml file on your own; however, we
suggest that you use JDeveloper for modifying container-managed
relationships. CMR configuration is complex and can be difficult to
understand. You can download JDeveloper at the following site:
http://www.oracle.com/technology/software/products
/jdev/index.html

Note: An object-relationship entity bean example is available on
OTN from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Mapping Object Relationship Fields to the Database

6-14 Enterprise JavaBeans Developer’s Guide

1. Deploy your bean with the autocreate-tables element set to false in the
orion-application.xml file and the ejb-jar.xml elements configured.

OC4J creates an orion-ejb-jar.xml file for you, with the default mappings in
it. It is easier to modify these fields than to create them from scratch.

2. Copy the container-created orion-ejb-jar.xml file from the $J2EE_
HOME/application-deployments directory to your development
environment.

3. Modify the <entity-deployment> element in the orion-ejb-jar.xml file to
use the database table and columns you specify, based on the relationship type.
See "Hand-Editing the orion-ejb-jar.xml File to Map Bean Relationships to
Database Tables" on page 6-14 for an overview.

Each of the following sections describes how the CMR mapping occurs for each
relationship type:

– One-To-One Relationship Explicit Mapping

– Table Mapping For Primary Keys That Use AutoId

– Using a Foreign Key with the One-To-Many Relationship

– Association Table Explicit Mapping for Relationships Overview

– Using an Association Table with a One-to-Many Bidirectional Relationship

– Using an Association Table in a One-to-Many Unidirectional Relationship

– Using an Association Table in Many-to-Many Relationships

4. Set the autocreate-tables element in orion-application.xml file to true.

5. Rearchive your application and redeploy.

Hand-Editing the orion-ejb-jar.xml File to Map Bean Relationships to Database
Tables
The relationship between the beans is defined in the <relationships> element in
the ejb-jar.xml file; the mapping between the bean and the database table and
columns is specified in the <entity-deployment> element in the
orion-ejb-jar.xml file.

The orion-ejb-jar.xml file maps the bean entity relationships to database table
and columns within a <cmp-field-mapping> element. The following is the XML
structure of the <entity-deployment> and <cmp-field-mapping> elements for
a simple one-to-one relationship:

<entity-deployment name="SourceBeanName" location="JNDIlocation"
table="TableName" data-source="DataSourceJNDIName">
...
<cmp-field-mapping name="CMRfield_name">
 <entity-ref home="targetBeanName">
 <cmp-field-mapping name="CMRfield_name"
persistence-name="targetBean_PKcolumn" />
 </entity-ref>
</cmp-field-mapping>

Note: If you deployed without setting autocreate-tables to
false, then OC4J automatically created the default tables. You must
drop all of these tables before redeploying the application. If you
use an association table, this must be dropped also.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-15

Within this element, you can define the bean name (the source of the relationship that
indicates the direction), the JNDI location, the database table to which the information
is persisted, and map each of the CMP and CMR fields defined in the ejb-jar.xml
file to the underlying persistence storage—the database.

The attributes of the <entity-deployment> element define the following for the
bean:

� The name attribute identifies the EJB name of the bean, which was defined in the
<ejb-name> element in the ejb-jar.xml file. This name attribute connects the
ejb-jar.xml file definition for the bean to its mapping to the database.

� The location attribute identities the JNDI name of the bean.

� The table attribute identifies the database table to which this entity bean is
mapped.

� The data-source attribute identifies the database in which the table resides. The
data source must be the same for all beans that interact with each other or are
associated with each other. This includes beans that are in the same application,
part of the same transaction, or beans that are in a parent-child relationship.

The <cmp-field-mapping> element in the orion-ejb-jar.xml file maps the
following fields to database columns.

� The <cmp-field> element in the ejb-jar.xml file defines a CMP field.

� The <cmr-field> element in the ejb-jar.xml file defines a CMR field.

Figure 6–4 displays how the <cmr-field> element in the ejb-jar.xml file maps to
the <cmp-field-mapping> element in the orion-ejb-jar.xml file. The name
attribute in the <cmp-field-mapping> provides the link between the two XML files.
You must not modify any name attributes.

Figure 6–4 Demonstration of Mapping for a One-To-One Relationship

To fully identify and map CMR fields, nested <cmp-field-mapping> elements are
used. The format of the nesting depends on the type of relationship. The database

Note: This document refers to beans as the source or target of a
relationship. If an employee owns many phones in a unidirectional
relationship, then the employee is the source bean and it points to
the phones, which are the target.

<cmp-field-mapping name="address">
<entity-ref home="AddressBean">
 <cmp-field-mapping name="address"

</entity-ref>
</cmp-field-mapping>

 persistence-name="addressPK" />

<relationship-role-source>

<cmr-field>
 <cmr-field-name>address</cmr-field-name
</cmr-field>

 <ejb-name>EmpBean</ejb-name>
</relationship-role-source>

ORION-EJB-JAR.XML

EJB-JAR.XML

Mapping Object Relationship Fields to the Database

6-16 Enterprise JavaBeans Developer’s Guide

column that is the primary key of the target bean is defined in the
persistence-name attribute of the internal <cmp-field-mapping> element. If
you have an existing database, you would be modifying the persistence-name
attributes for each <cmp-field-mapping> element to match your column names.

The following sections talk about each relationship type and how the mapping occurs:

� One-To-One Relationship Explicit Mapping

� Table Mapping For Primary Keys That Use AutoId

� Using a Foreign Key with the One-To-Many Relationship

� Association Table Explicit Mapping for Relationships Overview

� Using an Association Table with a One-to-Many Bidirectional Relationship

� Using an Association Table in a One-to-Many Unidirectional Relationship

� Using an Association Table in Many-to-Many Relationships

One-To-One Relationship Explicit Mapping
Figure 6–5 demonstrates a one-to-one unidirectional relationship between a single
employee and his/her address. The EmpBean points to the AddressBean that is the
employee's address using the CMR field, address.

Figure 6–5 One-To-One Bean Relationship

Figure 6–6 shows the database tables, EMP and ADDRESS, to which these beans will
map. The EMP table has a foreign key, named address, which points to the primary
key of the ADDRESS table, AddressPK.

Figure 6–6 One-To-One Bean Relationship

The beans and their relationships are specified in both of the deployment descriptors.
As Figure 6–7 shows, in the ejb-jar.xml file, the one-to-one relationship between
the EmpBean and AddressBean is defined within a <relationships> element. The
direction is designated by one or two <cmr-field> elements.

The mapping of the beans to their database persistent storage is defined in the
orion-ejb-jar.xml file. The one-to-one relationship—whether bidirectional or
unidirectional—is mapped on both sides with an <entity-ref> element inside a
<cmp-field-mapping> element. The <entity-ref> describes the target entity
bean of the relationship.

AddressBeanEmpBean address

O
_1

09
1

ADDRESSEMP

AddressPK street city state zipempno empName salary FK:address

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-17

Figure 6–7 Demonstration of Mapping for a One-To-One Relationship

To map your bean fields to an existing database, you need to understand the fields
within the <cmp-field-mapping> element in the orion-ejb-jar.xml file. This
element has the following structure:

<cmp-field-mapping name="CMRfield_name">
 <entity-ref home="targetBeanName">
 <cmp-field-mapping name="CMRfield_name"
 persistence-name="targetBean_PKcolumn" />
 </entity-ref>
</cmp-field-mapping>

� The name attribute of the <cmp-field-mapping> element is the same as the
<cmp-field> element in the ejb-jar.xml file. Do not modify the name
attribute in the <cmp-field-mapping> element.

� The target bean name is specified in the home attribute of the <entity-ref>
element.

� The database column that is the primary key of the target bean is defined in the
persistence-name attribute of the internal <cmp-field-mapping> element.

<cmp-field-mapping name=" address">
 <entity-ref home=" AddressBean ">
 <cmp-field-mapping name=" address"

 </entity-ref>
</cmp-field-mapping>

 persistence-name=" addressPK " />

... <relationship-role-source>

<cmr-field>

<relationship-role-source>

 <cmr-field-name> address</cmr-field-name>
</cmr-field>

 <ejb-name> AddressBean </ejb-name>
</relationship-role-source>^

 <ejb-name> EmpBean</ejb-name>
</relationship-role-source>

ORION-EJB-JAR.XML

...

EJB-JAR.XML

<multiplicity> One</multiplicity>

<relationships>
...
<ejb-relation>

<ejb-relation>
</ejb-relation>

...

</ejb-relation>

...

...

...

<entity-deployment name="AddressBean" ...
...
<cmp-field-mapping name="empNo">

<entity-ref home="EmpBean">
<cmp-field-mapping name="empNo"

persistence-name="empno"/>
</entity-ref>

</cmp-field-mapping>
...

</entity-deployment>

<entity-deployment name="EmpBean"...

</entity-deployment>

Name of database
column for foreign key

Mapping Object Relationship Fields to the Database

6-18 Enterprise JavaBeans Developer’s Guide

If you have an existing database, modify the persistence-name attributes for
each <cmp-field-mapping> element to match your column names.

Example 6–5 The XML Configuration for One-to-One Unidirectional

The ejb-jar.xml file configuration defines a one-to-one unidirectional relationship
between the EmpBean and AddressBean.

<enterprise-beans>
 <entity>
 ...
 <ejb-name>EmpBean</ejb-name>
 <local-home>employee.EmpHome</local-home>
 <local>employee.Emp</local>
 <ejb-class>employee.EmpBean</ejb-class>
 ...
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 <prim-key-class>java.lang.Integer</prim-key-class>
 ...
 </entity>
 <entity>
 ...
 <ejb-name>AddressBean</ejb-name>
 <local-home>employee.AddressHome</local-home>
 <local>employee.Address</local>
 <ejb-class>employee.AddressBean</ejb-class>
 ...
 <cmp-field><field-name>addressPK</field-name></cmp-field>
 <cmp-field><field-name>addressDescription</field-name></cmp-field>
 <primkey-field>addressPK</primkey-field>
 <prim-key-class>java.lang.Integer</prim-key-class>
 ...
 </entity>
</enterprise-beans>
<relationships>
 <ejb-relation>
 <ejb-relation-name>Emp-Address</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emp-has-Address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source><ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>address</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Address-has-Emp
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source><ejb-name>AddressBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-19

The EmpBean defines a <cmr-field> for the direction of the relationship showing
that each employee has one address. The EMP table that supports EmpBean requires a
foreign key to point to the table that supports the AddressBean.

The foreign key from the EMP table to the ADDRESS table is identified as address
within the <cmr-field-name> element, which is required on the name attribute of
the <cmp-field-mapping> element in the orion-ejb-jar.xml file. Thus,
address is the identifier that links the relationship defined in the ejb-jar.xml file
to the persistence storage mapping specified in the orion-ejb-jar.xml file.

The following is the orion-ejb-jar.xml file with the elements modified to map to
the existing database tables:

<entity-deployment name="EmpBean" location="emp/EmpBean" ...
table="EMP" data-source="jdbc/OracleDS" ...>
 <primkey-mapping>
 <cmp-field-mapping name="empNo" persistence-name="EMPNO" />
 </primkey-mapping>
 <cmp-field-mapping name="empName" persistence-name="ENAME" />
 <cmp-field-mapping name="salary" persistence-name="SAL" />
 <cmp-field-mapping name="address">
 <entity-ref home="AddressBean">
 <cmp-field-mapping name="address"
 persistence-name="addressPK" />
 </entity-ref>
 </cmp-field-mapping>
 ...
</entity-deployment>
<entity-deployment name="AddressBean" location="emp/AddressBean" ...
 table="ADDRESS" data-source="jdbc/OracleDS"... >
 <primkey-mapping>
 <cmp-field-mapping name="addressPK"
 persistence-name="addressPK" />
 </primkey-mapping>
 <cmp-field-mapping name="street" persistence-name="street" />
 <cmp-field-mapping name="city" persistence-name="city" />
 <cmp-field-mapping name="state" persistence-name="state" />
 <cmp-field-mapping name="zip" persistence-name="zip" />
 <cmp-field-mapping name="EmpBean_address">
 <entity-ref home="EmpBean">
 <cmp-field-mapping name="EmpBean_address"
 persistence-name="EMPNO" />
 </entity-ref>
 </cmp-field-mapping>
...
</entity-deployment>

Mapping Object Relationship Fields to the Database

6-20 Enterprise JavaBeans Developer’s Guide

The <entity-deployment> mapping for the EmpBean specifies:

� The <entity-deployment> attributes define the following:

– name attribute: The name of the source bean is EmpBean.

– location attribute: The JNDI location is emp/EmpBean.

– table attribute: The database table in which the persistent data for this entity
bean is stored is emp.

– data-source attribute: The database in which this table resides is defined by
the data source jdbc/OracleDS.

� The <cmp-field-mapping> elements identify the table columns and the
persistent data to be stored in each: The columns in this table are empno, ename,
sal, and address.

– The empno column contains the primary key, as defined in the EmpBean as
empNo.

– The empName and salary CMP data are saved in the ename and sal
columns.

– The address column is a foreign key in the EmpBean table, EMP, that points
to the primary key of the AddressBean table.

� The <cmp-field-mapping> element for the foreign key defines the following:

– Both of the name attributes identify the <cmr-field> that was defined in the
ejb-jar.xml file. This name is address.

– The <entity-ref> home attribute identifies the <ejb-name> of the target
bean. The target in this example is the AddressBean.

– The persistence-name attribute identifies the primary key column name of
the target bean. In this example, the primary key of the AddressBean table,
ADDRESS, is the addressPK column.

Figure 6–8 displays the relationship mapping of the EmpBean address foreign key to
the AddressBean addressPK primary key.

Note: This section describes in detail how logical names defined
in the ejb-jar.xml file relate to those in the
orion-ejb-jar.xml file. And it describes how the logical
variables defined in the orion-ejb-jar.xml file relate to the
database table and column names. This chapter specifically chooses
different names for closely aligned elements in the ejb-jar.xml
and orion-ejb-jar.xml files in order that you can understand
which names where the mappings occur. However, for efficiency
and ease, you can make all related names the same. For example,
instead of identifying address and addressPK for identifying the
CMR field name and database column name, you could use one
name, address, for all of them. Your configuration is easier if all
these names are the same.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-21

Figure 6–8 Demonstration of Explicit Mapping for a One-To-One Relationship

In summary, an address column in the EMP table is a foreign key that points to the
primary key, addressPK, in the ADDRESS table. For the example in which the
AddressBean has an auto-generated primary key, an address column in the EMP
table is a foreign key that points to the primary key, autoid, in the ADDRESS table.

Table Mapping For Primary Keys That Use AutoId
As described in "Defining an Auto-Generated Primary Key for Your Entity Bean" on
page 4-9, you can define that a table use an automatic identifier as the primary key.
This results in the following XML configuration in the orion-ejb-jar.xml file for
the bean:

<primkey-mapping>
 <cmp-field-mapping name="auto_id"
 persistence-name="autoid"/>
</primkey-mapping>

In our employee/address example, if the AddressBean had a primary key undefined,
so that it defaulted to an autoid, then the table mapping would be as follows:

Figure 6–9 One-To-One Employee Relationship Example with Auto-ID

Using a Foreign Key with the One-To-Many Relationship
As described in "One-To-Many or Many-To-One Relationship Overview" on page 6-2,
one bean, such as a department, can have a relationship to multiple instances of

FK:address PK

PK:addressPK

ADDRESS

EMP

...

...

ENTITY TABLES

<cmp-field-mapping name="address">
<entity-ref home="AddressBean">
 <cmp-field-mapping name="address"

 </entity-ref>
</cmp-field-mapping>

 persistence-name="addressPK" />

<relationship-role-source>

<cmr-field>

<relationship-role-source>

 <cmr-field-name>address</cmr-field-name>
</cmr-field>

 <ejb-name>AddressBean</ejb-name>
</relationship-role-source>^

 <ejb-name>EmpBean</ejb-name>
</relationship-role-source>

ORION-EJB-JAR.XML

...

EJB-JAR.XML

O
_1

04
0

autoid street city zipstate

O
_1

06
5

EMP ADDRESS

empno empName salary FK:address

Mapping Object Relationship Fields to the Database

6-22 Enterprise JavaBeans Developer’s Guide

another bean, such as employees. There are several employees in each department.
Since this is a bidirectional relationship, you can look up the department from the
employee. The relationships between the DeptBean and EmpBean is represented by
CMR fields, employees and deptno, as shown in Figure 6–10.

Figure 6–10 One-To-Many Bean Relationship

How this relationship is mapped to database tables depends on your choices. The
default method is add a foreign key to the table that defines the "many" side of the
relationship—in this case, the table that represents the EmpBean. The foreign key
points back to the department to which each employee belongs.

Figure 6–11 shows the department<—>employee example, where each employee
belongs to only one department and each department can contain multiple employees.
The department table has a primary key. The employee table has a primary key to
identify each employee and a foreign key to point back to the employee's department.
If you want to find the department for a single employee, a simple SQL statement
retrieves the department information from the foreign key. To find all employees in a
department, the container performs a JOIN statement on both the department and
employee tables and retrieves all employees with the designated department number.

Figure 6–11 Explicit Mapping for One-To-Many Bidirectional Relationship Example

This is the default behavior. If you need to change the mappings to other database
tables, then you use either JDeveloper or hand-edit the orion-ejb-jar.xml file to
manipulate the <collection-mapping> or <set-mapping> element.

Important: You modify elements and attributes of the
<entity-deployment> element in the orion-ejb-jar.xml
file to explicitly map relationship fields. JDeveloper was created to
manage the complex mapping between the entity beans and the
database tables. Thus, JDeveloper validates the deployment
descriptors and prevents inconsistencies. You are allowed to
modify the orion-ejb-jar.xml file on your own; however, we
suggest that you use JDeveloper for modifying container-managed
relationships. CMR configuration is complex and can be difficult to
understand. You can download JDeveloper at the following site:
http://www.oracle.com/technology/software/products
/jdev/index.html

EmpBeanDeptBean dept*employees

PK:EMPNO ENAME SAL

DEPT EMP

PK:DEPTNO DNAME FK:EDEPTNO

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-23

Example 6–6 shows the table mapping for the bidirectional relationship of one
department with many employees. The "one" side of the relationship is the
department; the "many" side of the relationship is the employee. Figure 6–11 shows the
table design. This demonstrates how to hand-edit the orion-ejb-jar.xml file for
this relationship to use a foreign key.

Example 6–6 One-To-Many Relationship Using a Foreign Key

The ejb-jar.xml <relationships> section defines the department-employee
bidirectional example, as follows:

<relationships>
 <ejb-relation>
 <ejb-relation-name>Dept-Emps</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Dept-has-Emps
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>DeptBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>employees</cmr-field-name>
 <cmr-field-type>java.util.Set</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emps-have-Dept
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field><cmr-field-name>dept</cmr-field-name></cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

The orion-ejb-jar.xml file maps this definition in the following XML. If the table
identified in the <collection-mapping> or <set-mapping> element of the "one"
relationship (the department) is the name of the target bean's table (the employee bean
table), then the one-to-many relationship is defined with a foreign key. For example,
the table attribute in the department definition is EMP.

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE orion-ejb-jar PUBLIC "-//Evermind//DTD Enterprise JavaBeans 2.0
runtime//EN" "
http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd">
<orion-ejb-jar>
 <enterprise-beans>
 <entity-deployment name="DeptBean" data-source="jdbc/scottDS" table="DEPT">
 <primkey-mapping>
 <cmp-field-mapping name="deptno" persistence-name="DEPTNO" /> /*PK*/
 </primkey-mapping>
 <cmp-field-mapping name="dname" persistence-name="DNAME" />
 <cmp-field-mapping name="employees">
 /*points from DEPTNO column in EMP to DEPTNO in DEPT*/
1. <collection-mapping table="EMP"> /*table where FK lives*/
 <primkey-mapping>

Mapping Object Relationship Fields to the Database

6-24 Enterprise JavaBeans Developer’s Guide

 <cmp-field-mapping name="DeptBean_deptno"> /*CMR field name*/
 <entity-ref home="DeptBean"> /*points to DeptBean*/
2. <cmp-field-mapping name="DeptBean_deptno"
 persistence-name="EDEPTNO"/>
 </entity-ref>
 </cmp-field-mapping>
 </primkey-mapping>
 <value-mapping type="mypackage1.EmpLocal">
 <cmp-field-mapping name="EmpBean_empno">
 <entity-ref home="EmpBean">
 <cmp-field-mapping name="EmpBean_empno"
 persistence-name="EMPNO"/>
 </entity-ref>
 </cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 </cmp-field-mapping>
 </entity-deployment>
 <entity-deployment name="EmpBean" data-source="jdbc/scottDS" table="EMP">
 <primkey-mapping>
 <cmp-field-mapping name="empNo" persistence-name="EMPNO"/>
 </primkey-mapping>
 <cmp-field-mapping name="empName" persistence-name="ENAME" />
 <cmp-field-mapping name="salary" persistence-name="SAL" />
 <cmp-field-mapping name="dept"> /*foreign key*/
 <entity-ref home="DeptBean">
2. <cmp-field-mapping name="dept" persistence-name="EDEPTNO" />
 </entity-ref>
 </cmp-field-mapping>
 </entity-deployment>
 </enterprise-beans>
 <assembly-descriptor>
 <default-method-access>
 <security-role-mapping impliesAll="true"
 name="<default-ejb-caller-role>"/>
 </default-method-access>
 </assembly-descriptor>
</orion-ejb-jar>

The foreign key is defined in the database table of the "many" relationship. In our
example, the EDEPTNO foreign key column exists in the EMP database table. This is
defined in a persistence-name attribute of the <cmp-field-mapping> element
in the EmpBean configuration.

Thus, to manipulate the <collection-mapping> or <set-mapping> element in
the orion-ejb-jar.xml file, modify the <entity-deployment> element for the
"one" entity bean, which contains the Collection, as follows:

1. Modify the table in the <collection-mapping> or <set-mapping> table
attribute in the "one" relationship to be the database table of the "many"
relationship. In this example, you would modify this attribute to be the EMP table.

2. Modify the foreign key that points to the "one" relationship within the "many"
relationship configuration. In this example, modify the <cmp-field-mapping>
element to specify the EDEPTNO foreign key in the persistence-name attribute.

These steps are delineated in the code example in Example 6–6.

Unidirectional One-to-Many Relationship Using a Foreign Key An example of a unidirectional
one-to-many relationship is the employee/phones example. An employee can own

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-25

one or more phone numbers; however, you cannot look up an employee given a phone
number. Figure 6–12 demonstrates the bean relationship.

Figure 6–12 One-To-Many Bean Relationship

Figure 6–13 shows the employee—>phone numbers example, where each employee
can have multiple phone numbers. The employee table has a primary key. The phone
numbers table has a auto-id for the primary key, the phone number, and a foreign key
to point back to the employee. If you want to find all phone numbers for a single
employee, the container performs a JOIN statement on both the employee and phone
number tables and retrieves all phone numbers with the designated employee number.

Figure 6–13 Explicit Mapping for One-to-Many Bean Relationship Example

Example 6–7 One-to-Many Unidirectional Example With Foreign Key

The ejb-jar.xml <relationships> section defines the employee-phone numbers
unidirectional example, as follows:

<entity>
 <ejb-name>EmpBean</ejb-name>
 ...
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 <prim-key-class>java.lang.Integer</prim-key-class>
</entity>
<entity>
 <ejb-name>PhoneBean</ejb-name>
 ...
 <cmp-field><field-name>phoneNo</field-name></cmp-field>
 <prim-key-class>java.lang.Object</prim-key-class>
</entity>

<relationships>
 <ejb-relation>
 <ejb-relation-name>Emp-Phone</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emp-has-Phones
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>EmpBean</ejb-name>
 </relationship-role-source>

PhoneBeanEmpBean *phones

PK:AUTO_ID PHONE_NO EMP_NO

EMP PHONE

PK:EMPNO ENAME SAL

O
-1

08
9

Mapping Object Relationship Fields to the Database

6-26 Enterprise JavaBeans Developer’s Guide

 <cmr-field>
 <cmr-field-name>phones</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Phones-have-Emp
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>PhoneBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

The orion-ejb-jar.xml file maps this definition in the following XML. If the table
identified in the <collection-mapping> or <set-mapping> element of the "one"
relationship (the employee) is the name of the target bean's table (the phone bean
table), then the container defines the one-to-many relationship with a foreign key. In
this example, the target bean's table is the PHONE database table.

<entity-deployment name="EmpBean" table="EMP">
<primkey-mapping>
<cmp-field-mapping name="empNo" persistence-name="EMPNO" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ENAME" />
<cmp-field-mapping name="salary" persistence-name="SAL" />
<cmp-field-mapping name="phones">
1.<collection-mapping table="PHONE">
<primkey-mapping>
<cmp-field-mapping name="EmpBean_empno">
<entity-ref home="EmpBean">
2.<cmp-field-mapping name="EmpBean_empNo"
persistence-name="EMPNO"/>
</entity-ref>
</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="hr.PhoneLocal">
<cmp-field-mapping name="autoid">
<entity-ref home="PhoneBean">
<cmp-field-mapping name="autoid"
persistence-name="AUTOID"/>
</entity-ref>
</cmp-field-mapping>
</value-mapping>
</collection-mapping>
</cmp-field-mapping>
</entity-deployment>
<entity-deployment name="PhoneBean" table="PHONE">
<primkey-mapping>
<cmp-field-mapping name="autoid" persistence-name="AUTOID"/>
</primkey-mapping>
<cmp-field-mapping name="phoneNo" persistence-name="PHONE_NO" />
<cmp-field-mapping name="EmpBean_phones">
<entity-ref home="EmpBean">
2.<cmp-field-mapping name="EmpBean_phones" persistence-name="EMPNO" />
</entity-ref>
</cmp-field-mapping>
</entity-deployment>

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-27

The foreign key is defined in the database table of the "many" relationship. In our
example, the EMPNO foreign key column exists in the PHONE database table. This is
defined in a persistence-name attribute of the <cmp-field-mapping> element
in the PhoneBean configuration.

Thus, to manipulate the <collection-mapping> or <set-mapping> element in
the orion-ejb-jar.xml file, modify the <entity-deployment> element for the
"one" entity bean, which contains the Collection, as follows:

1. Modify the table in the <collection-mapping> or <set-mapping> table
attribute in the "one" relationship to be the database table for the "many"
relationship. In this example, you would modify this attribute to be the PHONE
table.

2. Modify the foreign key that points to the "one" relationship within the "many"
relationship configuration. In this example, modify the <cmp-field-mapping>
element to specify the EMPNO foreign key in the persistence-name attribute.

These steps are delineated in the code example in Example 6–7.

Association Table Explicit Mapping for Relationships Overview
As described in "One-To-Many or Many-To-One Relationship Overview" on page 6-2,
one bean, such as a department, can have a relationship to multiple instances of
another bean, such as employees. There are several employees in each department.
Since this is a bidirectional relationship, you can look up the department from the
employee. The relationships between the DeptBean and EmpBean is represented by
CMR fields, employees and deptno, as shown in Figure 6–14.

Figure 6–14 One-To-Many Bidirectional Bean Relationship

How this relationship is mapped to database tables depends on your choices. You
could choose to use a separate table, known as an association table, which maps the
two tables together appropriately with two foreign keys, where each foreign key
points to each of the entity tables in the relationship.

This is not the default behavior. To have this type of relationship, do one or both of the
following:

� Specify -DassociateUsingThirdTable=true on the OC4J startup options
before deployment. Restart the OC4J instance. This generates the association table
for all applications deployed after the restart.

� You can modify the mappings either through JDeveloper or by hand-editing the
orion-ejb-jar.xml file.

Note: If you have a composite primary key in either or both
tables, the foreign key will be a composite foreign key; thus, the
association table will have the appropriate number of columns for
each part of the composite foreign key.

O
_1

06
6

EmpBeanDeptBean dept*employees

Mapping Object Relationship Fields to the Database

6-28 Enterprise JavaBeans Developer’s Guide

Figure 6–15 shows the tables that are created for the employee/project relationship.

Figure 6–15 Many-to-Many Employee Bean Relationship Example

Each project can have multiple employees, and each employee can belong to several
projects. Thus, the employee and project relationship is a many-to-many relationship.
The container creates three tables to manage this relationship: the employee table, the
project table, and the association table for both of these tables.

The association table for this example contains two foreign key columns: one that
points to the employee table and one that points to the project table. The column
names of the association table are a concatenation of the entity bean name in
<ejb-name> element of the ejb-jar.xml file and its primary key name. If the
primary key for the bean is auto-generated, then "autoid" is appended as the primary
key name. For example, the following are the names for the foreign keys of our
employee/project example:

� The foreign key that points to the employee table is the bean name of EmpBean,
followed by the primary key name of empno, which results in the column name
EmpBean_empno.

� The foreign key that points to the address table is the bean name of ProjectBean
concatenated with autoid, because the primary key is auto-generated, which
results in the column name ProjectBean_autoid.

The following is a demonstration of the association table for the employee/projects
relationship. Employee 1 is assigned to projects a, b, and c. Project a involves
employees 1, 2, and 3. The association table contains the following:

Important: You modify elements and attributes of the
<entity-deployment> element in the orion-ejb-jar.xml
file to explicitly map relationship fields. JDeveloper was created to
manage the complex mapping between the entity beans and the
database tables. Thus, JDeveloper validates the deployment
descriptors and prevents inconsistencies. You are allowed to
modify the orion-ejb-jar.xml file on your own; however, we
suggest that you use JDeveloper for modifying container-managed
relationships. CMR configuration is complex and can be difficult to
understand. You can download JDeveloper at the following site:
http://www.oracle.com/technology/software/products
/jdev/index.html

O
_1

09
2

empno empName salary

EmpBean_emp1_jar_employee ProjectBean_emp1_jar_employee

ProjectBean_employees_Em_fj49g

projectNameautoid

FK:EmpBean_empno FK:EmpBean_autoid

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-29

The association table details all relationships between the two entity beans.

Example 6–8 Deployment Descriptor for a Many-To-Many Relationship

The deployment descriptors for the employee/project many-to-many relationship
contains an <ejb-relation> element in which each bean defines its
<multiplicity> as many and defines a <cmr-field> to the other bean of type
Collection or Set.

<enterprise-beans>
 <entity>
 ...
 <ejb-name>EmpBean</ejb-name>
 <local-home>employee.EmpHome</local-home>
 <local>employee.Emp</local>
 ...
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 <prim-key-class>java.lang.Integer</prim-key-class>
 ...
 </entity>
 <entity>
 ...
 <ejb-name>ProjectBean</ejb-name>
 <local-home>employee.ProjectHome</local-home>
 <local>employee.Project</local>
 ...
 <cmp-field><field-name>projectName</field-name></cmp-field>
 <prim-key-class>java.lang.Object</prim-key-class>
 ...
 </entity>
</enterprise-beans>
<relationships>
 <ejb-relation>
 <ejb-relation-name>Emps-Projects</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Project-has-Emps</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>ProjectBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>employees</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>

EmpBean_empno ProjectBean_autoid

1 a

1 b

1 c

2 a

3 a

Mapping Object Relationship Fields to the Database

6-30 Enterprise JavaBeans Developer’s Guide

 <ejb-relationship-role-name>Emp-has-Projects</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>projects</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

The container maps this definition to the following:

� The container generates the entity tables based on the entity bean names, the JAR
file that the beans are archived in, and the application name that they are deployed
under. If the JAR filename is empl.jar and the application name is employee,
then the table names are EmpBean_empl_jar_employee and ProjectBean_
empl_jar_employee.

� The container generates columns in each entity table based on the <cmp-field>
elements declared in the deployment descriptor.

– The columns for the EmpBean table are empno, empname, and salary. The
primary key is designated as the empno field.

– The columns for the ProjectBean table are autoid for an auto-generated
primary key and a projectName column. The primary key is auto-generated
because the <prim-key-class> is defined as java.lang.Object, and no
<primkey-field> element is defined.

� The container generates an association table in the same manner as the entity
table.

– The association table name is created to include the two <cmr-field>
element definitions for each of the entity beans in the relationship. The format
for the association table name consists of the following, separated by
underscores: first bean name, its <cmr-field> to the second bean, second
bean name, its <cmr-field> to the first bean, JAR file name, and application
name. The rule of thirty characters also applies to this table name, as to the
entity tables. Thus, the association table name for the employee/projects
relationship is ProjectBean_employees_EmpBean_projects_empl_
jar_employee. Because this name is over thirty characters, it is truncated to
twenty-four characters, and then an underscore plus five characters of a hash
code are added. Thus, the official association table would be something like
ProjectBean_employees_Em_fj49g

– Two foreign keys in the association table are created. In this example, each
foreign key is defined in a column, where the name is a concatenation of the
bean name and the primary key (or autoid if auto-generated). In our
example, the column names would be EmpBean_empno and ProjectBean_
autoid. These columns are foreign keys to the entity tables that are involved
in the relationship. The EmpBean_empno foreign key points to the employee
table; the ProjectBean_autoid foreign key points to the projects table.

Example 6–9 Deployment Descriptor for One-To-Many Unidirectional Relationship

Figure 6–16 shows the default database tables for the employee/phone numbers
example.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-31

Figure 6–16 One-To-Many Employee Bean Relationship Example

Each employee can have multiple phone numbers. The employee entity bean,
EmpBean, defines a <cmr-field> element designating a Collection of
phoneNumbers within the PhoneBean. The deployment descriptors for this exmple
are as follows:

<relationships>
 <ejb-relation>
 <ejb-relation-name>Emp-Phone</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emp-PhoneNumbers</ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>phoneNumbers</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Phone-has-Emp</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>PhoneBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

XML Structure for One-to-Many Relationship Mapping
The relationship that is defined in the ejb-jar.xml file is mapped in the
orion-ejb-jar.xml file within a <cmp-field-mapping> element. The
<cmp-field-mapping> element contains either a <collection-mapping> or
<set-mapping> element. Our example contains a department has many employees.
The department describes its "many" relationship to employees with a
<collection-mapping> element.

Note: An object-relationship entity bean example is available on
OTN from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

O
_1

03
9

empno empName salary

EmpBean_emp1_jar_employee PhoneBean_emp1_jar_employee

EmpBean_phoneNumbers_Pho_fj49g

phoneNumautoid

FK:EmpBean_empno FK:EmpBean_autoid

Mapping Object Relationship Fields to the Database

6-32 Enterprise JavaBeans Developer’s Guide

The XML structure for defining a one-to-many relationship includes the following:

<cmp-field-mapping name="CMRfield">
 <collection-mapping table="association_table">
 <primkey-mapping>
 <cmp-field-mapping name="CMRfield"
persistence-name="first_column_name_assoc_table" />
 </primkey-mapping>
 <value-mapping type="target_bean_local_home_interface">
 <cmp-field-mapping>
 <entity-ref home="target_bean_EJBname">
 <cmp-field-mapping name="CMRfield"
 persistence-name="second_column_name_assoc_table"/>
 </entity-ref>
 </cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
</cmp-field-mapping>

Note: The "many" side of the relationship is defined by the
<collection-mapping> or <set-mapping> element. The "one"
side of the relationship is defined by the <entity-ref> element.
Thus, for a one-to-many relationship, a single
<collection-mapping> element is used to describe the "many"
side.

Element or Attribute Description

<cmp-field-mapping> This element maps a persistent field or a relationship field. For
relationship fields, it will contain either an <entity-ref> for a
one-to-one mapping or a <collection-mapping> for a
one-to-many, many-to-one, or many-to-many relationship.

� The name attribute identifies the <cmp-field> or
<cmr-field> that is to be mapped. Do not change this
name.

� The persistence-name attribute identifies the database
column. You can modify this name to match your database
column name.

<entity-ref> This element identifies the target bean and its primary key to
which the foreign key points.

� The home attribute is not the home interface, but identifies
the EJB name of the target bean. This is the logical name of
the bean defined in <ejb-name> in the ejb-jar.xml file.

� The <cmp-field-mapping> within this element identifies
the foreign key column name.

<collection-mapping> This element explicitly maps the "many" side of a relationship.

� The table attribute identifies the association table. You can
modify this name to match your own association table
name.

This element defines two elements, one for each column in the
association table:

� <primkey-mapping> identifies the first foreign key in the
association table.

� <value-mapping> identifies the second foreign key in the
association table.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-33

Using an Association Table with a One-to-Many Bidirectional Relationship
The following example shows how a one-to-many bidirectional relationship is
configured to use an association table. In the ejb-jar.xml file, the department
defines itself as the "one" side of the relationship and shows that it expects to receive
back "many" employees through the definition of a Collection in the <cmr-field>
element. The employee defines itself as the "many" side of the relationship.

<relationships>
<ejb-relation>
<ejb-relation-name>Dept-Emps</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>Dept-has-Emps
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>DeptBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>employees</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>Emp-has-Dept
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>EmpBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>dept</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

In the orion-ejb-jar.xml file, the mapping of this relationship to an association
table is described in a <collection-mapping> element. Since this is a one-to-many
relationship, the "one" entity bean, the department, has the <collection-mapping>
element as it receives back a Collection or Set of the target, the employees.

In the orion-ejb-jar.xml file, the DeptBean <entity-deployment> element
defines the <collection-mapping> element to designate a Collection of
employees. The <collection-mapping> element defines the association table.

<entity-deployment name="DeptBean" location="DeptBean"
table="DEPT" data-source="jdbc/OracleDS" ... >
<primkey-mapping>

<primkey-mapping> Within the <collection-mapping>, use this element to
identify the first foreign key. You can modify the
persistence-name attribute in this element to match the
column name in your own association table.

<value-mapping> Use this element to specify the second foreign key. The type
attribute identifies the local interface for the target bean. You can
modify the persistence-name attribute in this element to
match the column name in your own association table.

Element or Attribute Description

Mapping Object Relationship Fields to the Database

6-34 Enterprise JavaBeans Developer’s Guide

<cmp-field-mapping name="deptNo" persistence-name="deptNo" />
</primkey-mapping>
<cmp-field-mapping name="deptName" persistence-name="deptName" />
<cmp-field-mapping name="employees">
<collection-mapping table="DEPT_EMP">
<primkey-mapping>
<cmp-field-mapping name="DeptBean_deptno">
<entity-ref home="DeptBean">
<cmp-field-mapping name="DeptBean_deptno"
persistence-name="DEPARTMENT" />
</entity-ref>
</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="hr.EmpLocal">
<cmp-field-mapping name="EmpBean_empNo">
<entity-ref home="EmpBean">
<cmp-field-mapping name="EmpBean_empNo"
persistence-name="EMPLOYEE" />
</entity-ref>
</cmp-field-mapping>
</value-mapping>
</collection-mapping>
</cmp-field-mapping>
...
</entity-deployment>
<entity-deployment name="EmpBean" location="EmpBean"
table="EMP" data-source="jdbc/OracleDS" ... >
<primkey-mapping>
<cmp-field-mapping name="empNo" persistence-name="EMPNO" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ENAME" />
<cmp-field-mapping name="salary" persistence-name="SAL" />
<cmp-field-mapping name="dept">
<entity-ref home="DeptBean">
<cmp-field-mapping name="dept" persistence-name="DEPARTMENT" />
</entity-ref>
</cmp-field-mapping>
...
</entity-deployment>

The following describes how the DeptBean is configured in the
orion-ejb-jar.xml file:

� The relationship from the department to the employee bean is defined in the
employees field, which is mapped in the <collection-mapping> element.

� The association table name is specified in the table attribute, which currently
defines the association table name as DEPT_EMP.

� The foreign keys of the association table are defined as follows:

– The <primkey-mapping> element defines the column name for the foreign
key of the current entity bean in the persistence-name attribute, which is
DEPARTMENT.

