
Oracle® Application Server
Best Practices Guide

10g Release 2 (10.1.2)

B28654-01

March 2006

Oracle Application Server Best Practices Guide, 10g Release 2 (10.1.2)

B28654-01

Copyright © 2004, 2006, Oracle. All rights reserved.

Primary Author: William Bathurst, Jan Carlin, Fermin Castro, Ron Caneel, Douglas Clark, Mike Donohue,
Shalendra Goel, Nicole Haba, Christian Hauser, Pavana Jain, Michael Lehman, John Lang, Sandhya Rajput,
Gurudatt Shashikumar, Deborah Steiner, Olaf Stullich, Deepak Thomas, Jinyu Wang, Philip Weckerle

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Conventions ... xiv

1 Introduction to Best Practices

2 Management and Monitoring

2.1 Oracle Enterprise Manager 10g Best Practices.. 2-1
2.1.1 Select the Framework Options That Best Suit Your Needs ... 2-1
2.1.2 Application Server Control Console ... 2-2
2.1.2.1 Use the Deployment Wizard to Deploy Applications .. 2-2
2.1.2.2 Use Clusters for Application Deployment and Configuration Management to

Simplify Management of Application Servers ... 2-2
2.1.2.3 Monitor Application Performance During Application Development or Test

Cycles to Identify Resource Usage and Identify Bottlenecks................................. 2-3
2.1.2.4 Use the Host Home Page to Help Diagnose Performance Issues.......................... 2-3
2.1.2.5 Perform Configuration Changes in Application Server Control to Ensure the

Repository is Properly Updated... 2-3
2.1.2.6 Monitor Rate and Aggregated Performance Metrics to Identify Slow Requests 2-3
2.1.3 Grid Control Console .. 2-4
2.1.3.1 Use Alerts and Notifications to Proactively Monitor System Availability 2-4
2.1.3.2 Set Up Grid Control Console to Monitor for Availability and Performance Issues

..2-4
2.1.3.3 Add OracleAS Farms and OracleAS Clusters to Centrally Manage Application

Server.. 2-5
2.1.3.4 Use End-User Performance Monitoring to Monitor Response Times of Web Pages

.. 2-5
2.1.3.5 Proactively Monitor Web Application Transactions to Test Performance

Monitoring... 2-5
2.1.3.6 Use Diagnostics to Pinpoint OC4J Performance Problems 2-6
2.1.3.7 Use Job System to Schedule a Deployment .. 2-6
2.1.3.8 Regularly Perform Backups to Prepare for Loss of Data.. 2-7
2.1.3.9 Use Grid Control to Manage Both Oracle Application Server and the Oracle

Database... 2-7

iv

2.1.3.10 Manage Multiple Oracle Application Server Instances on a Single Host to Reduce
Resource Usages ... 2-7

2.2 Oracle Process Manager and Notification Server Best Practices ... 2-8
2.2.1 Start OPMN to Manage Components... 2-8
2.2.2 Never Start or Stop OPMN Managed Components Manually 2-8
2.2.3 Review stdout and stderr to Determine Cause of Components Not Starting 2-8
2.2.4 Increase Timeout For Components to Avoid Timed-Out Requests............................. 2-9
2.2.5 Set Retry to High Values For Components Running on an Overloaded System to

Avoid Restart of Computer .. 2-9
2.2.6 Leverage Additional Logging to Aid in Debugging .. 2-9
2.2.7 Configure Log Rotation to Avoid Log File Size Issues ... 2-10
2.2.8 Configure Additional Start Order Dependencies to Customize Startup 2-10
2.2.9 Use Event Scripts to Record Important Events .. 2-10
2.2.10 Use OPMN to Manage External Components.. 2-11
2.3 Distributed Configuration Management Best Practices... 2-11
2.3.1 Use DCM Archiving to Take Snapshots of Configuration ... 2-12
2.3.2 Specify a Single Instance in a Cluster as the Management Point to Provide A Correct

Order of Operations ... 2-13
2.3.3 Avoid Concurrent Administration Operations to Prevent Configuration Conflicts 2-13
2.3.4 Avoid Running updateConfig Concurrently with Any Other Configuration Operation

to Prevent Configuration Conflicts .. 2-13
2.3.5 Restart Application Server Control Console after Joining or Leaving a Farm or Cluster

to Refresh the Console ... 2-13
2.3.6 Use High Availability Features for Infrastructure Repository to Synchronize within a

Farm.. 2-14
2.3.7 Follow dcmctl Tips to Improve Usage... 2-14
2.4 Dynamic Monitoring Services Best Practices... 2-15
2.4.1 Monitor Your System Regularly to Identify Performance Problems........................ 2-15
2.4.2 Take Regular Dumps of Metrics to Capture and Save a Record of Performance Data

... 2-15
2.4.3 Add Performance Instrumentation to Application to Aid Developers 2-16
2.4.4 Isolate Expensive Intervals Using PhaseEvent Metrics to Validate Code................ 2-16
2.4.5 Organize Performance Data to Avoid Metrics Not Displaying................................. 2-16
2.4.6 DMS Naming Conventions to Improve Metric Reports ... 2-16
2.4.7 Follow DMS Coding Recommendations to Improve Code.. 2-17
2.4.8 Validate New Metrics to Verify Accuracy .. 2-17

3 Oracle HTTP Server

3.1 Configure Topology Appropriately For Modem Connections to Prevent Blocking Oracle
HTTP Server .. 3-1

3.2 Tune TCP/IP Parameters to Improve Oracle HTTP Server Performance.......................... 3-2
3.3 Tune KeepAlive Directives to Improve Connection Performance 3-2
3.4 Tune MaxClients Directive to Improve Request Performance... 3-2
3.5 Avoid Any DNS Lookup to Prevent Performance Degradation ... 3-2
3.6 Tune Off Access Logging to Reduce Overhead.. 3-3
3.7 Use FollowSymLinks and Not SymLinkIfOwnerMatch to Configure Symbolic Links ... 3-3
3.8 Set AllowOverride to None to Prevent Unnecessary Directive Checking 3-3
3.9 Use mod_rewrite to Hide URL Changes For End-Users .. 3-3

v

3.10 Use mod_oc4j Sticky Routing Instead of Configuring the External Router....................... 3-3

4 Oracle Application Server Containers for J2EE (OC4J) Applications and
Developer Tools

4.1 Java Server Pages Best Practices ... 4-1
4.1.1 Pre-Translate JSPs Before Deployment to Prevent Translation Overhead.................. 4-2
4.1.2 Separate Presentation Markup from Java to Improve Application Performance 4-2
4.1.3 Use JSP Template Mechanism to Reserve Resources ... 4-2
4.1.4 Set sessions to false If Not Using Sessions to Prevent Overhead of Creating Sessions4-3
4.1.5 Always Invalidate Sessions When No Longer Used to Prevent Overhead of

Applications.. 4-3
4.1.6 Set main_mode Parameter to justrun to Prevent Recompilation of JSPs 4-3
4.1.7 Use Available JSP Tags In Tag Library to Create Clean and Reusable Code 4-4
4.1.8 Minimize Context Switching Between Servlets and EJBs to Avoid Performance Issues

.. 4-4
4.1.9 Package JSP Files In EAR File Rather Than Standalone to Standardize Deployment

Process ... 4-4
4.1.10 Use Compile-Time Object Introspection to Improve Application Performance........ 4-4
4.1.11 Choose Static Versus Dynamic Includes Appropriately.. 4-4
4.1.12 Disable JSP Page Buffer If Not Used to Improve Performance..................................... 4-4
4.1.13 Use Forwards Instead of Redirects to Improve Browser Experience........................... 4-5
4.1.14 Use JSP Cache Tags to Save Development Time... 4-5
4.1.15 Use well_known_taglib_loc to Share Tag Libraries.. 4-6
4.1.16 Use jsp-timeout Attribute to Provide Efficient Memory Utilization............................ 4-6
4.1.17 Use reduce_tag_code Parameter to Reduce the Size of Generated Java Method....... 4-6
4.1.18 Use Workarounds to Avoid Reaching JVM Code Size Limit.. 4-7
4.1.19 Hide JSP Pages to Prevent Access ... 4-7
4.2 Sessions Best Practices.. 4-7
4.2.1 Persist Session State If Appropriate to Preserve State with Browser........................... 4-8
4.2.2 Replicate Sessions If Persisting Is Not an Option to Improve Performance 4-8
4.2.3 Avoid Storing Objects in Sessions to Reuse Shared Resources..................................... 4-9
4.2.4 Set Session Timeout Appropriately to Optimize Performance..................................... 4-9
4.2.5 Monitor Session Memory Usage to Determine Data to Store in Session Objects....... 4-9
4.2.6 Use Small Islands to Improve Fault Tolerance.. 4-9
4.2.7 Use a Mix of Cookie and Sessions to Improve Performance... 4-9
4.2.8 Use Coarse Objects Inside HTTP Sessions to Reduce Update Events 4-10
4.2.9 Use Transient Data in Sessions Whenever Appropriate to Reduce Replication

Overhead.. 4-10
4.2.10 Invalidate Sessions to Prevent Memory Usage Growth ... 4-10
4.2.11 Miscellaneous Guidelines.. 4-10
4.3 Enterprise Java Bean Best Practices... 4-11
4.3.1 Use Local, Remote, and Message-Driven EJBs Appropriately to Improve Performance

.. 4-11
4.3.2 Use EJB Judiciously .. 4-12
4.3.3 Use Service Locator Pattern... 4-12
4.3.4 Cluster Your EJBs.. 4-12
4.3.5 Index Secondary Finder Methods .. 4-13

vi

4.3.6 Understand EJB Lifecycle .. 4-13
4.3.7 Use Deferred Database Constraints ... 4-13
4.3.8 Create a Cache with Read Only EJBs... 4-13
4.3.9 Pick an Appropriate Locking Strategy .. 4-13
4.3.10 Understand and Leverage Patterns.. 4-14
4.3.11 When Using Entity Beans, Use Container Managed Aged Persistence Whenever

Possible... 4-14
4.3.12 Entity Beans using Local interfaces Only.. 4-15
4.3.13 Use a Session Bean Facade for Entity Beans .. 4-15
4.3.14 Enforce Primary Key Constraints at the Database Level .. 4-15
4.3.15 Use Foreign Key for 1-1 and 1-M Relationships... 4-15
4.3.16 Avoid findAll Method on Entities Based on Large Tables ... 4-15
4.3.17 Set prefetch-size Attribute to Reduce Round Trips to Database 4-15
4.3.18 Use Lazy Loading with Caution... 4-16
4.3.19 Avoid Performing O-R Mapping Manually ... 4-16
4.4 Data Access Best Practices .. 4-16
4.4.1 Use Datasources Connections Caching and Handling to Prevent Running Out of

Connections ... 4-16
4.4.1.1 DataSource Connection Caching Strategies .. 4-17
4.4.2 Use Data Source Initialization... 4-17
4.4.3 Disable Escape Processing to Improve Performance... 4-17
4.4.4 Define Column Types to Save Round-trips to Database Server 4-17
4.4.5 Prefetch Rows to Improve Performance.. 4-18
4.4.6 Update Batching to Improve Performance ... 4-19
4.4.6.1 Oracle Update Batching.. 4-19
4.4.6.2 Standard Update Batching ... 4-19
4.4.7 Use More Than One Database Connection Simultaneously in the Same Request to

Avoid a Deadlock in the Database ... 4-20
4.4.8 Tune the Database and SQL Statements to Optimize the Handling of Database

Resources ... 4-20
4.4.8.1 Tune JDBC .. 4-21
4.4.8.2 Cache JDBC Connections ... 4-21
4.4.8.3 Cache JDBC Statements .. 4-21
4.4.8.4 Cache JDBC Rowsets... 4-21
4.4.9 Configure Data Source Configurations Options .. 4-22
4.5 J2EE Class Loading Best Practices ... 4-22
4.5.1 Avoid Duplicating Libraries to Prevent Loading Problems....................................... 4-22
4.5.2 Load Resources Appropriately to Avoid Errors .. 4-23
4.5.3 Enable Class Loading Search Order within Web Modules.... 4-23
4.5.4 Declare and Group Dependencies to Prevent Hidden or Unknown Dependencies 4-23
4.5.5 Minimize Visibility to Satisfy Dependencies.. 4-23
4.5.6 Create Portable Configurations .. 4-23
4.5.7 Do Not Use the lib Directory for Container-Wide Shared Libraries to Prevent Loading

Issues... 4-24
4.6 Java Message Service Best Practices .. 4-24
4.6.1 Set the Correct time_to_live Value to Avoid Messages Never Expiring 4-24
4.6.2 Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role 4-24
4.6.3 Close JMS Resources No Longer Needed to Keep JMS Objects Available 4-25

vii

4.6.4 Reuse JMS Resources Whenever Possible to Perform Concurrent JMS Operations 4-25
4.6.5 Use Debug Tracing to Track Down Problems .. 4-25
4.6.6 Understand Handle/Interpret JMS Thrown Exceptions to Handle Runtime Exceptions

.. 4-25
4.6.7 Connect to the Server and Database From the Client Computer to Debug JMS

Connection Creation Problems... 4-26
4.6.8 Tune Your Database Based on Load to Improve Performance.................................. 4-26
4.6.9 Ensure OracleAS JMS Connection Parameters are Correct to Avoid Runtime

Exceptions .. 4-26
4.6.10 Provide Correct OracleAS JMS Configuration to Avoid Java JMS Exceptions 4-27
4.7 Oracle Application Server XML Developer’s Kit Best Practices 4-28
4.7.1 Choose Correct XML Parsers to Improve Efficiency ... 4-28
4.7.2 Improve XSLT Performance.. 4-29
4.7.3 Use the Stream-based XML Schema and DTD Validation to Improve Performance 4-29
4.7.4 Process DOM using the JAXB Interface to Access and Operate on XML Data 4-30
4.8 Oracle Application Server TopLink Best Practices ... 4-30
4.8.1 Use OracleAS TopLink Mapping Guidelines to Persist Application Data 4-31
4.8.2 Use Caching and Concurrency Protection to Improve Performance........................ 4-31
4.8.2.1 OracleAS TopLink Cache Refreshing Policies... 4-31
4.8.2.2 Avoid Stale Cache Content .. 4-32
4.8.2.3 Cache Coordination... 4-33
4.8.3 Use Sequencing to Apply Project-Wide Properties to All Descriptions 4-33
4.8.4 Implement Performance Options to Improve Performance....................................... 4-33
4.8.4.1 Performance Diagnostics.. 4-34
4.8.4.2 Tuning ... 4-34
4.8.4.2.1 Reducing The Size of the Transactional Cache .. 4-34
4.8.4.2.2 Analyzing the Object-Building phase ... 4-34
4.8.4.2.3 Use of Named Queries... 4-35
4.9 Oracle Application Server Forms Services Best Practices .. 4-36

5 OracleAS Portal

5.1 Installing, Configuration, Administration, Upgrade, and Troubleshooting...................... 5-1
5.1.1 Deploy, Patch, and Test Custom Portlet Providers to Provide Flexibility with Your

Upgrade... 5-1
5.1.2 Upgrade from 10g Release 2 (10.1.2.0.2) to 10g Release 2 (10.1.4)................................. 5-2
5.2 Performance Tuning and Features ... 5-2
5.2.1 Use Appropriate Caching Strategy to Improve Performance....................................... 5-3
5.2.2 Use Providers Judiciously to Improve Portal Performance .. 5-5
5.2.3 Use Parallel Page Engine to Improve Availability and Scalability 5-6
5.2.4 Scale OracleAS Portal to Optimize Performance .. 5-6
5.2.5 Use Repository Services to Remove the Need for mod_plsql Tuning......................... 5-6
5.2.6 Leverage Web Provider Session Caching to Improve the Portlet Cache-hit Rate...... 5-7
5.2.7 Increase Perceived Execution Speed to Improve Performance of Portlets.................. 5-7
5.2.8 Reduce Page Complexity to Improve Cacheability .. 5-7
5.2.9 Measure Tuning Effectiveness to Improve Performance... 5-7
5.2.10 Manage Portlet Execution For Each Page to Prevent Portal Slow-Down Issues........ 5-8
5.2.11 Prune Content to Improve Content Cleanup .. 5-8

viii

5.2.12 Use Search Keys to Invalidate.. 5-8
5.3 Content Management and Publishing ... 5-9
5.3.1 Use Page Groups to Delegate Administration .. 5-9
5.3.2 Research Your Taxonomy Before Building Up a Page Hierarchy to Save Rework Time

.. 5-10
5.3.3 Use Portal Templates to Improve Consistency .. 5-10
5.3.4 Use Navigation Pages to Manage Portal Template Content 5-11
5.3.5 Use Categories, Perspectives and Custom Attributes to Enhance Content Metadata

.. 5-12
5.3.6 Use Translations to Create Multilingual Web Sites ... 5-13
5.3.7 Use the View Mode Best Suited to the Task ... 5-14
5.3.8 Use Content Management APIs to Migrate Existing Content 5-14
5.3.9 Use Content Management APIs to Organize Content .. 5-14
5.3.10 Use the Content Management Event Framework to React on Any Activity in the

Content Management System... 5-15
5.3.11 Use the Public Search API to Implement Custom Searches 5-16
5.3.12 Use WebDAV Capabilities to Support Desktop Applications Centric Users 5-16
5.3.13 Use HTML Templates to Create Pixel-Perfect Pages... 5-17
5.4 Export/Import Utilities... 5-18
5.4.1 Review Supported Use Cases to Optimize Export and Import Operations 5-18
5.4.2 Follow the Guidelines for Export and Import of Portal Objects to Prevent Errors. 5-19
5.5 Secure the Portal Environment .. 5-19
5.5.1 Implement Post Installation Steps to "Harden" Your Portal Environment From

Malicious Attack ... 5-19
5.5.2 Implement a Role-Based Security Model to Simplify Access Control Definition ... 5-21
5.5.3 Base Development of Pages on a Network Aware Custom Page Type to Enable

Implementation of Network Access Security ... 5-22
5.5.4 Group secured content to Optimize ACL Determination and "Network Access"

Security... 5-23
5.5.5 Define Anonymous "Public" Pages and Authenticated "Public" Pages to Simplify

Security... 5-24
5.5.6 Implement Hash Message Authentication (HMAC) Encryption in Communication to

Web Providers to Allow for Secured Identity Propagation and J2EE-Based Security
.. 5-24

5.5.7 Implement Global Inactivity Timeout to Prevent Attacks through Unauthorized
Sessions .. 5-25

5.5.8 Utilize Separate Page Groups and a Segmented Security Realm Within Oracle Internet
Directory to Support a Hosted Portal that is to Be Shared Across Independent User
Communities ... 5-26

5.6 Portlet Development.. 5-27
5.6.1 Install the Portal Extension for Oracle JDeveloper to Improve Portlet Development5-28
5.6.2 Apply WSRP Standard to Enable Interoperability Between a Standards-enabled

Container and any WSRP Portal .. 5-28
5.6.3 Portlet Show Modes ... 5-29
5.6.4 Ensure Links in Portlet Are Correct to Avoid Sending the User Away from the Portal

... 5-29
5.6.5 Use Hybrid Portlets to Provide the Best Possible Rendition in the Desktop

Environment.. 5-29
5.6.6 Create a Struts Portlet to Create and Publish Applications within Your Enterprise

Portal... 5-30

ix

5.6.7 When Is It Best to Use the Web Clipping Portlet? ... 5-30
5.6.8 When Is It Best to use OmniPortlet? .. 5-31
5.6.9 When to Use Portlet Parameters?... 5-31
5.6.10 When to Use Event Support? .. 5-32
5.6.11 Use the Oracle Application Server Portal Developer's Guide to Learn How to Build Portlets

... 5-32

6 OracleAS Wireless

6.1 Deploy Multiple Tiers for High-Volume Environments to Avoid Capacity Issues.......... 6-1
6.2 Establish Firewall Settings to Permit Protocols .. 6-1
6.3 Deploy Content Sources to a JVM Other Than OC4J_Portal or OC4J_Wireless to Avoid

Stability Issues ... 6-2
6.4 Select a Voice Gateway Suited for Your Environment.. 6-2
6.5 Deploy Messaging Applications to Use a Gateway... 6-2
6.6 Oracle Sensor Edge Server... 6-2
6.6.1 Copy edgeserver.xml to Clone Server Configurations .. 6-2
6.6.2 Analyze Requirements to Select Best Dispatcher.. 6-3

7 OracleAS Web Cache

7.1 Improve Performance, Scalability, and Availability.. 7-1
7.2 Planning and Deployment... 7-2
7.2.1 Use Two CPUs and Consider Deploying on Dedicated Hardware to Avoid Operating

System Limitations .. 7-2
7.2.2 Cluster Cache Instances to Make Availability, Scalability, and Performance Gains. 7-3
7.2.3 Use a Hardware Load Balancer in Front of OracleAS Web Caches to Avoid a Single

Point of Failure... 7-3
7.2.4 Use OracleAS Web Cache Built-In Load Balancing to Improve Availability and

Scalability of Origin Servers... 7-4
7.2.5 Test Application Upgrades and Patches to Ensure Existing Cache and Session Rules

Still Function Correctly ... 7-4
7.3 Secure Content to Prevent Tampering... 7-5
7.4 Configuring OracleAS Web Cache... 7-5
7.4.1 Configure Enough Memory to Avoid Swapping Objects In and Out of the Cache .. 7-5
7.4.2 Allocate Sufficient Network Bandwidth to Accommodate the Throughput Load.... 7-6
7.4.3 Set a Reasonable Number of Network Connections to Maximize Performance........ 7-6
7.4.4 Create Custom Error Pages to Suit Your Environment ... 7-6
7.5 Increasing Cache Hits... 7-7
7.5.1 Use Cookies and URL Parameters to Increase Cache-hit Ratios 7-7
7.5.2 Use Redirection to Cache Entry Pages.. 7-8
7.5.3 Use Surrogate-Control Headers Instead of Caching Rules to Better Manage

Cacheability .. 7-8
7.5.4 Use Partial Page Caching Where Possible to Increase Cacheability 7-9
7.5.5 Use ESI Variables to Improve Cache-hit Ratios for Personalized Pages 7-9
7.5.6 Use the <esi:environment> Tag to Authenticate or Authorize Callbacks................ 7-10
7.5.7 Use JESI to Cache JSP Output .. 7-10
7.6 Invalidation and Expiration ... 7-11

x

7.6.1 Select the Invalidation Method Best Suited for Your Content to Keep Performance in
Check .. 7-11

7.6.2 Build Programmatic Invalidation Into Application Logic to Invalidate Dynamic
Content ... 7-12

7.6.3 Combine Invalidation and Expiration Policies to Keep Cache Content Fresh 7-13
7.6.4 Use Invalidation Propagation in Clusters to Improve Data Consistency 7-13
7.7 Optimizing Response Times .. 7-14
7.7.1 Tuning Origin Server and OracleAS Web Cache Settings to Optimize Response Time

.. 7-14
7.7.2 Use Compression to Improve Response Times and Reduce Network Bandwidth 7-15
7.7.3 Use Only Warning or Notification Logging Levels to Conserve Resources............ 7-15

8 Oracle Business Intelligence

8.1 Oracle Application Server Reports Services ... 8-1
8.1.1 Leverage High Availability to Replace Separate Clustering Solutions for Each

Component ... 8-1
8.1.2 Design Your Paper Layout to Display Report Output in Microsoft Excel 8-5
8.1.3 Select Paper Layout to Control Pagination and Web Layout to Control HTML Output

...8-9
8.1.4 Use Dynamic Environment Switching to Consolidate Reports Servers................... 8-10
8.2 Oracle Business Intelligence Discoverer Best Practices.. 8-10
8.2.1 Identify Worksheets That Need Tuning to Improve Performance............................ 8-10
8.2.2 Establish Scalability to Share the Workload ... 8-11

9 Platform Security and Identity Management

9.1 General Best Practices... 9-1
9.1.1 HTTPS Best Practices... 9-2
9.1.2 Assign Lowest-Level Privileges Adequate for the Task to Contain Security Leaks.. 9-2
9.1.3 Cookie Security Best Practices .. 9-2
9.1.4 Systems Setup Best Practices.. 9-3
9.1.5 Certificates Use Best Practices.. 9-3
9.1.6 Review Code and Content Against Already Known Attacks to Minimize the Attack

Recurrence .. 9-4
9.1.7 Firewall Best Practices... 9-4
9.1.8 Leverage Declarative Security ... 9-5
9.1.9 Use Switched Connections in DMZ .. 9-5
9.1.10 Place Application Server in the DMZ to Prevent Security Issues................................. 9-5
9.1.11 Use Secure Sockets Layer Encryption to Secure LDAP and HTTP Traffic 9-5
9.1.12 Tune the SSLSessionCacheTimeout Directive to Meet Your Application Needs 9-6
9.1.13 Plan Out The Final Topology Before Installing Oracle Application Server Security

Components.. 9-6
9.2 Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider

Best Practices ... 9-6
9.3 J2EE Security Best Practices... 9-6
9.3.1 Avoid Writing Custom User Managers and Instead Use Included APIs to Focus Time

on Business Logic... 9-7
9.3.2 Use the Authentication Mechanism with the JAAS Provider to Leverage Benefits .. 9-7
9.3.3 Use Fine-Grained Access Control.. 9-7

xi

9.3.4 Use Oracle Internet Directory as the Central Repository to Provide LDAP Standard
Features ... 9-7

9.3.5 Develop Appropriate Logout Functionality to Prevent Users from Closing the Web
Browsers.. 9-8

9.4 OracleAS Single Sign-On Best Practices .. 9-8
9.4.1 Configure for High Availability to Prevent Inaccessible Applications 9-8
9.4.2 Leverage OracleAS Single Sign-On to Optimize Administration and Customer

Experience... 9-9
9.4.3 Use an Enterprise-Wide Directory to Eliminate User Data in Multiple Systems....... 9-9
9.4.4 Use OracleAS Single Sign-On to Validate User Credentials ... 9-9
9.4.5 Always Use SSL with Oracle Application Server to Protect Applications.................. 9-9
9.4.6 Provide Username and Password Only on Login Screen to Prevent Users from

Providing Credentials to Inappropriate Servers ... 9-9
9.4.7 Log Out to Prevent Active Cookies.. 9-10
9.5 Oracle Internet Directory Deployment Best Practices .. 9-10
9.5.1 Use bulkload.sh Utility to Bootstrap System.. 9-11
9.5.2 Replicate to Provide High Availability.. 9-11
9.5.3 Use SSL Binding to Secure Traffic .. 9-11
9.5.4 Use Backup and Restore Utilities to Secure Data... 9-12
9.5.5 Monitor and Audit Oracle Internet Directory to Improve Availability 9-12
9.5.6 Assign Oracle Internet Directory Privileges to Limit Access 9-13
9.5.7 Change Access Control Policies to Control User Administration............................. 9-13
9.5.8 Best Practice for Directory Integration Platform.. 9-13
9.5.8.1 Use Identity Management Realms to Build Connectivity Between Oracle Internet

Directory and Third-Party Directories ... 9-13
9.5.8.2 Configure Synchronization Service to Enable Users to Interact with Deployed

Applications ... 9-14
9.5.8.3 Synchronize Oracle Human Resources and Oracle Internet Directory to Provide

Access to OracleAS Single Sign-On and Oracle Delegated Administration Services
.. 9-14

9.5.9 Incorporate Group Assignment During User Creation to Avoid Multiple Steps ... 9-15
9.5.10 Use opmnctl instead of oidmon and oidctl to Manage Processes 9-15
9.5.11 Configure Active Directory Synchronization... 9-15
9.5.12 Use User Attributes and Password Hints to Make Resetting Credentials Easier ... 9-16

10 Oracle Application Server High Availability Solutions

10.1 Oracle Application Server Cluster (Identity Management)... 10-1
10.2 Oracle Application Server Cold Failover Clusters.. 10-2
10.2.1 Use Shared Oracle Home Installs for OracleAS Cold Failover Cluster (Middle-Tier) to

Simplify Administration.. 10-2
10.2.2 Use Oracle Universal Installer Commands to Attach OracleAS Cold Failover Cluster

Oracle Home with the oraInventory.. 10-2
10.2.3 Use Disk Redundancy for OracleAS Cold Failover Cluster to Avoid Oracle Home

Failures ... 10-3
10.2.4 Allocate Ports to the OracleAS Cold Failover Cluster Instance to Avoid Failures 10-3
10.3 Load Balancers ... 10-3
10.3.1 Use Fault-Tolerant Hardware Load Balancers to Avoid Single Points of Failure .. 10-3
10.3.2 Use Monitoring of Services to Automatically Disable Traffic to Unavailable Nodes 10-3

xii

10.3.3 Configure All Idle Time Timeouts to Maximize Time for Unused or Idle Service 10-4
10.4 Oracle Application Server Guard .. 10-4
10.4.1 Clean Up Invalid Records to Avoid Instantiation and Synchronization Errors...... 10-4
10.4.2 Use the Same Ports for OracleAS Guard in Avoid Manual Configuration Steps in

Synchronization Operations.. 10-4
10.4.3 Use Different Labels and Colors in OracleAS Guard Shells to Avoid Errors.......... 10-4
10.4.4 Enable High-Logging Level to Troubleshoot OracleAS Guard Operations 10-4
10.5 Backup and Recovery.. 10-5
10.5.1 Use Application Server Control as the Standard Way to Perform Backup and Recovery

to Avoid Errors and Typos .. 10-5
10.5.2 Use Instance-Level Backup to Guarantee Consistency .. 10-5
10.5.3 Perform an Image Backup to Recover from Loss of Host Scenario........................... 10-5
10.5.4 Use Incremental Backups to Save Time and Disk Space .. 10-6

Index

xiii

Preface

Oracle Application Server Best Practices Guide provides a collection of common practices
regarding usage, deployment, or development of Oracle Application Server.

Audience
Oracle Application Server Best Practices Guide is intended for anyone deploying Oracle
Application Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

xiv

Related Documents
For more information, see the Oracle Application Server Documentation Library.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction to Best Practices 1-1

1
Introduction to Best Practices

This book provides a collection of best practices, covering configuration, deployment,
and development of Oracle Application Server. A best practice provides a
recommendation or a common practice on how to perform certain tasks and actions.
This recommendation may involve a combination of tools and manual processes to
achieve a desired result. This collection covers the following technology areas:

■ Administration and management tools for Oracle Application Server

■ Oracle HTTP Server

■ Oracle Application Server Containers for J2EE (OC4J) Applications and associated
tools

■ Oracle Application Server Portal

■ Oracle Application Server Wireless

■ Oracle Application Server Web Cache

■ Oracle Business Intelligence, including components Oracle Reports and Oracle
Business Intelligence Discoverer

■ Security and Oracle Identity Management

■ High availability

1-2 Oracle Application Server Best Practices Guide

Management and Monitoring 2-1

2
Management and Monitoring

This chapter describes management and monitoring best practices for Oracle
Application Server. It includes the following topics:

■ Section 2.1, "Oracle Enterprise Manager 10g Best Practices"

■ Section 2.2, "Oracle Process Manager and Notification Server Best Practices"

■ Section 2.3, "Distributed Configuration Management Best Practices"

■ Section 2.4, "Dynamic Monitoring Services Best Practices"

2.1 Oracle Enterprise Manager 10g Best Practices
This section describes best practices for Oracle Enterprise Manager 10g. It features the
following topics:

■ Section 2.1.1, "Select the Framework Options That Best Suit Your Needs"

■ Section 2.1.2, "Application Server Control Console"

■ Section 2.1.3, "Grid Control Console"

2.1.1 Select the Framework Options That Best Suit Your Needs
There are ways to deploy Enterprise Manager in order to give you the flexibility to
select the configuration that best suits your needs. If you are working in a simple
development or test environment, or if you have a single Oracle Application Server
10g instance to manage, you can use Oracle Enterprise Manager 10g Application
Server Control Console (Application Server Control Console), which is available with
any Oracle Application Server middle-tier installation. Application Server Control
Console enables you to directly access all the pages for managing and monitoring the
instance.

In a production environment, you typically manage a wider variety of software and
hardware components. For example, you need to manage the databases and host
computers that support your Web applications. For your production environment, you
should use Oracle Enterprise Manager 10g Grid Control Console. The Grid Control
Console provides you with a central location from which you can manage your Oracle
Application Server instances, your databases, and your entire Oracle environment.
Grid Control Console also supports sharing of information between administrators.

Oracle Enterprise Manager 10g Best Practices

2-2 Oracle Application Server Best Practices Guide

Implementation Details

2.1.2 Application Server Control Console
This section contains the following topics:

■ Section 2.1.2.1, "Use the Deployment Wizard to Deploy Applications"

■ Section 2.1.2.2, "Use Clusters for Application Deployment and Configuration
Management to Simplify Management of Application Servers"

■ Section 2.1.2.3, "Monitor Application Performance During Application
Development or Test Cycles to Identify Resource Usage and Identify Bottlenecks"

■ Section 2.1.2.4, "Use the Host Home Page to Help Diagnose Performance Issues"

■ Section 2.1.2.5, "Perform Configuration Changes in Application Server Control to
Ensure the Repository is Properly Updated"

■ Section 2.1.2.6, "Monitor Rate and Aggregated Performance Metrics to Identify
Slow Requests"

2.1.2.1 Use the Deployment Wizard to Deploy Applications
A simple way to deploy an application is to use the Oracle Enterprise Manager 10g
deployment wizard, which you can access from the Application Server Control
Console. The wizard walks you systematically through all the essential deployment
options to ensure that your application is deployed correctly.

Implementation Details

2.1.2.2 Use Clusters for Application Deployment and Configuration Management to
Simplify Management of Application Servers
Using OracleAS Clusters simplifies management and maintenance of your application
servers. Clustering enforces consistent configurations across all members of the cluster.
If you want to make a configuration change in every instance, you only need to make
the change once. The clustering mechanism ensures that the new configuration is
propagated to all members.

Similarly, clustering also enforces consistency of deployed applications across all
application server instances. If you wish to deploy a new application or update an
existing deployment on every application server instance in the cluster, you only need
to deploy or update the application once. The clustering mechanism ensures that the
application is properly deployed to all members.

Implementation Details

See Also: Oracle Enterprise Manager Concepts for further information
about the Application Server Control Console and Grid Control
Console

See Also: "Deploying a New OC4J Application" in the Application
Server Control Console Online Help

See Also: "About Managing Oracle Application Server Clusters" in
the Application Server Control Console Online Help

Oracle Enterprise Manager 10g Best Practices

Management and Monitoring 2-3

2.1.2.3 Monitor Application Performance During Application Development or Test
Cycles to Identify Resource Usage and Identify Bottlenecks
During application development and testing, you can use the Application Server
Control Console to monitor the application's resource usage and identify bottlenecks.
For example, during a performance or load test you can view memory and CPU use
for the Oracle Application Server instance overall and for the application. You can also
drill down to find sessions, modules, EJBs, and methods that may be bottlenecks in the
application.

Implementation Details

2.1.2.4 Use the Host Home Page to Help Diagnose Performance Issues
The Application Server Control Console home page not only displays critical
performance data and resource usage for the application server instance, it also
includes a link to information for the host. For example, if your application server is
performing poorly you can first drill down to the related Host home page to determine
if the underlying problem is due to resource problems with the host and other
processes, or to services running on the computer.

Implementation Details

2.1.2.5 Perform Configuration Changes in Application Server Control to Ensure the
Repository is Properly Updated
When you edit the configuration of Oracle Application Server components including
Oracle HTTP Server, OC4J, or OPMN, you should do so using Application Server
Control Console. Enterprise Manager ensures that your configuration changes are
updated in the repository. If you edit these configuration files manually, you must use
the command dcmctl updateConfig to notify the DCM repository of the changes.

Implementation

2.1.2.6 Monitor Rate and Aggregated Performance Metrics to Identify Slow
Requests
Enterprise Manager home pages and drill downs include rate and aggregated
performance data that are not available through command line or other tools. For
example, you can use Enterprise Manager to view average processing time for a HTTP
request, allowing you to zero in on specific requests that may be slow.

Enterprise Manager also displays performance information, such as average
processing time for a servlet for the most recent five minutes, in addition to averages
since startup. This information enables you to more easily diagnose problems in real
time.

See Also: "Maintaining OC4J Applications" in the Application
Server Control Online Help

See Also: "Obtaining Information about the Host Computer " in the
Application Server Control

See Also: Appendix A, "dcmctl Commands," in the Distributed
Configuration Management Administrator’s Guide for further information
about the dcmctl updateConfig command

Oracle Enterprise Manager 10g Best Practices

2-4 Oracle Application Server Best Practices Guide

2.1.3 Grid Control Console
This section contains the following topics:

■ Section 2.1.3.1, "Use Alerts and Notifications to Proactively Monitor System
Availability"

■ Section 2.1.3.2, "Set Up Grid Control Console to Monitor for Availability and
Performance Issues"

■ Section 2.1.3.3, "Add OracleAS Farms and OracleAS Clusters to Centrally Manage
Application Server"

■ Section 2.1.3.4, "Use End-User Performance Monitoring to Monitor Response
Times of Web Pages"

■ Section 2.1.3.5, "Proactively Monitor Web Application Transactions to Test
Performance Monitoring"

■ Section 2.1.3.6, "Use Diagnostics to Pinpoint OC4J Performance Problems"

■ Section 2.1.3.7, "Use Job System to Schedule a Deployment"

■ Section 2.1.3.8, "Regularly Perform Backups to Prepare for Loss of Data"

■ Section 2.1.3.9, "Use Grid Control to Manage Both Oracle Application Server and
the Oracle Database"

■ Section 2.1.3.10, "Manage Multiple Oracle Application Server Instances on a Single
Host to Reduce Resource Usages"

2.1.3.1 Use Alerts and Notifications to Proactively Monitor System Availability
Grid Control Console enables you to monitor your systems for specific conditions,
such as loss of service or poor performance. When such a condition exists, Enterprise
Manager generates an alert, which displays automatically on the appropriate
Enterprise Manager home pages. In addition, you can also be notified through email
or pager. Minimally, you should set up the Grid Control Console to alert you when
your critical or production application servers are unavailable.

You can also configure the Grid Control Console to notify specific administrators when
an event condition occurs. This feature simplifies cooperation between administrators
who share responsibility for the same systems.

Implementation Details

2.1.3.2 Set Up Grid Control Console to Monitor for Availability and Performance
Issues
Once you have set up Grid Control Console to monitor for availability and
performance issues, you will be alerted when a problem is detected. If Enterprise
Manager detects that an application server component is unavailable, you can use
Application Server Control Console to check the status of the component and restart it
if desired. If a performance issue was detected, with a component or application, you
can drill down to the component home page and view detailed performance and
diagnostic information. You can also drill down from the Oracle Application Server
Containers for J2EE (OC4J) home page to find applications, modules, and methods.
Using these drill downs, you can diagnose and resolve performance issues.

See Also: Chapter 12, "Configuring Notifications," in Oracle
Enterprise Manager Advanced Configuration

Oracle Enterprise Manager 10g Best Practices

Management and Monitoring 2-5

Implementation Details

2.1.3.3 Add OracleAS Farms and OracleAS Clusters to Centrally Manage
Application Server
If you use Oracle Application Server Farms and OracleAS Clusters in your
environment and you use Grid Control Console, you should add the Oracle
Application Server Farms and Clusters to Grid Control for central management. When
adding the farm, Oracle recommends using the same farm name as what the
Application Server Control Console shows so that the two consoles remain consistent
as you are navigating from one to another to perform various tasks. After the farm and
cluster is added, you can monitor the members of the farm and clusters, and perform
common administrative tasks such as starting/stopping/restarting members;
scheduling jobs to automate commonly-executed tasks against the farm or cluster, or
creating blackouts to perform scheduled maintenance on the farm or cluster.

Implementation Details

2.1.3.4 Use End-User Performance Monitoring to Monitor Response Times of Web
Pages
To monitor the actual performance of your Web application as experienced by your
end-users, use the End-User Performance Monitoring feature for Web applications.
The End-User Performance Monitoring feature of Enterprise Manager enables you to
view and analyze the actual request response times for all Web pages accessed by all
your end-users. You can assess the impact of a performance problem on your end-user
base, or view page performance data by visitor, domain, region, or Web server, or by a
combination of these axes. Also, you can highlight the monitoring of the most critical
pages of your Web application by setting up a Watch List.

The End-User Performance Monitoring option requires configuration of OracleAS Web
Cache, Apache HTTP Server 2.0, or standalone Oracle HTTP Server 2.0 to instrument
end-user performance data.

Implementation Details

2.1.3.5 Proactively Monitor Web Application Transactions to Test Performance
Monitoring
Enterprise Manager provides a proactive approach to monitoring Web applications
through test performance monitoring. Synthetic business transactions, or service tests,
are created using the transaction recorder, and are then replayed and monitored at
specified intervals from key representative user communities called beacons. Measure
the response times of key business transactions from various geographical user
communities using this feature. Use test performance monitoring to:

■ Isolate server-side problems from network delays

See Also: "Viewing An Application Server at a Glance" and
"Viewing the Performance of Your Application Server" in the Grid
Control Console Online Help

See Also: "Adding Oracle Application Server Farms "in the Grid
Control Console Online Help

See Also: Section 6.8, "Configuring End-User Performance
Monitoring," in Oracle Enterprise Manager Advanced Configuration

Oracle Enterprise Manager 10g Best Practices

2-6 Oracle Application Server Best Practices Guide

■ Profile how much time is spent connecting to the server

■ Document its first byte time

■ Time spent serving HTML and non-HTML content

Alerts will notify you when transaction response time thresholds have been exceeded.

Implementation Details

2.1.3.6 Use Diagnostics to Pinpoint OC4J Performance Problems
Enterprise Manager provides comprehensive diagnostics that enable you to quickly
pinpoint Oracle Application Server Containers for J2EE (OC4J) performance problems
within the middle tier. To determine performance bottlenecks within your application,
use the Web Application Request Performance page to identify the slowest requests by
OC4J processing time. Each request is broken down by JSP, servlet, EJB and JDBC
processing times. By traversing through the invocation paths of the processing call
stack down to the SQL statement level, you can quickly identify the source of the
bottlenecks causing application slowdowns. Use the application correlation feature to
determine whether other system level problems have attributed to performance
bottlenecks.

In addition, you can trace all invocation paths of a Web application starting at the
transaction level on an on-demand basis, and diagnose performance problems across
all tiers: from the network, through the middle tier (including JSP servlet, EJB, and
JDBC times) down to the SQL statement level.

If the performance bottleneck is found to be SQL, then in context you should launch
the SQL Tuning Advisor to schedule analysis and tuning of the SQL statement in
question. After analyzing the SQL statements, the advisor provides advice on
optimizing the execution plan, the rationale for the proposed optimization, the
estimated performance benefit, and the command to implement the advice.

2.1.3.7 Use Job System to Schedule a Deployment
In some cases, you may want to deploy an application during off-hours or at a certain
scheduled time. You can use the Enterprise Manager job system to schedule a
deployment to occur at a selected time. Simply create a script containing the DCM
command-line dcmctl deployApplication command and schedule the script with
the Enterprise Manager job system.

See Also: Section 6.4.4, "Service Tests and Beacons," in Oracle
Enterprise Manager Advanced Configuration to configure and enable this
option

See Also: Section 6.9.1, "Selecting OC4J Targets for Request
Performance Diagnostics," in Oracle Enterprise Manager Advanced
Configuration

Oracle Enterprise Manager 10g Best Practices

Management and Monitoring 2-7

Implementation Details

2.1.3.8 Regularly Perform Backups to Prepare for Loss of Data
You should perform regular backups of your application server, and when you backup
you should consider your entire application server environment. For example, you
should not back up your middle-tier installation on Monday and your Infrastructure
on Tuesday. If you did, you would not be able to restore your environment to a
consistent state. Instead, you should back up your entire Oracle Application Server
environment at once. Then, if a loss occurs, you can restore your entire environment to
a consistent state. Ideally, you should perform application server backups after every
administrative change, or, if this is not possible, on a regular basis, perform an instance
backup of your Oracle Application Server environment. This backup enables you to
restore your environment to a consistent state as of the time of your most recent
configuration and metadata backup. To avoid an inconsistent backup, do not make
any configuration changes until backup completes for all Oracle Application Server
instances.

You can use Grid Control to perform immediate Application Server backups or
backups on a scheduled basis. For instance, you can schedule a weekly full, cold
backup for Sunday nights and then an incremental, online backup for other nights.
You should also take backups after installation as well any major configuration
change.

Implementation Details

2.1.3.9 Use Grid Control to Manage Both Oracle Application Server and the Oracle
Database
If you plan to manage both your Oracle Application Server instances and your Oracle
database from the same management console, install the latest version of Grid Control.
This install will ensure that you have the most up-to-date functionality for managing
both types of targets.

2.1.3.10 Manage Multiple Oracle Application Server Instances on a Single Host to
Reduce Resource Usages
By default, each Oracle Application Server instance on a host has its own Application
Server Control Console, which manages the components of that particular Oracle
Application Server instance.

If you have installed multiple Oracle Application Server instances on a single host,
you can optionally reduce the memory and CPU consumption by performing a
postinstallation configuration procedure to configure a single Application Server

See Also:

■ Appendix A, "dcmctl Commands," in the Distributed Configuration
Management Administrator’s Guide for information about the
deployApplication command

■ Chapter 8, "Job System," in Oracle Enterprise Manager Concepts for
more information on how to the use the Enterprise Manager job
system

See Also: "Scheduling a Backup of Oracle Application Servers" and
"About Backing Up and Recovering Oracle Application Servers" in the
Grid Control Console Online Help

Oracle Process Manager and Notification Server Best Practices

2-8 Oracle Application Server Best Practices Guide

Control Console to manage two Oracle Application Server instances installed on the
same host.

