Oracle® HTTP Server
Administering a Standalone Deployment Based on Apache 1.3
10g Release 2 (10.1.2)
B14008-02

July 2005
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Audience</td>
<td>xi</td>
</tr>
<tr>
<td>Documentation Accessibility</td>
<td>xi</td>
</tr>
<tr>
<td>Related Documents</td>
<td>xii</td>
</tr>
<tr>
<td>Conventions</td>
<td>xii</td>
</tr>
<tr>
<td>1 Overview</td>
<td></td>
</tr>
<tr>
<td>Oracle HTTP Server Features</td>
<td>1-1</td>
</tr>
<tr>
<td>Oracle HTTP Server Components</td>
<td>1-4</td>
</tr>
<tr>
<td>Oracle HTTP Server Modules</td>
<td>1-4</td>
</tr>
<tr>
<td>Oracle HTTP Server Support</td>
<td>1-5</td>
</tr>
<tr>
<td>Oracle HTTP Server Management</td>
<td>1-5</td>
</tr>
<tr>
<td>Starting, Stopping, and Restarting Oracle HTTP Server</td>
<td>1-5</td>
</tr>
<tr>
<td>Starting Oracle HTTP Server</td>
<td>1-6</td>
</tr>
<tr>
<td>Stopping Oracle HTTP Server</td>
<td>1-6</td>
</tr>
<tr>
<td>Restarting Oracle HTTP Server</td>
<td>1-6</td>
</tr>
<tr>
<td>2 Configuring Standalone Oracle HTTP Server with Oracle Application Server</td>
<td></td>
</tr>
<tr>
<td>Configuration Checklist</td>
<td>2-1</td>
</tr>
<tr>
<td>Installing Standalone Oracle HTTP Server</td>
<td>2-2</td>
</tr>
<tr>
<td>Configuring OPMN</td>
<td>2-3</td>
</tr>
<tr>
<td>Configuring mod_oc4j</td>
<td>2-4</td>
</tr>
<tr>
<td>Configuring Single Sign-On</td>
<td>2-5</td>
</tr>
<tr>
<td>3 Specifying Server and File Locations</td>
<td></td>
</tr>
<tr>
<td>Setting Server and Administrator Functions</td>
<td>3-1</td>
</tr>
<tr>
<td>ServerName</td>
<td>3-1</td>
</tr>
<tr>
<td>UseCanonicalName</td>
<td>3-2</td>
</tr>
<tr>
<td>ServerAdmin</td>
<td>3-2</td>
</tr>
<tr>
<td>ServerSignature</td>
<td>3-2</td>
</tr>
<tr>
<td>ServerTokens</td>
<td>3-2</td>
</tr>
<tr>
<td>ServerAlias</td>
<td>3-3</td>
</tr>
<tr>
<td>Specifying File Locations</td>
<td>3-3</td>
</tr>
<tr>
<td>CoreDumpDirectory</td>
<td>3-3</td>
</tr>
<tr>
<td>DocumentRoot</td>
<td>3-3</td>
</tr>
</tbody>
</table>
Configuring and Using Server Logs
Using Oracle Diagnostic Logging
Overview
Configuring Oracle HTTP Server
Specifying Log Level
Specifying Log Files
Access Log

Managing the Network Connections
Specifying Listener Ports and Addresses
BindAddress
Port
Listen
Managing Interaction Between Server and Network
ListenBackLog
SendBufferSize
TimeOut
Managing Connection Persistence
KeepAlive
KeepAliveTimeout
MaxKeepAliveRequests
Obtaining Client IP Address
Configuring Reverse Proxies and Load Balancers

Managing Server Processes
Oracle HTTP Server Processing Model
Handling Server Processes
ServerType
Group
User
Configuring the Number of Processes and Connections
StartServers
ThreadsPerChild
MaxClients
MaxRequestsPerChild
MaxSpareServers
MinSpareServers
Running Oracle HTTP Server as Root
Security Considerations
Getting Information about Processes
7 Understanding Modules

List of Modules
mod_access ... 7-2
mod_actions .. 7-2
mod_alias ... 7-2
mod_asis ... 7-2
mod_auth ... 7-2
mod_auth_anon ... 7-2
mod_auth_dbm .. 7-2
mod_autoindex .. 7-2
mod_cern_meta .. 7-3
mod_certheaders .. 7-3
mod cgi .. 7-6
mod_define ... 7-6
mod_digest .. 7-6
mod_dir .. 7-6
mod_dms .. 7-6
mod_env ... 7-7
mod_example .. 7-7
mod_expires ... 7-7
mod_fastcgi .. 7-7
mod_headers .. 7-7
mod_imap .. 7-7
mod_include .. 7-8
mod_info .. 7-8
mod_log_agent ... 7-8
mod_log_config ... 7-8
mod_log_referer ... 7-8
mod_mime .. 7-8
mod_mime_magic ... 7-8
mod_mmap_static ... 7-9
mod_negotiation .. 7-9
mod_oc4j ... 7-9
 Configuring mod_oc4j... 7-9
 Load Balancing Using mod_oc4j... 7-15
 Enabling SSL between mod_oc4j and OC4J.. 7-15
mod_onsint .. 7-16
 Benefits of mod_onsint... 7-17
8 Configuring and Using mod_oradav

OraDAV Concepts .. 8-1
WebDAV .. 8-1
mod_dav ... 8-2
mod_oradav .. 8-2
OraDAV 8-2

OraDAV Architecture ... 8-3
OraDAV Users ... 8-4
OraDAV Usage Model ... 8-4
OraDAV Configuration Parameters .. 8-5
ORAAllowIndexDetails .. 8-7
ORAAltPassword .. 8-7
ORACacheDirectory ... 8-8
ORACacheMaxResourceSize ... 8-8
ORACachePrunePercent .. 8-9
ORACacheTotalSize ... 8-9
ORACache ... 8-10
ORACacheSN .. 8-10
ORAContainerName ... 8-11
ORAException ... 8-11
A Load Balancing Using mod_oc4j

Load Balancing Policies .. A-1
 Random ... A-1
 Round Robin ... A-1
 Random with Local Affinity ... A-2
 Round Robin with Local Affinity ... A-2
 Random using Routing Weight ... A-2
 Round Robin using Routing Weight A-2
 Metric Based .. A-2
 Metric Based with Local Affinity A-2

Load Balancing Parameters .. A-2
 Oc4jSelectMethod .. A-2
 Oc4jRoutingWeight ... A-3

Metric-based Load Balancing ... A-4
 Configuring Oracle HTTP Server A-5
 Configuring OC4J ... A-5

B Configuration Files

dms.conf ... B-1
httpd.conf .. B-1
 httpd.conf File Structure .. B-2
iaspt.conf ... B-2
mime.types .. B-3
mod_oc4j.conf .. B-3
mod_osso.conf ... B-3
opmn.xml .. B-3
oracle_apache.conf .. B-4
php.ini .. B-4
ssl.conf .. B-4

C Frequently Asked Questions

Creating Application-specific Error Pages C-1
Offering HTTPS to ISP (Virtual Host) Customers C-1
Using Different Language and Character Set Versions of Document C-2
Sending Proxy Sensitive Requests to HTTP Server Behind a Firewall... C-2
mod_oc4j Information .. C-2
mod_oc4j Communication to OC4J using SSL ... C-2
Oracle HTTP Server Version Number .. C-2
Applying Apache Security patches to Oracle HTTP Server .. C-2
Compressing Output from Oracle HTTP Server ... C-2
Supporting PHP .. C-3
Protecting Web Site From Hackers .. C-3

D Troubleshooting Oracle HTTP Server

Problems and Solutions ... D-1
 Intermittent HTTP-500 errors ... D-1
 Firewall Between Oracle HTTP Server and OC4J Blocks Connections D-2
 Oracle HTTP Server Unable to Start Due to Port Conflict .. D-2
 Machine Overloaded by Number of HTTPD Processes... D-2
 Permission Denied When Starting Oracle HTTP Server on Port Below 1024 D-3
 Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly D-3
 SSO Client Authentication Fails with Webcache Reverse Proxy .. D-3

Need More Help? ... D-4

E Third Party Licenses

Apache HTTP Server .. E-1
 The Apache Software License ... E-1
Apache SOAP .. E-2
 Apache SOAP License ... E-2
DBI Module .. E-5
 Perl Artistic License .. E-6
Perl .. E-8
 Perl Kit Readme .. E-8
 mod_perl License ... E-9
 Perl Artistic License .. E-9
PHP ... E-11
 The PHP License .. E-12
mod_dav .. E-13
FastCGI .. E-13
 FastCGI Developer’s Kit License ... E-14
 Module mod_fastcgi License ... E-14

Glossary

Index
Preface

This guide describes how to administer Oracle HTTP Server.

Audience

Administering a Standalone Deployment Based on Apache 1.3 is intended for application server administrators, security managers, and managers of databases used by application servers.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.
Related Documents

For more information, see the Oracle Application Server Documentation Library.

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
This chapter describes the Oracle HTTP Server, highlighting the differences between the Oracle distribution and the open source Apache product on which it is based. It also explains how to start, stop, and restart the server.

Topics discussed are:

- Oracle HTTP Server Features
- Oracle HTTP Server Components
- Oracle HTTP Server Support
- Oracle HTTP Server Management
- Starting, Stopping, and Restarting Oracle HTTP Server

Oracle HTTP Server Features

Oracle HTTP Server is the Web server component of Oracle Application Server. Based on the Apache infrastructure, Oracle HTTP Server allows developers to program their site in a variety of languages and technologies - Perl (through mod_perl and CGI), C (through CGI, and FastCGI), C++ (through FastCGI), PHP, and Oracle’s PL/SQL. It can also be a proxy server, both forward and reverse. In addition, the features of single sign-on, clustered deployment, and high availability, enhances the operations of Oracle HTTP Server.

Based on Apache - HTTP v1.1 Support

Oracle HTTP Server code is based on Apache 1.3 Web Server (http://www.apache.org). With such a proven code base, Oracle HTTP Server provides Oracle Application Server customers with the stability, flexibility, and scalability required of a Web server.

Security - Encryption with SSL

Secure Sockets Layer is required to run any Web site securely. Oracle HTTP Server supports SSL encryption based on industry standard, patented, algorithms. The SSL works seamlessly with both Internet Explorer and Netscape browsers. In addition, the infrastructure has been upgraded to share the same wallet information as the database users. Features include:

- **SSL HW Acceleration Support**: SSL encryption is slower when done in software. Dedicated hardware support for this purpose is now supported, specifically with nCipher.

- **Variable Security per Directory**: This feature allows individual directories to be protected by different strength encryption.
Oracle HTTP Server to OC4J SSL Support: Oracle HTTP Server and OC4J can communicate using AJP protocol over SSL. Previously, Oracle HTTP Server and OC4J used the AJP 1.3 protocol unencrypted, without support for authentication. Now, Oracle HTTP Server has been modified to extend support to the AJP 1.3 protocol over SSL providing both encryption and authentication.

See Also:
- Oracle Application Server Security Guide
- Chapter 9, "Managing Security"
- Chapter 10, "Enabling SSL for Oracle HTTP Server"

Security - Single Sign On
Oracle HTTP Server supports the standard basic authentication features of Web servers. The source for the username and password used here is a flat file (with encrypted passwords). In addition, a module, mod_osso, is included to support single sign on across sites and across applications. This provides for a much better end user experience (they have to login only once), and a much easier development cycle (most of the security is declarative).

See Also:
- Oracle Application Server Single Sign-On Administrator’s Guide
- "mod_osso" on page 7-19

Virtual Hosts
The virtual host facility allows an HTTP server to service multiple domain names over one IP address. Thus, virtual hosts www.north.com might have the same IP address as www.south.com. Oracle HTTP Server provides a "container" environment for a virtual host, thus providing a virtual host with its own set of security and other configuration directives, in addition to locations from which the files are served. This allows an ISP to save on hardware and administrative costs by enabling hundreds to thousands of sites to be served from a single runtime instance of Oracle HTTP Server. Only one virtual host on a single IP address can accommodate SSL. Oracle HTTP Server can support multiple IP addresses and each one of them can have one, but only one virtual host.

Proxy Server and URL Rewriting
Any Web site that is "alive" changes often. Along with that, the directory structure and the URLs change. Oracle HTTP Server makes it easy to accommodate these changes by including an engine that support URL rewriting so that the end users do not have to change their bookmarks. It also supports reverse proxy capabilities, thus making it easier to make content served by different servers to appear from one single server.

PL/SQL Stored Procedures
This feature allows access to PL/SQL code stored in the Oracle database.

See Also: Oracle Application Server mod_plsql User’s Guide

PL/SQL Stored Procedures
Similar in concept to the JavaServer Pages, this module allows PL/SQL to be used as the scripting language within an HTML page. It gets translated into a stored procedure, which then uses the module described in the previous section (for PL/SQL stored procedure) to send the output to the browser.
Server Side Include
Server Side Includes provide an easy way of adding some dynamic, or uniform static content, across all the site's pages. It is typically used for header/footer information. Oracle HTTP Server supports special directives to enable these only for certain types of files, or for given virtual hosts.

Perl
Perl is a scripting language often used to provide dynamic content. Perl can either be called as a CGI program, or directly through mod_perl. Oracle Application Server uses Perl version 5.6.1.

See Also: "mod_perl" on page 7-19

PHP
PHP is an open source, widely-used, general-purpose, client-side scripting language, that is embedded in standard HTML. It is used to generate dynamic HTML pages.

See Also: "mod_php" on page 7-22

C/C++ (CGI and FastCGI)
CGI programs have been commonly used to program Web applications. Oracle HTTP Server improves on them by providing a mechanism to keep them alive beyond the request lifecycle, thus improving the performance tremendously.

Dynamic Monitoring Service
Dynamic Monitoring Services (DMS) metrics give runtime performance statistics for both Oracle HTTP Server and OC4J processes. As applications run, DMS collects detailed performance statistics. This data enables you to monitor the duration of important request processing phases and status information. With this information, you can locate performance bottlenecks and tune the application server to maximize throughput and minimize response time.

See Also: Oracle Application Server Performance Guide

Oracle Process Manager and Notification Server
Oracle Application Server provides a high availability infrastructure integration with Oracle Process Manager and Notification Server (OPMN), for process management, death detection, and failover for OC4J and Oracle HTTP Server processes.

See Also:
- Oracle Application Server High Availability Guide
- Oracle Process Manager and Notification Server Administrator's Guide

Load Balancing
Oracle HTTP Server includes a module called mod_oc4j that routes requests from the OC4J instances in a cluster. OPMN helps ensure that mod_oc4j instances know of all the OC4J in the system without requiring a system administrator to do any configuration.

See Also: Appendix A, "Load Balancing Using mod_oc4j"
Oracle HTTP Server Components

Oracle HTTP Server consists of several components that run within the same process. These components provide the extensive list of features that Oracle HTTP Server offers when handling client requests. The following are the major components:

- **HTTP Listener**: Oracle HTTP Server is based on an Apache HTTP listener to serve client requests. An HTTP server listener handles incoming requests and routes them to the appropriate processing utility.

- **Modules (mods)**: Modules both implement and extend the basic functionality of Oracle HTTP Server. Many of the standard Apache modules are included with Oracle HTTP Server. Oracle also includes several internal modules that are specific to Oracle Application Server components.

 See Also: "Oracle HTTP Server Modules" on page 1-4

- **Perl Interpreter**: A persistent Perl runtime environment embedded in Oracle HTTP Server through mod_perl.

 See Also: Oracle Application Server Concepts

Oracle HTTP Server Modules

Table 1–1 identifies the modules shipped with Oracle HTTP Server. Modules extend the basic functionality of the Web server, and support integration between Oracle HTTP Server and other Oracle Application Server components. Note that the list differs from the Apache open source distribution (given the inclusion of Oracle modules), and that not all modules are supported by Oracle.

<table>
<thead>
<tr>
<th>Module</th>
<th>Note</th>
<th>Module</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod_access</td>
<td>mod_log_referer</td>
<td>mod_mime_magic</td>
<td></td>
</tr>
<tr>
<td>mod_actions</td>
<td>mod_mime</td>
<td>mod_mime_magic</td>
<td></td>
</tr>
<tr>
<td>mod_alias</td>
<td></td>
<td>mod_mmap_static</td>
<td></td>
</tr>
<tr>
<td>mod_asis</td>
<td></td>
<td>mod_negotiation</td>
<td></td>
</tr>
<tr>
<td>mod_auth</td>
<td></td>
<td>mod_oc4j</td>
<td>Oracle module.</td>
</tr>
<tr>
<td>mod_auth_anon</td>
<td>mod_onsint</td>
<td>mod_oradav</td>
<td>Oracle module.</td>
</tr>
<tr>
<td>mod_autoindex</td>
<td>mod_ossl</td>
<td></td>
<td>Oracle module.</td>
</tr>
<tr>
<td>mod_cern_meta</td>
<td>mod_osso</td>
<td></td>
<td>Oracle module.</td>
</tr>
<tr>
<td>mod_certheaders</td>
<td></td>
<td>mod_php</td>
<td></td>
</tr>
<tr>
<td>mod_cgi</td>
<td>mod_perl</td>
<td>mod_plsql</td>
<td>Oracle module.</td>
</tr>
<tr>
<td>mod_define</td>
<td>UNIX systems only.</td>
<td>mod_proxy</td>
<td></td>
</tr>
<tr>
<td>mod_digest</td>
<td></td>
<td>mod_rewrite</td>
<td></td>
</tr>
<tr>
<td>mod_dir</td>
<td></td>
<td>mod_security</td>
<td></td>
</tr>
<tr>
<td>mod_dms</td>
<td>Oracle module.</td>
<td>mod_setenvif</td>
<td></td>
</tr>
<tr>
<td>mod_example</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oracle HTTP Server Support

Oracle provides technical support for the following Oracle HTTP Server features and conditions:

- Modules included in the Oracle distribution. Modules from any other source, including the Apache Software Foundation, are not supported by Oracle.
- Problems that can be reproduced within an Apache configuration consisting only of supported Oracle Apache modules.
- Use of the included Perl interpreter within the supported Apache configuration.

Oracle HTTP Server Management

You can manage Oracle HTTP Server using opmnctl. It is the command-line utility for Oracle Process Manager and Notification Server (OPMN) for process management. It is located in:

- UNIX: ORACLE_HOME/opmn/bin
- Windows: ORACLE_HOME\opmn\bin

See Also: Oracle Process Manager and Notification Server Administrator’s Guide

Starting, Stopping, and Restarting Oracle HTTP Server

Oracle HTTP Server is managed by Oracle Process Manager and Notification Server (OPMN). You must always use the opmnctl utility to start, stop, and restart the server. Otherwise, the configuration management infrastructure cannot detect or communicate with the Oracle HTTP Server processes, and problems may occur.

Note: Do not use the apachectl utility to manage Oracle HTTP Server.

To determine the state of Oracle HTTP Server, use the following command:

```
opmnctl status
```
The processes are listed with their current state (Up, Down, and so on)

Starting Oracle HTTP Server

To start Oracle HTTP Server, use the `startproc` command:

- UNIX: `ORACLE_HOME/opmn/bin> opmnctl [verbose] startproc ias-component=HTTP_Server`
- Windows: `ORACLE_HOME\opmn\bin> opmnctl [verbose] startproc ias-component=HTTP_Server`

Stopping Oracle HTTP Server

To stop Oracle HTTP Server, use the `stopproc` command:

- UNIX: `ORACLE_HOME/opmn/bin> opmnctl [verbose] stopproc ias-component=HTTP_Server`
- Windows: `ORACLE_HOME\opmn\bin> opmnctl [verbose] stopproc ias-component=HTTP_Server`

Restarting Oracle HTTP Server

Restarting Oracle HTTP Server performs a graceful restart, which is invisible to clients. In a graceful restart, on UNIX, a USR1 signal is sent. When the process receives this signal, it tells the children to exit after processing the current request. (Children that are not servicing requests exit immediately.)

The parent re-reads the configuration files and re-opens the log files, replacing the children with new children in accordance with the settings it finds when re-reading the configuration files. It always observes the process creation settings (MaxClients, MaxSpareServers, MinSpareServers) specified, and takes the current server load into account.

To restart Oracle HTTP Server, use the `restartproc` command:

- UNIX: `ORACLE_HOME/opmn/bin> opmnctl [verbose] restartproc ias-component=HTTP_Server`
- Windows: `ORACLE_HOME\opmn\bin> opmnctl [verbose] restartproc ias-component=HTTP_Server`

See Also: Oracle Process Manager and Notification Server Administrator's Guide
This chapter contains information about configuring a standalone Oracle HTTP Server 1.3 installation to communicate with an existing Oracle Application Server, 10g Release 2 (10.1.2) middle-tier installation. The standalone installation of Oracle Application Server for Oracle HTTP Server 1.3 does not contain Oracle Enterprise Manager 10g Grid Control Console, and Distributed Configuration Management, which make configuration and management of groups of servers (farms) simple in the Oracle Application Server installation. Without these helpful tools, several manual configuration steps are needed to configure the standalone Oracle HTTP Server 1.3 installation to interoperate with an existing managed Oracle Application Server middle-tier installation.

Topics discussed are:

- Configuration Checklist
- Installing Standalone Oracle HTTP Server
- Configuring OPMN
- Configuring mod_oc4j
- Configuring Single Sign-On

Configuration Checklist

Before configuring the standalone Oracle HTTP Server 1.3 installation, verify the following:

- Assure that all the standard (managed) Oracle Application Server, 10g Release 2 (10.1.2), instances are installed and configured as desired. You must configure all instances prior to configuration of the standalone Oracle HTTP Server 1.3 listener. Any changes to the standard Oracle Application Server OC4J configuration, such as adding and removing a server from a cluster, or adding a new instance, will require a reconfiguration of the standalone (manually managed) installation.

See Also:

Oracle Application Server Administrator's Guide
Oracle Application Server High Availability Guide

- Install and configure the standalone Oracle HTTP Server 1.3. These instructions assume that all instances of the Oracle HTTP Server 1.3 and the regular Oracle
Installing Standalone Oracle HTTP Server

Standalone Oracle HTTP Server is distributed on the OracleAS Companion CD, which is included in the Oracle Application Server CD Pack.

Following are instructions for installing standalone Oracle HTTP Server:

1. Insert the OracleAS Companion CD, and do the following to launch the Oracle Universal Installer to install standalone Oracle HTTP Server:
 - On UNIX:
     ```
     prompt > cd
     prompt > mount_point/1012disk1/runInstaller
     ```
 - On Windows:
 If your computer supports the auto-run feature, then the installer launches automatically.
 If your computer does not support auto-run, then double click on the setup.exe file to launch the installer.

2. When Oracle Universal Installer appears, review the Welcome screen, and click Next.

3. If this is the first time you are installing any Oracle products on your computer, the Specify Inventory Directory and Credentials screen appears:
 Enter the following information on this screen:
 - Full Path of the Inventory Directory: Enter the full path to a directory for the installer’s files. Enter a directory that is different from the Oracle home directory for the product files.
 For example: /opt/oracle/oraInventory
 - Operating System Group Name: Enter the name of the operating system group that has write permissions for the inventory directory.
 For example: oinstall
 Click Next. A window appears and asks you to run orainstRoot.sh. Run the script in a different shell as the root user. The script is located in the oraInventory directory. Click Continue.

4. On the Specify File Locations screen, enter the following information:
 - Name: Enter a name to identity this Oracle home. The name cannot contain spaces, and has a maximum of 16 characters.
 For example: OH_STANDOHS
 - Destination Path: Enter the full path to the destination directory. This is the Oracle home. If the directory does not exist, the installer creates it. If you want to create the directory beforehand, create it as the oracle user; do not create it as the root user.
 For example: /opt/oracle/STANDOHS
 Click Next.
5. On the Select a Product to Install screen, select Web Server Services 10.1.2.0.0, and click Next.

6. On the Select Installation Type screen, select the standalone Oracle HTTP Server installation of your choice, and click Next.

7. On the Summary screen, verify your selections, and click Install.

8. The Install Progress screen displays the progress of the installation.

9. On the Configuration Assistants screen, monitor the progress of the configuration assistants. The configuration assistants configure the installed components. You will be prompted to run root.sh. Run the script in a different shell as the root user. Click OK.

10. The End of Installation screen appears once the installation has completed. Click Exit to quit the installer.

See Also: Oracle Application Server Installation Guide

Configuring OPMN

Oracle Process Manager and Notification Server (OPMN) consists of the following two components that interpret and convey notification sent between Oracle Application Server processes within the same or different OPMN servers:

- Oracle Notification Server: Oracle Notification Server (ONS) is the transport mechanism for failure, recovery, startup, and other related notifications between components in Oracle Application Server. It operates according to a publish-subscribe model: an Oracle Application Server component receives a notification of a certain type per its subscription to ONS. When such a notification is published, ONS sends it to the appropriate subscribers.

- Oracle Process Manager: Oracle Process Manager (PM) is the centralized process management mechanism in Oracle Application Server and is used to manage Oracle Application Server processes. It starts, stops, restarts, and detects death of these processes. The Oracle Application Server processes that PM is configured to manage are specified in the opmn.xml file.

See Also: Oracle Process Manager and Notification Server Administrator's Guide

Perform the following steps to configure Oracle Process Manager and Notification Server.

1. Copy the ons.conf configuration file from the regular Oracle Application Server middle-tier installation to the corresponding directory in the Oracle HTTP Server 1.3 installation. This file is located in the ORACLE_HOME/opmn/conf directory. Edit the ons.conf file to add all of the Oracle HTTP Server 1.3 standalone instances in the manually managed cluster. The new ons.conf file should contain a list of all the instances in the managed Oracle Application Server installation, and each of the manually managed instances as well.

The following is the ons.conf file format:

```
nodes=<host_name | host_ip>:<port> [,<host_name | host_ip>:<port>] [, ...]
```

For example:

```
nodes=managed1:6000,managed1:6300,unmanaged2:6400
```
2. To determine the correct ONS remote listening port, examine the OPMN configuration file of each manually managed instance (located at `ORACLE_HOME/opmn/conf/opmn.xml`). The ONS remote listening port value is specified by the "remote" attribute of XML element located at `/opmn/notification-server/port` in the opmn.xml file.

For example:

If `opmn.xml` on `unmanaged2` contains:

```xml
<opmn>
  <notification-server>
    <port local='6100' remote='6400' request='6300'/>
    ...
  </notification-server>
  <...>
</opmn>
```

Then, the `ons.conf` file should contain:

```
nodes=managed1:6200,unmanaged1:6300,unmanaged2:6400
```

3. If a host is multi-homed (is configured with multiple IP addresses), it is best to set the `/opmn/notification-server/ipaddr"remote" attribute in the opmn.xml file. This attribute will bind the ONS listener to a single valid IPv4 address or host name. If this attribute is not set, or the `ipaddr` element is omitted, then ONS will enable listening on all IP addresses on a multi-homed host.

For example:

The host `unmanaged2` is multi-homed, with IP addresses of 10.1.1.1 and 10.1.2.1. To restrict ONS to listen on only the 10.1.1.1 IP address, modify the `opmn.xml` file as follows:

```xml
<opmn>
  <notification-server>
    <ipaddr remote='10.1.1.1'/>
    <port local='6100' remote='6400' request='6300'/>
    ...
  </notification-server>
  <...>
</opmn>
```

`ons.conf` should look like the following:

```
nodes-managed1.oracle.com:6200,unmanaged1.oracle.com:6300,10.1.1.1:6400
```

4. Make sure to create an entry in the `ons.conf` file for every single Oracle Application Server instance in the cluster. Copy this manually created file to each of the other unmanaged Oracle HTTP Server 1.3 instances in the cluster. The `ons.conf` configuration data should match both the "remote" and "ipaddr" setting, if present, in the `opmn.xml` configuration file for each unmanaged node.

Configuring mod_oc4j

Manually managed Oracle HTTP Server 1.3 listeners must be configured to route traffic to the managed Oracle Application Server Containers for J2EE installations as follows:

1. Configure OC4J on the managed cluster.
2. For each manually managed standalone Oracle HTTP Server 1.3 instance, assure that the `mod_oc4j.conf` file is configured to point to the managed cluster and instance.

For example, a manually managed Oracle HTTP Server 1.3 listener is configured to direct traffic to the cluster named `managed1`, instance name `home` is used in the `mod_oc4j.conf` file:

```
Oc4jMount /MyApp/* cluster://managed1:home
```

3. A mount point must be added for each application for which routing is needed.

4. Restart Oracle HTTP Server to allow configuration changes to take effect.
 - UNIX: `ORACLE_HOME/opmn/bin> opmnctl [verbose] restartproc ias-component=HTTP_Server`
 - Windows: `ORACLE_HOME\opmn\bin> opmnctl [verbose] restartproc ias-component=HTTP_Server`

5. Each time a new application is configured, Oracle HTTP Server 1.3 standalone `mod_oc4j.conf` must be modified to reflect these changes.

Configuring Single Sign-On

If single sign-on functionality is desired for the standalone Oracle HTTP Server 1.3 install, manually managed Oracle HTTP Server 1.3 listeners may be registered with Oracle Application Server Single Sign-On by performing the following steps:

1. Configure the Partner Application using SSO Server Administration tool.

 See Also: *Oracle Application Server Single Sign-On Administrator’s Guide*

2. Manually create the `osso.conf` file. This is accomplished by cutting and pasting the required data from the Edit Partner Application screen, after the Partner Application had been configured.

For example, the Edit Partner Application screen will display the necessary configuration data for creating the `osso.conf` file. The following shows an Edit Partner Application page sample:

```
ID: 643C32F6
Token: Q2057R2D646C20F1
Encryption Key: 3F46C27C5153B7C7
Login URL: http://foobar.us.oracle.com:7778/pls/orasso.wwsso_app_admin.ls_login
```

The data provided from the Edit Partner Application screen can be used to manually create a clear-text `osso.conf` configuration file as follows:

```
sso_server_version=v1.4
cipher_key=3F46C27C5153B7C7
site_id=643C32F6
site_token=Q2057R2D646C20F1
```
login_url=http://foobar.us.oracle.com:7778/pls/orasso.wssso_app_admin.ls_login
logout_url=http://foobar.us.oracle.com:7778/pls/orasso.wssso_app_admin.ls_logout
cancel_url=http://foobar.us.oracle.com:7778

3. Copy the newly created file to the osso configuration directory:
 ORACLE_HOME/Apache/Apache/conf/osso/osso.conf cleartext

4. The plain-text file must now be obfuscated to protect the encryption key information. This is accomplished by using the apobfuscate tool located in ORACLE_HOME/Apache/Apache/bin directory as following:
 ../../bin/apobfuscate osso/conf/cleartext osso.conf

5. Restart Oracle HTTP Server to allow the configuration to take effect.
 - UNIX: ORACLE_HOME/opmn/bin> opmnctl [verbose] restartproc
 ias-component=HTTP_Server
 - Windows: ORACLE_HOME\opmn\bin> opmnctl [verbose] restartproc
 ias-component=HTTP_Server
This chapter explains how to set Oracle HTTP Server and server administrator options, and specify file locations.

Topics discussed are:

- Setting Server and Administrator Functions
- Specifying File Locations

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.

Setting Server and Administrator Functions

The following directives set basic Oracle HTTP Server and administrator functions. They are located in the “Main Server Configuration” portion of the `httpd.conf` file.

See Also: "httpd.conf File Structure" on page B-2

- **ServerName**
- **UseCanonicalName**
- **ServerAdmin**
- **ServerSignature**
- **ServerTokens**
- **ServerAlias**

ServerName

Enables the server to set a hostname that can be used to create redirection URLs, through which you can access directories without having to use a “/” at the end.

For example, `ServerName www.company.com` would be used if the main name of the actual machine was `main.company.com`.

See Also: "ServerName directive" in the Apache Server documentation.
UseCanonicalName

Determines which hostname and port to use when redirecting the URL to the same server.

- **On**: Server uses the hostname and port values set in `ServerName` and `Port`. This is the default setting.
- **Off**: Server uses the hostname and port that you specify in the request.

For example: `UseCanonicalName On`.

See Also: "UseCanonicalName directive" in the Apache Server documentation.

ServerAdmin

Creates an email address that is included with every default error message that clients encounter. It is useful to create a separate email address for this.

For example: `ServerAdmin you@your.emailaddress`.

See Also: "ServerAdmin directive" in the Apache Server documentation.

ServerSignature

Enables the server to recognize which server, among the various proxies, created the returned response, such as an error message.

- **on**: Server creates a footer to the returned document that includes information such as `ServerName` and server version number. This is the default setting.
- **email**: Server creates an additional "mailto:" reference to the `ServerAdmin` of the document.
- **off**: Footer and "mailto:" reference are not created.

For example: `ServerSignature On`.

See Also: "ServerSignature directive" in the Apache Server documentation.

ServerTokens

Controls server information which is returned to clients, such as in error messages. This information includes a description of the generic operating system-type of the server, and compiled-in modules.

- **min(imal)**: provides information such as server name and version.
- **OS**: provides information such as server name, version and operating system.
- **full**: provides information such as server name, version, operating system, and compiled modules.

For example: `Server: Apache/1.3.0 (UNIX) PHP/3.0 MyMod/1.2`.

See Also: "ServerTokens directive" in the Apache Server documentation.
Specifying File Locations

ServerAlias

Sets alternate names for the current virtual host.

For example:

```conf
<VirtualHost *>
  ServerName server.domain.com
  ServerAlias server server2.domain.com server2
  ...
</VirtualHost>
```

See Also: "ServerAlias directive" in the Apache Server documentation.

Specifying File Locations

The following directives control the location of various server files. They are located in the “Global Environment” of the `httpd.conf` file.

See Also: "httpd.conf File Structure" on page B-2

- CoreDumpDirectory
- DocumentRoot
- ErrorLog
- LockFile
- PidFile
- ScoreBoardFile
- ServerRoot

CoreDumpDirectory

Specifies the directory in which the server dumps core. The default is the ServerRoot directory. This directive is applicable to UNIX only.

For example: `CoreDumpDirectory /tmp`

See Also: "CoreDumpDirectory directive" in the Apache Server documentation.

DocumentRoot

Sets the directory from which `httpd` serves files. Unless matched by a directive like Alias, the server appends the path from the requested URL to the document root to make the path to the document for static content.

For example: `DocumentRoot "/oracle/Apache/Apache/htdocs"`

See Also: "DocumentRoot directive" in the Apache Server documentation.

ErrorLog

Sets the name of the file to which the server notes any errors it encounters. If the name of the file does not begin with a slash (/), then it is assumed to be relative to the
Specifying File Locations

ServerRoot. If the name of the file begins with a pipe (|), then it is assumed to be a command to spawn to handle the error log.

For example:
```
ErrorLog "|/privatel/oracle/Apache/Apache/bin/rotatelogs
/private1/oracle/Apache/Apache/logs/error_log 43200"
```

See Also: "ErrorLog directive" in the Apache Server documentation.

LockFile

Sets the path to the lockfile used when Oracle HTTP Server is compiled with either `USE_FCNTL_SERIALIZED_ACCEPT` or `USE_FLOCK_SERIALIZED_ACCEPT`. It is recommended that default value be used. The main reason for changing it is if the logs directory is NFS mounted, since the lockfile must be stored on a local disk.

For example:
```
LockFile /oracle/Apache/Apache/logs/httpd.lock
```

See Also: "LockFile directive" in the Apache Server documentation.

PidFile

Enables you to set and change the location of the PID file to which the server records the process identification number. If the filename does not begin with a slash (\/), then it is assumed to be relative to the **ServerRoot**.

For example:
```
PidFile /oracle/Apache/Apache/logs/httpd.lock
```

See Also: "PidFile directive" in the Apache Server documentation.

ScoreBoardFile

Required in some architectures to set a file that the server uses to communicate between the parent and children processes. To verify if your architecture requires a scoreboard file, run Oracle HTTP Server and see if it creates the file named by the directive. If your architecture requires it, then you must ensure that this file is not used at the same time by more than one invocation of the server.

For example:
```
ScoreBoardFile /oracle/Apache/Apache/logs/httpd.scoreboard
```

See Also: "ScoreBoardFile directive" in the Apache Server documentation.

ServerRoot

Specifies the directory that contains the `conf` and `logs` subdirectories. If the server is started with the `-f` option, then you will have to specify **ServerRoot**.

For example:
```
ServerRoot "/oracle/Apache/Apache"
```

See Also: "ServerRoot directive" in the Apache Server documentation.
Managing Server Processes

This chapter provides an overview of the Oracle HTTP Server processes, and provides information on how to regulate, and monitor these processes.

Topics discussed are:

- Oracle HTTP Server Processing Model
- Handling Server Processes
- Configuring the Number of Processes and Connections
- Running Oracle HTTP Server as Root
- Security Considerations
- Getting Information about Processes

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.

Oracle HTTP Server Processing Model

Once Oracle HTTP Server is started, the system is ready to listen for and respond to http(s) requests. The request processing model on UNIX differs from that on Windows.

On UNIX, there is a single parent process that manages multiple child processes. The child processes are responsible for handling requests. The parent process brings up additional child processes as necessary, based on configuration. Although the server has the ability to dynamically bring up additional child processes, it is best to configure the server to start enough children initially so that requests can be handled without having to spawn more child processes.

On Windows, there is a single parent process and a single child process. The child process creates threads that are responsible for handling client requests. The number of threads created is static and can be configured.

Handling Server Processes

By default, on UNIX, the main httpd parent process and child processes are configured to run as the user who installed Oracle Application Server. The User and Group...
directives are used to set the privileges for the child processes. These directives are ignored if you are not running as root. The child processes must be able to read all the content that will be served.

- **ServerType**
- **Group**
- **User**

ServerType

Provides the following two options, both being applicable to UNIX only:

inetd: Starts up a new child process every time a request comes in. The program exits once the request is dealt with. This setting eliminates the option of having several child processes in waiting, making it slower and expensive, but more secure. This option should be avoided, if possible.

standalone: Enables several waiting child processes, and requires the server to be started only once. It is the default and recommended setting for a busy Web site.

You must specify the **User** and **Group** under which the servers answer requests.

For example:

```
ServerType standalone
```

See Also: "ServerType directive" in the Apache Server documentation.

Group

Specifies the group under which the server answers requests. Run the standalone server as root to use this directive. It is recommended that you create a new group for running the server. This is applicable to UNIX only.

For example:

```
Group myorg
```

See Also: "Group directive" in the Apache Server documentation.

User

Specifies the user ID to which the server answers requests. Run the standalone server as root to use this directive. You should have privileges to access files that are available for everyone, and should not be able to execute code which is not meant for httpd requests. It is recommended that you set up a new user for running the server. This is applicable to UNIX only.

For example:

```
User jdoe
```

See Also: "User directive" in the Apache Server documentation.

Configuring the Number of Processes and Connections

The following directives tune the performance of Oracle HTTP Server by configuring how clients requests are processed. They are located in the "Global Environment" of the `httpd.conf` file.

See Also: "httpd.conf File Structure" on page B-2

- **StartServers**
Configuring the Number of Processes and Connections

- ThreadsPerChild
- MaxClients
- MaxRequestsPerChild
- MaxSpareServers
- MinSpareServers

StartServers

Sets the number of child server processes created when Oracle HTTP Server is started. The default is 5. This is applicable to UNIX only.

Usage: `StartServers 5`

See Also: "StartServers directive" in the Apache Server documentation.

ThreadsPerChild

Controls the maximum number of child threads handling requests. The default is 50. This is applicable to Windows only.

Usage: `ThreadsPerChild 50`

See Also: "ThreadsPerChild directive" in the Apache Server documentation.

MaxClients

Limits the number of requests that can be dealt with at one time. The default and recommended value is 150. This is applicable to UNIX only.

Usage: `MaxClients 150`

See Also: "MaxClients directive" in the Apache Server documentation.

MaxRequestsPerChild

Controls the number of requests a child process handles before it dies. If you set the value to 0, which is the default, then the process will never die.

On Windows, it is recommended that this be set to 0. If it is set to a non-zero value, when the request count is reached, the child process exits, and is respawned, at which time it re-reads the configuration file. This can lead to unexpected behavior if you have modified a configuration file, but are not expecting the changes to be applied yet.

Usage: `MaxRequestsPerChild 0`

See Also: "MaxRequestsPerChild directive" in the Apache Server documentation.

MaxSpareServers

Sets the maximum number of idle child server processes. An idle process is one which is running, but not handling a request. The parent process kills off idle child processes that exceed the value set for this directive. The default is 20. This is applicable to UNIX only.
Usage: MaxSpareServers 20

See Also: "MaxSpareServers directive" in the Apache Server documentation.

MinSpareServers

Sets the minimum number of idle child server processes. An idle process is one which is running but not handling a request. The parent process will create new children at the maximum rate of one process per second if there are fewer processes running. The default is 5. This is applicable to UNIX only.

Usage: MinSpareServers 5

See Also: "MinSpareServers directive" in the Apache Server documentation.

Running Oracle HTTP Server as Root

On UNIX, if you want to run on ports less than 1024, then you will have to run as root.

In order to run Oracle HTTP Server as root, perform the following steps:

1. Stop Oracle HTTP Server using the following command:

 \$ORACLE_HOME/opmn/bin> opmnctl [verbose] stopproc ias-component=HTTP_Server

2. Change to root user.

3. Navigate to \$ORACLE_HOME/Apache/Apache/bin and execute the following command:

 chown root .apachectl
 chmod 6750 .apachectl

4. Exit root.

5. Restart Oracle HTTP Server using the following command:

 \$ORACLE_HOME/opmn/bin> opmnctl [verbose] restartproc ias-component=HTTP_Server

Security Considerations

For additional security on UNIX, you can change the user to "nobody". Be sure that the child processes can accomplish their tasks as the user "nobody". Change all static content, such as the \$ORACLE_HOME/Apache/Apache/htdocs directory, so that all the files are readable, but ideally not writable by the user "nobody". Also, verify that all the CGI and FastCGI programs can be run by user "nobody".

If your PL/SQL application is using the file-system caching functionality in mod_plsql, then the httpd processes should have read and write privileges to the cache directory through the parameter PlsqlCacheDirectory in \$ORACLE_HOME/Apache/modplsql/conf/cache.conf on UNIX or \$ORACLE_HOME\Apache\modplsql\conf\cache.conf on Windows. By default, this parameter points to \$ORACLE_HOME/Apache/modplsql/cache on UNIX or \$ORACLE_HOME\Apache\modplsql\cache on Windows.