– The <value-mapping> element defines the column name for the foreign key
of the target bean in the persistence-name attribute, which is EMPLOYEE.

� The <value-mapping> element specifies the target entity bean.

– The type attribute of the <value-mapping> element defines the local
interface of the target bean that is returned to the source entity bean.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-35

– The <ejb-name> of the target entity bean is defined in the <entity-ref>
home attribute.

The following describes how the EmpBean is configured in the orion-ejb-jar.xml
file:

� The relationship from the employee to the department bean is defined in the dept
field, which is mapped in the <cmp-field-mapping><entity-ref> element.
The persistence-name attribute contains the foreign key in the association
table that points to the department bean.

Using an Association Table in a One-to-Many Unidirectional Relationship
As described in "One-To-Many or Many-To-One Relationship Overview" on page 6-2,
one bean, such as an employee, can have a relationship to multiple instances of
another bean, such as phone numbers. For each employee, you can have one or more
phone numbers. However, this is a unidirectional relationship. You cannot look up an
employee given a phone number.

The relationships between the EmpBean and PhoneBean is represented by a CMR
field, phones, as shown in Figure 6–17.

Figure 6–17 One-To-Many Unidirectional Bean Relationship

The relationship is mapped to database tables using an association table, which maps
the two tables together appropriately. The association table consists of two foreign
keys.

For a full description of how an association table works, see "Example of a Default
Mapping of One-To-Many and Many-To-Many Relationships" on page 6-11. This
section shows how to change the XML configuration for this mapping.

Figure 6–18 shows the employee—>phone numbers example, where each employee
can have multiple phone numbers. Both the employee and phone tables have a
primary key. A separate table, the association table, contains two foreign keys. One
foreign key points to the employee; the other foreign key points to the phone number.
Every relationship has its own row denoting the relationship. Thus, for every phone
number, a row is created where the first foreign key points to the employee to which
the phone number belongs and the second foreign key points to the phone number

Note: If you have a composite primary key in either or both
tables, the foreign key will be a composite foreign key; thus, the
association table will have the appropriate number of columns for
each part of the composite foreign key.

Note: If you do not want to use an association table, see "Using a
Foreign Key with the One-To-Many Relationship" on page 6-21 for
directions on how to use a foreign key in the "one" side of the
relationship.

O
_1

06
7

PhoneBeanEmpBean *phones

Mapping Object Relationship Fields to the Database

6-36 Enterprise JavaBeans Developer’s Guide

record. Figure 6–18 shows an association table, EMP_PHONE, where the foreign keys
are named EMPLOYEE and PHONEBEAN_AUTOID.

Figure 6–18 Explicit Mapping for One-to-Many Unidirectional Bean Relationship

To change the mappings to other database tables, then you use either JDeveloper or
hand-edit the orion-ejb-jar.xml file to manipulate the <collection-mapping>
or <set-mapping> element.

Specifying the One-to-Many Unidirectional Relationship in the XML Deployment Descriptors In
the ejb-jar.xml file, the cardinality is defined in the <relationships> element.
The following is the ejb-jar.xml file configuration of the one-to-many
unidirectional example of the employee and his/her phone numbers.

� The primary key field of the EmpBean is empNo, as defined in the
<primkey-field> element.

� The primary key of the PhoneBean is not defined, as defined by the absence of
the <primkey-field> element and the existence of the <prim-key-class>
element. Thus, the primary key is auto-generated and represented by AUTOID.
For more information on auto-generated primary keys, see "Defining an
Auto-Generated Primary Key for Your Entity Bean" on page 4-9.

� The CMR field (<cmr-field> element) defining the "many" side of the
relationship is a Collection that is identified as phones.

<entity>
<ejb-name>EmpBean</ejb-name>
...

Important: You modify elements and attributes of the
<entity-deployment> element in the orion-ejb-jar.xml
file to explicitly map relationship fields. JDeveloper was created to
manage the complex mapping between the entity beans and the
database tables. Thus, JDeveloper validates the deployment
descriptors and prevents inconsistencies. You are allowed to
modify the orion-ejb-jar.xml file on your own; however, we
suggest that you use JDeveloper for modifying container-managed
relationships. CMR configuration is complex and can be difficult to
understand. You can download JDeveloper at the following site:
http://www.oracle.com/technology/software/products
/jdev/index.html.

SAL PK:AUTO_ID PHONE_NO PHONE_TYPE

O
_1

07
1

EMP PHONE

PK:EMPNO

EMP_PHONE

ENAME

EMPLOYEE PHONEBEAN_AUTOID

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-37

<cmp-field><field-name>empNo</field-name></cmp-field>
<cmp-field><field-name>empName</field-name></cmp-field>
<cmp-field><field-name>salary</field-name></cmp-field>
...
<primkey-field>empNo</primkey-field>
<prim-key-class>java.lang.Integer</prim-key-class>
...
</entity>
<entity>
...
<ejb-name>PhoneBean</ejb-name>
...
<cmp-field><field-name>phoneNo</field-name></cmp-field>
<cmp-field><field-name>phoneType</field-name></cmp-field>
<prim-key-class>java.lang.Object</prim-key-class>
...
</entity>
<relationships>
 <ejb-relation>
 <ejb-relation-name>Emp-Phone</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emp-PhoneNumbers</ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>EmpBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>phones</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Phone-has-Emp</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>PhoneBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>
 </ejb-relation>
</relationships>

In the orion-ejb-jar.xml file, the mapping of this relationship to an association
table is described in a <collection-mapping> element. The "one" side of the
relationship, the employee, owns the "many" entities, the phone numbers; thus, the
employee defines the <collection-mapping> element that describes the
relationship with the phone numbers. In all one-to-many relationships, the entity bean
that is represents the "one" side of the relationship defines the
<collection-mapping> element as it receives back a Collection or Set of the
target entity bean. The entity bean on the "many" side of the relationship defines a
<cmp-field-mapping> <entity-ref> element that shows the relationship back to
the entity bean that is the "one" side of the relationship. So, the employee defines the
<collection-mapping> element to define its relationship with the phone numbers:
the phone numbers uses an <entity-ref> element to define its relationship with the
employee.

In the orion-ejb-jar.xml file for the employee/phone numbers example, the
EmpBean <entity-deployment> element defines the <collection-mapping>
element to designate a Collection of phone numbers. The
<collection-mapping> element specifies the association table.

Mapping Object Relationship Fields to the Database

6-38 Enterprise JavaBeans Developer’s Guide

<entity-deployment name="EmpBean" table="EMP">
<primkey-mapping>
<cmp-field-mapping name="empNo" persistence-name="EMPLOYEENO" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="EMPLOYEENAME" />
<cmp-field-mapping name="salary" persistence-name="SAL" />
<cmp-field-mapping name="phones">
<collection-mapping table="EMP_PHONE">
<primkey-mapping>
<cmp-field-mapping name="EmpBean_empNo">
<entity-ref home="EmpBean">
<cmp-field-mapping name="EmpBean_empNo"
persistence-name="EMPLOYEENO"/>
</entity-ref>
</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="hr.PhoneLocal">
<cmp-field-mapping name="PhoneBean_autoid">
<entity-ref home="PhoneBean">
<cmp-field-mapping name="PhoneBean_autoid"
persistence-name="AUTOID"/>
</entity-ref>
</cmp-field-mapping>
</value-mapping>
</collection-mapping>
...
</entity-deployment>
<entity-deployment name="PhoneBean" table="PHONE">
<primkey-mapping>
<cmp-field-mapping name="autoid" persistence-name="AUTOID"/>
</primkey-mapping>
<cmp-field-mapping name="phoneNo" persistence-name="PHONE_NO" />
<cmp-field-mapping name="phoneType" persistence-name="PHONE_TYPE" />
<cmp-field-mapping name="EmpBean_phones">
<entity-ref home="EmpBean">
<cmp-field-mapping name="EmpBean_phones"
persistence-name="EMPLOYEENO" />
</entity-ref>
</cmp-field-mapping>
</entity-deployment>

The following describes how the EmpBean is defined in the ejb-jar.xml and
orion-ejb-jar.xml files. See Figure 6–18 for a graphic of this mapping.

� The <cmr-field> element in the ejb-jar.xml file defines a name for the
relationship with the phone numbers as phones.

� The phones <cmr-field> element maps to the association table in the
orion-ejb-jar.xml file. In the orion-ejb-jar.xml file, the
<cmp-field-mapping> for phones contains a <collection-mapping>
element. This <collection-mapping> element defines the association table
name in the table attribute as EMP_PHONE.

� The association table has two foreign keys. In this example, the foreign keys are
simple. However, if the primary keys are composite, then these foreign keys
would be composite as well.

Both foreign keys for the association table are defined as follows:

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-39

– The persistence-name attribute in the <primkey-mapping> element
defines the association table foreign key column name of the current entity
bean, which is EMPLOYEENO.

– The persistence-name attribute in the <value-mapping> element defines
the association table foreign key column name of the target bean, which is
PhoneBean_AUTOID.

� The <value-mapping> element specifies the target entity bean.

– The type attribute of the <value-mapping> element defines the local
interface of the target bean that is returned to the source entity bean. This
example defines the local home interface of the phone bean as
hr.PhoneLocal.

– The <ejb-name> of the target entity bean is defined in the <entity-ref>
home attribute, which in this example is PhoneBean.

The phone bean configuration in the orion-ejb-jar.xml file defines an
<entity-ref> for a relationship to the employee bean.

� The <ejb-name> of the target entity bean is defined in the <entity-ref> home
attribute, which in this example is EmpBean.

� The persistence-name attribute in the <cmp-field-mapping> element
defines the association table foreign key of the current entity bean, which is
EMPLOYEENO.

Figure 6–19 shows the following:

� How the CMR field name maps to the <cmp-field-mapping> elements in the
orion-ejb-jar.xml file.

� How the association table is defined by the <collection-mapping> element in
the employee bean definition.

Mapping Object Relationship Fields to the Database

6-40 Enterprise JavaBeans Developer’s Guide

Figure 6–19 Explicit Mapping for a One-to-Many Relationship

Using an Association Table in Many-to-Many Relationships
As described in "Many-To-Many Relationship Overview" on page 6-3, many beans,
such as employees, can have a relationship to multiple instances of another bean, such
as projects. There are several employees in each project; each employee can be
assigned to multiple projects. Since this is a bidirectional relationship, you can look up
the project from the employee. The relationships between the ProjectBean and
EmpBean is represented by CMR fields, employees and projects, as shown in
Figure 6–20.

<relationship-role-source>

<cmr-field>

<relationship-role-source>

<cmr-field-name>phones </cmr-field-name>
</cmr-field>

<ejb-name>PhoneBean</ejb-name>
</relationship-role-source>

 <ejb-name>EmpBean</ejb-name>
</relationship-role-source>

ORION-EJB-JAR.XML

...

EJB-JAR.XML

 <cmp-field-mapping name="phones">
<collection-mapping table=" EMP_PHONE">
 <primkey-mapping>

 <cmp-field-mapping name="EmpBean_ empNo" persistence-name="EMPLOYEENO

<value-mapping type="hr.PhoneLocal">
</primkey-mapping>

<cmp-field-mapping name="PhoneBean_autoid">
 <entity-ref home="PhoneBean">

<cmp-field-mapping name="PhoneBean_autoid"
 persistence-name="PhoneBean_ AUTOID"/>

 </entity-ref>
</cmp-field-mapping>

 </value-mapping>
 </collection-mapping>
</cmp-field-mapping>

O
_1

07
2

PHONEEMP

FK:EMPLOYEENO

empNo empName salary autoid phoneNumber

FK:PhoneBean_AUTOID

EMP_PHONE

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-41

Figure 6–20 Many-to-Many Bidirectional Bean Relationship

This relationship is mapped to database tables using as an association table. The
association table consists of two foreign keys.

For a full description of how an association table works, see "Example of a Default
Mapping of One-To-Many and Many-To-Many Relationships" on page 6-11. This
section shows how to change the XML configuration for this mapping.

Figure 6–21 shows the projects<—>employee example, where each employee belongs
to one or more projects and each project can contain multiple employees. Both the
project and employee tables have a primary key. A separate table, the association table,
contains two foreign keys. One foreign key points to the project; the other foreign key
points to the employee. Every relationship has its own row denoting the relationship.
Thus, for every employee, a row is created where the first foreign key points to the
project the employee belongs to and the second foreign key points to the employee
record. The association table in Figure 6–21 shows an association table, PROJECT_EMP,
where the foreign keys are named PROJECT_NO and EMPLOYEE_NO.

Figure 6–21 Explicit Mapping for One-to-Many Bidirectional Relationship Example

If you need to change the mappings to other database tables, then you use either
JDeveloper or hand-edit the orion-ejb-jar.xml file to manipulate the
<collection-mapping> or <set-mapping> element.

Note: If you have a composite primary key in either or both
tables, the foreign key will be a composite foreign key; thus, the
association table will have the appropriate number of columns for
each part of the composite foreign key.

O
_1

07
3

EmpBeanProjectBean projects ** employees

O
_1

09
3

PK: EMPNO ENAME SAL...

PROJECT EMP

PROJECT_EMP

PNAMEPK: PROJECTNO

PROJECT_NO EMPLOYEE_NO

Mapping Object Relationship Fields to the Database

6-42 Enterprise JavaBeans Developer’s Guide

Example 6–10 XML Structure for Many-to-Many Relationship Mapping

The relationship that is defined in the ejb-jar.xml file is mapped in the
orion-ejb-jar.xml file within a <cmp-field-mapping> element. The
<cmp-field-mapping> element contains either a <collection-mapping> or
<set-mapping> element. The project/employee example describes both sides of the
"many" relationship with a <collection-mapping> element; thus, both sides use a
<collection-mapping> to describe their side of the relationship, even though the
information is the same on both sides.

In the ejb-jar.xml file, both sides are define a "many" relationship to each other;
thus, both sides declare the <multiplicity> element as Many and define a
relationship to each other in a CMR field. The project bean defines the CMR field as
employees; the employee bean defines the CMR field as projects. These CMR
fields are used in the orion-ejb-jar.xml file to map these relationships in the
database tables.

<entity>
...
<relationships>
<ejb-relation>
<ejb-relation-name>Emps-Projects</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>Projects-have-Emps
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>ProjectBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>employees</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>Emps-have-Projects
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>EmpBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>projects</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>

Important: You modify elements and attributes of the
<entity-deployment> element in the orion-ejb-jar.xml
file to explicitly map relationship fields. JDeveloper was created to
manage the complex mapping between the entity beans and the
database tables. Thus, JDeveloper validates the deployment
descriptors and prevents inconsistencies. You are allowed to
modify the orion-ejb-jar.xml file on your own; however, we
suggest that you use JDeveloper for modifying container-managed
relationships. CMR configuration is complex and can be difficult to
understand. You can download JDeveloper at the following site:
http://www.oracle.com/technology/software/products
/jdev/index.html.

Mapping Object Relationship Fields to the Database

Entity Relationship Mapping 6-43

</ejb-relationship-role>
</ejb-relation>
</relationships>
...
</entity>

Then in the orion-ejb-jar.xml file, both sides define the relationship with each
other in a <collection-mapping> element. This element defines the association
table. An association table is created that contains two foreign keys, where each
foreign key points to the primary key of the source and target tables. Thus, explicit
mapping of this relationship requires modifying the association table name and its
foreign key names. You must modify both <collection-mapping> elements with
the same information, because both <collection-mapping> elements contain the
same information about the association table. The only difference is that the
information is switched in the <primary-key> and <value-mapping> elements in
each bean definition. What is defined in the <primary-key> element in the project
bean definition will be defined in the <value-mapping> element in the employee
bean definition.

<entity-deployment name="EmpBean" location="EmpBean"
table="EmpBean_ormap_ormap_ejb" data-source="jdbc/OracleDS" >
...
<entity-deployment name="EmpBean" table="EMP">
<primkey-mapping>
<cmp-field-mapping name="empNo" persistence-name="EMPNO" />
</primkey-mapping>
<cmp-field-mapping name="empName" persistence-name="ENAME" />
<cmp-field-mapping name="salary" persistence-name="SAL" />
<cmp-field-mapping name="projects">
<collection-mapping table="PROJECT_EMP">
<primkey-mapping>
<cmp-field-mapping name="EmpBean_empNo">
<entity-ref home="EmpBean">
<cmp-field-mapping name="EmpBean_empNo"
persistence-name="EMPLOYEE_NO" />
</entity-ref>
</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="hr.ProjectLocal">
<cmp-field-mapping name="ProjectBean_projectNo">
<entity-ref home="ProjectBean">
<cmp-field-mapping name="ProjectBean_projectNo"
persistence-name="PROJECT_NO" />
</entity-ref>
</cmp-field-mapping>
</value-mapping>
</collection-mapping>
</cmp-field-mapping>
...
</entity-deployment>
...
<entity-deployment name="ProjectBean" location="ProjectBean"
table="ProjectBean_ormap_ormap_ejb" data-source="jdbc/OracleDS" >
<primkey-mapping>
<cmp-field-mapping name="projectNo" persistence-name="PROJECTNO" />
</primkey-mapping>
<cmp-field-mapping name="projectName" persistence-name="PNAME" />
<cmp-field-mapping name="employees">
<collection-mapping table="PROJECT_EMP">
<primkey-mapping>

Using a Foreign Key in a Composite Primary Key

6-44 Enterprise JavaBeans Developer’s Guide

<cmp-field-mapping name="ProjectBean_projectNo">
<entity-ref home="ProjectBean">
<cmp-field-mapping name="ProjectBean_projectNo"
persistence-name="PROJECT_NO" />
</entity-ref>
</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="hr.EmpLocal">
<cmp-field-mapping name="EmpBean_empNo">
<entity-ref home="EmpBean">
<cmp-field-mapping name="EmpBean_empNo"
persistence-name="EMPLOYEE_NO" />
</entity-ref>
</cmp-field-mapping>
</value-mapping>
</collection-mapping>
</cmp-field-mapping>

The following describes the fields in the orion-ejb-jar.xml file:

� The project bean defines a <cmr-field> element in the ejb-jar.xml file
defines a name for the relationship with employees as employees; the employees
<cmr-field> element defines a name for the relationship with projects as
projects.

� Both of the projects and employees <cmr-field> elements map to the
association table in the orion-ejb-jar.xml file. In this file, each of the
<cmp-field-mapping> elements for projects and employees contain a
<collection-mapping> element. This <collection-mapping> element
defines the association table name in the table attribute as PROJECT_EMP.

� The association has two foreign keys. In this example, the foreign keys are simple.
However, if the primary keys are composite, then these foreign keys would be
composite as well.

Both foreign keys in the EmpBean for the association table are defined as follows:

– The persistence-name attribute in the <primkey-mapping> element
defines the association table foreign key of the current entity bean, which is
EMPLOYEE_NO.

– The persistence-name attribute in the <value-mapping> element defines
the association table foreign key of the target bean, which is PROJECT_NO.

� The <value-mapping> element in EmpBean specifies the target entity bean.

– The type attribute of the <value-mapping> element defines the local
interface of the target bean that is returned to the source entity bean. This
example defines the local home interface of the phone bean as
hr.ProjectLocal.

– The <ejb-name> of the target entity bean is defined in the <entity-ref>
home attribute, which in this example is ProjectBean.

Using a Foreign Key in a Composite Primary Key
In the EJB specification, the primary key for an entity bean must be initialized within
the ejbCreate method; any relationship that this bean has to another bean cannot be
set in the ejbCreate method. The earliest that this relationship can be set in a foreign
key is in the ejbPostCreate method.

Using a Foreign Key in a Composite Primary Key

Entity Relationship Mapping 6-45

However, if you have a foreign key within a composite primary key, you have the
following problem:

� You must set all fields within the composite primary key in the ejbCreate
method.

� You cannot set the foreign key in the ejbCreate method.

This section uses the following example to describe the way around this problem:

An order for a company can contain one or more items. The order bean has many
items in it. Each item belongs to an order. The primary key for the item is a composite
primary key consisting of the item identifier and the order identifier. The order
identifier is a foreign key that points to the order.

You will have to modify the deployment descriptors and bean implementation to add
a placeholder CMP field that mimics the actual foreign key field. This field is set
during the ejbCreate method. However, both the placeholder CMP field and the
foreign key point to the same database column. The actual foreign key is updated
during the ejbPostCreate method.

The following example demonstrates how to modify both deployment descriptors and
the bean implementation.

Example 6–11 A Foreign Key That Exists in a Primary Key

Each order contains one or more items. Thus, two beans are created, where the
OrderBean represents the order and the OrderItemBean represents the items in the
order. Each item has a primary key that consists of the item number and the order
number to which it belongs. Thus, the primary key for the item contains a foreign key
that points to an order bean.

To adjust for a composite primary key, do the following in the ejb-jar.xml file:

1. Define a CMP field in the primary key as a placeholder for the foreign key. This
placeholder should be used in the composite primary key class definition.

In this example, an orderId CMP field is defined in a <cmp-field> element.
The orderId and itemId CMP fields are used to identify the composite primary
key in the OrderItemPK.java.

2. Define the foreign key outside of the primary key definition in its own
<cmr-field> element in the <relationships> section.

In this example, the belongToOrder foreign key is defined in a <cmr-field>
element for the OrderItemBean, defining the relationship from the item to the
order.

<entity>
<ejb-name>OrderItemBean</ejb-name>
<local-home>OrderItemLocalHome</local-home>
<local>OrderItemLocal</local>

Note: You modify the ejb-jar.xml file with the placeholder
CMP field and the foreign key. We recommend that you deploy the
application with autocreate-tables element in the
orion-application.xml file set to false to auto-generate the
orion-ejb-jar.xml file, without creating any tables. Then
modify the orion-ejb-jar.xml file to point to the correct
database columns, set autocreate-tables element to true, and
redeploy.

Using a Foreign Key in a Composite Primary Key

6-46 Enterprise JavaBeans Developer’s Guide

<ejb-class>OrderItemBean</ejb-class>
...
<cmp-field><field-name>itemId</field-name></cmp-field>
<cmp-field><field-name>orderId</field-name></cmp-field>
<cmp-field><field-name>price</field-name></cmp-field>
<prim-key-class>OrderItemPK</prim-key-class>
...
</entity>
<relationships>
<ejb-relation>
<ejb-relation-name>Order-OrderItem</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>Order-Has-OrderItems
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>OrderBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>items</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>OrderItems-form-Order
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>
<ejb-name>OrderItemBean</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>belongToOrder</cmr-field-name>
</cmr-field>
</ejb-relationship-role>
</ejb-relation>
</relationships>

The OrderItemPK.java class defines what is in the complex primary key, as follows:

public class OrderItemPK implements java.io.Serializable
{
 public Integer itemId;
 public Integer orderId;

 public OrderItemPK()
 {
 this.itemId = null;
 this.orderId = null;
 }

 public OrderItemPK(Integer itemId, Integer orderId)
 {
 this.itemId = itemId;
 this.orderId = orderId;
 }
}

public boolean equals(Object o)
 {
 if (o instanceof OrderItemPK) {

Using a Foreign Key in a Composite Primary Key

Entity Relationship Mapping 6-47

 OrderItemPK pk = (OrderItemPK) o;
 if (pk.itemId.intValue() == itemId.intValue() &&
 pk.orderId.intValue() == orderId.intValue())
 return true;
 }
 return false;
 }

 public int hashCode()
 {
 return itemId.hashCode() * orderId.hashCode();
 }
}

If the auto-created database tables are sufficient for you, you do not need to modify the
orion-ejb-jar.xml file. However, if you need to map to existing database tables,
then you modify the orion-ejb-jar.xml file to point to these tables.

After you allow the orion-ejb-jar.xml file to auto-generate, copy it into your
development directory. The database column names are defined in the
persistence-name attributes in each of the CMP and CMR field name mappings.
Ensure that the persistence-name attributes for both the placeholder CMP field
and foreign key are the same.

The following is the orion-ejb-jar.xml file for the order/order item example. In
the <entity-deployment> section for the OrderItemBean,

� The table is defined in the table attribute, which is ORDER_ITEM in this example.

� The column name for the itemId is defined in the persistence-name attribute
as Item_ID.

� The column name for the placeholder CMP field, orderId, is defined in the
persistence-name attribute as Order_ID.

� The foreign key, belongToOrder, is mapped to the database column, Order_ID,
which is the same column as the placeholder CMP field, orderId.

Both the foreign key, belongToOrder, and the placeholder CMP field, orderId,
must point to the same database column.

<entity-deployment name="OrderItemBean" table="ORDER_ITEM">
<primkey-mapping>
<cmp-field-mapping name="itemId" persistence-name="Item_ID" />
<cmp-field-mapping name="orderId" persistence-name="Order_ID" />
</primkey-mapping>
<cmp-field-mapping name="price" persistence-name="Price" />
<cmp-field-mapping name="belongToOrder">
<entity-ref home="OrderBean">
<cmp-field-mapping name="belongToOrder"
persistence-name="Order_ID" />
</entity-ref>
</cmp-field-mapping>
</entity-deployment>

<entity-deployment name="OrderBean" table="ORDER">
<primkey-mapping>
<cmp-field-mapping name="orderId" persistence-name="Order_ID" />
</primkey-mapping>
<cmp-field-mapping name="orderDesc"
persistence-name="Order_Description" />
<cmp-field-mapping name="items">

Using a Foreign Key in a Composite Primary Key

6-48 Enterprise JavaBeans Developer’s Guide

<collection-mapping table="ORDER_ITEM">
<primkey-mapping>
<cmp-field-mapping name="OrderBean_orderId">
<entity-ref home="OrderBean">
<cmp-field-mapping name="OrderBean_orderId"
persistence-name="Order_ID"/>
</entity-ref>
</cmp-field-mapping>
</primkey-mapping>
<value-mapping type="OrderItemLocal">
<cmp-field-mapping name="OrderItemBean_itemId">
<entity-ref home="OrderItemBean">
<cmp-field-mapping name="OrderItemBean_itemId">
<fields>
<cmp-field-mapping name="OrderItemBean_itemId"
persistence-name="Item_ID"/>
<cmp-field-mapping name="OrderItemBean_orderId"
persistence-name="Order_ID"/>
</fields>
</cmp-field-mapping>
</entity-ref>
</cmp-field-mapping>
</value-mapping>
</collection-mapping>
</cmp-field-mapping>
</entity-deployment>

Finally, you must update the bean implementation to work with both the placeholder
CMP field and the foreign key.

1. In the ejbCreate method, do the following:

a. Create the placeholder CMP field that takes the place of the foreign key field.

b. Set a value in the placeholder CMP field in the ejbCreate method. This
value is written out to the foreign key field in the database table.

2. In the ejbPostCreate method, set the foreign key to the value in the duplicate
CMP field.

In our example, the CMP field, orderId, is set in the ejbCreate method and the
relationship field, belongToOrder, is set in the ejbPostCreate method.

public OrderItemPK ejbCreate(OrderItem orderItem) throws CreateException
{
setItemId(orderItem.getItemId());
setOrderId(orderItem.getOrderId());
setPrice(orderItem.getPrice());
return new OrderItemPK(orderItem.getItemId(),orderItem.getOrderId()) ;
}

public void ejbPostCreate(OrderItem orderItem) throws CreateException
{
// when just after bean created
try {
Context ctx = new InitialContext();
OrderLocalHome orderHome =

Note: Since the foreign key is part of a primary key, it can only be
set once.

Using a Foreign Key in a Composite Primary Key

Entity Relationship Mapping 6-49

(OrderLocalHome)ctx.lookup("java:comp/env/OrderBean");
OrderLocal order = orderHome.findByPrimaryKey(orderItem.getOrderId());

setBelongToOrder(order);
}
catch(Exception e) {
e.printStackTrace();
throw new EJBException(e);
}
}

The OrderItem object that is passed into the ejbCreate and ejbPostCreate
methods is as follows:

public class OrderItem implements java.io.Serializable
{

 private Integer itemId;
 private Integer orderId;
 private Double price;

 public OrderItem(Integer itemId, Integer orderId, Double price)
 {
 this.itemId = itemId;
 this.orderId = orderId;
 this.price = price;
 }

 public Integer getItemId() {
 return itemId;
 }

 public void setItemId(Integer itemId) {
 this.itemId = itemId;
 }

 public Integer getOrderId() {
 return orderId;
 }

 public void setOrderId(Integer orderId) {
 this.orderId = orderId;
 }

 public Double getPrice() {
 return price;
 }
 public void setPrice(Double price) {
 this.price = price;
 }

 public boolean equals(Object other)
 {
 if(other instanceof OrderItem) {
 OrderItem orderItem = (OrderItem)other;
 if (itemId.equals(orderItem.getItemId()) &&
 orderId.equals(orderItem.getOrderId()) &&
 price.equals(orderItem.getPrice())) {
 return true;
 }
 }

How to Override a Foreign Key Database Constraint

6-50 Enterprise JavaBeans Developer’s Guide

 return false;
 }
}

How to Override a Foreign Key Database Constraint
If you have defined your database columns with a constraint, such as NOT NULL, you
may encounter an error after the ejbCreate method. An INSERT is performed after
the ejbCreate method; thus, if any field in the database row was left null, the
constraint raises a database table constraint violation. This occurs mostly with foreign
keys as they cannot be assigned until the ejbPostCreate method. In order to avoid
this problem, you must relax the constraint on the field in question.

You can relax the database constraints by redefining the offending column to
DEFERRABLE. If you relax the constraint, you will have time to set the database field
before the transaction commits and avoid the database constraint violation.

The following shows how to create a deferrable constraint for the TEST table:

create table test (test varchar2(10) not null INITIALLY DEFERRED DEFERRABLE)

Performing Inner or Outer Joins on One-to-One Relationships
The Oracle database allows you to perform SQL using an inner or outer join. Using a
join is more efficient. These are described in the database manuals. However, the
definitions from these manuals are as follows:

� Inner join: An inner join (sometimes called a "simple join") is a join of two or more
tables that returns only those rows that satisfy the join condition.

� An outer join extends the result of a simple join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table
for which no rows from the other satisfy the join condition.

For more information on inner and outer joins, see the Oracle database manuals.

Inside OC4J, if you have specified a one-to-one relationship between two entity beans,
you automatically receive an outer join when retrieving data involving this
relationship. Previously, OC4J would issue two SQL queries for each side of the
relationship. Using the join improves performance by only issuing a single query.

You can change to using an inner join by modifying the one-to-one-join attribute on
the relationship field to inner, as follows:

<cmr-field-mapping name="inventory" one-to-one-join="inner">
When the one-to-one mapping is unidirectional, place the one-to-one-join attribute on
the origination of the relationship. When the relationship is bi-directional, specify the
one-to-one-join attribute on both sides of the relationship.

Batching SQL statements in your entity beans
To speed up the performance of your entity bean, you can configure two options for
batching SQL statements, as follows:

� Batch SELECT statements: If you have more than one SELECT statement to
execute, you can specify the number of rows to retrieve at a time with the
prefetch-size attribute in the <finder-method> element. This attribute is
documented fully in the 9.0.4. EJB documentation.

Synchronizing Data during Bean Creation

Entity Relationship Mapping 6-51

� Batch UPDATE statements: If you have several updates in a row (in
executeUpdate), you can configure how many of these to batch together to go out
to the database in one round trip in the batch-size attribute of the
entity-deployment element. The default is no batching (size is 1).

� To learn more about batching update statements, see the JDBC documentation for
the Oracle 10g database.

There is one exception to the batching size. If the code executes a SELECT statement
within several UPDATE statements, the updates will be executed against the database
before executing the select. This is done so that all updates are performed before you
retrieve any data. If you know that it does not matter for this select to be performed,
then you can stop the automatic flushing by specifying delay-updates-until-commit
for the bean.

How to map a CMP field and a CMR field to the same row in the database
When you define a relationship between beans, you define a CMP field and then you
map a relationship to the bean. Both the CMP field and the relationship eventually
map to the same row in the database. For instance, in the employee bean, a
department ID is specified as a CMP field. When you define the CMR relationship
between the employee and the department bean, the employee/department
relationship is mapped through a CMR defined variable (dept) that is mapped to the
employee bean's department ID. Since both fields map to the same row in the
database, you must specify that one of these fields cannot be changed through the
shared attribute. The shared attribute makes the particular CMP or CMR field
read-only. Thus, to define that the CMP field, deptID, cannot be modified, do the
following:

<cmp-field-mapping name="deptID" shared=true" persistence-name="deptID" />

Defining the above in the employee entity bean states that the deptID field is "shared"
and that you cannot modify the deptID to be another value through the setDeptID
method. Instead, if you needed to modify the relationship, you would have to modify
the relationship through the CMR relationship variable, dept, with the setDept
method, pointing the employee entity bean to another bean (and thus, another row in
the database).

In the case of complex primary keys, if you have a CMR field as part of the
relationship, you can define it as shared, and then it takes on the same attribute as a
primary key in that no one can modify it after it is initially set.

Synchronizing Data during Bean Creation
In 9.0.4.1, data is now automatically synchronized after the ejbPostCreate method.
Previously, data was synchronized with an INSERT after the ejbCreate method. Then,
if you added a CMR relationship in the ejbPostCreate method, an UPDATE was
performed after the ejbPostCreate method. This resulted in two SQL statements. For
performance reasons, the default is now to have a single SQL INSERT statement after
the ejbPostCreate. If, however, you wish to have the old way of data synchronization,
you can set the data-synchronization-option attribute, as follows:

Note: You cannot mark a Container-Managed Persistence (CMP)
entity bean as read-only if it has a Container-Managed Relationships
(CMR) relationship to another entity bean that is not read-only.

Synchronizing Data during Bean Creation

6-52 Enterprise JavaBeans Developer’s Guide

data-synchronization-option="ejbCreate"
The default setting is as follows:

data-synchronization-option="ejbPostCreate"
If you have a foreign key as part of your primary key, you must set the
data-synchronization-option to "ejbPostCreate" (or accept the default setting), as the
foreign key has a non-null constraint. Since the primary key is set in the ejbCreate
method and the foreign keys are initialized in the ejbPostCreate, all aspects of the
primary key, including the foreign key, are initialized at the same time after the
ejbPostCreate.

EJB Query Language 7-1

7
EJB Query Language

In EJB 2.0, you can specify query methods using the standardized query language, EJB
Query Language (EJB QL).

Chapter 11 of the EJB 2.0 specification and various off-the-shelf books document EJB
QL extensively. This chapter briefly overviews the development rules for these
methods, but does not describe the EJB QL syntax in detail.

Refer to the EJB 2.0 specification and the following books for detailed syntax:

� Enterprise JavaBeans, 3rd Edition by Richard Monson-Haefel, O'Reilly Publishers

� Special Edition Using Enterprise JavaBeans 2.0 by Chuck Cavaness and Brian Keeton,
Que Publishers

This chapter covers the following subjects:

� EJB QL Overview

� Query Methods Overview

� Deployment Descriptor Semantics

� Finder Method Example

� Select Method Example

� Oracle EJB QL Type Extensions: Date, Time, Timestamp, and SQRT

EJB QL Overview

7-2 Enterprise JavaBeans Developer’s Guide

EJB QL Overview
EJB QL is a query language that is similar to SQL. In fact, your knowledge of SQL is
beneficial in using EJB QL. SQL applies queries against tables, using column names.
EJB QL applies queries against entity beans, using the abstract schema name and the
CMP and CMR fields of the bean within the query. The EJB QL statement retains the
object terminology.

The container translates the EJB QL statement to the appropriate database SQL
statement when the application is deployed. Thus, the container is responsible for
converting the entity bean name, CMP field names, and CMR field names to the
appropriate database tables and column names. EJB QL is portable to all databases
supported by your container.

Query Methods Overview
Query methods can be finder or select methods:

� Finder Methods: Use finder methods to retrieve entity bean references.

� Select Methods: Select methods are for internal use for the entity bean only. Use
them to retrieve either entity bean references or CMP values.

Both query method types must throw the FinderException.

Finder Methods
Finder methods are used to retrieve entity bean references. The findByPrimaryKey
finder method is always defined in both home interfaces (local and remote) to retrieve
the entity reference for this bean using a primary key. You can define other finder
methods in either or both the home interfaces to retrieve one or several entity bean
references.

Do the following to define finder methods:

1. Define the find<name> method in the desired home interface. You can specify
different finder methods in the remote or the local home interface. If you define
the same finder method in both home interfaces, it maps to the same bean class
definition. The container returns the appropriate home interface type.

2. Define the full query or just the conditional statement (the WHERE clause) for the
finder method in the deployment descriptor.

You can define the query using either EJB QL syntax or OC4J-specific syntax. You
can specify either a full query or only the conditional part of the query (the WHERE
clause).

� EJB QL syntax is defined within the ejb-jar.xml file. The syntax is defined
by Sun Microsystems in Chapter 11 of the EJB 2.0 specification. An EJB QL
statement is created for each finder method in its own <query> element. The
container uses this statement to translate the condition on how to retrieve the
entity bean references into the relevant SQL statements.

Currently, EJB QL has limited support for GROUP BY and ORDER BY functions,
such as AVERAGE and SUM.

See "Specifying Finder Methods With EJB QL Syntax" on page 7-5 for more
information.

� OC4J-specific syntax is defined within the orion-ejb-jar.xml file. When
you deploy your application, OC4J translates the EJB QL syntax into the

Query Methods Overview

EJB Query Language 7-3

OC4J-specific syntax, which is specified in the query attribute of the
<finder-method> element. You can modify the statement in the query
attribute for a more complex query using the OC4J syntax. The OC4J-specific
query statement in the orion-ejb-jar.xml file takes precedence over its
EJB QL statement in the ejb-jar.xml file.

See "Specifying Finder Methods With OC4J-Specific Syntax" on page 7-7 for
more information.

If you retrieve only a single entity bean reference, the container returns the same type
as returned in the find<name> method. If you request multiple entity bean
references, you must define the return type of the find<name> method to return a
Collection. If you want to ensure that no duplicates are returned, specify the
DISTINCT keyword in the EJB QL statement. An empty Collection is returned if no
matches are found.

See the "Finder Method Example" on page 7-5 for more information on both types of
finder methods.

Select Methods
Select methods are used primarily to return values for CMP or CMR fields. All values
are returned in their own object type; any primitive types are wrapped in objects that
have similar functions (for example, a primitive int type is wrapped in an Integer
object). See section 10.5.7 of the EJB 2.0 specification for more information on select
methods.

These methods are for internal use within the bean. These methods cannot be called
from a client. Thus, you do not define them in the home interfaces. Select methods are
used to retrieve entity bean references or the value of a CMP field.

Do the following to define select methods:

1. Define an ejbSelect<name> method in the bean class for each select method.
Each method is defined as public abstract. The SQL that is necessary for this
method is not included in the implementation.

2. Define the full query or just the conditional statement (the WHERE clause) for the
select method in the deployment descriptor. An EJB QL statement is created for
each select method in its own <query> element. The container uses this statement
to translate the condition into the relevant SQL statements.

See the "Select Method Example" on page 7-9 for more information on both types of
finder methods.

Return Objects
Here are the rules for defining return types for the select method:

� No objects: If no objects are found, a FinderException is raised.

� Single object: If you retrieve only a single item, the container returns the same type
as returned in the ejbSelect<name> method. If multiple objects are returned, a
FinderException is raised.

� Multiple objects: If you request multiple items, you must define the return type of
the ejbSelect<name> method as either a Set or Collection. A Set
eliminates duplicates. A Collection may include duplicates. For example, if you
want to retrieve all zip codes of all customers, use a Set to eliminate duplicates.
To retrieve all customer names, use a Collection to retrieve the full list. An
empty Collection or Set is returned if no matches are found.

