
Oracle � Applications
Flexfields Guide
RELEASE 11i

September 2002

Oracle Applications Flexfields Guide, Release 11i

The part number for this volume is A75393–03.

Copyright � 1994, 2002, Oracle Corporation. All rights reserved.

Primary Authors: Sara Woodhull, Mildred Wang

Major Contributors: Michael Konopik, Gursat Olgun

Contributors: Christopher Andrews, Anne Carlson, Jeff Caldwell, Steven Carter, Cliff Godwin,
Grace Ling, Emily Nordhagen, Susan Stratton

The Programs (which include both the software and documentation) contain proprietary information;
they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse
engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this documentation is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This documentation is not
warranted to be error–free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are ”commercial computer software” or ”commercial technical data” pursuant
to the applicable Federal Acquisition Regulation, and agency–specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the
applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR
52.227–19, Commercial Computer Software––Restricted Rights (June 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail–safe, backup, redundancy, and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such use of
the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

 iiiContents

Contents

Preface ix.
Audience for This Guide x.
How To Use This Guide x.
Why Flexfields Have A Separate Manual xi.
Other Information Sources xii.
Do Not Use Database Tools to Modify
Oracle Applications Data xvi.
About Oracle xvii.
Your Feedback xvii.

Chapter 1 Flexfield Concepts 1 – 1.
Overview of Flexfield Concepts 1 – 2.

Key Flexfields 1 – 3.
Descriptive Flexfields 1 – 4.
Benefits of Flexfields 1 – 5.
Basic Flexfields Concepts 1 – 6.

Overview of Setting Up Flexfields 1 – 10.
Planning 1 – 10.
Defining 1 – 16.
Data Entry and Ongoing Maintenance 1 – 16.
Reporting 1 – 17.

Chapter 2 Planning and Defining Key Flexfields 2 – 1.
Additional Terms and Concepts for Key Flexfields 2 – 2.

Intelligent Key 2 – 2.
Combination 2 – 3.

 iv Oracle Applications Flexfields Guide

Combinations Table 2 – 4.
Qualifiers 2 – 5.
Types of Key Flexfield Forms 2 – 6.
Dynamic Insertion 2 – 11.
Other Key Flexfield Features 2 – 12.

Planning Your Key Flexfield 2 – 13.
Key Flexfield Structure Planning Diagram 2 – 14.

Key Flexfield Segments Window 2 – 16.
Defining Key Flexfields 2 – 17.
Defining Key Flexfield Structures 2 – 19.
Defining Segments 2 – 22.
Choosing Your Value Set 2 – 26.
Defaulting Segment Values 2 – 27.
Segment Prompts and Display Lengths 2 – 30.
Flexfield Qualifiers 2 – 32.
Reporting Attributes 2 – 33.
Reporting Attributes Zone 2 – 33.

Chapter 3 Planning and Defining Descriptive Flexfields 3 – 1.
Descriptive Flexfield Concepts 3 – 2.

How Segments Use Underlying Columns 3 – 5.
Context Fields and Reference Fields 3 – 8.

Context Fields 3 – 8.
Using Value Sets With Context Fields 3 – 8.
Reference Fields 3 – 13.
Other Descriptive Flexfield Features 3 – 14.

Different Arrangements of Segments 3 – 15.
Planning Your Descriptive Flexfield 3 – 24.

Descriptive Flexfield Structure Planning Diagrams 3 – 25.
Descriptive Flexfield Segments Window 3 – 31.

Defining Descriptive Flexfields 3 – 32.
Defining Descriptive Flexfield Structures 3 – 33.
Context Field Values 3 – 37.

Identifying Descriptive Flexfields in Oracle Applications 3 – 40.
Identifying Descriptive Flexfields 3 – 40.

Chapter 4 Values and Value Sets 4 – 1.
Overview of Values and Value Sets 4 – 2.

Planning Values and Value Sets 4 – 3.
Choosing Value Formats 4 – 3.
Value Formats 4 – 6.

 vContents

Decide What Your User Needs 4 – 15.
Choosing a Validation Type for Your Value Set 4 – 17.
Plan Values to Use Range Features 4 – 22.
Value Set Naming Conventions 4 – 22.
Predefined Value Sets 4 – 23.
Defining Values and Value Sets 4 – 24.
Relationship Between Independent and
Dependent Values 4 – 25.
Parent and Child Values and Rollup Groups 4 – 27.

Overview of Implementing Table–Validated Value Sets 4 – 28.
Using Validation Tables 4 – 29.
Defining Your Validation Table 4 – 31.
Creating Grants and Synonyms for Your Table 4 – 32.
WHERE Clauses and Bind Variables for Validation Tables 4 – 33.
Bind Variables 4 – 34.
Example of $FLEX$ Syntax 4 – 38.

Using Translatable Independent and Translatable
Dependent Value Sets 4 – 40.
Using Translatable Independent and Translatable
Dependent Value Sets 4 – 40.

Implementation 4 – 40.
Limitations on Translatable Value Sets 4 – 41.
Converting Independent/Dependent Value Sets to
Translatable Independent/Dependent Value Sets 4 – 42.

Using Special and Pair Value Sets 4 – 43.
Defaulting Flexfield Values 4 – 44.

Precedence of Default Values, Shorthand Entry Values,
and COPY Values in Key Flexfields 4 – 44.

Changing the Value Set of an Existing Flexfield Segment 4 – 46.
Value Set Windows 4 – 50.

Overview of Value Set Windows 4 – 50.
Defining Value Sets 4 – 51.
Dependent Value Set Information Window 4 – 54.
Validation Table Information Window 4 – 57.
Special Validation Routines Window 4 – 64.

Segment Values Window 4 – 65.
Segment Values Block 4 – 68.
Defining Segment Values 4 – 68.
Defining Hierarchy and Qualifiers Information 4 – 70.
Qualifiers 4 – 71.
Hierarchy Details Buttons 4 – 73.
Define Child Ranges 4 – 74.

 vi Oracle Applications Flexfields Guide

View Hierarchies 4 – 77.
Move Child Ranges 4 – 81.

Rollup Groups Window 4 – 83.
Defining Rollup Groups 4 – 84.

Chapter 5 Using Additional Flexfields Features 5 – 1.
Overview of Shorthand Flexfield Entry 5 – 2.

Defining Shorthand Aliases 5 – 6.
Disabling or Enabling a Shorthand Alias 5 – 7.

Overview of Flexfield Value Security 5 – 9.
Effects of Flexfield Value Security 5 – 10.
Understanding Flexfield Value Security 5 – 11.
Activating Flexfield Value Security 5 – 15.

Define Security Rules Window and Assign Security
Rules Window 5 – 18.

Defining Security Rules 5 – 19.
Defining Security Rule Elements 5 – 20.
Assigning Security Rules 5 – 21.

Cross–Validation Rules 5 – 23.
How Cross–Validation Works 5 – 25.
Designing Your Cross–Validation Rules 5 – 27.
Maintaining Your Cross–Validation Rules and
Valid Combinations 5 – 33.
Reports 5 – 34.

Cross–Validation Rules Window 5 – 35.
Defining Cross–validation Rules 5 – 36.
Defining Cross–validation Rule Elements 5 – 37.

Chapter 6 Key Flexfields in Oracle Applications 6 – 1.
Key Flexfields by Flexfield Name 6 – 2.
Key Flexfields by Owning Application 6 – 3.
Tables of Individual Key Flexfields in Oracle Applications 6 – 4.
Account Aliases 6 – 5.
Accounting Flexfield 6 – 6.
Asset Key Flexfield 6 – 7.
Bank Details KeyFlexField 6 – 8.
Category Flexfield 6 – 9.
Cost Allocation Flexfield 6 – 10.
Grade Flexfield 6 – 11.
Item Catalogs 6 – 12.
Item Categories 6 – 13.

 viiContents

Job Flexfield 6 – 14.
Location Flexfield 6 – 15.
People Group Flexfield 6 – 16.
Personal Analysis Flexfield 6 – 17.
Position Flexfield 6 – 18.
Sales Orders 6 – 19.
Sales Tax Location Flexfield 6 – 20.
Oracle Service Item Flexfield 6 – 21.
Soft Coded KeyFlexfield 6 – 22.
Stock Locators 6 – 23.
System Items (Item Flexfield) 6 – 24.
Territory Flexfield 6 – 25.

Chapter 7 Standard Request Submission 7 – 1.
Overview of Flexfields and Standard Request Submission 7 – 2.

Planning Your Report Parameters 7 – 3.
Using Flexfield Information in Your Report Parameters 7 – 4. . . .
Report Parameter Window Planning Diagrams 7 – 7.

Chapter 8 Reporting on Flexfields Data 8 – 1.
Overview of Reporting on Flexfields Data 8 – 2.
Overview of Flexfield Views 8 – 3.

Key Flexfield Concatenated Segment View 8 – 3.
Key Flexfield Structure View 8 – 4.
Descriptive Flexfield View 8 – 5.
Creating a Flexfield View 8 – 6.
Segment Naming Conventions 8 – 7.
Using Flexfield Views to Write a Report 8 – 9.

Examples of Flexfield Views 8 – 11.
Key Flexfield Views Examples 8 – 11.
Descriptive Flexfield View Example 8 – 14.

Oracle Reports 6.0 Flexfield Support API 8 – 18.
General Methodology 8 – 18.
Basic Implementation Steps 8 – 20.
FND FLEXSQL 8 – 22.
FND FLEXIDVAL 8 – 26.

Oracle Reports and Flexfields Report–Writing Steps 8 – 30.
Flexfield Report Examples 8 – 36.

Report 1: Simple Tabular Report 8 – 37.
Report 2: Simple Tabular Report With
Multiple Structures 8 – 41.

 viii Oracle Applications Flexfields Guide

Report 3: Tabular Report 8 – 46.
Report 4: Master–Detail Report 8 – 56.
Report 5: Master–detail Report on Multiple Structures 8 – 68.

Chapter 9 Key Flexfield Routines for Special Validation 9 – 1.
Syntax for Key Flexfield Routines 9 – 2.

Special Validation Value Sets 9 – 23.
Special Validation Events 9 – 25.
Defining Your Special Validation Function 9 – 26.
Example of Special Validation 9 – 29.
Example of Special Validation for a Single Segment 9 – 30.
Example of Pair Validation 9 – 31.
Using Variables with Special and Pair Validation 9 – 32.

Chapter 10 Account Generator 10 – 1.
Overview of the Account Generator 10 – 2.

Terms 10 – 2.
Account Generator Process Diagram 10 – 5.
How the Account Generator Works 10 – 8.
Where the Account Generator Derives Segment Values 10 – 9. . . .

The Account Generator in Oracle Applications 10 – 11.
Overview of Implementing the Account Generator 10 – 12.
Customizing the Account Generator 10 – 13.

Determine Characteristics of Combination 10 – 14.
Decide From Where Each Segment Derives Its Value 10 – 14.
Modify Your Account Generator Process 10 – 15.

Test Your Account Generator Setup 10 – 19.
Standard Flexfield Workflow 10 – 20.
Converting from FlexBuilder 10 – 25.
Choosing the Process for a Flexfield Structure 10 – 27.

Appendix A Business View Generator A – 1.
Business View Generator for Oracle Business Intelligence
System A – 2.

Prerequisites A – 2.
Generating Business Views A – 2.

Index

 ixPreface

Preface

 x Oracle Applications Flexfields Guide

Audience for This Guide

Welcome to Release 11i of the Oracle Applications Flexfields Guide.

This guide assumes you have a working knowledge of the following:

• The principles and customary practices of your business area.

• The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user
interface, read the Oracle Applications User’s Guide.

See Other Information Sources for more information about Oracle
Applications product information.

How To Use This Guide

This guide contains the information you need to understand and use
flexfields in Oracle Applications.

This preface explains how this user guide is organized and introduces
other sources of information that can help you. This guide contains the
following chapters:

• Chapter 1 provides an overview of flexfields concepts and an
overview of setting up flexfields.

• Chapter 2 contains information for planning and defining key
flexfields.

• Chapter 3 contains information for planning and defining
descriptive flexfields, as well as a section on how to identify a
descriptive flexfield in a form.

• Chapter 4 describes how to use values and value sets in your
flexfields.

• Chapter 5 provides information on additional flexfields features,
such as shorthand aliases, security rules, and cross–validation
rules.

• Chapter 6 contains a summary of the key flexfields used in
Oracle Applications.

• Chapter 7 describes how Standard Request Submission interacts
with flexfields.

• Chapter 8 explains how to report on flexfield data using flexfield
rules.

 xiPreface

• Chapter 9 tells you how to use special validation to provide
flexfields as report parameters, and includes syntax for flexfields
routines.

• Chapter 10 includes documentation about the Account
Generator feature.

• Finally, an appendix contains information for the Business View
Generator for Business Intelligence (BIS).

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting
documentation accessible, with good usability, to the disabled
community. To that end, our documentation includes features that
make information available to users of assistive technology. This
documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with
other market–leading technology vendors to address technical
obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the
code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely
of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies
or organizations that Oracle Corporation does not own or control.
Oracle Corporation neither evaluates nor makes any representations
regarding the accessibility of these Web sites.

Why Flexfields Have A Separate Manual

While flexfields do not require programming, they do allow you to
perform significant customizations to the Oracle Applications, so they
do require enough explanation for you to get the most out of the

 xii Oracle Applications Flexfields Guide

features they provide. Also, once you learn how to plan and set up one
Oracle Applications feature that is built using a flexfield, you will find
it much easier to set up any other Oracle Applications feature that uses
a flexfield.

Other Information Sources

You can choose from many sources of information, including online
documentation, training, and support services, to increase your
knowledge and understanding of Oracle Applications flexfields.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11i versions of those guides.

Online Documentation

All Oracle Applications documentation is available online (HTML or
PDF).

• Online Help – The new features section in the HTML help
describes new features in 11i. This information is updated for
each new release of Oracle Applications. The new features
section also includes information about any features that were
not yet available when this guide was printed. For example, if
your administrator has installed software from a mini–pack or
an upgrade, this document describes the new features. Online
help patches are available on MetaLink.

• 11i Features Matrix – This document lists new features available
by patch and identifies any associated new documentation. The
new features matrix document is available on MetaLink.

• Readme File – Refer to the readme file for patches that you have
installed to learn about new documentation or documentation
patches that you can download.

Related User’s Guides

You can read the guides online by choosing Library from the
expandable menu on your HTML help window, by reading from the
Oracle Applications Document Library CD included in your media
pack, or by using a Web browser with a URL that your system
administrator provides.

 xiiiPreface

If you require printed guides, you can purchase them from the Oracle
Store at http://oraclestore.oracle.com.

Guides Related to This Product

Oracle Business Intelligence System Implementation Guide

This guide provides information about implementing Oracle Business
Intelligence (BIS) in your environment.

Guides Related to All Products

Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate
using the graphical user interface (GUI) available with this release of
Oracle Applications. This guide also includes information on setting
user profiles, as well as running and reviewing reports and concurrent
processes.

You can access this user’s guide online by choosing ”Getting Started
with Oracle Applications” from any Oracle Applications help file.

Installation and System Administration

Oracle Applications Concepts

This guide provides an introduction to the concepts, features,
technology stack, architecture, and terminology for Oracle Applications
Release 11i. It provides a useful first book to read before an installation
of Oracle Applications. This guide also introduces the concepts behind
Applications–wide features such as Business Intelligence (BIS),
languages and character sets, and Self–Service Web Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process
is handled using Oracle Rapid Install, which minimizes the time to
install Oracle Applications, the Oracle8 technology stack, and the
Oracle8i Server technology stack by automating many of the required
steps. This guide contains instructions for using Oracle Rapid Install
and lists the tasks you need to perform to finish your installation. You

 xiv Oracle Applications Flexfields Guide

should use this guide in conjunction with individual product user’s
guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications
Release 10.7 or Release 11.0 products to Release 11i. This guide
describes the upgrade process and lists database and product–specific
upgrade tasks. You must be either at Release 10.7

(NCA, SmartClient, or character mode) or Release 11.0, to upgrade to
Release 11i. You cannot upgrade to Release 11i directly from releases
prior to 10.7.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as
AutoUpgrade, AutoPatch, AD Administration, AD Controller, AD
Relink, License Manager, and others. It contains how–to steps,
screenshots, and other information that you need to run the AD
utilities. This guide also provides information on maintaining the
Oracle applications file system and database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator. It contains information on how to
define security, customize menus and online help, and manage
concurrent processing.

Oracle Applications Developer’s Guide

This guide contains the coding standards followed by the Oracle
Applications development staff. It describes the Oracle Application
Object Library components needed to implement the Oracle
Applications user interface described in the Oracle Applications User
Interface Standards for Forms–Based Products. It also provides information
to help you build your custom Oracle Forms Developer 6i forms so that
they integrate with Oracle Applications.

 xvPreface

Other Implementation Documentation

Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle
Applications. It provides a history of the changes to individual Oracle
Applications products between Release 11.0 and Release 11i. It includes
new features, enhancements, and changes made to database objects,
profile options, and seed data for this interval.

Oracle Workflow Guide

This guide explains how to define new workflow business processes as
well as customize existing Oracle Applications–embedded workflow
processes. You also use this guide to complete the setup steps necessary
for any Oracle Applications product that includes workflow–enabled
processes.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams
and a detailed description of database tables, forms, reports, and
programs for a specific Oracle Applications product. This information
helps you convert data from your existing applications, integrate
Oracle Applications data with non–Oracle applications, and write
custom reports for Oracle Applications products. Oracle eTRM is
available on Metalink.

Oracle Applications User Interface Standards
for Forms–Based Products

This guide contains the user interface (UI) standards followed by the
Oracle Applications development staff. It describes the UI for the
Oracle Applications products and how to apply this UI to the design of
an application built by using Oracle Forms.

Training and Support

Training

Oracle offers a complete set of training courses to help you and your
staff master Oracle Applications and reach full productivity quickly.
These courses are organized into functional learning paths, so you take
only those courses appropriate to your job or area of responsibility.

 xvi Oracle Applications Flexfields Guide

You have a choice of educational environments. You can attend courses
offered by Oracle University at any one of our many Education
Centers, you can arrange for our trainers to teach at your facility, or
you can use Oracle Learning Network (OLN), Oracle University’s
online education utility. In addition, Oracle training professionals can
tailor standard courses or develop custom courses to meet your needs.
For example, you may want to use your organization structure,
terminology, and data as examples in a customized training session
delivered at your own facility.

Support

From on–site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle Applications working for you. This team includes your
Technical Representative and Account Manager, and Oracle’s large staff
of consultants and support specialists with expertise in your business
area, managing an Oracle8i server, and your hardware and software
environment.

Do Not Use Database Tools to Modify Oracle Applications Data

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus,
Oracle Data Browser, database triggers, or any other tool to modify
Oracle Applications data unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change,
retrieve, and maintain information in an Oracle database. But if you use
Oracle tools such as SQL*Plus to modify Oracle Applications data, you
risk destroying the integrity of your data and you lose the ability to
audit changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using Oracle Applications can update many tables at once. But
when you modify Oracle Applications data using anything other than
Oracle Applications, you may change a row in one table without
making corresponding changes in related tables. If your tables get out
of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle
Applications.

When you use Oracle Applications to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. If you enter
information into database tables using database tools, you may store

 xviiPreface

invalid information. You also lose the ability to track who has changed
your information because SQL*Plus and other database tools do not
keep a record of changes.

About Oracle

Oracle Corporation develops and markets an integrated line of
software products for database management, applications
development, decision support, and office automation, as well as
Oracle Applications, an integrated suite of more than 160 software
modules for financial management, supply chain management,
manufacturing, project systems, human resources and customer
relationship management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers and personal digital assistants,
allowing organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and applications products, along with related
consulting, education, and support services, in over 145 countries
around the world.

Your Feedback

Thank you for using Oracle Applications and this user’s guide.

Oracle values your comments and feedback. At the end of this guide is
a Reader’s Comment Form you can use to explain what you like or
dislike about Oracle Applications or this user’s guide. Mail your
comments to the following address or call us directly at (650) 506–7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Or, send electronic mail to appsdoc_us@oracle.com.

 xviii Oracle Applications Flexfields Guide

C H A P T E R

1

1 – 1Flexfield Concepts

Flexfield Concepts

This chapter provides you with a conceptual overview of flexfields.
You learn about:

• The general features of flexfields

• Flexfields terminology

• The benefits of flexfields

• The distinction between a key and descriptive flexfield

• The overall setup process for flexfields

1 – 2 Oracle Applications Flexfields Guide

Overview of Flexfield Concepts

 A flexfield is a field made up of sub–fields, or segments. There are
two types of flexfields: key flexfields and descriptive flexfields. A key
flexfield appears on your form as a normal text field with an
appropriate prompt. A descriptive flexfield appears on your form as a
two–character–wide text field with square brackets [] as its prompt.
When opened, both types of flexfield appear as a pop–up window that
contains a separate field and prompt for each segment. Each segment
has a name and a set of valid values. The values may also have value
descriptions.

Figure 1 – 1

[]Descr Computer–Monitor–Light Tan

Orders for Parts

Big Mfg. Co.

Order Number 1

Part COM–876–LTN

Client

Order Type

Country

SP

Jane Rawlins

Descriptive Flexfield

Type Special Order

Sales Rep

COM

876

LTN

Category

Item

Color

Computer

Monitor

Light Tan

Part Number Key Flexfield

Pop–up
Window

Segment Value

Key
Flexfield

Descriptive
Flexfield

Prompt

Value Description

☞

1 – 3Flexfield Concepts

Key Flexfields

Most organizations use ”codes” made up of meaningful segments
(intelligent keys) to identify general ledger accounts, part numbers, and
other business entities. Each segment of the code can represent a
characteristic of the entity. For example, your organization might use
the part number PAD–NR–YEL–8 1/2x14” to represent a notepad that
is narrow–ruled, yellow, and 8 1/2” by 14”. Another organization may
identify the same notepad with the part number ”PD–8x14–Y–NR”.
Both of these part numbers are codes whose segments describe a
characteristic of the part. Although these codes represent the same
part, they each have a different segment structure that is meaningful
only to the organization using those codes.

The Oracle Applications store these ”codes” in key flexfields. Key
flexfields are flexible enough to let any organization use the code
scheme they want, without programming.

When your organization initially installs Oracle Applications, you and
your organization’s implementation team customize the key flexfields
to incorporate code segments that are meaningful to your business.
You decide what each segment means, what values each segment can
have, and what the segment values mean. Your organization can
define rules to specify which segment values can be combined to make
a valid complete code (also called a combination). You can also define
relationships among the segments. The result is that you and your
organization can use the codes you want rather than changing your
codes to meet Oracle Applications’ requirements.

For example, consider the codes your organization uses to identify
general ledger accounts. Oracle Applications represent these codes
using a particular key flexfield called the Accounting Flexfield. One
organization might choose to customize the Accounting Flexfield to
include five segments: company, division, department, account, and
project. Another organization, however, might structure their general
ledger account segments differently, perhaps using twelve segments
instead of five. The Accounting Flexfield lets your Oracle General
Ledger application accommodate the needs of different organizations
by allowing them to customize that key flexfield to their particular
business usage. See: Oracle General Ledger User’s Guide.

Attention: Throughout this guide we use the ”Part Number
Key Flexfield” in our examples and graphics. We use this
example because it helps to illustrate the uses and behaviors of
key flexfields without requiring any specialized accounting,
human resources, or manufacturing knowledge. However,
there is no actual ”Part Number Key Flexfield” in the Oracle

1 – 4 Oracle Applications Flexfields Guide

Applications, and you should not confuse it with the System
Items Flexfield (Item Flexfield) used by many Oracle
Applications products such as Oracle Inventory.

Descriptive Flexfields

Descriptive flexfields provide customizable ”expansion space” on your
forms. You can use descriptive flexfields to track additional
information, important and unique to your business, that would not
otherwise be captured by the form. Descriptive flexfields can be
context sensitive, where the information your application stores
depends on other values your users enter in other parts of the form.

A descriptive flexfield appears on a form as a single–character,
unnamed field enclosed in brackets. Just like in a key flexfield, a
pop–up window appears when you move your cursor into a
customized descriptive flexfield. And like a key flexfield, the pop–up
window has as many fields as your organization needs.

Each field or segment in a descriptive flexfield has a prompt, just like
ordinary fields, and can have a set of valid values. Your organization
can define dependencies among the segments or customize a
descriptive flexfield to display context–sensitive segments, so that
different segments or additional pop–up windows appear depending
on the values you enter in other fields or segments.

For example, consider the Additions form you use to define an asset in
your Oracle Assets application. This form contains fields to capture the
”normal” information about an asset, such as the type of asset and an
asset number. However, the form does not contain specific fields for
each detail about a given asset, such as amount of memory in a
computer or lifting capacity of a forklift. In this case, having all the
potentially–needed fields actually built into the form is not only
difficult, it is undesirable. Because while one organization may have
computers and forklifts as assets, another organization may have only
computers and luxury automobiles (and no forklifts) as assets. If the
form contained built–in fields for each attribute of a forklift, for
example, an organization with no forklifts would find those fields to be
both unnecessary and a nuisance because a user must skip them to
enter information about another type of asset. In fact, fields for forklift
information would be cumbersome whenever a user in any
organization tries to enter any asset that is not a forklift.

Instead of trying to contain all possible fields for assets information, the
Additions form has a descriptive flexfield that you can customize to

1 – 5Flexfield Concepts

capture just the information your organization needs about your assets.
The flexfield structure can depend on the value of the Asset Category
field and display only those fields (segments) that apply to the
particular type of asset. For example, if the asset category were ”desk,
wood”, your descriptive flexfield could prompt for style, size and
wood type. If the asset category were ”computer, hardware”, your
flexfield could prompt for CPU chip and memory size. You can even
add to the descriptive flexfield later as you acquire new categories of
assets.

See: Additions
(Oracle Assets User’s Guide)

The Enter Journals window in the Oracle General Ledger applications
is another example of a form that includes descriptive flexfields to
allow organizations to capture additional information of their own
choosing. Each block contains a descriptive flexfield as its last field.
You might use these to store additional information about each journal
entry, such as a source document number or the name of the person
who prepared the entry.

See: Entering Journals
(Oracle General Ledger User’s Guide)

Benefits of Flexfields

Flexfields provide you with the features you need to satisfy the
following business needs:

• Customize your applications to conform to your current business
practice for accounting codes, product codes, and other codes.

• Customize your applications to capture data that would not
otherwise be tracked by your application.

• Have ”intelligent fields” that are fields comprised of one or more
segments, where each segment has both a value and a meaning.

• Rely upon your application to validate the values and the
combination of values that you enter in intelligent fields.

• Have the structure of an intelligent field change depending on
data in your form or application data.

• Customize data fields to your meet your business needs without
programming.

1 – 6 Oracle Applications Flexfields Guide

• Query intelligent fields for very specific information.

What is the distinction between flexfields and application features?
Flexfields, while they are a major feature of the Oracle Applications as
a whole, are merely a mechanism to provide many application features.
Key flexfields provide a flexible way for the Oracle Applications to
represent objects such as accounting codes, part numbers, job
descriptions, and more. For example, the Accounting Flexfield is a
feature that uses a key flexfield to represent accounting codes
throughout most of the Oracle Applications. Similarly, descriptive
flexfields provide a flexible way for the Oracle Applications to provide
customizable ”expansion space” in forms, as well as a way to
implement context–sensitive fields that appear only when needed.
Both types of flexfield let you customize Oracle Applications features
without programming.

Basic Flexfields Concepts

We use the following terms for both key and descriptive flexfields:

• Segment

• Value

• Validation (Validate)

• Value set

• Structure

1 – 7Flexfield Concepts

Figure 1 – 2

[]

Orders for Parts

3754

USABig Mfg. Co.

COM – 876 – LTN

Computer–Monitor–Light Tan

Order No.

Client

Part

Description

Order Type

Country

Value

COM — Computer

MACH — Machinery

FURN — Furniture

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light Tan

Value Set Value Description

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

LTN

Segment

Segment

A segment is a single sub–field within a flexfield. You define the
appearance and meaning of individual segments when customizing a
flexfield. A segment is represented in your database as a single table
column.

1 – 8 Oracle Applications Flexfields Guide

For a key flexfield, a segment usually describes a particular
characteristic of the entity identified by the flexfield. For example, you
can have a key flexfield that stores part numbers. The key flexfield can
contain the part number PAD–YEL–NR–8 1/2x14, which represents a
yellow, narrow ruled, 8 1/2” x 14” note pad. Each section in the part
number, separated by a hyphen, describes a characteristic of the part.
The first segment describes the object, a note pad, the second segment
describes the color of the object, yellow, and so on.

Note that we also refer to the fields in a descriptive flexfield pop–up
window as segments even though they do not necessarily make up
meaningful codes like the segments in key flexfields. However, they do
often describe a particular characteristic of the entity identified
elsewhere on the form you are using.

Values, Validation and Value Sets

Your end user enters a segment value into a segment while using an
application. Generally, the flexfield validates each segment against a
set of valid values (a ”value set”) that are usually predefined. To
”validate a segment” means that the flexfield compares the value a user
enters in the segment against the values in the value set for that
segment.

You can set up your flexfield so that it automatically validates segment
values your end user enters against a table of valid values (which may
also have value descriptions). If your end user enters an invalid
segment value, a list of valid values appears automatically so that the
user can choose a valid value.

You can think of a value set as a ”container” for your values. You
choose what types of values can fit into your value set: their length,
format, and so on.

A segment is usually validated, and usually each segment in a given
flexfield uses a different value set. You can assign a single value set to
more than one segment, and you can even share value sets among
different flexfields. For most value sets, when you enter values into a
flexfield segment, you can enter only values that already exist in the
value set assigned to the segment.

Structure

A flexfield structure is a specific configuration of segments. If you add
or remove segments, or rearrange the order of segments in a flexfield,
you get a different structure.

1 – 9Flexfield Concepts

You can define multiple segment structures for the same flexfield (if
that flexfield has been built to support more than one structure). Your
flexfield can display different prompts and fields for different end users
based on a data condition in your form or application data. Both key
and descriptive flexfields may allow more than one structure.

In some applications, different users may need a different arrangement
of the segments in a flexfield (key or descriptive). Or, you might want
different segments in a flexfield depending on, for example, the value
of another form or database field.

Your Oracle General Ledger application, for example, provides
different Accounting Flexfield (Chart of Accounts) structures for users
of different sets of books. The Oracle General Ledger application
determines which flexfield structure to use based on the value of the
GL Set of Books Name user profile option.

See:

Oracle [Public Sector] General Ledger User’s Guide

1 – 10 Oracle Applications Flexfields Guide

Overview of Setting Up Flexfields

The general process of implementing and using flexfields consists of
several major phases:

• Planning: page 1 – 10

• Defining: page 1 – 16

• Data entry and ongoing maintenance: page 1 – 16

• Reporting: page 1 – 17

You may also have requirements for other phases, such as building
custom reports for your site.

Planning

1 – 11Flexfield Concepts

Figure 1 – 3

[]

Orders for Parts

3754

USABig Mfg. Co.

COM – 876 – LTN

Computer–Monitor–Light Tan

Order No.

Client

Part

Description

Order Type

Country

COM — Computer

MACH — Machinery

FURN — Furniture

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light TanLTN

Planning

Step 1

Learn about
specific
flexfield

Step 2

Plan your
structure

Step 3

Plan your
segments

Step 4

Plan segment
validation

Step 5

Plan for other
features

Step 6

Plan your
values

Step 7

Document your
plan

Step 8

Choose which
flexfields to
implement

Plans
Plans

Plans

1 – 12 Oracle Applications Flexfields Guide

Just as for implementing any new application, planning is by far the
most important (and probably the most time–consuming) phase of
implementing flexfields, so you should give it careful thought. The
planning phase can be broken into smaller, though still interrelated,
steps:

• Decide which flexfields to implement

• Learning about a specific flexfield

• Planning the structure

• Planning the segments

• Planning the segment validation

• Planning to use additional features

• Documenting your plan

Suggestion: We recommend that you plan your flexfields as
completely as possible, including your potential segment
values, before you even begin to define them using Oracle
Applications forms. Once you begin using your flexfields to
acquire data, you cannot change them easily. Changing a
flexfield for which you already have data may require a
complex conversion process.

Decide which flexfields to implement

Oracle Applications products rely on some key flexfields as central
parts of the applications, so you must set up these key flexfields. For
example, while the Oracle General Ledger products use only the
Accounting Flexfield key flexfield, almost every Oracle Applications
product uses the Accounting Flexfield for some part of its processing.
So, you must almost always set up the Accounting Flexfield, especially
if you have more than one of the Oracle Applications at your site. In
addition, many Oracle Applications products such as Oracle Inventory
and Oracle Purchasing use the System Items Flexfield (Item Flexfield).
Other Oracle Applications use various key flexfields for various
purposes, and defining those flexfields is usually mandatory for a
particular application.

See: Overview of Setting Up
(Oracle [Product] User’s Guide)

1 – 13Flexfield Concepts

While most Oracle Applications products require that you set up
particular key flexfields, many descriptive flexfields are optional. You
need only set up optional descriptive flexfields for forms where you
want to capture business data not otherwise captured by the form
fields.

Learning about a specific flexfield

Because each key and descriptive flexfield has a different purpose, you
should be sure to understand the purpose and requirements for the
flexfield you want to define. Some flexfields, particularly the
Accounting Flexfield, have restrictions on how you can define them.
Most descriptive flexfields simply provide a certain number of segment
columns you can use for whatever you need to fill your organization’s
needs.

See:

Key Flexfields in Oracle Applications: page 6 – 2

Planning the structure

For each flexfield you want to implement, plan your segment
structure(s). You can completely customize the appearance of your
flexfield pop–up window for each structure, including its title and the
number, order, length, and prompts of its segments. Though you can
always change the cosmetic aspects of your flexfield pop–up window,
such as the title and prompts, you should never change the number,
order, and maximum length of your segments once you have acquired
flexfield data. So, you should plan your structures carefully and allow
for future needs.

See:

Planning Your Key Flexfield: page 2 – 13

Planning Your Descriptive Flexfield: page 3 – 24

Planning the segments

You must choose two lengths for each segment, the displayed length
and the maximum length. The maximum length is the length of the
longest value a user can enter into a segment. The largest maximum
length you can choose must be less than or equal to the length of the
underlying column that corresponds to the segment. Because these

1 – 14 Oracle Applications Flexfields Guide

column sizes vary among flexfields, you need to know what column
lengths are available for your flexfield.

The displayed length is the segment length a user sees in the pop–up
window. If the displayed length is less than the maximum length, the
user must scroll through the segment to see its entire contents.

See:

Key Flexfields in Oracle Applications: page 6 – 2

Planning the segment validation

For each segment, plan your validation. Consider what types of values
you will be using in your flexfield segments. These decisions affect
how you set up your value sets and values.

• Do you want to provide a list of values for each segment? A list
of values on a segment can make data entry faster and easier for
your users and ensure that they enter valid values.

• Do you want to share values among segments in different
structures or among different flexfields?

• Do you want the available values in a segment to depend upon
what value a user entered in a prior segment?

• Do you not want to validate a segment at all (that is, do you
want to allow a user to enter any value in the segment, such as a
license number that would not be predefined)?

Keep in mind that your values will change over time. Usually, an
organization adds more values as the organization grows or
reorganizes to use new values. For example, you might have a
two–character long segment that holds a department number. Initially,
a two–character department number (such as 01, 02, 15, and so on) may
be sufficient. However, if you later need a department number larger
than 99, such as 100, your segment cannot contain the larger values,
and you would need to change the segment length and then convert
any existing data. For example, your three–character department
numbers may become 001, 002, 015, and so on instead of 01, 02, 15, and
so on. You want to avoid such conversions if possible, so you should
plan your values to allow for future needs.

You should also consider how you plan to acquire your values:

• Do you plan to predefine each segment value manually using an
Oracle Applications form?

1 – 15Flexfield Concepts

• Do you already have application tables that contain appropriate
values you can use?

• Do you plan to use non–validated segments (with no predefined
values) where a user can enter any value in a segment?

• If you have legacy systems, do you plan to derive flexfield
values from those systems in some automated fashion?

See: Values and Value Sets: page 4 – 2

Planning to use additional features

Flexfields have several additional features that make flexfields easier to
use or that provide extra capabilities such as restricting users from
using certain values. For a full discussion of these features, see the
Using Additional Flexfields Features chapter. These features include:

• Flexfield value security

• Cross–validation (for key flexfields)

• Shorthand entry (for key flexfields)

Certain features that affect the end–user behavior of flexfields, such as
AutoSkip and query–by–example, are discussed in the Oracle
Applications User’s Guide. See: Overview of Flexfields, Oracle
Applications User’s Guide.

See:

Overview of Shorthand Flexfield Entry: page 5 – 2

Cross Validation Rules: page 5 – 23

Overview of Flexfield Value Security: page 5 – 9

Documenting your plans

You should fully document your flexfield plans before you sit down to
define your flexfields using your Oracle Applications setup forms.

We provide worksheets and templates throughout the book that you
can use to aid your decision and documentation process.

1 – 16 Oracle Applications Flexfields Guide

Defining

Defining your flexfield is easy once you have completed and
documented your planning stage. You use Oracle Applications setup
forms to define your flexfield.

Define your value sets

Depending on exactly how you want to validate your segments, you
may spend 10–30 minutes defining each value set (roughly one value
set per segment, or fewer if you plan to share value sets or do not plan
to use value sets for certain segments).

Note that you do not define your actual values at this point; rather, you
are simply defining the containers for your values. See: Value Set
Windows: page 4 – 50.

Define your segment structures

This is the main part of defining a flexfield, and includes defining
structure titles, segment prompts, segment order, and segment display
sizes. Depending on the number of structures and segments you have,
you may spend 20–90 minutes per flexfield. See: Key Flexfield
Segments: page 2 – 16, Descriptive Flexfield Segments: page 3 – 31.

Define your values, if necessary

Depending on exactly how you want to validate your segments, you
may spend anywhere from 1–3 minutes defining each independent or
dependent value in an Oracle Applications form. If you have legacy
systems, you may need to build a program to import your legacy
values into Oracle Applications tables. See: Segment Value Window:
page 4 – 65, Values and Value Sets: page 4 – 2.

Define additional features, if necessary

If you plan to use additional features such as cross–validation rules or
flexfield value security, you define those additional features at this
point.

Data Entry and Ongoing Maintenance

Data entry consists of using your applications for your day–to–day
operations. For key flexfields, you may want to predefine the complete

1 – 17Flexfield Concepts

codes (combinations of segment values) you want to allow your users
to enter.

See: Defining Accounts
(Oracle General Ledger User’s Guide)

As your organization’s needs change, you will need to perform
ongoing maintenance of your flexfields. For example, you may need to
define new flexfield structures or disable old structures. You may also
need to add new values or cross–validation rules or value security
rules.

See:

Key Flexfield Segments: page 2 – 16

Cross–Validation Rules: page 5 – 35

Defining Accounts
(Oracle General Ledger User’s Guide)

Reporting

Oracle Applications provides many predefined reports you can use to
retrieve your organization’s data, and many of these include flexfields
data. You can also build custom reports for your organization using
the flexfields routines and views we provide. See: Reporting on
Flexfields Data: page 8 – 1.

1 – 18 Oracle Applications Flexfields Guide

C H A P T E R

2

2 – 1Planning and Defining Key Flexfields

Planning and Defining
Key Flexfields

This chapter contains information on planning and defining key
flexfields. It includes further discussion of flexfields concepts and
provides additional concepts that are specific to key flexfields. It also
includes discussions of the procedures you use to set up any key
flexfield.

2 – 2 Oracle Applications Flexfields Guide

Additional Terms and Concepts for Key Flexfields

You should already know these basic flexfields terms and concepts:

• Flexfield

• Segment

• Structure

• Value

• Validation (Validate)

• Value set

Now that you know terms and concepts that apply to both key and
descriptive flexfields, you need to know additional terms that apply to
key flexfields only.

Intelligent Key

☞

2 – 3Planning and Defining Key Flexfields

An intelligent key is a code made up of sections, where one or more
parts may have meaning. An intelligent key ”code” uniquely identifies
an object such as an account, an asset, a part, or a job. Intelligent keys
are useful in applications because they are usually easier for a user to
remember and use than a unique number. For example, a part number
of PAD–YEL–11x14 is much easier to remember than a unique part
number of 57494. However, unique ID numbers are easier to maintain
in a relational database application because only one column is
required for the ID number, while multiple columns would be required
for an intelligent key (one for each section or segment of the code). The
Oracle Applications use key flexfields to represent intelligent keys with
unique ID numbers. That is, an end user sees and works with an
easy–to–remember intelligent key code, while the Oracle Applications
only need to store a hidden unique ID number in most tables.

Attention: Throughout this guide we use the ”Part Number
Key Flexfield” in our examples and graphics. We use this
example because it helps to illustrate the uses and behaviors of
key flexfields without requiring any specialized accounting,
human resources, or manufacturing knowledge. However,
there is no actual ”Part Number Key Flexfield” in the Oracle
Applications, and you should not confuse it with the System
Items Flexfield (Item Flexfield) used by many Oracle
Applications products such as Oracle Inventory.

Combination

A combination is a particular complete code, or combination of segment
values that makes up the code, that uniquely identifies an object. For
example, each part number would be a single combination, such as
PAD–YEL–11x14 or 01–COM–876–7BG–LTN (where the dash ”–” is the
segment separator). If you had ten parts you would define ten
combinations. A valid combination is simply a combination that may
currently be used (that is, it is not out of date or disabled). A
combination would have different segments depending on the flexfield
structure being used for that combination. Any combination is
associated with only one particular flexfield structure (arrangement of
segments).

Note that many of the Oracle Applications products (and their
documentation) do not necessarily refer to key flexfield combinations
as ”combinations”. They may refer to combinations using the name of
the entity or the key flexfield itself. For example, Oracle Assets uses a
key flexfield called the ”Asset Key Flexfield” and refers to one of its

2 – 4 Oracle Applications Flexfields Guide

combinations as ”an asset key” or ”an asset key flexfield”. In another
example, Oracle General Ledger and other Oracle Applications
products generally use the term ”account” or ”GL account” to refer to
combinations of the Accounting Flexfield.

Combinations Table

Each key flexfield has one corresponding table, known as the
combinations table, where the flexfield stores a list of the complete codes,
with one column for each segment of the code, together with the
corresponding unique ID number (a code combination ID number or
CCID) for that code. Then, other tables in the application have a
column that stores just the unique ID for the code. For example, if you
have a part number code, such as PAD–YEL–11x14, the ”Parts”
combinations table stores that code along with its ID, 57494. If your
application allows you to take orders for parts, you might then have an
”Orders” table that stores orders for parts. That ”Orders” table would

2 – 5Planning and Defining Key Flexfields

contain a single column that contains the part ID, 57494, instead of
several columns for the complete code PAD–YEL–11x14.

Qualifiers

Flexfield Qualifier

A flexfield qualifier identifies a particular segment of a key flexfield.

Usually an application needs some method of identifying a particular
segment for some application purpose such as security or
computations. However, since a key flexfield can be customized so
that segments appear in any order with any prompts, the application
needs a mechanism other than the segment name or segment order to
use for segment identification. Flexfield qualifiers serve this purpose.
You can think of a flexfield qualifier as an ”identification tag” for a
segment.

For example, your Oracle General Ledger product needs to be able to
identify which segment in the Accounting Flexfield contains balancing
information and which segment contains natural account information.
Since you can customize the Accounting Flexfield so that segments
appear in any order with any prompts, Oracle General Ledger needs
the flexfield qualifier to determine which segment you are using for
natural account information. When you define your Accounting

2 – 6 Oracle Applications Flexfields Guide

Flexfield, you must specify which flexfield qualifiers apply to which
segments.

Other applications, such as Oracle Human Resources, also use flexfield
qualifiers. Oracle Human Resources uses flexfield qualifiers to control
who has access to confidential information in flexfield segments.

A segment qualifier identifies a particular type of value in a single
segment of a key flexfield. In the Oracle Applications, only the
Accounting Flexfield uses segment qualifiers. You can think of a
segment qualifier as an ”identification tag” for a value. In the
Accounting Flexfield, segment qualifiers can identify the account type
for a natural account segment value, and determine whether detail
posting or budgeting are allowed for a particular value.

It is easy to confuse the two types of qualifiers. You should think of a
flexfield qualifier as something the whole flexfield uses to tag its pieces,
and you can think of a segment qualifier as something the segment uses
to tag its values.

Types of Key Flexfield Forms

Key flexfields appear on three different types of application form:

• Combinations form

• Foreign key form

• Range form

These form types correspond to the types of tables that contain key
flexfield data.

Combinations form

A combinations form is a form whose only purpose is to maintain key
flexfield combinations. The base table of the form is the actual
combinations table. This table is the entity table for the object (a part,
or an item, an accounting code, and so on). The table contains a unique
ID column (also called the code combination ID column) as the primary
key, as well as individual segment columns, a structure ID column, and
other flexfields–related columns. The combinations form contains
hidden fields for each segment column in the table, as well as displayed
fields for the concatenated segment values (the combination) and any
other fields (and columns) that the entity requires, such as a
concatentated description field. A combinations form is sometimes
also called a maintenance form.

2 – 7Planning and Defining Key Flexfields

2 – 8 Oracle Applications Flexfields Guide

Foreign key form

A foreign key form is a form whose underlying base table contains only
one or two columns that contain key flexfield information, and those
columns are foreign key columns to the combinations table (usually a
foreign key to the CCID column of the combinations table and
sometimes a structure ID column as well). The purpose of a foreign
key form often has very little to do with the key flexfield itself, and that
the key flexfield appears on the form is essentially incidental. For
example, if you have a key flexfield that represents a part number, you
would use the combinations form to define new parts and maintain
existing part numbers. You would then have many foreign key forms
that you use to manipulate your parts. You might have a form where

2 – 9Planning and Defining Key Flexfields

you take orders for parts, another form where you receive parts, and
yet another form where you ship parts. The fact that your part number
happens to be a key flexfield is not important to your taking orders for
your parts, for example.

Range form

A range form displays a range flexfield, which is a special pop–up
window that contains two complete sets of key flexfield segments. A
range flexfield supports low and high values for each key segment
rather than just single values. Ordinarily, a key flexfield range appears
on your form as two adjacent flexfields, where the leftmost flexfield
contains the low values for a range, and the rightmost flexfield contains

2 – 10 Oracle Applications Flexfields Guide

the high values. A user would specify a range of low and high values
in this pop–up window. For example, you might choose a range of part
numbers for which you want to run a report.

The range form uses a special table as its base table. This table contains
one or more (usually two) columns for each segment column that
appears in the combinations table. However, these columns do not
necessarily contain actual segment values, and a row in the table does
not necessarily contain actual valid combinations. Usually this table
contains two columns for each segment, called SEGMENTn_LOW and
SEGMENTn_HIGH (where n is the segment column number), that
store the range of values for each segment.