For Oracle Application Server Portal, the content cached by mod_plsql is used, or updated by the Parallel Page Engine running under OC4J Portal. This means that the
cache directory is readable and writable by the OC4J Portal process as well. If Oracle HTTP Server is configured to run as "nobody", then OC4J_Portal should also run as the same user.

Finally, given that the cached content might contain sensitive data, the final contents of the file-system cache should be protected. So, although Oracle HTTP Server might run as "nobody", access to the system as this user should be well-protected.

See Also: "mod_plsql" on page 7-22

Getting Information about Processes

There are several ways to monitor Oracle HTTP Server processes.

1. Use the performance monitor on Windows, or the `ps` utility on UNIX.

 See Also: Oracle Application Server Performance Guide and your operating system documentation for more information.

2. Use `mod_status` for server status. By default, it is available from localhost only.
Managing the Network Connections

This chapter provides information about specifying IP addresses and ports, and managing server interaction, and network connection persistence.

Topics discussed are:

- Specifying Listener Ports and Addresses
- Managing Interaction Between Server and Network
- Managing Connection Persistence
- Obtaining Client IP Address
- Configuring Reverse Proxies and Load Balancers

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.

Specifying Listener Ports and Addresses

The port that Oracle HTTP Server listens on when it is started depends on your installation type.

Table 5–1 contains information about Oracle HTTP Server ports.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Middle Tier Installation</th>
<th>Infrastructure Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solaris</td>
<td>Non-SSL: 7777 (7777-7877 range)</td>
<td>Non-SSL: 7777 (7777-7877 range)</td>
</tr>
<tr>
<td></td>
<td>SSL: 4443 (4443-4543 range)</td>
<td>SSL: 4443 (4443-4543 range)</td>
</tr>
<tr>
<td>Windows</td>
<td>Non-SSL: 80 (7777-7877 range)</td>
<td>Non-SSL: 7777 (7777-7877 range)</td>
</tr>
<tr>
<td></td>
<td>SSL: 443 (4443-4543 range)</td>
<td>SSL: 4443 (4443-4543 range)</td>
</tr>
</tbody>
</table>

If ports 7777 or 80, for example, are occupied, Oracle HTTP Server listens on the next available port number between a range of 7777-7877. Accordingly, it would listen on port 7778, and so on.
Specifying Listener Ports and Addresses

A file named `setupinfo.txt` is automatically generated in `ORACLE_HOME/install` on UNIX or `ORACLE_HOME\install` on Windows. It contains port information for Oracle HTTP Server. This file is generated at install time, and is not updated thereafter. If you restart Oracle HTTP Server, the information in this file becomes inaccurate.

You can change the Oracle HTTP Server listener port (SSL and non-SSL) after installation. If you make a port change, then you have to also update other components to use the new port number.

You can specify that the server listens on more than one port, selected addresses, or a combination. The following directives, located in the "Global Environment" of the `httpd.conf` file, specify listener ports and addresses. Note that `BindAddress` and `Port` can be used only once. Apache group recommends the use of `Listen` instead.

- **BindAddress**
- **Port**
- **Listen**

See Also: *Oracle Application Server Administrator’s Guide*

You can specify that the server listens on more than one port, selected addresses, or a combination. The following directives, located in the "Global Environment" of the `httpd.conf` file, specify listener ports and addresses. Note that `BindAddress` and `Port` can be used only once. Apache group recommends the use of `Listen` instead.

See Also: "httpd.conf File Structure" on page B-2

BindAddress

Restricts the server to listen to a single IP address. If the argument to this directive is *, then it listens to all IP addresses. This directive has been deprecated. `Listen` offers similar functionality.

For example: `BindAddress *`

See Also: "BindAddress directive" in the Apache Server documentation.

Port

Specifies the port of the listener, if no `Listen` or `BindAddress` are present. If `Listen` is present, the `Port` value becomes the default port value that is used when Oracle HTTP Server builds URLs, or other references to itself. Usually, the values of `Port` and `Listen` should match, unless Oracle HTTP Server is fronted by a caching, or proxy server. Then, you can set `Port` to be the port that is being used by the front end server, and `Listen` to the port that Oracle HTTP Server is actually listening to. By doing this, redirects or other URLs generated by Oracle HTTP Server point to the front-end server rather than directly to Oracle HTTP Server.

For example: `Port 7779`

See Also: "Port directive" in the Apache Server documentation.

Listen

Specifies an IP port that Oracle HTTP Server listens on. Multiple `Listen` directives can be used to listen on multiple ports. If present, this value will override the value of

Note: SSL is disabled by default. For information on enabling SSL, refer to Chapter 10, "Enabling SSL for Oracle HTTP Server".
Port. Accordingly, if you have a Port value of 7777 and a Listen value of 7778, then Oracle HTTP Server only listens on one port, 7778.

For example:
- Listen 7778
- Listen 12.34.56.78:80

See Also: "Listen directive" in the Apache Server documentation.

Managing Interaction Between Server and Network

The following directives are used to specify how the server interacts with the network. They are located in the "Global Environment" of the httpd.conf file.

- ListenBackLog
- SendBufferSize
- TimeOut

See Also: "httpd.conf File Structure" on page B-2

ListenBackLog

Specifies the maximum length of the queue of pending connections. This is useful if the server is experiencing a TCP SYN overload, which causes numerous new connections that open up, but do not complete the task.

See Also: "ListenBackLog directive" in the Apache Server documentation.

SendBufferSize

Increases the TCP buffer size to the number of bytes specified, thereby improving performance.

See Also: "SendBufferSize directive" in the Apache Server documentation.

TimeOut

Sets the maximum time, in seconds, that the server waits for the following:
- The total amount of time it takes to receive a GET request.
- The amount of time between receipt of TCP packets on a POST or PUT request.
- The amount of time between ACKs on transmissions of TCP packets in responses.

The default is 300 seconds.

See Also: "TimeOut directive" in the Apache Server documentation.

Managing Connection Persistence

The following directives determine how the server handles persistent connections. They are located in the "Global Environment" of the httpd.conf file.
Obtaining Client IP Address

- **KeepAlive**
- **KeepAliveTimeout**
- **MaxKeepAliveRequests**

See Also:
- Oracle Application Server Performance Guide
- "httpd.conf File Structure" on page B-2

KeepAlive

Enables HTTP 1.1 keep-alive support, allowing reuse of the same TCP connection for multiple HTTP requests from a single client, when set to "On".

See Also: "KeepAlive directive" in the Apache Server documentation.

KeepAliveTimeout

Sets the number of seconds the server waits for a subsequent request before closing a KeepAlive connection. Once a request has been received, the timeout value specified by the TimeOut directive applies. The default is 15 seconds.

See Also: "KeepAliveTimeout directive" in the Apache Server documentation.

MaxKeepAliveRequests

Limits the number of requests allowed per connection when KeepAlive is on. If it is set to "0", unlimited requests will be allowed. The default is 100.

See Also: "MaxKeepAliveRequests directive" in the Apache Server documentation.

Obtaining Client IP Address

UseWebCacheIp is a global directive that enables Oracle HTTP Server to obtain IP address of a client. It can be set to "On" or "Off", and defaults to "Off". It is not set to "On" by default because it can open a security hole in some circumstances.

When OracleAS Web Cache acts as a reverse proxy in front of Oracle HTTP Server, the TCP connection from the client is terminated at OracleAS Web Cache. The TCP connection that Oracle HTTP Server sees actually originates at OracleAS Web Cache. Oracle HTTP Server gets the IP address of the client and uses it for various purposes, such as:

- Populating the REMOTE_ADDR CGI variable that can be used by applications in and behind Oracle HTTP Server to identify where the client came from.
- Evaluating mod_access allow/deny rules that allow the administrator to restrict access based on IP address.

Without the UseWebCacheIp directive, this functionality fails when OracleAS Web Cache is used in front of Oracle HTTP Server. This is because Oracle HTTP Server sees all connections coming from the same place - the IP address where OracleAS Web Cache is running.
Configuring Reverse Proxies and Load Balancers

With every request that OracleAS Web Cache forwards to Oracle HTTP Server, it sends a header that contains the IP address of the client connection that it received. If UseWebCacheIp is set to "On", then it directs Oracle HTTP Server to use the IP value from this header, instead of the value from the TCP connection as the client’s IP address. This enables REMOTE_ADDR CGI variable to have the correct value, and allows mod_access to function correctly.

You should set this directive only if you are sure that the clients can only connect to Oracle HTTP Server through OracleAS Web Cache. If clients can connect directly to Oracle HTTP Server, then they have to find out the header that is used to transfer the client IP and set it so that it would seem to have come from any IP address you want. In a typical set up, with a firewall and OracleAS Web Cache, the only port open through the firewall is the OracleAS Web Cache port. Hence, the only path from the client to Oracle HTTP Server goes through OracleAS Web Cache. In this case, it is safe to turn on UseWebCacheIp.

Configuring Reverse Proxies and Load Balancers

By default, Oracle Application Server installs using the local hostname as set up by ServerName directive in Oracle HTTP Server. Most Web sites tend to have a specific hostname or domain name for their Web or application server. However, this is not possible out of the box because with the ServerName directive, Oracle HTTP Server is instantiated with the local host.

Example 5–1 Using Reverse Proxies and Load Balancers with Oracle HTTP Server

Domain Name: www.oracle.com:80 123.456.7.8 (hosted on a reverse proxy, load balancer, or firewall)

Host Name of Oracle Application Server Host: server.oracle.com 123.456.7.9

ServerName and Port of Oracle Application Server Host:
server.oracle.com:7777

Make the following changes in the httpd.conf file:

Port 80
Listen 7777
Listen 80
Virtual Hosts
This section is mandatory for URLs that are generated by
the PL/SQL packages of the Oracle Portal and various other components
These entries dictate that the server should listen on port
7777, but will assert that it is using port 80, so that
self-referential URLs generated specify www.oracle.com:80
This will create URLs that are valid for the browser since
the browser does not directly see the host server.oracle.com.
NameVirtualHost 123.456.7.9:7777
<VirtualHost server.oracle.com:7777>
 ServerName www.oracle.com
</VirtualHost>
Since the previous virtual host entry will cause all links
generated by the Oracle Portal to use port 80, the server.company.com
server needs to listen on 80 as well since the Parallel Page
Engine will make connection requests to Port 80 to request the
portlets.
NameVirtualHost 123.456.7.9:80
<VirtualHost server.oracle.com:80>
Configuring Reverse Proxies and Load Balancers

ServerName www.oracle.com
Port 80
<VirtualHost>

See Also: Oracle Application Server High Availability Guide
This chapter discusses Oracle Diagnostic Logging, log formats, and describes various log files and their locations.

Topics discussed are:

- Using Oracle Diagnostic Logging
- Specifying Log Level
- Specifying Log Files

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.

Using Oracle Diagnostic Logging

Oracle offers a new method for reporting diagnostic messages. This new method, Oracle Diagnostic Logging (ODL), presents a common format for diagnostic messages and log files, and a mechanism for correlating all diagnostic messages from various components across Oracle Application Server. Using ODL, each component logs messages to its own private local repository. A tool called LogLoader collects messages from each repository and loads them into a common repository where messages can be viewed as a single log stream, or analyzed in different ways.

You can view Oracle Application Server diagnostic log files using a text editor.

See Also: *Oracle Application Server Administrator’s Guide*

ODL is further discussed in the following sections:

- **Overview**
- **Configuring Oracle HTTP Server**

Overview

Oracle HTTP Server enables you to choose the format in which you want to generate log messages. You can either continue to generate log messages in the legacy Apache message format, or generate log messages using ODL, which complies with the new Oracle-wide standards for generating log messages.
Configuring Oracle HTTP Server

To enable Oracle HTTP Server to use ODL, enter the following directives in the httpd.conf file:

- **OraLogMode oracle | odl | apache**
- **OraLogSeverity module_name <msg_type>[msg_level]**
- **OraLogDir <busstop dir>**

Oracle recommends that you enter the directives before any modules are loaded (LoadModule directive) in the httpd.conf file so that module-specific logging severities are in effect before modules have the opportunity to perform any logging.

OraLogMode oracle | odl | apache

Enables you to switch between the Oracle logging format, the legacy Apache logging format, and the ODL logging format. Logging formats are defined as follows:

- **oracle**: Fully conformant, multi-line log records in XML format. Provides the most information.
- **odl**: Standard Apache log format and ECID information for log records specifically associated with a request. This is the default setting.
- **apache**: Standard Apache log format. Provides the least information.

OraLogSeverity module_name <msg_type>[msg_level]

Enables you to set message severity. The message severity specified with this directives is interpreted as the lowest message severity that is desired, and all messages of that severity level and higher will be logged.

OraLogSeverity may be specified multiple times. It can be specified globally (no module_name) and once for each module for which a module-specific logging severity is desired.

This directive is only used when OraLogMode is set to "oracle". This directive can be used in place of the LogLevel directive, but is not required. If OraLogSeverity is present and OraLogMode is set to "oracle", then LogLevel will be ignored.

module_name This argument is the internal name of a module, as it appears in the module structure. The <IfModule> directive also makes use of this internal name. The module structure derives the module name from the value of the _FILE_ macro, without path prefix, of the file which defines the module structure. If a module name is not supplied, the OraLogSeverity directive is applied globally.

If the module name is specified, then the directive overrides the global directive value of all the messages originating from the specified module. Specifying a module name for a module that does not get loaded generates an error.

msg_type Message types may be specified in upper or lower case, but will appear in the message output in upper case. This parameter must be one of the following values:

- INTERNAL_ERROR
- ERROR
- WARNING
- NOTIFICATION
TRACE

msg_level This parameter must be an integer in the range of 1-32. 1 is most severe, 32 is least severe. Using level 1 will result in fewer messages than using level 32.

Table 6–1 lists some examples of OraLogSeverity.

<table>
<thead>
<tr>
<th>OraLogSeverity Example</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>OraLogSeverity INTERNAL_ERROR:10</td>
<td>Logs all messages of type "internal error" of levels 1-10</td>
</tr>
<tr>
<td>OraLogSeverity WARNING:7</td>
<td>Logs all messages of type "internal error" of all levels</td>
</tr>
<tr>
<td></td>
<td>Logs all messages of type "error" of all levels</td>
</tr>
<tr>
<td></td>
<td>Logs all messages of type "warning" of levels 1-7</td>
</tr>
</tbody>
</table>

If message source is mod_oc4j, then

- Logs all messages of type "internal error" of all levels
- Logs all messages of type "error" of all levels
- Logs all messages of type "warning" of all levels
- Logs all messages of type "notification" of levels 1-4

For messages from all other sources:

- Logs all messages of type "internal error" of all levels
- Logs all messages of type "error" of all levels
- Logs all messages of type "warning" of all levels

OraLogSeverity WARNING mod_oc4j.c NOTIFICATION:4	If message source is mod_oc4j, then
OraLogSeverity mod_oc4j.c NOTIFICATION:4	Logs all messages of type "internal error" of all levels
	Logs all messages of type "error" of all levels
	Logs all messages of type "warning" of all levels
	Logs all messages of type "notification" of levels 1-4

Default If a message level is not specified, then the level defaults to the lowest severity. If the entire directive is omitted, then the value of the global Apache LogLevel directive is used and translated to the corresponding Oracle message type and the lowest level within the corresponding range, as listed in Table 6–2:

<table>
<thead>
<tr>
<th>Apache Log Level</th>
<th>Oracle Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>emerg</td>
<td>INTERNAL_ERROR:16</td>
</tr>
<tr>
<td>alert</td>
<td>INTERNAL_ERROR:32</td>
</tr>
<tr>
<td>crit</td>
<td>ERROR:16</td>
</tr>
<tr>
<td>error</td>
<td>ERROR:32</td>
</tr>
<tr>
<td>warn</td>
<td>WARNING:32</td>
</tr>
<tr>
<td>notice</td>
<td>NOTIFICATION:16</td>
</tr>
<tr>
<td>info</td>
<td>NOTIFICATION:32</td>
</tr>
<tr>
<td>debug</td>
<td>TRACE:32</td>
</tr>
</tbody>
</table>

See Also: "Specifying Log Level" on page 6-4

OraLogDir <bus stop dir>

Specifies the path to the directory which contains all log files. This directory must exist.

Default:
Specifying Log Level

Table 6–3 lists all the different logging levels, their descriptions, and, example messages:

<table>
<thead>
<tr>
<th>Logging Level</th>
<th>Description</th>
<th>Example Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>emerg</td>
<td>Emergencies- system is unusable.</td>
<td>"Child cannot open lock file. Exiting."</td>
</tr>
<tr>
<td>alert</td>
<td>Action must be taken immediately.</td>
<td>"getpwuid: couldn’t determine user name from uid"</td>
</tr>
<tr>
<td>crit</td>
<td>Critical conditions.</td>
<td>"socket: Failed to get a socket, exiting child"</td>
</tr>
<tr>
<td>error</td>
<td>Error conditions.</td>
<td>"Premature end of script headers"</td>
</tr>
<tr>
<td>warn</td>
<td>Warning conditions.</td>
<td>"child process 1234 did not exit, sending another SIGHUP"</td>
</tr>
<tr>
<td>notice</td>
<td>Normal but significant condition.</td>
<td>"httpd: caught SIGBUS, attempting to dump core in..."</td>
</tr>
<tr>
<td>info</td>
<td>Informational.</td>
<td>"Server seems busy, (you may need to increase StartServers, or Min/MaxSpareServers)..."</td>
</tr>
<tr>
<td>debug</td>
<td>Debug-level messages.</td>
<td>"Opening config file..."</td>
</tr>
</tbody>
</table>

Note: LogLevel directive may be omitted when OraLogMode is "oracle" and OraLogSeverity is set.

Specifying Log Files

The following section describes the function and location of these log files:

- Access Log
- CustomLog
- Error Log
- PID File
- Piped Log
- Rewrite Log
- Script Log
- SSL Log
- Transfer Log

It is important to periodically rotate the log files by moving or deleting existing logs on a moderately busy server. For this, the server must be restarted after the log files are moved or deleted so that new log files are opened.
Specifying Log Files

Access Log
Records all requests processed by the server. The location and content of the access log is controlled by the CustomLog directive. The LogFormat directive can be used to simplify the selection of the contents of the logs.

Specifying LogFormat
LogFormat specifies the information included in the log file, and the manner in which it is written. The default format is the Common Log Format (CLF). The CLF format is:

```
host ident authuser date request status bytes
```

- **host**: This is the client domain name or its IP number.
- **ident**: If IdentityCheck is enabled and the client machine runs identd, then this is the client identity information.
- **authuser**: This is the user ID for authorized user.
- **date**: This is the date and time of the request in the `<day/month/year:hour:minute:second>` format.
- **request**: This is the request line, in double quotes, from the client.
- **status**: This is the three-digit status code returned to the client.
- **bytes**: This is the number of bytes, excluding headers, returned to the client.

See Also: "Access Log" in the Apache Server documentation.

CustomLog
Logs requests to the server. A log format is specified, and the logging can optionally be made conditional on request characteristics using environment variables.

See Also: "CustomLog directive" in the Apache Server documentation.

Error Log
The server sends diagnostic information and records error messages to a log file located, by default, in:

- **UNIX**: `ORACLE_HOME/Apache/Apache/logs/error_log`
- **Windows**: `ORACLE_HOME\Apache\Apache\logs\error_log`

The file name can be set using the ErrorLog directive.

See Also: "ErrorLog directive" in the Apache Server documentation.

PID File
When the server is started, it notes the process ID of the parent httpd process to the PID file located, by default, in:

- **UNIX**: `ORACLE_HOME/Apache/Apache/logs/httpd.pid`
- **Windows**: `ORACLE_HOME\Apache\Apache\logs\httpd.pid`
Specifying Log Files

This filename can be changed with the PidFile directive. The process ID is for use by the administrator for restarting and terminating the daemon. If the process dies (or is killed) abnormally, then it is necessary to kill the children httpd processes.

See Also: "Pid File" in the Apache Server documentation.

Piped Log

Oracle HTTP Server is capable of writing error and access log files through a pipe to another process, rather than directly to file. This increases the flexibility of logging, without adding code to the main server. In order to write logs to a pipe, replace the file name with the pipe character "|", followed by the name of the executable which should accept log entries on its standard input. Oracle HTTP Server starts the piped-log process when the server starts, and restarts it if it crashes while the server is running.

Piped log processes are spawned by the parent Oracle HTTP Server httpd process, and inherit the user ID of that process. This means that piped log programs usually run as root so it is important to keep the programs simple and secure.

See Also: "Piped Log" in the Apache Server documentation.

Rewrite Log

Necessary for debugging when mod_rewrite is used. This log file produces a detailed analysis of how the rewriting engine transforms requests. The level of detail is controlled by the RewriteLogLevel directive.

See Also: "Rewrite Log" in the Apache Server documentation.

Script Log

Enables you to record the input to and output from the CGI scripts. This should only be used in testing, and not for live servers.

See Also: "Script Log" in the Apache Server documentation.

SSL Log

When Oracle HTTP Server starts in SSL mode, it creates ssl_engine_log and ssl_request_log in

- UNIX: ORACLE_HOME/Apache/Apache/logs
- Windows: ORACLE_HOME\Apache\Apache\logs

ssl_engine_log tracks SSL and protocol issues, whereas ssl_request_log records user activity. Use the SSLLogFile directive to control output.

See Also: Chapter 10, "Enabling SSL for Oracle HTTP Server"

Transfer Log

Specifies the file in which to store the log of accesses to the site. If it is not explicitly included in the conf file, then no log is generated. The server typically logs each request to a transfer file located, by default, in

- UNIX: ORACLE_HOME/Apache/Apache/logs/access_log
- Windows: ORACLE_HOME\Apache\Apache\logs\access_log
The filename can be set using a `CustomLog` directive.
This chapter describes the modules (mods) included in the Oracle HTTP Server. The modules extend the basic functionality of the Web server, and support integration between Oracle HTTP Server and other Oracle Application Server components.

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.

List of Modules

Table 7–1 lists all the Oracle HTTP Server modules discussed in this chapter.

<table>
<thead>
<tr>
<th>Oracle HTTP Server Modules</th>
<th>Oracle HTTP Server Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod_access</td>
<td>mod_actions</td>
</tr>
<tr>
<td>mod_auth</td>
<td>mod_auth_anon</td>
</tr>
<tr>
<td>mod_cern_meta</td>
<td>mod_cerheaders</td>
</tr>
<tr>
<td>mod_digest</td>
<td>mod_dir</td>
</tr>
<tr>
<td>mod_example</td>
<td>mod_expired</td>
</tr>
<tr>
<td>mod_imap</td>
<td>mod_include</td>
</tr>
<tr>
<td>mod_log_config</td>
<td>mod_log_referer</td>
</tr>
<tr>
<td>mod_mmap_static</td>
<td>mod_negotiation</td>
</tr>
<tr>
<td>mod_oradav</td>
<td>mod_ossl</td>
</tr>
<tr>
<td>mod_php</td>
<td>mod_plsql</td>
</tr>
<tr>
<td>mod_security</td>
<td>mod_security</td>
</tr>
<tr>
<td>mod_unique_id</td>
<td>mod_userdir</td>
</tr>
<tr>
<td>mod_wchandshake</td>
<td>mod_vhost_alias</td>
</tr>
</tbody>
</table>
mod_access

Controls access to the server based on characteristics of a request, such as hostname or IP address.

See Also: Module mod_access in the Apache Server documentation.

mod_actions

Enables execution of CGI scripts based on file type or request method.

See Also: Module mod_actions in the Apache Server documentation.

mod_alias

Enables manipulation of URLs in processing requests. It provides mapping between URLs and file system paths, and URL redirection capabilities.

See Also: Module mod_alias in the Apache Server documentation.

mod_asis

Enables sending files that contain their own HTTP headers.

See Also: Module mod_asis in the Apache Server documentation.

mod_auth

Enables user authentication with files based user lists.

See Also: Module mod_auth in the Apache Server documentation.

mod_auth_anon

Enables anonymous user access to protected areas (similar to anonymous FTP, where the email addresses can be logged).

See Also: Module mod_auth_anon in the Apache Server documentation.

mod_auth_dbm

Uses DBM files to provide user authentication.

mod_autoindex

Generates directory indexes automatically.

See Also: Module mod_autoindex in the Apache Server documentation.
mod_cern_meta

Emulates CERN (Conseil Europeen pour le Recherche Nucleaire) HTTPD metafile semantics. Metafiles are additional HTTP headers that can be produced for each file the server accesses, in addition to the typical set.

mod_certheaders

Allows reverse proxies that terminate SSL connections in front of Oracle HTTP Server, such as OracleAS Web Cache, to transfer information regarding SSL connection, such as SSL client certificate information, to Oracle HTTP Server, and applications running behind Oracle HTTP Server. This information is transferred from the reverse proxy to Oracle HTTP Server using HTTP headers. The information is transferred from the headers to the standard CGI environment variable, which *mod_ossl* or *mod_ssl* populates if the SSL connection is terminated by Oracle HTTP Server. It is an Oracle module.

It also allows certain requests to be treated as HTTPS requests even though they are received through HTTP. This is done using the `SimulateHttps` and `AddCertHeader` directives.

`SimulateHttps` takes the container it is contained within, such as `<VirtualHost>`, `<Location>`, and so on, and treats all requests received for this container as if they were received through HTTPS, regardless of the real protocol that the request was received through.

`AddCertHeader` is specifically for use with Oracle Application Server Web Cache. For Oracle Application Server Web Cache, it adds a special header that indicates to Oracle HTTP Server which requests Oracle Application Server Web Cache received through HTTPS. *mod_certheaders* triggers Oracle HTTP Server to only treat those cases where Oracle Application Server Web Cache received the request as HTTPS as if Oracle HTTP Server received it through HTTPS.

Perform the following steps to configure *mod_certheaders*:

1. Configure Oracle HTTP Server to load *mod_certheaders*. To do this, add a `LoadModule` directive to `httpd.conf` file:

 - **UNIX:** `LoadModule certheaders_module libexec/mod_certheaders.so`
 - **Windows:** `LoadModule certheaders_module modules/ApacheModuleCertHeaders.dll`

2. Specify which headers should be translated to CGI environment variables. This can be achieved by using the `AddCertHeader` directive. This directive takes a single argument, which is the CGI environment variable that should be populated from a HTTP header on incoming requests. For example, to populate the `SSL_CLIENT_CERT` CGI environment variable, add the following line to `httpd.conf`:

   ```
   AddCertHeader SSL_CLIENT_CERT
   ```

 The `AddCertHeader` directive can be a global setting if it is placed in the base virtual server section of `httpd.conf`. It can be specific to a single virtual host by placing it within a virtual host container, or it can be specific to a set of URIs by placing it within a `<Directory>` or `<Location>` container directive within `httpd.conf`. The combination of these directives are additive, so that for a given URI, all directives that are specific to that URI will be added to any that are specific to that request's virtual host, which will be added to any that is defined for that base virtual host.
Table 7–2 lists all the supported CGI environment variables with their corresponding HTTP header names.

<table>
<thead>
<tr>
<th>CGI Variable</th>
<th>Header Name</th>
<th>CGI Variable</th>
<th>Header Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL_PROTOCOL</td>
<td>SSL-Protocol</td>
<td>SSL_SESSION_ID</td>
<td>SSL-Session_Id</td>
</tr>
<tr>
<td>SSL_CIPHER</td>
<td>SSL-Cipher</td>
<td>SSL_CIPHER_EXPORT</td>
<td>SSL-Cipher-Export</td>
</tr>
<tr>
<td>SSL_CIPHER_ALGKEYSIZE</td>
<td>SSL-Cipher-Algkeysize</td>
<td>SSL_VERSION_LIBRARY</td>
<td>SSL-Version-Library</td>
</tr>
<tr>
<td>SSL_CLIENT_CERT</td>
<td>SSL-Client-Cert</td>
<td>SSL_VERSION_INTERFACE</td>
<td>SSL-Version-Interface</td>
</tr>
<tr>
<td>SSL_CLIENT_CERT_CHAIN_n</td>
<td>SSL-Client-Cert-Chain-n</td>
<td>SSL_CIPHER_USEKEYSIZE</td>
<td>SSL-Cipher-Usekeysize</td>
</tr>
<tr>
<td>SSL_CLIENT_VERIFY</td>
<td>SSL-Client-Verify</td>
<td>SSL_SERVER_CERT</td>
<td>SSL-Server-Cert</td>
</tr>
<tr>
<td>SSL_CLIENT_M_VERSION</td>
<td>SSL-Client-M-Version</td>
<td>SSL_SERVER_M_VERSION</td>
<td>SSL-Server-M-Version</td>
</tr>
<tr>
<td>SSL_CLIENT_M_SERIAL</td>
<td>SSL-Client-M-Serial</td>
<td>SSL_SERVER_M_SERIAL</td>
<td>SSL-Server-M-Serial</td>
</tr>
<tr>
<td>SSL_CLIENT_V_START</td>
<td>SSL-Client-V-Start</td>
<td>SSL_SERVER_V_END</td>
<td>SSL-Server-V-End</td>
</tr>
<tr>
<td>SSL_CLIENT_V_END</td>
<td>SSL-Client-V-End</td>
<td>SSL_SERVER_V_END</td>
<td>SSL-Server-V-End</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN</td>
<td>SSL-Client-S-DN</td>
<td>SSL_SERVER_S_DN</td>
<td>SSL-Server-S-DN</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_C</td>
<td>SSL-Client-S-DN-C</td>
<td>SSL_SERVER_S_DN_C</td>
<td>SSL-Server-S-DN-C</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_ST</td>
<td>SSL-Client-S-DN-ST</td>
<td>SSL_SERVER_S_DN_ST</td>
<td>SSL-Server-S-DN-ST</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_L</td>
<td>SSL-Client-S-DN-L</td>
<td>SSL_SERVER_S_DN_L</td>
<td>SSL-Server-S-DN-L</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_O</td>
<td>SSL-Client-S-DN-O</td>
<td>SSL_SERVER_S_DN_O</td>
<td>SSL-Server-S-DN-O</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_OU</td>
<td>SSL-Client-S-DN-OU</td>
<td>SSL_SERVER_S_DN_OU</td>
<td>SSL-Server-S-DN-OU</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_CN</td>
<td>SSL-Client-S-DN-CN</td>
<td>SSL_SERVER_S_DN_CN</td>
<td>SSL-Server-S-DN-CN</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_T</td>
<td>SSL-Client-S-DN-T</td>
<td>SSL_SERVER_S_DN_T</td>
<td>SSL-Server-S-DN-T</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_I</td>
<td>SSL-Client-S-DN-I</td>
<td>SSL_SERVER_S_DN_I</td>
<td>SSL-Server-S-DN-I</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_G</td>
<td>SSL-Client-S-DN-G</td>
<td>SSL_SERVER_S_DN_G</td>
<td>SSL-Server-S-DN-G</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_S</td>
<td>SSL-Client-S-DN-S</td>
<td>SSL_SERVER_S_DN_S</td>
<td>SSL-Server-S-DN-S</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_D</td>
<td>SSL-Client-S-DN-D</td>
<td>SSL_SERVER_S_DN_D</td>
<td>SSL-Server-S-DN-D</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_UID</td>
<td>SSL-Client-S-DN-Uid</td>
<td>SSL_SERVER_S_DN_UID</td>
<td>SSL-Server-S-DN-Uid</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN</td>
<td>SSL-Client-I-DN</td>
<td>SSL_SERVER_I_DN</td>
<td>SSL-Server-I-DN</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_C</td>
<td>SSL-Client-I-DN-C</td>
<td>SSL_SERVER_I_DN_C</td>
<td>SSL-Server-I-DN-C</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_ST</td>
<td>SSL-Client-I-DN-ST</td>
<td>SSL_SERVER_I_DN_ST</td>
<td>SSL-Server-I-DN-ST</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_L</td>
<td>SSL-Client-I-DN-L</td>
<td>SSL_SERVER_I_DN_L</td>
<td>SSL-Server-I-DN-L</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_O</td>
<td>SSL-Client-I-DN-O</td>
<td>SSL_SERVER_I_DN_O</td>
<td>SSL-Server-I-DN-O</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_OU</td>
<td>SSL-Client-I-DN-OU</td>
<td>SSL_SERVER_I_DN_OU</td>
<td>SSL-Server-I-DN-OU</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_CN</td>
<td>SSL-Client-I-DN-CN</td>
<td>SSL_SERVER_I_DN_CN</td>
<td>SSL-Server-I-DN-CN</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_T</td>
<td>SSL-Client-I-DN-T</td>
<td>SSL_SERVER_I_DN_T</td>
<td>SSL-Server-I-DN-T</td>
</tr>
</tbody>
</table>
3. **mod_certheaders** can be used to instruct Oracle HTTP Server to treat certain requests as if they were received through HTTPS even though they were received through HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or load balancer, which acts as a termination point for SSL requests, and forwards the requests to Oracle HTTP Server through HTTPS.

If OracleAS Web Cache is being used as the load balancer, it sends an HTTP header that identifies all requests it received through HTTPS. This means that **mod_certheaders** automatically detects which requests should be treated as HTTPS requests by simply looking for this header. To enable this, add the following directive to `httpd.conf`:

```
AddCertHeader HTTPS
```

This affects all URLs processed by Oracle HTTP Server.

For other load balancers, **mod_certheaders** must be explicitly configured to determine which requests should be treated as HTTPS requests. To do this, use the following directive:

```
SimulateHttps on
```

SimulateHttps can be embedded within a virtual host, such as:

```
<VirtualHost localhost:7777>
  SimulateHttps on
  ...
</VirtualHost>
```

This tells **mod_certheaders** to treat every request handled by this virtual host as HTTPS, or the directive can be placed within a `<LocationMatch>`, `<Directory>`, or `<DirectoryMatch>` directive container such as:

```
<Location /foo/>
  SimulateHttps on
</Location>
```

This limits it to URLs starting with `/foo/`.

4. Edit the `$ORACLE_HOME/sso/conf/sso_apache.conf`, and comment out the following line:

```
```
5. Run the following command:
 `dcmctl updateconfig -ct ohs`

6. Run the following command:
 `opmnctl restartproc type=ohs`

7. Test that the SSO server can be logged into with client authentication.

mod_cgi

Enables the server to run CGI scripts.

See Also: Module mod_cgi in the Apache Server documentation.

mod_define

Enables the Define directive, which defines a variable that can be expanded on any configuration line. The Define directive has the status Extension, which means that it is not compiled into the server by default.

This module requires Extended API (EAPI). Oracle HTTP Server always has EAPI-enabled.

This module is available on UNIX systems only.

mod_digest

Uses an older version of the MD5 Digest Authentication specification than that used in mod_auth_digest to provide user authentication. mod_digest probably only works with older browsers.

See Also: Module mod_digest in the Apache Server documentation.

mod_dir

Enables the server to perform slash (/) redirects. Directories must contain a trailing slash. If a request for a URL without a trailing slash is received, mod_dir redirects the request to the same URL followed by a trailing slash. For example:

http://myserver/documents/mydirectory

is redirected to

http://myserver/documents/mydirectory/

See Also: Module mod_dir in the Apache Server documentation.

mod_dms

Enables you to monitor performance of site components with Oracle's Dynamic Monitoring Service (DMS). It is an Oracle module.
mod_env

Enables you to control the environment for CGI scripts and SSI (Server Side Includes) pages by passing, setting, and unsetting environment variables. `ModifyEnv` appends or prepends a value to an existing `ENV` variable’s value, and passes it into the Oracle HTTP Server environment. The following is the usage:

Let $FOO = "foo":

`ModifyEnv FOO "bar"` modifies the value of $FOO from "foo" to "foo:bar"

`ModifyEnv FOO "+bar"` modifies the value of $FOO from "foo" to "bar:foo"

Let $FOO be undefined:

`Modify FOO "bar"` sets the value of $FOO to "bar"

See Also: Module `mod_env` in the Apache Server documentation.

mod_example

Provides examples and guidance on how to write modules using the Apache API. When implemented, it demonstrates module callbacks triggered by the server.

mod.expires

Enables the server to generate Expires HTTP headers, which provide information to the client about document validity. Documents are served from the source if, based on the expiration criteria, the cached copy has expired.

See Also: Module `mod.expires` in the Apache Server documentation.

mod_fastcgi

Supports the FastCGI protocol, which enables you to maintain a pool of running servers for CGI applications, thereby eliminating start-up and initialization overhead.

See Also: Module `mod_fastcgi` in the Apache Server documentation.

mod_headers

Enables you to merge, replace, or remove HTTP response headers.

See Also: Module `mod_headers` in the Apache Server documentation.

mod_imap

Enables server-side image map processing.
mod_include

Provides a filter that processes documents for SSI (Server Side Includes) directives.

See Also: Module mod_include in the Apache Server documentation.

mod_info

Summarizes the entire server configuration, including all installed modules and directive settings.

See Also: Module mod_info in the Apache Server documentation.

mod_log_agent

Enables logging of client user agents. It is deprecated; you should use mod_log_config instead of mod_log_agent.

mod_log_config

Provides configurable, customizable logging of server activities. You can choose the log format, and select or exclude individual requests for logging, based on characteristics of the requests.

See Also: Module mod_log_config in the Apache Server documentation.

mod_log_referer

Enables logging of documents that reference documents on the server. It is deprecated; you should use mod_log_config instead of mod_log_referer.

See Also: Module mod_log_referer in the Apache Server documentation.

mod_mime

Enables the server to determine the type of a file from its filename, and associate files with handlers for processing.

See Also: Module mod_mime in the Apache Server documentation.

mod_mime_magic

Enables the server to determine the MIME type of a file by examining a few bytes of its content. It is used in cases when mod_mime cannot determine a file type. Make sure that mod_mime appears before mod_mime_magic in the configuration file, so that mod_mime processes the files first.

See Also: Module mod_mime_magic in the Apache Server documentation.
mod_mmap_static
Maps a list of files into memory, useful for frequently requested files that are not changed often.

mod_negotiation
Enables the server for content negotiation (selection of documents based on the client's capabilities).

See Also: Module `mod_negotiation` in the Apache Server documentation.

mod_oc4j
Routes requests from the Oracle HTTP Server to Oracle Application Server Containers for J2EE (OC4J), through the AJP 1.3 protocol. It is an Oracle module.

`mod_oc4j` is enabled by default. During installation, the `oc4j_deploy_tool.jar` adds mount points to `mod_oc4j.conf` for applications deployed into OC4J instances. Requests that come in for specific mount points in `mod_oc4j` are routed to the OC4J instance for that mount point.

OC4J instances are started and managed by Oracle Process Manager and Notification Server (OPMN).

See Also:
- *Oracle Application Server Containers for J2EE User’s Guide*
- *Oracle Process Manager and Notification Server Administrator’s Guide*

This section discusses the following topics:

- Configuring `mod_oc4j`
- Load Balancing Using `mod_oc4j`
- Enabling SSL between `mod_oc4j` and OC4J

Configuring `mod_oc4j`
The following sections describe all relevant directives in `httpd.conf` and `mod_oc4j.conf`. Sample configurations are also provided.

`mod_oc4j` Configuration File and Directives
The `mod_oc4j` directives are maintained in `mod_oc4j.conf`. The `mod_oc4j.conf` file is included by default into the `httpd.conf` file, using the following directive:

```
include "ORACLE_HOME/Apache/Apache/conf/mod_oc4j.conf"
```

The following directives are used to configure `mod_oc4j`:

- `Oc4jCacheSize`
- `Oc4jConnTimeout`
- `Oc4jCookieExtension`
- `Oc4jExtractSSL`
LoadModule

Loads the `mod_oc4j` module.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>LoadModule oc4j_module mod_oc4j shared library file</td>
</tr>
<tr>
<td>Required</td>
<td>Yes</td>
</tr>
<tr>
<td>Default</td>
<td>UNIX: None</td>
</tr>
<tr>
<td></td>
<td>Windows: LoadModule oc4j_module modules\ApacheModuleOc4j.dll</td>
</tr>
<tr>
<td>Example</td>
<td>UNIX: LoadModule oc4j_module mod_oc4j.so</td>
</tr>
<tr>
<td></td>
<td>Windows: LoadModule oc4j_module modules\ApacheModuleOc4j.dll</td>
</tr>
</tbody>
</table>

Oc4jCacheSize

Specifies the size of the OC4J connection cache.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jCacheSize<size of connection cache></td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>UNIX: 1</td>
</tr>
<tr>
<td></td>
<td>Windows: 32</td>
</tr>
<tr>
<td>Example</td>
<td>Oc4jCacheSize 64</td>
</tr>
<tr>
<td>Usage</td>
<td>Specifies the number of concurrent OC4J connections that can be cached by each Oracle HTTP Server process. Setting this directive to "0" will disable persistent connections between <code>mod_oc4j</code> and the OC4J instances.</td>
</tr>
</tbody>
</table>

Oc4jConnTimeout

Defines maximum idle time (in seconds) for unused connections.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jConnTimeout <timeout value for AJP13 connections></td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>Oc4jConnTimeout 10</td>
</tr>
<tr>
<td>Usage</td>
<td>Useful for cases where there is a firewall between <code>mod_oc4j</code> and OC4J that times out connections. The value should be set to a value smaller than the timeout value used by the firewall.</td>
</tr>
</tbody>
</table>
Oc4jCookieExtension

Directs `mod_oc4j` to use JSESSIONID_<cookie_name_extension> as OC4J's session identifier in the cookie.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jCookieExtension <cookie_name_extension></td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>Oc4jCookieExtension MYEXT</td>
</tr>
<tr>
<td>Usage</td>
<td>Directs <code>mod_oc4j</code> to use JSESSIONID_<cookie_name_extension> as OC4J's session identifier in the cookie, instead of JSESSIONID. In the preceding example, JSESSIONID_MYEXT is used as the OC4J's session identifier.</td>
</tr>
</tbody>
</table>

Oc4jExtractSSL

Governs passing SSL environment variables.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jExtractSSL On/Off</td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>Off</td>
</tr>
<tr>
<td>Example</td>
<td>Oc4jExtractSSL On</td>
</tr>
<tr>
<td>Usage</td>
<td>Directs <code>mod_oc4j</code> to decide whether or not to pass three SSL environment variables, SSL_CLIENT_CERT, SSL_CIPHER, and SSL_SESSION_ID to OC4J. There is a performance cost associated with copying the SSL environment variables to OC4J, so set it to "On" only if the environment variables must be available to OC4J.</td>
</tr>
</tbody>
</table>

Note: If configured, `mod_oc4j` passes some security environment parameters to OC4J set by `mod_ossl` and `mod_osso`, at request time.