Deployment Descriptor Semantics

7-4 Enterprise JavaBeans Developer’s Guide

– Bean interface: If you return the bean interface, the default interface type
returned within the Set or Collection is the local bean interface. You can
change this to the remote bean interface in the <result-type-mapping>
element, as follows:

<result-type-mapping>Remote</result-type-mapping>

– CMP values: If you return a Set or Collection of CMP values, the container
determines the object type from the EJB QL select statement.

Deployment Descriptor Semantics
The structure required for defining both types of query methods is the same in the
deployment descriptor.

1. You must define the <abstract-schema-name> element in the <entity>
element for each entity bean referred to in the EJB QL statement. This element
defines the name that identifies the entity bean in the EJB QL statement. Thus, if
you define your <abstract-schema-name> as Employee, then the EJB QL uses
Employee in its EJB QL to refer to the EmpBean entity bean.

2. Define the <query> element for each query method (finder and select), except for
the findByPrimaryKey finder method.

The <query> element has two main elements:

– The <method-name> element identifies the finder or select method. The
finder method is the same name as defined in the component home interfaces.
The select method is the same name as defined in the bean class.

– The <ejb-ql> element contains the EJB QL statement for this method.

Example 7–1 Employee FindAll Deployment Descriptor Definition

The following example shows the EmpBean entity bean definition.

� The <entity> element defines its <abstract-schema-name> as Employee.

� Two <query> elements define finder methods, findAll and findByEmpNo, in
which the EJB QL statement refers to the Employee name.

<entity>
 <display-name>EmpBean</display-name>
 <ejb-name>EmpBean</ejb-name>
 ...
 <abstract-schema-name>Employee</abstract-schema-name>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 <prim-key-class>java.lang.Integer</prim-key-class>
 ...
 <query>
 <description></description>

Note: If you want to use the OC4J-specific syntax, you still start
with configuring the EJB QL <query> element. Then, after
deployment, you modify the query in the orion-ejb-jar.xml
file to be the statement that you want.

Finder Method Example

EJB Query Language 7-5

 <query-method>
 <method-name>findAll</method-name>
 <method-params />
 </query-method>
 <ejb-ql>Select OBJECT(e) From Employee e</ejb-ql>
 </query>
<query>
 <description></description>
 <query-method>
 <method-name>findByEmpNo</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </query-method>
 <ejb-ql>SELECT OBJECT(e) FROM Employee e WHERE e.empNo = ?1
 </ejb-ql>
</query>
...
</entity>

The EJB QL statement for the findAll method is simple. It selects objects, identified
by the variable e, from the Employee entity beans. Thus, it selects all Employee
entity bean objects. The EJB QL statement for the findByEmpNo method selects all
objects where the employee name is equal to the first input parameter to the method.
After deployment, OC4J translates the EJB QL statements into <finder-method>
elements in the orion-ejb-jar.xml file, as follows:

<finder-method query=""> /*the empty where clause finds all employees*/
<finder-method query="$empname = $1"> /*this finds all records where

employee is equal to the first input parameter.*/

See "Finder Method Example" on page 7-5 for more information and examples.

Finder Method Example
To define finder methods in a CMP entity bean, do the following:

1. Define the finder method in one or both of the home interfaces.

2. Define the finder method definition in the deployment descriptor.

The following sections demonstrate how to create finder methods using either the EJB
QL syntax or the OC4J-specific syntax:

� Specifying Finder Methods With EJB QL Syntax

� Specifying Finder Methods With OC4J-Specific Syntax

Specifying Finder Methods With EJB QL Syntax
There are two steps for creating a finder method:

1. Define the Finder Method in the Home Interface

2. Define the Finder Method Definition in the Deployment Descriptor

Define the Finder Method in the Home Interface
You must add the finder method to the home interface. For example, if you want to
retrieve all employees, define the findAll method in the home interface (local home
interface for this example), as follows:

Finder Method Example

7-6 Enterprise JavaBeans Developer’s Guide

public Collection findAll() throws FinderException;

To retrieve data for a single employee, define the findByEmpNo in the home interface,
as follows:

public EmployeeLocal findByEmpNo(Integer empNo) throws FinderException;

The returned bean interface is the local interface, EmployeeLocal. The input
parameter is an employee number, empNo, which is substituted in the EJB QL ?1
parameter.

Define the Finder Method Definition in the Deployment Descriptor
Each finder method is defined in the deployment descriptor in a <query> element.
Example 7–1 contains the EJB QL statement for the findAll method. The following
example shows the deployment descriptor for the findByEmpNo method:

<query>
 <description></description>
 <query-method>
 <method-name>findByEmpNo</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </query-method>
 <ejb-ql>SELECT OBJECT(e) FROM Employee e WHERE e.empNo = ?1
 </ejb-ql>
</query>

The EJB QL statement for the findByEmpName method selects the Employee object
where the employee number is substituted in the EJB QL ?1 parameter. The ? symbol
denotes a place holder for the method parameters. Thus, the findByEmpNo is
required to supply at least one parameter. The empNo passed in on the findByEmpNo
method is substituted in the ?1 position here. The variable, e, identifies the Employee
object in the WHERE condition.

Relationship Finder Example
For the EJB QL statement that involves a relationship between entity beans, both entity
beans are referenced within the EJB QL statement. The following example shows the
findByDeptNo method. This finder method is defined within the employee bean,
which references the department entity bean. This method retrieves all employees that
belong to a department.

<query>
 <description></description>
 <query-method>
 <method-name>findByDeptNo</method-name>
 <method-params>
 <method-param>java.lang.Integer</method-param>
 </method-params>
 </query-method>
 <ejb-ql>SELECT OBJECT(e) From Employee e, IN (e.dept)
 AS d WHERE d.deptNo = ?1
 </ejb-ql>
</query>

The <abstract-schema-name> element for the employee bean is Employee. The
employee bean defines a relationship with the department bean through a CMR field,
called dept. Thus, the department bean is referenced in the EJB QL through the dept

Finder Method Example

EJB Query Language 7-7

CMR field. The department primary key is deptNo. The department number that the
query is executed with is given in the input parameter and substituted in ?1.

Specifying Finder Methods With OC4J-Specific Syntax
There are two steps for creating a finder method:

1. Add the Finder Method to Home Interface

2. Add the Query to the OC4J-Specific Deployment Descriptor

Add the Finder Method to Home Interface
You must first add the finder method to the home interface. For example, with the
employee entity bean, if we wanted to retrieve all employees, the findAll method
would be defined within the home interface, as follows:

public Collection findAll() throws FinderException, RemoteException;

Add the Query to the OC4J-Specific Deployment Descriptor
After specifying the finder method in the home interface, modify the
orion-ejb-jar.xml file with the finder method query.

The <finder-method> element defines all finder methods—excluding the
findByPrimaryKey method. The simplest finder method to define is the
findByAll method. The query attribute in the <finder-method> element can
specify a full query or just the WHERE clause for the query. If you want all rows
retrieved, then an empty query (query="") returns all records.

OC4J-specific finder methods are configured in the orion-ejb-jar.xml file in a
<finder-method> element. Each <finder-method> element specifies a partial or
full SQL statement in its query attribute, as follows:

<finder-method query=""> /*the empty where clause finds all */
OR
<finder-method query="$empname = $1"> /*this finds all records where

employee is equal to the first input parameter.*/

If you have a <finder-method> with a query attribute, it takes precedence over any
EJB QL modifications to the same method in the ejb-jar.xml file.

To define a complex finder method, do the following:

1. Define a simple query that is similar using EJB QL in the ejb-jar.xml file.

2. Deploy the application. When you deploy, OC4J translates the EJB QL statement to
the OC4J-specific equivalent. The full SQL statement that will be executed is
displayed in a comment.

3. Modify the query attribute of the <finder-method> in the
orion-ejb-jar.xml file to have the exact complexity you desire. When you
redeploy, OC4J translates the new query and will write out a new comment with
the exact SQL statement that will be executed. Check the comment to verify that
you have the right syntax.

If you want to use the EJB QL syntax and you have an existing definition in
orion-ejb-jar.xml file, then do the following:

1. Erase the query attribute of the <finder-method> in the orion-ejb-jar.xml
file.

Finder Method Example

7-8 Enterprise JavaBeans Developer’s Guide

2. Redeploy the application. OC4J notes that the query attribute is not present and
uses the EJB QL methodology from the ejb-jar.xml file instead.

Example 7–2 OC4J-Specific Finder Syntax

The following example retrieves all records from the EmployeeBean. The method
name is findAll, and it requires no parameters because it returns a Collection of
all employees.

<finder-method query="">
<!-- Generated SQL: "select EmployeeBean.empNo, EmployeeBean.empName,
 EmployeeBean.salary from EmployeeBean" -->
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findAll</method-name>
 <method-params></method-params>
 </method>
</finder-method>

After deployment, OC4J will add the commented line of what query will be. Use the
comment to verify that it is the type of query that you expect.

To be more specific, modify the query attribute with the appropriate WHERE clause.
This clause refers to passed in parameters using the '$' symbol: the first parameter is
denoted by $1, the second by $2. All <cmp-field> elements that are used within the
WHERE clause are denoted by $<cmp-field> name.

The following example specifies a findByName method (which should be defined in
the home interface) where the name of the employee is given as in the method
parameter, which is substituted for the $1. It is matched to the CMP name, "empName".
Thus, our query attribute is modified to contain the following for the WHERE clause:
"$empname=$1".

<finder-method query="$empname = $1">
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</finder-method>

If you have more than one method parameter, each parameter type is defined in
successive <method-param> elements and referred to in the query statement by
successive $n, where n represents the number.

If you wanted to specify a full query and not just the section after the WHERE clause,
specify the partial attribute to FALSE and then define the full query in the query
attribute. The default value for partial is true, which is why it is not specified on the
previous finder-method example.

<finder-method partial="false"
 query="select * from EMP where $empName = $1">
 <!-- Generated SQL: "select * from EMP where EMP.ENAME = ?" -->
 <method>
 <ejb-name>EmployeeBean</ejb-name>

Note: You can also specify a SQL JOIN in the query attribute.

Select Method Example

EJB Query Language 7-9

 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</finder-method>

Specifying the full SQL query is useful for complex SQL statements.

For entity bean finder methods, lazy loading can cause the select method to be
invoked more than once. By default, lazy loading is turned off. If you are retrieving
large numbers of objects, and you are accessing only a few of them, you should turn
on lazy loading.

To turn on lazy loading, set the lazy-loading property to true.

<finder-method partial="false"
 query="select * from EMP where $empName = $1"
 lazy-loading=true>
 <!-- Generated SQL: "select * from EMP where EMP.ENAME = ?" -->
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</finder-method>

Additionally, you can state how many rows the JDBC driver fetches at a time by
setting the prefetch-size attribute, as follows:

<finder-method partial="false"
 query="select * from EMP where $empName = $1"
 prefetch-size="15" >
 <!-- Generated SQL: "select * from EMP where EMP.ENAME = ?" -->
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</finder-method>

Oracle JDBC drivers include extensions that allow you to set the number of rows to
prefetch into the client while a result set is being populated during a query. This
reduces round trips to the database by fetching multiple rows of data each time data is
fetched—the extra data is stored in client-side buffers for later access by the client. The
number of rows to prefetch can be set as desired. The default number of rows to
prefetch to the client is 10. The number set here is passed along to the JDBC driver. See
the Oracle9i JDBC Developer’s Guide and Reference for more information on using
prefetch with a JDBC driver.

Select Method Example
To define select methods in a CMP entity bean, do the following:

1. Define the select method in the bean class as ejbSelect<name>.

2. Define the select method definition in the deployment descriptor.

Select Method Example

7-10 Enterprise JavaBeans Developer’s Guide

Define the Select Method in the Bean Class
Add the select method in the bean class as an abstract method. For example, if you
want to retrieve all employees whose salary falls within a range, define the
ejbSelectBySalaryRange method, as follows:

public abstract Collection ejbSelectBySalaryRange(Float s1, Float s2)
throws FinderException;

Because the select method retrieves multiple employees, a Collection is returned.
The low and high end of the salary range are input parameters, which are substituted
in the EJB QL ?1 and ?2 parameters. The first input parameter is returned in ?1; the
second input parameter is returned in ?2. The order of the all declared method
parameters is the same as the order of the ?1, ?2, ... ?n EJB QL parameters.

Define the Select Method Definition in the Deployment Descriptor
Each select method is defined in the deployment descriptor in a <query> element.
The following example shows the deployment descriptor for both the
ejbSelectBySalaryRange and ejbSelectNameBySalaryRange methods:

<query>
 <description></description>
 <query-method>
 <method-name>ejbSelectBySalaryRange</method-name>
 <method-params>
 <method-param>java.lang.Float</method-param>
 <method-param>java.lang.Float</method-param>
 </method-params>
 </query-method>
 <ejb-ql>SELECT DISTINCT OBJECT(e) From Employee e
 WHERE e.salary BETWEEN ?1 AND ?2
 </ejb-ql>
</query>
<query>
 <description></description>
 <query-method>
 <method-name>ejbSelectNameBySalaryRange</method-name>
 <method-params>
 <method-param>java.lang.Float</method-param>
 <method-param>java.lang.Float</method-param>
 </method-params>
 </query-method>
 <ejb-ql>SELECT e.empName From Employee e
 WHERE e.salary BETWEEN ?1 AND ?2
 </ejb-ql>
</query>

Both of these methods provide two input parameters of type float. The types of these
expected input parameters are defined in the <method-param> elements.

The EJB QL is defined in the <ejb-ql> element. Both methods evaluate the CMP field
of salary within the EJB QL statement by the e.salary. The e represents the

Note: You cannot modify the query statement for an ejbSelect
method in the orion-ejb-jar.xml file, as you can for finder
methods.

Oracle EJB QL Type Extensions: Date, Time, Timestamp, and SQRT

EJB Query Language 7-11

Employee objects; the salary represents the CMP field within that object. Separating
it with a period shows the relationship between the entity bean and its CMP field.

The two input parameters designate the low and high salary ranges and are
substituted in the ?1 and ?2 positions respectively.

The ejbSelectBySalaryRange method returns objects, where the DISTINCT
keyword ensures that no duplicate records are returned. The
ejbSelectNameBySalaryRange returns only the names of the employees, which is
a String. This demonstrates one of the advantages of using select statements, in that
you can return only the values of CMP fields within your objects.

Oracle EJB QL Type Extensions: Date, Time, Timestamp, and SQRT
Even though the current version of the EJB specification does not support Date, Time,
Timestamp, and SQRT, we have added support for these types, as follows:

� SQRT(v) : Both the double primitive type and the java.lang.Double types are
supported for arguments.

� java.util.Date, java.sql.Date, java.sql.Time. and
java.sql.Timestamp are allowed in an EJB QL binary expression, such as
equality expressions.

The following show examples of how to use these EJB QL type extensions:

Example 7–3 Using SQRT

<query>
 <query-method>
 <method-name>ejbSelectDoubleTypeSqrt</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptDoubleType = SQRT(?1)
 </ejb-ql>
</query>

Example 7–4 Date Example

<query>
 <query-method>
 <method-name>ejbSelectDate</method-name>
 <method-params>
 <method-param>java.util.Date</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptDate = ?1
 </ejb-ql>
</query>

Example 7–5 Another Date Example

<query>
 <query-method>
 <method-name>ejbSelectSqlDate</method-name>

Oracle EJB QL Type Extensions: Date, Time, Timestamp, and SQRT

7-12 Enterprise JavaBeans Developer’s Guide

 <method-params>
 <method-param>java.sql.Date</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptSqlDate = ?1
 </ejb-ql>
</query>

Example 7–6 Timestamp Example

<query>
 <query-method>
 <method-name>findByTimestamp</method-name>
 <method-params>
 <method-param>java.sql.Timestamp</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptTimestamp = ?1
 </ejb-ql>
</query>

Example 7–7 Time Example

<query>
 <query-method>
 <method-name>findByTimestamp</method-name>
 <method-params>
 <method-param>java.sql.Time</method-param>
 </method-params>
 </query-method>
 <result-type-mapping>Remote</result-type-mapping>
 <ejb-ql>
 SELECT OBJECT(a) FROM Dept a WHERE a.deptTime = ?1
 </ejb-ql>
</query>

BMP Entity Beans 8-1

8
BMP Entity Beans

If you want to implement the manual storing and reloading of data, then use a
bean-managed persistent (BMP) bean. The container manages the data within callback
methods, which you must implement. All the logic for storing data to your persistent
storage is included in the ejbStore method, and reloaded from your storage in the
ejbLoad method. The container invokes these methods when necessary.

This chapter demonstrates simple BMP EJB development with a basic configuration
and deployment. Download the BMP entity bean example from the OC4J sample code
page at http://www.oracle.com/technology/tech/java/oc4j/demos/ on
the OTN Web site.

The following sections discuss how to implement data persistence:

� Creating BMP Entity Beans

� Component and Home Interfaces

� BMP Entity Bean Implementation

� Create Database Table and Columns for Entity Data

Creating BMP Entity Beans

8-2 Enterprise JavaBeans Developer’s Guide

Creating BMP Entity Beans
Chapter 3, "Implementing Session Beans" shows how to develop a stateless session
bean. Chapter 5, "CMP Entity Beans" describes the extra steps necessary for
implementing a CMP entity bean. In a CMP bean, the primary key and all functions
for persistence are performed by the container; in a BMP bean, you must implement
the primary key and all functions to save the persistence of your bean. The primary
key is managed in the ejbCreate method. The persistence is managed within the
following functions:

� Persistent saving of the data within the ejbStore method.

� Restoring the persistent data to the bean within your implementation of the
ejbLoad method.

� Passivation of the bean instance within the ejbPassivate method.

� Activation of the passivated bean instance within the ejbActivate method.

The following is a summary of the steps mentioned in Chapter 5, "CMP Entity Beans"
that you must do when creating your bean. See Chapter 3, "Implementing Session
Beans" and Chapter 5, "CMP Entity Beans" for further details. The rest of this chapter
covers how you implement the primary key and the persistence functions.

1. Create the component interfaces for the bean. The component interfaces declare
the methods that a client can invoke.

2. Create the home interfaces for the bean. The home interface defines the create
and finder methods, including findByPrimaryKey, for your bean.

3. Define the primary key for the bean. The primary key identifies each entity bean
instance and is a serializable class. You can use a simple data type class, such as
java.lang.String, or define a complex class, such as one with two or more
objects as components of the primary key.

4. Implement the bean.

5. If the persistent data is saved to or restored from a database, you must ensure that
the correct tables exist for the bean.

6. Create the bean deployment descriptor. The deployment descriptor specifies
properties for the bean through XML elements.

7. Create an EJB JAR file containing the bean, component interface, home interface,
and the deployment descriptors. Once created, configure the application.xml
file, create an EAR file, and deploy the EJB to OC4J.

Component and Home Interfaces
The BMP entity bean definition of the component and home interfaces is identical to
the CMP entity bean. For examples of how the component and home interfaces are
implemented, see "Creating Entity Beans" on page 4-2.

Note: This book does not cover EJB container services. See the
JTA, Data Source, and JNDI chapters in the Oracle Application Server
Containers for J2EE Services Guide for more information. Since
transactions are not covered in this chapter, the example BMP bean
uses container-managed transactions.

For security, see the Oracle Application Server Containers for J2EE
Security Guide.

BMP Entity Bean Implementation

BMP Entity Beans 8-3

BMP Entity Bean Implementation
Because the container is not managing the primary key or the saving of the persistent
data, the bean callback functions must include the implementation logic for these
functions. The container invokes the ejbCreate, ejbFindByPrimaryKey, other
finder methods, ejbStore, and ejbLoad methods when appropriate.

The following sections talk about how you add the implementation for managing your
BMP bean:

� The ejbCreate Implementation

� The ejbFindByPrimaryKey Implementation

� Other Finder Methods

� The ejbStore Implementation

� The ejbLoad Implementation

� The ejbPassivate Implementation

� The ejbActivate Implementation

� The ejbRemove Implementation

The ejbCreate Implementation
The ejbCreate method is responsible primarily for the creation of the primary key.
This includes the following:

1. Creating the primary key.

2. Creating the persistent data representation for the key.

3. Initializing the key to a unique value and ensuring no duplication.

4. Returning this key to the container.

The container maps the key to the entity bean reference.

The following example shows the ejbCreate method for the employee example,
which initializes the primary key, empNo. It should automatically generate a primary
key that is the next available number in the employee number sequence. However, for
this example to be simple, the ejbCreate method requires that the user provide the
unique employee number.

In addition, because the full data for the employee is provided within this method, the
data is saved within the context variables of this instance. After initialization, it returns
this key to the container.

// The create methods takes care of generating a new empNo and returns
// its primary key to the container
public Integer ejbCreate (Integer empNo, String empName, Float salary)

throws CreateException
{

Note: All Try blocks within the samples have been removed in
this discussion. However, the entire BMP entity bean example,
including the Try blocks, is available on OTN from the OC4J sample
code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

BMP Entity Bean Implementation

8-4 Enterprise JavaBeans Developer’s Guide

 /* in this implementation, the client gives the employee number, so
 only need to assign it, not create it. */
 this.empNo = empNo;
 this.empName = empName;
 this.salary = salary;

 /* insert employee into database */
 conn = getConnection(dsName);
 ps = conn.prepareStatement("INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)

VALUES ("+this.empNo.intValue()+", "+this.empName+","
+this.salary.floatValue()+")");

 ps.executeUpdate();
 ps.close();

 /* return the new primary key.*/
 return (empNo);
}

The deployment descriptor defines only the primary key class in the
<prim-key-class> element. Because the bean is saving the data, there is no
definition of persistence data in the deployment descriptor. Note that the deployment
descriptor does define the database the bean uses in the <resource-ref> element.
For more information on database configuration, see "Modify XML Deployment
Descriptors" on page 8-9.

<enterprise-beans>
 <entity>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.EmployeeHome</local-home>
 <local>employee.Employee</local>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 </entity>
</enterprise-beans>

Alternatively, you can create a complex primary key based on several data types. You
define a complex primary key within its own class, as follows:

package employee;

public class EmployeePK implements java.io.Serializable
{
 public Integer empNo;
 public String empName;
 public Float salary;

 public EmployeePK(Integer empNo)
 {
 this.empNo = empNo;
 this.empName = null;
 this.salary = null;
 }

BMP Entity Bean Implementation

BMP Entity Beans 8-5

 public EmployeePK(Integer empNo, String empName, Float salary)
 {
 this.empNo = empNo;
 this.empName = empName;
 this.salary = salary;
 }

}

For a primary key class, you define the class in the <prim-key-class> element,
which is the same for the simple primary key definition.

<enterprise-beans>
 <entity>
 <display-name>EmployeeBean</display-name>
 <ejb-name>EmployeeBean</ejb-name>
 <local-home>employee.EmployeeHome</local-home>
 <local>employee.Employee</local>
 <ejb-class>employee.EmployeeBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>employee.EmployeePK</prim-key-class>
 <reentrant>False</reentrant>
 <resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
 </entity>
</enterprise-beans>

The employee example requires that the employee number is given to the bean by the
user. Another method would be to generate the employee number by computing the
next available employee number, and use this in combination with the employee’s
name and office location.

After defining the complex primary key class, you would create your primary key
within the ejbCreate method, as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
 throws CreateException
{
 pk = new EmployeePK(empNo, empName, salary);
 ...
}

The other task that the ejbCreate (or ejbPostCreate) should handle is allocating
any resources necessary for the life of the bean. For this example, because we already
have the information for the employee, the ejbCreate performs the following:

1. Retrieves a connection to the database. This connection remains open for the life of
the bean. It is used to update employee information within the database. It should
be released in ejbPassivate and ejbRemove, and reallocated in ejbActivate.

2. Updates the database with the employee information.

This is executed, as follows:

public EmployeePK ejbCreate(Integer empNo, String empName, Float salary)
 throws CreateException
{
 pk = new EmployeePK(empNo, empName, salary);

BMP Entity Bean Implementation

8-6 Enterprise JavaBeans Developer’s Guide

 conn = getConnection(dsName);
 ps = conn.prepareStatement("INSERT INTO EMPLOYEEBEAN (EmpNo, EmpName, SAL)

VALUES ("+this.empNo.intValue()+", "+this.empName+","
+this.salary.floatValue()+")");

 ps.executeUpdate();
 ps.close();
 return pk;
}

The ejbFindByPrimaryKey Implementation
The ejbFindByPrimaryKey implementation is a requirement for all BMP entity
beans. Its primary responsibility is to ensure that the primary key corresponds to a
valid bean. Once it is validated, it returns the primary key to the container, which uses
the key to return the bean reference to the user.

This sample verifies that the employee number is valid and returns the primary key,
which is the employee number, to the container. A more complex verification would
be necessary if the primary key was a class.

public Integer ejbFindByPrimaryKey(Integer empNoPK)
 throws FinderException
{
 if (empNoPK == null) {
 throw new FinderException("Primary key cannot be null");
 }

 ps = conn.prepareStatement("SELECT EMPNO FROM EMPLOYEEBEAN
WHERE EMPNO = ?");

 ps.setInt(1, empNoPK.intValue());
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if (rs.next()) {
 /*PK is validated because it exists already*/
 } else {
 throw new FinderException("Failed to select this PK");
 }

 ps.close();

 return empNoPK;
}

Other Finder Methods
You can create other finder methods in addition to the single
ejbFindByPrimaryKey.

To create other finder methods, do the following:

1. Add the finder method to the home interface.

2. Implement the finder method in the BMP bean implementation.

Finders can retrieve one or more beans according to the WHERE clause. If more than a
single bean is returned, then a Collection of primary keys must be returned by the
BMP finder method. These finder methods need only to gather the primary keys for all
of the entity beans that should be returned to the user. The container maps the primary
keys to references to each entity bean within either a Collection (if multiple
references are returned) or to the single class type.

BMP Entity Bean Implementation

BMP Entity Beans 8-7

The following example shows the implementation of a finder method that returns all
employee records.

public Collection ejbFindAll() throws FinderException
{
 Vector recs = new Vector();

 ps = conn.prepareStatement("SELECT EMPNO FROM EMPLOYEEBEAN");
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();

 int i = 0;

 while (rs.next())
 {
 retEmpNo = new Integer(rs.getInt(1));
 recs.add(retEmpNo);
 }

 ps.close();
 return recs;
}

The ejbStore Implementation
The container invokes the ejbStore method when the persistent data should be
saved to the database. This synchronizes the state of the instance to the entity in the
underlying database. For example, the container invokes before the container
passivates the bean instance or removes the instance. The BMP bean is responsible for
ensuring that all data is stored to some resource, such as a database, within this
method.

public void ejbStore()
{
 //Container invokes this method to instruct the instance to
 //synchronize its state by storing it to the underlying database
 ps = conn.prepareStatement("UPDATE EMPLOYEEBEAN SET EMPNAME=?,

 SALARY=? WHERE EMPNO=?)";
 ps.setString(1, this.empName);
 ps.setFloat(2, this.salary.floatValue());
 ps.setInt(3, this.empNo.intValue());
 if (ps.executeUpdate() != 1) {
 throw new EJBException("Failed to update record");
 }
 ps.close();
}

The ejbLoad Implementation
The container invokes the ejbLoad method whenever it needs to synchronize the
state of the bean with what exists in the database. This method is invoked after
activating the bean instance to refresh it with the state that is in the database. The
purpose of this method is to repopulate the persistent data with the saved state. For
most ejbLoad methods, this implies reading the data from a database into the
instance data variables.

public void ejbLoad()
{
 //Container invokes this method to instruct the instance to
 //synchronize its state by loading it from the underlying database

BMP Entity Bean Implementation

8-8 Enterprise JavaBeans Developer’s Guide

 this.empNo = ctx.getPrimaryKey();
 ps = conn.prepareStatement("SELECT EMP_NO, EMP_NAME, SALARY WHERE EMPNAME=?");
 ps.setInt(1, this.empNo.intValue());
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if (rs.next()) {
 this.empNo = new Integer(rs.getInt(1));
 this.empName = new String(rs.getString(2));
 this.salary = new Float(rs.getFloat(3));
 } else {
 throw new FinderException("Failed to select this PK");
 }
 ps.close();
}

The ejbPassivate Implementation
The ejbPassivate method is invoked directly before the bean instance is serialized
for future use. It will be re-activated, through the ejbActivate method, the next time
the user invokes a method on this instance.

Before the bean is passivated, you should release all resources and release any static
information that would be too large to be serialized. Any large, static information that
can be easily regenerated within the ejbActivate method should be released in this
method.

In our example, the only resource that cannot be serialized is the open database
connection. It is closed in this method and reopened in the ejbActivate method.

public void ejbPassivate()
{
 // Container invokes this method on an instance before the instance
 // becomes disassociated with a specific EJB object
 conn.close();
}

The ejbActivate Implementation
The container invokes this method when the bean instance is reactivated. That is, the
user has asked to invoke a method on this instance. This method is used to open
resources and rebuild static information that was released in the ejbPassivate
method.

In addition, the container invokes this method after the start of any transaction.

Our employee example opens the database connection where the employee
information is stored.

public void ejbActivate()
{
 // Container invokes this method when the instance is taken out
 // of the pool of available instances to become associated with
 // a specific EJB object
 conn = getConnection(dsName);
}

Note: The container may call the ejbActivate() method multiple
times when the bean is associated with several wrappers.

Modify XML Deployment Descriptors

BMP Entity Beans 8-9

The ejbRemove Implementation
The container invokes the ejbRemove method before removing the bean instance
itself or by placing the instance back into the bean pool. This means that the
information that was represented by this entity bean should be removed from within
persistent storage. The employee example removes the employee and all associated
information from the database before the instance is destroyed. Close the database
connection.

public void ejbRemove() throws RemoveException
{
 //Container invokes this method befor it removes the EJB object
 //that is currently associated with the instance
 ps = conn.prepareStatement("DELETE FROM EMPLOYEEBEAN WHERE EMPNO=?");
 ps.setInt(1, this.empNo.intValue());
 if (ps.executeUpdate() != 1) {
 throw new RemoveException("Failed to delete record");
 }
 ps.close();
 conn.close();
}

Modify XML Deployment Descriptors
In addition to the configuration described in "Creating Entity Beans" on page 4-2, you
must modify and add the following to your ejb-jar.xml deployment descriptor:

1. Configure the persistence type to be "Bean" in the <persistence-type>
element.

2. Configure a resource reference for the database persistence storage in the
<resource-ref> element.

The employee example used the database environment element of
"jdbc/OracleDS". This is configured in the <resource-ref> element as
follows:

<resource-ref>
 <res-ref-name>jdbc/OracleDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

The database specified in the <res-ref-name> element maps to a <ejb-location>
element in the data-sources.xml file. Our "jdbc/OracleDS" database is
configured in the data-sources.xml file, as shown below:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="Oracle"
 location="jdbc/OracleCoreDS"
 pooled-location="jdbc/pool/OraclePoolDS"
 ejb-location="jdbc/OracleDS"
 xa-location="jdbc/xa/OracleXADS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 url="jdbc:oracle:thin:@myhost:1521:orcl"
 username="scott"
 password="tiger"
 max-connections="300"
 min-connections="5"
 max-connect-attempts="10"

Create Database Table and Columns for Entity Data

8-10 Enterprise JavaBeans Developer’s Guide

 connection-retry-interval="1"
 inactivity-timeout="30"
 wait-timeout="30"
/>

Create Database Table and Columns for Entity Data
If your entity bean stores its persistent data within a database, you need to create the
appropriate table with the proper columns for the entity bean. This table must be
created before the bean is loaded into the database. The container will not create this
table for BMP beans, but it will create it automatically for CMP beans.

In our employee example, you must create the following table in the database defined
in the data-sources.xml file:

The following shows the SQL commands that create these fields.

CREATE TABLE EMPLOYEEBEAN (
 EMPNO NUMBER NOT NULL,
 EMPNAME VARCHAR2(255) NOT NULL,
 SALARY FLOAT NOT NULL,
 CONSTRAINT EMPNO PRIMARY KEY
)

Note: The entire BMP entity bean example is available on OTN
from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Table Columns

EMPLOYEEBEAN � employee number (EMPNO)

� employee name (EMPNAME)

� salary (SALARY)

Note: This book does not cover EJB container services. See the
Data Source chapter in the Oracle Application Server Containers for
J2EE Services Guide for information on how to configure your Data
Source object.

Message-Driven Beans 9-1

9
Message-Driven Beans

The following sections discuss the tasks in creating an MDB in Oracle Application
Server Containers for J2EE (OC4J) and demonstrate MDB development with a basic
configuration to use either Oracle Application Server JMS (OracleAS JMS) or Oracle
JMS as the JMS provider.

� MDB Overview

� MDB Example

� MDB Using OracleAS JMS

� MDB Using Oracle JMS

� Client Access of MDB

� Windows Considerations When Using MDBs

� Failover Scenarios When Using a RAC Database

� Using Timers With Your MDB

Download the MDB example used in this chapter from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos/ on the OTN
Web site.

MDB Overview

9-2 Enterprise JavaBeans Developer’s Guide

MDB Overview
A Message-Driven Bean (MDB) is a Java Message Service (JMS) message listener that
can reliably consume messages from a queue or a topic. An MDB uses the
asynchronous nature of a JMS listener with the benefit of the EJB container, which does
the following:

� The EJB container creates a consumer of type QueueReceiver or
TopicSubscriber for the listener.

� At deployment time, the EJB container registers the MDB with the consumer,
which is either a QueueReceiver or TopicSubscriber, and its factory.

� The EJB container specifies the message acknowledgment mode.

Within normal JMS objects, a JMS message listener exists and must explicitly specify
the consumer and its factory within its code. When you use MDBs, the container
specifies the consumer and its factory for you; thus, an MDB is an easy method for
creating a JMS message listener. You still have to retrieve the objects and create them
given the interface, but the container does most of the work for you.

The OC4J MDB interacts with a JMS provider. This chapter highlights two JMS
providers, OracleAS JMS and Oracle JMS, each of which must be installed and
configured appropriately.

� OracleAS JMS is installed internally within the OC4J code base.

� Oracle JMS (Advanced Queuing) is installed and configured within an Oracle
database. Before using Oracle JMS, you must create the appropriate queue or table
in the database.

The following are generic steps to create and enable an MDB with a JMS provider:

1. Install the JMS provider.

2. Configure the JMS provider, the Destination objects for the MDB, and
connection details for the MDB where the provider is installed.

3. Configure OC4J with the JMS provider details in the OC4J XML files.

4. Implement the MDB and map the JMS Destination objects used in its
deployment descriptors.

This chapter describes how to implement each of these steps with both the OracleAS
JMS and Oracle JMS providers. Each section uses an MDB example that is available for
download from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos/ on the OTN
Web site.

The main MDB implementation and the EJB deployment descriptor can be the same
for both JMS types and is shown in the "MDB Example" on page 9-3. The OC4J-specific
deployment descriptor for this MDB and the JMS configuration is different for each
JMS type, so these are described specifically in each of the provider sections.

� MDB Using OracleAS JMS

Note: A full description of how to use each JMS provider is
discussed in the JMS chapter in the Oracle Application Server
Containers for J2EE Services Guide. In addition, for information on
security, see the Oracle Application Server Containers for J2EE Security
Guide.

MDB Example

Message-Driven Beans 9-3

� MDB Using Oracle JMS

MDB Example
The MDB can process incoming asynchronous requests. Any message for the MDB is
routed to the onMessage method of the MDB from the queue or topic. Other clients
may have access to the same queue or topic to send messages for the MDB. Most
MDBs receive messages from a queue or a topic, then invoke an entity bean to process
the request contained within the message.

The steps to create an MDB, which are shown in the following sections, are as follows:

1. Implement the bean, as shown in "MDB Example" on page 9-3.

2. Create the MDB deployment descriptors.

a. Define the JMS connection factory and Destination used in the EJB
deployment descriptor (ejb-jar.xml). Define if any durable subscriptions
or message selectors are used. See "EJB Deployment Descriptor (ejb-jar.xml)
for the MDB" on page 9-7 for details.

b. If using resource references, define these in the ejb-jar.xml file and map
them to their actual JNDI names in the OC4J-specific deployment descriptor
(orion-ejb-jar.xml).

c. If the MDB uses container-managed transaction demarcation, specify the
onMessage method in the <container-transaction> element in the
ejb-jar.xml file. All of the steps for an MDB should be in the onMessage
method. Since the MDB is stateless, the onMessage method should perform
all duties. Do not create the JMS connection and session in the ejbCreate
method. However, if you are using OracleAS JMS, then you can optimize your
MDB by creating the JMS connection and session in the ejbCreate method and
destroying them in the ejbRemove method.

3. Create an EJB JAR file containing the bean and the deployment descriptors.
Configure the application-specific application.xml file, create an EAR file, and
install the EJB in OC4J.

The MDB implementation and the ejb-jar.xml deployment descriptor can be
exactly the same for the OracleAS JMS or Oracle JMS providers—if you use resource
references for the JNDI lookup of the connection factory and the Destination object.
The orion-ejb-jar.xml deployment descriptor contains provider-specific
configuration, including the mapping of the resource references. See "MDB Using
OracleAS JMS" on page 9-9 and "MDB Using Oracle JMS" on page 9-13 for the specific
configuration in the orion-ejb-jar.xml deployment descriptor.

MDB Implementation Example
The major points to do when you implement an MDB are as follows:

Note: The example used for the MDB example uses resource
references, so that the MDB is generic. If you want to see how to
explicitly define a JNDI string for each JMS provider, see "Client
Access of MDB" on page 9-20, as the client uses both explicit JNDI
strings as well as resource references.

MDB Example

9-4 Enterprise JavaBeans Developer’s Guide

1. The bean class must be defined as public (not final or abstract).

2. The bean class must implement the javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces, which include the following:

� the onMessage method in the MessageListener interface

� the setMessageDrivenContext method in the MessageDrivenBean
interface

3. The bean class must implement the container callback methods that normally
match methods in the EJB home interface. Remote, local, and home interfaces are
not implemented with an MDB. However, some of the callback methods required
for these interfaces are implemented in the bean implementation. These methods
include the following:

� an ejbCreate method

� an ejbRemove method

Example 9–1 MDB Implementation

The following MDB example—rpTestMdb MDB—prints out a message sent to it
through a queue and responds. The queue is identified in the deployment descriptors
and the JMS configuration. In the onMessage method, the MDB creates a new
message to be sent to the client. It sets the message selector property RECIPIENT to be
for the CLIENT. Then, it sets the reply destination and sends the new message to the
JMS client.

This example shows how to receive a message from a queue and send out a response.
You can receive a message in several ways. This example uses the methods of the
Message object to retrieve all attributes of the message.

To send out a response to a queue, you must first set up a sender, which requires the
following:

1. Retrieve the QueueConnectionFactory object. This example uses a resource
reference of "jms/myQueueConnectionFactory," which is defined in the
ejb-jar.xml file and mapped to the actual JNDI name in the
orion-ejb-jar.xml file.

2. Create the JMS queue connection using the createQueueConnection method of
the QueueConnectionFactory object.

3. Create a JMS session over the connection using the createQueueSession
method of the QueueConnection object.

4. Once the session is set up, then create a sender that uses the session through the
createSender method of the QueueSession object.

These steps are implemented as follows:

private QueueConnection m_qc = null;
private QueueSession m_qs = null;
private QueueSender m_snd = null;
QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/myQueueConnectionFactory");
m_qc = qcf.createQueueConnection();
m_qs = m_qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);

Note: See the EJB specification for the full details on all aspects of
implementing a MDB.