In Oracle Applications, we use a key flexfield range to help you specify
cross–validation rules for key flexfield combinations.

Some forms use a variation of a range flexfield to capture information
for each key flexfield segment that is not necessarily a segment value.
For example, the form might capture a ”Yes” or ”No” value for each
segment (the Assign Function Parameters form displays a pop–up
flexfield window where you choose Yes or No to specify whether you
want to assign a value to each particular segment).

2 – 11Planning and Defining Key Flexfields

Dynamic Insertion

Dynamic insertion is the insertion of a new valid combination into a
combinations table from a form other than the combinations form. If
you allow dynamic inserts when you set up your key flexfield, a user
can enter a new combination of segment values using the flexfield
window from a foreign key form. Assuming that the new combination
satisfies any existing cross–validation rules, the flexfield inserts the
new combination into the combinations table, even though the
combinations table is not the underlying table for the foreign key form.

For some key flexfields, dynamic inserts may not be allowed.
Sometimes it may not make sense for an application to allow a user to

2 – 12 Oracle Applications Flexfields Guide

be able to create a new combination from any form other than the
combinations form. For example, a user should not be able to create a
new part while taking an order for parts using an Enter Orders form;
the application should restrict the creation of new part numbers to
authorized users using a Create Parts form.

Dynamic inserts may not be technically possible for some key
flexfields. If the combinations table contains mandatory columns that
are not maintained by the flexfield, dynamic inserts would not be
possible. If the combinations table contains mandatory non–flexfield
columns, such as a ”unit of measure” column, the flexfield would not
be able to complete the entire row in the combinations table from the
foreign key form (because the base table of the foreign key form is not
the combinations table). The flexfield does maintain the CCID column.

Generally there is only one, if any, combinations form for a given key
flexfield. In some applications, there may not be a combinations form.
In these cases, you would use dynamic inserts to create new
combinations.

Note: For details on dynamic insertion for a particular
flexfield, refer to the Oracle [Product] User’s Guide of the owning
application.

Other Key Flexfield Features

Key flexfields also offer additional features that help your organization
maintain valid combinations and make data entry easier for your users.

See:

Overview of Flexfield Value Security: page 5 – 9

Cross–Validation Rules: page 5 – 23

Overview of Shorthand Flexfield Entry: page 5 – 2

2 – 13Planning and Defining Key Flexfields

Planning Your Key Flexfield

Your first step in planning your key flexfields is to determine which key
flexfields your Oracle Applications product requires. You should also
determine the purpose of the key flexfield, as well as the number and
length of its available segment columns (See: Key Flexfields in Oracle
Applications: page 6 – 2). You should also note whether your key
flexfield allows more than one structure, and determine if you do
indeed need to define more than one structure. For example, the
System Items Flexfield (Item Flexfield) supports only one structure.

Those key flexfields that allow multiple structures may use different
mechanisms to determine which structure a user sees. For example,
the Accounting Flexfield uses multiple structures if you have multiple
sets of books with differing charts of accounts. Your forms determine
which Accounting Flexfield structure to display by using the value of
the GL_SET_OF_BOOKS_ID profile option associated with your
current responsibility. Other key flexfields may have a field built into
the form that allow a user to essentially choose which structure
appears. See: Key Flexfields in Oracle Applications: page 6 – 2.

See: Overview of Setting Up
 (Oracle [Product] User’s Guide)

You should decide on the number, order and length of your segments
for each structure. You must also choose how to validate each
segment. See: Overview of Values and Value Sets: page 4 – 2.

When you are planning your flexfields, you should consider the
following questions and their corresponding decisions:

❑ How do you want to break down reporting on your key flexfield
data? If you want to report on your data by certain criteria or
sub–entities, such as account number or project or region, you may
want to consider making that sub–entity a distinct segment, rather
than combining it with another sub–entity, so that you can
categorize and report on smaller discrete units of information.

❑ How often does your organization change? This would affect how
you set up your values. For example, if you disable old cost
centers and enable new ones frequently, you would ”use up” cost
center values quickly. You would therefore want to use a larger
maximum size for your cost center value set so that you can have
more available values (for example, you have 1000 available values
for a 3–character value set instead of 100 available values for a
2–character value set).

2 – 14 Oracle Applications Flexfields Guide

❑ Do you want to require a value for each segment?

Key Flexfield Structure Planning Diagram

You can use photocopies of the following diagram to help you sketch
out your key flexfield structures, including your structure title,
segment prompts, sample values, and sample value descriptions. Add
or subtract segments as appropriate for your structures. You can also
use other worksheets to help make your decisions and document your
plans.

2 – 15Planning and Defining Key Flexfields

2 – 16 Oracle Applications Flexfields Guide

Key Flexfield Segments Window

2 – 17Planning and Defining Key Flexfields

Use this window to define the your key flexfield structure.

See:

Defining Key Flexfields: page 2 – 17

Tasks

Defining Key Flexfield Structures: page 2 – 19

Defining Segments: page 2 – 22

Defining Key Flexfields

You define descriptive information and validation information for each
segment. You also determine the appearance of your key flexfield

2 – 18 Oracle Applications Flexfields Guide

window, including the size of the window, the number and order of the
segments, and the segment descriptions and default values.

Once you set up or modify your structures and segments, you must
freeze your flexfield definition and save your changes. When you do,
your flexfield compiles automatically to improve on–line performance.
You must recompile your flexfield every time you make changes using
this form, including enabling or disabling cross–validation rules. You
must also recompile your flexfield after you enable or disable
shorthand entry using the Shorthand Aliases window.

You can see your flexfield changes immediately after you freeze and
recompile your flexfield. However, your changes affect other users
only after they change responsibilities or exit your application and sign
back on.

Once you freeze your flexfield definition and save your changes, Oracle
Applications submits one or two concurrent requests to generate
database views of the flexfield’s combinations table. You can use these
views for custom reporting at your site. One of these views is always
generated and contains concatenated segment values for all structures
of the key flexfield. You see the name of this view in a message
window. The other view is for the particular structure you are defining
and freezing. This second view is generated only if you enter a view
name for your structure in the View Name field. See: Overview of
Flexfield Views: page 8 – 3.

Warning: Plan your key flexfield structures carefully,
including all your segment information such as segment order
and field lengths, before you define your segments using this
form. You can define your key flexfields any way you want,
but changing your structures once you acquire any flexfield
data may create data inconsistencies that could have a
significant impact on the behavior of your application or
require a complex conversion program. Changing your
existing structures may also adversely affect the behavior of
any cross–validation rules or shorthand aliases you have set for
your structures, so you should be sure to manually disable or
redefine any cross–validation rules (using the Cross–Validation
Rules window) and shorthand aliases (using the Shorthand
Aliases window) to reflect your changed structures.

2 – 19Planning and Defining Key Flexfields

Defining Key Flexfield Structures

Prerequisites

❑ Use the Value Sets window to define any value sets you need. See:
Value Sets: page 4 – 50.

1. Navigate to the Key Flexfield Segments window.

2. Select the application name and title of the key flexfield you want
to define. You cannot create a new flexfield or change the name of
an existing flexfield using this window.

3. For those application flexfields that support more than one
structure (such as the multiple charts of accounts in the Accounting
Flexfield), you can create a new structure for your flexfield by
inserting a row. If you are defining the first structure for your
flexfield, select the default flexfield structure that appears
automatically. If you are modifying an existing structure, use your
cursor keys to select the title of the flexfield structure you want.

You can change the title of an existing flexfield structure by typing
in a new title over the old title. You see this name when you choose
a flexfield structure and as the window title in your key flexfield
(unless the flexfield is used for a specific purpose such as
”Consolidation Account”, in which case the structure title does not
appear in the flexfield window).

The code for a structure is a developer key and is used by loader
programs. The value you specify for the code will default into the
title field.

If you upgraded from Release 10.7 or 11.0, the codes for your
structures were created from your structure titles during the
upgrade.

4. If you want to generate a database view for this structure, enter a
view name. Your view name should begin with a letter and must
not contain any characters other than letters, numbers, or
underscores (_). Your view name must not contain any spaces.
See: Overview of Flexfield Views: page 8 – 3.

5. Check the Enabled check box so that this structure may be used in
your key flexfield. You cannot delete structures from this window
because they are referenced elsewhere in the system, but you can
disable them at any time. A structure must be enabled before it can
be used.

2 – 20 Oracle Applications Flexfields Guide

You should enable at least one structure for each key flexfield. If
you disable a structure that already contains data, you cannot use
that structure to create new combinations or query up your old
information.

6. Select the character you want to use to separate your flexfield
segment values or descriptions whenever your application forms
display concatenated segment values or descriptions.

You should choose your separator character carefully so that it
does not conflict with your flexfield data. For example, if your
data frequently contains periods (.) in monetary or numeric
values, you should not use a period as your segment separator.

It is recommended that you do not use a character as your segment
separator if you expect that character to appear frequently in your
segment values or descriptions.

If you do use a character that appears in your segment values or
descriptions, then that character will be preceded by a backslash
(\) when it appears in a value or a description. A backslash in your
values will be preceded by another backslash.

Note: Do not use a backslash as your segment separator.

For example, say the segment separator is a period (.) and your
values contain periods also. The table below illustrates how the
segment values would appear in the combination.

Segment Values Concatenated Segments as Combination

”1.2”, ”34”, ”5.6” ”1\.2.34.5\.6”

”1”, ”2.34”, ”5.6” ”1.2\.34.5\.6”

”1\.2”, ”34\.5”, ”6” ”1\\\.2.34\\\.5.6”

Table 2 – 1 (Page 1 of 1)

Warning: Some Oracle Applications tables store the segment
separator as part of your flexfield values. Changing your
separator once you have data in such tables may invalidate that
data and cause application errors.

7. Select the Cross–Validate Segments check box if you want to
cross–validate multiple segments using cross–validation rules. You
can define cross–validation rules to describe valid combinations
using the Cross–Validation Rules form. Uncheck the box if you

2 – 21Planning and Defining Key Flexfields

want to disable any existing cross–validation rules. See:
Cross–Validation Rules: page 5 – 35.

8. Indicate whether you want to freeze your rollup group definitions.
If you do, you prevent users from modifying rollup groups using
the Segment Values form.

You can freeze rollup groups before or after you define your
flexfield structure. See: Segment Values: page 4 – 65.

9. If you want to allow dynamic inserts, check the Allow Dynamic
Inserts check box. You would allow dynamic inserts of new valid
combinations into your generic combinations table if you want
users to create new combinations from windows that do not use
your combinations table. You should prevent dynamic inserts if
you want to enter new valid combinations only from a single
application window you create to maintain your specific
combinations table.

You can update this field only if your application flexfield has been
built to allow dynamic inserts. Otherwise this field is display only.

10. Choose the Segments button to open the Segments Summary
window, and define your flexfield segments. See: Defining
Segments: page 2 – 22.

11. Save your changes.

12. Freeze your flexfield structure by checking the Freeze Flexfield
Definition check box.

Do not freeze your flexfield if you want to set up or modify your
flexfield segments or change the appearance of your key flexfield
window. You cannot make most changes while your flexfield is
frozen.

13. Compile your frozen flexfield by choosing the Compile button.
Your changes are saved automatically when you compile.

You must freeze and compile your flexfield definition before you can
use your flexfield. If you have more than one flexfield structure, you
must freeze, save, and compile each structure separately. If you decide
to make changes to your flexfield definition, make sure that you freeze
and save your flexfield definition again after making your changes.

Warning: Do not modify a frozen flexfield definition if
existing data could be invalidated. An alteration of the
flexfield structure once you have any flexfield data can create
serious data inconsistencies. Changing your existing structures
may also adversely affect the behavior of any cross–validation
rules or shorthand aliases you have for your structures, so you

2 – 22 Oracle Applications Flexfields Guide

should be sure to manually disable or redefine any
cross–validation rules and shorthand aliases to reflect your
changed structures.

Defining Segments

Use the Segments window to define segments for your flexfield. The
window title includes the current flexfield’s name. If your flexfield
definition is frozen (that is, the Freeze Flexfield Definition check box is
checked), this window becomes display–only.

You can define as many segments as there are defined segment
columns in your flexfield table. You can create a new segment for your
flexfield by inserting a row.

2 – 23Planning and Defining Key Flexfields

Note: If your flexfield definition is frozen, the Segments
window fields are not updateable.

Prerequisites

❑ Use the Key Flexfield Segments window or the Descriptive
Flexfield Segments window to define your flexfield structure. See:
Key Flexfield Segments window: page 2 – 16, Descriptive Flexfield
Segments window: page 3 – 31.

� To define segments:

1. Enter a name for the segment that you want to define.

Your segment name should begin with a letter and use only letters,
numbers, spaces or underscores (_). The segment prompts get
their default values from this field. The flexfield view generator
will use your segment name as a column name and change all
spaces and special characters to underscores (_). See: Segment
Naming Conventions: page 8 – 7.

2. Indicate that you can use this flexfield segment by checking the
Enabled check box.

Your flexfield does not display disabled segments. You can define
as many segments as there are defined segment columns in your
key flexfield combinations table.

Suggestion: To protect the integrity of your data, you should
not disable a segment if you have already used it to enter data.

3. Select the name of the column you want to use for your flexfield
segment.

Suggestion: If you are defining more than one segment in the
same structure at one time, ensure that you use unique
columns for each segment. If you attempt to use a single
column for more than one segment in the same structure, you
cannot save your changes or compile your structure. Columns
you choose for your segments do not disappear from your list
of values until you save your work.

4. Enter the segment number for this segment.

This number indicates the relative position in which this segment
appears in a flexfield window. A segment with a lower segment
number appears before a segment with a higher segment number.
Dependent segments should occur after the segment they depend
upon in the flexfield window.

2 – 24 Oracle Applications Flexfields Guide

You receive a warning message if you enter a segment number that
is already defined for your flexfield. This warning is only a
reminder that the segment number is in use. If you attempt to
freeze a flexfield in which two segments share the same segment
number, the flexfield does not compile.

Suggestion: For most flexfields, if you give your segments
widely spaced numbers (such as 10, 20, 30...) to indicate their
relative positions, you can add segments to your structure
more easily. Adding segments still disables all your existing
cross–validation rules and shorthand aliases for this flexfield
structure, however. Note that the Accounting Flexfield
requires consecutive segment numbers beginning with 1 (such
as 1, 2, 3, ...).

Warning: Changing the order of your segments invalidates all
existing cross–validation rules and shorthand aliases for this
flexfield structure.

5. Indicate whether you want this segment to appear in the flexfield
window. If your segment is not displayed, you should provide a
default type and value so that the user does not need to enter a
value for this segment. If you do not display a segment but also do
not provide a default value for it, your users may see error
messages when using this flexfield.

Warning: If you are defining the Accounting Flexfield,
you must display all segments. Hiding segments will
adversely affect your application features such as Mass
Allocations.

6. If you are defining the Accounting Flexfield, decide whether you
should check the Indexed check box. For details on the Accounting
Flexfield, see the Oracle General Ledger User’s Guide. If you are
defining any other Oracle Applications (key) flexfield, you can skip
the Indexed check box.

The Oracle General Ledger applications use the Indexed field for
the Optimization feature. What you enter here does not affect
Oracle Applications key flexfields other than the Accounting
Flexfield, but the value may or may not affect key flexfields in
custom applications (depending on whether those applications
have logic that uses the value of this field).

Indicate whether you want the database column in the
combinations table used to store this key segment to have a
single–column index. You should create indexes on segments you
expect to have many distinct values (instead of just a few distinct

☞

2 – 25Planning and Defining Key Flexfields

values). The Oracle General Ledger products’ Optimizer does not
drop existing indexes.

If you set up a new structure of the same flexfield, this value
defaults to the value in the first structure you set up.

See: Running the Optimizer Program
(Oracle General Ledger User’s Guide)

7. Enter the name of the value set you want your flexfield to use to
validate this segment. See: Choosing Your Value Set: page 2 – 26.

8. Indicate whether you want to require a value for this segment. If
you do, users must enter a value before leaving the flexfield
window. If not, the segment is optional.

Attention: All segments in your Accounting Flexfield must be
required.

If this segment is required but depends on an optional segment,
then this segment will become optional if a user leaves the
depended–upon segment blank.

9. Indicate whether to allow security rules to be used for this
segment. Otherwise any defined security rules are disabled.

If the value set for this segment does not allow security rules, then
this field is display only.

10. If you want your flexfield to validate your segment value against
the value of another segment in this structure, then choose either
Low or High in the Range field. Segments with a range type of
Low must appear before segments with a range type of High (the
low segment must have a lower number than the high segment).
For example, if you plan two segments named ”Start Date” and
”End Date,” you may want to require users to enter an end date
later than the start date. You could have ”Start Date” be Low and
”End Date” be High. In this example, the segment you name ”Start
Date” must appear before the segment you name ”End Date,” or
you cannot compile your flexfield.

If you choose Low for one segment, you must also choose High for
another segment in that structure (and vice versa). Otherwise you
cannot compile your flexfield.

If your value set is of the type Pair, this field is display only, and
the value defaults to Pair.

11. Enter the display size and prompt information for the segment.
See: Segment Prompts and Display Lengths: page 2 – 30.

2 – 26 Oracle Applications Flexfields Guide

Choosing Your Value Set

If you do not want your flexfield to validate this segment, you can use
the Value Sets window to define a value set with a Validation Type of
None, or you can leave this field blank.

If you do not choose a value set, your segment behaves as if it were
using a value set with validation type None, format type of Char, width
the same as the underlying key flexfield segment column, with
mixed–case alphabetic characters allowed and no right justification or
zero fill. You must use a value set for any segment whose underlying
column is not a Char column, or you will not be able to compile your
flexfield. You must use a value set for the Accounting Flexfield.

Initially this field only lets you select from independent, table, and
non–validated value sets, and you do not see dependent value sets in
your list. If you want to define your structure to have a dependent
segment that depends on an independent segment, you should define
your independent segment first by selecting an independent value set
in this field. Then save your changes before you start to define your
dependent segment. Once you save your independent segment, you
can also select from the dependent value sets that depend on your
chosen independent value set.

This field prevents you from choosing a value set whose maximum size
is greater than the size of your flexfield’s underlying table columns.
Value sets whose maximum sizes are too large for your flexfield do not
appear in the list of values, and you cannot use them for your flexfield
segment.

If your key flexfield does not allow ”hidden ID” table–validated value
sets (most Oracle Applications key flexfields), those value sets do not
appear in the list of values, and you cannot use them for your flexfield
segment.

You should ensure that the total of the value set maximum sizes for all
of the segments in a given structure, plus the number of segment
separators you need (number of segments in your structure minus
one), does not add up to more than 512. If your structure’s
concatenated length exceeds 512, you may experience truncation of
your flexfield data in some forms. See: Value Set Windows: page
4 – 50, Defaulting Segment Values: page 2 – 27.

2 – 27Planning and Defining Key Flexfields

Defaulting Segment Values

� To set a default segment value:

1. If you want to set a default value for this segment, identify the type
of value you need.

Your list contains only the default types that have formats that
match your value set format type.

Valid types include:

The default value can be any literal value.

The default value is the current date in the format
DD–MON–RR or DD–MON–YYYY, depending on
the maximum size of the value set.

Maximum Date
Size Format
9 DD–MON–RR
11 DD–MON–YYYY

The following table lists Current Date default date
formats for different value set format types.

Value Set Format Type Value Set Maximum Size Date Format

Standard Date 11 User date format

Standard DateTime 20 User date/time format

Date 11 DD–MON–YYYY

Date 9 DD–MON–RR

Char Greater than or equal to 11 DD–MON–YYYY

Char 9, 10 DD–MON–RR

Table 2 – 2 (Page 1 of 1)

The default value is the current time or the current
date and time, depending on the maximum size of
the segment.

The following table lists Current Time default
date/time formats for different value set format
types.

Constant

Current Date

Current Time

☞

2 – 28 Oracle Applications Flexfields Guide

Value Set Format Type Value Set Maximum
Size

Date/Time Format

Standard DateTime 20 User date/time format

DateTime 20 DD–MON–YYYY HH24:MI:SS

DateTime 18 DD–MON–RR HH24:MI:SS

DateTime 17 DD–MON–YYYY HH24:MI

DateTime 15 DD–MON–RR HH24:MI

Time 8 HH24:MI:SS

Time 5 HH24:MI

Char Greater than or equal
to 20

DD–MON–YYYY HH24:MI:SS

Char 18, 19 DD–MON–RR HH24:MI:SS

Char 17 DD–MON–YYYY HH24:MI

Char 15, 16 DD–MON–RR HH24:MI

Char Between 8 and 14
(inclusive)

HH24:MI:SS

Char Between 5 and 7
(inclusive)

HH24:MI:SS

Table 2 – 3 (Page 1 of 1)

The default value is the current value in the field
you designate in the Default Value field. The field
must be in the same form as the flexfield.

The default value is the current value of the user
profile option defined in the Default Value field.

The default value is the value entered in a prior
segment of the same flexfield window.

The default value is determined by the SQL
statement you define in the Default Value field.

If you choose Current Date or Current Time, you skip the next
field.

Attention: If you are using flexfields server–side validation,
you cannot use form field references (:block.field). You must
either remove your field references or turn off flexfields

Field

Profile

Segment

SQL Statement

2 – 29Planning and Defining Key Flexfields

server–side validation using the profile option
Flexfields:Validate on Server.

See:

Flexfields:Validate on Server: page 4 – 28

2. Enter a default value for the segment. Your flexfield automatically
displays this default value in your segment when you enter your
key flexfield window. You determine whether the default value is a
constant or a context–dependent value by choosing the default
type.

Your default value should be a valid value for your value set.
Otherwise, when you use your flexfield for data entry, your
flexfield displays an error message and does not use your invalid
default value in your flexfield segment.

For each default type chosen in the Default Type field, the valid
values for the Default Value field are:

Enter any literal value for the default value.

The default value is the current value in the field
you specify here. The field must be in the same
form as the flexfield. Use the format :block.field.

The value of the field must be in the format of the
displayed value for the segment.

The default value is the current value of the user
profile option you specify here. Enter the profile
option name, not the end–user name.

The value of the profile option must be in the
format of the displayed value of the segment.

The default value is the value entered in a prior
segment of the same flexfield window. Enter the
name of the segment whose value you want to
copy.

The default value can be one of three values
associated with the prior segment. The three
choices are: ID, VALUE, and MEANING. The ID is
the hidden ID value for the segment. VALUE is the
displayed value for the segment. MEANING is the
description of the segment.

To use the displayed value of the prior segment,
specify segment_name.VALUE in this field. Specify

Constant

Field

Profile

Segment

☞

2 – 30 Oracle Applications Flexfields Guide

segment_name.MEANING for the description of
that segment. Specify segment_name.ID for the
hidden ID value of the segment. If you specify
segment_name only, the hidden ID value of the
segment is the default value.

For Standard Date and Standard DateTime value
sets you should use segment_name.VALUE of the
prior segment.

The default value is determined by the SQL
statement you enter here. Your SQL statement
must return exactly one row and one column in all
cases.

For date values, the SQL statement must return the
value in the correct displayed format. Use the
FND_DATE package for date conversions.

Attention: If you are using flexfields server–side validation,
you cannot use form field references (:block.field). You must
either remove your field references or turn off flexfields
server–side validation using the profile option
Flexfields:Validate on Server.

See:

Flexfields:Validate on Server: page 4 – 28

Oracle Applications Developer’s Guide

Segment Prompts and Display Lengths

The lengths you choose for your segments and prompts affect how the
flexfield displays.

You should ensure that the total of the value set maximum sizes (not
the display sizes) for all of the segments in a given structure, plus the
number of segment separators you need (number of segments in your
structure minus one), does not add up to more than 512. If your
structure’s concatenated length exceeds 512, you may experience
truncation of your flexfield data in some forms.

The display size of the segment must be less than or equal to the
maximum size that you chose in the Value Sets window. If you enter a
display size that is shorter than the maximum size, you can still enter a

SQL Statement

2 – 31Planning and Defining Key Flexfields

segment value of the maximum size since the segment field in the
window can scroll.

The default for the display size of a segment when you first enable the
segment is the maximum size of the segment based on the size of the
underlying column, or 50, whichever is less. Once you choose a value
set for your segment, the default for Display Size is the maximum size
of the value set. See: Value Set Windows: page 4 – 50.

Description Sizes for Segment Value Descriptions

Your application uses Description Size when displaying the segment
value description in the flexfield window. Concatenated Description
Size specifies the number of characters long a segment value
description should be when a window displays it as part of a
concatenated description for the concatenated flexfield values. Your
flexfield may show fewer characters of your description than you
specify if there is not enough room for it in your flexfield window.
However, your flexfield does not display more characters of the
description than you specify.

The value you specify for Description Size also affects the length of a
value description that appears in a list of segment values for the
segment (if the segment uses a validated value set). However, the
width of the description column in a list will not be less than 11 for
English–language versions of the Oracle Applications (the length of the
word Description in English). This width may vary for other–language
versions of the Oracle Applications.

Some flexfields, particularly the Accounting Flexfield, display a special
multicolumn format in some forms (for example, the Define
MassBudgets window in the Oracle General Ledger products). In these
forms, your flexfield window may scroll horizontally if the longest
description size (plus the longest prompt and display sizes) is large.

Suggestion: For ease of use, we recommend that you set the
Description Size for each of your Accounting Flexfield
segments to 30 or less so that your flexfield window does not
scroll horizontally.

Segment Prompts and List of Values

Enter prompts for the segment (as it should appear in the flexfield
window) and its list of values (if this segment uses a validated value
set) and in reports your application generates. Do not use special
characters such as +, –, ., !, @, ’, or # in your prompts.

2 – 32 Oracle Applications Flexfields Guide

If your List of Values prompt is longer than the segment length, you see
a warning displayed after you leave this field. This warning is for
cosmetic considerations only; your flexfield will still compile normally.

Suggestion: Keep your segments’ prompts short and fairly
uniform in length wherever possible.

Flexfield Qualifiers

Use this window to apply flexfield qualifiers to your key flexfield
segments. The window title includes the current flexfield and segment
names.

For each qualifier, indicate whether it is enabled for your key flexfield
segment.

Since you can set up your key flexfields in any way you prefer, Oracle
Applications products use flexfield qualifiers to identify certain

2 – 33Planning and Defining Key Flexfields

segments used for specific purposes. You should consult the help for
your key flexfield to determine whether your key flexfield uses
qualifiers and what purposes they serve.

Some qualifiers must be unique, and you cannot compile your flexfield
if you apply that qualifier to two or more segments. Other qualifiers
are required, and you cannot compile your flexfield until you apply
that qualifier to at least one segment.

See Also

Key Flexfields in Oracle Applications: page 6 – 2

Reporting Attributes

If you are using Oracle Public Sector General Ledger, you may have
access to the Reporting Attributes block.

Reporting Attributes Zone

You can use this zone only if you are using Oracle Public Sector General
Ledger and you have enabled the FSG:Reporting Attributes profile
option (available only with Oracle Public Sector General Ledger). You
use this zone to enter attributes to use for FSG report selection. For
more information, see: Reporting Attributes, Oracle [Public Sector]
General Ledger User’s Guide.

2 – 34 Oracle Applications Flexfields Guide

C H A P T E R

3

3 – 1Planning and Defining Descriptive Flexfields

Planning and Defining
Descriptive Flexfields

This chapter contains information on planning and defining descriptive
flexfields. It includes further discussion of flexfields concepts and
provides additional concepts that are specific to descriptive flexfields.
It also includes discussions of the procedures you use to set up any
descriptive flexfield, as well as how to identify a descriptive flexfield
on a particular form.

3 – 2 Oracle Applications Flexfields Guide

Descriptive Flexfield Concepts

You should already know some basic flexfields terms and concepts:

• Flexfield

• Segment

• Structure

• Value

• Validation (Validate)

• Value set

Now that you know terms and concepts that apply to both key and
descriptive flexfields, you need to know additional terms that apply to
descriptive flexfields only.

Descriptive flexfield segments

Descriptive flexfields have two different types of segments, global and
context–sensitive, that you can decide to use in a descriptive flexfield
structure.

A global segment is a segment that always appears in the descriptive
flexfield pop–up window, regardless of context (any other information
in your form). A context–sensitive segment is a segment that may or may
not appear depending upon what other information is present in your
form.

3 – 3Planning and Defining Descriptive Flexfields

Figure 3 – 1

[]

Orders for Parts

3754

USABig Mfg. Co.

COM – 876 – LTN

Computer–Monitor–Light Tan

Order No.

Client

Part

Description

Order Type

Country

Context
Field

Two structures of same descriptive flexfield

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

USACountry

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

FranceCountry

Fran MereContact

33–1–476220Telephone

(842)612446Telex

Air Int’lCarrier

Jim WattContact

(213) 123–4567Telephone

HQShip–from

Context–sensitive segments

If you have context–sensitive segments, your descriptive flexfield needs
context information (a context value) to determine which
context–sensitive segments to show. A descriptive flexfield can get
context information from either a field somewhere on the form, or from
a special field (a context field) inside the descriptive flexfield pop–up

3 – 4 Oracle Applications Flexfields Guide

window. If the descriptive flexfield derives the context information
from a form field (either displayed or hidden from users), that field is
called a reference field for the descriptive flexfield.

A context field appears to an end user to be just another segment,
complete with its own prompt. However, a context field behaves
differently from a normal flexfield segment (either global or
context–sensitive). When a user enters a context value into the context
field, the user then sees different context–sensitive segments depending
on which context value the user entered. You define a context field
differently as well. You use a context field instead of a reference field if
there is no form field that is a suitable reference field, or if you want
your user to directly control which context–sensitive segments appear.

A context–sensitive segment appears once the appropriate context
information is chosen. The context–sensitive segments may appear
immediately if the appropriate context information is derived from a
form field before the user enters the descriptive flexfield.

For a descriptive flexfield with context–sensitive segments, a single
”structure” consists of both the global segments plus the
context–sensitive segments for a particular context field value. That is,
a structure consists of all the segments that would appear in the
pop–up window at one time (after the structure has been chosen).

3 – 5Planning and Defining Descriptive Flexfields

How Segments Use Underlying Columns

Figure 3 – 2

[]

Orders for Parts

3754

USABig Mfg. Co.

COM – 876 – LTN

Computer–Monitor–Light Tan

Order No.

Client

Part

Description

Order Type

Country

Orders Table

Descriptive
flexfield
columns

AttributeN
Columns

Order Client Country Part Status Desc Structure

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

USACountry

Jim WattContact

(213) 123–4567Telephone

HQShip–from

Reference
field column

Reference
field

A descriptive flexfield uses columns that are added on to a database
table. The table contains any columns that its entity requires, such as a
primary key column and other information columns. For example, a
Vendors table would probably contain columns for standard vendor
information such as Vendor Name, Address, and Vendor Number. The
descriptive flexfield columns provide ”blank” columns that you can
use to store information that is not already stored in another column of
that table. A descriptive flexfield requires one column for each possible
segment and one additional column in which to store structure

3 – 6 Oracle Applications Flexfields Guide

information (that is, the context value). You can define only as many
segments in a single structure as you have descriptive flexfield segment
columns in your table. The descriptive flexfield columns are usually
named ATTRIBUTEn where n is a number.

Figure 3 – 3

Other columns Country Structure Attribute1 Attribute2 Attribute3 Attribute4 Attribute5 Attribute6

Type Sales Rep
(global) (global)

France France Fran Mere (842)612446 COM Jane Reed 33–1–476220 Air Int’l
USA USA Jim Watt COM Jane Reed (213)123–4567 HQ

France Structure

USA Structure

France Structure

USA Structure

Descriptive flexfield segment columns
Structure column (context field)

Reference field column

Orders Table

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

USACountry

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

FranceCountry

Fran MereContact

33–1–476220Telephone

(842)612446Telex

Air Int’lCarrier

Jim WattContact

(213) 123–4567Telephone

HQShip–from

3 – 7Planning and Defining Descriptive Flexfields

A global segment uses the same column for all rows in the table. A
context–sensitive segment for one structure uses a given column, but a
context–sensitive segment in a different structure can ”reuse” that same
column. When you define your descriptive flexfield, you should
always define your global segments first to ensure that your global
segment can ”reserve” that column for all structures. Then, you define
your context–sensitive segments using the remaining columns.

Note that when you use a descriptive flexfield that has
context–sensitive segments, and you change an existing context value
to a new context value, the flexfield automatically clears out all the
context–sensitive segment columns, and re–defaults any segments that
have default values.

3 – 8 Oracle Applications Flexfields Guide

Context Fields and Reference Fields

The values of context fields and/or reference fields influence both the
behavior and the appearance of descriptive flexfields.

Context Fields

All descriptive flexfields have a hidden context field in the form that
holds structure information for the descriptive flexfield (this field is
often called ATTRIBUTE_CATEGORY or CONTEXT). Depending on
how you set up the flexfield, a user may also be able to see and change
the context field in the descriptive flexfield window.

In earlier versions of Oracle Applications, you allow users to see and
modify the value in the context field in the descriptive flexfield
window by checking the ”Override Allowed (Display Context)” check
box. Starting with Release 11i.6 (11.5.6) of Oracle Applications, this
check box is now called ”Displayed” though its effect is unchanged.

Using Value Sets With Context Fields

Typically, you set up context field values by typing them into the
Descriptive Flexfield Segments window individually, and you then set
up context–sensitive segments for each context field value. In some
cases, however, you may have an existing table of the values that
would be valid context field values but would not all have
corresponding context–sensitive segments (for example, a table of
countries), and you do not want to duplicate the contents of the
existing table by creating a new context field value for each existing
value in your table (each country name, for example). In this case,
starting with Release 11i.6 (11.5.6) of Oracle Applications, you can set
up a value set containing your existing values and use the value set to
populate the context field. You must still type in the context field value
when you set up any context–sensitive segments for that value.

Value sets used for context fields must obey certain restrictions or they
will not be available to use in the Value Set field in the Context Field
region of the Descriptive Flexfield Segments window:

• Format Type must be Character (Char)

• Numbers Only must not be checked (alphabetic characters are
allowed)

3 – 9Planning and Defining Descriptive Flexfields

• Uppercase Only must not be checked (mixed case is allowed)

• Right–justify and Zero–fill Numbers must not be checked

• Validation Type must be Independent or Table

If the validation type is Independent:

• the value set maximum size must be less than or equal to 30

If the validation type is Table:

• the ID Column must be defined, it must be Char or Varchar2
type, and its size must be less than or equal to 30. The ID
column corresponds to the context field value code (the internal,
non–translated context field value).

• the Value Column must be defined, it must be Char or Varchar2
type, and its size must be less than or equal to 80. The Value
column corresponds to the context field value name (the
displayed context field value).

• the value set maximum size must be less than or equal to 80

Descriptive Flexfield Segments Window: page 3 – 31

All context field values (the code values) you intend to use must exist
in the value set. If you define context field values in the Context Field
Values block of the Descriptive Flexfield Segments window that do not
exist in the context field value set, they will be ignored, even if you
have defined context–sensitive segments for them.

Context Field Values: page 3 – 37

In the case where the context field is displayed, there are no global
segments, and a context field value is in the value set but does not have
any context–sensitive segments, only the context field is displayed.
The context field value the user chooses from the value set would then
be stored in the structure column of the underlying descriptive flexfield
table, but no values would be stored in the ATTRIBUTEn segment
columns.

Using table–validated value sets with your context field allows you to
make your context field values conditional, such as by restricting the
values by the value of a profile option bind variable in the WHERE
clause of the value set.

WHERE Clauses and Bind Variables for Validation Tables: page 4 – 33

3 – 10 Oracle Applications Flexfields Guide

Example of using a value set with a context field

Suppose we have a table that has all the countries defined, and the
table is called MY_COUNTRIES_TABLE. Here is some sample data:

 REGION COUNTRY_CODE COUNTRY_NAME DESCRIPTION

 –––––– –––––––––––– –––––––––––– –––––––––––

 America US United States US Desc.

 America CA Canada CA Desc.

 Europe UK United Kingdom UK Desc.

 Europe GE Germany GE Desc.

 Europe TR Turkey TR Desc.

 Asia IN India IN Desc.

 Asia JP Japan JP Desc.

 Africa EG Egypt EG Desc.

 Africa SA South Africa SA Desc.

 ...

Also, suppose that depending on some profile option we want our
users to see only a subset of the country data. Here is the value set
definition:

 MY_COUNTRIES_VALUE_SET

 Format Type : Char

 Maximum Size : 80

 Validation Type : Table

 Table Name : MY_COUNTRIES_TABLE

 Value Column : COUNTRY_NAME/Varchar2/80

 Meaning Column : DESCRIPTION/Varchar2/100

 ID Column : COUNTRY_CODE/Varchar2/30

 WHERE/ORDER BY Clause :

 WHERE region = :$PROFILES$.CURRENT_REGION

 ORDER BY country_name

Now, when a user logs in from a site in the Europe region, for example,
he or she would be able to see only European countries in the context
field list of values.

Example of combining table values and context values in a value set

Suppose you defined some countries in the Context Field Values block
of the Descriptive Flexfield Segments window (these values will be in
the view FND_DESCR_FLEX_CONTEXTS_VL), and you have other
countries in MY_COUNTRIES_TABLE. However, some of the context

3 – 11Planning and Defining Descriptive Flexfields

values in FND_DESCR_FLEX_CONTEXTS_VL do not exist in
MY_COUNTRIES_TABLE. If you do not define them in your context
field value set then you will not be able to use them, but you do not
want to add (duplicate) them in your custom table. The solution is to
create a view that is a union of the two tables, and to create a
table–validated value set using that view. Here is an example:

Define the following view:

MY_COUNTRIES_UNION_VIEW

CREATE OR REPLACE VIEW MY_COUNTRIES_UNION_VIEW

 (region, country_code,

 country_name, description)

AS

SELECT ’N/A’, descriptive_flex_context_code,

 descriptive_flex_context_name,

 description

FROM FND_DESCR_FLEX_CONTEXTS_VL

WHERE application_id = 123 –– Assume DFF’s app id is 123

AND descriptive_flexfield_name =

 ’Address Descriptive Flexfield’

AND global_flag = ’N’

AND enabled_flag = ’Y’

UNION

SELECT region, country_code

 country_name,

 description

FROM MY_COUNTRIES_TABLE

WHERE enabled_flag = ’Y’

Then define the following value set.

MY_COUNTRIES_VALUE_SET

Format Type : Char

Maximum Size : 80

Validation Type : Table

Table Name : MY_COUNTRIES_UNION_VIEW

Value Column : COUNTRY_NAME/Varchar2/80

Meaning Column : DESCRIPTION/Varchar2/100

ID Column : COUNTRY_CODE/Varchar2/30

WHERE/ORDER BY Clause :

 WHERE (region = ’N/A’ OR

 region = :$PROFILES$.CURRENT_REGION)

3 – 12 Oracle Applications Flexfields Guide

 ORDER BY country_name

This gives the correct union. Note that you cannot do a union in the
value set WHERE/ORDER BY clause.

Example of conditional context field values without a separate table

Suppose you already defined all of your context field values, and you
do not need another table. However, you want to make the values in
the context field list of values conditional on some criteria (data
striping).

Suppose you defined your context values using a pattern such as
”<CountryCode>.<ApplicationShortName>.<FormName>.
<BlockName>”, where a context field value might be something like
”US.SQLPO.POXPOMPO.HEADER” (this pattern is similar to that
used for some globalization features of Oracle Applications). You want
users located at U.S. sites to see only ’US.%’ contexts. Here is the value
set that you might define:

Custom_Globalization_Value_set

Format Type : Char

Maximum Size : 80

Validation Type : Table

Table Name : FND_DESCR_FLEX_CONTEXTS_VL

Value Column : DESCRIPTIVE_FLEX_CONTEXT_NAME/Varchar2/80

Meaning Column : DESCRIPTION/Varchar2/240

ID Column : DESCRIPTIVE_FLEX_CONTEXT_CODE/Varchar2/30

WHERE/ORDER BY Clause :

 WHERE application_id = 123

 AND descriptive_flexfield_name =

 ’My Descriptive Flexfield’

 AND global_flag = ’N’

 AND enabled_flag = ’Y’

 AND descriptive_flex_context_code LIKE ’US.%’

 ORDER BY descriptive_flex_context_name

Note That ’US.%’ in the WHERE clause can be replaced with
:$PROFILES$.COUNTRY_CODE || ’.%’
to make it conditional by the users’ country.

3 – 13Planning and Defining Descriptive Flexfields

Reference Fields

Using a field as a reference field has no effect on the field itself. That is,
the reference field is simply a normal form field that has nothing to do
with the flexfield unless you define the flexfield to use it as a reference
field. Typically, an application developer specifies one or more fields
on the form as potential reference fields while building the descriptive
flexfield into the form, and then you decide which, if any, reference
field you want to use. Reference fields provide a way for you to tie the
context–sensitivity of descriptive flexfield information you capture to
existing conditions in your business data.

If you use a reference field, the value of that field populates its own
column. For example, if the reference field on your form is the
”Country” field, it populates the ”country” column in the table
(remember that the reference field is just an ordinary field on the form
before you choose to use it as a reference field). However, that
reference field value also populates the structure (context) column in
the table, since that value specifies which structure the flexfield
displays. If you provide a context field in the flexfield pop–up
window, in addition to using the reference field, the reference field
essentially provides a default value for the context field, and the user
can choose a different context value. In this case, the reference field
column and the structure column might contain different values. If you
use the reference field without a displayed context field, the values in
the two columns would be the same. The form also contains a hidden
context field that holds the structure choice, regardless of whether you
choose to display a context field in the pop–up window.

The field you choose must exist in the same block as the descriptive
flexfield. In addition, if the descriptive flexfield appears in several
different windows or blocks, the same field must exist in all blocks that
contain this descriptive flexfield. You can specify your field using
either the field name by itself or using the :block.field notation.

Suggestion: Choose your reference fields carefully. A
reference field should only allow previously defined values so
that you can anticipate all possible context field values when
you define your structures using the Context Field Values zone.

For example, the descriptive flexfield in an application window may be
used to capture different information based on which country is
specified in a field on that window. In this case, the country field could
be used as a reference field.

Typically, you would define different structures of descriptive flexfield
segments for each value that the reference field would contain. Though
you do not necessarily define a structure for all the values the reference

3 – 14 Oracle Applications Flexfields Guide

field could contain, a field that has thousands of possible values may
not be a good reference field. In general, you should only use fields
that will contain a relatively short, static list of possible values, such as
a field that offers only the choices of Yes and No or perhaps a list of
countries. You should not use fields that could contain an infinite
number of unique values, such as a PO Number field or a date field
(unless that date field has a list of a few particular dates, such as
quarter end dates, that would never change). Often the business uses
of the particular window dictate which fields, if any, are acceptable
reference fields.

Suggestion: A descriptive flexfield can use only one field as a
reference field. You may derive the context field value for a
descriptive flexfield based on more than one field by
concatenating values in multiple fields into one form field and
using this concatenated form field as the reference field (this
may require a customization to the form if the form does not
already include such a concatenated field).

Other Descriptive Flexfield Features

You can also use Flexfield Value Security with descriptive flexfields.
See: Using Flexfield Value Security: page 5 – 9.

3 – 15Planning and Defining Descriptive Flexfields

Different Arrangements of Segments

You have many choices for how you want your descriptive flexfield
structures to look and behave. The following diagrams show you
different arrangements of segments you could define by choosing
different descriptive flexfield setup options.

Figure 3 – 4

Global Segments No

Context–sensitive Segments Yes

Override Allowed No

Reference Field Yes

Default Context Value OK

The different descriptive flexfield setup options are:

• Global Segments

• Context–sensitive segments

• Override Allowed

• Reference Field

• Default Context field

Note that the option ”Override Allowed” controls whether your user
sees a context field in the flexfield pop–up window. You set ”Override
Allowed” to Yes if you want a context field to appear in the descriptive
flexfield pop–up window. You set ”Override Allowed” to No if you do
not want users to choose a structure from within the pop–up window.

In earlier versions of Oracle Applications, you allow users to see and
modify the value in the context field by checking the ”Override
Allowed (Display Context)” check box. Starting with Release 11i.6
(11.5.6) of Oracle Applications, this check box is now called
”Displayed” though its effect is unchanged.

In these diagrams, ”OK” means that whether you specify Yes or No for
an option does not matter (another option may have an ”overriding”
effect). For example, if you have a default context field value (structure

3 – 16 Oracle Applications Flexfields Guide

choice), but you have a context field as well, your default value will
appear in the context field but the user can choose a different value
instead.

One structure

The simplest way to define a flexfield is to have one structure that
contains only global segments. However, this arrangement does not
allow much future flexibility, since if you use all your available columns
for global segments, you do not have any remaining columns for
context–sensitive segments.

Figure 3 – 5

Global Segments Yes
Context–sensitive Segments No
Override Allowed No
Reference Field No
Default Context Value OK

Descriptive Flexfield

Global Segment 1

Global Segment 2

Global Segment 3

Global Segments Only

In this example, you have the following settings:

• Global Segments – Yes

• Context–sensitive segments – No

• Override Allowed – No

• Reference Field – No

• Default Context field – No

This example has three global segments.

3 – 17Planning and Defining Descriptive Flexfields

Another way to achieve a similar effect is to define a single structure
that contains only context–sensitive segments. You also define a
default context value, and you do not provide a context field or a
reference field. The effect of this setup is that the user always sees the
same segment structure, so it behaves as if it were a structure of global
segments. However, if later you needed to add more structures of
context–sensitive segments, you could do so by enabling the context
field or a reference field, disabling the default context field value, and
defining your new context–sensitive segment structure. Note that if
you had already used all the available segment columns in your first
context–sensitive structure, you would not be able to add more
segments to that structure; you would only be able to define additional
structures. One drawback to using the context–sensitive segments only
strategy is that if you have certain segments that should appear for all
contexts (all structures), you would have to define those segments
separately for each context–sensitive structure.

Figure 3 – 6

Global Segments No
Context–sensitive Segments Yes
Override Allowed No
Reference Field No
Default Context Value Yes

Descriptive Flexfield

Context–sensitive Segment 1

Context–sensitive Segment 2

Context–sensitive Segment 3

Context–sensitive Segments Only

In this example, you have the following settings:

• Global Segments – No

• Context–sensitive segments – Yes

• Override Allowed – No

3 – 18 Oracle Applications Flexfields Guide

• Reference Field – No

• Default Context field – Yes

This example has three context–sensitive segments.

Of course, you could initially define a hybrid structure that contains
some global segments and some context–sensitive segments but has
only one context–sensitive structure with a default context field value
(but no context field or reference field).