Oc4jEnvVar

Directs `mod_oc4j` to pass some environment variables from Oracle HTTP Server to OC4J.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jEnvVar environment variable name [environment variable default value]</td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>Oc4jEnvVar MY_ENV1</td>
</tr>
<tr>
<td></td>
<td>Oc4jEnvVar MY_ENV2 myenv_value</td>
</tr>
</tbody>
</table>
mod_oc4j

Usage

For each OC4jEnvVar entry, you must also configure the Oracle HTTP Server directive, `PassEnv`, with the environment variable. Otherwise, `mod_oc4j` cannot acquire and pass the value.

Multiple entries are allowed. You could specify the default value for the environment variable as the second parameter, or leave it empty. If the environment variable's value is found in the Oracle HTTP Server environment, its value will be passed to OC4J. Otherwise, if the default value is set, the default value will be passed.

If this environment variable's value is not found in the Oracle HTTP Server environment and the default value is not set, nothing is passed to OC4J.

There is a performance degradation associated with `mod_oc4j` passing some configured environment variables over to OC4J with each request.

Note: If configured, `mod_oc4j` passes some security environment parameters to OC4J set by `mod_ossl` and `mod_osso`, at request time.

Oc4jMount

Directs `mod_oc4j` to route requests containing a particular path to a destination. A destination can be a single OC4J process, or a set of OC4J instances.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
</table>
| Syntax | Oc4jMount path \[destination\] where path is the context root. The path parameter must be the same as the application context root specified in the OC4J configuration file \`xxx-web-site.xml\`. The application context root is shown in bold text in the example \ `<web-site>` element. `<default-web-app application="default" name="defaultWebApp" root="/j2ee"/>` and where destination is one of these types:
 - ajp13_dest
 - cluster_dest (this is the default destination type)
 - instance_dest

 If destination is not specified, the default OC4J instance name of home will be used. For example,
 Oc4jMount /myApp/* provides the same result as:
 Oc4jMount /myApp/* cluster://local_ias_cluster_name:home |
| Required | No |
| Default | None |
Oc4jMountCopy

Copies mount points from the base server.

Examples

```
Oc4jMount /app01/* ajp13://my-sun:8888
Oc4jMount /app02/*
Oc4jMount /app03/* home
Oc4jMount /app04/* ias_cluster_1:home
Oc4jMount /app05/* cluster://ias_cluster_1:home,ias_cluster_2:home
Oc4jMount /app06/* instance://ias_instance_1:home
Oc4jMount /app07/* instance://ias_instance_1:home_1,ias_instance_2:home_2
Oc4jMount /app08/* instance://my-sun:ias_instance_1:home
```

Usage Examples

Examples are provided for each routing destination:

- **ajp13_dest**

  ```
  Oc4jMount path ajp13://my-sun:8888
  ```

 A request with the pattern specified in `path` is routed to an OC4J process listening on `my-sun`, port 8888 with the AJP 1.3 protocol. (`my-sun` and port 8888 are the AJP 1.3 protocol host and port specified in the OC4J configuration file `xxx-web-site.xml`.

- **cluster_dest**

  ```
  Oc4jMount <path> cluster://ias_cluster_name:OC4J_instance_name, ias_cluster_name:OC4J_instance_name...
  ```

 A request with the pattern specified in `path` is load balanced to one or more of the OC4J instances specified (instances are separated by commas).

 The Oracle Application Server Cluster Name is optional. If it is provided, the destination OC4J instance should be inside the named cluster. If none is provided, the destination OC4J instance should be inside the local Oracle Application Server cluster.

- **instance_dest**

  ```
  Oc4jMount <path> instance://host:ias_instance_name:OC4J_instance_name, host:ias_instance_name:OC4J_instance_name...
  ```

 A request with the pattern specified in `<path>` is load balanced to one or more of the OC4J instances specified (instances are separated by commas).

 The host name is optional. If it is provided, the destination OC4J instance should be inside the Oracle Application Server instance residing on that host. If none is provided, the destination OC4J instance could be on any host.

Oc4jMountCopy

Copies mount points from the base server.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>`Oc4jMountCopy On</td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>On</td>
</tr>
<tr>
<td>Example</td>
<td><code>Oc4jMountCopy Off</code></td>
</tr>
</tbody>
</table>
Oc4jUseOHSErrors

Allows users to configure an error range using Oracle HTTP Server’s error pages when errors in the range are returned from OC4J.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jUseOHSErrors On/Off/min-max</td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>off</td>
</tr>
<tr>
<td>Example</td>
<td>Oc4jUseOHSErrors 400-410</td>
</tr>
</tbody>
</table>

Usage

Directs mod_oc4j to decide whether to copy Oc4jMount points from the base server to the virtual host on which this directive is specified. If its value is On, all of the Oc4jMount points configured in the base server will be copied to the virtual host. If its value is Off, only the Oc4jMount points configured within the virtual host scope will be used.

mod_oc4j Sample Configurations

This section provides some sample configurations for mod_oc4j.

Example 7–1 Sample mod_oc4j configuration

This configuration mounts all requests starting with the URI /servlet/ to the default instance of OC4J processes.

Make this entry in the httpd.conf file:

```plaintext
Oc4jMount /servlet/*
```

Example 7–2 Sample mod_oc4j configuration

This configuration performs the same work as the configuration in Example 7–1, using a <Location> container directive instead of the Oc4jMount directive.

Make this entry in the httpd.conf file:

```plaintext
<Location /servlet>
    SetHandler oc4j-handler
</Location>
```

Note: This will only route requests to default the OC4J instance
Example 7–3 Sample mod_oc4j configuration

This configuration mounts all requests starting with the URI `/servlet/` or `/j2ee/` and all JSP pages to the default OC4J instance of OC4J processes.

Make these entries in the `mod_oc4j.conf` file:

```
Oc4JMount /servlet/*
Oc4JMount /*.jsp
Oc4JMount /j2ee/*
```

Example 7–4 Sample mod_oc4j configuration

This configuration mounts:

- All requests starting with the URI `/applicationA/` and all JSP pages to `oc4j_instance_A`, in which all OC4J processes are managed by OPMN.
- All requests starting with the URI `/applicationB/` to `oc4j_instance_B`, in which all OC4J processes are managed by OPMN.

Make these entries in the `mod_oc4j.conf` file:

```
Oc4JMount /applicationA/* oc4j_instance_A
Oc4JMount /applicationB/* oc4j_instance_B
Oc4JMount /j2ee/*
Oc4JMount /*.jsp oc4j_instance_A
```

Load Balancing Using mod_oc4j

`mod_oc4j` load balancing, including metric based load balancing, is discussed in detail in Appendix A, "Load Balancing Using mod_oc4j".

Enabling SSL between mod_oc4j and OC4J

Optionally, you can have direct SSL support for communication between `mod_oc4j` and OC4J. To do this, you have to enable SSL on the `mod_oc4j` side as well as the OC4J side.

- **Enabling SSL for mod_oc4j**
- **Enabling SSL for OC4J**

Enabling SSL for mod_oc4j

Add the following directives in `mod_oc4j.conf` to enable SSL for `mod_oc4j`:

```
Oc4jEnableSSL
```

Oc4jEnableSSL

Indicates whether `mod_oc4j` needs to use SSL when communicating with OC4J processes. It should not be configured to "On" if `Oc4jiASPTActive` is configured to "On".

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jEnableSSL</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>On/Off</td>
</tr>
<tr>
<td>Default Value</td>
<td>Off</td>
</tr>
</tbody>
</table>
Oc4jSSLWalletFile

When **Oc4jEnableSSL** is set to "On", this directive specifies the location of an Oracle Wallet file that contains SSL certificates that are used for SSL communication with OC4J processes.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jSSLWalletFile</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Path to a wallet directory location that contains the SSL certificate to be used when establishing SSL connections to OC4J processes.</td>
</tr>
<tr>
<td>Default Value</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Oc4jSSLWalletPassword

When **Oc4jEnableSSL** is set to "On", this value is the obfuscated password used for authentication when opening the wallet file. This value is obtained using the utility provided with the Oracle Wallet Manager.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jSSLWalletPassword</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Obfuscated password used for authentication when opening the wallet file specified by Oc4jSSLWalletFile.</td>
</tr>
<tr>
<td>Default Value</td>
<td>N/A</td>
</tr>
</tbody>
</table>

See Also:
- *Oracle Application Server Administrator’s Guide* for information on Oracle Wallet Manager.
- "Using the iasobf Utility" on page 10-15

Note: Wallet passwords have been deprecated. A warning message is generated in the Oracle HTTP Server log if this directive is used. For secure wallets, Oracle recommends that you get a SSO wallet instead. Refer to the *Oracle Application Server Security Guide* for information on SSO wallet.

Enabling SSL for OC4J

To enable SSL communication between **mod_oc4j** and OC4J, you have to enable SSL on the OC4J side too.

See Also: *Oracle Application Server Containers for J2EE Security Guide* for enabling SSL on the OC4J side.

mod_onsint

This module provides integration support with Oracle Notification Service (ONS) and Oracle Process Manager and Notification Server (OPMN). It is an Oracle module.
Benefits of mod_onsint

mod_onsint provides the following functionality:

- Provides a subscription mechanism for ONS notifications within Oracle HTTP Server. This is particularly important on UNIX where Oracle HTTP Server employs a multi-process architecture. In such an architecture, it is not feasible to have an ONS subscriber in each process since there are up to 8192 processes that comprise a single Oracle HTTP Server instance. Instead, mod_onsint provides a single process that receives notification for all modules within an Oracle HTTP Server instance.

- Publishes PROC_READY ONS notifications so that other components such as OPMN and OC4J are notified that the listener is up and ready. It also provides information such as DMS metrics and information about how the listener can be contacted. These notifications are sent periodically by mod_onsint as long as the Oracle HTTP Server instance is running.

- Provides functionality that allows Oracle HTTP Server to terminate as a single unit if the parent process fails. The parent process is responsible for starting and stopping all of the child processes for an Oracle HTTP Server instance. The failure of the parent process without first shutting down the child processes leaves Oracle HTTP Server in an inconsistent state that can only be fixed by manually killing all of the orphaned child processes. Until this is done, a new Oracle HTTP Server instance cannot be started since the orphaned child processes still occupy the ports Oracle HTTP Server wants to use. mod_onsint provides a monitor of the parent process. If it detects that the parent process has died, it kills all of the remaining child processes. When combined with OPMN, this provides restartability for Oracle HTTP Server in the case of a parent process failure. mod_onsint ensures that all of the Oracle HTTP Server child processes die, leaving the ports open for a new Oracle HTTP Server instance. OPMN ensures that a new instance is started once the failure of the original instance is detected.

Implementation Differences on UNIX and Windows

Due to the difference in architecture of Oracle HTTP Server on UNIX and Windows, the implementation of mod_onsint varies slightly on these platforms.

On UNIX, mod_onsint spawns a process at module initialization time. This process is responsible for watching the parent process as well as sending and receiving ONS messages. Callback functions from other modules interested in ONS notifications are made in this process. For this information to be shared with other Oracle HTTP Server child processes, the use of an interprocess communication method such as a memory mapped file must be used. If a failure of a parent process is detected on UNIX, a signal is sent to all the other child processes, causing them to shut down.

On Windows, Oracle HTTP Server consists of only two processes, the parent and a multi-threaded child that handles all of the HTTP requests. In this model, mod_onsint runs as a thread within the child process. This thread watches the parent process as well as sending and receiving ONS messages. Callback functions from other modules interested in ONS notifications are made in the child process. If a failure of the parent process is detected, the mod_onsint terminates the child process, effectively shutting down Oracle HTTP Server.

There is an optional directive called OpmnHostPort that can be configured for mod_onsint. This directive enables you to specify a hostname and port that OPMN should use for pinging the Oracle HTTP Server instance that mod_onsint is running in. If OpmnHostPort is not specified, mod_onsint chooses an HTTP port automatically. In
mod_oradav

This Oracle module (an OCI application written in C) is an extended implementation of mod_dav, and is integrated with the Oracle HTTP Server. mod_oradav can read and write to local files or to an Oracle database. The Oracle database must have an OraDAV driver (a stored procedure package) that mod_oradav calls to map WebDAV activity to database activity. Essentially, mod_oradav enables WebDAV clients to connect to an Oracle database, read and write content, and query and lock documents in various schemas.

You can configure mod_oradav to an Oracle database using standard Oracle HTTP Server directives. mod_oradav can immediately leverage other module code (such as mime_magic) in order to perform content management tasks. Most OraDAV processing activity involves streaming content to and from a content provider; and mod_oradav uses OCI streaming logic directly within the Oracle HTTP Server.

To configure mod_oradav, you enter parameters within a <Location> container directive in httpd.conf. The <Location> container directive specifies the DAV-enabled URL. The DAV keyword is followed by a single value: On, which tells mod_dav to use the local file system for content.

The following example specifies that the directory myfiles under the Web server documents directory (htdocs by default) is to be DAV-enabled, along with all directories under myfiles in the hierarchy. (Note that there must not be any symlinks defined on myfiles or any of its subdirectories.)

```httpd
<Location /myfiles>
  DAV On
</Location>
```

See Also:

- Chapter 8, "Configuring and Using mod_oradav"
- Oracle Application Server Portal Configuration Guide

For information about using mod_oradav to access database schemas for access by third-party tools (such as Adobe GoLive and Macromedia Dreamweaver) and Oracle interMedia, refer to the OraDAV information available on OTN at http://www.oracle.com/technology/index.html
mod_ossl

Enables strong cryptography for Oracle HTTP Server. This Oracle module is a plug-in to Oracle HTTP Server that enables the server to use SSL. It is very similar to the OpenSSL module, mod_ssl. However, in contrast to the OpenSSL module, mod_ossl is based on the Oracle implementation of SSL, which supports SSL, version 3, and is based on Certicom and RSA Security technology.

See Also:
- *Oracle Application Server Security Guide*
- "Using mod_ossl to Authenticate Users" on page 9-7
- Chapter 10, "Enabling SSL for Oracle HTTP Server"

mod_osso

Enables single sign-on for Oracle HTTP Server. mod_osso examines incoming requests and determines whether the resource requested is protected, and if so, retrieves the Oracle HTTP Server cookie for you. It is an Oracle module.

See Also: *Oracle Application Server Single Sign-On Administrator’s Guide*

mod_perl

Embeds the Perl interpreter into the Oracle HTTP Server. This eliminates start-up overhead and enables you to write modules in Perl. Oracle Application Server uses Perl version 5.6.1.

See Also: mod_perl Guide

Database Usage Notes

This section provides information for mod_perl users working with databases. It explains how to test a local database connection and set character forms.

Using Perl to Access the Database

The following section contains information about using Perl to access the database. Perl scripts access databases using the DBI/DBD driver for Oracle. The DBI/DBD driver is part of Oracle Application Server. It calls Oracle Callable Interface (OCI) to access the databases.

DBI must be enabled in httpd.conf for DBI to function. To do this, perform the following steps:

1. Edit httpd.conf using a text editor.
2. Search for "PerlModule Apache::DBI".
3. Uncomment the line PerlModule Apache::DBI.
4. Restart Oracle HTTP Server using the following command:
 - UNIX: ORACLE_HOME/opmn/bin> opmnctl [verbose] restartproc ias-component=HTTP_Server
 - Windows: ORACLE_HOME\opmn\bin> opmnctl [verbose] restartproc ias-component=HTTP_Server

See Also:
- Oracle Application Server Security Guide
- "Using mod_ossl to Authenticate Users" on page 9-7
- Chapter 10, "Enabling SSL for Oracle HTTP Server"
Files must be copied to `ORACLE_HOME/Apache/Apache/cgi-bin`.

Example 7–5 Using Perl to Access the Database

```perl
#!/<ORACLE_HOME>/perl/bin/perl -w
use DBI;
my $dataSource = "host=<hostname.domain>;sid=<orclsid>;port=1521";
my $userName = "scott";
my $password = "tiger";
my $dbhhandle = DBI->connect("dbi:Oracle:$dataSource", $userName, $password)
  or die "Can't connect to the Oracle Database: $DBI::errstr\n";
print 'Content-type: text/plain\n\n';
print "Database connection successful.\n";
### Now disconnect from the database
$dbhandle->disconnect
  or warn "Database disconnect failed; $DBI::errstr\n";
exit;
```

You can access the DBI scripts from the following locations:

- `http://<hostname.domain>:<port>/cgi-bin/<scriptname>`
- `http://<hostname.domain>:<port>/perl/<scriptname>`

If the script specifies "use Apache::DBI" instead of "use DBI", then it will only be able to run from `http://<hostname.domain>:<port>/perl/<scriptname>`.

Testing Database Connection

The following is a sample Perl script for testing the database connection of a local seed database. To use the script to test another database connection, you must replace `scott/tiger` with the user name and password for the target database.

```perl
##### Perl script start ######
use DBI;
print 'Content-type: text/plain\n\n';
$dbh = DBI->connect("dbi:Oracle:", "scott/tiger", '') || die $DBI::errstr;
$stmt = $dbh->prepare("select * from emp order by empno")|| die $DBI::errstr;
$rc = $stmt->execute() || die $DBI::errstr;
while (($empno, $name) = $stmt->fetchrow()) { print "$empno $name\n"; }
warn $DBI::errstr if $DBI::err;
die "fetch error: ", $DBI::errstr if $DBI::err;
$stmt->finish() || die "can't close cursor";
$dbh->disconnect() || die "can't log off Oracle";
##### Perl script End ######
```

Using SQL NCHAR Datatypes

SQL NCHAR datatypes have been refined since Oracle9i, and are now called reliable Unicode datatypes. SQL NCHAR datatypes such as NCHAR, NVARCHAR2 and NCLOB allow you to store any Unicode characters regardless of the database character set. The character set for those datatypes is specified by the national character set, which is either AL16UTF-16 or UTF8.

See Also: Oracle9i documentation for more about SQL NCHAR datatypes.
This release of DBD::Oracle supports SQL NCHAR datatypes and provides driver extension functions to specify the character form for data binding. The following script shows an example to access SQL NCHAR data:

Example 7–7 Sample Script to Access SQLNCHAR Data

```perl
# declare to use the constants for character forms
use DBD::Oracle qw(:ora_forms);
# connect to the database and get the database handle
$dbh = DBI->connect( ... );
# prepare the statement and get the statement handle
$sth = $dbh->prepare('SELECT * FROM TABLE_N WHERE NCOL1 = :nchar1 ');
# bind the parameter of a NCHAR type
$sth->bind_param(':nchar1', $param_1);
# set the character form to NCHAR
$sth->func( { ':nchar1' => ORA_NCHAR } , 'set_form' );
$sth->execute;
```

As shown in Example 7–7, the `set_form` function is provided as a private function that you can invoke with the standard DBI `func()` method. It takes an anonymous hash that specifies which placeholder should be associated with which character form. The valid values of character form are either `ORA_IMPLICIT` or `ORA_NCHAR`. Setting the character form to `ORA_IMPLICIT` causes the application's bound data to be converted to the database character set, and `ORA_NCHAR` to the national character set. The default form is `ORA_IMPLICIT`.

Another function is provided to specify the default character set form as follows:

```perl
# specify the default form to be NCHAR
$dbh->func( ORA_NCHAR, 'set_default_form' );
```

After this call is made, the form of all parameters is `ORA_NCHAR`, unless otherwise specified with `set_form` calls. Note that unlike the `set_form` function, this is a function on the database handle, so every statement from the database handle with its default form specified has the form of your choice by default.

set_form

This function sets the character form for parameter(s). Valid forms are either `ORA_IMPLICIT` (default) or `ORA_NCHAR`. The constants are available as `ora_forms` in DBD::Oracle.

Example 7–8 Sample for set_form

```perl
# a declaration example for the constants ORA_IMPLICIT and ORA_NCHAR
use DBD::Oracle qw(:ora_forms);
# set the character form for the placeholder :nchar1 to NCHAR
$sth->func( { ':nchar1' => ORA_NCHAR } , 'set_form' );
# set the character form using the positional index
$sth->func( { 2 => ORA_NCHAR } , 'set_form' );
# set the character form for multiple placeholders at once
$sth->func( { 1 => ORA_NCHAR, 2 => ORA_NCHAR } , 'set_form' );
```

set_default_form

This function sets the default character form for a database handle.

Example 7–9 Default Character Form for a Database Handle

```perl
$dbh->func( ORA_NCHAR , 'set_default_form' );
```
mod_php

PHP (recursive acronym for "PHP: Hypertext Preprocessor") is an open source, widely-used, general-purpose, client-side scripting language, that is embedded in standard HTML. It is used to generate dynamic HTML pages. On Oracle HTTP Server, PHP support is provided through mod_php and has Oracle database support enabled. It uses PHP version 4.3.9.

Note: phpinfo() prints out very sensitive information about the current state of PHP and Oracle HTTP Server intervals. Users new to PHP, or those who are unaware of phpinfo() should not inadvertently leave a PHP script called phpinfo() publically accessible.

phpinfo() is used heavily for debugging. There is a good chance that such a debug script could be left in the open by mistake once debugging is finished.

See Also:
- http://php.net/

mod_plsql

Connects the Oracle HTTP Server to an Oracle database, enabling you to create Web applications using Oracle stored procedures. It is an Oracle module.

In order to access a Web-enabled PL/SQL application, configure a PL/SQL Database Access Descriptor (DAD) for mod_plsql. A DAD is a set of values that specifies how mod_plsql connects to a database server to fulfill an HTTP request. Besides the connect details, a DAD contains important configuration parameters for various operations in the database and for mod_plsql in general. Any Web-enabled PL/SQL application which makes use of the PL/SQL Web ToolKit needs to create a DAD to invoke the application.

- Any PL/SQL Application written using the PL/SQL Web ToolKit
- Oracle Application Server Portal

Creating a DAD

Perform the following steps to create a DAD:

1. Edit the DAD configuration file `ORACLE_HOME/Apache/modplsql/conf/dads.conf`.
2. Add a DAD where the DAD has the following format:
 a. The Oracle HTTP Server `<Location>` directive which defines a virtual path used to access the PL/SQL Web Application. This directive begins enclosing a group of directives that apply to the named Location.
For example, the directive <Location /myapp> defines a virtual path called "/myapp" that will be used to invoke a PL/SQL Web Application through a URL like http://host:port/myapp/.

Note: Older versions of mod_plsql were always mounted on a virtual path with a prefix of '/pls'. This restriction is removed in newer versions but might still be a restriction imposed by some of the older PL/SQL applications.

b. The Oracle HTTP Server "SetHandler" directive which directs Oracle HTTP Server to enable mod_plsql to handle the request for the virtual path defined by the named Location

```apache
SetHandler pls_handler
```

c. Additional Oracle HTTP Server directives that are allowed in the context of a <Location> directive. Typically, the following directives are used:

```apache
Order deny,allow
Allow from all
AllowOverride None
```

d. One or more mod_plsql specific directives. For example:

```apache
PlsqlDatabaseUsername        scott
PlsqlDatabasePassword        tiger
PlsqlDatabaseConnectString   orcl
PlsqlAuthenticationMode      Basic
```

e. An Oracle HTTP Server </Location> directive which closes the group of directives for the named Location, and defines a single DAD.

3. Save the edits.

4. Obfuscate the DAD password by running the "dadTool.pl" script located in ORACLE_HOME/Apache/modplsql/conf.

 See Also: "PlsqlDatabasePassword" on page 7-36 for instructions on performing the obfuscation.

5. Restart the Oracle HTTP Server for the configuration to take effect.

 - UNIX: ORACLE_HOME/opmn/bin> opmnctl [verbose] restartproc ias-component=HTTP_Server
 - Windows: ORACLE_HOME\opmn\bin> opmnctl [verbose] restartproc ias-component=HTTP_Server

You can create additional DADs by defining other uniquely named Locations in dads.conf.

Configuration Files

mod_plsql configuration parameters reside in the following three configuration files:

- plsql.conf
- dads.conf
- cache.conf
plsql.conf

This file contains the `LoadModule` directive to load `mod_plsql` into Oracle HTTP Server, any global setting for `mod_plsql`, and include directives for `dads.conf` and `cache.conf`. This file is included by the Oracle HTTP Server configuration file `ORACLE_HOME/Apache/Apache/conf/oracle_apache.conf` on UNIX or `ORACLE_HOME\Apache\Apache\conf\oracle_apache.conf` on Windows, which itself gets included in the primary Oracle HTTP Server configuration file `httpd.conf`.

See Also: "oracle_apache.conf" on page B-4

dads.conf

This file contains the configuration parameters for the PL/SQL database access descriptor (DAD). A DAD is a set of values that specifies how `mod_plsql` connects to a database server to fulfill a HTTP request.

cache.conf

This file contains the configuration settings for the file system caching functionality implemented in `mod_plsql`. This configuration file is relevant only if PL/SQL applications use the OWA_CACHE package to cache dynamically generated content in the file system.

See Also: Oracle Application Server mod_plsql User's Guide for details on caching functionality in `mod_plsql`.

Configuration Parameters

Table 7–3 contains a list of `mod_plsql` configuration parameters. They are discussed in detail in later sections.

While specifying a value for a configuration parameter, follow Oracle HTTP Server conventions for specifying values. For instance, if a value has white spaces in it, enclose the value with double quotes. For example: `PlsqlNLSLanguage "TRADITIONAL CHINESE_TAIWAN.UTF8"`

Multi-line directives enable you to specify same directive multiple times in a DAD.

<table>
<thead>
<tr>
<th>Configuration File</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>plsql.conf</td>
<td>PlsqlDMSEnable</td>
</tr>
<tr>
<td></td>
<td>PlsqlLogEnable</td>
</tr>
<tr>
<td></td>
<td>PlsqlLogDirectory</td>
</tr>
<tr>
<td></td>
<td>PlsqlIdleSessionCleanupInterval</td>
</tr>
</tbody>
</table>
This file contains the `LoadModule` directive to load `mod_plsql` into the Oracle HTTP Server, global settings for `mod_plsql`, and include directives for `dads.conf` and `cache.conf`.

Table 7–3 (Cont.) `mod_plsql` Configuration Files and Parameters

<table>
<thead>
<tr>
<th>Configuration File</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| `dads.conf` | PlsqlAfterProcedure
| | PlsqlAlwaysDescribeProcedure
| | PlsqlAuthenticationMode
| | PlsqlBeforeProcedure
| | PlsqlBindBucketLengths
| | PlsqlBindBucketWidths
| | PlsqlCGIEnvironmentList
| | PlsqlCompatibilityMode
| | PlsqlConnectionTimeout
| | PlsqlConnectionValidation
| | PlsqlDatabaseConnectString
| | PlsqlDatabasePassword
| | PlsqlDatabaseUserName
| | PlsqlDefaultPage
| | PlsqlDocumentPath
| | PlsqlDocumentProcedure
| | PlsqlDocumentTablename
| | PlsqlErrorStyle
| | PlsqlExclusionList
| | PlsqlFetchBufferSize
| | PlsqlInfoLogging
| | PlsqlMaxRequestsPerSession
| | PlsqlNLSLanguage
| | PlsqlPathAlias
| | PlsqlPathAliasProcedure
| | PlsqlRequestValidationFunction
| | PlsqlSessionCookieName
| | PlsqlSessionStateManagement
| | PlsqlTransferMode
| | PlsqlUploadAsLongRaw |
| `cache.conf` | PlsqlCacheCleanupTime
| | PlsqlCacheDirectory
| | PlsqlCacheEnable
| | PlsqlCacheMaxAge
| | PlsqlCacheMaxSize
| | PlsqlCacheTotalSize |
The following parameters that can be specified in plsql.conf:

- **PlsqlDMSEnable**
- **PlsqlLogEnable**
- **PlsqlLogDirectory**
- **PlsqlIdleSessionCleanupInterval**

PlsqlDMSEnable
Enables Dynamic Monitoring Service (DMS) for mod_plsql.

PlsqlLogEnable
Enables debug level logging for mod_plsql.

Debug level logging is meant to be used for debugging purposes only. When logging is enabled, log files are generated at:

- UNIX: `ORACLE_HOME/Apache/modplsql/logs`
- Windows: `ORACLE_HOME\Apache\modplsql\logs`

as configured by **PlsqlLogDirectory**. This parameter should be set to "Off" unless recommended by Oracle support to debug problems with mod_plsql.

To view more details about the internal processing of mod_plsql, set this directive to "On". This causes mod_plsql to start logging for every request that is processed. The log files are generated as specified by the PlsqlLogDirectory directive.

PlsqlLogDirectory
Specifies the directory where debug level logs are written out.

Set the directory name of the location where log files should be generated when logging is enabled. To avoid possible confusion about the location of this directory, an absolute path is recommended.

On UNIX, this directory must have write permissions by the owner of the child httpd processes.

Note: Refer to plsql.README located in `ORACLE_HOME/Apache/modplsql/conf` for detailed description of plsql.conf.
Understanding Modules

PlsqlIdleSessionCleanupInterval

Specifies the time (in minutes) in which the idle database sessions should be closed and cleaned by mod_plsql.

This directive is used in conjunction with connection pooling of database connections and sessions in mod_plsql. When a session is not used for the specified amount of time, it is closed, and freed. This is done so that unused sessions can be cleaned, and the memory is freed on the database side.

Setting this time to a low number helps in faster cleanup of unused database sessions. Be aware that if this number is too low, then this may adversely affect the performance benefits of connection pooling in mod_plsql.

If the number of open database sessions is not a concern, you can increase the value of this parameter for best performance. In such a case, if the site is accessed frequently enough that the idle session cleanup interval is never reached for a session, then the DAD configuration parameter PlsqlMaxRequestsPerSession can be modified so that it is guaranteed that a pooled database session gets recycled on a regular basis.

For most installations, the default parameter value should suffice.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlIdleSessionCleanupInterval number</td>
</tr>
<tr>
<td>Default</td>
<td>15 (minutes)</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlIdleSessionCleanupInterval 15</td>
</tr>
</tbody>
</table>

dads.conf

This file contains the configuration parameters for the PL/SQL Database Access Descriptor (DAD).

DAD Parameters

This section describes all the DAD level parameters that can be specified in the dads.conf file. Besides these directives, you can also specify additional Oracle HTTP Server directives that can be specified in the context of a <Location> directive, such as:

- `Order deny,allow`
- `AllowOverride None`

The following parameters are discussed in detail in the subsequent sections:

- PlsqlAfterProcedure
- PlsqlAlwaysDescribeProcedure
- PlsqlAuthenticationMode
- PlsqlBeforeProcedure
- PlsqlBindBucketLengths
PlsqlAfterProcedure
Specifies the procedure to be invoked after calling the requested procedure. This enables you to put a hook point after the requested procedure is called. This is useful in doing SQL*Traces/SQL Profiles while debugging a problem with the requested procedure. This is also useful when you want to ensure that a specific call be made after running every procedure.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlAfterProcedure string</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlAfterProcedure portal.mypkg.myafterproc</td>
</tr>
</tbody>
</table>

For all purposes, except for debugging, this parameter should be omitted. You could use this parameter to stop SQL Trace/SQL Profiling.
In older versions of the product, this parameter was called after_proc.

PlsqlAlwaysDescribeProcedure

Specifies whether mod_plsql should describe a procedure before trying to execute it. If this is set to "On", then mod_plsql will always describe a procedure before invoking it. Otherwise, mod_plsql will only describe a procedure when its internal heuristics have interpreted a parameter type incorrectly.

- For all purposes, except for debugging, you should leave this parameter set to "Off".
- In older versions of the product, this parameter was called always_desc.

PlsqlAuthenticationMode

Specifies the authentication mode to use for allow access through this DAD.

- Most customer applications use Basic Authentication. Custom Authentication modes (GlobalOwa, CustomOwa, PerPackageOwa) are used by very few PL/SQL applications. The SingleSignOn mode is supported only for Oracle Application Server releases, and is used by OracleAS Portal and OracleAS Single Sign-On.
- If the DAD is not using the Basic authentication, then you must include a valid username/password in the DAD configuration. For the Basic mode, if you wish to perform dynamic authentication, the DAD username/password parameters must be omitted.
- In older versions of the product, this configuration parameter was derived from a combination of enablesso and custom_auth.
 - enablesso = Yes translates to PlsqlAuthenticationMode SingleSignOn
 - custom_auth = Global translates to PlsqlAuthenticationMode GlobalOwa
 - custom_auth = Custom translates to PlsqlAuthenticationMode CustomOwa
 - custom_auth = PerPackage translates to PlsqlAuthenticationMode PerPackageOwa

All other combinations translate to Basic.
See Also: "Securing Application Database Access through mod_plsql" chapter in the Oracle Application Server mod_plsql User's Guide for more information regarding different authentication modes.

PlsqlBeforeProcedure
Specifies the procedure to be invoked before calling the requested procedure. This enables you to put a hook point before the requested procedure is called. This is useful in doing SQL*Traces/SQL Profiles while debugging a problem with the requested procedure. This is also useful when you want to ensure that a specific call be made before running every procedure.

- For all purposes, except for debugging purposes, this parameter should be omitted. You could use this parameter to start SQL Trace/SQL Profiling.
- In older versions of the product, this parameter was called before_proc.

PlsqlBindBucketLengths
Specifies the rounding size to use while binding the number of elements in a collection bind. While executing PL/SQL statements, the Oracle database maintains a cache of PL/SQL statements in the shared SQL area, and attempts to reuse the cached statement if the same statement is executed again. Oracle's matching criteria requires that the statement texts be identical, and that the bind variable data types match. Unfortunately, the type match for strings is sensitive to the exact byte size specified, and for collection bindings is also sensitive to the number of elements in the collection. Since mod_plsql binds statements dynamically, the odds of hitting the shared cache are low, and it may fill up with near-duplicates and lead to contention for the latch on the shared area. This parameter reduces that effect by bucketing bind lengths to the nearest level.

All numbers specified should be in ascending order. After the last specified size, subsequent bucket sizes will be assumed to be twice the last one.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlBindBucketLengths number multiline</td>
</tr>
<tr>
<td>Default</td>
<td>4,2,100,400</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlBindBucketLengths 4</td>
</tr>
<tr>
<td></td>
<td>PlsqlBindBucketLengths 25</td>
</tr>
<tr>
<td></td>
<td>PlsqlBindBucketLengths 125</td>
</tr>
</tbody>
</table>

- This parameter is relevant only if you are using procedures with array parameters, and passing varying number of parameters to the procedure.
- The default should be sufficient for most PL/SQL applications.
- To see if this parameter needs to be changed, check the number of versions of a SQL statement in the SQL area.
Consider using flexible parameter passing to reduce the problem.

In older versions of the product, this parameter was called `bind_bucket_lengths`.

PlsqlBindBucketWidths

Specifies the rounding size to use while binding the number of elements in a collection `bind`. While executing PL/SQL statements, the Oracle database maintains a cache of PL/SQL statements in the shared SQL area, and attempts to reuse the cached statement if the same statement is executed again. Oracle's matching criteria requires that the statement texts be identical, and that the bind variable data types match. Unfortunately, the type match for strings is sensitive to the exact byte size specified, and for collection bindings is also sensitive to the number of elements in the collection. Since `mod_plsql` binds statements dynamically, the odds of hitting the shared cache are low, and it may fill up with near-duplicates and lead to contention for the latch on the shared area. This parameter reduces that effect by bucketing bind widths to the nearest level.

All numbers specified should be in ascending order. After the last specified size, subsequent bucket sizes will be assumed to be twice the last one.

The last bucket width must be equal to or less than 4000. This is due to the restriction imposed by OCI where array bind widths cannot be greater than 4000.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlBindBucketWidths number multiline</code></td>
</tr>
<tr>
<td>Default</td>
<td><code>32, 128, 1450, 2048, 4000</code></td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlBindBucketWidths 40</code></td>
</tr>
<tr>
<td></td>
<td><code>PlsqlBindBucketWidths 400</code></td>
</tr>
<tr>
<td></td>
<td><code>PlsqlBindBucketWidths 2000</code></td>
</tr>
</tbody>
</table>

This parameter is relevant only if you are using procedures with array parameters, and passing varying number of parameters to the procedure.

The default should be sufficient for most PL/SQL applications.

To see if this parameter needs to be changed, check the number of versions of a SQL statement in the SQL area.

Consider using flexible parameter passing to reduce the problem.

In older versions of the product, this parameter was called `bind_bucket_widths`.

PlsqlCGIEnvironmentList

Specifies overrides and/or additions of CGI environment variables to the default set of environment variables passed down to a PL/SQL procedure. This is a multi-line directive of name-value pairs to be added, overridden or removed. You can only specify one environment variable for each directive.

You can add CGI environment variables from the Oracle HTTP Server environment by specifying the variable name. To remove a CGI environment variable, set it equal to nothing. To add your own name-value pair, use the syntax `myname=myvalue`.

Understanding Modules 7-31
Environment variables added here are available in the PL/SQL application through the function `owa_util.get_cgi_env`.

In older versions of the product, this parameter was called `cgi_env_list`.

PlsqlCompatibilityMode

Specifies the compatibility mode for running mod_plsql. This parameter is supported only for Oracle Application Server releases, and is used when you are using mod_plsql with an older version of OracleAS Portal. In such situations, if you are running mod_plsql against a pre-9.0.2 version of OracleAS Portal, this should be set to 1.

This parameter enables an old bug in mod_plsql in which mod_plsql incorrectly converted the plus symbol (+) to space characters for document downloads. Enabling the first bit in this flag will make it impossible to download documents that have a plus symbol (+) in the document name.

PlsqlConnectionTimeout

Specifies the timeout in milliseconds for testing a connection pooled in mod_plsql. When `PlsqlConnectionValidation` is set to "Automatic" or "AlwaysValidate", mod_plsql will attempt to test pooled database connections. This parameter specifies the maximum time mod_plsql should wait for the test request to complete before it assumes that the connection is not usable.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlConnectionTimeout string</code></td>
</tr>
<tr>
<td>Default</td>
<td>5000</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlConnectionTimeout 5000</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlCompatibilityMode BitFlag</code></td>
</tr>
<tr>
<td>Default</td>
<td>0</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlCompatibilityMode 1</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlCGIEnvironmentList string multiline</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
</tbody>
</table>
| Example | ▪ To add a new environment variable from the Oracle HTTP Server environment:
 `PlsqlCGIEnvironmentList DOCUMENT_ROOT`
▪ To remove an environment variable:
 `PlsqlCGIEnvironmentList MYENVAR2=`
▪ To override from the Oracle HTTP Server environment:
 `PlsqlCGIEnvironmentList REQUEST_PROTOCOL=HTTPS`
▪ To add your own environment variable:
 `PlsqlCGIEnvironmentList MY_VARNAME=MY_VALUE` |
PlsqlConnectionValidation

Specifies the mechanism mod_plsql should use to detect dead connections in its connection pool.

For performance reasons, mod_plsql pools database connections. If a database instance goes down, and mod_plsql was maintaining a pool of connections to the instance, then each pooled database connection results in an error when it is next used to service a request. This can be a concern in high availability configurations like RAC where even if one node goes down, other nodes servicing the database might have been able to service the request successfully. mod_plsql provides for a mechanism whereby it can self-correct after it detects a failure that could be caused by a database node going down. This mechanism to self-correct is controlled by the parameter PlsqlConnectionValidation.

The following are the valid values for PlsqlConnectionValidation:

- **Automatic**: mod_plsql tests all pooled database connections which were created prior to the detection of a failure that could mean an instance failure.
- **ThrowAwayOnFailure**: mod_plsql throws away all pooled database connections which were created prior to the detection of a failure that could mean an instance failure.
- **AlwaysValidate**: mod_plsql always tests all pooled database connections which were created prior to issuing a request. Since this option has an associated performance overhead for each request, this should be used with caution.
- **NeverValidate**: mod_plsql never pings any pooled database connection. This option always for older behavior in mod_plsql.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlConnectionValidation</td>
</tr>
<tr>
<td></td>
<td>Automatic/ThrowAwayOnFailure/AlwaysValidate/NeverValidate</td>
</tr>
<tr>
<td>Default</td>
<td>Automatic</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlConnectionValidation ThrowAwayOnFailure</td>
</tr>
</tbody>
</table>

When mod_plsql encounters one of the following errors, it assumes that the database might have been down.

- 00443, 00000, "background process did not start"
- 00444, 00000, "background process failed while starting"
- 00445, 00000, "background process did not start after x seconds"
- 00447, 00000, "fatal error in background processes"
- 00448, 00000, "normal completion of background process"
- 00449, 00000, "background process unexpectedly terminated with error"
- 00470, 00000, "LGWR process terminated with error"
- 00471, 00000, "DBWR process terminated with error"
- 00472, 00000, "PMON process terminated with error"
- 00473, 00000, "ARCH process terminated with error"
- 00474, 00000, "SMON process terminated with error"
- 00475, 00000, "TRWR process terminated with error"
- 00476, 00000, "RECO process terminated with error"
- 00480, 00000, "LCK* process terminated with error"
- 00481, 00000, "LMON process terminated with error"
- 00482, 00000, "LMD* process terminated with error"
- 00484, 00000, "LMS* process terminated with error"
- 00485, 00000, "DIAG process terminated with error"
- 01014, 00000, "ORACLE shutdown in progress"
- 01033, 00000, "ORACLE initialization or shutdown in progress"
- 01034, 00000, "ORACLE not available"
- 01041, 00000, "internal error. hostdef extension doesn't exist"
- 01077, 00000, "background process initialization failure"
- 01089, 00000, "immediate shutdown in progress- no operations permitted"
- 01090, 00000, "shutdown in progress- connection is not permitted"
- 01091, 00000, "failure during startup force"
- 01092, 00000, "ORACLE instance terminated. Disconnection forced"
- 03106, 00000, "fatal two-task communication protocol error"
- 03113, 00000, "end-of-file on communication channel"
- 03114, 00000, "not connected to ORACLE"
- 12570, 00000, "TNS: packet writer failure"
- 12571, 00000, "TNS: packet writer failure"

PlsqlDatabaseConnectString

Specifies the connection to an Oracle database.
If the database is running in the same Oracle home, or the environment variable "TWO_TASK" is set, this parameter need not be specified.