Implementation Details

2.2 Oracle Process Manager and Notification Server Best Practices
This section describes Oracle Process Manager and Notification (OPMN) Server best
practices. It includes the following topics:

■ Section 2.2.1, "Start OPMN to Manage Components"

■ Section 2.2.2, "Never Start or Stop OPMN Managed Components Manually"

■ Section 2.2.3, "Review stdout and stderr to Determine Cause of Components Not
Starting"

■ Section 2.2.4, "Increase Timeout For Components to Avoid Timed-Out Requests"

■ Section 2.2.5, "Set Retry to High Values For Components Running on an
Overloaded System to Avoid Restart of Computer"

■ Section 2.2.6, "Leverage Additional Logging to Aid in Debugging"

■ Section 2.2.7, "Configure Log Rotation to Avoid Log File Size Issues"

■ Section 2.2.8, "Configure Additional Start Order Dependencies to Customize
Startup"

■ Section 2.2.9, "Use Event Scripts to Record Important Events"

■ Section 2.2.10, "Use OPMN to Manage External Components"

2.2.1 Start OPMN to Manage Components
Start the OPMN server as soon as possible after turning on the host. OPMN must be
running whenever OPMN-managed components are turned on or off. OPMN must be
the last service turned off whenever you reboot or turn off your computer.

2.2.2 Never Start or Stop OPMN Managed Components Manually
Oracle Application Server components managed by OPMN should never be started or
stopped manually. Do not use command line scripts or utilities from previous versions
of Oracle Application Server for starting and stopping Oracle Application Server
components.

Implementation Details
To implement this best practice, use the Application Server Control or the opmnctl
command line utility to start or stop Oracle Application Server components.

2.2.3 Review stdout and stderr to Determine Cause of Components Not Starting
The process-specific console logs are the first and best resource for investigating
problems related to starting and stopping components. OPMN creates a log file for
each component and assigns a unique concatenation of the Oracle Application Server

See Also: Section A.8, "Managing Multiple Oracle Application
Server Instances on a Single Host," in Oracle Application Server
Administrator’s Guide

Oracle Process Manager and Notification Server Best Practices

Management and Monitoring 2-9

component with a number. For example, the standard output log for OracleAS Web
Cache may be WebCache~WebCacheAdmin~1.

Implementation Details
To implement this best practice, review the standard output (stdout) and standard
error (stderr) of OPMN managed processes are reported in the log file in available in
the ORACLE_HOME/opmn/logs directory.

The stdout and stderr log files are reused and appended to when a component is
restarted so these files can contain output from multiple invocations of a component.

2.2.4 Increase Timeout For Components to Avoid Timed-Out Requests
The time it takes to execute an opmnctl command is dependent on the type of Oracle
Application Server process and available computer hardware. Because of this the time
it takes to execute an opmnctl command may not be readily apparent. For example,
the default start time out for OC4J is approximately five minutes. If an OC4J process
does not start-up after an opmnctl command, OPMN will wait approximately an
hour before timing out and aborting the request.

Increase the start element timeout attribute for the component that takes a long time
to start. Similarly, increase the stop element timeout attribute in opmn.xml for the
component that takes a long time to stop.

Implementation Details
Set the timeout in the opmn.xml file at a level that will allow OPMN to wait for
process to come up.

2.2.5 Set Retry to High Values For Components Running on an Overloaded System to
Avoid Restart of Computer

Pings occur periodically between OPMN and the components that it manages to
ensure that each component is not unresponsive and is capable of servicing requests.
Ping failures result in a certain number of retry attempts and multiple failures in a row
result in a restart of the component. On overloaded systems, it may be necessary to
increase the number of retry attempts made before restarting the component.

Implementation Details
To implement this best practice:

1. In the opmn.xml file, locate <start> and <restart> elements.

2. Set the retry attribute in the appropriate element to a value greater than what is
needed for the component to be pinged successfully.

This attribute specifies the number of times to retry a ping attempt before a
component is considered hung.

2.2.6 Leverage Additional Logging to Aid in Debugging
OPMN provides different levels of logging. In a typical production mode, set the log
level to the minimum level. When you are having a problem related to OPMN, prior to
contacting Oracle Support, try leveraging additional logging to aid in debugging the
problem.

OPMN provides different levels of logging. In a typical production mode, set the log
level to a minimum.

Oracle Process Manager and Notification Server Best Practices

2-10 Oracle Application Server Best Practices Guide

Implementation Details
When you are having an OPMN-related problem, perform these steps prior to
contacting technical support:

1. In the opmn.xml file, set the level attribute of <log-file> element for both
<notification-server> and <process-manager> elements to 8 or 9.

2. Execute the $ORACLE_HOME/opmn/bin/opmnctl debug command and save
the output to a file.

3. Save a copy of all logs in the $ORACLE_HOME/opmn/logs directory.

The file at this log level contains valuable information to assist in debugging.

2.2.7 Configure Log Rotation to Avoid Log File Size Issues
OPMN can rotate notification server log file (ons.log) and process manager log file
(ipm.log) based on size, time or both. When the log file reaches the configured size or
at the given hour of the day, the OPMN logging mechanism will close the file, rename
it with a time stamp suffix, and then create a new log file. By default, log files are
configured to be rotated based on size (1500000 KB), but when necessary, explicitly set
rotation attributes for your environment.

OPMN can rotate managed process console log files too, for example, $ORACLE_
HOME/opmn/logs/HTTP_Server~1 file for Oracle HTTP Server. At process startup,
before handing off an existing console log file to a managed process, OPMN checks the
size against a configured limit (rotation-size attribute of <log-file> element of
<process-manager> element), and if the file size exceeds the limit, it will rename
the existing file to include a time stamp, and then creates a new file for the managed
process. If the rotation-size attribute is not configured, OPMN will not be able
rotate the process console log file.

Having a proper rotation plan ensures OPMN and OPMN managed process starting
and running without log file size issues, for limitation of 2 GB file size on some
operating systems.

Implementation Details
To enable log rotation, configure the rotation-size and rotation-hour
attributes of the <log-file> element for both <notification-server> and
<process-manager> elements.

2.2.8 Configure Additional Start Order Dependencies to Customize Startup
OPMN is configured at installation with default start order dependencies, which
enables you to start all of the components in an instance in a specific order with a
single command. But if a specific component requires that other components and
services are up and running before it starts, you can configure additional dependencies
according to the environment.

2.2.9 Use Event Scripts to Record Important Events
You can configure OPMN to execute your own custom event scripts whenever a
particular component starts, stops, or fails. It is useful to use one or more of the
following event types:

■ pre-start: OPMN runs the pre-start script after any configured dependency checks
have been performed and passed, and before the Oracle Application Server

Distributed Configuration Management Best Practices

Management and Monitoring 2-11

component starts. For example, you can use the pre-start script for site-specific
initialization of external components.

■ pre-stop: OPMN runs the pre-stop script before stopping a designated Oracle
Application Server component. For example, you can use the pre-stop script for
collecting Java Virtual Machine stack traces prior to stopping OC4J processes.

■ post-crash: OPMN runs the post-crash script after the Oracle Application Server
component has terminated unexpectedly. For example, a user could learn of
component crashes by supplying a script or program to be executed at post-crash
events, which sends a notification to the administrator's pager."

Implementation Details

2.2.10 Use OPMN to Manage External Components
OPMN has the ability to manage arbitrary daemon processes that are not part of your
Oracle Application Server installation. You can even create more sophisticated process
management services by supplying the opmn.xml file the optional paths to scripts for
stopping, restarting, and pinging the daemon process.

Implementation Details
Here is a simple example of an opmn.xml configuration for a custom component. The
following lines load and identify the custom process module:.

<module path="%ORACLE_HOME%/opmn/lib/libopmncustom.so">
<module-id id="CUSTOM" />

</module>

The following lines represent the minimum configuration for a custom process:

<ias-component id="Custom">
<process-type id="Custom" module-id="CUSTOM">

<process-set id="Custom" numprocs="1">
<module-data>

<category id="start-parameters">
<data id="start-executable" value="Your start executable here" />

</category>
</module-data>

</process-set>
</process-type>

</ias-component>

2.3 Distributed Configuration Management Best Practices
This section describes best practices for Distributed Configuration Management
(DCM). It contains the following topics:

■ Section 2.3.1, "Use DCM Archiving to Take Snapshots of Configuration"

See Also: Appendix A, "OPMN Troubleshooting," in the Oracle
Process Manager and Notification Server Administrator’s Guide for a
sample pre-start script

See Also: Chapter 15, "Configuring Custom Process," in the Oracle
Process Manager and Notification Server Administrator’s Guide for a
sample pre-start script

Distributed Configuration Management Best Practices

2-12 Oracle Application Server Best Practices Guide

■ Section 2.3.2, "Specify a Single Instance in a Cluster as the Management Point to
Provide A Correct Order of Operations"

■ Section 2.3.3, "Avoid Concurrent Administration Operations to Prevent
Configuration Conflicts"

■ Section 2.3.4, "Avoid Running updateConfig Concurrently with Any Other
Configuration Operation to Prevent Configuration Conflicts"

■ Section 2.3.5, "Restart Application Server Control Console after Joining or Leaving
a Farm or Cluster to Refresh the Console"

■ Section 2.3.6, "Use High Availability Features for Infrastructure Repository to
Synchronize within a Farm"

■ Section 2.3.7, "Follow dcmctl Tips to Improve Usage"

2.3.1 Use DCM Archiving to Take Snapshots of Configuration
You should frequently be creating archives prior to performing any configuration
operations.

The DCM archive feature provides a convenient and easy means of managing
snapshots of the DCM-managed portions of Oracle Application Server system
configuration. Archives are useful for staging changes, recovering from errors, and to
provision DCM managed configuration information associated with one Oracle
Application Server instance to another.

DCM managed system configuration includes configuration for a farm, clusters,
Oracle HTTP Server, OPMN, OC4J, and JAZN. For OC4J, in addition to configuration
information related to the container itself, DCM manages all deployed J2EE
applications.

If you use DCM-Managed Oracle Application Server Clusters, DCM assures that any
change to the configuration is automatically distributed to all members of the cluster.
As an alternative to using clusters, you can manually apply an archive of a staged
configuration to non-clustered instances in a farm.

A hybrid staging solution is to first stage and test changes to a non-clustered instance,
archive the changes, and finally apply the archive to DCM-Managed Oracle
Application Server Cluster. These changes are then automatically propagated to all
members of the cluster.

Implementation Details
For example, to create an archive prior to deploying a new J2EE application named
foo use the command:

dcmctl createArchive -arch PriorToDeployingFoo -comment "prior to foo deploy V1"

When using createArchive, it is a good practice to use an archive name and a
corresponding comment that identifies the version of configuration that the archive is
associated with.

See Also: Chapter 3, "Archiving A Managed Configuration," in the
Distributed Configuration Management Administrator’s Guide for a
sample pre-start script

Distributed Configuration Management Best Practices

Management and Monitoring 2-13

2.3.2 Specify a Single Instance in a Cluster as the Management Point to Provide A
Correct Order of Operations

You can manage Oracle Application Server instances, grouped in a DCM-Managed
Oracle Application Server Cluster, as a single point of administration, using
Application Server Control Console or dcmctl on any instance in the cluster. Use one
instance as the administrative point for the entire cluster at any point in time.

Specifying a single instance in a cluster as the management point ensures that
operations are executed in the correct order and are properly serialized.

2.3.3 Avoid Concurrent Administration Operations to Prevent Configuration Conflicts
When changing instance specific configuration, for example port numbers, host names
or virtual hosts, on a particular instance in the DCM-Managed OracleAS Cluster, you
must ensure that there are no other administrative changes are being made
concurrently in the cluster to avoid conflicting changes to configuration resulting in an
unusable configuration.

Concurrent administration within a DCM-Managed OracleAS Cluster is strongly
discouraged. If multiple administrative operations are issued at the same time in a
cluster, this can lead to errors and associated confusing error messages. For example, a
concurrent attempt to change the configuration of an instance being deleted really
does not make sense.

2.3.4 Avoid Running updateConfig Concurrently with Any Other Configuration
Operation to Prevent Configuration Conflicts

Do not run the dcmctl updateConfig command concurrently with any other
dcmctl commands or Application Server Control Console configuration operations
from multiple Oracle Application Server instances in a Farm or DCM-Managed
OracleAS Cluster. If updateConfig is being executed concurrently with other
configuration operation, there is a risk of conflicting changes being placed in the
metadata repository. These conflicts could leave the configuration stored in the
metadata repository in a non-functional state and could require a restore from the
archive.

2.3.5 Restart Application Server Control Console after Joining or Leaving a Farm or
Cluster to Refresh the Console

When using a file-based repository, you should stop and then start Application Server
Control Console after issuing the following dcmctl commands:

■ joinCluster

■ joinFarm

■ leaveCluster

■ leaveFarm

Implementation Details
Use following commands to restart Application Server Control Console:

■ emctl stop iasconsole

■ emctl start iasconsole

Distributed Configuration Management Best Practices

2-14 Oracle Application Server Best Practices Guide

2.3.6 Use High Availability Features for Infrastructure Repository to Synchronize within
a Farm

The infrastructure repository houses all the configuration information for the Oracle
Application Server instances in a farm. This information is critical during startup,
since DCM ensures that the local configuration of any node is synchronized with the
configuration in this central repository. Therefore, it is a good idea to employ the high
availability features for the infrastructure instance.

However, it is also important to understand that the database-based repository (in the
case of a J2EE and OracleAS Web Cache installation) is used for management
operations and OracleAS Single Sign-On. Thus, if a site is not using single sign-on
capabilities, then the repository is primarily required to be up when performing
configuration management operations, such as deploying new applications and
joining or moving from a DCM-Managed OracleAS Cluster.

2.3.7 Follow dcmctl Tips to Improve Usage
The following are best practices when using dcmctl:

■ Always use -d and -v options with dcmctl commands.

By default, the dcmctl script is configured for programmatic usage. Instead of
displaying lengthy messages that can differ across releases and languages, error
codes are displayed, such as ADMN-906005. Scripting tools can use these error
codes to perform different activities based upon the result of commands.

Unfortunately a message like ADMN-906005 does not mean much by itself. In
order to see an explanation of the error code, use the -d and -v switches
whenever possible.

■ Use the dcmctl getError command to display the last error message

Use the dcmctl getError command to display the error message from the most
recent DCM error that occurred

■ Always use dcmctl getreturnstatus to determine whether a command failed
after timeout

Long-running operations will often timeout but continue to execute
asynchronously. This issue is indicated by dcmctl with an ADMN-906005 error
code:

Using the dcmctl deployApplication command with the -v option as an
example, the following message will be displayed.

"The specified command "deployApplication", is being executed
asynchronously. The maximum wait time of n seconds has been
reached. This operation will continue to execute to
completion. Use the "getReturnStatus" command to determine
if/when the operation completes successfully."

Once this timeout message is received, you can invoke the dcmctl
getReturnStatus command periodically until the operation has completed.

■ Use dcmctl shell mode for multiple commands.

When you need to perform a number of dcmctl commands, use the dcmctl shell
or the dcmctl command file options. Each initialization of dcmctl requires
creation of a Java Virtual Machine and the parsing of a number of XML
documents. This initialization only has to occur once if using a dcmctl shell versus
multiple times if executing a set of dcmctl commands individually.

Dynamic Monitoring Services Best Practices

Management and Monitoring 2-15

Implementation Details
Following is a sample shell session in which the shell is started, commands are
executed, and the shell is stopped.

% dcmctl shell
dcmctl> createcluster -cl testcluster
dcmctl> joincluster -cl testcluster
dcmctl> createcomponent -ct oc4j -co component1
dcmctl> deployapplication -f /stage/apps/app1.ear -a app1 -co component1
dcmctl> getstate
dcmctl> exit

2.4 Dynamic Monitoring Services Best Practices
This section describes Dynamic Monitoring Services (DMS) best practices. It includes
the following topics:

■ Section 2.4.1, "Monitor Your System Regularly to Identify Performance Problems"

■ Section 2.4.2, "Take Regular Dumps of Metrics to Capture and Save a Record of
Performance Data"

■ Section 2.4.3, "Add Performance Instrumentation to Application to Aid
Developers"

■ Section 2.4.4, "Isolate Expensive Intervals Using PhaseEvent Metrics to Validate
Code"

■ Section 2.4.5, "Organize Performance Data to Avoid Metrics Not Displaying"

■ Section 2.4.6, "DMS Naming Conventions to Improve Metric Reports"

■ Section 2.4.7, "Follow DMS Coding Recommendations to Improve Code"

■ Section 2.4.8, "Validate New Metrics to Verify Accuracy"

2.4.1 Monitor Your System Regularly to Identify Performance Problems
It is a good practice to monitor Oracle Application Server regularly. Monitoring Oracle
Application Server and obtaining performance data can assist you in tuning the
system and debugging applications with performance problems.

Implementation Details

2.4.2 Take Regular Dumps of Metrics to Capture and Save a Record of Performance
Data

Run the dmstool command with the -dump option periodically, such as every 15 to
20 minutes, to capture and save a record of performance data for your Oracle
Application Server installation. If you save performance data over time, it can assist
you if you need to analyze system behavior to improve performance or if problems
occur. Using dmstool -dump reports all the available metrics on the standard output.

See Also: Appendix A, "dcmctl Commands," in the Distributed
Configuration Management Administrator’s Guide for a sample pre-start
script

See Also: Oracle Application Server Performance Guide for available
monitoring tools

Dynamic Monitoring Services Best Practices

2-16 Oracle Application Server Best Practices Guide

The -dump option also supports the format=xml query. Using this query at the end
of the command line supplies the metric output in XML format.

2.4.3 Add Performance Instrumentation to Application to Aid Developers
Consider instrumenting applications with DMS metrics. Adding performance
instrumentation to Java applications will help developers, system administrators and
support analysts understand system performance and monitor system status. DMS
instrumentation refers to the process of inserting DMS calls into application code.
Using the DMS API is a simple and efficient way to enable your application to
measure, collect, and save performance information.

To create DMS metrics, developers add calls that notify DMS when events occur, when
important intervals begin and end, or when pre-computed values change their state.
At runtime, DMS stores performance information, called DMS metrics, in memory and
enables you to save or view the metrics.

Implementation Details

2.4.4 Isolate Expensive Intervals Using PhaseEvent Metrics to Validate Code
Carefully consider the requirements for new metrics when you add DMS
instrumentation. It is important to add a sufficient number of metrics to validate that
your code is behaving as desired but not so much that the useful statistics become
buried in too much detail. As a guide, try to observe the following rules when you add
DMS metrics:

■ Add metrics only to provide an overview of the time the system spends in your
block of code or module. You do not need to collect performance data for every
method call, or for every distinct phase of your code or module.

■ When your code calls external code that you do not control, and that you expect
could take a significant amount of time, add a PhaseEvent Sensor to track the
start and the completion of the external code.

2.4.5 Organize Performance Data to Avoid Metrics Not Displaying
The DMS metrics are organized in a tree, with leaf nodes being Sensor metrics and
branching nodes being Nouns. Define DMS Nouns to organize Sensors and their
associated metrics. It is good practice to only use Noun types for Nouns that directly
contain Sensors. When a Noun contains only Nouns, and does not directly contain
Sensors, AggreSpy displays the Noun type as a metric table, with no metrics.

Maintain a static hierarchy for Noun types. A static hierarchy for Noun types means
that some Noun types will always be ancestors of other Noun types. If it can be
avoided, ensure a Noun does not have the same Noun type as any of its ancestors.

2.4.6 DMS Naming Conventions to Improve Metric Reports
Follow the guidelines for defining DMS names, which aids users viewing DMS metric
reports to easily understand metrics across applications and across Oracle Application
Server components. In applying the naming convention rules, try to be as clear as
possible, if there is a conflict, you might need to make an exception.

See Also: Oracle Application Server Performance Guide for available
monitoring tools

Dynamic Monitoring Services Best Practices

Management and Monitoring 2-17

In general, try to use only alphanumeric and underscore characters for naming and
avoid using the forward slash (/) character.

Implementation Details

2.4.7 Follow DMS Coding Recommendations to Improve Code
Use the following coding recommendations for working with DMS:

■ When you create a new Noun or Sensor (PhaseEvent, Event, or State), its full
name must not conflict with names in use by Oracle built-in metrics, or by other
applications.

■ Be sure all PhaseEvents are stopped. Put the PhaseEvents start() in a try
block with the stop() in the finally block.

■ Avoid creating any DMS Sensor or Noun more than once. You should define
Sensors and Nouns during static initialization, or in the case of a Servlet, in the
init() method. Caching makes this less important as a best practice unless you
are concerned about maximum performance.

■ Assign a Noun type for each Noun. Nouns with no Noun type specified are not
shown in the Spy or AggreSpy display.

■ PhaseEvents should only be used to measure a section of code that is expensive
under some set of conditions.

■ The DMS API calls are thread safe; they provide sufficient synchronization to
prevent races and access bugs.

■ Avoid frequently creating and destroying Nouns and Sensors.

2.4.8 Validate New Metrics to Verify Accuracy
You should test and verify the accuracy of the metrics that you add to Java
applications. Use the dmstool and the other available DMS monitoring tools to verify
and test new metrics. Try the following to validate new metrics:

■ Do expected metrics appear in the display?

■ Do unexpected metrics appear in the display?

Verify that you have only added the metrics that you planned to add.

■ Are the metric values you see within reasonable ranges?

For example, a size of pool metric should never report a negative value.

■ Are metric values accurate?

This validation can be difficult to test. If an alternate means of measuring a
particular metric is available, then use it to verify metric values. For example, you
can verify an Event Sensor count metric by examining records that you write to a
log file or to the console.

■ When integrating DMS instrumentation with an existing package or when
implementing a new feature, consider insulating a previously working system.

For example, you could include an option to enable and disable new DMS metrics.

See Also: Oracle Application Server Performance Guide for different
naming conventions

Dynamic Monitoring Services Best Practices

2-18 Oracle Application Server Best Practices Guide

Oracle HTTP Server 3-1

3
Oracle HTTP Server

This chapter describes best practices for Oracle HTTP Server. It includes the following
topics:

■ Section 3.1, "Configure Topology Appropriately For Modem Connections to
Prevent Blocking Oracle HTTP Server"

■ Section 3.2, "Tune TCP/IP Parameters to Improve Oracle HTTP Server
Performance"

■ Section 3.3, "Tune KeepAlive Directives to Improve Connection Performance"

■ Section 3.4, "Tune MaxClients Directive to Improve Request Performance"

■ Section 3.5, "Avoid Any DNS Lookup to Prevent Performance Degradation"

■ Section 3.6, "Tune Off Access Logging to Reduce Overhead"

■ Section 3.7, "Use FollowSymLinks and Not SymLinkIfOwnerMatch to Configure
Symbolic Links"

■ Section 3.8, "Set AllowOverride to None to Prevent Unnecessary Directive
Checking"

■ Section 3.9, "Use mod_rewrite to Hide URL Changes For End-Users"

■ Section 3.10, "Use mod_oc4j Sticky Routing Instead of Configuring the External
Router"

3.1 Configure Topology Appropriately For Modem Connections to
Prevent Blocking Oracle HTTP Server

Some Web sites have visitors connecting from slow modems. Sometimes, it takes
longer for data to transfer over these slow connections than for data to be computed
by the application server. Thus, an Oracle HTTP Server process can be blocked doing
the transfer, and CPU processing power is not available for another request to perform
computation.

If this is perceived to be a problem in your environment, you should front-end Oracle
HTTP Server with either:

■ OracleAS Web Cache, which uses a threaded architecture

■ Oracle HTTP Server in reverse proxy mode, which can spawn more lightweight
processes to handle the transfer

See Also: Oracle HTTP Server Administrator’s Guide for information
about directives mentioned in this chapter

Tune TCP/IP Parameters to Improve Oracle HTTP Server Performance

3-2 Oracle Application Server Best Practices Guide

In both cases, the backend Oracle HTTP Server is reserved to do the computation
work. This separation of data computation and data transfer responsibilities buffers a
site from latency due to slow modem connections.

3.2 Tune TCP/IP Parameters to Improve Oracle HTTP Server Performance
Setting TCP/IP parameters can improve Oracle HTTP Server performance.

3.3 Tune KeepAlive Directives to Improve Connection Performance
The KeepAlive, KeepAliveTimeout, and MaxKeepAliveRequests directives are
used to control persistent connections. Persistent connections are supported in HTTP
1.1 to allow a client to send multiple sequential requests through the same connection.

Setting KeepAlive to On allows Apache to keep the connection open for that client
when the client requests it. This setting can improve performance, because the
connection has to be set up only once. The trade-off is that the httpd server process
cannot be used to service other requests until either the client disconnects, the
connection times out (controlled by the KeepAliveTimeout directive), or the
MaxKeepAliveRequests value has been reached.

You can change these KeepAlive parameters to meet your specific application needs,
but you should not set the MaxKeepAliveRequests to 0. A value of 0 in this
directive means there is no limit. The connection will be closed only when the client
disconnects or times out.

You may also consider setting KeepAlive to Off if your application has a large
population of clients who make infrequent requests.

3.4 Tune MaxClients Directive to Improve Request Performance
The MaxClients directive controls the maximum number of clients who can connect
to the server simultaneously. This value is set to 1024 by default. If your requests have
a short response time, you may be able to improve performance by setting
MaxClients to a lower value. When this value is reached, no additional processes
will be created, causing other requests to fail. In general, increasing the value of
MaxClients does not improve performance when the system is saturated.

If you are using persistent connections, you may require more concurrent httpd
server processes, and you may need to set the MaxClients directive to a higher
value. Tune this directive according to the KeepAlive parameters.

3.5 Avoid Any DNS Lookup to Prevent Performance Degradation
Any DNS lookup can affect Oracle HTTP Server performance. The
HostNameLookups directive in Apache informs Apache whether it should log
information based on the IP address (if the directive is set to Off), or look up the host
name associated with the IP address of each request in the DNS system on the Internet
(if the directive is set to On).

Performance degraded by a minimum of about three percent in Oracle tests with
HostNameLookups set to On. Depending on the server load and the network
connectivity to your DNS server, the performance cost of the DNS lookup could be
much higher. Unless you really need to have host names in your logs in real time, it is
best to log IP addresses and resolve IP addresses to host names off-line.

See Also: Oracle Application Server Performance Guide

Use mod_oc4j Sticky Routing Instead of Configuring the External Router

Oracle HTTP Server 3-3

3.6 Tune Off Access Logging to Reduce Overhead
It is generally useful to have access logs for your Web server, both for load tracking
and for the detection of security violations. If you find that you do not need this data,
turn it off and reduce the overhead of writing the data to this log file.

3.7 Use FollowSymLinks and Not SymLinkIfOwnerMatch to Configure
Symbolic Links

The FollowSymLinks and SymLinksIfOwnerMatch options are used by Apache to
determine if it should follow symbolic links. If the SymLinksIfOwnerMatch option
is used, Apache will check the symbolic link and make sure the ownership is the same
as that of the server.

3.8 Set AllowOverride to None to Prevent Unnecessary Directive
Checking

If the AllowOverride directive is not set to None, Apache will check for directives in
the htaccess files at each directory level until the requested resource is found for
each URL request.

3.9 Use mod_rewrite to Hide URL Changes For End-Users
The mod_rewrite module can transparently map the URLs visible to the end users to
a different URL. You can accomplish this result without a round-trip through the Web
browser or any code change.

This feature makes it very easy to re-organize directories on the server side or perform
other changes; you can do this even after an application has been developed and
deployed. There is a slight performance impact, however, as this configuration change
for mod_rewrite is preferred.

3.10 Use mod_oc4j Sticky Routing Instead of Configuring the External
Router

The mod_oc4j module is able to do sticky routing independent of any external router
or OracleAS Web Cache. Thus, for J2EE requests, do not set the external router to
perform sticky routing. If there are other non-J2EE requests that require sticky routing,
then perform the necessary sticky routing setup on the external load balancer.

Use mod_oc4j Sticky Routing Instead of Configuring the External Router

3-4 Oracle Application Server Best Practices Guide

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-1

4
Oracle Application Server Containers for

J2EE (OC4J) Applications and Developer
Tools

This chapter describes the best practices for J2EE applications. It includes the
following topics:

■ Section 4.1, "Java Server Pages Best Practices"

■ Section 4.2, "Sessions Best Practices"

■ Section 4.3, "Enterprise Java Bean Best Practices"

■ Section 4.4, "Data Access Best Practices"

■ Section 4.5, "J2EE Class Loading Best Practices"

■ Section 4.6, "Java Message Service Best Practices"

■ Section 4.7, "Oracle Application Server XML Developer’s Kit Best Practices"

■ Section 4.8, "Oracle Application Server TopLink Best Practices"

■ Section 4.9, "Oracle Application Server Forms Services Best Practices"

4.1 Java Server Pages Best Practices
This section describes Java Server Pages (JSP) best practices. It includes the following
topics:

■ Section 4.1.1, "Pre-Translate JSPs Before Deployment to Prevent Translation
Overhead"

■ Section 4.1.2, "Separate Presentation Markup from Java to Improve Application
Performance"

■ Section 4.1.3, "Use JSP Template Mechanism to Reserve Resources"

■ Section 4.1.4, "Set sessions to false If Not Using Sessions to Prevent Overhead of
Creating Sessions"

■ Section 4.1.5, "Always Invalidate Sessions When No Longer Used to Prevent
Overhead of Applications"

■ Section 4.1.6, "Set main_mode Parameter to justrun to Prevent Recompilation of
JSPs"

■ Section 4.1.7, "Use Available JSP Tags In Tag Library to Create Clean and Reusable
Code"

Java Server Pages Best Practices

4-2 Oracle Application Server Best Practices Guide

■ Section 4.1.8, "Minimize Context Switching Between Servlets and EJBs to Avoid
Performance Issues"

■ Section 4.1.9, "Package JSP Files In EAR File Rather Than Standalone to
Standardize Deployment Process"

■ Section 4.1.10, "Use Compile-Time Object Introspection to Improve Application
Performance"

■ Section 4.1.11, "Choose Static Versus Dynamic Includes Appropriately"

■ Section 4.1.12, "Disable JSP Page Buffer If Not Used to Improve Performance"

■ Section 4.1.13, "Use Forwards Instead of Redirects to Improve Browser Experience"

■ Section 4.1.14, "Use JSP Cache Tags to Save Development Time"

■ Section 4.1.15, "Use well_known_taglib_loc to Share Tag Libraries"

■ Section 4.1.16, "Use jsp-timeout Attribute to Provide Efficient Memory Utilization"

■ Section 4.1.17, "Use reduce_tag_code Parameter to Reduce the Size of Generated
Java Method"

■ Section 4.1.18, "Use Workarounds to Avoid Reaching JVM Code Size Limit"

■ Section 4.1.19, "Hide JSP Pages to Prevent Access"

4.1.1 Pre-Translate JSPs Before Deployment to Prevent Translation Overhead
You can use the Oracle ojspc tool to pre-translate the JSPs and avoid the translation
overhead that has to be incurred when the JSPs are executed the first time. You can
pre-translate the JSPs on the production system or before you deploy them. Also,
pre-translating the JSPs allows you the option to deploy only the translated and
compiled class files, if you choose not to expose and compromise the JSP source files.

4.1.2 Separate Presentation Markup from Java to Improve Application Performance
Separating presentation markup such as HTML from Java code is a good practice to
get better performance from your application. The following are a few tips:

■ Use JavaBeans for the business logic and JSPs only for the view. Thus, JSPs should
primarily contain logic for HTML (or other presentation markup) generation only.

■ Use stylesheets when appropriate to provide even more separation of the aspects
of HTML that a user can control better.

■ JSPs containing a large amount of static content, including large amounts of
HTML code that does not change at runtime, which may result in slow translation
and execution. Use dynamic includes, or better, enable the external resource
configuration parameter to put the static HTML into a Java resource file.

4.1.3 Use JSP Template Mechanism to Reserve Resources
Using the JSP code out.print("<html>") requires more resources than including
static template text. For performance reasons, it is best to reserve the use of
out.print() for dynamic text.

Java Server Pages Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-3

4.1.4 Set sessions to false If Not Using Sessions to Prevent Overhead of Creating
Sessions

The default for JSPs is session="true". If your JSPs do not use any sessions, you
should set session="false" to eliminate the overhead of creating and releasing
these internal sessions created by the JSP runtime.

Implementation Details
To disable sessions, set the directive as follows:

<%@page session="false" %>

4.1.5 Always Invalidate Sessions When No Longer Used to Prevent Overhead of
Applications

Sessions add performance overhead to your Web applications. Each session is an
instance of the javax.servlet.http.HttpSession class. The amount of memory
used for each session depends on the size of the session objects created.

If you use sessions, ensure that you explicitly cancel each session using the
invalidate() method to release the memory occupied by each session when you no
longer need it.

The default session timeout for OC4J is 30 minutes.

Implementation Details
To change this timeout for a specific application, set the <session-timeout>
parameter in the <session-config> element of the web.xml file.

4.1.6 Set main_mode Parameter to justrun to Prevent Recompilation of JSPs
The Oracle JSP configuration parameter main_mode determines whether classes are
automatically reloaded or JSPs are automatically recompiled. In a deployment
environment set main_mode to a value of justrun. The runtime dispatcher does not
perform any timestamp checking, so there is no recompilation of JSPs or reloading of
Java classes. This mode is the most efficient mode for a deployment environment
where code is not expected to change.

Implementation Details
If comparing timestamps is unnecessary, as is the case in a production deployment
environment where source code does not change, you can avoid all timestamp
comparisons and any possible re-translations and reloads by setting the main_mode
parameter to the value justrun. Using this value can improve the performance of JSP
applications.

Note that before you set main_mode to justrun, make sure that the JSP is compiled
at least once. You can compile the JSP by invoking it through a Web browser or by
running your application (using the recompile value for main_mode). This
compilation assures that the JSP is compiled before you set the justrun flag.

See Also: Chapter 3, "Getting Started," in the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide
for further information about the main_mode configuration
parameter

Java Server Pages Best Practices

4-4 Oracle Application Server Best Practices Guide

4.1.7 Use Available JSP Tags In Tag Library to Create Clean and Reusable Code
JSP tags make the JSP code cleaner, and more importantly, provide easy reuse. In some
cases, there is also a performance benefit. Oracle Application Server ships with a very
comprehensive JSP tag library that will meet most needs. In cases where custom logic
is required or if the provided library is insufficient, you can build a custom tag library,
if appropriate.

4.1.8 Minimize Context Switching Between Servlets and EJBs to Avoid Performance
Issues

Minimize context switching between different Enterprise JavaBeans (EJB) and servlet
components, especially when the EJB and Web container processes are different. If
context switching is required, co-locate EJBs whenever possible.

4.1.9 Package JSP Files In EAR File Rather Than Standalone to Standardize
Deployment Process

Oracle Application Server supports deploying of JSP files by copying them to the
appropriate location. This functionality is very useful when developing and testing the
pages. This functionality is not recommended for releasing your JSP-based application
for production. You should always package JSP files into an Enterprise Archive (EAR)
file. With an EAR file, you deploy JSPs in a standard manner, even across multiple
application servers.

4.1.10 Use Compile-Time Object Introspection to Improve Application Performance
Developers should try to rely on compile-time object introspection on the beans and
objects generated by the tag library instead of request-time introspection.

4.1.11 Choose Static Versus Dynamic Includes Appropriately
JSP pages have two different include mechanisms:

■ Static includes, which have a page directive, such as:

 <%@ include file="filename.jsp" %>

■ Dynamic includes, which have a page directive, such as:

<jsp:include page="filename.jsp" flush="true" />

Static includes create a copy of the include file in the JSP. Therefore, it increases the
page size of the JSP, but it avoids additional trips to the request dispatcher. Dynamic
includes are analogous to function calls. Therefore, they do not increase the page size
of the calling JSP, but they do increase the processing overhead because each call must
go through the request dispatcher.

Dynamic includes are useful if you cannot determine which page to include until after
the main page has been requested. A page that is dynamically included must be an
independent entity, which can be translated and executed on its own.

4.1.12 Disable JSP Page Buffer If Not Used to Improve Performance
In order to allow part of the response body to be produced before the response headers
are set, JSPs can store the body in a buffer.

Java Server Pages Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-5

When the buffer is full or at the end of the page, the JSP runtime will send all headers
that have been set, followed by any buffered body content. This buffer is also required
if the page uses dynamic content type settings, forwards, or error pages. The default
size of a JSP page buffer is 8 KB.

Implementation Details
If you need to increase the buffer size, for example to 20 KB, you can use the following
JSP attribute and directive:

<%@page buffer="20kb" %>

If you are not using any JSP features that require buffering, you can disable it to
improve performance; memory will not be used in creating the buffer, and output can
go directly to the Web browser. You can use the following directive to disable
buffering:

<%@ page buffer="none" %>

4.1.13 Use Forwards Instead of Redirects to Improve Browser Experience
For JSPs, you can pass control from one page to another by using forward or redirect,
but forward is always faster. When you use forward, the forwarded target page is
invoked internally by the JSP runtime, which continues to process the request. The
Web browser is totally unaware that such an action has taken place.

When you use redirect, the Web browser actually has to make a new request to the
redirected page. The URL shown in the Web browser is changed to the URL of the
redirected page, but it stays the same in a forward operation.

Therefore, redirect is always slower than the forward operation. In addition, all
request-scope objects are unavailable to the redirected page because redirect involves a
new request. Use redirect only if you want the URL to reflect the actual page that is
being executed in case the user wants to reload the page.

4.1.14 Use JSP Cache Tags to Save Development Time
Using the Java Object Cache in JSP pages, as opposed to servlets, is particularly
convenient because JSP code generation can save much of the development effort.
Oracle JSP provides the following tags for using the Java Object Cache:

■ojsp:cache

■ ojsp:cacheXMLObj

■ ojsp:useCacheObj

■ ojsp:invalidateCache

Implementation Details
Set the ojsp:cacheXMLObj or ojsp:cache tag to enable caching and specify cache
settings. Use ojsp:useCacheObj to cache any Java serializable object. Use the
ojsp:invalidateCache tag to invalidate a cache block. Alternatively, you can
arrange invalidation through the invalidateCache attribute of the
ojsp:cacheXMLObj or ojsp:cache tag.

See Also: Chapter 7, "Web Object Cache Tags and API," in the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference for further information about these tags

Java Server Pages Best Practices

4-6 Oracle Application Server Best Practices Guide

4.1.15 Use well_known_taglib_loc to Share Tag Libraries
As an extension of standard JSP "well-known URI" functionality described in the JSP
1.2 specification, the OC4J JSP container supports the use of a shared tag library
directory where you can place tag library JAR files to be shared across multiple Web
applications. The benefits are:

■ Avoidance of duplication of tag libraries between applications

■ Easy maintenance, as the TLDs can be in a single JAR file

■ Minimized application size

Implementation Details
The Oracle JSP configuration parameter well_known_taglib_loc configuration
parameter specifies the location of the shared tag library directory. The default location
is the ORACLE_HOME/j2ee/home/jsp/lib/taglib/ directory..

You must add the shared directory to the server-wide CLASSPATH by specifying it as a
library path element. The default location is set in the application.xml file.

4.1.16 Use jsp-timeout Attribute to Provide Efficient Memory Utilization
Resource utilization is a key factor for any efficient application. Oracle Application
Server provides the <orion-web-app> attribute jsp-timeout. The jsp-timeout
attribute specifies an integer value, in seconds, after which any JSP page will be
removed from memory if it has not been requested. This attribute frees up resources in
situations where some pages are called infrequently. The default value is 0 for no
timeout.

Implementation Details

4.1.17 Use reduce_tag_code Parameter to Reduce the Size of Generated Java Method
The JVM limits the amount of code to 65536 bytes for each Java method. Sometimes, as
the JSPs grow larger, there is a possibility of hitting this limit. To reduce the size of
generated code for custom tag usage:

■ Use the reduce_tag_code configuration parameter.

■ Design smaller JSPs for your Web application.

Implementation Details
Set the reduce_tag_code configuration parameter in the:

See Also:

■ Chapter 3, "Getting Started," in the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide for
further information about the well_known_taglib_loc
configuration parameter

■ Appendix B, "Additional Information," in the Oracle Application
Server Containers for J2EE User’s Guide for further information
about the application.xml file

See Also: Chapter 3, "Getting Started," in the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide
for further information about the jsp_timeout attribute

Sessions Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-7

■ <orion-web-app> element in the OC4J global-web-application.xml file
to apply to all applications in an OC4J instance

■ <orion-web-app> element in the deployment-specific orion-web.xml file to
apply to a specific application

4.1.18 Use Workarounds to Avoid Reaching JVM Code Size Limit
The JVM limits the amount of code to 65536 bytes for each Java method. Sometimes, as
JSPs grow larger, there is a possibility of reaching this limit. The following are some
suggestions to workaround this limitation:

■ Design smaller JSPs for your Web application.

■ If your JSP primarily uses tag libraries, and if you are reaching the 64 KB limit, use
the reduce_tag_code configuration parameter to reduce the size of generated
code for custom tag usage. Note that this configuration setting may impact
performance.

■ The version of the JDK you are using can impact the size of the code generated.
Generally, JDK 1.4.2_04-b05 generates far less code compared to JDK 1.4.1_03-b02.

4.1.19 Hide JSP Pages to Prevent Access
There are situations when you do not want to allow access to specific JSPs from a Web
browser. For example, when a JSP is not presented in the Web browser but is part of
application logic, which gets accessed by other JSPs or servlets.

Implementation Details
Put the JSPs you want to hide into a /WEB-INF directory. Provide access within your
application code with the following:

<jsp: forward page = “WEB-INF/forwarded.jsp“/>

4.2 Sessions Best Practices
This section describes best practices for sessions. It includes the following topics:

■ Section 4.2.1, "Persist Session State If Appropriate to Preserve State with Browser"

■ Section 4.2.2, "Replicate Sessions If Persisting Is Not an Option to Improve
Performance"

■ Section 4.2.3, "Avoid Storing Objects in Sessions to Reuse Shared Resources"

■ Section 4.2.4, "Set Session Timeout Appropriately to Optimize Performance"

■ Section 4.2.5, "Monitor Session Memory Usage to Determine Data to Store in
Session Objects"

■ Section 4.2.6, "Use Small Islands to Improve Fault Tolerance"

■ Section 4.2.7, "Use a Mix of Cookie and Sessions to Improve Performance"

■ Section 4.2.8, "Use Coarse Objects Inside HTTP Sessions to Reduce Update Events"

See Also: Chapter 3, "Getting Started," in the Oracle Application
Server Containers for J2EE Support for JavaServer Pages Developer’s Guide
for further information about the reduce_tag configuration
parameter

Sessions Best Practices

4-8 Oracle Application Server Best Practices Guide

■ Section 4.2.9, "Use Transient Data in Sessions Whenever Appropriate to Reduce
Replication Overhead"

■ Section 4.2.10, "Invalidate Sessions to Prevent Memory Usage Growth"

■ Section 4.2.11, "Miscellaneous Guidelines"

4.2.1 Persist Session State If Appropriate to Preserve State with Browser
HTTP sessions are used to preserve the conversation state with a Web browser. As
such, they hold information, which if lost, could result in a client having to start the
conversation over.

Therefore, it is always safe to save the session state in database. This functionality
imposes a performance penalty. If this overhead is acceptable, then persisting sessions
is the best approach.

There are trade-offs when implementing state safety that affect performance,
scalability, and availability. If you do not implement state-safe applications, then:

■ A single JVM process failure will result in many user session failures. For example,
work done shopping online, filling in a multiple page form, or editing a shared
document will be lost, and the user will have to start over.

■ Not having to load and store session data from a database will reduce CPU
overhead, thus increasing performance.

■ Having session data clogging the JVM heap when the user is inactive reduces the
number of concurrent sessions a JVM can support, and thus decreases scalability.

In contrast, you can write a state-safe application so that the session state exists in the
JVM heap for active requests only, which is typically 100 times fewer than the number
of active sessions.

Implementation Details
To improve performance of state safe applications:

■ Minimize session state. For example, a security role might map to detailed
permissions on thousands of objects. Rather than store all security permissions as
session state, just store the role ID. Maintain a cache, shared across many sessions,
mapping role ID to individual permissions.

■ Identify key session variables that change often, and store these attributes in a
cookie to avoid database updates on most requests.

■ Identify key session variables that are read often, and use HttpSession as a
cache for that session data in order to avoid having to read it from the database on
every request. You must manually synchronize the cache, which requires care to
handle planned and unplanned transaction rollback.

4.2.2 Replicate Sessions If Persisting Is Not an Option to Improve Performance
For the category of applications where the HTTP session state information cannot be
persisted and retrieved on each HTTP request (due to the performance overhead),
OC4J provides an intermediate option, replication.

It can replicate the session state information across an island of servers that are in the
same cluster. This functionality provides a performance improvement, because the
sessions remain in memory and provide fault tolerance. Fault tolerance occurs because
Oracle HTTP Server automatically routes the HTTP requests to a different server in the
island, if the original OC4J and the session it contains is down.

Sessions Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-9

Set up at least two servers in an island, so that they can back session state for each
other.

4.2.3 Avoid Storing Objects in Sessions to Reuse Shared Resources
Objects that are stored in the session objects will not be released until the session times
out (or is invalidated). If you hold any shared resources that have to be explicitly
released to the pool before they can be reused, such as a JDBC connection, then these
resources may never be returned to the pool properly and can never be reused.

4.2.4 Set Session Timeout Appropriately to Optimize Performance
Set session timeout appropriately (setMaxInactiveInterval()) so that sessions
do not frequently time out or live forever and consume memory.

Implementation Details

4.2.5 Monitor Session Memory Usage to Determine Data to Store in Session Objects
Monitor the memory usage for the data you want to store in session objects. Make sure
there is sufficient memory for the number of sessions created before the sessions time
out.

4.2.6 Use Small Islands to Improve Fault Tolerance
Setting up an island of OC4J JVMs causes the sessions to be replicated across all JVMs.
This functionality provides better fault tolerance, since a server failure does not
necessarily result in a lost session. Oracle Application Server automatically re-routes
request to another server in the island. As a result, an end-user never finds out about a
failure. This replication overhead increases as more servers are added to the island. For
example, if your session object requires 100 KB for each user, and there are 100 users
for each server, there is a 10 MB memory requirement for session replication for each
server. If you have five servers in an island, the memory requirement increases
five-fold. Since islands provide session replication, it is, in general, not prudent to
exceed an island size beyond three.

Setting up multiple islands, with few servers in an island is a better choice compared
to having a fewer number of larger-sized islands.