Figure 3 – 7

Descriptive Flexfield

Global Segment 1

Global Segment 2

Context–sensitive Segment 1

Global Segments Yes
Context–sensitive Segments Yes
Override Allowed No
Reference Field No
Default Context Value Yes

Hybrid Structure

In this example, you have the following settings:

• Global Segments – Yes

• Context–sensitive segments – Yes

• Override Allowed – No

• Reference Field – No

• Default Context field – Yes

This example has two global segments and one context–sensitive
segment.

3 – 19Planning and Defining Descriptive Flexfields

More than one structure

Once you’ve established that you need more than one
(context–sensitive) structure, you have a number of options for how
you want to arrange various combinations of global and/or
context–sensitive segments, reference field or no reference field, context
field or no context field, and so on. The following diagrams show these
various arrangements (for a setup that uses two context–sensitive
structures).

Figure 3 – 8

Global Segments No
Context–sensitive Segments Yes
Override Allowed No
Reference Field Yes
Default Context Value OK

Descriptive Flexfield

Context–sensitive Segment 1

Context–sensitive Segment 2

Context–sensitive Segment 3

Descriptive Flexfield

Context–sensitive Segment 1

In this example, you have the following settings:

• Global Segments – No

• Context–sensitive segments – Yes

• Override Allowed – No

• Reference Field – Yes

3 – 20 Oracle Applications Flexfields Guide

• Default Context field – OK

This example has two context–sensitive structures, one with three
context–sensitive segments and another with one context–sensitive
segment.

Figure 3 – 9

Global Segments Yes
Context–sensitive Segments Yes
Override Allowed No
Reference Field Yes
Default Context Value OK

Descriptive Flexfield

Global Segment 1

Global Segment 2

Context–sensitive Segment 1

Context–sensitive Segment 2

Context–sensitive Segment 3

Descriptive Flexfield

Global Segment 1

Global Segment 2

Context–sensitive Segment 1

In this example, you have the following settings:

• Global Segments – Yes

• Context–sensitive segments – Yes

• Override Allowed – No

3 – 21Planning and Defining Descriptive Flexfields

• Reference Field – Yes

• Default Context field – OK

This example has two context–sensitive structures, both with two
global segments. The first structure has three context–sensitive
segments and the second has one context–sensitive segment.

Figure 3 – 10

Global Segments No
Context–sensitive Segments Yes
Override Allowed No
Reference Field Yes
Default Context Value OK

Descriptive Flexfield

Context–sensitive Segment 1

Context–sensitive Segment 2

Context–sensitive Segment 3

Field Value 1Context Prompt

Descriptive Flexfield

Context–sensitive Segment 1

Field Value 2Context Prompt

In this example, you have the following settings:

• Global Segments – No

• Context–sensitive segments – Yes

• Override Allowed – No

• Reference Field – Yes

3 – 22 Oracle Applications Flexfields Guide

• Default Context field – OK

This example shows a two structures that share a context prompt. The
value of the context prompt determines whether the user sees the first
structure with three context–sensitive segments or the second structure
with one context–sensitive segment.

Figure 3 – 11

Global Segments Yes
Context–sensitive Segments Yes
Override Allowed No
Reference Field Yes
Default Context Value OK

Descriptive Flexfield

Global Segment 1

Global Segment 2

Context–sensitive Segment 1

Context–sensitive Segment 2

Context–sensitive Segment 3

Field Value 1Context Prompt

Descriptive Flexfield

Global Segment 1

Global Segment 2

Context–sensitive Segment 1

Field Value 2Context Prompt

In this example, you have the following settings:

• Global Segments – Yes

3 – 23Planning and Defining Descriptive Flexfields

• Context–sensitive segments – Yes

• Override Allowed – No

• Reference Field – Yes

• Default Context field – OK

This example shows a two structures that have two global segments
and a context prompt. The value of the context prompt determines
whether the user sees the first structure which has three
context–sensitive segments or the second structure which has one
context–sensitive segment.

3 – 24 Oracle Applications Flexfields Guide

Planning Your Descriptive Flexfield

When you are planning your flexfields, you should consider the
following questions and their corresponding decisions:

❑ Do you want to capture information that is not otherwise captured
by the form? If yes, you define this descriptive flexfield. If no, you
need not define this descriptive flexfield at all.

❑ Do you want to capture the same information every time,
regardless of what other data appears in the form? If yes, you need
to define global segments.

❑ Do you want to capture certain information sometimes, depending
on what other data appears in the form? If yes, you need to define
context–sensitive segments.

❑ If you want context–sensitive segments, do you want to have the
form automatically determine which descriptive flexfield structure
to display based on the value of a field somewhere on the form? If
yes, you need to define a reference field (note that some descriptive
flexfields do not provide reference fields).

❑ If you want context–sensitive segments, do you want to have the
user determine which descriptive flexfield structure to display by
choosing a value in a field inside the pop–up window? If yes, you
need to define a context field.

❑ How do you want to break down reporting on your descriptive
flexfield data? If you want to report on your data by certain
criteria or sub–entities, such as account number or project or
region, you may want to consider making that sub–entity a distinct
segment, rather than combining it with another sub–entity, so that
you can categorize and report on smaller discrete units of
information.

❑ How often does your organization change? This would affect how
you set up your values. For example, if you disable old cost
centers and enable new ones frequently, you would ”use up” cost
center values quickly. You would therefore want to use a larger
maximum size for your cost center value set so that you can have
more available values (for example, you have 999 available values
for a 3–character value set instead of 100 available values for a
2–character value set).

❑ Do you want to require a value for each segment?

3 – 25Planning and Defining Descriptive Flexfields

See:

Overview of Setting Up Flexfields: page 1 – 10

You should decide on the number, order and length of your segments
for each structure. You must also choose how to validate each
segment.

See:

Overview of Values and Value Sets: page 4 – 2

Descriptive Flexfield Structure Planning Diagrams: page 3 – 25

Descriptive Flexfield Structure Planning Diagrams

You can use photocopies of the following diagrams to help you sketch
out your descriptive flexfield structures. Add or subtract segments as
appropriate for your structures.

Global Segments Only

Use this diagram for a single descriptive flexfield structure that
contains only global segments and does not use a context field,
reference field, or context–sensitive segments.

You can use it to list your global segment prompts, segment values, and
value descriptions.

3 – 26 Oracle Applications Flexfields Guide

Figure 3 – 12

(Segment Value)

(Title)

(Global Segment Prompt) (Value Description)

Global and Context–Sensitive Segments

Use the following two diagrams for a descriptive flexfield that has
more than one structure that contains both context–sensitive segments
and global segments and may use a context field and/or a reference
field.

3 – 27Planning and Defining Descriptive Flexfields

You can list the segment prompts, segment values, and value
descriptions for your global segments and your context sensitive
segments.

3 – 28 Oracle Applications Flexfields Guide

Figure 3 – 13

(Segment Value)

(Title)

(Global Segment Prompt)

(Context Field Value)

(Value Description)

(Segment Value)(Segment Prompt) (Value Description)

(This group of context–sensitive segments appears if the context
field value is___)

(Context Field Prompt) (Value Description)

3 – 29Planning and Defining Descriptive Flexfields

Figure 3 – 14

(Segment Value)

(Same Title)

(Same Global Segment Prompt)

(Different Context Field Value)

(Value Description)

(Segment Value)(Segment Prompt) (Value Description)

(This group of context–sensitive segments appears if the context
field value is___)

(Same Context Field Prompt) (Value Description)

3 – 30 Oracle Applications Flexfields Guide

Context–Sensitive Segments Only

Use multiple copies of the following diagram for a descriptive flexfield
that has more than one structure and contains only context–sensitive
segments. Your structures may use a context field and/or a reference
field.

You can list the segment prompts, segment values, and value
descriptions for your context–sensitive segments.

Figure 3 – 15

(Title)

(Context Field Value)

(Segment Value)(Segment Prompt) (Value Description)

(This group of context–sensitive segments appears if the context
field value is___)

(Context Field Prompt) (Value Description)

3 – 31Planning and Defining Descriptive Flexfields

Descriptive Flexfield Segments Window

Use this window to define your descriptive flexfield structures.

Planning Your Descriptive Flexfield: page 3 – 24

Tasks

Defining Descriptive Flexfield Structures: page 3 – 33

Defining Segments: page 2 – 22

Identifying Descriptive Flexfields in Oracle Applications: page 3 – 40

3 – 32 Oracle Applications Flexfields Guide

Defining Descriptive Flexfields

To define your descriptive flexfield, you define the segments that make
up your descriptive flexfield structures, and the descriptive
information and validation information for each segment in a structure.
You also determine the appearance of your descriptive flexfield
window, including the size of the window, the number and order of the
segments, and the segment descriptions and default values. The
maximum number of segments you can have within a single structure
depends on which descriptive flexfield you are defining.

To take advantage of the flexibility and power of descriptive flexfields
in your application, you must define your flexfield structure. If you do
not define any descriptive flexfield segments, you cannot use
descriptive flexfields within your windows, but there is no other loss of
functionality.

Once you define or change your flexfield, you must freeze your
flexfield definition and save your changes. When you do, Oracle
Applications automatically compiles your flexfield to improve online
performance.

Once you freeze your flexfield definition and save your changes, Oracle
Applications submits a concurrent request to generate a database view
of the table that contains your flexfield segment columns. You can use
these views for custom reporting at your site. See: Overview of
Flexfield Views: page 8 – 3.

You can see your flexfield changes immediately after you freeze and
recompile your flexfield. However, your changes do not affect other
users until they change responsibilities or exit the application they are
using and sign back on.

Suggestion: Plan your descriptive flexfield structures
carefully, including all your segment information such as
segment order and field lengths, before you set up your
segments using this window. You can define your descriptive
flexfields any way you want, but changing your structures once
you acquire flexfield data may create data inconsistencies that
could have a significant impact on the performance of your
application or require a complex conversion program.

Identifying Descriptive Flexfields in Oracle Applications: page 3 – 40

3 – 33Planning and Defining Descriptive Flexfields

Defining Descriptive Flexfield Structures

Prerequisites

❑ Use the Value Sets window to define any value sets you need. See:
Value Sets: page 4 – 50.

Application and Title

Use View > Find to select the title and application name of the
descriptive flexfield you want to define. You cannot create a new
flexfield using this window. See: Identifying Descriptive Flexfields in
Oracle Applications: page 3 – 40.

3 – 34 Oracle Applications Flexfields Guide

You can change the flexfield title by typing in a new name over the old
name. You see this name whenever you select a descriptive flexfield
and as the window title whenever a user enters your descriptive
flexfield.

Freeze Flexfield Definition

The default value for this field is unchecked (flexfield definition not
frozen).

Do not freeze your flexfield if you want to define new structures, set up
or modify your flexfield segments, or change the appearance of your
descriptive flexfield window. You cannot make most changes while the
flexfield is frozen.

Freeze your flexfield after you set it up. Then save your changes.
When you do, this window automatically compiles your flexfield. You
must freeze and compile your flexfield definition before you can use
your flexfield. If you decide to make changes to your flexfield
definition, make sure that you freeze and save your flexfield definition
again once you have made your changes.

Warning: Do not modify a frozen flexfield definition if
existing data could be invalidated. An alteration of the
flexfield structure can create data inconsistencies.

Segment Separator

Enter the character you want to use to separate your segments in a
concatenated description field.

You should choose your separator character carefully so that it does not
conflict with your flexfield data. Do not use a character that is used in
your segment values. For example, if your data frequently contains
periods (.) in monetary or numeric values, do not use a period as your
segment separator.

Warning: Some Oracle Applications tables store the segment
separator as part of your flexfield values. Changing your
separator once you have data in such tables may invalidate that
data and cause application errors.

3 – 35Planning and Defining Descriptive Flexfields

Context Field Region

Prompt

The context field automatically displays any existing context window
prompt for this flexfield. You can change this prompt by typing a new
prompt over the current prompt. Your flexfield displays this prompt in
a flexfield window if you can choose the context–sensitive flexfield
structure you want to see when you enter the flexfield (that is, if you
have permitted Override).

When you choose a prompt, you should keep in mind that the context
field in the flexfield window appears as just a normal field or segment
to a user. For example, if you have a Client Type descriptive flexfield
with two different segment structures called Customer (for external
clients) and Employee (for internal clients), you might define your
prompt as ”Client Type”.

Value Set

If you have context field values contained in an existing table, you can
create a value set that includes those values, and enter the name of that
value set here. Using a value set for the context field allows you to
have valid context field values without specifically defining
context–sensitive segments for those context field values.

For example, if you have a list of countries where you want all the
countries to be valid context field values, but only a few of the
countries have related context–sensitive segments, you would use a
value set that includes your entire list of countries. You would then
define context–sensitive segments for just those countries that need
context–sensitive segments.

Using Value Sets With Context Fields: page 3 – 8

Default Value

Enter a default context field value for your flexfield to use to determine
which descriptive flexfield structure to display. You must define the
default context field value as a structure in the Context Field Values
zone before you can compile your flexfield. Your flexfield
automatically uses this default context field value if you do not define a
reference field.

3 – 36 Oracle Applications Flexfields Guide

If you do not have any context–sensitive segments, or you want the
context field to remain blank unless filled in by a reference field, you
should leave this field blank.

Required

Indicate whether a context field value is required. If a context field
value is required, your flexfield does not allow you to leave the
flexfield window without entering a valid value. Otherwise, you do
not have to choose a value for your context field. In this case, you
leave the flexfield window without seeing any context–dependent
structures.

Reference Field

Enter the name of the reference field from which your flexfield can
automatically derive the context field value. You can select from a list
of potential reference fields that have been predefined. Some
descriptive flexfields may not have any reference fields predefined.
See: Reference Fields: page 3 – 13.

Displayed

In earlier versions of Oracle Applications, you allow users to see and
modify the value in the context field by checking the ”Override
Allowed (Display Context)” check box. Starting with Release 11i.6
(11.5.6) of Oracle Applications, this check box is now called
”Displayed” though its effect is unchanged.

If you have any context–sensitive segments for your flexfield, you
should always check the Displayed check box if you do not specify
either a default value or a reference field. Without the displayed
context field, your flexfield must determine the context field value from
the reference field or your default value.

If you check the Displayed check box, a user can see and change the
context field value that your flexfield derives from a reference field or
obtains as a default value.

Suggestion: You should leave the Displayed check box
unchecked only if the context field value derives from a
reference field or a default value that you specify using this
region, or you have only global segments. If you do derive
your context field value from a reference field, however, we
recommend that you do not allow your user to see or change
that value in the flexfield window.

☞

3 – 37Planning and Defining Descriptive Flexfields

Context Field Values

Use this block to define valid context field values (that also serve as
structure names) for this descriptive flexfield. You can set up a
different descriptive flexfield segment structure for each value you
define.

A Global Data Elements value always appears in this block. You use
Global Data Elements to set up global segments that you want to use in
every segment structure. These segments appear before any context
field or context–sensitive segments in the flexfield window.

For example, suppose you have a Client Type flexfield. You have two
context–sensitive structures, Employee (internal client), and Customer
(external client), for which you want to have different segments to
capture different information. However, you also want to capture
certain information for both structures. You define global segments for
the common information, using the Global Data Elements value. You
also define context–sensitive segments for each of your two structures,
Employee and Customer, to capture the two sets of different
information. See: Planning Your Descriptive Flexfields: page 3 – 24.

Code

Enter a unique context field value (also known as the flexfield structure
name) under the Code column. Your flexfield uses this value, either
derived from a reference field or entered by your user in an initial
descriptive flexfield window, to determine which flexfield structure to
display. This value is written out to the structure column of the
underlying table.

This value must be thirty (30) characters or fewer.

Once you save your context field value, you cannot delete or change
your context field value because it is referenced elsewhere in the
system. You can disable a value, however.

Suggestion: Choose and type your context field values
carefully, since once you save them you cannot change or delete
them later.

Attention: If you are upgrading from Release 10, the value for
your context name is copied to the context code and context
name in Release 11. The name and description are translatable,
and will appear in the customer’s chosen language. The
context code is not translatable.

If you are using a reference field, the values you enter here must exactly
match the values you expect your reference field to provide, including

☞

3 – 38 Oracle Applications Flexfields Guide

uppercase and lowercase letters. For example, your reference field may
be a displayed field that provides the values ”Item” and ”Tax”, so you
would specify those. However, those would not be valid if you were
using a corresponding hidden field as your reference field and that
field provides the values ”I” and ”T”.

If you are using a value set for the context field, any values you enter
here must exactly match the values you expect your context field value
set to provide, including uppercase and lowercase letters. All the
values you enter in this field must exist in the value set, or they will not
be valid context field values, even if you define context–sensitive
segments for them. You only need to enter those values that require
context–sensitive segments. If the value set is a table–validated value
set, the values in this Code field correspond to the values in the ID
column of the value set.

Using Value Sets With Context Fields: page 3 – 8

Name

Enter a name for this descriptive flexfield context value.

The context code will default in to this field. For a descriptive flexfield
that is set up so that the context field is displayed, the context name
would be entered in the displayed context field, and the context field
value code will be stored in the hidden context field. The list of values
on the context field will show the context name and description.

If you use a value set for the context field, the displayed value in the
value set overrides the corresponding value name you type in this field
(for the same hidden ID value or context code).

Using Value Sets With Context Fields: page 3 – 8

Description

Enter a description for this descriptive flexfield context field value.
You can use this description to provide a better explanation of the
content or purpose of this descriptive flexfield structure. You see this
description along with the context name whenever you pick a
descriptive flexfield context from inside the flexfield window. When
you navigate to the next zone, this window automatically saves your
pending changes.

Attention: The width of your descriptive flexfield window
depends on the length of the longest description you enter in
this field, if this description is longer than the longest

3 – 39Planning and Defining Descriptive Flexfields

description size you choose for any of your segments in a given
structure.

Enabled

You cannot enable new structures if your flexfield definition is frozen.

Segments Button

Choose the Segments button to open the Segments window, and define
your flexfield segments. See: Defining Segments: page 2 – 22.

3 – 40 Oracle Applications Flexfields Guide

Identifying Descriptive Flexfields in Oracle Applications

Some descriptive flexfields in Oracle Applications are documented
explicitly with specific setup suggestions, but most descriptive
flexfields in Oracle Applications, which are meant to be set up on a
site–by–site basis, are not explicitly documented.

In most cases, you can identify which descriptive flexfield appears on a
particular form using the following procedure.

Identifying Descriptive Flexfields: page 3 – 40

Identifying Descriptive Flexfields

� To identify the descriptive flexfield present in a window (Oracle
Applications Release 11 and 11i):

1. Navigate to the window and block for which you want to set up
the descriptive flexfield.

2. Use the Help menu to choose Diagnostics > Examine. If Examine is
disabled or requires a password on your system, contact your
system administrator for help.

3. The Examine Field and Variable Values window initially displays
the hidden block and field names of the field your cursor was in
when you opened Examine. Note the block name displayed to help
you select the correct flexfield in a later step.

4. Use the list on the Block field to choose
$DESCRIPTIVE_FLEXFIELD$.

5. If there is more than one descriptive flexfield for your form, use the
list on the Field field to select the one you want (the list displays
the hidden block names and field names for all descriptive
flexfields on the form).

If you do not see the descriptive flexfield you want, it may be
because your form has special logic that prevents the flexfield from
being read by Examine, such as logic that makes the flexfield
appear only under certain conditions. Make sure the descriptive
flexfield is visible, that those conditions are met, and that your
cursor is in the same block as the flexfield. Try using Examine
again.

3 – 41Planning and Defining Descriptive Flexfields

6. The flexfield title that appears in the Value field is the title you
should choose in the Descriptive Flexfield Segments form. See:
Defining Descriptive Flexfield Structures: page 3 – 33.

3 – 42 Oracle Applications Flexfields Guide

C H A P T E R

4

4 – 1Values and Value Sets

Values and Value Sets

This chapter contains information on planning and defining your
values and value sets.

4 – 2 Oracle Applications Flexfields Guide

Overview of Values and Value Sets

Oracle Application Object Library uses values, value sets and
validation tables as important components of key flexfields, descriptive
flexfields, and Standard Request Submission. This section helps you
understand, use and change values, value sets, and validation tables.

When you first define your flexfields, you choose how many segments
you want to use and what order you want them to appear. You also
choose how you want to validate each of your segments. The decisions
you make affect how you define your value sets and your values.

You define your value sets first, either before or while you define your
flexfield segment structures. You typically define your individual
values only after your flexfield has been completely defined (and
frozen and compiled). Depending on what type of value set you use,
you may not need to predefine individual values at all before you can
use your flexfield.

You can share value sets among segments in different flexfields,
segments in different structures of the same flexfield, and even
segments within the same flexfield structure. You can share value sets
across key and descriptive flexfields. You can also use value sets for
report parameters for your reports that use the Standard Request
Submission feature.

Because the conditions you specify for your value sets determine what
values you can use with them, you should plan both your values and
your value sets at the same time. For example, if your values are 01, 02
instead of 1, 2, you would define the value set with Right–Justify
Zero–fill set to Yes.

Remember that different flexfields may have different requirements
and restrictions on the values you can use, so you should read
information for your specific flexfield as part of your value planning
process. For example, the Accounting Flexfield requires that you use
certain types of value sets.

See:

Key Flexfields in Oracle Applications: page 6 – 2

Designing Your Accounting Flexfield
Oracle [Public Sector] General Ledger User’s Guide

4 – 3Values and Value Sets

Planning Values and Value Sets

� To plan values and value sets:

1. Choose a format for your values. See: Choosing Value Formats:
page 4 – 3.

2. Decide whether your segment should have a list of values. See:
Decide What Your User Needs: page 4 – 15.

3. Choose an appropriate validation type for your segment. See:
Choosing a Validation Type for Your Value Set: page 4 – 17.

4. Consider using values that group neatly into ranges so that using
range–based features (value security, value hierarchies, and so on)
will be easier. See: Plan Values to Use Range Features: page 4 – 22.

5. Plan both values and descriptions as appropriate.

6. Plan any value hierarchies, cross–validation rules, value security
rules, and so on as appropriate.

Choosing Value Formats

Since a value set is primarily a ”container” for your values, you define
your value set such that it can control the types of values that are
allowed into the value set (whether predefined or non–validated). You
can specify the format of your values:

• Character: page 4 – 7

• Number: page 4 – 7

• Time: page 4 – 8

• Standard Date: page 4 – 8

• Standard DateTime: page 4 – 9

• Date: page 4 – 10

• DateTime: page 4 – 10

Warning: Date and DateTime will be obsolete in Release 12
and are provided for backward compatibility only. For new
value sets, use the the format types Standard Date and
Standard DateTime.

You can also specify the maximum length your values can be, as well as
a minimum and maximum value that can be used with your value set.

4 – 4 Oracle Applications Flexfields Guide

Choosing the maximum size for your value set depends on what
flexfield you plan to use with your value set. Your value set size must
be less than or equal to the size of the underlying segment column in
the flexfield table. Oracle Applications does not allow you to assign a
value set whose values would not fit in the flexfield table.

You want to specify a maximum size for your values that fits the way
your organization works. Generally, if you use values with
descriptions, your values tend to be short and have longer descriptions.
For example, you might have a value of 02 that has a description of
New Orleans Region. If you plan to have Oracle Applications right
justify and zero–fill your values (so a three–character value set value of
7 automatically comes 007), you want your maximum size to be short
enough so that your users are not overwhelmed by zeros, but long
enough so that your organization has room to add more values later.

Values never change; descriptions can. For example, a department
code of 340 cannot change, but its description may change from Sales to
Corporate Accounts. Disable values and create new ones as needed.

The following diagram shows how some of these formatting options
interact.

4 – 5Values and Value Sets

Maximum Size of Value: 4 Characters

Alphabetic Allowed: Yes

Uppercase Only

190

90

0190

190Mach

MACH

Alphabetic Allowed: No

Becomes

Right–Justify Zero–Fill Numbers

Display Size of Segment: 2 Characters

01

You have several other options from which to choose. See: Value
Formats: page 4 – 6.

Value set options include the following:

4 – 6 Oracle Applications Flexfields Guide

• Name

• Description

• List Type

• Security Type

Format options include:

• Format Type

• Maximum Length

• Precision

• Numbers Only?

• Uppercase Only?

• Right–Justify and Zero–Fill Numbers?

• Minimum Value

• Maximum Value

Validation types include:

• Independent

• Dependent

• None

• Table

• Special

• Pair

• Translatable Independent

• Translatable Dependent

Value Formats

The format type you specify in the Format Type field is the format for
the segment or parameter value. If you use a validation table for this
value set, this format type corresponds to the format type of the value
column you specify in the Validation Table Information region,
regardless of whether you also specify a hidden ID column.

4 – 7Values and Value Sets

Because your changes affect all flexfields and report parameters that
use the same value set, you cannot change the format type of an
existing value set.

All of these format options affect both the values you can enter in the
Segment Values windows and the values you can enter in flexfield
segments and report parameters.

Format Types

Char

Char lets you enter any character values, including letters, numbers,
and special characters such as # $ % () . / , & and *. If you choose
this format type but enter values that appear to be numbers, such as
100 or 20, you should be aware that these values will still behave as
character values. For example, the value 20 will be ”larger” than the
value 100. If you want such values to behave (and be sorted) more like
numeric values, you should check the Numbers Only check box or
check the Right–justify and Zero–fill Numbers check box. If you
choose this format type but enter values that appear to be dates, such
as DD–MON–RR or DD–MON–YYYY, you should be aware that these
values will still behave as character values. For example, the value
01–SEP–2002 will be ”larger” than the value 01–DEC–2002. If you want
such values to behave (and be sorted) like date values, you should use
the Standard Date format type.

If you use the Char format type, you can also specify character
formatting options. See: Character Formatting Options: page 4 – 12.

Number

Number lets you ensure that users enter a numeric value. The numeric
format allows a radix character (’D’ or decimal separator) and a plus or
minus sign (although the plus sign is not displayed in the segment).
All leading zeros and plus signs are suppressed, and entered data
behaves as in a NUMBER field in Oracle Forms or a NUMBER column
in the database. Note that this format behaves differently than a
”Numbers Only” format, which is actually a character format.

Real numbers are stored with ’.’ internally and displayed using the
current radix separator. Group separators are not used by flexfields.
This is also true for Char format, Numbers Only value sets.

Once you have chosen a Number format, you can enter a value in the
Precision field. Precision indicates the number of places that should

4 – 8 Oracle Applications Flexfields Guide

appear after the decimal point in a number value. For example, to
display 18.758, you choose a precision of 3. Similarly, to display 1098.5,
you choose a precision of 1. To display an integer such as 7, you choose
a precision of 0.

Time

Time enforces a time format such as HH24:MI, depending on the
maximum size for this value set. These are the supported time formats
and value set maximum sizes you can use:

Maximum Time

Size Format

5 HH24:MI

8 HH24:MI:SS

You can use corresponding default values for segments whose value
sets use one of the above sizes. You define these defaults when you
define your segments or report parameters.

These values are treated and sorted as time values.

Standard Date

Standard Date enforces the user’s preferred date format. Users see the
dates in the dates in their preferred format while entering data,
querying data and using the List of Values.

For flexfield segments using value sets with this format type, the date
values are stored in the application tables in the format
YYYY/MM/DD HH24:MI:SS if the columns where the values are
stored are of type VARCHAR2. For report parameters using these
value sets the concurrent manager will pass dates in this format to the
report. Because there is no time component in the Standard Date type
value set values, the time component is 00:00:00.

Note: The underlying column size must be at least 20.

Value sets with the ”Standard Date” and ”Standard DateTime” formats
can have validation types of ”None”, ”Table”, ”Independent”,
”Dependent”, ”Special”, or ”Pair” in Release 11i.

You can specify minimum and maximum boundary values for these
value sets in the current NLS date format while defining the value set.

Table validated value sets using the ”Standard Date” or ”Standard
DateTime” formats cannot use the ID column. The VALUE column

4 – 9Values and Value Sets

should be a DATE column or a VARCHAR2 column (which should
have the date values in the canonical format YYYY/MM/DD
HH24:MI:SS). If the existing values in the table are not in the canonical
format you should create a view that will do the conversion to the
canonical format or to a date column and the value set should be
defined on this view.

These values are treated and sorted as date values, so 01–DEC–2002 is
”larger” than 01–SEP–2002.

Standard DateTime

Standard DateTime enforces the user’s date/time format. Users see the
dates in the dates in their preferred format while entering data,
querying data and using the List of Values.

For flexfield segments using value sets with this format type, the date
values are stored in the application tables in the format
YYYY/MM/DD HH24:MI:SS if the columns where the values are
stored are of type VARCHAR2. For report parameters using these
value sets the concurrent manager will pass dates in this format to the
report.

Note: The underlying column size must be at least 20.

Value sets with the ”Standard Date” and ”Standard DateTime” formats
can have validation types of ”None”, ”Table”, ”Independent”,
”Dependent”, ”Special”, or ”Pair” in Release 11i.

You can specify minimum and maximum boundary values for these
value sets in the current session’s date format while defining the value
set.

Table validated value sets using the ”Standard Date” or ”Standard
DateTime” formats cannot use the ID column. The VALUE column
should be a DATE column or a VARCHAR2 column (which should
have the date values in the canonical format YYYY/MM/DD
HH24:MI:SS). If the existing values in the table are not in the canonical
format you should create a view that will do the conversion to the
canonical format or to a date column and the value set should be
defined on this view.

These values are treated and sorted as date–time values, so
01–DEC–2002 00:00:00 is ”larger” than 01–SEP–2002 00:00:00.

4 – 10 Oracle Applications Flexfields Guide

Date

Warning: Date and DateTime value set formats will be
obsolete in Release 12 and are provided for backward
compatibility only. For new value sets, use the the format
types Standard Date and Standard DateTime.

Date enforces a date format such as DD–MON–RR or
DD–MON–YYYY, depending on the maximum size for this value set.
These are the supported date formats and value set maximum sizes
you can use:

Maximum Date

Size Format

9 DD–MON–RR

11 DD–MON–YYYY

You can use corresponding default values for segments whose value
sets use one of the above sizes. You define these defaults when you
define your segments or report parameters.

These values are treated and sorted as date values, so 01–DEC–2002 is
”larger” than 01–SEP–2002.

Note: Date value sets use a fixed date format depending on
their maximum size regardless of the user’s date format.

DateTime

Warning: Date and DateTime will be obsolete in Release 12
and are provided for backward compatibility only. For new
value sets, use the the format types Standard Date and
Standard DateTime.

DateTime enforces a date format such as DD–MON–RR HH24:MI,
depending on the maximum size for this value set. These are the
supported date–time formats and value set maximum sizes you can use
for DateTime:

Maximum Date

Size Format

15 DD–MON–RR HH24:MI

17 DD–MON–YYYY HH24:MI

18 DD–MON–RR HH24:MI:SS

20 DD–MON–YYYY HH24:MI:SS

4 – 11Values and Value Sets

You can use corresponding default values for segments whose value
sets use one of the above sizes. You define these defaults when you
define your segments or report parameters.

These values are treated and sorted as date–time values, so
01–DEC–2002 is ”larger” than 01–SEP–2002.

Note: Date value sets use a fixed date format depending on
their maximum size regardless of the user’s date format.

Value Set Maximum Size

This size represents the longest value you can enter into a segment that
uses this value set, as well as the longest Display Size you can specify
when you define your flexfield segment or report parameter.

Note: This size is the number of bytes, not characters.

In most cases, this maximum size cannot exceed the size of the segment
column in the underlying table for the flexfield that uses this value set.
If you set the maximum size longer than that column size, you cannot
choose this value set when you define your flexfield segments or report
parameters.

If you define your segments or report parameters using a Display Size
less than this maximum size, then your pop–up window displays the
leftmost characters of the value in the segment. Your user scrolls
through the segment to see any remaining characters.

For report parameters, the largest maximum size you can use is 240.

If your Format Type is Standard Date, your maximum size is 11. If
your Format Type is Standard DateTime, you maximum size is 20

If you are defining a value set that uses a validation table, your
maximum size should reflect the size of the column you specify as your
value column. The maximum size must also be equal to or less than
the width of the destination segment column. Therefore, after you
choose your value column size, you may get a message instructing you
to modify the value set maximum size to match your value column
width.

However, if you also specify a hidden ID column for your value set, the
flexfield determines if the hidden ID value will fit into the underlying
column rather than the value column. For example, if you specify your
maximum size as 60, which is also the size of your value column, but
you also specify a hidden ID column whose size is 15, you could still
use that value set for a flexfield whose underlying segment column size

☞

4 – 12 Oracle Applications Flexfields Guide

is only 20. Such value sets do appear in the value set list of values you
see when you define your flexfield segments or report parameters.

See Also

Overview of Implementing Table–Validated Value Sets: page 4 – 28

Precision

For value sets that contain numeric values (Number format, or
Character format with Numbers Only selected), this attribute
represents the number of digits after the radix character. Values are
stored with exactly this number of digits following the radix character,
with zeroes added or rounding applied as needed. If this field is left
empty (”NULL precision”), then the radix character may appear
anywhere in the value, as long as the other size and value constraints
are met.

Character Formatting Options

Numbers Only (0–9)

With the Numbers Only option, you may not enter the characters A–Z,
a–z, or special characters such as ! , @, or # , in the segment that uses
this value set. You may enter only the values 0–9, minus signs, plus
signs, the radix separator (D), and the group separator (G) in any
segment or parameter that uses this value set. Note also that your
Char format type value set remains Char even without alphabetic
characters, and your values will behave and sort as character values.

Attention: If you want to restrict users from entering a
negative sign for a value set where you do not allow alphabetic
characters, you should enter zero (0) as this value set’s
minimum value. However, you cannot prevent users from
entering a value that contains the radix character (D).

If you are defining a value set that uses a validation table, you should
set the value in this field to reflect the characteristics of the values in
the value column you specify for your validation table.

Note: The Numbers Only option cannot be used in
Translatable Independent and Translatable Dependent value
sets.

4 – 13Values and Value Sets

Uppercase Only

Indicate whether any alphabetic characters you enter as values for a
segment using this value set should automatically change to uppercase.

If you are defining a value set that uses a validation table, you should
set the value in this field to reflect the characteristics of the values in
the value column you specify for your validation table.

Note: The Uppercase Only option cannot be used in
Translatable Independent and Translatable Dependent value
sets.

Right–justify and Zero–fill Numbers

Indicate whether your flexfield should automatically right–justify and
zero–fill numbers when you enter values for this value set. This option
affects values that include only the characters 0–9, regardless of
whether you select the Numbers Only option. This option has no effect
on values that contain alphabetic characters or special characters such
as a period or a hyphen.

For example, if you have a five–character value set, and you define a
value of 7, your flexfield stores and displays your value as 00007. If
you define your flexfield segment to have a display size less than the
maximum size and you want to Right–justify and Zero–fill Numbers,
your flexfield segment may often display only zeroes (your flexfield
segment displays only the number of characters specified by the
display size). In these cases, your users need to scroll through the
flexfield segment to see a meaningful value, thus slowing data entry or
inquiries.

Usually you use this option to ensure that character values that appear
to be numbers will be sorted and appear in order as if they were
actually number values (for cross–validation rules, value security rules,
and reporting, for example). You may also use this option to ensure
that numeric–looking values all have the same number of characters so
they line up nicely in reports.

If you set Right–Justify and Zero–fill Numbers to Yes, you should
ensure that the values in this value set use Right–justify and Zero–fill.

Suggestion: We recommend that you set Right–justify and
Zero–fill Numbers to Yes for value sets you use with the
Accounting Flexfield and to No for most other value sets.

If you are defining a value set that uses a validation table, you should
set the value in this field to reflect the characteristics of the values in
your validation table.

4 – 14 Oracle Applications Flexfields Guide

If you set the Right–Justify and Zero–Fill Numbers flag to Yes, the
values in your value columns should also be right–justified and
zero–filled; that is, there should be an exact match in formatting.

Minimum and Maximum Value Range

Min Value

Enter the minimum value a user can enter in a segment that uses this
value set. Your minimum value may not violate formatting options
such as the maximum value size you specify for this value set.

You can use the Minimum Value and Maximum Value fields to define a
range of valid values for your value set. Once you specify a range of
values, you cannot define a new valid value that falls outside this
range. The Minimum Value and Maximum Value fields can therefore
allow you to create a value set with a validation type of None
(non–validated, where any value is valid) where the user cannot enter a
value outside the specified range.

For example, you might create a value set with format type of Number
where the user can enter only the values between 0 and 100. Or, you
might create a value set with format type of Standard Date where the
user can enter only dates for a specific year (a range of 01–JAN–2002 to
31–DEC–2002, for example). Since the minimum and maximum values
enforce these limits, you need not define a value set that contains each
of these individual numbers or dates.

You can define a range of values for a value set that already contains
values. Existing combinations or existing data that use values outside
the valid range are treated as if they contain expired segment values.

Your minimum or maximum value can differ depending on your
format type. For example, if your format type is Char, then 1000 is less
than 110, but if your format type is Number, 110 is less than 1000. In
addition, when you use a Char format type for most platforms (ASCII
platforms), numeric characters are ”less” than alphabetic characters
(that is, 9 is less than A), but for some platforms (EBCDIC platforms)
numeric characters are ”greater” than alphabetic characters (that is, Z is
less than 0). This window gives you an error message if you specify a
larger minimum value than your maximum value for your platform.

4 – 15Values and Value Sets

Max Value

Enter the maximum value a user can enter in a segment that uses this
value set. Your maximum value may not be longer than the maximum
size you specify for this value set.

If you leave this field blank, the maximum value for this value set is
automatically the largest value possible for your value set.

Examples of Minimum and Maximum Values

If your value set uses Char format,with Numbers Only and maximum
size of 3, then your minimum value is ’–99’ and your maximum value
is ’999’.

If your value set uses Number format, with maximum size is 5 with
precision of 2, then your minimum value is ’–9.99’ and your maximum
value is ’ ’99.99’ (using the US radix character ’.’).

Decide What Your User Needs

First, you should decide whether your users need a predefined list of
values from which to choose, or whether they can enter any value that
fits the value set formatting conditions. If you want to provide a list of
values, you choose from independent, dependent, translatable
independent, translatable dependent, or table value sets. If you do not
want a list, use a non–validated (None) value set.

Once you have chosen to provide a list of values for a segment, you
choose whether to use independent, dependent, translatable
independent, or translatable dependent or table validation. You would
only use a dependent set if you want your segment values to depend
upon the value chosen in a prior independent segment (a segment that
uses an independent value set). You would only use a translatable
dependent set if you want your segment values to depend upon the
value chosen in a prior translatable independent segment (a segment
that uses a translatable independent value set). Whether you use an
independent or table set depends on where you intend to get your
values. If you already have suitable values in an existing table, you
should choose a table set. If you were to use an independent set and
you already maintain those values in an application table, you would
need to perform double maintenance on your values. For example, if
you need to disable an invalid value, you would need to disable it in
both the Segment Values window (for your value set) and in your
application form that maintains your existing table (for use by your

4 – 16 Oracle Applications Flexfields Guide

application). If you do not already have a suitable table, you should
probably use an independent set and maintain your values using the
Segment Values window.

The following table lists each value set type, whether it uses a list of
values, and where these values, if any, are stored.

Value Set Type List of Values Values Stored

Independent Yes FND table

Dependent Yes FND table

Table Yes Application Table

None No No

Special/Pair Depends on value set Depends on value set

Translatable
Independent

Yes FND table

Translatable
Dependent

Yes FND table

Table 4 – 1 (Page 1 of 1)

Overview of Values and Value Sets: page 4 – 2

Planning Values and Value Sets: page 4 – 3

Defining Values and Value Sets: page 4 – 24

Choosing Value Formats: page 4 – 3

Choosing a Validation Type for Your Value Set: page 4 – 17

Plan Values to Use Range Features: page 4 – 22

Using Validation Tables: page 4 – 29

Using Translatable Independent and Translatable Dependent Value
Sets: page 4 – 40

Value Set Windows: page 4 – 50

Value Formats: page 4 – 6

Defining Hierarchy and Qualifiers Information: page 4 – 70

☞

4 – 17Values and Value Sets

Qualifiers: page 4 – 71

Choosing a Validation Type for Your Value Set

There are several validation types that affect the way users enter and
use segment or parameter values:

• None (not validated at all)

• Independent

• Dependent

• Table

• Special (advanced)

• Pair (advanced)

• Translatable Independent

• Translatable Dependent

Attention: The Accounting Flexfield only supports
Independent, Dependent, and Table validation (table validation
cannot have any additional WHERE clauses).

You cannot change the validation type of an existing value set, since
your changes affect all flexfields and report parameters that use the
same value set.

4 – 18 Oracle Applications Flexfields Guide

Values and descriptions
stored in AOL table

COM — Computer

MACH — Machinery

FURN — Furniture

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

QuickPick

Table–Validated
Value Set

Any Value Is Valid

“None” Value Set

Independent
Value Set

COM — Computer

MACH — Machinery

FURN — Furniture

QuickPick

Values and descriptions
stored in your application
table

(or)

(or)

None

You use a None type value set when you want to allow users to enter
any value so long as that value meets the value set formatting rules.
That is, the value must not exceed the maximum length you define for
your value set, and it must meet any format requirements for that
value set. For example, if the value set does not allow alphabetic
characters, your user could not enter the value ABC, but could enter
the value 456 (for a value set with maximum length of three). The

4 – 19Values and Value Sets

values of the segment using this value set are not otherwise validated,
and they do not have descriptions.

Because a None value set is not validated, a segment that uses this
value set does not provide a list of values for your users. A segment
that uses this value set (that is, a non–validated segment) cannot use
flexfield value security rules to restrict the values a user can enter.

Independent

An Independent value set provides a predefined list of values for a
segment. These values can have an associated description. For
example, the value 01 could have a description of ”Company 01”. The
meaning of a value in this value set does not depend on the value of
any other segment. Independent values are stored in an Oracle
Application Object Library table. You define independent values using
an Oracle Applications window, Segment Values.

Table

A table–validated value set provides a predefined list of values like an
independent set, but its values are stored in an application table. You
define which table you want to use, along with a WHERE cause to limit
the values you want to use for your set. Typically, you use a
table–validated set when you have a table whose values are already
maintained in an application table (for example, a table of vendor
names maintained by a Define Vendors form). Table validation also
provides some advanced features such as allowing a segment to
depend upon multiple prior segments in the same structure.

Dependent

A dependent value set is similar to an independent value set, except
that the available values in the list and the meaning of a given value
depend on which independent value was selected in a prior segment of
the flexfield structure. You can think of a dependent value set as a
collection of little value sets, with one little set for each independent
value in the corresponding independent value set. You must define
your independent value set before you define the dependent value set
that depends on it. You define dependent values in the Segment Values
windows, and your values are stored in an Oracle Application Object
Library table. See: Relationship Between Independent and Dependent
Values: page 4 – 25.

4 – 20 Oracle Applications Flexfields Guide

0 — Not Applicable

876 — Monitor

877 — Floppy Drive

881 — CPU

List

0 — Not Applicable

1003 — Pump

1004 — Press

1006 — Drill

List

Dependent Value Set

Independent Value Set

COM — Computer

MACH — Machinery

FURN — Furniture

List

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light TanLTN

0 — Miscellaneous

2373 — Couch

2375 — Desk

2376 — Chair

List

Special and Pair Value Sets

Special and pair value sets provide a mechanism to allow a
”flexfield–within–a–flexfield”. These value sets are primarily used for
Standard Request Submission parameters. You do not generally use
these value sets for normal flexfield segments.

4 – 21Values and Value Sets

Run Reports

Report Parameters

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light Tan

Report Parameters

COMType

COM–876–LTNPart Number

Computer

LTN

Special and Pair value sets use special validation routines you define.
For example, you can define validation routines to provide another
flexfield as a value set for a single segment or to provide a range
flexfield as a value set for a pair of segments.

Translatable Independent and Translatable Dependent

A Translatable Independent value set is similar to Independent value
set in that it provides a predefined list of values for a segment.
However, a translated value can be used.

A Translatable Dependent value set is similar to Dependent value set in
that the available values in the list and the meaning of a given value
depend on which independent value was selected in a prior segment of
the flexfield structure. However, a translated value can be used.

4 – 22 Oracle Applications Flexfields Guide

Flexfield Value Security cannot be used with Translatable Independent
or Translatable Dependent value sets.

For format validation, translatable value sets must use the format type
Char. The maximum size must be no greater than 150. The Number
Only option and the Right–justify and Zero–Fill Numbers option
cannot be used with translatable value sets.

Range flexfields cannot use Translatable Independent or Translatable
Dependent value sets.

You cannot create hierarchies or rollup groups with Translatable
Independent or Translatable Dependent value sets.

Note: The Accounting Flexfield does not support Translatable
Independent and Translatable Dependent value sets.

Plan Values to Use Range Features

Use sensible ranges of values by grouping related values together to
simplify implementing features such as cross–validation and security
rules.

It is a good idea to plan your actual values while keeping
cross–validation, security, and reporting ranges (”range features”) in
mind (also parent or summary values that would fall at one end of a
given range, for example). For example, you may want to base security
on excluding, say, all values from 1000 to 1999. Keep in mind, though,
that if you use the Character format for your value set, your values and
ranges are sorted by characters. So, 001 < 099 < 1 < 100 < 1000 <12 <
120 < 1200, which is different from what you expect if these were really
numbers (using a Number format value set).

Note: You cannot use range features with Translatable
Independent and Translatable Dependent value sets.

Value Set Naming Conventions

If you plan to refer to your value set name in a WHERE clause for a
validation table value set, you should use only letters, numbers, and
underscores (_) in your value set name. You should not include any
spaces, quotes, or other special characters in your value set name. Do
not use the string $FLEX$ as part of your value set name. Note that

4 – 23Values and Value Sets

validation tables are case–sensitive for value set names you use in
validation table WHERE clauses.

Suggestion: Make your value set names contain only one case
(either upper or lower case) to avoid case–sensitivity problems.

Oracle Applications includes many predefined value sets. These are
primarily value sets for Standard Request Submission parameters.
During an upgrade, Oracle Applications will overwrite your value sets
that use the same names as Oracle Applications value sets. While
Oracle Applications provides a list of reserved value set names before
an upgrade so that you can rename your sets to prevent their being
overwritten, you should name your value sets carefully to make
upgrades easier.

Oracle Applications reserves certain naming patterns. Oracle
Applications reserves the patterns of either two or three characters
immediately followed by either an underscore or hyphen, as in
AP_VALUE_SET or PER–Value Set.

Note that Oracle Applications products do not completely follow these
guidelines for Release 11i, so you will still need to check and possibly
rename your value sets before upgrades. However, if you name your
value sets with names we are unlikely to use, your future upgrades will
be simpler. For example, you might want to give your value sets
names that begin with a six–character name for your site.

Predefined Value Sets

Many Oracle Applications reports use predefined value sets that you
may also use with your flexfield segments. If your flexfield segment
uses a value set associated with a Standard Request Submission report
parameter, any changes you make to its value set also affect any reports
that use the same value set. Also, your changes to Oracle Applications
value sets may be overwritten by a future upgrade.