MDB Example

Message-Driven Beans 9-5

m_snd = m_qs.createSender(null);

Once the sender is created, you can send any message using the send method of
the QueueSender object. This example puts together a response from the received
message and then use the sender to send out that response.

5. Create a message using the createMessage method of the Message object.

6. Set properties of the message using methods of the Message object, such as
setStringProperty and setIntProperty.

7. This example retrieves the destination for its response through the
getJMSReplyTo method of the Message object. The destination was initialized
in the message by the sender.

8. Send out the response using the sender through the send method of the
QueueSender object. Provide the destination and the response message.

Message rmsg = m_qs.createMessage();
rmsg.setStringProperty("RECIPIENT", "CLIENT");
rmsg.setIntProperty("count",
msg.getIntProperty("JMSXDeliveryCount"));
rmsg.setJMSCorrelationID(msg.getJMSMessageID());
Destination d = msg.getJMSReplyTo();
m_snd.send((Queue) d, rmsg);

Example 9–2 MDB Implementation

The following is the complete example of the MDB that receives a message and sends
back a response.

import java.util.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class rpTestMdb implements MessageDrivenBean, MessageListener
{
 private QueueConnection m_qc = null;
 private QueueSession m_qs = null;
 private QueueSender m_snd = null;
 private MessageDrivenContext m_ctx = null;

 /* Constructor, which is public and takes no arguments.*/
 public rpTestMdb()
 { }

 /* setMessageDrivenContext method */
 public void setMessageDrivenContext(MessageDrivenContext ctx)
 {
 /* As with all EJBs, you must set the context in order to be
 able to use it at another time within the MDB methods. */
 m_ctx = ctx;
 }

 /* ejbCreate method, declared as public (but not final or
 * static), with a return type of void, and with no arguments.
 */
 public void ejbCreate()
 { }

 /* ejbRemove method */

MDB Example

9-6 Enterprise JavaBeans Developer’s Guide

 public void ejbRemove()
 { }

 /**
 * onMessage method
 * Receives the incoming Message and displays the text.
 */
 public void onMessage(Message msg)
 {
 /* An MDB does not carry state for an individual client. */
 try
 {
 Context ctx = new InitialContext();
 // 1. Retrieve the QueueConnectionFactory using a
 // resource reference defined in the ejb-jar.xml file.
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup("java:comp/env/jms/myQueueConnectionFactory");
 ctx.close();

 /*You create the queue connection first, then a session
 over the connection. Once the session is set up, then
 you create a sender */
 // 2. Create the queue connection
 m_qc = qcf.createQueueConnection();
 // 3. Create the session over the queue connection.
 m_qs = m_qc.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
// 4. Create the sender to send messages over the session.
 m_snd = m_qs.createSender(null);

 /* When the onMessage method is called, a message has
 been sent. You can retrieve attributes of the message using the
 Message object. */
 String txt = ("mdb rcv: " + msg.getJMSMessageID());
 System.out.println(txt + " redel="
 + msg.getJMSRedelivered() + " cnt="
 + msg.getIntProperty("JMSXDeliveryCount"));

 /* Create a new message using the createMessage
 method. To send it back to the originator of the other message,
 set the String property of "RECIPIENT" to "CLIENT."
 The client only looks for messages with string property CLIENT.
 Copy the original message ID into new msg's Correlation ID for
 tracking purposes using the setJMSCorrelationID method. Finally,
 set the destination for the message using the getJMSReplyTo method
 on the previously received message. Send the message using the
 send method on the queue sender.
 */
 // 5. Create a message using the createMessage method
 Message rmsg = m_qs.createMessage();
 // 6. Set properties of the message.
 rmsg.setStringProperty("RECIPIENT", "CLIENT");
 rmsg.setIntProperty("count",
 msg.getIntProperty("JMSXDeliveryCount"));
 rmsg.setJMSCorrelationID(msg.getJMSMessageID());
 // 7. Retrieve the reply destination.
 Destination d = msg.getJMSReplyTo();
 // 8. Send the message using the send method of the sender.
 m_snd.send((Queue) d, rmsg);

 System.out.println(txt + " snd: " + rmsg.getJMSMessageID());

MDB Example

Message-Driven Beans 9-7

 /* close the connection*/
 m_qc.close();
 }
 catch (Throwable ex)
 {
 ex.printStackTrace();
 }
 }
}

EJB Deployment Descriptor (ejb-jar.xml) for the MDB
Within the EJB deployment descriptor (ejb-jar.xml), define the MDB name, class,
JNDI reference, and JMS Destination type (queue or topic) in the
<message-driven> element. If a topic is specified, you define whether it is durable.
If you have used resource references, define the resource reference for both the
connection factory and the Destination object.

The following example demonstrates the deployment information for the rpTestMdb
MDB in the <message-driven> element, as follows:

� MDB name specified in the <ejb-name> element.

� MDB class defined in the <ejb-class> element, which ties the
<message-driven> element to the specific MDB implementation.

� JMS Destination type is a Queue that is specified in the
<message-driven-destination><destination-type> element.

� Message selector specifies that this MDB only receives messages where the
RECIPIENT is MDB.

� The type of transaction to use is defined in the <transaction-type> element.
The value can be Container or Bean. If Container is specified, define the
onMessage method within the <container-transaction> element with the
type of CMT support.

� The resource reference for the connection factory is defined in the
<resource-ref> element; the resource reference for the Destination object is
defined in the <resource-env-ref> element. See "Using a Logical Name When
Client Accesses the MDB" on page 9-25 for a full discussion on resource references
for JMS object types.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans

Note: The entire MDB example is available on OTN from the
OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Note: You could also specify a topic in this type definition. If you
did specify a Topic in the type, then you could also define the
durability of the topic, which is specified in the
<message-driven-destination>
<subscription-durability> element as "Durable" or
"nonDurable."

MDB Example

9-8 Enterprise JavaBeans Developer’s Guide

2.0//EN' 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
 <display-name>Mdb Test</display-name>
 <enterprise-beans>
 <message-driven>
 <display-name>testMdb</display-name>
 <ejb-name>testMdb</ejb-name>
 <ejb-class>rpTestMdb</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>RECIPIENT='MDB'</message-selector>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 <resource-ref>
 <description>description</description>
 <res-ref-name>jms/myQueueConnectionFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 <resource-env-ref>
 <resource-env-ref-name>jms/persistentQueue
 </resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 </message-driven>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>testMdb</ejb-name>
 <method-name>onMessage</method-name>
 <method-params>
 <method-param>javax.jms.Message</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

If you were going to configure a durable Topic instead, then the
<message-driven-destination> element would be configured as follows:

<message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
</message-driven-destination>

The OC4J-specific deployment descriptor (orion-ejb-jar.xml) for this MDB and
the JMS provider configuration necessary is shown in the following sections:

Note: The entire MDB example is available on OTN from the
OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

MDB Using OracleAS JMS

Message-Driven Beans 9-9

� MDB Using OracleAS JMS

� MDB Using Oracle JMS

Instructions on how a client sends a JMS message to the MDB is discussed in "Client
Access of MDB" on page 9-20.

MDB Using OracleAS JMS
The MDB can process incoming asynchronous requests using OracleAS JMS. When
you use OracleAS JMS, this JMS provider is already available since it is bundled with
OC4J. And all configuration for the JMS provider occurs within the OC4J XML files;
thus, only steps three and four (as listed in "MDB Overview" on page 9-2) are
necessary.

Figure 9–1 shows how a client sends an asynchronous request directly to the OracleAS
JMS queue or topic that is located internally within OC4J. The MDB receives the
message directly from OracleAS JMS.

Figure 9–1 Demonstration of an MDB Interacting with an OracleAS JMS Destination

The following sections demonstrate an MDB that uses OracleAS JMS as the JMS
provider.

� Configure OracleAS JMS in the XML files

� Create the OC4J-Specific Deployment Descriptor to Use OracleAS JMS

� Deploying the MDB

Note: The entire MDB example is available on OTN from the
OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

MDB Using OracleAS JMS

9-10 Enterprise JavaBeans Developer’s Guide

Configure OracleAS JMS in the XML files
OracleAS JMS is automatically enabled. You only configure the JMS Destination
objects used by the MDB. If your MDB accesses a database for inquiries and so on,
then you can configure the DataSource used. See "JMS Destination Object
Configuration" on page 9-10 for the JMS configuration. For information on data source
configuration, see the Data Source chapter in the Oracle Application Server Containers for
J2EE Services Guide.

JMS Destination Object Configuration
Configure the topic or queue in the jms.xml file to which the client sends all
messages that are destined for the MDB. The name, location, and connection factory
for either Destination type must be specified.

The following jms.xml file configuration specifies a queue—named
jms/Queue/rpTestQueue—that is used by the rpTestMdb example. The queue
connection factory is defined as jms/Queue/myQCF. In addition, a topic is defined
named jms/Topic/rpTestTopic, with a connection factory of jms/Topic/myTCF.

<?xml version="1.0" ?>
<!DOCTYPE jms-server PUBLIC "OracleAS JMS server"
"http://xmlns.oracle.com/ias/dtds/jms-server.dtd">

<jms-server port="9128">
 <queue location="jms/Queue/rpTestQueue"> </queue>
 <queue-connection-factory location="jms/Queue/myQCF">
 </queue-connection-factory>

 <topic location="jms/Topic/rpTestTopic"> </topic>
 <topic-connection-factory location="jms/Topic/myTCF">
 </topic-connection-factory>

 <!-- path to the log-file where JMS-events/errors are stored -->
 <log>
 <file path="../log/jms.log" />
 </log>
</jms-server>

Create the OC4J-Specific Deployment Descriptor to Use OracleAS JMS
The OC4J-specific deployment descriptor configures the following:

� Specify the Destination and connection factory JNDI locations to the MDB
through the <message-driven-deployment> element in the
orion-ejb-jar.xml file. See "Specify the Destination and Connection Factory"
on page 9-17 for full details.

� Associate any logical names defined as resource references in the ejb-jar.xml
file to the correct queue or topic, which, for OracleAS JMS, is defined in the
jms.xml file. You could have several topics and queues defined in the jms.xml
file. See "Map Any Resource References to JNDI Names" on page 9-19 for full
details on mapping the resource references in the orion-ejb-jar.xml file.

Note: A full description of how to use each JMS provider is
available in the JMS chapter in the Oracle Application Server
Containers for J2EE Services Guide.

MDB Using OracleAS JMS

Message-Driven Beans 9-11

OracleAS JMS

Since this example uses resource references in the ejb-jar.xml file, the
orion-ejb-jar.xml file maps these logical names to the actual JNDI names of the
connection factory and the JMS Destination object, which are defined in the
jms.xml file. In this example, the MDB uses a queue that is defined in the jms.xml
file as jms/Queue/rpTestQueue. The queue connection factory is defined in the
jms.xml file as jms/Queue/myQCF.

Specify the Destination and Connection Factory
Map the Destination and connection factory JNDI locations to the MDB through
the <message-driven-deployment> element in the orion-ejb-jar.xml file.
The following is the orion-ejb-jar.xml deployment descriptor for the
rpTestMdb example. It maps a JMS Queue to the rpTestMdb MDB, providing the
following:

� MDB name, as defined in the <ejb-name> in the EJB deployment descriptor, is
specified in the name attribute.

� JMS Destination, as defined in the jms.xml file, is specified in the
destination-location attribute.

� JMS Destination Connection Factory, as defined in the jms.xml file, is
specified in the connection-factory-location attribute.

� If this was a topic, then a durable topic name, which is user-defined, is specified in
the subscription-name attribute.

� Listener threads, as defined in the listener-threads attribute, is an optional
parameter. The listener threads are spawned off when MDBs are deployed and are
used to listen for incoming JMS messages on the topic or queue. These threads
concurrently consume JMS messages. The default is one thread. Topics always
have only one thread.

Once all of these are specified in the <message-driven-deployment> element, the
container knows how to map the MDB to the correct JMS Destination.

<enterprise-beans>
 ...
 <message-driven-deployment name="rpTestMdb"
 connection-factory-location="jms/Queue/myQCF"
 destination-location="jms/Queue/rpTestQueue" >
 </message-driven-deployment>
 ...
</enterprise-beans>

If you wanted to specify a topic, you must also include the subscription name, as
follows:

<enterprise-beans>
 <message-driven-deployment name="rpTestMdb"
 connection-factory-location="jms/Queue/myQCF"
 destination-location="jms/Queue/rpTestQueue"
 subscription-name="MDBSUB" >
 ...
</enterprise-beans>

MDB Using OracleAS JMS

9-12 Enterprise JavaBeans Developer’s Guide

Map Any Resource References to JNDI Names
When you define logical names as resource references for your connection factory and
Destination object, you have to map these to the actual JNDI names.

� Map the resource reference for the queue connection factory in the
<resource-ref-mapping> element. In the rpTestMdb example, the logical
name for the connection factory is jms/myQueueConnectionFactory. This
must be mapped to the JNDI string of jms/Queue/myQCF, which is defined in the
jms.xml file.

� Map the resource reference for the Destination object in the
<resource-env-ref-mapping> element. In the rpTestMdb example, the
logical name for the queue is jms/persistentQueue. This is mapped to the
JNDI string of jms/Queue/rpTestQueue, which is defined in the jms.xml file.

<resource-ref-mapping name="jms/myQueueConnectionFactory"
 location="jms/Queue/myQCF"/>
<resource-env-ref-mapping name="jms/persistentQueue"
 location="jms/Queue/rpTestQueue" />

Example 9–3 The orion-ejb-jar.xml file for the rpTestMdb Example

The following lists the complete orion-ejb-jar.xml file for the rpTestMdb
example. It includes both the definition of the OracleAS JMS objects and the resource
reference mappings.

<enterprise-beans>
 <message-driven-deployment name="testMdb"
 connection-factory-location="jms/Queue/myQCF"
 destination-location="jms/Queue/rpTestQueue" listener-threads="1">

 <resource-ref-mapping name="jms/myQueueConnectionFactory"
 location="jms/Queue/myQCF"/>
 <resource-env-ref-mapping name="jms/persistentQueue"
 location="jms/Queue/rpTestQueue" />
 </message-driven-deployment>
</enterprise-beans>
<assembly-descriptor>
 <default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" />
 </default-method-access>
</assembly-descriptor>

Deploying the MDB
Archive your EJB into a JAR file. You deploy the MDB the same way as the session
bean, which is detailed in Prepare the EJB Application for Assembly on page 3-7 and
"Deploy the Enterprise Application to OC4J" on page 3-9.

Note: You cannot use logical names in these fields. You must
specify the full JNDI syntax for both the connection factory and the
Destination object.

Note: Instructions on how a client sends a JMS message to the
MDB is discussed in "Client Access of MDB" on page 9-20.

MDB Using Oracle JMS

Message-Driven Beans 9-13

MDB Using Oracle JMS
The MDB processes incoming asynchronous requests using Oracle JMS (Advanced
Queuing), as follows:

1. The MDB opens a JMS connection to the database using a data source with a
username and password. The data source represents the Oracle JMS provider and
uses a JDBC driver to facilitate the JMS connection.

2. The MDB opens a JMS session over the JMS connection.

3. Any message for the MDB is routed to the onMessage method of the MDB.

At any time, the client can send a message to the Oracle JMS topic or queue on which
MDBs are listening. The Oracle JMS topic or queue is located in the database.

Figure 9–2 Demonstration of an MDB Interacting with an Oracle JMS Destination

The following sections demonstrate an MDB that uses Oracle JMS as the JMS provider.

� Install and Configure the JMS Provider

� Configure the OC4J XML Files for the JMS Provider

� Create the OC4J-Specific Deployment Descriptor to Use Oracle JMS

� Deploy the MDB

Caution: MDBs only work with certain versions of the Oracle
database. See the certification matrix in the JMS chapter of the
Oracle Application Server Containers for J2EE Services Guide for more
information.

Note: The entire MDB example is available on OTN from the
OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

MDB Using Oracle JMS

9-14 Enterprise JavaBeans Developer’s Guide

Install and Configure the JMS Provider
You or your DBA must install Oracle JMS according to theOracle9i Application
Developer's Guide—Advanced Queuing for Release 2 (9.2) and generic database manuals.
Once you have installed and configured this JMS provider, you must apply additional
configuration for each MDB. This includes the following:

1. You or your DBA should create an RDBMS user through which the MDB connects
to the database. Grant this user appropriate access privileges to perform Oracle
JMS operations. See "Create User and Assign Privileges" on page 9-14.

2. You or your DBA should create the tables and queues to support the JMS
Destination objects. See "Create JMS Destination Objects" on page 9-14.

Create User and Assign Privileges
Create an RDBMS user through which the MDB connects to the database. Grant access
privileges to this user to perform Oracle JMS operations. The privileges that you need
depend on what functionality you are requesting. Refer to theOracle9i Application
Developer's Guide—Advanced Queuing for Release 2 (9.2) for more information on
privileges necessary for each type of function.

The following example creates jmsuser, which must be created within its own
schema, with privileges required for Oracle JMS operations. You must be a SYS DBA to
execute these statements.

DROP USER jmsuser CASCADE ;

GRANT connect, resource,AQ_ADMINISTRATOR_ROLE TO jmsuser IDENTIFIED BY jmsuser ;
GRANT execute ON sys.dbms_aqadm TO jmsuser;
GRANT execute ON sys.dbms_aq TO jmsuser;
GRANT execute ON sys.dbms_aqin TO jmsuser;
GRANT execute ON sys.dbms_aqjms TO jmsuser;

connect jmsuser/jmsuser;

You may need to grant other privileges, such as two-phase commit or system
administration privileges, based on what the user needs. See the JTA chapter in the
Oracle Application Server Containers for J2EE Services Guide for the two-phase commit
privileges.

Create JMS Destination Objects
Each JMS provider requires its own method for creating the JMS Destination object.
Refer to theOracle9i Application Developer's Guide—Advanced Queuing for Release 2 (9.2)

Note: A full description of how to use Oracle JMS provider is
discussed in the JMS chapter in the Oracle Application Server
Containers for J2EE Services Guide. Also, see the Oracle9i Application
Developer’s Guide - Advanced Queuing.

Note: The following sections use SQL for creating queues, topics,
their tables, and assigning privileges that is provided within the
MDB demo on OTN from the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

MDB Using Oracle JMS

Message-Driven Beans 9-15

for more information on the DBMS_AQADM packages and Oracle JMS messages types.
For our example, Oracle JMS requires the following methods:

1. Create the tables that handle the JMS Destination (queue or topic).

In Oracle JMS, both topics and queues use a queue table. The rpTestMdb JMS
example creates a single table: rpTestQTab for a queue.

To create the queue table, execute the following SQL:

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'rpTestQTab',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 sort_list => 'PRIORITY,ENQ_TIME',
 multiple_consumers => false,
 compatible => '8.1.5');

The multiple_consumers parameter denotes whether there are multiple
consumers or not; thus, is always false for a queue and true for a topic.

2. Create the JMS Destination. If you are creating a topic, you must add each
subscriber for the topic. The rpTestMdb JMS example requires a single
queue—rpTestQueue.

The following creates a queue called rpTestQueue within the queue table
rpTestQTab. After creation, the queue is started.

DBMS_AQADM.CREATE_QUEUE(
 Queue_name => 'rpTestQueue',
 Queue_table => 'rpTestQTab');

DBMS_AQADM.START_QUEUE(
 queue_name => 'rpTestQueue');

If you wanted to add a topic, then the following example shows how you can
create a topic called rpTestTopic within the topic table rpTestTTab. After
creation, two durable subscribers are added to the topic. Finally, the topic is
started and a user is granted a privilege to it.

DBMS_AQADM.CREATE_QUEUE_TABLE(
 Queue_table => 'rpTestTTab',
 Queue_payload_type => 'SYS.AQ$_JMS_MESSAGE',
 multiple_consumers => true,
 compatible => '8.1.5');
DBMS_AQADM.CREATE_QUEUE('rpTestTopic', 'rpTestTTab');
DBMS_AQADM.ADD_SUBSCRIBER('rpTestTopic',
 sys.aq$_agent('MDSUB', null, null));
DBMS_AQADM.ADD_SUBSCRIBER('rpTestTopic',
 sys.aq$_agent('MDSUB2', null, null));

Note: The SQL for creating the tables for the Oracle JMS example
is included in the MDB example available on OTN from the OC4J
sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Note: Oracle AQ uses the DBMS_AQADM.CREATE_QUEUE method
to create both queues and topics.

MDB Using Oracle JMS

9-16 Enterprise JavaBeans Developer’s Guide

DBMS_AQADM.START_QUEUE('rpTestTopic');

Configure the OC4J XML Files for the JMS Provider
To use the Oracle JMS provider, you must configure the following in the OC4J XML
files:

� Configure the DataSource

� Identify the JNDI Name of the Oracle JMS Data Source

Configure the DataSource
Configure a data source for the database where the Oracle JMS provider is installed.
The JMS topics and queues use database tables and queues to facilitate messaging. The
type of data source you use depends on the functionality you want.

Transactional Functionality For no transactions or single-phase transactions, you can use
either an emulated or non-emulated data sources. For two-phase commit transaction
support, you can use only a non-emulated data source.

Example 9–4 Emulated DataSource With Thin JDBC Driver

The following example contains an emulated data source that uses the thin JDBC
driver. To support a two-phase commit transaction, use a non-emulated data source.
For differences between emulated and non-emulated data sources, see the Data Source
chapter in the Oracle Application Server Containers for J2EE Services Guide.

The example is displayed in the format of an XML definition; see the Oracle Application
Server Containers for J2EE User’s Guide for directions on adding a new data source to the
configuration through the EM tool.

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/emulatedOracleCoreDS"
 xa-location="jdbc/xa/emulatedOracleXADS"
 ejb-location="jdbc/emulatedDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="jmsuser"
 password="jmsuser"
 url="jdbc:oracle:thin:@myhost.foo.com:1521:mydb"
/>

Customize this data source to match your environment. For example, substitute the
host name, port, and SID of your database for mysun:1521:orcl.

Identify the JNDI Name of the Oracle JMS Data Source
Identify the JNDI name of the data source that is to be used as the Oracle JMS provider
within the <resource-provider> element.

Note: The names defined here must be the same names used to
define the queue or topic in the orion-ejb-jar.xml file.

Note: Instead of providing the password in the clear, you can use
password indirection. For details, see the Oracle Application Server
Containers for J2EE Services Guide.

MDB Using Oracle JMS

Message-Driven Beans 9-17

� If this is to be the JMS provider for all applications (global), configure the global
application.xml file.

� If this is to be the JMS provider for a single application (local), configure the
orion-application.xml file of the application.

The following code sample shows how to configure the JMS provider using XML
syntax for Oracle JMS.

� class attribute—The Oracle JMS provider is implemented by the
oracle.jms.OjmsContext class, which is configured in the class attribute.

� property attribute—Identify the data source that is to be used as this JMS
provider in the property element. The topic or queue connects to this data
source to access the tables and queues that facilitate the messaging.

The following example demonstrates that the data source identified by
"jdbc/emulatedDS" is to be used as the Oracle JMS provider. This JNDI name is
identified in the ejb-location element in Example 9–4. If this example used a
non-emulated data source, then the name would be the same as in the location
element.

<resource-provider class="oracle.jms.OjmsContext" name="myProvider">
 <description> OJMS/AQ </description>
 <property name="datasource" value="jdbc/emulatedDS"></property>
</resource-provider>

Create the OC4J-Specific Deployment Descriptor to Use Oracle JMS
The OC4J-specific deployment descriptor configures the following:

� Specify the Destination and connection factory JNDI locations to the MDB
through the <message-driven-deployment> element in the
orion-ejb-jar.xml file. See "Specify the Destination and Connection Factory"
on page 9-17 for full details.

� Associate any logical names defined as resource references in the ejb-jar.xml
file to the correct queue or topic, which, for Oracle JMS, was defined in the
database through SQL. You could have several topics and queues defined in
database. See "Map Any Resource References to JNDI Names" on page 9-19 for full
details on mapping the resource references in the orion-ejb-jar.xml file.

OracleAS JMS

Since this example uses resource references in the ejb-jar.xml file, the
orion-ejb-jar.xml file maps these logical names to the actual JNDI names of the
connection factory and the JMS Destination object, which are defined in the
database. In this example, the MDB uses a queue that is defined in the database as
rpTestQueue. The queue connection factory is not defined in the database, so any
name can be used. For consistency, the queue connection factory name is myQCF.

Specify the Destination and Connection Factory
Map the Destination and connection factory JNDI locations to the MDB through
the <message-driven-deployment> element in the orion-ejb-jar.xml file.
The following is the orion-ejb-jar.xml deployment descriptor for the
rpTestMdb example. It maps a JMS Queue to the rpTestMdb MDB, providing the
following:

MDB Using Oracle JMS

9-18 Enterprise JavaBeans Developer’s Guide

� MDB name, as defined in the <message-driven><ejb-name> in the EJB
deployment descriptor, is specified in the name attribute.

� JMS Destination Connection Factory, as specified by the user, is specified in
the connection-factory-location attribute. The Oracle JMS syntax for the
connection factory is "java:comp/resource" + JMS provider name +
"TopicConnectionFactories" or "QueueConnectionFactories" + a user
defined name. The user-defined name can be anything and does not match any
other configuration. The xxxConnectionFactories details what type of factory
is being defined. For this example, the JMS provider name is defined in the
<resource-provider> element in the application.xml file as myProvider.

– For a queue connection factory: Since the JMS provider name is myProvider
and you decide to use a name of myQCF, the connection factory name is
"java:comp/resource/myProvider/QueueConnectionFactories/my
QCF".

– For a topic connection factory: Since the JMS provider name is myProvider
and you decide to use a name of myTCF, the connection factory name is
"java:comp/resource/myProvider/TopicConnectionFactories/my
TCF".

The user defined names, as shown above by myQCF and myTCF, are not used for
anything else in your logic. So, any name can be chosen.

� JMS Destination, as defined in the database, is specified in the
destination-location element. The Oracle JMS syntax for the Destination
is "java:comp/resource" + JMS provider name + "Topics" or "Queues" +
Destination name. The Topic or Queue details what type of Destination is
being defined. The Destination name is the actual queue or topic name defined
in the database.

For this example, the JMS provider name is defined in the
<resource-provider> element in the application.xml file as myProvider.
In the database, the topic name is rpTestQueue.

– For a queue: If the JMS provider name is myProvider and the queue name is
rpTestQueue, then the JNDI name for the queue as
"java:comp/resource/myProvider/Queues/rpTestQueue."

– For a topic: If the JMS provider name is myProvider and the topic name is
rpTestTopic, then the JNDI name for the topic as
"java:comp/resource/myProvider/Topics/rpTestTopic."

� If this was a topic, then a durable topic name, which is user-defined, is specified in
the subscription-name attribute.

� Listener threads are an optional parameter and defined in the
listener-threads attribute. The listener threads are spawned off when MDBs
are deployed and are used to listen for incoming JMS messages on the topic or
queue. These threads concurrently consume JMS messages. The default is one
thread. Topics always use only one thread; queues can use more than one.

� Transaction timeout, as defined in the transaction-timeout attribute, is an
optional parameter. This attribute controls the transaction timeout interval (in
seconds) for any container-managed transactional MDB. The default is one day or
86,400 seconds. If the transaction has not completed in this time frame, the
transaction is rolled back and the message is redelivered back to the
Destination object.

MDB Using Oracle JMS

Message-Driven Beans 9-19

The MDB transaction-timeout attribute applies only to CMT MDBs that use
Oracle JMS as the JMS provider. This attribute setting has no effect on BMT MDBs
or any MDBs that use OC4J JMS:

– JMS behavior with Oracle Application Server—JMS attempts to redeliver the
message (defaults to five attempts and is set on the DBMS_AQADM.CREATE_
QUEUE method when creating the queue in the database), after which the
message is moved to the exception queue. You can browse messages in the
exception queue using SQL*Plus. For more information on setting redelivery
attempts and browsing the exception queue, refer to theOracle9i Application
Developer's Guide—Advanced Queuing for Release 2 (9.2).

– JMS behavior with OC4J—The transaction-timeout setting does not
work for CMT MDBs that use OC4J JMS. The timeout is always one day and
cannot be modified. When the timeout occurs, OC4J JMS redelivers the
message indefinitely, until the delivery is successful. You cannot set a retry
limit.

In addition, the global transaction-timeout attribute defined in the
server.xml file does not have any effect on MDBs.

Once all of these are specified in the <message-driven-deployment> element, the
container knows how to map the MDB to the correct JMS Destination.

 <message-driven-deployment name="testMdb"
 connection-factory-location=
 "java:comp/resource/myProvider/QueueConnectionFactories/myQCF"
 destination-location="java:comp/resource/myProvider/Queues/rpTestQueue"
listener-threads="5">

If you wanted to specify a topic, you must also include the subscription name, as
follows:

<enterprise-beans>
 <message-driven-deployment
 name="rpTestMdb"
 connection-factory-location=
 "java:comp/resource/myProvider/TopicConnectionFactories/myTCF"
 destination-location="java:comp/resource/cartojms1/Topics/rpTestTopic"
 subscription-name="MDBSUB"
 listener-threads=1 >
 ...
</enterprise-beans>

Map Any Resource References to JNDI Names
When you define logical names as resource references for your connection factory and
Destination object, you have to map these to the actual JNDI names.

� Map the resource reference for the queue connection factory in the
<resource-ref-mapping> element. In the rpTestMdb example, the logical
name for the connection factory is jms/myQueueConnectionFactory. This
must be mapped to the JNDI string of
java:comp/resource/myProvider/QueueConnectionFactories/myQCF.

Note: You cannot use logical names in these fields. You must
specify the full JNDI syntax for both the connection factory and the
Destination object.

Client Access of MDB

9-20 Enterprise JavaBeans Developer’s Guide

� Map the resource reference for the Destination object in the
<resource-env-ref-mapping> element. In the rpTestMdb example, the
logical name for the queue is jms/persistentQueue. This is mapped to the
JNDI string of java:comp/resource/myProvider/Queues/rpTestQueue.

See "Specify the Destination and Connection Factory" on page 9-17 for how the Oracle
JMS JNDI syntax was derived.

<resource-ref-mapping name="jms/myQueueConnectionFactory"
 location="java:comp/resource/myProvider/QueueConnectionFactories/myQCF"/>
<resource-env-ref-mapping name="jms/persistentQueue"
 location="java:comp/resource/myProvider/Queues/rpTestQueue" />

Example 9–5 The orion-ejb-jar.xml file for the rpTestMdb Example

The following lists the complete orion-ejb-jar.xml file for the rpTestMdb
example. It includes both the definition of the Oracle JMS objects and the resource
reference mappings.

<enterprise-beans>
 <message-driven-deployment name="testMdb"
 connection-factory-location=
 "java:comp/resource/myProvider/QueueConnectionFactories/myQCF"
 destination-location="java:comp/resource/myProvider/Queues/rpTestQueue"
listener-threads="5">

 <resource-ref-mapping name="jms/myQueueConnectionFactory"
 location="java:comp/resource/myProvider/QueueConnectionFactories/myQCF"/>
 <resource-env-ref-mapping name="jms/persistentQueue"
 location="java:comp/resource/myProvider/Queues/rpTestQueue" />
 </message-driven-deployment>
</enterprise-beans>
<assembly-descriptor>
 <default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" />
 </default-method-access>
</assembly-descriptor>

Deploy the MDB
Archive your MDB into a JAR file. You deploy the MDB in the same way as the session
bean, which Prepare the EJB Application for Assembly on page 3-7 and "Deploy the
Enterprise Application to OC4J" on page 3-9 describe.

Client Access of MDB
The client sends a message to the MDB through a JMS Destination. The client can
retrieve the JMS Destination and connection factory either through using its explicit
name or by a logical name. The following sections describe both methods for
retrieving the JNDI name.

� Using an Explicit Name for the JNDI Lookup

� Using a Logical Name When Client Accesses the MDB

Note: Instructions on how a client sends a JMS message to the
MDB is discussed in "Client Access of MDB" on page 9-20.

Client Access of MDB

Message-Driven Beans 9-21

Using an Explicit Name for the JNDI Lookup
Within your client, you can use the actual JNDI name to retrieve the JMS
Destination objects. Both OracleAS JMS and Oracle JMS have their own naming
methodology, as explained in the following sections:

� Accessing OracleAS JMS Destination with Explicit JNDI Names

� Accessing Oracle JMS Destination with Explicit JNDI Names

Accessing OracleAS JMS Destination with Explicit JNDI Names
The JNDI lookup for OracleAS JMS requires the OracleAS JMS Destination and
connection factory as defined by you within the jms.xml file, prepended with
"java:comp/env/." See "JMS Destination Object Configuration" on page 9-10 to see
how the queue and topic for OracleAS JMS is configured.

To lookup a queue in the JNDI lookup for the testResourceProvider example
using OracleAS JMS are as follows:

//Lookup the Queue
queue = (Queue)jndiContext.lookup("java:comp/env/jms/Queue/rpTestQueue");

//Lookup the Queue Connection factory
queueConnectionFactory = (QueueConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/Queue/myQCF");

To lookup a topic, you would have slightly different strings, designating a topic rather
than a queue, as follows:

//Lookup the Topic
topic = (Topic)jndiContext.lookup("java:comp/env/jms/Topic/rpTestTopic");

//Lookup the Connection factory
topicConnectionFactory = (TopicConnectionFactory)
 jndiContext.lookup("java:comp/env/jms/Topic/myTCF");

Note that the same names for the topic and the connection factory are used in the
client's configuration, the jms.xml, and the MDB deployment descriptors.

Note: You may have to add the JNDI properties if the client is not
co-located with the MDB. The examples provided in the following
sections do not include setting the JNDI properties. See "Setting
JNDI Properties" on page 2-2 for instructions on setting these
properties.

Note: Alternatively, you can specify all of the JNDI names for the
Destination and JMS provider objects as resource references in
your orion-ejb-jar.xml file. See "Using a Logical Name When
Client Accesses the MDB" on page 9-25 for more information.

Note: If you decide to use logical names instead, you would use
the same JNDI syntax. Logical names are recommended, because
they are portable. See "Using a Logical Name When Client Accesses
the MDB" on page 9-25 for more information.

Client Access of MDB

9-22 Enterprise JavaBeans Developer’s Guide

Accessing Oracle JMS Destination with Explicit JNDI Names
The JNDI lookup—when using Oracle JMS—requires the Oracle JMS Destination
and connection factory syntax, which is the same naming convention as described for
the connection-factory-location and destination-location attributes in
"Specify the Destination and Connection Factory" on page 9-17.

In your JNDI lookup, the implementation would be as follows for both a queue and a
topic (See Example 9–6 for the full example):

/* Retrieve an Oracle JMS Queue through JNDI */
queue = (Queue) ic.lookup("java:comp/resource/myProvider/Queues/rpTestQueue");
/*Retrieve the Oracle JMS Queue connection factory */
queueConnectionFactory = (QueueConnectionFactory) ic.lookup
 ("java:comp/resource/myProvider/QueueConnectionFactories/myQCF");

/* Retrieve an Oracle JMS Topic through JNDI */
topic = (Topic) ic.lookup("java:comp/resource/myProvider/Topics/rpTestTopic");
/*Retrieve the Oracle JMS Topic connection factory */
topicConnectionFactory = (TopicConnectionFactory) ic.lookup
 ("java:comp/resource/myProvider/TopicConnectionFactories/myTCF");

Steps for Sending a Message to an MDB
Whether or not the implementation uses logical names or the actual JNDI names, the
client sends a JMS message to the MDB by doing the following:

1. Retrieve both the configured JMS Destination and its connection factory using
a JNDI lookup.

2. Create a connection from the connection factory. If you are receiving messages for
a queue, then start the connection.

3. Create a session over the connection.

4. Providing the retrieved JMS Destination, create a sender for a queue, or a
publisher for a topic.

5. Create the message.

6. Send out the message using either the queue sender or the topic publisher.

7. Close the queue session. Close the connection for either JMS Destination types.

Example 9–6 Servlet Client Sends Message to Queue

public final class testResourceProvider extends HttpServlet
{
 private String resProvider = "myResProvider";
 private HashMap msgMap = new HashMap();
 Context ctx = new InitialContext();

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 doPost(req, res);
 }

Note: If you decide to use logical names instead, you would use
the same JNDI syntax. See "Using a Logical Name When Client
Accesses the MDB" on page 9-25 for more information.

Client Access of MDB

Message-Driven Beans 9-23

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {
 //Retrieve the name of the JMS provider from the request, which is
 // to be used in creating the JNDI string for retrieval
 String rp = req.getParameter ("provider");
 if (rp != null)
 resProvider = rp;

 try
 {
 // 1a. Look up the Queue Connection Factory
 QueueConnectionFactory qcf = (QueueConnectionFactory)
 ctx.lookup ("java:comp/resource/" + resProvider +
 "/QueueConnectionFactories/myQCF");
 // 1b. Lookup the Queue
 Queue queue = (Queue) ctx.lookup ("java:comp/resource/" + resProvider +
 "/Queues/rpTestQueue");

 // 2 & 3. Retrieve a connection and a session on top of the connection
 // 2a. Create queue connection using the connection factory.
 QueueConnection qconn = qcf.createQueueConnection();
 // 2a. We're receiving msgs, so start the connection.
 qconn.start();

 // 3. create a session over the queue connection.
 QueueSession qsess = qconn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

 // 4. Since this is for a queue, create a sender on top of the session.
 //This is used to send out the message over the queue.
 QueueSender snd = sess.createSender (q);

 drainQueue (sess, q);
 TextMessage msg = null;

 /* Send msgs to queue. */
 for (int i = 0; i < 3; i++)
 {
 // 5. Create message
 msg = sess.createTextMessage();
 msg.setText ("TestMessage:" + i);

 // set property of the recipient to be the MDB
 //and set the reply destination.
 msg.setStringProperty ("RECIPIENT", "MDB");
 msg.setJMSReplyTo(q);

 //6. send the message using the sender.
 snd.send (msg);

 // You can store the messages IDs and sent-time in a map (msgMap),
 // so that when messages are received, you can verify if you
 // *only* received those messages that you were
 // expecting. See receiveFromMDB() method where msgMap gets used.
 msgMap.put (msg.getJMSMessageID(), new Long (msg.getJMSTimestamp()));
 }

 // receive a reply from the MDB.