4.2.7 Use a Mix of Cookie and Sessions to Improve Performance
Typically, a cookie is set on the Web browser (automatically by the container), to track
a user session. In some cases, this cookie may last a much longer duration than a single
user session. For example, one time settings, such as to determine the end-user
geographic location.

Thus, a cookie that persists on the client disk could be used to save information valid
for the long-term, while a server side session will typically include information valid
for the short-term.

In this situation, parse the long-term cookie on only the first request to the server,
when a new session established. The session object created on the server should

See Also: Appendix A, "Servlet and JSP Technical Background," in
the Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide for further information about setting the
session timeout

Sessions Best Practices

4-10 Oracle Application Server Best Practices Guide

contain all the relevant information, so as not to require re-parsing the cookie on each
request.

A new clientside cookie should then be set that contains only an ID to identify the
serverside session object. This functionality automatically occurs for any JSP page that
uses sessions.

Because the session object contents do not have to be re-created from the long-term
cookie, there is a performance benefit. The other option is to save the user settings in a
database on the server, and have the user login. The unique user ID can then be used
to retrieve the contents from the database and store the information in a session.

4.2.8 Use Coarse Objects Inside HTTP Sessions to Reduce Update Events
Oracle Application Server automatically replicates sessions when a session object is
updated. If a session object contains granular objects, such as a person’s name, it
results in too many update events to all the servers in the island. Therefore, use coarse
objects, such as the person object, as opposed to the name attribute, inside the session.

4.2.9 Use Transient Data in Sessions Whenever Appropriate to Reduce Replication
Overhead

Oracle Application Server does not replicate transient data in a session across servers
in the island. This behavior reduces the replication overhead, as well as the memory
requirements. Therefore, use the transient-type liberally.

4.2.10 Invalidate Sessions to Prevent Memory Usage Growth
The number of active users is generally quite small compared to the number of users
on the system. For example, of the 100 users on a Web site, only 10 may actually be
doing something.

A session is typically established for each user on the system, which uses memory.

Simple things, like a logout button, provide an opportunity for quick session
invalidation and removal. Session invalidation and removal avoids memory usage
growth, because the sessions on the system will be closer to the number of active
users, as opposed to all those that have not timed out yet.

4.2.11 Miscellaneous Guidelines
■ Use sessions as light-weight mechanism by verifying session creation state.

■ Use cookies for long-standing sessions.

■ Put recoverable data into sessions, so that they can be recovered if the session is
lost. Store non-recoverable data persistently in the file system or in database using
JDBC. Storing data persistently is an expensive operation. Instead, you can save
data in sessions and use HttpSessionBindingListener or other events to
flush data into persistent storage during session close.

■ Sticky versus Distributable Sessions

– Distributable session data must be serializable and useful for failover. This
data is expensive, as the data has to be serializable and replicated among peer
processes.

– Sticky sessions affect load-balancing across multiple JVMs, but are less
expensive as there is no state replication.

Enterprise Java Bean Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-11

4.3 Enterprise Java Bean Best Practices
This section describes Enterprise Java Beans (EJB) best practices. It includes the
following topics:

■ Section 4.3.1, "Use Local, Remote, and Message-Driven EJBs Appropriately to
Improve Performance"

■ Section 4.3.2, "Use EJB Judiciously"

■ Section 4.3.3, "Use Service Locator Pattern"

■ Section 4.3.4, "Cluster Your EJBs"

■ Section 4.3.5, "Index Secondary Finder Methods"

■ Section 4.3.6, "Understand EJB Lifecycle"

■ Section 4.3.7, "Use Deferred Database Constraints"

■ Section 4.3.8, "Create a Cache with Read Only EJBs"

■ Section 4.3.9, "Pick an Appropriate Locking Strategy"

■ Section 4.3.10, "Understand and Leverage Patterns"

■ Section 4.3.11, "When Using Entity Beans, Use Container Managed Aged
Persistence Whenever Possible"

■ Section 4.3.12, "Entity Beans using Local interfaces Only"

■ Section 4.3.12, "Entity Beans using Local interfaces Only"

■ Section 4.3.13, "Use a Session Bean Facade for Entity Beans"

■ Section 4.3.14, "Enforce Primary Key Constraints at the Database Level"

■ Section 4.3.15, "Use Foreign Key for 1-1 and 1-M Relationships"

■ Section 4.3.16, "Avoid findAll Method on Entities Based on Large Tables"

■ Section 4.3.17, "Set prefetch-size Attribute to Reduce Round Trips to Database"

■ Section 4.3.18, "Use Lazy Loading with Caution"

■ Section 4.3.19, "Avoid Performing O-R Mapping Manually"

4.3.1 Use Local, Remote, and Message-Driven EJBs Appropriately to Improve
Performance

EJBs can be local or remote. If you envision calls to an EJB to originate from the same
container as the one running the EJB, local EJBs are better since they do not entail the
marshalling, unmarshalling, and network communication overhead. The local beans
also allow you to pass an object-by-reference, thus, improving performance further.

Remote EJBs allow clients to be on different computers and have different application
server instances to talk to them. In this case, it is important to use the value object
pattern to improve performance by reducing network traffic.

If you choose to write an EJB, write a local EJB over a remote EJB object. Since the only
difference is in the exception on the EJB object, almost all of the implementation bean
code remains unchanged.

Additionally, if you do not have a need for making synchronous calls, message-driven
beans are more appropriate.

Enterprise Java Bean Best Practices

4-12 Oracle Application Server Best Practices Guide

4.3.2 Use EJB Judiciously
An EJB is a reusable component backed by component architecture with several useful
services, such as persistence, transactions security, and naming. These additions make
it "heavy."

If you just require abstraction of some functionality and are not leveraging the EJB
container services, you should consider using a simple Java Bean, or implement the
required functionality using JSPs or servlets.

4.3.3 Use Service Locator Pattern
Most J2EE services or resources require acquiring a handle to them through an initial
Java Naming and Directory Interface (JNDI) call. These resources could be an EJB
home object or a JMS topic. These calls are expensive to the server computer to resolve
the JNDI reference, even though the same client may have gone to the JNDI service for
a different thread of execution to fetch the same data.

To avoid this issues, use a service locator, which in some sense is a local proxy for the
JNDI service, so that the client programs communicates with the local service locator,
which in turn communicates to the real JNDI service, if required.

The Java Object Cache bundled with the product may be used to implement this
pattern.

This practice improves availability since the service locator can hide failures of the
backend server or JNDI tree by having cached the lookup. Although this is only
temporary since the results still have to be fetched.

Performance is also improved since trips to the back-end application server are
reduced.

4.3.4 Cluster Your EJBs
Cluster your EJBs only when you require:

■ Load Balancing: The EJB clients are load balanced across the servers in the EJB
cluster.

■ Fault Tolerance: The state (in case of stateful session beans) is replicated across the
OC4J processes in the EJB cluster. If the proxy classes on the client cannot connect
to an EJB server, they will attempt to connect to the next server in the cluster. The
client does not see the failure.

■ Scalability: Since multiple EJB servers behaving as one can service many more
requests than a single EJB server, a clustered EJB system is more scalable. The
alternative is to have standalone EJB systems, with manual partitioning of clients
across servers. This configuration can be difficult and does not provide
fault-tolerance advantages.

In order to fully leverage EJB clustering you will need to use remote EJBs. Remote EJBs
have some performance implications over local EJBs (Section 4.3.1, "Use Local,
Remote, and Message-Driven EJBs Appropriately to Improve Performance"). If you
use local EJBs and save a reference to them in a servlet (or JSP) session, when the
session is replicated the saved reference becomes invalid. Therefore, use EJB clustering
only when you need the listed features.

Enterprise Java Bean Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-13

4.3.5 Index Secondary Finder Methods
When finder methods, other than findByPrimaryKey and findAll, are created
they may be extremely inefficient if appropriate indexes are not created that help to
optimize execution of the SQL generated by the container.

4.3.6 Understand EJB Lifecycle
As a developer, it is imperative that you understand the EJB lifecycle. You can avoid
many problems by following the lifecycle and the expected actions during callbacks
more closely.

This is especially true with entity beans and stateful session beans. For example, in a
small test environment, a bean may never be made passive. Therefore, a faulty
implementation or non-implementation of ejbPassivate() and ejbActivate()
may not show up until later. Moreover, since these are not used for stateless beans,
they may confuse new developers.

4.3.7 Use Deferred Database Constraints
For those constraints that may be invalid for a short time during a transaction but will
be valid at transaction boundaries, use deferred database constraints. For example, if a
column is not populated during an ejbCreate(), but will be set prior to the
completion of the transaction, then you may want to set the not null constraint for that
column to be deferred. This recommendation also applies to foreign-key constraints
that are mirrored by EJB relationships with EJB 2.0.

4.3.8 Create a Cache with Read Only EJBs
For those cases where data changes very slowly or not at all, and the changes are not
made by your EJB application, read-only beans may make a very good cache. A good
example of this is a country EJB. It is unlikely that it will change very often and it is
likely that some degree of stale data is acceptable.

Implementation Details
To do this:

1. Create read-only entity beans.

2. Set exclusive-write-access="true".

3. Set the validity timeout to the maximum acceptable staleness of the data.

4.3.9 Pick an Appropriate Locking Strategy
It is critical that an appropriate locking strategy be combined with an appropriate
database isolation mode for properly performing and highly reliable EJB applications.

Use optimistic locking where the likelihood of conflict in updates is low. If a lost
update is acceptable or cannot occur because of application design, use an isolation
mode of read-committed. If the lost updates are problematic, use an isolation mode of
serializable.

Use pessimistic locking where there is a higher probability of update conflicts. Use an
isolation mode of read-committed for maximum performance in this case. Use
read-only locking when the data will not be modified by the EJB application.

Enterprise Java Bean Best Practices

4-14 Oracle Application Server Best Practices Guide

4.3.10 Understand and Leverage Patterns
With the wider industry adoption, there are several common (and generally)
acceptable ways of solving problems with EJBs. These have been widely published in
either books or discussion forums, and so on. In some sense, these patterns are best
practices for a particular problem. Research and follow these patterns.

Here are some examples:

■ Session facade: Combines multiple entity bean calls into a single call on a session
bean, thus reducing the network traffic.

■ Message facade: Use MDBs if you do not need a return status from your method
invocation.

■ Value object pattern: A value object pattern reduces the network traffic by
combining multiple data values that are usually required to be together, into a
single value object.

A full discussion on the large number of patterns available is outside the scope of this
document, but the references section contains some useful books or Web sites on this
subject.

4.3.11 When Using Entity Beans, Use Container Managed Aged Persistence Whenever
Possible

Although there are some limitations to container-managed persistence (CMP), CMP
has a number of benefits. One benefit is portability. With CMP, decisions like
persistence mapping and locking model selection become a deployment activity rather
than a coding activity. CMP allows deployment of the same application in multiple
containers with no change in code. This is commonly not true for bean-managed
persistence (BMP), since you must write SQL statements and concurrency control into
the entity bean and are therefore specific to the container or the data store.

Another benefit is that, in general, J2EE container vendors provide quality of service
(QoS) features such as locking model variations, lazy loading, and performance and
scalability enhancements, which may be controlled through deployment configuration
rather than by writing code. Oracle Application Server includes features such as
read-only entity beans, minimal writing of changes, and lazy loading of relations,
which would have to be built into code for BMP.

A third benefit of CMP is container-managed relationships. Through declarations, not
unlike CMP field mapping, a CMP entity bean can have relationships between two
entity beans managed by the container with no implementation code required from
application developers.

Finally, tools are available to aid in the creation of CMP entity beans, so that minimal
work is required from developers for persistence. These tools enable developers to
focus on business logic. Oracle JDeveloper is a perfect example where, through
modeling tools and wizards, very little work is required to create CMP entity beans
including creation of both the generic EJB descriptors and the Oracle Application
Server specific descriptors.

Overall, there are cases where CMP does not meet the requirements of an application,
but the development effort saved, and the optimizations that J2EE containers like
OC4J provide make CMP much more attractive than BMP.

Enterprise Java Bean Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-15

4.3.12 Entity Beans using Local interfaces Only
It is a good practice to expose your entity beans using only local interfaces because
container managed relationship can only be used with local interfaces. Also local
interfaces avoid expensive serialization and remote network calls.

4.3.13 Use a Session Bean Facade for Entity Beans
Avoid using entity beans directly from Web modules and client applications and use a
session bean façade layer instead. Use of entity beans from client applications hard
codes the domain model in the client. It also introduces difficulty when managing both
remote and local interfaces for entity beans.

Implementation Details
Create a session bean facade layer by grouping together all natural use cases. This
layer exposes operations to one or more entity beans. It provides finer-grained access
to the entity beans and reduces database interactions by acting as a transaction
boundary. This also enables the entity beans to be accessed by Web services by
exposing the stateless session bean as a Web service endpoint.

4.3.14 Enforce Primary Key Constraints at the Database Level
Enforce primary key constraint for the underlying table for your CMP entity beans
instead of having the container execute an extra SQL statement to check for a duplicate
primary key.

Implementation Details
You can switch this check by setting the do-select-before-insert=”false” for
your entity bean in the orion-ejb-jar.xml file.

4.3.15 Use Foreign Key for 1-1 and 1-M Relationships
Use a foreign key when completing the O-R mapping for 1-1 and 1-Many relationships
between entity beans instead of using an association table. This enables you to avoid
maintaining an extra table and an extra SQL statement generated by container to
maintain the relationships.

4.3.16 Avoid findAll Method on Entities Based on Large Tables
When you use the findAll method, the container tries to retrieve all rows of the
table. You should try to avoid this type of operation on entities based on tables that
have a large number of records. It will slowdown the operations of your database.

4.3.17 Set prefetch-size Attribute to Reduce Round Trips to Database
Oracle JDBC drivers have extensions that allows setting the number of rows to
prefetch into the client while a result set is being populated during a query. This
reduces the number of round trips to the server. This can drastically improve
performance of finder methods that return a large number of rows.

Implementation Details
Specify the prefetch-size attribute for your finder method in the
orion-ejb-jar.xml file.

Data Access Best Practices

4-16 Oracle Application Server Best Practices Guide

4.3.18 Use Lazy Loading with Caution
If you turn on lazy loading, which is off by default, then only the primary keys of the
objects retrieved within the finder are returned. Thus, when you access the object
within your implementation, the OC4J container uploads the actual object based on
the primary key.

You may want to turn on the lazy loading feature if the number of objects that you are
retrieving is so large that loading them all into your local cache would decrease
performance. If you retrieve multiple objects, but you only use a few of them, then you
should turn on lazy loading. In addition, if you only use objects through the
getPrimaryKey method, then you should also turn on lazy loading.

4.3.19 Avoid Performing O-R Mapping Manually
O-R mapping for CMP entity beans in the orion-ejb-jar.xml file is very complex
and error prone. Any error in the mapping can cause deployment errors and
generation of wrong SQL for EJB-QL statements. The following two approaches are
recommended:

■ Use JDeveloper 9.0.5.1 to perform the O-R mapping and to generate the mapping
information in the orion-ejb-jar.xml file.

■ Deploy the application in OC4J to generate the mappings and then modify the
orion-ejb-jar.xml file to include the correct table-name and
persistence-names.

4.4 Data Access Best Practices
This section describes data access best practices. It includes the following topics:

■ Section 4.4.1, "Use Datasources Connections Caching and Handling to Prevent
Running Out of Connections"

■ Section 4.4.2, "Use Data Source Initialization"

■ Section 4.4.3, "Disable Escape Processing to Improve Performance"

■ Section 4.4.4, "Define Column Types to Save Round-trips to Database Server"

■ Section 4.4.5, "Prefetch Rows to Improve Performance"

■ Section 4.4.6, "Update Batching to Improve Performance"

■ Section 4.4.7, "Use More Than One Database Connection Simultaneously in the
Same Request to Avoid a Deadlock in the Database"

■ Section 4.4.8, "Tune the Database and SQL Statements to Optimize the Handling of
Database Resources"

■ Section 4.4.9, "Configure Data Source Configurations Options"

4.4.1 Use Datasources Connections Caching and Handling to Prevent Running Out of
Connections

Connections must not be closed within finalize() methods. This can cause the
connection cache to run out of connections to use, since the connection is not closed
until the object that obtained it is garbage collected.

The current connection cache does not provide any mechanism to detect "abandoned"
connections, reclaim them, and return them to the cache. The application can explicitly
close all connections.

Data Access Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-17

If a connection is declared as static, then it is possible that the same connection object is
used on different threads at the same time. Do not declare connections as static objects.

Use the FIXED_WAIT_SCHEME when using the connection cache, especially when
writing Web applications. This guarantees enforcement of the MaxLimit on the
connection cache as well as retrieval of a connection from the cache when a connection
is returned to the cache.

Always use connection cache timeouts such as CacheInactivityTimeout to close
unused physical connections in the cache and cause "shrinking" of the cache, thus
releasing valuable resources.

4.4.1.1 DataSource Connection Caching Strategies
In order to minimize the lock up of resources for long periods of time but allow for
recycling of connections from the connection cache, you should use the most
appropriate strategy for obtaining and releasing connections as follows:

■ Many clients, few connections: Open and close a connection in the same method
that needs to use the connection. In order to ensure that connections are returned
to the pool, all calls to this method should happen within try-catch, try-finally,
or try-catch-finally blocks. This strategy is useful when you have a large
number of clients sharing a few connections at the cost of the overhead associated
with getting and closing each connection.

■ Private client pool: Take advantage of the BMP life cycle. Get a connection within
setEntityContext() and release the connection in unsetEntityContext().
Make connections available to all methods by declaring it a member instance.

■ Combined strategy: You may take further advantage of BMP life cycle and
implement a strategy, which combines the preceding two strategies.

4.4.2 Use Data Source Initialization
It is a good practice to put the JNDI lookup of a DataSource as part of the
application initialization code, since DataSources are simply connection factories.

For example, when using servlets, it is a good idea to put the DataSource lookup
code into the init() method of the servlet.

4.4.3 Disable Escape Processing to Improve Performance
Escape processing for SQL92 syntax is enabled by default, which results in the JDBC
driver performing escape substitution before sending the SQL code to the database.

Implementation Details
If you want the driver to use regular Oracle SQL syntax, which is more efficient than
SQL92 syntax and escape processing, then disable escape processing using the
following statement:

stmt.setEscapeProcessing(false);

4.4.4 Define Column Types to Save Round-trips to Database Server
The Oracle-specific defining column types feature provides the following benefits:

■ Saves a round-trip to the database server.

■ Defines the datatype for every column of the expected result set.

■ For VARCHAR, VARCHAR2, CHAR, and CHAR2, specifies their maximum length.

Data Access Best Practices

4-18 Oracle Application Server Best Practices Guide

The following example illustrates the use of this feature. It assumes you have imported
the oracle.jdbc.* and java.sql.* interfaces and classes.

//ds is a DataSource object
Connection conn = ds.getConnection();
PreparedStatement pstmt = conn.prepareStatement("select empno, ename, hiredate
from emp");

//Avoid a round-trip to the database and describe the columns
((OraclePreparedStatement)pstmt).defineColumnType(1,Types.INTEGER);

//Column #2 is a VARCHAR, we need to specify its max length
((OraclePreparedStatement)pstmt).defineColumnType(2,Types.VARCHAR,12);
((OraclePreparedStatement)pstmt).defineColumnType(3,Types.DATE);
ResultSet rset = pstmt.executeQuery();
while (rset.next())
System.out.println(rset.getInt(1)+","+rset.getString(2)+","+rset.getDate(3));
pstmt.close();
…

4.4.5 Prefetch Rows to Improve Performance
Row prefetching improves performance by reducing the number of round trips to a
database server. For most database-centric applications, Oracle recommends the use of
row prefetching as much as possible. The default prefetch size is 10.

The following example illustrates the use of row prefetching. It assumes you have
imported the oracle.jdbc.* and java.sql.* interfaces and classes

//ds is a DataSource object Connection conn = ds.getConnection();

//Set the default row-prefetch setting for this connection
((OracleConnection)conn).setDefaultRowPrefetch(7);

//The following statement gets the default row-prefetch value for
//the connection, that is, 7 Statement stmt = conn.createStatement();
//Subsequent statements look the same, regardless of the row

//prefetch value. Only execution time changes.
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());
while(rset.next ())
System.out.println(rset.getString (1));

//Override the default row-prefetch setting for this

//statement
((OracleStatement)stmt).setRowPrefetch (2);
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());
while(rset.next())
System.out.println(rset.getString (1));
stmt.close();
…
.
.

Data Access Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-19

Implementation Details

4.4.6 Update Batching to Improve Performance
Update batching sends a batch of operations to the database in one trip. When using it,
always disable auto-commit mode with update batching. Use a batch size of around
10. Do not mix the standard and Oracle models of update batching.

4.4.6.1 Oracle Update Batching
The following example illustrates how you use the Oracle update batching feature. It
assumes you have imported the oracle.jdbc.driver.* interfaces.

//ds is a DataSource object
Connection conn = ds.getConnection();
//Always disable auto-commit when using update batching
conn.setAutoCommit(false);
PreparedStatement ps =
conn.prepareStatement("insert into dept values (?, ?, ?)");
//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);
//--------#1------------
ps.setInt(1, 23);
ps.setString(2, "Sales");
ps.setString(3, "USA");
ps.executeUpdate(); //JDBC queues this for later execution
//--------#2------------
ps.setInt(1, 24);
ps.setString(2, "Blue Sky");
ps.setString(3, "Montana");
ps.executeUpdate(); //JDBC queues this for later execution
//--------#3------------
ps.setInt(1, 25);
ps.setString(2, "Applications");
ps.setString(3, "India");
ps.executeUpdate(); //The queue size equals the batch value of
3

//JDBC sends the requests to the database
//--------#1------------
ps.setInt(1, 26);
ps.setString(2, "HR");
ps.setString(3, "Mongolia");
ps.executeUpdate(); //JDBC queues this for later execution
((OraclePreparedStatement)ps).sendBatch(); // JDBC sends the
//queued request
conn.commit();
ps.close();
...

4.4.6.2 Standard Update Batching
This example uses the standard update batching feature. It assumes you have
imported the oracle.jdbc.driver.* interfaces.

See Also: Oracle Database JDBC Developer’s Guide and Reference from
the Oracle Database documentation library

See Also: Oracle Database JDBC Developer’s Guide and Reference from
the Oracle Database documentation library

Data Access Best Practices

4-20 Oracle Application Server Best Practices Guide

//ds is a DataSource object
Connection conn = ds.getConnection();
//Always disable auto-commit when using update batching
conn.setAutoCommit(false);
Statement s = conn.createStatement();
s.addBatch("insert into dept values ('23','Sales','USA')");
s.addBatch("insert into dept values ('24','Blue
Sky','Montana')");
s.addBatch("insert into dept values
('25','Applications','India')");
//Manually execute the batch
s.executeBatch();
s.addBatch("insert into dept values ('26','HR','Mongolia')");
s.executeBatch();
conn.commit();
ps.close();
...

4.4.7 Use More Than One Database Connection Simultaneously in the Same Request to
Avoid a Deadlock in the Database

Using more than one database connection simultaneously in a request can cause a
deadlock in the database. This result is most common in JSPs. First, a JSP will get a
database connection to do some data accessing. Before the JSP commits the transaction
and releases the connection, it invokes a bean, which gets its own connection for its
database operations. If these operations are in conflict, they can result in a deadlock.

Furthermore, you cannot easily roll back any related operations if they are done by
two separate database connections in case of failure.

Unless your transaction spans multiple requests or requires some complex distributed
transaction support, you should try to use just one connection at a time to process the
request.

4.4.8 Tune the Database and SQL Statements to Optimize the Handling of Database
Resources

Current Web applications are still very database-centric. From 60 percent to 90 percent
of the execution time on a Web application can be spent in accessing the database. No
amount of tuning on the mid-tier can give significant performance improvement if the
database computer is saturated or the SQL statements are inefficient.

Monitor frequently executed SQL statements. Consider alternative SQL syntax, use
PL/SQL or bind variables, pre-fetch rows, and cache rowsets from the database to
improve your SQL statements and database operations.

Web applications often access a database at the backend. One must carefully optimize
handling of database resources, since a large number of concurrent users and high
volumes of data may be involved. Database performance tuning falls into two
categories:

■ Tuning of SQL tables and statements.

■ Tuning of JDBC calls to access the SQL database.

This section contains the following topics:

■ Section 4.4.8.1, "Tune JDBC"

■ Section 4.4.8.2, "Cache JDBC Connections"

Data Access Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-21

■ Section 4.4.8.3, "Cache JDBC Statements"

■ Section 4.4.8.4, "Cache JDBC Rowsets"

4.4.8.1 Tune JDBC
JDBC objects such Connections, Statements, and Result Sets are quite often
used for database access in Web applications. Frequent creation and destruction of
these objects is quite detrimental to the performance and scalability of the application,
as these objects are quite heavyweight. Therefore, always cache these JDBC resources

4.4.8.2 Cache JDBC Connections
Creating a new database connection is an expensive operation that you should avoid.
Instead, use a cache of database connections to avoid frequent session creations and
tear-downs. EJBs, servlets and JSPs can use or share the connection cache within a
JVM. Create as a single object during startup, so that they can be shared across
multiple requests.

Implementation Details

4.4.8.3 Cache JDBC Statements
JDBC statement caching avoids cursor creation and tear-down, as well as cursor
parsing. It provide two types of statement caching:

■ Implicit: Saves Metadata of cursor but clears the State and Data content of the
cursor across calls

■ Explicit: Saves Metadata, Data, and State of the cursor across calls

You can use statement caching with pooled connection and connection cache, for
example:

conn.setStmtCacheSize(<cache-size>)

Implementation Details

4.4.8.4 Cache JDBC Rowsets
JDBC cached rowsets provide the following benefits:

■ Disconnected, serializable, and scrollable container for retrieved data

■ Free up connections and cursors faster

■ Local scrolling on cached data

This feature is useful for small sets of data that do not change often.

Implementation Details

See Also: Oracle Database JDBC Developer’s Guide and Reference from
the Oracle Database documentation library

See Also: Oracle Database JDBC Developer’s Guide and Reference from
the Oracle Database documentation library

See Also: Oracle Database JDBC Developer’s Guide and Reference from
the Oracle Database documentation library

J2EE Class Loading Best Practices

4-22 Oracle Application Server Best Practices Guide

4.4.9 Configure Data Source Configurations Options

4.5 J2EE Class Loading Best Practices
This section describes best practices for J2EE class loading. It includes the following
topics:

■ Section 4.5.1, "Avoid Duplicating Libraries to Prevent Loading Problems"

■ Section 4.5.2, "Load Resources Appropriately to Avoid Errors"

■ Section 4.5.3, "Enable Class Loading Search Order within Web Modules to ?...."

■ Section 4.5.4, "Declare and Group Dependencies to Prevent Hidden or Unknown
Dependencies"

■ Section 4.5.5, "Minimize Visibility to Satisfy Dependencies"

■ Section 4.5.6, "Create Portable Configurations"

■ Section 4.5.7, "Do Not Use the lib Directory for Container-Wide Shared Libraries to
Prevent Loading Issues"

4.5.1 Avoid Duplicating Libraries to Prevent Loading Problems
Avoid duplicating copies of the same library at different location in your Oracle
Application Server installation. Duplication of class libraries can lead to several class
loading problems and may consume additional memory and disk space. If your class
library is used by multiple applications, then you can put it at the application server
level by using the <library> tag in the application.xml file. Or, use the
<parent> attribute in the server.xml file to share libraries in two applications.

For a class library that is to be shared by all applications running on your OC4J
instance, you can use the default global shared library directory. To do this, place the
class library in the $ORACLE_HOME/j2ee/home/applib directory. This directory is
configured as a default in the $ORACLE_
HOME/j2ee/home/config/application.xml configuration file.

If you have a library that is shared between multiple modules in the same application,
that is, two Web modules in the same EAR file, then use the WAR file manifest
Class-Path element to share the class libraries between the modules instead of
duplicating the libraries in the WEB-INF/lib for every module. In order to enable the
use of a Class-Path entry in a WAR file manifest, the following has to be defined in
the orion-web.xml for your Web application:

<web-app-class-loader include-war-manifest-class-path="true" />

If you have a library that is shared between multiple modules in the same EAR file, for
example, two EJB modules in the same EAR file, then you can place the shared class
library and an orion-application.xml file within your EAR file and define the
relative path to the shared library using a <library> tag within the
orion-application.xml file.

See Also: Section "Setting Up Data Sources - Performance Issues," in
the Oracle Application Server Performance Guide for more information
about setting up data source configuration options for global data
sources

J2EE Class Loading Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-23

4.5.2 Load Resources Appropriately to Avoid Errors
If you are using dynamic class loading or are loading a resource, such as the properties
file in your application, use the correct loader.

If you call Class.forName(), always explicitly pass the loader returned by:

Thread.currentThread().getContextClassLoader();

If you are loading a properties file, use:

Thread.currentThread().getContextClassLoader().getResourceAsStream();

4.5.3 Enable Class Loading Search Order within Web Modules
The servlet 2.3 specification requires that the search order within a Web module is
WEB-INF/classes first, then WEB-INF/lib. The specification recommends another
class loading related implementation detail:

"the application classloader [could] be implemented so that classes and resources
packaged within the WAR are loaded in preference to classes and resources residing
in container wide library JARs".

To enable this local classes class loading behavior for a Web application, you configure
it on a for each Web-application basis by having the following tag in the
orion-web.xml file:

<web-app-class-loader search-local-classes-first=”true”/>

This tag is commented out by default and is not the default behavior.

4.5.4 Declare and Group Dependencies to Prevent Hidden or Unknown Dependencies
Make dependencies between your class libraries explicit. Hidden or unknown
dependencies will be left behind when you move your application to another
environment. Use available mechanisms such as Class-Path entries in manifest files
to declare dependencies among class libraries and applications.

Group dependencies between your class libraries and ensure that all dependencies are
visible at the same level or preceding. If you must move a library, make sure all the
dependencies are still visible.

4.5.5 Minimize Visibility to Satisfy Dependencies
Place the dependency libraries at the lowest-visibility level that satisfies all
dependencies. For example, if a library is only used by a single Web application, it
should only be included in the WEB-INF/lib directory of the WAR file.

4.5.6 Create Portable Configurations
Create configurations that are as portable as possible. Specify configuration options in
the following order:

■ Standard J2EE options

■ Options that can be expressed within the EAR file

■ Server-level options

■ J2SE extension options

Java Message Service Best Practices

4-24 Oracle Application Server Best Practices Guide

4.5.7 Do Not Use the lib Directory for Container-Wide Shared Libraries to Prevent
Loading Issues

Do not place container-wide shared application libraries in the $ORACLE_
HOME/j2ee/home/lib directory. With Oracle Application Server 10g, this directory
is no longer used for loading custom container-wide shared libraries. The container
will not load additional libraries placed in this directory.

If you wish to use a container-wide shared library, place your class library in the
$ORACLE_HOME/j2ee/home/applib directory or define it using a <library> tag.

4.6 Java Message Service Best Practices
This section describes JMS best practices. It includes the following topics:

■ Section 4.6.1, "Set the Correct time_to_live Value to Avoid Messages Never
Expiring"

■ Section 4.6.2, "Do Not Grant Execute Privilege of the AQ PL/SQL Package to a
User or Role"

■ Section 4.6.3, "Close JMS Resources No Longer Needed to Keep JMS Objects
Available"

■ Section 4.6.4, "Reuse JMS Resources Whenever Possible to Perform Concurrent
JMS Operations"

■ Section 4.6.5, "Use Debug Tracing to Track Down Problems"

■ Section 4.6.6, "Understand Handle/Interpret JMS Thrown Exceptions to Handle
Runtime Exceptions"

■ Section 4.6.7, "Connect to the Server and Database From the Client Computer to
Debug JMS Connection Creation Problems"

■ Section 4.6.8, "Tune Your Database Based on Load to Improve Performance"

■ Section 4.6.9, "Ensure OracleAS JMS Connection Parameters are Correct to Avoid
Runtime Exceptions"

■ Section 4.6.10, "Provide Correct OracleAS JMS Configuration to Avoid Java JMS
Exceptions"

4.6.1 Set the Correct time_to_live Value to Avoid Messages Never Expiring
OracleAS JMS message expiration is set in the JMSExpiration header field. If this
value is set to zero (the default), then the message will never expire. If the amount of
used table space (memory for OC4J) is a concern, then optimally setting the time_to_
live parameter will keep messages from accumulating. This is especially true in the
publish-subscribe domain where messages may sit forever waiting for the final
durable subscriber to return to retrieve the message.

4.6.2 Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role
While there are outstanding OracleAS JMS session blocking on a dequeue operation
this might cause the granting operation to be blocked and even time out. Execute
granting calls before other OracleAS JMS operations.

See Also: Chapter 7, "Developing and Deploying JMS Web
Services," in the Oracle Application Server Web Services Developer’s Guide
for further information about the JMSExpiration header field

Java Message Service Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-25

Another way to avoid the blocking or time out is to grant roles instead of granting
specific privileges to the user directly. Oracle Advanced Queuing has an AQ_
ADMINISTRATOR_ROLE that you can use, or users may create their own tailored role.
You can then grant the execute privilege of a PL/SQL package to this role. Provided
the role was created before hand, the granting of the role to the user does not require a
lock on the package. This will allow the granting of the role to be executed
concurrently with any other OracleAS JMS operation.

Implementation Details

4.6.3 Close JMS Resources No Longer Needed to Keep JMS Objects Available
When JMS objects like JMS connections, JMS sessions, and JMS consumers are created,
they acquire and hold on to server-side database and client-side resources.

If JMS programs do not close JMS objects when they are done using them either during
the normal course of operation or at shutdown, then database and client-side resources
held by JMS objects are not available for other programs to use.

The JVM implementation does not guarantee that finalizers will kick in and clean up
JMS object held resources in a timely fashion when the JMS program terminates.

4.6.4 Reuse JMS Resources Whenever Possible to Perform Concurrent JMS
Operations

JMS objects like JMS connections are heavyweight and acquire database resources not
unlike JDBC connection pools. Instead of creating separate JMS connections based on
coding convenience, Oracle recommends that a given JMS client program create only
one JMS connection against a given database instance for a given connect string and
reuse this JMS connection by creating multiple JMS sessions against it to perform
concurrent JMS operations.

JMS administrable objects like queues, queue tables, durable subscribers are costly to
create and lookup. This is because of the database round trips and in some cases, JDBC
connection creation and tear-down overhead. Oracle recommends that JMS clients
cache JMS administrable objects once they are created or looked up and reuse them
rather than create or look them up each time the JMS client wants to enqueue or
dequeue a message. The Oracle Application Server Java Object Cache could be used to
facilitate this caching.

4.6.5 Use Debug Tracing to Track Down Problems
OracleAS JMS enables users to turn debug tracing by setting
oracle.jms.traceLevel to values between one and five. (One captures fatal errors
only and five captures all possible trace information including stack traces and method
entries and exits). Debug tracing allows one to track down silent or less understood
error conditions.

4.6.6 Understand Handle/Interpret JMS Thrown Exceptions to Handle Runtime
Exceptions

OracleAS JMS is required by the JMS specification to throw particular JMS defined
exceptions when certain error or exception conditions occur. In some cases the JMS

See Also: Oracle Application Server Integration InterConnect Adapter for
AQ Installation and User’s Guide

Java Message Service Best Practices

4-26 Oracle Application Server Best Practices Guide

specification allows or expects OracleAS JMS to throw runtime exceptions when
certain conditions occur. Code the JMS client program to handle these conditions
gracefully.

The catch all JMS exception, JMSException, that OracleAS JMS is allowed to throw
in certain error/exception cases provides information as to why the error/exception
occurred as a linked exception in the JMSException. Code the JMS programs to
obtain and interpret the linked exception in some cases.

For instance, when resources like processes, cursors, or tablespaces run out or when
database timeouts/deadlocks occur, SQL exceptions are thrown by the backend
database, which are presented to the JMS client program as linked SQL exceptions to
the catch all JMSException that is thrown. It would be useful for JMS programs to
log or interpret the ORA error numbers and strings so that the administrator of the
database can take corrective action.

The following code segment illustrates a way to print both the JMSException and its
linked exception:

try
{...}
catch (JMSException jms_ex)
{

jms_ex.printStackTrace();
if (jms_ex.getLinkedException() != null)
jms_ex.getLinkedException().printStackTrace();
}

4.6.7 Connect to the Server and Database From the Client Computer to Debug JMS
Connection Creation Problems

When debugging JMS connection creation problems or problems with receiving
asynchronous messages/notifications make sure that you can:

■ Ping the database using tnsping

■ Connect to the database with its connect string using sqlplus

■ Resolve the name or the IP address of the server computer from the client (by
using a simple program that accesses a socket) and vice versa.

4.6.8 Tune Your Database Based on Load to Improve Performance
OracleAS JMS performance is greatly improved by proper database tuning. OracleAS
JMS performance is dependent on Oracle Advanced Queuing enqueue/dequeue
performance. Oracle Advanced Queuing performance will not scale even if you run
the database on a computer with better physical resources unless the database is tuned
to make use of those physical resources.

4.6.9 Ensure OracleAS JMS Connection Parameters are Correct to Avoid Runtime
Exceptions

Make sure that the parameters that control the datasources underlying OracleAS JMS
connections are set appropriately (see datasources best practices). Runtime exceptions
that are caused when transaction, inactivity, and cache-connection-availability
timeouts occur or connection creation attempts fail can lead to message-driven beans
(MDBs) and JMS objects becoming unusable until the underlying cause is resolved. In

Java Message Service Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-27

some cases the change cannot be made dynamically and in others container
redeployment maybe needed for the changes to take effect.

Make sure that the EJB-location is used to look up the emulated datasources
underlying JMS Connections and MDB instances in case these MDBs and JMS
Connections need to participate in Container Managed Transactions. If datasource
location is used instead MDBs will not receive messages and JMS Connections will not
participate in CMTs.

Since datasource support is not available in OC4J for the application client deployment
mode in this release, OracleAS JMS requires that the JMS code use a URL definition to
access MS resources within application clients. When the application is a standalone
client, configure the <resource-provider> element with a URL property that has
the URL of the database where OracleAS JMS is installed and, if necessary, provides
the username and password for that database. The following demonstrates a URL
configuration:

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
<description> OJMS/AQ </description>

<property name="url" value="jdbc:oracle:thin:@hostname:port number:SID">
</property>
<property name="username" value="user">
</property>
<property name="password" value="passwd">
</property>

</resource-provider>

Since OC4J does not support distributed transactions in the application client
deployment mode in this release, OracleAS JMS only supports local transactions
through it's transacted sessions. If the JMS application requires transaction
co-ordination then make sure that it is deployed inside a container and not as an
application client.

In this release OC4J optimizes transacted Oracle database operations, including
OracleAS JMS operations, so that a 2-PC is not required for them in a distributed
transaction that they are involved in when the operations take place against the same
Oracle database instance and the same database schema. If possible, make sure that
the Oracle Advanced Queuing queues against, which OracleAS JMS operations take
place are located in the same schema if the applications using them will perform
distributed operations against them. when the underlying database version is 10g or
later, if the database operations (including OracleAS JMS operations) take place
against different schemas then for the first time the transacted operations take place a
complete 2-PC with prepare and commit phases is performed and in subsequent
operations a 1-PC optimization kicks in. If it is required that the Oracle Advanced
Queuing queues and database tables being used in a distributed transaction be on
different schemas, make sure you upgrade to database 10g.

4.6.10 Provide Correct OracleAS JMS Configuration to Avoid Java JMS Exceptions
OracleAS JMS does not validate invalid configuration information, like host and port,
at OC4J start up time and these misconfigurations manifest themselves at runtime as
Java JMS exceptions. Make sure that the configuration information that you are
providing is correct before deploying your JMS application.

OracleAS JMS throws a java.lang.instantiation exception during OC4J startup
when the port specified for the JMS Server is already in use. Make sure that the port
specified is not already in use when starting up the OC4J instance with a JMS Server
enabled.

Oracle Application Server XML Developer’s Kit Best Practices

4-28 Oracle Application Server Best Practices Guide

Make sure that run-time exceptions do not occur in the onMessage call of an MDB
instance that uses OracleAS JMS by catching the exceptions is a try-catch block (if
feasible). This is because in this release runtime exceptions in the onMessage call can
cause the MDB to enter into a endless redelivery loop.

4.7 Oracle Application Server XML Developer’s Kit Best Practices
This section describes Oracle XML Developer’s Kit best practices. It includes the
following topics:

■ Section 4.7.1, "Choose Correct XML Parsers to Improve Efficiency"

■ Section 4.7.2, "Improve XSLT Performance"

■ Section 4.7.3, "Use the Stream-based XML Schema and DTD Validation to Improve
Performance"

■ Section 4.7.4, "Process DOM using the JAXB Interface to Access and Operate on
XML Data"

4.7.1 Choose Correct XML Parsers to Improve Efficiency
Choosing the right XML parser is critical to XML applications because it determines
how efficient an application can access the XML data. Oracle XDK provides three XML
parsers:

■ Document Object Model (DOM) Parser: Parses the XML data and represents the
XML data as an in-memory tree object. The DOM parser provides a set of
object-oriented interfaces defined by the W3C DOM recommendation to access the
XML data.

■ The Simple API for XML (SAX) Parser: Supports an event-based XML parsing
standard, which parses XML data and represents XML data as a set of events. The
SAX parser pushes out all the events to the callback functions in the registered
content handlers.

■ The Java API for XML Parsing) (JAXP) Parser: Supports the JSR-63 standard and
provides the standard interfaces in Java for both SAX and DOM XML parsing,
XSLT transformation and XML Schema validation.

An XML application may not need to use all of parsers. Normally, an XML parser is
chosen based on the application requirements.

Implementation Details
The DOM parser represents XML documents as in-memory tree objects. Therefore,
using DOM parsers will leads to high memory footprint, especially when processing
large XML documents. Because of the maintaining of in-memory objects, the DOM
parser allows applications to dynamically update the XML data and the document
structure. The DOM parser is ideal for applications, which need to edit or transform
XML documents because these applications require extensive and random document
transversals. In order to reduce the memory footprint, you can use the
DOMParser.setNodeFactory() to customize the building of the DOM object tree.
In addition, you can use the DOMParser.setAttribute(DOMParser.USE_DTD_
ONLY_FOR_VALIDATION, true) to avoid including the DTD object in DOM.

The SAX parser parses XML data with limited memory use. Therefore, SAX parsing
performs well and is scalable. The SAX parser is good for XML applications that
retrieve, filter, and search large XML documents. The SAX parser is not easy to use,
because it does not maintain the hierarchical structure of the XML document. As a

Oracle Application Server XML Developer’s Kit Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-29

result, the SAX parser usually is not used for XML transformations or XPath content
navigations. Additionally, because the SAX parser does not allow the in-place XML
document updates, it is also not good for implementing document-editing tools.

The JAXP parser is based on the JSR-063 standard. The benefit of using the JAXP
parser is that the XML applications are more portable, which means that the
applications can easily switch to other XML parsers later. JAXP applications are not
portable in many cases, because of the incompatibility of DOM objects across different
XML parser implementations. For example, a DOM created through JAXP interface
using the Apache Xerces parser can't be used by the JAXP XSLT processor based on the
Oracle XDK XSLT processor. This is because the Oracle XDK XSLT processor doesn't
recognized the DOM object created by the Apache Xerces parser. The same applies the
other way around. Additionally, the JAXP parser introduces extra overheads because
the implement is wrapped around the existing DOM/SAX implementations.

4.7.2 Improve XSLT Performance
XSLT transformations are widely used by XML applications to convert data from one
format to the other or add presentation formats to the XML data before publishing the
XML documents. The performance for XSLT has great impact on these kinds of
applications. The following section gives you some help on how to make the XSLT
transformations perform well.

Implementation Details
■ To boost the performance when transforming XML using XSLT, use SAX to build

XSLStylesheet objects and reuse the XSLT objects for subsequent
transformations. In the XSL stylesheets, you also need to avoid unconstrained axis
like //foo because the Oracle XDK XSLT processor takes full DOM traversal for
this kind of XPath evaluations, which is very time-consuming

■ Since the size of DOM object significantly affects the memory use of XSLT
transformations, you need to set <xsl:strip-space elements="*"/> to
reduce the size of DOM object. Since in many case whitespaces do not affect the
transformation result and this option dramatically reduce the size of DOM, it
delivers better performance.

4.7.3 Use the Stream-based XML Schema and DTD Validation to Improve Performance
To ensure the XML documents conforms to the defined XML schemas or DTDs, the
XML schema or DTD validation is needed. To get the best performance and be able to
handle large XML documents, the steam-based XML Schema or DTD validation is
needed.

Oracle XDK provides stream-based XML Schema validation if no key/keyref is
defined in XML schemas. Here is an example of the SAX-based XML schema
validation:

// Build the XML schema object
XSDBuilder builder = new XSDBuilder();
byte [] docbytes = xsd.getBytes();
ByteArrayInputStream in = new ByteArrayInputStream(docbytes);
XMLSchema schemadoc = (XMLSchema)builder.build(in,null);
//Parse the input XML document with the XML schema validation
SAXParser parser = new SAXParser();
parser.setXMLSchema(schemadoc);
parser.setValidationMode(XMLParser.SCHEMA_VALIDATION);
parser.parse(xml.getCharacterStream());

Oracle Application Server TopLink Best Practices

4-30 Oracle Application Server Best Practices Guide

The following example shows the stream-based DTD XML document validation:

// Build the DTD object
DOMParser dp = new DOMParser();
dp.parseDTD(fileNameToURL(args[1]), args[2]);
DTD dtddoc = dp.getDoctype();
//Parse and validate the XML document against DTD using SAX
SAXParser parser = new SAXParser();
parser.setDoctype(dtddoc);
//When set Oracle XDK to perform DTD validation
parser.setFeature("http://xml.org/sax/features/validation", true);
parser.parse(fileNameToURL(args[0]));

Since no DOM object is built during the XML schema validation or DTD validation,
the process is more scalable.