Oracle Applications provides two predefined values sets,
FND_STANDARD_DATE and FND_STANDARD_DATETIME that
you can choose for your segments. These special values sets ensure
that you enter a properly–formatted date, instead of any set of
characters, in your flexfield segment. These value sets have a
validation type of None, so they accept any date value in the correct
format. Date values using this value set will appear in the user’s
session date display mask. If your flexfield segment or report
parameter uses FND_STANDARD_DATE or

4 – 24 Oracle Applications Flexfields Guide

FND_STANDARD_DATETIME it must have the correct length for the
display format to avoid truncation of the dates.

For backwards compatibility, Oracle Applications provides some
predefined value sets, FND_DATE and FND_DATE4 that you can
choose for your date segments. These special value sets ensure that
you enter a properly–formatted date, instead of any set of characters, in
your flexfield segment. FND_DATE provides a date format of
DD–MON–RR, and FND_DATE4 provides a date format of
DD–MON–YYYY. Both of these value sets have a validation type of
None, so they accept any date value in the correct format. If your
flexfield segment or report parameter uses FND_DATE or
FND_DATE4, it must have a length of 9 or 11 characters (respectively)
to avoid truncation of the dates. However, we recommend that you
create your own date value sets for any new flexfield segments.

Note: The FND_DATE and FND_DATE4 value sets are for
backwards compatibility only. The DATE format type will be
obsolete in Release 12. Also, your users do not have flexibility
with the display format for the values in these value sets.

For backwards compatibility, Oracle Applications provides another
predefined value set, NUMBER15, that you can choose for your
numeric segments. This special value set ensures that you enter a
positive or negative number, instead of any set of characters, in your
flexfield segment. This value set has a validation type of None, so it
accepts any positive or negative number value up to fifteen characters
long (including the minus sign). If you use this value set, your flexfield
strips any leading zeros from the values you enter and ensures that
your numbers have only one radix character (’.’ in the US format, for
example). However, we recommend that you create your own number
value sets for any new flexfield segments.

Defining Values and Value Sets

Prerequisites

❑ Plan your flexfield structures and segments.

❑ Thoroughly plan your values and value sets. See: Planning Values
and Value Sets: page 4 – 3.

� To define values and value sets:

1. Navigate to the Value Sets window.

4 – 25Values and Value Sets

2. Define your value set. See: Defining Value Sets: page 4 – 51.

3. Define your values. See: Defining Segment Values: page 4 – 68.

Relationship Between Independent and Dependent Values

Independent and dependent value sets have a special relationship.
While you can have the same dependent values for any of your
independent values, the meanings (or descriptions) – as well as any
segment qualifier values, enabled/activation information and
descriptive flexfield data for that value – of the dependent values
depend on which of the independent values you choose in the prior
independent segment. For example, you could have value sets with the
values (dependent default value of 0) as described in the following
table:

Independent
Value Set
(Account
Segment)
Value

Independent
Value Set
(Account
Segment)
Description

Dependent
Value Set
(Sub–Account
Segment)
Value

Dependent
Value Set
(Sub–Account
Segment)
Description

01 Cash accounts 0 Default Value

01 Cash accounts 1 Bank of Califor-
nia

01 Cash accounts 2 Bank of Denver

01 Cash accounts 3 First Federal
Bank

02 Equipment
accounts

0 Misc equipment

02 Equipment
accounts

1 Computers

02 Equipment
accounts

2 Printers

Table 4 – 2 (Page 1 of 2)

4 – 26 Oracle Applications Flexfields Guide

Independent
Value Set
(Account
Segment)
Value

Dependent
Value Set
(Sub–Account
Segment)
Description

Dependent
Value Set
(Sub–Account
Segment)
Value

Independent
Value Set
(Account
Segment)
Description

02 Equipment
accounts

3 Delivery Vehicles

03 Other asset
accounts

0 Default value

Table 4 – 2 (Page 2 of 2)

You must set up your independent–dependent value sets carefully
using the following sequence:

• Create your independent value set first

• Create your dependent value set, specifying a default value

• Define your independent values

• Define your dependent values

When you define each of your independent values, Oracle Applications
automatically creates a default dependent value that goes with your
independent value. For example, the previous diagram shows a
default value of zero (0). If for some reason you create a dependent
value set after your independent value set has values, you must
manually create a default value in your dependent set for each of your
independent values, since each independent value must have a default
dependent value. If necessary, create your default dependent values
manually using the Segment Values form (you also use this form to
create all dependent values other than the default value). You must
create at least one dependent value for each independent value, or else
your user will be unable to enter segment value combinations in the
flexfield. However, we recommend that you carefully follow the above
order for creating your value sets so that you never have to create
default dependent values manually, since manually creating default
dependent values is both tedious and error–prone.

See:

Value Set Windows: page 4 – 50

Segment Values Window: page 4 – 65

4 – 27Values and Value Sets

”Dependent” Values with Table Validation

Flexfields uses a special mechanism to support table–validated
segments whose values depend on the value in a prior segment (a
different mechanism from that used for independent value sets with
dependent value sets). You can use flexfield validation tables with a
special WHERE clause (and the $FLEX$ argument) to create value sets
where your segments depend on prior segments. You can make your
segments depend on more than one segment (cascading dependencies).
However, you cannot use parent value/child value features with these
value sets, nor can you use this mechanism with the Accounting
Flexfield.

See:

WHERE Clauses and Bind Variables for Validation Tables: page 4 – 33

Example of $FLEX$ Syntax: page 4 – 38

Parent and Child Values and Rollup Groups

Only Oracle General Ledger and Oracle Public Sector General Ledger
use these features, and only with the Accounting Flexfield. Parent and
child value sets have a relationship different from the relationship
between independent and dependent values. For information on these
features, see: Oracle [Public Sector] General Ledger User’s Guide.

See:

Rollup Groups Window: page 4 – 83

4 – 28 Oracle Applications Flexfields Guide

Overview of Implementing Table–Validated Value Sets

Table–validated value sets let you use your own application tables as
value sets for flexfield segments and report parameters instead of the
special values tables Oracle Applications provides. You need not enter
each value manually using the Segment Values window. Value sets you
base on validation tables can be similar to Independent value sets,
where values in your Table type value sets are independent of the
values in all other segments. Or, depending on how you define your
validation table’s WHERE clause, they can depend on one or more
previous segments in your flexfield.

In general, you should use a validation table if you want a key or
descriptive flexfield segment, or report parameter, to use values that
your application already requires or maintains for other application
purposes. Using a validation table then lets you avoid maintaining two
copies of the same values (one in your application’s table and the other
in Oracle Application Object Library’s tables).

You can use many advanced features with your table–validated value
sets. You can use validation tables for flexfield segments or report
parameters whose values depend on the value in a prior segment. You
use flexfield validation tables with a special WHERE clause (and the
$FLEX$ argument) to create value sets where your segments depend on
prior segments. You can make your segments depend on more than
one segment, creating cascading dependencies. You can also use
validation tables with other special arguments to make your segments
depend on profile options or field values.

Note: Table–validated value sets with WHERE clauses cannot
be used with the Accounting Flexfield.

If you want to make use of key flexfield features such as rollup groups
and parent–child relationships, you can store the child values in your
validation table, but you should use the Segment Values windows
Oracle Applications provides to add or define the parent values and
rollup groups.

See:

Segment Values Window: page 4 – 65

☞

4 – 29Values and Value Sets

Using Validation Tables

Use the Table Validation Information window to define the
characteristics of a table you want to use to validate your segment or
report parameter.

� To implement a validation table:

1. Create or select a validation table in your database. You can use
any existing application table, view, or synonym as a validation
table. See: Defining Your Validation Table: page 4 – 31.

2. Register your table with Oracle Application Object Library (as a
table). You may use a non–registered table for your value set,
however. If your table has not been registered, you must then enter
all your validation table information in this region without using
defaults.

3. Create the necessary grants and synonyms. See: Creating Grants
and Synonyms for Your Table: page 4 – 32.

4. Define a value set that uses your validation table. See: Defining
Value Sets: page 4 – 51.

5. Define your flexfield structure to use that value set for a segment.

You can use the same table for more than one value set, using different
SQL WHERE clauses to limit which values are used for flexfield and
report parameter validation. For example, if you wish to validate
different segments against different rows of the same table, you would
use the same table twice but select different rows of the table for each
value set by using different SQL WHERE clauses.

Note: The value column and the defined ID column in the
table must return a unique row for a given value or ID.

If the ID column is used, then each value in the ID column
must be unique. If the ID column is not used then each value
in the value column must be unique.

Warning: You should not use any WHERE clause and/or
ORDER BY clause at all for a value set you intend to use with
the Accounting Flexfield.

In general, you may use a WHERE clause and/or an ORDER
BY clause for validation tables you intend to use with key
flexfields other than the Accounting Flexfield.

Attention: If you need a complex SQL clause to select your
values from a table, you should instead first define a view over

☞

4 – 30 Oracle Applications Flexfields Guide

the table which selects the rows you need, and then define the
value set over the view.

See: WHERE Clauses and Bind Variables for Validation Tables: page
4 – 33 for detailed information on using WHERE clauses with special
bind variables.

Using hidden ID columns with value sets

If you specify a hidden ID column in addition to your value column,
the flexfield saves your hidden ID value, instead of the value from the
value column, in the segment column (in your ATTRIBUTEn column or
SEGMENTn column) of the underlying flexfield table.

Generally, you use value sets with hidden ID columns only for report
parameters. You would not normally use them for most key flexfields.
In fact, most key flexfields prevent you from using a value set with a
hidden ID column by not displaying those value sets in the list of
values you use to assign a value set to a segment.

Attention: You should not specify a hidden ID column for
value sets you use with your Accounting Flexfield or most
other key flexfields.

If you specify a hidden ID column in addition to your value column,
the report parameter window passes your hidden ID value, instead of
the value from the value column, to your report.

Table validated value sets using the ”Standard Date” or ”Standard
DateTime” formats cannot use the ID column.

Using multiple tables in a single value set

For value sets that use multiple tables, you should always include the
table aliases with all your column names. You must enter the column
name directly, since your list of values cannot retrieve any column
names for a ”table name” that is not a registered single table. For
example, you might enter:

f.column_name

For value sets that use multiple tables, you can and should leave the
Table Application field blank, since it is effectively ignored in this case.
You enter the table names and aliases you want in the Table Name
field. Then, you enter the Value Column and Description Column
column names directly, with table aliases, since your list of values
cannot retrieve any column names for a ”table name” that is not a
registered single table.

4 – 31Values and Value Sets

Displaying additional columns in your list of values

You can design your value set to display several columns in the
segment value or report parameter value list of values, and these
columns may be in different tables. If all your columns exist in the
same table, you simply list the additional columns in the Additional
Columns field. If your columns exist in different tables, you must
specify more than one table name in the Table Name field. You should
always use table names or aliases with your column names for your
Additional Columns and WHERE clause.

Finally, you can enter the names of the extra columns you want, with
their table aliases, in the Additional Columns field. You can specify
column widths to display.

In some cases you may want to use a SQL expression instead of
specifying a single column name. For example, you may want to use a
DECODE statement instead of a simple column name, such as:

DECODE(FORM.FORM_NAME, ’OEDEOR’, ’Enter Orders’, ’Not

available’)

or

DECODE(FORM.FORM_ID, 1234, 1234, NULL)

You can also use message names as alias names; this functionality
allows for ease of translation of column titles. The syntax for using a
message name as an alias name is:

E_FLAG ”APPL=<Application Short Name>;NAME=<Message

Name>”(width)

Defining Your Validation Table

Create a new flexfield validation table, or use an existing application
table, that includes the following columns:

• A column that holds segment values, type VARCHAR2, DATE
or NUMBER

• A column that holds descriptions for the segment values, type
VARCHAR2, DATE or NUMBER

Your table can also include the following optional columns:

• ENABLED_FLAG, type VARCHAR2, length 1, NOT NULL

☞

4 – 32 Oracle Applications Flexfields Guide

• START_DATE_ACTIVE and END_DATE_ACTIVE,
type DATE, NULL ALLOWED

If you use these optional columns, they must be defined with the listed
characteristics. When you register your validation table, Oracle
Application Object Library checks your table to see if these columns
exist. If they do, Oracle Application Object Library uses them as part
of the flexfield validation information. If you add the
ENABLED_FLAG column to an existing table, you must populate the
column (with Y or N) for all rows.

Normally, you should use the values form Oracle Application Object
Library provides, Define Segment Values, to contain parent values and
rollup group information (together with child values contained in your
validation table as described in the previous section).

If you have certain special columns, such as SUMMARY_FLAG,
START_DATE_ACTIVE, END_DATE_ACTIVE,
STRUCTURED_HIERARCHY_LEVEL,
COMPILED_VALUE_ATTRIBUTES or ENABLED_FLAG, in your
registered table, your value set uses those columns automatically once
you set up your table as a validation table.

If you do not want your value set to use those columns automatically,
you should use an alias with your table name in the Table Name field.

Attention: If you need to use SQL functions or very complex
WHERE clauses with your table, you should instead first
define a view over the table and then use the view.

Creating Grants and Synonyms for Your Table

Your validation table resides in your application’s ORACLE account.
Oracle Applications requires access to your flexfield validation table, as
follows:

Create a synonym for your validation table in the APPS schema
(ORACLE account). Your synonym should be the same name as your
table name.

Grant SELECT privileges on the table from your application’s ORACLE
account to the APPS schema.

Ensure that your responsibilities connect to the APPS schema.

4 – 33Values and Value Sets

WHERE Clauses and Bind Variables for Validation Tables

You can use validation tables with WHERE clauses to set up value sets
where one segment depends on a prior segment that itself depends on
a prior segment (”cascading dependencies”).

Table–Validated Value Set

COM — Computer

MACH — Machinery

FURN — Furniture

List

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

Application Table

Type Value Description
Facility BLDG Building
Equipment COM Computer
Equipment MACH Machinery
Equipment FURN Furniture
Vehicle AUTO Automobile
Vehicle TRK Truck

Jane Reed

Ashutosh Gupta

Vicki Nakamura

List Application Table

Rep ID Sales Rep Specialty
11 George Budaski BLDG
12 Amy Campana BLDG
14 Jane Reed COM
15 Ashutosh Gupta COM
16 Vicki Nakamura COM
17 Bob Smith FURN
19 Al Chang AUTO
21 Karen Schwartz TRK

COM

☞

☞

4 – 34 Oracle Applications Flexfields Guide

Using bind variables in WHERE/ORDER BY clauses

You may use special bind variables, such as :block.field,
:$PROFILES$.Option_name, or :$FLEX$.Value_set_name, in your
WHERE/ORDER BY clause. However, you may not use them in the
Value Column or Hidden ID Column fields (where you would
normally specify a column name), even if you do specify a SQL
fragment instead of specifying a single column name. You may use
bind variables in the Description Column and Additional Columns
fields.

Attention: If you are using flexfields server–side validation,
you cannot use form field references (:block.field). You must
either remove your field references or turn off flexfields
server–side validation using the profile option
Flexfields:Validate on Server.

See:

Flexfields:Validate on Server: page 4 – 28

Attention: You may not use a DISTINCT clause in any of the
column fields or in your WHERE/ORDER BY clause (you
should use a view with a GROUP BY clause instead of your
actual table).

If you are using a validation table with special arguments such as
:$FLEX$.Value_Set_Name for your value set, you should specify No
Security in the Security Type field, since any security rules you have for
your value set would ignore the values of these special arguments, and
your rules could have effects other than what you intend.

See:

Overview of Implementing Table–Validated Value Sets: page 4 – 28

Bind Variables: page 4 – 34

Bind Variables

You can put special arguments (bind variables) in your WHERE clause
that allow you to base your values on other values. These bind
variables include :block.field, :$PROFILES$.Option_name, or
:$FLEX$.Value_set_name. You may not use bind variables in the Value
Column or Hidden ID Column fields (where you would normally

4 – 35Values and Value Sets

specify a column name). You may use bind variables in the Description
Column and Additional Columns fields.

Note that a bind variable, by default, is required; that is, it must have a
value for the statement, expression, or user exit which uses it to have
meaning. A bind variable can be made optional by using the :NULL
suffix; so that if the bind variable is NULL, the segment/parameter
using it will be disabled, and its required property (if enabled) will be
ignored. The :NULL suffix is discussed at the end of this section.

:$FLEX$.Value_ Set_Name

Value_Set_Name is the name of either the value set for a prior segment,
or the segment name of a prior segment in the same flexfield or
parameter window that you want your validation table–based values
to depend on. When you define your flexfield structure or report
parameter window, you define the segment or parameter that uses
value set Value_Set_Name to have a lower sequence number than the
segment that uses your validation table–based value set. The $FLEX$
mechanism uses the ”closest” prior segment with either a matching
value set name or segment name (it looks for the value set name first,
and uses the segment name second if there are no matching value set
names).

Value_Set_Name is case–sensitive, so you must ensure that the name
you specify here exactly matches the value set name you define in the
Define Value Set form. Note that you can only use letters, numbers,
and underscores (_) in your value set names if you want to use them
with a :$FLEX$.Value_Set_Name clause. You cannot use quotes, spaces,
or other special characters in these value set names, so you should be
careful to define your value sets with names that do not contain spaces,
quotes, or other special characters.

You can specify more than one :$FLEX$.Value_Set_Name in a single
WHERE clause, thereby creating a segment whose list of possible
values depends upon more than one previous segment.

When you specify :$FLEX$.Value_Set_Name, your flexfield segment or
report parameter defaults to always use the hidden ID column (of the
previous value set) to compare with your WHERE clause. The end
user would never see the hidden ID value, however. If you do not
specify a hidden ID column, your segment defaults to use the value in
the value column instead.

When you specify :$FLEX$.Value_Set_Name, you can also explicitly
choose which column for which you want :$FLEX$.Value_Set_Name to
return a value. You do this by specifying

☞

4 – 36 Oracle Applications Flexfields Guide

:$FLEX$.Value_Set_Name.OUTPUT, where OUTPUT can be ID, VALUE,
or MEANING (to return the value of the description column).

When you specify your validation table value sets, you can also use an
INTO clause in the Additional Columns field (after your entire list of
columns and aliases) to put the value into a variable you use with
:$FLEX$.segment_name.OUTPUT, where OUTPUT is a name you
choose. You can then retrieve that value using
:$FLEX$.segment_name.OUTPUT (where OUTPUT is the same name)
from another segment’s value set WHERE clause. You cannot use
OUTPUT to put a value directly into a field, but a value that a flexfield
segment retrieves may be put into a hidden form field that the segment
corresponds to once the popup window closes. If you do not specify
an INTO clause in your Additional Columns field, your value is not
placed anywhere other than being displayed in the list of values (it goes
INTO NULL).

Attention: If you are using flexfields server–side validation,
you cannot use the INTO clause for your value set. You must
either remove your INTO clauses or turn off flexfields
server–side validation using the profile option
Flexfields:Validate on Server.

See:

Flexfields:Validate on Server: page 4 – 28

:block.field

:block.field is the SQL*Forms/Oracle Forms name of a field on the form
where your descriptive flexfield appears. You can use this argument to
make your value set context–sensitive to a field on a form. While this
is somewhat similar to using a reference field with a descriptive
flexfield, using a reference field with a descriptive flexfield provides a
choice between different structures of context–sensitive segments (and
indirectly, their value sets). Using this :block.field argument, however,
gives you the same segments that would normally appear, but changes
the contents of the value set attached to the segment depending on
what appears in your :block.field. In some cases, you may wish to use a
:block.field value set instead of a descriptive flexfield reference field with
many different context–sensitive structures.

Note that if you use this argument, you must have the same :block.field
on every form where a value set based on this validation table could be
used. For example, if the same flexfield appears on seven forms, then
all seven forms must have this block.field. Similarly, if you share your
value set among more than one flexfield, then all forms that use any of

4 – 37Values and Value Sets

those flexfields must have this block.field. Though it is possible to use
this argument for a key flexfield segment or report parameter, the same
restriction applies; that is, you must have the same block.field wherever
the value set can be used.

Warning: The :block.field mechanism is present for backward
compatibility only. Value sets that use this mechanism will not
be compatible with a future release of Oracle Applications. If
you are using flexfields server–side validation, you cannot use
form field references (:block.field). You must either remove your
field references or turn off flexfields server–side validation
using the profile option Flexfields:Validate on Server.

See:

Flexfields:Validate on Server: page 4 – 28

:$PROFILES$. profile_option_ name

Profile_option_name is the internal option name of a user profile option
such as CONC_COPIES (for Concurrent:Report Copies) or
GL_SET_OF_BKS_ID. For example, you could define your WHERE
clause as:

WHERE SET_OF_BOOKS_ID =

:$PROFILES$.GL_SET_OF_BKS_ID

:NULL suffix

Use the :NULL suffix to make your bind variable optional, that is,
allow null values. Instead of :block.field, :$PROFILES$.Option_name, or
:$FLEX$.Value_set_name, you would use :block.field:NULL,
$PROFILES$.Option_name:NULL, or :$Flex$.Value_set_name:NULL,
respectively. For example, if your value set name is
Car_Maker_Name_Value_Set, you would use
:$FLEX$.Car_Maker_Name_Value_Set:NULL.

See also: Example of $FLEX$ Syntax: page 4 – 38

Special Treatment for WHERE Clauses

Behind the scenes, the flexfield adds an AND... clause to the WHERE
clause you define for your table validated value set. If your WHERE
clause contains an OR, then the appended AND clause might not apply
to your whole WHERE clause (without the parentheses), and might not
produce the correct results. So, flexfields implicitly put parentheses
around your WHERE clause.

4 – 38 Oracle Applications Flexfields Guide

Example of $FLEX$ Syntax

Here is an example of using :$FLEX$.Value_Set_Name to set up value
sets where one segment depends on a prior segment that itself depends
on a prior segment (”cascading dependencies”). Assume you have a
three–segment flexfield where the first segment is car manufacturer, the
second segment is car model, and the third segment is car color. You
could limit your third segment’s values to only include car colors that
are available for the car specified in the first two segments. Your three
value sets might be defined as follows:

Segment Name Manufacturer

Value Set Name Car_Maker_Name_Value_Set

Validation Table CAR_MAKERS

Value Column MANUFACTURER_NAME

Description Column MANUFACTURER_DESCRIPTION

Hidden ID Column MANUFACTURER_ID

SQL Where Clause (none)

Segment Name Model

Value Set Name Car_Model_Name_Value_Set

Validation Table CAR_MODELS

Value Column MODEL_NAME

Description Column MODEL_DESCRIPTION

Hidden ID Column MODEL_ID

SQL Where Clause WHERE MANUFACTURER_ID =

 :$FLEX$.Car_Maker_Name_Value_Set

Segment Name Color

Value Set Name Car_Color_Name_Value_Set

Validation Table CAR_COLORS

Value Column COLOR_NAME

Description Column COLOR_DESCRIPTION

Hidden ID Column COLOR_ID

SQL Where Clause WHERE MANUFACTURER_ID =

 :$FLEX$.Car_Maker_Name_Value_Set

 AND MODEL_ID =

 :$FLEX$.Car_Model_Name_Value_Set

In this example, MANUFACTURER_ID is the hidden ID column and
MANUFACTURER_NAME is the value column of the
Car_Maker_Name_Value_Set value set. The Model segment uses the
hidden ID column of the previous value set,

4 – 39Values and Value Sets

Car_Maker_Name_Value_Set, to compare against its WHERE clause.
The end user never sees the hidden ID value for this example.

☞

4 – 40 Oracle Applications Flexfields Guide

Using Translatable Independent and Translatable Dependent Value
Sets

Translatable Independent and Translatable Dependent value sets are
similar to Independent and Dependent value sets except that translated
values can be displayed to the user. Translatable Independent and
Translatable Dependent value sets allow you to use hidden values and
displayed (translated) values in your value sets. In this way your users
can see a value in their preferred languages, yet the values will be
validated against a hidden value that is not translated.

Implementation

Define Your Translatable Value Set

Define your Translatable Independent or Translatable Dependent value
set in the Value Sets form. Choose Translatable Independent or
Translatable Dependent for your Validation Type.

Translatable Dependent value sets behave like Dependent value sets
except that they must be dependent on a Translatable Independent
value set. A Translatable Independent value set can have only
Translatable Dependent value sets dependent on it.

Your value set must use the Char format type. The maximum size for
any translatable set is 150 characters. You can specify your values to be
Uppercase only. The maximum size applies to your translated values
as well as the hidden values.

The following features are disabled for translatable value sets: Security,
Numbers Only, Right–justify and Zero–Fill Numbers.

Attention: The Accounting Flexfield does not support
Translatable Independent or Translatable Dependent Value
Sets.

See Also

Overview of Values and Value Sets: page 4 – 2

Value Set Windows: page 4 – 50

4 – 41Values and Value Sets

Defining Value Sets: page 4 – 51

Dependent Value Set Information Window: page 4 – 54

Define Your Values

Navigate to the the Segment Values form to define your values and
translated values.

In the Values, Effective tabbed region, the Value column contains the
”hidden” untranslated value.

The Translated Value field contains the current translated value. The
hidden value defaults in the Translated Value field if no other value is
defined. The Translated Value field is enabled for Translatable
Independent and Translatable Dependent value sets only.

You can update the translated value for the current session language in
the Translated Value field. To update the translated value for a
language other than the current session language, use the Translation
icon in the Toolbar.

Limitations on Translatable Value Sets

Flexfield Value Security cannot be used with Translatable Independent
or Translatable Dependent value sets.

For format validation, translatable value sets must use the format type
Char. The maximum size must be no greater than 150. The Number
Only option and the Right–justify and Zero–Fill Numbers option
cannot be used with translatable value sets.

Range flexfields cannot use Translatable Independent or Translatable
Dependent value sets.

You cannot create hierarchies or rollup groups with Translatable
Independent or Translatable Dependent value sets.

Note: The Accounting Flexfield does not support Translatable
Independent and Translatable Dependent value sets.

4 – 42 Oracle Applications Flexfields Guide

Converting Independent/Dependent Value Sets to Translatable
Independent/Dependent Value Sets

You can convert an Independent value set to a Translatable
Independent value set, or a Dependent value set to a Translatable
Dependent value set. These are the only types of conversions allowed.
All limitations for translatable value sets apply to your updated value
sets.

You convert an Independent/Dependent value set to a Translatable
Independent/Dependent value set using the affupg1.sql script. Your
new value set will have the validation type Translatable Independent or
Translatable Dependent. This is the only change made, and values are
not affected.

The difference between the old value set and the new value set can be
seen in the Segment Values form. The Translated Value column will be
enabled for the new, translatable value set.

To run affupg1.sql, perform the following at the command line:

$ cd $FND_TOP/sql

$ sqlplus <APPS username>/<APPS password> @afffupg1.sql

Choose the appropriate menu option to change your value set.

After you have created your new translatable value set, you can use the
Segment Values form to enter translated values for the value set.

4 – 43Values and Value Sets

Using Special and Pair Value Sets

Use the Special Validation Routines window to define special
validation for a Special value set. You also use this window to define
validation routines for a Pair value set.

Warning: You should never change or delete a predefined
value set that Oracle Applications supply. Such changes may
unpredictably affect the behavior of your application features
such as reporting.

You can use this region to define a value set that lets your users enter
an entire key flexfield combination within a single report parameter.
For example, you may want to pass concatenated Accounting Flexfield
segments as a parameter to a report. With this type of value set, a user
can enter the report parameter and then see the ”normal” behavior of a
key flexfield, such as the key flexfield window and segment validation
associated with that key flexfield. You use Oracle Application Object
Library flexfield routines for these special value sets.

See: Special Validation Value Sets: page 9 – 23 for information on using
these validation types. This section contains information on the
various types of events and flexfield routine arguments and syntax you
use with special validation. It also contains a worked example of using
special validation for the Accounting Flexfield.

See:

Key Flexfield Segments: page 2 – 16

Descriptive Flexfield Segments: page 3 – 31

4 – 44 Oracle Applications Flexfields Guide

Defaulting Flexfield Values

This section describes the various methods of defaulting flexfield
values with their respective precedence.

Precedence of Default Values, Shorthand Entry Values,
and COPY Values in Key Flexfields

There are four ways you can put a value into a key flexfield segment (in
order of precedence, where the first overrides the second, which
overrides the third, which in turn overrides the fourth):

1. Enter a value manually into the segment once the flexfield window
has popped open.

2. Insert a value using a shorthand flexfield entry alias

3. Copy a value into the segment from a form field using the COPY
parameter to POPID (Implementing Key Flexfields)

4. Define a default value for the segment using the Key Flexfield
Segments form

The value you copy using the COPY parameter in POPID overrides any
default value you set for your segment(s) using the Key Flexfield
Segments form. COPY does not copy a NULL value over an existing
(default) value. However, if the value you copy is not a valid value for
that segment, it gives the appearance of overriding a default value with
a NULL value: the invalid value overrides the default value, but the
flexfield then erases the copied value because it is invalid. You should
ensure that the field you copy from contains valid values. However,
shorthand flexfield entry values override COPY values.

If your key or descriptive flexfield has required segments (where a
value set requires values and, for a key flexfield, the REQUIRED
parameter in POPID is set to Yes), the flexfield uses your default values
in certain cases. If you try to save a record without ever entering the
flexfield pop–up window, then the flexfield (in the VALID or VALDESC
routine) attempts to fill in all the required segments with your default
values. If you have not specified valid default values for all your
required segments, the flexfield generates an error message and
requires your user to enter any missing values before saving the row.
The default values never override a value your user enters manually.

Note: If you copy a record with a descriptive flexfield, the
flexfield information may not be copied along with it,

4 – 45Values and Value Sets

depending on the form or program used. For example, Oracle
Purchasing does not copy descriptive flexfields from a
requisition to a purchase order during AutoCreate. That is, if
there’s a required descriptive flexfield on a requisition,
Purchasing does not prompt you to enter the flexfield or
default a value in the flexfield when you autocreate the
purchase order.

4 – 46 Oracle Applications Flexfields Guide

Changing the Value Set of an Existing Flexfield Segment

In general, once you have set up and begun to use a flexfield, you
should never change anything about its structure or its value sets
(other than defining, enabling, and disabling values, shorthand aliases,
and cross–validation and security rules). In particular, once you have
any rules or data, you should avoid changing the number or
arrangement of your segments, and you should avoid changing the
value set that a segment points to. Even changing cross–validation
rules or flexfield security rules can cause inconsistencies with existing
data.

Warning: Changing your flexfield definition once you have
used it to acquire data can cause serious inconsistencies with
existing data.

This section does not include all possible ways you could change your
value sets, nor does it contain complete information on all the data
changes you might need to do if you were to make such changes. Since
flexfields data is used throughout the Oracle Applications, you should
carefully consider what forms, tables, and entities such changes might
affect. Because of the risk of damaging the integrity of your existing
data, you should never change Oracle Applications data using
SQL*Plus.

In general, when you change your segment to use a different value set
than it used before, you need to be careful not to invalidate your
existing flexfield data. Before you make such a change you should
back up all of your existing data, including Oracle Application Object
Library data, before attempting any value set changes.

Oracle Applications prevents you from inadvertently invalidating your
flexfield value set data by preventing you from changing the validation
type of an existing value set. However, sometimes your business needs
change unforeseeably, and you may need to change the validation type
of your value set by defining a new value set and attaching it to your
flexfield segment in place of your old value set. Whether you can
change your value set depends on your value set’s current type and the
type you want to change to. See the following lists to determine if you
can make such changes to your flexfield.

Oracle Applications also prevents you from inadvertently invalidating
your flexfield value set data by preventing you from deleting an
existing value set under some conditions. If you define and save a
value set and then immediately re–query it, you can delete it.
However, once you use your value set in any of the following ways,
you cannot delete your value set:

4 – 47Values and Value Sets

• assign it to a key or descriptive flexfield segment

• assign it to report parameter

• assign one or more values to it (even if it is not assigned to a
segment)

• assign a security rule to it (through the segment to which your
value set is attached)

Changing to a Non–validating (”None”) Value Set

When you replace an old value set with a new non–validating (”None”
type) value set, these types of changes do not cause a problem with
existing flexfield data so long as the format conditions are not violated
(character, number, date, numbers only, uppercase only, and so on).
Note that the values in the new value set do not have descriptions
(meanings) at all, and that any value is now valid:

• Independent to None (do not make this change if you have an
associated dependent value set or if you need segment qualifier
information for those values)

• Table to None

• Dependent to None

You may need to convert any existing application data that uses value
descriptions, since you will no longer have descriptions or segment
qualifiers for your segment values.

Changing from a None Value Set to Independent or Table Value Sets

When you replace an old value set with a new value set, you can make
these types of changes as long as you ensure that your new value set
contains every single value that you ever used for that segment and
that is now in the combinations table as parts of your code
combinations. If you are missing any values that had been in the
original value set, your users will get error messages upon querying up
any old records whose values are now missing.

• None to Independent

• None to Table

Changing Between Independent and Table Value Sets

You can make these types of changes as long as you ensure that the
new value set contains every single value that the old value set

4 – 48 Oracle Applications Flexfields Guide

contained. If you are missing any values that had been in the original
value set, your users will get error messages upon querying up old
code combinations whose values are now missing.

• Independent to Table

• Table to Independent

Changes You Should Never Make

You should never make these types of changes (old value set to new
value set) because you will corrupt your existing key flexfield
combinations data:

• Independent to Dependent

• Dependent to Independent

• None to Dependent

• Dependent to Table

• Table to Dependent

• Translatable Independent to Translatable Dependent

• Translatable Dependent to Translatable Independent

• None to Translatable Dependent

• Translatable Dependent to Table

• Table to Translatable Dependent

Changing the Maximum Size of Your Value Set

Oracle Applications prevents you from invalidating your existing
flexfields data by preventing you from decreasing the maximum size of
an existing value set. You should never attach a new value set to your
segment where the maximum size of the new value set is smaller than
the maximum size of the old value set. You will cause data corruption
because your existing segment values will be truncated.

In general, increasing the maximum size of an existing value set (or
replacing your value set with a bigger one instead) does not cause any
problem with your existing flexfields data so long as your new
maximum size is still small enough to fit in the underlying flexfield
table’s segment columns. However, you should never change to a
value set with a larger (or smaller) maximum size if your value set is
Right–justify Zero–fill, since 001 is not the same as 0000001, and all of
your existing values would become invalid. Oracle Applications
products prevent you from invalidating your existing flexfields data by

4 – 49Values and Value Sets

preventing you from changing the maximum size of an existing value
set at all if the value set is Right–justify Zero–fill.

4 – 50 Oracle Applications Flexfields Guide

Value Set Windows

The value sets you define using these windows appear in lists of values
you see when you define flexfield segments using the Key Flexfield
Segments window or the Descriptive Flexfield Segments window.

If you are defining reports that your users run from the Submit
Requests window, use this window to define value sets for your report
arguments. The value sets you define using this window also appear
when you define report parameters using the Concurrent Programs
window.

See:

Overview of Values and Value Sets: page 4 – 2

Dependent Value Set Information Window: page 4 – 54

Validation Table Information Window: page 4 – 57

Special Validation Routines Window: page 4 – 64

Tasks

Defining Value Sets: page 4 – 51

Reference

Value Formats: page 4 – 6

Overview of Value Set Windows

You can share value sets among segments in different flexfields,
segments in different structures of the same flexfield, and even
segments within the same flexfield structure. You can share value sets
across key and descriptive flexfields. You can also share value sets
with parameters for your concurrent programs that use the Standard
Request Submission feature. Many Oracle Applications reports use
predefined value sets that you may also use with your flexfield
segments. However, any changes you make to a value set also affect all
requests and segments that use the same value set.

Warning: You should never change or delete a predefined
value set that Oracle Applications supply. Such changes may

4 – 51Values and Value Sets

unpredictably affect the behavior of your application features
such as reporting.

This window prevents you from changing the validation type or format
type of an existing value set because your changes affect other
flexfields that use the same value set. In addition, other changes may
affect the values in your value set in ways other than you expect. You
cannot delete a value set that a flexfield or parameter currently uses.

If you make any changes to your value set after you have used your
flexfield or concurrent program that uses this value set, you must either
change responsibilities or exit to the operating system and log back in
before you can see your changes take effect.

Defining Value Sets

� To define a value set:

1. Navigate to the Value Sets window.

4 – 52 Oracle Applications Flexfields Guide

2. Enter a unique name for this value set. See: Value Set Naming
Conventions: page 4 – 22.

3. Specify the List Type for your value set.

Choose List of Values if your value set should not provide the
LongList feature in Oracle Forms applications. A user will not see
a poplist in Oracle Self–Service applications.

Choose Long List of Values if your value set should provide the
LongList feature in Oracle Forms Applications. The LongList
feature requires a user to enter a partial segment value before the
list of values retrieves all available values. You may not enable
LongList for a value set that has a validation type of None. A user
will not see a poplist in Oracle Self–Service applications.

Choose Poplist if your value set should not provide the LongList
feature in Oracle Forms applications, but should provide a poplist
in Oracle Self–Service applications.

4 – 53Values and Value Sets

Here are guidelines for the List Type field:

• Poplist – fewer than 10 values expected

• List of Values – between 10 and 200 values expected

• Long List of Values – more than 200 values expected

4. Specify the Security Type you plan to use with any segments that
use this value set. Security does not apply to value sets of
validation type None, Special, or Pair. See: Defining Security Rules:
page 5 – 19.

Note: Flexfield value security is not available for Translatable
Independent and Translatable Dependent value sets.

The possible security types are:

• No Security – All security is disabled for this value set.

• Hierarchical Security – Hierarchical security is enabled. With
hierarchical security, the features of value security and value
hierarchies are combined. With this feature any security rule
that applies to a parent value also applies to its child values.

Warning: Within a hierarchical tree of values, a value is
subject to a security rule if any parent above it is subject to that
security rule.

• Non-Hierarchical Security – Security is enabled, but the rules of
hierarchical security do not apply. That is, a security rule that
applies to a parent value does not ”cascade down” to its child
values.

5. Enter the type of format you want to use for your segment values.
Valid choices include: Char, Date, DateTime, Number, Standard
Date, Standard DateTime, and Time.

Note: Translatable Independent and Translatable Dependent
value sets must have the Char format.

6. Enter formatting information appropriate to your format type,
including information such as whether your values should include
numbers only and whether they must fall within a certain range.

Note: The maximum size for Translatable Independent and
Translatable Dependent value set values is 150. You cannot use
the Numbers Only feature or the Right–Justify and Zero–fill
feature with translatable value sets.

7. Select your validation type: Independent, Dependent, Table, None
(non–validated), Special, Pair, Translatable Independent, or

4 – 54 Oracle Applications Flexfields Guide

Translatable Dependent. See: Choosing a Validation Type for Your
Value Set: page 4 – 17.

8. If you are creating a Dependent,Translatable Dependent, Table,
Special or Pair value set, choose the Edit Information button to
open the appropriate window. Enter any further information
required for your validation type. See: Dependent Value Set
Information Window: page 4 – 54, Validation Table Information
Window: page 4 – 57, Special Validation Routines Window: page
4 – 64.

9. Save your changes.

Dependent Value Set Information Window

Prerequisites

❑ Define your independent value set. You should not define
individual independent values for the corresponding independent

4 – 55Values and Value Sets

value set before defining your dependent value set. See: Defining
Value Sets: page 4 – 51.

❑ Define your dependent value set name and formatting options.
See: Defining Value Sets: page 4 – 51.

Note: This window is also used to enter information for
Translatable Dependent value sets. Translatable Dependent
value sets must be dependent on Translatable Independent
value sets. Translatable Independent value sets can have only
Translatable Dependent value sets dependent on them.

� To define dependent value set information:

1. Enter the name of an independent value set on which this
dependent value set depends.

You can only enter the name of a value set you have already
defined. You must save the value set definition of your
independent value set before you can select it in this field. An
independent value set may have more than one dependent value
set depending upon it, but a dependent set cannot depend on
another dependent set.

The Segment Values window automatically creates your dependent
default values at the time you create your independent values. To
ensure that the Segment Values window creates a dependent
default value for each of your independent values, you should
create the values in your independent value set only after you
create all of the dependent value sets that depend on that
independent set. If you create a new dependent set for an
independent set that already contains values, you must manually
enter the dependent default value for each existing independent
value using the Segment Values window.

Suggestion: First define all of the independent value sets your
application needs, then define all of your dependent value sets.
Create all of your value sets before you create any of your
values.

See: Segment Values Window: page 4 – 65

2. Enter a default value for your dependent value set.

This value is the default for any segments that use this dependent
value set. Usually, you enter zero. You must make sure that the
value you enter here fits the value set information you enter. For
example, if this dependent value set does not allow alphabetic

4 – 56 Oracle Applications Flexfields Guide

characters, your default value may not contain any alphabetic
characters.

All the values in the independent set must have at least one
dependent value. So, whenever a user creates a new value in the
independent value set (using the Segment Values form), it must
have at least one dependent value. The Segment Values window
automatically creates the required dependent value by using the
default value you enter here. See: Segment Values Window: page
4 – 65.

For example, suppose you have an independent value set called
”Account” with a dependent value set called ”Sub–Account.” You
may wish to create a new independent value, 99, for ”Account”
with description ”Receivables” without creating any associated
sub–account values. Since your flexfield requires a dependent
value of some sort to go with the independent value, it uses the
default value you enter here, such as 00 with description ”No
Sub–Account.”

3. Enter a description for your default dependent value. The Segment
Values window creates this description with the dependent default
value it creates whenever you create a new independent value. For
example, suppose you have an independent value set called
”Account” with a dependent value set called ”Sub–Account.” You
may wish the ”Sub–Account” default value 00 to have the
description ”No Sub–Account.” See: Segment Values Window:
page 4 – 65.

4 – 57Values and Value Sets

Validation Table Information Window

Prerequisites

❑ Create a database table or view that holds valid values and value
descriptions in CHAR, VARCHAR2, NUMBER, or DATE type
columns.

❑ Use the Register Tables window to register your table with Oracle
Application Object Library. This step is recommended but not
required.

4 – 58 Oracle Applications Flexfields Guide

❑ Create a synonym for your validation table in any application
ORACLE account that will access a flexfield or report that uses a
value set based upon your validation table.

❑ Grant SELECT privileges on the table from your application’s
ORACLE account to any application ORACLE accounts that will
use a value set based upon the table.

❑ Define your value set name and formatting options. See: Defining
Value Sets: page 4 – 51.

� To define validation table information:

1. Enter the name of the application with which your validation table
is registered. Application name and table name uniquely identify
your table.

If you plan to display columns from more than one table in your
list of values, you should leave this field blank, since it is effectively
ignored in this case.

2. Enter the name of an application table, view or synonym you want
to use as a validation table. If your table is not registered with
Oracle Applications, you should type in the entire name of the table
you wish to use.

You can define your value set to display several columns, and these
columns may be in different tables. If your columns exist in
different tables, you must specify more than one table name,
separated by commas, in this field. You may use table aliases if
desired. For example, you might enter the following information in
this field (using two tables):

fnd_form f, fnd_application a

Then, in the Value Column, Description Column, Hidden ID
Column, WHERE / ORDER BY, and Additional Columns fields,
you would use the corresponding table aliases (for a WHERE
clause):

where f.application_id = a.application_id

3. Enter the name of the column in your validation table that contains
values you want to use to validate a value a user enters for a
flexfield segment or a report parameter.

Your selection of available columns depends on the Format Type
you specify, and doesn’t necessarily match your Format Type. For
example, if you specify a Format Type of Standard Date, you select
from those columns that have been registered as Date or Char type

☞

4 – 59Values and Value Sets

columns. Similarly, if you specify a Format Type of Number, you
select from only those columns that have been registered as
Number or Char type columns. If you specify a format type of
Character, however, you see only columns of type Char. The
format type you specify in the Format Type field is the format for
the segment or parameter value.

You may use a SQL expression in place of a column name, but you
may not use any special bind variables.

Note: If possible, avoid using a SQL expression in place of a
column name because support for SQL expressions will be
obsolete in a future release.

4. Enter the name of the column in your validation table that contains
descriptions for the values in the Value Column. If you leave this
field blank, your value set automatically uses the value column as
the description column (but does not display it twice).

Your flexfield or report parameter window displays a meaning
from this column when you enter the corresponding value for a
flexfield segment or report parameter.

5. Enter the name of the column in your validation table that contains
values you want to use to validate a value a user enters for a
flexfield segment or a report parameter, but that you do not want
to display for the user.

If you specify a hidden ID column in addition to your value
column, the flexfield saves your hidden ID value, instead of the
value from the value column, in the segment column (in your
ATTRIBUTEnn column or SEGMENTnn column) of the underlying
flexfield table.

Attention: Do not specify a hidden ID column for value sets
you use with your Accounting Flexfield or most other key
flexfields.

If you specify a hidden ID column in addition to your value
column, the report parameter window passes your hidden ID
value, instead of the value from the value column, to your report.

6. Enter a SQL WHERE clause or an ORDER BY clause, or both.

7. Enter any additional columns you want to display for a segment
that uses this value set. These are columns other than the columns
you specify for Value Column, Description Column, or Hidden ID
Column.

4 – 60 Oracle Applications Flexfields Guide

8. Indicate whether to allow parent values to be stored in the Oracle
Application Object Library FND_FLEX_VALUES table and
displayed in the list for a segment that uses this value set.

Column Type Fields

The three Type fields automatically display the types of the columns
you select. You should never change the displayed column types.

If you specify a SQL expression (or a column in a non–registered table)
in a Column field instead of a registered single column name, you must
specify the type of value (character, number, or date) you expect your
expression to return. You must specify the type because this window
cannot retrieve this information for a ”column name” that is not a
registered single column.

Column Size Fields

The three Size fields automatically display the sizes of the columns you
select.

If you do not specify a hidden ID column, Oracle Applications uses the
value set maximum size to determine if a value can fit in the
underlying flexfield segment column. The maximum size for your
value set changes automatically to the column size you specify in the
Size field for the Value column. If the value cannot fit, you cannot use
your value set when you define a flexfield segment.

If you use a hidden ID column, the size you specify for the hidden ID
column becomes the ”effective” maximum size for this value set for a
flexfield, since Oracle Applications uses the size of the hidden ID
column to determine if a value can fit in the underlying flexfield
segment column. If the value cannot fit, you cannot use your value set
when you define a flexfield segment.

Generally, you should avoid changing the displayed column size.
However, in some cases you may want to change it if you want to use
this value set for a flexfield whose underlying column size is less than
the actual size of your value (or hidden ID) column in the validation
table. For example, if you are using a lookup code column of a lookup
table (List of Values), and you know that all of your lookup codes are
two characters long or less, you may want to specify 2, even though the
column in the lookups table can actually contain 30 characters. You can
then use this value set for a flexfield whose underlying segment
column size is between 2 and 30.