Client Access of MDB

9-24 Enterprise JavaBeans Developer’s Guide

 receiveFromMDB (sess, q);

 //7. Close sender, session, and connection for queue
 snd.close();
 sess.close();
 qconn.close();
 }
 catch (Exception e)
 {
 System.err.println ("** TEST FAILED **"+ e.toString());
 e.printStackTrace();
 }
 finally
 {
 }
 }

 /*
 * Receive any msgs sent to us via the MDB
 */
 private void receiveFromMDB (QueueSession sess, Queue q)
 throws Exception
 {
 //The MDB sends out a message (as a reply) to this client. The MDB sets
 // the receipient as CLIENT. Thus, we will only receive msgs that have
 // RECIPIENT set to 'CLIENT'
 QueueReceiver rcv = sess.createReceiver (q, "RECIPIENT = 'CLIENT'");

 int nrcvd = 0;
 long trtimes = 0L;
 long tctimes = 0L;
 // First msg needs to come from MDB. May take a little while
 //Receiving Messages
 for (Message msg = rcv.receive (30000); msg != null;
 msg = rcv.receive (30000))
 {
 nrcvd++;

 String rcp = msg.getStringProperty ("RECIPIENT");
 // Verify if msg in message Map
 // We check the msgMap to see if this is the message that we are
 // expecting.
 String corrid = msg.getJMSCorrelationID();
 if (msgMap.containsKey(corrid))
 {
 msgMap.remove(corrid);
 }
 else
 {
 System.err.println ("** received unexpected message
 [" + corrid + "] **");
 }
 }
 rcv.close();
 }

 /*
 * Drain messages from queue
 */
 private int drainQueue (QueueSession sess,

Client Access of MDB

Message-Driven Beans 9-25

 Queue q)
 throws Exception
 {

 QueueReceiver rcv = sess.createReceiver (q);
 int nrcvd = 0;

 /*
 * First drain any old msgs from queue
 */
 for (Message msg = rcv.receive(1000);
 msg != null;
 msg = rcv.receive(1000))
 nrcvd++;
 rcv.close();

 return nrcvd;
 }
}

Using a Logical Name When Client Accesses the MDB
If you want to use a logical name in your client application code, then define the
logical name in one of the following XML files:

� A standalone Java client—in the application-client.xml file

� An EJB that acts as a client—the ejb-jar.xml file

� For JSPs and servlets that act as clients—the web.xml file

Map the logical name to the actual name of the topic or queue name in the OC4J
deployment descriptors.

You can create logical names for the connection factory and Destination objects, as
follows:

� The connection factory is identified in the client's XML deployment descriptor file
within a <resource-ref> element.

– The logical name that you want the connection factory to be identified as is
defined in the <res-ref-name> element.

– The connection factory class type is defined in the <res-type> element as
either javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory.

– The authentication responsibility (Container or Bean) is defined in the
<res-auth> element.

– The sharing scope (Shareable or Unshareable) is defined in the
<res-sharing-scope> element.

� The JMS Destination—the topic or queue—is identified in a
<resource-env-ref> element.

– The logical name that you want the topic or queue to be identified as is
defined in the <resource-env-ref-name> element.

– The Destination class type is defined in the <resource-env-ref-type>
element as either javax.jms.Queue or javax.jms.Topic.

The following shows an example of how to specify logical names for a topic.

Client Access of MDB

9-26 Enterprise JavaBeans Developer’s Guide

<resource-ref>
 <res-ref-name>myTCF</res-ref-name>
 <res-type>javax.jms.TopicConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>rpTestTopic</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Topic</resource-env-ref-type>
</resource-env-ref>

Then, you map the logical names to actual names in the OC4J deployment descriptors.
The actual names, or JNDI names, are different in OracleAS JMS than in Oracle JMS.
However, the mapping is defined in one of the following files:

� For a standalone Java client—the orion-application-client.xml

� For an EJB acting as a client—the orion-ejb-jar.xml

� For JSPs and servlets acting as a client—the orion-web.xml file.

The logical names in the client's deployment descriptor are mapped as follows:

� The logical name for the connection factory defined in the <resource-ref>
element is mapped to its JNDI name in the <resource-ref-mapping> element.

� The logical name for the JMS Destination defined in the
<resource-env-ref> element is mapped to its JNDI name in the
<resource-env-ref-mapping> element.

See the following sections for how the mapping occurs for both OracleAS JMS and
Oracle JMS:

� JNDI Naming for OracleAS JMS

� JNDI Naming for Oracle JMS

JNDI Naming for OracleAS JMS
The JNDI name for the OracleAS JMS Destination and connection factory is defined by
you within the jms.xml file. As shown in "JMS Destination Object Configuration" on
page 9-10, the JNDI names for the topic and the topic connection factory are as follows:

� The JNDI name for the topic is "jms/Topic/rpTestTopic."

� The JNDI name for the topic connection factory is "jms/Topic/myTCF."

Prepend both of these names with "java:comp/env/" and you have the mapping in
the orion-ejb-jar.xml file as follows:

<resource-ref-mapping
 name="myTCF"
 location="java:comp/env/jms/Topic/myTCF">
</resource-ref-mapping>

<resource-env-ref-mapping
 name="rpTestTopic"
 location="java:comp/env/jms/Topic/rpTestTopic">
</resource-env-ref-mapping>

Client Access of MDB

Message-Driven Beans 9-27

JNDI Naming for Oracle JMS
The JNDI naming for Oracle JMS Destination and connection factory objects is the
same name that was specified in the orion-ejb-jar.xml file for the MDB as
described in "Specify the Destination and Connection Factory" on page 9-17.

The following example maps the logical names for the connection factory and topic to
their actual JNDI names. Specifically, the topic defined logically as "rpTestTopic" in
the ejb-jar.xml file is mapped to its JNDI name of
"java:comp/resource/cartojms1/Topics/rpTestTopic."

<resource-ref-mapping
 name="myTCF"
 location="java:comp/resource/myProvider/TopicConnectionFactories/myTCF">
</resource-ref-mapping>

<resource-env-ref-mapping
 name="rpTestTopic"
 location="java:comp/resource/myProvider/Topics/rpTestTopic">
</resource-env-ref-mapping>

Client Sends JMS Message Using Logical Names
Once the resources have been defined, the client sends a JMS message to the MDB by
doing the following:

1. Retrieve both the configured JMS Destination and its connection factory using
a JNDI lookup.

2. Create a connection from the connection factory. If you are receiving messages for
a queue, start the connection.

3. Create a session over the connection.

4. Providing the retrieved JMS Destination, create a sender for a queue, or a
publisher for a topic.

5. Create the message.

6. Send out the message using either the queue sender or the topic publisher.

7. Close the queue session. Close the connection for either JMS Destination types.

Example 9–7 JSP Client Sends Message to a Topic

The method of sending a message over a topic is almost the same. Instead of creating a
queue, you create a topic. Instead of creating a sender, you create subscribers.

The following JSP client code sends a message over a topic to the MessageBean MDB.
The code uses logical names, which should be mapped in the OC4J deployment
descriptor.

<%@ page import="javax.jms.*, javax.naming.*, java.util.*" %>
<%

//1a. Lookup the MessageBean topic
jndiContext = new InitialContext();
topic = (Topic)jndiContext.lookup("rpTestTopic");

//1b. Lookup the MessageBean Connection factory
topicConnectionFactory = (TopicConnectionFactory)
 jndiContext.lookup("myTCF");

//2 & 3. Retrieve a connection and a session on top of the connection

Windows Considerations When Using MDBs

9-28 Enterprise JavaBeans Developer’s Guide

topicConnection = topicConnectionFactory.createTopicConnection();
topicSession = topicConnection.createTopicSession(true,
 Session.AUTO_ACKNOWLEDGE);

//5. Create the publisher for any messages destined for the topic
topicPublisher = topicSession.createPublisher(topic);

//6. Send out the message
for (int ii = 0; ii < numMsgs; ii++)
{
 message = topicSession.createBytesMessage();
 String sndstr = "1::This is message " + (ii + 1) + " " + item;
 byte[] msgdata = sndstr.getBytes();
 message.writeBytes(msgdata);

 topicPublisher.publish(message);
 System.out.println("--->Sent message: " + sndstr);
}

//7. Close publisher, session, and connection for topic
topicPublisher.close();
topicSession.close();
topicConnection.close();

%>
Message sent!

Windows Considerations When Using MDBs
The oracle.mdb.fastUndeploy system property enables you to shutdown OC4J
cleanly when you are running MDBs in a Windows environment or when the backend
database is running on a Windows environment. Normally, when you use an MDB, it
is blocked in a receive state waiting for incoming messages. However, if you shutdown
OC4J while the MDB is in a wait state in a Windows environment, then the OC4J
instance cannot be stopped and the applications are not undeployed since the MDB is
blocked. However, you can modify the behavior of the MDB in this environment by
setting the oracle.mdb.fastUndeploy system property. If you set this property to
an integer, then when the MDB is not processing incoming messages and in a wait
state, the OC4J container goes out to the database (requiring a database round-trip)
and polls to see if the session is shut down. The integer denotes the number of seconds
the system waits to poll the database. This can be expensive for performance. If you set
this property to 60 (seconds), then every 60 seconds, OC4J is checking the database. If
you do not set this property and you try to shutdown OC4J using CTRL-C, the OC4J
process will hang for at least 2.5 hours.

Failover Scenarios When Using a RAC Database
An application that uses an RAC database must handle database failover scenarios.
The MDB run time does not fail over to the newly available database. To enable
failover, the deployment descriptors dequeue-retry-count and
dequeue-retry-interval must be specified in orion-ejb-jar.xml file. The
first parameter, dequeue-retry-count, tells the container how many times to retry
the database connection in case a failure happens; the default is 0. The second
parameter, dequeue-retry-interval, tells the container how long to wait between
attempts (to accommodate for the time it takes for database failover); the default value
is 60 (seconds).

Using Timers With Your MDB

Message-Driven Beans 9-29

These parameters are attributes of the <message-driven-deployment> element, as
shown in the following example:

<message-driven-deployment name="MessageBeanTpc"
 connection-factory-location=
 "java:comp/resource/cartojms1/TopicConnectionFactories/aqTcf"
 destination-location=
 "java:comp/resource/cartojms1/Topics/topic1"
 subscription-name="MDBSUB"
 dequeue-retry-count=3
 dequeue-retry-interval=90/>

A standalone OJMS client running against an RAC database must write similar code to
obtain the connection again, by invoking the API DbUtil.oracleFatalError(), to
determine if the connection object is invalid. It must then reestablish the database
connection if necessary. The following example outlines the logic:

getMessage(QueueSesssion session)
{
 try
 {
 QueueReceiver rcvr;
 Message msgRec = null;
 QueueReceiver rcvr = session.createReceiver(rcvrQueue);
 msgRec = rcvr.receive();
 }
 catch(Exception e)
 {
 if (exc instanceof JMSException)
 {
 JMSException jmsexc = (JMSException) exc;
 sql_ex = (SQLException)(jmsexc.getLinkedException());

 db_conn =
 (oracle.jms.AQjmsSession)session.getDBConnection();

 if ((DbUtil.oracleFatalError(sql_ex, db_conn))
 {
 // failover logic
 }
 }
 }
}

Using Timers With Your MDB
Your MDB can set up a timer where OC4J calls the bean at a specified time, after a
specified elapsed time, or at specified intervals. These timers are for use in modeling of
application-level processes, not for real-time events. For more information on how to
set up timers, see Chapter 11, "Using Timers".

Note: The RAC-enabled attribute of a data source is discussed in
Data Sources chapter in the Oracle Application Server Containers
for J2EE Services Guide.

(RAC is real application clusters. For more information on using
this flag with an infrastructure database, see The Oracle9iAS High
Availability Guide.)

Using Timers With Your MDB

9-30 Enterprise JavaBeans Developer’s Guide

Understanding Environment, Deployment, and Packaging 10-1

10
Understanding Environment, Deployment,

and Packaging

Part of development includes setting up the environment, as well as packaging and
deploying your applications.

� Directory Structure Recommendations for EJB Development

� Create the Deployment Descriptor

� Archive the EJB Application

� Prepare the EJB Application for Assembly

� Deploy the Enterprise Application to OC4J

� Sharing Classes

� Configuring Environment References

Directory Structure Recommendations for EJB Development
Although you can develop your application in any manner, we encourage you to use
consistent naming for locating your application easily. One method would be to
implement your enterprise Java application under a single parent directory structure,
separating each module of the application into its own subdirectory.

The hello example was developed using the directory structure mentioned in the
Oracle Application Server Containers for J2EE User’s Guide. Notice in Figure 10–1 that the
EJB and Web modules exist under the hello application parent directory and are
developed separately in their own directory.

Create the Deployment Descriptor

10-2 Enterprise JavaBeans Developer’s Guide

Figure 10–1 Hello Directory Structure

Create the Deployment Descriptor
After implementing and compiling your classes, you must create the standard J2EE
EJB deployment descriptor for all beans in the module. The XML deployment
descriptor (defined in the ejb-jar.xml file) describes the EJB module of the
application. It describes the types of beans, their names, and attributes. The structure
for this file is mandated in the DTD file, which is provided at "
http://java.sun.com/dtd/ejb-jar_2_0.dtd".

Any EJB container services that you want to configure is also designated in the
deployment descriptor. For information about data sources and JTA, see the Oracle
Application Server Containers for J2EE Services Guide. For information about security, see
the Oracle Application Server Containers for J2EE Security Guide.

After creation, place the deployment descriptors for the EJB application in the
META-INF directory that is located in the same directory as the EJB classes. See
Figure 10–2 for more information.

The following example shows the sections that are necessary for the Hello example,
which implements both a remote and a local interface.

Example 10–1 XML Deployment Descriptor for Hello Bean

The following is the deployment descriptor for a version of the Hello example that
uses a stateless session bean. This example defines both the local and remote

Note: For EJB modules, the top of the module (ejb_module)
represents the start of a search path for classes. As a result, classes
belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to a
package class 'myapp.Hello.class' is expected to be located in
"...hello/ejb_module/myapp/Hello.class".

../hello/

META-INF/

META-INF/

HTML files
JSP pages
WEB-INF/

web.xml
orion-web.xml
classes/

application.xml
orion-application.xml

Servlet classes
(HelloServlet.class)

<ejb_module>/

<web_module>/

lib/

dependent libraries

orion-ejb-jar.xml
ejb-jar.xml

EJB classes (Hello.class, ...)

Archive the EJB Application

Understanding Environment, Deployment, and Packaging 10-3

interfaces. You do not have to define both interface types; you may define only one of
them.

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <display-name>hello</display-name>
 <description>
 An EJB app containing only one Stateless Session Bean
 </description>
 <enterprise-beans>
 <session>
 <description>no description</description>
 <display-name>HelloBean</display-name>
 <ejb-name>HelloBean</ejb-name>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.HelloLocal</local>
 <ejb-class>hello.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>HelloBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 <security-role>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

Archive the EJB Application
After you have finalized your implementation and created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should include
all EJB application files and the deployment descriptor.

Note: You can download this example on OTN from the OC4J
sample code page at
http://www.oracle.com/technology/tech/java/oc4j/de
mos/ on the OTN Web site.

Note: If you have included a Web application as part of this
enterprise Java application, follow the instructions for building the
Web application in the Oracle Application Server Containers for J2EE
User’s Guide.

Prepare the EJB Application for Assembly

10-4 Enterprise JavaBeans Developer’s Guide

For example, to archive your compiled EJB class files and XML files for the Hello
example into a JAR file, perform the following in the ../hello/ejb_module
directory:

% jar cvf helloworld-ejb.jar .

This archives all files contained within the ejb_module subdirectory within the JAR
file.

Prepare the EJB Application for Assembly
To prepare the application for deployment, you do the following:

1. Modify the application.xml file with the modules of the enterprise Java
application.

2. Archive all elements of the application into an EAR file.

These steps are described in the following sections:

� Modify the Application.XML File

� Create the EAR File

Modify the Application.XML File
The application.xml file acts as the manifest file for the application and contains a
list of the modules that are included within your enterprise application. You use each
<module> element defined in the application.xml file to designate what
comprises your enterprise application. Each module describes one of three things: EJB
JAR, Web WAR, or any client files. Respectively, designate the <ejb>, <web>, and
<java> elements in separate <module> elements.

� The <ejb> element specifies the EJB JAR filename.

� The <web> element specifies the Web WAR filename in the <web-uri> element,
and its context in the <context> element.

� The <java> element specifies the client JAR filename, if any.

As Figure 10–2 shows, the application.xml file is located under a META-INF
directory under the parent directory for the application. The JAR, WAR, and client JAR
files should be contained within this directory. Because of this proximity, the
application.xml file refers to the JAR and WAR files only by name and relative
path—not by full directory path. If these files were located in subdirectories under the
parent directory, then these subdirectories must be specified in addition to the
filename.

Figure 10–2 Archive Directory Format

Deploy the Enterprise Application to OC4J

Understanding Environment, Deployment, and Packaging 10-5

For example, the following example modifies the <ejb>, <web>, and <java> module
elements within application.xml for the Hello EJB application that also contains a
servlet that interacts with the EJB.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application
1.2//EN" "http://java.sun.com/j2ee/dtds/application_1_2.dtd">
<application>
 <display-name>helloworld j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Helloworld Session Bean
 on the server and calls from java/servlet/JSP clients.
 </description>
 <module>
 <ejb>helloworld-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>helloworld-web.war</web-uri>
 <context-root>/helloworld</context-root>
 </web>
 </module>
 <module>
 <java>helloworld-client.jar</java>
 </module>
</application>

Create the EAR File
Create the EAR file that contains the JAR, WAR, and XML files for the application.
Note that the application.xml file serves as the EAR manifest file.

To create the helloworld.ear file, execute the following in the hello directory
contained in Figure 10–2:

% jar cvf helloworld.ear .

This step archives the application.xml, the helloworld-ejb.jar, the
helloworld-web.war, and the helloworld-client.jar files into the
helloworld.ear file.

Deploy the Enterprise Application to OC4J
After archiving your application into an EAR file, deploy the application to OC4J. See
the Oracle Application Server Containers for J2EE User’s Guide for information on how to
deploy your application.

Out Of Memory Error During Deployment
If the deployment process is interrupted for any reason, you may need to clean up the
temp directory, which by default is /var/tmp, on your system. The deployment
wizard uses 20 MB in swap space of the temp directory for storing information during
the deployment process. At completion, the deployment wizard cleans up the temp
directory of its additional files. However, if the wizard is interrupted, it may not have
the time or opportunity to clean up the temp directory. Thus, you must clean up any
additional deployment files from this directory yourself. If you do not, this directory
may fill up, which will disable any further deployment. If you receive an Out of
Memory error, check for space available in the temp directory.

Sharing Classes

10-6 Enterprise JavaBeans Developer’s Guide

To change the temp directory, set the command-line option for the OC4J process to
java.io.tmpdir=<new_tmp_dir>. You can set this command-line option in the
Server Properties page. Drill down to the OC4J Home Page. Scroll down to the
Administration Section. Select Server Properties. On this page, Scroll down to the
Command Line Options section and add the java.io.tmpdir variable definition to the
OC4J Options line. All new OC4J processes will start with this property.

Sharing Classes
If you want to share classes between EJBs, you can do one of the following:

� If two EJBs use the same classes, include all classes and the EJBs in the same JAR
file. After deployment, both EJBs can use the common classes.

� Place the shared classes in its own JAR file in the application. Reference the shared
JAR file in the class-path of the EJB JAR manifest.mf file, as follows:

class-path:shared_classes.jar

The location of the shared_classes.jar is relative to where the JAR that
references is located in the EAR file. In this example, the shared_classes.jar
file is at the same level as the EJB JAR.

� If all applications reference these classes, archive the shared classes in a JAR file
and place this JAR file in the shared library directory of the default application.
The home/lib is a default shared library. However, you can set shared library
directories using Enterprise Manager in the General Properties page of the
"default" application.

� If you want only certain applications to reference these classes, archive the shared
classes in its own application, deploy the EAR for the application, and have the
applications that reference the shared classes declare the shared classes application
as its parent. The default parent in Oracle9iAS is the "default" application.

The children see the namespace of its parent application. This is used in order to
share services such as EJBs among multiple applications. See the Oracle Application
Server Containers for J2EE User’s Guide for directions on how to specify a parent
application.

If you want to share classes between EJB and Web applications, you should place the
referenced classes in a shared JAR.

If you receive a ClassCastException, then you probably have the following
situation:

� You copied EJB interfaces into the WAR where the servlet resides for ease in
development and forgot to delete them before creating the WAR file AND

� You turned on the search_local_classes_first attribute of the
<web-app-class-loader> element in the orion-web.xml file.

To solve this problem, either eliminate the copied classes out of the WAR file or turn
off the search_local_classes_first attribute. This attribute tells the class loader to load in
the classes in the WAR file before loading in any other classes, including the classes
within the EJB JAR file. For more information on this attribute, see the "Loading WAR
File Classes Before System Classes in OC4J" section in the "Servlet Development"
chapter of the Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

Sharing Classes

Understanding Environment, Deployment, and Packaging 10-7

Out of Memory During Execution
If you see that the OC4J memory is growing consistently while executing, then you
may have invalid symbolic links in your application.xml file. OC4J loads all
resources using the links in the application.xml file. If these links are invalid, then
the C heap continues to grow causing OC4J to run out of memory. Ensure that all
symbolic links are valid and restart OC4J.

In addition, keep the number of JAR files to a minimum in the in the directories where
the symbolic links point. Eliminate all unused JARs from these directories. OC4J
searches all JARs for classes and resources; thus, taking time and memory
consumption by the file cache, as well as being mapped into the address space.

ClassCastException
When you have an EJB or Web application that references other shared EJB classes,
you should place the referenced classes in a shared JAR. In certain situations, if you
copy the shared EJB classes into WAR file or another application that references them,
you may receive a ClassCastException because of a class loader issue. To be
completely safe, never copy referenced EJB classes into the WAR file of its application
or into another application.

Static Block in an EJB
During EJB deployment in OC4J, you load the bean class to find out its methods so
that you can generate EJB wrappers. Because the code in the static block is executed as
the class is being loaded, the JNDI environment context is not yet set up. Even during
runtime, the bean is in the "does not exist" stage. In this stage of the life cycle, the JNDI
environment context is undefined, and the bean provider cannot rely on it to be
available.

To work around this problem, set up and cache the context during the construction of
the bean, in the ejbCreate() method, or in the setSessionContext() method.

OC4J Instances Terminating Due To ping Timeout
Under some conditions, the OPMN process monitoring software in Oracle Application
Server may lose contact with an OC4J process. This can occur because of unexpected
delays in the hearbeat protocol used by OPMN and OC4J to verify the proper
functioning of the OC4J instance.

If this problem occurs sporadically, you can try increasing the ping timeout parameters
as described in the following instructions.

However, if this occurs regularly, due to a consistent resource shortage, then you must
increase the available hardware resources to solve the problem.

The following conditions can cause this problem:

� An overloaded host processor

� One or more computation-intensive applications running in the OC4J instance.

� Deployment of applications with large numbers (hundreds) of EJBs. Full garbage
collections of large heaps can cause the OC4J process to become less responsive
during the garbage collection phase. Although this should not occur during
normal usage, deployment of large applications with many EJBs in a
memory-constrained environment can trigger this behavior.

Configuring Environment References

10-8 Enterprise JavaBeans Developer’s Guide

You can configure the behavior of the "ping protocol" between OPMN and OC4J in the
opmn.xml configuration file.

When OC4J exceeds the timeout intervals specified for the ping protocol, the process
monitoring software decides that the OC4J process has stopped responding and,
therefore, terminates the OC4J process.

If you suspect this behavior in an Oracle Application Server installation, then use the
following steps to troubleshoot and work around:

1. When OC4J instances are "mysteriously" terminating, first increase diagnostic
logging to determine if ping failures are triggering the termination:

a. Increase the OPMN logging level to 5 so that you can see the pings.

In the opmn/conf/opmn.xml file, edit the following line:

log-file path="$ORACLE_HOME/opmn/logs/ipm.log" level="5" ...

b. Reload the daemon.

opmn/bin/opmnctl reload

2. Look in opmn/logs/ipm.log for the following line :

Process Ping Failed: OC4J~<instance name>~default_island~1 (opmnid)

3. The line above indicates that the memory and CPU resources of the current host
are probably not sufficient to perform the operation within the currently specified
ping timeout interval (used by OPMN to determine OC4J "responsiveness").

Change the settings as follows:

a. Increase the timeout and interval. For example:

<ping timeout="60" interval="60"/>"
<data id="reverseping-failed-ping-limit" value="5" />

b. Reload the daemon.

opmn/bin/opmnctl reload

c. Restart the appropriate OC4J instance.

4. Repeat the top-level operation that caused the timeout failure.

Configuring Environment References
You can create three types of environment elements that are accessible to your bean
during runtime: environment variables, EJB references, and resource managers. These
environment elements are static and can not be changed by the bean.

ISVs typically develop EJBs that are independent from the EJB container. In order to
distance the bean implementation from the container specifics, you can create
environment elements that map to one of the following: defined variables, entity
beans, or resource managers. This indirection enables the bean developer to refer to
existing variables, EJBs, and a JDBC DataSource without specifying the actual name.
These names are defined in the deployment descriptor and are linked to the actual
names within the OC4J-specific deployment descriptor.

Configuring Environment References

Understanding Environment, Deployment, and Packaging 10-9

Environment Variables
You can create environment variables that your bean accesses through a lookup on the
InitialContext. These variables are defined within an <env-entry> element and
can be of the following types: String, Integer, Boolean, Double, Byte, Short,
Long, and Float. The name of the environment variable is defined within
<env-entry-name>, the type is defined in <env-entry-type>, and its initialized
value is defined in <env-entry-value>. The <env-entry-name> is relative to the
"java:comp/env" context.

For example, the following two environment variables are declared within the XML
deployment descriptor for java:comp/env/minBalance and
java:comp/env/maxCreditBalance.

<env-entry>
 <env-entry-name>minBalance</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>500</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>maxCreditBalance</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10000</env-entry-value>
</env-entry>

Within the bean's code, you would access these environment variables through the
InitialContext, as follows:

InitialContext ic = new InitialContext();
Integer min = (Integer) ic.lookup("java:comp/env/minBalance");
Integer max = (Integer) ic.lookup("java:comp/env/maxCreditBalance"));

Notice that to retrieve the values of the environment variables, you prefix each
environment element with "java:comp/env/", which is the location that the
container stored the environment variable.

If you wanted the value of the environment variable to be defined in the OC4J-specific
deployment descriptor, you can map the <env-entry-name> to the
<env-entry-mapping> element in the OC4J-specific deployment descriptor. This
means that the value specified in the orion-ejb-jar.xml file overrides any value
that may be specified in the ejb-jar.xml file. The type specified in the EJB
deployment descriptor stays the same.

Figure 10–3 shows how the minBalance environment variable is defined as 500
within the OC4J-specific deployment descriptor.

Figure 10–3 Environment Variable Mapping

O
_1

04
7

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

<env-entry>
 <env-entry-name>minBalance</env-entry-name>

 .

 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>300</env-entry-value>

 <env-entry-mapping
 name="minBalance">
 500</env-entry-mapping>

 </env-entry>

Configuring Environment References

10-10 Enterprise JavaBeans Developer’s Guide

Environment References To Other Enterprise JavaBeans
You can define an environment reference to an EJB through either its local or remote
interface within the deployment descriptor. If your bean calls out to another bean, you
can enable your bean to invoke the second bean using a reference defined within the
deployment descriptors. You create a logical name within the EJB deployment
descriptor, which is mapped to the concrete name of the bean within the OC4J-specific
deployment descriptor.

Declaring the target bean as an environment reference provides a level of indirection:
the originating bean can refer to the target bean with a logical name.

A reference to the local interface of a bean is defined in an <ejb-local-ref>
element; a reference to the remote interface of a bean is defined in an <ejb-ref>
element.

To define a reference to another EJB within the JAR or in a bean declared as a parent,
you provide the following:

1. Name—provide a name for the target bean. This name is what the bean uses
within the JNDI location for accessing the target bean. The name should begin
with "ejb/", such as "ejb/myEmployee", and will be available within the
"java:comp/env/ejb" context.

– This name can be the actual name of the bean; that is, the name defined within
the <ejb-name> element in the <session> or <entity> elements.

– This name can be a logical name that you want to use in your implementation.
But it is not the actual name of the bean. If you use a logical name, the actual
name must either be specified in the <ejb-link> element or
<ejb-ref-mapping> element in the OC4J-specific deployment descriptor.

2. Type—define whether the bean is a session or an entity bean. Value should be
either "Session" or "Entity".

3. Home—provide the fully qualified home interface name.

4. Remote—provide the fully qualified remote interface name.

5. Link—provide the EJB name of the target bean. This is optional and only used if
you used a logical name in the name attribute.

Examples of References to a Local Interface
If you have two beans in the JAR: BeanA and BeanB. If BeanB creates a reference to
the local interface of BeanA, you can define this reference in one of three methods:

� Provide the actual name of the bean. BeanB would define the following
<ejb-local-ref> within its definition:

<ejb-local-ref>
 <ejb-ref-name>myBeans/BeanA</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanALocalHome</local-home>
 <local>myBeans.BeanALocal</local>
</ejb-local-ref>

Since the EJB name of the target is specified in the <ejb-ref-name> element, no
<ejb-link> is necessary for this method. However, the BeanB implementation
must refer to BeanA in the JNDI retrieval, which would use
java:comp/env/myBeans/BeanA for retrieval within an EJB or Java client and
use "myBeans/BeanA" within a servlet.

Configuring Environment References

Understanding Environment, Deployment, and Packaging 10-11

� Provide the EJB name of the bean in the <ejb-link> element. You can use any
logical name in your bean implementation for the JNDI retrieval by defining a
logical name in the <ejb-ref-name> element and then map it to the target bean
by specifying the target EJB name in the <ejb-link> element. The following
defines a logical name of ejb/nextVal that this bean can use in its code in the
JNDI retrieval. The container maps it to the target bean, myBeans/BeanA, which
is specified in the <ejb-link> element.

<ejb-local-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanALocalHome</local-home>
 <local>myBeans.BeanALocal</local>
 <ejb-link>myBeans/BeanA</ejb-link>
</ejb-local-ref>

BeanB would use java:comp/env/ejb/nextVal in the JNDI retrieval of
BeanA.

� Provide the logical name of the bean in the <ejb-ref-name> and the actual
name of the bean in the <ejb-ref-mapping> element in the OC4J-specific
deployment descriptor.

The reference in the EJB deployment descriptor would be as follows:

<ejb-local-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>myBeans.BeanALocalHome</local-home>
 <local>myBeans.BeanALocal</local>
</ejb-local-ref>

The "ejb/nextVal" logical name is mapped to an actual name in the
OC4J-deployment descriptor as follows:

<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

BeanB would use java:comp/env/ejb/nextVal in the JNDI retrieval of
BeanA.

As shown in Figure 10–4, the logical name for the bean is mapped to the JNDI name by
providing the same name, "ejb/nextVal", in both the <ejb-ref-name> in the EJB
deployment descriptor and the name attribute within the <ejb-ref-mapping>
element in the OC4J-specific deployment descriptor.

Note: Servlets do not require the prefix of "java:comp/env" in
the JNDI lookup. Thus, they will always either reference just the
actual JNDI name or the logical name of the EJB.

Configuring Environment References

10-12 Enterprise JavaBeans Developer’s Guide

Figure 10–4 EJB Reference Mapping

Accessing EJBs Using Environment References
To access a bean from within your implementation using a reference, use the
<ejb-ref-name> defined in the EJB deployment descriptor in the JNDI lookup.

If you are using the default context when you retrieve the InitialContext, then
you can do one of the following:

� Prefix the logical name defined within the <ejb-ref-name> element with
"java:comp/env/ejb/", which is where the container places the EJB references
defined in the deployment descriptor.

� Do not prefix the logical name with any string and supply only the logical name
defined in the <ejb-ref-name>.

The following is a lookup from an EJB client, using the java:comp/env prefix,
assuming that the logical name is "ejb/HelloWorld."

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("java:comp/env/ejb/HelloWorld");

The following is a lookup using only the logical name of "ejb/HelloWorld."

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("ejb/HelloWorld");

However, if you are not using the default context, but are specifically using another
context, such as the RMIInitialContext object, you can only use the logical name,
as follows:

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("ejb/HelloWorld");

Example 10–2 Defining a Local EJB Reference Within the Environment

The following example defines a reference to the local interface of the Hello bean, as
follows:

1. The logical name used for the target bean within the originating bean is
"java:comp/env/ejb/HelloWorld".

2. The target bean is a session bean.

3. Its local home interface is hello.HelloLocalHome; its local interface is
hello.HelloLocal.

4. The <ejb-ref-name> attribute is the logical name used within the originating
bean. This is optional. In this example, this bean is defined in the EJB deployment
descriptor under the "ejb/HelloWorld" name.

<ejb-local-ref>
 <description>Hello World Bean</description>

O
_1

04
8

<ejb-ref>

 <ejb-ref-name>ejb/nextVal</ejb-ref-name>

</ejb-ref>

 <ejb-ref-mapping
 name="ejb/nextVal"
 location="myBeans/BeanA" />

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

Configuring Environment References

Understanding Environment, Deployment, and Packaging 10-13

 <ejb-ref-name>ejb/HelloWorld</description>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.Hello.Local</local>
</ejb-local-ref>

The <ejb-ref-name> element in the EJB deployment descriptor is mapped to
the name attribute within the <ejb-ref-mapping> element in the OC4J-specific
deployment descriptor by providing the same logical name in both elements. The
Oracle-specific deployment descriptor would have the following definition to map
the logical bean name of "java:comp/env/ejb/HelloWorld" to the JNDI
location "/test/myHello":

<ejb-ref-mapping
 name="ejb/HelloWorld"
 location-"/test/myHello"/>

To invoke this bean from within your implementation, you use the
<ejb-ref-name> defined in the EJB deployment descriptor. In EJB or pure Java
clients, you prefix this name with "java:comp/env/ejb/", which is where the
container places the EJB references defined in the deployment descriptor. Servlets
only require the logical name defined in the <ejb-ref-name>.

The following is a lookup from an EJB, acting as a client:

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("java:comp/env/ejb/HelloWorld");

Alternatively, you could lookup the name, as follows:

InitialContext ic = new InitialContext();
HelloHome hh = (HelloHome)ic.lookup("ejb/HelloWorld");

Examples of References to a Remote Interface
Defining a reference to a remote interface uses exactly the same rules as the local
interface, as described in "Examples of References to a Local Interface" on page 10-10.
The only difference is as follows:

� Use the <ejb-ref> instead of the <ejb-local-ref> element.

� Use the <home> and <remote> elements instead of the <local-home> and
<local> elements.

Everything else is the same.

The following uses an example with two beans in the JAR: BeanA and BeanB. If
BeanB creates a reference to BeanA, you can define this reference in one of three
methods:

� Provide the actual name of the bean.

<ejb-ref>
 <ejb-ref-name>myBeans/BeanA</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
</ejb-ref>

� Provide the EJB name of the bean in the <ejb-link> element.

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>

Configuring Environment References

10-14 Enterprise JavaBeans Developer’s Guide

 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
 <ejb-link>myBeans/BeanA</ejb-link>
</ejb-ref>

� Provide the logical name of the bean in the <ejb-ref-name> and the actual
name of the bean in the <ejb-ref-mapping> element in the OC4J-specific
deployment descriptor.

<ejb-ref>
 <ejb-ref-name>ejb/nextVal</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>myBeans.BeanAHome</home>
 <remote>myBeans.BeanA</remote>
</ejb-ref>

The "ejb/nextVal" logical name is mapped to an actual name in the
OC4J-deployment descriptor as follows:

<ejb-ref-mapping name="ejb/nextVal" location="myBeans/BeanA"/>

Refer to "Examples of References to a Local Interface" on page 10-10 for more
description and a code example.

Environment References To Resource Manager Connection Factory References
The resource manager connection factory references can include resource managers
such as JMS, Java mail, URL, and JDBC DataSource objects. Similar to the EJB
references, you can access these objects from JNDI by creating an environment element
for each object reference. However, these references can only be used for retrieving the
object within the bean that defines these references. Each is fully described in the
following sections:

� JDBC DataSource

� Mail Session

� URL

JDBC DataSource
You can access a database through JDBC either using the traditional method or by
creating an environment element for a JDBC DataSource. In order to create an
environment element for your JDBC DataSource, you must do the following:

1. Define the DataSource in the data-sources.xml file.

2. Create a logical name within the <res-ref-name> element in the EJB
deployment descriptor. This name should always start with "jdbc". In the bean
code, the lookup of this reference is always prefaced by "java:comp/env/jdbc".

3. Map the logical name within the EJB deployment descriptor to the JNDI name,
created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "java:comp/env/jdbc"
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 10–5, the JDBC DataSource uses the JNDI name
"test/OrderDataSource". The logical name that the bean knows this resource as is
"jdbc/OrderDB". These names are mapped together within the OC4J-specific
deployment descriptor. Thus, within the bean's implementation, the bean can retrieve

Configuring Environment References

Understanding Environment, Deployment, and Packaging 10-15

the connection to OrderDataSource by using the
"java:comp/env/jdbc/OrderDB" environment element.

Figure 10–5 JDBC Resource Manager Mapping

Example 10–3 Defining an environment element for JDBC Connection

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "jdbc/OrderDB", its type of javax.sql.DataSource,
and the authenticator of "Application":

<resource-ref>
 <res-ref-name>jdbc/OrderDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

The environment element of "jdbc/OrderDB" is mapped to the JNDI bound name for
the connection, "test/OrderDataSource" within the Oracle-specific deployment
descriptor.

resource-ref-mapping
 name="jdbc/OrderDB"
 location="test/OrderDataSource"/>

Once deployed, the bean can retrieve the JDBC DataSource as follows:

javax.sql.DataSource db;
java.sql.Connection conn;
.
.
.
db = (javax.sql.DataSource) initCtx.lookup("java:comp/env/jdbc/OrderDB");
conn = db.getConnection();

Mail Session
You can create an environment element for a Java mail Session object through the
following:

1. Bind the javax.mail.Session reference within the JNDI name space in the
application.xml file using the <mail-session> element, as follows:

<mail-session location="mail/MailSession"
 smtp-host="mysmtp.oraclecorp.com">
 <property name="mail.transport.protocol" value="smtp"/>

Note: This example assumes that a DataSource is specified in
the data-sources.xml file with the JNDI name of
"/test/OrderDataSource".

O
_1

04
9

<enterprise-beans>
 .
<resource-ref>
 <res-ref-name>jdbc/OrderDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>

 <resource-ref-mapping
 name="jdbc/OrderDB"
 location="test/OrderDataSource"/>

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

Configuring Environment References

10-16 Enterprise JavaBeans Developer’s Guide

 <property name="mail.smtp.from" value="emailaddress@oracle.com"/>
</mail-session>

The location attribute contains the JNDI name specified in the location attribute of
the <resource-ref-mapping> element in the OC4J-specific deployment
descriptor.

2. Create a logical name within the <res-ref-name> element in the EJB
deployment descriptor. This name should always start with "mail". In the bean
code, the lookup of this reference is always prefaced by "java:comp/env/mail".

3. Map the logical name within the EJB deployment descriptor to the JNDI name,
created in step 1, within the OC4J-specific deployment descriptor.

4. Lookup the object reference within the bean with the "java:comp/env/mail"
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 10–6, the Session object was bound to the JNDI name
"/test/myMailSession". The logical name that the bean knows this resource as is
"mail/testMailSession". These names are mapped together within the
OC4J-specific deployment descriptor. Thus, within the bean's implementation, the
bean can retrieve the connection to the bound Session object by using the
"java:comp/env/mail/testMailSession" environment element.

Figure 10–6 Session Resource Manager Mapping

This environment element is defined with the following information:

Example 10–4 Defining an environment element for Java mail Session

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "mail/testMailSession", its type of
javax.mail.Session, and the authenticator of "Application":

<resource-ref>
 <res-ref-name>mail/TestMailSession</res-ref-name>
 <res-type>javax.mail.Session</res-type>

Element Description

<res-ref-name> The logical name of the Session object to be used within the
originating bean. The name should be prefixed with "mail/". In our
example, the logical name for our mail session is
"mail/testMailSession".

<res-type> The Java type of the resource. For the Java mail Session object, this
is javax.mail.Session.

<res-auth> Define who is responsible for signing on to the database. The value
can be "Application" or "Container" based on who provides the
authentication information.

O
_1

05
0

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

<enterprise-beans>
 .