4.7.4 Process DOM using the JAXB Interface to Access and Operate on XML Data
JAXB (Java Architecture for XML Binding) allows XML applications to access and
operate on XML data with easy-to-use Java get and set methods. Oracle XDK JAXB
allows JAXB XML applications to directly update the existing DOM objects.
Comparing with other JAXB implementations which generate a DOM copy for JAXB
operations, the Oracle XDK JAXB DOM support delivers better performance.

Implementation Details
To use this feature:

1. Build a DOM object as follows:

DocumentBuilderFactory dbf = DocumentBuilder
Factory.newInstance();
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
Document currentDoc=b.newDocument();

2. Unmarshall the DOM object to the JAXB objects:

JAXBContext jc = JAXBContext.newInstance("oracle.example.resource");
oracle.example.resource.ExObject exObject= (oracle.example.resource.ExObject)
unmarshaller.unmarshal(currentDoc);

3. Use the JAXB set and get APIs to update the DOM object.

After the DOM updates, the currentDoc will contain all the changes. No extra
step of the serialization/deserialization is needed for getting the DOM with the
updates. This reduces the overall processing time.

4.8 Oracle Application Server TopLink Best Practices
This section describes best practices for Oracle Application Server TopLink (OracleAS
TopLink). It includes the following topics:

■ Section 4.8.1, "Use OracleAS TopLink Mapping Guidelines to Persist Application
Data"

■ Section 4.8.2, "Use Caching and Concurrency Protection to Improve Performance"

■ Section 4.8.3, "Use Sequencing to Apply Project-Wide Properties to All
Descriptions"

■ Section 4.8.4, "Implement Performance Options to Improve Performance"

Oracle Application Server TopLink Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-31

OracleAS TopLink is both an integrated and a stand alone component within Oracle
Application Server; recommendations in this section are specific to the use of OracleAS
TopLink and may not apply to the rest of Oracle Application Server. OracleAS
TopLink is compatible with Oracle Application Server or other application servers.
OracleAS TopLink fully supports persistence for any Java application with any JDBC
2.0 compliant database.

OracleAS TopLink provides flexibility to interact with any application design, not only
at initial construction but also as the application evolves. It also interacts with the
complexities of the underlying relational database. This flexibility enables the two
domains to interact to form a high performance system, and also evolve separately,
while minimizing complexity in the application or database domains. Ultimately,
supplying a general best practices is difficult as each situation will be different.
Therefore, the reader must understand that these guidelines will not apply in all
situations..

4.8.1 Use OracleAS TopLink Mapping Guidelines to Persist Application Data
These are some general guidelines for use in mapping object models or designing
relational models to persist application data.

■ If in doubt, always use indirection for any relationship. Indirection does more than
just provide deferred reading. It also provides deferred cloning when an object is
made transactional.

■ For Inheritance, it is usually advantageous to flatten out the inheritance hierarchy
in the relational model. Just because there are several levels of inheritance in the
object model, this does not mean that you necessarily need that many levels of
joined tables in the relational model.

■ Use version numbers, instead of timestamps, for Optimistic Locking.

■ For very simple aggregation, for example, involving only one database field,
consider TypeConversionMappings with an extended ConversionManager.

4.8.2 Use Caching and Concurrency Protection to Improve Performance
OracleAS TopLink has its own specialized object caching mechanism, which is
separate from other caching solutions in Oracle Application Server. It is tightly
integrated with the rest of the OracleAS TopLink runtime and provides additional
performance benefits.

This section describes caching best practices. It includes the following topics:

■ Section 4.8.2.1, "OracleAS TopLink Cache Refreshing Policies"

■ Section 4.8.2.2, "Avoid Stale Cache Content"

■ Section 4.8.2.3, "Cache Coordination"

4.8.2.1 OracleAS TopLink Cache Refreshing Policies
OracleAS TopLink does not automatically perform cache invalidation. In OracleAS
TopLink, objects are refreshed in one of the following ways:

See Also:

■ http://www.oracle.com/technology/products/ias/topli
nk/technical/support/index.html for information on the
support and certification matrices

■ Oracle Application Server TopLink Application Developer’s Guide

Oracle Application Server TopLink Best Practices

4-32 Oracle Application Server Best Practices Guide

■ If the cache holds a weak reference, for example, using WeakIdentityMaps, then
objects that are no longer referenced by the application are simply garbage
collected on a regular basis

■ If a query is set to refreshIdentityMapResult() then all objects returned
from the query are refreshed with the most recent data from the database.

 The query also supports cascading, enabling the developer to control the effects of
refreshing on related objects.

■ Objects can be explicitly refreshed using the refreshObject API on the
OracleAS TopLink session.

■ Objects are sometimes implicitly refreshed as a result of OracleAS TopLink
merging in a remote ChangeSet. This technique is used by the OracleAS
TopLink's cache coordination whenever a OracleAS TopLink session is configured
to use cache synchronization.

4.8.2.2 Avoid Stale Cache Content
J2EE applications often share data with legacy applications or are running in a
clustered environment. When using caching technology in environments such as this,
your applications need a well thought out caching strategy to minimize stale data and
concurrency failures where the database could be corrupted.

This section summarizes some options a developer has when wanting to explicitly
refresh or clear out possible stale caches and how to do this as efficiently as possible.
There is also a short discussion on cache coordination. It is important to understand
caching and locking and the various configuration options made available. The
following article on .

The basic approach to developing a caching strategy involves understanding the
volatility of your persistence types and the amount they are shared between users.
Then, based on this information, developers must:

1. Configure an appropriate locking policy on an entity type where there is potential
for concurrent modification. This will prevent the usage of cached data from
corrupting the database.

2. Configure the single node caching for each entity type with its initial size.

3. Use query refreshing or descriptor default refreshing to ensure that persistent
instances can be refreshed on critical use cases

4. Enable cache coordination for entity types that are read-mostly, have shared usage,
and are only modified through the TopLink-enabled application.

You can make the refresh more efficient if you are using optimistic locking. As
OracleAS TopLink is refreshing each result from a query, you can query it to check the
optimistic lock version first to see if the refresh is actually necessary. This option is set
at the descriptor level. Here is an example:

public static void amendCustDescriptor(Descriptor d)
{
 d.onlyRefreshCacheIfNewerVersion();
}

Oracle Application Server TopLink Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-33

4.8.2.3 Cache Coordination
OracleAS TopLink allows developers to use cache coordination when running in a
clustered environment. Cache coordination provides messaging between sessions'
shared caches. This enables changes made in one node of the cluster to be reflected in
other nodes to avoid stale data. It is important to note that cache coordination does not
provide a replicated database type cache where all nodes are guaranteed to have the
same values. The goal of cache coordination is simply to minimize stale data and the
potential for locking failures.

Cache coordination works particularly well in read intensive applications. This feature
requires experimentation to see if it is appropriate for your application’s use cases and
can be affected by a number of issues, such as the volume and frequency of updates,
network, JVM, communication protocol, operating system, number of nodes in cluster,
and many other factors. Where cache coordination is not feasible, employ the
previously mentioned refresh strategies as they work well in a clustered environment.

4.8.3 Use Sequencing to Apply Project-Wide Properties to All Descriptions
At the project level, the Sequencing tab applies two project-wide properties that are
applied to all descriptors that use sequencing:

■ Whether OracleAS TopLink uses database native sequencing objects or a table to
manage sequences. The preference is to use Oracle native sequencing.

■ The sequence preallocation size determines how many sequences OracleAS
TopLink grabs and caches in one call. If you use Oracle native sequencing then the
increment property of the sequence object must match the OracleAS TopLink
sequence preallocation size.

At the descriptor level, the Use Sequencing section enables you to specify:

■ Name: For native sequencing this will be the name of the database sequence object
to be used.

■ Table: The table that contains the field that the sequence will be applied. You
choose the table from a drop-down list of all the tables the descriptor is mapped.

■ Field: The table field that the sequence will be applied. You choose the fields from
a drop-down list for the chosen table that are mapped by the descriptor.

4.8.4 Implement Performance Options to Improve Performance
This section describes performance options best practices. It includes the following
topics:

■ Section 4.8.4.1, "Performance Diagnostics"

■ Section 4.8.4.2, "Tuning"

See Also:

■ Article Overview of TopLink Caching and Locking available from the
Oracle Technology Network at
http://www.oracle.com/technology/tech/java/newsle
tter/articles/toplink/toplink_caching_
locking.html for further information on TopLink caching and
locking

■ Oracle Application Server TopLink Mapping Workbench User’s Guide

Oracle Application Server TopLink Best Practices

4-34 Oracle Application Server Best Practices Guide

4.8.4.1 Performance Diagnostics
When the OracleAS TopLink UnitOfWork commits, every object registering into this
UnitOfWork is automatically inspected for changes. This process can be
time-consuming. One of the easiest ways to improve performance is to minimize the
number of objects that require inspection.

Developers should have an idea of the size of the cache. If this transaction involves the
editing of five or 10 objects, then try to ensure that there are only five or 10 objects
registered. A large cache size for a comparatively small transaction means that the
UnitOfWork will be performing a lot of needless work during it's commit cycle.

Implementation Details

4.8.4.2 Tuning
This section describes tuning best practices. It includes the following topics:

■ Section 4.8.4.2.1, "Reducing The Size of the Transactional Cache"

■ Section 4.8.4.2.2, "Analyzing the Object-Building phase"

■ Section 4.8.4.2.3, "Use of Named Queries"

Tuning affects three important aspects of OracleAS TopLink performance:

■ Minimizing the number of objects in the UnitOfWork transactional cache

■ Minimizing the number of objects read in from the Database

■ Taking advantage of named queries

4.8.4.2.1 Reducing The Size of the Transactional Cache After determining that the
UnitOfWork is checking too many objects, one must look for ways of reducing the
size of this transactional cache. There are several techniques to use:

■ Try not to register objects that are not going to be changed

■ Use Indirection. The importance of this cannot be overstated. Indirection allows
OracleAS TopLink to only register related objects into a transaction when they are
accessed in the context of that transaction. Without indirection, OracleAS TopLink
will have to check all related objects for updates.

■ Avoid querying against a UnitOfWork. If only a few objects from a query will
actually be changed then registered the whole result set into the UnitOfWork will
be a lot of overhead (both at query time and at commit time). Querying against a
UnitOfWork is very convenient but it can be very dangerous if not used properly.

■ Make use of the UnitOfWork unregisterObject API. It is worthwhile
un-registering objects from a UnitOfWork if you know that there have been no
changes to the objects.

4.8.4.2.2 Analyzing the Object-Building phase

After executing an OracleAS TopLink ObjectLevelQuery, OracleAS TopLink has to
build all objects that have not been cached in a previous query. This operation can be
expensive if it is allowed to go unchecked. After building an object, OracleAS TopLink
will throw a postBuild descriptor event. This event can be useful to diagnose

See Also: White paper Oracle Application Server TopLink Unit of Work
Primer available from the Oracle Technology Network at
http://www.oracle.com/technology/products/ias/toplin
k/technical/unitOfWorkWP.pdf

Oracle Application Server TopLink Best Practices

Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools 4-35

situations where slow performance is caused by building too many objects. The
following is an example of a postBuild descriptor event:

public class CaminusSessionListener extends SessionEventAdapter{
 /**
 * catch the postBuild event for EVERY class in the current system
 */
 public void preLogin(SessionEvent arg0)
 {
 Session session = arg0.getSession();
 for (Iterator it = session.getDescriptors().values().iterator();
it.hasNext();) {
 Descriptor desc = (Descriptor)it.next();
desc.getEventManager().addListener(
 new DescriptorEventAdapter() {
 public void postBuild(DescriptorEvent event)
 // do we want to keep a running tally on the number of
objects that are built
 // during a single transaction in any case, we
have access to the object which
 // has just been built. Here it is:
 {
 object object = event.getObject();
 };
 };
 }

In this example, the postBuild event for every class in the current OracleAS TopLink
project is noted. Look for situations where you are building more objects than you feel
are actually required to handle the current request. After determining that too many
objects are being built, developers should consider some of the following:

■ Further qualify the selection criteria of the DatabaseQuery if possible.

■ Use Indirection. Indirection allows OracleAS TopLink to avoid building related
objects that are not accessed during request processing.

■ Increase the sub-cache sizes if using "soft" identity maps, such as
SoftCacheWeakIdentityMap and HardCacheWeakIdentityMap.

■ Are there some "ToMany" mappings which have become overly large? For
example, are you mapping collections of objects involving thousands of objects
when typical Use Cases involve accessing only a small subset of these objects? In
these situations, it is advisable to unmap the "ToMany" relationship and have the
parent query for the subset of children directly.

■ Use ReportQueries to build summary reports rather than actual objects.

4.8.4.2.3 Use of Named Queries The importance of named queries is typically
underestimated. Defining queries in one place and then referencing them by name
allows OracleAS TopLink to optimize several key steps in the execution of a query. In
addition, centralizing query definitions can save weeks of development effort during
the performance tuning phase of application development.

Without named queries, users end up with the following types of usage patterns
scattered throughout the system:

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Person.class);
Expression exp = query.getExpressionBuilder().get("id").equal(argument));
query.setSelectionCriteria(exp);
getTopLinkSession().executeQuery(query);

Oracle Application Server Forms Services Best Practices

4-36 Oracle Application Server Best Practices Guide

There are several problems with this approach. You must build and parse the
preceding expression every time this query is executed. In addition, the argument is
statically bound into the expression, and into the generated select statement. This
means that this statement will have to be prepared over and over again.

In an alternative implementation, the query is defined outside of the application code.
This is best done within the mapping editors, such as Oracle JDeveloper or the
standalone OracleAS TopLink Workbench. This allows the developer to graphically
build and tune a named query where the definition is stored within the map (project)
XML. This simplifies development, eliminating significant code that requires
maintenance, but more importantly allows for changes to the models and mapping to
reflect any queries that are no longer accurate. This ability to be notified of mapping
changes that break queries greatly improves developer productivity at design time.

Alternative queries can be defined or customized in descriptor after-load methods.
The following is an example of the descriptor after-load method.

public static void afterLoad(ClassDescriptor desc)
{
 ReadObjectQuery query = new ReadObjectQuery();
 ExpressionBuilder builder = query.getExpressionBuilder();
 query.addArgument("ARG");

 Expression exp = builder.get("id").equal(builder.getParameter("ARG"));
 query.setSelectionCriteria(exp);

 desc.getQueryManager().addQuery("findByArg",query);
}

Using this query definition, application code can execute this query over and over
again without having to re-build, re-parse, and re-prepare the any of the underlying
implementation details.

getTopLinkSession().executeQuery("findByArg".Person.class,argument);

Using named queries, along with enabling bindAllParameters in the OracleAS
TopLink, the DatabaseLogin can significantly improve the performance of all
DatabaseQueries.

The use of named queries is conceptually very simple. Logistically, it is very difficult if
the system has already been developed with DatabaseQuery definitions spread
haphazardly through the application code. This aspect of application design needs to
be addressed early in the development cycle.

4.9 Oracle Application Server Forms Services Best Practices
See Also: Whitepaper Oracle 10gR2AS Forms Services - Best Practices
for Application Development available from the Oracle Technology
Network at
http://www.oracle.com/technology/products/forms/pdf/
bestpractices10gr2.pdf

OracleAS Portal 5-1

5
OracleAS Portal

This chapter describes best practices for OracleAS Portal. It includes the following
topics:

■ Section 5.1, "Installing, Configuration, Administration, Upgrade, and
Troubleshooting"

■ Section 5.2, "Performance Tuning and Features"

■ Section 5.3, "Content Management and Publishing"

■ Section 5.4, "Export/Import Utilities"

■ Section 5.5, "Secure the Portal Environment"

■ Section 5.6, "Portlet Development"

5.1 Installing, Configuration, Administration, Upgrade, and
Troubleshooting

This section contains the following topics:

■ Section 5.1.1, "Deploy, Patch, and Test Custom Portlet Providers to Provide
Flexibility with Your Upgrade"

■ Section 5.1.2, "Upgrade from 10g Release 2 (10.1.2.0.2) to 10g Release 2 (10.1.4)"

5.1.1 Deploy, Patch, and Test Custom Portlet Providers to Provide Flexibility with Your
Upgrade

For greatest flexibility with your upgrade, you should deploy, patch and test any
custom portlet providers (whether they are Oracle PDK-Java providers, WSRP
producers, or JSR-168 providers) to their own OC4J instance. Ideally, put this OC4J
instance in a separate Oracle home from your OracleAS Portal middle tier. Generally,
you upgrade and patch Java applications at a much greater frequency than an
Enterprise Oracle Portal middle tier. Therefore, using a separate Oracle home or OC4J
instance will make this process easier.

Implementation Details
To implement a portlet provider OC4J instance in a development environment:

■ Follow the instructions in Appendix A, "Installing OracleAS Developer Kits," in
the Oracle Application Server Installation Guide.

■ Follow Section 6.3.1.2, "Configuring without the Portal and Wireless Option," in
the Oracle Application Server Portal Developer’s Guide

Performance Tuning and Features

5-2 Oracle Application Server Best Practices Guide

To implement a portlet provider OC4J instance in a test or production environment:

■ Follow the instructions to install a J2EE and Web Cache middle tier in Chapter 7,
"Installing Middle Tiers," in the Oracle Application Server Installation Guide.

■ Follow Section 6.3, "Configuring Your Application Server to Run JPS-Compliant
Portlets," in the Oracle Application Server Portal Developer’s Guide

5.1.2 Upgrade from 10g Release 2 (10.1.2.0.2) to 10g Release 2 (10.1.4)
The default installation of Oracle Application Server 10g Release 2 (10.1.2.0.2) Portal
and Wireless instance includes an OracleAS Portal 10g Release 2 (10.1.2.0.2) instance.
Oracle Application Server 10g Release 2 (10.1.2.0.2) also ships with the Oracle
Application Server Portal Upgrade CD-ROM, which enables you to upgrade the
OracleAS Portal Repository from release 10.1.2.0.2 to release 10.1.4.

OracleAS Portal 10g Release 2 (10.1.4) represents a major step forward in the evolution
of OracleAS Portal and as such, will provide significant value to customers. Key
themes for this upgrade release include:

■ Comprehensive Fusion capabilities for better business agility

■ Unleash the power of portal content management and publishing, as well as
enable sophisticated, flexible and highly performant architectures, and
out-of-the-box portal solutions

Implementation Details
To upgrade from 10g Release 2 (10.1.2.0.2) to 10g Release 2 (10.1.4):

■ Install Oracle Application Server 10g Release 2 (10.1.2.0.2) Portal and Wireless.

■ Upgrade the repository to OracleAS Portal 10g Release 2 (10.1.4) using the Oracle
Application Server Portal Upgrade CD-ROM.

5.2 Performance Tuning and Features
This section contains the following topics:

■ Section 5.2.1, "Use Appropriate Caching Strategy to Improve Performance"

■ Section 5.2.2, "Use Providers Judiciously to Improve Portal Performance"

■ Section 5.2.3, "Use Parallel Page Engine to Improve Availability and Scalability"

■ Section 5.2.4, "Scale OracleAS Portal to Optimize Performance"

■ Section 5.2.5, "Use Repository Services to Remove the Need for mod_plsql Tuning"

■ Section 5.2.6, "Leverage Web Provider Session Caching to Improve the Portlet
Cache-hit Rate"

■ Section 5.2.7, "Increase Perceived Execution Speed to Improve Performance of
Portlets"

■ Section 5.2.8, "Reduce Page Complexity to Improve Cacheability"

■ Section 5.2.9, "Measure Tuning Effectiveness to Improve Performance"

See Also: http://portalcenter.oracle.com

See Also: Oracle Application Server Portal Installation and Upgrade
Guide

Performance Tuning and Features

OracleAS Portal 5-3

■ Section 5.2.10, "Manage Portlet Execution For Each Page to Prevent Portal
Slow-Down Issues"

■ Section 5.2.11, "Prune Content to Improve Content Cleanup"

■ Section 5.2.12, "Use Search Keys to Invalidate"

5.2.1 Use Appropriate Caching Strategy to Improve Performance
OracleAS Portal provides two different caching mechanisms to improve performance:

■ Out-of-the-box integration with OracleAS Web Cache using an in-memory cache

■ Persistent file-based cache

By default, OracleAS Portal issues dynamic caching instructions to OracleAS Web
Cache, permitting the default content, such as pages, to be cached. The page designer
can use the different cache options, such as whole page, page definition, or none, to
ensure that the correct balance is maintained between enabling the speedy delivery of
cached content and avoiding the delivery of stale content. It is important that the page
or portlet designer understand that the degree of dynamism of a Web page is inversely
proportional to its cacheability. Page designers should fully understand validation,
expiration, and invalidation-based caching so that they can select the most appropriate
cache method for their pages.

OracleAS Portal enables the page designer to cache page and portlets at the system
level, thus storing a single copy of each object for all users. The following are the page
caching options available in OracleAS Portal:

■ Cache Page Definition Only

■ Cache Page Definition And Content For [] Minutes

■ Cache Page Definition Only at System Level

■ Cache Page Definition And Content at System Level for [] Minutes

■ Do Not Cache

■ Page Portlets Cached Independently (New Feature)

■ Portlet Caching

■ Declarative Portlet Caching (New Feature)

■ Partial Page Refresh (New Feature)

Cache Page Definition Only
With this option, the page designer can create a cached copy of the page definition in
bothOracleAS Web Cache and the OracleAS Portal cache for each user. The page
definition includes:

■ Metadata describing the page structure

■ Identification of the portlets that the page contains

■ Style information for the page

Choose this option for the following types of pages:

■ Pages with highly dynamic content

■ Pages that contain portlets with short expiry periods

■ Pages that contain portlets using validation-based caching or invalidation-based
caching

Performance Tuning and Features

5-4 Oracle Application Server Best Practices Guide

Cache Page Definition And Content For [] Minutes
With this option, the page designer can create a cached copy of the page definition and
page content, including the rendered content of all portlets, for a specified period. The
OracleAS Portal cache and the Web browser cache the fully assembled page.

Choose this option for pages with more static content and long expiry periods. If you
select this option, you may want to include a Refresh link on the page to regenerate
the page content from the database.

Cache Page Definition Only at System Level
By using this option, the page designer can create a single cached copy of the page
definition in the system cache for all users. Because the page definition is the same for
all users, page customization options are disabled. This caching option greatly reduces
storage requirements and improves performance.

Select this option for pages with highly dynamic content as long as they do not require
customization.

Cache Page Definition And Content at System Level for [] Minutes
With this option, the page designer can create a single cached copy of the page
definition and page content, including the rendered content of all portlets. The cached
information remains the same for all users in the system cache for a specified period.
Page customizations are not possible because the page definition and content is the
same for all users.

Select this option for pages that are more static and unlikely to change within the
specified period. Note that with this option, portlets display public content only. As a
page designer, if you select this option, you may want to include a Refresh link on the
page to regenerate the page content from the database.

Do Not Cache
Use this option to disable page caching. Selecting this option may adversely affect the
performance of OracleAS Portal, as dynamic page generation places a heavy load on
both the database and the middle tier.

By default, OracleAS Web Cache is installed, configured, and co-located with the
OracleAS Portal middle tier. For optimal performance, deploy OracleAS Web Cache on
a dedicated computer.

Page Portlets Cached Independently (New Feature)
In previous releases, page portlets were treated differently from other portlets-every
page portlet was flattened directly into the page metadata of the containing page. Page
portlets are now handled like all other portlets. You can cache a page portlet
independently; however, changing the portlet content invalidates the cache..

Portlet Caching
OracleAS Portal enables you to cache portlets at the system level, which places a single
copy of the portlet in the system cache for all users.

Before caching portlets at the system level, consider the following:

■ Caching a portlet at the system level disables all customization options for the
portlet.

See Also: Chapter 7, "OracleAS Web Cache"

Performance Tuning and Features

OracleAS Portal 5-5

■ Caching a portlet at the system level does not enforce access privileges for the
portlet.

■ Caching a portlet at the system level means that only public data is displayed.
Therefore, portlets such as the Recent Objects portlet or the External Applications
portlet, which do not contain public data, do not display.

■ Caching a page containing a portlet at the system level caches both the page and
portlet at the system level.

■ A Web provider that specifies system-level caching for a portlet sets the portlet to
cache at the system level. You have the option to change the cache setting for the
portlet manually.

■ If you do not cache a portlet at the system level, but you place the portlet on a
page that caches both the page definition and the content, then you cache the
portlet at the user level. With user-level caching, you can customize portlet and
enforce access privileges.

In summary, do not cache a portlet at the system level if that portlet includes sensitive
data or other information that you do not want to display to all users. Examples of
content that may be suitable for system-level caching include page banners and news
portlets.

Declarative Portlet Caching (New Feature)
Page designers can now define or override the caching policy of any portlet instance
using a new feature. Simply navigating to the instance options for the portlet on a
page will allow a page designer to override or specify caching options for a portlet
instance.

Using the Force Portlet to be cached for N minutes option allows the page designer to
ensure that the portal will cache a portlet for a period of time using expiry based
caching. Even if the portlet implements no caching this feature will allow a page
designer or administrator to implement some form of caching.

Partial Page Refresh (New Feature)
You can set a portlet to refresh without refreshing the entire contents of the page.
Partial page refreshing prevents unnecessary client-side requests and also improves
the page viewing experience as pages no longer flash as they disappear and reappear.

5.2.2 Use Providers Judiciously to Improve Portal Performance
There are two different types of providers, Web providers and database providers.
Using the right type of provider for your portlets can help improve your portal
performance.

You can implement database providers in Java or PL/SQL, which execute as stored
procedures within the Oracle database. The OracleAS Portal middle tier communicates
with database providers in two ways:

■ Through Repository Services, if the provider resides in the local OracleAS Portal
database

■ By SOAP over HTTP, if the provider resides in a remote database

Note that OracleAS Portal does not restrict a portlet that executes in the database in
terms of functionality, as database facilities allow for external communication in many
ways, including HTTP connections to external content. Database providers are
particularly appropriate for portlets that require significant interaction with the

Performance Tuning and Features

5-6 Oracle Application Server Best Practices Guide

database, and in situations where the development team has extensive Oracle PL/SQL
development experience.

You can implement Web providers in any Web deployment environment (for example:
Java, ASP, or PERL) and execute as applications external to OracleAS Portal. OracleAS
Portal communicates with these providers using SOAP over HTTP. Web providers are
most appropriate for external information sources (for example: Internet news,
business information) and in environments where developers have experience using
Java and other Web development languages.

You can write Web providers using the PDK provided by Oracle or using WSRP and
JSR 168 as open development standards for portlets.

5.2.3 Use Parallel Page Engine to Improve Availability and Scalability
OracleAS Portal provides a parallel page engine (PPE) stateless servlet that fetches
page metadata, assembles the page, and manages the cache. Because it is stateless, PPE
is a key worker component that you can deploy across multiple OC4J instances.

By default, Oracle Application Server installs with a single oc4j_portal instance in
which the PPE servlet is deployed. From a scalability perspective, Oracle recommends
that you have at least one OC4J instance where you have deployed the PPE servlet.
Alternatively, you can increase the number of OC4J processes dedicated to the single
instance. Oracle HTTP Server load balance routing distributes requests across the
multiple instances or processes, providing better scalability for the entire system.

5.2.4 Scale OracleAS Portal to Optimize Performance
OracleAS Infrastructure, including the database, provides important functionality to
OracleAS Portal, as all metadata, database providers, and infrastructure entities reside
there. Because of this heavy dependency on the database, conventional database
tuning, such as putting OracleAS Portal indexes on a separate disk, becomes extremely
important to optimize OracleAS Portal's performance. Oracle does not recommend
that you analyze the schema for additional tuning opportunities, as the Cost-Based
Optimizer (CBO) has already performed his analysis for you and used it where
appropriate. Moreover, there are also standard ongoing jobs that re-tune the schema
based on collected statistics on a regular basis.

Another aspect of tuning is the Oracle Net tuning between the Repository Services
computer, such as Oracle HTTP Server, and the database itself. You should also
consider Real Application Cluster (RAC) as an option for the availability and
scalability of the OracleAS Portal database.

5.2.5 Use Repository Services to Remove the Need for mod_plsql Tuning
Prior to OracleAS Portal 10g Release 2 (10.1.4), Oracle recommends tuning the mod_
plsql request process could be carried out to improve performance of repository
bound activities. OracleAS Portal 10g Release 2 (10.1.4) no longer uses mod_plsql to
make database calls. Instead, it uses something called Repository Services—a servlet
component of the Portal Services servlet that maintains its own connection pool. There
is no use of mod_plsql for OracleAS Portal requests to the database.

See Also: Chapter 2, "Portlet Technologies Matrix," in the Oracle
Application Server Portal Developer’s Guide

Performance Tuning and Features

OracleAS Portal 5-7

5.2.6 Leverage Web Provider Session Caching to Improve the Portlet Cache-hit Rate
When you register a Web provider, you can cache session-specific information, such as
session ID and user login time for each request. Although this is a mandatory
requirement for Web providers that rely on session information to ensure the validity
of atomic transactions, providers that do not rely on this information should deactivate
this option. Doing so improves the portlet cache-hit rate and reduces the time taken to
initiate the portlet request as there is no attempt to instantiate a remote session with
the provider, which can be a costly step.

5.2.7 Increase Perceived Execution Speed to Improve Performance of Portlets
End-user perception of the performance of a page is related to several factors. One of
the most obvious factors is the performance of individual portlets. A single slow
portlet can slow down the end user perception of the performance of a whole page.
The slow refresh occurs because portlets execute in parallel and the page does not
refresh for the user until the slowest portlet either returns content or times out.

Page execution speed, therefore, is equal to the speed of the slowest portlet, plus page
assembly overhead. OracleAS Portal 10g Release 2 (10.1.4) includes a new feature that
provides a solution to this problem from the perspective of a page designer, called
Page Assembly Timeout. This feature enables page designers to define a maximum
page creation time. The option limits the amount of time the server delays page
display while it assembles portlets. If OracleAS Portal does not assemble a portlet
within the specified time, the portlet appears after the page displays, using partial
page refreshing.

This option is useful for pages known to have potentially slow portlets, perhaps one
that is running remotely on a slow server far away.

If you are noting performance issues with a page try using the _DEBUG utility.

Implementation Details

5.2.8 Reduce Page Complexity to Improve Cacheability
Page complexity, which is a combination of page security and the number of tabs,
items, and portlets on a page, affects throughput by increasing the amount of metadata
that needs to be generated, as well as the number of security and validity checks. Page
complexity does not affect page assembly time in the middle tier, but may affect the
time it takes to validate and refresh portlet content.

5.2.9 Measure Tuning Effectiveness to Improve Performance
One way to evaluate whether your attempts to improve performance are effective is to
measure the performance, then use those measurements to further fine tune the
system.

To obtain specific results from system internals, append &_DEBUG=1 to the end of the
portal page URL for which you wish to measure performance. The output is a report
from the parallel page engine that provides details of performance of each component
on the page, whether a cache miss or hit occurred, and how long page loading took.

Repeating this practice periodically will help keep your system fine-tuned for better
performance.

See Also: Oracle Application Server Portal Configuration Guide

Performance Tuning and Features

5-8 Oracle Application Server Best Practices Guide

Implementation Details

5.2.10 Manage Portlet Execution For Each Page to Prevent Portal Slow-Down Issues
The PPE uses the concept of fetcher threads, which are threads within the PPE servlet
that are used to service requests for portlet content. By default, there are 25 fetcher
threads within the PPE waiting to service requests. If a page has 26 portlets and that
page is requested, then 25 of the portlets will be requested in parallel and the 26th
request will wait for the next available fetcher thread.

This serialization effect will ultimately slow down the portal performance as more
requests are received. This degradation will affect the whole portal site, to combat this
at a more granular page level OracleAS Portal introduces a feature called Managed
Portlet Execution (MPE).

MPE provides a throttle effect similar to fetcher threads, but for each page. For
example, if a page has 25 portlets, 20 will run and the other five will wait for free slots
before running; in effect, these five are throttled.

MPE is set to 20 by default, but this is a configurable parameter enabling
administrators to ensure that the performance of the whole site is not degraded by
over-zealous page designers putting excessive quantities of portlets on one page.

OracleAS Portal 10g (10.1.4) includes a new, more specific engine management feature
for page portlets accessible through the parameter maxParallelPagePortlets,
which restricts the maximum number of page portlets the system as a whole will
process. This feature enables you to stop deeply nested pages from using all the
available request threads and also to prevent the processing of recursively nested
pages before all threads are used.

5.2.11 Prune Content to Improve Content Cleanup
While Repository Services has replaced mod_plsql for backward compatibility, the
persistent caching of content within the middle tier still uses the same file structures as
when implemented within mod_plsql, therefore the following advice applies

The file cache under $ORACLE_HOME/Apache/modplsql/cache in the Oracle
Application Server middle tier installation has a subdirectory for explicit storage of the
page metadata (PMD). The separate storage of the PMD allows the cleanup processes
to be more explicit in their selection of content to be pruned.

Cleanup is now controlled by new explicit parameters:

■ PlsqlCacheMaxAge 30

■ PlsqlCacheCleanupTime Saturday 23:00

PMD content will be given preferential retention treatment ensuring the greatest
cache-hit ratios occur for PMD objects. These objects are the most expensive to
generate and the least likely to change in a running production site.

5.2.12 Use Search Keys to Invalidate
When you set a document to be cached in Oracle Web Cache, it is cached using an
invalidation basis. This means the content is stored in Oracle Web Cache until it is
explicitly invalidated by a SOAP message issued by the OracleAS Portal Repository.
Prior to OracleAS Portal 10g Release 2 (10.1.4), the OracleAS Portal Repository needed

See Also: Oracle Application Server Portal Configuration Guide for
further information about _DEBUG

Content Management and Publishing

OracleAS Portal 5-9

to issue a single invalidation message for each piece of content that had changed for
each possible cached element.

For example, suppose you base a page on a template, secure that page and cache it on
for each user for 10 users, and then change that template. The portal must then issue
10 invalidation messages.

OracleAS Portal introduces a concept of search- key invalidation where the content is
cached with a common identifier (search key) that allows the OracleAS Portal
Repository to issue one invalidation message for the content with the common
identifier thus invalidating all the content that matches that key with a single message.

5.3 Content Management and Publishing
This section contains the following topics:

■ Section 5.3.1, "Use Page Groups to Delegate Administration"

■ Section 5.3.2, "Research Your Taxonomy Before Building Up a Page Hierarchy to
Save Rework Time"

■ Section 5.3.3, "Use Portal Templates to Improve Consistency"

■ Section 5.3.4, "Use Navigation Pages to Manage Portal Template Content"

■ Section 5.3.5, "Use Categories, Perspectives and Custom Attributes to Enhance
Content Metadata"

■ Section 5.3.6, "Use Translations to Create Multilingual Web Sites"

■ Section 5.3.7, "Use the View Mode Best Suited to the Task"

■ Section 5.3.8, "Use Content Management APIs to Migrate Existing Content"

■ Section 5.3.9, "Use Content Management APIs to Organize Content"

■ Section 5.3.10, "Use the Content Management Event Framework to React on Any
Activity in the Content Management System"

■ Section 5.3.11, "Use the Public Search API to Implement Custom Searches"

■ Section 5.3.12, "Use WebDAV Capabilities to Support Desktop Applications
Centric Users"

■ Section 5.3.13, "Use HTML Templates to Create Pixel-Perfect Pages"

5.3.1 Use Page Groups to Delegate Administration
OracleAS Portal enables you to organize portal pages within page groups. The easiest
way to get started is with a single page group. Within a page group, you can easily
copy or move content elements across pages.

In a larger environment, you may want different people to administer different areas
of the site. Delegating administration is much easier if you separate your site into
multiple page groups.

Implementation Details
To enhance the sharing and reuse of objects between page groups, consider creating
templates, styles, and item types in the supplied Shared Objects page group.

In addition, any page can be published as a portlet, which allows the content on that
page to be viewed on any other page in any page group.

Content Management and Publishing

5-10 Oracle Application Server Best Practices Guide

5.3.2 Research Your Taxonomy Before Building Up a Page Hierarchy to Save Rework
Time

There are several different ways to organize the content that your portal needs to
provide to its end users. This organization is referred to as a taxonomy. You can create
a physical taxonomy consisting of pages and sub-pages. You can also create virtual
taxonomies consisting of categories and perspectives. Users can browse a taxonomy,
which appears as a hierarchy of pages. OracleAS Portal dynamically builds each
category and perspective page by searching for content belonging to the selected
category or perspective when rendering the page. Planning your taxonomy in advance
saves rework at a later date.

Implementation Details
It is easy to reorganize the taxonomy by moving pages around within a page group
and by moving items between pages. Keep in mind, however, that you can move items
between pages in different page groups when the item type is shared between page
groups, but you can move pages only within the same page group.

OracleAS Portal does not currently support reorganizing category and perspective
values. Although you can reassign content to a different category or perspective, you
must manually do so for each piece of content, or programmatically by using the
content management APIs. Therefore, carefully plan your category and perspective
hierarchies before you start to add content to your pages.

5.3.3 Use Portal Templates to Improve Consistency
You can use portal templates to provide consistency for both pages and item content.
Since both portal pages and portal items are both accessible by URL, as you navigate
around your portal, using a similar template for both pages and items enables you to
maintain a consistent look and feel.

It is also a good practice to manage your portal templates that could be used in
multiple page groups in the Shared Objects page group, as the Shared Objects page
group is the only page group. These contents can be shared with all customer-created
page groups.

Implementation Details for Page Consistency
Creating pages with OracleAS Portal is easy, and it may be tempting to start adding
pages quickly at the onset of your portal development project without first defining
one or more portal templates. To ensure a consistent look and feel to your site and to
minimize maintenance effort, Oracle recommends that you always base your pages on
portal templates. You can keep this association for the lifecycle of the page in order to
enforce a specific look and feel, control the page creation process and minimize
maintenance efforts.

To implement this best practice:

■ Create a portal template in the Shared Objects page group. Doing so allows the
template to be used by all page groups within your portal installation.

See Also: Chapter 3, "Planning Your Portal," in the Oracle Application
Server Portal User’s Guide

See Also: Chapter 3, "Planning Your Portal," in the Oracle Application
Server Portal User’s Guide

Content Management and Publishing

OracleAS Portal 5-11

■ Define your page structure and add common content. You can manage common
content with navigation pages. (See Section 5.3.4, "Use Navigation Pages to
Manage Portal Template Content" for more information.)

■ Assign templates to pages during page creation in step two of the Create Page
wizard, or for pre-existing pages you can specify the usage in the Template tab
within the Page Properties.

Implementation Details for Page Starting Point
Alternatively, you can use a portal template as a convenient starting point for creating
a custom page layout. For example, you could create the page using a template (thus
inheriting the page layout and region property settings), disassociate the page from
the template, and make page unique changes to region properties and layout. Keep in
mind that you can always re-apply the template to the page or apply a new template if
required.

To implement this best practice:

■ In the Page Properties for the page that should use a template as a starting point,
set the page to use the template that will be used as a starting point..

■ Click the Detach From Template link.

Implementation Details for Item Consistency
You can also use portal templates to surround item content with consistent decoration
just like portal pages can use templates for consistent decoration. This way, you can
display item content that is called directly with a consistent look and feel.

To implement this best practice:

■ Create a Portal Template in the Shared Objects page group. Doing so allows the
template to be used by all page groups within your portal installation.

■ Define your page structure and add common content.

■ Within the Portal Template region that you want items to show, add an item of
type Item Placeholder. Choosing default content for the Item Placeholder is
optional. This content displays if the template URL is called directly from a
browser.

■ To specify for items to use this template, go to the page where the items reside. In
the page properties, click on the Items tab. Within the the Portal Template
Assignment section you can choose a template for all items on the the page to use.
If desired, you can enable items to choose their own template by checking the
Allow items on this page to use a different Portal Template checkbox.

■ Test the template by entering the Item's URL directly into the browser address bar.

5.3.4 Use Navigation Pages to Manage Portal Template Content
A portal template defines the layout (the placement of item and portlet regions) for
pages. A template can also contain content, in the form of portlets and items that you
want to appear on all its pages. Making changes to a template immediately displays
on its dependent pages. Making changes to the content on a template can take minutes
or even hours, depending on the extent of the changes. During this time, the pages
themselves will be in a state of flux as the template is modified. This can have a

See Also: Section 13.2, "Working with Portal Templates for Pages
and Items," in the Oracle Application Server Portal User’s Guide

Content Management and Publishing

5-12 Oracle Application Server Best Practices Guide

negative impact on your portal users and may require that the affected pages be
unavailable while performing template maintenance.

Implementation Details
You can avoid this impact by managing template content on navigation pages. For
example, use a navigation page to contain the banner for your template, which may
include such elements as the Page Name Smart Text, company logo, and various
Smart Links, such as the Customize icon and the Home Page link.

To implement this best practice:

■ When you want to modify the banner, copy the navigation page and make
changes to the copy.

■ When you are satisfied with the changes, replace the original banner navigation
page portlet on the template with the modified copy. You can do this very quickly
with minimal impact on portal users. The same recommendation applies to
navigation bars, page footers, and other content that you want to include on the
template.

5.3.5 Use Categories, Perspectives and Custom Attributes to Enhance Content
Metadata

One of the big advantages of OracleAS Portal is the ability to define and associate
metadata with any content. OracleAS Portal provides three types of metadata:

■ Categories: Used for mutually exclusive properties like "What is it?"

■ Perspectives: Used for content that may require multiple properties values like
"Who is the audience?"

■ Custom Attributes: Used for other mutually exclusive properties

It is important to understand the characteristics of these metadata elements in terms of
their impact on content organization, maintenance, presentation, and search. For
example, while they all aid in searching for content, each has a different style for
search submission and for presentation in search results. There are also important
differences in terms of how content contributors assign metadata values to content and
in how these elements are presented on pages.

Implementation Details
Table 5–1 summarizes the characteristics of the metadata elements.

See Also: Section 14.1.1, "Navigation Pages," in the Oracle Application
Server Portal User’s Guide

Table 5–1 Metadata Element Characteristics

Characteristics
Custom
Attributes Categories Perspective

Can be mandatory on Add/Edit item Yes Yes Yes

Can be selected for Group By in Region
display

No Yes No

Can be arranged in a navigable hierarchy No Yes Yes

Allows multiple values for a single item No No Yes

Select values from Static List of Values Yes Yes Yes

Content Management and Publishing

OracleAS Portal 5-13

5.3.6 Use Translations to Create Multilingual Web Sites
OracleAS Portal enables you to store, manage, and publish translations of your portal
content. You can associate many of the objects that are managed in your portal with
one or more languages in addition to the default language defined for a page group.
OracleAS Portal automatically publishes translated content to viewers of your portal
in their selected language.

Implementation Details
Although the translation feature is very useful and powerful, it is important to
understand how translations are created, managed, published, and queried. In
particular, you should make clear to your content contributors and portal users the
impact of creating or editing an object in a nondefault languages. The following are
several characteristics of the translation feature that are important to understand:

■ Editing an object in a language other than the default language may cause the
edits to appear to be lost when the object is viewed in the original language.
Content contributors may not realize that multiple language records can exist for a
single object.

■ Editing a non-translatable attribute automatically copies the value of the attribute
to all language records. The content contributor may wonder why the attribute
value has suddenly changed after switching to a different language.

■ Editing a translatable attribute does not copy the change to all language records.
In this case, the content contributor may be concerned that all changes were lost
when viewing the object in a different language.

Select values from Dynamic List of Values
(based on SQL Query)

Yes No No

Can be associated with an icon No Yes Yes

Searchable Yes Yes Yes

Can be shown in Item display Yes Yes Yes

Can be shown in Search Results Yes Yes Yes

Can be used to order a custom query (using
SQL against the WWSBR_ALL_ITEMS
repository view)

No Yes No

Translatable Yes Yes Yes

Data types Boolean,
Date, File,
Number,
PL/SQL,
Text
(Single or
Multi-
Line), URL

Text Only Text Only

See Also: Section 6.3, "Setting Up Content Classification," in the
Oracle Application Server Portal User’s Guide

Table 5–1 (Cont.) Metadata Element Characteristics

Characteristics
Custom
Attributes Categories Perspective

Content Management and Publishing

5-14 Oracle Application Server Best Practices Guide

■ Translations may exist for one version of an item, but not for another version. If
the current version changes, it may seem as if the translation has been lost.

5.3.7 Use the View Mode Best Suited to the Task
When different users perform the tasks of authoring, publishing and managing
content, you may want to choose a view mode that optimizes the user interface to the
features that are required for the role being performed. A content author may want to
see what the content looks like on the page so a graphical viewing mode is most
appropriate, and a content manager that needs to approve multiple documents can do
so in a single operation when using a list view.

Implementation Details
When editing a page, you can switch between View modes by using the Graphical,
Layout, and List links in the Edit toolbar.

You can set the default edit mode for all pages in a page group to any of the edit
modes by configuring the page group properties.

5.3.8 Use Content Management APIs to Migrate Existing Content
When setting up your portal, you may find that you want to load and attribute
directory and file structures that exist on a file system into the OracleAS Portal
Repository. While it is very time consuming to upload and set the attribution for every
file using the Web browser interface, as an alternative, you can use APIs.

Implementation Details
Functions of the content management APIs that help you migrate existing content
include:

■ add_folder: Creates a new page within a given page group

■ add_item: Uploads a file from the file system and adds a new item to an item
region

■ set_attribute, modify_item: Enables you to set the attribution for an
existing item and helps you perform content management task programmatically
without any Web browser-based interaction

■ modify_folder: Enables you to modify the page properties

All of the files you plan to upload using the APIs must be accessible from the same file
system as the installed OracleAS Metadata Repository, and you need access to the files
themselves.

5.3.9 Use Content Management APIs to Organize Content
When managing your portal, there is often the requirement to have a staging page
group and a production page group. That is, content contributors must author and
manage content in a staging page group, which you then need to move to the
production page group. While it is very time consuming to move every item using the
Web browser interface, you can instead use the content management APIs.

See Also: Chapter 20, "Translating Portal Content," in the Oracle
Application Server Portal User’s Guide

See Also: Part III, "Content Management APIs," in the Oracle
Application Server Portal Developer’s Guide

Content Management and Publishing

OracleAS Portal 5-15

Implementation Details
Functions of the content management APIs that help you organize content include:

■ move_item, copy_item: Enables you to transfer items from one page group to
another page group

■ delete item: Enables you to delete an item that is no longer necessary

The metadata attribution of an item is automatically transferred when using the
content management APIs.