4 – 61Values and Value Sets

You may only change the displayed size for a column if you know that
the maximum size of the values in that column will always be equal to
or shorter than the length you specify in this field. You should not
attempt to ”trick” Oracle Applications by specifying a size that is
smaller than your actual potential value size, since you may cause data
truncation errors, ”value not defined” errors, or other errors.

If you specify a SQL expression (or a column in a non–registered table)
in a Column field instead of specifying a registered single column
name, you must specify the length of the value (size) you expect your
expression to return. You must specify the size because this window
cannot retrieve this information automatically for a ”column name”
that is not a registered single column.

WHERE / ORDER BY Field

Use a SQL WHERE clause to limit the set of valid values to a subset of
the values in the table. For example, if you have a table that contains
values and meanings for all of your employees but you only want to
validate against entries for employees located in California, you can
enter a SQL WHERE clause that limits valid values to those rows
WHERE LOCATION = ’CALIFORNIA’. You may want to choose your
value set name to reflect the limitation, such as ”California Employees”
for this example.

Use an ORDER BY clause to ensure that your values appear in a
non–standard order in your list of values on a segment that uses your
value set. The ”standard” order depends on the format type for your
value set. For example, if you have a table containing the days of the
week, you might want the list of values to display them in the
chronological order ”Monday, Tuesday, Wednesday, ...” instead of in
the alphabetical order ”Friday, Monday, Saturday, ...” that would be
used for a Character format type value set. To display them in
chronological order, you might have a second column in your table
(which you might also use as the hidden value column) that identifies
each day by a number. So, if you call that column of numbers
DAY_CODE, your ORDER BY clause would be ORDER BY
DAY_CODE.

Warning: You should not use a WHERE clause and/or
ORDER BY clause at all for a value set you intend to use with
the Accounting Flexfield. In general, you may use a WHERE
clause and/or an ORDER BY clause for validation tables you
intend to use with key flexfields other than the Accounting
Flexfield.

4 – 62 Oracle Applications Flexfields Guide

If you use a WHERE clause you must have the word ”WHERE” as the
first word of the clause. If you use ORDER BY, you must have the
words ”ORDER BY” in the clause.

You may not use HAVING or GROUP BY in your clause. You may not
use UNION, INTERSECT, MINUS, PLUS, or other set operators in
your clause, unless they are within a subquery.

You should always include the table names or aliases in your clause
when you refer to a column, even if you are using only one validation
table and have not used an alias for that table in the Table Name field.
For example, you might enter:

where f.application_id = a.application_id

or

where form_table_name.application_id =

 application_table_name.application_id

You can use special variables in your WHERE clause that allow you to
base your values on other values. The special variables you can use
include

• :$FLEX$.Value_Set_Name

• :block.field

• :$PROFILES$.profile_option_ name

Warning: The :block.field mechanism is present for backward
compatibility only. Value sets that use this mechanism will not
be compatible with a future release of Oracle Applications.

See the section WHERE Clauses and Bind Variables for Validation
Tables: page 4 – 33 for detailed information on using these special bind
variables.

Additional Columns Field

What you specify here should be of the general syntax:

sql_expression_such_as_column_name ”Column Title

Alias”(width)

where either the column title alias or the width is optional. If you
specify only the SQL fragment but no alias or width, your column does
not show up. You can specify several such expressions, separated by
commas, as follows:

column_name_1 ”Column 1 Title”(width), column_name_2 ”Column

2 Title”(width), ...

4 – 63Values and Value Sets

You can also use message names as alias names, this functionality
allows for ease of translation of column titles. The syntax for using a
message name as an alias name is:

sql_expression_such_as_message name ”APPL=<Application Short

Name>;NAME=<Message Name>”(width)

You should specify the column widths you want to display. You can
use (*) to specify a column whose display width depends on the values
it contains. You should always use an alias for any SQL expression that
is not a simple column name. For value sets that use multiple tables,
you should always include the table aliases in your column names. For
example:

f.user_form_name ”Form Title”(30), a.application_name

”Application Name”(*)

If the segment or parameter is displayed, the Value Column appears
with the parameter or segment prompt as the column title.

You can include more complex SQL fragments, such as concatenated
column names and constants. For example:

 f.user_form_name ”Form Title”(30),

’Uses table: ’ || t.user_table_name ”Table Used”(30)

Allow Parent Values Field

If you allow parent values, you can create them for the values in your
validation table using the Segment Values window.

Suggestion: We recommend that you allow parent values for
segments in your Accounting Flexfield. Parent values are used
to create summary accounts and to increase the productivity of
Oracle Applications. However, we recommend that you do not
allow parent values for other value sets. Allowing them for
other value sets may have an adverse performance impact
because the flexfield must validate against the union of the
values in your table and the related values in the
FND_FLEX_VALUES table and use an extra query for normal
validation. For example, if a user uses the list of values on the
segment, the list must retrieve the values from both tables.

If you specify additional columns in the Additional Columns field, or
you specify a hidden ID column in the Hidden ID Column field, or you
have a SUMMARY_FLAG column in your validation table, you must
specify No in this field.

See: Segment Values Window: page 4 – 65

4 – 64 Oracle Applications Flexfields Guide

Special Validation Routines Window

Warning: You should never change or delete a predefined
value set that Oracle Applications supply. Such changes may
unpredictably affect the behavior of your application features
such as reporting.

See Special Validation Value Sets: page 9 – 23 for information on using
this region. The section contains information on the various types of
events and flexfield routine arguments and syntax you use with special
validation. It also contains a worked example of using special
validation for the Accounting Flexfield.

4 – 65Values and Value Sets

Segment Values Window

Use this window to define valid values for a key or descriptive flexfield
segment or report parameter. You must define at least one valid value
for each validated segment before you can use a flexfield. These
validated segments provide users with a list of predefined valid
segment values, and have a validation type of Independent,
Dependent, Translatable Independent, Translatable Dependent, or
Table.

You should use this window to define values that belong to
Independent, Dependent, Translatable Independent, Translatable
Dependent, or Table value sets. You can define new segment values,

☞

4 – 66 Oracle Applications Flexfields Guide

specify value descriptions for your values and to enable or disable
existing values as well.

The values you define for a given flexfield segment automatically
become valid values for any other flexfield segment that uses the same
value set. Many Oracle Applications reports use predefined value sets
that you may also use with your flexfield segments. If your flexfield
segment uses a value set associated with a Standard Request
Submission report parameter, creating or modifying values also affects
that parameter. If you use the same value set for parameter values, the
values you define here also become valid values for your report
parameter.

You also specify segment value qualifiers, rollup groups, and child
value ranges.

You can also view and maintain segment value hierarchies for the
Accounting Flexfield or for any custom application flexfields that use
the value hierarchies feature.

Attention: Because the Accounting Flexfield is the only Oracle
Applications key flexfield that uses the parent, rollup group,
hierarchy level and segment qualifier information, you need
only enter this information for values that are associated with
your Accounting Flexfield.

For certain types of changes to value hierarchies, a concurrent request
is submitted to rebuild the value hierarchies. One request per value set
that the change affects (the value set attached to the segment for which
you are defining or maintaining values) may be submitted. For
example, if you make hierarchy structure changes for five different key
flexfield segments, all of which use different value sets, up to five
concurrent requests may be submitted.

A concurrent request is submitted for the following changes to value
hierarchies:

• A new hierarchy range is defined, or an existing hierarchy range
is updated or deleted.

• A hierarchy range is moved to another value.

• The value definition for non–parent values is updated in some
way. For example, the description is changed.

Suggestion: For ease of maintenance, you should carefully
plan your value hierarchy structures before you define your
values, so that your structures follow a logical pattern you can
expand later as you need more values.

☞

4 – 67Values and Value Sets

Attention: You cannot modify values for a value set if that
value set is currently being modified by another user, either
using the Segment Values Window or the Account Hierarchy
Editor with Oracle General Ledger. If you get a message
saying that the value set is already being modified, you can try
again at a later time.

If your value set is based on a flexfield validation table (validation type
Table) and you have defined your value set to allow parent values, then
you can use this window to define parent values for the values in your
table. This window stores your parent values and rollup groups for
you and does not add them to your validation table. You can define
child value ranges for the parent values you define, and you can assign
your parent values to rollup groups. The values in your validation
table can be child values, but they cannot be parent values, and you
cannot assign them to rollup groups. You cannot create new values in
your validation table using this window.

See:

Value Set: page 4 – 50

Key Flexfield Segments: page 2 – 16

Descriptive Flexfield Segments: page 3 – 31

Prerequisites

❑ Use the Value Set window to define your independent value sets,
any dependent value sets that depend on them, and any
table–validated value sets your flexfield needs

❑ Use the Key Flexfield Segments window to define your flexfield
structure and segments

or

❑ Use the Descriptive Flexfield Segments window to define your
flexfield structure and segments

❑ Define your rollup groups, if any. See: Rollup Groups Window:
page 4 – 83.

Suggestion: First use this window to define all of the
independent values your application needs, then define your
dependent values.

4 – 68 Oracle Applications Flexfields Guide

This window does not allow you to choose an independent value that
would violate any flexfield security rules that are enabled for your
responsibility.

Segment Values Block

Use this block to define valid values, to specify values for rollup groups
and segment qualifiers, if any, and to enable and disable values. If you
define a value you use as a default value for your segment or
dependent value set, you must not specify a start or end date for that
value. Also, you should not define security rules that exclude your
default values.

Some key flexfields use segment qualifiers to hold extra information
about individual key segment values. For example, the Accounting
Flexfield in Oracle Applications products uses segment qualifiers to
determine the account type of an account value or whether detail
budgeting and detail posting are allowed for an Accounting Flexfield
combination containing a given value.

You cannot define values that would violate any flexfield security rules
that are enabled for your responsibility.

Defining Segment Values

For most flexfield segments and report parameters, defining values is
very simple if they use independent value sets and their value sets are
not used with the Accounting Flexfield.

� To define segment values:

1. Navigate to the Segment Values window.

2. Query the value set to which your values (will) belong. You can
locate values either by their value set or by the flexfield segment or
concurrent program parameter that uses their value set for
validation.

3. Enter a segment value that is valid for your application. A valid
value can be a word, phrase, abbreviation, or numeric code. Users
can enter this value in a flexfield segment or a report parameter
that uses this value set. Users also see this value whenever they
select a value in a flexfield segment that uses this value set.

4 – 69Values and Value Sets

Any value you define must conform to the criteria you defined for
your value set. For example, if your value set can only accept
values one character long with no alphabetic or special characters
allowed, you can only enter the values 0 through 9 in this field.

If you enter a value that contains the segment separator character
defined for the flexfield that uses this value set, application
windows display the character in your value as a ^ (or another
non–alphanumeric character, depending on your platform) in your
concatenated value fields to differentiate it from the segment
separator. This change is for concatenated display purposes only
and does not affect your value.

Since individual values can be referenced from many places in your
applications, you cannot delete valid values that have already been
defined, nor can you change those values. You can, however,
change the description of a valid value in the Description field after
you query up the value (or the translated value of a Translatable
Independent or Translatable Dependent value set).

You cannot define values that would violate any flexfield security
rules that are enabled for your responsibility.

If your value set is a Translatable Independent or Translatable
Dependent value set, this value is ”hidden” from the user in the
flexfield windows.

4. If your value set has the type Translatable Independent or
Translatable Dependent, the Translated Value field is enabled. The
value from the previous step defaults in. You can update the
Translated Value for all installed languages using the Translation
icon in the Toolbar.

Validation is done for the translated values as well as the hidden
values. For example, if you have defined your value set to have a
maximum size of 50 characters, no translated value may be larger
than 50 characters.

5. Enter a description for your value. Users see this description along
with your value whenever they select a value in a flexfield segment
that uses this value set.

6. Check the Enabled check box to make your value effective.

7. If you want to have the value effective for a limited time, you can
enter a start date and/or an end date for it. The value is valid for
the time including the From and To dates.

You cannot delete values from this window because they are
referenced elsewhere in the system, but you can disable them at

4 – 70 Oracle Applications Flexfields Guide

any time. You should not disable or have effective dates for a
segment value that you use as a segment default or a default
dependent value.

8. If you are defining values whose value set will be used with the
Accounting Flexfield, define hierarchy and qualifiers information.
See: Defining Hierarchy and Qualifiers Information: page 4 – 70.

9. Save your changes.

Defining Hierarchy and Qualifiers Information

You only need to define hierarchy and qualifiers information if you are
defining values whose value set will be used with the Accounting
Flexfield.

Prerequisites

❑ Define your value. See: Defining Segment Values: page 4 – 68.

� To define hierarchy and qualifiers information:

1. Determine whether this value is a parent value. If so, you can
define and move child value ranges for this value, and you can
assign this value to a rollup group. If not, you cannot define and
move child value ranges for this value, and you cannot assign this
value to a rollup group.

2. Enter the name of a rollup group to which you want to assign this
flexfield segment value. You can use a rollup group to identify a
group of parents for reporting or other application purposes. You
can enter a rollup group name only if this flexfield segment value is
a parent value and Freeze Rollup Groups in the Key Segments
window is set to No. You can enter a range of child values for this
flexfield segment value in the Define Child Ranges zone. You
create rollup groups using the Rollup Groups window. See: Rollup
Groups Window: page 4 – 83.

3. Enter the level for this value. This can be a description of this
value’s relative level in your hierarchy structure. This level
description is for your purposes only.

4. If you are defining values for a value set used with the Accounting
Flexfield, you must define segment qualifier information for each
value. See: Qualifiers: page 4 – 71.

4 – 71Values and Value Sets

Qualifiers

Some key flexfields use segment qualifiers to hold extra information
about individual key segment values. For example, the Accounting
Flexfield uses segment qualifiers to determine the account type of an
account value or whether detail budgeting and detail posting are
allowed for an Accounting Flexfield combination containing a given
value.

If you are defining values for any value set that is used by a key
flexfield that uses segment qualifiers, you see the Segment Qualifiers
pop–up window prompting you for this information. If you share this
same value set with additional flexfields, such as a descriptive flexfield,
you see the Segment Qualifiers pop–up window regardless of how you
identified your value set in this window. Segment qualifiers contain
information about a value rather than the segment that uses the value.

After you have saved your segment qualifier values, the values for
your segment qualifiers appear in the Qualifiers field in the main
window. You can click in the Qualifiers field to bring up the Segment
Qualifiers window and see the qualifiers.

The Allow Budgeting, Allow Posting, and Account Type fields are
segment qualifiers for the Accounting Flexfield.

Note: Oracle General Ledger has an Inherit Segment Value
Attributes concurrent program that can automatically update
an account combination’s detail budgeting allowed, detail
posting allowed, global reconciliation flag, enabled flag, start
date, and end date attributes whenever these attributes change
for a segment value in that account combination.

See the Oracle [Public Sector] General Ledger User’s Guide for
more information.

Allow Budgeting

Indicate whether to allow detailed budgeting to GL accounts with this
segment value. When you accept this value, you can perform detailed
budgeting to GL accounts with this segment value. When you enter
No, you can neither assign GL accounts with this segment value to
budget organizations nor define budget formulas for GL accounts with
this segment value.

When you are defining a parent segment value, enter No here, since
you cannot budget amounts to a segment value which references other
segment values where detail budgeting is already allowed.

4 – 72 Oracle Applications Flexfields Guide

When you change this field for a segment value that you have already
defined, you should also make a corresponding change to all GL
accounts which include that value. Use the GL Account Combinations
window to allow or disallow detail budgeting to your flexfield
combinations.

Allow Posting

Enter Yes or No to indicate whether Oracle Applications should allow
detailed posting to GL accounts with this segment value. The default
value for this field is Yes. When you accept this value, you can post
directly to GL accounts with this segment value. When you enter No,
you can neither use this segment value in GL accounts on the Enter
Journals window, nor define formula journal entries that affect GL
accounts with this segment value.

When you are defining a parent segment value, enter No here.

When you change this field for a segment value that you have already
defined, you should also make a corresponding change to all GL
accounts which include that value. Use the GL Account Combinations
window to allow or disallow detail posting to your flexfield
combinations.

Account Type

You see this qualifier, which requires a value, for the natural account
segment only. Enter the type of your proprietary account (Asset,
Liability, Owners’ Equity, Revenue or Expense) or the type of your
budgetary account (Budgetary Dr or Budgetary Cr) your segment
value represents. Choose any proprietary balance sheet account type if
you are defining a statistical account segment value. If you choose a
proprietary income statement account type for a statistical account
segment value, your statistical balance will zero–out at the end of the
fiscal year.

Your GL account combinations have the same account type as the
account segment which they include. Changing the account type only
affects new GL accounts created with the reclassified account segment.
Changing the account type does not change the account type of existing
GL accounts.

To change the account type of existing Accounting Flexfields, refer to
the Misclassified Account Types topical essay and/or call Oracle
customer support for assistance.

4 – 73Values and Value Sets

See Also

Defining Accounts
(Oracle [Public Sector] General Ledger User’s Guide)

Correcting Misclassified Account Types
(Oracle [Public Sector] General Ledger User’s Guide)

Hierarchy Details Buttons

The Hierarchy Details buttons open the windows you use to define and
maintain detailed information about your value hierarchies.

You use the Hierarchy Details zone and the following zones primarily
for values you use in segments of the Accounting Flexfield.

Choose this button to define child ranges for your
parent value. The button is disabled unless your
value is already a parent value.

Choose this button to move child ranges from one
parent value to another parent value. The button is
disabled unless your value is already a parent
value.

Choose this button to view the hierarchy structure
to which your selected value belongs. You cannot
make changes in this window. The button is
disabled unless your value belongs to a hierarchy
structure (it is either a parent value or a child value
of another parent value).

Define Child
Ranges

Move Child
Ranges

View Hierarchies

4 – 74 Oracle Applications Flexfields Guide

Define Child Ranges

Use this window to define child values for the value you defined in the
Segment Values zone. Oracle Applications use child values to sum
families of data or report on groups of data. You specify child values
by entering a set of ranges. If you want to specify a single child value,
set the low and high ends of the range equal to that value.

You cannot open this window if the value belongs to a rollup group
and rollup groups are frozen. You freeze rollup groups using the Key
Flexfield Segments window.

You can create networked hierarchies; that is, you can create hierarchy
structures where a particular value may be a child that belongs to more
than one parent. You should plan your value hierarchy structures

☞

4 – 75Values and Value Sets

carefully to avoid unwanted duplication of information caused by
reporting or counting the same value more than once.

For example, suppose you want to define a hierarchy structure like this:

 1000

 _________|___________

 100 200 300

 ____|______

 301 302 303

For the parent value 300, you could specify the child value range 301
(Low) to 303 (High). Since all three values 301, 302 and 303 are not
parent values, you give this range a range type of Child.

For the parent value 1000, you need to specify two ranges so that you
include both non–parent values (100 and 200) and parent values (300).
First, you specify the child value range 100 (Low) to 200 (High) and
give this range a range type of Child to include the values 100 and 200
as well as all the values between them (alternatively, you could specify
these two values individually by specifying the same value for both
Low and High). Then, to include the parent value 300, you specify the
child value range 300 (Low) to 300 (High) and give this range a range
type of Parent.

5. Enter the low and high ends of your child value range. You can
enter any value that meets the validation criteria you define for this
value set using the Define Value Set window. The high end of your
child value range must be greater than or equal to the low end.
Your ranges behave differently depending on your value set format
type. For example, in a value set with a Character format type, 100
is less than 99 (even though they appear to be numbers). Similarly,
a range that includes values from 100 to 200 would also include the
value 1000.

Attention: The Accounting Flexfield uses value sets that have
a format type of Character, so you should specify your child
ranges carefully for those value sets. For example, 100 is less
than 99 (even though they appear to be numbers).

To specify a range that contains only a single value, enter the same
value for both Low and High.

Range Type

If you select Child, any child values that fall in your specified range are
considered to be children of your parent value. If you select Parent,
any parent values that fall in your specified range are considered to be

4 – 76 Oracle Applications Flexfields Guide

children of your parent value. Specifying Parent lets you create
tree–structured hierarchies.

If you have existing child ranges from a previous version of Oracle
Applications, those ranges automatically receive a range type of Child
and they behave exactly as they did with your previous version.

4 – 77Values and Value Sets

View Hierarchies

Use this window only for values you use in segments of the
Accounting Flexfield in Oracle General Ledger.

You cannot make changes to your hierarchy structures in this zone.

4 – 78 Oracle Applications Flexfields Guide

The Value field displays the value that is a child of the parent value
displayed in the Parent Value field.

The Parent field displays whether the child value is itself a parent
value. If so, you can choose the Down button in the Navigate to view
any values that are children of this value.

Navigate Buttons

Up/Down

Choose Up to view the values at the level just above your current
value. If this value is a parent value, you can choose Down to view the
child values that belong to the current value. If this value has more
than one parent, you see a list of the parent values to which you can
navigate. If you choose Up after navigating down a networked
hierarchy, you move up to the parent you navigated down from most
recently.

If you move up or down in the hierarchy structure, this window
automatically changes the parent value displayed in the Parent Value
field to show you the parent value in the level immediately above the
level of the values you are viewing.

For example, suppose you have a hierarchy structure (in this case a
networked structure) like this:

 1000

 _________|___________ 00003

 100 200 300 __|_________

 ____|____ ____|______ / 403 503

 101 102 301 302 303 <–––––

 _______|______

 303A 303B 303C

 __|__

 303BB

where 303 is a child of both 300 and 00003. Suppose you want to look
at the structure starting with the value 1000 in the Segment Values
zone. When you open the View Hierarchies window, you see:

Parent 1000

 100

 200

Down 300

4 – 79Values and Value Sets

You choose Down with your cursor on 300, as shown above (Down is
your only choice for this value). Once you choose Down, you then see
(immediately):

Parent 300

 301

 302

Down 303

You choose Down with your cursor on 303, as shown above (you can
choose from Up or Down for this value). Once you choose Down, you
then see:

Parent 303

 303A

Down 303B

 303C

You choose Down with your cursor on 303B, as shown above (you can
choose from Up, Down, or Network for this value). Once you choose
Down, you then see:

Parent 303B

Up 303BB

You choose Up, as shown above (you can only choose Up for this
value). Once you choose Up, you then see:

Parent 303

 303A

Network 303B

 303C

At this point, your cursor is next to the value 303B and the parent
displayed in the Parent Value zone is 303. When you choose up, you
can either go back up to your original parent value (303, which has the
parent value 300), or you can go over to the other hierarchy path that
leads to the parent value 00003. Once you choose 303B, you see a
window offering you the two choices 300 and 00003 (these choices
indicate the values that would appear in the Parent Value field. You

4 – 80 Oracle Applications Flexfields Guide

will see 303 in the Children block if you make either choice), and 300 is
highlighted. You choose 00003 this time, and then you see:

Parent 00003

 303

 403

 503

At this point you cannot go up any further in the hierarchy structure.

4 – 81Values and Value Sets

Move Child Ranges

Use this window to move a range of child values from one parent value
(the source value) to another parent value (the destination value).
When you move a range of child values from one parent value to
another, you also move any child values that belong to the child values
in the range you move. In other words, when you move a child to a
different parent, you also move any ”grandchild” values with it.

Use this window only for values you use in segments of the
Accounting Flexfield.

For example, suppose you have defined a hierarchy structure like this:

4 – 82 Oracle Applications Flexfields Guide

 1000 003

 _________|___________ _|_

 100 200 300 (none)

 ____|______

 301 302 303

If you move the parent value 300 from the parent value 1000 to the
parent value 003, you also move the child value range 301 (Low) to
303 (High). All three values 301, 302 and 303 are now grandchild
values of 003 instead of 1000.

1. Enter the value from which you want to move a child range.

This field defaults to display the selected parent value from the
Segment Values window.

2. Choose which child ranges you want to move to the destination
value’s child ranges.

The Type field displays the type of values this child range includes.
If the field contains Child, any child values that fall in the specified
range are considered to be children of your parent value. If the
field contains Parent, any parent values that fall in the specified
range are considered to be children of your parent value.

The Destination block displays the child value ranges that currently
belong to the destination parent value.

3. Enter the parent value to which you want to move child value
ranges. You can only choose a value that is already a parent value.

The Type field displays the type of values this child range includes.
If the field contains Child, any child values that fall in the specified
range are considered to be children of your parent value. If the
field contains Parent, any parent values that fall in the specified
range are considered to be children of your parent value.

4. Choose the Move button to move the child ranges you selected in
the Source block to the destination parent value you specified in the
Destination block.

4 – 83Values and Value Sets

Rollup Groups Window

Use this window to define rollup groups to which you can assign key
flexfield values. You can use a rollup group to identify a group of
parent values for reporting or other application purposes. You assign
key flexfield segment values to rollup groups using the Segment Values
window.

In Oracle Applications, only the Accounting Flexfield uses rollup
groups. Rollup groups are used to create summary accounts for
reporting purposes.

4 – 84 Oracle Applications Flexfields Guide

See Also

Oracle [Public Sector] General Ledger User’s Guide

Defining Rollup Groups

Prerequisites

❑ Use the Value Set window to define your independent value sets,
any dependent value sets that depend on them, and any
table–validated value sets your flexfield needs. See: Value Set
Windows: page 4 – 50.

❑ Use the Key Flexfield Segments window to define your key
flexfield structure and segments. See: Key Flexfield Segments: page
2 – 16.

� To define rollup groups:

1. Enter a code for your rollup group. The code is required and used
internally.

2. Enter a name and description for your rollup group.

3. Save your changes.

4. Apply your rollup group name to particular values using the
Segment Values window. See: Defining Segment Values: page
4 – 68.

C H A P T E R

5

5 – 1Using Additional Flexfields Features

Using Additional
Flexfields Features

This chapter contains topical essays on three flexfields features that you
may want to use at your site.

• Shorthand flexfield entry (key flexfields only)

• Flexfield value security

• Cross–validation (key flexfields only)

5 – 2 Oracle Applications Flexfields Guide

Overview of Shorthand Flexfield Entry

Shorthand flexfield entry lets you enter key flexfield data quickly by
using shorthand aliases to represent valid flexfield combinations or
patterns of valid segment values. A shorthand alias is a word or code
that represents a complete or partial key flexfield combination.

Figure 5 – 1

[]

Orders for Parts

3754

USABig Mfg. Co.

COM – 876 – LTN

Computer–Monitor–Light Tan

Order No.

Client

Part

Description

Order Type

Country

Tan Monitor

Hard Drive

4–Wheel Truck

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light TanLTN

Alias Window

Tan MonitorPrompt

List of
Aliases

Shorthand flexfield entry helps you satisfy the following data entry
needs:

5 – 3Using Additional Flexfields Features

• Enter key flexfield data quickly by associating shorthand aliases
with frequently–used sets of valid key flexfield segment values.

• Associate either complete or partial flexfield combinations with
shorthand aliases.

You can define a shorthand flexfield entry pop–up window (the
shorthand window) for any key flexfield. You specify a name and size
for each shorthand window.

You define the complete or partial set of key flexfield segment values
(the template) that each shorthand alias represents. These values can
be valid flexfield combinations or different patterns of valid segment
values. For example, if the flexfield consists of six segments, you can
define a shorthand alias to represent a partial combination where four
of the six segments contain valid values for those segments. The other
two segments remain blank. When you enter this alias at the shorthand
window prompt, you only need to enter values for two segments
manually, and shorthand flexfield entry enters the other four for you
automatically. Or, you can define an alias to represent a valid flexfield
combination, where all six segments contain valid values and meet any
appropriate flexfield cross–validation rules. For this shorthand alias,
you would not have to enter any segment values manually.

For each key flexfield structure, you can define as many shorthand
aliases as you need. If you make changes to your shorthand aliases,
your changes take effect immediately for both you and other users.

If Shorthand Flexfield Entry is enabled and the Flexfields:Shorthand
Entry profile option is set to an appropriate value, the shorthand
window allows you to enter an alias before the flexfield window opens.
The combination or partial combination you defined for your alias is
entered into your flexfield window.

Validation of alias values

You cannot enter invalid values into a single segment of a shorthand
alias, but the Shorthand Aliases window does not identify invalid
combinations of segment values in an alias. If you define aliases that
contain values that become invalid later, your flexfield detects these
invalid values at the time you use your alias in your flexfield window.
Your flexfield then does not allow you to enter the invalid values. Your
flexfield also checks your alias against your security and
cross–validation rules when you use your alias to enter data in your
flexfield window.

5 – 4 Oracle Applications Flexfields Guide

Note that if the alias contains a value that you are restricted from using
(by flexfield value security), that value disappears immediately and
you must enter a different value in that segment.

After you enter an alias that represents a complete flexfield
combination, the flexfield validates your combination using the criteria
you define in the Cross–Validation Rules window. See:
Cross–Validation Rules Window: page 5 – 35.

Changing your key flexfield structure after defining aliases

If you change your key flexfield structure after you define your aliases,
you must change your existing aliases to match your new structure.
Changes that make your existing aliases invalid include:

• changing the order of segments

• adding a new segment

• disabling a segment

• changing segment lengths

Enabling Shorthand Entry

Prerequisites

❑ Set up your key flexfield structure. See: Key Flexfield Segments
Window: page 2 – 16.

❑ Define valid segment values for your structure. See: Segment
Values Window: page 4 – 65.

� To enable shorthand entry:

1. Navigate to the Shorthand Aliases window.

2. Select the name and structure of the key flexfield for which you
want to enable shorthand entry.

3. Check the Enabled check box in the Shorthand region.

4. Enter a prompt for the shorthand window.

5. Enter the maximum alias size, which determines the maximum
length of your shorthand aliases.

6. Save your changes.

5 – 5Using Additional Flexfields Features

Whenever you enable or disable shorthand entry, you must also
recompile your key flexfield using the Key Flexfield Segments window.
See: Key Flexfield Segments Window: page 2 – 16.

On a user–by–user basis, you can enable or disable shorthand flexfield
entry for yourself (for all key flexfields that use it) by setting your user
profile option Flexfield: Shorthand Entry to an appropriate value. Your
System Administrator can set this profile option at other levels (such as
for a responsibility).

However, in some forms, such as forms where you define new key
flexfield combinations (combinations forms), you do not see the
shorthand window even if shorthand entry is enabled. For example,
you cannot use shorthand entry in the Oracle General Ledger Define
Accounting Flexfield Combinations form. See: Disabling or Enabling a
Shorthand Alias: page 5 – 7.

5 – 6 Oracle Applications Flexfields Guide

Defining Shorthand Aliases

� To define shorthand aliases:

1. Navigate to the Shorthand Aliases window.

2. Select the name and structure of the key flexfield for which you
want to define shorthand aliases.

3. Enter an alias, which serves as a ”name” for a combination or
partial combination. A shorthand alias can be any combination of
characters.

4. In the Template field, enter either an entire flexfield combination or
the pattern of segment values that your alias represents.

5 – 7Using Additional Flexfields Features

 Your flexfield validates each segment value you enter but does not
check whether the combination is a valid combination (if you enter
an entire combination).

If you want to enter a value for a segment that depends on another
segment, you must first enter a value into the corresponding
independent segment.

5. Enter an alias description. This field is required.

6. If you want to have the alias effective for a limited time, you can
enter a start date and/or an end date for the alias. The alias is
valid for the time including the From and To dates.

7. Save your changes.

See:

Overview of Shorthand Flexfield Entry: page 5 – 2

Disabling or Enabling a Shorthand Alias: page 5 – 7

Disabling or Enabling a Shorthand Alias

You can disable or re–enable individual existing aliases.

� To disable a shorthand alias:

1. Navigate to the Shorthand Aliases window.

2. Select the name and structure of the key flexfield for which you
want to disable shorthand aliases.

3. Select the alias you want to disable.

4. In the Effective tabbed region, uncheck the Enabled check box, or
set either From to a date later than today or To to the date of the
last day the alias should be valid.

If the Enabled check box is unchecked, the alias is disabled
regardless of the effective dates given.

5. Save your changes.

� To re–enable a disabled shorthand alias:

1. Navigate to the Shorthand Aliases window.

5 – 8 Oracle Applications Flexfields Guide

2. Select the name and structure of the key flexfield for which you
want to enable shorthand aliases.

3. Select the alias you want to enable.

4. In the Effective tabbed region, check the Enabled check box if it is
not already checked.

Also, set either From to a date no later than today or To to the date
of the new last day the alias should be valid. Alternatively, you can
blank out the effective dates as appropriate to make your alias
valid.

If the Enabled check box is unchecked, the alias is disabled
regardless of the start and end dates given.

5. Save your changes.

5 – 9Using Additional Flexfields Features

Overview of Flexfield Value Security

Flexfield Value Security gives you the capability to restrict the set of
values a user can use during data entry. With easy–to–define security
rules and responsibility level control, you can quickly set up data entry
security on your flexfield segments and report parameters.

Flexfield Value Security lets you determine who can use flexfield
segment values and report parameter values. Based on your
responsibility and access rules that you define, Flexfield Value Security
limits what values you can enter in flexfield pop–up windows and
report parameters. Flexfield Value Security gives you greater control
over who can use restricted data in your application. When you use
Flexfield Value Security, users see only values they are allowed to use;
restricted values do not appear in lists of values associated with the
flexfield or report parameter.

Figure 5 – 2

List displays all values

COM — Computer

MACH — Machinery

Descriptive Flexfield

COMType

Jane ReedSales Rep

Computer

List

With Value
 Security

Without Security

COM — Computer

MACH — Machinery

FURN — Furniture

List

List displays only the val-
ues permitted for this re-
sponsibility

(or)

5 – 10 Oracle Applications Flexfields Guide

Flexfield Value Security provides you with the features you need to
satisfy the following basic security needs:

• Specify ranges of segment values particular users are allowed to
enter.

• Prevent users from entering segment values they are not allowed
to use.

Effects of Flexfield Value Security

The security rules you define and assign affect any segment or
parameter that uses the same value set as the segment for which you
initially set up your rules, provided that the other segment has security
enabled and that the user works within the responsibility to which the
rule is assigned.

For example, if your key flexfield segment shares its value set with a
descriptive flexfield segment, your security rules also affect that
descriptive segment. If you use the same value set for Standard
Request Submission parameter values, the rules you assign here also
affect your request parameter, provided that the parameter has security
enabled.

Many Oracle Applications reports use predefined value sets that you
may also use with your flexfield segments. If your flexfield segment
uses a value set associated with a Standard Request Submission report
parameter, the security rules you define here also affect the report
parameter, provided that the parameter has security enabled. In
addition, if you query a key flexfield combination where one or more of
the segments already contain a secure value, you cannot update any of
the segment values in the combination.

Security rules for the Accounting Flexfield also restrict query access to
segment values in the Account Inquiry, Funds Available, and Summary
Account Inquiry windows. In these windows, you cannot query up
any combination that contains a secure value.

Entering Values in Flexfields and Report Parameters

Flexfield Value Security limits the values you can enter in segments in
flexfield pop–up windows or report parameters. If you enter a secure
segment or parameter, you cannot enter values for which you do not
have access, and those values do not appear in the list of values for that
segment or parameter. If you try to enter a value for which you do not
have access, you see an error message defined by the person who

5 – 11Using Additional Flexfields Features

created the security rule. Note that if a segment default value or
shorthand entry alias contains a value that you are restricted from
using, that value disappears immediately and you must enter a
different value in that segment.

Defining Values

If Flexfield Value Security is available for your value set and you are
using a responsibility that has enabled security rules, you cannot define
or update excluded values using the Segment Values window. See:
Segment Values Window: page 4 – 65.

Understanding Flexfield Value Security

Defining Security Rules

You can define security rules for each segment or report parameter for
which you want to restrict data entry. Within a rule, you specify ranges
of segment values to include and exclude from use. You can create
many rules for the same segment or parameter, and assign the rules to
different responsibilities. You also define the error message you see if
you try to enter a value for which you do not have access. If you define
no security rules for a segment, you can enter any value you have
defined into that segment.

Before you define your security rules, you should determine what
segments you want to enable security on, and what types of access
limits you want to place on segment values for the different
responsibilities that use your flexfield.

Create Ranges of Approved Values

Since you include or exclude values by ranges, you should plan your
segment values carefully to make security rules easy to define.
Organizing your values in ranges or ”chunks” of related values helps
you keep your security rules simpler (and helps keep cross–validation
rules simpler as well).

Suggestion: We recommend that you define many rules that
each have few rule elements rather than a few rules that each
have many rule elements. The more rules you provide, the
more specific you can make your message text.

5 – 12 Oracle Applications Flexfields Guide

You can only use flexfield value security rules on segments or report
parameters that use value sets with a validation type of Independent,
Dependent, or Table. You cannot use security rules for segments that
use value sets with a validation type of None, Special, or Pair.

Interaction of Security Rules

It is important for you to understand how the rules interact before you
define them. You can define many security rules for a segment. Each
security rule is composed of one or more rule elements. A rule element
specifies a range of values to include or exclude. If you create rule
elements that have overlapping ranges, the result is that all values
included in either range are included by the rule. However, if you
define two different rules that have overlapping ranges and assign both
rules to the same responsibility, the effect is that only the values
included in the overlap of both rules are available to users of the
responsibility. More rules restrict more, not less. All values must pass
all security rules for it to appear in a segment or parameter list of
values. The following examples (shown in the following diagrams)
illustrates how your rules interact:

Suppose you have one rule with two rule elements. The first element
includes values 10 through 50, and the second element includes values
40 through 80. The resulting rule includes the union of the two
elements, values 10 through 80.

Suppose instead you have two separate rules. The first rule includes
values 10 through 50, and the second rule includes values 40 through
80. The resulting effect of the two rules includes the intersection of the
two rules, values 40 through 50.

5 – 13Using Additional Flexfields Features

Figure 5 – 3

One
Rule

Multiple
 Rules

Rule 1

Rule 2

Result:
(Union)

Result:
(Intersection)

Include

10 – 50

10 – 50

40 – 50

40 – 80

40 – 80

10 – 80

If you have multiple separate rules whose included values do not
overlap, then no values will be allowed at all, because values must be
included by all active security rules for that segment to be valid.

Now suppose you have one rule with two rule elements. The first
element includes values 10 through 50, and the second element
includes values 60 through 80. The resulting rule includes the union of
the two elements, values 10 through 50 and values 60 through 80.

Suppose instead you have two separate rules. The first rule includes
values 10 through 50, and the second rule includes values 60 through
80. The resulting effect of the two rules includes the intersection of the
two rules, which is no values at all.

5 – 14 Oracle Applications Flexfields Guide

Figure 5 – 4

One
Rule

Multiple
 Rules

Rule 1

Rule 2

Result:
(Union)

Result:
(Intersection)

Include

10 – 50

10 – 50

(no included values)

60 – 80

10 – 50 60 – 80

60 – 80

Assign Your Security Rules

Once you define your security rules, you can assign them to
responsibilities. The rules are active for every user in that
responsibility. You can assign different rules to different
responsibilities, and you can share rules across responsibilities. So, you
can create some responsibilities with access to all segment values, and
others with limited access. You are free to change the assignments of
your security rules or create new ones at any time. See: Assign Security
Rules: page 5 – 18.

Hierarchical Value Security

With hierarchical value security, the features of flexfield value security
and flexfield value hierarchy are combined. With this feature any
security rule that applies to a parent value also applies to its child
values.

5 – 15Using Additional Flexfields Features

With hierarchical security enabled, the system does the following for a
given value:

• Checks if this value is excluded by any of the security rules.

• Checks if this value is not included by any of the security rules.

• Checks if any of the parents is excluded by any of the security
rules.

• Checks if any of the parents is not included by any of the
security rules.

Warning: If you have a large hierarchical tree of values, then a
security rule that applies to a parent value will also apply to all
its child values, regardless of how many levels below the child
values are.

Defining Hierarchy and Qualifiers Information: page 4 – 70

Rollup Groups Window: page 4 – 83

Activating Flexfield Value Security

There are two levels where you must activate Flexfield Value Security,
the value set level and the individual segment or parameter level. You
make Flexfield Value Security available for your value set by choosing
Hierarchical Security or Non-Hierarchical Security for the Security
Type. When you make security available for a value set, all segments
and report parameters that use that value set can use security. You
then enable security for a particular segment or parameter.

Choose Non-Hierarchical Security if you do not want security on a
parent value to ”cascade down” to its child values. Choose
Hierarchical Security if you do want the hierarchical security feature
enabled.

Security Available

With security available, you can create flexfield security rules, and you
allow your rules to take effect for any segment or parameter that uses
this value set and has security enabled. Otherwise, you disable all
security rules for this value set.

You define security rules for this value set using the Define Security
Rules window. Any security rules you define for this value set affect

5 – 16 Oracle Applications Flexfields Guide

every segment (in any flexfield) that uses this value set, if the segment
has security enabled.

Using the Flexfield Value Security feature may negatively affect your
application performance. If you have many security rules or a large
value set with many secure values, you may notice that a list of values
on a segment appears slower than it would if you do not use Flexfield
Value Security. Users with responsibilities where security is not
enabled should not notice any loss in performance.

If you are using a validation table with special arguments such as
:$FLEX$.Value_Set_Name for your value set, you should specify No in
this field, since any security rules you have for your value set would
ignore the values of these special arguments, and your rules could have
effects other than what you intend.

You then enable security for a particular segment or parameter by
checking Enable Security for that segment or parameter. Once you
enable security on a segment, you must freeze and recompile the
flexfield definition for that flexfield structure. Flexfield Value Security
activates for that segment after you freeze and recompile your flexfield
definition using the Key Flexfield Segments window or Descriptive
Flexfield Segments window.

Once you define your rule, you must assign your rule to a
responsibility before the rule can be enforced. You assign your rule to a
responsibility using the Assign Security Rules window. You may
define rules for a segment that does not have security enabled, but
your rule has no effect until you enable security for that segment and
assign your rule to a responsibility.

After you define or make changes to your security rules, you and your
users must either change responsibilities or exit from your application
and sign on again in order for your changes to take effect.

Enabling Hierarchical Security

With hierarchical value security, the features of flexfield value security
and flexfield value hierarchy are combined. With this feature any
security rule that applies to a parent value also applies to its child
values.

You enable the hierarchical security feature using the following steps:

• Set up your value hierarchy

• Set up your security rules

• Enable security for a particular segment or parameter

5 – 17Using Additional Flexfields Features

• Choose Hierarchical Security for the Security Type for your value
set

See:

Key Flexfield Segments: page 2 – 16

Descriptive Flexfield Segments: page 3 – 31

Value Set Windows: page 4 – 50

Overview of Flexfield Value Security: page 5 – 9

Segment Values Window: page 4 – 65

Assign Security Rules: page 5 – 18

Defining Hierarchy and Qualifiers Information: page 4 – 70

Rollup Groups Window: page 4 – 83

5 – 18 Oracle Applications Flexfields Guide

Define Security Rules Window and Assign Security Rules Window

Use the Define Security Rules window to define value security rules for
ranges of flexfield and report parameter values.

Then, use the Assign Security Rules window to assign the flexfield
security rules to an application responsibility.

After you assign or change your security rules, you and your users
must either change responsibilities or exit from your application and
re–sign on in order for your changes to take effect. See: Overview of
Flexfield Value Security: page 5 – 9.

Tasks

Defining Security Rules: page 5 – 19

Defining Security Rule Elements: page 5 – 20

Assigning Security Rules: page 5 – 21

5 – 19Using Additional Flexfields Features

Defining Security Rules

� To define security rules:

1. Navigate to Define Security Rules window.

2. In the Segment Values block, identify the value set to which your
values belong. You can identify your value set or by the flexfield
segment or concurrent program parameter that uses the value set.

3. In the Security Rule region, enter a name and description for your
security rule.

5 – 20 Oracle Applications Flexfields Guide

4. Enter a message for this security rule. This message appears
automatically whenever a user enters a segment value that violates
your security rule.

5. Define the security rule elements that make up your rule. See:
Defining Security Rule Elements: page 5 – 20.

6. Save your changes.

Defining Security Rule Elements

You define a security rule element by specifying a value range that
includes both a low and high value for your segment. A security rule
element applies to all segment values included in the value range you
specify.

You identify each security rule element as either Include or Exclude,
where Include includes all values in the specified range, and Exclude
excludes all values in the specified range. Every rule must have at least
one Include rule element, since a rule automatically excludes all values
unless you specifically include them. Exclude rule elements override
Include rule elements.

You should always include any default values you use in your
segments or dependent value sets. If the default value is secured, the
flexfield window erases it from the segment as the window opens, and
the user must enter a value manually.

If you want to specify a single value to include or exclude, enter the
same value in both the Low and High fields.

Minimum and maximum possible values

The lowest and highest possible values in a range depend on the format
type of your value set. For example, you might create a value set with
format type of Number where the user can enter only the values
between 0 and 100. Or, you might create a value set with format type
of Standard Date where the user can enter only dates for the current
year (a range of 01–JAN–2002 to 31–DEC–2002, for example). For
example, if your format type is Char, then 1000 is less than 110, but if
your format type is Number, 110 is less than 1000. The lowest and
highest possible values in a range are also operating system dependent.
When you use a Char format type for most platforms (ASCII
platforms), numeric characters are ”less” than alphabetic characters
(that is, 9 is less than A), but for some platforms (EBCDIC platforms)
numeric characters are ”greater” than alphabetic characters (that is, Z is

5 – 21Using Additional Flexfields Features

less than 0). The window gives you an error message if you specify a
larger minimum value than your maximum value for your platform.

If you leave the low segment blank, the minimum value for this range
is automatically the smallest value possible for your segment’s value
set. For example, if the value set maximum size is 3 and Right–justify
and Zero–fill Numbers is checked, the minimum value is 000.
However, if the value set has a maximum size of 3, has Numbers Only
checked and Right–justify and Zero–fill Numbers unchecked, the
minimum value is 0.

If you leave the high segment blank, the maximum value for this range
is automatically the largest value possible for your segment’s value set.
For example, if the value set maximum size is 3 and Numbers Only is
checked, the maximum value is 999. However, if the value set
maximum size is 5, and Numbers Only is checked, the maximum value
is 99999.

Suggestion: Use blank segments to specify the minimum or
maximum possible values for a range to avoid having
operating system dependent rules.

Note that security rules do not check or affect a blank segment value
(null value).

� To define security rule elements:

1. In the Security Rule Elements block, select the type of security rule
element. Valid types are:

Your user can enter any segment value that falls in
the following range.

Your user cannot enter any segment value that falls
in the following range.

2. Enter the low (From) and high (To) ends of this value range. Your
value does not have to be a valid segment value.

Assigning Security Rules

Prerequisites

❑ Use the Define Security Rules window to define your flexfield
security rules. See: Defining Security Rules: page 5 – 19.

Include

Exclude

5 – 22 Oracle Applications Flexfields Guide

� To assign security rules:

1. Navigate to Assign Security Rules window.

2. In the Assign Security Rules block, identify the value set to which
your values belong. You can identify your value set or by the
flexfield segment or concurrent program parameter that uses the
value set.