<resource-ref>
 <res-ref-name>mail/testMailSession</res-ref-name>
 <res-type>javax.mail.Session</res-type>

 <resource-ref-mapping
 name="mail/testMailSession"
 location="/test/myMailSession" />

 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>

Configuring Environment References

Understanding Environment, Deployment, and Packaging 10-17

 <res-auth>Application</res-auth>
</resource-ref>

The environment element of "mail/testMailSession" is mapped to the JNDI
bound name for the connection, "test/myMailSession" within the OC4J-specific
deployment descriptor:

<resource-ref-mapping
 name="mail/TestMailSession"
 location="/test/myMailSession"/>

Once deployed, the bean can retrieve the Session object reference as follows:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("java:comp/env/mail/testMailSession");

//The following uses the mail session object
//Create a message object
MimeMessage msg = new MimeMessage(session);

//Construct an address array
String mailTo = "whosit@oracle.com";
InternetAddress addr = new InternetAddress(mailto);
InternetAddress addrs[] = new InternetAddress[1];
addrs[0] = addr;

//set the message parameters
msg.setRecipients(Message.RecipientType.TO, addrs);
msg.setSubject("testSend()" + new Date());
msg.setContent(msgText, "text/plain");

//send the mail message
Transport.send(msg);

URL
You can create an environment element for a Java URL object through the following:

1. Create a logical name within the <res-ref-name> element in the EJB
deployment descriptor. This name should always start with "url". In the bean
code, the lookup of this reference is always prefaced by "java:comp/env/url".

2. Map the logical name within the EJB deployment descriptor to the URL within the
OC4J-specific deployment descriptor.

3. Lookup the object reference within the bean with the "java:comp/env/url"
preface and the logical name defined in the EJB deployment descriptor.

As shown in Figure 10–7, the URL object was bound to the URL
"http://www.myURL.com". The logical name that the bean knows this resource as is
"url/testURL". These names are mapped together within the OC4J-specific
deployment descriptor. Thus, within the bean's implementation, the bean can retrieve
a reference to the URL object by using the "java:comp/env/url/testURL"
environment element.

Configuring Environment References

10-18 Enterprise JavaBeans Developer’s Guide

Figure 10–7 URL Resource Manager Mapping

This environment element is defined with the following information:

Example 10–5 Defining an Environment Element for a URL

The environment element is defined within the EJB deployment descriptor by
providing the logical name, "url/testURL", its type of java.net.URL, and the
authenticator of "Application":

<resource-ref>
 <res-ref-name>url/testURL</res-ref-name>
 <res-type>java.net.URL</res-type>
 <res-auth>Application</res-auth>
</resource-ref>

The environment element of "url/testURL" is mapped to the URL
"http://www.myURL.com" within the OC4J-specific deployment descriptor:

<resource-ref-mapping
 name="url/testURL"
 location="http://www.myURL.com"/>

Once deployed, the bean can retrieve the URL object reference as follows:

InitialContext ic = new InitialContext();
URL url = (URL) ic.lookup("java:comp/env/url/testURL");

//The following uses the URL object
URLConection conn = url.openConnection();

Element Description

<res-ref-name> The logical name of the URL object to be used within the originating
bean. The name should be prefixed with "url/". In our example, the
logical name for our URL is "url/testURL".

<res-type> The Java type of the resource. For the Java URL object, this is
java.net.URL.

<res-auth> Define who is responsible for signing on to the database. At this time,
the only value supported is "Application". The application provides
the authentication information.

O
_1

05
1

EJB Deployment Descriptor OC4J-specific
Deployment Descriptor

<enterprise-beans>

<resource-ref>
 <res-ref-name>url/testURL</res-ref-name>
 <res-type>java.net.URL</res-type>

 <resource-ref-mapping
 name="url/testURL"
 location="http://www.myURL.com"

 <res-auth>Application</res-auth>

</enterprise-beans>
</resource-ref>

Using Timers 11-1

11
Using Timers

 You can use timers within all types of EJBs—except stateful session beans. The EJB can
set up a timer where OC4J calls the bean either at a specified time, after a specified
elapsed time, or at specified intervals. These timers are for use in modeling of
application-level processes, not for real-time events.

The following sections describe how to use timers:

� How to Create Timers

� Configuring Regularly Scheduled Timers (Cron Timers)

� How to Retrieve Information About the Timer

� Executing the Timer Within the Scope of a Transaction

� What Does a NoSuchObjectLocalException Mean with Timers?

How to Create Timers
The EJB that creates the timer first retrieves the timer service—TimerService
interface—through the getTimerService method of the EJBContext interface.
From the TimerService interface, you can create a timer using one of the four
provided createTimer methods that allow you to specify the timer as a single-event
timer or as an interval timer. The timers are defined in milliseconds, even though most
events are for much longer time periods. The expiration of the timer can be defined as
a duration or in absolute time. In addition, the bean can pass some information to
identify the timer, which must be serializable.

TimerService ts = ctx.getTimerService();
Timer myTimer = ts.createTimer(timeout, "EmpDurationTimer");

The timer is created by a bean to designate when a callback method is invoked. The
business logic that is to be executed when the timer expires is implemented in a
callback method—ejbTimeout—within the application bean class. The bean class
that uses the timer service must implement the javax.ejb.TimedObject interface,
which contains the ejbTimeout method.

The created timer is associated with the identity of the bean. For entity beans, the
ejbTimeout is invoked on the bean instance that created the bean; for stateless
session beans and MDBs, the ejbTimeout method is invoked on any bean instance in
the pool.

public abstract class EmployeeBean implements EntityBean, TimedObject
...
 public void ejbTimeout(Timer timer)
 {

Configuring Regularly Scheduled Timers (Cron Timers)

11-2 Enterprise JavaBeans Developer’s Guide

 System.out.println("ejbTimeout() called at: " + new
 Date(System.currentTimeMillis()) + " with info: " + timer.getInfo());
 return;
 }

The TimerService provides the following methods for creating the different types of
timers:

public interface javax.ejb.TimerService {
 /* After a specified duration*/
 public Timer createTimer(long duration, java.io.Serializable info);
 /* At a specifed interval */
 public Timer createTimer(long initialDuration, long intervalDuration,
 java.io.Serializable info);
 /* At a certain time */
 public Timer createTimer(java.util.Date expiration, java.io.Serializable info);
 /* A certain duration after a specified date and time */
 public Timer createTimer(java.util.Date initialExpiration,
 long intervalDuration, java.io.Serializable info);
 public Collection getTimers();
}

The getTimers method retrieves all active timers associated with the bean.

Configuring Regularly Scheduled Timers (Cron Timers)
You can schedule a timer to execute regularly at specified intervals. In the UNIX
world, these are known as cron timers.

The following are examples of the different methods you can use in scheduling a cron
timer. Where there is an asterisk, all values are valid.

Example 11–1 How to Configure Different Timers

20 * * * * --> 20 minutes after every hour, such as 00:20, 01:20, and so on
 5 22 * * * --> Every day at 10:05 P.M.
 0 8 1 * * --> First day of every month at 8:00 A.M.
 0 8 4 7 * --> The fourth of July at 8:00 A.M.
15 12 * * 5 --> Every Friday at 12:15 P.M.

The format of a cron time variable includes five time fields:

� Minute: 0-59

� Hour: 0-23

� Day of the Month: 1-31

� Month: 1-12 or specify with the following strings: Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec

Note: There is no guarantee that the timers are executed in any
order; therefore, your implmentation within the ejbTimeout callback
must be able to handle the callbacks in any sequence.

Note: Timers and their handles are local objects; therefore, they
should not be passed through the bean remote interface.

Configuring Regularly Scheduled Timers (Cron Timers)

Using Timers 11-3

� Day of the Week: 0-7 or with the following strings: Sun, Mon, Tue, Wed, Thu, Fri,
Sat. Both 0 and 7 signify Sunday.

You can define complex timers by specifying multiple values in a field, separated by
commas or a dash.

Example 11–2 Complex Timers

0 8 * * 1,3,5 --> Every Monday, Wednesday, and Friday at 8:00 A.M.
0 8 1,15 * * --> The first and 15th of every month at 8:00 A.M.
0 8-17 * * 1-5 --> Every hour from 8 A.M. through 5 P.M., Monday through Friday

You can create cron timers either through the createTimer method that takes a
String with the previous five fields in it—separated by spaces—or with the
createTimer method that has variables for each field. To create the cron timers, use
the following Oracle-specific createTimer APIs:

EJBTimer createTimer(String cronline, Serializable info) throws
IllegalArgumentException, IllegalStateException;

EJBTimer createTimer(int minute, int hour, int dayOfMonth, int month, int
dayOfWeek, int year, Serializable info) throws IllegalArgumentException,
IllegalStateException;

Create the cron timers in the same manner as other timers by retrieving the extended
Oracle-specific timer service, and schedule a cron timer using the createTimer
method. However, since cron timers are Oracle-specific, you cast the returned object as
an EJBTimerService object. The following example provides a String with the
five variables separated by spaces. The timer is scheduled to execute every minute.

import oracle.ias.container.timer.EJBTimer;
import oracle.ias.container.timer.EJBTimerService;
...
String cron = "1 * * * *";
EJBTimerService ets = (EJBTimerService) ctx.getTimerService();
EJBTimer et = ets.createTimer(cron, info);

You can also provide a class that is to be invoked within the createTimer method, as
follows:

EJBTimer createTimer(String cronline, String className, Serializable info) throws
IllegalArgumentException, IllegalStateException;

EJBTimer createTimer(int minute, int hour, int dayOfMonth, int month, int
dayOfWeek, String className, Serializable info) throws IllegalArgumentException,
IllegalStateException;

For arbitrary Java classes, the info variable can be either null or be a String[] of
parameters to pass to the main method of the class.

For example, you can have the mypackage.MyClass invoked when the et timer
fires:

EJBTimerService ets = (EJBTimerService) ctx.getTimerService();
EJBTimer et = ets.createTimer(cron,"mypackage.MyClass", info);

You must provide a main method within the mypackage.MyClass, which is used as
the entry point, as follows:

public static void main(String args[])

How to Retrieve Information About the Timer

11-4 Enterprise JavaBeans Developer’s Guide

How to Retrieve Information About the Timer
You can retrieve information and cancel the timer through the Timer object. The
methods available are cancel(), getTimeRemaining(), getNextTimeout(),
getHandle(), and getInfo(). To compare for object equality, use the
Timer.equals(Object obj) method.

For a full example, see the timer example on the OC4J sample code page at
http://www.oracle.com/technology/tech/java/oc4j/demos/ on the OTN
Web site.

How to Retrieve a Persisted Timer
Timers must be able to be persisted so that they can survive the life cycle of the bean
(ejbLoad, ejbStore, and so on). You can retrieve a persisted Timer object through
its handle. Retrieve the TimerHandle through the Timer.getHandle() method.
Then, you can retrieve the persisted Timer object through the
TimerHandle.getTimer() method.

Executing the Timer Within the Scope of a Transaction
The timer is normally created or cancelled within the scope of a transaction. Thus, the
bean normally is configured as being within a transaction. Typically this is configured
with RequiresNew. If the transaction is rolled back, then the container retries the
timeout.

For more information on transactions, see the Oracle Application Server Containers
for J2EE Services Guide.

What Does a NoSuchObjectLocalException Mean with Timers?
When you try to invoke a method on a timer object that has been either successfully
invoked or cancelled, you will receive a NoSuchObjectLocalException.

Configuring EJB Application Security 12-1

12
Configuring EJB Application Security

EJB application security involves two realms: granting permissions if you download
into a browser and configuring your application for authentication and authorization.
This chapter talks about setting up users, roles, and groups for EJBs. However, for
basic OC4J security configuration information, including CSiV2, see the Oracle
Application Server Containers for J2EE Security Guide.

This chapter covers the following subjects:

� Granting Permissions in Browser

� Authenticating and Authorizing EJB Applications

� Specifying Credentials in EJB Clients

Granting Permissions in Browser
If you download the EJB application as a client where the security manager is active,
you must grant the following permissions before you can execute:

permission java.net.SocketPermission "*:*", "connect,resolve";
permission java.lang.RuntimePermission "createClassLoader";
permission java.lang.RuntimePermission "getClassLoader";
permission java.util.PropertyPermission "*", "read";
permission java.util.PropertyPermission "LoadBalanceOnLookup", "read,write";

Authenticating and Authorizing EJB Applications
For EJB authentication and authorization, you define the principals under which each
method executes by configuring of the EJB deployment descriptor. The container
enforces that the user who is trying to execute the method is the same as defined
within the deployment descriptor.

The EJB deployment descriptor enables you to define security roles under which each
method is allowed to execute. These methods are mapped to users or groups in the
OC4J-specific deployment descriptor. The users and groups are defined within your
designated security user managers, which uses either the Oracle Application Server
Java Authentication and Authorization Service (JAAS) Provider (OracleAS JAAS
Provider) or XML user manager. For a full description of security user managers, see
the Oracle Application Server Containers for J2EE User’s Guide and Oracle Application
Server Containers for J2EE Services Guide.

For authentication and authorization, this section focuses on XML configuration
within the EJB deployment descriptors. EJB authorization is specified within the EJB
and OC4J-specific deployment descriptors. You can manage the authorization piece of
your security within the deployment descriptors, as follows:

Authenticating and Authorizing EJB Applications

12-2 Enterprise JavaBeans Developer’s Guide

� The EJB deployment descriptor describes access rules using logical roles.

� The OC4J-specific deployment descriptor maps the logical roles to concrete users
and groups, which are defined either the OracleAS JAAS Provider or XML user
managers.

Users and groups are identities known by the container. Roles are the logical identities
each application uses to indicate access rights to its different objects. The
username/passwords can be digital certificates and, in the case of SSL, private key
pairs.

Thus, the definition and mapping of roles is demonstrated in Figure 12–1.

Figure 12–1 Role Mapping

Defining users, groups, and roles are discussed in the following sections:

� Specifying Users and Groups

� Specifying Logical Roles in the EJB Deployment Descriptor

� Specifying Unchecked Security for EJB Methods

� Specifying the runAs Security Identity

� Mapping Logical Roles to Users and Groups

� Specifying a Default Role Mapping for Undefined Methods

� Specifying Users and Groups by the Client

Specifying Users and Groups
OC4J supports the definition of users and groups—either shared by all deployed
applications or specific to given applications. You define shared or application-specific
users and groups within either the OracleAS JAAS Provider or XML user managers.
See the Oracle Application Server Containers for J2EE User’s Guide and Oracle Application
Server Containers for J2EE Services Guide. for directions.

Note: For basic OC4J security configuration information,
including CSiV2, see the Oracle Application Server Containers for
J2EE Security Guide.

<security_role>

<security_role_mapping>

<group>

<user> <user><user>

ejb-jar.xml

orion-ejb-jar.xml

principals.xml

<security-role-ref><role-link>

Authenticating and Authorizing EJB Applications

Configuring EJB Application Security 12-3

Specifying Logical Roles in the EJB Deployment Descriptor
As shown in Figure 12–2, you can use a logical name for a role within your bean
implementation, and map this logical name to the correct database role or user. The
mapping of the logical name to a database role is specified in the OC4J-specific
deployment descriptor. See "Mapping Logical Roles to Users and Groups" on
page 12-6 for more information.

Figure 12–2 Security Mapping

If you use a logical name for a database role within your bean implementation for
methods such as isCallerInRole, you can map the logical name to an actual
database role by doing the following:

1. Declare the logical name within the <enterprise-beans> section
<security-role-ref> element. For example, to define a role used within the
purchase order example, you may have checked, within the bean's
implementation, to see if the caller had authorization to sign a purchase order.
Thus, the caller would have to be signed in under a correct role. In order for the
bean to not need to be aware of database roles, you can check isCallerInRole
on a logical name, such as POMgr, since only purchase order managers can sign off
on the order. Thus, you would define the logical security role, POMgr within the
<security-role-ref><role-name> element within the
<enterprise-beans> section, as follows:

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 </security-role-ref>
</enterprise-beans>

The <role-link> element within the <security-role-ref> element can be
the actual database role, which is defined further within the
<assembly-descriptor> section. Alternatively, it can be another logical name,
which is still defined more in the <assembly-descriptor> section and is
mapped to an actual database role within the Oracle-specific deployment
descriptor.

EJB Deployment Descriptor

<enterprise-beans>
...
 <security-role-ref>
 <role-name>POMgr</role-name>
 <role-link>myMgr</role-link>
 <security-role-ref
...
</enterprise-beans>
<assembly-descriptor>
...
 <security-role>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

Authenticating and Authorizing EJB Applications

12-4 Enterprise JavaBeans Developer’s Guide

2. Define the role and the methods that it applies to. In the purchase order example,
any method executed within the PurchaseOrder bean must have authorized
itself as myMgr. Note that PurchaseOrder is the name declared in the <entity
| session><ejb-name> element.

Thus, the following defines the role as myMgr, the EJB as PurchaseOrder, and all
methods by denoting the '*' symbol.

<assembly-descriptor>
 <security-role>
 <description>Role needed purchase order authorization</description>
 <role-name>myMgr</role-name>
 </security-role>
 <method-permission>
 <role-name>myMgr</role-name>
 <method>
 <ejb-name>PurchaseOrder</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
...
</assembly-descriptor>

After performing both steps, you can refer to POMgr within the bean's implementation
and the container translates POMgr to myMgr.

The <method-permission><method> element is used to specify the security role
for one or more methods within an interface or implementation. According to the EJB
specification, this definition can be of one of the following forms:

1. Defining all methods within a bean by specifying the bean name and using the '*'
character to denote all methods within the bean, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>
 </method>
</method-permission>

Note: The <security-role-ref> element is not required. You
only specify it when using security context methods within your
bean.

Note: The myMgr role in the <security-role> element is the
same as the <role-link> element within the
<enterprise-beans> section. This ties the logical name of
POMgr to the myMgr definition.

Note: If you define different roles within the
<method-permission> element for methods in the same EJB, the
resulting permission is a union of all the method permissions
defined for the methods of this bean.

Authenticating and Authorizing EJB Applications

Configuring EJB Application Security 12-5

2. Defining a specific method that is uniquely identified within the bean. Use the
appropriate interface name and method name, as follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
<ejb-name>myBean</ejb-name>
<method-name>myMethodInMyBean</method-name>
 </method>
</method-permission>

3. Defining a method with a specific signature among many overloaded versions, as
follows:

<method-permission>
 <role-name>myMgr</role-name>
 <method>
<ejb-name>myBean</ejb-name>
<method-name>myMethod</method-name>
<method-params>
<method-param>javax.lang.String</method-param>
<method-param>javax.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

The parameters are the fully-qualified Java types of the method's input
parameters. If the method has no input arguments, the <method-params>
element contains no elements. Arrays are specified by the array element's type,
followed by one or more pair of square brackets, such as int[][].

Specifying Unchecked Security for EJB Methods
If you want certain methods to not be checked for security roles, you define these
methods as unchecked, as follows:

<method-permission>
 <unchecked/>
 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Instead of a <role-name> element defined, you define an <unchecked/> element.
When executing any methods in the EJBNAME bean, the container does not check for
security. Unchecked methods always override any other role definitions.

Specifying the runAs Security Identity
You can specify that all methods of an EJB execute under a specific identity. That is, the
container does not check different roles for permission to run specific methods;
instead, the container executes all of the EJB methods under the specified security
identity. You can specify a particular role or the caller's identity as the security identity.

Note: If there are multiple methods with the same overloaded
name, the element of this style refers to all the methods with the
overloaded name.

Authenticating and Authorizing EJB Applications

12-6 Enterprise JavaBeans Developer’s Guide

Specify the runAs security identity in the <security-identity> element, which is
contained in the <enterprise-beans> section. The following XML demonstrates
that the POMgr is the role under which all the entity bean methods execute.

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <run-as>
 <role-name>POMgr</role-name>
 </run-as>
 </security-identity>
...
 </entity>
</enterprise-beans>

Alternatively, the following XML example demonstrates how to specify that all
methods of the bean execute under the identity of the caller:

<enterprise-beans>
 <entity>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
...
 </entity>
</enterprise-beans>

Mapping Logical Roles to Users and Groups
You can use logical roles or actual users and groups in the EJB deployment descriptor.
However, if you use logical roles, you must map them to the actual users and groups
defined either in the OracleAS JAAS Provider or XML User Managers.

Map the logical roles defined in the application deployment descriptors to OracleAS
JAAS Provider or XML User Manager users or groups through the
<security-role-mapping> element in the OC4J-specific deployment descriptor.

� The name attribute of this element defines the logical role that is to be mapped.

� The group or user element maps the logical role to a group or user name. This
group or user must be defined in the OracleAS JAAS Provider or XML User
Manager configuration. See Oracle Application Server Containers for J2EE User’s
Guide and Oracle Application Server Containers for J2EE Services Guide for a
description of the OracleAS JAAS Provider and XML User Managers.

Example 12–1 Mapping Logical Role to Actual Role

This example maps the logical role POMGR to the managers group in the
orion-ejb-jar.xml file. Any user that can log in as part of this group is considered
to have the POMGR role; thus, it can execute the methods of PurchaseOrderBean.

<security-role-mapping name="POMGR">
<group name="managers" />
</security-role-mapping>

Note: You can map a logical role to a single group or to several
groups.

Authenticating and Authorizing EJB Applications

Configuring EJB Application Security 12-7

To map this role to a specific user, do the following:

<security-role-mapping name="POMGR">
<user name="guest" />
</security-role-mapping>

Lastly, you can map a role to a specific user within a specific group, as follows:

<security-role-mapping name="POMGR">
 <group name="managers" />
<user name="guest" />
</security-role-mapping>

As shown in Figure 12–3, the logical role name for POMGR defined in the EJB
deployment descriptor is mapped to managers within the OC4J-specific deployment
descriptor in the <security-role-mapping> element.

Figure 12–3 Security Mapping

Notice that the <role-name> in the EJB deployment descriptor is the same as the
name attribute in the <security-role-mapping> element in the OC4J-specific
deployment descriptor. This is what identifies the mapping.

Specifying a Default Role Mapping for Undefined Methods
If any methods have not been associated with a role mapping, they are mapped to the
default security role through the <default-method-access> element in the
orion-ejb-jar.xml file. The following is the automatic mapping for any insecure
methods:

<default-method-access>
 <security-role-mapping name="<default-ejb-caller-role>"
 impliesAll="true" >
 </security-role-mapping>
</default-method-access>

The default role is <default-ejb-caller-role> and is defined in the name
attribute. You can replace this string with any name for the default role. The
impliesAll attribute indicates whether any security role checking occurs for these
methods. This attribute defaults to true, which states that no security role checking
occurs for these methods. If you set this attribute to false, the container will check for
this default role on these methods.

If the impliesAll attribute is false, you must map the default role defined in the
name attribute to a OracleAS JAAS Provider or XML user or group through the
<user> and <group> elements. The following example shows how all methods not
associated with a method permission are mapped to the "others" group.

O
_1

05
4

EJB Deployment Descriptor
OC4J-specific
Deployment Descriptor

...
 <security-role>
 <role-name>POMGR</role-name>
 </security-role>
 <method-permission>
 <role-name>POMGR</role-name>
 <method>. . .</method>
 </method-permission>
...
</assembly-descriptor>

 <assembly-descriptor>
 <security-role-mapping name="POMGR">
 <group name="managers">

 </assembly-descriptor>

 </security-role-mapping>

Specifying Credentials in EJB Clients

12-8 Enterprise JavaBeans Developer’s Guide

<default-method-access>
 <security-role-mapping name="default-role" impliesAll="false" >
 <group name="others" />
 </security-role-mapping>
</default-method-access>

Specifying Users and Groups by the Client
In order for the client to access methods that are protected by users and groups, the
client must provide the correct user or group name with a password that the OracleAS
JAAS Provider or XML User Manager recognizes. And the user or group must be the
same one as designated in the security role for the intended method. See "Specifying
Credentials in EJB Clients" on page 12-8 for more information.

Specifying Credentials in EJB Clients
When you access EJBs in a remote container, you must pass valid credentials to this
container. See "Setting JNDI Properties" on page 2-2 for more information.

� Pure Java clients define their credentials in the jndi.properties file deployed
with the EAR file.

� Servlets or JavaBeans running within the container pass their credentials within
the InitialContext, which is created to look up the remote EJBs.

Credentials in JNDI Properties
Indicate the username (principal) and password (credentials) to use when looking up
remote EJBs in the jndi.properties file.

For example, if you want to access remote EJBs as POMGR/welcome, define the
following properties. The factory.initial property indicates that you will use the
Oracle JNDI implementation:

java.naming.security.principal=POMGR
java.naming.security.credentials=welcome
java.naming.factory.initial=
com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://opmnhost:oc4j_inst1/ejbsamples

In your application program, authenticate and access the remote EJBs, as shown
below:

InitialContext ic = new InitialContext();
CustomerHome = (CustomerHome)ic.lookup("java:comp/env/purchaseOrderBean");

Note: For basic OC4J security configuration information,
including CSiV2, see the Oracle Application Server Containers for
J2EE Security Guide.

Note: For basic OC4J security configuration information,
including CSiV2, see the Oracle Application Server Containers for
J2EE Security Guide.

Specifying Credentials in EJB Clients

Configuring EJB Application Security 12-9

Credentials in the InitialContext
To access remote EJBs from a servlet or JavaBean, pass the credentials in the
InitialContext object, as follows:

Hashtable env = new Hashtable();
env.put("java.naming.provider.url",
"opmn:ormi://opmnhost:oc4j_inst1/ejbsamples");
env.put("java.naming.factory.initial",

"com.evermind.server.ApplicationClientInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "POMGR");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
Context ic = new InitialContext (env);
CustomerHome =
 (CustomerHome) ic.lookup ("java:comp/env/purchaseOrderBean");

Specifying Credentials in EJB Clients

12-10 Enterprise JavaBeans Developer’s Guide

EJB Clustering 13-1

13
EJB Clustering

The methods for providing clustering—including load balancing and failover—are
different for HTTP requests than for EJB communications because Web components
use different protocols than EJB components. This chapter specifically discusses EJB
clustering. For a complete overview of Oracle Application Server
clustering—including the instructions for setting up the HTTP failover and load
balancing environment—see the clustering chapter in the Oracle Application Server
Containers for J2EE User’s Guide.

The following is discussed in this chapter:

� EJB Clustering Overview

� Enabling Clustering For EJBs

� EJB Clustering Includes JNDI Namespace Replication

� Load Balancing Options

EJB Clustering Overview
Clustered EJBs behave in their own manner. However, only stateful session beans are
clustered. To create an EJB cluster, you specify nodes that are to be involved in the
cluster, configure each OC4J instance within the node with the same multicast address,
username, and password, and deploy the EJB to one of these nodes.

The following characteristics apply to EJB clustering:

� Unlike HTTP clustering, EJBs involved in a cluster cannot be sub-grouped in an
island. Instead, all EJBs within the cluster are in one group.

� Transactions cannot failover. There is no reinstating an interrupted transaction in
another bean. Instead, the transaction rolls back and must start over.

� Load balancing occurs in a random fashion throughout all OC4J processes in the
cluster for EJBs.

� The performance for clustering stateful session beans is dependent on the type of
replication and load balancing options you choose.

Clustering for each of the session bean types are discussed in the following sections:

� Stateless Session Clustering

Caution: EJB clustering only works over the ORMI protocol, not
over the RMI/IIOP protocol.

EJB Clustering Overview

13-2 Enterprise JavaBeans Developer’s Guide

� Stateful Session Bean Clustering

� Combination of HTTP and EJB Clustering

Stateless Session Clustering
Stateless session beans do not have any state to be replicated among hosts in a cluster.
Thus, no failover option is necessary. Load balancing is provided automatically with
OPMN, which uses a random algorithm. Stateless session beans are not clustered; the
load balancing happens in any environment where the OPMN components know
about each other. You can configure the frequency of the load balancing from the client
using the options described in "Load Balancing Options" on page 13-5.

Stateful Session Bean Clustering
Load balancing is provided automatically with OPMN, which uses a random
algorithm. Failover requires that the state of the bean is replicated, so that when the
original bean terminates unexpectedly, the request can be forwarded to another OC4J
process. You can configure the frequency of the load balancing from the client using
the options described in "Load Balancing Options" on page 13-5.

For failover, stateful session beans must replicate state among hosts. There are three
options for stateful session bean replication, where each option defines the interval
when the bean state is sent. All of the state is sent out to all other OC4J processes in the
cluster, so it can have an impact on your performance. The fewer times the state is sent
out, the better your performance. However, there is a trade-off between performance
and the confidence that the bean state is replicated to cover for all areas of the bean
instance failing. Thus, choose one of the following replication modes:

� JVM termination replication—The state of the stateful session bean is replicated to
only one other host in the cluster (with the same multicast address, port) when the
JVM is terminating. Since this uses JDK 1.3 shutdown hooks, you must use JVM
version 1.3 or later. This is the most performant option, because the state is
replicated only once. However, it is not very reliable for the following reasons:

– Your state is not replicated if the host is terminated unexpectedly.

– The state of the bean exists only on a single host at any time; you carry a
higher risk that the state does not replicate and is lost.

� End of call replication—The state of the stateful session bean is replicated to all
hosts in the cluster (with the same multicast address, port) at the end of each EJB
method call. If the node loses power, then the state has already been replicated.
This method is less performant than the JVM termination replication mode,
because the state is sent out more often. However, the guarantee for reliance is
higher.

See "Configure EJB Replication for Stateful Session Beans" on page 13-4 for
configuration and implementation details for each of these stateful session bean
clustering options.

Note: For an overview of how clustering works, see the clustering
chapter of the Oracle Application Server Containers for J2EE User’s
Guide.

Enabling Clustering For EJBs

EJB Clustering 13-3

Combination of HTTP and EJB Clustering
If you have a servlet that invokes an EJB, you must configure both HTTP and EJB
clustering. For HTTP clustering options, see the Clustering chapter of the Oracle
Application Server Containers for J2EE User’s Guide.

Enabling Clustering For EJBs
For a full description of how to set up an OC4J cluster, see the Oracle Application Server
Containers for J2EE User’s Guide.This section describes how to only configure for EJB
state replication within the cluster.

To enable the OC4J nodes for EJB clustering, you must perform the following tasks:

1. Configure each host in the cluster with an identical multicast address (host and
port number), including a username and password.

2. If you have stateful session beans, choose state replication type.

3. Deploy the EJB to be clustered.

Configure the Multicast Address for EJB Clustering
Within the OC4J Instance page in the Enterprise Manager, do the following:

1. Select the Administration page.

2. Select Replication Properties in the Instance Properties column.

3. Scroll down to the EJB Applications section. Figure 13–1 shows this section.

4. Select the Replicate State checkbox.

5. Optionally, you can provide the multicast host IP address and port number. If you
do not provide the host and port for the multicast address, it defaults to host IP
address 230.230.0.1 and port number 9127. The host IP address must be between
224.0.0.2 through 239.255.255.255. Do not use the same multicast address for both
HTTP and EJB multicast addresses.

You can test a network for multicast ability by pinging the following hosts:

� To ping all multicast hosts, execute: ping 224.0.0.1.

� To ping all multicast routers, execute: ping 224.0.0.2.

6. Provide the username and password, which is used to authenticate itself to other
hosts in the cluster over the multicast address. The username and password must
be consistent in the multicast address to be in the same cluster.

EJB Clustering Includes JNDI Namespace Replication

13-4 Enterprise JavaBeans Developer’s Guide

Figure 13–1 EJB State Replication Configuration

7. Provide the host name where the OC4J Instance resides in the RMI Server Host
field.

Configure the type of stateful session bean replication within the
orion-ejb-jar.xml file within the JAR file. See "Configure EJB Replication for
Stateful Session Beans" on page 13-4 for full details. You can configure these within
the orion-ejb-jar.xml file before deployment or add this through the
Enterprise Manager screens after deployment. If you add this after deployment,
drill down to the JAR file from the application page.

Configure EJB Replication for Stateful Session Beans
Modify the orion-ejb-jar.xml file to add the state replication configuration for
stateful session beans. Since you configure the replication type for the stateful session
bean within the bean deployment descriptor, each bean can use a different type of
replication.

VM Termination Replication
Set the replication attribute of the <session-deployment> tag in the
orion-ejb-jar.xml file to "VMTermination". This is shown below:

<session-deployment replication="VMTermination" .../>

End of Call Replication
Set the replication attribute of the <session-deployment> tag in the
orion-ejb-jar.xml file to "EndOfCall". This is shown below:

<session-deployment replication="EndOfCall" .../>

EJB Clustering Includes JNDI Namespace Replication
When EJB clustering is enabled, JNDI namespace replication is also enabled between
the OC4J instances in a cluster. New bindings to the JNDI namespace in one OC4J
instance are propagated to other OC4J instances in the cluster. Re-bindings and
unbindings are not replicated. The replication is completed outside the scope of OC4J
islands. In other words, multiple islands in an OC4J instance have visibility into the
same replicated JNDI namespace. For more information see the Oracle Application
Server Containers for J2EE Services Guide.

Load Balancing Options

EJB Clustering 13-5

Load Balancing Options
Load balancing for EJBs occurs across all OC4J processes included in the cluster.

The client retrieves a random OC4J process when the first lookup is executed. The
selection of which OC4J process that services the client is always randomly chosen
from among the pooled OC4J processes in the cluster. However, you can choose to
have the client do the following:

� If you do not set any options, then the client interacts with the OC4J process that
was initially chosen at the first lookup for the entire conversation.

� If you do set one of two options, then the client chooses another OC4J process with
which to interact at specific points in the client's implementation. Each time a
client requests another OC4J process, this process is also chosen randomly from
the OC4J processes involved in the cluster.

These options are as follows:

� LoadBalanceOnLookup property: If this property is set to true, then the
client randomly picks another OC4J process from the pooled processes in the
cluster each time a lookup is executed. You should only use
RMIInitialContextFactory object with this option.

The following configures the LoadBalanceOnLookup property on the client
to true in the JNDI properties before retrieving the InitialContext:

env.put("LoadBalanceOnLookup", "true");

� dedicated.rmicontext property: If this property is set to true, then each time
the client retrieves a new InitialContext, the client also retrieves a new OC4J
process. If you want to use multiple OC4J processes within your client, this option
is more performant and less burdensome on the application server than the
LoadBalanceOnLookup property.

If you are not interested in EJB state replication, but want to load balance your request
among OC4J processes, the following sections describe your options:

� Load Balancing Using Static Retrieval

� DNS Load Balancing

Load Balancing Using Static Retrieval
If you decide to not use EJB replication, but you want to load balance the request
across several OC4J processes, you can use static retrieval by providing the URLs for
all of these processes in the JNDI URL property.

The JNDI addresses of all OC4J nodes that should be contacted for load balancing and
failover are supplied in the lookup URL, and each address is separated by a comma.
For example, the following URL definition provides the client container with three
OC4J nodes to use for load balancing and failover.

java.naming.provider.url=ormi://s1:23791/ejbsamples,
 ormi://s2:23793/ejbsamples, ormi://s3:23791/ejbsamples;

DNS Load Balancing
Alternatively, if you do not want to use EJB replications, but you want to load balance
the request using DNS for load balancing, you can do the following:

Load Balancing Options

13-6 Enterprise JavaBeans Developer’s Guide

1. Within DNS, map a single host name to several IP addresses. Each of the port
numbers must be the same for each IP address. Set up the DNS server to return the
addresses either in a round-robin or random fashion.

The IP address identifies the OC4J running; the port number is an RMI port
number.

2. Turn off DNS caching on the client. For UNIX machines, you must turn off DNS
caching as follows:

a. Kill the NSCD daemon process on the client.

b. Start the OC4J client with the -Dsun.net.inetaddr.ttl=0 option.

3. Within each client, use ANY initial context factory to create an initial context. Use
the ormi:// prefix in the provider URL. Use the single host name in the DNS
server to which the OC4J IP addresses are mapped and the common RMI port in
the provider URL for the client.

4. Set the dedicated.rmicontext property to true.

Each time the lookup occurs on the DNS server, the DNS server hands back one of the
many IP addresses that are mapped to it.

Example 13–1 RMIInitialContextFactory Example

This example uses an RMIInitialContextFactory object; however, you can use
any initial context factory for DNS load balancing. In this example, myserver is the
host name set up in the DNS server for the list of servers, and the RMI port is
defaulting to the default port.

java.naming.factory.initial=
 com.evermind.server.rmi.RMIInitialContextFactory
java.naming.provider.url=ormi://myserver/applname
java.naming.security.principal=admin
java.naming.security.credentials=welcome
dedicated.rmicontext=true

XML Reference for ORION-EJB-JAR.XML A-1

A
XML Reference for ORION-EJB-JAR.XML

This appendix describes the elements contained within the OC4J-specific EJB
deployment descriptor: orion-ejb-jar.dtd. This appendix covers the structure
and briefly describes the elements in this DTD; however, most of these elements are
fully described in other sections of this book.

The DTD is located at
http://xmlns.oracle.com/ias/dtds/orion-ejb-jar.dtd.

The description of this deployment descriptor has been divided into the following
sections:

� Overall description of each element section—Each section of elements of this XML
file is described in "OC4J-Specific Deployment Descriptor for EJBs" on page A-2.

� Element description—An alphabetical listing and description for each element is
discussed in "Element Description" on page A-16.

Whenever you deploy an application, OC4J automatically generates the OC4J-specific
XML file with the default elements. If you want to change these defaults, you must
copy the orion-ejb-jar.xml file to where your original ejb-jar.xml file is
located and change it in this location. If you change the XML file within the deployed
location, OC4J simply overwrites these changes when the application is deployed
again. The changes only stay constant when changed in the development directories.

Oracle recommends that you add your OC4J-specific XML files within the
recommended development structure as shown in Figure A–1.

OC4J-Specific Deployment Descriptor for EJBs

A-2 Enterprise JavaBeans Developer’s Guide

Figure A–1 Development Application Directory Structure

OC4J-Specific Deployment Descriptor for EJBs
The OC4J-specific deployment descriptor contains extended deployment information
for session beans, entity beans, message driven beans, and security for these EJBs. The
major element structure within this deployment descriptor has the following structure:

<orion-ejb-jar deployment-time=... deployment-version=...>
 <enterprise-beans>
 <session-deployment ...></session-deployment>
 <entity-deployment ...></entity-deployment>
 <message-driven-deployment ...></message-driven-deployment>
 <jem-deployment ...></jem-deployment>
 <jem-server-extension ...></jem-server-extension>
 </enterprise-beans>
 <assembly-descriptor>
 <security-role-mapping ...></security-role-mapping>
 <default-method-access></default-method-access>
 </assembly-descriptor>
</orion-ejb-jar>

Each section under the <orion-ejb-jar> main tag has its own purpose. These are
described in the sections below:

� Enterprise Beans Section

� Assembly Descriptor Section

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-3

Enterprise Beans Section
The <enterprise-beans> section defines additional deployment information for all
EJBs: session beans, entity beans, and message driven beans. There is a section for each
type of EJB.