5.3.10 Use the Content Management Event Framework to React on Any Activity in the
Content Management System

When users add content to OracleAS Portal's content management system you may
want the system to perform certain actions, such as:

■ Sanity check and verify the content

■ Perform a virus scan on files

■ Send an email notification

■ Kick off an external Workflow

■ Invoke an external Program

The Content Management Event Framework (CMEF) enables you to react on any
event that occurs in OracleAS Portal content management system and
programmatically perform any action. In combination with the content management
APIs and views, it enables full flexibility.

Item Verification Example
A user adds a text item and you want to ensure that the title is no longer than 30
characters. An OracleAS Portal workflow kicks off and programmatically verifies that
the item title is not longer than allowed. If it is longer than 30 characters, the system
automatically rejects the item with a message to the author that the title exceeded the
maximum length. If the item passes the verification it gets automatically approved and
published

External Workflow Example
A user adds a new item to a page. The CMEF hides the item and submits it to the
BPEL Workflow Engine. Once the BPEL Workflow finishes, a step in the workflow
either rejects or approves the item. If approved, the CMEF unhides the item and
publishes it; if rejected, the CMEF deletes the item from the page.

Implementation Details
First, you enable the CMEF at the page group level. The CMEF writes to Oracle
Advanced Queuing in the database and creates an entry for each of the 155
pre-defined events that can occur in OracleAS Portal's content management system.
You must create a program called subscriber and register it with the CMEF. The
subscriber program must implement the logic on how to react on which events in the
queue. The subscriber program is responsible to de-queue events from Oracle
Advanced Queuing. Ideally, you set up the subscriber program as a database job that
executes periodically.

See Also: Part III, "Content Management APIs," in the Oracle
Application Server Portal Developer’s Guide

Content Management and Publishing

5-16 Oracle Application Server Best Practices Guide

5.3.11 Use the Public Search API to Implement Custom Searches
Frequently, you must create custom searches for your portal that perform beyond the
functionality of the three out-of-the-box search portlets that OracleAS Portal provides.
To create custom searches, you can use the public search API, which enables you to
expose portal search submission and results in any third-party application. You can
also use this API to publish the portal search results to a special document format,
such as XML, which you can then use for further processing.

Implementation Details
The public search API includes the following search submission functions:

■ Item Search

■ Page Search

■ Category Search

■ Perspective Search

The public search API includes the following search-result functions:

■ Get item results as XML Document

■ Get page results as XML Document

5.3.12 Use WebDAV Capabilities to Support Desktop Applications Centric Users
OracleAS Portal supports the use of WebDAV clients, such as Microsoft Web Folders,
to access the OracleAS Metadata Repository. WebDAV allows users to directly edit a
document, such as a Microsoft Word document, on a portal page and save it back to
the OracleAS Portal Repository without ever having to download or upload the file. It
also allows users to publish files located on the local file system to a portal page
directly from the Windows Explorer, as well as to delete, copy, or move those files. The
same security settings found in the Web browser-based interface are also enforced in
the WebDAV environment, using OracleAS Single Sign-On to authenticate to OracleAS
Portal.

From OracleAS Portal 10g (9.0.4.1) onwards, a new, powerful WebDAV Client with
tight OracleAS Portal integration is available from Oracle: Oracle Drive. This WebDAV
Client supports all operations available with the WebDAV protocol plus additional
OracleAS Portal-specific functions, such as:

Portal Item Menu Options:

■ Set Properties

■ Change Access Control

■ Preview Content

■ View Versions

■ Approve/Reject

■ Submit for Approval

See Also: Chapter 16, "Using the Content Management Event
Framework," in the Oracle Application Server Portal Developer’s Guide

See Also: Chapter 13, "Searching Portal Content," in the Oracle
Application Server Portal Developer’s Guide

Content Management and Publishing

OracleAS Portal 5-17

Portal Page Menu Options:

■ Set Properties

■ Change Access Control

■ View Page

In addition to the preceding functionality, Oracle Drive offers a number of useful
Windows desktop integrations:

■ Mount OracleAS Portal Repositories as Microsoft Windows Drives

■ Edit and view content with any Windows application

■ Work with offline content and synchronize when online

■ Extra capabilities available in the right-click menus

■ Access the repositories with a command line (DOS) utility

■ Search from Windows Explorer

5.3.13 Use HTML Templates to Create Pixel-Perfect Pages
You can use OracleAS Portal's page editing capabilities to create complex page
structures and a compelling user interface for a wide range of portal configurations. If
your portal page calls for a sophisticated graphic design, you can use HTML
Templates to control the HTML rendered as page decoration and item content layout.
Using these templates allows for easy, standard based ways of using Web technologies,
such as CSS and JavaScript. By placing special OracleAS Portal substitution tags in
your HTML, you can place portal elements, such as Page Title, Sub-Page links, Edit
Page link, Navigator link, Item attribute values, and other elements common to a
portal page or item content directly in your HTML code.

There are two types of HTML templates: Page Skins and Content Layout. You apply
Page Skins directly to a portal page or, if you apply them to a portal template, the
HTML surrounds the portal page in its entirety. Content Layouts are snippets of
HTML that you assign to a page region. The HTML repeats for every item contained
within the region.

HTML templates also enable you to execute PL/SQL, allowing for programmatic
control over the HTML.

By using this HTML Templates, you can apply virtually any corporate look to your
portal pages, even if this design may not be achievable using the regular portal page
design capabilities.

HTML Templates are created and maintained under Page Groups. If you want to use
the same HTML Templates across multiple page groups, create them in the Shared
Objects page group.

Implementation Details for HTML Page Skins
To apply a HTML Page Skin to a page, go to the Page Properties, Template tab. You
will be able to select Page Skins created in the current page group and Page Skins
created in the Shared Objects page group. A portal page may have only template
applied to it. If you desire a page to use a Portal Template to define common content
and structure, and also use a HTML Page Skin to surround the page with hand crafted

See Also: Chapter 19, "Using WebDAV Clients with OracleAS
Portal" in the Oracle Application Server Portal User’s Guide

Export/Import Utilities

5-18 Oracle Application Server Best Practices Guide

HTML, you must apply the HTML Page Skin to the Portal Template and then apply
the Portal Template to the page.

The most critical OracleAS Portal replacement tag for a HTML Page Skin is the
#BODY# tag. Wherever this tag is placed within the HTML, the entire Portal Page will
be rendered.

Implementation Details for HTML Content Layouts
You apply Content Layouts to region settings on the Attributes tab. To determine how
you want the content to display within a region, use the attributes or choose an HTML
Content Layout. The HTML snippet you write in a Content Layout repeats for every
item contained within the region. There are portal replacement tags for all item
attributes, including custom attributes.

Since the HTML is repeated for every item, it is not a good practice to declare
JavaScript methods, or include CSS styles at this level. In cases where you need to use
JavaScript or CSS, use HTML Page Skins and HTML Content Layouts in coordination
with each other. Declare the JavaScript method or CSS in the HTML Page skin where it
will not be repeated, then simply reference the style or JavaScript method from within
the HTML Content Layout.

The ability to place <ORACLE> … </ORACLE> tags within HTML Templates allows
Content Layouts to use IF statements to programmatically choose to output different
HTML conditionally. While inside of the <ORACLE> tag, you will need to use a
PL/SQL procedure such HTP.P('Hello World'); to output any HTML
that you want to display on your page.

5.4 Export/Import Utilities
This section contains the following topics:

■ Section 5.4.1, "Review Supported Use Cases to Optimize Export and Import
Operations"

■ Section 5.4.2, "Follow the Guidelines for Export and Import of Portal Objects to
Prevent Errors"

5.4.1 Review Supported Use Cases to Optimize Export and Import Operations
OracleAS Portal provides a set of export and import utilities to enable you to copy
content between OracleAS Portal installations. For example, you might use these
utilities to copy or update portal page groups and application components between a
development instance and a production instance of OracleAS Portal.

It is critical to understand that the provided OracleAS Portal export and import
utilities support a specific set of use cases and usage scenarios. Oracle recommends
reviewing the Oracle Application Server Portal Configuration Guide for your version of
OracleAS Portal before beginning the page and content design process for your portal,
if regular export and import of content between portal instances is a requirement. The
Oracle Application Server Portal Configuration Guide provides an overview of the export
and import process and key concepts. It also describes the two most common export
and import use cases:

■ Importing and exporting between development to production instances

■ Deploying identical content across multiple portal instances

See Also: Section 13.3, "Working with HTML Templates" in the
Oracle Application Server Portal User’s Guide

Secure the Portal Environment

OracleAS Portal 5-19

5.4.2 Follow the Guidelines for Export and Import of Portal Objects to Prevent Errors
For best practices and recommendations for export and import of the objects defined
within OracleAS Portal, see the Oracle Application Server Portal Configuration Guide. It
describes best practices for:

■ Migrating Your Users and Groups

■ Migrating Your Page Groups and Components

■ Migrating Your Web Providers

■ Migrating Your Portal DB Providers and Components

■ Migrating Your Search Components

■ Migrating Your External Applications

■ Migrating Your Portal Across Databases

5.5 Secure the Portal Environment
This section contains the following topics:

■ Section 5.5.1, "Implement Post Installation Steps to "Harden" Your Portal
Environment From Malicious Attack"

■ Section 5.5.2, "Implement a Role-Based Security Model to Simplify Access Control
Definition"

■ Section 5.5.3, "Base Development of Pages on a Network Aware Custom Page Type
to Enable Implementation of Network Access Security"

■ Section 5.5.4, "Group secured content to Optimize ACL Determination and
"Network Access" Security."

■ Section 5.5.5, "Define Anonymous "Public" Pages and Authenticated "Public"
Pages to Simplify Security"

■ Section 5.5.6, "Implement Hash Message Authentication (HMAC) Encryption in
Communication to Web Providers to Allow for Secured Identity Propagation and
J2EE-Based Security"

■ Section 5.5.7, "Implement Global Inactivity Timeout to Prevent Attacks through
Unauthorized Sessions"

■ Section 5.5.8, "Utilize Separate Page Groups and a Segmented Security Realm
Within Oracle Internet Directory to Support a Hosted Portal that is to Be Shared
Across Independent User Communities"

5.5.1 Implement Post Installation Steps to "Harden" Your Portal Environment From
Malicious Attack

While the installation process of OracleAS Portal allows for a fully functional portal
out-of-the-box, the fact that it uses a number of standard administration settings and
passwords prevents the default installation from being used in a environment where it

See Also:

■ Chapter 10 ,"Exporting and Importing Content" in the Oracle
Application Server Portal Configuration Guide

■ Oracle MetaLink, http://metalink.oracle.com for
additional support updates and support information

Secure the Portal Environment

5-20 Oracle Application Server Best Practices Guide

may be compromised, for example, on an Internet site. Oracle recommends that you
perform a number of simple post installation steps to change the configuration to site
specific values, thereby preventing malicious attack by use of the default installation
values.

Implementation Details
While much of the hardening of a portal site involves the changing of the default
configuration values, a significant portion is dependent on the implementation of a
secured network topology. Specifically, you want to minimize the direct access that a
malicious user may have to the server itself, both from the external and internal
network.

To harden your portal installation, consider doing the following:

■ Change the passwords for all default OracleAS Portal lightweight users

■ Change the default password used to bind the portal to the Oracle Internet
Directory. This setting is found in the orclApplicationCommonName attribute
under the Oracle Context.

■ Remove unnecessary pages, such as demonstration pages, to limit the ability to
enter the portal site through back-doors.

■ Remove unnecessary seeded groups and privileges.

■ Revoke public access to the components within the portal, which may expose
information from the OracleAS Metadata Repository or transactional database.

■ Control Access to the Builder Pages. This is particularly important because a link
to the builder is exposed on the Customize user interface and allows users to see
the structure of the site even if they cannot access any of the pages shown.

■ Remove Web access to standard DBMS functionally PL/SQL Packages, which may
allow access to the portal schema in the OracleAS Metadata Repository or other
repositories, such as UTL_HTTP and DBMS_JOB.

■ Consider placing the Oracle Application Server Portal middle tier behind a reverse
proxy component to obfuscate the real name of the server. In particular, implement
Network Address Translation (NAT) to hide the actual IP addresses of the portal's
middle tier servers.

■ Secure the individual network hops SSL as required. At a minimum, ensure the
connection between the user's Web browser and the OracleAS Single Sign-On
server is SSL-enabled.

■ Implement a true Intranet/Extranet topology to separate both the physical
executables and any generated content into two distinct user communities.

■ Implement Secured Network Access (discussed subsequently) to prevent sensitive
pages from being accessible from outside of the corporate network.

Note: In OracleAS Portal 10g Release 2 (10.1.2.0.2) the seeded
administrator accounts no longer have high-level privileges in the
directory.

Secure the Portal Environment

OracleAS Portal 5-21

5.5.2 Implement a Role-Based Security Model to Simplify Access Control Definition
While the ability to define access privileges at the individual user level allows for the
creation of very granular security policies, as the size of the user community increases
such granular polices become successively more difficult to manage and maintain.
Therefore, to simplify the implementation of security, Oracle recommends that you use
a role-based metaphor, where a user's privileges are effectively defined by their
functional position, rather than their direct identity.

Role-based access control (RBAC) is based on the concept that privileges are never
assigned directly to a user. Rather, users are assigned to roles, permissions assigned to
roles, and users ultimately acquire those permissions by being members of those roles.
You can assign a user to multiple roles and a single role can contain multiple users.
Similarly, you can assign the permissions themselves to multiple roles and multiple
permissions to a given role.

By default, the OracleAS Portal enables you to assign privileges to both individual
users and groups, the latter of which may be seen as either simple aggregations of
users or as a role. With the group model, you assign a user to a group, while
traditionally you might assign a role to a user. In the OracleAS Portal environment, the
definition of a role is a group to which you assign privileges as opposed to a simple
aggregation of users.

Therefore, to enforce a role-based access control style model within OracleAS Portal,
ensure that you do not grant object ACLs or directory privileges directly to a user.
Rather, only grant ACLs to groups/roles, while granting directory access by the
assignment of the appropriate group/role .

Implementation Details
To implement a role-based security model:

1. Determine the appropriate User Functions and create an associated role.

2. Create a group using the Oracle Internet Directory Self-Service Console.

3. Assign Directory Privileges (on the Assign Privileges tab) as required by the role.

If the Role is to have an administrator function over users, then it will also require
Manage privilege for All User Profiles (set from the Portal Group Profile portlet).

4. Convert the group into a role within the console.

See Also:

■ Section 6.3.2.3, "Post-Installation Security Checklist," in the Oracle
Application Server Portal Configuration Guide

■ Section 9.1, "Configuring a Dedicated Intranet and Internet for
OracleAS Portal," in the Oracle Application Server Enterprise
Deployment Guide

■ Section 9.2, "Configuring a Reverse Proxy for OracleAS Portal and
OracleAS Single Sign-On," in the Oracle Application Server
Enterprise Deployment Guide

■ Whitepaper Expose your Intranet Portal to the Outside World in a
Secured Manner available from the Oracle Technology Network at
http://www.oracle.com/technology/products/ias/por
tal/pdf/secured_inside_outside.pdf

Secure the Portal Environment

5-22 Oracle Application Server Best Practices Guide

Select the Enable Role assignment in the user management interface option on
the Enable Roles page of the Identity Management Realm Configuration tab.

5. Prevent the direct assignment of directory privileges to users by removing the
appropriate section within the Oracle Delegated Administration Services Interface
when it is called from the OracleAS Portal interface (through the Create/Edit User
Portlet).

6. To do so, either clear the setting on the Global Settings page or execute the wwsec_
oid.set_preference_value package within SQL*Plus.

7. To prevent the direct assignment of a portal object ACL to a individual user,
similarly remove the option in the Access Definition screen by running the
secrlacl.sql script within SQL*Plus.

5.5.3 Base Development of Pages on a Network Aware Custom Page Type to Enable
Implementation of Network Access Security

While the use of access control policies prevents users from directly viewing
information to which they do not have clearance, it does not prevent that information
from being compromised by those with the appropriate access, allowing it to be
viewed in an inappropriate location, such as an Internet cafe. To decrease this risk,
OracleAS Portal 10g (10.1.4) supports the concept of network access security, that is,
the ability to define an appropriate network access path, by which it is valid to show
the information, regardless of the ACL. This security is particularly useful in the
intranet and extranet portal environment, where a user may view a secured page on
the corporate network, but not externally, such as from home through the Internet.

To determine the network access requirements of a page, OracleAS Portal 10g Release
2 (10.1.4) does not include looks for specific attributes in that page
(isViewRestricted and isEditRestricted). If these exist within the page, then
OracleAS Portal secures the page accordingly when a user access it from an insecure
location.

OracleAS Portal 10g Release 2 (10.1.4) does not include this metadata in the Standard
Page Type, and may not secure the pages which were built previously using this type
in this manner (though it is possible to globally turn off the ability to edit the page).
Therefore, to allow OracleAS Portal to secure new pages, Oracle recommends you
replace the default page type with one containing these attributes.

Implementation Details
To enable network access security:

1. Create two shared custom attributes specifically named isViewRestricted and
isEditRestricted. Be careful with the case structure as the attribute names are
case-sensitive.

2. Create a shared Custom Page Type to use as the default type when creating new
portal pages. Base this page type on Standard Base Page type.

3. Add the custom attributes to the page type and define whether the page designer
should have the ability to define whether to secure the page within the network.

See Also:

■ Section 6.3.1.2 "Enforcing Role-Based Access Control," in the
Oracle Application Server Portal Configuration Guide

■ Section 6.1.6.9 "Oracle Delegated Administration Services Public
Roles," in the Oracle Application Server Portal Configuration Guide

Secure the Portal Environment

OracleAS Portal 5-23

If all pages will ultimately be limited to the Intranet then set the attribute values as
follows

Default Value: ON

Required: Unchecked

To enable the page designer to define whether the page will be available through
an unsecured network, select the required option to expose the attribute in the
Page Builder user interface.

4. Configure the page group to expose the new page type within the Page Builder
user interface.

5. Remove the Standard Page Type from the user interface and set the default page
type to be the one created in the previous step.

6. Page designers should now choose the new network secured page type when
building pages, as the default it is chosen automatically.

7. Once pages are built using the new page type, the pages will automatically be
secured within the network when the server is configured for Extended Network
Security.

5.5.4 Group secured content to Optimize ACL Determination and "Network Access"
Security.

While the implementation of item-level security allows for a very granular
permissions model, it does dramatically increase the processing required to determine
the users access rights on the page. By default, items inherit the security permissions
of the containing page or tab. Enabling item-level security overrides this default
setting, and those without specific privileges on the item itself will not see it.

To address this issue, Oracle recommends that you, where possible, group items with
the same access rights onto the same page. For example, rather than placing items of
interest for the HR department on several pages and using item level security to hide
them, group them on a single page and use the appropriate page level security to hide
or show the entire page.

In OracleAS Portal Release 10g Release 2 (10.1.2.0.2) the implementation of Network
Access security works at the page level, and as such, it is not currently possible to
secure an individual item on a page. By grouping items that should not be visible
externally onto a single page, the Network Access security can hide them all in a single
action.

Implementation Details
Design pages to group items into logical or functional security groups.

See Also:

■ Whitepaper Expose your Intranet Portal to the Outside World in a
Secured Manner available from the Oracle Technology Network at
http://www.oracle.com/technology/products/ias/por
tal/pdf/secured_inside_outside.pdf

■ Section 6.2.3, "Working with Page Types," in the Oracle Application
Server Portal User’s Guide

Secure the Portal Environment

5-24 Oracle Application Server Best Practices Guide

5.5.5 Define Anonymous "Public" Pages and Authenticated "Public" Pages to Simplify
Security

Frequently, you must allow portal pages to be seen by all users regardless of their
specific access privileges. For example, all visitors to an Internet site should be able to
see its Welcome page, while only authenticated visitors should be able to view the
Welcome page of a company's internal site.

In both cases, the Welcome page may be considered public, because the users' specific
permissions do not define their ability to view the page. Rather, the difference was
whether the user was anonymous or a known identity.

In the anonymous case, access to the page is assumed for everyone, and therefore the
standard ACL processing is bypassed. In the authenticated user case, all users must
require at least View privilege, as the ACL determination is still performed. This is
simplified by the fact that all users are dynamically made members of the
AUTHENTICATED_USERS group when they log in. Therefore, any privilege you grant
to this group also applies to any user that is authenticated to the portal.

Implementation Details
1. To enable non-authenticated users to view Public pages, set the Display Page To

Public Users option on the Access tab.

2. To enable all authenticated users to view Public page, simply grant the View
permission to the AUTHENTICATED_USERS group.

3. Implement Hash Message Authentication Code (HMAC) Encryption in
Communication to Web Providers to allow for Secured Identity Propagation and
J2EE based security.

5.5.6 Implement Hash Message Authentication (HMAC) Encryption in Communication
to Web Providers to Allow for Secured Identity Propagation and J2EE-Based Security

Frequently, portlet developers base the security context of Web portlets on the identity
of the user currently running within the portal (as opposed to a single generic
account). While the portlet developer can use the PDK-Java APIs to allow the portlet
to query the framework for the identity of the current user, there is an implicit trust of
the information received by the portlet. That is, the portlet has to assume that the
information passed within the packet headers is correct, and has not been altered
during transmission (data substitution) or spoofed from a server other than the
OracleAS Portal middle tier.

Traditionally the technique to ensure the integrity of the OracleAS Portal server,
requesting the portlet, was to implement a Secure Socket Layer (SSL)-based
connection, with an appropriate client certificate used to identify the portal server (the
portlet provider itself would also need a certificate for the reverse trust relationship).

See Also:

■ Section 18.9.1.1, "Understanding Item Level Security" in the Oracle
Application Server Portal User’s Guide

■ Whitepaper Expose your Intranet Portal to the Outside World in a
Secured Manner available from the Oracle Technology Network at
http://www.oracle.com/technology/products/ias/por
tal/pdf/secured_inside_outside.pdf

Secure the Portal Environment

OracleAS Portal 5-25

If the use of certificate based SSL is not viable, OracleAS Portal allows for message
authentication through the use of a shared key, known only to the portlet provider and
the OracleAS Portal middle tier. By the generation of a digital signature (passed with
the SOAP message and based on the shared key, user information, timestamp and a
Hash Message Authentication Code (HMAC) algorithm), the provider may
authenticate the message by checking the signature against its own copy defined by
the shared key. If the signatures match, the provider is assured that the message came
from the correct source.

The provider may then enforce J2EE security by implementing the RunAS directive
within the portlet.

Implementation Details
1. Register the shared key to the Web provider by defining a JNI variable within the

web.xml file used by the Provider application. Alternatively, you can define the
shared key within the deployment properties file:

<app_root>/WEB-INF/deployment/provider_name.properties

2. The disadvantage of performing the latter is that it prevents the use of the
Application Server Control Console to interpret or set the value.

3. Add the provider property enhancedAuthentication=true to the
deployment properties file.

4. Register the provider within the OracleAS Portal. On the General Properties tab,
enter the shared secret key in the appropriate field.

5. Set the Login Frequency to Once per session.

5.5.7 Implement Global Inactivity Timeout to Prevent Attacks through Unauthorized
Sessions

While the use of well-defined security policies will prevent users from seeing content
to which they are not entitled, one of the most common situations where security is
compromised is when an authenticated user has left their portal session unattended.
Given that the user has authenticated to a Single Sign-On environment, an
opportunistic or malicious user who was able access the rightful user's browser (in
their absence) would have access to all applications exposed by the portal.
Furthermore, any transactions performed would be as the rightful user and could not
be traced back to the miscreant.

A simple solution to such a situation is to invalidate the Single Sign-On session after a
reasonable period of inactivity using the OracleAS Single Sign-On server's Global
Inactivity Timeout functionality. Once activated, any request to a portal page (or any
other partner application) after the specified period of inactivity, would result in a
credential challenge. If the credential was the same as the currently defined portal
session (as would be the case if the rightful user returned), then the user would be able
to pick up where they left off within the portal. If not, then the current portal session is
killed and a new session created to match the security policies of the new user.

See Also:

■ Section 6.1.7.9, "Message Authentication," in the Oracle Application
Server Portal Configuration Guide

■ Section 6.3.1.3, "Configuring Provider Message Authentication," in
the Oracle Application Server Portal Configuration Guide

Secure the Portal Environment

5-26 Oracle Application Server Best Practices Guide

Implementation Details
Configure the Global Inactivity Timeout within the OracleAS Single Sign-On Server.
The implementation is due to its definition as a partner application.

5.5.8 Utilize Separate Page Groups and a Segmented Security Realm Within Oracle
Internet Directory to Support a Hosted Portal that is to Be Shared Across Independent
User Communities

Frequently, a number of disparate user communities share a given portal
implementation, each of which is to be independently administrated by one or more
members of that community. While Oracle Internet Directory supports the separation
of user communities into distinct security realms (with associated delegated
administration) the use of separate realms prevents the implementation of a single
Shared Portal . That is, objects in a given security realm may not be seen by those in
another. Therefore, to enable components of a portal to be utilized by multiple
communities, you must place them in the same realm.

Once you have defined the user communities, you can restrict the various pages of the
portal to a given user community by standard ACL definitions at the page group level.
All communities may view shared objects, and therefore templates, styles and
common pages may be used by all communities, while content pages are limited to the
community owning the data.

Implementation Details
The major configuration requirement lies within the Directory Information Tree (DIT)
itself.

1. Create a named community container (for example cn=CompanyA) under the
cn=users container in the default realm. Define the users of this community
under the new container. Do not grant any Global Privileges to these users (either
directly or through an associated role).

2. Create a named sub-tree for the community under the portal's group container to
store community-specific groups. Create a private group under this tree to define
membership in the associated community. As a private group, only members of
the community will be able to see it, or its membership.

3. Create a named sub-tree for the community under the group container under the
Oracle Context node. This tree will be used to define community level
administrators who will have delegated administration privileges for their
community.

4. Define ACIs within the directory tree to revoke access from all communities to the
default (master) user and group containers and all containers following these, that
is, the communities.

5. Define ACIs at the Community level in the User and Groups sub-tree to grant
browse, read, write, and update access to the containers for members in the
community only. For shared portal pages, add the appropriate policy for
subsequent community groups.

6. Create shared objects within the Builder to be used by all communities.

See Also: Section 2.11, "Configuring the Global User Inactivity
Timeout," in the Oracle Application Server Single Sign-On Administrator’s
Guide

Portlet Development

OracleAS Portal 5-27

7. Create a page group to support the community portal. Define an ACL on this page
group to allow access to the community group defined. Doing so will allow only
members of the community to view these pages.

5.6 Portlet Development
This section contains the following topics:

■ Section 5.6.1, "Install the Portal Extension for Oracle JDeveloper to Improve Portlet
Development"

■ Section 5.6.2, "Apply WSRP Standard to Enable Interoperability Between a
Standards-enabled Container and any WSRP Portal"

■ Section 5.6.3, "Portlet Show Modes"

■ Section 5.6.4, "Ensure Links in Portlet Are Correct to Avoid Sending the User Away
from the Portal"

■ Section 5.6.5, "Use Hybrid Portlets to Provide the Best Possible Rendition in the
Desktop Environment"

■ Section 5.6.6, "Create a Struts Portlet to Create and Publish Applications within
Your Enterprise Portal"

■ Section 5.6.7, "When Is It Best to Use the Web Clipping Portlet?"

■ Section 5.6.8, "When Is It Best to use OmniPortlet?"

See Also:

■ Whitepaper Expose your Intranet Portal to the Outside World in a
Secured Manner available from the Oracle Technology Network at
http://www.oracle.com/technology/products/ias/por
tal/pdf/secured_inside_outside.pdf

■ Chapter 7, "Attribute Uniqueness in the Directory," in the Oracle
Internet Directory Administrator’s Guide

■ Chapter 14, "Directory Access Control," in the Oracle Internet
Directory Administrator’s Guide

■ Section 6.1.2.2, "OracleAS Portal Default, Seeded Groups," in the
Oracle Application Server Portal Configuration Guide

■ Section 6.1.3, "Resources Protected," in the Oracle Application Server
Portal Configuration Guide

■ Section 6.1.6.2.1, "Directory Entries in Oracle Internet Directory for
OracleAS Portal," in the Oracle Application Server Portal
Configuration Guide

■ Whitepaper The Implementation of a Departmental Level User
Provisioning Model in OracleAS Portal 10g available from the Oracle
Technology Network at
http://www.oracle.com/technology/products/ias/por
tal/pdf/admin_security_deptmental_level_
delegated_admin.pdf

■ Chapter 4, "Working with Page Groups," in the Oracle Application
Server Portal User’s Guide

■ Section 18.4, "Securing Page Groups," in the Oracle Application
Server Portal User’s Guide

Portlet Development

5-28 Oracle Application Server Best Practices Guide

■ Section 5.6.9, "When to Use Portlet Parameters?"

■ Section 5.6.10, "When to Use Event Support?"

■ Section 5.6.11, "Use the Oracle Application Server Portal Developer's Guide to
Learn How to Build Portlets"

5.6.1 Install the Portal Extension for Oracle JDeveloper to Improve Portlet Development
The OracleAS Portal Developer Kit (PDK) provides you with the necessary libraries to
install an extension for Oracle JDeveloper that dramatically increases your flexibility
and productivity when developing portlets. This extension includes two wizards, one
for building PDK-Java portlets and one for building JPS (Java Portlet Specification -
JSR 168)-compliant portlets. Both wizards guide you through the steps of creating the
portlet skeleton and all you need do then is implement your own business logic.

Implementation Details
To obtain the extension:

1. Visit http://portalcenter.oracle.com.

2. On the right, under Software Downloads, click Portal Developer Kit.

3. Under Portal Extension for JDeveloper, click Portal Extension for Oracle
JDeveloper to download the extension.

4. Click Portal Extension for Oracle JDeveloper Installation Guide for installation
instructions.

5.6.2 Apply WSRP Standard to Enable Interoperability Between a Standards-enabled
Container and any WSRP Portal

The Web Services for Remote Portlets (WSRP) specification is a Web services standard
that allows the plug-and-play of visual, user-facing Web services with portals or other
intermediary Web applications. Being a standard, WSRP enables interoperability
between a standards-enabled container based on a particular language (such as JSR
168, .NET, PERL) and any WSRP portal. Therefore, you can render a portlet (regardless
of language) deployed to a WSRP-enabled container on any portal that supports this
standard.

Java Portlet Specification (JPS) is based on JSR 168 and defines a set of APIs for
building standards-based portlets using Java. You can deploy portlets built to this
specification to a WSRP container for rendering portlets remotely.

See Also:

■ http://www.oasis-open.org/committees/download.php/2
877/wsrp-specification-1.0-cs-1.0-rev2.pdf for more
information about WSRP

■ http://jcp.org/aboutJava/communityprocess/first/jsr
168/index.html for more information about JSR 168

■ Section 6.3, "Configuring Your Application Server to Run
JPS-Compliant Portlets," in the Oracle Application Server Portal
Developer’s Guide

Portlet Development

OracleAS Portal 5-29

5.6.3 Portlet Show Modes
Show mode exhibits the runtime portlet functionality seen by users. JPS offers some
modes not offered by OracleAS Portal and vice versa. If you are coding portlets to JPS,
you can declare custom portlet modes that map to the extra modes offered by
OracleAS Portal.

An OracleAS Portal portlet may have the following Show modes, each with its own
visualization and behavior. JPS portlets can define custom portlet modes in
portlet.xml. Defining custom modes is especially useful if the portlet must
interoperate with portal implementations from other vendors.

The list of modes is the following:

■ Shared Screen Model (View Mode for JPS)

■ Edit Mode (JPS and OracleAS Portal)

■ Edit Defaults Mode (JPS and OracleAS Portal)

■ Preview Mode (JPS and OracleAS Portal)

■ Full Screen Mode (OracleAS Portal)

■ Help Mode (JPS and OracleAS Portal)

■ Link Mode (OracleAS Portal)

5.6.4 Ensure Links in Portlet Are Correct to Avoid Sending the User Away from the
Portal

In some ways, navigation between different sections or pages of a single portlet is
identical to navigation between standard Web pages. Users can submit forms and click
links. In the case of typical, simple Web pages, both of these actions involve sending a
message directly to the server responsible for rendering the new content, which is then
returned to the client. In the case of portlets, which comprise only part of a page, the
form submission or link rendered within the portlet does not directly target the portlet.
It passes information to the portlet through the portal. If a link or form within a portlet
does not refer back to the portal, then following that link takes the user away from the
portal, which may not be the desired behavior.

The portlet developer does not need to know the detailed mechanics of how the
parameters of a form or link get passed around between the user, portal, and portlet.
Ensure the portlet developer does not write links in a portlet the same way as for
typical, simple Web pages.

For PDK portlets, use the methods from the UrlUtils class
(oracle.portal.provider.v2.url.UrlUtils) as it will render the HTML links
appropriately.

5.6.5 Use Hybrid Portlets to Provide the Best Possible Rendition in the Desktop
Environment

OracleAS Portal is capable of rendering its pages for both HTML and non-HTML
(mobile) devices. When rendering for a mobile device, OracleAS Portal requires
portlets to generate content in a universal markup language called OracleAS Wireless
XML.

Many portlets, known as desktop portlets, generate only HTML responses and, as
such, can only render themselves in standard Web browsers. Some portlets, known as
mobile portlets, generate only OracleAS Wireless XML responses. These portlets can

Portlet Development

5-30 Oracle Application Server Best Practices Guide

render themselves on any device, including standard HTML browsers. Many portlets,
though, take a hybrid approach that renders either HTML or OracleAS Wireless XML
depending on the environment. These hybrid portlets can render themselves on any
device, but they render best on standard HTML browsers. Although OracleAS
Wireless XML is sufficient for HTML responses, it is not as expressive as HTML. Since
portlets running in both a desktop and mobile environment are typically accessed
through the desktop, developers commonly choose to create hybrid portlets that can
provide the best possible rendition in the desktop environment.

5.6.6 Create a Struts Portlet to Create and Publish Applications within Your Enterprise
Portal

The Oracle Application Server Portal Developer Kit (PDK-Java) contains numerous
examples and documents regarding the usage of the OracleAS Portal APIs, such as
personalization and caching. The integration of the application flow and business logic
is not part of the portlet APIs. By using the Struts framework, however, you can
leverage the Model-View-Controller (MVC) architecture to create and publish
applications within your enterprise portal.

To create a Struts portlet, you must use the OracleAS Portal JSP tags, which are
extensions of the default Struts JSP tags. This development process is similar to that of
creating a standalone Struts application. Also, since the portlet and struts application
must also be in the same Servlet Context, you must create a single Web application
that contains both elements.

Implementation Details

5.6.7 When Is It Best to Use the Web Clipping Portlet?
In the event that you have to create a portlet that displays the content from a remote
Web site as it is presented at the source location, the best tool to use is Web Clipping.
Web Clipping can tolerate the changes of the source HTML page to some extent. If a
clipped table moves from one place to another in the source page, the Web Clipping
engine can find the table again using the internal "fuzzy match" algorithm. Portlets
built with Web Clipping can also maintain sessions to the remote Web sites. Web
Clipping also supports the end user personalization of HTML form values.

Web Clipping has URL rewriting support to achieve this functionality: it can process
the links, originating from the source Web site, and modify (rewrite) them to achieve
the desired functionality.

You can choose from the following three options:

■ You can select not to rewrite the URLs within the portlet, in which case clicking the
links takes the users out of Portal to the Web site providing the clipping. If the Web
Clipping provider is registered with an External application, this may require that
the user enter login information before navigating the Web site.

■ If the Web Clipping provider is registered with an External Application and the
clipping requires authentication, you can instruct Web Clipping to rewrite all
URLs within the portlet to point to the Login Server. In this case, navigation will
cause the user to leave OracleAS Portal, while also using the Login Server to log
the browser into the External Application.

See Also: Section 7.3, "Building Struts Portlets with Oracle
JDeveloper," in the Oracle Application Server Portal Developer’s Guideto
learn how to build a Struts portlet

Portlet Development

OracleAS Portal 5-31

■ You can select to rewrite all URLS within the portlet (inline rendering) to point
back to the portal page so that all browsing within the Web Clipping portlet
remains within OracleAS Portal. If the Web Clipping provider is registered with an
External Application, this will cause the Web Clipping provider to log itself into
the External Application. In this case, the navigation within Portal through the
Web Clipping provider is authenticated in the External Application.

5.6.8 When Is It Best to use OmniPortlet?
Meant for page designers and portlet developers, the OracleAS Portal OmniPortlet is a
declarative portlet-building tool that enables you to build portlets against a variety of
data sources, including XML files, comma-delimited value files, such as spreadsheets,
Web Services, databases, Web pages, and SAP data sources. OmniPortlet users can also
choose a pre-built layout for the data. Pre-built layouts include tabular, news, bullet,
form, or chart.

Like Web Clipping, OmniPortlet supports proxy authentication, including support for
global proxy authentication and per-user authentication. You can specify whether all
users will automatically log in using a user name and password you provide, each
user will log in using an individual user name and password, or all users will log in
using a specified user name and password.

5.6.9 When to Use Portlet Parameters?
There are three types of parameters in OracleAS Portal: page parameters, public
portlet parameters, and private portlet parameters.

■ Page parameters

You can use a page parameter to pass a value to a page. Using page parameters,
the information that displays on a page can vary depending on where the page is
called from and who is viewing the page. Using page parameters, page designers
can synchronize the portlets on a page by passing them the same values. This
provides the ability to reuse and tailor portlets on pages by merely integrating
them with page parameters. Without this functionality, you would have to code
portlets individually to use different parameter values.

■ Public portlet parameters

You can use a public portlet parameter to pass a value to a portlet. Using portlet
parameters, the information that displays in a portlet can be specific to a particular
page or a user. Portlet parameters are created by the portlet developer and are
exposed to the page designer through the user interface. After adding a portlet to a
page, page designers can assign values to the public portlet parameters to make
the information that displays in the portlet specific to the page.

Page designers can assign values to public portlet parameters by providing a
specific value (constant), a system variable, such as the portal user name, or a page
parameter. At run time, the portlet receives the values from the sources specified.
In this way, page designers have complete control over the source of the
parameter, whereas you have complete control over how the data is used after it is
transmitted to the portlet.

■ Private portlet parameters

You can use private portlet parameters to implement internal navigation in your
portlet. You can pass parameters to your portlets every time the page is requested.
The portlet instance can exclusively pass private portlet parameters to the same
portlet instance.

Portlet Development

5-32 Oracle Application Server Best Practices Guide

Portlets supporting public portlet parameters enable page designers to tailor the
portlets' data input for each portlet instance. In this case, the portlet developer can
focus on the portlet logic, while page designers can easily reuse portlets and address
the interaction between the page and the portlets.

OmniPortlet, Web Clipping, Java portlets, Portlet Builder, and PL/SQL portlets
support public portlet parameters. OmniPortlet, Web Clipping, and Portlet Builder
provide complete support through their wizard interface. You can add public portlet
parameter support to your Java portlets programmatically or with the Java Portlet
Wizard. PL/SQL portlets support public parameters only programmatically.

5.6.10 When to Use Event Support?
An event is a user action that you define to display a portal page. User actions include
clicking a link or a button in a portlet. Page designers specify what to do when an
event occurs in a portlet on a page. When an event occurs, page designers can either
redisplay the current page or navigate the user to another portal page, optionally
passing values to that page's parameters. Web Clipping, OmniPortlet, and Java
portlets built with the PDK-Java support events Portlet Builder and PL/SQL portlets
do not support events.

5.6.11 Use the Oracle Application Server Portal Developer's Guide to Learn How to
Build Portlets

The Oracle Application Server Portal Configuration Guide describes how to build portlets
for OracleAS Portal using a variety of tools and technologies. This manual includes
information that helps understand the various technology choices, helps choose the
technology that best meets requirements, and advise on how to use the appropriate
tools to build and deploy portlets.

This manual is intended primarily for portal developers, but page designers may also
find it useful. This manual guides through the process of first understanding and
choosing a portlet technology, and then building portlets with that technology.

OracleAS Wireless 6-1

6
OracleAS Wireless

This chapter describes best practices for OracleAS Wireless. It includes the following
topics:

■ Section 6.1, "Deploy Multiple Tiers for High-Volume Environments to Avoid
Capacity Issues"

■ Section 6.2, "Establish Firewall Settings to Permit Protocols"

■ Section 6.3, "Deploy Content Sources to a JVM Other Than OC4J_Portal or OC4J_
Wireless to Avoid Stability Issues"

■ Section 6.4, "Select a Voice Gateway Suited for Your Environment"

■ Section 6.5, "Deploy Messaging Applications to Use a Gateway"

■ Section 6.6, "Oracle Sensor Edge Server"

6.1 Deploy Multiple Tiers for High-Volume Environments to Avoid
Capacity Issues

It is often necessary to deploy Wireless and Voice applications in a high-volume
environment where the number of transactions may exceed the capacity of a single
Oracle Application Server 10g middle-tier that is associated with an Oracle
Application Server Infrastructure.

6.2 Establish Firewall Settings to Permit Protocols
A typical OracleAS Wireless request starts from a device to a WAP gateway. The
gateway issues an HTTP request for the content to Oracle HTTP Server, which in turn
issues an AJP request to the OC4J container. The Wireless application in the container
then issues a corresponding HTTP request to a content source. Since these entities may
be deployed on separate computers, it is necessary to ensure that the firewall settings
in a DMZ permit these protocols to pass through.

See Also:

■ Chapter 14, "Load Balancing ," in the Oracle Application Server
Wireless Administrator’s Guide to determine if you need additional
middle-tiers for your enterprise

■ Oracle Application Server Administrator’s Guide for more
information about deploying multiple tiers

Deploy Content Sources to a JVM Other Than OC4J_Portal or OC4J_Wireless to Avoid Stability Issues

6-2 Oracle Application Server Best Practices Guide

6.3 Deploy Content Sources to a JVM Other Than OC4J_Portal or OC4J_
Wireless to Avoid Stability Issues

Deploy content sources, that is, applications or pages that output XHTML or mobile
XML, in a JVM other than OC4J_Portal or OC4J_Wireless. You may also consider
dedicating a separate instance of the application server if your content source is
implemented using Oracle Application Server.

6.4 Select a Voice Gateway Suited for Your Environment
Applications written in Oracle Application Server presentation independent XML can
be delivered:

■ To any telephone, either local or wireless

■ By audio playback of information

■ By a voice-enabled user interface

In the same way that SMS or WAP applications running on OracleAS Wireless can
utilize gateways from multiple vendors, Oracle Application Server voice applications
can also run on any Oracle-accepted VoiceXML gateway.

The voice gateways include:

■ A VoiceXML interpreter

■ Speech recognition (ASR) or text-to-speech (TTS or synthetic speech) software

■ Telephony interface cards such as Dialogic, NMS, or AudioCodes

6.5 Deploy Messaging Applications to Use a Gateway
Messaging applications require a gateway. This gateway is most often a SMPP or UCP
gateway for sending or receiving Short Message Service (SMS) messages. It is possible
to configure the same short code to multiple Short Message Service Centers (SMSC).
This configuration may be necessary if redundancy at the SMSC level is a requirement.

6.6 Oracle Sensor Edge Server
This section describes best practices for Oracle Sensor Edge Server. It contains the
following topics:

■ Section 6.6.1, "Copy edgeserver.xml to Clone Server Configurations"

■ Section 6.6.2, "Analyze Requirements to Select Best Dispatcher"

6.6.1 Copy edgeserver.xml to Clone Server Configurations
The process of setting up the system configuration for an Oracle Sensor Edge Server
instance can be time consuming. Because all the settings are saved in an XML file, the
best way to clone the existing settings is to simply copy the edgeserver.xml file.

See Also: Integrated Partner Solutions section of Oracle Technology
Network at
http://www.oracle.com/technology/tech/wireless/integ
ration/index.html for a list of Oracle-accepted Voice Gateways

Oracle Sensor Edge Server

OracleAS Wireless 6-3

Implementation Details
Go to $ORACLE_HOME/edge/config directory for the application server instance
and copy the edgeserver.xml file to the appropriate Oracle Sensor Edge Server
instance.

6.6.2 Analyze Requirements to Select Best Dispatcher
Oracle Sensor Edge Server provides a big selection of different dispatchers, all with the
purpose to deliver the collected events to the enterprise application layer. It is not
always clear what dispatcher to use. By understanding the needs for your
environment, you can pick the appropriate dispatcher.

Implementation Details
Table 6–1 shows the dispatcher type needed for major environment types.

Table 6–1 Dispatcher

Environment Dispatcher

Testing or Simple HTTP or Web Services

J2EE JMS Dispatcher

Complex Dispatching Event Flow

High Speed Streams Dispatcher

Oracle Sensor Edge Server

6-4 Oracle Application Server Best Practices Guide

OracleAS Web Cache 7-1

7
OracleAS Web Cache

This chapter describes performance best practices for OracleAS Web Cache. It includes
the following topics:

■ Section 7.1, "Improve Performance, Scalability, and Availability"

■ Section 7.2, "Planning and Deployment"

■ Section 7.3, "Secure Content to Prevent Tampering"

■ Section 7.4, "Configuring OracleAS Web Cache"

■ Section 7.5, "Increasing Cache Hits"

■ Section 7.6, "Invalidation and Expiration"

■ Section 7.7, "Optimizing Response Times"

7.1 Improve Performance, Scalability, and Availability
OracleAS Web Cache improves the scalability, performance and availability of
e-business Web sites. Using OracleAS Web Cache, your applications benefit from
higher throughput, shorter response times and lower infrastructure costs.

■ Unlike legacy cache servers that only handle static data, OracleAS Web Cache
combines caching, compression and assembly technologies to accelerate the
delivery of both static and dynamically generated Web content.

■ OracleAS Web Cache provides support for partial-page caching with Edge-Side
Includes (ESI), personalization, and dynamic content assembly at the network
edge See Section 7.5.4, "Use Partial Page Caching Where Possible to Increase
Cacheability" on page 7-9 for more information.