3. In the Security Rules block, enter the application and responsibility
name that uniquely identifies the responsibility to which you want
to assign security rules.

4. Enter the name of a security rule you want to assign to this
responsibility.

5. Save your changes.

5 – 23Using Additional Flexfields Features

Cross–Validation Rules

A key flexfield can perform automatic cross–validation of segment
values according to rules your organization defines when you
customize the key flexfield. You can use cross–validation to closely
control the creation of new key flexfield combinations, and you can
maintain a consistent and logical set of key flexfield combinations that
you need to run your organization.

What is Cross–Validation?

Cross–validation (also known as cross–segment validation) controls the
combinations of values you can create when you enter values for key
flexfields. A cross–validation rule defines whether a value of a
particular segment can be combined with specific values of other
segments. Cross–validation is different from segment validation,
which controls the values you can enter for a particular segment.

You use cross–validation rules to prevent the creation of combinations
that should never exist (combinations with values that should not
coexist in the same combination). For example, if your organization
manufactures both computer equipment and vehicles such as trucks,
you might want to prevent the creation of ”hybrid” part numbers for
objects such as ”truck keyboards” or ”CPU headlights”.

5 – 24 Oracle Applications Flexfields Guide

Figure 5 – 5

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light TanLTN

Part Number Structure 1

COMCategory

621Item

Color

Computer

4–Wheel

Light TanLTN

COM – 876 – LTN COM – 621–LTN

Part Numbers

COM – 876 – LTN

Computer–Monitor–Light Tan

Part

Description

(or)

As another example, if you use the Accounting Flexfield, you may
decide that all revenue accounts must have a department. Therefore,
all your ”revenue” account values (such as all values between 4000 and
5999) must have a corresponding department value other than 000
(which means ”non–specific”).

 For example, suppose you have an Accounting Flexfield where you
have a Company or Organization segment with two possible values, 01
and 02. You also have a Natural Account segment, with many possible
values, but your company policy requires that Company or
Organization 01 uses the natural account values 001 to 499 and
Company or Organization 02 uses the natural account values 500 to

5 – 25Using Additional Flexfields Features

999. You can create cross–validation rules to ensure that users cannot
create a GL account with combinations of values such as 02–342 or
01–750, for example.

How Cross–Validation Works

When a user finishes entering segment values in a flexfield pop–up
window, the flexfield checks whether the values make up a valid
combination before updating the database. If the user entered an
invalid combination, a diagnostic error message appears, and the
cursor returns to the first segment assumed to contain an invalid value.

Cross–validation rules control combinations of values within a
particular key flexfield structure. Cross–validation applies to
combinations users attempt to create using either the combinations
form or foreign key forms (using dynamic inserts).

Cross–Validation Rules and Existing Combinations

Cross–validation rules have no effect on combinations that already
exist when you define your cross–validation rules.

Suppose you define a new cross–validation rule, but have existing
entries in your combinations table that violate the rule. Since the
existing combinations pre–date the rule, your flexfield continues to
treat them as valid. However, if your end user tries to create a new
combination that violates your new rule, your flexfield returns an error
message and rejects the combination.

If you want to prevent users from using previously–existing
combinations that are no longer valid according to your
cross–validation rules, you can always manually disable those
combinations using the combinations form. See: Maintaining Your
Cross–Validation Rules and Valid Combinations: page 5 – 33.

Dynamic Insertion and Cross–Validation

Your use of cross–validation is separate from (and in addition to) your
use of dynamic inserts.

By allowing dynamic inserts, you can let users create new combinations
automatically upon entering the combination in a foreign key form (any
form other than the combinations form) and in the combinations form
itself.

5 – 26 Oracle Applications Flexfields Guide

If you want greater control, you can disallow dynamic inserts. You can
thus restrict the creation of new combinations to certain authorized
people who have access to the combinations form on their menu. You
simply turn dynamic insertion off using the Define Key Flexfield
Segments form. Depending on the key flexfield you use, you can still
create new combinations using one of your product setup forms (the
combinations form). For example, if you use the Accounting Flexfield,
you can enter new combinations using the Define Accounting Flexfield
Combination form.

In either case, however, there is no inherent protection against a user
creating an invalid new combination. Cross–validation rules ensure
that nobody can create invalid new combinations from either foreign key
forms or the combinations form, regardless of whether you allow
dynamic inserts.

As you consider the controls you want over your key flexfield
combinations, determine whether you need cross–validation rules at
all. To provide an extra level of security, use cross–validation rules
even if you turn dynamic insertion off. This allows you to
double–check new combinations that even your authorized personnel
enter using the combinations form.

See:

Defining Accounts
Oracle [Public Sector] General Ledger User’s Guide

Key Flexfield Segments Window: page 2 – 16

Cross–Validation Rules Window: page 5 – 35

Changing your key flexfield structure after defining rules

Changing an existing key flexfield structure may adversely affect the
behavior of any cross–validation rules you have for that structure, so
you should be sure to manually disable or redefine any
cross–validation rules to reflect your changed structure. Flexfield
structure changes that make your existing rules invalid include:

• changing the order of segments

• adding a new segment

• disabling a segment

• changing segment lengths

5 – 27Using Additional Flexfields Features

For example, if you change a six–segment structure to contain only five
segments, you would not be able to use any new five–segment code
combinations since any rules existing for the old six–segment structure
would be violated. See: Cross–Validation Rules: page 5 – 23, Key
Flexfield Segments Window: page 2 – 16.

Designing Your Cross–Validation Rules

Oracle Applications provides many key flexfields, such as the
Accounting Flexfield, Location Flexfield and System Items Flexfield. In
this essay, we use the Accounting Flexfield to present suggestions for
designing your cross–validation rules, but you can use cross–validation
rules for any key flexfield structure that has cross–validation enabled.

You set up cross–validation by specifying rules that describe valid
combinations for key flexfields. You can define new cross–validation
rules anytime using the Define Cross–Validation Rules form. Your
rules are effective only while you have Cross–Validate Multiple
Segments set to Yes in the Define Key Flexfield Segments form.

Each cross–validation rule contains one or more rule elements, where
each element is a key flexfield range that specifies low and high values
for each segment. You identify a rule element as either Include or
Exclude. Include means include all values in the specified segment
ranges, and Exclude means exclude all values in the specified segment
ranges. Every cross–validation rule must contain at least one Include
rule element. Exclude rule elements override Include rule elements.
See: Key Flexfield Segments: page 2 – 16, Cross–Validation Rules: page
5 – 35.

Determine Your Error Messages

You can define your own error messages for your validation rules.
Define error messages to explain errors to users. Your flexfield
automatically places the cursor next to the value your user needs to
change to correct the error. Define error messages based on the
frequency with which key flexfields errors are made.

For example, if you use the Accounting Flexfield, you might have a rule
preventing revenue account values (values between 4000 and 9999)
with the balance sheet department value 000. An incorrect
combination can result from the user entering an incorrect department
or an incorrect account. Maybe you intended to enter 100–4500 instead
of 000–4500. Or, maybe you intended to enter 000–3500.

5 – 28 Oracle Applications Flexfields Guide

If you expect that most of the time the account will be wrong, define an
error message such as, ”Enter only balance sheet accounts with
department 000.” If you expect that most of the time the department
will be wrong, define an error message such as, ”Enter departments
other than 000 with revenue accounts.” If you expect that either
segment is just as likely to be incorrect, define an error message that
does not imply a particular segment is in error.

For example, ”You have entered an incompatible department/account
combination. Please re–enter.”

Determine Your Error Segment

Determine in which segment you want to place the cursor when a key
flexfield combination fails a validation rule. Choose the segment you
feel will most likely be in error. If you have defined a good error
message, the message and the segment to which the cursor returns
should correspond.

For example, if your account segment is most likely to be in error,
define your error message to be, ”Please enter only balance sheet
accounts with department 000,” and specify the cursor to return to the
account segment.

If either segment is as likely to be in error, specify the cursor to return
to the first of the two segments. If the second segment is actually the
one in error, it is more intuitive to move down to a subsequent segment
than it is to move back to a previous segment.

Define Simple Rules

Avoid rules that control cross–validation across more than two
segments, where possible.

For example, if you use the Accounting Flexfield, you may want to
prevent using department 000 with accounts greater than 3999 for all
balancing segment values except 99.

While you can define cross–validation rules that span two or more
segments, keep in mind that it becomes more difficult to interpret
cross–validation error messages and correct invalid key flexfield
combinations as your rules encompass more segments.

Using Include and Exclude Ranges

Consider the following basics of cross–validation rules:

• Combinations must pass all cross–validation rules.

5 – 29Using Additional Flexfields Features

• Within each rule, combinations must be in at least one include
range.

• Within each rule, combinations cannot be in any exclude ranges.

In summary, a key flexfield value must fall within at least one include
range and outside all exclude ranges to pass your validation rule.

Using Include Ranges

Accomplish your control objectives primarily with include ranges
when you have a stricter structure for your key flexfield structure.
With include ranges, you list valid combinations instead of invalid
combinations.

For example, if you use the Accounting Flexfield and want to allow
users to enter only certain balancing segment values with certain
products or projects, you can enumerate the possibilities:

Include: From 01–100

To 01–199

Include: From 02–200

To 02–399

Include: From 03–500

To 03–699

Using Exclude Ranges

Accomplish your control objectives primarily with exclude ranges
when your key flexfield structure is less structured and your key
flexfield segments do not have a lot of interdependencies. In this
situation, you generally want to accept most combinations. You just
want some exceptions to this general rule.

For example, if you use the Accounting Flexfield and want to prevent
users from entering balancing segment values 01 and 02 with
departments greater than 899, you can specify this exception:

5 – 30 Oracle Applications Flexfields Guide

Include: From 00–000

To 99–999

Exclude: From 01–900

To 02–999

Minimum and maximum possible values

The lowest and highest possible values in a range depend on the format
type of your value set. For example, you might create a value set with
format type of Number where the user can enter only the values
between 0 and 100. Or, you might create a value set with format type
of Standard Date where the user can enter only dates for the current
year (a range of 01–JAN–2001 to 31–DEC–2001, for example). For
example, if your format type is Char, then 1000 is less than 110, but if
your format type is Number, 110 is less than 1000. The lowest and
highest possible values in a range are also operating system dependent.
When you use a Char format type for most platforms (ASCII
platforms), numeric characters are ”less” than alphabetic characters
(that is, 9 is less than A), but for some platforms (EBCDIC platforms)
numeric characters are ”greater” than alphabetic characters (that is, Z is
less than 0). The window gives you an error message if you specify a
larger minimum value than your maximum value for your platform.

As discussed below, you can use blank segment values in your rules to
make rules easier to define and maintain. A blank segment value
means you want to include or exclude ”all the way to the end” of the
range (either minimum or maximum).

Suggestion: Use blank segments to specify the minimum or
maximum possible values for a range to avoid having
operating system dependent rules.

Using Blank Segment Values

Blank segment values in your rules make the rules easier to define and
maintain. A blank segment value means you want to include or
exclude ”all the way to the end” of the range (either minimum or
maximum).

If you leave a low segment blank, the minimum value for your Include
or Exclude range is automatically the smallest value possible for your
segment’s value set. For example, if the value set maximum size is 3
and Right–justify Zero–fill Numbers is set to Yes, the minimum value is
000. However, if the value set maximum size is 3, Alphabetic

5 – 31Using Additional Flexfields Features

Characters is set to No, and Right–justify Zero–fill Numbers is set to
No, the minimum value is 0.

If you leave the high segment blank, the maximum value for your
Include or Exclude range is automatically the largest value possible for
your segment’s value set. For example, if the value set maximum size
is 3 and Alphabetic Characters is set to No, the maximum value is 999.
However, if the value set maximum size is 5, and Alphabetic
Characters is set to No, the maximum value is 99999.

Note that a blank segment value (null value) is considered to fall within
a range that has one or both ends specified as a blank. However, if
each of your segments require a value, you would not be able to create
a combination with a blank segment anyhow.

You may use blank minimum or maximum segment values to create
cross–validation rules that can test for blank segments (that are not
already required to have a value). For example, if you allow a null
value for your last optional segment but not the second–to–last
optional segment, you would use a blank minimum or maximum value
for the last segment but fill in a value (such as 000 or 999) for both the
minimum and maximums for the second–to–last optional segment.

Using Blank Values in Your Ranges

You may create cross–validation rules for flexfield structures where
you allow users to leave some segments blank (that is, where you set
the Required field to No for one or more segments in a flexfield
structure using the Define Key Flexfield Segments window). You may
also create cross–validation rules for flexfield structures where you do
not allow users to leave any segments blank.

Often you want to control the values in just one or two segments, and
any valid segment values may be used in the remaining segments. For
example, if you have a six–segment Accounting Flexfield of the form
00–000–0000–000–000–0000, you may want to allow (include) all
possible combinations where the first segment contains 01 and the
second segment contains values between 200 and 299, inclusive. You
can specify the minimum and maximum values for each segment as
follows (assuming that only numeric characters are allowed for these
segments):

Include: From 01–200–0000–000–000–0000

To 01–299–9999–999–999–9999

5 – 32 Oracle Applications Flexfields Guide

Or, you could use blank values as both the minimum and maximum
values for each of the unrestricted segments (the last four segments):

Include: From 01–200–____–___–___–____

To 01–299–____–___–___–____

Since the blank values clearly signify the ends of the ranges, you may
find them easier to use than explicitly specifying the range ending
values. Of course, you can always specify only one blank value in a
range if the range has one fixed value:

Include: From 01–200–2000–___–___–____

To 01–299–____–___–299–____

Define Multiple Rules

You should use several simple validation rules instead of using one
complex rule. Simple validation rules let you provide a more specific
error message and return your cursor to the most appropriate key
flexfield segment. Simple rules are also easier to maintain over time.

For example, if you use the Accounting Flexfield, you might want users
to enter departments 100 to 199 and asset accounts 2000 to 2999 only
for balancing segment value 01. While you can accomplish this
objective with one rule, you can see that it is more cumbersome:

Include: From 00–000–0000–000–000–0000

To 99–999–9999–999–999–9999

Exclude: From 02–100–2000–000–000–0000

To 99–199–2999–999–999–9999

Error message: Incorrect department or account with this
balancing segment value.

Error segment: Department? Account?

Here’s how to express your control objective more clearly using two
rules:

Rule #1

5 – 33Using Additional Flexfields Features

Include: From 00–000–0000–000–000–0000

To 99–999–9999–999–999–9999

Exclude: From 02–100–0000–000–000–0000

To 99–199–9999–999–999–9999

Error message: Please use departments 100–199 only with
balancing segment value 01.

Error segment: Department

Rule #2

Include: From 00–000–0000–000–000–0000

To 99–999–9999–999–999–9999

Exclude: From 02–000–2000–000–000–0000

To 99–999–2999–999–999–9999

Error message: Please use accounts 2000–2999 only with
balancing segment value 01.

Error segment: Account

Maintaining Your Cross–Validation Rules and Valid Combinations

Review existing key flexfields when you update your cross–validation
rules to maintain consistent validation. Regardless of your current
validation rules, Oracle Applications accepts a key flexfield
combination if the combination already exists and is enabled.
Therefore, to ensure accurate validation, you must review your existing
combinations and disable any combinations that do not match the
criteria of your new rules.

Suggestion: To keep this type of key flexfield maintenance to
a minimum, decide upon your cross–validation rules when you
first set up your key flexfield structure.

See: Defining Accounts
Oracle [Public Sector] General Ledger User’s Guide

5 – 34 Oracle Applications Flexfields Guide

If you want to prevent users from using previously–existing
combinations that are no longer valid according to your
cross–validation rules, you can always disable those combinations
using the combinations form.

Reports

Oracle Applications contains two reports you can use to help maintain
a consistent and logical set of rules and key flexfield combinations. The
two new flexfield cross–validation reports appear in the System
Administration responsibility.

Cross–Validation Rule Violation Report

This report provides a listing of all the previously–created flexfield
combinations that violate your cross–validation rules for a given
flexfield structure. You can also choose to have the report program
actually disable the existing combinations that violate your new rules.

Cross–Validation Rules Listing Report

This report lists all the cross–validation rules that exist for a particular
flexfield structure. This is the information you define using the Define
Cross–Validation Rules form, presented in a multiple–rule format you
can review and keep for your records.

5 – 35Using Additional Flexfields Features

Cross–Validation Rules Window

Your flexfield checks cross–validation rules while attempting to create a
new combination of flexfield values (for example, a new Accounting
Flexfield combination). Your cross–validation rules have no effect on
flexfield combinations that already exist. If you want to disable an
existing combination, you must disable that combination specifically
using the appropriate window. For example, you can disable an
existing Accounting Flexfield combination using the Define Accounting
Flexfield Combinations window.

Suggestion: We recommend that you define many rules that
each have few rule elements rather than a few rules that each

5 – 36 Oracle Applications Flexfields Guide

have many rule elements. The more rules you provide, the
more specific you can make your error message text.

Your flexfield checks cross–validation rules only if you set
Cross–Validate Multiple Segments to Yes using the Define Key Flexfield
Segments window.

If you make changes to your cross–validation rules, you need to either
change responsibilities or exit from your application and sign on again
in order for the changes to take effect.

Tasks

Defining Cross–validation Rules: page 5 – 36

Defining Cross–validation Rule Elements: page 5 – 37

Defining Cross–validation Rules

Prerequisites

❑ Use the Key Flexfield Segments window to define your flexfield
structure and segments and specify Yes in the Cross–Validate
Multiple Segments field for your flexfield structure.

❑ Define your values.

� To define cross–validation rules:

1. Select the name and structure of your key flexfield for which you
wish to define cross–validation rules. Your list only contains
structures with the field Cross–Validate Multiple Segments set to
Yes on the Key Flexfield Segments window.

2. Enter a unique name and a description for your cross–validation
rule.

3. Enter your error message text for this cross–validation rule.

Your flexfield automatically displays this error message on the
message line whenever a new combination of segment values
violates your cross–validation rule. You should make your error
messages as specific as possible so that your users can correct any
errors easily.

5 – 37Using Additional Flexfields Features

4. Enter the name of the segment most likely to have caused this
cross–validation rule to fail. Your flexfield leaves the cursor in this
segment whenever a new segment combination violates this
cross–validation rule to indicate where your user can probably
correct the error. If you do not specify an error segment name,
your flexfield leaves the cursor in the first segment of the flexfield
window following a violation of this rule.

5. If you want to have the rule effective for a limited time, you can
enter a start date and/or an end date for the rule. The rule is valid
for the time including the From and To dates.

6. Define the cross–validation rule elements that make up your rule.
See: Defining Cross–validation Rule Elements: page 5 – 37.

7. Save your changes.

Defining Cross–validation Rule Elements

Use this block to define the cross–validation rule elements that make
up your cross–validation rule. You define a cross–validation rule
element by specifying a value range that includes both a low and high
value for each key segment. A cross–validation rule element applies to
all segment values included in the value ranges you specify. You
identify each cross–validation rule element as either Include or
Exclude, where Include includes all values in the specified ranges, and
Exclude excludes all values in the specified ranges. Every rule must
have at least one Include rule element, since a rule automatically
excludes all values unless you specifically include them. Exclude rule
elements override Include rule elements.

Suggestion: We recommend that you define one
all–encompassing Include rule element and several restricting
Exclude rule elements.

Select the type of cross–validation rule element. Valid types are:

Your user can enter any segment value
combinations that fall in the following range.

Your user cannot enter any segment value
combinations that fall in the following range.

When you enter the From (low) field, this window automatically
displays a window that contains a prompt for each segment in your
flexfield structure. You enter both the low and high ends of your value
range in this window. After you finish entering your ranges, this zone

Include

Exclude

5 – 38 Oracle Applications Flexfields Guide

displays your low segment values in concatenated window in the Low
field and displays your high segment values similarly in the High field.

Enter the low end and the high end of your segment combination
range. Neither the low nor the high combination has to be a valid key
flexfield combination, nor do they need to be made up of valid segment
values.

Note that a blank segment value (null value) is considered to fall within
a range that has one or both ends specified as a blank. However, if all
of your segments require a value, you would not be able to create a
combination with a blank segment anyhow.

You may use blank minimum or maximum segment values to create
cross–validation rules that can test for blank segments (that are not
already required to have a value). For example, if you allow a null
value for your last optional segment but not the second–to–last
optional segment, you would use a blank minimum or maximum value
for the last segment but fill in a value (such as 000 or 999) for both the
minimum and maximums for the second–to–last optional segment.

If you want to specify a single combination to include or exclude, enter
the same combination in both the Low and High fields.

Disabled rules are ignored when your key flexfield validates a
combination of segment values. Deleting the rule has the same effect,
but you can re–enable a disabled rule.

C H A P T E R

6

6 – 1Key Flexfields in Oracle Applications

Key Flexfields in Oracle
Applications

The Oracle Applications products provide many key flexfields as
integral parts of the products. This chapter contains tables with basic
information for all the key flexfields in Oracle Applications.

6 – 2 Oracle Applications Flexfields Guide

Key Flexfields by Flexfield Name

Here is a table listing the key flexfields in Oracle Applications, ordered
by the name of the key flexfield.

Name Code Owner

Account Aliases MDSP Oracle Inventory

Accounting Flexfield GL# Oracle General Ledger

Asset Key Flexfield KEY# Oracle Assets

Bank Details KeyFlexField BANK Oracle Payroll

Category Flexfield CAT# Oracle Assets

Cost Allocation Flexfield COST Oracle Payroll

Grade Flexfield GRD Oracle Human Resources

Item Catalogs MICG Oracle Inventory

Item Categories MCAT Oracle Inventory

Job Flexfield JOB Oracle Human Resources

Location Flexfield LOC# Oracle Assets

Oracle Service Item Flexfield SERV Oracle Service

People Group Flexfield GRP Oracle Payroll

Personal Analysis Flexfield PEA Oracle Human Resources

Position Flexfield POS Oracle Human Resources

Sales Tax Location Flexfield MKTS Oracle Receivables

SalesOrders RLOC Oracle Inventory

Soft Coded KeyFlexfield SCL Oracle Human Resources

Stock Locators MTLL Oracle Inventory

System Items MSTK Oracle Inventory

Territory Flexfield CT# Oracle Receivables

Training Resources RES Oracle Training Administration

Table 6 – 1 (Page 1 of 1)

You use the flexfield code and the owning application to identify a
flexfield when you call it from a custom form.

6 – 3Key Flexfields in Oracle Applications

Key Flexfields by Owning Application

Here is a table listing all the key flexfields in Oracle Applications,
ordered by the application that ”owns” the key flexfield. Note that
other applications may also use a particular flexfield.

Owner Name Code

Oracle Assets Asset Key Flexfield KEY#

Oracle Assets Category Flexfield CAT#

Oracle Assets Location Flexfield LOC#

Oracle General Ledger Accounting Flexfield GL#

Oracle Human Resources Grade Flexfield GRD

Oracle Human Resources Job Flexfield JOB

Oracle Human Resources Personal Analysis Flexfield PEA

Oracle Human Resources Position Flexfield POS

Oracle Human Resources Soft Coded KeyFlexfield SCL

Oracle Inventory Account Aliases MDSP

Oracle Inventory Item Catalogs MICG

Oracle Inventory Item Categories MCAT

Oracle Inventory SalesOrders RLOC

Oracle Inventory Stock Locators MTLL

Oracle Inventory System Items MSTK

Oracle Payroll Bank Details KeyFlexField BANK

Oracle Payroll Cost Allocation Flexfield COST

Oracle Payroll People Group Flexfield GRP

Oracle Receivables Sales Tax Location Flexfield MKTS

Oracle Receivables Territory Flexfield CT#

Oracle Service Oracle Service Item Flexfield SERV

Oracle Training Administration Training Resources RES

Table 6 – 2 (Page 1 of 1)

6 – 4 Oracle Applications Flexfields Guide

Tables of Individual Key Flexfields in Oracle Applications

The following sections contain a table for each key flexfield in the
Oracle Applications products. These provide you with useful
information, including:

• Which application owns the key flexfield

• The flexfield code (used by forms and routines that call a
flexfield)

• The name of the code combinations table

• How many segment columns it has

• The width of the segment columns

• The name of the unique ID column (the CCID column)

• The name of the structure ID column

• Whether it is possible to use dynamic insertion with this key
flexfield

Many of these key flexfield sections also contain information on the
uses and purpose of the flexfield, as well as suggestions for how you
might want to implement it at your site.

6 – 5Key Flexfields in Oracle Applications

Account Aliases

The following table lists details for this key flexfield.

 Owner Oracle Inventory

 Flexfield Code MDSP

 Table Name MTL_GENERIC_DISPOSITIONS

 Number of Columns 20

 Width of Columns 40

 Dynamic Inserts Possible No

 Unique ID Column DISPOSITION_ID

 Structure Column ORGANIZATION_ID

Table 6 – 3 (Page 1 of 1)

This key flexfield supports only one structure.

6 – 6 Oracle Applications Flexfields Guide

Accounting Flexfield

The following table lists details for this key flexfield.

 Owner Oracle General Ledger

 Flexfield Code GL#

 Table Name GL_CODE_COMBINATIONS

 Number of Columns 30

 Width of Columns 25

 Dynamic Inserts Possible Yes

 Unique ID Column CODE_COMBINATION_ID

 Structure Column CHART_OF_ACCOUNTS_ID

Table 6 – 4 (Page 1 of 1)

The Accounting Flexfield is fully described in the Oracle General Ledger
User’s Guide.

6 – 7Key Flexfields in Oracle Applications

Asset Key Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Assets

 Flexfield Code KEY#

 Table Name FA_ASSET_KEYWORDS

 Number of Columns 10

 Width of Columns 30

 Dynamic Inserts Possible Yes

 Unique ID Column CODE_COMBINATION_ID

 Structure Column None

Table 6 – 5 (Page 1 of 1)

Oracle Assets uses the asset key flexfield to group your assets by
non–financial information. You design your asset key flexfield to
record the information you want. Then you group your assets by asset
key so you can find them without an asset number.

Warning: Plan your flexfield carefully. Once you have started
entering assets using the flexfield, you cannot change it.

6 – 8 Oracle Applications Flexfields Guide

Bank Details KeyFlexField

The following table lists details for this key flexfield.

 Owner Oracle Payroll

 Flexfield Code BANK

 Table Name PAY_EXTERNAL_ACCOUNTS

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column EXTERNAL_ACCOUNT_ID

 Structure Column ID_FLEX_NUM

Table 6 – 6 (Page 1 of 1)

The Bank Details KeyFlexfield [sic] holds legislation specific bank
account information. The Bank Details structure that you see is
determined by the legislation of your Business Group.

Localization teams determine the data that is held in this flexfield.
Each localization team defines a flexfield structure that allows you to
record the bank account information relevant to each legislation.

If you are using a legislation for which a Bank KeyFlexfield structure
has been defined you should not modify the predefined structure.

Warning: You should not attempt to alter the definitions of
the Bank Details Flexfield which are supplied. These
definitions are a fundamental part of the package. Any change
to these definitions may lead to errors in the operating of the
system.

It is possible that Oracle Human Resources will use the other
segments of this flexfield in the future. Therefore, you should
not try to add other segments to this Flexfield. This may affect
your ability to upgrade the system in the future.

Consult your Oracle Human Resources National Supplement for the
full definition of your Bank Details Flexfield.

6 – 9Key Flexfields in Oracle Applications

Category Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Assets

 Flexfield Code CAT#

 Table Name FA_CATEGORIES

 Number of Columns 7

 Width of Columns 30

 Dynamic Inserts Possible No

 Unique ID Column CATEGORY_ID

 Structure Column None

Table 6 – 7 (Page 1 of 1)

Oracle Assets uses the category flexfield to group your assets by
financial information. You design your category flexfield to record the
information you want. Then you group your assets by category and
provide default information that is usually the same for assets in that
category.

Warning: Plan your flexfield carefully. Once you have started
entering assets using the flexfield, you cannot change it.

6 – 10 Oracle Applications Flexfields Guide

Cost Allocation Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Payroll

 Flexfield Code COST

 Table Name PAY_COST_ALLOCATION_KEYFLEX

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column COST_ALLOCATION_KEYFLEX_ID

 Structure Column ID_FLEX_NUM

Table 6 – 8 (Page 1 of 1)

You must be able to get information on labor costs from your payrolls,
and send this information to other systems. Payroll costs must of
course go to the general ledger. Additionally, you may need to send
them to labor distribution or project management systems.

The Cost Allocation Flexfield lets you record, accumulate and report
your payroll costs in a way which meets the needs of your enterprise.

6 – 11Key Flexfields in Oracle Applications

Grade Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Human Resources

 Flexfield Code GRD

 Table Name PER_GRADE_DEFINITIONS

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column GRADE_DEFINITION_ID

 Structure Column ID_FLEX_NUM

Table 6 – 9 (Page 1 of 1)

Grades are used to represent relative status of employees within an
enterprise, or work group. They are also used as the basis of many
Compensation and Benefit policies.

6 – 12 Oracle Applications Flexfields Guide

Item Catalogs

The following table lists details for this key flexfield.

 Owner Oracle Inventory

 Flexfield Code MICG
 Table Name MTL_ITEM_CATALOG_GROUPS

 Number of Columns 15

 Width of Columns 40

 Dynamic Inserts Possible No

 Unique ID Column ITEM_CATALOG_GROUP_ID

 Structure Column None

Table 6 – 10 (Page 1 of 1)

This key flexfield supports only one structure.

6 – 13Key Flexfields in Oracle Applications

Item Categories

The following table lists details for this key flexfield.

 Owner Oracle Inventory

 Flexfield Code MCAT

 Table Name MTL_CATEGORIES

 Number of Columns 20

 Width of Columns 40

 Dynamic Inserts Possible No

 Unique ID Column CATEGORY_ID

 Structure Column STRUCTURE_ID

Table 6 – 11 (Page 1 of 1)

You must design and configure your Item Categories Flexfield before
you can start defining items since all items must be assigned to
categories.

You can define multiple structures for your Item Categories Flexfield,
each structure corresponding to a different category grouping scheme.
You can then associate these structures with the categories and
category sets you define.

6 – 14 Oracle Applications Flexfields Guide

Job Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Human Resources

 Flexfield Code JOB

 Table Name PER_JOB_DEFINITIONS

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column JOB_DEFINITION_ID

 Structure Column ID_FLEX_NUM

Table 6 – 12 (Page 1 of 1)

The Job is one possible component of the Employee Assignment in
Oracle Human Resources. The Job is used to define the working roles
which are performed by your employees. Jobs are independent of
Organizations. With Organizations and Jobs you can manage employee
assignments in which employees commonly move between
Organizations but keep the same Job.

You use the Job Flexfield to create Job Names which are a unique
combination of segments. You can identify employee groups using the
individual segments of the Job whenever you run a report or define a
QuickPaint.

6 – 15Key Flexfields in Oracle Applications

Location Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Assets

 Flexfield Code LOC#

 Table Name FA_LOCATIONS

 Number of Columns 7

 Width of Columns 30

 Dynamic Inserts Possible Yes

 Unique ID Column LOCATION_ID

 Structure Column None

Table 6 – 13 (Page 1 of 1)

Oracle Assets uses the location flexfield to group your assets by
physical location. You design your location flexfield to record the
information you want. Then you can report on your assets by location.
You can also transfer assets that share location information as a group,
such as when you move an office to a new location.

Warning: Plan your flexfield carefully. Once you have started
entering assets using the flexfield, you cannot change it.

6 – 16 Oracle Applications Flexfields Guide

People Group Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Payroll

 Flexfield Code GRP

 Table Name PAY_PEOPLE_GROUPS

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column PEOPLE_GROUP_ID

 Structure Column ID_FLEX_NUM

Table 6 – 14 (Page 1 of 1)

The People Group flexfield lets you add your own key information to
the Employee Assignment. You use each segment to define the
different groups of employees which exist within your own enterprise.
These may be groups which are not identified by your definitions of
other Work Structures.

6 – 17Key Flexfields in Oracle Applications

Personal Analysis Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Human Resources

 Flexfield Code PEA

 Table Name PER_ANALYSIS_CRITERIA

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column ANALYSIS_CRITERIA_ID

 Structure Column ID_FLEX_NUM

Table 6 – 15 (Page 1 of 1)

The Personal Analysis Key Flexfield lets you add any number of
Special Information Types for people. Each Special Information Type is
defined as a separate flexfield structure for the Personal Analysis
Flexfield.

Some common types of information you might want to hold are:

– Qualifications

– Language Skills

– Medical Details

– Performance Reviews

– Training Records

Each structure can have up to 30 different segments of information.

See: Personal Information
(Oracle HRMS User’s Guide)

6 – 18 Oracle Applications Flexfields Guide

Position Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Human Resources

 Flexfield Code POS

 Table Name PER_POSITION_DEFINITIONS

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column POSITION_DEFINITION_ID

 Structure Column ID_FLEX_NUM

Table 6 – 16 (Page 1 of 1)

Positions, like Jobs, are used to define employee roles within Oracle
Human Resources. Like Jobs, a Position is an optional component of
the Employee Assignment. However, unlike Jobs, a Position is defined
within a single Organization and belongs to it.

Positions are independent of the employees who are assigned to those
positions. You can record and report on information which is directly
related to a specific position rather than to the employee.

See: Work Structures
(Oracle HRMS User’s Guide)

6 – 19Key Flexfields in Oracle Applications

Sales Orders

The following table lists details for this key flexfield.

 Owner Oracle Inventory

 Flexfield Code MKTS

 Table Name MTL_SALES_ORDERS

 Number of Columns 20

 Width of Columns 40

 Dynamic Inserts Possible Yes

 Unique ID Column SALES_ORDER_ID

 Structure Column None

Table 6 – 17 (Page 1 of 1)

The Sales Orders Flexfield is a key flexfield used by Oracle Inventory to
uniquely identify sales order transactions Oracle Order Management
interfaces to Oracle Inventory.

Your Sales Orders Flexfield should be defined as Order Number, Order
Type, and Order Source. This combination guarantees each transaction
to Inventory is unique.

You must define this flexfield before placing demand or making
reservations in Oracle Order Management.

6 – 20 Oracle Applications Flexfields Guide

Sales Tax Location Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Receivables

 Flexfield Code RLOC

 Table Name AR_LOCATION_COMBINATIONS

 Number of Columns 10

 Width of Columns 22

 Dynamic Inserts Possible Yes

 Unique ID Column LOCATION_ID

 Structure Column LOCATION_STRUCTURE_ID

Table 6 – 18 (Page 1 of 1)

The Sales Tax Location Flexfield is used to calculate tax based on
different components of your customers’ shipping addresses for all
addresses in your home country.

6 – 21Key Flexfields in Oracle Applications

Oracle Service Item Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Service

 Flexfield Code SERV

 Table Name MTL_SYSTEM_ITEMS

 Number of Columns 20

 Width of Columns 40

 Dynamic Inserts Possible No

 Unique ID Column INVENTORY_ITEM_ID

 Structure Column ORGANIZATION_ID

Table 6 – 19 (Page 1 of 1)

The Service Item flexfield uses the same table as the System Item
Flexfield. However, you can set up your segments differently with the
Service Item Flexfield.

6 – 22 Oracle Applications Flexfields Guide

Soft Coded KeyFlexfield

The following table lists details for this key flexfield.

 Owner Oracle Human Resources

 Flexfield Code SCL

 Table Name HR_SOFT_CODING_KEYFLEX

 Number of Columns 30

 Width of Columns 60

 Dynamic Inserts Possible Yes

 Unique ID Column SOFT_CODING_KEYFLEX_ID

 Structure Column ID_FLEX_NUM

Table 6 – 20 (Page 1 of 1)

The Soft Coded KeyFlexfield holds legislation specific information.
The Soft Coded KeyFlexfield structure that a user will see is
determined by the legislation of the Business Group.

Localization teams determine the data that is held in this flexfield.
Each localization team defines a flexfield structure and uses qualifiers
to define the level at which each segment is visible. Segments can be
seen at business group, payroll or assignment level. The type of
information that is held in this key flexfield varies from legislation to
legislation.

If you are using a legislation for which a Soft Coded KeyFlexfield
structure has been defined you should not modify the predefined
structure.

6 – 23Key Flexfields in Oracle Applications

Stock Locators

The following table lists details for this key flexfield.

 Owner Oracle Inventory

 Flexfield Code MTLL

 Table Name MTL_ITEM_LOCATIONS

 Number of Columns 20

 Width of Columns 40

 Dynamic Inserts Possible Yes

 Unique ID Column INVENTORY_LOCATION_ID

 Structure Column ORGANIZATION_ID

Table 6 – 21 (Page 1 of 1)

You can use the Stock Locators Flexfield to capture more information
about stock locators in inventory. If you do not have Oracle Inventory
installed, or none of your items have locator control, it is not necessary
to set up this flexfield.

If you keep track of specific locators such as aisle, row, bin indicators
for your items, you need to configure your Stock Locators Flexfield and
implement locator control in your organization.

This key flexfield supports only one structure.

6 – 24 Oracle Applications Flexfields Guide

System Items (Item Flexfield)

The following table lists details for this key flexfield.

 Owner Oracle Inventory

 Flexfield Code MSTK

 Table Name MTL_SYSTEM_ITEMS

 Number of Columns 20

 Width of Columns 40

 Dynamic Inserts Possible No

 Unique ID Column INVENTORY_ITEM_ID

 Structure Column ORGANIZATION_ID

Table 6 – 22 (Page 1 of 1)

You can use the System Items Flexfield (also called the Item Flexfield)
for recording and reporting your item information. You must design
and configure your Item Flexfield before you can start defining items.

All Oracle Applications products that reference items share the Item
Flexfield and support multiple–segment implementations. However,
this flexfield supports only one structure.

6 – 25Key Flexfields in Oracle Applications

Territory Flexfield

The following table lists details for this key flexfield.

 Owner Oracle Receivables

 Flexfield Code CT#

 Table Name RA_TERRITORIES

 Number of Columns 20

 Width of Columns 25

 Dynamic Inserts Possible Yes

 Unique ID Column TERRITORY_ID

 Structure Column None

Table 6 – 23 (Page 1 of 1)

You can use the Territory Flexfield for recording and customized
reporting on your territory information. Territory Flexfields are also
displayed in the Transaction Detail and Customer Detail reports in
Oracle Receivables.

6 – 26 Oracle Applications Flexfields Guide

C H A P T E R

7

7 – 1Standard Request Submission

Standard Request
Submission

This chapter contains information on how Standard Request
Submission interacts with flexfields. It also contains suggestions for
designing a report parameter window for your custom reports and
integrating flexfields into your report parameters.

☞

7 – 2 Oracle Applications Flexfields Guide

Overview of Flexfields and Standard Request Submission

Standard Request Submission uses a special descriptive flexfield on the
Submit Requests window and related windows. This descriptive
flexfield provides pop–up windows for users to enter reporting choices
such as values they want to report on.

You may want to write a Standard Request Submission report that has
several report parameters whose values are chosen by a user at
submission time. Since the report parameter pop–up window is a
descriptive flexfield, you must set up special descriptive flexfield
segments even if your actual report has nothing to do with reporting on
flexfield data. These special segments are your report parameters.

Attention: Since report parameters are a special type of
descriptive flexfield segment, we use the terms ”report
parameters” and ”segments” somewhat interchangeably,
especially in descriptions of flexfield setup forms.

While many of the setup steps are similar, such as defining value sets,
the Standard Request Submission descriptive flexfield differs from a
normal descriptive flexfield in some important ways. The main
difference is that you use the Concurrent Programs window to define
your segments instead of using the Descriptive Flexfield Segments
window. The other differences appear in the ways you define and use
value sets, which are often more complex for Standard Request
Submission report parameters than they would be for a normal
descriptive flexfield.

See:

Concurrent Programs
(Oracle Applications System Administrator’s Guide)

Descriptive Flexfield Segments: page 3 – 31

Warning: You should never change or delete a predefined
value set that Oracle Applications supply. Such changes may
unpredictably affect the behavior of your application features
such as reporting.

This section discusses how you set up report parameter segments to
pass values to your report using the Submit Requests form. For a
discussion of how you should write your actual report program once
you have planned your report parameter pop–up window, see the
Oracle Applications Developer’s Guide.

7 – 3Standard Request Submission

Planning Your Report Parameters

As with any flexfield, planning how your flexfield pop–up window
should look and behave is the most important step. For Standard
Request Submission reports, however, this planning is even more
important because the arrangement of your parameters in the pop–up
window affects the way parameter values or arguments are passed to
your report. You should keep this arrangement in mind as you write
your report program.

Simplify Passing Argument Values to Your Reports

Using descriptive flexfield segments as report parameters allows you to
provide a very user–friendly report submission window while still
passing specific values to your reports. You can use report parameters
to ”translate” from end user–oriented values such as an application
name (for example, Oracle Order Entry) to an ”ID” value (such as
12345). You can then write your report to use the ID value directly,
rather than having to write extra program code to parse the end user
terms yourself and translate them to your ID values. You can get most
of this information from the Oracle Application Object Library tables,
but that involves additional queries and trips to the database tables.
You can also avoid the opposite effect using report parameters, that is,
you need not force your end users to provide the ID values themselves
just to make your program simpler.

Use Hidden Parameters to Simplify End User Report Submission

You can simplify users’ report submission by defining hidden
parameters and defaulting values users would otherwise need to enter.
For example, some reports might use the current date as a parameter.
You can set up a hidden report parameter that defaults to the current
date, and your users need not enter the date themselves or even see
that parameter. Similarly, you could set up a hidden parameter that
defaults to the value of a profile option such as the user’s set of books
or organization ID number. You set up default values and hidden
parameters when you define your concurrent program and report
parameters using the Concurrent Program windows.

See: Define Concurrent Program
(Oracle Applications System Administrator’s Guide)

7 – 4 Oracle Applications Flexfields Guide

Limit Value Choices Based on Prior Segments

Another way you can simplify users’ report submission is by making
your parameter values depend on the values of previous parameters.
You use the special bind variable $FLEX$ in a value set WHERE clause
to make a report parameter depend on a prior report parameter. By
carefully planning and defining your value sets, you can make your
reports easier to use by presenting only a limited number of
appropriate values from which your user can choose. See: Value Set
Windows: page 4 – 50.

Using Flexfield Information in Your Report Parameters

Standard Request Submission lets you use value sets to pass key
flexfield values and combinations to your reports. You use ”Special”
validation type value sets to provide a flexfield–within–a–flexfield.
That is, you can define a single report parameter (a descriptive flexfield
segment) to pop open a flexfield, such as the Accounting Flexfield,
where your user can enter flexfield segment values as reporting
criteria.

7 – 5Standard Request Submission

Figure 7 – 1

Submit Requests

Report Parameters

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light Tan

Report Parameters

COMType

COM–876–LTNPart Number

Computer

LTN

Using a flexfield pop–up window as a report parameter requires
several steps:

• Design your report and report parameter window

• Determine your flexfield routine calls

• Define your special value set

• Build your report program

• Register your concurrent program and define report parameters

You can also use a flexfield range in your report parameters (”Pair”
validation instead of Special validation). All the steps are the same
except that you define your flexfield call arguments and your value set
slightly differently.

7 – 6 Oracle Applications Flexfields Guide

Design Your Report and Report Parameter Window

First you design your report and your report parameter window. You
must decide what your report requires as parameters from your user,
and how those correlate to the way your user submits your report.

For example, if you are writing a report that provides information
related to a specific Accounting Flexfield combination or group of
Accounting Flexfield combinations, your report probably requires a
code combination ID or a concatenated group of segment values. On
the other hand, your user doesn’t know the CCID number, and instead
would prefer to fill in the usual Accounting Flexfield pop–up window.
Since you can use value set mechanisms to translate between displayed
end user–oriented values and hidden ID values, as well as to translate
between flexfield pop–up windows your user sees and the CCID or
concatenated values your report requires, you can design your report
and its submission interface to satisfy both needs.

Determine Your Flexfield Routine Calls

Determine the flexfield routine calls you need to pop open and validate
the appropriate flexfield. These calls are variations of the flexfield calls
you code into a custom application form (POPID(R), VALID(R), and so
on). You use special arguments to these routines so that they work
within your report parameter window. See: Syntax for Key Flexfield
Routines: page 9 – 2, Special Validation Value Sets: page 9 – 23.

Define Your Special Value Set

Define your special value set. Note that you define only one value set
for your entire flexfield, though that single value set may have more
than one flexfield routine call. For example, you might need both a
POPID and a VALID call for your flexfield value set. Type in your
special flexfield routine calls as functions for the appropriate events in
the Special Validation region (same for Pair Validation) of the Define
Value Set form. Be sure to type carefully, because it is often difficult to
find errors later in the flexfield routine syntax if your report parameter
doesn’t behave as you expect. See: Value Set Windows: page 4 – 50.

Build Your Report Program

Build your report program to accept the resulting values that it will
receive when a user submits your report. Follow the guidelines for
building concurrent programs given in the Oracle Applications
Developer’s Guide and the Oracle Applications System Administrator’s
Guide.

7 – 7Standard Request Submission

Register Your Concurrent Program and Define Report Parameters

Register your concurrent program with Oracle Applications using the
Concurrent Programs and Concurrent Program Executable windows,
and define your report parameter to use your special value set. Note
that you use only one value set per report parameter; one special value
set contains the entire flexfield.

See: Concurrent Programs
(Oracle Applications System Administrator’s Guide)

Report Parameter Window Planning Diagrams

You can use photocopies of the following diagrams to help you sketch
out your report parameter window structures. Add or subtract
segments as appropriate for your programs.

For each report, you can list your report parameter prompts, segment
values, and value descriptions.

7 – 8 Oracle Applications Flexfields Guide

Figure 7 – 2

(Segment Value)

(Report Title)

(Report Parameter Prompt) (Value Description)

You can use copies of the following diagram to help you plan more
complex report parameter setups.

For example, you can list the segment values, whether they are visible
or hidden, their prompts, their value descriptions, their value sets, their
hidden IDs, and any dependencies on other parameters.

7 – 9Standard Request Submission

Figure 7 – 3

(Segment Value)

(Report Title)

(Prompt) (Value Description)No.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Visible (Value Set)
Depends

on Nos.
Hidden

ID

7 – 10 Oracle Applications Flexfields Guide

C H A P T E R

8

8 – 1Reporting on Flexfields Data

Reporting on Flexfields
Data

This chapter contains information on how you can report on flexfield
data using flexfield views. It also contains worked examples of using
these views.

This chapter also contains information on how you can report on
flexfield data using special flexfield routines with the Oracle Reports
product. It also contains worked examples of using these routines.