The following sections describe the elements within <enterprise-beans> element;

� Session Bean Section

� Entity Bean Section

� Message Driven Bean Section

� EJB 1.1 CMP Field Mapping Section

� Method Definition

Session Bean Section
The <session-deployment> section provides additional deployment information
for a session bean deployed within this JAR file. The <session-deployment>
section contains the following structure:

<session-deployment pool-cache-timeout=... call-timeout=... copy-by-value=...
 location=... max-instances=... min-instances=... max-tx-retries=...
 tx-retry-wait=... name=... persistence-filename=... replication=...
 timeout=... idletime=... memory-threshold=... max-instances-threshold=...
 resource-check-interval=... passivate-count=... wrapper=...
 local-wrapper=...
 <ior-security-config>
 <transport-config>
 <integrity></integrity>
 <confidentiality></confidentiality>
 <establish-trust-in-target></establish-trust-in-target>
 <establish-trust-in-client></establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method></auth-method>
 <realm></realm>
 <required></required>
 </as-context>
 <sas-context>
 <caller-propagation></caller-propagation>
 </sas-context>
 </ior-security-config>
 <env-entry-mapping name=...> </env-entry-mapping
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
</session-deployment>

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

� A session bean example, which includes the <session-deployment> element,
is described in "Create the Deployment Descriptor" on page 3-6 in Chapter 3,
"Implementing Session Beans".

OC4J-Specific Deployment Descriptor for EJBs

A-4 Enterprise JavaBeans Developer’s Guide

� The <ior-security-config> element is an interoperability element, which is
discussed fully in the Interoperability chapter in the Oracle Application Server
Containers for J2EE Services Guide.

� The <env-entry-mapping> element maps environment variables to JNDI
names and is discussed in "Environment Variables" on page 10-9.

� The <ejb-ref-mapping> element maps any EJB references to JNDI names and is
discussed in "Environment References To Other Enterprise JavaBeans" on
page 10-10.

� The <resource-ref-mapping> element maps any EJB references to JNDI
names and is discussed in "Environment References To Resource Manager
Connection Factory References" on page 10-14.

� The <resource-env-ref-mapping> element is used to map an administered object
for a resource. For example, to use JMS, the bean must obtain both a JMS factory
object and a destination object. These objects are retrieved at the same time from
JNDI. The <resource-ref> element declares the JMS factory and the
<resource-env-ref> elment is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Using a Logical Name When Client Accesses the MDB" on page 9-25 for more
information.

The attributes for the <session-deployment> element are as follows:

Table A–1 Attributes for <session-deployment> Element

Attribute Description

pool-cache-timeout The pool-cache-timeout applies for stateless session EJBs. This
parameter specifies how long to keep stateless sessions cached in
the pool.

For stateless session beans, if you specify a pool-cache-timeout,
then at every pool-cache-timeout interval, all beans in the pool, of
the corresponding bean type, are removed. If the value specified
is zero or negative, then the pool-cache-timeout is disabled and
beans are not removed from the pool.

Default Value: 60 (seconds)

call-timeout This parameter specifies the maximum time to wait for any
resource to make a business/life-cycle method invocation. This is
not a timeout for how long a business method invocation can
take.

If the timeout is reached, a TimedOutException is thrown. This
excludes database connections.

Default Values: 90000 milliseconds. Set to 0 if you want the
timeout to be forever. See the EJB section in the Oracle Application
Server Performance Guide for more information.

copy-by-value Whether or not to copy (clone) all the incoming and outgoing
parameters in EJB calls. Set to 'false' if you are certain that your
application does not assume copy-by-value semantics for a
speed-up. The default is 'true'.

location The JNDI-name to which this bean will be bound.

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-5

max-instances The number of bean instances allowed in
memory—either instantiated or pooled. When this
value is reached, the container attempts to
passivate the oldest bean instance from memory.
If unsuccessful, the container waits the number
of milliseconds set in the

call-timeout attribute to see if a bean instance
is removed from memory, either through
passivation, its

remove() method, or bean expiration, before a
TimeoutExpiredException is thrown back to the
client. To allow an infinite number of bean
instances, the

max-instances attribute can be set to zero. Default is 0, which
means infinite. This applies to both stateless and stateful session
beans

.

min-instances The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is 0. This setting is valid
for stateless session beans only.

max-tx-retries This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level failures. The
default is 0.

Generally, we recommend that you add retries only where errors
are seen that could be resolved through retries. For example, if
you are using serializable isolation and you want to retry the
transaction automatically if there is a conflict, you might want to
use retries. However, if the bean wants to be notified when there
is a conflict, then in this case, you should leave max-tx-retries=0.

Default Value: 0. See the EJB section in the Oracle Application
Server Performance Guide for more information.

tx-retry-wait This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.

name The name of the bean, which matches the name of a bean in the
assembly section of the EJB deployment descriptor
(ejb-jar.xml).

persistence-filename Path to the file where sessions are stored across restarts.

replication Configuration of the state replication for stateful session beans.
Values can be VMTermination, EndOfCall, or None. None is
the default. See "Configure EJB Replication for Stateful Session
Beans" on page 13-4 for more information.

Table A–1 (Cont.) Attributes for <session-deployment> Element

Attribute Description

OC4J-Specific Deployment Descriptor for EJBs

A-6 Enterprise JavaBeans Developer’s Guide

Entity Bean Section
The <entity-deployment> section provides additional deployment information for
an entity bean deployed within this JAR file. The <entity-deployment> section
contains the following structure:

<entity-deployment call-timeout=... clustering-schema=...
 copy-by-value=... data-source=... exclusive-write-access=...
 do-select-before-insert=... instance-cache-timeout=... isolation=...
 location=... locking-mode=... max-instances=... min-instances=...

timeout The timeout in seconds applies for stateful session EJBs. If the
value is zero or negative, then all timeouts are disabled.

The timeout parameter is an inactivity timeout for stateful
session beans. Every 30 seconds the pool clean up logic is
invoked. Within the pool clean up logic, only the sessions that
timed out, by passing the timeout value, are deleted.

Adjust the timeout based on your applications use of stateful
session beans. For example, if stateful session beans are not
removed explicitly by your application, and the application
creates many stateful session beans, then you may want to lower
the timeout value.

If your application requires that a stateful session bean be
available for longer than 1800 seconds (equal to 30 minutes), then
adjust the timeout value accordingly.

Default Value: 1800 seconds (which equals 30 minutes)

idletime You can set an idle timeout for each bean. When this timeout
expires, passivation occurs. Set this attribute to the appropriate
number of seconds. Default: 300 seconds. (5 min.). To disable,
specify "never."

memory-threshold This attribute defines a threshold for how much used JVM
memory is allowed before passivation should occur.

Specify an integer that is translated as a percentage.

 When reached, beans are passivated, even if their idle timeout
has not expired. Default: 80%. To disable, specify "never."

max-instances-threshold This attribute defines a threshold for how many actives beans
exist in relation to the max-instances attribute definition. Specify
an integer that is translated as a percentage. If you define that the
max-instances is 100 and the max-instances-threshold is 90%,
then when the active bean instances reaches past 90, passivation
of beans occurs. Default: 90%. To disable, specify "never."

resource-check-interval The container checks all resources at this time interval. At this
time, if any of the thresholds have been reached, passivation
occurs. Default: 180 sec. (3 min.). To disable, specify "never."

passivate-count This attribute is an integer that defines the number of beans to be
passivated if any of the resource thresholds have been reached.
Passivation of beans is performed using the least recently used
algorithm. Default: one-third of the max-instances attribute.
You can disable this attribute by setting the count to zero or a
negative number.

wrapper Name of the OC4J wrapper class for this bean. This is an internal
server value and should not be edited.

local-wrapper Name of the OC4J local home wrapper class for this bean. This is
an internal server value and should not be edited.

Table A–1 (Cont.) Attributes for <session-deployment> Element

Attribute Description

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-7

 max-tx-retries=... tx-retry-wait=... update-chnaged-fields-only=...
 name=... pool-cache-timeout=...
 table=... validity-timeout=... force-update=...
 wrapper=... local-wrapper=... delay-updates-until-commit=...
 findByPrimaryKey-lazy-loading=... >
 <ior-security-config>
 <transport-config>
 <integrity></integrity>
 <confidentiality></confidentiality>
 <establish-trust-in-target></establish-trust-in-target>
 <establish-trust-in-client></establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method></auth-method>
 <realm></realm>
 <required></required>
 </as-context>
 <sas-context>
 <caller-propagation></caller-propagation>
 </sas-context>
 </ior-security-config>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...> </cmp-field-mapping>
 <finder-method partial=... query=... lazy-loading=... prefetch-size=... >
 <method></method>
 </finder-method>
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>
 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
</entity-deployment>

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

� Entity bean examples, which includes the <entity-deployment> element, are
described in Chapter 5, "CMP Entity Beans", Chapter 6, "Entity Relationship
Mapping", Chapter 7, "EJB Query Language", and Chapter 8, "BMP Entity Beans".

� The <ior-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the
Oracle Application Server Containers for J2EE Services Guide.

� The <primkey-mapping> element maps the primary key to the CMP field it
represents. See "Explicit Mapping of Persistent Fields to the Database" on page 5-3
for more information.

� The <cmp-field-mapping> element maps each <cmp-field> element to its
database row. See "Explicit Mapping of Persistent Fields to the Database" on
page 5-3 for more information.

� The <finder-method> element is used to create finder methods for EJB 1.1
entity beans. To create EJB 2.0 finder methods, see "EJB Query Language".

OC4J-Specific Deployment Descriptor for EJBs

A-8 Enterprise JavaBeans Developer’s Guide

� The <env-entry-mapping> element maps environment variables to JNDI
names and is discussed in "Environment Variables" on page 10-9.

� The <ejb-ref-mapping> element maps any EJB references to JNDI names and is
discussed in "Environment References To Other Enterprise JavaBeans" on
page 10-10.

� The <resource-ref-mapping> element maps any EJB references to JNDI
names and is discussed in "Environment References To Resource Manager
Connection Factory References" on page 10-14.

� The <resource-env-ref-mapping> element is used to map an administered
object for a resource. For example, to use JMS, the bean must obtain both a JMS
factory object and a destination object. These objects are retrieved at the same time
from JNDI. The <resource-ref> element declares the JMS factory and the
<resource-env-ref> elment is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Using a Logical Name When Client Accesses the MDB" on page 9-25 for more
information.

The attributes for the <entity-deployment> element are as follows:

Table A–2 Attributes for <entity-deployment> Element

Attribute Description

call-timeout This parameter specifies the maximum time to wait for
any resource to make a business/life-cycle method
invocation. This is not a timeout for how long a business
method invocation can take.

If the timeout is reached, a TimedOutException is
thrown. This excludes database connections.

Default Values: 90000 milliseconds. Set to 0 if you want
the timeout to be forever. See the EJB section in the Oracle
Application Server Performance Guide for more information.

clustering-schema Do not use. Not needed in this release.

copy-by-value Whether or not to copy (clone) all the incoming and
outgoing parameters in EJB calls. Set to 'false' if you are
certain that your application does not assume
copy-by-value semantics for a speed-up. The default is
'true'.

data-source The name of the data source used if using
container-managed persistence.

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-9

exclusive-write-access Whether or not the EJB-server has exclusive write
(update) access to the database backend. This can be used
only for entity beans that use a "read_only" locking
mode. In this case, it increases the performance for
common bean operations and enables better caching.

This parameter corresponds to which commit option is
used (A, B or C, as defined in the EJB specification). When
exclusive-write-access = true, this is commit option A.

Default is false for beans with locking-mode=optimistic or
pessimistic and true for locking-mode=read-only.

The exclusive-write-access is forced to false if locking is
pessimistic or optimistic, and is not used with EJB
clustering. The exclusive-write-access can be false with
read-only locking, but read-only won't have any
performance impact if exclusive-write-access=false, since
ejbStores are already skipped when no fields have been
changed. To see a performance advantage and avoid
doing ejbLoads for read-only beans, you must also set
exclusive-write-access=true.

See "Specifying Exclusive Write Access to the Database"
on page 4-14 for more information.

do-select-before-insert If false, you avoid executing a select before an insert. The
extra select normally checks to see if the entity already
exists before doing the insert to avoid duplicates.

If a unique key constraint is defined for the entity, then
we recommend setting this to false. If there is no unique
key constraint, setting this to false leads to not detecting a
duplicate insert. To prevent duplicate inserts in this case,
leave it set to true.

For performance, Oracle recommends setting this to false
to avoid the extra select before insert. Default Value: true

instance-cache-timeout The amount of time in seconds that entity wrapper
instances are assigned to an identity. If you specify 'never',
you retain the wrapper instances until they are garbage
collected. The default is 60 seconds.

location The JNDI-name to which this bean will be bound.

isolation Specifies the isolation-level for database actions. The valid
values for Oracle databases are 'serializable' and
'committed'. The default is 'committed'. Non-Oracle
databases can be the following: 'none', 'committed',
'serializable', 'uncommitted', and 'repeatable_read'.

For more information, see "Using Database Isolation
Modes to Protect Against Resource Contention" and
"Configuring Entity Bean Concurrency Modes For
Handling Resource Contention" on page 4-12 and Oracle
Application Server Performance Guide .

Table A–2 (Cont.) Attributes for <entity-deployment> Element

Attribute Description

OC4J-Specific Deployment Descriptor for EJBs

A-10 Enterprise JavaBeans Developer’s Guide

locking-mode The concurrency modes configure when to block to
manage resource contention or when to execute in
parallel. For more information, see "Using Database
Isolation Modes to Protect Against Resource Contention"
and "Configuring Entity Bean Concurrency Modes For
Handling Resource Contention" on page 4-12 and Oracle
Application Server Performance Guide . The concurrency
modes are as follows:

� PESSIMISTIC: This manages resource contention
and does not allow parallel execution. Only one user
at a time is allowed to execute the entity bean at a
single time.

� OPTIMISTIC: Multiple users can execute the entity
bean in parallel. It does not monitor resource
contention; thus, the burden of the data consistency is
placed on the database isolation modes. This is the
default.

� READ-ONLY: Multiple users can execute the entity
bean in parallel. The container does not allow any
updates to the bean's state.

max-instances The number of maximum bean implementation instances
to be kept instantiated or pooled. The default is 0, which
means infinite. See "Configuring Pool Sizes For Entity
Beans" on page 4-11 for more information.

min-instances The number of minimum bean implementation instances
to be kept instantiated or pooled. The default is 0. See
"Configuring Pool Sizes For Entity Beans" on page 4-11 for
more information.

max-tx-retries This parameter specifies the number of times to retry a
transaction that was rolled back due to system-level
failures. The default is 0.

Generally, we recommend that you add retries only where
errors are seen that could be resolved through retries. For
example, if you are using serializable isolation and you
want to retry the transaction automatically if there is a
conflict, you might want to use retries. However, if the
bean wants to be notified when there is a conflict, then in
this case, you should leave max-tx-retries=0.

Default Value: 0. See the EJB section in the Oracle
Application Server Performance Guide for more information.

tx-retry-wait This parameter specifies the time to wait in seconds
between retrying the transaction. The default is 60
seconds.

update-changed-fields-only Specifies whether the container updates only modified
fields or all fields to persistence storage for CMP entity
beans when ejbStore is invoked. The default is true,
which specifies to only update modified fields. See
"Create Data Consistency in Your Entity Bean by Using
Persistence" on page 4-10 for more information.

name The name of the bean, which matches the name of a bean
in the assembly section of the EJB deployment descriptor
(ejb-jar.xml).

Table A–2 (Cont.) Attributes for <entity-deployment> Element

Attribute Description

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-11

Message Driven Bean Section
The <message-driven-deployment> section provides additional deployment
information for a message driven bean deployed within this JAR file. The
<message-driven-deployment> section contains the following structure:

<message-driven-deployment cache-timeout=... connection-factory-location=...
 destination-location=... name=... subscription-name=...
 listener-threads=... transaction-timeout=...
 dequeue-retry-count=... dequeue-retry-interval=... >
 <env-entry-mapping name=...></env-entry-mapping>
 <ejb-ref-mapping location=... name=... />
 <resource-ref-mapping location=... name=... >
 <lookup-context location=...>

pool-cache-timeout The amount of time in seconds that the bean
implementation instances are to be kept in the "pooled"
(unassigned) state, specifying 'never' retains the instances
until they are garbage collected. The default is 60.

table The name of the table in the database if using
container-managed persistence.

validity-timeout The maximum amount of time (in milliseconds) that an
entity is valid in the cache (before being reloaded). Useful
for loosely coupled environments where rare updates
from legacy systems occur. This attribute is only valid for
entity beans with locking mode of read_only and when
exclusive-write-access="true" (the default).

We recommend that if the data is never being modified
externally (and therefore you've set
exclusive-write-access=true), that you can set this to 0 or
-1, to disable this option, since the data in the cache will
always be valid for read-only EJBs that are never
modified externally.

If the EJB is generally not modified externally, so you're
using exclusive-write-access=true, yet occasionally the
table is updated so you need to update the cache
occasionally, then set this to a value corresponding to the
interval you think the data may be changing externally.

force-update If OC4J does not believe that any of the persistence data
has changed, the force-update attribute set to true
means that OC4J will still execute the EJB lifecycle by
invoking the ejbStore method. This manages data in
transient fields and sets appropriate persistent fields
during the ejbStore method. For example, an image
might be kept in one format in memory, but stored in a
different format in the database. The default is false.

wrapper Name of the OC4J remote home wrapper class for this
bean. This is an internal server value and should not be
edited.

local-wrapper Name of the OC4J local home wrapper class for this bean.
This is an internal server value and should not be edited.

delay-updates-until-commit This attribute is valid only for CMP entity beans. Defers
the flushing of transactional data until commit time or
not. The default is true. Set this value to false to update
persistence data after completion of every EJB method
invocation - except ejbRemove() and the finder methods.

Table A–2 (Cont.) Attributes for <entity-deployment> Element

Attribute Description

OC4J-Specific Deployment Descriptor for EJBs

A-12 Enterprise JavaBeans Developer’s Guide

 <context-attribute name=... value=... />
 </lookup-context>
 </resource-ref-mapping>
 <resource-env-ref-mapping location=... name=... />
</message-driven-deployment>

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

� A message-driven bean example, which includes the
<message-driven-deployment> element, is described in Chapter 9,
"Message-Driven Beans".

� The <env-entry-mapping> element maps environment variables to JNDI names
and is discussed in "Environment Variables" on page 10-9.

� The <ejb-ref-mapping> element maps any EJB references to JNDI names and is
discussed in "Environment References To Other Enterprise JavaBeans" on
page 10-10.

� The <resource-ref-mapping> element maps any EJB references to JNDI
names and is discussed in "Environment References To Resource Manager
Connection Factory References" on page 10-14.

� The <resource-env-ref-mapping> element is used to map an administered
object for a resource. For example, to use JMS, the bean must obtain both a JMS
factory object and a destination object. These objects are retrieved at the same time
from JNDI. The <resource-ref> element declares the JMS factory and the
<resource-env-ref> elment is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See
"Using a Logical Name When Client Accesses the MDB" on page 9-25 for more
information.

The attributes for the <message-driven-deployment> element are as follows:

Table A–3 Attributes for <message-driven-deployment> Element

Attribute Description

cache-timeout Do not use this element.

connection-factory-
location

The JNDI location of the connection factory to use. The JMS
Destination Connection Factory is specified in the
connection-factory-location attribute. The syntax is
"java:comp/resource" + resource provider name +
"TopicConnectionFactories" or
"QueueConnectionFactories" + user defined name. The
xxxConnectionFactories details what type of factory is
being defined. For more information, see "Create the
OC4J-Specific Deployment Descriptor to Use Oracle JMS" on
page 9-17.

destination-location The JNDI location of the destination (queue/topic) to use. The
JMS Destination is specified in the
destination-location attribute. The syntax is
"java:comp/resource" + resource provider name +
"Topics" or "Queues" + Destination name. The Topic or
Queue details what type of Destination is being defined.
The Destination name is the actual queue or topic name
defined in the database. For more information, see "Create the
OC4J-Specific Deployment Descriptor to Use Oracle JMS" on
page 9-17.

max-instances Do not use this element. Use listener-threads instead

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-13

AC4J Active EJB Section
The <jem-server-extension> section defines the JNDI name of the database
where the AC4J Databus is installed. The <jem-server-extension> contains the
following structure:

<jem-server-extension data-source-location=... scheduling-threads=...>
 <description></description>
 <data-bus data-bus-name=... url=.../>
</jem-server-extension>

For more information on this element, see the Oracle Application Server Containers for
J2EE Services Guide.

The <jem-deployment> section provides additional deployment information for an
active EJB deployed within this JAR file. The <jem-deployment> section contains
the following structure:

<jem-deployment jem-name=... ejb-name=...>
 <description></description>
 <data-bus data-bus-name=... url=.../>
 <called-by>
 <caller caller-identity=.../>
 </called-by>
 <security-identity>
 <description></description>
 <use-caller-identity></use-caller-identity>
 </security-identity>
</jem-deployment>

min-instances Do not use this element.

name The name of the bean, which matches the name of a bean in the
assembly section of the EJB deployment descriptor
(ejb-jar.xml).

subscription-name If this is a topic, the subscription name is defined in the
subscription-name attribute. For more information, see
"Create the OC4J-Specific Deployment Descriptor to Use Oracle
JMS" on page 9-17.

listener-threads The listener threads are used to concurrently consume JMS
messages. The default is one thread. Topics can only have one
thread. Queues can have more than one. For more information,
see "Create the OC4J-Specific Deployment Descriptor to Use
OracleAS JMS" on page 9-10.

transaction-timeout This attribute controls the transaction timeout interval (in
seconds) for any container-managed transactional MDB. The
default is one day or 86,400 seconds. If the transaction has not
completed in this timeframe, the transaction is rolled back. For
more information, see "Create the OC4J-Specific Deployment
Descriptor to Use Oracle JMS" on page 9-17.

dequeue-retry-count Specifies how often the listener thread tries to re-acquire the
JMS session once database failover has incurred. The default is
"0." This value is only for CMT transactions in an MDB. See
"Failover Scenarios When Using a RAC Database" on page 9-28
for more information.

dequeue-retry-interval Specifies the interval between retries. The default is 60 seconds.

Table A–3 (Cont.) Attributes for <message-driven-deployment> Element

Attribute Description

OC4J-Specific Deployment Descriptor for EJBs

A-14 Enterprise JavaBeans Developer’s Guide

The called-by element lets the application deployer to control or restrict the usage
of the asynchronous methods defined on the AC4J bean. In the following example
"CLIUSER", "SVRUSER" and "XTRAUSER" can invoke all methods defined on
AC4JBeanA, which corresponds to the EJB with name="ABean". If "USER1" or
"USER2" invoke this AC4JBeanA, then the container throws SecurityException.

<jem-deployment jem-name="AC4JBeanA" ejb-name="ABean">
 <called-by>
 <caller caller-identity="CLIUSER"/>
 <caller caller-identity="SVRUSER"/>
 <caller caller-identity="XTRAUSER"/>
 </called-by>
</jem-deployment>

 If the application deployer defines a security-role for the ABean EJB with
role="USER1", then "USER1" can invoke all the methods on the ABean EJB
synchronously. However, "USER1" can not invoke the same asynchronous methods in
AC4JBeanA unless the called-by element is defined for "USER1".

For more information on this element, see the Oracle Application Server Containers for
J2EE Services Guide.

EJB 1.1 CMP Field Mapping Section
If you still use EJB 1.1 CMP entity beans, you use the following elements to map the
CMP fields to the database.

The following are the XML elements used for CMP persistent data field mapping
within the orion-ejb-jar.xml file:

<cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...>
 <fields>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </fields>
 <properties>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </properties>
 <entity-ref home=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </entity-ref>
 <collection-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </collection-mapping>
 <set-mapping table=...>
 <primkey-mapping>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...
 persistence-type=...></cmp-field-mapping>
 </primkey-mapping>
 <value-mapping immutable="true|false" type=...>
 <cmp-field-mapping ejb-reference-home=... name=... persistence-name=...

OC4J-Specific Deployment Descriptor for EJBs

XML Reference for ORION-EJB-JAR.XML A-15

 persistence-type=...></cmp-field-mapping>
 </value-mapping>
 </set-mapping>
</cmp-field-mapping>

Method Definition
The following structure is used to specify the methods (and possibly parameters of
that method) of the bean.

<method>
 <description></description>
 <ejb-name></ejb-name>
 <method-intf></method-intf>
 <method-name></method-name>
 <method-params>
 <method-param></method-param>
 </method-params>
</method>

The style used can be one of the following:

1. When referring to all the methods of the specified enterprise bean's home and
remote interfaces, specify the methods as follows:

 <method>
<ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
</method>

2. When referring to multiple methods with the same overloaded name, specify the
methods as follows:

 <method>
<ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
</method>>

3. When referring to a single method within a set of methods with an overloaded
name, you can specify each parameter within the method as follows:

 <method>
 <ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-n</method-param>
</method-params>
</method>

The <method> element is used within the security and MDB sections. See "Specifying
Logical Roles in the EJB Deployment Descriptor" on page 12-3 for more information.

Assembly Descriptor Section
In addition to specifying deployment information for individual beans, you can also
specify addition deployment mapping information for security in the

Element Description

A-16 Enterprise JavaBeans Developer’s Guide

<assembly-descriptor> section. The <assembly-descriptor> section contains
the following structure:

<assembly-descriptor>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 <default-method-access>
 <security-role-mapping impliesAll=... name=...>
 <group name=... />
 <user name=... />
 </security-role-mapping>
 </default-method-access>
</assembly-descriptor>

Each of the element groups are discussed in the following sections of the OC4J
documentation set:

� The <security-role-mapping> element is described in "Mapping Logical
Roles to Users and Groups" on page 12-6.

� The <default-method-access> element is described in "Specifying a Default
Role Mapping for Undefined Methods" on page 12-7.

Element Description
<assembly-descriptor>
The mapping of the assembly descriptor elements.

<called-by>
Enables the application deployer to control or restrict the usage of the asynchronous
methods defined on the AC4J bean. You specify the user identity that is allowed to
execute all methods of the bean in this element. The identities that can be execute the
AC4J beans are identified in one or more <caller> elements.

<caller>
Each caller identity allowed to execute methods on the AC4J bean are defined in a
single <caller> element.

Attributes:

� caller-identity - The security role that is allowed to execute the AC4J bean
methods.

<cmp-field-mapping>
Deployment information for a container-managed persistence field. If no subtags are
used to define different behavior, the field is persisted through serialization or native
handling of "recognized" primitive types.

Attributes:

� ejb-reference-home - The JNDI-location of the fields remote EJB-home if the field is
an entity EJBObject or an EJBHome.

� name - The name of the field.

� persistence-name - The name of the field in the database table.

� persistence-type - The database type (valid values varies from database to
database) of the field.

Element Description

XML Reference for ORION-EJB-JAR.XML A-17

<collection-mapping>
Specifies a relational mapping of a Collection type. A Collection consists of n
unordered items (order isnt specified and not relevant). The field containing the
mapping must be of type java.util.Collection.

Attributes:

� table - The name of the table in the database.

<context-attribute>
An attribute sent to the context. The only mandatory attribute in JNDI is the
'java.naming.factory.initial' which is the classname of the context factory
implementation.

Attributes:

� name - The name of the attribute.

� value - The value of the attribute.

<data-bus>
The name and url of a specific Databus for an AC4J object.

Attributes:

� data-bus-name - The user-defined name of the Databus.

� url - The URL of the Databus, which is similar to a JDBC URL.

<default-method-access>
The default method access policy for methods not tied to a method-permission.

<description>
A short description.

<ejb-name>
The ejb-name element specifies an enterprise bean's name. This name is assigned by
the ejb-jar file producer to name the enterprise bean in the ejb-jar file's deployment
descriptor. The name must be unique among the names of the enterprise beans in the
same ejb-jar file. The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without breaking the
enterprise bean's function. There is no architected relationship between the ejb-name
in the deployment descriptor and the JNDI name that the Deployer will assign to the
enterprise bean's home. The name must conform to the lexical rules for an
NMTOKEN.

<ejb-ref-mapping>
The ejb-ref element that is used for the declaration of a reference to another
enterprise bean's home. The ejb-ref-mapping element ties this to a JNDI-location
when deploying.

Attributes:

� location - The JNDI location to look up the EJB home from.

� name - The ejb-ref's name. Matches the name of an ejb-ref in ejb-jar.xml.

<enterprise-beans>
The beans contained in this EJB JAR file.

<entity-deployment>
Deployment information for an entity bean.

Element Description

A-18 Enterprise JavaBeans Developer’s Guide

Attributes:

� call-timeout - The time (long milliseconds in decimal) to wait for any resource that
the EJB uses, except database connections, if it is busy (before throwing a
RemoteException, treating it as a deadlock). This is also used as a SQL query
timeout. If the timeout occurs before the SQL query finishes, a SQL exception is
thrown. If zero, the timeout is disabled. The default is 90 seconds.

� clustering-schema - Not recommended to use.

� copy-by-value - Whether or not to copy all the incoming/outgoing parameters for
all incoming and outgoing EJB calls. Set to 'false' if your application does not
assume copy-by-value semantics for these parameters. The default is 'true'.

� data-source - The name of the data source used if using container-managed
persistence.

� delay-updates-until-commit - Defers the flushing of transactional data until
commit time or not. The default is true. If you want each change to be updated in
the database, set this element to false.

� do-select-before insert - If false, you avoid executing a select before an insert. The
extra select normally checks to see if the entity already exists before doing the
insert to avoid duplicates.

If a unique key constraint is defined for the entity, then we recommend setting this
to false. If there is no unique key constraint, setting this to false leads to not
detecting a duplicate insert. To prevent duplicate inserts in this case, leave it set to
true.

For performance, Oracle recommends setting this to false to avoid the extra select
before insert. Default Value: true

� exclusive-write-access - Whether or not the EJB-server has exclusive write (update)
access to the database backend. This can be used only for entity beans that use a
"read_only" locking mode. In this case, it increases the performance for common
bean operations and enables better caching. The default is false. See "Specifying
Exclusive Write Access to the Database" on page 4-14 for more information.

� findByPrimaryKey-lazy-loading="true|false" - For entity bean finder methods,
lazy loading can cause the select method to be invoked more than once. To turn on
lazy loading and enforce only a single execution of this finder method, set this
property to true. The default is false. See "Configuring Lazy Loading on CMP
Entity Bean Finder Methods" on page 5-6 for more information.

� instance-cache-timeout - The amount of time in seconds that entity wrapper
instances are assigned to an identity. If you specify 'never', you retain the wrapper
instances until they are garbage collected. The default is 60 seconds.

� isolation - Specifies the isolation-level for database actions. The valid values for
Oracle databases are 'serializable' and 'committed'. The default is 'committed'.
Non-Oracle databases can be the following: 'none', 'committed', 'serializable',
'uncommitted', and 'repeatable_read'. For more information, see "Using Database
Isolation Modes to Protect Against Resource Contention" and "Configuring Entity
Bean Concurrency Modes For Handling Resource Contention" on page 4-12 and
Oracle Application Server Performance Guide .

� local-wrapper - Name of the OC4J local home wrapper class for this bean. This is
an internal server value and should not be edited.

� location - The JNDI-name this bean will be bound to.

Element Description

XML Reference for ORION-EJB-JAR.XML A-19

� locking-mode - The concurrency modes configure when to block to manage
resource contention or when to execute in parallel. For more information, see
"Using Database Isolation Modes to Protect Against Resource Contention" and
"Configuring Entity Bean Concurrency Modes For Handling Resource Contention"
on page 4-12 and Oracle Application Server Performance Guide . The concurrency
modes are as follows:

– PESSIMISTIC: This manages resource contention and does not allow parallel
execution. Only one user at a time is allowed to execute the entity bean at a
single time.

– OPTIMISTIC: Multiple users can execute the entity bean in parallel. It does
not monitor resource contention; thus, the burden of the data consistency is
placed on the database isolation modes. This is the default.

– READ-ONLY: Multiple users can execute the entity bean in parallel. The
container does not allow any updates to the bean's state.

� max-instances - The number of maximum bean implementation instances to be
kept instantiated or pooled. The default is 0, which means infinite. See
"Configuring Pool Sizes For Entity Beans" on page 4-11 for more information.

� min-instances - The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is 0. See "Configuring Pool Sizes For
Entity Beans" on page 4-11 for more information.

� max-tx-retries—The number of times to retry a transaction that was rolled back
due to system-level failures. The default is 0. Leave the setting to zero if using the
serializable isolation level. Within a transaction, the container uses the
max-tx-retries value of the first invoked bean within the transaction. The
performance guide recommends that you leave this value at 0 and add retries only
where errors are seen that could be resolved through a retry.

� tx-retry-wait—This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.

� name - The name of the bean, this matches the name of a bean in the assembly
descriptor (ejb-jar.xml).

� pool-cache-timeout - The amount of time in seconds that the bean implementation
instances are to be kept in the "pooled" (unassigned) state, specifying 'never'
retains the instances until they are garbage collected. The default is 60.

� table - The name of the table in the database if using container-managed
persistence.

� validity-timeout - The maximum amount of time (in milliseconds) that an entity is
valid in the cache (before being reloaded). Useful for loosely coupled
environments where rare updates from legacy systems occur. This attribute is only
valid for entity beans with locking mode of read_only and when
exclusive-write-access="true" (the default).

We recommend that if the data is never being modified externally (and therefore
you've set exclusive-write-access=true), that you can set this to 0 or -1, to disable
this option, since the data in the cache will always be valid for read-only EJBs that
are never modified externally.

If the EJB is generally not modified externally, so you're using
exclusive-write-access=true, yet occasionally the table is updated so you need to
update the cache occasionally, then set this to a value corresponding to the interval
you think the data may be changing externally.

Element Description

A-20 Enterprise JavaBeans Developer’s Guide

� update-changed-fields-only - Specifies whether the container updates only
modified fields or all fields to persistence storage for CMP entity beans when
ejbStore is invoked. The default is true, which specifies to only update modified
fields. See "Create Data Consistency in Your Entity Bean by Using Persistence" on
page 4-10 for more information.

� wrapper - Name of the OC4J remote home wrapper class for this bean. (internal
server attribute, do not edit)

<entity-ref>
Specified the configuration for persisting an entity reference via it's primary key. The
child-tag of this tag is the specification of how to persist the primary key.

Attributes:

� home - JNDI location of the EJBHome to get lookup the beans at.

<env-entry-mapping>
Overrides the value of an env-entry in the assembly descriptor. It is used to keep the
EAR clean from deployment-specific values. The body is the value.

Attribute:

� name - The name of the context parameter.

<fields>
Specifies the configuration of a field-based (java class field) mapping persistence for
this field. The fields that are to be persisted have to be public, non-static, non-final and
the type of the containing object has to have an empty constructor.

<finder-method>
The definition of a container-managed finder method. This defines the selection
criteria in a findByXXX() method in the bean's home.

Attributes:

� partial - Whether or not the specified query is a partial one. A partial query is the
'where' clause or the 'order' (if it starts with order) clause of the SQL query.
Queries are partial by default. If partial="false" is specified then the full query is to
be entered as value for the query attribute and you need to make sure that the
query produces a result-set containing all of the CMP fields. This is useful when
doing advances queries involving table joins and similar.

� query - The query part of an SQL statement. This is the section following the
WHERE keyword in the statement. Special tokens are $number which denotes an
method argument number and $name which denotes a cmp-field name. For
instance the query for "findByAge(int age)" would be (assuming the cmp-field is
named 'age'): "$1 = $age".

� lazy-loading - For entity bean finder methods, lazy loading can cause the select
method to be invoked more than once. To turn on lazy loading and enforce only a
single execution of this finder method, set this property to true. The default is
false. See "Configuring Lazy Loading on CMP Entity Bean Finder Methods" on
page 5-5 for more information.

� prefetch-size - Oracle JDBC drivers include extensions that allow you to set the
number of rows to prefetch into the client while a result set is being populated
during a query. This reduces round trips to the database by fetching multiple rows
of data each time data is fetched—the extra data is stored in client-side buffers for
later access by the client. The number of rows to prefetch can be set as desired. The
default number of rows to prefetch to the client is 10. The number set here is

Element Description

XML Reference for ORION-EJB-JAR.XML A-21

passed along to the JDBC driver. See the Oracle 9i JDBC Developer’s Guide and
Reference for more information on using prefetch with a JDBC driver.

<group>
A group that this <security-role-mapping> implies. That is, all members of the
specified group are included in this role.

Attributes:

� name - The name of the group.

<ior-security-config>
The <ior-security-config> element configures CSIv2 security policies for
interoperability, which is discussed fully in the Interoperability chapter in the Oracle
Application Server Containers for J2EE Services Guide.

<jem-deployment>
Specifies an active EJB for deployment into the AC4J container.

Attributes:

� jem-name - An AC4J name that is used to identify the bean within the AC4J calls

� ejb-name - Identifies the EJB defined in the ejb-jar.xml file as an active EJB.

<jem-server-extension>
Describes the database server where the Databus is installed

Attributes:

� data-source-location - Provides the JNDI data source definition of the database
where the Databus exists. The data source is configured in the
data-sources.xml file.

� scheduling-threads - If greater than 1, then multiple OC4J threads can act in
parallel. Default is 1.

<lookup-context>
The specification of an optional javax.naming.Context implementation used for
retrieving the resource. This is useful when using third party modules, such as a third
party JMS server. Either use the context implementation supplied by the resource
vendor or, if none exists, write an implementation that negotiates with the vendor
software.

Attribute:

� location - The name looked for in the foreign context when retrieving the resource.

<map-key-mapping>
Specifies a mapping of the map key. Map keys are always immutable.

Attributes:

� type - The fully qualified class name of the type of the value. Examples are
com.acme.Product, java.lang.String etc.

<message-driven-deployment>
Deployment information for a MDB.

Attributes:

� connection-factory-location: The JNDI location of the connection factory to use.
The JMS Destination Connection Factory is specified in the

Element Description

A-22 Enterprise JavaBeans Developer’s Guide

connection-factory-location attribute. The syntax is
"java:comp/resource" + resource provider name +
"TopicConnectionFactories" or "QueueConnectionFactories" + user
defined name. The xxxConnectionFactories details what type of factory is
being defined.

� destination-location: The JNDI location of the destination (queue/topic) to use.
The JMS Destination is specified in the destination-location attribute.
The syntax is "java:comp/resource" + resource provider name + "Topics" or
"Queues" + Destination name. The Topic or Queue details what type of
Destination is being defined. The Destination name is the actual queue or
topic name defined in the database.

� name - The name of the bean, this matches the name of a bean in the assembly
descriptor (ejb-jar.xml).

� subscription-name: If this is a topic, the subscription name is defined in the
subscription-name attribute.

� listener-threads: The listener threads are used to concurrently consume JMS
messages. The default is one thread. Topics can only have one thread; queues can
have more than one thread.

� transaction-timeout: This attribute controls the transaction timeout interval (in
seconds) for any container-managed transactional MDB. The default is one day or
86,400 seconds. If the transaction has not completed in this timeframe, the
transaction is rolled back.

� dequeue-retry-count—Specifies how often the listener thread tries to re-acquire the
JMS session once database failover has incurred. This value is only for CMT
transactions in an MDB. The default is "0." See "Failover Scenarios When Using a
RAC Database" on page 9-28 for more information.

� dequeue-retry-interval—Specifies the interval between retries. The default is 60
seconds.

<method>
Specify the methods (and possibly parameters of that method) of the bean.

<method-intf>
The method-intf element allows a method element to differentiate between the
methods with the same name and signature that are defined in both the remote and
home interfaces. The method-intf element must be one of the following: Home or
Remote.

<method-name>
The method-name element contains a name of an enterprise bean method, or the
asterisk (*) character. The asterisk is used when the element denotes all the methods of
an enterprise bean's remote and home interfaces.

<method-param>
The method-param element contains the fully-qualified Java type name of a method
parameter.

<method-params>
The method-params element contains a list of the fully-qualified Java type names of
the method parameters.