If the database is running in a separate Oracle home, then this parameter is mandatory.

If you have problems connecting to the database:
- Check the username and password information in the DAD.
- Make sure that you run "tns ping <string>" and execute commands such as:
 sqlplus DADUsername/DADPassword@<string>
- Ensure that TNS_ADMIN is configured properly.
- Verify that the HOST:PORT:SERVICE_NAME format makes the connection go through.
- Ensure that the TNS listener and database are up and running.
- Ensure that you can ping the host from this machine.

- From a mod_plsql perspective, TNSFormat and NetServiceNameFormat are synonymous and denote connect descriptors that are resolved by Net. The TNSFormat is provided as a convenience so that end-users use this to signify that the name resolution happens through the local tnsnames.ora. For situations where the resolution is through an LDAP lookup as configured in sqlnet.ora, it is recommended that the format specifier of NetServiceNameFormat be used.

If your database supports high availability, for example, RAC database, it is highly recommended that you use the NetServiceNameFormat such that the resolution for the net service name is through LDAP. This enables you to add or remove RAC nodes accessible through mod_plsql by just changing Oracle Internet Directory with the new/deleted node information. In such situations, hard-coding database listener HOST:PORT information in dads.conf or in the local tnsnames.ora is not recommended.

- In older versions of the product, this configuration parameter was called connect_string.

PlsqlDatabasePassword

Specifies the password to use to log in to the database.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlDatabasePassword string</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlDatabasePassword tiger</td>
</tr>
</tbody>
</table>

After making manual configuration changes to DAD passwords, it is recommended that the DAD passwords are obfuscated by running the "dadTool.pl" script located in ORACLE_HOME/Apache/modplsql/conf.

The following are the steps to obfuscate DAD passwords:

1. If necessary, switch user to the Oracle software owner user, typically oracle using the following command:

   ```
   $su - oracle
   ```

2. Set the ORACLE_HOME environment variable to specify the path to the Oracle home directory for the current release and set the PATH environment variable to include the directory containing the Perl executable and the location of the dadTool.pl script.

 On Bourne, Bash, or Korn Shell:

   ```
   ORACLE_HOME=new_ORACLE_HOME_path;export ORACLE_HOME
   PATH=ORACLE_HOME/Apache/modplsql/conf:ORACLE_HOME/perl/bin:PATH;export PATH
   ```

 On C or tcsh Shell:

   ```
   setenv ORACLE_HOME new_ORACLE_HOME_PATH
   setenv PATH ORACLE_HOME/Apache/modplsql/conf:ORACLE_HOME/perl/bin:PATH
   ```

 On Windows:

   ```
   set PATH=ORACLE_HOME\Apache\modplsql\conf;ORACLE_HOME\perl\5.6.1\bin;MSWin32-x86;%PATH%
   ```
3. Set the appropriate shared library path environment variable for your platform.
 - On UNIX platforms, include the `ORACLE_HOME/lib` directory in your shared library path. Table 7–4 shows the appropriate environment variable for each platform.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Environment Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>LIBPATH</td>
</tr>
<tr>
<td>HP-UX</td>
<td>SHLIB_PATH</td>
</tr>
<tr>
<td>Linux, Solaris, and Tru64 UNIX</td>
<td>LD_LIBRARY_PATH</td>
</tr>
</tbody>
</table>

 For example, to set the `SHLIB_PATH` environment in the Bourne shell on HP-UX systems, enter the following command:
   ```
   $SHLIB_PATH=$ORACLE_HOME/lib:$SHLIB_PATH;export SHLIB_PATH
   ```

 - On Windows, include `$ORACLE_HOME/bin` in your `PATH`, for example:
     ```
     set PATH=%ORACLE_HOME%in;%PATH%
     ```

4. Change directory to the `mod_plsql` configuration directory for the current release of Oracle HTTP Server:
   ```
   cd $ORACLE_HOME/Apache/modplsql/conf
   ```

5. Invoke the following Perl script to obfuscate DAD password:
   ```
   perl dadTool.pl -o
   ```

Notes:
- This is a mandatory parameter, except for a DAD that sets `PlsqlAuthenticationMode` to `Basic` and uses dynamic authentication.
- For DADs using `SingleSignOn` authentication, this parameter is the name of the schema owner.
- In older versions of the product, this configuration parameter was called `password`.

PlsqlDatabaseUserName

Specifies the username to use to logon to the database.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlDatabaseUsername string</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlDatabaseUsername scott</code></td>
</tr>
</tbody>
</table>

- This is a mandatory parameter, except for a DAD that sets `PlsqlAuthenticationMode` to `Basic` and uses dynamic authentication.
For DADs using SingleSignOn authentication, this parameter is the name of the schema owner.

In older versions of the product, this configuration parameter was called username.

PlsqlDefaultPage

Specifies the default procedure to call if none is specified in the URL.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlDefaultPage string</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlDefaultPage myschema.mypackage.home</code></td>
</tr>
</tbody>
</table>

You can also use Oracle HTTP Server Rewrite rules to achieve the same effect as you get by setting this configuration parameter.

In older versions of the product, this parameter was called `default_page`.

PlsqlDocumentPath

Specifies a virtual path in the URL that initiates document download form the document table. For example, if this parameter is set to `docs`, then the following URLs will start the document downloading process for URLs of the format:

```
/pls/dad/docs
/pls/plsqlapp/docs
```

Omit this parameter for applications that do not perform document uploads or downloads.

See Also: Oracle Application Server mod_plsql User’s Guide

In older versions of the product, this parameter was called `document_path`.

PlsqlDocumentProcedure

Specifies the procedure to call when a document download is initiated. This procedure is called to process the download.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlDocumentProcedure string</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlDocumentProcedure portal.wwdoc_process.process_download</code></td>
</tr>
</tbody>
</table>
- Omit this parameter for applications that do not perform document uploads or downloads.

 See Also: *Oracle Application Server mod_plsql User’s Guide*

- In older versions of the product, this parameter was called `document_proc`.

PlsqlDocumentTablename

Specifies the table in the database to which all documents are uploaded.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlDocumentTablename string</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlDocumentTablename myschema.document_table</td>
</tr>
</tbody>
</table>

- Omit this parameter for applications that do not perform document uploads or downloads.

 See Also: *Oracle Application Server mod_plsql User’s Guide*

- In older versions of the product, this parameter was called `document_table`.

PlsqlErrorStyle

Specifies the Error Reporting Mode for `mod_plsql` errors. This parameter accepts the following values:

- **ApacheStyle**: This is the default mode. In this mode, `mod_plsql` indicates to Oracle HTTP Server the HTTP error that was encountered. Oracle HTTP Server then generates the error page. This can be used with the Oracle HTTP Server ErrorDocument directive to produce customized error messages.

- **ModplsqlStyle**: `mod_plsql` generates the error pages, usually a short message indicating the PL/SQL error that was encountered and PL/SQL exception stack, if any. For example:

  ```plaintext
  scott.foo PROCEDURE NOT FOUND
  ```

- **DebugStyle**: This mode provides more details than ModplsqlStyle. `mod_plsql` provides more details about the URL, parameters and also produces server configuration information. This mode is for debugging purposes only. Do not use this in a production system, since displaying internal server variables could be a security risk.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlErrorStyle</td>
</tr>
<tr>
<td></td>
<td>ApacheStyle/ModplsqlStyle/DebugStyle</td>
</tr>
<tr>
<td>Default</td>
<td>ApacheStyle</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlErrorStyle ModplsqlStyle</td>
</tr>
</tbody>
</table>

In older versions of the product, this parameter was called `error_style`.
PlsqlExclusionList

Specifies a pattern for procedures, packages, or schema names which are forbidden to be directly executed from a browser. This is a multi-line directive in which each pattern is on one line. The pattern is case-insensitive and can accept a wildcard such as "*". The default patterns disallowed from direct URL access are: `sys.*`, `dbms_*`, `utl_*`, `owa_*`, `owa.*`, `htp.*`, `htf.*`, `wpg_docload.*`.

Setting this directive to "#NONE#" will disable all protection. This is not recommended for a live site and should not be done (This is sometimes used for debugging purposes).

If this parameter is overridden, the defaults still apply, which means that you do not have to explicitly add the default list to the list of excluded patterns.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlExclusionList [string/"#NONE#" multiline]</code></td>
</tr>
<tr>
<td>Default</td>
<td><code>sys.*</code></td>
</tr>
<tr>
<td></td>
<td><code>dbms_*</code></td>
</tr>
<tr>
<td></td>
<td><code>utl_*</code></td>
</tr>
<tr>
<td></td>
<td><code>owa_*</code></td>
</tr>
<tr>
<td></td>
<td><code>owa.*</code></td>
</tr>
<tr>
<td></td>
<td><code>htp.*</code></td>
</tr>
<tr>
<td></td>
<td><code>htf.*</code></td>
</tr>
<tr>
<td></td>
<td><code>wpg_docload.*</code></td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlExclusionList myschema.private1.*</code></td>
</tr>
<tr>
<td></td>
<td><code>PlsqlExclusionList myschema.private.*</code></td>
</tr>
<tr>
<td></td>
<td>will disallow access to URLs which contain one of:</td>
</tr>
<tr>
<td></td>
<td><code>sys.*</code>, <code>dbms_*</code>, <code>utl_*</code>, <code>owa_*</code>, <code>owa.*</code>, <code>htp.*</code>, <code>htf.*</code>, <code>wpg_docload.*</code>, <code>myschema.private.*</code>, <code>myschema.private1.*</code></td>
</tr>
<tr>
<td></td>
<td>`PlsqlExclusionList "#NONE#" will disable all protection. Again, this is not recommended for live sites as this could be a security concern.</td>
</tr>
</tbody>
</table>

- Besides the patterns specified with this parameter, `mod_plsql` also disallows any procedure name which contains special characters like tabs, newlines, carriage-returns, single-quotes, the reverse slash, the form feed, the open parenthesis, close parenthesis, and space. This cannot be changed.
- In older versions of the product, this parameter was called `exclusion_list`.

See Also: Oracle Application Server `mod_plsql` User’s Guide for more information regarding security.

PlsqlFetchBufferSize

Specifies the number of rows of content to fetch from the database for each trip, using either `owa_util.get_page` or `owa_util.get_page_raw`.

By default, `mod_plsql` attempts to fetch 200 response lines of output where each line is of 255 bytes. In situations where the response bytes are single-bytes, the response buffer is populated to the maximum and can pack 255*200=51000 bytes for each round trip. However, for responses containing multi-byte data, the byte packing for each row could be less than ideal resulting in lesser bytes getting transferred for each round trip. If your application generates large pages frequently and the response does not fit in
one round trip, then consider setting this parameter higher. However, the memory usage for mod_plsql will increase.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlFetchBufferSize number</td>
</tr>
<tr>
<td>Default</td>
<td>200</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlFetchBufferSize 256</td>
</tr>
</tbody>
</table>

- This parameter is changed only for performance reasons. The minimum value for this parameter is 28, but it is seldom reduced.

- Change this parameter only under the following circumstances:
 - The average response page is large and you want to reduce the number of round-trips mod_plsql makes to the database to fetch the response.
 - The character set in use is multi-byte, and you want to compensate for the problem of get_page or get_page_raw fetching fewer bytes for each row (calculations in the PL/SQL Web ToolKit are character-based and in the case of multi-byte characters, OWA packages assume a worst-case character byte size and do not attempt to pack each row to its maximum).
 - In older versions of the product, this parameter was called response_array_size.
 - In older versions of the product, the default for this parameter was 128.

PlsqlInfoLogging

Specifies what mode mod_plsql should use to do extra performance logging.

The mode is:

InfoDebug: This logs more information to the Apache's error_log. This is used in conjunction with Apache’s "info" logging level. If the Apache's logging level is not at least set to this high, this setting will be ignored.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlInfoLogging InfoDebug</td>
</tr>
<tr>
<td>Default</td>
<td>Empty</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlInfoLogging InfoDebug</td>
</tr>
</tbody>
</table>

This logging setting is useful for debugging problems in your PL/SQL application.

PlsqlMaxRequestsPerSession

Specifies the maximum number of requests a pooled database connection should service before it is closed and re-opened.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlMaxRequestsPerSession number</td>
</tr>
<tr>
<td>Default</td>
<td>1000</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlMaxRequestsPerSession 1000</td>
</tr>
</tbody>
</table>
This parameter helps relieve memory and resource problems that may occur due to prolonged session reuse by a PL/SQL application.

This parameter should not need to be changed; the default is sufficient in most cases.

Setting this parameter to a low number can degrade performance. A case for a lower value might be an infrequently used DAD whose performance is not a concern, and for which limiting the number of requests provides some benefit.

In older versions of the product, the equivalent to this parameter is `reuse`. Instead of taking a value of “Yes” or “No”, the new parameter enables you to have finer control over the connection pool reuse in `mod_plsql`.

PlsqlNLSLanguage

Specifies the `NLS_LANG` variable for this DAD. This parameter overrides the `NLS_LANG` environment variable. When this parameter is set, the PL/SQL Gateway uses the specified `NLS_LANG` to connect to the database. Once connected, an alter session command is issued to switch to the specified language and territory. If the middle tier character set matches that of the database, then no alter session call is issued by `mod_plsql`.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlNLSLanguage string</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlNLSLanguage America_America.UTF8</code></td>
</tr>
</tbody>
</table>

Most applications have `PlsqlTransferMode` set to `CHAR` which means that the character set in `PlsqlNLSLanguage` needs to match the character set of the database. In one special case, where the database and `mod_plsql` are both using fixed-size character sets, and the character set width matches, the character set can be different. The response character set is always the `mod_plsql` character set.

If `PlsqlTransferMode` is set to `RAW`, then this parameter can be ignored.

In older versions of the product, this parameter was called `nls_lang`.

PlsqlPathAlias

Specifies a virtual path alias to map to a procedure call. This is application specific.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>PlsqlPathAlias string</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlPathAlias url</code></td>
</tr>
</tbody>
</table>

For applications that do not use path aliasing, this parameter may be omitted.

See Also: Oracle Application Server `mod_plsql` User’s Guide for more information about path aliasing functionality.

In older versions of the product, this parameter was called `pathalias`.
PlsqlPathAliasProcedure

Specifies the procedure to call when the virtual path in the URL matches the path alias as configured by PlsqlPathAlias.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlPathAliasProcedure string</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlPathAliasProcedure portal.wpth_api_alias.process_download</td>
</tr>
</tbody>
</table>

- For applications that do not use path aliasing, this parameter may be omitted.

See Also: *Oracle Application Server mod_plsql User’s Guide* for more information about path aliasing functionality.

- In older versions of the product, this parameter was called pathaliasproc.

PlsqlRequestValidationFunction

Specifies an application-defined PL/SQL function which gives you the opportunity to allow/disallow further processing of the requested procedure. This is useful in implementing tight security for your PL/SQL application by blocking out package/procedure calls which should not be allowed to execute from this DAD.

The function defined by this parameter must have the following prototype:

```plsql
boolean function_name (procedure_name IN varchar 2)
```

Upon invocation, the argument `procedure_name` will contain the name of the procedure that the request is trying to execute.

For example, if all the PL/SQL application procedures callable from a browser are inside the package "mypkg", then a simple implementation of this function can be as follows:

```plsql
boolean my_validation_check (procedure_name varchar 2
is
begin
  if (upper (procedure_name) like upper ('myschema.mypkg%')) then
    return TRUE
  else
    return FALSE
  end if;
end;
```

- By default, mod_plsql already disallows direct URL access to certain schemas/packages. For more information, refer to PlsqlExclusionList.
It is highly recommended that you provide an implementation for this function such that it only allows requests that belong to your application, and are callable from a browser.

Since this function will be called for every request, be sure to make this function as performant as possible. Suggested recommendations are:

- Name your PL/SQL packages in a fashion such that the implementation of this function can be similar to the preceding example.
- If your implementation performs a table lookup to determine what packages/procedures should be allowed, performance can be improved if you pin the cursor in the shared pool.

PlsqlSessionCookieName

Specifies the cookie name when **PlsqlAuthenticationMode** is set to **SingleSignOn**. This parameter is supported only for Oracle Application Server releases, and is used by the OracleAS Portal and OracleAS Single Sign-On.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlSessionCookieName cookie_name</td>
</tr>
<tr>
<td>Default</td>
<td>Same as DAD name</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlSessionCookieName mycookie</td>
</tr>
</tbody>
</table>

For DADs not using **SingleSignOn** authentication, this parameter can be omitted. In most other cases, the session cookie name should be omitted (and this parameter automatically defaults to the DAD name).

A session cookie name must be specified only for OracleAS Portal instances that need to participate in a distributed OracleAS Portal environment. For those OracleAS Portal nodes you want to seamlessly participate as a federated cluster, ensure that the session cookie name for all of the participating nodes is the same.

Independent OracleAS Portal nodes need to use distinct session cookie names.

In older versions of the product, this configuration parameter was called **sncookiename**.

PlsqlSessionStateManagement

Specifies how package and session state should be cleaned up at the end of each **mod_plsql** request.

- Setting this parameter to **StatelessWithResetPackageState** causes **mod_plsql** to call `dbms_session.reset_package_state` at the end of each **mod_plsql** request.

- Setting this parameter to **StatelessWithPreservePackageState** causes **mod_plsql** to call `htp.init` at the end of each **mod_plsql** request. This cleans up the state of session variables in the PL/SQL Web ToolKit. The PL/SQL application is responsible for cleaning up its own session state. Failure to do so causes erratic behavior, in which a request starts recognizing or manipulating state modified in previous requests.

- Setting this parameter to **StatelessWithFastResetPackageState** causes **mod_plsql** to call `dbms_session.modify_package_state(dbms_session.reinitialize)` at the end of each **mod_plsql** request. This API is a lot faster than the mode of **StatelessWithResetPackageState**, and avoids...
some latch contention issues, but exists only in database versions 8.1.7.2 and higher. This mode uses up slightly more memory than the default mode.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlSessionStateManagement StatelessWithResetPackageState/StatelessWithFastResetPackageState/StatelessWithPreservePackageState</td>
</tr>
<tr>
<td>Default</td>
<td>StatelessWithResetPackageState</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlSessionStateManagement StatelessWithResetPackageState</td>
</tr>
</tbody>
</table>

- In older versions of the product, this configuration parameter was called stateful.
- An older value of stateful=no or stateful=STATELESS_RESET corresponds to PlsqlSessionStateManagement StatelessWithResetPackageState
- An older value of stateful=STATELESS_FAST_RESET corresponds to PlsqlSessionStateManagement StatelessWithFastResetPackageState
- An older value of stateful=STATELESS_PRESERVE corresponds to PlsqlSessionStateManagement StatelessWithPreservePackageState

mod_plsql does not support stateful mode of operation. To equip PL/SQL applications with stateful behavior, save state in cookies and/or in the database.

PlsqlTransferMode

Specifies the transfer mode for data from the database back to mod_plsql. Most applications use the default value of CHAR.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlTransferMode CHAR/RAW</td>
</tr>
<tr>
<td>Default</td>
<td>CHAR</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlTransferMode CHAR</td>
</tr>
</tbody>
</table>

- This parameter only needs to be changed to enable sending back responses in different character sets from the same DAD. In such a case, the CHAR mode is useless, since it always converts the response data from the database character set to the mod_plsql character set.
- In older versions of the product, RAW transfer mode was not supported.

PlsqlUploadAsLongRaw

Specifies the extensions to be uploaded as LONGRAW data type, as opposed to using the default BLOB data type. The default can be overridden by specifying multi-line directives of file extensions for field. A value of '*' in this field causes all documents to be uploaded as LONGRAW.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlUploadAsLongRaw string multiline</td>
</tr>
</tbody>
</table>
For applications that do not do document uploads or downloads, this parameter may be omitted.

See Also: Oracle Application Server mod_plsql User’s Guide for more information about upload and download processes and the structure of the restrictions on the document table format.

In older versions of the product, this parameter was called `upload_as_log_raw`.

cache.conf

`cache.conf` file contains the cache settings for `mod_plsql`. This file contains parameters which specify the characteristics of the `mod_plsql` cache system.

Note: This file is relevant only if the PL/SQL Application uses the `OWA_CACHE` packages to cache content in the file system. Extremely few customer applications make use of the `OWA_CACHE` packages.

The following parameters are specified in `cache.conf` file:

- **PlsqlCacheCleanupTime**
- **PlsqlCacheDirectory**
- **PlsqlCacheEnable**
- **PlsqlCacheMaxAge**
- **PlsqlCacheMaxSize**
- **PlsqlCacheTotalSize**

PlsqlCacheCleanupTime

Specifies the time to start the cleanup of the cache storage.

This setting defines the exact day and time in which cleanup should occur. The frequency can be set as daily, weekly, and monthly.

- To define daily frequency, the keyword "Everyday" is used. The cleanup starts everyday at the time defined. For example, `Everyday 2:00`. This causes the cleanup to happen everyday at 2 AM (local time) in the morning.

 - To define weekly frequency, the days of the week such as "Sunday", "Monday", "Tuesday", and so on are used. For example, `Wednesday 15:30`. This causes the cleanup to happen every Wednesday at 3:30 PM (local time) in the afternoon.

 - To define monthly frequency, the keyword "Everymonth" is used. The cleanup starts at the Saturday of the month at the time defined. For example, `Everymonth 23:00`. This causes the cleanup to happen the first Saturday of every month at 11:00 PM (local time) at night.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Example</td>
<td><code>PlsqlUploadAsLongRaw jpg, PlsqlUploadAsLongRaw gif</code></td>
</tr>
</tbody>
</table>
PlsqlCacheDirectory

Specifies the directory where cache files are written out by `mod_plsql`. This directory must exist or else Oracle HTTP Server will not start.

On UNIX, this directory must have write permissions by the owner of the child httpd processes.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlCacheDirectory <directory></td>
</tr>
<tr>
<td>Default</td>
<td>none</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlCacheDirectory ORACLE_HOME/Apache/modplsql/cache</td>
</tr>
</tbody>
</table>

In older versions, this parameter was called "cache_dir" and resides in the "[PLSQL Cache]" section of `ORACLE_HOME/Apache/modplsql/cfg/cache.cfg`.

PlsqlCacheEnable

Enables `mod_plsql` caching.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlCacheEnable On/Off</td>
</tr>
<tr>
<td>Default</td>
<td>Off</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlCacheEnable On</td>
</tr>
</tbody>
</table>

- If you are sure that your application does not make use of the `OWA_CACHE` packages, in the PL/SQL Web Toolkit, then you can choose to disable caching. In such situations, there will be a very minor performance benefit.
- In older versions, this parameter is called "enabled" and resided in the "[PLSQL Cache]" section of `ORACLE_HOME/Apache/modplsql/cfg/cache.cfg`.

PlsqlCacheMaxAge

Specifies the maximum time, in days, a cache file can be allowed to reside in a file system cache, after which the cached file will be removed for cache maintenance.

This setting is to ensure that the cache system does not contain old content. This setting removes old cache files and makes space for new ones.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlCacheMaxAge <number></td>
</tr>
<tr>
<td>Default</td>
<td>30 (30 days)</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlCacheMaxAge 30</td>
</tr>
</tbody>
</table>
PlsqlCacheMaxSize

Specifies the maximum possible size of a cache file. This setting is to prevent the case in which one file can fill up the entire cache. In general, it is recommended that this be set to about 1-3 percent of the total cache size.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlCacheMaxSize <number></td>
</tr>
<tr>
<td>Default</td>
<td>1048576 (1 MB)</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlCacheMaxSize 1048576</td>
</tr>
</tbody>
</table>

In older versions, this parameter was called "max_size" and resided in the "[PLSQL Cache]" section of ORACLE_HOME/Apache/modplsql CFG/cache/cfg.

PlsqlCacheTotalSize

Specifies the total size of the cache directory. This setting limits the amount of space the cache is allowed to use. Both PLSQL cache and Session Cookie cache share this cache space. Note that this setting is not a hard limit. It might exceed the limit temporarily during normal processing. This is normal behavior.

The cleanup algorithm uses this setting to determine how much to reduce the cache files. Therefore, the real space limit is the physical storage's available size.

This parameter takes bytes as values;
- 1 megabytes = 1048576 bytes
- 10 megabytes = 10485760 bytes

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>PlsqlCacheTotalSize <number></td>
</tr>
<tr>
<td>Default</td>
<td>20971520 (20 MB)</td>
</tr>
<tr>
<td>Example</td>
<td>PlsqlCacheTotalSize 20971520</td>
</tr>
</tbody>
</table>

In older versions, this parameter was called "total_size" and resided in the "[PLSQL Cache]" section of ORACLE_HOME/Apache/modplsql CFG/cache/cfg.

mod_proxy

This module provides proxy capability for FTP, CONNECT (for SSL), HTTP/0.9, HTTP/1.0, and HTTP/1.1.

See Also:
- Module mod_proxy in the Apache Server documentation.
- "Using mod_proxy Directives" on page 10-16

mod_rewrite

Oracle HTTP Server provides mod_rewrite as a tool for URL manipulation. A rewriting engine based on a regular-expression parser is used by mod_rewrite to
rewrite requested URLs. The granularity of URL manipulations can be affected by the
formats of server variables, environment variables, HTTP headers, and time stamps.

This module operates on the full URLs (including the path-info part) both in
per-server context (httpd.conf) and per-directory context (.htaccess) and can
generate query-string parts on result.

The following topics are discussed in subsequent sections:

- mod_rewrite Rules Processing
- mod_rewrite Directives
- Rewrite Rules Hints
- Redirection Examples

mod_rewrite Rules Processing

Apache processes HTTP in phases. A hook for each of these phases is provided by the
Apache API. *mod_rewrite* uses two of these hooks - the URL-to-filename translation
hook which is used after the HTTP request has been read but before any authorization
starts, and the Fixup hook which is triggered after the authorization phases and after
the per-directory configuration files (.htaccess) have been read, but before the
content handler is activated.

mod_rewrite reads the configured rulesets from its configuration structure. Server
level rulesets are best configured at startup, while directory level rulesets are
configured during the directory access of the kernel.

mod_rewrite loops through the ruleset rule by rule (*RewriteRule* directive) and
when a particular rule matches, it loops through corresponding conditions
(*RewriteCond* directives). First the URL is matched against the Pattern of each
rule. When it fails, *mod_rewrite* looks for corresponding rule conditions. If none are
present, it just substitutes the URL with a new value which is constructed from the
string Substitution and goes on with its rule-looping. But if conditions exist, it
starts an inner loop for processing them in the order that they are listed.

For conditions, a string TestString is created by expanding variables,
back-references map lookups, and then CondPattern is matched against the
expanded TestString. If the pattern does not match, the complete set of conditions
and the corresponding rule fails. If the pattern matches, then the next condition is
processed until no more conditions are available. If all conditions match, processing is
continued with substituting the URL using Substitution.

When request seeks a URL with more than one slash (/), for example,
http://yourserver//oldpath/rgstdsrc, the "//oldpath" may bypass
RewriteCond and RewriteRule directives if they are not correctly written.

For example, consider the following rule:

```
RewriteRule ^/oldpath(.*) /newpath$1 [R]
```

Requesting http://yourserver/oldpath/files will redirect and return the page
http://yourserver/newpath/files as expected.

However, requesting http://yourserver//oldpath/files will bypass this
particular rule, potentially serving a page that you were not expecting it to. You can
work around the problem by making sure that rules will capture more than one slash
(/). To fix the preceding example, you should use this replacement:

```
RewriteRule ^/+somepath(.*) /otherpath$1 [R]
```
mod_rewrite Directives

This section discusses the following mod_rewrite directives:

- RewriteEngine
- RewriteOptions
- RewriteLog
- RewriteLogLevel
- RewriteBase

RewriteEngine

Enables or disables the runtime rewriting engine. If it is set to "Off", this module does no runtime processing at all. Use this directive to disable the module instead of commenting out all the RewriteRule directives.

Rewrite configurations are not inherited by default. This means that you need to have RewriteEngine On directive for each virtual host in which you want to use it.

RewriteOptions

By specifying RewriteOptions 'inherit', you can force the configuration of the parent by the children. In virtual-server context this means that the maps, conditions and rules of the main server are inherited. In directory context this means that conditions and rules of the .htaccess configuration of the parent directory are inherited.

RewriteLog

Sets the name of the file to which the server logs any rewriting action that it performs. If the name does not begin with a slash (/), then it is assumed to be relative to the Server Root. To disable logging, either remove or comment out the RewriteLog directive or use RewriteLogLevel 0. Avoid setting the filename to /dev/null to prevent logging. This can slow down the server with no advantage.

RewriteLogLevel

Sets the verbosity level of the rewriting log file. The default level 0 means no logging, while 9 or more means that practically all actions are logged.

RewriteBase

Explicitly sets the base URL for pre-directory rewrites. Rewrite rule can be used in per-directory configuration (.htaccess) files. When a substitution occurs for a new URL, the base URL should be added into the server processing. To be able to do this, the module needs to know what the corresponding URL-prefix or URL-base is. By default, this prefix is the corresponding file path itself. However, at most Web sites, URLs are not directly related to physical filename paths. In such cases, you have to use the RewriteBase directives to specify the correct URL-prefix.

If the URLs of your Web server are not directly related to physical file paths, you have to use RewriteBase in every .htaccess files where you want to use RewriteRule directives.

Example 7–10 RewriteBase Directive

Assume the following per-directory configuration file:

```bash
## /abc/def/.htaccess - - per-dir config file for directory /abc/def
# /abc/def is the physical path of /xyz,
```

7-50 Administering a Standalone Deployment Based On Apache 1.3
In Example 7–10, a request to /xyz/oldstuff.html gets correctly rewritten to the physical file /abc/def/newstuff.html.

Rewrite Rules Hints

Table 7–5 provide hints for using rewrite rules.

Table 7–5 Rewrite Rules Hints

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>Any single character</td>
</tr>
<tr>
<td>[char]</td>
<td>Any character listed within a square bracket</td>
</tr>
<tr>
<td>b*</td>
<td>Any character b any number of times</td>
</tr>
<tr>
<td>.*</td>
<td>Any character any number of times</td>
</tr>
</tbody>
</table>

For example, if you want to redirect requests from /demo1, /demo2, and /demo3 to /alldemos, write the rewrite rule as one of the following:

```
RewriteRule /demo. /alldemos [R]
```

or,

```
RewriteRule /demo [123] /alldemos [R]
```

If you intend that /DemoA, /DemoB, and /DemoC to be redirected to /alldemos, add NC (no case) to the preceding rewrite rules, such as:

```
RewriteRule /demo [123] /alldemos [R, NC]
```

This rewrite rule will not work to redirect from /demonstration1 to /demos, because "." works form one character only. To enable redirection of all URLs beginning with "demo", irrespective of subsequent characters, use the rewrite rule as follows:

```
RewriteRule ^/demo* /alldemos [R, NC]
```

In the preceding example, ^ means the beginning, * means any character after demo.

If there was a request for /demo1/not_just_index.html, all the preceding rewrite rules would have redirected the request to /alldemos/index.html, that may not be what you want. It is quite possible that you may want to redirect to the corresponding files in /alldemos, as listed in *Table 7–6*.

Table 7–6 Request Redirection

<table>
<thead>
<tr>
<th>Request for</th>
<th>Redirected to</th>
</tr>
</thead>
<tbody>
<tr>
<td>/demo1/happy.html</td>
<td>/alldemos/happy.html</td>
</tr>
<tr>
<td>/demo1/go.jpg</td>
<td>/alldemos/go.jpg</td>
</tr>
<tr>
<td>/demos1/lucky.jpg</td>
<td>/alldemos/lucky.jpg</td>
</tr>
</tbody>
</table>

Then you have to use substitution in your rewrite rule as follows:

```
RewriteRule ^/demos1(.*)$ //alldemos/$1 [R NC]
```
The explanation for this rule is:
Take the value of the expression, such as happy.html, go.jpg, and lucky.jpg, that appears after demo1 as variables ($1) and substitute it after /all demos/.

Redirection Examples

For redirecting requests from the DocumentRoot to a directory called newroot, set the following mod_rewrite directives:

```apache
RewriteEngine On
RewriteRule ^/(.*)$ /newroot/$1 [R]
```

For directing requested for files from one directory (olddir) to another (newdir), set the following directives:

```apache
RewriteEngine On
RewriteRule ^/olddir(.*)$ /newdir/$1 [R]
```

In each of these cases, you should ensure that the requested resources are indeed available in the redirected location. The mod_rewrite module does not ensure the existence of the requested resource in the new location.

For disabling all requests using the HTTP TRACE method, set the following mod_rewrite directives:

```apache
RewriteEngine On
RewriteCond %{REQUEST_METHOD} ^TRACE
RewriteRule .* - [F]
```

See Also: Module mod_rewrite in the Apache Server documentation.

mod_security

Increases Web application security by protecting Web application from known and unknown attacks.

See Also: http://modsecurity.org for details.

mod_setenvif

Enables you to set environment variables based on characteristics of a request.

See Also: Module mod_setenvif in the Apache Server documentation.

mod_speling

Attempts to correct misspelled or miscapitalized URLs.

See Also: Module mod_speling in the Apache Server documentation.

mod_status

Displays an HTML page of server activity and performance.
mod_wchandshake

See Also: Module mod_status in the Apache Server documentation.

mod_unique_id

Creates a unique ID for each request. This module is available on UNIX only.

See Also: Module mod_unique_id in the Apache Server documentation.

mod_userdir

Maps requests to user-specific directories.

See Also: Module mod_userdir in the Apache Server documentation.

mod_usertrack

Tracks user activity by creating a log.

See Also: Module mod_usertrack in the Apache Server documentation.

mod_vhost_alias

Enables dynamically configured mass virtual hosting.

See Also: Module mod_vhost_alias in the Apache Server documentation.

mod_wchandshake

Provides automatic discovery of Oracle HTTP Server by OracleAS Web Cache. If OracleAS Web Cache is not used, this module can be disabled. It is an Oracle module.
This chapter describes distributed authoring and versioning concepts, and explains how to configure and use the mod_oradav module. The mod_oradav module enables you to use OraDAV to access content in an Oracle database from a Web browser or a WebDAV client.

Topics discussed are:
- OraDAV Concepts
- OraDAV Architecture
- OraDAV Users
- OraDAV Usage Model
- OraDAV Configuration Parameters
- DAV Directives
- WebDAV Security Considerations
- OraDAV Performance Considerations
- mod_oradav Usage Notes

OraDAV Concepts

The term OraDAV refers to the capabilities available through the mod_oradav module. The mod_oradav module is an extended implementation of mod_dav, which is an implementation of the WebDAV specification. This section explains the following concepts:

- WebDAV
- mod_dav
- mod_oradav
- OraDAV

WebDAV

WebDAV is a protocol extension to HTTP 1.1 that supports distributed authoring and versioning. With WebDAV, the Internet becomes a transparent read and write medium, where content can be checked out, edited, and checked in to a URL address.

WebDAV enables collaboration among authors building Web sites. WebDAV also serves as universal read and write access protocol to arbitrary hierarchies of content (not necessarily Web sites). With WebDAV, you can save content to a URL provided by
an Internet Service Provider (ISP), and then be able to access and optionally change that content from various devices.

WebDAV was initiated as an Internet Engineering Task Force (IETF) standard. The first phase of WebDAV is specified in RFC 2518, which provides the basic primitives for managing hierarchies of information, locking, reading, writing, and querying properties of a WebDAV document. Subsequent work on WebDAV is ongoing and is focusing on completing issues relating to content management over the Web. This includes WebDAV authentication and authorization (access controls), versioning, bindings, ordered collections, and querying (DAV Advanced Searching and Locating).

Microsoft Web folders is a WebDAV client on Windows 2000, and later versions (using Internet Explorer 5.0 and higher), Office 2000 and Office XP applications and the IIS server support WebDAV, meaning that you can start a Microsoft Office application and specify a URL, edit the content, and save it back to the URL from which it was retrieved. WebDAV also has Java clients (such as DAV Explorer), open source tools (such as Cadaver and Sitecopy), and Apple GUI tools (such as Goliath).

Note: When a WebDAV client first connects to Oracle HTTP Server, you must use the full `ServerName` string (as specified in the `httpd.conf` file) in the URL for the connection. Do not use an abbreviated form of the server name.

For example, if the `ServerName` value is `server1.acme.com`, connect to Oracle HTTP Server using the string `http://server1.acme.com:7778`, not an abbreviated form such as `http://server1:7778`.

If you use an abbreviated form, the connection might succeed, but `COPY` and `MOVE` operations will fail to execute and generate BAD_GATEWAY errors.

mod_dav

`mod_dav` is the Apache Software Foundation native implementation of the WebDAV specification.

mod_oradav

`mod_oradav` is the Oracle module (an OCI application written in C) that is an extended implementation of `mod_dav`, and is integrated with Oracle HTTP Server. `mod_oradav` performs read/write activity to local files and to Oracle databases. Oracle databases must have an OraDAV driver (a stored procedure package) that `mod_oradav` calls to map WebDAV activity to database activity. Essentially, `mod_oradav` enables WebDAV clients to connect to an Oracle database, read and write content, and query and lock documents in various schemas.

You can configure `mod_oradav` to use an Oracle database using standard Oracle HTTP Server directives. `mod_oradav` can immediately leverage other module code (such as mime_magic) in order to perform content management tasks. Most WebDAV processing activity involves streaming content to and from a content provider; and `mod_oradav` uses OCI streaming logic directly within Oracle HTTP Server.

OraDAV

OraDAV refers to the whole set of capabilities that are available through `mod_oradav` to Oracle Application Server users. Some OraDAV-specific terms include:
- **Apache OraDAV**: Code in the Apache HTTP server that supports file-based DAV access and makes calls to Oracle.

- **OraDAV driver API**: Set of stored procedure calls that are used by the OraDAV driver to manage content in an Oracle database, providing support for the following WebDAV functions over the Internet: reading and writing documents, locking and unlocking documents, managing (creating, populating, deleting) hierarchies of information, retrieving properties associated with documents, and associating properties with specific documents.

- **OraDAV driver**: Stored procedure implementation of the OraDAV driver API that executes in Oracle and manages a repository.

OraDAV Architecture

OraDAV fits into an architecture in which `mod_oradav`, within Oracle HTTP Server, provides access to content in one or more schemas in one or more Oracle databases.

A simple form of the architecture is illustrated in Figure 8–1.

Figure 8–1 OraDAV Architecture

![OraDAV Architecture Diagram](image)

Figure 8–1 shows a WebDAV client, such as Microsoft Web folders, passing HTTP requests to Oracle HTTP Server. If the request is for content stored in the file system (not in an Oracle database), `mod_oradav` handles the access. If the request is for content stored in an Oracle database, the OraDAV API handles the access.

The OraDAV API provides capabilities that are equivalent to using `mod_oradav` running with a file system. The following HTTP methods are supported by the OraDAV API:

- COPY
- DELETE
- MOVE
- MKCOL
The OraDAV API supports shared and exclusive locking, retrieving basic DAV properties, and defining and retrieving server-defined live properties or client-defined dead properties. Set-based operations such as COPY, MOVE, DELETE can be done completely by a single call to an OraDAV driver.

OraDAV Users

The primary direct users of OraDAV are Oracle HTTP Server administrators and database administrators (DBAs) of Oracle databases. End users interact only indirectly with OraDAV through Web browsers or WebDAV client tools.

OraDAV administration involves tasks for a Web master and for a DBA:

- The Web master needs to know how to start and stop Oracle HTTP Server, and how to configure Oracle HTTP Server to direct URL traffic to an OraDAV driver.
- The DBA needs to know how to set up client connectivity to an Oracle database from the system running Oracle HTTP Server, to install and administer the OraDAV driver, and perhaps to tune the content managed by the driver based on physical storage characteristics.

OraDAV Usage Model

OraDAV usage can involve any combination of the following activities:

- **Browsing:** Read-only activity which uses WebDAV to access content in an Oracle database. Its usage model is that of a typical read-only Web site.
- **Restructuring:** Deleting, moving, and copying content. Restructuring is usually done infrequently by a restricted set of individuals who have write access to the WebDAV content. Restructuring has the same limitations and complications that one encounters when restructuring a file directory. In some cases, this directory hierarchy is owned and managed by one user. If the directory is shared, the client doing restructuring is given sole access to the hierarchy through WebDAV exclusive locks.
- **Editing:** Modifying one or a small subset of resources in a hierarchy. Properly designed WebDAV clients take out shared or exclusive locks on such resources to coordinate these activities.
- **Property Management:** Associating properties and attributes (for example, author) with documents for ease of lookup and for categorization. WebDAV clients assign properties to documents using the PROPPATCH directive and retrieve properties using the PROPFIND directive.
OraDAV Configuration Parameters

You configure OraDAV mainly through parameters in the `httpd.conf` file, which is used by an Oracle HTTP Server instance when it is initializing. Some configuration parameters are required for all OraDAV drivers, and others are driver-specific.

When Oracle Application Server is installed, all required OraDAV parameters are set with values that are designed to enable Oracle database content to be accessed through a Web browser or WebDAV client. If the default values do not meet your needs, you can later modify the values for required parameters and specify values for optional parameters. The parameters used in `httpd.conf` to support OraDAV configuration start with `DAV` and `DAVParam`. These parameters are specified within a `<Location>` container directive, and they provide:

- A way of configuring how Oracle HTTP Server connects to the database.
- Coarse controls on OraDAV behavior.

The `DAV` parameter indicates that a URL location is DAV-enabled. The `DAV` keyword is followed by one of the following values:

- On, which indicates that `mod_oradav` is to use the local file system for content
- Oracle, which indicates that `mod_oradav` is to use OraDAV for all content

`DAVParam` parameters are used to specify name-value pairs. The required pairs are those that enable Oracle HTTP Server to connect to an Oracle database. These include the names `OraService`, `OraUser`, and `OraPassword` or `OraAltPassword`.