■ OracleAS Web Cache includes clustering functionality that increases capacity for
content storage and ensures scalability and availability for cacheable content, even
when a member cache experiences a failure or is taken offline for maintenance. See
Section 7.2.2, "Cluster Cache Instances to Make Availability, Scalability, and
Performance Gains" on page 7-3 for more information.

■ OracleAS Web Cache also provides back-end origin server load balancing, failover,
and surge protection features that ensure consistent application performance and
greater overall reliability. See Section 7.2.4, "Use OracleAS Web Cache Built-In
Load Balancing to Improve Availability and Scalability of Origin Servers" on
page 7-4 for more information.

■ OracleAS Web Cache is designed to run with commodity hardware, reducing the
cost. See Section 7.2.1, "Use Two CPUs and Consider Deploying on Dedicated

Planning and Deployment

7-2 Oracle Application Server Best Practices Guide

Hardware to Avoid Operating System Limitations" on page 7-2 for more
information.

Using OracleAS Web Cache and its ESI features, your business application
performance can improve by several orders of magnitude with very little development
effort. The return on investment is also significant, both in terms of developer
resources (you no longer need to build your own dynamic caching solution) and
hardware cost savings.

7.2 Planning and Deployment
The following sections describe best practices related to planning for and deploying
OracleAS Web Cache:

■ Section 7.2.1, "Use Two CPUs and Consider Deploying on Dedicated Hardware to
Avoid Operating System Limitations"

■ Section 7.2.2, "Cluster Cache Instances to Make Availability, Scalability, and
Performance Gains"

■ Section 7.2.3, "Use a Hardware Load Balancer in Front of OracleAS Web Caches to
Avoid a Single Point of Failure"

■ Section 7.2.4, "Use OracleAS Web Cache Built-In Load Balancing to Improve
Availability and Scalability of Origin Servers"

■ Section 7.2.5, "Test Application Upgrades and Patches to Ensure Existing Cache
and Session Rules Still Function Correctly"

7.2.1 Use Two CPUs and Consider Deploying on Dedicated Hardware to Avoid
Operating System Limitations

You can deploy OracleAS Web Cache on the same node as the application Web server
or on a separate node. When making your decision, consider system resources, such as
the number of CPUs. OracleAS Web Cache is designed for a dual CPU. Because
OracleAS Web Cache is an in-memory cache, it is rarely limited by CPU cycles.
Additional CPUs do not increase performance significantly. The speed of the
processors is critical; use the fastest CPUs you can afford.

If other resources are competing with OracleAS Web Cache for CPU usage, then you
should take the requirements of those resources into account when determining the
number of CPUs needed. You can derive a significant performance benefit from
OracleAS Web Cache running on the same node as the application Web server,
although a separate node for OracleAS Web Cache is often optimal.

For a Web site with more than one OracleAS Web Cache instance, consider installing
each instance on a separate two-CPU node, either as part of a cache cluster or as
standalone instances. When OracleAS Web Cache instances are on separate nodes, you
are less likely to encounter operating system limitations, particularly in network
throughput. For example, two caches on two separate two-CPU nodes are less likely to
encounter operating system limitations than two caches on one four-CPU node.

Implementation Details

See Also: Chapter 7, "Optimizing OracleAS Web Cache," in the
Oracle Application Server Performance Guide

Planning and Deployment

OracleAS Web Cache 7-3

7.2.2 Cluster Cache Instances to Make Availability, Scalability, and Performance Gains
To increase the availability, scalability, and performance of your Web site, you can
configure multiple instances of OracleAS Web Cache to run as members of a cache
cluster. A cache cluster is a loosely coupled collection of cooperating OracleAS Web
Cache instances working together to provide a single logical cache.

Cache clusters provide failure detection and failover of caches, increasing the
availability of your Web site. If a cache fails, other members of the cache cluster detect
the failure and take over ownership of the cached content of the failed cluster member.

By distributing the Web site's content across multiple OracleAS Web Cache instances,
you can cache more content and support more client connections, expanding the
overall capacity of your Web site and improving its performance.

Implementation Details

7.2.3 Use a Hardware Load Balancer in Front of OracleAS Web Caches to Avoid a
Single Point of Failure

Many customers deploy a single instance of OracleAS Web Cache in front of their
application Web server farm. In such deployments, the OracleAS Web Cache acts as
the virtual IP address for the application, in addition to providing caching and load
balancing services. This deployment is both functionally sufficient and cost-effective
for customers that do not require 100 percent application uptime. The OracleAS Web
Cache is highly stable and, in the event of a failure, a process monitor will
automatically restart the cache.

For customers who cannot tolerate a single point of failure, Oracle recommends that
two or more nodes running OracleAS Web Cache be deployed behind a third-party
hardware load balancing device. In turn, customers should use the built-in load
balancing functionality in OracleAS Web Cache to distribute cache miss traffic over the
application Web server farm, as described in Section 7.2.4, "Use OracleAS Web Cache
Built-In Load Balancing to Improve Availability and Scalability of Origin Servers" on
page 7-4.

If you need a low-cost solution to a hardware load balancer and do not require caching
support, you can configure OracleAS Web Cache solely as a software load balancer.
This configuration mode is useful for managing traffic to a low-volume, departmental,
or test Web site.

Implementation Details

See Also: Chapter 3, "Cache Clustering," in the Oracle Application
Server Web Cache Administrator’s Guide

See Also:

■ Chapter 5, "OracleAS Web Cache Topologies," in the Oracle
Application Server Web Cache Administrator’s Guide for more
information about deploying hardware load balancers with
OracleAS Web Cache

■ Section "OracleAS Web Cache Solely as a Software Load Balancer
or Reverse Proxy" in the Oracle Application Server Web Cache
Administrator’s Guide for more information about configuring
OracleAS Web Cache as a load balancer

Planning and Deployment

7-4 Oracle Application Server Best Practices Guide

7.2.4 Use OracleAS Web Cache Built-In Load Balancing to Improve Availability and
Scalability of Origin Servers

Situated between Web browser clients and the origin servers, OracleAS Web Cache
includes built-in weighted load balancing and failover detection features to ensure that
cache misses are directed to the most available, highest performing origin server in the
application Web server farm. The cache supports both stateless and stateful load
balancing mechanisms, including the use of cookies and URL parameters to maintain
server affinity when required. You can configure OracleAS Web Cache to generate its
own session-binding cookie, allowing you to use sessions without having to modify
your applications.

In addition, OracleAS Web Cache maintains a pool of HTTP connections between the
cache and the origin Web servers to reduce connection establishment overhead and
improve cache miss performance.

To avoid a single point of failure, you can deploy two or more nodes running
OracleAS Web Cache behind a third-party hardware load-balancing device. Oracle
also recommends that customers use the built-in load balancing and failure detection
functionality in OracleAS Web Cache to route cache miss requests to origin servers.
Deploying additional load balancing hardware between the OracleAS Web Cache and
origin server tiers is not recommended for the following reasons:

■ Cost: Using another tier of load balancing hardware adds significant cost to a
deployment, in part because these devices must also be deployed in pairs for high
availability reasons.

■ Complexity: Another tier of load balancing hardware is another set of systems to
configure, manage, and troubleshoot.

■ Features: OracleAS Web Cache includes performance assurance and surge
protection features that enable customers to sustain higher loads with less
application and database server hardware. These features depend on the
capacity-based load balancing algorithms in OracleAS Web Cache.

7.2.5 Test Application Upgrades and Patches to Ensure Existing Cache and Session
Rules Still Function Correctly

Although there is a growing trend to specifying the caching rules dynamically with the
Surrogate-Control response header, some sites continue to use OracleAS Web
Cache Manager for configuring the rules statically. Typically, this configuration is done
at the start of the deployment cycle. After adequate testing in a staging area to validate
the rules, OracleAS Web Cache is deployed in a production environment. Problems
may arise when the backend application is upgraded for patches or with new versions
and some or all of the earlier statically configured rules become not applicable and
void. For example, if a site uses a session-related caching rule and, after applying a
patch, the name of the session cookie or session-embedded URL parameter changes,

See Also:

■ Chapter 1, "Introduction to OracleAS Web Cache," in the Oracle
Application Server Web Cache Administrator’s Guide for more
information on load balancing, performance assurance and surge
protection functionality

■ Whitepapers available from the Oracle Technology Network at
http://www.oracle.com/technology/products/ias/web
_cache/index.html

Configuring OracleAS Web Cache

OracleAS Web Cache 7-5

all the pages related to that rule will no longer be cacheable, resulting in poor
performance for the site.

When applying application upgrades and patches, it is important to understand the
extent of the application changes and then verify and tune the related caching rules in
OracleAS Web Cache. By periodically checking the cache-hit percentage and ensuring
that it remains more or less constant, you can guard against unexpected behavior.
Whenever there is a major change in the database or the mid-tier layer, such as for
upgrades or application patches, you should validate caching rules much the same
way as you did during the initial deployment cycle, including, but not limited, to
using debug-level event logging. And if possible, include OracleAS Web Cache in your
application regression test cycle.

7.3 Secure Content to Prevent Tampering
Depending on the application, you may or may not want requests for secure pages to
go through the cache. Be cautious about caching secure content in OracleAS Web
Cache. For secure content you do cache, ensure users cannot do URL tampering to see
other user content. For this content, then route this traffic directly to the origin server.
Because no traffic will be cached in this case, routing traffic to the origin server avoids
extra encryption or decryption processing time by OracleAS Web Cache.

7.4 Configuring OracleAS Web Cache
The following sections describe best practices related to configuring OracleAS Web
Cache:

■ Section 7.4.1, "Configure Enough Memory to Avoid Swapping Objects In and Out
of the Cache"

■ Section 7.4.2, "Allocate Sufficient Network Bandwidth to Accommodate the
Throughput Load"

■ Section 7.4.3, "Set a Reasonable Number of Network Connections to Maximize
Performance"

■ Section 7.4.4, "Create Custom Error Pages to Suit Your Environment"

7.4.1 Configure Enough Memory to Avoid Swapping Objects In and Out of the Cache
To avoid swapping objects in and out of the cache, it is crucial to configure enough
memory for the cache. Generally, the amount of memory (maximum cache size) for
OracleAS Web Cache should be set to at least 500 MB.

The amount of memory that OracleAS Web Cache uses to store an object depends on
whether the object is larger or smaller than 2 KB:

Implementation Details
To determine the maximum amount of memory required, take the following steps:

1. Determine which objects you want to cache, how many are smaller than 2 KB and
how many are larger than 2 KB. Determine the average size of the objects that are

See Also:

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server Enterprise Deployment Guide

Configuring OracleAS Web Cache

7-6 Oracle Application Server Best Practices Guide

larger than 2 KB. Determine the expected peak load—the maximum number of
objects to be processed concurrently.

2. Calculate the amount of memory needed.

7.4.2 Allocate Sufficient Network Bandwidth to Accommodate the Throughput Load
When you use OracleAS Web Cache, make sure that each node has sufficient network
bandwidth to accommodate the throughput load. Otherwise, the network may be
saturated even though OracleAS Web Cache has additional capacity. For example, if
your application generates more than 100 megabits of data for each second, 10/100
Megabit Ethernet will likely be saturated.

If the network is saturated, consider using Gigabit Ethernet rather than 10/100
Megabit Ethernet. Gigabit Ethernet provides the most efficient deployment scenario to
avoid network collisions, retransmissions, and bandwidth starvations.

Additionally, consider using two separate network interface cards (NIC): one for
incoming client requests and one for requests from the cache to the application Web
server.

If system monitoring tools reveal that the network is under utilized and throughput is
less than expected, check whether or not the CPUs are saturated.

7.4.3 Set a Reasonable Number of Network Connections to Maximize Performance
It is important to specify a reasonable number for the maximum connection limit for
the OracleAS Web Cache server. If you set a number that is too high, you can affect
performance, resulting in slower response time. If you set a number that is too low,
fewer requests will be satisfied. You must strike a balance between response time and
the number of requests processed concurrently.

Implementation Details

7.4.4 Create Custom Error Pages to Suit Your Environment
By default, OracleAS Web Cache ships with and is configured to serve the following
error pages:

■ network_error.html: This file is served when OracleAS Web Cache encounters
network problems while connecting, sending, or receiving a response from an
origin server for a cache miss request.

■ busy_error.html: This file is served when origin server capacity has been
reached.

■ esi_fragment_error.txt. This file is served when OracleAS Web Cache is
unable to fetch the src specified in an <esi:include> tag and the alt
attribute, onerror attribute, or the try |attempt |except block are either
not present or fail.

See Also: Chapter 8, "Setup and Configuration," in the Oracle
Application Server Web Cache Administrator’s Guide provides a formula
to use in calculating the amount of memory needed to cache your
objects

See Also: Chapter 8, "Setup and Configuration," in the Oracle
Application Server Web Cache Administrator’s Guide for information
about setting the number of network connections

Increasing Cache Hits

OracleAS Web Cache 7-7

For a production environment, Oracle advises that you modify the defaults or create
entirely new error pages to be consistent with other error pages generated by your site.

Implementation Details

7.5 Increasing Cache Hits
The following sections provide tips in increasing the cache-hit rate:

■ Section 7.5.1, "Use Cookies and URL Parameters to Increase Cache-hit Ratios"

■ Section 7.5.2, "Use Redirection to Cache Entry Pages"

■ Section 7.5.3, "Use Surrogate-Control Headers Instead of Caching Rules to Better
Manage Cacheability"

■ Section 7.5.4, "Use Partial Page Caching Where Possible to Increase Cacheability"

■ Section 7.5.5, "Use ESI Variables to Improve Cache-hit Ratios for Personalized
Pages"

■ Section 7.5.6, "Use the <esi:environment> Tag to Authenticate or Authorize
Callbacks"

■ Section 7.5.7, "Use JESI to Cache JSP Output"

7.5.1 Use Cookies and URL Parameters to Increase Cache-hit Ratios
OracleAS Web Cache can cache different versions of an object with the same URL
based on request cookies or headers. To use this feature, applications may need to
implement some simple change, such as creating a cookie or header that differentiates
the pages.

On the opposite side of the spectrum, some applications contain some insignificant
URL parameters that lead to different URLs representing essentially the same content.
If the objects are cached under their full URLs, then the cache-hit ratio becomes very
low. You can configure OracleAS Web Cache to ignore the non-differentiating URL
parameter values when composing the "cache key" for objects, so a single object will be
cached for different URLs, greatly increasing cache-hit ratios.

Sometimes the content for a set of pages is nearly identical, but not exactly the same.
For example, the pages may contain hyperlinks composed of the same URL
parameters with different session-specific values, or they may include some
personalized strings in the page text, such as welcome greetings and shopping cart
totals. In this case, OracleAS Web Cache can still store one single copy of the object
with placeholders for the embedded URL parameters or the personalized strings, and
dynamically substitute the correct values into the placeholders when serving the object
to clients.

You can also control whether a cached object is served to a client based on its session
state.

See Also: Chapter 8, "Setup and Configuration," in the Oracle
Application Server Web Cache Administrator’s Guide for information on
creating or modifying default error pages

Increasing Cache Hits

7-8 Oracle Application Server Best Practices Guide

Implementation Details

7.5.2 Use Redirection to Cache Entry Pages
For some popular site entry pages, such as "/", that typically require session
establishment, session establishment effectively makes the page non-cacheable to all
new users without a session.

To cache these pages while preserving session establishment, you can create a blank
page that provides session establishment for all initial requests and redirects to the real
popular page. This way, subsequent redirected requests to the popular page will carry
the session, enabling the popular page to be served out of the cache.

Implementation Details

7.5.3 Use Surrogate-Control Headers Instead of Caching Rules to Better Manage
Cacheability

There are two ways to specify the caching properties of an HTTP response using
OracleAS Web Cache. You can use one or both of the following:

■ Administrators can configure caching rules using the Application Server Control
Console or OracleAS Web Cache Manager interface.

■ Application developers can set caching policies through the
Surrogate-Control response header. If a given property is set in both a
response header and the configuration, the value set by Surrogate-Control
overrides rules specified in the configuration.

Although caching rules support the setting of more properties than the
Surrogate-Control header, it is generally more manageable to set properties in the
Surrogate-Control header whenever possible. For example, if you need to set the
expiration policy and the multiple-version property for an object, it is preferable to use
the Surrogate-Control header.

If you define many different categories of cacheable and non-cacheable objects, you
need to carefully define rule selectors and rule priorities so that the appropriate rule is
used for any object. Because a Surrogate-Control response header is only
associated with one response and overrides the configuration, the properties set in
Surrogate-Control will not be mistakenly replaced by other configuration rules or
newly created configuration rules. If you are creating new applications, consider
building in Surrogate-Control response headers.

On the other hand, sometimes the configuration approach is more convenient. If a
small number of rules are sufficient to describe all the caching properties of all objects
that OracleAS Web Cache can receive from an origin server, then editing the

See Also: Chapter 2, "Caching Concepts," in the Oracle Application
Server Web Cache Administrator’s Guide for more information on
multiple-version objects, sessions, ignoring URL parameter values,
simple personalization, and how to control whether OracleAS Web
Cache serves a cached object based on sessions

See Also: Chapter 12, "Creating Caching Rules," in the Oracle
Application Server Web Cache Administrator’s Guide for more
information on configuring caching rules for pages requiring session
establishment,

Increasing Cache Hits

OracleAS Web Cache 7-9

configuration using one of the administration interfaces may be simpler than
generating Surrogate-Control headers for many objects.

Often, a combination of the two approaches is best.

Implementation Details

7.5.4 Use Partial Page Caching Where Possible to Increase Cacheability
Many Web pages, such as portal pages, are composed of fragments with unique
caching properties. For these pages, full-page caching is not feasible. OracleAS Web
Cache provides a partial page caching feature that enables each Web page to be
divided into a template and multiple fragments that can, in turn, be further divided
into templates and lower-level fragments.

Each fragment or template is stored and managed independently; a full page is
assembled from the underlying fragments upon request. Different templates can share
the same fragment, so that common fragments are not duplicated to waste cache
space. Sharing can also greatly reduce the number of updates required when
fragments expire. Depending on the application, updating a fragment is cheaper than
updating a full page. In addition, each template or fragment may have its own unique
caching policies, such as expiration, validation, and invalidation. You can cache each
fragment in a full Web page as long as possible, even when some fragments are not
cached or are cached for a much shorter period of time.

For example, a Portal page may include stock quotes that expire in 20 minutes, news
that expires in three hours, and rotating ad banners that should not be cached. To serve
consistent content, traditional full-page caches need to update the entire page at the
highest change frequency of all its fragments. With partial page caching, you can
update particular fragments rather than the entire page.

OracleAS Web Cache uses Edge Side Includes (ESI) to achieve flexible partial-page
caching. ESI is a simple markup language for partial-page caching. Applications can
mark up HTTP responses with two different kinds of tags, <esi:inline> and
<esi:include>, that define the fragment/template structure in the response.

7.5.5 Use ESI Variables to Improve Cache-hit Ratios for Personalized Pages
Personalized information often appears in Web pages, making them unique for each
user. For example, many Web pages contain tens or hundreds of hyperlinks
embedding application session IDs.

OracleAS Web Cache allows application developers to use variables in an ESI
template. Because OracleAS Web Cache can resolve variables to different pieces of
request information or response information, you can significantly reduce the
uniqueness of templates and fragments when personal information abounds.

There are two kinds of ESI variables: request variables and response variables. When
an ESI template is assembled, a request variable is instantiated to a piece of request
information such as a query string parameter, a cookie, or an HTTP header. For
example, when a request for a dynamic page carries an application session ID in a
query string parameter, this page may contain many hyperlinks with ESI request
variables accessing this session ID, so that generated hyperlinks can carry the session
ID into the next clicked page.

See Also: Chapter 12, "Creating Caching Rules," in the Oracle
Application Server Web Cache Administrator’s Guide for more
information about the Surrogate-Control response header

Increasing Cache Hits

7-10 Oracle Application Server Best Practices Guide

A response variable is similar to a request variable, except that its value comes not
from the request, but from a special fragment called ESI environment. Response
variable occurrences in the enclosing template can access an ESI environment, which
is a type of fragment with a response that defines a set of variables. The tag itself does
not contribute to the final assembled output. For example, a dynamic page with a
calendar may need to present personal appointments that cannot be stored in Web
browser cookies due to cookie size limits. The application can instead refer to a
"profile" environment fragment in the template, in effect referring to all appointment
in the environment without making separate requests for each appointment. In
addition, you can merge multiple small fragments into one environment, so that each
fragment can be referenced through response-variable instantiation. This operation
reduces storage and retrieval overhead similarly.

7.5.6 Use the <esi:environment> Tag to Authenticate or Authorize Callbacks
Some applications protect certain Web pages with authentication, authorization, or
session validation in the HTTP request. Even though you can cache page content,
every HTTP request must be authenticated, authorized, or validated by the origin
server. For these pages, it is not appropriate to cache the full page. While it is possible
to utilize JavaScript to achieve authentication, authorization, and validation through a
separate HTTP request, the <esi:environment> tag provides a better solution to
this problem.

If a page has cacheable content but requires mandatory authentication, authorization,
and session validation, you can enclose an <esi:environment> tag in the page
referencing a non-cacheable environment, and cache the enclosing page. When the
cached page is requested, an HTTP request that specifies the environment will always
be sent to the origin server, making a callback to the application. In this callback
request, if you want to validate a cookie in the enclosing page request for session
validation, authorization, or authentication, specify the <esi:environment> tag to
include that cookie in its request. You can also include other information from the page
request in the environment request.

If authentication, authorization, and validation are passed, your application should
return HTTP status code 200 and any ESI environment response. OracleAS Web Cache
proceeds to finish assembling the page. If the authentication, authorization, or
validation fail, your application should return an appropriate HTTP status code (at or
more than 500 to denote a server error, or between 400 and 499 to denote a client
request error). Then, OracleAS Web Cache will recognize that this environment has
failed, and resort to standard ESI exception handling to terminate this page or output
an alternative error page or login page.

Implementation Details

7.5.7 Use JESI to Cache JSP Output
In dynamic applications, you can use Edge Side Includes for Java (JESI) tags.

The JESI specification is a specification and custom JSP tag library that developers can
use to automatically generate ESI code. JESI facilitates the programming of Java
ServerPages (JSPs) using ESI. While developers can always use ESI tags directly within
their JSP code, JESI represents an easy way to express the modularity of JSPs and the

See Also: Chapter 16, "Edge Side Includes (ESI) Language Tags," in
the Oracle Application Server Web Cache Administrator’s Guide for more
information about using the <esi:environment> tag or
implementing ESI exception handling

Invalidation and Expiration

OracleAS Web Cache 7-11

caching of those modules, without requiring developers to learn a new programming
syntax. JESI generates the appropriate ESI tags and headers in the JSP output that
instruct ESI processors, such as OracleAS Web Cache, to cache (or not) templates and
fragments for the appropriate duration. JESI also facilitates the partial execution of
JSPs when an ESI processor requests fragments and templates.

7.6 Invalidation and Expiration
The following sections provide tips about invalidating and expiring cache objects:

■ Section 7.6.1, "Select the Invalidation Method Best Suited for Your Content to Keep
Performance in Check"

■ Section 7.6.2, "Build Programmatic Invalidation Into Application Logic to
Invalidate Dynamic Content"

■ Section 7.6.3, "Combine Invalidation and Expiration Policies to Keep Cache
Content Fresh"

■ Section 7.6.4, "Use Invalidation Propagation in Clusters to Improve Data
Consistency"

7.6.1 Select the Invalidation Method Best Suited for Your Content to Keep Performance
in Check

Pick an invalidation type that works best for your content, keeping performance in
mind:

■ Use basic invalidation for one object based on an exact URL.

A basic invalidation does not result in a cache traversal, making a basic
invalidation highly performant.

■ Advanced invalidation for multiple objects that share one or more of the following
common elements:

– Path prefix

– Host name and port number

– HTTP request method

– URL expression

– POST body expression

– Search keys from the Surrogate-Key response-header field

– Cookies

– HTTP request headers

– Embedded URL parameters

When OracleAS Web Cache receives an advanced invalidation request, it traverses
the contents of the cache to locate the objects to invalidate. Depending on the
structure and number of objects cached, it can take time for OracleAS Web Cache
to invalidate content.

For the quickest advanced invalidation, specify a substring match instead of
regular expression match.

■ Inline invalidation to support either basic or advanced invalidation requests from
the HTTP response, marked with the ESI <esi:invalidate> tag.

Invalidation and Expiration

7-12 Oracle Application Server Best Practices Guide

Inline invalidation reduces the connection overhead associated with sending
out-of-band invalidations.

Implementation Details
To send a basic invalidation request:

■ Use the step-by-step Invalidation wizard provided in Application Server Control
Console. To get started:

1. Navigate to the Web Cache Home page > Administration tab > Operations >
Invalidation.

2. In the first page of the Invalidation wizard, select The single object that
matches this URL.

3. Enter the complete URL patch and file name in the Object to Invalidate field.

■ For a standalone OracleAS Web Cache installation, use the OracleAS Web Cache
Manager.

To get started, navigate to Operations > Basic Content Invalidation.

■ Use the BASICSELECTOR element in a manual invalidation request

To send an advanced invalidation request:

■ Use the step-by-step Invalidation wizard provided in Application Server Control
Console. To get started:

1. Navigate to the Web Cache Home page > Administration tab > Operations >
Invalidation.

2. In the first page of the Invalidation wizard, select Specified Objects.

■ For a standalone OracleAS Web Cache installation, use the OracleAS Web Cache
Manager.

To get started, navigate to Operations > Advanced Content Invalidation.

■ Use the ADVANCEDSELECTOR element in a manual invalidation request.

7.6.2 Build Programmatic Invalidation Into Application Logic to Invalidate Dynamic
Content

OracleAS Web Cache is designed for caching highly dynamic Web pages. There are
several ways to safeguard the correctness of the cached content. For those cached
pages with content that changes following unpredictable actions by Web site users, the
most effective way to ensure correct content is to build programmatic invalidation into
application logic.

The application Web server and database are two areas that may benefit from
embedded programmatic invalidation. On the application Web server, you can build
invalidation into CGIs, JSPs and Java servlets using the OracleAS Web Cache Java
invalidation API, jawc.jar. For example, page A displays information about a
certain bike in stock. This page is cacheable. Page B provides users a way to reserve
one bike for purchase. On the mid-tier, there is a Java servlet or JSP to service page B.
To make this servlet cache-aware, use jawc.jar to invalidate page A.

See Also: Chapter 13, "Sending Invalidation Requests," in the Oracle
Application Server Web Cache Administrator’s Guide for further
information about sending basic and advanced invalidation requests,
as well as inline invalidations

Invalidation and Expiration

OracleAS Web Cache 7-13

Similarly, you can build invalidation into PL/SQL applications using the OracleAS
Web Cache PL/SQL invalidation API wxvutil.sql and wxvappl.sql. This way,
developers can embed the invocation of invalidation PL/SQL procedure calls into the
PL/SQL Web page.

To facilitate the caching of JSPs, developers can use the JESI custom tag library
included with OC4J and Oracle JDeveloper. One of the tags,<jesi:invalidate>,
enables programmatic invalidation when the JSP engine processes a page containing
this tag.

Alternatively, developers can tie invalidation logic to database updates. In the same
bike example, you can use a PL/SQL invalidation procedure call to invalidate pages
that rely on inventory data stored in the database. In other words, you can apply a
database trigger to the row or table containing information about the bike.

Implementation Details

7.6.3 Combine Invalidation and Expiration Policies to Keep Cache Content Fresh
With expiration, cached objects are marked as invalid after a certain amount of time in
the cache. Expirations are useful if you can accurately predict when content will
change on an origin server or database. To prevent objects from remaining in the cache
indefinitely, Oracle recommends creating expiration policies for all cached objects.

With invalidation, OracleAS Web Cache marks objects as invalid. When objects are
marked as invalid and a client requests them, they are removed and then refreshed
with new content from the origin servers. You can choose to remove and refresh
invalid objects immediately, or base the removal and refresh on the current load of the
origin servers. You can automate invalidation policies, as described in Section 7.6.2,
"Build Programmatic Invalidation Into Application Logic to Invalidate Dynamic
Content" on page 7-12.

7.6.4 Use Invalidation Propagation in Clusters to Improve Data Consistency
In a cache cluster, you can send invalidation messages to one cache, and that cache
propagates the invalidation messages to the other caches in the cluster or hierarchy.

The benefits of invalidation propagation include data consistency across cluster
members and ease of use for the administrator.

Under the following circumstances, you may want to disable invalidation propagation
and send the invalidation messages to each individual member of the cluster:

■ When the cluster membership is in flux. For example, as you begin deployment,
you may have made changes to cluster members but have not yet propagated the
configuration changes to all members. In this case, the invalidation messages are
not propagated to the members with different configurations.

■ If you do not want to invalidate data for all cluster members. For example, because
of time zone differences, you want to send invalidation messages to only some of
the cluster members at one time.

See Also:

■ Chapter 13, "Sending Invalidation Requests," in the Oracle
Application Server Web Cache Administrator’s Guide

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference. for further information about JESI

Optimizing Response Times

7-14 Oracle Application Server Best Practices Guide

If you do not invalidate data for all cluster members, the cached data may become
inconsistent. In addition, cluster members may serve stale data, not only in response to
requests from clients, but also in response to requests from their peers.

Implementation Details

7.7 Optimizing Response Times
The following sections describe best practices in optimizing response times:

■ Section 7.7.1, "Tuning Origin Server and OracleAS Web Cache Settings to Optimize
Response Time"

■ Section 7.7.2, "Use Compression to Improve Response Times and Reduce Network
Bandwidth"

■ Section 7.7.3, "Use Only Warning or Notification Logging Levels to Conserve
Resources"

7.7.1 Tuning Origin Server and OracleAS Web Cache Settings to Optimize Response
Time

If you have not configured the origin server or the cache correctly, response time may
be slower than anticipated. If the origin server is responding more slowly than
expected or if the origin server is not responding to requests from the cache because it
has reached its capacity, check the origin server and the OracleAS Web Cache settings.

Implementation Details
Check the values of the network-related parameters in OracleAS Web Cache and the
application Web server configuration file (httpd.conf).

If these resources are set reasonably, check the following:

■ Caching rules. Make sure that you are caching the appropriate objects including
popular objects.

■ Priority rankings of the caching rules. Give the non-cacheable objects a higher
priority than the cacheable objects.

■ The number of rules. If you have a large number of rules, parsing of rules will take
additional time.

If the settings for the origin server and OracleAS Web Cache are set correctly, but the
response times are still higher than expected, check system resources, especially:

■ Network bandwidth. See Section 7.4.2, "Allocate Sufficient Network Bandwidth to
Accommodate the Throughput Load" on page 7-6.

■ CPU usage. See Section 7.2.1, "Use Two CPUs and Consider Deploying on
Dedicated Hardware to Avoid Operating System Limitations" on page 7-2.

See Also: Chapter 13, "Sending Invalidation Requests," in the Oracle
Application Server Web Cache Administrator’s Guide

See Also: Section 7.6, "Tune Network-Related Parameters," in the
Oracle Application Server Performance Guide contains information on
how to set turning parameters in OracleAS Web Cache and the
application server

Optimizing Response Times

OracleAS Web Cache 7-15

■ The TCP time-wait setting. This setting controls the amount of time that the
operating system holds a port, not allowing new connections to use the same port.
See Section 7.6, "Tune Network-Related Parameters," in the Oracle Application
Server Performance Guide.

7.7.2 Use Compression to Improve Response Times and Reduce Network Bandwidth
OracleAS Web Cache features automatic compression of dynamically generated
content. On average, using the standard GZIP algorithm, OracleAS Web Cache is able
to compress text files, such as HTML and XML by a factor of four. Because compressed
objects are smaller in size, they require less bandwidth to transmit and can be
delivered faster to Web browsers. With compression, everyone benefits: Internet
Service Providers (ISPs), Hosting Service Provider (HSPs), corporate networks and
content providers reduce their transmission costs, while end-users enjoy more rapid
response times. Since 1997, all major Web browsers support the expansion of GZIP
encoded objects.

Most application Web servers on the market are capable of serving compressed pages,
but few enable caching of compressed output. With OracleAS Web Cache, compression
is a simple yes or no option that an administrator selects when specifying a caching
rule. Because OracleAS Web Cache supports regular expression for caching rules, you
can apply compression to responses using criteria other than just file extension.
Regular expression makes it very easy to select which pages to compress and which
pages not to compress, as well as whether or not a particular Web browser should
receive compressed content. Unlike the typical application Web server, OracleAS Web
Cache offers compression and caching for pages that have been dynamically generated
and for ESI fragments specified in a Surrogate-Control response header. By
caching compressed output, OracleAS Web Cache reduces the processing burden on
the application Web server, which would otherwise have to re-generate and compress
dynamic pages each time they are requested. Because compressed objects are smaller
in size, they are delivered faster to Web browsers with fewer round-trips, reducing
overall latency. In addition, compressed objects consume less cache memory.

Do not compress images, as well as executables and files that are already zipped with
utilities like WinZip and GZIP. Compressing these files incurs additional overhead
without the benefits of compression. Also, do not compress JavaScript includes (.js)
and Cascading Style Sheets (.css), as some Web browsers have difficulty expanding
these file types.

Implementation Details

7.7.3 Use Only Warning or Notification Logging Levels to Conserve Resources
You can specify the level of detail for the event log. The trace or debug levels are useful
for debugging purposes. Using either of these levels of event logging consumes
system resources. For example, the log file might fill up disk space, causing OracleAS
Web Cache to fail. Unless you need to diagnose problems, you should the Warning or
Notification levels. With these levels, OracleAS Web Cache writes only typical events
to the event log. Also, consider disabling access logging unless you are monitoring
end-user performance and access.

See Also: Chapter 12, "Creating Caching Rules," in the Oracle
Application Server Web Cache Administrator’s Guide for instructions
about how to enable compression, as well as a complete listing of
objects not compressed by OracleAS Web Cache

Optimizing Response Times

7-16 Oracle Application Server Best Practices Guide

Implementation Details

See Also: Chapter 15, "Using Diagnostics Tools," in the Oracle
Application Server Web Cache Administrator’s Guide for more
information about logging

Oracle Business Intelligence 8-1

8
Oracle Business Intelligence

This chapter describes best practices for business intelligence. It includes the following
topics:

■ Section 8.1, "Oracle Application Server Reports Services"

■ Section 8.2, "Oracle Business Intelligence Discoverer Best Practices"

8.1 Oracle Application Server Reports Services
This section describes best practices for Oracle Reports. It contains the following
topics:

■ Section 8.1.1, "Leverage High Availability to Replace Separate Clustering Solutions
for Each Component"

■ Section 8.1.2, "Design Your Paper Layout to Display Report Output in Microsoft
Excel"

■ Section 8.1.3, "Select Paper Layout to Control Pagination and Web Layout to
Control HTML Output"

■ Section 8.1.4, "Use Dynamic Environment Switching to Consolidate Reports
Servers"

8.1.1 Leverage High Availability to Replace Separate Clustering Solutions for Each
Component

A cluster is a virtual grouping of servers into a community for sharing the
request-processing load efficiently across members of the cluster.

Because modern IT environments require high availability of the entire IT
infrastructure, it is better to have a centralized high availability solution at the level of
the application server, instead of a separate clustering solution for each component.

OracleAS High Availability Solutions provides the industry’s most reliable, resilient,
and fault-tolerant application server platform. Oracle Reports integration with
OracleAS High Availability Solutions ensures that your enterprise-reporting
environment is extremely reliable and fault-tolerant. With OracleAS High Availability
Solutions providing a centralized clustering mechanism and several cutting-edge
features, clustering in Oracle Reports is now deprecated. If you are using Reports
Server clustering, switch to OracleAS High Availability Solutions in 10g Release 2
(10.1.2).

Implementation Details
To implement this best practice:

Oracle Application Server Reports Services

8-2 Oracle Application Server Best Practices Guide

1. Become familiar with the overview of enterprise deployment in the Oracle
Application Server Enterprise Deployment Guide.

An enterprise deployment is one of the Oracle Application Server configurations
described in this guide, designed to support large-scale, mission-critical business
software applications. The hardware and software in an enterprise deployment
configuration delivers several benefits, including high availability.

2. Become familiar with the overview of high availability and the Oracle Application
Server High Availability Solutions framework.

3. Set up high availability for the middle tier.

4. Set up high availability for Oracle Reports, and other middle tier components.

5. Follow the steps in the other chapters of Oracle Application Server High Availability
Guide to set up a complete high availability environment.

6. Optionally, configure Oracle Reports Services Server Targets in Application Server
Control Console.

This step is mandatory if you plan to use Secure Socket Layer (SSL) to execute
your reports.

This procedure completes the configuration for OracleAS High Availability
Solutions. You are now ready to execute your reports. Table 8–1 lists the
differences between running report requests using OracleAS High Availability
Solutions, and running report requests using Reports Server clustering.

See Also: Oracle Application Server High Availability Guide

See Also:

■ Chapter 3, "Middle-tier High Availability" in the Oracle Application
Server High Availability Guide

■ Chapter 4, "Managing and Operating Middle-tier High
Availability " in the Oracle Application Server High Availability Guide

See Also: Chapter 5, "High Availability for Middle-tier
Components," of the Oracle Application Server High Availability Guide

See Also: Chapter 8, "Installing and Configuring the
myBIFCompany Application Infrastructure," in the Oracle Application
Server Enterprise Deployment Guide

Oracle Application Server Reports Services

Oracle Business Intelligence 8-3

Table 8–2 compares Reports Server clustering with OracleAS High Availability
Solutions.

Table 8–1 Running Report Requests Using OracleAS High Availability Solutions

Method to Call Oracle
Reports

Using Reports Server Clustering (Before
10g Release 2 (10.1.2)

Using OracleAS High Availability
Solutions (In 10g Release 2 (10.1.2)

URL In the URL, specify the hostname and port
number of theOracle HTTP Server where the
cluster is running. You can specify the cluster
name in the URL using the command line
parameter:

server=clustername

In the URL, specify the hostname and
port number of the load balancer. The
load balancer subsequently redirects
the request to one of the nodes where
Reports Server is running. Therefore,
do not specify the Reports Server name
in the URL, so that the request is served
by the in-process server.

RUN_REPORT_OBJECT
(from OracleAS Forms
Services)

Specify the cluster name as the value for the
report object property REPORTS_SERVER.

Option 1: Start a Reports Server with
the same name as the Reports Server
cluster name. OracleAS Forms Services
code remains same as 10g Release 1
(9.0.4).

Option 2: Use the property REPORTS_
SERVERMAP to map the cluster name to
the Reports Server name, as described
in Section 3.4.19, "Specifying the
Network Configuration File," in the
Oracle Application Server Reports Services
Publishing Reports to the Web

OracleAS Forms Services code remains
the same as 10g Release 1 (9.0.4).

WEB.SHOW_DOCUMENT
(from OracleAS Forms
Services)

To get the job output with getjobid, specify
the Reports Server cluster name in the URL
using the command line option:

server=clustername

To get the job output with getjobid,
specify the Reports Server cluster name
in the URL using the command line
option:

server=clustername

Table 8–2 Feature Comparison of Reports Server Clustering and OracleAS High
Availability Solutions

Using Reports Server Clustering (Before
10g Release 2 (10.1.2)

Using OracleAS High Availability Solutions (In
10g Release 2 (10.1.2)

Load balancing: The load for report
requests is shared between multiple
Reports Servers. Reports Server may either
be on the same computer or on different
computers.

Load balancing: The load for report requests is
shared between multiple nodes of an OracleAS
Cluster, each node having one Reports Server.

Failover: If one Reports Server fails,
incoming jobs will be sent to other Reports
Servers in the cluster. Thus, the failure of
one Reports Server does not bring down
the cluster. When any Reports Server fails,
its current and scheduled jobs are not
transferred to other Reports Servers, and
these jobs are lost.

See Also: Section 1.2.1, "Terminology," of
the the Oracle Application Server High
Availability Guide

Failover: If one node containing a Reports Server
fails, incoming jobs will be sent to other nodes in
the OracleAS Cluster, and the Reports Server
running on that node will process the jobs. Thus,
the failure of one node does not bring down the
cluster. When any Reports Server fails, its current
and scheduled jobs are not transferred to other
Reports Server, and these jobs are lost.

Oracle Application Server Reports Services

8-4 Oracle Application Server Best Practices Guide

Component-based clustering: Reports
Server clustering provides benefits for
OracleAS Reports Services only. For
ensuring the high availability of other
components of OracleAS, you need set up
and maintain separate mechanisms.

High availability for OracleAS: One mechanism
provides high availability to the entire
application server, eliminating the need to set up
and maintain a unique high availability
mechanism for each application server
component.

Mechanism for detecting duplicate jobs:
When the cluster is identifying where an
upcoming scheduled or immediate request
should be processed, it considers whether
any Reports Server in the cluster has
information in cache that matches the
request. As a result, if the job has been
processed in the past by any Reports Server
in the cluster, the duplicate job request will
be sent to the same Reports Server. This
mechanism maximizes the usage of the
Reports Server cache.

Mechanism for detecting duplicate jobs: The
load balancer does not consider whether any
Reports Server has information in cache that
matches the request. If you want to maximize the
usage of Reports cache with the load balancer,
you will have to do manual configuration on the
load balancer that makes sure that requests with
the same URL are always sent to the same node.

See Also: Load balancer documentation for the
manual configuration steps

Consolidated view of the job queue:
When you use Reports Server clustering, it
is possible to view rwservlet Web
commands like showjobs for the entire
cluster. When you do this, you get a single
window to all the past, current, and
scheduled jobs on the cluster. As a result,
you can send a killjobid request to the
cluster, and it will route the request to the
same Reports Server that processed the
request.

Consolidated view of the job queue: You do not
get a single window to the job queue by default.
Instead, every Reports Server will show only its
own job queue. To get a consolidated view of the
jobs submitted to all the nodes, you can perform
the following steps:

1. Configure the job status repository for each
Reports Server using the
jobStatusRepository element in the
Reports Server configuration file.

Make sure that the
jobStatusRepository element is
configured to use the same repository in all
Reports Servers. This element stores the job
information for all Reports Servers in a
common table in the database.

See Also: Section 3.2.1.12,
"jobStatusRepository," in the Oracle
Application Server Reports Services Publishing
Reports to the Web

2. Write a custom application that can query
this table and show you a consolidated list
of jobs processed by all Reports Servers.

Note that operations like killjobid will
still work, since you will specify the option
server=server_name in the URL. As a
result, rwservlet will send the request to
the specified Reports Server.

Table 8–2 (Cont.) Feature Comparison of Reports Server Clustering and OracleAS High
Availability Solutions

Using Reports Server Clustering (Before
10g Release 2 (10.1.2)

Using OracleAS High Availability Solutions (In
10g Release 2 (10.1.2)

Oracle Application Server Reports Services

Oracle Business Intelligence 8-5

8.1.2 Design Your Paper Layout to Display Report Output in Microsoft Excel
Oracle Reports 10g Release 2 (10.1.2) introduces a new output format
DESFORMAT=SPREADSHEET, which enables you to generate output from paper layout
reports to HTML files, which you can directly open with Microsoft Excel 2000. Using
this output format, it is very easy to generate the output of your paper reports to files,
which you can open with Microsoft Excel. There are certain inherent differences
between SPREADSHEET output and paginated output formats, such as PDF. Due to
this reason, you may need special considerations in designing your report especially
for output to Excel, or if you want your paginated and your output in Excel to look
exactly alike. This section covers these special considerations.

Implementation Details
Suppose you create a simple report, such as a group-left employees report, in Reports
Builder using the Report Wizard, and add a bar graph using the Graph Wizard. If you
generate the output in PDF format, you will see the company logo, the report title,
background colors, and so on. If you generate the output of the same report in
spreadsheet output format and view the output in Excel, you will notice a few
differences between the Excel and PDF outputs, as seen in Figure 8–1 and Figure 8–2.

Figure 8–1 PDF Output of a Simple Report Created Using the Report Wizard

See Also:

■ Section "Deprecated Functionality" in whitepaper A Guide to
Changed Functionality between Oracle Reports 6i and 10g available
from the Oracle Technology Network at
http://www.oracle.com/technology/products/reports
/10gr2/Reports_guide_to_changed_functionality.pdf

■ Section 1.5.4, "Choosing a High Availability Environment," in
Oracle Application Server Reports Services Publishing Reports to the
Web for further information about the <environment> section of
the server configuration file

Oracle Application Server Reports Services

8-6 Oracle Application Server Best Practices Guide

Figure 8–2 Spreadsheet Output in Excel of a Simple Report Created Using the Report
Wizard

Table 8–3 describes the differences between the PDF and Excel outputs.

Oracle Application Server Reports Services

Oracle Business Intelligence 8-7

Additional Guidelines
Keep the following additional guidelines in mind for ensuring proper output in
Microsoft Excel:

■ Do not leave any space between two adjacent objects.

Any space, including a few pixels, between two adjacent objects will result in an
empty cell or column in Excel output. Figure 8–3 shows this result.

Figure 8–3 Empty Cells in Excel Output Due to Space Between Adjacent Cells

Table 8–3 PDF and Excel Output Differences

Difference Explanation Guideline

The company logo is
missing.

The report title is missing.

The Report Wizard creates the
company logo and the report title
in the page margin area. Since
spreadsheet-based applications
like Microsoft Excel do not have
a page or page margin concept,
the objects created in the report
margin area are ignored in
spreadsheet output.

Do not define any objects in the
page margin.

There are no page breaks. There are no page breaks in
Excel. Any formatting that you
do in Reports Builder to honor
the exact page boundaries will be
lost in the output to Excel.

Avoid any formatting that is
dependent on honoring of page
dimensions or page breaks.

The background colors
and font colors do not
exactly match those in PDF
output.

The color palette available in
Microsoft Excel does not match
the color palette of Reports
Builder. In fact, the current
versions of Microsoft Excel (2003
or earlier) are limited to the 40
colors that you see in the color
palette, and any color outside of
this palette is mapped to one of
these 40 colors. As a result, if you
use a color that is not exactly
represented in the Excel color
palette, Excel will do a closest
match to replace it with one of
the colors available in its color
palette. In some cases, this close
match may be not as close as you
would like it to be, and may
bring in an unwanted change in
the look-and-feel of the report.