Element Description

XML Reference for ORION-EJB-JAR.XML A-23

<orion-ejb-jar>
An orion-ejb-jar.xml file contains the OC4J-specific deployment information for
an EJB. It is used to specify initial deployment properties. After each deployment the
deployment file is reformatted and altered by the server for additional information.

Attributes:

� deployment-time - The time (long milliseconds in decimal) of the last deployment,
if not matching the last editing date the jar will be redeployed. (internal server
value, do not edit)

� deployment-version - The version of OC4J this jar was deployed with, if it's not
matching the current version then it will be redeployed. (internal server value, do
not edit)

<primkey-mapping>
Designates how the primary key is mapped.

<properties>
Specifies the configuration of a property-based (bean properties) mapping persistence
for this field. The properties have to adhere to the usual JavaBeans specification and
the type of the containing object has to have an empty constructor This is also
designated within the EJB specification.

<resource-ref-mapping>
The resource-ref element is used for the declaration of a reference to an external
resource such as a data source, JMS queue, or mail session. The
resource-ref-mapping ties this to a JNDI-location when deploying.

Attributes:

� location - The JNDI location to look up the resource factory from.

� name - The resource-ref name. Matches the name of an resource-ref in
ejb-jar.xml.

<resource-env-ref-mapping>
The resource-env-ref-mapping element element is used to map an administered
object for a resource. For example, to use JMS, the bean must obtain both a JMS factory
object and a destination object. These objects are retrieved at the same time from JNDI.
The <resource-ref> element declares the JMS factory and the
<resource-env-ref> elment is used to declare the destination. Thus, the
<resource-env-ref-mapping> element maps the destination object. See "Using a
Logical Name When Client Accesses the MDB" on page 9-25 for more information.

Attributes:

� location - The JNDI location from which to look up the administered resource.

� name - The resource-env-ref name in ejb-jar.xml.

<role-name>
The security role that the AC4J EJB methods are run under when using the
<run-as-specified-identity> element.

<run-as-specified-identity>
You can specify that all methods of an AC4J EJB execute under a specific identity. That
is, the container does not check different roles for permission to run specific methods;
instead, the container executes all of the AC4J EJB methods under the specified
security identity.

Element Description

A-24 Enterprise JavaBeans Developer’s Guide

<security-identity>
Describes if the AC4J Databus should use the caller or run-as identity for the AC4J
bean security.

<security-role-mapping>
The runtime mapping (to groups and users) of a role. Maps to a security-role of the
same name in the assembly descriptor.

Attributes:

� impliesAll - Whether or not this mapping implies all users. The default is false.

� name - The name of the role

<session-deployment>
Deployment information for a session bean.

Attributes:

� pool-cache-timeout—How long to keep stateless sessions cached in the pool. Only
applies to stateless session beans. Legal values are positive integer values or
'never'. For stateless session beans, if you specify a pool-cache-timeout, then at
every pool-cache-timeout interval, all beans in the pool, of the corresponding bean
type, are removed. If the value specified is zero or negative, then the
pool-cache-timeout is disabled and beans are not removed from the pool.

Default Value: 60 (seconds)

� call-timeout—The time (long milliseconds in decimal) to wait for any resource that
the EJB uses, excluding database connections, if it is busy. After this times out, a
RemoteException is thrown and the EJB is treated as involved in a deadlock. If
value is set to 0, OC4J waits for the EJB "forever". This is the default.

� copy-by-value—Whether or not to copy (clone) all the incoming and outgoing
parameters in EJB calls. Set to 'false' if you are certain that your application does
not assume copy-by-value semantics for a speed-up. The default is 'true'.

� local-wrapper—Name of the OC4J wrapper class for this bean. This is an internal
server value and should not be edited.

� location—The JNDI-name that this bean will be bound to.

max-instances - This attribute controls the number of bean instances allowed in
memory—either instantiated or pooled. When this value is reached, the container
attempts to passivate the oldest bean instance from memory. If unsuccessful, the
container waits the number of milliseconds set in the call-timeout attribute to
see if a bean instance is removed from memory, either through passivation, its
remove() method, or bean expiration, before a TimeoutExpiredException is
thrown back to the client. To allow an infinite number of bean instances, the
max-instances attribute can be set to zero. Default is 0, which is infinite. This
applies to both stateless and stateful session beans.

� max-instances-threshold - This attribute defines a threshold for how many actives
beans exist in relation to the max-instances attribute definition. Specify an integer
that is translated as a percentage. If you define that the max-instances is 100 and
the max-instances-threshold is 90%, then when the active bean instances reaches
past 90, passivation of beans occurs. Default: 90%. To disable, specify "never".

� max-tx-retries—The number of times to retry a transaction that was rolled back
due to system-level failures. The default is 0. Within a transaction, the container
uses the max-tx-retries value of the first invoked bean within the transaction. The

Element Description

XML Reference for ORION-EJB-JAR.XML A-25

performance guide recommends that you leave this value to 0 and add retries only
where errors are seen that could be resolved through a retry.

� tx-retry-wait—This parameter specifies the time to wait in seconds between
retrying the transaction. The default is 60 seconds.

� memory-threshold - This attribute defines a threshold for how much used JVM
memory is allowed before passivation should occur. Specify an integer that is
translated as a percentage. When reached, beans are passivated, even if their idle
timeout has not expired. Default: 80%. To disable, specify "never."

� min-instances - The number of minimum bean implementation instances to be
kept instantiated or pooled. The default is zero. This applies only to stateless
session beans.

� name—The name of the bean, which matches the name of a bean in the assembly
section of the EJB deployment descriptor (ejb-jar.xml).

� resource-check-interval - The container checks all resources at this time interval. At
this time, if any of the thresholds have been reached, passivation occurs. Default:
180 sec. (3 min.). To disable, specify "never."

� passivate-count - This attribute is an integer that defines the number of beans to be
passivated if any of the resource thresholds have been reached. Passivation of
beans is performed using the least recently used algorithm. Default: one-third of
the max-instances attribute. You can disable this attribute by setting the count
to zero or a negative number.

� persistence-filename—Path to the file where sessions are stored across restarts.

� timeout—Inactivity timeout in seconds. If the value is zero or negative, then all
timeouts are disabled. The default is 30 minutes. Every 30 seconds, the pool clean
up logic is invoked. Within the pool clean up logic, only the sessions that timed
out, by passing the timeout value, are deleted.

Adjust the timeout based on your applications use of stateful session beans. For
example, if stateful session beans are not removed explicitly by your application,
and the application creates many stateful session beans, then you may want to
lower the timeout value.

If your application requires that a stateful session bean be available for longer than
30 minutes, then adjust the timeout value accordingly.

� wrapper—Name of the OC4J wrapper class for this bean. This is an internal server
value and should not be edited.

<set-mapping>
Specifies a relational mapping of a Set type. A Set consists of n unique unordered
items (order is not specified and not relevant). The field containing the mapping must
be of type java.util.Set.

Attributes:

� table - The name of the table in the database.

<use-caller-identity>
You can specify that all methods of an AC4J EJB execute under the caller's identity.

<user>
A user that this security-role-mapping implies.

Attributes:

Element Description

A-26 Enterprise JavaBeans Developer’s Guide

� name - The name of the user.

<value-mapping>
Specified a mapping of the primary key part of a set of fields.

Attributes:

� immutable - Whether or not the value can be trusted to be immutable once added
to the Collection. Setting this to true will optimize database operations
extensively. The default value is "true" for set-mapping and "false" for
collection-mapping.

� type - The fully qualified class name of the type of the value. Examples are
com.acme.OrderEntry, java.lang.String, and so on.

Third Party Licenses B-1

B
Third Party Licenses

This appendix includes the Third Party License for all the third party products
included with Oracle Application Server.

Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software, and
the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the Apache
software is provided by Oracle "AS IS" and without warranty or support of any kind
from Oracle or Apache.

Below is the Apache software license:

/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *

Apache HTTP Server

B-2 Enterprise JavaBeans Developer’s Guide

 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED "'AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

Index-1

Index

Symbols
<abstract-schema-name> element, 7-4, 7-6
<assembly-descriptor> element, A-16
<caller> element, A-16
<cascade-delete> element, 6-8
<cmp-field-mapping> element, 5-7, 6-20, 6-38, 6-44,

A-7, A-16
<cmr-field> element, 5-7, 6-6, 6-10, 6-33
<cmr-field-name> element, 6-3, 6-6
<cmr-field-type> element, 6-6
<collection-mapping> element, 6-22, 6-33, 6-34, 6-36,

6-37, 6-38, 6-41, 6-44, A-17
<container-transaction> element, 9-3, 9-7
<context-attribute> element, A-17
<default-method-access> element, 12-7, A-16, A-17
<delay-updates-until-commit> attribute, A-18
<description> element, A-17
<destination-type> element, 9-7
<ejb> element, 3-8, 10-4
<ejb-link> element, 10-11, 10-12
<ejb-location> element, 8-9
<ejb-mapping> element, 10-12
<ejb-module> element, 2-10
<ejb-name> element, 10-12, A-17
<ejb-ql>, 7-4
<ejb-ql> element, 7-10
<ejb-ref> element, 2-5, 10-12
<ejb-ref-mapping> element, 10-11, 10-13, A-4, A-8,

A-12, A-17
<ejb-ref-name> element, 2-6, 10-12, 10-13
<ejb-ref-type> element, 10-12
<ejb-relation> element, 6-5
<ejb-relation-name> element, 6-5
<ejb-relationship-role> element, 6-5
<ejb-relationship-role-name> element, 6-5
<enterprise-beans> element, A-3, A-17
<entity-deployment> element, 4-13, 4-14, 6-13, 6-14,

6-20, 6-22, 6-28, 6-36, 6-42, A-6, A-7, A-17
<entity-ref> element, A-20
<env-entry> element, 10-9
<env-entry-mapping> element, A-4, A-8, A-12, A-20
<env-entry-name> element, 10-9
<env-entry-type> element, 10-9
<env-entry-value> element, 10-9
<fields> element, A-20

<finder-method> element, 7-7, A-7, A-20
<group> element, A-21
<home> element, 10-12
<ior-security-config> element, A-4, A-7, A-21
<java> element, 3-8, 10-4
<jem-deployment> element, A-13, A-21
<jem-server-extension> element, A-13, A-21
<jndi-name> element, 10-12, 10-16, 10-18
<lookup-context> element, A-21
<map-key-mapping> element, A-21
<mapping> element, 10-12, 10-16, 10-18
<max-tx-retries> element, 1-6, 4-13
<message-driven> element, 9-7
<message-driven-deployment> element, 9-10, 9-11,

9-17, 9-19, A-11, A-12, A-21
<message-driven-destination> element, 9-7
<method> element, A-15, A-22

defined, 12-4
<method-intf> element, A-22
<method-name> element, 7-4, A-22
<method-param> element, 7-10, A-22
<method-params> element, A-22
<method-permission> element, 12-2, 12-3, 12-4
<module> element, 3-8, 10-4
<multiplicity> element, 6-6
<orion-ejb-jar> element, A-2, A-23
<persistence-type> element, 8-9
<prim-key-class> element, 4-6, 8-4
<primkey-mapping> element, 6-34, 6-39, 6-44, A-7,

A-23
<properties> element, A-23
<query> element, 7-2, 7-3, 7-4, 7-10
<query> element., 7-6
<relationship-role-source> element, 6-6
<relationships> element, 6-5, 6-14, 6-36
<remote> element, 10-12
<res-auth> element, 10-16, 10-18
<resource-env-ref> element, 9-25
<resource-env-ref-mapping> element, A-4, A-8,

A-12, A-23
<resource-provider> element, 9-16
<resource-ref> element, 8-9, 9-25
<resource-ref-mapping> element, 10-16, 10-18, A-4,

A-8, A-12, A-23
<res-ref-name> element, 10-16, 10-18
<res-type> element, 10-16, 10-18

Index-2

<result-type-mapping> element, 7-4
<role-link> element, 12-2, 12-3
<role-name> element, 12-2, 12-3
<run-as> element, 12-6
<security-identity> element, 12-6
<security-role> element, 12-2, 12-3
<security-role-mapping> element, 12-6, 12-7, A-16,

A-24
<security-role-ref> element, 12-2, 12-3
<server> element, 2-11
<session-deployment> element, 13-4, A-3, A-24
<set-mapping> element, 6-22, 6-36, 6-41, A-25
<sfsb-config> element, 3-9
<subscription-durability> element, 9-7
<transaction-type> element, 9-7
<unchecked/> element, 12-5
<use-caller-identity/> element, 12-6
<user> element, A-25
<value-mapping> element, A-26
<value-mapping> element, 6-34, 6-39, 6-44
<web> element, 3-8, 10-4

A
accessing EJBs, 2-1
application.xml file, 3-7, 9-3, 10-4

example, 3-8, 10-5
overview, 3-8, 10-4

archiving
directions, 3-7, 10-4
EAR file, 3-9, 10-5
EJBs, 3-7, 10-3

association table, 6-27, 6-35, 6-40
autocreate-tables element, 6-13, 6-14, 6-45

B
bean

accessing remotely, 1-16
activation, 1-7
creating, 3-2, 4-2
environment, 1-8
implementation, 3-4
interface, 1-6
overview, 1-1
passivation, 1-7
removal, 2-7
steps for invocation, 1-17

bean-managed persistent, see BMP
BLOB, 5-7
BMP

create database tables, 8-10
creation process, 8-2
defined, 8-1
deployment descriptor, 8-9
ejbCreate implementation, 8-3
home and remote interfaces, 8-2
implementation details, 8-3
persistence, 1-13

C
cache-timeout attribute, A-12
called-by attribute, A-16
caller-identity attribute, A-16
call-timeout attribute, A-4, A-8, A-18, A-24
ClassCastException, 10-6, 10-7
CLOB, 5-7
clustering, 13-1 to 13-5

concurrency mode effect, 4-15
clustering-schema attribute, A-18
CMP

data types, 5-6
overview, 1-13

CMR
association table, 6-27, 6-35, 6-40
cardinality, 6-6
cascade delete option, 6-8
default mapping, 6-9
define get/set methods, 6-4
deployment descriptor, 6-5
direction, 6-6
explicit relationship mapping, 6-12
many-to-many, 6-3, 6-6, 6-40
many-to-one, 6-2, 6-6
mapping relationships, 6-9
one-to-many, 6-2, 6-6, 6-11, 6-21, 6-27, 6-33, 6-35
one-to-one, 6-2, 6-6, 6-11
relationship definition, 6-3
types of relationships, 6-2

CMT
retry JMS message, A-13, A-22

Collections, 5-7
command-line options, 10-6
component interface

overview, 1-17
concurrency modes, 4-12

clustering, 4-15
connection-factory-location attribute, 9-11, 9-18,

A-21
context

session, 1-8
transaction, 1-8

copy-by-value attribute, A-4, A-8, A-18, A-24
create method, 2-7, 4-3, 4-4

EJBHome interface, 1-17, 3-2
CreateException, 3-3

D
data types, 5-6

mapping, 5-6
database constraints

foreign key, 6-50
data-bus attribute, A-17
data-source attribute, A-8, A-18
DataSource object, 10-15
data-source-location attribute, A-21
data-sources.xml file, 8-9, 8-10
Date, 7-11
DBMS_AQADM package, 9-15

Index-3

deadlock
recovery, 2-12

dedicated.rmicontext property, 2-12, 13-5
delay-updates-until-commit attribute, A-11
deployment

error recovery, 10-5
deployment descriptor, 1-17, 3-6, 4-2, 8-2, 10-2

BMP, 8-9
EJB QL, 7-4
EJB reference, 10-10
entity bean, A-6
environment variables, 10-8
JDBC DataSource, 10-14
MDB, 9-3
message-driven bean, A-11
security, 12-2, 12-3, 12-7
session bean, A-4

dequeue-retry-count attribute, A-13, A-22
dequeue-retry-interval attribute, A-13, A-22
destination-location attribute, 9-11, 9-18, A-22
DNS round-robin, 2-5, 13-5
do-select-before-insert attribute, A-9, A-18
DTD file, 3-6, 10-2

E
EAR file, 3-1

creation, 3-9, 10-5
EJB

archive, 3-7, 10-3
clustering, 13-1 to 13-5
creating, 3-2, 3-4, 4-2
deployment descriptor, 3-6, 10-2
development suggestions, 10-1
difference between session and entity, 1-14
home interface, 3-2
JAAS support, 2-12
JAR file, 4-2, 8-2, 9-3
local interface, 3-4
overview, 1-1
parameter passing, 1-18
passivation, 3-9
referencing other EJBs, 10-6, 10-7
remote interface, 3-3
replication, 13-4
security, 12-1
setting pool size, 4-11

EJB QL
?1, 7-11
deployment descriptor, 7-4
DISTINCT keyword, 7-11
documentation, 7-1
finder method

example, 7-5
overview, 7-2

input parameter syntax, 7-11
overview, 7-2
query methods, 7-2
select method

example, 7-9

overview, 7-3
statement example, 7-5, 7-6

EJB Query Language, see EJB QL
ejbActivate method, 1-7, 1-12, 8-2, 8-8
EJBContext interface, 1-8
ejbCreate method, 1-11, 1-12, 1-14, 3-2, 4-4, 8-3

initializing primary key, 8-3
MDB, 9-4
SessionBean interface, 1-7

EJBException, 3-3, 3-4
ejbFindByPrimaryKey method, 1-14, 8-3, 8-6
EJBHome interface, 3-2, 3-3, 4-3

create method, 4-3, 4-4
findByPrimaryKey method, 4-2, 4-3, 8-2

ejb-jar.xml file, 3-6, 8-9, 10-2
ejbLoad method, 1-12, 1-13, 1-14, 8-2, 8-7
EJBLocalHome interface, 3-2, 3-3, 4-3
EJBLocalObject interface, 3-2, 3-4, 4-4
ejb-name attribute, A-21
EJBObject interface, 3-2, 3-4, 4-4
ejbPassivate method, 1-7, 1-12, 8-2, 8-8
ejbPostCreate method, 1-11, 1-14, 4-4
ejb-reference-home attribute, A-16
ejbRemove method, 1-7, 1-12, 1-13, 1-14, 8-9

MDB, 9-4
EJBs

accessing, 2-1
ejbStore method, 1-12, 1-13, 1-14, 8-2, 8-7
enable-passivation attribute, 3-10
Enterprise Archive file, see EAR file
Enterprise Java Beans, see EJB
entity bean

class implementation, 4-4
context information, 1-12
creating, 1-12, 4-2, 4-3
deployment descriptor, A-6
finder methods, 4-3, 8-3
home interface, 4-3
overview, 1-6, 1-10
persistent data, 1-11, 1-13
primary key, 1-10
relationships, see CMR
remote interface, 4-4
removing, 1-13

EntityBean interface, 1-11, 1-14, 1-18, 4-4
ejbActivate method, 1-12, 8-2
ejbCreate method, 1-11, 1-12, 1-14
ejbFindByPrimaryKey method, 1-14
ejbLoad method, 1-12, 1-13, 1-14, 8-2
ejbPassivate method, 1-12, 8-2
ejbPostCreate method, 1-11
ejbRemove method, 1-12, 1-13, 1-14
ejbStore method, 1-12, 1-13, 1-14, 8-2
setEntityContext method, 1-12, 1-14
unsetEntityContext method, 1-12

environment references
URL, 10-17

environment, retrieval, 1-8
error recovery, 10-5, 10-7

ClassCastException, 10-7

Index-4

deadlock, 2-12
NamingException thrown, 2-12
NullPointerException thrown, 2-12
out of memory, 10-5

exclusive-write-access attribute, 4-14, A-9, A-18

F
findByPrimaryKey method, 4-2, 8-2
findByPrimaryKey-lazy-loading attribute, 5-6, A-18
finder

lazy loading, 5-5
finder method

backwards compatibility, 7-7
EJB QL example, 7-5
overview, 7-2

finder methods, 8-3
BMP, 8-6
entity bean, 4-3
findByPrimaryKey method, 4-3

force-update attribute, A-11
foreign key

database constraints, 6-50
deferrable, 6-50

G
getEJBHome method, 1-8
getEnvironment method, 1-8
getRollbackOnly method, 1-8
getUserTransaction method, 1-8

H
home interface

creating, 3-2, 4-2, 8-2
lookup, 2-7
overview, 1-16, 1-17

I
idletime attribute, 3-10, A-6
immutable attribute, A-26
impliesAll attribute, 12-7, A-24
instance-cache-timeout attribute, A-9, A-18
invoking EJBs, 2-1
isCallerInRole method, 12-3
isolation attribute, 4-13, A-9, A-18
isolation modes, 4-12

J
JAAS support for EJBs, 2-12
JAR

archiving command, 3-7, 10-4
jar command, 3-7, 10-4
JAR file, 4-2, 8-2, 9-3

EJB, 3-7, 10-3
Java mail

Session object, 10-15
jem-name attribute, A-21

JMS
Destination, 9-15
durable subscriptions, 9-3
handled by MDB, 1-15
Oracle JMS, 9-13 to ??
OracleAS JMS, 9-9 to 9-12
queue, 9-11
retry message, A-22
Topic, 9-17

JNDI
clustering, 13-4
lookup, 2-7
namespace replication, 13-4

L
lazy loading, 1-6, 5-5
lazy-loading attribute, 5-6, 7-9, A-20
listener-threads attribute, 9-11, 9-18, A-13, A-22
Lists, 5-7
load balancing, 13-5
LoadBalanceOnLookup property, 13-5
local home interface

example, 3-3
local interface

creating, 3-4
example, 3-4
overview, 1-17

local-wrapper attribute, A-6, A-11, A-18, A-24
location attribute, A-4, A-9, A-18, A-21, A-23, A-24
locking-mode attribute, 4-14, A-10, A-19

M
mail

Session object, 10-15
mapping

relationships, 6-12
max-instances

default value, 1-6
max-instances attribute, 4-12, A-5, A-10, A-12, A-19,

A-24
max-instances-threshold attribute, 3-10, A-6, A-24
max-tx-retries attribute, A-5, A-10, A-19, A-24
MDB

configuration, 9-11, 9-17, 9-19
creation, 9-3
deployment descriptor, 9-3
dequeue-retry-count attribute, A-22
dequeue-retry-intervale attribute, A-22
example, 9-3
onMessage method, 9-13
overview, 1-6, 1-15, 9-2
performance, 9-11, 9-18, A-22
transaction timeout, 9-18, A-22

memory-threshold attribute, 3-10, A-6, A-25
message-driven bean

deployment descriptor, A-11
Message-Driven Beans, see MDB
MessageDrivenBean interface, 1-16, 9-4

Index-5

setMessageDrivenContext method, 9-4
MessageListener interface, 1-16, 9-4

onMessage method, 9-4
min-instances attribute, 4-12, A-5, A-10, A-13, A-19,

A-25
multi-tier environment, 2-10

N
name attribute, A-5, A-10, A-13, A-19, A-22, A-24,

A-25
narrowing, 2-7
NoSuchObjectLocalException, 11-4
NullPointerException, 2-12

O
OC4J

command-line options, 10-6
Windows shutdown, 9-28

OC4J instances terminating due to ping
timeout, 10-7

onMessage method, 1-16, 9-4, 9-13
optimisitic concurrency mode, 4-14
optimistic concurrency mode, A-10, A-19
ORA-8177 exception, 4-15
Oracle JMS, 9-13 to 9-20, ?? to 9-20

create resource provider, 9-16
OracleAS JMS, 9-9 to 9-12
oracle.mdb.fastUndeploy property, 9-28
orion-ejb-jar.xml file, 9-3
out of memory, 10-7
Out of Memory error, 10-5

P
packaging

referenced EJB classes, 10-6, 10-7
parameters

object types, 1-19
passing conventions, 1-18

parent application, 10-6
partial attribute, A-20
pass by reference, 1-18
pass by value, 1-18
passivate-count attribute, 3-10, A-6, A-25
passivation criteria, 3-9 to 3-11
performance setting

DNS load balancing option, 2-5, 13-5
permissions, 12-1
persistence

bean-managed, 1-13
container-managed, 1-13
container-managed vs. bean-managed, 4-10
create database tables, 8-10
data management, 1-12
managing, 4-2
managing in BMP, 8-2
overview, 1-11

persistence-filename attribute, 3-11, A-5, A-25
persistence-name attribute, A-16

persistence-type attribute, 5-6, 5-7, A-16
mappings, 5-6

pessimistic concurrency mode, A-10, A-19
pessimistic conncurrency mode, 4-13
pool

setting size, 4-11
pool-cache-timeout attribute, A-4, A-11, A-19, A-24
PortableRemoteObject

narrow method, 2-7
prefetch-size attribute, 7-9, A-20
primary key, 4-2, 8-2

autoid
mapping to table, 6-21

complex class, 8-5
complex definition, 8-4
creating, 8-3
entity bean, 1-14, 4-6
management, 1-12
overview, 1-10, 4-6
simple definition, 8-4

PropertyPermission, 12-1

Q
query attribute, A-20

R
read-only concurrency mode, 4-14, A-10, A-19
remote

accessing, 2-10
remote attribute, 2-10
remote home interface

example, 3-3
remote interface

business methods, 2-7
creating, 3-2, 3-3, 4-2, 8-2
example, 3-4
overview, 1-16, 1-17

RemoteException, 3-4
remove method, 2-7

EJBHome interface, 1-17
replication attribute, A-5
resource-check-interval attribute, 3-10, A-6, A-25
runAs security identity, 12-5
RuntimePermission, 12-1

S
scheduling-threads attribute, A-21
security, 12-1

permissions, 12-1
SecurityException, A-14
security-identity element, A-24
select method

EJB QL example, 7-9
overview, 7-3

Serializable interface, 1-19
session bean

class implementation, 1-18
context, 1-7

Index-6

deployment descriptor, A-3, A-4
local home interface, 3-3
methods, 1-7
overview, 1-6
remote home interface, 3-3
removing, 1-7
stateful, 1-6, 1-9
stateless, 1-6, 1-8

Session object, 10-15
SessionBean interface, 1-18

EJB, 1-6, 3-2
ejbActivate method, 1-7
ejbCreate method, 1-7
ejbPassivate method, 1-7
ejbRemove method, 1-7
setSessionContext method, 1-7

SessionContext
interface, 1-8

setEntityContext method, 1-12, 1-14
setMessageDrivenContext method, 1-16, 9-4
setRollbackOnly method, 1-8
setSessionContext method, 1-7, 1-13
SocketPermission, 12-1
SQRT, 7-11
stateful session bean

clustering, 13-2
overview, 1-9

stateless session bean
clustering, 13-2
overview, 1-8

static block in an EJB, 10-7
subscription-name attribute, A-13, A-22

T
table attribute, A-11, A-19
Time, 7-11
TimedOutException, A-4, A-8
timeout attribute, A-6, A-25
TimeoutExpiredException, A-5, A-24
timers, 11-1

callback method implementation, 11-1
cancel, 11-4
creating, 11-1
ejbTimeout method, 11-1
executing within a transaction, 11-4
NoSuchObjectLocalException, 11-4
persistence, 11-4
retrieving information, 11-4
retrieving timer service, 11-1

TimerService object, 11-1, 11-2
Timestamp, 7-11
transaction

commit, 1-8
context propagation, 1-8
retrieve status, 1-8
rollback, 1-8

TRANSACTION_READ_COMMITTED, 4-12
TRANSACTION_SERIALIZABLE, 4-12
transaction-timeout attribute, 9-18, A-13, A-22

trans-attribute
default value, 1-6

troubleshooting, 10-5, 10-7
OC4J instances terminating due to ping

timeout, 10-7
static block in an EJB, 10-7

tx-retry-wait attribute, A-5, A-10, A-19, A-25
type attribute, A-21, A-26

U
unsetEntityContext method, 1-12, 1-14
update-changed-fields-only attribute, A-10, A-20

V
validity-timeout attribute, A-11, A-19

W
Windows

shutdown, 9-28
wrapper attribute, A-6, A-11, A-20, A-25

X
XML

BMP, 8-9
deployment descriptor, 4-2, 8-2

	1 How Do Applications Use EJBs?
	2 How to Access EJBs
	3 Implementing Session Beans
	4 Entity Beans
	5 CMP Entity Beans
	6 Entity Relationship Mapping
	7 EJB Query Language
	8 BMP Entity Beans
	9 Message-Driven Beans
	10 Understanding Environment, Deployment, and Packaging
	11 Using Timers
	12 Configuring EJB Application Security
	13 EJB Clustering
	A XML Reference for ORION-EJB-JAR.XML
	B Third Party Licenses
	Send Us Your Comments
	Preface
	Who Should Read This Guide?
	Documentation Accessibility
	Prerequisite Reading
	Suggested Reading
	How This Guide Is Organized
	Conventions

	1 How Do Applications Use EJBs?
	New Features of EJB 2.0
	Local Interface Support
	Remote Access
	Local Access
	Local Interfaces and Container-Managed Relationships
	Local Compared to Remote Access

	Home Interface Business Methods
	Message-Driven Beans
	Enterprise JavaBeans Query Language (EJB QL)
	CMP Relationships
	Oracle Application Server Object-Relational Mapping
	Third Party O-R Mappings - TopLink Integration

	CORBA Support - RMI-over-IIOP

	Changes in Defaults for Oracle Application Server
	Which Type of EJB Should You Use in Your Application?
	What is a Session Bean?
	Retrieving the Context Using setSessionContext
	What is a Stateless Session Bean?
	What is a Stateful Session Bean?

	What is an Entity Bean?
	Entity Beans are Uniquely Identified by a Primary Key
	Managing the Persistent Data Within the Entity Bean
	Manage Your Persistent Data With Container-Managed Persistence

	What is the Difference Between Session and Entity Beans?
	When Do You Use a Message-Driven Bean?

	What Makes Up An EJB?
	Interfaces for Bean Implementation is Based on Bean Type
	Parameter Passing Conventions for Your EJBs
	How to Handle Returned Parameter Objects

	What Container Services Can You Use for EJBs?

	2 How to Access EJBs
	Steps for Accessing Any EJB
	Client Installation of OC4J.JAR
	Setting JNDI Properties
	No JNDI Properties
	JNDI Properties File
	JNDI Properties Within The Implementation
	JNDI Properties for OC4J Standalone

	When Do You Use the Different Initial Context Factory Classes?
	An Initial Context Factory Specific to DNS Load Balancing

	How to Lookup the EJB Reference
	Configuring the EJB Reference Information

	Example of How a Client Invokes an EJB
	Accessing an EJB in a Remote Server
	Accessing an EJB in Another Application
	JAAS Support for EJBs
	Using the RIMInitialContextFactory Object
	Recovering From Deadlock Conditions
	Recovering From a NamingException While Accessing a Remote EJB
	Recovering From NullPointerException While Accessing a Remote EJB

	3 Implementing Session Beans
	Developing Session Beans
	Implement the Session Bean
	Creating the Home Interfaces
	Creating the Component Interfaces
	Implementing the Bean

	Create the Deployment Descriptor
	Archive the EJB Application

	Prepare the EJB Application for Assembly
	Modify the Application.XML File
	Create the EAR File

	Deploy the Enterprise Application to OC4J
	When Does Stateful Session Bean Passivation Occur?
	Object Types Enabled for Passivation
	Storage of Passivated EJBs

	Using Timers With Your Stateless Session Bean

	4 Entity Beans
	Entity Bean Overview
	Creating Entity Beans
	Implement the Entity Bean Home Interface
	Implement the Entity Bean Component Interfaces
	Implement the Entity Bean Class

	How to Define and Use Primary Keys for Your Entity Bean
	Defining the Entity Bean Primary Key in a Class
	Defining an Auto-Generated Primary Key for Your Entity Bean

	Create Data Consistency in Your Entity Bean by Using Persistence
	Tie Entity Beans Together Through Container-Managed Relationships
	Managing the Entity Bean Lifecycle
	Configuring Pool Sizes For Entity Beans

	How to Avoid Database Resource Contention
	Using Database Isolation Modes to Protect Against Resource Contention
	Configuring Entity Bean Concurrency Modes For Handling Resource Contention
	Specifying Exclusive Write Access to the Database
	Effects of the Combination of the Database Isolation and Bean Concurrency Modes
	Differences Between Pessimistic and Optimistic/Serializable

	Affects of Concurrency Modes on Clustering

	Using Transactions With Entity Beans
	Providing Security for Your Entity Beans
	Using Timers With Your Entity Bean

	5 CMP Entity Beans
	Persistence Fields
	Default Mapping of Persistent Fields to the Database
	Explicit Mapping of Persistent Fields to the Database

	Configuring Lazy Loading on CMP Entity Bean Finder Methods
	Conversion of CMP Types to Database Types
	Simple Data Types
	Serializable Classes
	Other Entity Beans or Collections

	6 Entity Relationship Mapping
	Transaction Requirements
	Defining Entity-To-Entity Relationships
	Choosing Cardinality and Direction
	One-To-One Relationship Overview
	One-To-Many or Many-To-One Relationship Overview
	Many-To-Many Relationship Overview

	Requirements in Defining Relationships
	Define the Get/Set Methods for Each Relationship Field
	Set the Relationships in the Bean Implementation
	Declare the Relationships in the Deployment Descriptor
	Decide Whether to Use the Cascade Delete Option

	Mapping Object Relationship Fields to the Database
	Default Mapping of Relationship Fields to the Database
	Example of a Default Mapping of the One-To-One Relationship
	Example of a Default Mapping of One-To-Many and Many-To-Many Relationships

	Explicit Mapping of Relationship Fields to the Database
	Quick Cookbook for Matching an Existing Database to the Bean Mappings
	Steps for Modifying CMR Mapping Elements
	Hand-Editing the orion-ejb-jar.xml File to Map Bean Relationships to Database Tables
	One-To-One Relationship Explicit Mapping
	Table Mapping For Primary Keys That Use AutoId
	Using a Foreign Key with the One-To-Many Relationship
	Association Table Explicit Mapping for Relationships Overview
	XML Structure for One-to-Many Relationship Mapping
	Using an Association Table with a One-to-Many Bidirectional Relationship
	Using an Association Table in a One-to-Many Unidirectional Relationship
	Using an Association Table in Many-to-Many Relationships

	Using a Foreign Key in a Composite Primary Key
	How to Override a Foreign Key Database Constraint
	Performing Inner or Outer Joins on One-to-One Relationships
	Batching SQL statements in your entity beans
	How to map a CMP field and a CMR field to the same row in the database
	Synchronizing Data during Bean Creation

	7 EJB Query Language
	EJB QL Overview
	Query Methods Overview
	Finder Methods
	Select Methods
	Return Objects

	Deployment Descriptor Semantics
	Finder Method Example
	Specifying Finder Methods With EJB QL Syntax
	Define the Finder Method in the Home Interface
	Define the Finder Method Definition in the Deployment Descriptor
	Relationship Finder Example

	Specifying Finder Methods With OC4J-Specific Syntax
	Add the Finder Method to Home Interface
	Add the Query to the OC4J-Specific Deployment Descriptor

	Select Method Example
	Define the Select Method in the Bean Class
	Define the Select Method Definition in the Deployment Descriptor

	Oracle EJB QL Type Extensions: Date, Time, Timestamp, and SQRT

	8 BMP Entity Beans
	Creating BMP Entity Beans
	Component and Home Interfaces
	BMP Entity Bean Implementation
	The ejbCreate Implementation
	The ejbFindByPrimaryKey Implementation
	Other Finder Methods
	The ejbStore Implementation
	The ejbLoad Implementation
	The ejbPassivate Implementation
	The ejbActivate Implementation
	The ejbRemove Implementation

	Modify XML Deployment Descriptors
	Create Database Table and Columns for Entity Data

	9 Message-Driven Beans
	MDB Overview
	MDB Example
	MDB Implementation Example
	EJB Deployment Descriptor (ejb-jar.xml) for the MDB

	MDB Using OracleAS JMS
	Configure OracleAS JMS in the XML files
	JMS Destination Object Configuration

	Create the OC4J-Specific Deployment Descriptor to Use OracleAS JMS
	OracleAS JMS
	Specify the Destination and Connection Factory
	Map Any Resource References to JNDI Names

	Deploying the MDB

	MDB Using Oracle JMS
	Install and Configure the JMS Provider
	Create User and Assign Privileges
	Create JMS Destination Objects

	Configure the OC4J XML Files for the JMS Provider
	Configure the DataSource
	Identify the JNDI Name of the Oracle JMS Data Source

	Create the OC4J-Specific Deployment Descriptor to Use Oracle JMS
	OracleAS JMS
	Specify the Destination and Connection Factory
	Map Any Resource References to JNDI Names

	Deploy the MDB

	Client Access of MDB
	Using an Explicit Name for the JNDI Lookup
	Accessing OracleAS JMS Destination with Explicit JNDI Names
	Accessing Oracle JMS Destination with Explicit JNDI Names
	Steps for Sending a Message to an MDB

	Using a Logical Name When Client Accesses the MDB
	JNDI Naming for OracleAS JMS
	JNDI Naming for Oracle JMS
	Client Sends JMS Message Using Logical Names

	Windows Considerations When Using MDBs
	Failover Scenarios When Using a RAC Database
	Using Timers With Your MDB

	10 Understanding Environment, Deployment, and Packaging
	Directory Structure Recommendations for EJB Development
	Create the Deployment Descriptor
	Archive the EJB Application
	Prepare the EJB Application for Assembly
	Modify the Application.XML File
	Create the EAR File

	Deploy the Enterprise Application to OC4J
	Out Of Memory Error During Deployment

	Sharing Classes
	Out of Memory During Execution
	ClassCastException
	Static Block in an EJB
	OC4J Instances Terminating Due To ping Timeout

	Configuring Environment References
	Environment Variables
	Environment References To Other Enterprise JavaBeans
	Examples of References to a Local Interface
	Accessing EJBs Using Environment References
	Examples of References to a Remote Interface

	Environment References To Resource Manager Connection Factory References
	JDBC DataSource
	Mail Session
	URL

	11 Using Timers
	How to Create Timers
	Configuring Regularly Scheduled Timers (Cron Timers)
	How to Retrieve Information About the Timer
	How to Retrieve a Persisted Timer
	Executing the Timer Within the Scope of a Transaction
	What Does a NoSuchObjectLocalException Mean with Timers?

	12 Configuring EJB Application Security
	Granting Permissions in Browser
	Authenticating and Authorizing EJB Applications
	Specifying Users and Groups
	Specifying Logical Roles in the EJB Deployment Descriptor
	Specifying Unchecked Security for EJB Methods
	Specifying the runAs Security Identity
	Mapping Logical Roles to Users and Groups
	Specifying a Default Role Mapping for Undefined Methods
	Specifying Users and Groups by the Client

	Specifying Credentials in EJB Clients
	Credentials in JNDI Properties
	Credentials in the InitialContext

	13 EJB Clustering
	EJB Clustering Overview
	Stateless Session Clustering
	Stateful Session Bean Clustering
	Combination of HTTP and EJB Clustering

	Enabling Clustering For EJBs
	Configure the Multicast Address for EJB Clustering
	Configure EJB Replication for Stateful Session Beans
	VM Termination Replication
	End of Call Replication

	EJB Clustering Includes JNDI Namespace Replication
	Load Balancing Options
	Load Balancing Using Static Retrieval
	DNS Load Balancing

	A XML Reference for ORION-EJB-JAR.XML
	OC4J-Specific Deployment Descriptor for EJBs
	Enterprise Beans Section
	Session Bean Section
	Entity Bean Section
	Message Driven Bean Section
	AC4J Active EJB Section
	EJB 1.1 CMP Field Mapping Section
	Method Definition

	Assembly Descriptor Section

	Element Description

	B Third Party Licenses
	Apache HTTP Server

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