Example 8–1 shows a configuration for accessing files on the local system. It specifies that the directory `myfiles` under the Web server documents directory (`htdocs` by default) is to be DAV-enabled, along with all directories under `myfiles` in the hierarchy. Note that there must not be any symlinks defined on `myfiles` or any directory under it in the hierarchy.

```
Example 8–1  Configuration Parameters: File System Access

<Location /myfiles>
  DAV On
</Location>
```

Example 8–2 shows a configuration for accessing content through OracleAS Portal. After OracleAS Portal has been installed in Oracle Application Server, the Oracle HTTP Server configuration file should be populated with a `<Location>` container directive which points to the OracleAS Portal schema. In this example, the location `/portal` will be OraDAV-enabled and will (once populated with the correct values) connect to the OracleAS Portal schema so that users can use WebDAV clients to access OracleAS Portal data.

```
Example 8–2  Configuration Parameters: Portal Access

<Location /portal>
  DAV Oracle
  DAVParam ORACONNECT dbhost:dbport:dbsid
  DAVParam ORAUSER portal_schema
  DAVParam ORAPASSWORD portal_schema_password
  DAVParam ORAPACKAGENAME portal_schema.wwdav_api_driver
</Location>
```

Each OraDAV driver can use the `DAVParam` mechanism to create its own driver-specific settings. All `DAVParam` name-value pairs are passed to the OraDAV
driver. In addition to the OraDAV parameters, you should consider whether to specify certain DAV parameters, such as `DAVDepthInfinity`.

See Also: "DAV Directives" on page 8-15 for more information on DAV parameters

Table 8–1 lists each OraDAV parameter, whether it is required or optional, and its default value. ORAGetSource applies only to file system access; the other parameters apply only to OracleAS Portal driver and other (non-file system) access.

Table 8–1 OraDAV Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Required/Optional</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORAAllowIndexDetails</td>
<td>Optional</td>
<td>FALSE</td>
</tr>
<tr>
<td>ORAAltPassword</td>
<td>Required</td>
<td>Either ORAPassword or ORAAltPassword must be specified, but not both. (none)</td>
</tr>
<tr>
<td>ORACacheDirectory</td>
<td>Optional</td>
<td>(none)</td>
</tr>
<tr>
<td>ORACacheMaxResourceSize</td>
<td>Optional</td>
<td>(none)</td>
</tr>
<tr>
<td>ORACachePrunePercent</td>
<td>Optional</td>
<td>25</td>
</tr>
<tr>
<td>ORACacheTotalSize</td>
<td>Optional (none)</td>
<td>(none)</td>
</tr>
<tr>
<td>ORAConnect</td>
<td>Required</td>
<td>Either ORAService, ORAConnect, or ORAConnectSN must be specified, but no more than one. (none)</td>
</tr>
<tr>
<td>ORAConnectSN</td>
<td>Required</td>
<td>Either ORAService, ORAConnect, or ORAConnectSN must be specified, but no more than one. (none)</td>
</tr>
<tr>
<td>ORACoreName</td>
<td>Required</td>
<td>(none)</td>
</tr>
<tr>
<td>ORAException</td>
<td>Optional</td>
<td>NORISE</td>
</tr>
<tr>
<td>ORAGetSource</td>
<td>Optional</td>
<td>(none)</td>
</tr>
<tr>
<td>ORALockExpirationPad</td>
<td>Optional</td>
<td>0 (seconds)</td>
</tr>
<tr>
<td>ORAPackageName</td>
<td>Optional</td>
<td>ORDSYS.DAV_API_DRIVER</td>
</tr>
<tr>
<td>ORAPassword</td>
<td>Required</td>
<td>Either ORAPassword or ORAAltPassword must be specified, but not both. (none)</td>
</tr>
<tr>
<td>ORARootPrefix</td>
<td>Optional</td>
<td>(none)</td>
</tr>
<tr>
<td>ORAService</td>
<td>Required</td>
<td>Either ORAService, ORAConnect, or ORAConnectSN must be specified, but no more than one. (none)</td>
</tr>
<tr>
<td>ORATraceEvents</td>
<td>Optional</td>
<td>(none)</td>
</tr>
</tbody>
</table>
ORAAllowIndexDetails

In an Oracle HTTP Server environment that is not OraDAV-enabled, `mod_dav` itself does not respond to HTTP GET requests. Instead, normal Oracle HTTP Server mechanisms are used to respond to GET requests. However, when all your content is in an Oracle database, normal Oracle HTTP Server mechanisms cannot be used to respond to GET requests, and thus OraDAV must respond to GET requests.

The `ORAAllowIndexDetails` parameter controls how OraDAV responds when a GET request is performed on a DAV collection and no `index.html` file is found in that collection (directory). In a typical Oracle HTTP Server environment, a separate module takes control, automatically generating and returning to the client HTML that represents an “index” of the resources (files) in that collection.

An OraDAV-enabled Oracle HTTP Server performs similar actions when responding to a GET request on a collection. A Description column (containing links to more detailed information about each resource) is included in the generated index when `ORAAllowIndexDetails` is set to TRUE.

The default is FALSE, in which case no Description column appears in the generated index, and if `?details` is used in a URL, it is ignored and the URL contents are returned.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>TRUE/FALSE</td>
</tr>
<tr>
<td>Default</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

ORAAltPassword

Specifies the password associated with the user specified by the `ORAUser` parameter, but the password is a base-64 encoded character string. The `ORAAltPassword` parameter provides an alternative if you do not want the password to appear in unencoded plain text in that parameter.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required, unless <code>ORAPassword</code> is specified</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
</tbody>
</table>
If the `ORAPassword` parameter is not specified, the `ORAC otherwise parameter` is used for the password.

ORACacheDirectory

Specifies the directory to use for disk caching operations. If you do not use this parameter, disk caching is not performed for OraDAV operations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

The specified directory must exist and be readable by Oracle HTTP Server, but cannot be visible to normal GET requests. (If the directory is visible to normal GET requests, security measures could be bypassed by users accessing the cache directory.)

The directory should not be an NFS-mounted directory, because most UNIX locking mechanisms caution against this. The directory should be located on a file system that supports a "last accessed" time. On Windows systems, this means using NTFS (not FAT) formatted partitions.

Do not use the cache directory for anything other than caching. Any files in the cache directory are subject to deletion.

If you use the `ORACacheDirectory` parameter, you must also use the `ORACacheTotalSize` parameter.

See Also: "Using Disk Caching with OraDAV" on page 8-19

ORACacheMaxResourceSize

Specifies a maximum cacheable resource size for disk caching operations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>(integer, with optional unit character string)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Example 8–3 shows how to set `ORACacheMaxResourceSize`.

Example 8–3 ORACacheMaxResourceSize Parameter

```
DAVParam ORACacheMaxResourceSize 1024KB
```

The setting in Example 8–3 prevents OraDAV from caching any resource larger than one megabyte. The goal is to give Web masters the ability to prevent large media files...
from dominating the cache. However, be aware that the performance benefit from caching a large file is greater than from caching a small file.

You can specify KB (for kilobytes) or MB (for megabytes) after an integer. If you do not specify a unit after the integer, the default unit is bytes.

See Also: "Using Disk Caching with OraDAV" on page 8-19

ORACachePrunePercent

Specifies the percentage of disk cache usage to be freed up when the cache is full. When the disk cache is full, the oldest files in the cache are deleted (pruned) until the cache disk usage is reduced by the `ORACachePrunePercent` value.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>integer (1 to 100)</td>
</tr>
<tr>
<td>Default</td>
<td>25</td>
</tr>
</tbody>
</table>

See Also: "Using Disk Caching with OraDAV" on page 8-19

ORACacheTotalSize

Specifies the size of the cache to use for disk caching operations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional, unless <code>ORACacheDirectory</code> is specified</td>
</tr>
<tr>
<td>Values</td>
<td>(integer, with optional unit character string, GB or MB) Maximum value is 4GB.</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

You can specify MB (for megabytes) or GB (for gigabytes) after an integer, as shown in Example 8–4. If you do not specify a unit after the integer, the default unit is bytes.

Example 8–4 ORACacheTotalSize Parameter

```bash
DAVParam ORACacheTotalSize 1GB
```

If you use the `ORACacheDirectory` parameter, you must also use the `ORACacheTotalSize` parameter.

The `ORACacheTotalSize` value should be large enough to hold either a significant fraction of your Web site, or all of your most frequently accessed files plus 25 percent more space. If the value is too small, overall performance degrades because of the extra work of writing BLOB data to the file system and quickly deleting files to make room for newer cache requests.

The actual space utilized by the disk cache might sometimes exceed the `ORACacheTotalSize` value, possibly by as much as the `ORACacheMaxResourceSize` value. You should also be aware of file system block size issues that could cause the cache to use more disk space than the `ORACacheTotalSize` value.
See Also: "Using Disk Caching with OraDAV" on page 8-19

ORAConnect

Specifies the Oracle database to which to connect. The value must be in the following format:

database-host:database-port:database-sid

Example 8–5 shows how to use the ORAConnect parameter.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required, unless ORAService or ORAConnectSN is specified</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Example 8–5 ORAConnect Parameter

DAVParam ORAConnect my-pc.acme.com:1521:mysid

The ORAConnect parameter lets you connect to a database that is not included in the tnsnames.ora file.

You must specify one, and no more than one, of the following parameters: ORAConnect, ORAService, or ORAConnectSN.

ORAConnectSN

Specifies the Oracle database to which to connect. The value must be in the following format:

database-host:database-port:database-service-name

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required, unless ORAService or ORAConnect is specified</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

The ORAConnectSN parameter lets you connect to a database that is not included in the tnsnames.ora file, as shown in **Example 8–6**.

Example 8–6 ORAConnectSN Parameter

DAVParam ORAConnectSN my-pc.acme.com:1521:myservice

You must specify one, and no more than one, of the following parameters: ORAService, ORAConnect, or ORAConnectSN.
ORACContainerName

Within the schema specified by the ORAUser parameter, there must exist a container. The ORACContainerName parameter specifies the name of the container to use for the location.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required</td>
</tr>
<tr>
<td>Values</td>
<td>(any valid character string, up to 20 characters)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

ORAException

Writes PS/SQL stack dumps into the Oracle HTTP Server log file, error_log, in the event of an exception in the PL/SQL package.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>NORaise or RAISE</td>
</tr>
<tr>
<td>Default</td>
<td>NORaise</td>
</tr>
</tbody>
</table>

Caution: Use this parameter for debugging problems with PL/SQL packages. However, note that it can use a large amount of disk space and can slow the performance of your system.

ORAGetSource

Applies only to file system access. It specifies one or more file extensions to identify types of files that are not to be executed, but rather opened for editing. Include periods (.) with the file extension and use a comma to separate file extensions. For example:

".htm, .html, .jsp1, .jsp2"

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>File system access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>(character string in double quotation marks)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

The ORAGetSource parameter lets you open for editing files that are usually executed as a result of a GET operation.
ORALockExpirationPad

Intended to be used in high-latency network environments, to adjust for the "refresh lock" behavior in Microsoft Office. Microsoft Office attempts to refresh locks on DAV resources just before the lock is set to expire. However, if there is network congestion between the Microsoft Office client and the DAV server, the refresh request might arrive too late, that is, after the lock has expired.

OraDAV periodically looks for locks on resources that have expired and deletes those locks. The **ORALockExpirationPad** parameter can be used to provide some additional ("pad") time between when a lock expires and when that lock is deleted. For example, if **ORALockExpirationPad** is set to 120, OraDAV does not actually delete locks until at least two minutes after the expiration time.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>(number of seconds)</td>
</tr>
<tr>
<td>Default</td>
<td>0</td>
</tr>
</tbody>
</table>

ORAPackageName

Identifies the OraDAV driver implementation that is to be called when issuing OraDAV commands. The default is the OraDAV driver, which is the **ORDSYS.DAV_API_DRIVER** package.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
<tr>
<td>Default</td>
<td>ORDSYS.DAV_API_DRIVER</td>
</tr>
</tbody>
</table>

ORAPassword

Specifies the password associated with the user specified by the **ORAUser** parameter.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required, unless ORAAltPassword is specified</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>
If you do not want to specify the password as an unencoded text string with the ORAPassword parameter, you can specify the password as a base-64 encoded string with the ORAAltPassword parameter.

ORARootPrefix

Specifies the directory within the database repository to use as the root. If this parameter is specified, WebDAV clients see this directory as the root and are not able to see the repository directories that lead up to it.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>(character string)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

In Example 8–7, assume that the database repository contains the directory `/first/second/third/fourth`, and that ORARootPrefix is defined as follows (do not include a trailing slash (/) in the value):

Example 8–7 ORARootPrefix Parameter

DAVParam ORARootPrefix /first/second

In this case, WebDAV clients will see the `/third` directory and be able to navigate to the `/third/fourth` directory, but will not be able to see or navigate to the `/first` or `/first/second` directories.

ORAService

Specifies the Oracle database to which to connect. The specified value must match a SID value in the `tnsnames.ora` file as shown in Example 8–8.

Example 8–8 ORAService Parameter

DAVParam ORAService mydbsid.mydomain.com

To connect to a database that is not included in the `tnsnames.ora` file, use the ORAConnect parameter. You must specify one, and no more than one, of the following parameters: ORAService, ORAConnect, or ORAConnectSN.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Required, unless ORAConnect or ORAConnectSN is specified</td>
</tr>
<tr>
<td>Values</td>
<td>(character string matching an entry in the <code>tnsnames.ora</code> file)</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

ORATraceEvents

Specifies types of events to be recorded in the Apache error log for debugging.
ORATraceLevel

Specifies the level of debugging (trace statements) that will be entered in the Apache error log. The lowest level is 0 (the default), which performs no tracing; the highest level is 4, which performs maximum tracing.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies to</td>
<td>Portal driver and other (non-file system) access</td>
</tr>
<tr>
<td>Required/Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Values</td>
<td>One of the following character strings:</td>
</tr>
<tr>
<td></td>
<td>■ getsource: Traces GET activity against the file system.</td>
</tr>
<tr>
<td></td>
<td>■ hreftoutf8: Traces the HREF conversion from the native character set to UTF-8.</td>
</tr>
<tr>
<td></td>
<td>■ request: Traces DAV requests, responses, and status values handled by mod_oradav.</td>
</tr>
<tr>
<td>Default</td>
<td>(none)</td>
</tr>
</tbody>
</table>

Caution: Although this parameter is useful for debugging purposes, it can use a large amount of disk space and can slow the performance of your system.

ORAUser

Specifies the database user (schema) to use when connecting to the service specified by the ORAService parameter.

This user must have the following privileges:

- CONNECT
- RESOURCE
- CREATE TABLESPACE
- DROP TABLESPACE
- CREATE ANY TRIGGER

The higher the number you set, the more information is written to the error log file.

Caution: Although setting this parameter to a high number is useful for debugging purposes, it can use a large amount of disk space and can slow the performance of your system.
DAV Directives

This section describes the following DAV directives that you can set in the `httpd.conf` file:

- DAVDepthInfinity
- DAVLockDB
- DAVMinTimeout
- DAVOraNLS
- DAVOraReadOnly
- DAVOraWebCacheReadOnly
- Limit
- LimitExcept
- LimitXMLRequestBody

Some of the material in this section is taken or adapted from material written by Greg Stein (gstein@lyra.org) and available at the following URL:

http://www.webdav.org/mod_dav/install.html

DAVDepthInfinity

A PROPFIND request with a `Depth: Infinity` header can impose a large burden on the server. These kinds of requests could "walk" the entire repository, returning information about each resource found. `mod_dav` builds the response in memory, so these types of requests can consume a lot of memory. (The memory is released at the end of the request, but the peak memory usage can be high.)

To prevent these types of requests, the DAVDepthInfinity directive is provided. It is a simple on/off directive, which can be used on a per-server, per-directory or location basis. If the value is set to Off, these types of requests are not allowed. A value of On (that is, allowing depth infinity requests) makes it easier for denial of service attacks to occur. However, some clients, such as sitecopy, require a DAVDepthInfinity value of On.

Note: The WebDAV Working Group has stated that it is acceptable for DAV servers to refuse these kinds of requests. Properly written client software should not issue such requests.

DAVLockDB

Creates a DAV lock database. To create the DAV lock database, add a DAVLockDB directive at the top level of the configuration file (that is, outside a `<Directory>` or `<Location>` container directive). The DAVLockDB directive should specify the name
of a file that mod_dav creates. The directory in which the file is to be created must exist, and Oracle HTTP Server process must have write permission to it.

Note: The directory should not be on an NFS-mounted partition. mod_dav uses flock/fcntl to manage access to the database. Some operating systems cannot use these operations on an NFS-mounted partition.

In Example 8–9, the DAV lock database is stored in the ORACLE_HOME/Apache/var directory, which must be writable by Oracle HTTP Server process. When mod_dav creates the file, it is named DAVLock. (Actually, mod_dav creates one or more files using this file name plus an extension).

Example 8–9 DAVLockDB Directive

```
DAVLockDB ORACLE_HOME/Apache/var/DAVLock
```

The DAVLockDB directive can appear outside any container or within a <VirtualHost> specification. It only needs to appear once, and a file extension should not be supplied.

DAVMinTimeout

Specifies the minimum lifetime of a lock, in seconds. If a client requests a lock timeout less than the DAVMinTimeout value, then the DAVMinTimeout value is used and returned instead. For example, Microsoft’s Web Folders defaults to a lock timeout of 2 minutes (120 seconds); however, you might decide to specify 10 minutes (600 seconds) instead, to reduce network traffic and the chance that the client might lose a lock due to network latency.

The DAVMinTimeout directive is optional, and may be used on a per-server or per-directory or location basis. The DAVMinTimeout directive takes a single positive integer. Because this value represents a minimum allowed, setting it to zero (0) disables this feature. The default value for DAVMinTimeout is zero.

DAVOraNLS

Provides globalization support for access to the local file systems. This directive specifies whether or not the file names in the file system need to go through conversion using the NLS_LANG setting. A value of Off, the default, means that no conversion is needed. A value of On means that the character set for the file system provides for conversion of all possible characters in client requests.

See Also: "Globalization Support Considerations with OraDAV" on page 8-21

DAVOraReadOnly

Specifies whether or not WebDAV should be used in a read-only mode by WebDAV clients. A value of Off, the default, means that WebDAV clients function normally. A value of On prevents WebDAV clients from performing write operations while using WebDAV; however, it does allow read-only activity by Web browsers and WebDAV clients.

See Also: "DAVOraWebCacheReadOnly" on page 8-17
DAVDirectives

Configuring and Using mod_oradav

8-17

DAVOraWebCacheReadOnly

Specifies whether or not OracleAS Web Cache should be used in a read-only mode by WebDAV clients. A value of off, the default, means that OracleAS Web Cache functions normally. A value of on prevents WebDAV clients from performing write operations while using OracleAS Web Cache; however, it does allow read-only activity by Web browsers and WebDAV clients.

See Also:

■ "Using OracleAS Web Cache for Browsing Activities" on page 8-20
■ "DAVOraReadOnly" directive on page 8-16

Limit

The DAV and DAVlockDB directives are the only two configuration changes necessary to operate a DAV server. However, it is usually best to secure the site to be writable only by specific authorized users. This requires the use of the <Limit> directive.

The configuration in Example 8–10 allows only authorized users to manipulate the site. However, it does allow them a bit more freedom than you may like. In particular, they may be able to place an .htaccess file into the target directory, altering your server configuration. The server may have already been configured to not read .htaccess files, but it is best to make sure. Also, you may want to disallow other options within the DAV-enabled directory, such as CGI, symbolic links or server-side includes.

Example 8–10 Securing a Site by Using the <Limit> Directive

<Location /mypages>
 DAV On
 <Limit PUT POST DELETE PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
 Require user greg
 </Limit>
</Location>

Example 8–11 shows a modified configuration with the additional restrictions placed on it through the addition of AllowOverride None and Options None:

Example 8–11 Securing Site by Using Additional Restrictions

<Location /mypages>
 DAV On
 AllowOverride None
 Options None
 <Limit PUT POST DELETE PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
 Require user greg
 </Limit>
</Location>

Example 8–11 shows a modified configuration with the additional restrictions placed on it through the addition of AllowOverride None and Options None:

<Location /mypages>
 DAV On
 AllowOverride None
 Options None
 <Limit PUT POST DELETE PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>
 Require user greg
 </Limit>
</Location>
LimitExcept

Rather than using the `<Limit>` directive and specifying an exhaustive list of HTTP methods to secure, it is also possible to use the `<LimitExcept>` directive, as shown in Example 8–12. This directive applies the access restrictions to all methods except for the methods listed.

Example 8–12 Securing a Site Using the `<LimitExcept>` Directive

```
<Location /mypages>
  DAV On
  AllowOverride None
  Options None
  <LimitExcept GET HEAD OPTIONS>
    require user webadmin
  </LimitExcept>
</Location>
```

Choosing to use one or the other is a matter of preference. The `<Limit>` directive is precise and explicit, but the `<LimitExcept>` directive automatically restricts methods that are added in the future.

LimitXMLRequestBody

`mod_dav` parses XML request bodies into memory. One technique used in denial of service attacks is to send a large request body to a `mod_dav` server. Oracle HTTP Server defines a directive named `LimitRequestBody`, which limits all methods' request bodies. Unfortunately, this is not an effective mechanism for a `mod_dav` server because large PUT operations should be allowed.

To limit just the methods that have an XML request body, `mod_dav` provides the `LimitXMLRequestBody` directive. The default for this value is a compile-time constant, which is set to one million (1,000,000) bytes in the standard distribution. Setting the value to zero (0) disables the size limit.

`LimitXMLRequestBody` may be set on a per-server or a per-directory or location basis, and takes a single non-negative integer argument.

WebDAV Security Considerations

Because WebDAV enables read-write capabilities, users on the Internet can write to your Web site or to an Oracle database. A major concern is preventing users from placing an inappropriate file (a "Trojan horse") that can execute on the Web server system. If the WebDAV configuration and authorization is not set up properly, an inappropriate file from the file system can be executed. This problem does not apply to content from an Oracle database, because such content cannot execute in the middle tier.

The HTTP protocol issues GET requests both to static and executable files, without differentiation. Oracle HTTP Server executes files based on their location or extension. For example, a shell script (which typically has no file extension) is executed if it is in the `cgi-bin` directory, but is retrieved as a static text file if it is in the `htdocs` directory. On the other hand, a JavaServer Pages (JSP) file, which has a `.jsp` extension, will normally be executed regardless of its location. However, by default, `mod_oradav` prevents a WebDAV-enabled directory from executing a `.jsp` or `.sql.jsp` file. For a file with one of these extensions, `mod_oradav` reads the content directly, bypassing any Oracle HTTP Server logic that attempts to execute the file. Files with these extensions are retrieved as having the `text/plain` MIME type and can be
edited. You can add to the list of file types that are never to be executed and always retrieved as text/plain by using the ORAGetSource parameter.

One way to limit execution of files is to use the Apache ForceType directive in a <Location> container directive. This forces all content under a location to be retrieved as text/plain. However, this simple and sweeping approach may not be what you want in many cases, wherein you want the standard behavior associated with the actual MIME type, for example, for GIF files, to be used.

To decide how to handle these security issues with content on file systems, you should determine what kinds of WebDAV users will have access to the content. WebDAV users typically fall into two categories: Web authors who want to collaborate and manage a Web site, and end users who want to use WebDAV as a public storage area. Because end users should never be able to upload and execute a file, you may want to specify many file extensions with the ORAGetSource parameter or to use the ForceType directive for end users.

Be sure to apply the standard Basic or Digest authentication and authorization mechanisms supported by Oracle HTTP Server. Generally, you do this for the default location, such as dav_public, in the supplied moddav.conf file. This restricts who can use your system for remote storage, preventing unauthorized users from filling up your disks. You should always apply Oracle HTTP Server authentication and authorization to authors of the Web site.

You should also provide both an execution context and an editing context, so that Web authors, after being properly authenticated and authorized, can edit a JSP file or other executable file and then see how it executes. To do this, create an alias for the directory associated with the execution context, and then DAV-enable the aliased location. For example, assume that you want to be able to execute a script if the URL specifies the cgi-bin directory (for example, http://www.acme.com/cgi-bin/printenv), but to edit the script if the URL specifies an alias named edit-cgi-bin (for example, http://www.acme.com/edit-cgi-bin/printenv). In Example 8–13, the configuration file entries achieve this goal, setting up edit-cgi-bin as an editing context for content in the cgi-bin directory:

Example 8–13 Editing Context

```
Alias /edit-cgi-bin /usr/local/apache/cgi-bin
<Location /edit-cgi-bin>
  DAV On
  ForceType text/plain
</Location>
```

OraDAV Performance Considerations

This section provides information that can help you optimize the performance of various kinds of operations. It contains the following topics:

- Using Disk Caching with OraDAV
- Bypassing OracleAS Web Cache for WebDAV Activities
- Using OracleAS Web Cache for Browsing Activities

Using Disk Caching with OraDAV

Oracle Application Server can use local file system disk caching with data that is retrieved from an Oracle database. Disk caching is designed to improve the performance of HTTP GET operations on frequently accessed database data.
OraDAV Performance Considerations

data is requested from the database, it is retrieved and is stored in a disk cache on the
local file system. If a subsequent request is for the same data and if the data is still in
the disk cache, Oracle Application Server checks to see if the data has changed in the
database (by examining the etag value). If the data has not changed, it is retrieved
from the cache, which is more efficient than retrieving a substantial amount of data
from the database.

The performance benefit from disk caching is greatest with medium to large-size files
(roughly 50 KB and larger). However, with smaller files, the performance benefit is
less, and with very small files the performance can be worse with disk caching than
without disk caching. For example, if the file myfile.dat is requested and if the file
size is only 24 bytes, the time required for copying the file from the database to the
local system is very small compared to the time required for accessing the database to
check if the file has changed. If disk caching is not used, there is no check of the
database to see if the file has changed, and the file is copied from the database in all
cases.

You can set the following OraDAV parameters to control disk caching for OraDAV
operations:

- ORACacheDirectory
- ORACacheTotalSize
- ORACacheMaxResourceSize
- ORACachePrunePercent

If you specify ORACacheDirectory, disk caching for OraDAV operations is enabled.
In this case, you must also specify a value for ORACacheTotalSize, and you can
specify values for ORACacheMaxResourceSize and ORACachePrunePercent
parameters. If you do not specify ORACacheDirectory, disk caching for OraDAV
operations is not enabled, and other disk cache-related parameters are not relevant.

See Also: "OraDAV Configuration Parameters" on page 8-5 for
information about each parameter

Bypassing OracleAS Web Cache for WebDAV Activities

OracleAS Web Cache enhances performance for most Web activity, which involves
client read-only operations of data on the Web server system. However, OracleAS Web
Cache does not cache OraDAV operations, which are designed for read/write
capability. Thus, for better performance, WebDAV clients can connect directly to
Oracle HTTP Server.

To bypass OracleAS Web Cache for WebDAV clients, you can use port 7778, which is
the standard port for Oracle HTTP Server. If you do this, WebDAV clients connect
directly to the Web server, resulting in better performance than if OracleAS Web Cache
was used.

Using OracleAS Web Cache for Browsing Activities

If your WebDAV clients always bypass OracleAS Web Cache, you may want to tune
OracleAS Web Cache for read-only clients such as Web browsers. To do so, add the
DAVoraWebCacheReadOnly On setting for an OraDAV-enabled location in the
httpd.conf file, as shown in Example 8–14.

Example 8–14 Using OracleAS Web Cache for Browsing Activities

<Location /dav_public>
DAV On
DAVOraWebCacheReadOnly On
</Location>

This setting prevents WebDAV clients from performing write operations while using OracleAS Web Cache; however, it does allow read-only activity by Web browsers and WebDAV clients.

See Also: "DAVOraWebCacheReadOnly" on page 8-17 for information on this setting

mod_oradav Usage Notes

This section contains usage notes relating to mod_oradav. Some of the information is taken or adapted from material written by Greg Stein (gstein@lyra.org) and available at the following URL:

http://www.webdav.org/mod_dav/install.html

Mapping Containers Under the Root Location

Note the following when mapping containers under the root location:

- Do not map the root itself. That is, do not specify <Location />.
- Do not map a container as a subelement in the hierarchy to another container. For example, do not specify the following two containers: <Location /project1> and <Location /project1/project2>. However, it is acceptable to specify <Location /project1> and <Location /project2>.
- Do not create any symbolic links to the container or any location under the container in the hierarchy.

Globalization Support Considerations with OraDAV

For access to database data, the character set used for client requests, such as in URLs and file names, must be compatible with the character set used for the database. Specifically, if the character set for the database is not the same as for the client requests, the character set for the database must provide for conversion of all possible characters in client requests (and thus must be a superset of the character set for client requests). That is, the character set for the database must not cause replacement characters during the conversion.

When you start Oracle HTTP Server, the NLS_LANG environment variable must reflect the character set for client requests. For example, if file names and URLs contain Kanji characters, you can specify NLS_LANG=JAPANESE_JAPAN.JA16SJIS (for ShiftJIS characters). In this case, the database character set must be one that accommodates SJIS characters, for example, UTF8.

For access to the local file system, as opposed to database access, the character set for the file system must be the same as, or compatible with, the character set for URLs embedded in client requests. The character set for the file system must provide for conversion of all possible characters in client requests. The NLS_LANG parameter value must represent the character set of both the client and the OraDAV server. You must also specify a value of On for the parameter DAVOraNLS.

For example, assume that you are using Web folders on a system where the files have ShiftJIS characters and that the file system under dav_public is represented by the
operating system in the JAPANESE_JAPAN.JA16SJIS character sets shown in Figure 8–2.

Figure 8–2 OraDAV Access to File System with ShiftJIS Characters

In this case, you must do the following:

1. Set the NLS_LANG value to JAPANESE_JAPAN.JA16SJIS.
2. Include the following in the httpd.conf file:

   ```
   <Location /dav_public>
   DAV On
   DAVOraNLSS On
   </Location>
   ```

Note: If you use Microsoft Internet Explorer with OraDAV and a multibyte character set, you must disable (uncheck) the Internet option (Internet Options, Advanced tab) Always send URLs as UTF-8. (By default, this option is enabled.) The requirement to disable this option applies to both database access and file system access.

PROPFIND Security

In the example configurations in the preceding sections on the `<Limit>` and `<LimitExcept>` directives, the PROPFIND method was limited, even though it is read-only. This is because the PROPFIND method can be used to list all the files in the DAV-enabled directory. For security reasons, it is probably best to protect the list of files from general read access.

An alternative is to limit the PROPFIND to a group of people, a set of domains, or a set of hosts, while the methods that modify content are limited to just a few authors. This scenario allows, for example, your company’s employees to browse the files on the server, yet only a few people can change them. Anonymous (non-authenticated) visitors cannot browse or modify.

Finally, you can simply omit PROPFIND from the limits if your Web server is intended as a general, read-only repository of files. This allows anybody to arbitrarily browse the directories and then to fetch the files.
Managing Security

This chapter contains an overview of Oracle HTTP Server security features, and provides configuration information for setting up a secure Web site.

Topics discussed are:

- About Oracle HTTP Server Security
- Classes of Users and Their Privileges
- Resources Protected
- Authentication and Authorization Enforcement
- Understanding Port Tunneling
- Leveraging Oracle Identity Management Infrastructure

See Also: For additional information about security, refer to the following documents:

About Oracle HTTP Server Security

Security can be organized into the three categories of authentication, authorization, and confidentiality. Oracle HTTP Server provides support for all three of these categories. It is based on the Apache Web server, and its security infrastructure is primarily provided by the Apache modules, mod_auth and mod_access, and the Oracle modules, mod_ossl and mod_osso. mod_auth provides authentication based on user name and password pairs, mod_access controls access to the server based on the characteristics of a request, such as hostname or IP address, mod_ossl provides confidentiality and authentication with X.509 client certificates over SSL, and mod_osso enables single sign-on authentication for Web applications.

Based on the Apache model, Oracle HTTP Server provides access control, authentication, and authorization methods that can be configured with access control directives in the httpd.conf file. When URL requests arrive at Oracle HTTP Server, they are processed in a sequence of steps determined by server defaults and configuration parameters. The steps for handling URL requests are implemented through a module or plug-in architecture that is common to many Web listeners.
Figure 9–1 shows how URL requests are handled by the server. Each step in this process is handled by a server module depending on how the server is configured. For example, if basic authentication is used, then the steps labeled "Authentication" and "Authorization" in Figure 9–1 represent the processing of the mod_auth module.

Classes of Users and Their Privileges

Oracle HTTP Server authorizes and authenticates users before allowing them to access, or modify resources on the server. The following are three classes of users that access the server using Oracle HTTP Server, and their privileges:

- Users that access the server without providing any authentication. They have access to unprotected resources only.
- Users that have been authenticated and potentially authorized by modules within Oracle HTTP Server. This includes users authenticated by mod_auth and mod_ossl. Such users have access to URLs defined in http.conf file.
- Users that have been authenticated through mod_osso and Single Sign-On server. These users have access to resources allowed by Single Sign-On.

See Also: ["Authentication and Authorization Enforcement" on page 9-3](#)

See Also: Oracle Application Server Single Sign-On Administrator’s Guide

Resources Protected

Oracle HTTP Server is configured to protect resources such as:

- Static content such as static HTML pages, graphics interchange format, .gif, files, and other static files that Oracle HTTP Server provides directly.
- CGI/FastCGI scripts, simple scripts or programs that Oracle HTTP Server invokes directly.
- Content generated by modules within Oracle HTTP Server. Modules such as mod_perl, mod_dms generate responses that are returned to the client.
- Oracle Application Server components that exist behind Oracle HTTP Server, including servlets and JSPs running with OC4J that are accessed through mod_
Authentication and Authorization Enforcement

Oracle HTTP Server provides user authentication and authorization at two stages:

- **Host-based Access Control** (stage one): This is based on the details of the incoming HTTP request and its headers, such as IP addresses or host names.

- **User Authentication and Authorization** (stage two): This is based on different criteria depending on the HTTP server configuration. The server can be configured to authenticate users with user name and password pairs that are checked against a list of known users and passwords. You can also configure the server to use single sign-on authentication for Web applications or X.509 client certificates over SSL.

Host-based Access Control

Early in the request processing cycle, access control is applied, which can inhibit further processing based on the host name, IP address, or other characteristics such as browser type. You use the `deny`, `allow`, and `order` directives to set this type of access control. These restrictions are configured with Oracle HTTP Server configuration directives and can be based on particular files, directories, or URL formats using the `<Files>`, `<Directory>`, and `<Location>` container directives as shown in the Example 9–1:

```
Example 9–1  Host-based Access Control

<Directory /internalonly/>
    order deny, allow
    deny from all
    allow from 192.168.1.* us.oracle.com
</Directory>
```

In Example 9–1, the `order` directive determines the order in which Oracle HTTP Server reads the conditions of the `deny` and `allow` directives. The `deny` directive ensures that all requests are denied access. Then, using the `allow` directive, requests originating from any IP address in the 192.168.1.* range, or with the domain name `us.oracle.com` are allowed access to files in the directory `/internalonly/`. It is common practice to specify both `allow` and `deny` in host-based authentication to make the access policy explicit.

If you want to match objects at the file system level, then you must use `<Directory>` or `<Files>`. If you want to match objects at the URL level, then you must use `<Location>`.

Note: Allowing or restricting access based on a host name for Internet access is not considered a very good method of providing security, because host names are easy to spoof. While the same is true of IP addresses, sabotage is more difficult. However, setting access control with intranet IP address ranges is reasonable because the same risks do not apply. This assumes that your firewalls have been properly configured.
Access Control for Virtual Hosts

To set up access control for virtual hosts, place the AccessConfig directive inside a virtual host container in the server configuration file, httpd.conf. When used in a virtual host container, the AccessConfig directive specifies an access control policy contained in a file. Example 9–2 shows an excerpt from an httpd.conf file which provides the syntax for using AccessConfig this way:

Example 9–2 Using AccessConfig to Set Up Access Control

...
<VirtualHost ip_address_of_host.some_domain.com>
... virtual host directives ...
 AccessConfig conf/access.conf
</VirtualHost>

Using mod_access and mod_setenvif for Host-based Access Control

Using host-based access control schemes, you can control access to restricted areas based on where HTTP requests originate. Oracle HTTP Server uses mod_access and mod_setenvif to perform host-based access control. mod_access provides access control based on client hostname, IP address, or other characteristics of the client request, and mod_setenvif provides the ability to set environment variables based upon attributes of the request. When you enter configuration directives into the httpd.conf file that use these modules, the server fulfills or denies requests based on the address or name of the host, or based on the HTTP request header contents.

You can use host-based access control to protect static HTML pages, applications, or components.

Oracle HTTP Server supports four host-based access control schemes:

- Controlling Access by IP Address
- Controlling Access by Domain Name
- Controlling Access by Network or Netmask
- Controlling Access with Environment Variables

All of these allow you to specify the machines from which access to protected areas is granted or denied. Your decision to choose one or more of the host-based access control schemes is determined by which scheme most efficiently protects your restricted content and applications, or which scheme is easiest to maintain.

Controlling Access by IP Address

Controlling access with IP addresses is a preferred method of host-based access control. It does not require DNS lookups that consume time, system resources, and make your server vulnerable to DNS spoofing attacks.

Example 9–3 Controlling Access by IP Address

<Directory /secure_only/>
 order deny,allow
 deny from all
 allow from 207.175.42.*
</Directory>

In Example 9–3, requests originating from all IP addresses except 207.175.42.* range are denied access to the /secure_only/ directory.
Controlling Access by Domain Name Domain name-based access control can be used with IP address-based access control to solve the problem of IP addresses changing without warning. When you combine these methods, if an IP address changes, then the secure areas of your site are still protected because the domain names you want to keep out will still be denied access.

To combine domain name-based with IP address-based access control, use the syntax shown in Example 9–4:

Example 9–4 Controlling Access by Domain Name

```
<Directory /co_backgr/>
    order allow,deny
    allow from all
    # 141.217.24.* is the IP for malicious.cracker.com
    deny from malicious.cracker.com 141.217.24.*
</Directory>
```

In Example 9–4, all requests for directory /co_backgr/ are accepted except those that originate from the domain name malicious.cracker.com or the IP address 141.217.24.* range. Although this is not a fool proof precaution against domain name or IP address spoofing, it protects your site from malicious.cracker.com even if they change their IP address.

Controlling Access by Network or Netmask You can control access based on subsets of networks, specified by IP address. The syntax is shown in Example 9–5:

Example 9–5 Controlling Access by Network or Netmask

```
<Directory /payroll/>
    order deny,allow
    deny from all
    allow from 10.1.0.0/255.255.0.0
</Directory>
```

In Example 9–5, access is allowed from a network/netmask pair. A netmask shows how an IP address is to be divided into network, subnet, and host identifiers. Netmasks enable you to refer to only the host ID portion of an IP address.

The netmask in Example 9–5, 255.255.0.0, is the default netmask setting for a Class B address. The binary ones (decimal 255) mask the network ID and the binary zeroes (decimal 0) retain the host ID of a given IP address.

Controlling Access with Environment Variables You can use arbitrary environment variables for access control, instead of using IP addresses or domain names. Use `BrowserMatch` and `SetEnvIf` directives for this type of access control.

Note: Typically, `BrowserMatch` and `SetEnvIf` are not used to implement security policies. Instead they are used to provide different handling of requests based on browser types and versions.

Use `BrowserMatch` when you want to base access on the type of browser used to send a request. For instance, if you want to allow access only to requests that come from a Netscape browser, then use the syntax shown in Example 9–6:
Example 9–6 Controlling Access with Environment Variables

BrowserMatch ^Mozilla netscape_browser
<Directory /mozilla-area/>
 order deny,allow
 deny from all
 allow from env=netscape_browser
</Directory>

Use `SetEnvIf` when you want to base access on header information contained in the HTTP request. For instance, if you want to deny access from any browsers using HTTP version 1.0 or earlier, then use the syntax shown in Example 9–7:

Example 9–7 Controlling Access with `SetEnv`

```
SetEnvIf Request_Protocol ^HTTP/1.1 http_11_ok
<Directory /http1.1only/>
  order deny,allow
  deny from all
  allow from env=http_11_ok
</Directory>
```

User Authentication and Authorization

Basic authentication prompts for a user name and password before serving an HTTP request. When a browser requests a page from a protected area, Oracle HTTP Server responds with an unauthorized message (status code 401) containing a `WWW-Authenticate:` header and the name of the realm configured by the configuration directive, `AuthName`. When the browser receives this response, it prompts for a user name and password. After the user enters a user name and password combination, the browser sends this information back to the server in an Authorization header. In the authorization header message, the user name and password are encoded as a base 64 encoded string.

User authorization involves checking the authenticated user against an access control list that is associated with a specific server resource such as a file or directory. To configure user authorization, place the `require` directive in the `httpd.conf` file, usually within a virtual host container. User authorization is commonly used in combination with user authentication. After the server has authenticated a user's user name and password, then the server compares the user to an access control list associated with the requested server resource. If Oracle HTTP Server finds the user or the user's group on the list, then the resource is made available to that user.

Using `mod_auth` to Authenticate Users

User authentication is based on user names and passwords that are checked against a list of known users and passwords. These user name and password pairs may be stored in a variety of forms, such as a text file, database, or directory service. Then configuration directives are used in `httpd.conf` to configure this type of user authentication on the server. `mod_auth` uses the `AuthUserFile` directive to set up basic authentication. It supports only files.

Any authentication scheme that you devise requires that you use a combination of the configuration directives listed in Table 9–1.
Using mod_osso to Authenticate Users
mod_osso enables single-sign on for Oracle HTTP Server. mod_osso examines incoming requests and determines whether the resource requested is protected, and if so, retrieves the Oracle HTTP Server cookie for the user.

Through mod_osso, Oracle HTTP Server becomes a single sign-on (SSO) partner application enabled to use SSO to authenticate users and obtain their identity using OracleAS Single Sign-On, and to make user identities available to Web applications as an Apache header variable.

Using mod_osso, Web applications can register URLs that require SSO authentication. When Oracle HTTP Server receives URL requests, mod_osso detects which requests require SSO authentication and redirects them to the SSO server. Once SSO server authenticates the users, it passes the user's authenticated identity back to mod_osso in a secure token, or cookie. mod_osso retrieves the user's identity from the cookie and propagates the user's identity information to applications running in Oracle HTTP Server instance. mod_osso can propagate the user's identity information to applications running in CGI, and those running in OC4J, and it can also authenticate users for access to static files.

See Also:
- Oracle Application Server Single Sign-On Administrator's Guide
- "Leveraging Oracle Identity Management Infrastructure" on page 9-14.