Use colors that are available in
Microsoft Excel’s color palette.
Alternatively, you can manually
match the color palettes used in
Reports Builder and in Microsoft
Excel. To do this, you need to
define the colors available in
Microsoft Excel’s color palette
inside Reports Builder, and then
stick to only those colors in your
report.

See Also: Reports Builder Online
Help for more information on the
color palette. This help is also
available on Oracle Technology
Network at
http://www.oracle.com/te
chnology/products/report
s/index.html

Oracle Application Server Reports Services

8-8 Oracle Application Server Best Practices Guide

■ Make sure that the widths of all objects are vertically consistent.

If the objects are not exactly aligned vertically, that is, have inconsistent widths, it
is likely to result in insertion of unwanted cells/columns in Excel. Figure 8–4
shows this result.

Figure 8–4 Empty Cells in Excel Output Due to Failure to Align Cells Vertically

■ Make sure that the vertical elasticity of the frames and repeating frames is not
fixed unless you are sure you have allocated enough space to accommodate all the
records.

If you set the Vertical Elasticity property of a frame to Fixed, the output in Excel
will show only as many records as could appear on the first page of the paper
output. Since Excel does not have a page concept, it is not able to overflow the
remaining rows to the next page.

■ For reliable formatting of spreadsheet output, enclose the whole layout area in a
frame.

This action prevents the possibility of parallel objects displaying in different
vertical positions, one following the other.

Restrictions
Keep the following restrictions when using spreadsheet output:

■ The following paper layout objects are not supported in spreadsheet output:
graphic arc, polygon, rectangle, rounded rectangle, stretchable line, underlined
text, and OLE external object. (OLE objects are only applicable to reports
developed prior to Oracle9i Reports).

Space for these drawn objects is reserved, but there is no visible representation in
the output. This limitation does not apply to horizontal lines.

■ Graphs embedded in spreadsheet output are static image files, and are not
interactive.

Thus, the Graph Hyperlink property is not supported in spreadsheet output.

■ If you rotate a boilerplate object in the paper layout, the object will appear
horizontal in the spreadsheet output.

■ Images included in the paper layout of the report will appear in the spreadsheet
output on the browser, for example, using DESTYPE=CACHE or getjobid, only if
the Reports Server is running in non-secure mode.

In the case of a secure Reports Server, images will not appear in the spreadsheet
output on the browser. Generating images in the output involves multiple calls
from the browser to the Reports Server (one call for each image). Once the user is

Oracle Application Server Reports Services

Oracle Business Intelligence 8-9

authenticated, Oracle Reports passes the user's identity between the browser and
the secure Reports Server using cookies. Excel does not support cookies. As a
result, the call to the secure Reports Server seems like a call from a
non-authenticated user. Thus, the Reports Server refuses to pass on the images.
Images will appear correctly in the spreadsheet output if you generate the output
to any other destination, such as file, FTP, OracleAS Portal, or WebDAV.

■ XML-based bursting and distribution is not yet supported for SPREADSHEET
output format.

8.1.3 Select Paper Layout to Control Pagination and Web Layout to Control HTML
Output

In order to be able to serve the requirements of Oracle Reports customers that use J2EE
architecture for their enterprise applications, Oracle Reports introduced Web layout in
addition to the paper layout. The Web layout is completely code-based as opposed to
the paper layout, which is based on graphical frames, repeating frames, boilerplate
objects and so on. When Oracle Reports users need to deploy their reports on the Web,
they have two options:

■ Design the reports in paper layout and access the report in HTML/HTMLCSS
format

■ Design the Web layout and access the JSP

The paper layout offers you minute control over pagination. In case you would like to
generate HTML output, it also provides several properties that you can use to affect
the HTML code in the output. In spite of all its capabilities, this format does not offer
you full control over the look-and-feel of the HTML output. For example, if you want
to alter the width and other attributes of the table that shows your data, it can only be
done within the constraints of the graphical capabilities of the report layout designer,
and you may not be able to make full use of the HTML or CSS capabilities. The paper
layout is quite useful in situations when you do not want to hand-code your HTML
report, and you would like to present exactly the same report in HTML as in paginated
formats like PDF.

Because Web layout is code-based, it offers minute control over the HTML that
appears in the output. You can design your reports to look exactly like the rest of the
pages in your application. Using Java code inside the JSP report is more direct and
easier than in the paper layout because you have to use PL/SQL logic to call the Java
business logic. Once you have designed the report, you can package the JSP with the
rest of the application and deploy it on a J2EE application server. The Web layout is
useful when you plan to have a J2EE-based Web application and have expertise in
writing Java and HTML code. You can use Web application wizards, such as Oracle
Reports Wizard or Oracle Graph Wizard to generate JSP code for you. You will not
experience the full potential of a JSP report unless you have a JSP-based Web
application team.

See Also:

■ "About spreadsheet output" in the Reports Builder Online Help
for a complete list of features supported in spreadsheet output.
This help is also available on Oracle Technology Network at
http://www.oracle.com/technology/products/reports
/index.html

■ Section D.1.9, "Displaying Report Output in Microsoft Excel," in
the Oracle Application Server Reports Services Publishing Reports to
the Web

Oracle Business Intelligence Discoverer Best Practices

8-10 Oracle Application Server Best Practices Guide

8.1.4 Use Dynamic Environment Switching to Consolidate Reports Servers
Oracle Reports contains a feature called dynamic environment switching. Previously,
the Oracle Reports server could only serve reports that were compatible with the
operating environment in place when the Oracle Reports server was started. For
example, the reports had to be compatible with the value of the NLS_LANG parameter
at the time the Oracle Reports server was started. This restriction meant that you
needed to have one Oracle Reports server running for each processing language. The
new environment switching feature available in Oracle Reports eliminates this
restriction by enabling one instance of Oracle Reports server to serve reports with any
number of environment settings, including language.

Implementation Details
To use this feature, add as many <environment> tags in the Oracle Reports server
configuration file as needed. Each of these tags can have values such as the NLS_LANG
setting, a currency symbol, or a calendar. When processing a job, use the EnvID
parameter in the command line to specify which <environment> setting you want to
use. The Oracle Reports server reads the relevant environment settings from the
configuration file, and if an engine is not already running with these settings, a new
engine is started. The new engine, started with appropriate environment settings, will
be used to process the job.

8.2 Oracle Business Intelligence Discoverer Best Practices
This section describes best practices for OracleBI Discoverer. It contains the following
sections:

■ Section 8.2.1, "Identify Worksheets That Need Tuning to Improve Performance"

■ Section 8.2.2, "Establish Scalability to Share the Workload"

8.2.1 Identify Worksheets That Need Tuning to Improve Performance
The performance of an OracleBI Discoverer system refers to the time OracleBI
Discoverer takes to complete a specific operation. The operation that most users are
concerned with is the running of a worksheet - the execution of a query and display of
the data. OracleBI Discoverer worksheet performance is largely determined by how
well the database has been designed and tuned for queries.

You can achieve additional performance benefits when reporting on relational data by
designing your Business Areas and Worksheets with performance in mind. You can
use the Discoverer EUL Status workbooks to identify worksheets that may need
additional tuning.

See Also: Oracle Application Server Reports Services Publishing Reports
to the Web for further information about the <environment> section
of the server configuration file

See Also: The following documents in the Oracle Database
documentation library:

■ Oracle Database Data Warehousing Guide

■ Oracle Database Performance Tuning Guide

■ Oracle OLAP Applicaton Developer’s Guide

Oracle Business Intelligence Discoverer Best Practices

Oracle Business Intelligence 8-11

8.2.2 Establish Scalability to Share the Workload
The scalability of an OracleBI Discoverer installation refers to the ability of OracleBI
Discoverer to handle increasing numbers of users or queries without compromising
performance. To take advantage of the inherently scalable architecture of OracleBI
Discoverer, install it on multiple computers and share the workload between the
computers as the number of users increase.

See Also:

■ Oracle Business Intelligence Discoverer Configuration Guide

■ Oracle Business Intelligence Discoverer Administration Guide from the
Business Intelligence Tools product CD for further information
about migrating EUL data

See Also:

■ Oracle Business Intelligence Discoverer Configuration Guide,
especially Chapters 5, 7, 8, and 12 regarding optimizing
performance and scalability of OracleBI Discoverer

■ Capacity Planning Sizing Guide and Capacity Planning Sizing
Calculator available from the Oracle Technology Network at
http://www.oracle.com/technology/products/discove
rer/index.html

Oracle Business Intelligence Discoverer Best Practices

8-12 Oracle Application Server Best Practices Guide

Platform Security and Identity Management 9-1

9
Platform Security and Identity Management

This chapter describes security and management best practices for Oracle Application
Server. It includes the following topics:

■ Section 9.1, "General Best Practices"

■ Section 9.2, "Oracle Application Server Java Authentication and Authorization
Service (JAAS) Provider Best Practices"

■ Section 9.3, "J2EE Security Best Practices"

■ Section 9.4, "OracleAS Single Sign-On Best Practices"

■ Section 9.5, "Oracle Internet Directory Deployment Best Practices"

9.1 General Best Practices
This section describes general best practices for security and management. It includes
the following topics:

■ Section 9.1.1, "HTTPS Best Practices"

■ Section 9.1.2, "Assign Lowest-Level Privileges Adequate for the Task to Contain
Security Leaks"

■ Section 9.1.3, "Cookie Security Best Practices"

■ Section 9.1.4, "Systems Setup Best Practices"

■ Section 9.1.5, "Certificates Use Best Practices"

■ Section 9.1.6, "Review Code and Content Against Already Known Attacks to
Minimize the Attack Recurrence"

■ Section 9.1.7, "Firewall Best Practices"

■ Section 9.1.8, "Leverage Declarative Security"

■ Section 9.1.9, "Use Switched Connections in DMZ"

■ Section 9.1.10, "Place Application Server in the DMZ to Prevent Security Issues"

■ Section 9.1.11, "Use Secure Sockets Layer Encryption to Secure LDAP and HTTP
Traffic"

■ Section 9.1.12, "Tune the SSLSessionCacheTimeout Directive to Meet Your
Application Needs"

■ Section 9.1.13, "Plan Out The Final Topology Before Installing Oracle Application
Server Security Components"

General Best Practices

9-2 Oracle Application Server Best Practices Guide

9.1.1 HTTPS Best Practices
The following are recommended for using HTTPS with Oracle Application Server:

■ Configure Oracle Application Server to fail attempts that use weak encryption.
You can configure Oracle Application Server to use only specific encryption
ciphers for HTTPS connections. Connections from all old Web browsers that have
not upgraded the client-side Secure Sockets Layer (SSL) library to 128-bit can be
rejected. This functionality is especially useful for banks and other financial
institutions because it provides server-side control of the encryption strength for
each connection.

■ Use HTTPS to HTTP appliances for accelerating HTTP over SSL. Huge
performance overhead of HTTPS forces a trade-off in some situations. Use of
HTTPS to HTTP appliances can change throughput from 20 to 30 transactions for
each second on a 500 MHz Unix to 6000 transactions for each second for a
relatively low cost, making this trade-off decision easier. This solution is better
than math and crypto cards, which can be added to UNIX, Windows NT, and
Linux computers.

■ Ensure that sequential HTTPS transfers are requested through the same Web
server. Expect 40/50 milliseconds CPU time for initiating SSL sessions on a 500
MHz computer. Most of this CPU time is spent in the key exchange logic, where
the bulk encryption key is exchanged. Caching the bulk encryption key will
significantly reduce CPU overhead on subsequent access, provided that the access
is routed to the same Web server.

■ Keep secure pages and pages not requiring security on separate servers. While it
may be easier to place all pages for an application on one HTTPS server, the
resulting performance cost is very high. Reserve your HTTPS server for pages that
require SSL. Put pages that do not require SSL on an HTTP server.

If secure pages are composed of many GIF, JPEG, or other files that would be
displayed on the same screen, it is probably not worth the effort to segregate
secure from non-secure static content. The SSL key exchange (a major consumer of
CPU cycles) is likely to be called exactly once in any case, and the overhead of
bulk encryption is not that high

9.1.2 Assign Lowest-Level Privileges Adequate for the Task to Contain Security Leaks
When assigning privileges to modules, use the lowest levels adequate to perform the
modules functions. This assignment is essentially fault containment, that is, if security
is compromised, it is contained within a small area of the network and cannot invade
the entire intranet.

9.1.3 Cookie Security Best Practices
Use the following as guidelines for cookies:

■ Make sure that cookies have proper expiration dates. Permanent cookies should
have relatively short expiration dates of about three months or less. This
configuration will avoid cluttering client Web browsers, which may cause errors if
the Web browser cannot transmit all the valid cookies. Set non-permanent cookies
to expire when the relevant application exits.

■ Make sure that information in cookies contains Method Authentication. Use
authentication to ensure that cookie data has not been changed since the
application set the data. This authentication helps ensure that the cookie cannot be

General Best Practices

Platform Security and Identity Management 9-3

modified and deceive the application. Also, this helps prevent application failures
if the cookie is inadvertently corrupted.

■ Make sure that the size and varieties of cookies are kept low. There is a finite
number and aggregate size of cookies that Web browsers support. If this is
exceeded, then the Web browsers will not send all the relevant cookies leading to
application failures. Also, very large cookies can result in performance
degradation.

■ Carefully use cookie domain name facilities. Use of cookie domains should
ensure that the domain is the smallest possible. Making the domain oracle.com,
for instance, would mean that any host in oracle.com would get the cookie.
With hundreds of applications on different parts of oracle.com, a domain of
oracle.com for each of them results in attempts to send hundreds of cookies for
each HTTP input operation.

9.1.4 Systems Setup Best Practices
Use the following as guidelines for system setup:

■ Apply all relevant security patches. Check MetaLink
(http://metalink.oracle.com) and OTN
(http://www.oracle.com/technology/index.html) for current security
alerts. Many of these patches address publicly announced security issues.

■ When deploying software, change all default passwords and close accounts used
for samples and examples.

■ Remove unused services from all hosts. Examples of unused services are FTP,
SNMP, NFS, BOOTP, and NEWS. HTTP or WebDAV may be good alternatives.

■ Limit the number of people with root and administrative privileges.

■ In UNIX, disable the "r" commands if you do not need them. For example,
rhost and rcp.

9.1.5 Certificates Use Best Practices
Use the following guidelines when using certificates:

■ Ensure that certificate organization unit plus issuer fields uniquely identify the
organization across the Internet. One way to accomplish this would be to include
the Dun and Bradstreet or IRS identification as identification for the issuer and the
organizational unit within the certificate.

■ Ensure that certificate issuer plus distinguished name uniquely identify the
user. If the combination of issuer and distinguished name is used as identification,
there is no duplication risk.

■ Include expiring certificates in tests of applications using certificates. Expiration
is an important consideration for a number of reasons. Unlike most
username/password-based systems, certificates expire automatically. With longer
duration certificates, fewer re-issues are required, but revocation lists become
larger.

In systems where certificates replace traditional usernames/passwords, expiring
certificate situations may result in unexpected bugs. Careful consideration of the
effects of expiration is required and new policies will have to be developed
because most application and infrastructure developers have not worked in
systems where authorization might change during transactions.

General Best Practices

9-4 Oracle Application Server Best Practices Guide

■ Use certificate re-issues to update certificate information. Because certificates
expire, infrastructure for updating expired certificates will be required. Take
advantage of the re-issue to update organizational unit or other fields. In cases of
mergers, acquisitions, or status changes of individual certificate holders, consider
re-issuing even when the certificate has not yet expired. But pay attention to key
management. If the certificate for a particular person is updated before it expires,
for example, put the old certificate on the revocation list.

■ Audit certificate revocations. Revocation audit trails can help you reconstruct the
past when necessary. An important example is replay of a transaction to ensure the
same results on the replay as during the original processing. If the certificate of a
transaction participant was revoked between the original and the replay, failures
may occur. These errors may not have occurred when the original transaction was
processed. For these cases, view the audit trail to simulated authentication at the
time when the transaction was initially processed.

9.1.6 Review Code and Content Against Already Known Attacks to Minimize the Attack
Recurrence

It is quite common for viruses or known attacks to resurface in slightly altered shape
or form. Thus, just because a threat has been apparently eliminated does not mean it
will not resurface. Use the following as guidelines to minimize the recurrence of the
threat:

■ Ensure that programs are reviewed against double encoding attacks. There area
many cases where special characters, such as <, >, | are encoded to prevent
cross-site scripting attacks or for other reasons. For example, < might be
substituted for >. In a double encoding, the attacker might encode the & so that
later decoding might involve the inadvertent processing of a >, <, or | character as
part of a script. Prevention of this attack, unfortunately, can only be provided by
careful program review. You can use some utilities to filter escape characters that
might result in double-encoding problems in later processing.

■ Ensure that programs are reviewed against buffer overflow for received data.

■ Ensure that programs are reviewed against cross-site scripting attacks. This
attack typically tricks HTML and XML processing through input from Web
browsers (or processes that act like Web browsers) to invoke scripting engines
inappropriately. However, it is not limited to the Web technologies, and you
should evaluate all code for this.

9.1.7 Firewall Best Practices
The following are some common recommended practices pertaining to firewalls; while
not unique to Oracle Application Server, these are important to overall Oracle
Application Server security:

■ Place servers providing Internet services behind an exterior firewall of the stateful
inspection type. Stateful inspection means that the firewall keeps track of various
sessions by protocol and ensures that illegal protocol transitions are disallowed
through the firewall. This configuration blocks the types of intrusion that exploit
illegal protocol transitions.

■ Set exterior firewall rules to allow Internet-initiated traffic only through specific IP
and PORT addresses where SMTP, POP3, IMAP, or HTTP services are running.
Some protocols, such as IIOP, leave ports open without receiving processes. Port
and IP combinations that are not assigned to running programs should not be
permitted.

General Best Practices

Platform Security and Identity Management 9-5

■ Set interior firewall rules to allow messages through to the intranet only if they
originate from servers residing on the perimeter network. All incoming messages
must first be processed in the perimeter network.

■ Send outgoing messages through proxies on the perimeter network.

■ Do not store the information of record on bastion hosts. Bastion hosts are fortified
servers on the perimeter network. Segment information and processing such that
the bastion hosts provide initial protocol server processing and generally do not
contain information of a sensitive nature. The database of record and all sensitive
processing should reside on the intranet.

■ Disallow all traffic types unless specifically allowed. allow only the traffic required
by Oracle Application Server for better security. For example, HTTP, AJP, OCI,
LDAP.

9.1.8 Leverage Declarative Security
Oracle HTTP Server has several features that provide security to an application
without requiring the application to be modified. Leverage or evaluate these features
before programming similar functionality as those features into the application.
Specifically:

■ Authentication: Oracle HTTP Server can authenticate users and pass the
authenticated user-id to an application in a standard manner. It also supports
single sign-on, thus reusing existing login mechanisms.

■ Authorization: Oracle HTTP Server has directives that can allow access to your
application only if the end user is authenticated and authorized. Again, no code
change is required.

■ Encryption: Oracle HTTP Server can provide transparent SSL communication to
end customers without any code change on the application.

Leverage these three features before designing any application-specific security
mechanisms.

9.1.9 Use Switched Connections in DMZ
Oracle recommends that all DMZ attached devices be connected by switched, not
bussed connections. Furthermore, devices such as the Cisco 11000 series devices,
which can provide IP, port, and protocol rules between each pair of connected devices
are preferred.

9.1.10 Place Application Server in the DMZ to Prevent Security Issues
Application servers should exist in the DMZ. In this architecture OracleAS Web Cache
only forwards requests to computers containing Web servers. Web servers only
forward requests to application servers or through PL/SQL to database servers. The
application servers only forward inward requests to the database or, perhaps, special
message processing processors in the intranet. This configuration provides excellent
fault containment because a compromised Web server must somehow compromise an
application server before the database can be attacked.

9.1.11 Use Secure Sockets Layer Encryption to Secure LDAP and HTTP Traffic
You can use Secure Sockets Layer (SSL) encryption to secure both LDAP and HTTP
traffic that passes between the various components of the Oracle Application Server.
To ensure that all LDAP queries being sent to Oracle Internet Directory are

Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider Best Practices

9-6 Oracle Application Server Best Practices Guide

SSL-encrypted, you need to configure your Oracle Internet Directory instance to run
with a configuration set that supports only SSL-encrypted LDAP connections. The
default mode installed with Oracle Application Server allows a given Oracle Internet
Directory instance to be configured to listen on both SSL and non-SSL ports.

SSL encryption is unrelated to the installation or use of HTTPS, which allows users to
access Oracle Application Server components over HTTP while using SSL to encrypt
Web client packets.

9.1.12 Tune the SSLSessionCacheTimeout Directive to Meet Your Application Needs
The Apache server in Oracle Application Server caches a client SSL session
information by default. With session caching, only the first connection to the server
incurs high latency.

In a simple test to connect and disconnect to an SSL-enabled server, the elapsed time
for five connections was approximately 11.4 seconds without SSL session caching as
opposed to approximately 1.9 seconds when session caching was enabled.

The default SSLSessionCacheTimeout is 300 seconds. Note that the duration of a
SSL session is unrelated to the use of HTTP persistent connections. You can change the
SSLSessionCacheTimeout directive in httpd.conf file to meet your application
needs.

9.1.13 Plan Out The Final Topology Before Installing Oracle Application Server Security
Components

Consult the Oracle Application Server Enterprise Deployment Guide and the Oracle Identity
Management Concepts and Deployment Planning Guide documents when planning out the
final target topology. Identify the steps in installing and configuring the various Oracle
Application Server components consistent with the options of the Oracle Universal
Installer, rather than approaching the desired topology on an adhoc basis.

9.2 Oracle Application Server Java Authentication and Authorization
Service (JAAS) Provider Best Practices

Oracle Application Server provides an implementation of OracleAS JAAS Provider for
J2EE applications that is fully integrated with J2EE declarative security. This
implementation allows J2EE applications to take advantage of the JAAS constructs,
such as principal-based security and pluggable login modules. Optionally, the
OracleAS JAAS Provider implementation allows J2EE applications running on OC4J to
leverage the central security services of Oracle Identity Management.

9.3 J2EE Security Best Practices
This section describes J2EE security best practices. It includes the following topics:

■ Section 9.3.1, "Avoid Writing Custom User Managers and Instead Use Included
APIs to Focus Time on Business Logic"

■ Section 9.3.2, "Use the Authentication Mechanism with the JAAS Provider to
Leverage Benefits"

■ Section 9.3.3, "Use Fine-Grained Access Control"

See Also: Oracle Internet Directory Administrator’s Guide for more
details on configuring Oracle Internet Directory instances with SSL

J2EE Security Best Practices

Platform Security and Identity Management 9-7

■ Section 9.3.4, "Use Oracle Internet Directory as the Central Repository to Provide
LDAP Standard Features"

■ Section 9.3.5, "Develop Appropriate Logout Functionality to Prevent Users from
Closing the Web Browsers"

9.3.1 Avoid Writing Custom User Managers and Instead Use Included APIs to Focus
Time on Business Logic

The OC4J container continues to provide several methods and levels of extending
security providers. You can extend the UserManager class to build a custom user
manager that enables you to leverage the functionality provided by the OracleAS
JAAS Provider. Both OracleAS Single Sign-On and Oracle Internet Directory provide
APIs to integrate with external authentication servers and directories respectively, thus
allowing developers more time to focus on actual business logic instead of
infrastructure code.

9.3.2 Use the Authentication Mechanism with the JAAS Provider to Leverage Benefits
OC4J allows different authentication options for J2EE applications. Oracle
recommends leveraging the OracleAS Single Sign-On server whenever possible for the
following reasons:

■ It is the default mechanism for most Oracle Application Server components such
as OracleAS Portal, OracleAS Forms Services, OracleAS Reports Services, and
OracleAS Wireless.

■ It is easy to setup in a declarative fashion and does not require any custom
programming.

■ It provides a seamless way for PKI integration.

For environments where OracleAS Single Sign-On is not available, and custom
authentication is required, one should use JAAS-compliant LoginModules to extend
OC4J authentication. When using LoginModules, it is important to only use
application relevant principals (roles) associated with the authenticated subject to
preserve least privilege.

9.3.3 Use Fine-Grained Access Control
Unlike the coarse-grained J2EE authorization model as it exists today, the OracleAS
JAAS Provider integrated with OC4J allows any protected resource to be modeled
using Java permissions. The Java permission model (and associated Permission
class) is extensible and allows a flexible way to define fine-grained access control.

For example, you can write a servlet with Subject.doAs or
Subject.doPrivileged to control code that executes sensitive operations.

9.3.4 Use Oracle Internet Directory as the Central Repository to Provide LDAP Standard
Features

Although the OracleAS JAAS Provider supports a flat-file XML-based repository
useful for development and testing environments, configure it to use Oracle Internet
Directory for production environments. Oracle Internet Directory provides LDAP
standard features for modeling administrative metadata and is built on the Oracle
database platform inheriting all of the database properties of scalability, reliability,
manageability, and performance. To optimize performance, adjust the caching
configurations appropriate for your environment.

OracleAS Single Sign-On Best Practices

9-8 Oracle Application Server Best Practices Guide

9.3.5 Develop Appropriate Logout Functionality to Prevent Users from Closing the Web
Browsers

Simple J2EE applications using HTTP Basic authentication do not support the concept
of logout, relying instead on the user to close the Web browser. When using other
forms of authentication, including OracleAS Single Sign-On, it is important to plan out
various logout and timeout flows. OC4J has an adjustable HTTP session inactivity
parameter that is set to 20 minutes by default. If J2EE applications are leveraging
OracleAS Single Sign-On and want to support full logout functionality, write them
with the appropriate logout dynamic directives.

9.4 OracleAS Single Sign-On Best Practices
This section describes Oracle Application Server Single Sign-On (OracleAS Single
Sign-On) best practices. It features the following topics:

■ Section 9.4.1, "Configure for High Availability to Prevent Inaccessible
Applications"

■ Section 9.4.2, "Leverage OracleAS Single Sign-On to Optimize Administration and
Customer Experience"

■ Section 9.4.3, "Use an Enterprise-Wide Directory to Eliminate User Data in
Multiple Systems"

■ Section 9.4.4, "Use OracleAS Single Sign-On to Validate User Credentials"

■ Section 9.4.5, "Always Use SSL with Oracle Application Server to Protect
Applications"

■ Section 9.4.6, "Provide Username and Password Only on Login Screen to Prevent
Users from Providing Credentials to Inappropriate Servers"

■ Section 9.4.7, "Log Out to Prevent Active Cookies"

9.4.1 Configure for High Availability to Prevent Inaccessible Applications
Single sign-on failure is catastrophic, since it means no single sign-on protected
application can be accessed. Two recommendations for high availability of OracleAS
Single Sign-On are:

■ Carefully consider inclusion of any other types of processing on the single sign-on
servers since this can make instability more likely.

■ Consider deploying multiple single sign-on servers fronted by load balancing
hardware to protect against failures in single sign-on listeners. In this case, the
address of the load balancer is used as the single sign-on address and the single
sign-on listener configuration information is replicated. Oracle also recommends
that the database be a RAC configured for additional improvements in availability.

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide.

See Also: Whitepaper Expose your Intranet Portal to the Outside World
in a Secured Manner available from the Oracle Technology Network at
http://www.oracle.com/technology/index.html for
configuring multiple single sign-on servers

OracleAS Single Sign-On Best Practices

Platform Security and Identity Management 9-9

9.4.2 Leverage OracleAS Single Sign-On to Optimize Administration and Customer
Experience

Use OracleAS Single Sign-On as the primary point of security. This component
provides benefits from an administrative point of view and is a major convenience to
application customers. Also, OracleAS Single Sign-On is well integrated with the rest
of Oracle Application Server Infrastructure and can, with Oracle Internet Directory
and other means, be integrated with non-Oracle application and infrastructure. Also,
as single sign-on becomes a single point for authentication, opportunities to attack the
multiple authentication entities of sites today are reduced.

OracleAS Single Sign-On single authenticated user for all applications allows better
control for more uniform authorization.

9.4.3 Use an Enterprise-Wide Directory to Eliminate User Data in Multiple Systems
In order to deploy an effective single sign-on solution, the user population must be
centralized in a directory, preferably an LDAP-based directory, such as Oracle Internet
Directory. Having users represented in multiple systems, such as in multiple Microsoft
Windows NT domains, makes setting up the infrastructure for a common identity
more difficult. In addition, clearly defining and automating the user provisioning
process makes managing the single sign-on environment much easier.

9.4.4 Use OracleAS Single Sign-On to Validate User Credentials
OracleAS Single Sign-On provides the infrastructure to validate credentials and allows
for various different authentication mechanisms, such as username, password, and
X.509 certificates. Moreover, since these mechanisms can be shared across different
applications and Web sites, end users do not have to create a new username, password
for each different corporate application.

9.4.5 Always Use SSL with Oracle Application Server to Protect Applications
The OracleAS Single Sign-On server simplifies user interaction by providing a
mechanism to have a single username and password, which can be used by multiple
partner applications. With this ease of use, comes the caution that the single sign-on
server should always be accessed in the correct fashion. A breach of the common
password can now put all partner applications at risk. Therefore, always configure the
single sign-on server to allow connections in SSL mode only. This configuration
protects the end user's credentials going across the wire. Applications where security
and data confidentiality are important should also be protected by SSL. From a
performance perspective, use of SSL hardware accelerators is recommended.

9.4.6 Provide Username and Password Only on Login Screen to Prevent Users from
Providing Credentials to Inappropriate Servers

The OracleAS Single Sign-On server provides a standard login screen. This login page
is serviced from the single sign-on server, which typically is installed on a different
computer from the one the end user is trying to access. Thus, it is critical that before
the end user enters their login and password, that a valid single sign-on screen is
observed. This screen prevents users from unknowingly providing their username or
password to inappropriate servers.

Oracle Internet Directory Deployment Best Practices

9-10 Oracle Application Server Best Practices Guide

9.4.7 Log Out to Prevent Active Cookies
Most users do not log out of Internet applications and this issue creates problems at
two levels:

1. A security risk. Another person accessing the work station can now reuse the
cookie. Also, since the session remains valid until it times out, a hacker from
another computer has a longer time window to guess the session ID or cookie
value.

2. The system resources on the server associated with the cookie are not released
until the session is ended or invalidated.

For application developers and administrators, configure single sign-on session
duration and inactivity timeouts appropriately. For example, configure one-hour
inactivity timeouts for sensitive applications.

For external applications, OracleAS Single Sign-On is unable cannot logout users.
Therefore, closing all Web browser windows is important.

9.5 Oracle Internet Directory Deployment Best Practices
This section describes Oracle Internet Directory deployment best practices. It includes
the following topics:

■ Section 9.5.1, "Use bulkload.sh Utility to Bootstrap System"

■ Section 9.5.2, "Replicate to Provide High Availability"

■ Section 9.5.3, "Use SSL Binding to Secure Traffic"

■ Section 9.5.4, "Use Backup and Restore Utilities to Secure Data"

■ Section 9.5.5, "Monitor and Audit Oracle Internet Directory to Improve
Availability"

■ Section 9.5.6, "Assign Oracle Internet Directory Privileges to Limit Access"

■ Section 9.5.7, "Change Access Control Policies to Control User Administration"

■ Section 9.5.8, "Best Practice for Directory Integration Platform"

■ Section 9.5.9, "Incorporate Group Assignment During User Creation to Avoid
Multiple Steps"

■ Section 9.5.10, "Use opmnctl instead of oidmon and oidctl to Manage Processes"

■ Section 9.5.11, "Configure Active Directory Synchronization"

■ Section 9.5.12, "Use User Attributes and Password Hints to Make Resetting
Credentials Easier"

Additionally, Oracle also recommends the following documentation for deployment of
Oracle Internet Directory:

■ Oracle Internet Directory Administrator’s Guide

■ Oracle Application Server Administrator’s Guide

■ Oracle Identity Management Concepts and Deployment Planning Guide

■ Oracle Process Manager and Notification Server Administrator’s Guide

■ Oracle Application Server Single Sign-On Administrator’s Guide

Oracle Internet Directory Deployment Best Practices

Platform Security and Identity Management 9-11

9.5.1 Use bulkload.sh Utility to Bootstrap System
The bulkload.sh utility checks standard LDIF formatted files for schema violations
and duplicates, and generates SQL*Loader intermediate files for fast loading into the
database tables underlying Oracle Internet Directory. Use the bulkload.sh utility
whenever there is an initial bootstrap required. For example, when setting up
synchronization with Microsoft Active Directory or other LDAP directory servers.

Oracle recommends passing the LDIF file output from third-party LDAP directories
into bulkload.sh -check mode, which will alert you to any problems with your
existing LDAP schema.

Most third-party LDAP directories (including Oracle Internet Directory) support
output to LDIF without any operational attributes (which typically cannot be loaded
into another vendor's directory). If you are loading data into Oracle Internet Directory
from another directory, which does not support this, you will have to manually
remove any operational attributes prior to sending the LDIF file to bulkload.sh
-generate mode.

If your input LDIF file is from another Oracle Internet Directory instance, then you
must use the -restore option to bulkload.sh to preserve these operational
attributes as is during the bulkload.

9.5.2 Replicate to Provide High Availability
Oracle Internet Directory supports both multimaster and fan-out styles of directory
replication.

For high availability, consider placing an Oracle Internet Directory multimaster
replication group behind a network load balancer to provide a single IP address to
your LDAP client applications. If a replicated node becomes unavailable, you can
configure the load balancer to re-route requests automatically to an available server.

Additionally, each Oracle Internet Directory node can run on Oracle Application
Server RAC, further improving availability through increased database uptime and
data availability.

9.5.3 Use SSL Binding to Secure Traffic
SSL is considered the Internet standard protocol for highly secure transportation of
data. In addition to the strong PKI authentication using digital certificates, SSL also
provides multiple data integrity and data encryption layers to protect your
communication channels. SSL provides multiple cipher suites with varieties of
encryption algorithms for many security levels.

Oracle Internet Directory supports three SSL authentication modes:

1. Confidentiality mode (no-authentication mode)

In this mode, SSL cipher suites use the Diffie-Hellman algorithm to generate a
session key for client or server at run time. The session key will be used to encrypt

See Also: Chapter 4, "Oracle Internet Directory Data Management
Tools," in the Oracle Identity Management User Reference

See Also: Chapter 3, "Oracle Internet Directory Management
Planning," in the Oracle Identity Management Concepts and Deployment
Planning Guide for more details about configuring Oracle Internet
Directory for high availability

Oracle Internet Directory Deployment Best Practices

9-12 Oracle Application Server Best Practices Guide

the communication channel. No server or user SSL wallet is necessary. In this
mode, the channel will be encrypted using a Diffie-Hellman key.

2. Server Authentication only mode

This mode essentially uses certificates for authentication. The client needs to verify
the server certificate. This mode is most commonly used in the Internet
environment since any client that needs to communicate with aa SSL server does
not require a certificate. A client can use their user and password identification to
authenticate itself to the server. The username and password are protected by SSL
encryption when being transferred on the wire.

3. Server and Client Authentication mode (Mutual authentication)

In this mode, both client and server use RSA certificates to authenticate each other.
First, the client authenticates the server by validating its certificate. In return, the
server also requires the client to send its certificate to prove its authenticity.

In addition to choosing an authentication mode, you should choose appropriate
security algorithms.

9.5.4 Use Backup and Restore Utilities to Secure Data
Depending on your Oracle Application Server enterprise topology, you may want to
consider backing up Oracle Internet Directory as part of backing up your entire
application server environment.

9.5.5 Monitor and Audit Oracle Internet Directory to Improve Availability
You can monitor and audit Oracle Internet Directory in one of three ways:

1. The Oracle Enterprise Manager LDAP page provides a very simple way to
monitor the LDAP service and determine if it is up and running under its
associated load.

2. You can also check the log files of various LDAP processes to ensure there are no
errors showing up.

3. LDAP audit log service provides more granular information such as security
violation information or sensitive events. You can further customize the audit log
to specific directory operations and events.

Oracle recommends that you perform, at the very least, a weekly review of the audit
and error logs. System administrators can do a more regular review with Enterprise
Manager to provide better availability.

See Also: Chapter 13, "Secure Sockets Layer (SSL) and the
Directory," in the Oracle Internet Directory Administrator’s Guide

See Also:

■ Chapter 11, "Backup and Restoration of a Directory," in the Oracle
Application Server Administrator’s Guide before deciding on an
overall backup and recovery strategy for all of your Oracle
Identity Management Infrastructure component

■ Chapter 19, "Introduction to Backup and Recovery," in the Oracle
Application Server Administrator’s Guide for general application
server backup and recovery strategies

Oracle Internet Directory Deployment Best Practices

Platform Security and Identity Management 9-13

9.5.6 Assign Oracle Internet Directory Privileges to Limit Access
While it is possible to install Oracle Application Server as an Oracle Internet Directory
super user, Oracle recommends that this not be done, as it imparts more privileges
than required.

To install Oracle Application Server, a user needs to be a member and owner of the
Oracle Application Server administrator’s group.

When installing Oracle Application Server, the directory administrator should add the
installation user as a member and owner of the administrator’s group. The
administrator should then remove the member as the owner once the installation has
completed.

9.5.7 Change Access Control Policies to Control User Administration
Oracle Internet Directory administrators should change the default access control
policies to better control user administration as required.

Oracle Internet Directory administrators should adjust the default access control and
password policies using Oracle Directory Manager, in accordance with specific
administrative policies for directory access and passwords. This adjustment includes
both value and state parameters.

9.5.8 Best Practice for Directory Integration Platform
This section includes the following topics:

■ Section 9.5.8.1, "Use Identity Management Realms to Build Connectivity Between
Oracle Internet Directory and Third-Party Directories"

■ Section 9.5.8.2, "Configure Synchronization Service to Enable Users to Interact
with Deployed Applications"

■ Section 9.5.8.3, "Synchronize Oracle Human Resources and Oracle Internet
Directory to Provide Access to OracleAS Single Sign-On and Oracle Delegated
Administration Services"

9.5.8.1 Use Identity Management Realms to Build Connectivity Between Oracle
Internet Directory and Third-Party Directories
Use Oracle Directory Integration and Provisioning to build connectivity between
Oracle Internet Directory and third-party directories. This feature provides seamless
integration with other Oracle products. It enables the Oracle products to work in the
presence of third-party directories in the enterprise and also provides sharing with the
same identities in other directories.

You can join or unify the different identities for the same enterprise user from multiple
LDAP directories into a single global identity in Oracle Internet Directory using Oracle
Directory Integration and Provisioning. Oracle Directory Integration and Provisioning
facilitates a true single sign-on environment in an enterprise using Oracle Internet
Directory and Oracle Application Server Single Sign-On.

Oracle Internet Directory supports representation of multiple applications and
multiple realms or administration Contexts in the Oracle Internet Directory. You can
provision various enterprise applications for a single or multiple realms. There are
automated tools to create new realms and to provision applications for various realms.

See Also: Chapter 12, "Directory Security Concepts " in the Oracle
Internet Directory Administrator’s Guide

Oracle Internet Directory Deployment Best Practices

9-14 Oracle Application Server Best Practices Guide

These tools setup the various levels of access required by the application to manage
the realm.

Synchronize user definitions from third-party identity management systems with the
Oracle Directory Integration and Provisioning into the appropriate realms to create an
enterprise view of all relevant user namespaces and their defined services.

9.5.8.2 Configure Synchronization Service to Enable Users to Interact with
Deployed Applications
When configuring Oracle Directory Integration and Provisioning, specify only the
containers and attributes, which are required in the connected directory or in Oracle
Internet Directory. You can use LDAP filters as part of mapping configuration profiles
to screen out unwanted attribute data and keep synchronization simple.

Set each connector and its associated mapping configuration file to an appropriate
scheduling interval. No connector needs to fire at the same time or at the same interval
as any another, as they are completely independent of one another.

When synchronizing external users and groups into Oracle Internet Directory for use
with Oracle Application Server, be sure to establish connectors to the appropriate
Identity Management Realm cn=users and cn=groups container. Oracle Directory
Integration and Provisioning will then provision all inbound user entries with the
Oracle-specific attributes needed to enable users to interact with their deployed Oracle
applications.

A synchronization Profile has to be disabled before altering any status attributes
through the Oracle Directory Manager. After the change, it needs to be enabled once
again.

9.5.8.3 Synchronize Oracle Human Resources and Oracle Internet Directory to
Provide Access to OracleAS Single Sign-On and Oracle Delegated Administration
Services
If you use Oracle Human Resources as the source of truth for employee data in your
enterprise, then you must synchronize between it and Oracle Internet Directory. Since
the Last Successful Execution Time connector profile attribute is used to fetch
the desired changes from connected directories at a given time, set it initially to some
date in the past. Then enable the profile. Note this technique will potentially cause all
entries in the connected directory to be synchronized all at once into Oracle Internet
Directory. If this is not the desired effect, use the bulkload.sh technique for
bootstrapping Oracle Internet Directory, and then set the last change number
appropriately to begin synchronizing incrementally from the connected directory
instead.

It is a good idea to synchronize user data from connected directories to the public
cn=users container within an Oracle Internet Directory Identity Management realm.
This way, all users are immediately accessible to OracleAS Single Sign-On and Oracle
Delegated Administration Services, such as the Self-Service Console.

Synchronize the nickname attribute from the connected directory or derived from
some attribute that is unique in the connected directory, so that the user can use this
identifier with OracleAS Single Sign-On.

See Also: Oracle Identity Management Integration Guide

See Also: Chapter 10, "Synchronization with Oracle Human
Resources," in the Oracle Identity Management Integration Guide

Oracle Internet Directory Deployment Best Practices

Platform Security and Identity Management 9-15

Since the Last Successful Execution Time connector needs appropriate
privilege to read and write to the cn=users container under the Identity Management
Realm, add the profile distinguished name (DN) to the groups
DASCreateUserGroup, DASEditUserGroup, and DASDeleteUserGroup for that
realm.

9.5.9 Incorporate Group Assignment During User Creation to Avoid Multiple Steps
Rather than creating users and assigning them to groups as separate steps, consider
incorporating the group assignment step during user creation. To do this:

1. Log in to the Oracle Internet Directory Self-Service Console as a Oracle Delegated
Administration Services privileged user (orcladmin or designate).

2. Select the Configuration tab.

3. Select User Entry > Add Role.

4. Search for and select any commonly-subscribed group entries.

Now, whenever you or any other Oracle Delegated Administration Services privileged
user performs a Create User sequence, the list of specified groups will appear in the
next-to-last step, in a section called Roles Assignment. Simply click whichever
checkboxes are relevant to the newly-created user, and that user will automatically be
made a member of all the groups you specify.

9.5.10 Use opmnctl instead of oidmon and oidctl to Manage Processes
In Oracle Application Server, you no longer need to run oidmon and oidctl to start
and stop Oracle Internet Directory processes. OPMN stores the proper sequences and
controls these services.

9.5.11 Configure Active Directory Synchronization
Prior to configuring Windows Native Authentication, be sure to first configure the
Active Directory Connector and bootstrap the appropriate cn=users and cn=groups
containers within your desired Oracle Identity Management Realm. Do not configure
the External Authentication Plug-in for Active Directory if your goal is to enable
Windows Native Authentication

See Also:

■ Chapter 4, "Oracle Internet Directory Data Management Tools," in
the Oracle Identity Management User Reference for further
information about bulkload.sh

■ Chapter 10, "Synchronization with Oracle Human Resources," in
the Oracle Identity Management Integration Guide

See Also: Chapter 5, "Managing Users and Groups with the Oracle
Internet Directory Self-Service Console," in the Oracle Identity
Management Guide to Delegated Administration

See Also: Oracle Process Manager and Notification Server
Administrator’s Guide

Oracle Internet Directory Deployment Best Practices

9-16 Oracle Application Server Best Practices Guide

9.5.12 Use User Attributes and Password Hints to Make Resetting Credentials Easier
Users that forget their OracleAS Single Sign-On passwords can reset them on their
own by using the Oracle Internet Directory Self-Service Console. You must
authenticate yourself in one of the following ways:

■ If, while previously changing their password, a user specified a password hint
question, then the Confirm Additional Personal Information window will prompt
the user for the correct answer to the reminder question when attempting a
password reset.

■ Users who have not previously set a password hint will be presented with the
Confirm Additional Personal Information window. This window prompts the user
for other personal data, as configured by your administrator.

See Also:

■ Oracle Application Server Single Sign-On Administrator’s Guide

■ Chapter 18, "Integration with the Microsoft Active Directory
Environment," in the Oracle Identity Management Integration Guide

See Also: Chapter 4, "Managing Your Profile with the Oracle
Internet Directory Self-Service Console," in the Oracle Identity
Management Guide to Delegated Administration

Oracle Application Server High Availability Solutions 10-1

10
Oracle Application Server High Availability

Solutions

This chapter describes best practices for various highly available configurations and
features for OracleAS High Availability Solutions. It contains the following topics:

■ Section 10.1, "Oracle Application Server Cluster (Identity Management)"

■ Section 10.2, "Oracle Application Server Cold Failover Clusters"

■ Section 10.3, "Load Balancers"

■ Section 10.4, "Oracle Application Server Guard"

10.1 Oracle Application Server Cluster (Identity Management)
Use a consistent and standardized configuration for the instances that participate in an
OracleAS Cluster (Identity Management). From the OracleAS Single Sign-On
perspective, all the instances in the cluster are seen as a single entity that provide a
single service. To avoid errors in updates to the configuration, follow these tips:

■ Use the same Oracle home path for the instances in your OracleAS Cluster
(Identity Management).

■ Use the same basic name for the instances. The host name prefix would ensure
that the application server instance is unique.

■ While Oracle allows the HTTP listen server to be different on each SSP/Oracle
Delegated Administration Services host, Oracle recommends to use the same
ports.

■ It is better to have same ports used for all other services. Use staticports.ini
for all installs to achieve this.

■ Standardize on the port for Application Server Control for all Identity
Management installs.

■ The Distributed Configuration Management cluster name used in an OracleAS
Cluster (Identity Management) installation is case sensitive. During installation, it
is a good practice to use always upper case or lower case to avoid possible
configuration errors.