8 – 2 Oracle Applications Flexfields Guide

Overview of Reporting on Flexfields Data

The Oracle Applications products provide many predefined reports
that you can use to report on your organization’s financial,
manufacturing, and human resources data. However, nearly every
organization occasionally needs to create custom reports specific to that
organization, and for most of the Oracle Applications products, that
data includes flexfields data. Oracle Applications provides two
primary methods you can use to report on your flexfields data.

Flexfield Views

When you freeze and compile a flexfield structure, Oracle Applications
automatically generates one or more database views of the appropriate
flexfield tables. These views use column names that match your
segment names and make ad hoc reporting simpler. See: Overview of
Flexfield Views: page 8 – 3.

Flexfields–Oracle Reports 6.0 API

Oracle Applications provides special flexfield user exits you can call
from your custom Oracle Reports reports. See: Oracle Reports 6.0
Flexfield Support API: page 8 – 18.

8 – 3Reporting on Flexfields Data

Overview of Flexfield Views

When you freeze and compile a flexfield structure, Oracle Applications
automatically generates one or more database views of the appropriate
flexfield tables. These views make ad hoc reporting simpler by
providing view columns that correspond directly to your flexfield
segments. You can use these views for your reporting by joining them
to other application tables that contain flexfield–related data such as
code combination ID numbers (CCIDs).

The segment columns in the views use the segment names (not the
segment prompts) you define using the (Key or Descriptive) Flexfield
Segments forms. Each column has a data type that matches the
segment’s value set format type, regardless of whether the actual
segment column matches that data type. Segments that do not use a
value set or use a value set with a hidden ID use the same view column
type as the underlying table column. See: Key Flexfield Segments: page
2 – 16, Descriptive Flexfield Segments: page 3 – 31.

Key Flexfields

Key Flexfields can have two views into the code combination table:

• Key Flexfield Concatenated Segments View

• Key Flexfield Structure View

Descriptive Flexfields

A descriptive flexfield has one view:

• Descriptive Flexfield View

Key Flexfield Concatenated Segment View

The key flexfield concatenated segment view name is obtained by
adding ”_KFV” to the code combination table name. The code
combination table name is truncated if necessary so that the view name
does not exceed the maximum permissible length of SQL object names
(30).

The view shows the concatenated segment values of all the structures
in the key flexfield as a single column in the view. This column is
called ”CONCATENATED_SEGMENTS”. The view also includes a
copy of the structure defining column to differentiate among

8 – 4 Oracle Applications Flexfields Guide

combinations for different structures. There exist no columns for
individual segments.

The view also contains a column called ”PADDED_
CONCATENATED_SEGMENTS”, which is similar to the
CONCATENATED_SEGMENTS column except that all numeric
segment values are right–justified and all other segments values are left
justified (that is, the numeric segment values are left padded with
blanks and the other values right padded with blanks to the maximum
size specified in the value set definition). You can use this column to
order by the concatenated segment values.

For example, if you have a 5–segment code combination where the
maximum sizes of the segments are 2, 4, 4, 1 and 4, the values in the
two columns would look something like this:

CONCATENATED_SEGMENTS PADDED_CONCATENATED_SEGMENTS

2.20.ABCD.4.5000 2. 20.ABCD.4.5000

32.150.ST.4.300 32. 150.ST .4.3000

2.1230.1000.6.300 2.1230.1000.6. 300

32.20.TGW.4.300 32. 20.TGW .4.3000

2.30.10.6.300 2. 30.10 .6. 300

In this example, the third segment uses character format, so the 10 in
the last row is left justified like the alphabetic values for that segment.

Key Flexfield Structure View

For a key flexfield, Oracle Applications generates a separate view for
each structure of your key flexfield. You specify the view name for
your structure in the Key Flexfield Segments form when you define
your key flexfield structure. You must specify a name for each
structure for which you want to create a view. If you do not specify a
view name, Oracle Applications does not generate a view for that
structure.

The key flexfield structure view contains a column for each segment in
your flexfield structure, and it uses the segment names, not the
segment prompts, as view column names. In the view column names,
underscores (_) replace all non–alphanumeric characters. For
example, ”Segment Value” becomes ”SEGMENT_VALUE” and
”Manager’s Title” becomes ”MANAGER_S_TITLE”.

8 – 5Reporting on Flexfields Data

If the code combinations table contains columns for segment qualifiers,
the segment qualifier columns will use the segment qualifier names as
view column names, for example GL_ACCOUNT_TYPE.

In addition to the segment and qualifier columns, the view also
contains the code combination ID column, START_DATE_ACTIVE,
END_DATE_ACTIVE, SUMMARY_FLAG, ENABLED_FLAG,
ROW_ID (not ROWID), and all other columns in the code combination
table that are not enabled as flexfield columns. The Structure view
does not have the structure defining column as all the information in
this view pertains to one structure of the flexfield.

Descriptive Flexfield View

For a descriptive flexfield, Oracle Applications generates a view named
TABLE_NAME_DFV, where TABLE_NAME is the name of the table that
contains the descriptive flexfield segment columns. The table name is
truncated if necessary so that the view name does not exceed the
maximum permissible length of SQL object names (30). For example,
the descriptive flexfield that appears on the Segment Values form uses
the table FND_FLEX_VALUES, so its resulting view is named
FND_FLEX_VALUES_DFV.

The descriptive flexfield view into the underlying table contains a
column for each segment in your descriptive flexfield structure. Since
this view contains columns for all the segments of all structures of the
descriptive flexfield, the view also includes a copy of the structure
defining column to differentiate among rows for different structures.

The view uses each structure’s segment names as view column names.
The context (structure) column uses the context prompt as the view
column name (this may be something like ”Context_Value” or
”Client_Type”). In the view column names, underscores (_) replace all
non–alphanumeric characters. For example, ”Context Value” becomes
”CONTEXT_VALUE” and ”Manager’s Title” becomes
”MANAGER_S_TITLE”.

If segments in different structures (contexts) have identical names,
these segments share the same view column. If two or more segments
share a view column, then these segments should use value sets of the
same format type.

The Descriptive Flexfield View also shows the concatenated segment
values in the flexfield as a single column in the view. That column also
contains the context value as a ”segment” value. The
CONCATENATED_SEGMENTS column contains global segments (if

8 – 6 Oracle Applications Flexfields Guide

any are enabled), the context value, and any context–sensitive
segments, in that order. The view does not contain any other columns
from the underlying table except a ROW_ID (not ROWID) column, the
context column and the columns that are used by enabled segments.
The ROW_ID column in the view corresponds to ROWID in the actual
table.

Creating a Flexfield View

Oracle Applications creates your flexfield views in the same Oracle ID
as the original table. For example, if you have an Oracle General
Ledger or Oracle Public Sector General Ledger Oracle ID called GL and
you generate a flexfield view for the Accounting Flexfield, your view
appears in the GL Oracle ID.

If you have more than one datagroup for your installation of Oracle
Applications, then your flexfield view is created in each Oracle ID
corresponding to an Oracle Applications product. For example, if you
have two datagroups that use different Oracle IDs for your Oracle
Payables product, AP1 and AP2, then a view for an Oracle Payables
descriptive flexfield would be created in each of the two Oracle IDs.
Because the two installations of Oracle Payables share a single
descriptive flexfield definition, the structure of the two views would be
the same, though the views would contain different data.

Occasionally an Oracle Applications form may use a ”fake” table for its
descriptive flexfield. In this case, no view is created. Usually these
special descriptive flexfields appear in a form block that contains more
than one descriptive flexfield (normally a block may contain only one
descriptive flexfield).

If the application to which the flexfield belongs is not an Oracle
Applications installed or shared application, the view generator does
not create a view. The view generator does not create views for
non–Oracle Applications (custom) flexfields.

If the total number of uniquely–named segments (after segment names
have been corrected for non–alphanumeric characters) for a descriptive
flexfield exceeds 253, Oracle Applications cannot create your
descriptive flexfield view and include columns for all of your segments
(a view can contain only 256 columns). In this case, the flexfield view
generator creates your descriptive flexfield view without columns for
the individual segments, but does include the ROW_ID,
CONCATENATED_SEGMENTS, and structure defining column
(context column).

8 – 7Reporting on Flexfields Data

If you plan to use many segments (over all structures, both global and
context–sensitive) for your descriptive flexfield, you should plan to use
duplicate segment names. For example, if you define the Asset
Category descriptive flexfield in Oracle Assets, you may have many
structures (one for each category of asset, such as vehicles) that each
have several segments. For this flexfield, you could easily exceed 253
uniquely–named segments.

However, you can intentionally share segment names among
context–sensitive structures, and thus stay below 253 uniquely–named
segments. For example, you might have a segment in a VEHICLE
structure for vehicle type, and you might have a segment in a
FURNITURE structure for furniture type. You could name both
segments Type, and they would share a column in the view. Since the
context (structure) column appears in the view, you can easily
differentiate between the two uses of the column. Also, since the view
uses the segment name, instead of the segment prompt, you can use
different prompts for these segments and avoid confusing users. Be
sure that none of the segment names for your context–sensitive
segments duplicate the names for any global segments you have,
however.

You should always verify that your view generation concurrent request
completes successfully. If the concurrent request fails for some reason,
such as duplicate column names, the view generator attempts to create
a ”null view” so that any grants and synonyms from a
previously–existing view are preserved. In these cases, you should
identify and fix the problem and then regenerate your view. The report
file for your concurrent request contains a description of your view.

Updating a Flexfield View

If you want to recreate a flexfield view, you refreeze and recompile
your flexfield structure.

Segment Naming Conventions

The flexfield view generator will use your segment name as a column
name and change all spaces and special characters to underscores (_).
You should begin your segment name with a letter and avoid using
special characters such as +, –, ., !, @, ’, or # as segment names. You
should ensure that none of the segment names in your flexfield are the
same once the flexfield view generator has changed all spaces and
special characters to underscores (_). You should also ensure that

8 – 8 Oracle Applications Flexfields Guide

none of the segment names in your flexfield result in the same names as
other column names in the code combinations table for the flexfield.
For example, the name DESCRIPTION often appears as a column
name, so you should avoid naming your segment ”Description” (it is
not case–sensitive). You should not use a non–alphabetic character as
the first character of your segment name, since the first character of a
database object name (that is, your view column name) must be a letter.
For example, a segment name of ”# of dependents” becomes
”__of_dependents”, which is an illegal column name.

If two or more segment names map to identical view column names,
the flexfield view generator will not be able to create your view (it will
fail with a ”Duplicate Column” error), except in the case of segments
belonging to different contexts in a descriptive flexfield. The view
generator uses underscores (_) to replace all characters in the segment
name that are other than alphanumeric characters and underscores.
The segment names in a structure should not be identical after
correction for non–alphanumeric characters. For example, the names
”Segment 1’s Name” and ”Segment_1_s_Name” would be the same
once the space and apostrophe become underscores (_).

You should avoid using segment names that become SQL reserved
words such as NUMBER or DEFAULT.

For descriptive flexfields, the context prompt is used as the view
column name for the context column, so you should not create a
segment name that results in the same name as the context prompt.

Keep these conventions in mind while naming flexfield segments using
the (Key or Descriptive) Flexfield Segments windows. See: Key
Flexfield Segments: page 2 – 16, Descriptive Flexfield Segments: page
3 – 31.

Key Flexfields

The segment names in a structure and any qualifier names in the
flexfield should not be identical after correction for non–alphanumeric
characters.

Since the key flexfield view includes non–flexfield columns, your
segment names should not match any other non–flexfield column in the
code combination table. For example, a segment named
DESCRIPTION and a non–flexfield column by the same name in the
code combination table will conflict in the view. If there is a column
named ”CONCATENATED_SEGMENTS” or ”ROW_ID” in the code
combination table, the table column by this name would not be

8 – 9Reporting on Flexfields Data

included in the view since these names would conflict (the view
generator creates the view columns as usual).

Descriptive Flexfields

The context prompt is used as the view column name for the context
column, so the context prompt should not appear as a segment name.
The global segment names should be unique. That is, other global
segments and context sensitive segments should not have identical
view column names.

Using Flexfield Views to Write a Report

When you want to write a report on Oracle Applications data, you
typically want to report on information that is not directly related to
flexfields, but that includes flexfields data as part of that information.

Example of a Simple SQL*Plus Report for a Key Flexfield

For example, suppose you wanted to write a report of your orders for
the month of March. The information you want is about the orders
themselves, such as the name of the client who placed the order, the
date of the order, the number of objects ordered, and so on. However,
part of the order is information about what objects your client ordered,
and that information is in the form of a flexfield: your Part Number
Key Flexfield.

In this example, your ORDER_LINES table would contain a column for
QUANTITY and a column for ORDER_ID. It would also contain a
column for the PART_ID (the CCID of your part number), and a
column to hold the structure number for the Part Number Key Flexfield
(our imaginary key flexfield). It would not contain columns for the
individual segments of the key flexfield. However, your report would
not be very meaningful to its readers without the segment values for
your part number (and your readers are not likely to know the unique
ID number associated with each part number flexfield combination).
You need a way to display the part number combinations instead of the
unique ID numbers in your report about orders. You use your key
flexfield view for this purpose.

Here is a very simplified example of a SQL*Plus query you could write
as your report (note that there is no formatting in this example and that
the ORDER_ID, ORDER_DATE, and CLIENT_ID columns would print
out for every order line):

8 – 10 Oracle Applications Flexfields Guide

SELECT O.ORDER_ID ORDER, O.CLIENT_ID CLIENT, O.ORDER_DATE,

 L.ORDER_LINE_ID LINE, QUANTITY,

 PN.CONCATENATED_SEGMENTS PART_NO

FROM ORDERS O, ORDER_LINES L, PART_ COMBINATIONS_KFV PN

WHERE O.ORDER_ID = L.ORDER_ID

AND O.ORDER_DATE BETWEEN ’28–FEB–1994’ AND ’01–APR–1994’

AND L.PART_ID = PN.PART_ID

The report you would get as a result would be like:

ORDER CLIENT ORDER_DATE LINE QUANTITY PART_NO

––––– –––––– ––––––––––– –––– –––––––– ––––––––––––––––––––

 1 ABC 03–MAR–1994 1 15 PAD–YEL–8.5X11

 1 ABC 03–MAR–1994 2 9 CUT–SCISSOR–7 INCH

 1 ABC 03–MAR–1994 3 23 PEN–BALLPT–BLK

 2 XXYYZZ 14–MAR–1994 1 8 PAPER–COPY–WHT–A4–RM

 3 QRS2 24–MAR–1994 1 3 CUT–SCISSOR–7 INCH

 3 QRS2 24–MAR–1994 2 35 PAD–YEL–8.5X11

 3 QRS2 24–MAR–1994 3 15 PEN–BALLPT–BLU

Writing a Report for a Descriptive Flexfield

For a descriptive flexfield, you typically want to report on the
information already contained in the descriptive flexfield table, but you
want to include concatenated descriptive flexfield segment values in
your report instead of individual values, or you want to include
information from particular named segments (as opposed to
ATTRIBUTEn columns). For these reports, you would use the
ROW_ID column in the view to join with the ROWID of the descriptive
flexfield base table.

SELECT T.VARIOUS_COLUMNS,

 V.CONTEXT_VALUE, V.CONCATENATED_SEGMENTS

FROM BASE_TABLE T, BASE_TABLE_DFV V

WHERE V.ROW_ID = T.ROWID

8 – 11Reporting on Flexfields Data

Examples of Flexfield Views

The following pages show examples of views created for the
Accounting Flexfield and the Oracle Assets Asset Category Descriptive
Flexfield. The columns shown in bold print are columns that
particularly pertain to the flexfield itself. You should note the
differences between the boldfaced columns in the underlying table and
those in its view.

Key Flexfield Views Examples

The following pages show examples of views created for the
Accounting Flexfield, which uses the GL_CODE_COMBINATIONS
table. The columns shown in bold print are columns that particularly
pertain to the flexfield itself. You should note the differences between
the boldfaced columns in the underlying table and those in its view.
The key flexfield columns in this table include thirty SEGMENTn
columns, the CODE_COMBINATION_ID column, and the
CHART_OF_ACCOUNTS_ID column (structure column).
DETAIL_POSTING_ALLOWED_FLAG,
DETAIL_BUDGETING_ALLOWED_FLAG, and ACCOUNT_TYPE are
segment qualifier columns for the flexfield. The flexfield also uses
ENABLED_FLAG, SUMMARY_FLAG, START_DATE_ACTIVE,
END_DATE_ACTIVE to determine the status of a combination.

Note that the GL_CODE_COMBINATIONS table contains columns for
the key flexfield, but it also contains many other columns.
LAST_UPDATE_DATE and LAST_UPDATED_BY columns provide
information for the Who feature. The ATTRIBUTEn and CONTEXT
columns belong to a descriptive flexfield, and the SEGMENT_
ATTRIBUTEn columns belong to a special flexfield used by the Oracle
Public Sector Financials products. These other columns all appear in
your flexfield view because they are not columns used by the
Accounting Flexfield directly.

Our example structure for the Accounting Flexfield contains segments
for COMPANY, COST_CENTER, REGION, PRODUCT, ACCOUNT,
and SUB_ACCOUNT, so those columns appear in the structure view.

8 – 12 Oracle Applications Flexfields Guide

Original Key Flexfield Code Combinations Table

SQL> DESCRIBE GL_CODE_COMBINATIONS

Name Null? Type

––––––––––––––––––––––––––––––– –––––––– ––––

CODE_COMBINATION_ID NOT NULL NUMBER(15)

LAST_UPDATE_DATE NOT NULL DATE

LAST_UPDATED_BY NOT NULL NUMBER(15)

CHART_OF_ACCOUNTS_ID NOT NULL NUMBER(15)

DETAIL_POSTING_ALLOWED_FLAG NOT NULL VARCHAR2(1)

DETAIL_BUDGETING_ALLOWED_FLAG NOT NULL VARCHAR2(1)

ACCOUNT_TYPE NOT NULL VARCHAR2(1)

ENABLED_FLAG NOT NULL VARCHAR2(1)

SUMMARY_FLAG NOT NULL VARCHAR2(1)

SEGMENT1 VARCHAR2(25)

SEGMENT2 VARCHAR2(25)

SEGMENT29 VARCHAR2(25)

SEGMENT30 VARCHAR2(25)

DESCRIPTION VARCHAR2(240)

TEMPLATE_ID NUMBER(15)

ALLOCATION_CREATE_FLAG VARCHAR2(1)

START_DATE_ACTIVE DATE

END_DATE_ACTIVE DATE

ATTRIBUTE1 VARCHAR2(150)

ATTRIBUTE2 VARCHAR2(150)

ATTRIBUTE3 VARCHAR2(150)

ATTRIBUTE4 VARCHAR2(150)

ATTRIBUTE5 VARCHAR2(150)

ATTRIBUTE6 VARCHAR2(150)

ATTRIBUTE7 VARCHAR2(150)

ATTRIBUTE8 VARCHAR2(150)

ATTRIBUTE9 VARCHAR2(150)

ATTRIBUTE10 VARCHAR2(150)

CONTEXT VARCHAR2(150)

SEGMENT_ATTRIBUTE1 VARCHAR2(60)

SEGMENT_ATTRIBUTE2 VARCHAR2(60)

SEGMENT_ATTRIBUTE41 VARCHAR2(60)

SEGMENT_ATTRIBUTE42 VARCHAR2(60)

8 – 13Reporting on Flexfields Data

View for the Entire Key Flexfield

View Name: GL_CODE_COMBINATIONS_KFV

Name Null? Type

––––––––––––––––––––––––––––––– –––––––– ––––

ALLOCATION_CREATE_FLAG VARCHAR2(1)

ATTRIBUTE1 VARCHAR2(150)

ATTRIBUTE10 VARCHAR2(150)

ATTRIBUTE2 VARCHAR2(150)

ATTRIBUTE3 VARCHAR2(150)

ATTRIBUTE4 VARCHAR2(150)

ATTRIBUTE5 VARCHAR2(150)

ATTRIBUTE6 VARCHAR2(150)

ATTRIBUTE7 VARCHAR2(150)

ATTRIBUTE8 VARCHAR2(150)

ATTRIBUTE9 VARCHAR2(150)

CHART_OF_ACCOUNTS_ID NOT NULL NUMBER(22)

CODE_COMBINATION_ID NOT NULL NUMBER(22)

CONCATENATED_SEGMENTS VARCHAR2(155)

PADDED_CONCATENATED_SEGMENTS VARCHAR2(155)

CONTEXT VARCHAR2(150)

DESCRIPTION VARCHAR2(240)

DETAIL_BUDGETING_ALLOWED NOT NULL VARCHAR2(1)

DETAIL_POSTING_ALLOWED NOT NULL VARCHAR2(1)

ENABLED_FLAG NOT NULL VARCHAR2(1)

END_DATE_ACTIVE DATE

GL_ACCOUNT_TYPE NOT NULL VARCHAR2(1)

LAST_UPDATED_BY NOT NULL NUMBER(22)

LAST_UPDATE_DATE NOT NULL DATE

ROW_ID ROWID

SEGMENT_ATTRIBUTE1 VARCHAR2(60)

SEGMENT_ATTRIBUTE2 VARCHAR2(60)

SEGMENT_ATTRIBUTE41 VARCHAR2(60)

SEGMENT_ATTRIBUTE42 VARCHAR2(60)

START_DATE_ACTIVE DATE

SUMMARY_FLAG NOT NULL VARCHAR2(1)

TEMPLATE_ID NUMBER(22)

8 – 14 Oracle Applications Flexfields Guide

View for a Key Flexfield Structure

View Name: GL_AFF_STD_VIEW

Name Null? Type

––––––––––––––––––––––––––––––– –––––––– ––––

ACCOUNT VARCHAR2(25)

ALLOCATION_CREATE_FLAG VARCHAR2(1)

ATTRIBUTE1 VARCHAR2(150)

ATTRIBUTE10 VARCHAR2(150)

ATTRIBUTE2 VARCHAR2(150)

ATTRIBUTE3 VARCHAR2(150)

ATTRIBUTE4 VARCHAR2(150)

ATTRIBUTE5 VARCHAR2(150)

ATTRIBUTE6 VARCHAR2(150)

ATTRIBUTE7 VARCHAR2(150)

ATTRIBUTE8 VARCHAR2(150)

ATTRIBUTE9 VARCHAR2(150)

CODE_COMBINATION_ID NOT NULL NUMBER(22)

COMPANY VARCHAR2(25)

CONTEXT VARCHAR2(150)

COST_CENTER VARCHAR2(25)

DESCRIPTION VARCHAR2(240)

DETAIL_BUDGETING_ALLOWED NOT NULL VARCHAR2(1)

DETAIL_POSTING_ALLOWED NOT NULL VARCHAR2(1)

ENABLED_FLAG NOT NULL VARCHAR2(1)

END_DATE_ACTIVE DATE

GL_ACCOUNT_TYPE NOT NULL VARCHAR2(1)

LAST_UPDATED_BY NOT NULL NUMBER(22)

LAST_UPDATE_DATE NOT NULL DATE

PRODUCT VARCHAR2(25)

REGION VARCHAR2(25)

ROW_ID ROWID

SEGMENT_ATTRIBUTE1 VARCHAR2(60)

SEGMENT_ATTRIBUTE2 VARCHAR2(60)

SEGMENT_ATTRIBUTE41 VARCHAR2(60)

SEGMENT_ATTRIBUTE42 VARCHAR2(60)

START_DATE_ACTIVE DATE

SUB_ACCOUNT VARCHAR2(25)

SUMMARY_FLAG NOT NULL VARCHAR2(1)

TEMPLATE_ID NUMBER(22)

Descriptive Flexfield View Example

Here is an example view and report created for the Oracle Assets Asset
Category Descriptive Flexfield, which uses the table FA_ADDITIONS.
The columns shown in bold print are columns that particularly pertain

8 – 15Reporting on Flexfields Data

to the flexfield itself. You should note the differences between the
boldfaced columns in the underlying table and those in its view. The
descriptive flexfield columns in this table include the ATTRIBUTEn
columns and the CONTEXT column (structure column).

Original Underlying Descriptive Flexfield Table

SQL> describe FA_ADDITIONS

Name Null? Type

––––––––––––––––––––––––––––––– –––––––– ––––

ASSET_ID NOT NULL NUMBER(15)

ASSET_NUMBER NOT NULL VARCHAR2(15)

ASSET_KEY_CCID NUMBER(15)

CURRENT_UNITS NOT NULL NUMBER(4)

ASSET_TYPE NOT NULL VARCHAR2(11)

TAG_NUMBER VARCHAR2(15)

DESCRIPTION NOT NULL VARCHAR2(80)

ASSET_CATEGORY_ID NOT NULL NUMBER(15)

PARENT_ASSET_ID NUMBER(15)

MANUFACTURER_NAME VARCHAR2(30)

SERIAL_NUMBER VARCHAR2(35)

MODEL_NUMBER VARCHAR2(40)

PROPERTY_TYPE_CODE VARCHAR2(10)

PROPERTY_1245_1250_CODE VARCHAR2(4)

IN_USE_FLAG NOT NULL VARCHAR2(3)

OWNED_LEASED NOT NULL VARCHAR2(6)

NEW_USED NOT NULL VARCHAR2(4)

UNIT_ADJUSTMENT_FLAG NOT NULL VARCHAR2(3)

ADD_COST_JE_FLAG NOT NULL VARCHAR2(3)

ATTRIBUTE1 VARCHAR2(150)

ATTRIBUTE2 VARCHAR2(150)

ATTRIBUTE29 VARCHAR2(150)

ATTRIBUTE30 VARCHAR2(150)

ATTRIBUTE_CATEGORY_CODE NOT NULL VARCHAR2(210)

CONTEXT VARCHAR2(210)

LEASE_ID NUMBER(15)

LAST_UPDATE_DATE NOT NULL DATE

LAST_UPDATED_BY NOT NULL NUMBER(15)

CREATED_BY NUMBER(15)

CREATION_DATE DATE

LAST_UPDATE_LOGIN NUMBER(15)

This descriptive flexfield has three context–sensitive structures:
VEHICLE.OWNSTD, VEHICLE.HEAVY, and BUILDING.OFFICE. The
BUILDING.OFFICE structure has two segments, square footage and
insurer. The VEHICLE.OWNSTD structure has five segments, as

8 – 16 Oracle Applications Flexfields Guide

shown. The VEHICLE.HEAVY structure has five segments as well,
square footage cargo, number of axles, transmission type, insurance
company, and insurance policy number. The two VEHICLE structures
share the same segment name for the insurance company segment.

The resulting view contains a total of eleven segment columns, rather
than twelve, for the three structures. The column CONTEXT_VALUE
in the view corresponds to the column CONTEXT in the table (the
context field prompt defined in the Descriptive Flexfield Segments
window is ”Context Value”). See: Descriptive Flexfield Segments: page
3 – 31.

Descriptive Flexfield View

SQL> describe FA_ADDITIONS_DFV

Name Null? Type

––––––––––––––––––––––––––––––– –––––––– ––––

ROW_ID ROWID

CONTEXT_VALUE VARCHAR2(210)

SQUARE_FOOTAGE NUMBER

INSURER VARCHAR2(150)

LICENSE_NUMBER VARCHAR2(150)

INSURANCE_COMPANY VARCHAR2(150)

INSURANCE_POLICY_NUMBER VARCHAR2(150)

SQ_FOOTAGE_CARGO NUMBER

NUMBER_OF_AXLES NUMBER

TRANSMISSION_TYPE VARCHAR2(150)

LICENSE_RENEWAL_DATE DATE

POLICY_RENEWAL_DATE DATE

POLICY_NUMBER VARCHAR2(150)

CONCATENATED_SEGMENTS VARCHAR2(1116)

Example of Reporting from a Descriptive Flexfield View

Here is a simple example of selecting some data from the table and its
corresponding view.

SQL> select ADD.ASSET_NUMBER ASSET, ADD.DESCRIPTION,

 CONTEXT_VALUE, CONCATENATED_SEGMENTS

 from FA_ADDITIONS ADD, FA_ADDITIONS_DFV

 where ADD.rowid = ROW_ID;

Note that in this simple report, the structure name
(BUILDING.OFFICE, VEHICLE.HEAVY, and VEHICLE.OWNSTD)
appears in two columns: CONTEXT_VALUE (the structure column)
and in the CONCATENATED_SEGMENTS column as the first

8 – 17Reporting on Flexfields Data

”segment” value (the context value appears first because there are no
enabled global segments). Some context values do not have any
enabled segments, so the CONCATENATED_SEGMENTS column is
empty for those assets. Some assets, such as asset number 363, while
they belong to structures with enabled segments, do not have values
filled in for the descriptive flexfield. For those assets, the
CONCATENATED_ SEGMENTS column contains the structure name
and several periods (segment separators) that designate empty
segment values.

ASSET DESCRIPTION CONTEXT_VALUE CONCATENATED_SEGMENTS
––––– –––––––––––––––––––––––––––––– –––––––––––––––––––– –––––––––––––––––––––––––––––––––
334 Sales Vehicles VEHICLE.LEASESTD VEHICLE.LEASESTD.....
363 Management Vehicles VEHICLE.OWNSTD VEHICLE.OWNSTD.....
760 STANDARD VEHICLE VEHICLE.OWNSTD VEHICLE.OWNSTD.2FKA334.10–MAR–94.
 ALLSTATE.C–34879.21–SEP–93
325 Mahogany Desk FURNITURE.DESKS
343 Paris Sales Building BUILDING.OFFICE BUILDING.OFFICE.39200.Prudential
346 Paris Storage Building BUILDING.STORAGE BUILDING.STORAGE..
352 Desk Phone COMM.PHONE
315 486 PC w/20MB Memory COMPUTER.COMPUTER
340 9600 Baud Modem COMPUTER.NETWORK
365 4 Drawer File Cabinet FURNITURE.CABINETS
369 Management Vehicles VEHICLE.OWNSTD VEHICLE.OWNSTD.2FMA934.10–MAR–94.
 ALLSTATE.C–34878.21–SEP–93
348 Stuttgart Sales Building BUILDING.OFFICE BUILDING.OFFICE..
351 Stuttgart Storage Building BUILDING.STORAGE BUILDING.STORAGE..
338 Laptop Computer COMPUTER.COMPUTER
339 Color Monitor COMPUTER.COMPUTER
332 Sales Vehicles VEHICLE.LEASESTD VEHICLE.LEASESTD.....
333 Management Vehicles VEHICLE.OWNSTD VEHICLE.OWNSTD.2FOB834.10–MAR–94.
 ALLSTATE.C–34865.21–SEP–93
335 Management Vehicles VEHICLE.OWNSTD VEHICLE.OWNSTD.....
347 Stuttgart Sales Building BUILDING.OFFICE BUILDING.OFFICE..
310 4 Drawer File Cabinet FURNITURE.CABINETS
311 High–back Office Chair FURNITURE.CHAIRS
312 Conference Room Desk FURNITURE.DESKS
292 Management Vehicles VEHICLE.OWNLUXURY VEHICLE.OWNLUXURY.....
298 Management Vehicles VEHICLE.OWNSTD VEHICLE.OWNSTD.....
283 Flat Bed Trucks VEHICLE.HEAVY VEHICLE.HEAVY.2FOB837.ALLSTATE.
 C–34065.200.5–Speed Manual
276 Covered Trailers VEHICLE.HEAVY VEHICLE.HEAVY.2FOX537.ALLSTATE.
 C–34465.100.
157 Scramento Open Space LAND.OPEN
69 Conference Room Phone COMM.PHONE
21 Austin Manufacturing Building BUILDING.MFG BUILDING.MFG.60000.Prudential
43 New York Sales Building BUILDING.OFFICE BUILDING.OFFICE..
46 Sacramento HQ Building BUILDING.OFFICE BUILDING.OFFICE.78300.Fidelity
 Mutual
47 Austin Office Building BUILDING.OFFICE BUILDING.OFFICE.90000.Prudential
58 Austin Storage Building BUILDING.STORAGE BUILDING.STORAGE..
59 Sacramento Storage Building BUILDING.STORAGE BUILDING.STORAGE.85000.Fidelity
 Mutual

8 – 18 Oracle Applications Flexfields Guide

Oracle Reports 6.0 Flexfield Support API

Using Oracle Applications flexfields routines with Oracle Reports, you
can build reports that display flexfields data easily and in a number of
ways:

• Display any individual segment value, prompt, or description.

• Display segment values, prompts, or descriptions from multiple
flexfield structures (or contexts) in the same report.

• Display segment values, prompts, or descriptions from different
flexfields in the same report.

• Display two or more flexfield segment values, prompts, or
descriptions, concatenated with delimiters, in the correct order.
This includes description information for dependent,
independent, and table validated segments.

• Restrict output based upon a flexfield range (low and high
values).

• Prevent reporting on flexfield segments and values that users do
not have access to (flexfield value security).

• Specify order by, group by, and where constraints using one or
more, or all segment columns.

General Methodology

You use a two step method to report on flexfield values. The first step
creates the appropriate SQL statement dynamically based upon the
user’s flexfield. The output of the first step is used as input to the
second step. The second step formats this raw data for display.

Step 1 (Construction):

The first step requires you to include one or more lexical parameters
(Oracle Reports variables that can be changed at runtime) in your SQL
statement. You call the user exit FND FLEXSQL with different
arguments to specify that part of the query you would like to build.
The user exit retrieves the appropriate column names (SQL fragment)
and inserts it into the lexical parameter at runtime before the SQL
query is executed. The query then returns site– and runtime–specific
flexfield information. For example, suppose you have the following
query:

8 – 19Reporting on Flexfields Data

SELECT &LEXICAL1 alias, column

FROM table

WHERE &LEXICAL2

The preliminary calls to FND FLEXSQL replace values of LEXICAL1
and LEXICAL2 at execution time with the SQL fragments. For
example, LEXICAL1 becomes ”SEGMENT1||’\n’||SEGMENT2” and
LEXICAL2 becomes ”SEGMENT1 < 2” (assuming the user’s flexfield is
made up of two segments and the user requested that the segment
value of SEGMENT1 be less than 2). The actual executed SQL query
might be:

SELECT SEGMENT1||’\n’||SEGMENT2 alias, column

FROM table

WHERE SEGMENT1 < 2

The SQL statement for a user with a different flexfield structure might
be:

SELECT SEGMENT5||’\n’||SEGMENT3||’\n’||SEGMENT8

alias, column

FROM table

WHERE SEGMENT3 < 2

With this step you can alter the SELECT, ORDER BY, GROUP BY, or
WHERE clause. You use this step to retrieve all the concatenated
flexfield segment values to use as input to the user exit FND
FLEXIDVAL in step 2 (described below).

You call this user exit once for each lexical parameter you use, and you
always call it at least once to get all segments. This raw flexfield
information is in an internal format and should never be displayed
(especially if the segment uses a ”hidden ID” value set).

Step 2 (Display):

The second step requires you to call another user exit, FND
FLEXIDVAL, on a ”post–record” basis. You create a new formula
column to contain the flexfield information and include the user exit
call in this column. This user exit determines the exact information
required for display and populates the column appropriately. By using
the flexfield routines the user exit can access any flexfield information.
Use this step for getting descriptions, prompts, or values. This step
derives the flexfield information from the already selected
concatenated values and populates the formula column on a row by
row basis.

Step 1

Step 2

Step 3

8 – 20 Oracle Applications Flexfields Guide

You call FND FLEXIDVAL once for each record of flexfield segments.

The flexfield user exits for Oracle Reports are similar to their Oracle
Application Object Library (using SQL*Forms) counterparts
LOADID(R) or LOADDESC and POPID(R) or POPDESC; one to
construct or load the values (FLEXSQL), the other to display them
(FLEXIDVAL). The token names and meanings are similar.

Basic Implementation Steps

Call FND SRWINIT from your Before Report Trigger

You call the user exit FND SRWINIT from your Before Report Trigger.
FND SRWINIT fetches concurrent request information and sets up
profile options. You must include this step if you use any Oracle
Application Object Library features in your report (such as concurrent
processing).

Call FND SRWEXIT from your After Report Trigger

You call the user exit FND SRWEXIT from your After Report Trigger.
FND SRWEXIT frees all the memory allocation done in other Oracle
Applications user exits. You must include this step if you use any
Oracle Application Object Library features in your report (such as
concurrent processing).

Call FND FLEXSQL from the Before Report Trigger

You need to pass the concatenated segment values from the underlying
code combinations table to the user exit so that it can display
appropriate data and derive any descriptions and values from switched
value sets as needed. You get this information by calling the AOL user
exit FND FLEXSQL from the Before Report Trigger. This user exit
populates the lexical parameter that you specify with the appropriate
column names/SQL fragment at run time. You include this lexical
parameter in the SELECT clause of your report query. This enables the
report itself to retrieve the concatenated flexfield segment values. You
call this user exit once for each lexical to be set. You do not display this
column in your report. You use this ”hidden field” as input to the FND
FLEXIDVAL user exit call. This user exit can also handle
multi–structure flexfield reporting by generating a decode on the
structure column. If your report query uses table joins, this user exit
can prepend your code combination table name alias to the column
names it returns.

Step 4

Step 5

Step 6

8 – 21Reporting on Flexfields Data

SELECT &LEXICAL alias, column

becomes, for example,

SELECT SEGMENT1||’\n’||SEGMENT2 alias, column

Note: Oracle Reports needs the column alias to keep the name
of column fixed for the lexicals in SELECT clauses. Without
the alias, Oracle Reports assigns the name of the column as the
initial value of the lexical and a discrepancy occurs when the
value of the lexical changes at run time.

Restrict report data based upon flexfield values

You call the user exit FND FLEXSQL with MODE=”WHERE” from the
Before Report Trigger. This user exit populates a lexical parameter that
you specify with the appropriate SQL fragment at run time. You
include this lexical parameter in the WHERE clause of your report
query. You call this user exit once for each lexical to be changed. If
your report query uses table joins, you can have this user exit prepend
your code combination table name alias to the column names it returns.

WHERE tax_flag = ’Y’ and &LEXICAL < &reportinput

becomes, for example,

WHERE tax_flag = ’Y’ and T1.segment3 < 200

The same procedure can be applied for a HAVING clause.

Order by flexfield columns

You call the user exit FND FLEXSQL with MODE=”ORDER BY” from
the Before Report Trigger. This user exit populates the lexical
parameter that you specify with the appropriate SQL fragment at run
time. You include this lexical parameter in the ORDER BY clause of
your report query. You call this user exit once for each lexical to be
changed. If your report query uses table joins, you can have this user
exit prepend your code combination table name alias to the column
names it returns.

ORDER BY column1, &LEXICAL

becomes, for example,

ORDER BY column1, segment1, segment3

Display flexfield segment values, descriptions, and prompts

Create a Formula Column (an Oracle Reports 6.0 data construct that
enables you to call a user exit). Call the user exit FND FLEXIDVAL as

8 – 22 Oracle Applications Flexfields Guide

the Formula for this column. This user exit automatically fetches more
complicated information such as descriptions and prompts so that you
do not have to use complicated table joins to the flexfield tables. Then
you create a new field (an Oracle Reports 6.0 construct used to format
and display Columns), assign the Formula Column as its source, and
add this field to your report using the screen painter. You need to
include this field on the same Repeating Frame (an Oracle Reports 6.0
construct found in the screen painter that defines the frequency of data
retrieved) as the rest of your data, where data could be actual report
data, boilerplate, column headings, etc. The user exit is called and
flexfield information retrieved at the frequency of the Repeating Frame
that contains your field. In the report data case, the user exit is called
and flexfield information retrieved once for every row retrieved with
your query.

All flexfield segment values and descriptions are displayed left
justified. Segment values are not truncated, that is, the Display Size
defined in Define Key Segments screen is ignored. Segment value
descriptions are truncated to the description size (if one is displayed)
or the concatenated description size (for concatenated segments)
defined in the form.

FND FLEXSQL

Call this user exit to create a SQL fragment usable by your report to
tailor your SELECT statement that retrieves flexfield values. This
fragment allows you to SELECT flexfield values or to create a WHERE,
ORDER BY, GROUP BY, or HAVING clause to limit or sort the flexfield
values returned by your SELECT statement. You call this user exit once
for each fragment you need for your select statement. You define all
flexfield columns in your report as type CHARACTER even though
your table may use NUMBER or DATE or some other datatype.

Syntax:

FND FLEXSQL

CODE=”flexfield code”

APPL_SHORT_NAME=”application short name”

OUTPUT=”:output lexical parameter name”

MODE=”{ SELECT | WHERE | HAVING | ORDER BY}”

[DISPLAY=”{ALL | flexfield qualifier | segment

number}”]

8 – 23Reporting on Flexfields Data

[SHOWDEPSEG=”{Y | N}”]

[NUM=”:structure defining lexical” |

MULTINUM=”{Y | N}”]

[TABLEALIAS=”code combination table alias”]

[OPERATOR=”{ = | < | > | <= | >= | != | ”||” |

BETWEEN | QBE}”]

[OPERAND1=”:input parameter or value”]

[OPERAND2=”:input parameter or value”]

Options:

CODE

Specify the flexfield code for this report (for example, GL#). You call
FLEXSQL multiple times to set up SQL fragments when reporting on
multiple flexfields in one report.

APPL_SHORT_NAME

Specify the short name of the application that owns this flexfield (for
example, SQLGL).

OUTPUT

Specify the name of the lexical parameter to store the SQL fragment.
You use this lexical later in your report when defining the SQL
statement that selects your flexfield values. The datatype of this
parameter should be character.

MODE

Specify the mode to use to generate the SQL fragment. Valid modes
are:

Retrieves all segments values in an internal
(non–displayable) format.

If you SELECT a flexfield qualifier, and that
flexfield segment is a dependent segment, then
flexfields automatically selects both the parent
segment and the dependent segment. For example,
if the qualifier references the Subaccount segment,
then both the Account (the parent) and the
Subaccount segment columns are retrieved.

SELECT

8 – 24 Oracle Applications Flexfields Guide

Note: You reuse the lexicals you use in the SELECT
clause in the GROUP BY clause.

Restrict the query by specifying constraints on
flexfield columns. The fragment returned includes
the correct decode statement if you specify
MULTINUM.

You should also specify an OPERATOR and
OPERANDS.

You can prepend a table alias to the column names
using the TABLEALIAS token.

Same calling procedure and functionality as
WHERE.

Order queried information by flexfield columns.
The fragment orders your flexfield columns and
separates them with a comma. The fragment
returned includes the correct decode statement if
you specify MULTINUM.

You use the MODE token with the DISPLAY token. The DISPLAY
token specifies which segments are included in your SQL fragment in
your lexical parameter. For example, if your MODE is SELECT, and
you specify DISPLAY=”ALL”, then your SELECT statement includes
all segments of the flexfield. Similarly, if your MODE is WHERE, and
you specify DISPLAY=”ALL”, then your WHERE clause includes all
segments. Frequently you would not want all segments in your
WHERE clause, since the condition you specify for the WHERE clause
in your actual query would then apply to all your segments (for
example, if your condition is ” = 3”, then SEGMENT1, SEGMENT2, ... ,
SEGMENTn would each have to be equal to 3).

DISPLAY

You use the DISPLAY token with the MODE token. The DISPLAY
parameter allows you to specify which segments you want to use. You
can specify segments that represent specified flexfield qualifiers or
specified segment numbers, where segment numbers are the order in
that the segments appear in the flexfield window, not the segment
number specified in the Define Key Segments form. Application
developers normally use only flexfield qualifiers in the DISPLAY token,
whereas users may customize the report and use a DISPLAY token that
references a segment number once the flexfield is set up.

WHERE

HAVING

ORDER BY

8 – 25Reporting on Flexfields Data

The default is ALL, which displays all segments. Alternatively, you can
specify a flexfield qualifier name or a segment number.

If you specify a non–unique flexfield qualifier, then the routine returns
the first segment with this qualifier that appears in the user’s window,
not all segments with this qualifier. Only unique segment qualifiers are
supported for the WHERE clause.

You can use these parameters as toggle switches by specifying them
more than once. For example, if you want to use all but the account
segment, you specify:

DISPLAY=”ALL”

DISPLAY=”GL_ACCOUNT”

Or, if you want to use all but the first two segments, you specify:

DISPLAY=”ALL”

DISPLAY=”1”

DISPLAY=”2”

Note that the order in that flexfield column values are used depends on
the order in which they appear in the user’s window, not the order in
which you specify them in the report, nor the order in that they appear
in the database table.

SHOWDEPSEG

SHOWDEPSEG=”N” disables automatic addition of depended upon
segments to the order criteria. The default value is ”Y”. This token is
valid only for MODE=”ORDER BY” in FLEXSQL.

NUM or MULTINUM

Specify the name of the lexical or source column that contains the
flexfield structure information. If your flexfield uses just one structure,
specify NUM only and use a lexical parameter to hold the value. If
your flexfield uses multiple structures, specify MULTINUM only and
use a source column to hold the value. In this case the user exit builds
a decode statement to handle the possible changing of structures
mid–report. The default is NUM=”101”.

TABLEALIAS

Specify the table alias you would like prepended to the column names.
You use TABLEALIAS if your SELECT joins to other flexfield tables or
uses a self–join.

8 – 26 Oracle Applications Flexfields Guide

OPERATOR

Specify an operator to use in the WHERE clause. The operators ”= | <
| > | <= | >= | != | QBE | BETWEEN” perform lexical comparisons,
not numeric comparisons. With QBE (Query By Example) and
BETWEEN operators, the user can specify partial flexfield values to
match for one or more segments.

For example, if OPERAND1 is ”01––CA%–” (assuming a four–segment
flexfield with a delimiter of ’–’), the first segment must match 01 and
the third segment is like ’CA%’. The resulting SQL fragment is:

SEGMENT1=’01’ AND SEGMENT3 LIKE ’CA%’

For the BETWEEN operator, if OPERAND1 is ”01––CA–” and
OPERAND2 is ”05––MA–” then the resulting SQL fragment is:

(SEGMENT1 BETWEEN ’01’ AND ’05’) AND (SEGMENT3

BETWEEN ’CA’ AND ’MA’)

OPERAND1

Specify an operand to use in the WHERE clause.

OPERAND2

Specify a second operand to use with OPERATOR=”BETWEEN”.

FND FLEXIDVAL

Call this user exit to populate fields for display. You pass the key
flexfields data retrieved by the query into this exit from the formula
column. With this exit you display values, descriptions and prompts
by passing appropriate token (any one of VALUE, DESCRIPTION,
APROMPT or LPROMPT).

Syntax:

FND FLEXIDVAL

CODE=”flexfield code”

APPL_SHORT_NAME=”application short name”

DATA=”:source column name”

[NUM=”:structure defining source column/lexical”]

[DISPLAY=”{ALL|flexfield qualifier|segment number}”]

8 – 27Reporting on Flexfields Data

[IDISPLAY=”{ALL|flexfield qualifier|segment

number}”]

[SHOWDEPSEG=”{Y | N}”]

[VALUE=”:output column name”]

[DESCRIPTION=”:output column name”]

[APROMPT=”:output column name”]

[LPROMPT=”:output column name”]

[PADDED_VALUE=”:output column name”]

[SECURITY=”:column name”]

Options:

CODE

Specify the flexfield code for this report (for example, GL#). You call
FLEXIDVAL multiple times, using a different CODE, to display
information for multiple flexfields in one report.