Using mod_ossl to Authenticate Users
mod_ossl is a plug-in to Oracle HTTP Server that enables the server to use SSL. mod_ossl replaces mod_ssl in the Oracle HTTP Server distribution. Oracle no longer supports mod_ssl.

See Also: "Enabling SSL for Oracle HTTP Server" on page 10-1 for information on enabling and configuring SSL using mod_ossl directives.

Understanding Port Tunneling
Port tunneling allows all communication between Oracle HTTP Server and OC4J to happen on a single, or a small number of ports. Previously, the firewall configuration had to include port information for many ports to handle communication between Oracle HTTP Server and multiple OC4J instances.
Configuring Port Tunneling

Perform the following three tasks to configure port tunneling:

- **Task 1: Configure opmn.xml**
- **Task 2: Configure iaspt.conf**
- **Task 3: Configure mod_oc4j.conf**

Task 1: Configure opmn.xml

Perform the following steps on the middle-tier install (and not the standalone Oracle HTTP Server 1.3 installation) to start one or more iaspt daemons:

1. By default, there is an opmn.xml entry for iaspt that is disabled. Enable iaspt by editing opmn.xml and changing `status="disable"` to `status="enable"`.

2. Optionally, you may also change the TCP/IP ports used by the iaspt daemon by changing the port "range" and the number of the iaspt daemon processes by changing "numprocs".

The following is a complete example configuration for the iaspt daemon. It contains all possible configuration elements/attributes that can be used with this component.

```xml
<module path="/ORACLE_HOME/opmn/lib/libopmniaspt">
  <module-id id="IASPT" />
</module>
<ias-component id="IASPT" status="enabled" id-matching="false">
  <process-type id="IASPT" module-id="IASPT">
    <port id="ajp" range="6701-6703"/>
    <process-set id="IASPT" restart-on-death="true" numprocs="3"/>
  </process-type>
</ias-component>
```

3. Run the following command to direct the opmn daemon to reload its configuration file:

 `opmnctl reload`

Task 2: Configure iaspt.conf

Perform the following steps on the middle-tier install (and not the standalone Oracle HTTP Server 1.3 installation) to configure iaspt.conf to specify an SSL wallet for the iaspt daemon(s) to use:

1. Communication between mod_oc4j and iaspt is always encrypted, therefore an SSL wallet file must be configured for the iaspt daemon(s). By default, this wallet is the same as the Oracle HTTP Server wallet. You may change the default by editing the following values in iaspt.conf:
 - `wallet-file=<path to wallet file>`
 - `wallet-password=<password>`

See Also: Oracle HTTP Server Administrator’s Guide for a detailed description of port tunneling.
See Also:
- "wallet-file" on page 9-12
- "wallet-password" on page 9-13

2. Start the iaspt daemon(s) using the following command:

 opmnctl startall

Task 3: Configure mod_oc4j.conf

Perform the following steps on the standalone Oracle HTTP Server 1.3 installation (and not the middle tier install) to configure mod_oc4j.conf to route requests using iaspt:

1. Enable port tunneling by adding the following line in mod_oc4j.conf:

 Oc4jiASPTActive on

 See Also: "Oc4jiASPTActive" on page 9-11

2. Specify an SSL wallet and wallet password for mod_oc4j.conf by adding the following two lines in mod_oc4j.conf:

 Oc4jiASPTWalletFile <path to wallet file>
 Oc4jiASPTWalletPassword <password of wallet>

 This wallet may be the same as used by Oracle HTTP Server and/or iaspt.

 See Also:
 - "Oc4jiASPTWalletFile" on page 9-11
 - "Oc4jiASPTWalletPassword" on page 9-12
 - *Oracle Application Server Administrator’s Guide* for information on Oracle Wallet Manager.

3. Specify the host and port addresses of the iaspt daemons. For example, add the following line to mod_oc4j.conf:

 Oc4jiASPTProcess myhost.us.oracle.com:6701

 You may add as many Oc4jiASPTProcess lines as you have iaspt daemons. The host and port addresses must match those of your configured iaspt daemons. For example, to route requests to the three iaspt daemons configured in the example in step 2 of "Task 1: Configure opmn.xml" on page 9-8, add the following three lines:

 Oc4jiASPTProcess myhost.us.oracle.com:6701
 Oc4jiASPTProcess myhost.us.oracle.com:6702
 Oc4jiASPTProcess myhost.us.oracle.com:6703

 See Also: "Oc4jiASPTProcess" on page 9-11

4. Restart Oracle HTTP Server for the changes to take effect, using the following command:

 opmnctl restartproc ias-component=HTTP_Server
Configuring SSL for Port Tunneling

This section contains information about configuring SSL between iaspt and OC4J. By default, the iaspt daemons and the OC4J processes communicate with unencrypted data. Perform the following steps to configure SSL communication between these processes:

1. In iaspt.conf, change the value "destination-ssl" from "false" to "true".
2. To configure the OC4J process to use SSL, refer to the Oracle Application Server Containers for J2EE Security Guide.

Port Tunneling Configuration Reference

This section contains information about the following configuration files and their parameters involved in the port tunneling process.

- opmn.xml
- mod_oc4j.conf
- iaspt.conf

opmn.xml

Describes the process that OPMN manages within an Oracle Application Server installation.

See Also: "opmn.xml" on page B-3

As part of port tunneling, an entry that describes the iaspt daemon process to be started should exist in OPMN. This entry describes the following:
- number of iaspt daemon processes to start.
- ports that these processes can use.

See Also: iaspt.conf on page 9-12

An out of the box Oracle Application Server installation contains an iaspt component in opmn.xml, but it is disabled by default.

mod_oc4j.conf

Configures mod_oc4j with Oracle HTTP Server.

See Also: "mod_oc4j.conf" on page B-3

For port tunneling, you need to add directives that specify the following:
- whether port tunneling should be used
- static location for an iaspt daemon process
- location of SSL certificates to be used in establishing connections with the iaspt daemon processes.

See Also: iaspt.conf on page 9-12
By default, mod_oc4j communicates directly to OC4J. For port tunneling process, mod_oc4j should communicate to OC4J through the iaspt daemon.

The following directives used to connect mod_oc4j to the iaspt daemon:

- Oc4jiASPTActive
- Oc4jiASPTProcess

Oc4jiASPTActive Indicates whether mod_oc4j needs to consider port tunneling when routing requests. This should not be configured to "On" if Oc4jEnableSSL is configured to "On". To enable port tunneling process, set this directive to "On".

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jiASPTActive</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>On/Off</td>
</tr>
<tr>
<td>Default Value</td>
<td>Off</td>
</tr>
</tbody>
</table>

Oc4jiASPTProcess Describes the listening host and port of a port tunneling process. There can be multiple instances of this directive within a mod_oc4j.conf file for multiple port tunneling processes.

The syntax for this directive is host:port. The host value should be the hostname of a machine where an iaspt daemon is running. The port value should match the port configured in opmn.xml for that iaspt. Both regular hostname and IP address are allowed for host.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jiASPTProcess</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>host:port values of the available iaspt daemons.</td>
</tr>
<tr>
<td>Default Value</td>
<td>N/A</td>
</tr>
<tr>
<td>Syntax</td>
<td>host:port</td>
</tr>
<tr>
<td></td>
<td>For example: myhost.us.oracle.com:6667</td>
</tr>
</tbody>
</table>

mod_oc4j should use SSL when communicating with the iaspt daemon. The following are the directives used to enable SSL:

- Oc4jiASPTWalletFile
- Oc4jiASPTWalletPassword

Oc4jiASPTWalletFile Specifies the location of an Oracle Wallet file that contains SSL certificates that are used for SSL communication with the iaspt daemon.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jiASPTWalletFile</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Path to a wallet file that contains the SSL certificate to be used when establishing SSL connections to the iaspt daemon.</td>
</tr>
</tbody>
</table>
Oc4jiASPTWalletPassword Specifies the value of the obfuscated password used for authentication when opening the wallet file. This value is obtained using the utility provided with Oracle Wallet Manager.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>Oc4jiASPTWalletPassword</td>
</tr>
<tr>
<td>Parameter Type:</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Password used for authentication when opening the wallet file specified by Oc4jiASPTWalletFile.</td>
</tr>
<tr>
<td>Default Value</td>
<td>N/A</td>
</tr>
</tbody>
</table>

See Also: Oracle Application Server Administrator’s Guide for information on Oracle Wallet Manager.

iaspt.conf
Configures port tunneling.

See Also: "iaspt.conf" on page B-2

It specifies the following information:

- Wallet file and password that should be used
- Log file location and log level
- Port that iaspt daemon should listen on (optionally). This port can either be specified in iaspt.conf, or can be passed in from opmn.xml by specifying a range of ports. By doing so, more than one port tunneling process can use the same iaspt.conf file.

The iaspt.conf file is a set of name value pairs. The following are the names of the parameters accepted:

- wallet-file
- wallet-password
- log-file
- log-level
- iaspt-port

wallet-file Specifies the location of an Oracle Wallet file that contains SSL certificates that are used for SSL communication with peers.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>wallet-file</td>
</tr>
</tbody>
</table>
wallet-password Specifies the value of the password used for authentication when opening the wallet file. This value is obtained using the utility provided with Oracle Wallet Manager.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Path to a wallet file that contains the SSL certificate to be used when establishing SSL connections to other processes.</td>
</tr>
<tr>
<td>Default Value</td>
<td>N/A</td>
</tr>
<tr>
<td>Syntax</td>
<td>Valid filename</td>
</tr>
<tr>
<td></td>
<td>For example: /foo/bar/myfilename</td>
</tr>
</tbody>
</table>

See Also: Oracle Application Server Administrator's Guide for information on Oracle Wallet Manager.

log-file Specifies the path to a log file where iaspt daemon logging messages are written to.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>log-file</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>string</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Path to a log file where iaspt daemon logging messages are written to.</td>
</tr>
<tr>
<td>Default Value</td>
<td>N/A</td>
</tr>
<tr>
<td>Syntax</td>
<td>Valid filename</td>
</tr>
<tr>
<td></td>
<td>For example: /foo/bar/myfilename</td>
</tr>
</tbody>
</table>

log-level Specifies the logging level where 9 is the highest and 0 implies no logging.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Name</td>
<td>log-level</td>
</tr>
<tr>
<td>Parameter Type</td>
<td>integer</td>
</tr>
<tr>
<td>Valid Values</td>
<td>Integer from 0 to 9</td>
</tr>
<tr>
<td>Default Value</td>
<td>3</td>
</tr>
</tbody>
</table>

iaspt-port Specifies the port value that the iaspt daemon should accept connections on. This is optional.
Leveraging Oracle Identity Management Infrastructure

This section discusses how Oracle HTTP Server uses the Oracle Identity Management Infrastructure.

Overview

Oracle Identity Management is an integrated infrastructure that the Oracle Application Server relies on for distributed security. It consists of Oracle Internet Directory, Oracle Directory Integration and Provisioning, Delegated Administrative Service, OracleAS Single Sign-On, and Oracle Certificate Authority.

See Also: Oracle Identity Management Concepts and Deployment Planning Guide

Using OracleAS Single Sign-On and mod_osso

Oracle Application Server supports single sign-on (SSO) to Web-based applications through OracleAS Single Sign-On. Oracle Application Server Single Sign-On enables you to log in to Oracle Application Server and gain access to those applications for which you have authorization, without requiring to re-enter a user name and password for each application. It is fully integrated with Oracle Internet Directory, which stores user information. It supports LDAP-based user and password management through Oracle Internet Directory.

mod_osso, an Oracle HTTP Server module, enables the transparent use of OracleAS Single Sign-On across all of Oracle Application Server. Through mod_osso, Oracle HTTP Server becomes a SSO partner application enabled to use SSO to authenticate users and obtain their identity, and to make user identities available to Web applications as an Apache header variable.

See Also: "Using mod_osso to Authenticate Users" on page 9-7
Enabling SSL for Oracle HTTP Server

This chapter contains information about enabling and configuring SSL for Oracle HTTP Server. Topics discussed are:

- Overview
- Configuring SSL
- Additional SSL Features
- Using SSL Configuration Directives

Overview

Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed to securely send messages across the Internet. It resides between Oracle HTTP Server on the application layer and the TCP/IP layer, transparently handling encryption and decryption when a secure connection is made by a client.

One common use of SSL is to secure Web HTTP communication between a browser and a Web server. This case does not preclude the use of non-secured HTTP. The secure version is simply HTTP over SSL (named HTTPS). The differences are that HTTPS uses the URL scheme https:// rather than http://, and its default communication port is 4443 on UNIX or 443 on Windows.

`mod_ossl` is a plug-in to Oracle HTTP Server that enables the server to use SSL.

See Also: Oracle Application Server Administrator's Guide

Configuring SSL

By default, SSL is disabled when you install Oracle Application Server. Perform these tasks to enable and configure SSL:

- Task 1: Creating a Real Wallet
- Task 2: Enabling SSL
- Task 3: (Optional) Customizing Your Configuration

Task 1: Creating a Real Wallet

To configure Oracle HTTP Server for SSL, you need a wallet that contains the certificate for the server. Wallets store your credentials, such as certificate requests, certificates, and private keys.
The default wallet that is automatically installed with Oracle HTTP Server is for testing purposes only. A real wallet has to be created for your production server. The default wallet is located in `ORACLE_HOME/Apache/Apache/conf/ssl.wlt/default`. You can either place the new wallet in that location, or change the `SSLWallet` directive in `ORACLE_HOME/Apache/Apache/conf/ssl.conf` to point to the location of your real wallet.

See Also: Oracle Application Server Administrator's Guide for instructions on creating a wallet. It is important that you do the following:

1. Generate a certificate request: For the Common Name, specify the name or alias of the site you are configuring.
2. Set the auto-login feature for your wallet: Make sure that you enable this auto-login feature. The default wallet has this feature disabled.

Task 2: Enabling SSL

Perform the following steps to enable SSL manually:

1. Open `opmn.xml` in a text editor.
2. In the `<ias-component id="HTTP_Server">` entry, change the start mode from "ssl-disabled" to "ssl-enabled". After modification is made, the entry should look like the following:

   ```xml
   <data id="start-mode" value="ssl-enabled"/>
   ```

3. Save and close `opmn.xml`.
4. Reload OPMN using the following command:

   ```
   opmnctl reload
   ```

5. Stop Oracle HTTP Server using the following command:
 - UNIX: `ORACLE_HOME/opmn/bin> opmnctl [verbose] stopproc ias-component=HTTP_Server`
 - Windows: `ORACLE_HOME\opmn\bin> opmnctl [verbose] stopproc ias-component=HTTP_Server`

6. Start Oracle HTTP Server using the following command:
 - UNIX: `ORACLE_HOME/opmn/bin> opmnctl [verbose] startproc ias-component=HTTP_Server`
 - Windows: `ORACLE_HOME\opmn\bin> opmnctl [verbose] startproc ias-component=HTTP_Server`

Note: Be sure that you stop and start Oracle HTTP Server as per the instructions. Restarting Oracle HTTP Server does not yield the same result as stopping and starting it.

7. You can verify if SSL was enabled successfully by navigating to the SSL port, for example:

   ```
   HTTPS://hostname:4443
   ```
Task 3: (Optional) Customizing Your Configuration

Optionally, you can further customize your configuration using mod_ossl directives.

See Also: "Using mod_ossl Directives" on page 10-4

Note: The templates files installed during installation contain all the necessary SSL configuration directives and a default setup for SSL.

To enable client authentication, do the following:

1. Specify SSLVerifyClient on the server side.
2. Use proper client certificate on your client side for the HTTPS connection. Refer to your client documentation for information on getting and using a client certificate. Be sure that your client certificate is trusted by the server wallet.

See Also: Oracle Application Server Administrator's Guide for instructions on how to import a trusted certificate into your wallet.

Additional SSL Features

This section contains SSL features that are supported for this release.

- Global Server ID Support
- PKCS #11 Support

Global Server ID Support

This feature adds support SSL protocol features called variously "step-up", "server gated crypto" or "global server ID". "Step-up" is a feature that allows old, weak encryption browsers, to "step-up" so that public keys greater than 512 bits and bulk encryption keys greater than 64 bits can be used in the SSL protocol. This means that server X.509 certificates that contain public keys in excess of 512 bits and which contain "step-up" digital rights can now be used by Oracle Application Server. Such certificates are often called "128 bit" certificates, even though the certificate itself typically contains a 1024 bit certificate. The Verisign Secure Site Pro is an example of such a certificate which can now be used by Oracle Application Server.

Global Server ID functionality is provided by default, there is no configuration necessary.

PKCS #11 Support

Public-Key Cryptography Standards #11, or PKCS #11 for short, is a public key cryptography specification that outlines how systems use hardware security modules, which are basically "boxes" where cryptographic functions (encryption/decryption) are performed and where encryption keys are stored.

Oracle HTTP Server supports the option of having dedicated SSL hardware through nCipher. nCipher is a certified third party accelerator that improves the performance of the PKI cryptography that SSL uses.
Using SSL Configuration Directives

mod_ossl provides standard support for HTTPS protocol connections to Oracle Application Server. It enables secure connections between Oracle HTTP Server and a browser client by using an Oracle-provided encryption mechanism over SSL. It may also be used for authentication over the Internet through the use of digital certificate technology. It supports SSL v. 3.0, and provides:

- Encrypted communication between client and server, using RSA or DES encryption standards.
- Integrity checking of client/server communication using MD5 or SHA checksum algorithms.
- Certificate management with Oracle wallets.

The following mod_ssl directives are not supported by mod_ossl.

- SSLRandomSeed
- SSLCertificateFile
- SSLCertificateKeyFile
- SSLCertificateChainFile
- SSLCACertificateFile
- SSLCACertificatePath
- SSLVerifyDepth

Note: The server will not start if these directives are used.

Using mod_ossl Directives

To configure SSL for your Oracle HTTP Server, enter the mod_ossl directives you want to use in the `httpd.conf` file.

The following directives are described:

- SSLAccelerator
- SSLCARevocationFile
- SSLCARevocationPath
- SSLCipherSuite
- SSLCipherSuites
- SSLEngine
- SSLLog
- SSLLogLevel
- SSLMutex
- SSLOptions
- SSLPassPhraseDialog
SSL Accelerator

Specifies if SSL accelerator is used. Currently only nFast card is supported.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Values</td>
<td>yes/no</td>
</tr>
<tr>
<td>Syntax</td>
<td>SSLAccelerator yes</td>
</tr>
<tr>
<td>Default</td>
<td>SSLAccelerator no</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration</td>
</tr>
</tbody>
</table>

Note: The SSLAccelerator directive has been deprecated. For information on enabling SSL acceleration support using a wallet, refer to the Oracle Advanced Security Administrator’s Guide on http://www.oracle.com/technology/documentation.

SSL CAR Revocation File

Specifies the file where you can assemble the Certificate Revocation Lists (CRLs) from CAs (Certificate Authorities) that you accept certificates from. These are used for client authentication. Such a file is the concatenation of various PEM-encoded CRL files in order of preference. This directive can be used alternatively or additionally to SSLCAR Revocation Path.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLCARevocationFile file_name</td>
</tr>
<tr>
<td>Example</td>
<td>SSLCARevocationFile /ORACLE_HOME/Apache/conf/ssl.crl/ca_bundle.crl</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSL CAR Revocation Path

Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLs) are stored. These CRLs come from the CAs (Certificate Authorities) that you accept certificates from. If a client attempts to authenticate itself with a certificate that is on one of these CRLs, then the certificate is revoked and the client cannot authenticate itself with your server.
Using SSL Configuration Directives

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLCARevocationPath path/to/CRL_directory/</td>
</tr>
<tr>
<td>Example</td>
<td>SSLCARevocationPath /ORACLE_HOME/Apache/conf/ssl.crl/</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLCipherSuite

Specifies the SSL cipher suite that the client can use during the SSL handshake. This directive uses a colon-separated cipher specification string to identify the cipher suite. Table 10–2 shows the tags you can use in the string to describe the cipher suite you want.

Tags are joined together with prefixes to form cipher specification string.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Values</td>
<td>none: Adds the cipher to the list</td>
</tr>
<tr>
<td></td>
<td>+ : Adds the cipher to the list and place them in the correct location in the list</td>
</tr>
<tr>
<td></td>
<td>- : Remove the cipher from the list (can be added later)</td>
</tr>
<tr>
<td></td>
<td>! : Remove the cipher from the list permanently</td>
</tr>
<tr>
<td>Example</td>
<td>SSLCipherSuite ALL; !LOW; !DH</td>
</tr>
<tr>
<td></td>
<td>In this example, all ciphers are specified except low strength ciphers and those using the Diffie-Hellman key negotiation algorithm.</td>
</tr>
<tr>
<td>Syntax</td>
<td>SSLCipherSuite cipher-spec</td>
</tr>
<tr>
<td>Default</td>
<td>ALL; !ADH; !EXPORT56; +HIGH; +MEDIUM; +LOW; +SSLv2; +EXP</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host, directory</td>
</tr>
</tbody>
</table>

Table 10–1 SSLCipher Suite Tags

<table>
<thead>
<tr>
<th>Function</th>
<th>Tag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key exchange</td>
<td>kRSA</td>
<td>RSA key exchange</td>
</tr>
<tr>
<td>Key exchange</td>
<td>kDHr</td>
<td>Diffie-Hellman key exchange with RSA key</td>
</tr>
<tr>
<td>Authentication</td>
<td>aNULL</td>
<td>No authentication</td>
</tr>
<tr>
<td>Authentication</td>
<td>aRSA</td>
<td>RSA authentication</td>
</tr>
<tr>
<td>Authentication</td>
<td>aDH</td>
<td>Diffie-Hellman authentication</td>
</tr>
<tr>
<td>Encryption</td>
<td>eNULL</td>
<td>No encryption</td>
</tr>
<tr>
<td>Encryption</td>
<td>DES</td>
<td>DES encoding</td>
</tr>
<tr>
<td>Encryption</td>
<td>3DES</td>
<td>Triple DES encoding</td>
</tr>
<tr>
<td>Encryption</td>
<td>RC4</td>
<td>RC4 encoding</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>MD5</td>
<td>MD5 hash function</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>SHA</td>
<td>SHA hash function</td>
</tr>
<tr>
<td>Aliases</td>
<td>SSLv3</td>
<td>All SSL version 3.0 ciphers</td>
</tr>
<tr>
<td>Aliases</td>
<td>EXP</td>
<td>All export ciphers</td>
</tr>
</tbody>
</table>
Table 10–1 (Cont.) SSLCipher Suite Tags

<table>
<thead>
<tr>
<th>Function</th>
<th>Tag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases</td>
<td>EXP40</td>
<td>All 40-bit export ciphers only</td>
</tr>
<tr>
<td>Aliases</td>
<td>EXP56</td>
<td>All 56-bit export ciphers only</td>
</tr>
<tr>
<td>Aliases</td>
<td>LOW</td>
<td>All low strength ciphers (export and single DES)</td>
</tr>
<tr>
<td>Aliases</td>
<td>MEDIUM</td>
<td>All ciphers with 128-bit encryption</td>
</tr>
<tr>
<td>Aliases</td>
<td>HIGH</td>
<td>All ciphers using triple DES</td>
</tr>
<tr>
<td>Aliases</td>
<td>RSA</td>
<td>All ciphers using RSA key exchange</td>
</tr>
<tr>
<td>Aliases</td>
<td>DH</td>
<td>All ciphers using Diffie-Hellman key exchange</td>
</tr>
</tbody>
</table>

Note: There are restrictions if export versions of browsers are used. Oracle module, *mod_ossl*, supports RC4-40 encryption only when the server uses 512 bit key size wallets.

Table 10–2 Cipher Suites Supported in Oracle Advanced Security 10i

<table>
<thead>
<tr>
<th>Cipher Suite</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Data Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL_RSA_WITH_3DES_EDE_CBC_SHA</td>
<td>RSA</td>
<td>3DES (168)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_RSA_WITH_RC4_128_SHA</td>
<td>RSA</td>
<td>RC4 (128)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_RSA_WITH_RC4_128_MD5</td>
<td>RSA</td>
<td>RC4 (128)</td>
<td>MD5</td>
</tr>
<tr>
<td>SSL_RSA_WITH_DES_CBC_SHA</td>
<td>RSA</td>
<td>DES (56)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DH_anon_WITH_3DES_EDE_CBC_SHA</td>
<td>DH anon</td>
<td>3DES (168)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DH_anon_WITH_RC4_128_MD5</td>
<td>DH anon</td>
<td>RC4 (128)</td>
<td>MD5</td>
</tr>
<tr>
<td>SSL_RSA_EXPORT_WITH_RC4_40_MD5</td>
<td>RSA</td>
<td>RC4 (40)</td>
<td>MD5</td>
</tr>
<tr>
<td>SSL_RSA_EXPORT_WITH_DES40_CBC_SHA</td>
<td>RSA</td>
<td>DES40 (40)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_RSA_WITH_AES_128_CBC_SHA</td>
<td>RSA</td>
<td>AES (128)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_RSA_WITH_AES_256_CBC_SHA</td>
<td>RSA</td>
<td>AES (256)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA</td>
<td>DH DSS</td>
<td>DES (40)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_DSS_WITH_DES_CBC_SHA</td>
<td>DH DSS</td>
<td>DES (50)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA</td>
<td>DH DSS</td>
<td>3DES (168)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA</td>
<td>DH RSA</td>
<td>DES (40)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_RSA_WITH_DES_CBC_SHA</td>
<td>DH RSA</td>
<td>DES (56)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA</td>
<td>DH RSA</td>
<td>3DES (168)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA</td>
<td>DH DSS</td>
<td>DES (40)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_DSS_WITH_RC4_128_SHA</td>
<td>DH DSS</td>
<td>RC4 (128)</td>
<td>SHA</td>
</tr>
<tr>
<td>SSL_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA</td>
<td>DH DSS</td>
<td>RC4 (56)</td>
<td>SHA</td>
</tr>
</tbody>
</table>
SSLEngine

Toggles the usage of the SSL Protocol Engine. This is usually used inside a `<VirtualHost>` section to enable SSL for a particular virtual host. By default, the SSL Protocol Engine is disabled for both the main server and all configured virtual hosts. Example 10–1 is an example for using SSLEngine directive. The default SSL is 4443 on UNIX and 443 on Windows.

Example 10–1 Using SSLEngine Directive

```xml
<VirtualHost default_:4443>
  SSLEngine on
  ...
</VirtualHost>
```

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLEngine <code>on</code> <code>off</code></td>
</tr>
<tr>
<td>Default</td>
<td>SSLEngine <code>off</code></td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLLog

Specifies where the SSL engine log file will be written. (Error messages will also be duplicated to the standard Oracle HTTP Server log file specified by the `ErrorLog` directive.)

Place this file at a location where only root can write, so that it cannot be used for symlink attacks. If the filename does not begin with a slash (`/`), it is assumed to be relative to the `ServerRoot`. If the filename begins with a bar (`|`), then the string following the bar is expected to be a path to an executable program to which a reliable pipe can be established.

This directive should occur only once per virtual server configuration.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLVerifyClient <code>path/to/filename</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLLogLevel

Specifies the verbosity degree of the SSL engine log file.
Using SSL Configuration Directives

Enabling SSL for Oracle HTTP Server

SSLMutex
Type of semaphore (lock) for SSL engine's mutual exclusion of operations that have to be synchronized between Oracle HTTP Server processes.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
</table>
| Valid Values | The levels are (in ascending order, where each level is included in the levels preceding it):
| | ■ none: No dedicated SSL logging is done. Messages of type 'error' are duplicated to the standard HTTP server log file specified by the ErrorLog directive.
| | ■ error: Only messages of the type 'error' (conditions that stop processing) are logged.
| | ■ warn: Messages that notify of non-fatal problems (conditions that do not stop processing) are logged.
| | ■ info: Messages that summarize major processing actions are logged.
| | ■ trace: Messages that summarize minor processing actions are logged.
| | ■ debug: Messages that summarize development and low-level I/O operations are logged. |

Syntax SSLMutex type
Default SSLMutex none
Context server configuration

Example SSLMutex file:/usr/local/apache/logs/ssl_mutex

SSLOptions
Controls various runtime options on a per-directory basis. In general, if multiple options apply to a directory, the most comprehensive option is applied (options are not merged). However, if all of the options in an SSLOptions directive are preceded by a plus ('+') or minus ('-') symbol, then the options are merged. Options preceded by a plus are added to the options currently in force, and options preceded by a minus are removed from the options currently in force.

Enabling SSL for Oracle HTTP Server 10-9
Using SSL Configuration Directives

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
</table>
| Valid Values | ■ StdEnvVars: Creates the standard set of CGI/SSI environment variables that are related to SSL. This is disabled by default because the extraction operation uses a lot of CPU time and usually has no application when serving static content. Typically, you only enable this for CGI/SSI requests.
■ ExportCertData: Enables the following additional CGI/SSI variables:
 SSL_SERVER_CERT
 SSL_CLIENT_CERT
 SSL_CLIENT_CERT_CHAIN_n (where n= 0, 1, 2...)
 These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509 certificates for the server and the client for the current HTTPS connection, and can be used by CGI scripts for deeper certificate checking. All other certificates of the client certificate chain are provided. This option is "Off" by default because there is a performance cost associated with using it.
■ FakeBasicAuth: Translates the subject distinguished name of the client X.509 certificate into an HTTP basic authorization user name. This means that the standard HTTP server authentication methods can be used for access control. Note that no password is obtained from the user; the string ‘password’ is substituted.
Valid Values (for SSLOptions continued) | ■ StrictRequire: Denies access when, according to SSLRequireSSL or directives, access should be forbidden. Without StrictRequire, it is possible for a 'Satisfy any' directive setting to override the SSLRequire or SSLRequireSSL directive, allowing access if the client passes the host restriction or supplies a valid user name and password.
 Thus, the combination of SSLRequireSSL or SSLRequire with SSLOptions +StrictRequire gives mod_ssl the ability to override a 'Satisfy any' directive in all cases.
■ CompatEnvVars: Exports obsolete environment variables for backward compatibility to Apache SSL 1.x, mod_ssl 2.0.x, Sioux 1.0, and Stronghold 2.x. Use this to provide compatibility to existing CGI scripts.
■ OptRenegotiate: This enables optimized SSL connection renegotiation handling when SSL directives are used in a per-directory context. |
| Syntax | SSLOptions {++} option |
| Default | None |
| Context | server configuration, virtual host, directory |

SSLPassPhraseDialog

Type of pass phrase dialog for wallet access. *mod_ossl* asks the administrator for a pass phrase in order to access the wallet.
Using SSL Configuration Directives

Enabling SSL for Oracle HTTP Server 10-11

SSLProtocol
Specifies SSL protocol(s) for mod_ossl to use when establishing the server environment. Clients can only connect with one of the specified protocols.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Values</td>
<td>SSLv2, SSLv3, TLSv1, ALL</td>
</tr>
<tr>
<td>Example</td>
<td>To specify only SSL version 3.0, set this directive to the following: SSLProtocol +SSLv3</td>
</tr>
<tr>
<td>Syntax</td>
<td>SSLProtocol [-+] protocol</td>
</tr>
<tr>
<td>Default</td>
<td>SSLProtocol ALL</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLRequire
Denies access unless an arbitrarily complex boolean expression is true.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLRequire expression</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>directory</td>
</tr>
</tbody>
</table>

The expression must match the following syntax (given as a BNF grammar notation):

expr ::= "true" | "false"
 "!" expr
 expr "&&" expr
 expr "||" expr
 "(" expr ")"

comp ::= word "==" word | word "eq" word
 word "!=" word | word "ne" word
 word "<" word | word "lt" word
 word "<=" word | word "le" word
 word ">" word | word "gt" word
 word ">=" word | word "ge" word
 word "~=" regex
word "~" regex
wordlist ::= word
wordlist "," word

word ::= digit
cstring
variable
function
digit ::= [0-9]+
cstring ::= "..."
variable ::= "\{varname}\"

Table 10–3 and Table 10–4 list standard and SSL variables. These are valid values for varname.

function ::= funcname '(' funcargs ')'

For funcname, the following function is available:

file(filename)

The file function takes one string argument, the filename, and expands to the contents of the file. This is useful for evaluating the file’s contents against a regular expression. Table 10–3 lists the standard variables for SSLRequire varname.

Table 10–3 Standard Variables for SSLRequire Varname

<table>
<thead>
<tr>
<th>Standard Variables</th>
<th>Standard Variables</th>
<th>Standard Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP_USER_AGENT</td>
<td>PATH_INFO</td>
<td>AUTH_TYPE</td>
</tr>
<tr>
<td>HTTP_REFERER</td>
<td>QUERY_STRING</td>
<td>SERVER_SOFTWARE</td>
</tr>
<tr>
<td>HTTP_COOKIE</td>
<td>REMOTE_HOST</td>
<td>API_VERSION</td>
</tr>
<tr>
<td>HTTP_FORWARDED</td>
<td>REMOTE_IDENT</td>
<td>TIME_YEAR</td>
</tr>
<tr>
<td>HTTP_HOST</td>
<td>IS_SUBREQ</td>
<td>TIME_MON</td>
</tr>
<tr>
<td>HTTP_PROXY_CONNECTION</td>
<td>DOCUMENT_ROOT</td>
<td>TIME_DAY</td>
</tr>
<tr>
<td>HTTP_ACCEPT</td>
<td>SERVER_ADMIN</td>
<td>TIME_HOUR</td>
</tr>
<tr>
<td>HTTP:headername</td>
<td>SERVER_NAME</td>
<td>TIME_MIN</td>
</tr>
<tr>
<td>THE_REQUEST</td>
<td>SERVER_PORT</td>
<td>TIME_SEC</td>
</tr>
<tr>
<td>REQUEST_METHOD</td>
<td>SERVER_PROTOCOL</td>
<td>TIME_WDAY</td>
</tr>
<tr>
<td>REQUEST_S方案</td>
<td>REMOTE_ADDR</td>
<td>TIME</td>
</tr>
<tr>
<td>REQUEST_URI</td>
<td>REMOTE_USER</td>
<td>ENV:variablename</td>
</tr>
<tr>
<td>REQUEST_FILENAME</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10–4 lists the SSL variables for SSLRequire varname.

Table 10–4 SSL Variables for SSLRequire Varname

<table>
<thead>
<tr>
<th>SSL Variables</th>
<th>SSL Variables</th>
<th>SSL Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS</td>
<td>SSL_PROTOCOL</td>
<td>SSL_CIPHER_ALGKEYSIZE</td>
</tr>
<tr>
<td>SSL_CIPHER</td>
<td>SSL_CIPHER_EXPORT</td>
<td>SSL_VERSION_INTERFACE</td>
</tr>
<tr>
<td>SSL_CIPHER_USEKEYSIZE</td>
<td>SSL_VERSION_LIBRARY</td>
<td>SSL_SESSION_ID</td>
</tr>
</tbody>
</table>
Using SSL Configuration Directives

Enabling SSL for Oracle HTTP Server

SSLRequireSSL
Denies access to clients not using SSL. This is a useful directive for absolute protection of a SSL-enabled virtual host or directories in which configuration errors could create security vulnerabilities.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLRequireSSL</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>directory</td>
</tr>
</tbody>
</table>

SSLSessionCache
Specifies the global/interprocess session cache storage type. The cache provides an optional way to speed up parallel request processing.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL_CLIENT_V_END</td>
<td>SSL_CLIENT_M_SERIAL</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_ST</td>
<td>SSL_CLIENT_S_DN</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_CN</td>
<td>SSL_CLIENT_S_DN_O</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_G</td>
<td>SSL_CLIENT_S_DN_T</td>
</tr>
<tr>
<td>SSL_CLIENT_S_DN_UID</td>
<td>SSL_CLIENT_S_DN_S</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_C</td>
<td>SSL_CLIENT_S_DN_Email</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_O</td>
<td>SSL_CLIENT_I_DN_ST</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_T</td>
<td>SSL_CLIENT_I_DN_OU</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_S</td>
<td>SSL_CLIENT_I_DN_I</td>
</tr>
<tr>
<td>SSL_CLIENT_I_DN_Email</td>
<td>SSL_CLIENT_I_DN_D</td>
</tr>
<tr>
<td>SSL_CLIENT_CERT</td>
<td>SSL_CLIENT_CERT_CHAIN</td>
</tr>
<tr>
<td>SSL_CLIENT_VERIFY</td>
<td>SSL_CLIENT_M_VERSION</td>
</tr>
<tr>
<td>SSL_SERVER_V_START</td>
<td>SSL_CLIENT_ROOT_CERT</td>
</tr>
<tr>
<td>SSL_SERVER_S_DN_C</td>
<td>SSL_SERVER_M_VERSION</td>
</tr>
<tr>
<td>SSL_SERVER_S_DN_OU</td>
<td>SSL_SERVER_M_SERIAL</td>
</tr>
<tr>
<td>SSL_SERVER_S_DN_I</td>
<td>SSL_SERVER_S_DN_G</td>
</tr>
<tr>
<td>SSL_SERVER_S_DN_D</td>
<td>SSL_SERVER_S_DN_T</td>
</tr>
<tr>
<td>SSL_SERVER_I_DN</td>
<td>SSL_SERVER_I_DN_C</td>
</tr>
<tr>
<td>SSL_SERVER_I_DN_O</td>
<td>SSL_SERVER_I_DN_Email</td>
</tr>
<tr>
<td>SSL_SERVER_I_DN_L</td>
<td>SSL_SERVER_I_DN_O</td>
</tr>
<tr>
<td>SSL_SERVER_I_DN_ST</td>
<td>SSL_SERVER_I_DN_T</td>
</tr>
<tr>
<td>SSL_SERVER_I_DN_G</td>
<td>SSL_SERVER_I_DN_D</td>
</tr>
<tr>
<td>SSL_SERVER_I_DN_CN</td>
<td>SSL_SERVER_I_DN_I</td>
</tr>
</tbody>
</table>
Using SSL Configuration Directives

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
</table>
| Valid Values | • none: Disables the global/interprocess session cache. Produces no impact on functionality, but makes a major difference in performance.
| | • shmht:/path/to/datafile[bytes]: Uses a high-performance hash table (bytes specifies approximate size) inside a shared memory segment in RAM, which is established by the /path/to/datafile. This hash table synchronizes the local SSL memory caches of the server processes.
| | • shmcb:/path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic Buffer (SHMCB) session cache to synchronize the local SSL memory caches of the server processes. The performance of shmcb is more uniform in all environments when compared to shmht. |

Syntax

SSLSessionCache type

Examples

SSLSessionCache shmht: /ORACLE_HOME/Apache/Apache/logs/ssl_scache(512000)
SSLSessionCache shmcb: /ORACLE_HOME/Apache/Apache/logs/ssl_scache(512000)

Default

SSLSessionCache none

SSLSessionCacheTimeout

Specifies the number of seconds before a SSL session in the session cache expires.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLSessionCacheTimeout seconds</td>
</tr>
<tr>
<td>Default</td>
<td>300</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration</td>
</tr>
</tbody>
</table>

SSLVerifyClient

Specifies whether or not a client must present a certificate when connecting.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
</table>
| Valid Values | • none: No client certificate is required
| | • optional: Client may present a valid certificate
| | • require: Client must present a valid certificate |
| Syntax | SSLVerifyClient level |
| Default | None |
| Context | server configuration, virtual host |

Note: The level optional_no_ca included with mod_ssl (in which the client can present a valid certificate, but it need not be verifiable) is not supported in mod_ossl.

SSLWallet

Specifies the location of the wallet with its WRL.
Using the iasobf Utility

The `iasobf` utility enables you to generate an obfuscated wallet password from a cleartext password.

If you are using an Oracle Wallet that has been created with Auto Login enabled (an SSO wallet), then you do not need to use this utility. However, if you must use a regular wallet with a password, then Oracle recommends that you use the password obfuscation tool `iasobf`, which is located in `ORACLE_HOME/Apache/Apache/bin`, to generate an obfuscated wallet password from a cleartext password.

To generate an obfuscated wallet password, the command syntax is:

```
iasobf -p password
```

The obfuscated password is printed to the terminal. `iasobf` requires operating system user of `httpd` process. Accordingly, use the `root` argument for UNIX or `system`
argument for Windows. For example, on UNIX, the command will be `iasobf -password root`.

Note: The corresponding tool for Windows environments is called `osslpassword`, which can be used in the same way as `iasobf`.

Using mod_proxy Directives

The following directives are for mod_proxy support only:

- **SSLProxyCache**
- **SSLProxyCipherSuite**
- **SSLProxyProtocol**
- **SSLProxyWallet**
- **SSLProxyWalletPassword**

SSLProxyCache

Specifies whether the proxy cache will be used. The proxy will use the same session as the SSL server uses.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLProxyCache on/off</td>
</tr>
<tr>
<td>Default</td>
<td>SSLProxyCache off</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLProxyCipherSuite

Specifies the proxy server's cipher suite.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLCipherSuite cipher-spec</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLProxyProtocol

Controls the proxy server's SSL protocol flavors.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>SSLProxyProtocol [+-] protocol</td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

SSLProxyWallet

Specifies the location of the wallet containing the certificates to use when opening proxy connections.
SSLProxyWalletPassword
Specifies the proxy wallet password.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td><code>SSLProxyWallet wrl</code></td>
</tr>
<tr>
<td>Default</td>
<td>None</td>
</tr>
<tr>
<td>Context</td>
<td>server configuration, virtual host</td>
</tr>
</tbody>
</table>

Note: SSLProxyWalletPassword has been deprecated. A warning message is generated in the Oracle HTTP Server log if this directive is used. For secure wallets, Oracle recommends that you get a SSO wallet instead.
This chapter contains information about mod_oc4j load balancing, including metric-based load balancing. Topics include:

- Load Balancing Policies
- Load Balancing Parameters
- Metric-based Load Balancing

Load Balancing Policies

This section contains information about load balancing policies that mod_oc4j supports:

- Random
- Round Robin
- Random with Local Affinity
- Round Robin with Local Affinity
- Random using Routing Weight
- Round Robin using Routing Weight
- Metric Based
- Metric Based with Local Affinity

Random

mod_oc4j randomly selects an OC4J instance from a list of OC4J instances that are candidates to service a request.