Oracle Application Server Cold Failover Clusters

10-2 Oracle Application Server Best Practices Guide

10.2 Oracle Application Server Cold Failover Clusters
This section contains these topics:

■ Section 10.2.1, "Use Shared Oracle Home Installs for OracleAS Cold Failover
Cluster (Middle-Tier) to Simplify Administration"

■ Section 10.2.2, "Use Oracle Universal Installer Commands to Attach OracleAS
Cold Failover Cluster Oracle Home with the oraInventory"

■ Section 10.2.3, "Use Disk Redundancy for OracleAS Cold Failover Cluster to Avoid
Oracle Home Failures"

■ Section 10.2.4, "Allocate Ports to the OracleAS Cold Failover Cluster Instance to
Avoid Failures"

10.2.1 Use Shared Oracle Home Installs for OracleAS Cold Failover Cluster
(Middle-Tier) to Simplify Administration

Installing OracleAS Cold Failover Cluster in a multiple Oracle home configuration will
require every administration change to be applied twice, including the deployment of
J2EE applications. Oracle recommends using a shared drive for all install types,
including the ones where non-shared is possible.

10.2.2 Use Oracle Universal Installer Commands to Attach OracleAS Cold Failover
Cluster Oracle Home with the oraInventory

An OracleAS Cold Failover Cluster installation updates the oraInventory directory
in a local file system unless the installer is specifically pointed to an oraInventory
directory in a shared location. If you install additional software from the node in the
hardware cluster that was not used for the OracleAS Cold Failover Cluster installation,
the cold failover cluster installation will not be detected. Use Oracle Universal Installer
to attach your OracleAS Cold Failover Cluster Oracle home with the oraInventory
directory on the non-install nodes.

Implementation Details
In order to associate and attach the Oracle home to the oraInventory directory, use
the following command:

./runInstaller -silent -attachHome -invPtrLoc <oraInst.loc location> ORACLE_
HOME="<Oracle_Home_Location>" ORACLE_HOME_NAME="<Oracle_Home_Name>" CLUSTER_
NODES="{}" LOCAL_NODE="<node_name>"

See Also:

■ Section 9.6, "OracleAS Cluster (Identity Management) Topology,"
in the Oracle Application Server High Availability Guide

■ Chapter 12, "Installing in High Availability Environments:
OracleAS Cluster (Identity Management)," in the Oracle
Application Server Installation Guide

See Also: Chapter 11, "Installing in High Availability Environments:
OracleAS Cold Failover Cluster," in the Oracle Application Server
Installation Guide

Load Balancers

Oracle Application Server High Availability Solutions 10-3

10.2.3 Use Disk Redundancy for OracleAS Cold Failover Cluster to Avoid Oracle Home
Failures

Resize the disk to hold all application deployments, maximum JMS messages
persisted, and hold OracleAS Portal and Oracle Identity Management data when
applicable. It is critical to use some kind of disk redundancy to secure all the binaries,
data and metadata used by an OracleAS Cold Failover Cluster. If you are using
Automatic Storage Management (ASM) and co-existing with other databases that use
ASM, upgrade to clustered ASM for the entire cold failover cluster

10.2.4 Allocate Ports to the OracleAS Cold Failover Cluster Instance to Avoid Failures
If the ports are not available when the active instances fails over to the passive node,
Oracle Application Server will not be able to start. Keep record of the ports used by
your active-passive installations and use staticports.ini to install any other
Oracle Application Server instances so that those ports remain free.

10.3 Load Balancers
This section contains these topics:

■ Section 10.3.1, "Use Fault-Tolerant Hardware Load Balancers to Avoid Single
Points of Failure"

■ Section 10.3.2, "Use Monitoring of Services to Automatically Disable Traffic to
Unavailable Nodes"

■ Section 10.3.3, "Configure All Idle Time Timeouts to Maximize Time for Unused or
Idle Service"

10.3.1 Use Fault-Tolerant Hardware Load Balancers to Avoid Single Points of Failure
The load balancer will be the entry point to many different services. Independent of
providing redundancy for these services, the load balancer itself must be highly
available. Use load balancers that can be configured for automatic failover in case of
load-balancer failures.

10.3.2 Use Monitoring of Services to Automatically Disable Traffic to Unavailable Nodes
It is common in most load balancer products not to detect the failure of a service
through one of its monitors. For these products, connections will remain idle and
requests will hang.

Implementation Details
Make sure that the load balancer has been configured to monitor the services and fails
over all the traffic to other nodes immediately in case of a failure.

See Also:

■ Section 4.5, "Managing OracleAS Cold Failover Cluster
(Middle-Tier)," and Section 9.2, "OracleAS Cold Failover Cluster
(Infrastructure) Topology," in the Oracle Application Server High
Availability Guide

■ Chapter 11, "Installing in High Availability Environments:
OracleAS Cold Failover Cluster," in the Oracle Application Server
Installation Guide

Oracle Application Server Guard

10-4 Oracle Application Server Best Practices Guide

10.3.3 Configure All Idle Time Timeouts to Maximize Time for Unused or Idle Service
Set the idle timeouts to the maximum time you expect a service to be unused or idle.
Otherwise, the load balancer will cut the connections even when they appear as
available to the invocation clients

10.4 Oracle Application Server Guard
This section contains these topics:

■ Section 10.4.1, "Clean Up Invalid Records to Avoid Instantiation and
Synchronization Errors"

■ Section 10.4.2, "Use the Same Ports for OracleAS Guard in Avoid Manual
Configuration Steps in Synchronization Operations"

■ Section 10.4.3, "Use Different Labels and Colors in OracleAS Guard Shells to Avoid
Errors"

■ Section 10.4.4, "Enable High-Logging Level to Troubleshoot OracleAS Guard
Operations"

10.4.1 Clean Up Invalid Records to Avoid Instantiation and Synchronization Errors
Remove all invalid Oracle software (invalid Oracle Databases or Oracle Application
Server installation) from the oraInventory directory. You can accomplish this task
by using the Oracle Universal Installer. For example, an instance is installed and later
removed manually by deleting an Oracle home. Manually remove this instance's
information from the Inventory.xml file; otherwise, OracleAS Guard may fail to
perform the instantiation and synchronization operations.

10.4.2 Use the Same Ports for OracleAS Guard in Avoid Manual Configuration Steps in
Synchronization Operations

Try to use the same OracleAS Guard ports in the primary and standby sites.
Otherwise, you will have to manually edit the dsa.conf file to enable the
communication between production and standby site peers.

10.4.3 Use Different Labels and Colors in OracleAS Guard Shells to Avoid Errors
Due to the host name symmetry requirements for OracleAS Guard, shells in both
environments may appear under the same host name and prompt. It is a very common
mistake to perform operations in a standby shell that were intended to be preferred in
the production site, causing errors and inconsistent configuration changes. Use a fixed
and standard way to label and position command shells to make sure that operations
are issued in the correct site.

10.4.4 Enable High-Logging Level to Troubleshoot OracleAS Guard Operations
You can trace OracleAS Guard operations to a great detail by using the set trace
on all command. By default, the trace level is set to off. Use this type of logging
when trying to solve issues with OracleAS Guard.

Implementation Details
From the OracleAS Guard prompt, enter:

See Also: Load balancer product documentation

Backup and Recovery

Oracle Application Server High Availability Solutions 10-5

set trace on | off <traceflags>

10.5 Backup and Recovery
This section contains these topics:

■ Section 10.5.1, "Use Application Server Control as the Standard Way to Perform
Backup and Recovery to Avoid Errors and Typos"

■ Section 10.5.2, "Use Instance-Level Backup to Guarantee Consistency"

■ Section 10.5.3, "Perform an Image Backup to Recover from Loss of Host Scenario"

■ Section 10.5.4, "Use Incremental Backups to Save Time and Disk Space"

10.5.1 Use Application Server Control as the Standard Way to Perform Backup and
Recovery to Avoid Errors and Typos

Application Server Control provides an easy and convenient way to configure Oracle
Application Server Backup and Recovery Tool and perform backup and recovery
operations. You can view the OracleAS Backup and Recovery Tool operational log files
through Application Server Control. This interface is less error prone than the
command line.

Implementation Details

10.5.2 Use Instance-Level Backup to Guarantee Consistency
The instance-level backup includes the configuration and repository backup. The
repository can be database-based or file-based. This functionality offers consistency
between configuration and repository backups. You should try to use this option as
much as possible as opposed to backing up configuration and repository separately.

Implementation Details

10.5.3 Perform an Image Backup to Recover from Loss of Host Scenario
The OracleAS Backup and Recovery Tool offers recovery from loss of host scenarios.
After doing an install, make sure to take an image backup that includes the Oracle
home, OraInventory directory, Registry entries, instance backup, and so on. You can
use this information to recover from a loss of host.

Implementation Details
In order to create an image backup, use the following commands

On UNIX:

See Also: Chapter 14, "OracleAS Guard asgctl Command-line
Reference," in the Oracle Application Server High Availability Guide

See Also: Section 21.2.4, "Performing an Instance Backup of Oracle
Application Server Using Application Server Control Console," in the
Oracle Application Server Administrator’s Guide

See Also: Chapter 21, "Backup Strategy and Procedures," in the
Oracle Application Server Administrator’s Guide for information about
the available instance-level backup options

Backup and Recovery

10-6 Oracle Application Server Best Practices Guide

bkp_restore.sh -m node_backup -o image_backup -P <archive path>

On Windows:

bkp_restore.bat -m node_backup -o image_backup -P <archive path>

10.5.4 Use Incremental Backups to Save Time and Disk Space
The OracleAS Backup and Recovery Tool offers incremental backup both for
configuration files and database, by which only the modified data gets backed up. You
should choose this option if you do not want to backup redundant data every time and
you like the backups to be small in size.

See Also: Section 20.6, "OracleAS Backup and Recovery Tool Usage
Summary," and Chapter 21, "Backup Strategy and Procedures," in the
Oracle Application Server Administrator’s Guide

See Also: Section 20.6, "OracleAS Backup and Recovery Tool Usage
Summary," and Chapter 21, "Backup Strategy and Procedures," in the
Oracle Application Server Administrator’s Guide

Index-1

Index

A
ADMN-906005 error message, 2-14
AllowOverride, 3-3
application server control, 2-1
Application Server Control Console best

practices, 2-2 to 2-3
Application Server Control home page, 2-3
application.xml file, 4-6
audit log, 9-12
authentication, 9-5
authentication callbacks with ESI environment

tag, 7-10
authentication options, 9-7
authorization, 9-5
authorization callbacks with ESI environment

tag, 7-10

B
backups

Application Server Control to perform, 10-5
image, 10-5
incremental, 10-6
instance-level, 10-5
OracleAS Backup and Recovery Tool, 10-5

bean-managed persistence (BMP), 4-14
bulkload.sh, 9-11

C
cache clusters, 7-3
cache hits, 7-9

increasing with OracleAS Portal, 5-8
increasing with OracleAS Web Cache, 7-7

caching
file-based with OracleAS Portal, 5-3
in memory with OracleAS Web Cache, 7-7
JSP pages with Java Object Cache, 4-5
object cache with OracleAS TopLink, 4-31

caching rules, 7-8
certificates, 9-3
cluster, EJB, 4-12
coarse objects, 4-10
compression, 7-15
confidentiality mode, 9-11

connections with OracleAS Web Cache and, 7-6
connections, datasource, 4-16
container managed persistence (CMP), 4-14
container managed relationships, 4-14
Content Management Event Framework

(CMEF), 5-15
content sources, 6-2
control, application server, 2-1
cookies, 9-2
cookies and sessions to track user sessions, 4-9
cookies to increase cache hits, 7-7
country EJB, 4-13
CPU deployment with OracleAS Web Cache, 7-2

D
database-based repository, 2-14
datasource connections, 4-16
DCM archive, 2-12
deployment with OracleAS Web Cache, 7-2
deployment wizard in Oracle Enterprise

Manager, 2-2
desformat command keyword, 8-5
dispatchers

selecting one for Oracle Sensor Edge Server, 6-3
Distributed Configuration Management (DCM) best

practices, 2-11 to 2-15
DMS metrics, 2-16
dsa.conf file, 10-4
dynamic environment switching, 8-10
dynamic includes, 4-4
Dynamic Monitoring Services (DMS) best

practices, 2-15 to 2-17

E
Edge Side Includes (ESI), 7-9
Edge Side Includes for Java (JESI), 7-10
edgeserver.xml file, 6-2
EJB cluster, 4-12
EJB usage, 4-12
ejbActivate method, 4-13
ejbCreate method, 4-13
ejbPassivate method, 4-13
encryption, 9-2, 9-5
End-User Performance Monitoring, 2-5

Index-2

Enterprise Java Beans (EJB) best
practices, 4-11 to 4-16

environment configuration element, 8-10
error pages, 7-6
escape processing, 4-17
ESI environment, 7-10
ESI environment tag, 7-10
ESI variables, 7-9
event logging and OracleAS Web Cache, 7-15
event script, 2-10
exclusive-write-access parameter, 4-13
expiration, 7-13

of cache objects, 7-11
expiring cache objects, 7-13

F
fault containment, 9-2
fetcher threads, 5-8
finalize methods, 4-16
findAll method, 4-13
findByPrimaryKey method, 4-13
firewalls

security best practices, 9-4
settings for OracleAS Wireless requests, 6-1

FollowSymLinks, 3-3

G
getError command, 2-14
getPrimaryKey method, 4-16
getreturnstatus command, 2-14
granular objects, 4-10
Grid Control Console best practices, 2-4 to 2-8

H
hardware load balancers. See load balancers
HostNameLookups directive, 3-2
HttpSessionBindingListener, 4-10

I
infrastructure repository, 2-14
invalidateCache attribute, 4-5
invalidating cache objects, 7-11, 7-13
invalidation, 7-13

programmatic, 7-12
selecting a method, 7-11

invalidation propagation in cache clusters, 7-13
Inventory.xml file, 10-4
ipm.log file, 2-10
island of OC4J JVMs, 4-9

J
J2EE best practices, 4-1 to 4-28
J2EE security best practices, 9-6 to 9-8
Java Object Cache, 4-5
Java Portlet Specification (JPS), 5-28
Java Server Pages (JSP) best practices, 4-1 to 4-7

JESI tags, 7-10
job system in Oracle Enterprise Manager, 2-6
jsp_timeout attribute, 4-6

K
KeepAlive, 3-2
KeepAliveTimeout, 3-2

L
lazy loading, 4-16
load balancers

configuring for automatic failover, 10-3
monitoring services, 10-3
OracleAS Web Cache, 7-3
setting idle timeouts, 10-4

load balancing
OracleAS Web Cache and, 7-4

local EJB, 4-11
locking strategies, 4-13

M
main_mode parameter, 4-3
MaxClients, 3-2
MaxKeepAliveRequests, 3-2
memory configuration with OracleAS Web

Cache, 7-5
message driven EJB, 4-11
message facade, 4-14
message-driven bean (MDB), 4-26
method authentication, 9-2
mod_oc4j, 3-3
mod_plsql, 5-6
mod_rewrite, 3-3
modem connections to prevent blocking of Oracle

HTTP Server, 3-1
multilingual Web sites, 5-13

N
navigation pages, 5-11
network bandwidth

OracleAS Web Cache and, 7-6
network connections with OracleAS Web Cache, 7-6
network interface cards (NIC), 7-6
network load balancers. See load balancers

O
ojsp

cache tag, 4-5
cacheXMLObj tag, 4-5
invalidateCache tag, 4-5
useCacheObj tag, 4-5

ojspc tool, 4-2
OmniPortlet, 5-31
ons.log file, 2-10
OPMN, 2-8
optimistic locking, 4-13, 4-31

Index-3

Oracle Application Server Containers for J2EE (OC4J)
best practices, 4-1 to 4-28

Oracle Directory Integration and Provisioning best
practices, 9-13 to 9-15

Oracle HTTP Server best practices, 3-1 to 3-3
Oracle Internet Directory best practices, 9-10 to 9-16
Oracle native sequencing, 4-33
Oracle Process Manager and Notification (OPMN)

best practices, 2-8 to 2-11
Oracle Reports

best practices, 8-1 to 8-10
integration with OracleAS High Availability

Solutions, 8-1
Oracle Sensor Edge Server best practices, 6-2 to 6-3
Oracle XML Developer’s Kit best

practices, 4-28 to 4-30
OracleAS Backup and Recovery Tool

performing incremental backups, 10-6
performing instance-level backups, 10-5
recovering from loss of host scenarios, 10-5
viewing operational log files, 10-5

OracleAS Cluster (Identity Management)
configuration tips, 10-1

OracleAS Cold Failover Cluster
allocating ports, 10-3
attaching Oracle home to oraInventory, 10-2
using disk redundancy, 10-3
using shared drive to simplify

administration, 10-2
OracleAS Forms Services best practices, 4-36
OracleAS Guard

enabling logging, 10-4
removing all invalid Oracle software, 10-4
using the same ports for both primary and standby

sites, 10-4
OracleAS High Availability Solutions best

practices, 10-1 to 10-6
OracleAS JAAS Provider best practices, 9-6
OracleAS Portal

best practices, 5-1 to 5-32
caching, 5-3
export and import, 5-18
search-key invalidation, 5-8
upgrading to the latest release, 5-1

OracleAS Portal Developer Kit (PDK), 5-28
OracleAS Single Sign-On

best practices, 9-8 to 9-10
primary point of security, 9-9

OracleAS TopLink
best practices, 4-30 to 4-36
caching, 4-31
mapping, 4-31
sequencing, 4-33

OracleAS Web Cache
best practices, 7-1 to 7-15
cache clusters, 7-3
caching secure content, 7-5
deploying, 7-2
increasing cache hits, 7-7 to 7-11
invalidation and expiration, 7-11 to 7-14

load balancing, 7-3
optimizing configuration, 7-5 to 7-7
optimizing response times, 7-14 to 7-15

OracleAS Wireless best practices, 6-1 to 6-3
OracleAS Wireless XML, 5-29
OracleBI Discoverer best practices, 8-10 to 8-11
orion-ejb-jar.xml file, 4-15

P
page groups, 5-9
page layout, 8-9
page metadata (PMD), 5-8
paging with OracleAS Web Cache, 7-5
Parallel Page Engine (PPE)

deploying, 5-6
fetcher threads, 5-8
page metadata (PMD), 5-8

partial page caching
Edge Side Includes (ESI), 7-9

performance metrics, 2-15
pessimistic locking, 4-13
ping, 2-9
PlsqlCacheCleanupTime parameter, 5-8
PlsqlCacheMaxAge parameter, 5-8
portal metadata, 5-12
portal templates, 5-10
portlet providers, 5-1

database providers, 5-5
Web providers, 5-5

improving cache-hit rate, 5-7
portlets

caching, 5-3
event support, 5-32
execution speed, 5-7
hybrid, 5-29
links, 5-29
OmniPortlet, 5-31
parameters, 5-31
search, 5-16
show modes, 5-29
Struts, 5-30
Web Clipping, 5-30

post-crash, 2-11
preallocation, in sequencing, 4-33
prefetching, 4-18
prefetch-size attribute, 4-15
pre-start, 2-10
pre-stop, 2-11

R
recovery

image backup, 10-5
incremental backups, 10-6
OracleAS Backup and Recovery Tool for loss of

host scenarios, 10-5
redirection for cache entry pages, 7-8
reduce_tag_code parameter, 4-6
refreshIdentityMapResult(), 4-32

Index-4

remote EJB, 4-11
replication, 4-8
replication overhead, 4-9
report output in Microsoft Excel, 8-5
response time using OracleAS Web Cache to

tune, 7-14
response times with OracleAS Web Cache, 7-15

S
scalability with OracleBI Discoverer, 8-11
search-key invalidation, 5-8, 7-11
secrlacl.sql script, 5-22
Secure Socket Layer (SSL), 9-5
sequencing, 4-33
server and client authentication mode, 9-12
server authentication, 9-12
server.xml file, 4-22
service locator, 4-12
session facade, 4-14
session state, 4-8
session timeout, 4-9
session validation with ESI environment tag, 7-10
session-related best practices, 4-7 to 4-10
setEntityContext method, 4-17
setMaxInactiveInterval, 4-9
Shared Objects page group, 5-9
Short Message Service (SMS), 6-2
Short Message Service Centers (SMSC), 6-2
show modes for portlets, 5-29
SSL, 9-11
SSL encryption, 9-5
SSLSessionCacheTimeout, 9-6
start element, 2-9
startproc, 2-9
stateful inspection, 9-4
static includes, 4-4
stop element, 2-9
Struts portlet, 5-30
Surrogate-Control headers, 7-8
Surrogate-Control response-header field, 7-4
swapping configuration with OracleAS Web

Cache, 7-5
SymLinksIfOwnerMatch, 3-3

T
time_to_live parameter, 4-24
timeout, 2-9
time-wait settings, 7-15

U
Unit of Work, 4-34
unsetEntityContext method, 4-17
update batching, 4-19
URL parameters to increase cache hits, 7-7

V
value object pattern, 4-14

voice access
selecting a voice gateway, 6-2

W
WAP gateways

configuring, 6-1
Web Application Performance page, 2-6
Web Clipping, 5-30
Web layout, 8-9
Web Services for Remote Portlets (WSRP)

specification, 5-28
WebDAV, 5-16
well_known_taglib_loc parameter, 4-6
workbooks and performance, 8-10

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Best Practices
	2 Management and Monitoring
	2.1 Oracle Enterprise Manager 10g Best Practices
	2.1.1 Select the Framework Options That Best Suit Your Needs
	2.1.2 Application Server Control Console
	2.1.2.1 Use the Deployment Wizard to Deploy Applications
	2.1.2.2 Use Clusters for Application Deployment and Configuration Management to Simplify Management of Application Servers
	2.1.2.3 Monitor Application Performance During Application Development or Test Cycles to Identify Resource Usage and Identify Bottlenecks
	2.1.2.4 Use the Host Home Page to Help Diagnose Performance Issues
	2.1.2.5 Perform Configuration Changes in Application Server Control to Ensure the Repository is Properly Updated
	2.1.2.6 Monitor Rate and Aggregated Performance Metrics to Identify Slow Requests

	2.1.3 Grid Control Console
	2.1.3.1 Use Alerts and Notifications to Proactively Monitor System Availability
	2.1.3.2 Set Up Grid Control Console to Monitor for Availability and Performance Issues
	2.1.3.3 Add OracleAS Farms and OracleAS Clusters to Centrally Manage Application Server
	2.1.3.4 Use End-User Performance Monitoring to Monitor Response Times of Web Pages
	2.1.3.5 Proactively Monitor Web Application Transactions to Test Performance Monitoring
	2.1.3.6 Use Diagnostics to Pinpoint OC4J Performance Problems
	2.1.3.7 Use Job System to Schedule a Deployment
	2.1.3.8 Regularly Perform Backups to Prepare for Loss of Data
	2.1.3.9 Use Grid Control to Manage Both Oracle Application Server and the Oracle Database
	2.1.3.10 Manage Multiple Oracle Application Server Instances on a Single Host to Reduce Resource Usages

	2.2 Oracle Process Manager and Notification Server Best Practices
	2.2.1 Start OPMN to Manage Components
	2.2.2 Never Start or Stop OPMN Managed Components Manually
	2.2.3 Review stdout and stderr to Determine Cause of Components Not Starting
	2.2.4 Increase Timeout For Components to Avoid Timed-Out Requests
	2.2.5 Set Retry to High Values For Components Running on an Overloaded System to Avoid Restart of Computer
	2.2.6 Leverage Additional Logging to Aid in Debugging
	2.2.7 Configure Log Rotation to Avoid Log File Size Issues
	2.2.8 Configure Additional Start Order Dependencies to Customize Startup
	2.2.9 Use Event Scripts to Record Important Events
	2.2.10 Use OPMN to Manage External Components

	2.3 Distributed Configuration Management Best Practices
	2.3.1 Use DCM Archiving to Take Snapshots of Configuration
	2.3.2 Specify a Single Instance in a Cluster as the Management Point to Provide A Correct Order of Operations
	2.3.3 Avoid Concurrent Administration Operations to Prevent Configuration Conflicts
	2.3.4 Avoid Running updateConfig Concurrently with Any Other Configuration Operation to Prevent Configuration Conflicts
	2.3.5 Restart Application Server Control Console after Joining or Leaving a Farm or Cluster to Refresh the Console
	2.3.6 Use High Availability Features for Infrastructure Repository to Synchronize within a Farm
	2.3.7 Follow dcmctl Tips to Improve Usage

	2.4 Dynamic Monitoring Services Best Practices
	2.4.1 Monitor Your System Regularly to Identify Performance Problems
	2.4.2 Take Regular Dumps of Metrics to Capture and Save a Record of Performance Data
	2.4.3 Add Performance Instrumentation to Application to Aid Developers
	2.4.4 Isolate Expensive Intervals Using PhaseEvent Metrics to Validate Code
	2.4.5 Organize Performance Data to Avoid Metrics Not Displaying
	2.4.6 DMS Naming Conventions to Improve Metric Reports
	2.4.7 Follow DMS Coding Recommendations to Improve Code
	2.4.8 Validate New Metrics to Verify Accuracy

	3 Oracle HTTP Server
	3.1 Configure Topology Appropriately For Modem Connections to Prevent Blocking Oracle HTTP Server
	3.2 Tune TCP/IP Parameters to Improve Oracle HTTP Server Performance
	3.3 Tune KeepAlive Directives to Improve Connection Performance
	3.4 Tune MaxClients Directive to Improve Request Performance
	3.5 Avoid Any DNS Lookup to Prevent Performance Degradation
	3.6 Tune Off Access Logging to Reduce Overhead
	3.7 Use FollowSymLinks and Not SymLinkIfOwnerMatch to Configure Symbolic Links
	3.8 Set AllowOverride to None to Prevent Unnecessary Directive Checking
	3.9 Use mod_rewrite to Hide URL Changes For End-Users
	3.10 Use mod_oc4j Sticky Routing Instead of Configuring the External Router

	4 Oracle Application Server Containers for J2EE (OC4J) Applications and Developer Tools
	4.1 Java Server Pages Best Practices
	4.1.1 Pre-Translate JSPs Before Deployment to Prevent Translation Overhead
	4.1.2 Separate Presentation Markup from Java to Improve Application Performance
	4.1.3 Use JSP Template Mechanism to Reserve Resources
	4.1.4 Set sessions to false If Not Using Sessions to Prevent Overhead of Creating Sessions
	4.1.5 Always Invalidate Sessions When No Longer Used to Prevent Overhead of Applications
	4.1.6 Set main_mode Parameter to justrun to Prevent Recompilation of JSPs
	4.1.7 Use Available JSP Tags In Tag Library to Create Clean and Reusable Code
	4.1.8 Minimize Context Switching Between Servlets and EJBs to Avoid Performance Issues
	4.1.9 Package JSP Files In EAR File Rather Than Standalone to Standardize Deployment Process
	4.1.10 Use Compile-Time Object Introspection to Improve Application Performance
	4.1.11 Choose Static Versus Dynamic Includes Appropriately
	4.1.12 Disable JSP Page Buffer If Not Used to Improve Performance
	4.1.13 Use Forwards Instead of Redirects to Improve Browser Experience
	4.1.14 Use JSP Cache Tags to Save Development Time
	4.1.15 Use well_known_taglib_loc to Share Tag Libraries
	4.1.16 Use jsp-timeout Attribute to Provide Efficient Memory Utilization
	4.1.17 Use reduce_tag_code Parameter to Reduce the Size of Generated Java Method
	4.1.18 Use Workarounds to Avoid Reaching JVM Code Size Limit
	4.1.19 Hide JSP Pages to Prevent Access

	4.2 Sessions Best Practices
	4.2.1 Persist Session State If Appropriate to Preserve State with Browser
	4.2.2 Replicate Sessions If Persisting Is Not an Option to Improve Performance
	4.2.3 Avoid Storing Objects in Sessions to Reuse Shared Resources
	4.2.4 Set Session Timeout Appropriately to Optimize Performance
	4.2.5 Monitor Session Memory Usage to Determine Data to Store in Session Objects
	4.2.6 Use Small Islands to Improve Fault Tolerance
	4.2.7 Use a Mix of Cookie and Sessions to Improve Performance
	4.2.8 Use Coarse Objects Inside HTTP Sessions to Reduce Update Events
	4.2.9 Use Transient Data in Sessions Whenever Appropriate to Reduce Replication Overhead
	4.2.10 Invalidate Sessions to Prevent Memory Usage Growth
	4.2.11 Miscellaneous Guidelines

	4.3 Enterprise Java Bean Best Practices
	4.3.1 Use Local, Remote, and Message-Driven EJBs Appropriately to Improve Performance
	4.3.2 Use EJB Judiciously
	4.3.3 Use Service Locator Pattern
	4.3.4 Cluster Your EJBs
	4.3.5 Index Secondary Finder Methods
	4.3.6 Understand EJB Lifecycle
	4.3.7 Use Deferred Database Constraints
	4.3.8 Create a Cache with Read Only EJBs
	4.3.9 Pick an Appropriate Locking Strategy
	4.3.10 Understand and Leverage Patterns
	4.3.11 When Using Entity Beans, Use Container Managed Aged Persistence Whenever Possible
	4.3.12 Entity Beans using Local interfaces Only
	4.3.13 Use a Session Bean Facade for Entity Beans
	4.3.14 Enforce Primary Key Constraints at the Database Level
	4.3.15 Use Foreign Key for 1-1 and 1-M Relationships
	4.3.16 Avoid findAll Method on Entities Based on Large Tables
	4.3.17 Set prefetch-size Attribute to Reduce Round Trips to Database
	4.3.18 Use Lazy Loading with Caution
	4.3.19 Avoid Performing O-R Mapping Manually

	4.4 Data Access Best Practices
	4.4.1 Use Datasources Connections Caching and Handling to Prevent Running Out of Connections
	4.4.1.1 DataSource Connection Caching Strategies

	4.4.2 Use Data Source Initialization
	4.4.3 Disable Escape Processing to Improve Performance
	4.4.4 Define Column Types to Save Round-trips to Database Server
	4.4.5 Prefetch Rows to Improve Performance
	4.4.6 Update Batching to Improve Performance
	4.4.6.1 Oracle Update Batching
	4.4.6.2 Standard Update Batching

	4.4.7 Use More Than One Database Connection Simultaneously in the Same Request to Avoid a Deadlock in the Database
	4.4.8 Tune the Database and SQL Statements to Optimize the Handling of Database Resources
	4.4.8.1 Tune JDBC
	4.4.8.2 Cache JDBC Connections
	4.4.8.3 Cache JDBC Statements
	4.4.8.4 Cache JDBC Rowsets

	4.4.9 Configure Data Source Configurations Options

	4.5 J2EE Class Loading Best Practices
	4.5.1 Avoid Duplicating Libraries to Prevent Loading Problems
	4.5.2 Load Resources Appropriately to Avoid Errors
	4.5.3 Enable Class Loading Search Order within Web Modules
	4.5.4 Declare and Group Dependencies to Prevent Hidden or Unknown Dependencies
	4.5.5 Minimize Visibility to Satisfy Dependencies
	4.5.6 Create Portable Configurations
	4.5.7 Do Not Use the lib Directory for Container-Wide Shared Libraries to Prevent Loading Issues

	4.6 Java Message Service Best Practices
	4.6.1 Set the Correct time_to_live Value to Avoid Messages Never Expiring
	4.6.2 Do Not Grant Execute Privilege of the AQ PL/SQL Package to a User or Role
	4.6.3 Close JMS Resources No Longer Needed to Keep JMS Objects Available
	4.6.4 Reuse JMS Resources Whenever Possible to Perform Concurrent JMS Operations
	4.6.5 Use Debug Tracing to Track Down Problems
	4.6.6 Understand Handle/Interpret JMS Thrown Exceptions to Handle Runtime Exceptions
	4.6.7 Connect to the Server and Database From the Client Computer to Debug JMS Connection Creation Problems
	4.6.8 Tune Your Database Based on Load to Improve Performance
	4.6.9 Ensure OracleAS JMS Connection Parameters are Correct to Avoid Runtime Exceptions
	4.6.10 Provide Correct OracleAS JMS Configuration to Avoid Java JMS Exceptions

	4.7 Oracle Application Server XML Developer’s Kit Best Practices
	4.7.1 Choose Correct XML Parsers to Improve Efficiency
	4.7.2 Improve XSLT Performance
	4.7.3 Use the Stream-based XML Schema and DTD Validation to Improve Performance
	4.7.4 Process DOM using the JAXB Interface to Access and Operate on XML Data

	4.8 Oracle Application Server TopLink Best Practices
	4.8.1 Use OracleAS TopLink Mapping Guidelines to Persist Application Data
	4.8.2 Use Caching and Concurrency Protection to Improve Performance
	4.8.2.1 OracleAS TopLink Cache Refreshing Policies
	4.8.2.2 Avoid Stale Cache Content
	4.8.2.3 Cache Coordination

	4.8.3 Use Sequencing to Apply Project-Wide Properties to All Descriptions
	4.8.4 Implement Performance Options to Improve Performance
	4.8.4.1 Performance Diagnostics
	4.8.4.2 Tuning
	4.8.4.2.1 Reducing The Size of the Transactional Cache
	4.8.4.2.2 Analyzing the Object-Building phase
	4.8.4.2.3 Use of Named Queries

	4.9 Oracle Application Server Forms Services Best Practices

	5 OracleAS Portal
	5.1 Installing, Configuration, Administration, Upgrade, and Troubleshooting
	5.1.1 Deploy, Patch, and Test Custom Portlet Providers to Provide Flexibility with Your Upgrade
	5.1.2 Upgrade from 10g Release 2 (10.1.2.0.2) to 10g Release 2 (10.1.4)

	5.2 Performance Tuning and Features
	5.2.1 Use Appropriate Caching Strategy to Improve Performance
	5.2.2 Use Providers Judiciously to Improve Portal Performance
	5.2.3 Use Parallel Page Engine to Improve Availability and Scalability
	5.2.4 Scale OracleAS Portal to Optimize Performance
	5.2.5 Use Repository Services to Remove the Need for mod_plsql Tuning
	5.2.6 Leverage Web Provider Session Caching to Improve the Portlet Cache-hit Rate
	5.2.7 Increase Perceived Execution Speed to Improve Performance of Portlets
	5.2.8 Reduce Page Complexity to Improve Cacheability
	5.2.9 Measure Tuning Effectiveness to Improve Performance
	5.2.10 Manage Portlet Execution For Each Page to Prevent Portal Slow-Down Issues
	5.2.11 Prune Content to Improve Content Cleanup
	5.2.12 Use Search Keys to Invalidate

	5.3 Content Management and Publishing
	5.3.1 Use Page Groups to Delegate Administration
	5.3.2 Research Your Taxonomy Before Building Up a Page Hierarchy to Save Rework Time
	5.3.3 Use Portal Templates to Improve Consistency
	5.3.4 Use Navigation Pages to Manage Portal Template Content
	5.3.5 Use Categories, Perspectives and Custom Attributes to Enhance Content Metadata
	5.3.6 Use Translations to Create Multilingual Web Sites
	5.3.7 Use the View Mode Best Suited to the Task
	5.3.8 Use Content Management APIs to Migrate Existing Content
	5.3.9 Use Content Management APIs to Organize Content
	5.3.10 Use the Content Management Event Framework to React on Any Activity in the Content Management System
	5.3.11 Use the Public Search API to Implement Custom Searches
	5.3.12 Use WebDAV Capabilities to Support Desktop Applications Centric Users
	5.3.13 Use HTML Templates to Create Pixel-Perfect Pages

	5.4 Export/Import Utilities
	5.4.1 Review Supported Use Cases to Optimize Export and Import Operations
	5.4.2 Follow the Guidelines for Export and Import of Portal Objects to Prevent Errors

	5.5 Secure the Portal Environment
	5.5.1 Implement Post Installation Steps to "Harden" Your Portal Environment From Malicious Attack
	5.5.2 Implement a Role-Based Security Model to Simplify Access Control Definition
	5.5.3 Base Development of Pages on a Network Aware Custom Page Type to Enable Implementation of Network Access Security
	5.5.4 Group secured content to Optimize ACL Determination and "Network Access" Security.
	5.5.5 Define Anonymous "Public" Pages and Authenticated "Public" Pages to Simplify Security
	5.5.6 Implement Hash Message Authentication (HMAC) Encryption in Communication to Web Providers to Allow for Secured Identity Propagation and J2EE-Based Security
	5.5.7 Implement Global Inactivity Timeout to Prevent Attacks through Unauthorized Sessions
	5.5.8 Utilize Separate Page Groups and a Segmented Security Realm Within Oracle Internet Directory to Support a Hosted Portal that is to Be Shared Across Independent User Communities

	5.6 Portlet Development
	5.6.1 Install the Portal Extension for Oracle JDeveloper to Improve Portlet Development
	5.6.2 Apply WSRP Standard to Enable Interoperability Between a Standards-enabled Container and any WSRP Portal
	5.6.3 Portlet Show Modes
	5.6.4 Ensure Links in Portlet Are Correct to Avoid Sending the User Away from the Portal
	5.6.5 Use Hybrid Portlets to Provide the Best Possible Rendition in the Desktop Environment
	5.6.6 Create a Struts Portlet to Create and Publish Applications within Your Enterprise Portal
	5.6.7 When Is It Best to Use the Web Clipping Portlet?
	5.6.8 When Is It Best to use OmniPortlet?
	5.6.9 When to Use Portlet Parameters?
	5.6.10 When to Use Event Support?
	5.6.11 Use the Oracle Application Server Portal Developer's Guide to Learn How to Build Portlets

	6 OracleAS Wireless
	6.1 Deploy Multiple Tiers for High-Volume Environments to Avoid Capacity Issues
	6.2 Establish Firewall Settings to Permit Protocols
	6.3 Deploy Content Sources to a JVM Other Than OC4J_Portal or OC4J_ Wireless to Avoid Stability Issues
	6.4 Select a Voice Gateway Suited for Your Environment
	6.5 Deploy Messaging Applications to Use a Gateway
	6.6 Oracle Sensor Edge Server
	6.6.1 Copy edgeserver.xml to Clone Server Configurations
	6.6.2 Analyze Requirements to Select Best Dispatcher

	7 OracleAS Web Cache
	7.1 Improve Performance, Scalability, and Availability
	7.2 Planning and Deployment
	7.2.1 Use Two CPUs and Consider Deploying on Dedicated Hardware to Avoid Operating System Limitations
	7.2.2 Cluster Cache Instances to Make Availability, Scalability, and Performance Gains
	7.2.3 Use a Hardware Load Balancer in Front of OracleAS Web Caches to Avoid a Single Point of Failure
	7.2.4 Use OracleAS Web Cache Built-In Load Balancing to Improve Availability and Scalability of Origin Servers
	7.2.5 Test Application Upgrades and Patches to Ensure Existing Cache and Session Rules Still Function Correctly

	7.3 Secure Content to Prevent Tampering
	7.4 Configuring OracleAS Web Cache
	7.4.1 Configure Enough Memory to Avoid Swapping Objects In and Out of the Cache
	7.4.2 Allocate Sufficient Network Bandwidth to Accommodate the Throughput Load
	7.4.3 Set a Reasonable Number of Network Connections to Maximize Performance
	7.4.4 Create Custom Error Pages to Suit Your Environment

	7.5 Increasing Cache Hits
	7.5.1 Use Cookies and URL Parameters to Increase Cache-hit Ratios
	7.5.2 Use Redirection to Cache Entry Pages
	7.5.3 Use Surrogate-Control Headers Instead of Caching Rules to Better Manage Cacheability
	7.5.4 Use Partial Page Caching Where Possible to Increase Cacheability
	7.5.5 Use ESI Variables to Improve Cache-hit Ratios for Personalized Pages
	7.5.6 Use the <esi:environment> Tag to Authenticate or Authorize Callbacks
	7.5.7 Use JESI to Cache JSP Output

	7.6 Invalidation and Expiration
	7.6.1 Select the Invalidation Method Best Suited for Your Content to Keep Performance in Check
	7.6.2 Build Programmatic Invalidation Into Application Logic to Invalidate Dynamic Content
	7.6.3 Combine Invalidation and Expiration Policies to Keep Cache Content Fresh
	7.6.4 Use Invalidation Propagation in Clusters to Improve Data Consistency

	7.7 Optimizing Response Times
	7.7.1 Tuning Origin Server and OracleAS Web Cache Settings to Optimize Response Time
	7.7.2 Use Compression to Improve Response Times and Reduce Network Bandwidth
	7.7.3 Use Only Warning or Notification Logging Levels to Conserve Resources

	8 Oracle Business Intelligence
	8.1 Oracle Application Server Reports Services
	8.1.1 Leverage High Availability to Replace Separate Clustering Solutions for Each Component
	8.1.2 Design Your Paper Layout to Display Report Output in Microsoft Excel
	8.1.3 Select Paper Layout to Control Pagination and Web Layout to Control HTML Output
	8.1.4 Use Dynamic Environment Switching to Consolidate Reports Servers

	8.2 Oracle Business Intelligence Discoverer Best Practices
	8.2.1 Identify Worksheets That Need Tuning to Improve Performance
	8.2.2 Establish Scalability to Share the Workload

	9 Platform Security and Identity Management
	9.1 General Best Practices
	9.1.1 HTTPS Best Practices
	9.1.2 Assign Lowest-Level Privileges Adequate for the Task to Contain Security Leaks
	9.1.3 Cookie Security Best Practices
	9.1.4 Systems Setup Best Practices
	9.1.5 Certificates Use Best Practices
	9.1.6 Review Code and Content Against Already Known Attacks to Minimize the Attack Recurrence
	9.1.7 Firewall Best Practices
	9.1.8 Leverage Declarative Security
	9.1.9 Use Switched Connections in DMZ
	9.1.10 Place Application Server in the DMZ to Prevent Security Issues
	9.1.11 Use Secure Sockets Layer Encryption to Secure LDAP and HTTP Traffic
	9.1.12 Tune the SSLSessionCacheTimeout Directive to Meet Your Application Needs
	9.1.13 Plan Out The Final Topology Before Installing Oracle Application Server Security Components

	9.2 Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider Best Practices
	9.3 J2EE Security Best Practices
	9.3.1 Avoid Writing Custom User Managers and Instead Use Included APIs to Focus Time on Business Logic
	9.3.2 Use the Authentication Mechanism with the JAAS Provider to Leverage Benefits
	9.3.3 Use Fine-Grained Access Control
	9.3.4 Use Oracle Internet Directory as the Central Repository to Provide LDAP Standard Features
	9.3.5 Develop Appropriate Logout Functionality to Prevent Users from Closing the Web Browsers

	9.4 OracleAS Single Sign-On Best Practices
	9.4.1 Configure for High Availability to Prevent Inaccessible Applications
	9.4.2 Leverage OracleAS Single Sign-On to Optimize Administration and Customer Experience
	9.4.3 Use an Enterprise-Wide Directory to Eliminate User Data in Multiple Systems
	9.4.4 Use OracleAS Single Sign-On to Validate User Credentials
	9.4.5 Always Use SSL with Oracle Application Server to Protect Applications
	9.4.6 Provide Username and Password Only on Login Screen to Prevent Users from Providing Credentials to Inappropriate Servers
	9.4.7 Log Out to Prevent Active Cookies

	9.5 Oracle Internet Directory Deployment Best Practices
	9.5.1 Use bulkload.sh Utility to Bootstrap System
	9.5.2 Replicate to Provide High Availability
	9.5.3 Use SSL Binding to Secure Traffic
	9.5.4 Use Backup and Restore Utilities to Secure Data
	9.5.5 Monitor and Audit Oracle Internet Directory to Improve Availability
	9.5.6 Assign Oracle Internet Directory Privileges to Limit Access
	9.5.7 Change Access Control Policies to Control User Administration
	9.5.8 Best Practice for Directory Integration Platform
	9.5.8.1 Use Identity Management Realms to Build Connectivity Between Oracle Internet Directory and Third-Party Directories
	9.5.8.2 Configure Synchronization Service to Enable Users to Interact with Deployed Applications
	9.5.8.3 Synchronize Oracle Human Resources and Oracle Internet Directory to Provide Access to OracleAS Single Sign-On and Oracle Delegated Administration Services

	9.5.9 Incorporate Group Assignment During User Creation to Avoid Multiple Steps
	9.5.10 Use opmnctl instead of oidmon and oidctl to Manage Processes
	9.5.11 Configure Active Directory Synchronization
	9.5.12 Use User Attributes and Password Hints to Make Resetting Credentials Easier

	10 Oracle Application Server High Availability Solutions
	10.1 Oracle Application Server Cluster (Identity Management)
	10.2 Oracle Application Server Cold Failover Clusters
	10.2.1 Use Shared Oracle Home Installs for OracleAS Cold Failover Cluster (Middle-Tier) to Simplify Administration
	10.2.2 Use Oracle Universal Installer Commands to Attach OracleAS Cold Failover Cluster Oracle Home with the oraInventory
	10.2.3 Use Disk Redundancy for OracleAS Cold Failover Cluster to Avoid Oracle Home Failures
	10.2.4 Allocate Ports to the OracleAS Cold Failover Cluster Instance to Avoid Failures

	10.3 Load Balancers
	10.3.1 Use Fault-Tolerant Hardware Load Balancers to Avoid Single Points of Failure
	10.3.2 Use Monitoring of Services to Automatically Disable Traffic to Unavailable Nodes
	10.3.3 Configure All Idle Time Timeouts to Maximize Time for Unused or Idle Service

	10.4 Oracle Application Server Guard
	10.4.1 Clean Up Invalid Records to Avoid Instantiation and Synchronization Errors
	10.4.2 Use the Same Ports for OracleAS Guard in Avoid Manual Configuration Steps in Synchronization Operations
	10.4.3 Use Different Labels and Colors in OracleAS Guard Shells to Avoid Errors
	10.4.4 Enable High-Logging Level to Troubleshoot OracleAS Guard Operations

	10.5 Backup and Recovery
	10.5.1 Use Application Server Control as the Standard Way to Perform Backup and Recovery to Avoid Errors and Typos
	10.5.2 Use Instance-Level Backup to Guarantee Consistency
	10.5.3 Perform an Image Backup to Recover from Loss of Host Scenario
	10.5.4 Use Incremental Backups to Save Time and Disk Space

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