Round Robin

mod_oc4j randomly selects an OC4J instance from an ordered list of OC4J instances that are candidates to service a request. Other OC4J instances are selected from the ordered list in turn, until the initially selected server is selected again. This sequence is repeated. If a particular OC4J instance is stopped or is unavailable, then that instance is skipped (no attempt is made to select it) until it can be brought back in service.
Random with Local Affinity

`mod_oc4j` randomly selects local OC4J processes to service requests. When no local OC4J processes are available, `mod_oc4j` randomly selects remote OC4J processes and gives them equal opportunity to be selected.

Round Robin with Local Affinity

`mod_oc4j` routes all requests to local OC4J processes in a round robin manner. When no local processes are available, `mod_oc4j` routes requests equally to each OC4J process on different hosts.

Random using Routing Weight

`mod_oc4j` distributes requests according to the routing weight configured for each host. One OC4J process is selected randomly from the OC4J processes on that host.

Round Robin using Routing Weight

`mod_oc4j` distributes the total request load to OC4J processes on each host based on the routing weight configured to each host. `mod_oc4j` selects an OC4J process in round robin manner from the OC4J processes on that host.

Metric Based

`mod_oc4j` routes requests based on run time metrics from OC4J processes that indicate how much load can be placed on the OC4J process.

Metric Based with Local Affinity

`mod_oc4j` routes all requests to local OC4J processes based on the run time performance metrics of OC4J processes. When there are no local OC4J processes available, `mod_oc4j` routes requests to each OC4J process on different hosts as per their performance metrics only.

Load Balancing Parameters

This section discusses the following load balancing parameters:

- **Oc4jSelectMethod**
- **Oc4jRoutingWeight**

Oc4jSelectMethod

Selects an OC4J instance for load balancing.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jSelectMethod roundrobin</td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>If Oc4jSelectMethod is not specified, it defaults to "Oc4jSelectMethod roundrobin".</td>
</tr>
</tbody>
</table>
This directive is only applicable to the base server for Oracle Application Server 10g Release 2 (10.1.2) and an error will be printed at startup if specified within a VirtualHost container.

Oc4jRoutingWeight

Associates a request routing weight for each machine during load balancing. Weighted routing is a load balancing strategy that distributes requests according to a predefined value assigned to each machine based on the predicted ability to handle load.

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>Oc4jRoutingWeight <node_name> <routing_weight></td>
</tr>
<tr>
<td>Required</td>
<td>No</td>
</tr>
<tr>
<td>Default</td>
<td>It defaults to OC4J processes on all the nodes with routing weight as 1. If Oc4jRoutingWeight is specified, but some hosts are not specified, it defaults to OC4J processes on any non-specified node with routing weight as 1.</td>
</tr>
</tbody>
</table>
Metric-based Load Balancing

Metric-based load balancing is a way to distribute request load among OC4Js based on a "health" metric that each OC4J reports. The metric range is between 0 and 100, where 0 is very busy, or unhealthy, and 100 is not busy, or healthy. When metric-based load balancing is enabled, requests are distributed among OC4Js based on a ratio of a metric received for an individual OC4J, divided by the total of the metrics received from all the OC4Js.

For example, OC4J process p1 reports a metric of 20, process p2 reports a metric of 40, and process p3 reports a metric of 90. The requests would be distributed as follows:

- p1 is routed 20 out of every 150 requests (13%)
- p2 is routed 40 out of every 150 requests (27%)
- p3 is routed 90 out of every 150 requests (60%)

This directive is only applicable to the base server for Oracle Application Server 10g Release 2 (10.1.2) and an error will be printed at startup if specified within a VirtualHost container.
You must configure Oracle HTTP Server and OC4J to enable metric-based load balancing. The following sections contain the required configuration information:

- Configuring Oracle HTTP Server
- Configuring OC4J

Configuring Oracle HTTP Server

On the Oracle HTTP Server side, specify "Oc4jSelectMethod metric" or "Oc4jSelectMethod metric:local" in mod_oc4j.conf.

See Also:

- "Oc4jSelectMethod" on page A-2
- "Metric Based" on page A-2
- "Metric Based with Local Affinity" on page A-2

Configuring OC4J

On the OC4J side, you must configure the metric collector in ORACLE_HOME/j2ee/home/config/server.xml in UNIX or ORACLE_HOME/j2ee\home\config\server.xml on Windows. Configuring the <metric-collector> element tells OC4J to start sending a metric to mod_oc4j so that mod_oc4j can make routing decisions to load balance incoming requests to a list of available OC4J instances.

The metric sent from OC4J to mod_oc4j is used only when metric-based load balancing is specified for mod_oc4j and when OC4J runs in an Oracle Application Server environment.

If you specify metric-based load balancing in mod_oc4j and do not specify the <metric-collector> element in server.xml, then mod_oc4j expects OC4J to send metrics, but OC4J does not send metrics. In this case, mod_oc4j reports the following warning message:

No run time metrics for oc4j(opmnid=%s) in notification Oc4jSelectMethod is configured to use run time metrics, please make sure OC4J side is configured accordingly. Default to 50.

In this case, mod_oc4j uses the value "50" for each of the OC4J processes and continues.

Likewise, if you specify the <metric-collector> element in server.xml, but do not specify metric-based load balancing in mod_oc4j, then OC4J sends metrics but mod_oc4j is not configured to receive metrics. In this case, mod_oc4j ignores the metrics and uses whatever the configured method is for load balancing. You specify the load balancing method with Oc4jSelectMethod. If no Oc4jSelectMethod is specified, then mod_oc4j uses the default, which is roundrobin.

All OC4Js that are used from this Oracle HTTP Server instance must be configured identically. Otherwise, the number returned from the OC4Js will not be comparable and can produce some very poor load balancing results.

When mod_oc4j receives a notification containing the metrics information from OC4J, it immediately changes the request routing behavior. The default interval between notifications from OC4J is 30 seconds. This value can be configured using the system property opmnPingInterval, which is passed on the command line when OC4J is started by OPMN. To change the interval between notifications, specify the following in opmn.xml under the OC4J <process-set> configuration element:
Specifying Metrics for OC4J
The following two methods can be used to specify metrics for OC4J:

- Configuring Metric-based Load Balancing to Use the DMSMetricCollector
- Building Your Own Metric Collector

Configuring Metric-based Load Balancing to Use the DMSMetricCollector
In this out of the box method, the `<metric-collector>` element takes a single attribute: `classname`. This attribute defines an interface for gathering and calculating a server-wide metric. Use `oracle.oc4j.server.DMSMetricCollector` for the `classname` attribute when using a DMS-based metric collector. A `DMSMetricCollector` instance takes several parameters.

The DMS metric is specified using the 'dms-noun' parameter, which is shown in the configuration example below. This is the metric on which the `DMSMetricCollector` bases its calculation. The recommended DMS metric for metric-based load balancing is `/oc4j/default/WEBs/processRequest.time`. This metric represents the processing time of the servlets in the default Web application.

The value sent to OC4J is a weighted average of the value computed based on the current DMS metric value, and the last value computed the last time a value was sent. The default weight is 0.7 for the current value, and 0.3 for the previous value. To modify the weights, one may set the "history-proportion" as shown the following example. This results in a weight of 0.8 for the current value and 0.2 for the previous value.

```xml
<metric-collector classname="oracle.oc4j.server.DMSMetricCollector">
    <init-param>
        <param-name>dms-noun</param-name>
        <param-value>/oc4j/default/WEBs/processRequest.time</param-value>
    </init-param>
    <init-param>
        <param-name>history-proportion</param-name>
        <param-value>0.8</param-value>
    </init-param>
    <init-param>
        <param-name>debug</param-name>
        <param-value>true</param-value>
    </init-param>
</metric-collector>
```

See Also: Oracle Process Manager and Notification Server Administrator's Guide
false
</param-value>
</init-param>
</metric-collector>

See Also: *Oracle Application Server Performance Guide* for a list of DMS metrics.

How DMS Metrics are Converted for Metric-based Load Balancing When `getMetrics()` is called, the value of the DMS metric specified by the `dms-noun` parameter is obtained. The `delta` with the previous measurement is computed.

Since the scale is from 0 to 100, and the measurement is potentially unbounded, the following formula is applied:

\[
\text{metric} = \frac{100}{1 + \log \left(1 + \delta \right)}
\]

As outlined above, this metric should match the current situation, but also reflect on previous metric history. You can assign a weight of 1/3 to the previous history and 2/3 for the average just collected in order to form the new metric.

This new metric becomes the next metric’s history, and factors in less and less as time passes. As shown in the configuration example, you can specify the proportion of the previous metric that enters in new metrics, by setting the `history-proportion` parameter to a floating point value between 0.0 and 1.0. Higher values mean that historical values matter more, making the metric less volatile. A lower value makes the metric reflect the most recent metric. The metric returned is as follows:

\[
\text{smoothedmetric} = \left(1 - \text{history-proportion} \right) \times \text{metric} + \left(\text{history-proportion} \times \text{previousmetric} \right)
\]

The `smoothedmetric` is what is sent to `mod_oc4j` for load balancing purposes.

Building Your Own Metric Collector

You can implement the interface `oracle.oc4j.api.MetricCollector` to supply your own metric collector to `mod_oc4j`. The metric has to be between 0 and 100.

All metric collectors must implement the interface `oracle.oc4j.api.MetricCollector`. The concrete metric collector must have a constructor with no parameters so it can be instantiated.

The schema elements for the feature are in `server.xml`, and look like:

```xml
<metric-collector classname="my.package.name.MyClassName">
  <init-param>
    <param-name>mysetting</param-name>
    <param-value>12345</param-value>
  </init-param>
</metric-collector>
```

As per the preceding example, 0 or more parameters can be set on the metric collector, and are passed to it when `setParameters()` method is called. `setEnabled(true)` is called once after `setParameters()`. It signals the metric collector that it can begin gathering data as needed.
After oracle.oc4j.api.MetricCollector has been implemented, package your metric in a jar file and add it to your library path, using the following, in server.xml:

```xml
<library path="<path to>/mymetric.jar"/>
```

Oracle.oc4j.api.MetricCollector Here is the oracle.oc4j.api.MetricCollector interface:

```java
package oracle.oc4j.api;

import java.util.Map;

/**
 * Defines an interface for gathering and obtaining a server-wide metric.
 * The metric is used in iAS mode, by mod_oc4j, to load balance between
 * virtual oc4j instances.
 * The metric value is relative, and should be between 0 and 100, both
 * inclusive.
 * When configured for metric load balancing,
 * Mod_oc4j will route preferably to an oc4j with the greater value.
 * Concrete instances of this class must have a public empty constructor in
 * order to be loaded and instantiated.
 */

public interface MetricCollector {

    /**
     * Support for debugging: This is a property name to set to true in order
     * to display the metric that is sent from the server
     */
    String OC4J_METRIC_DEBUG_PROPERTY = "oc4j.metric.debug";

    /**
     * Debugging flag that depends on @link #OC4J_METRIC_DEBUG_PROPERTY
     */
    boolean DEBUG = Boolean.getBoolean(OC4J_METRIC_DEBUG_PROPERTY);

    /**
     * Initial metric to return when no measurement has been made (property key)
     */
    String OC4J_INITIAL_METRIC_PROPERTY = "oc4j.metric.initial";

    /**
     * Initial metric to return when no measurement has been made.
     * Default is 50
     */
    int INITIAL_METRIC = Integer.getInteger(OC4J_INITIAL_METRIC_PROPERTY, 50).intValue();

    /**
     * Enabled flag for the collector.
     * @return true if the collector is collecting data
     */
    boolean isEnabled();

    /**
     */
}
```

Note: If the custom metric collector starts threads, the threads need to be daemon threads. Otherwise they may prevent the server from shutting down in an orderly fashion.
void setEnabled(boolean enabled);

/**
 * The parameters the metric collector is configured with.
 * This method will be called even when the set of parameters is null.
 * @param params the key/value pairs the metric collector is configured with,
 * or <code>null</code> if none
 */
void setParameters(Map params);

/**
 * @return a metric between 0 and 100, inclusive. 100 is better, 0 is worse
 */
int getMetric();
}
This appendix lists commonly used Oracle HTTP Server configuration files.

Files discussed are:

- dms.conf
- httpd.conf
- iaspt.conf
- mime.types
- mod_oc4j.conf
- mod_osso.conf
- opmn.xml
- oracle_apache.conf
- php.ini
- ssl.conf

dms.conf

Enables you to monitor performance of site components with Oracle's Dynamic Monitoring Service (DMS).

It is located at:

- UNIX: `ORACLE_HOME/Apache/Apache/conf`
- Windows: `ORACLE_HOME\Apache\Apache\conf`

See Also: Oracle Application Server Performance Guide

httpd.conf

This is a server configuration file which typically contains directives that affect how the server runs, such as user and group IDs it should use, and location of other files. Because the server configuration file is the main file that the server starts with, Oracle HTTP Server does not include any directive that says where to locate it. The location is passed on command line when the server starts.

It is located at:

- UNIX: `ORACLE_HOME/Apache/Apache/conf/httpd.conf`
- Windows: `ORACLE_HOME\Apache\Apache\conf\httpd.conf`
You should use only this file, and not `srm.conf` or `access.conf` because it is much easier to manage a single configuration file.

Note: If you have an Oracle Application Server installation in `/home/your_directory/orahome` and it is linked to `/private/your_directory/orahome`, the files in the installation are accessible from either `/home/your_directory/orahome` or `/private/your_directory/orahome`.

After installation, the `httpd.conf` file contains an entry for the `dms.conf` file that uses the original Oracle home path. For example:

```bash
include /home/your_directory/orahome/Apache/Apache/conf/dms.conf
```

Do not replace the original Oracle home path with the linked Oracle home path.

httpd.conf File Structure

`httpd.conf` is arranged in the following sections:

- **Global Environment**
- **Main Server Configuration**
- **Virtual Hosts Parameters**

Global Environment

This is section one of the `httpd.conf` file. It contains configuration directives dealing with Oracle HTTP Server.

See Also:

- "Specifying File Locations" on page 3-3
- "Configuring the Number of Processes and Connections" on page 4-2
- "Specifying Listener Ports and Addresses" on page 5-1

Main Server Configuration

This is section two of the `httpd.conf` file. It contains the directives of the default server.

See Also: "Setting Server and Administrator Functions" on page 3-1.

Virtual Hosts Parameters

This is section three of the `httpd.conf` file. It contains parameters specific to virtual hosts, which override some of the main server configuration defaults.

iaspt.conf

Configures the port tunneling process. Port tunneling allows all communication between Oracle HTTP Server and OC4J to happen on a single, or a small number of ports.

It is located at:
opmn\.xml

- UNIX: $ORACLE_HOME/iaspt/conf
- Windows: $ORACLE_HOME\iaspt\conf

See Also: "Understanding Port Tunneling" on page 9-7

mime\.types
Controls the Multi Internet media types that are sent to the client for the given file extensions. Sending the correct media type to the client is important so that the client knows how to handle the content of the file. You can add extra types in the mime type file or add an AddType directive in the configuration file.

It is located at:
- UNIX: $ORACLE_HOME/Apache/Apache/conf
- Windows: $ORACLE_HOME\Apache\Apache\conf

See Also: "mod_mime" on page 7-8

mod_oc4j\.conf
Configures and loads the mod_oc4j module, and is enabled by default. It routes requests from Oracle HTTP Server to OC4J, and therefore contains routing information.

It is located at:
- UNIX: $ORACLE_HOME/Apache/Apache/conf
- Windows: $ORACLE_HOME\Apache\Apache\conf

See Also: "mod_oc4j" on page 7-9

mod_osso\.conf
Configures mod_osso, which enables single sign-on for Oracle HTTP Server.

It is located at:
- UNIX: $ORACLE_HOME/Apache/Apache/conf
- Windows: $ORACLE_HOME\Apache\Apache\conf

See Also: "mod_osso" on page 7-19

opmn\.xml
Describes the processes that Oracle Process Manager and Notification Server (OPMN) manages within an Oracle Application Server installation.

The opmn\.xml file is the main configuration file for OPMN. It contains information for the ONS, the PM, and Oracle Application Server component-specific configuration. opmn\.xml shows you which Oracle Application Server components OPMN is managing on your system. It contains Oracle Application Server component entries arranged in the following hierarchical structure:

<ias-component>
 <process-type>
 <process-set>

See Also: "mod__LOOKUP" on page 7-8

See Also: "mod_oc4j" on page 7-9

See Also: "mod_osso" on page 7-19

Configuration Files B-3
<ias-component>: This entry represents the Oracle Application Server component. It enables management of the component for processes such as starting and stopping.

<process-type>: This subcomponent of the <ias-component> entry declares the type of process to run by association with a specific PM module.

<process-set>: This sub-subcomponent of the <ias-component> entry enables you to declare different sets of optional runtime arguments and environments for the Oracle Application Server component.

opmn.xml is located at:
- UNIX: ORACLE_HOME/opmn/conf
- Windows: ORACLE_HOME\opmn\conf

See Also: Oracle Process Manager and Notification Server Administrator’s Guide

oracle_apache.conf

Stores configuration files of supported modules.

It is located at:
- UNIX: ORACLE_HOME/Apache/Apache/conf
- Windows: ORACLE_HOME\Apache\Apache\conf

Note: For the Oracle Application Server Infrastructure install type, another configuration file is included by oracle_apache.conf called oracle_ocm.conf. It contains configuration for Oracle Application Server Certificate Authority.

php.ini

Configures mod_php. This file should not be renamed as PHP looks for this specific file name.

It is located at:
- UNIX: ORACLE_HOME/Apache/Apache/conf
- Windows: ORACLE_HOME\Apache\Apache\conf

See Also: "mod_php" on page 7-22

ssl.conf

Includes the SSL definitions and virtual host container. Out of the box, it is disabled by default.

It is located at:
- UNIX: ORACLE_HOME/Apache/Apache/conf
- Windows: ORACLE_HOME\Apache\Apache\conf
This chapter provides answers to frequently asked questions about Oracle HTTP Server.

See Also: "Frequently Asked Questions" in the Apache Server documentation.

Documentation from the Apache Software Foundation is referenced when applicable.

Note: Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.

Creating Application-specific Error Pages

Oracle HTTP Server has a default content handler for dealing with errors. You can use the ErrorDocument directive to override the defaults.

See Also: ErrorDocument directive in the Apache Server documentation.

Offering HTTPS to ISP (Virtual Host) Customers

For HTTP, Oracle HTTP Server supports two types of virtual hosts: name-based and IP-based. HTTPS supports only IP-based virtual hosts.

If you are using IP-based virtual hosts for HTTP, then the customer has a virtual server listening on port 80 of a per-customer IP address. To provide HTTPS for these customers, simply add an additional virtual host per user listening on port 4443 of that same per-customer IP address and use SSL directives, such as Using mod_ssl Directives to specify the per-customer SSL characteristics. Note that each customer can have their own wallet and server certificate.

If you are using name-based virtual hosts for HTTP, each customer has a virtual server listening on port 80 of a shared IP address. To provide HTTPS for those customers, you can add a single shared IP virtual host listening on port 4443 of the shared IP address. All customers will share the SSL configuration, including the wallet and ISP’s server certificate.

See Also: "Running Oracle HTTP Server as Root" on page 4-4
Using Different Language and Character Set Versions of Document

You can use multiviews, a general name given to the Apache server's ability to provide language and character-specific document variants in response to a request.

See Also: "Multiviews" in the Apache Server documentation.

Sending Proxy Sensitive Requests to HTTP Server Behind a Firewall

You should use the Proxy directives, and not the Cache directives, to send proxy sensitive requests across firewalls.

mod_oc4j Information

mod_oc4j is a module that integrates with Web servers, typically Oracle HTTP Server, and routes request to the backend OC4J processes. OPMN module keeps mod_oc4j aware of the status of different OC4J processes, so mod_oc4j routes only to the processes that are up and running. mod_oc4j also understands the concepts of Oracle Application Server Clusters and OC4J islands, and routes accordingly to provide as much transparent failover as possible.

See Also: "mod_oc4j" on page 7-9

mod_oc4j Communication to OC4J using SSL

The AJP communication between mod_oc4j and OC4J processes can now be over AJP/SSL. Previously, this was in the clear. Also, the SSL negotiation does not happen each time mod_oc4j and OC4J communicate, resulting in less performance impact.

See Also: "Enabling SSL between mod_oc4j and OC4J" on page 7-15

Oracle HTTP Server Version Number

Oracle HTTP Server is based on Apache version 1.3.31.

Applying Apache Security patches to Oracle HTTP Server

You cannot apply the Apache security patches to Oracle HTTP Server for the following reasons:

■ Oracle tests and appropriately modifies security patches before releasing them to Oracle HTTP Server users.

■ In many cases those alerts may not be applicable, for example, openSSL alerts, since Oracle has removed those components from the stack in use.

■ Oracle releases these patches soon enough that the time-delay impact of getting the patch from Oracle versus open source organization should be minimal and the benefit with respect to supportability, tremendous.

Compressing Output from Oracle HTTP Server

In general, Oracle recommends the use of OracleAS Web Cache for this purpose. There are other freeware modules, such as mod_gzip that may be plugged in for this
purpose, but their use is not supported. When using these, there may be an error message with respect to EAPI, but in general that can be ignored.

Supporting PHP

mod_php is fully supported in Release 2 (10.1.2.)

See Also: "mod_php" on page 7-22

Protecting Web Site From Hackers

There are many attacks, and new attacks are invented everyday. The following are some general guidelines for securing your site. You can never be completely secure, but you can avoid being an easy target.

■ Use a commercial firewall, such as Checkpoint FW-1 or Cisco PIX between your ISP and your Web server. Recognize, however, that not all hackers are outside your organization.

■ Use switched ethernet to limit the amount of traffic a compromised server can sniff. Use additional firewalls between Web server machines and highly sensitive internal servers running database and enterprise applications.

■ Remove unnecessary network services such as RPC, Finger, telnet from your server machine.

■ Carefully validate all input from Web forms. Be especially wary of long input strings and input that contains non-printable characters, HTML tags, or javascript tags.

■ Encrypt or randomize the contents of cookies that contain sensitive information. For example, it should be difficult to guess a valid sessionID to prevent a hacker from hijacking a valid session.

■ Check often for security patches for all your system and application software, and install them as soon as possible. Be sure these patches come from bona fide sources; download from trusted sites and verify the cryptographic checksum.

■ Use an intrusion detection package to monitor for defaced Web pages, viruses, and presence of "rootkits" that indicate hackers have broken in. If possible, mount system executables and Web content on read-only file systems.

■ Have a "forensic analysis" package on hand to capture evidence of a break in as soon as detected. This aids in prosecution of the hackers.
This appendix describes common problems that you might encounter when using Oracle HTTP Server, and explains how to solve them.

It contains the following topics:

- Problems and Solutions
- Need More Help?

Problems and Solutions

This section describes common problems and solutions. It contains the following topics:

- Intermittent HTTP-500 errors
- Firewall Between Oracle HTTP Server and OC4J Blocks Connections
- Oracle HTTP Server Unable to Start Due to Port Conflict
- Machine Overloaded by Number of HTTPD Processes
- Permission Denied When Starting Oracle HTTP Server on Port Below 1024
- Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly
- SSO Client Authentication Fails with Webcache Reverse Proxy

Intermittent HTTP-500 errors

Certain Microsoft Internet Explorer security patches have resulted in intermittent HTTP-500 errors, such as MOD_OC4J_0145, MOD_OC4J_0119, MOD_OC4J_0013 errors, when the KeepAlive directive is set on "On" in Oracle HTTP Server.

Problem

Intermittent HTTP-500 errors caused by bug in Microsoft Internet Explorer.

Solution

There are two possible solutions for this problem:

- Patch all the client Internet Explorer browsers.
- If the previous option is not practical, set KeepAlive to "Off" in Oracle HTTP Server.
Consult Metalink Note 269980.1 on http://metalink.oracle.com for details regarding this issue. The easiest way to access the note is to click the Advanced Search button at the top of the Oracle Metalink site, and search for Doc ID "269980.1".

See Also: "KeepAlive" on page 5-4

Firewall Between Oracle HTTP Server and OC4J Blocks Connections

Oracle HTTP Server is unable to forward requests to OC4J when certain firewalls are used between them.

Problem
Oracle HTTP Server processes maintain persistent connections with OC4J processes. If the firewall times out a connection before Oracle HTTP Server does, then requests to the OC4J processes can result in errors, or can take a very long time, depending on how the firewall and the operating system are configured.

Solution
Set the Oracle HTTP Server directive OC4JConnTimeout to a value less than that of the firewall timeout (this is firewall specific).

See Also: "Oc4jConnTimeout" on page 7-10

Oracle HTTP Server Unable to Start Due to Port Conflict

You can get the following error if Oracle HTTP Server is unable to start due to port conflict:

```
[crit] (98) Address already in use: make_sock: could not bind to port 7778
```

Problem
Oracle HTTP Server is unable to start as its port number is being used by another process.

Solution
Determine what process is already using the port by pointing a browser at the address assigned to Oracle HTTP Server and viewing the results. Depending on the results, either change the IP:port address of Oracle HTTP Server, or that of the conflicting process.

Machine Overloaded by Number of HTTPD Processes

When there are too many httpd processes running on a machine, the response time plummets.

Problem
When too many httpd processes are started, there are insufficient resources for normal processing.

Solution
Lower value of MaxClients to a value the hardware box can accommodate.

See Also: "MaxClients" on page 4-3
Permission Denied When Starting Oracle HTTP Server on Port Below 1024

You will get the following errors if you try to start Oracle HTTP Server on port below 1024:

Bind errors on ports below 1024: PERMISSION DENIED: MAKE_SOCK: COULD NOT BIND TO PORT 443.

Problem
Oracle HTTP Server will not start on ports below 1024 because root privileges are needed to bind these ports. Also, steps to configure .apachectl have not been followed.

Solution
Perform the following steps to enable Oracle HTTP Server to run as root on ports below 1024:

1. Log in as root.
2. Run the following commands in the middle-tier Oracle home:

 cd ORACLE_HOME/Apache/Apache/bin
 chown root .apachectl
 chmod 6750 .apachectl

Oracle HTTP Server May Fail To Start If PM Files Are Not Located Correctly

Oracle HTTP Server may encounter the following error, and fail to start:

"[error] Can’t locate mod_perl.pm in @INC (@INC contains: $ORACLE_HOME/perl/...)

or,

[error] Can’t locate Apache::Registry.pm in @INC (@INC contains: $ORACLE_HOME/per/...)

Problem
mod_perl needs to locate PM files kept under the ORACLE_HOME/Apache/Apache/mod_perl directory. Without these PM files, mod_perl will not start.

Solution
For UNIX, check that apachectl has correctly defined the variable PERL5LIB. It should point to ORACLE_HOME/Apache/Apache/mod_perl/lib/site_perl/5.6.1/sun4-solaris.

For Windows, check that the environment sub-section in the HTTP Server section in opmn.xml has a correct entry for PERL5LIB. It should point to ORACLE_HOME\Apache\Apache\mod_perl\lib\site_perl\5.6.1\lib

SSO Client Authentication Fails with Webcache Reverse Proxy

SSO client authentication fails with Webcache reverse proxy.

Problem
During SSO client login, the client certificate should be authenticated from the browser with the SSO server and connect successfully. However, it fails because the
ssoServer.log shows it is trying to authenticate the certificate stored in the Webcache wallet and not the one from the browser.

Solution
Perform the following steps:

1. Edit `$ORACLE_HOME/Apache/Apache/conf/httpd.conf` and make sure it has the following:
   ```
   LoadModule certheaders_module libexec/mod_certheaders.so
   AddCertHeader HTTPS
   AddCertHeader SSL_CLIENT_CERT
   ```

2. Edit the `$ORACLE_HOME/sso/conf/sso_apache.conf`, and comment out the following line:
   ```
   #SSLOptions +ExportCertData +StdEnvVars
   ```

3. Run `dcmctl updateconfig -ct ohs`

4. Run `opmnctl restartproc type=ohs`

5. Test that the SSO server can be logged into with client authentication.

Need More Help?
You can find more solutions on OracleMetaLink, http://metalink.oracle.com. If you do not find a solution for your problem, log a service request.

See Also: Oracle Application Server Release Notes, available on the Oracle Technology Network:
This appendix includes the Third Party License for all the third party products included with Oracle Application Server.

Topics discussed are:

- Apache HTTP Server
- Apache SOAP
- DBI Module
- Perl
- PHP
- mod_dav
- FastCGI

Apache HTTP Server

Under the terms of the Apache license, Oracle is required to provide the following notices. However, the Oracle program license that accompanied this product determines your right to use the Oracle program, including the Apache software, and the terms contained in the following notices do not change those rights. Notwithstanding anything to the contrary in the Oracle program license, the Apache software is provided by Oracle "AS IS" and without warranty or support of any kind from Oracle or Apache.

The Apache Software License

/ * ===
* The Apache Software License, Version 1.1
* Copyright (c) 2000-2002 The Apache Software Foundation. All rights
* reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
Apache SOAP

Under the terms of the Apache license, Oracle is required to provide the following notices. However, the Oracle program license that accompanied this product determines your right to use the Oracle program, including the Apache software, and the terms contained in the following notices do not change those rights. Notwithstanding anything to the contrary in the Oracle program license, the Apache software is provided by Oracle "AS IS" and without warranty or support of any kind from Oracle or Apache.

Apache SOAP License

Apache SOAP license 2.3.1

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

* distribution.

* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED `AS IS' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

*===
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
* *
* Portions of this software are based upon public domain software
* originally written at the National Center for Supercomputing
* Applications,
* University of Illinois, Urbana-Champaign.
*/
"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or 'Your') shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Oracle is required to provide the text of the third-party license, but the third-party program will be subject to the Oracle license, and Oracle will NOT provide warranties and technical support for the third-party technology.

This program contains third-party code from DBI. Under the terms of the DBI license, Oracle is required to provide the following notices. Note, however, that the Oracle program license that accompanied this product determines your right to use the
Oracle program, including the DBI software, and the terms contained in the following notices do not change those rights. Notwithstanding anything to the contrary in the Oracle program license, the DBI software is provided by Oracle "AS IS" and without warranty or support of any kind from Oracle or DBI.

The DBI module is Copyright (c) 1994-2002 Tim Bunce. Ireland. All rights reserved.

You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the Perl README file.

Perl Artistic License

The "Artistic License"

Preamble

The intent of this document is to state the conditions under which a Package may be copied, such that the Copyright Holder maintains some semblance of artistic control over the development of the package, while giving the users of the package the right to use and distribute the Package in a more-or-less customary fashion, plus the right to make reasonable modifications.

Definitions

"Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication charges, time of people involved, and so on. (You will not be required to justify it to the Copyright Holder, but only to the computing community at large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be fees involved in handling the item. It also means that recipients of the item may redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard Version of this Package without restriction, provided that you duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from the Public Domain or from the Copyright Holder. A Package modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that you insert a prominent notice in each changed file stating how and when you changed that file, and provided that you do at least ONE of the following:
 a. place your modifications in the Public Domain or otherwise make them Freely Available, such as by posting said modifications to Usenet or an equivalent medium, or placing the modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright Holder to include your modifications in the Standard Version of the Package.
b. use the modified Package only within your corporation or organization.

c. rename any non-standard executables so the names do not conflict with standard executables, which must also be provided, and provide a separate manual page for each non-standard executable that clearly documents how it differs from the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form, provided that you do at least ONE of the following:

a. distribute a Standard Version of the executables and library files, together with instructions (in the manual page or equivalent) on where to get the Standard Version.

b. accompany the distribution with the machine-readable source of the Package with your modifications.

c. give non-standard executables non-standard names, and clearly document the differences in manual pages (or equivalent), together with instructions on where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You may charge any fee you choose for support of this Package. You may not charge a fee for this Package itself. However, you may distribute this Package in aggregate with other (possibly commercial) programs as part of a larger (possibly commercial) software distribution provided that you do not advertise this Package as a product of your own. You may embed this Package's interpreter within an executable of yours (by linking); this shall be construed as a mere form of aggregation, provided that the complete Standard Version of the interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as output from the programs of this Package do not automatically fall under the copyright of this Package, but belong to whoever generated them, and may be sold commercially, and may be aggregated with this Package. If such scripts or library files are aggregated with this Package through the so-called "undump" or "unexec" methods of producing a binary executable image, then distribution of such an image shall neither be construed as a distribution of this Package nor shall it fall under the restrictions of Paragraphs 3 and 4, provided that you do not represent such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied by you and linked into this Package in order to emulate subroutines and variables of the language defined by this Package shall not be considered part of this Package, but are the equivalent of input as in Paragraph 6, provided these subroutines do not change the language in any way that would cause it to fail the regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted provided that the use of this Package is embedded; that is, when no overt attempt is made to make this Package's interfaces visible to the end user of the commercial distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
Perl

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

Perl

Oracle is required to provide the text of the third-party license, but the third-party program will be subject to the Oracle license, and Oracle will NOT provide warranties and technical support for the third-party technology.

This program contains third-party code from Perl. Under the terms of the Perl license, Oracle is required to provide the following notices. Note, however, that the Oracle program license that accompanied this product determines your right to use the Oracle program, including the Perl software, and the terms contained in the following notices do not change those rights. Notwithstanding anything to the contrary in the Oracle program license, the Perl software is provided by Oracle "AS IS" and without warranty or support of any kind from Oracle or Perl.

Perl Kit Readme

Copyright 1989-2001, Larry Wall

All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of either:

1. the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version, or
2. the "Artistic License" which comes with this Kit.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See either the GNU General Public License or the Artistic License for more details.

You should have received a copy of the Artistic License with this Kit, in the file named "Artistic". If not, I'll be glad to provide one.

You should also have received a copy of the GNU General Public License along with this program in the file named "Copying". If not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA or visit their Web page on the internet at http://www.gnu.org/copyleft/gpl.html.

For those of you that choose to use the GNU General Public License, my interpretation of the GNU General Public License is that no Perl script falls under the terms of the GPL unless you explicitly put said script under the terms of the GPL yourself. Furthermore, any object code linked with perl does not automatically fall under the terms of the GPL, provided such object code only adds definitions of subroutines and variables, and does not otherwise impair the resulting interpreter from executing any standard Perl script. I consider linking in C subroutines in this manner to be the moral equivalent of defining subroutines in the Perl language itself. You may sell such an object file as proprietary provided that you provide or offer to provide the Perl source, as specified by the GNU General Public License. (This is merely an alternate way of specifying input to the program.) You may also sell a binary produced by the dumping of a running Perl script that belongs to you, provided that you provide or offer to provide the Perl source as specified by the GPL. (The fact that a Perl interpreter and your code are in the same binary file is, in this case, a form of mere aggregation.) This
is my interpretation of the GPL. If you still have concerns or difficulties understanding my intent, feel free to contact me. Of course, the Artistic License spells all this out for your protection, so you may prefer to use that.

mod_perl License

/* ==
 * The Apache Software License, Version 1.1
 * Copyright (c) 1996-2000 The Apache Software Foundation. All rights
 * reserved.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 * THIS SOFTWARE IS PROVIDED `AS IS' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==*/

Perl Artistic License

The "Artistic License"
Preamble
The intent of this document is to state the conditions under which a Package may be copied, such that the Copyright Holder maintains some semblance of artistic control over the development of the package, while giving the users of the package the right to use and distribute the Package in a more-or-less customary fashion, plus the right to make reasonable modifications.

Definitions
"Package" refers to the collection of files distributed by the Copyright Holder, and derivatives of that collection of files created through textual modification.

"Standard Version" refers to such a Package if it has not been modified, or has been modified in accordance with the wishes of the Copyright Holder as specified below.

"Copyright Holder" is whoever is named in the copyright or copyrights for the package.

"You" is you, if you're thinking about copying or distributing this Package.

"Reasonable copying fee" is whatever you can justify on the basis of media cost, duplication charges, time of people involved, and so on. (You will not be required to justify it to the Copyright Holder, but only to the computing community at large as a market that must bear the fee.)

"Freely Available" means that no fee is charged for the item itself, though there may be fees involved in handling the item. It also means that recipients of the item may redistribute it under the same conditions they received it.

1. You may make and give away verbatim copies of the source form of the Standard Version of this Package without restriction, provided that you duplicate all of the original copyright notices and associated disclaimers.

2. You may apply bug fixes, portability fixes and other modifications derived from the Public Domain or from the Copyright Holder. A Package modified in such a way shall still be considered the Standard Version.

3. You may otherwise modify your copy of this Package in any way, provided that you insert a prominent notice in each changed file stating how and when you changed that file, and provided that you do at least ONE of the following:
 a. place your modifications in the Public Domain or otherwise make them Freely Available, such as by posting said modifications to Usenet or an equivalent medium, or placing the modifications on a major archive site such as uunet.uu.net, or by allowing the Copyright Holder to include your modifications in the Standard Version of the Package.
 b. use the modified Package only within your corporation or organization.
 c. rename any non-standard executables so the names do not conflict with standard executables, which must also be provided, and provide a separate manual page for each non-standard executable that clearly documents how it differs from the Standard Version.
 d. make other distribution arrangements with the Copyright Holder.

4. You may distribute the programs of this Package in object code or executable form, provided that you do at least ONE of the following:
 a. distribute a Standard Version of the executables and library files, together with instructions (in the manual page or equivalent) on where to get the Standard Version.
b. accompany the distribution with the machine-readable source of the Package with your modifications.

c. give non-standard executables non-standard names, and clearly document the differences in manual pages (or equivalent), together with instructions on where to get the Standard Version.

d. make other distribution arrangements with the Copyright Holder.

5. You may charge a reasonable copying fee for any distribution of this Package. You may charge any fee you choose for support of this Package. You may not charge a fee for this Package itself. However, you may distribute this Package in aggregate with other (possibly commercial) programs as part of a larger (possibly commercial) software distribution provided that you do not advertise this Package as a product of your own. You may embed this Package's interpreter within an executable of yours (by linking); this shall be construed as a mere form of aggregation, provided that the complete Standard Version of the interpreter is so embedded.

6. The scripts and library files supplied as input to or produced as output from the programs of this Package do not automatically fall under the copyright of this Package, but belong to whoever generated them, and may be sold commercially, and may be aggregated with this Package. If such scripts or library files are aggregated with this Package through the so-called "undump" or "unexec" methods of producing a binary executable image, then distribution of such an image shall neither be construed as a distribution of this Package nor shall it fall under the restrictions of Paragraphs 3 and 4, provided that you do not represent such an executable image as a Standard Version of this Package.

7. C subroutines (or comparably compiled subroutines in other languages) supplied by you and linked into this Package in order to emulate subroutines and variables of the language defined by this Package shall not be considered part of this Package, but are the equivalent of input as in Paragraph 6, provided these subroutines do not change the language in any way that would cause it to fail the regression tests for the language.

8. Aggregation of this Package with a commercial distribution is always permitted provided that the use of this Package is embedded; that is, when no overt attempt is made to make this Package's interfaces visible to the end user of the commercial distribution. Such use shall not be construed as a distribution of this Package.

9. The name of the Copyright Holder may not be used to endorse or promote products derived from this software without specific prior written permission.

10. THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The End

Oracle is required to provide the text of the third-party license, but the third-party program will be subject to the Oracle license, and Oracle will NOT provide warranties and technical support for the third-party technology.

This program contains third-party code from PHP. Under the terms of the PHP license, Oracle is required to provide the following notices. Note, however, that the Oracle program license that accompanied this product determines your right to use the
Oracle program, including the PHP software, and the terms contained in the following notices do not change those rights. Notwithstanding anything to the contrary in the Oracle program license, the PHP software is provided by Oracle "AS IS" and without warranty or support of any kind from Oracle or PHP.

The PHP License

The PHP License, version 3.0
Copyright (c) 1999-2004 The PHP Group. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "PHP" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact group@php.net.

4. Products derived from this software may not be called "PHP", nor may "PHP" appear in their name, without prior written permission from group@php.net. You may indicate that your software works in conjunction with PHP by saying "Foo for PHP" instead of calling it "PHP Foo" or "phpfoo"

5. The PHP Group may publish revised and/or new versions of the license from time to time. Each version will be given a distinguishing version number. Once covered code has been published under a particular version of the license, you may always continue to use it under the terms of that version. You may also choose to use such covered code under the terms of any subsequent version of the license published by the PHP Group. No one other than the PHP Group has the right to modify the terms applicable to covered code created under this License.

6. Redistributions of any form whatsoever must retain the following acknowledgment:
 "This product includes PHP, freely available from <http://www.php.net/>".

THIS SOFTWARE IS PROVIDED BY THE PHP DEVELOPMENT TEAM "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PHP DEVELOPMENT TEAM OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
mod_dav

mod_dav has been licensed to Oracle free of charge by Greg Stein under a license similar to the Apache Software Foundation license. The following copyright notice applies to mod_dav and Oracle's use of mod_dav:

Copyright © 1998-2001 Greg Stein. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment:

 This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module for Apache (http://www.webdav.org/mod_dav/).

4. Products derived from this software may not be called "mod_dav" nor may 'mod_dav' appear in their names without prior written permission of Greg Stein. For written permission, please contact gstein@lyra.org.

5. Redistributions of any form whatsoever must retain the following acknowledgment:

 This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module for Apache (http://www.webdav.org/mod_dav/).

THIS SOFTWARE IS PROVIDED BY GREG STEIN ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GREG STEIN OR THE SOFTWARE’S CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Greg Stein
Last modified: Thu Feb 3 17:34:42 PST 2000

FastCGI

Oracle is required to provide the text of the third-party license, but the third-party program will be subject to the Oracle license, and Oracle will NOT provide warranties and technical support for the third-party technology.

This program contains third-party code from FastCGI. Under the terms of the FastCGI license, Oracle is required to provide the following notices. Note, however, that the Oracle program license that accompanied this product determines your right to use
the Oracle program, including the FastCGI software, and the terms contained in the following notices do not change those rights. Notwithstanding anything to the contrary in the Oracle program license, the FastCGI software is provided by Oracle "AS IS" and without warranty or support of any kind from Oracle or FastCGI.

FastCGI Developer's Kit License

This FastCGI application library source and object code (the "Software") and its documentation (the "Documentation") are copyrighted by Open Market, Inc ("Open Market"). The following terms apply to all files associated with the Software and Documentation unless explicitly disclaimed in individual files.

Open Market permits you to use, copy, modify, distribute, and license this Software and the Documentation solely for the purpose of implementing the FastCGI specification defined by Open Market or derivative specifications publicly endorsed by Open Market and promulgated by an open standards organization and for no other purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions.

No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this Software and Documentation may be copyrighted by their authors and need not follow the licensing terms described here, but the modified Software and Documentation must be used for the sole purpose of implementing the FastCGI specification defined by Open Market or derivative specifications publicly endorsed by Open Market and promulgated by an open standards organization and for no other purpose. If modifications to this Software and Documentation have new licensing terms, the new terms must protect Open Market's proprietary rights in the Software and Documentation to the same extent as these licensing terms and must be clearly indicated on the first page of each file where they apply.

Open Market shall retain all right, title and interest in and to the Software and Documentation, including without limitation all patent, copyright, trade secret and other proprietary rights.

OPEN MARKET MAKES NO EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE SOFTWARE OR THE DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL OPEN MARKET BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DAMAGES ARISING FROM OR RELATING TO THIS SOFTWARE OR THE DOCUMENTATION, INCLUDING, WITHOUT LIMITATION, ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR SIMILAR DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, EVEN IF OPEN MARKET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS". OPEN MARKET HAS NO LIABILITY IN CONTRACT, TORT, NEGLIGENCE OR OTHERWISE ARISING OUT OF THIS SOFTWARE OR THE DOCUMENTATION.

Module mod_fastcgi License

This FastCGI application library source and object code (the "Software") and its documentation (the "Documentation") are copyrighted by Open Market, Inc ("Open Market"). The following terms apply to all files associated with the Software and Documentation unless explicitly disclaimed in individual files.

Open Market permits you to use, copy, modify, distribute, and license this Software and the Documentation solely for the purpose of implementing the FastCGI specification defined by Open Market or derivative specifications publicly endorsed by Open Market and promulgated by an open standards organization and for no other
purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any distributions.

No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this Software and Documentation may be copyrighted by their authors and need not follow the licensing terms described here, but the modified Software and Documentation must be used for the sole purpose of implementing the FastCGI specification defined by Open Market or derivative specifications publicly endorsed by Open Market and promulgated by an open standards organization and for no other purpose. If modifications to this Software and Documentation have new licensing terms, the new terms must protect Open Market’s proprietary rights in the Software and Documentation to the same extent as these licensing terms and must be clearly indicated on the first page of each file where they apply.

Open Market shall retain all right, title and interest in and to the Software and Documentation, including without limitation all patent, copyright, trade secret and other proprietary rights.

OPEN MARKET MAKES NO EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE SOFTWARE OR THE DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL OPEN MARKET BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY DAMAGES ARISING FROM OR RELATING TO THIS SOFTWARE OR THE DOCUMENTATION, INCLUDING, WITHOUT LIMITATION, ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES OR SIMILAR DAMAGES, INCLUDING LOST PROFITS OR LOST DATA, EVEN IF OPEN MARKET HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS". OPEN MARKET HAS NO LIABILITY IN CONTRACT, TORT, NEGLIGENCE OR OTHERWISE ARISING OUT OF THIS SOFTWARE OR THE DOCUMENTATION.
Apache
Apache is a public domain HTTP server derived from the National Center for Supercomputing Applications (NCSA).

authentication
The process of verifying the identity of a user, device, or other entity in a host system, often as a prerequisite to granting access to resources in a system. A recipient of an authenticated message can be certain of the message's origin (its sender). Authentication is presumed to preclude the possibility that another party has impersonated the sender.

availability
The percentage or amount of scheduled time that a computing system provides application service.

CA
See certificate authority.

certificate
Also called a digital certificate. An ITU x.509 v3 standard data structure that securely binds an identity to a public key.

A certificate is created when an entity’s public key is signed by a trusted identity, a certificate authority. The certificate ensures that the entity’s information is correct and that the public key actually belongs to that entity.

A certificate contains the entity’s name, identifying information, and public key. It is also likely to contain a serial number, expiration date, and information about the rights, uses, and privileges associated with the certificate. Finally, it contains information about the certificate authority that issued it.

certificate authority
A trusted third party that certifies that other entities—users, databases, administrators, clients, servers—are who they say they are. When it certifies a user, the certificate authority first seeks verification that the user is not on the certificate revocation list (CRL), then verifies the user's identity and grants a certificate, signing it with the certificate authority’s private key. The certificate authority has its own certificate and public key which it publishes. Servers and clients use these to verify signatures the certificate authority has made. A certificate authority might be an external company that offers certificate services, or an internal organization such as a corporate MIS department.
CGI
Common Gateway Interface (CGI) is the industry-standard technique for transferring information between a Web server and any program designed to accept and return data that conforms to the CGI specifications.

ciphertext
Data that has been encrypted. Cipher text is unreadable until it has been converted to plain text (decrypted) with a key. See decryption.

cipher suite
A set of authentication, encryption, and data integrity algorithms used for exchanging messages between network nodes. During an SSL handshake, for example, the two nodes negotiate to see which cipher suite they will use when transmitting messages back and forth.

cleartext
See plaintext.

cryptography
The art of protecting information by transforming it (encrypting) into an unreadable format. See encryption.

DAD
See database access descriptor.

database access descriptor
A database access descriptor (DAD) is a set of values that specify how an application connects to an Oracle database to fulfill an HTTP request. The information in the DAD includes the username (which also specifies the schema and the privileges), password, connect-string, error log file, standard error message, and national language support (NLS) parameters such as NLS language, NLS date format, NLS date language, and NLS currency.

decryption
The process of converting the contents of an encrypted message (ciphertext) back into its original readable format (plaintext).

DES
Data Encryption Standard. A commonly used symmetric key encryption method that uses a 56-bit key.

demilitarized zone
A de-militarized zone (DMZ) is a set of machines that are isolated from the internet by a firewall on one side, and from a company's intranet by a firewall on the other side. This set of machines are viewed as semi-secure. They are protected from the open internet, but are not completely trusted like machines that are inside the second firewall and part of the company's intranet. In a typical application server setup with a DMZ, only the Web listener and the static content for the Web site are placed in the DMZ. All business logic, databases, and other critical data and systems in the intranet are protected.
Diffie-Hellman key negotiation algorithm

Diffie-Hellman key negotiation algorithm is a method that lets two parties communicating over an insecure channel to agree upon a random number known only to them. Though the parties exchange information over the insecure channel during execution of the Diffie-Hellman key negotiation algorithm, it is computationally infeasible for an attacker to deduce the random number they agree upon by analyzing their network communications. Oracle Advanced Security uses the Diffie-Hellman key negotiation algorithm to generate session keys.

digital certificate

See certificate.

digital wallet

See wallet.

<Directory>

It is used to enclose a group of directives that apply only to the named directory and subdirectories of that directory. Any directory that is allowed in a directory context may be used. The directory is either the full path to a directory, or a wildcard string. In a wildcard string, ? matches any single character and * matches any sequences of characters. It is important to note that <Directory /> operated on the whole file system, whereas <Directory dir> refers to absolute directories. <Directory> containers cannot be nested inside each other, but can refer to directories in the document root that are nested.

<DirectoryMatch>

It should be used when specifying regular expressions, instead of using the tilde form of <Directory> with wildcards in the directory specification. The following two examples have the same result, matching directories starting with web and ending with a number from 1 to 9:

<Directory ~/web[1-9]/>
<DirectoryMatch */web[1-9]/">

directory information tree

A hierarchical tree-like structure consisting of the DNs of the directory entries. See distinguished name.

distinguished name

The unique name of a directory entry. It comprises all of the individual names of the parent entries back to the root in the directory information tree.

DIT

See directory information tree.

DMZ

See de-militarized zone.

DN

See distinguished name.
encryption
The process of disguising a message thereby rendering it unreadable to any but the intended recipient. Encryption is performed by translating data into secret code. There are two main types of encryption: **public-key encryption** (or asymmetric-key encryption) and symmetric-key encryption.

group
In the context of a directory service, entries are the building blocks of a directory. An entry is a collection of information about an object in the directory. Each entry is composed of a set of attributes that describe one particular trait of the object. For example, if a directory entry describes a person, that entry can have attributes such as first name, last name, telephone number, or e-mail address.

<Files>
The `<Files file>` and `<Files>` directives support access control by filename. It is comparable to the `<Directory>` and `<Location>` directives. The directives given within this section can be applied to any object within a base name (the last component of the filename) matching the specified file name. `<Files>` sections are processed in the order that they appear in the configuration file, after the `<Directory>` sections, and `.htaccess` files are read, but before `<Location>` sections. Note that the `<Files>` directives can be nested inside `<Directory>` sections to restrict the portion of the file system to which they apply.

<FilesMatch>
Provides access control by filename, just as the `<Files>` directive does. However, it accepts regular expression.

HTTP
See Hypertext Transfer Protocol.

Hypertext Transfer Protocol
Hypertext Transfer Protocol (HTTP) is the underlying format used by the Web to format and transmit messages and determine what actions Web servers and browsers should take in response to various commands. HTTP is the protocol used between Oracle Application Server and clients.

key
A password or a table needed to decipher encoded data.

Keystore
Keystore is a protected database that holds keys and certificates for an enterprise. Access to a keystore is guarded by a password (defined at the time the keystore is created, by the person who creates the keystore, and changeable only when providing the current password). In addition, each private key in a keystore can be guarded by its own password.

Keytool
Keytool is a key and certificate management utility.
LDAP

Lightweight Directory Access Protocol
A standard, extensible directory access protocol. It is a common language that LDAP clients and servers use to communicate. The framework of design conventions supporting industry-standard directory products, such as the Oracle Internet Directory.

<Limit>
<Limit method> defines a block according to the HTTP method of the incoming request.

<LimitExcept>
Restrict access controls to all HTTP methods except the named ones.

<Location>
Limits the application of the directives within a block to those URLs specified, rather than to the physical file location like the <Directory> directive. <Location> sections are processed in the order that they appear in the configuration file, after the <Directory> sections and .htaccess files are read, and after the <Files> sections. <Location> accepts wildcard directories and regular expressions with the tilde character.

<LocationMatch>
Functions in an identical manner to <Location> and you should use it for specifying regular expressions instead of the tilde form of <Location> with wildcards in the location specification.

MD5
A hashing algorithm intended for use on 32-bit machines to create digital signatures. MD5 is a one-way hash function, meaning that it converts a message into a fixed string of digits that form a message digest.

message digest
Representation of text as a string of single digits. It is created using a formula called a one-way hash function.

modules
Modules extend the basic functionality of the Web server and support integration between Oracle HTTP Server and other Oracle Application Server components.

one-way hash function
An algorithm that turns a message into a single string of digits. "One way" means that it is almost impossible to derive the original message from the string of digits. The calculated message digest can be compared with the message digest that is decrypted with a public key to verify that the message has not been tampered with.

OPMN
See Oracle Process Manager and Notification Server.
Oracle Process Manager and Notification Server
Oracle Process Manager and Notification Server (OPMN) manages Oracle HTTP Server and OC4J processes within an application server instance. It channels all events from different components to all components interested in receiving them.

PEM
Privacy-Enhanced Electronic Mail. An encryption technique that provides encryption, authentication, message integrity, and key management.

plaintext
Also called cleartext. Unencrypted data in ASCII format.

port
A port is a number that TCP uses to route transmitted data to and from a particular program.

private key
In public-key cryptography, this key is the secret key. It is primarily used for decryption but is also used for encryption with digital signatures. See public/private key pair.

public key
In public-key cryptography, this key is made public to all. It is primarily used for encryption but can be used for verifying signatures. See public/private key pair.

public-key cryptography
Encryption method that uses two different random numbers (keys). See public key and public-key encryption.

public-key encryption
The process where the sender of a message encrypts the message with the public key of the recipient. Upon delivery, the message is decrypted by the recipient using its private key.

public/private key pair
A set of two numbers used for encryption and decryption, where one is called the private key and the other is called the public key. Public keys are typically made widely available, while private keys are held by their respective owners. Though mathematically related, it is generally viewed as computationally infeasible to derive the private key from the public key. Public and private keys are used only with asymmetric encryption algorithms, also called public-key encryption algorithms, or public-key cryptosystems. Data encrypted with either a public key or a private key from a key pair can be decrypted with its associated key from the key-pair. However, data encrypted with a public key cannot be decrypted with the same public key, and data encrypted with a private key cannot be decrypted with the same private key.

RSA
A public-key encryption technology developed by RSA Data Security. The RSA algorithm is based on the fact that it is laborious to factor very large numbers. This makes it mathematically unfeasible, because of the computing power and time required to decode an RSA key.
scalability
A measure of how well the software or hardware product is able to adapt to future business needs.

SHA
See Secure Hash Algorithm.

Secure Hash Algorithm
Secure Hash Algorithm assures data integrity by generating a 160-bit cryptographic message digest value from given data. If as little as a single bit in the data is modified, the Secure Hash Algorithm checksum for the data changes. Forgery of a given data set in a way that will cause the Secure Hash Algorithm to generate the same result as that for the original data is considered computationally infeasible.

An algorithm that takes a message of less than 264 bits in length and produces a 160-bit message digest. The algorithm is slightly slower than MD5, but the larger message digest makes it more secure against brute-force collision and inversion attacks.

Secure Shell
Secure Shell (SSH) is a well known protocol and has widely available implementation that provide a secure connection tunneling solution, very similar to what port tunneling offers. SSH provides a daemon on both the client and server sides of a connection. Clients connect to the local daemon rather than connecting directly to the server. The local SSH daemon then establishes a secure connection to the daemon on the server side. Communication is then routed from the client, through the client side daemon to the server side daemon and then on to the actual server. This allows a client/server program that uses an insecure protocol to be tunneled through a secure channel. For our purposes, the disadvantage of SSH is that it requires two hops to occur and that the implementations available do not perform and scale well enough.

More information on SSH can be obtained from http://www.ssh.org

Secure Sockets Layer
Secure Sockets Layer (SSL) is a standard for the secure transmission of documents over the Internet using HTTPS (secure HTTP). SSL uses digital signatures to ensure that transmitted data is not tampered with.

double sign-on
Single sign-on enables a you to authenticate once, combined with strong authentication occurring transparently in subsequent connections to other databases or applications. It lets you access multiple accounts and applications with a single password, entered during a single connection.

SSL
See Secure Sockets Layer.

SSH
See Secure Shell.

<VirtualHost>
Oracle HTTP Server has the capabilities to serve many different Web sites simultaneously. Directives can also be scoped by placing them inside
VirtualHost sections, so that they will only apply to requests for a particular Web site.

Virtual host refers to the practice of maintaining more than one server on one machine, as differentiated by their apparent hostname. For example, it is often desirable for companies sharing a Web server to have their own domain, and Web servers accessible as, for example, www.oracle1.com and www.oracle2.com, without requiring you to know any extra path information.

wallet
Also called a digital wallet. A wallet is a data structure used to store and manage security credentials for an individual entity. It implements the storage and retrieval of credentials for use with various cryptographic services. A Wallet Resource Locator (WRL) provides all the necessary information to locate the wallet.

Wallet Resource Locator
A wallet resource locator (WRL) provides all necessary information to locate a wallet. It is a path to an operating system directory that contains a wallet.

WRL
See Wallet Resource Locator.

X.509
Public keys can be formed in various data formats. The X.509 v3 format is one such popular format.
Index

A
- access log, 6-5
- access.conf, B-2
- AccessConfig, 9-4
- ACKS, 5-3
- AddCertHeader, 7-3
- additional ssl features, 10-3
 - global server ID support, 10-3
 - PKCS #11 support, 10-3
- AddType, B-3
- Al16UTF-16, 7-20
- alert, 6-3
- always_desc, 7-29
- Apache, Glossary-1
 - security patches, C-2
- Apache HTTP Server, 1-1
 - license, E-1
- Apache OraDAV, 8-3
- Apache SOAP
 - license, E-2
- Apache software
 - license, E-1
- apachectl, 1-5
- ApacheStyle, 7-39
- application-specific error pages, C-1
- authentication, 9-1, Glossary-1
- AuthGroupFile, 9-7
- AuthName, 9-7
- authorization, 9-1
- AuthType, 9-7
- AuthUserFile, 9-6
- availability, Glossary-1
- caching
 - disk
 - OraDAV and, 8-19
- CERN, 7-3
- certificate, Glossary-1
 - digital, Glossary-3
 - X.509, 10-10
- certificate authority, Glossary-1
- certificate revocation list, 10-5
- CGI, Glossary-2
 - environment revocation list, 7-4
- changing
 - port, 5-2
- character sets
 - OraDAV considerations, 8-21
- cipher suite, Glossary-2
- ciphertext, Glossary-2
- cleartext, Glossary-2
- client IP address
 - obtaining, 5-4
- commands
 - -f, 3-4
 - restartproc, 1-6
 - startproc, 1-6
 - stopproc, 1-6
- CompatEnvVars, 10-10
- components, 1-4
- CondPattern, 7-49
- conf, 3-4
- confidentiality, 9-1
- configuration files, B-1
 - access.conf, B-2
 - cache.conf, 7-24
 - dads.conf, 7-24
 - dms.conf, B-1
 - httpd.conf, B-1
 - file structure, B-2
 - iaspt.conf, B-2
 - mime.types, B-3
 - mod_oc4j.conf, B-3
 - mod_osso.conf, B-3
 - opmn.xml, B-3
 - oracle_apache.conf, B-4
 - oracle_ocm.conf, B-4
 - php.ini, B-4
 - plsql.conf, 7-24

B
- BindAddress, 5-2
- BrowserMatch, 9-5
- browsing database content
 - with OraDAV, 8-4
- building your own metric collector, A-7

C
- CA, Glossary-1
- cache.conf, 7-24
srm.conf, B-2
ssl.conf, B-4
configuring
iaspt.conf
 iaspt-port, 9-13
 log-file, 9-13
 log-level, 9-13
 wallet-file, 9-12
 wallet-password, 9-13
load balancers, 5-5
mod_oc4j, 7-9
 enabling SSL, 7-15
 Oc4jiASPTActive, 9-11
 Oc4jiASPTProcess, 9-11
 Oc4jiASPTWalletFile, 9-11
 Oc4jiASPTWalletPassword, 9-12
mod_oradav, 8-1
number of processes and connections, 4-2
OC4J
 SSL for OC4J, 7-16
 port tunneling, 9-8
 reverse proxies, 5-5
 server logs, 6-1
 ssl, 10-1
configuring MBLB to use the
 DMSMetricCollector, A-6
configuring ssl
 creating a real wallet, 10-1
 customizing your configuration, 10-3
 enabling ssl, 10-2
connection persistence, 5-3
controlling access
 domain name, 9-5
 environment variables, 9-5
 IP address, 9-4
 netmask, 9-5
 network, 9-5
CoreDumpDirectory, 3-3
creating
 DAD, 7-22
crit, 6-3
cryptography, Glossary-2
custom log, 6-5

D
DAD, Glossary-2
 creating, 7-22
 parameters, 7-27
 password
 obfuscation, 7-36
dads.conf, 7-24, 7-27
dadTool.pl, 7-36
database access descriptor, 7-24, Glossary-2
database connection
 OraDAV and, 8-10
database usage notes, 7-19
DAV directives
 DAVDepthInfinity, 8-15
 DAVLockDB, 8-15
 DAVMinTimeout, 8-16
 DAVOraNLS, 8-16, 8-22
 DAVOraReadOnly, 8-16
 DAVOraWebCacheReadOnly, 8-17
 Limit, 8-17
 LimitExcept, 8-18
 LimitXMLRequestBody, 8-18
 DAV lock database, 8-15
 DAV parameter, 8-5
 DAVDepthInfinity directive, 8-15
 DAVLockDB directive, 8-15
 DAVMinTimeout directive, 8-16
 DAVOraNLS directive, 8-16, 8-22
 DAVOraReadOnly directive, 8-16
 DAVOraWebCacheReadOnly directive, 8-17
 DAVOraWebCacheReadOnly setting, 8-20
 DAVParam parameter
 for OraDAV, 8-5
 DBI module
 license, E-5
debug, 6-3
 DebugStyle, 7-39
decryption, Glossary-2
 Define, 7-6
de-militarized zone, Glossary-2
 DES, 10-4, Glossary-2
 Diffie-Hellman key negotiation algorithm, 10-6,
 Glossary-3
digital certificate, Glossary-3
digital wallet, Glossary-3
directives
 AddCertHeader, 7-3
 AddType, B-3
 AuthGroupFile, 9-7
 AuthName, 9-7
 AuthType, 9-7
 AuthUserFile, 9-6
 BindAddress, 5-2
 CoreDumpDirectory, 3-3
 DAVDepthInfinity, 8-15
 DAVLockDB, 8-15
 DAVMinTimeout, 8-16
 DAVOraNLS, 8-16
 DAVOraReadOnly, 8-16
 DAVOraWebCacheReadOnly, 8-17
 Define, 7-6
 DocumentRoot, 3-3
 ErrorLog, 3-3
 Group, 4-2
 KeepAlive, 5-4
 KeepAliveTimeOut, 5-4
 Limit, 8-17
 LimitExcept, 8-18
 LimitXMLRequestBody, 8-18
 Listen, 5-2
 ListenBackLog, 5-3
 LockFile, 3-4
 LogFormat, 6-5
 MaxClients, 4-3
 MaxKeepAliveRequests, 5-4
MaxRequestsPerChild, 4-3
MaxSpareServers, 4-3
MinSpareServers, 4-4
mod_ossl, 9-7, 10-1
mod_ssl, 9-7
Oc4jMount
 ajp13_dest, 7-13
 cluster_dest, 7-13
 instance_dest, 7-13
OraLogMode, 6-2
OraLogSeverity, 6-2
 module_name, 6-2
 msg_level, 6-3
 msg_type, 6-2
PidFile, 3-4
PlsqlCacheDirectory, 4-4
Port, 5-2
RewriteBase, 7-50
RewriteEngine, 7-50
RewriteLog, 7-50
RewriteLogLevel, 6-6, 7-50
RewriteOptions, 7-50
ScoreBoardFile, 3-4
SendBufferSize, 5-3
ServerAdmin, 3-2
ServerAlias, 3-3
ServerName, 3-1
ServerRoot, 3-4
ServerSignature, 3-2
ServerTokens, 3-2
ServerType, 4-2
SimulatteHttps, 7-5
SSLCertificateFile, 10-4
SSLCertificatePath, 10-4
SSLCertificateChainFile, 10-4
SSLCertificateFile, 10-4
SSLCertificateKeyFile, 10-4
SSLLogFile, 6-6
SSLRandomSeed, 10-4
SSLVerifyDepth, 10-4
StartServers, 4-3
ThreadsPerChild, 4-3
TimeOut, 5-3
UseCanonicalName, 3-2
User, 4-2
UseWebCacheIp, 5-4
directory information tree, Glossary-3
disk caching, 8-8
 OraDAV and, 8-19
size, 8-8, 8-9
distinguished name, 10-10, Glossary-3
DIT, Glossary-3
dms.conf, B-1
DMZ, Glossary-3
DN, Glossary-3
DocumentRoot, 3-3, 7-52
domain name
 controlling access, 9-5
Dynamic Monitoring Service, 7-26, B-1
emerg, 6-3
enabling
 SSL
 mod_oc4j, 7-15
 mod_oc4j and OC4J, 7-15
OC4J, 7-16
 Oc4jEnableSSL, 7-15
 Oc4jSSLWalletFile, 7-16
 Oc4jSSLWalletPassword, 7-16
enabling SSL, 10-1
enabling ssl
 overview, 10-1
collection, Glossary-4
entry, Glossary-4
environment variables
 controlling access, 9-5
 NLS_LANG
 OraDAV and, 8-21
error, 6-3
 error log, 6-5
 mod_oradav and, 8-13, 8-14
ErrorLog, 3-3
events
 OraDAV and, 8-13
exceptions
 OraDAV and, 8-11
ExportCertData, 10-10
Extended API, 7-6
-f option, 3-4
failover, Glossary-4
FakeBasicAuth, 10-10
FAQ, C-1
 Apache security patches, C-2
 compressing
 output, C-2
 mod_oc4j, C-2
 using SSL, C-2
 offering HTTPS to ISP customers, C-1
Oracle HTTP Server
 version number, C-2
 protecting Web site
 hackers, C-3
 proxy sensitive requests, C-2
 supporting
 PHP, C-3
FastCGI
 license, E-13
features, 1-1
file locations, 3-3
file system access
 OraDAV and, 8-5
frequently asked questions, C-1
GET, 5-3
global environment, B-2
global server ID support, 10-3
globalization support
 OrADAV considerations, 8-21
graceful restart, 1-6
Group, 4-2

H
 hackers, C-3
 host-based access control, 9-3
 domain name, 9-5
 environment variables, 9-5
 IP address, 9-4
 mod_access, 9-4
 mod_setenvif, 9-4
 netmask, 9-5
 network, 9-5
HTTP, Glossary-4
HTTP listener, 1-4
httpd.conf, B-1
 global environment, B-2
 main server configuration, B-2
 virtual hosts parameters, B-2
httpd.conf file
 DAV directives and, 8-15
Hypertext Transfer Protocol, Glossary-4

I
 iasobf, 10-15
 iaspt.conf, 9-12, B-2
 iaspt-port, 9-13
 identd, 6-5
 IdentityCheck, 6-5
 IfModule directive, 6-2
 info, 6-3
 InfoDebug, 7-41
 intermittent HTTP-500 errors, D-1
 IP address
 controlling access, 9-4

J
 JavaServer Pages (JSP)
 WebDAV security considerations, 8-18

K
 Keep Alive, 5-4
 KeepAliveTimeOut, 5-4
 key, Glossary-4
 Keystore, Glossary-4
 keytool, Glossary-4

L
 LDAP, Glossary-5
 lightweight directory access protocol, Glossary-5
 Limit directive, 8-17
 LimitExcept directive, 8-18
 LimitRequestBody directive
 mod_dav and, 8-18
 LimitXMLRequestBody directive, 8-18
 Listen, 5-2
 ListenBackLog, 5-3
 listener addresses, 5-1
 listener ports, 5-1
 load balancers, 5-5
 load balancing, 7-15
 metric based, A-4
 parameters, A-2
 Oc4jRoutingWeight, A-3
 Oc4jSelectMethod, A-2
 policies, A-1
 metric based, A-2
 metric based with local affinity, A-2
 random, A-1
 random using routing weight, A-2
 random with affinity, A-2
 round robin, A-1
 round robin using routing weight, A-2
 round robin with local affinity, A-2
 using mod_oc4j, A-1
 LoadModule, 7-10
 LoadModule directive, 7-3, 7-24, 7-25
 LockFile, 3-4
 locking
 DAV and, 8-15
 OrADAV and, 8-12
 log, 3-4
 log files, 6-4, 6-5
 locations, 6-4
 log formats
 authuser, 6-5
 bytes, 6-5
 Common Log Format, 6-5
 data, 6-5
 host, 6-5
 ident, 6-5
 request, 6-5
 status, 6-5
 log level, 6-4
 log rotation, 6-4
 log-file, 9-13
 LogFormat, 6-5
 logging
 errors, 6-5
 LogLevel, 6-3
 log-level, 9-13
 LogLoader, 6-1

M
 main server configuration, B-2
 management, 1-5
 managing
 connection persistence, 5-3
 network connection, 5-1
 server network interaction, 5-3
 server processes, 4-1
MaxClients, 1-6, 4-3
MaxKeepAliveRequests, 5-4
MaxRequestsPerChild, 4-3
MaxSpareServers, 1-6, 4-3
MD5, 10-4, Glossary-5
message digest, Glossary-5
metric based load balancing, A-4
building your own metric collector, A-7
configuring MBLB to use the
DMSMetricCollector, A-6
configuring OC4J, A-5
specifying metrics for OC4J, A-6
configuring Oracle HTTP Server, A-5
how DMS metrics are converted to MBLB, A-7
oracle.oc4j.api.MetricCollector, A-7
metric based with local affinity, A-2
metric collector, A-5
mime.types, B-3
MinSpareServers, 1-6, 4-4
mod_access, 7-2, 9-1, 9-4
host-based access control, 9-4
mod_actions, 7-2
mod_alias, 7-2
mod_asis, 7-2
mod_auth, 7-2, 9-1, 9-6
authenticate users, 9-6
mod_auth_anon, 7-2
mod_auth_dbm, 7-2
mod_autoindex, 7-2
mod_cern_meta, 7-3
mod_certheaders, 7-3
CGI
environment variables, 7-4
mod_cgi, 7-6
mod_dav, 8-2
DAV directives, 8-15
license, E-13
mapping containers, 8-21
OraDAV
disk caching, 8-19
OracleAS Web Cache, 8-20
performance considerations, 8-19
usage notes, 8-21
globalization support, 8-21
mapping containers under root location, 8-21
mod_define, 7-6
mod_digest, 7-6
mod_dir, 7-6
mod_dms, 7-6, 9-2
mod_env, 7-7
mod_example, 7-7
mod_expires, 7-7
mod_fastcgi, 7-7
mod_headers, 7-7
mod_imap, 7-7
mod_include, 7-8
mod_info, 7-8
mod_log_agent, 7-8
mod_log_config, 7-8
mod_log_referer, 7-8
mod_mime, 7-8
mod_mime_magic, 7-8
mod_mmap_static, 7-9
mod_negotiation, 7-9
mod_oc4j, 7-9, 9-2, C-2
configuration file, 7-9
directives, 7-9
load balancing, 7-15
sample configurations, 7-14
SSL, 7-15
mod_oc4j.conf, 9-10, B-3
mod_onsint
benefits, 7-17
implementation differences, 7-17
modules
mod_onsint, 7-16
mod_oradav, 7-18, 8-1, 8-2
concepts, 8-1
mod_dav, 8-2
OraDAV, 8-2
WebDAV, 8-1
error log, 8-13, 8-14
Get requests and, 8-7
OraDAV
administration, 8-4
Apache OraDAV, 8-3
architecture, 8-3
configuration parameters, 8-5, 8-6
OraDAV driver, 8-3
OraDAV driver API, 8-3
usage model, 8-4
users, 8-4
parameters
ORAAllowIndexDetails, 8-7
ORAAltPassword, 8-7
ORACacheDirectory, 8-8
ORACacheMaxResourceSize, 8-8
ORACachePrunePercent, 8-9
ORACacheTotalSize, 8-9
ORACofig, 8-10
ORAServerName, 8-10
ORAC涞ContainerName, 8-11
ORAException, 8-11
ORASource, 8-11
ORASource, 8-11
ORALockExpirationPad, 8-12
ORANAME, 8-12
ORANAME, 8-12
ORAPassword, 8-12
ORASuffix, 8-13
ORASuffix, 8-13
ORAService, 8-13
ORATraceEvents, 8-13
ORATraceLevel, 8-14
ORASuffix, 8-14
mod_onsint, 7-11, 7-12, 7-19, 9-1, 9-7, 10-1
authenticate users, 9-7
directives, 10-4
SSLCARevocationFile, 10-5
SSLCARevocationPath, 10-5
SSLCipherSuite, 10-6
SSLEngine, 10-8
SSLLog, 10-8
mod_usertrack, 7-53
mod_vhost_alias, 7-53
mod_wchandshake, 7-53
multiviews, C-2

N
ncCipher, 10-3
netmask
 controlling access, 9-5
network
 controlling access, 9-5
nFast, 10-5
NLS_LANGUAGE environment variable
 OraDAV considerations, 8-21
NLS_LANGUAGE setting
 OraDAV and, 8-16
notice, 6-3

O
OC4J
 SSL, 7-15, 7-16
OC4J Portal, 4-4
oc4j_deploy_tool.jar, 7-9
Oc4jCacheSize, 7-10
Oc4jConnTimeout, 7-10
Oc4jCookieExtension, 7-11
Oc4jEnableSSL, 7-15
Oc4jEnvVar, 7-11
Oc4jExtractSSL, 7-11
Oc4jASPTActive, 9-11
Oc4jASPTProcess, 9-11
Oc4jASPTWalletFile, 9-11
Oc4jASPTWalletPassword, 9-12
Oc4jMount, 7-12
Oc4jMountCopy, 7-13
Oc4jRoutingWeight, A-3
Oc4jSelectMethod, A-2
Oc4jSSLWallet, 7-16
Oc4jSSLWalletPassword, 7-16
Oc4jUseOHSErrors, 7-14
one-way hash function, Glossary-5
OPMN, Glossary-5
opmn.xml, 9-10, 10-2, B-3
 ias-component, B-4
 process-set, B-4
 process-type, B-4
OptRenegotiate, 10-10
ORA_IMPLICIT, 7-21
ORA_NCHAR, 7-21
ORAAllowIndexDetails parameter, 8-7
ORAAllPassword parameter, 8-7
ORACacheDirectory parameter, 8-8, 8-20
ORACacheMaxResourceSize parameter, 8-8, 8-20
ORACachePrunePercent parameter, 8-9, 8-20
ORACacheTotalSize parameter, 8-9, 8-20
Oracle Application Server
 Certificate Authority
 oracle_ocm.conf, B-4
Oracle Application Server Portal, 4-4
Oracle Diagnostic Logging, 6-1
 configuring
 Oracle HTTP Server, 6-2
directives
 OraLogMode, 6-2
 OraLogSeverity, 6-2
legacy Apache message format, 6-1
LogLoader, 6-1
overview, 6-1
Oracle HTTP Server
C/C++, 1-3
 components, 1-4
 HTTP listener, 1-4
 modules, 1-4
 Perl interpreter, 1-4
compressing
 output, C-2
configuration files, B-1
Dynamic Monitoring Service, 1-3
FAQ, C-1
features, 1-1
handling server processes, 4-1
load balancing, 1-3
management, 1-5
modules, 1-4, 7-1
OPMN, 1-3
overview, 1-1
Perl, 1-3
PHP, 1-3
PL/SQL stored procedures, 1-2
process model, 4-1
 security considerations, 4-4
proxy server and URL rewriting, 1-2
restarting, 1-6
security, 1-1
 access control for virtual hosts, 9-4
 authentication, 9-3
 authorization, 9-3
 host-based access control, 9-3
 overview, 9-1
 protected resources, 9-2
 user authentication, 9-6
 user authorization, 9-6
 user class, 9-2
 user privilege, 9-2
server side include, 1-3
single sign-on, 1-2
standalone, 2-1
starting, 1-6
stopping, 1-6
support, 1-5
third party licenses, E-1
 Apache HTTP Server, E-1
 Apache SOAP, E-2
 DBI module, E-5
 FastCGI, E-13
 mod_dav, E-13
 Perl, E-8
 PHP, E-11
utilities
 iasobf, 10-15
version number, C-2
virtual hosts, 1-2
Oracle Identity Management
 security, 9-14
Oracle Process Manager and Notification
 Server, B-3, Glossary-6
Oracle wallet, 9-12
Oracle Wallet Manager, 9-12
oracle_apache.conf, B-4
oracle_ocm.conf, B-4
OracleAS Portal
 OraDAV and, 8-5
OracleAS Web Cache
 OraDAV and, 8-17, 8-20
 browsing, 8-20
 WebDAV, 8-20
oracle.oc4j.api.MetricCollector, A-7
ORAConnect parameter, 8-10
ORAConnectSN parameter
database connection
 OraDAV and, 8-10
ORACoercType parameter, 8-11
administration, 8-4
concepts, 8-1
description, 8-2
globalization support considerations, 8-21
OracleAS Portal and, 8-5
usage model, 8-4
WebDAV
 security considerations, 8-18
OraDAV, 7-18
OraDAV and, 8-8
OraDAV configuration parameters, 8-5, 8-6
OraDAV driver, 8-3
OraDAV driver API, 8-3
OraDAV users, 8-14
ORAException parameter, 8-11
ORAGetSource parameter, 8-11
security and, 8-19
OraDAV OrderLockExpirationPad parameter, 8-12
OraLogMode, 6-2
OraLogSeverity, 6-2
ORAPackageName parameter, 8-12
ORAPassword parameter, 8-12
ORARootPrefix parameter, 8-13
ORAService parameter, 8-13
ORATraceEvents parameter, 8-13
ORATraceLevel parameter, 8-14
ORAUser parameter, 8-14
order, 9-3
overview, 1-1

P
Parallel Page Engine, 4-4
passwords
 OraDAV and, 8-7, 8-12
pathaliasproc, 7-43
PEM, 10-5, Glossary-6
performance monitor, 4-5
Perl
 access database, 7-19
 license, E-8
Perl interpreter, 1-4
PHP, C-3
 license, E-11
php.ini, B-4
PID file, 6-5
PidFile, 3-4
piped log, 6-6
PKCS #11 support, 10-3
plaintext, Glossary-6
PlsqlAfterProcedure, 7-28
PlsqlAlwaysDescribeProcedure, 7-29
PlsqlAuthenticationMode, 7-29
PlsqlBeforeProcedure, 7-30
PlsqlBindBucketLengths, 7-30
PlsqlBindBucketsWidth, 7-31
PlsqlCacheCleanupTime, 7-46
PlsqlCacheDirectory, 7-47
PlsqlCacheEnable, 7-47
PlsqlCacheMaxAge, 7-47
PlsqlCacheMaxSize, 7-48
PlsqlCacheTotalSize, 7-48
PlsqlCGIEnvironmentList, 7-31
PlsqlCompatibilityMode, 7-32
psql.conf, 7-24, 7-25
PlsqlConnectionTimeout, 7-32
PlsqlConnectionValidation, 7-33
PlsqlCredentialSource, 7-34
PlsqlDatabaseConnectString, 7-34
PlsqlDatabasePassword, 7-36
PlsqlDatabaseUserName, 7-37
PlsqlDefaultPage, 7-38
PlsqlDMSEnable, 7-26
PlsqlDocumentPath, 7-38
PlsqlDocumentProcedure, 7-38
PlsqlDocumentTablename, 7-39
PlsqlErrorStyle, 7-39
 ApacheStyle, 7-39
 DebugStyle, 7-39
 ModPlsqlStype, 7-39
PlsqlExclusionList, 7-40
PlsqlFetchBufferSize, 7-40
PlsqlFetchBufferSize, 7-40
PlsqlIdSessionCleanupInterval, 7-27
PlsqlInfoLogging, 7-41
 InfoDebug, 7-41
PlsqlLogDirectory, 7-26
PlsqlLogEnable, 7-26
PlsqlMaxRequestsPerSession, 7-41
PlsqlNLSLanguage, 7-42
PlsqlPathAlias, 7-42
PlsqlPathAliasProcedure, 7-43
PlsqlRequestValidationFunction, 7-43
PlsqlSessionCookieName, 7-44
PlsqlSessionStateManagement, 7-44
PlsqlTransferMode, 7-45
PlsqlUploadAsLongRaw, 7-45

Index-8
Port, 5-2
port, Glossary-6
 changing, 5-2
port tunneling, 9-7, B-2
 configuration reference, 9-10
 configuring, 9-8
 iaspt.conf, 9-8
 mod_oc4j.conf, 9-9
 opmn.xml, 9-8
 SSL, 9-10
POST, 5-3
private key, Glossary-6
privileges
 ORAUser, 8-14
 PROC_READY, 7-17
process information, 4-5
 mod_status, 4-5
 performance monitor, 4-5
 ps utility, 4-5
property management
 with OraDAV, 8-4
PROPFIND directive, 8-4
PROPFIND method
 depth header and, 8-15
 security considerations, 8-22
PROPPATCH directive, 8-4
protected resources, 9-2
protecting
 Web site, C-3
ps utility, 4-5
public key, Glossary-6
public-key cryptography, Glossary-6
public-key encryption, Glossary-6
public/private key pair, Glossary-6
PUT, 5-3

R
random, A-1
random using routing weight, A-2
random with affinity, A-2
read-only mode
 WebDAV and, 8-16
restarting, 1-6
restartproc, 1-6
restructuring content
 with OraDAV, 8-4
reverse proxies, 5-5
rewrite log, 6-6
RewriteBase, 7-50
RewriteEngine, 7-50
RewriteLog, 7-50
RewriteLogLevel, 6-6, 7-50
RewriteOptions, 7-50
root, 4-4
root prefix
 OraDAV and, 8-13
round robin, A-1
round robin using routing weight, A-2
round robin with local affinity, A-2
RSA, 10-4, Glossary-6
running
 root, 4-4

S
scalability, Glossary-7
ScoreBoardFile, 3-4
script log, 6-6
Secure Hash Algorithm, Glossary-7
Secure Shell, Glossary-7
Secure Sockets Layer, Glossary-7
secure sockets layer, 10-1
security
 authentication, 9-1
 authorization, 9-1
 confidentiality, 9-1
 Oracle Identity Management, 9-14
 mod_osso, 9-14
 overview, 9-14
 single sign-on, 9-14
 PROPFIND method, 8-22
 protected resources, 9-2
 user class, 9-2
 user privilege, 9-2
 WebDAV, 8-18
security considerations
 limiting access, 8-17, 8-18
SendBufferSize, 5-3
server logs, 6-1
server processes, 4-1
ServerAdmin, 3-2
ServerAlias, 3-3
ServerName, 3-1, 5-5
ServerRoot, 3-4
ServerSignature, 3-2
ServerTokens, 3-2
ServerType, 4-2
service name
 OraDAV and, 8-13
set_default_form, 7-21
set_form, 7-21
SetEnvIf, 9-6
setupinfo.txt, 5-2
SHA, 10-4, Glossary-7
SID value
 OraDAV and, 8-13
SimulateHttps, 7-5
single sign-on, 9-1, 9-14, Glossary-7
 Oracle Identity Management, 9-14
 partner application, 9-7
specifying, 3-3
file locations, 3-1
listener addresses, 5-1
listener ports, 5-1
log file locations, 6-4
log files, 6-4
 access log, 6-5
 custom log, 6-5
 lot rotation, 6-5
mod_ossl, 9-7
mod_osso, 9-7
user authorization, 9-6
users
 OraDAV, 8-14
UseWebCacheIp, 5-4
USRI, 1-6
UTF8, 7-20
UTF8 character set
 OraDAV and, 8-21
utilities
 iasobf, 10-15

V

virtual hosts
 access control, 9-4
virtual hosts parameters, B-2

W

wallet, 10-4, Glossary-8
 digital, Glossary-3
Wallet Resource Locator, Glossary-8
wallet-file, 9-12
wallet-password, 9-13
warn, 6-3
WebDAV, 8-1
 connecting to HTTP Server, 8-2
 security considerations, 8-18
WebDAV protocol, 8-1
WRL, Glossary-8

X

X.509, Glossary-8