APPL_SHORT_NAME

Specify the short name of the application that owns this flexfield (for
example, SQLGL).

DATA

Specify the name of the field that contains the concatenated flexfield
segment values retrieved by your query.

NUM

Specify the name of the source column or parameter that contains the
flexfield structure information.

DISPLAY

The DISPLAY parameter allows you to display segments that represent
specified flexfield qualifiers or specified segment numbers, where
segment numbers are the order in that the segments appear in the
flexfield window, not the segment number specified in the Define Key
Segments form.

The default is ALL, which displays all segments. Alternatively, you can
specify a flexfield qualifier name or a segment number. You can use

8 – 28 Oracle Applications Flexfields Guide

these parameters as toggle switches by specifying them more than
once. For example, if you to display all but the first segment, you
would specify:

DISPLAY=”ALL”

DISPLAY=”1”

IDISPLAY

You use this parameter to tell FLEXIDVAL what segments you used in
your SELECT clause in the corresponding FLEXSQL call. FLEXIDVAL
needs this information to determine the format of raw data retrieved
by FLEXSQL. You set IDISPLAY to the same value as your DISPLAY
parameter in your FLEXSQL call. The default value is ALL, so if you
used DISPLAY=”ALL” in FLEXSQL, you do not need to use IDISPLAY
here.

SHOWDEPSEG

SHOWDEPSEG=”N” disables automatic display of depended upon
segments. The default value is Y.

VALUE

Specify the name of the column in which you want to display flexfield
values.

DESCRIPTION

Specify the name of the column in which you want to display flexfield
descriptions.

APROMPT

Specify the name of the column in which you want to display flexfield
above prompts.

LPROMPT

Specify the name of the column in which you want to display flexfield
left prompts.

8 – 29Reporting on Flexfields Data

PADDED_VALUE

Specify the name of the column in which you want to display padded
flexfield values. The segment values are padded to the segment size
with blanks.

SECURITY

Specify the name of the column into which flag ”S” will be placed if the
segment values are secured. You then write logic to hide or display
values based on this flag. This token is applicable only for segment
values and does not apply to description, left prompt or above prompt.

Note: The datatype of the column as specified by VALUE,
DESCRIPTION, APROMPT and LPROMPT is CHARACTER.

Step 1

Step 2

Step 3

8 – 30 Oracle Applications Flexfields Guide

Oracle Reports and Flexfields Report–Writing Steps

These are the basic steps you use every time you write an Oracle
Reports report that accesses flexfields data. This section assumes you
already have a thorough knowledge of Oracle Reports. Though these
examples contain only the Accounting Flexfield, you can use these
methods for any key flexfield.

Define your Before Report Trigger
(this step is always the same)

You always call FND SRWINIT from the Before Report Trigger:

SRW.USER_EXIT(’FND SRWINIT’);

This user exit sets up information for use by flexfields, user profiles, the
concurrent manager, and other Oracle Applications features. You must
include this step if you use any Oracle Application Object Library
features in your report (such as concurrent processing).

Define your After Report Trigger
(this step is always the same)

You always call FND SRWEXIT from the After Report Trigger:

SRW.USER_EXIT(’FND SRWEXIT’);

This user exit frees all the memory allocation done in other Oracle
Applications user exits. You must include this step if you use any
Oracle Application Object Library features in your report (such as
concurrent processing).

Define your required parameters

You define the parameters your report needs by using the Data Model
Painter. You use these parameters in the user exit calls and SQL
statements.

The following table lists lexical parameters:

Step 4

8 – 31Reporting on Flexfields Data

Name Data
Type

Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character approximate-
ly 600 (single
structure) to
6000 (roughly
ten struc-
tures)

Long
string

Cumulative width
more than expected
width required to
hold data

Table 8 – 1 (Page 1 of 1)

You must always create the P_CONC_REQUEST_ID lexical parameter.
”FND SRWINIT” uses this parameter to retrieve information about the
concurrent request that started this report.

The P_FLEXDATA parameter holds the SELECT fragment of the SQL
query. The initial value is used to check the validity of a query
containing this parameter and to determine the width of the column as
specified by the column alias. Its initial value is some string that
contains columns with a cumulative width more than the expected
width required to hold the data. Make sure the width of this column is
sufficient. If there are total 30 segments in the table then the safest
initial value will be:

(SEGMENT1||’\n’||SEGMENT2||’\n’||SEGMENT3 ...

SEGMENT30)

You determine the width by determining the length of that string. That
length is roughly the number of characters in the table alias plus the
length of the column name, times the number of segments your code
combinations table contains, times the number of structures you expect,
plus more for delimiter characters as shown in the string above.

Define your other parameters

You define the rest of the parameters your report needs by using the
Data Model Painter. You use these parameters in the user exit calls and
SQL statements.

You can use the following table to guide you in listing your lexical
parameters and their requirements:

Step 5

8 – 32 Oracle Applications Flexfields Guide

Name Data Type Width Initial
Value

Notes

Other parameters Parameters
specific to your
report

Table 8 – 2 (Page 1 of 1)

Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

Next, given that you want to display flexfield information like
concatenated values and descriptions, and arrange them in order, you
make one call to FND FLEXSQL from the Before Report Trigger
specifying the lexical parameters. This call changes the value of the
lexical parameter P_FLEXDATA at runtime to the SQL fragment that
selects all flexfields value data. For example, the parameter changes to
(SEGMENT1||’\n’||SEGMENT2||’\n’||SEGMENT3||’\n’||SEGM
ENT4).

When you incorporate this lexical parameter into the SELECT clause of
a query, it enables the query to return the concatenated segment values
that are needed as input to other AOL user exits. These exits then
retrieve the actual flexfield information for display purposes.

Here is an example FND FLEXSQL call. Notice that the arguments are
very similar to other flexfield routine calls; CODE= and NUM=
designate the key flexfield and its structure, respectively. For a report
on a different key flexfield (such as the System Items flexfield), you
would use a different CODE and NUM.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_FLEXDATA”

MODE=”SELECT”

DISPLAY=”ALL”’);

You should always reference any source column/parameter that is
used as a source for data retrieval in the user exit. This guarantees that

Step 6

Step 7

Step 8

☞

8 – 33Reporting on Flexfields Data

this column/parameter will contain the latest value and is achieved by
”SRW.REFERENCE” call as shown above.

Call FND FLEXSQL from your Before Report Trigger to populate
other parameters

You call FND FLEXSQL once for every lexical parameter such as
P_WHERE or P_ORDERBY.

Define your report query or queries

Define your report query Q_1:

SELECT &P_FLEXDATA C_FLEXDATA

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= &P_STRUCT_NUM

The query fetches the data required to be used as input for the
FLEXIDVAL user exit later.

Note: Always provide a column alias (C_FLEXDATA in this example)
in the SELECT clause that is the name of column. This name of the
column is required in FND FLEXIDVAL.

When the report runs, the call to FND FLEXSQL fills in the lexical
parameters. As a result the second query would look something like:

SELECT (SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||

 SEGMENT4) C_FLEXDATA

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN =

101

Create formula columns

Now create columns C_FLEXFIELD and C_DESC_ALL (and any others
your report uses) corresponding to the values and descriptions
displayed in the report. They all are in group G_1. Be sure to adjust
the column width as appropriate for the value the column holds (such
as a prompt, which might be as long as 30 characters).

Attention: Use word–wrapping for flexfield columns if
necessary to avoid possible truncation of your values. Do this
by setting Sizing to Expand.

Step 9

Step 10

Step 11

8 – 34 Oracle Applications Flexfields Guide

Populate segment values formula column

To retrieve the concatenated flexfield segment values and description,
you incorporate the flexfields user exits in these columns. In the
column definition of C_FLEXFIELD, you incorporate the FND
FLEXIDVAL user exit call in the formula field. You pass the
concatenated segments along with other information to the user exit,
and the user exit populates the concatenated values in this column as
specified by the VALUE token. A typical call to populate segment
values in this column looks as follows:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

VALUE=”:C_FLEXFIELD”

DISPLAY=”ALL”’);

RETURN(:C_FLEXFIELD);

Populate segment descriptions

To populate the segment description use
DESCRIPTION=”C_DESC_ALL” instead of VALUE=”C_FLEXFIELD”
as in the previous call. The user exit call becomes:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

DESCRIPTION=”:C_DESC_ALL”

DISPLAY=”ALL”’);

RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the
values to be displayed. Now, in the following steps, you create the
layout to display these values on the report.

Create your default report layout

Step 12

8 – 35Reporting on Flexfields Data

Use the Report Wizard to generate the default layout. Deselect
C_FLEXDATA. Specify a ”Label” and a reasonable ”Width” for the
columns you want to display.

The following table lists the default layout column settings:

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

Table 8 – 3 (Page 1 of 1)

Oracle Reports takes you to the layout painter. Generate and run the
report.

Finish your report

Adjust your report layout as needed.

☞

8 – 36 Oracle Applications Flexfields Guide

Flexfield Report Examples

This section demonstrates how to include flexfield data in your report
and how to build different types of reports on flexfields using Oracle
Application Object Library (AOL) user exits. The following sample
reports demonstrate the methodology involved in constructing five
types of reports.

• Report 1: Simple Tabular Report: page 8 – 37

• Report 2: Simple Tabular Report With Multiple Flexfield
Structures: page 8 – 41

• Report 3: Tabular Report: page 8 – 46

• Report 4: Master–Detail Report: page 8 – 56

• Report 5: Master–detail Report On Multiple Structures: page
8 – 68

The first two examples display elementary steps involved in building
reports with flexfield support. The next two examples report on a
single flexfield structure and show additional features of flexfield
support. The fifth report demonstrates how to use these features with
multiple flexfield structures.

Attention: The previous section, ”Oracle Reports and
Flexfields Report–Writing Steps”, provides additional
explanatory detail for each step.

Step 1

Step 2

Step 3

8 – 37Reporting on Flexfields Data

Report 1: Simple Tabular Report

This is a sample report that selects Accounting Flexfield values for a
single structure for a single company. This report uses a simple
WHERE clause and does not use an ORDER BY clause.

Sample Output

 Accounting Flexfield Flexfield Description

 ––––––––––––––––––––– ––––––––––––––––––––––––––––––

 01–0000–000–00 Widget–United States–USD–Paid

 01–0000–000–00 Widget–United States–USD–Paid

 01–0000–000–00 Widget–United States–USD–Paid

 01–0000–000–02 Widget–United States–USD–Under

 Negotiation

 01–1000–001–00 Widget–Iraq–IQD–Paid

 01–3000–003–00 Widget–Australia–AUD–Paid

 01–4000–004–00 Widget–Canada–CND–Paid

 01–5000–005–00 Widget–Mexico–MXP–Paid

Figure 8 – 1

1

2

3

4

5

6

7

8

9

10

11

12

This report contains a list of Accounting Flexfield combinations and a
description for each based on their segment values.

Note: Line numbers listed above are for explanation purposes only and
do not appear in report output.

Report Writing Steps

Define your Before Report Trigger

SRW.USER_EXIT(’FND SRWINIT’);

Define your After Report Trigger

SRW.USER_EXIT(’FND SRWEXIT’);

Define your parameters

Step 4

Step 5

8 – 38 Oracle Applications Flexfields Guide

Define the parameters in the following table using the Data Model
Painter. You use these parameters in the user exit calls and SQL
statements.

Name Data Type Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character 600 Long
string

Cumulative width
more than
expected width
required to hold
data

P_STRUCT_NUM Character 15 101 Contains structure
number

Table 8 – 4 (Page 1 of 1)

Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_FLEXDATA”

MODE=”SELECT”

DISPLAY=”ALL”’);

Define your report query

Define your report query Q_1:

SELECT &P_FLEXDATA C_FLEXDATA

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= &P_STRUCT_NUM

When the report runs, the call to FND FLEXSQL fills in the lexical
parameters. As a result the second query would look something like:

Step 6

Step 7

Step 8

8 – 39Reporting on Flexfields Data

SELECT (SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||

 SEGMENT4) C_FLEXDATA

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN =

101

Create formula columns

Now create columns C_FLEXFIELD and C_DESC_ALL (and any others
your report uses) corresponding to the values and descriptions
displayed in the report. They all are in group G_1. Be sure to adjust
the column width as appropriate for the value the column holds (such
as a prompt, which might be as long as 30 characters).

Populate segment values formula column

To retrieve the concatenated flexfield segment values and descriptions,
you incorporate the AOL user exits in these columns. In the column
definition of C_FLEXFIELD, you incorporate the FND FLEXIDVAL
user exit call in the formula field.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

VALUE=”:C_FLEXFIELD”

DISPLAY=”ALL”’);

RETURN(:C_FLEXFIELD);

Populate segment descriptions

To populate the concatenated segment descriptions use
DESCRIPTION=”C_DESC_ALL” instead of VALUE=”C_FLEXFIELD”
as in the previous step. The user exit call becomes:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

Step 9

8 – 40 Oracle Applications Flexfields Guide

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

DESCRIPTION=”:C_DESC_ALL”

DISPLAY=”ALL”’);

RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the
values to be displayed. Now, in the following steps, you create the
layout to display these values on the report.

Create your default report layout

Use the Report Wizard to generate the default layout. Deselect
C_FLEXDATA. Specify a ”Label” and a reasonable ”Width” for the
columns you want to display.

The table below lists the default layout column settings:

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

Table 8 – 5 (Page 1 of 1)

Oracle Reports takes you to the layout painter. Generate and run the
report.

The following table lists a report summary:

Lexical Parameters Columns FND User Exits

P_CONC_REQUEST_ID C_FLEXDATA FND FLEXIDVAL

P_FLEXDATA C_DESC_ALL FND FLEXSQL

P_STRUCT_NUM FND SRWINIT

FND SRWEXIT

Table 8 – 6 (Page 1 of 1)

Step 1

8 – 41Reporting on Flexfields Data

Report 2: Simple Tabular Report With Multiple Structures

This is a sample report that selects Accounting Flexfield values for
multiple flexfield structures (charts of accounts). This report uses a
simple WHERE clause and does not use an ORDER BY clause, but
differs from Report 1 in that this report selects a structure number.

Sample Output

 Accounting Flexfield Flexfield Description

 ––––––––––––––––––––– ––––––––––––––––––––––––––––––

 01–0000–000–00 Widget–United States–USD–Paid

 01–0000–000–00 Widget–United States–USD–Paid

 01–0000–000–02 Widget–United States–USD–Under

 Negotiation

 01–3000–003–00 Widget–Australia–AUD–Paid

 01–4000–004–00 Widget–Canada–CND–Paid

 01–5000–005–00 Widget–Mexico–MXP–Paid

 02–0000–000–00 Megabu–United States–USD–Paid

 02–0000–000–00 Megabu–United States–USD–Paid

 02–1000–001–00 Megabu–Iraq–IQD–Paid

 02–3000–003–00 Megabu–Australia–AUD–Paid

 02–4000–004–00 Megabu–Canada–CND–Paid

 02–5000–005–00 Megabu–Mexico–MXP–Paid

Figure 8 – 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

This report contains a list of Accounting Flexfield combinations and a
description for each based on their segment values.

Note: Line numbers listed above are for explanation purposes only and
do not appear in report output.

Report Writing Steps

Define your Before Report Trigger

Step 2

Step 3

Step 4

Step 5

8 – 42 Oracle Applications Flexfields Guide

SRW.USER_EXIT(’FND SRWINIT’);

Define your After Report Trigger

SRW.USER_EXIT(’FND SRWEXIT’);

Define your parameters

Define the parameters in the following table using the Data Model
Painter. You use these parameters in the user exit calls and SQL
statements.

Name Data Type Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character 600 Long
string

Cumulative width
more than
expected width
required to hold
data

P_STRUCT_NUM Character 15 101 Contains structure
number

Table 8 – 7 (Page 1 of 1)

Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_FLEXDATA”

MODE=”SELECT”

DISPLAY=”ALL”’);

Define your report query

Define your report query Q_1:

Step 6

☞

Step 7

8 – 43Reporting on Flexfields Data

SELECT &P_FLEXDATA C_FLEXDATA,

CHART_OF_ACCOUNTS_ID C_NUM

FROM CODE_COMBINATIONS_TABLE

Please note the difference in the query from the queries earlier. This
query contains one extra column C_NUM. You use this column to
supply the structure number in the user exit FND FLEXIDVAL.

When the report runs, the call to FND FLEXSQL fill in the lexical
parameters. As a result the second query would look something like:

SELECT (SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||

 SEGMENT4) C_FLEXDATA,

CHART_OF_ACCOUNTS_ID C_NUM

FROM CODE_COMBINATIONS_TABLE

Create formula columns

Now create columns C_FLEXFIELD and C_DESC_ALL (and any others
your report uses) corresponding to the values and descriptions
displayed in the report. They all are in group G_1. Be sure to adjust
the column width as appropriate for the value the column holds (such
as a prompt, which might be as long as 30 characters).

Attention: Use word–wrapping for flexfield columns if
necessary to avoid possible truncation of your values. Do this
by setting Sizing to Expand.

Populate segment values formula column

To retrieve the concatenated flexfield segment values and description,
you incorporate the AOL user exits in these columns. In the column
definition of C_FLEXFIELD you incorporate the FND FLEXIDVAL call
in the formula field.

SRW.REFERENCE(:C_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

VALUE=”:C_FLEXFIELD”

DISPLAY=”ALL”’);

RETURN(:C_FLEXFIELD);

Step 8

Step 9

8 – 44 Oracle Applications Flexfields Guide

Populate segment descriptions

To populate segment description use DESCRIPTION=”C_DESC_ALL”
instead of VALUE=”C_FLEXFIELD” as in the previous step. The user
exit call becomes:

SRW.REFERENCE(:C_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

DESCRIPTION=”:C_DESC_ALL”

DISPLAY=”ALL”’);

RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the
values to be displayed. Now, in the following steps, you create the
layout to display these values on the report.

Create your default report layout

Use the Report Wizard to generate the default layout. Deselect
C_FLEXDATA and C_NUM. Specify ”Label” and reasonable ”Width”
for these columns.

The following table lists the default layout column settings:

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

Table 8 – 8 (Page 1 of 1)

Oracle Reports takes you to the layout painter. Generate and run the
report.

The following table lists a report summary:

8 – 45Reporting on Flexfields Data

Lexical Parameters Columns FND User Exits

P_CONC_REQUEST_ID C_FLEXDATA FND FLEXIDVAL

P_FLEXDATA C_DESC_ALL FND FLEXSQL

C_NUM FND SRWINIT

FND SRWEXIT

Table 8 – 9 (Page 1 of 1)

8 – 46 Oracle Applications Flexfields Guide

Report 3: Tabular Report

This is a sample report that selects Accounting Flexfield information for
a single structure for a single company. This report uses a more
complex WHERE clause with an ORDER BY clause. It also contains
extra columns for the report header information.

Sample Output

Figure 8 – 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 <–

Set of Books 2 Foreign Currency General Ledger Date: 14–AUG–1991 |

 Currency: CND Period: DEC–90 Page: 1 Region 1

 |

 <–

 |

 Company: 01 Widget Corporation Region 2

 |

 Accounting Flexfield Company–Country–Currency–Status |

 ––––––––––––––––––––– ––––––––––––––––––––––––––––––– <–

 01–0000–000–00 Widget–United States–USD–Paid |

 01–0000–000–00 Widget–United States–USD–Paid Region 3

 01–0000–000–00 Widget–United States–USD–Paid |

 01–0000–000–02 Widget–United States–USD–Under |

 Negotiation |

 01–1000–001–00 Widget–Iraq–IQD–Paid |

 01–3000–003–00 Widget–Australia–AUD–Paid |

 01–4000–004–00 Widget–Canada–CND–Paid |

 01–5000–005–00 Widget–Mexico–MXP–Paid |

 <–

This report contains a list of Accounting Flexfield combinations and a
description for each based on their segment values. It has a more
complex header that includes the set of books, date, currency, period,
and page number.. The company name is also displayed.

Step 1

Step 2

8 – 47Reporting on Flexfields Data

Note: Line numbers listed above are for explanation purposes only and
do not appear in report output.

Sample Layout

Figure 8 – 4

 <–

 |

******************** Foreign Currency General Ledger Date: *********

 Report

 Currency: **** Period: ******** Page: ** Group

 |

 <–

 <–

 *: * * |

 Group 1

 |

 |

 Accounting Flexfield ********************************** |

 –––––––––––––––––––––––––––– –––––––––––––––––––––––––––––––––– <–

 **************************** ********************************** <–Group 2

This diagram shows the layout for this report. It has a header region
with the report title, the set of books, date, currency, period, and page
number, another region for the organization name, and a third region
for the Accounting Flexfield combinations and their descriptions.

Note: *’s indicate displayed fields.

Report Writing Steps

Define your Before Report Trigger

SRW.USER_EXIT(’FND SRWINIT’);

Define your After Report Trigger

SRW.USER_EXIT(’FND SRWEXIT’);

Step 3

8 – 48 Oracle Applications Flexfields Guide

Define your parameters

Define the following parameters using the Data Model Painter. You
use these parameters in the user exit calls and SQL statements.

The following table lists the lexical parameters:

Name Data Type Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character 600 Long
string

Cumulative width
more than ex-
pected width re-
quired to hold the
data

P_STRUCT_NUM Character 15 101 Contains structure
number

P_WHERE Character 200 Valid
WHERE
clause

(4)

P_ORDERBY Character 298 Valid
ORDER
BY
clause

(5)

P_OPERAND1 Character 15 Used to construct
the P_WHERE
parameter

P_SET_OF_BOOKS Character Obtain
from
GL

Use in the report
header

P_CURRENCY Character 15 Use in the report
header

P_PERIOD Character Obtain
from
GL

Use in the report
header

Table 8 – 10 (Page 1 of 1)

Note (4): This parameter contains the WHERE clause in the SELECT
statement to enforce condition(s) on the data retrieved from the
database. The initial value is used to check the validity of query
containing this parameter.

Step 4

Step 5

Step 6

8 – 49Reporting on Flexfields Data

Note (5): This parameter contains the ORDER BY clause for the
SELECT statement that orders the display of flexfield data. The initial
value is used to check the validity of query containing this parameter.

Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_FLEXDATA”

MODE=”SELECT”

DISPLAY=”ALL”’);

Call FND FLEXSQL from your Before Report Trigger to populate
P_WHERE

The second call populates the value of lexical P_WHERE to the
restriction you wish to apply at run time. You wish this parameter to
contain the value ”(SEGMENT1 = ’01’)” if GL_BALANCING segment
is segment 1 and value of P_OPERAND1 is ”01”.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_WHERE”

MODE=”WHERE”

DISPLAY=”GL_BALANCING”

OPERATOR=”=”

OPERAND1=”:P_OPERAND1”’);

Call FND FLEXSQL from your Before Report Trigger to populate
P_ORDERBY

The third call changes the value of lexical P_ORDERBY to the SQL
fragment (for example to SEGMENT3, SEGMENT2, SEGMENT4,
SEGMENT1) at run time. When this lexical parameter is incorporated
into the ORDER BY clause of a query, it enables the query to order by
flexfield segments. The user exit call is same as first one except for
MODE=”ORDER BY” as follows:

Step 7

8 – 50 Oracle Applications Flexfields Guide

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”P_ORDER_FLEX”

MODE=”ORDER BY”

DISPLAY=”ALL”’);

Define your report queries

Define your report queries Q_1 and Q_2:

SELECT &P_FLEXDATA C_FLEXDATA_H [, NORMALCOLUMNS...]

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= &P_STRUCT_NUM

 AND ROWNUM < 2

SELECT &P_FLEXDATA C_FLEXDATA [, NORMALCOLUMNS...]

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= &P_STRUCT_NUM

ORDER BY &P_ORDERBY

The first query fetches the data required for region 2 and the second
one for region 3.

Note: ”ROWNUM < 2” because we want only one record in that
region.

When the report runs, the three calls to FND FLEXSQL fill in the
lexical parameters. As a result the second query would look something
like:

SELECT (SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||

 SEGMENT4) C_FLEXDATA,

 NORMALCOLUMNS...

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

Step 8

8 – 51Reporting on Flexfields Data

= 101

ORDER BY SEGMENT3, SEGMENT2, SEGMENT4, SEGMENT1

Create formula columns

Now create columns corresponding to the values displayed in Region
2. They all are in group G_1. Be sure to adjust the column width as
appropriate for the value the column holds (such as a prompt, which
might be as long as 30 characters).

First create column C_BAL_LPROMPT (for columns corresponding to
”Company” in the sample output). In this column incorporate FND
FLEXIDVAL calls in the formula field. You pass the concatenated
segments along with other information to the user exit:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_H);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_H”

LPROMPT=”:C_BAL_PROMPT”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_LPROMPT);

The user exit populates ”Company” in the column
’C_BAL_LPROMPT’.

Similarly create columns C_BAL_VAL and C_BAL_DESC (displaying
”01” and Widget Corporation) with the following calls.

C_BAL_VAL:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_H);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#” NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_H”

VALUE=”:C_BAL_VAL”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_VAL);

C_BAL_DESC:

Step 9

☞

Step 10

8 – 52 Oracle Applications Flexfields Guide

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_H);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_H”

DESCRIPTION=”:C_BAL_VAL”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_DESC);

Create the above prompt (displaying
”Company–Country–Currency–Status”) in the sample output by the
following call.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_H);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#” NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_H”

APROMPT=”:C_APROMPT”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_APROMPT);

Create formula columns

Now you construct columns corresponding to the region 3 of the
report. All columns now correspond to G_2. Be sure to adjust the
column width as appropriate for the value the column holds (such as a
prompt, which might be as long as 30 characters).

You create formula columns C_FLEXFIELD and C_DESC_ALL to
display concatenated segment values and description respectively.

Attention: Use word–wrapping for flexfield columns if
necessary to avoid possible truncation of your values. Do this
by setting Sizing to Expand.

Populate segment values formula column

To retrieve the concatenated flexfield segment values and description,
you incorporate the AOL user exits in these columns. In the column
definition of C_FLEXFIELD, you call the user exit FND FLEXIDVAL in
the formula field.

Step 11

Step 12

8 – 53Reporting on Flexfields Data

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

VALUE=”:C_FLEXFIELD”

DISPLAY=”ALL”’);

RETURN(:C_FLEXFIELD);

Populate segment descriptions

To populate segment description use DESCRIPTION=”C_DESC_ALL”
instead of VALUE=”C_FLEXFIELD” as in the previous step. The user
exit call becomes:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

DESCRIPTION=”:C_DESC_ALL”

DISPLAY=”ALL”’);

RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the
values to be displayed. Now, in the following steps, you create the
layout to display these values on the report.

Create your default report layout

Use the Report Wizard to generate the default layout. Deselect
C_FLEXDATA, C_FLEXDATA_H. Specify reasonable widths for these
columns.

The following table lists the default column settings:

Step 13

8 – 54 Oracle Applications Flexfields Guide

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

C_APROMPT 100

C_BAL_DESC 40

C_BAL_LPROMPT 20

C_BAL_VAL 4

Table 8 – 11 (Page 1 of 1)

Oracle Reports takes you to the layout painter. Before modifying the
default layout in the painter, you may want to generate and run the
report with the current layout to test the previous steps.

Finish your report

Now you modify the default locations of the fields and create new
fields in the layout painter. First [SELECT ALL] and move all the fields
to the desired location as shown in the Region 2 & 3.

You modify fields to display ”Company”, ”01” and ”Widget
Corporation” in the Group 1 (region 2). As shown in the Sample
Layout, modify F_BAL_LPROMPT, F_BAL_VAL and F_BAL_DESC
fields so that they are side by side with the unit length. Specify
”Horizontal Sizing” as ”Variable”. This ensures that the fields always
be apart by fixed amount and adjust due to their variable sizing.
Sources of these fields are C_BAL_LPROMPT, C_BAL_VAL and
C_BAL_DESC respectively.

Resize and move the field F_APROMPT as shown in the sample layout
to display above prompt as displayed in the sample output. Add all
the boilerplate text ”Accounting Flexfield”, underline below and above
the above prompt.

In this step you build the layout for Region 1. At the top of report,
’Foreign Currency General Ledger’ is a boiler plate that can be added
using layout painter. ’Currency:’ and ’Period:’ are also Boiler plates
and the corresponding fields (’CND’ and DEC–90) are filled by lexical
input parameters P_CURRENCY, P_PERIOD. ’Set of Books 2’ is filled
by input lexical parameter P_SET_OF_BOOKS. Similarly, the ’Date’

8 – 55Reporting on Flexfields Data

and ’Page’ fields are filled by system parameters ’Current Date’ and
’Logical Page Number’.

Enter in the Field Definition property sheet of F_FLEXFIELD and
specify ”Vertical Sizing” as ”Variable”. This ensures that when the data
is larger than the field width, the value wraps and it is not truncated.
This can be seen in the descriptions of flexfield values in lines 15 and 16
of the sample output.

The following table lists a report summary:

Lexical Parameters Columns FND User Exits

P_CONC_REQUEST_ID C_APROMPT FND FLEXIDVAL

P_FLEXDATA C_BAL_DESC FND FLEXSQL

P_CURRENCY C_BAL_LPROMPT FND SRWINIT

P_OPERAND1 C_BAL_VAL FND SRWEXIT

P_ORDERBY C_DESC_ALL

P_PERIOD C_FLEXDATA

P_SET_OF_BOOKS C_FLEXDATA_H

P_STRUCT_NUM C_FLEXFIELD

P_WHERE

Table 8 – 12 (Page 1 of 1)

8 – 56 Oracle Applications Flexfields Guide

Report 4: Master–Detail Report

This example illustrates how to build a master/detail report. In this
sample report detailed flexfields data is fetched corresponding to each
company (master record). This report uses a more complex WHERE
clause with an ORDER BY clause. It also contains extra columns for
the report header information.

8 – 57Reporting on Flexfields Data

Sample Output

Figure 8 – 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 <–

 Set of Books 2 Foreign Currency General Ledger Date: 14–AUG–1991 |

 Currency: CND Period: DEC–90 Page: 1 Region 1

 |

 <–

 |

 Company: 01 Widget Corporation Region 2

 |

 Accounting Flexfield Company–Country–Currency–Status |

 ––––––––––––––––––––– ––––––––––––––––––––––––––––––– <–

 01–0000–000–00 Widget–United States–USD–Paid |

01–0000–000–00 Widget–United States–USD–Paid Region 3

 01–0000–000–00 Widget–United States–USD–Paid |

 01–0000–000–02 Widget–United States–USD–Under |

 Negotiation |

 01–1000–001–00 Widget–Iraq–IQD–Paid |

 01–3000–003–00 Widget–Australia–AUD–Paid |

 01–4000–004–00 Widget–Canada–CND–Paid |

 01–5000–005–00 Widget–Mexico–MXP–Paid |

|

|

|

 <–

Company: 02 Megabucks Chase Region 2

 |

 Accounting Flexfield Company–Country–Currency–Status |

 ––––––––––––––––––––– ––––––––––––––––––––––––––––––– <–

02–0000–000–00 Megabu–United States–USD–Paid |

02–0000–000–00 Megabu–United States–USD–Paid Region 3

02–1000–001–00 Megabu–Iraq–IQD–Paid |

02–3000–003–00 Megabu–Australia–AUD–Paid |

02–4000–004–00 Megabu–Canada–CND–Paid |

02–5000–005–00 Megabu–Mexico–MXP–Paid |

<–

This report is similar to Report 3 with a complex header that includes
the set of books, date, currency, period, and page number. However,

Step 1

Step 2

Step 3

8 – 58 Oracle Applications Flexfields Guide

the Accounting Flexfield combinations and descriptions are listed
under their company names.

Note: Line numbers listed above are for explanation purposes only and
do not appear in report output.

Sample Layout

Same as sample layout in the ”Tabular Report”

Report Writing Steps

Define your Before Report Trigger

SRW.USER_EXIT(’FND SRWINIT’);

Define your After Report Trigger

SRW.USER_EXIT(’FND SRWEXIT’);

Define your parameters

Define the following parameters using the Data Model Painter. You
use these parameters in the user exit calls and SQL statements.

The following table lists the lexical parameters:

Name Data Type Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character 600 Long
string

Initial value is
some string that
contains columns
with cumulative
width more than
expected width re-
quired to hold the
data

P_STRUCT_NUM Character 15 101 Contains structure
number

P_WHERE Character 200 Valid
WHERE
clause

Used to construct
WHERE clause

Step 4

8 – 59Reporting on Flexfields Data

Name NotesInitial
Value

WidthData Type

P_ORDERBY Character 298 Valid
ORDER
BY
clause

Used to construct
ORDER BY clause

P_OPERAND1 Character 15 Used to construct
the P_WHERE
parameter

P_COMPANY Character 300 Long
string

Use to construct
SELECT clause

P_SET_OF_BOOKS Character Obtain
from
GL

Use in the report
header

P_CURRENCY Character 15 Use in the report
header

P_PERIOD Character Obtain
from
GL

Use in the report
header

Build query parameters

Now you build parameters for three queries. The first query
Q_COMPANY retrieves all the companies. The second query
Q_MASTER fetches one record of flexfield data for each company to
build company left prompt, above prompts, etc. Thus the first two
queries are used to build the master record. The third query fetches all
the flexfield data for each company.

First you populate all the parameters to be used in the first query for
getting all the companies (Q_COMPANY). Call FND FLEXSQL to
populate P_COMPANY. Use this parameter to retrieve all the master
records.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_COMPANY”

MODE=”SELECT”

DISPLAY=”GL_BALANCING”’);

Step 5

Step 6

Step 7

8 – 60 Oracle Applications Flexfields Guide

The second call populates the value of lexical P_WHERE with the
restriction you want to apply at run time. You want this parameter to
contain the value ”(SEGMENT1 < ’04’)” if GL_BALANCING segment
is segment 1 and the value of P_OPERAND1 is ”04”. You call the user
exit as follows:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_WHERE”

MODE=”WHERE”

DISPLAY=”GL_BALANCING”

OPERATOR=”<”

OPERAND1=”:P_OPERAND1”’);

Call FND FLEXSQL from your Before Report Trigger

Next, you build all the parameters of the next two queries for
obtaining flexfield data. You make two calls to FND FLEXSQL from
the Before Report Trigger to specify the lexical parameters.

Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_FLEXDATA”

MODE=”SELECT”

DISPLAY=”ALL”’);

Call FND FLEXSQL from your Before Report Trigger to populate
P_ORDERBY

The second call changes the value of lexical P_ORDERBY to the SQL
fragment (for example to SEGMENT3, SEGMENT2, SEGMENT4,
SEGMENT1) at run time. When this lexical parameter is incorporated
into the ORDER BY clause of a query, it enables the query to order by
flexfield segments. The FLEXSQL call is the same as the first one
except for MODE=”ORDER BY” as follows:

Step 8

8 – 61Reporting on Flexfields Data

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_ORDERBY”

MODE=”ORDER BY”

DISPLAY=”ALL”’);

Define your report queries

Then you define your report’s first master query (Q_COMPANY) to
fetch all the different companies.

SELECT DISTINCT &P_COMPANY C_MASTER

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

 = &P_STRUCT_NUM

AND &P_WHERE

When the report runs, the two calls to FND FLEXSQL fill in the lexical
parameters to look something like:

SELECT DISTINCT (SEGMENT1) C_MASTER

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= 101

AND SEGMENT1 < ’04’

The second master query (Q_MASTER) fetches one record of flexfield
data for each company to build company left prompt and description.
It is also used for constructing the above prompt for displaying
concatenated flexfield value descriptions retrieved in the detail query.

SELECT &P_COMPANY C_MASTER2,

&P_FLEXDATA C_FLEXDATA_MASTER

FROM CODE_COMBINATIONS_TABLE

 WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

 = &P_STRUCT_NUM

AND &P_COMPANY = :C_MASTER

AND ROWNUM < 2

Step 9

8 – 62 Oracle Applications Flexfields Guide

This query has G_COMPANY as its parent group.

You use ”ROWNUM < 2” because you want only one record in that
region. You use the parent–child relationship ”AND &P_COMPANY =
:C_MASTER” within your query, instead of using ”link”, so that Oracle
Reports can recognize that the columns specified by your parameters
are related. You create an ”empty link” to G_COMPANY to make
G_COMPANY the parent group.

Now you define your report’s detail query (Q_FLEX):

SELECT &P_COMPANY C_DETAIL,

&P_FLEXDATA C_FLEXDATA [, NORMALCOLUMNS...]

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= &P_STRUCT_NUM

AND &P_COMPANY = :C_MASTER

ORDER BY &P_ORDERBY

When the report runs, the two calls to FND FLEXSQL fill in the lexical
parameters to look something like:

SELECT (SEGMENT1) C_DETAIL,

(SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||

 SEGMENT4) C_FLEXDATA [, NORMALCOLUMNS...]

FROM CODE_COMBINATIONS_TABLE

WHERE

CODE_COMBINATIONS_TABLE.STRUCTURE_DEFINING_COLUMN

= 101

AND (SEGMENT1) = :C_MASTER

ORDER BY SEGMENT3, SEGMENT2, SEGMENT4, SEGMENT1

This query has G_MASTER as its parent group.

Create Region 2 formula columns

Now create columns corresponding to the values displayed in Region
2. They all are in Q_MASTER group. To retrieve the flexfield segment
value, left prompt and description, you incorporate FLEXIDVAL in the
corresponding columns. Be sure to adjust the column width as
appropriate for the value the column holds (such as a prompt, which
might be as long as 30 characters).

8 – 63Reporting on Flexfields Data

First create column C_BAL_LPROMPT (for columns corresponding to
”Company” in the sample output). In this column incorporate FND
FLEXIDVAL calls in the formula field.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_MASTER);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_MASTER”

LPROMPT=”:C_BAL_LPROMPT”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_LPROMPT);

The user exit populates ”Company” in the column
’C_BAL_LPROMPT’.

Similarly, you create columns C_BAL_DESC (displaying Widget
Corporation) with the following call:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_MASTER);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_MASTER”

DESCRIPTION=”:C_BAL_DESC”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_DESC);

Create the above prompt (”Company–Country–Currency–Status”) in
the sample output by the following call:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA_MASTER);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_MASTER”

APROMPT=”:C_APROMPT”

Step 10

☞

Step 11

Step 12

8 – 64 Oracle Applications Flexfields Guide

DISPLAY=”GL_BALANCING”’);

RETURN(:C_APROMPT);

You construct columns corresponding to the region 3 of the report in
the next few steps.

Create formula columns

You create formula columns C_FLEXFIELD and C_DESC_ALL to
display concatenated segment values and description respectively.
These columns have same group as C_FLEXDATA. Be sure to adjust
the column width as appropriate for the value the column holds (such
as a prompt, which might be as long as 30 characters).

Attention: Use word–wrapping for flexfield columns if
necessary to avoid possible truncation of your values. Do this
by setting Sizing to Expand.

Populate segment values formula column

To retrieve the concatenated flexfield segment values and description,
you incorporate the AOL user exits in these columns. In the column
definition of C_FLEXFIELD incorporate AOL user exit (FND
FLEXIDVAL) call in the formula field.

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

VALUE=”:C_FLEXFIELD”

DISPLAY=”ALL”’);

RETURN(:C_FLEXFIELD);

Populate segment descriptions

To populate segment descriptions use DESCRIPTION=”C_DESC_ALL”
instead of VALUE=”C_FLEXFIELD” as in the previous step. The user
exit call becomes:

SRW.REFERENCE(:P_STRUCT_NUM);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

Step 13

Step 14

8 – 65Reporting on Flexfields Data

NUM=”:P_STRUCT_NUM”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

DESCRIPTION=”:C_DESC_ALL”

DISPLAY=”ALL”’);

RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the
values to be displayed. Now, in the following steps, you create the
layout to display these values on the report.

Create your default report layout

Use the Report Wizard to generate the default layout. Deselect group
G_COMPANY and columns C_FLEXDATA_MASTER, C_DETAIL,
C_FLEXDATA. Delete all the labels of C_BAL_LPROMPT,
C_MASTER2, C_BAL_DESC, C_APROMPT as these labels are not
required. Specify reasonable widths for these columns.

The following table lists the default column settings:

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

C_APROMPT 100

C_BAL_DESC 40

C_BAL_LPROMPT 20

C_MASTER2 4

Table 8 – 13 (Page 1 of 1)

Oracle Reports takes you to the layout painter. Before modifying the
default layout in the painter, you may want to generate and run the
report with the current layout to test the previous steps.

Finish your report

Now you modify the default locations of the fields and create new
fields in the layout painter. First [SELECT ALL] and move all fields to
the desired location as shown in the sample layout of Regions 2 and 3.
Remove M_MASTER_HDR. Enlarge M_MASTER_GRPFR (that is the

8 – 66 Oracle Applications Flexfields Guide

header and group frames for Master) by three lines so that it can
contain boiler plate text ”Accounting Flexfield” and the underline.
Resize and move the field F_APROMPT as shown in the sample layout
to display above prompt as displayed in the sample output. Add all
the boiler plate text ”Accounting Flexfield”, underline below and
underline below the above prompt.

You modify fields to display ”Company”, ”01” and ”Widget
Corporation” in the Group 1 (region 2). As shown in the Sample
Layout, modify F_BAL_LPROMPT, F_MASTER2 and F_BAL_DESC
fields so that they are side by side with the unit length. Specify
”Horizontal Sizing” as ”Variable”. This ensures that the fields always
be apart by fixed amount and adjust due to their variable sizing.
Sources of these fields are C_BAL_LPROMPT, C_MASTER2 and
C_BAL_DESC respectively.

In this step you build the layout for Region 1. At the top of report,
’Foreign Currency General Ledger’ is a boiler plate that can be added
using layout painter. ’Currency:’ and ’Period:’ are also Boiler plate and
the corresponding fields (’CND’ and DEC–90) are filled by lexical input
parameters P_CURRENCY, P_PERIOD. ’Set of Books 2’ is filled by
input lexical parameter P_SET_OF_BOOKS. Similarly, the ’Date’ and
’Page’ fields are filled by system parameters ’Current Date’ and
’Logical Page Number’.

Enter the Field Definition property sheet of F_FLEXFIELD and specify
”Vertical Sizing” as ”Variable”. This ensures that when the data is
larger than the field width, the value wraps and it is not truncated.
This can be seen in the description of flexfield value in line 15 of the
sample output.

The following table lists a report summary:

Lexical Parameters Columns FND User Exits

P_CONC_REQUEST_ID C_APROMPT FND FLEXIDVAL

P_FLEXDATA C_BAL_DESC FND FLEXSQL

P_CURRENCY C_BAL_LPROMPT FND SRWINIT

P_OPERAND1 C_BAL_VAL FND SRWEXIT

P_ORDERBY C_DESC_ALL

P_PERIOD C_FLEXDATA

Table 8 – 14 (Page 1 of 2)

8 – 67Reporting on Flexfields Data

Lexical Parameters FND User ExitsColumns

P_SET_OF_BOOKS C_FLEXDATA_MASTER

P_COMPANY C_DETAIL

P_STRUCT_NUM C_FLEXFIELD

P_WHERE C_MASTER

C_MASTER2

Table 8 – 14 (Page 2 of 2)

Step 1

Step 2

Step 3

8 – 68 Oracle Applications Flexfields Guide

Report 5: Master–detail Report on Multiple Structures

This example illustrates how to build a master/detail report on
multiple flexfield structures.

Sample Output

Same as sample output in the ”Master–Detail Report”

Sample Layout

Same as sample layout in the ”Tabular Report”

Report Writing Steps

Define your Before Report Trigger

SRW.USER_EXIT(’FND SRWINIT’);

Define your After Report Trigger

SRW.USER_EXIT(’FND SRWEXIT’);

Define your parameters

Define the following parameters using the Data Model Painter. You
use these parameters in the user exit calls and SQL statements.

The following table lists the parameters:

Name Data Type Width Initial
Value

Notes

P_CONC_REQUEST_ID Number 15 0 Always create

P_FLEXDATA Character 6000 Very
long
string

Cumulative width
more than ex-
pected width re-
quired to hold the
data

P_STRUCT_NUM Character 15 101 Contains structure
number

P_WHERE Character 200 Valid
WHERE
clause

Used to construct
WHERE clause

Step 4

8 – 69Reporting on Flexfields Data

Name NotesInitial
Value

WidthData Type

P_ORDERBY Character 16000 Valid
ORDER
BY
clause

Used to construct
ORDER BY clause

P_OPERAND1 Character 15 Used to construct
the P_WHERE
parameter

P_COMPANY Character 16000 Very
long
string

P_SET_OF_BOOKS Character Obtain
from
GL

Use in the report
header

P_CURRENCY Character 15 Use in the report
header

P_PERIOD Character Obtain
from
GL

Use in the report
header

P_ORDERBY and P_COMPANY are very long strings because they
contain long DECODE statements for multiple structures.

Build query parameters

Now you build parameters for three queries. First query
Q_COMPANY retrieves all the companies, The second query
Q_MASTER fetches one record of flexfield data for each company to
build company left prompt, above prompts etc. Thus the first two
queries are used to build the master record. The third query
(Q_DETAIL) fetches all the flexfield data for each company.

First you populate all the parameters to be used in the first query for
getting all the companies (Q_COMPANY) . Call FND FLEXSQL to
populate P_COMPANY. Use this parameter to retrieve all the master
records. Call this user exit as follows–

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

MULTINUM=”YES”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_COMPANY”

☞
Step 5

Step 6

Step 7

Step 8

8 – 70 Oracle Applications Flexfields Guide

MODE=”SELECT”

DISPLAY=”GL_BALANCING”’);

Attention: In a multi–structure flexfield report
MODE=”WHERE” is invalid.

Call FND FLEXSQL from your Before Report Trigger

Next, you build all the parameters of the next two queries for
obtaining flexfield data. You make two calls to FND FLEXSQL from the
Before Report Trigger specifying the lexical parameters.

Call FND FLEXSQL from your Before Report Trigger to populate
P_FLEXDATA

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

MULTINUM=”YES”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_FLEXDATA”

MODE=”SELECT”

DISPLAY=”ALL”’);

Call FND FLEXSQL from your Before Report Trigger to populate
P_ORDERBY

The second call changes the value of lexical P_ORDERBY to the SQL
fragment (for example to SEGMENT3, SEGMENT2, SEGMENT4,
SEGMENT1) at run time. When this lexical parameter is incorporated
into the ORDER BY clause of a query, it enables the query to order by
flexfield segments. The AOL call is same as first one except for
MODE=”ORDER BY” as follows:

SRW.USER_EXIT(’FND FLEXSQL

CODE=”GL#”

MULTINUM=”YES”

APPL_SHORT_NAME=”SQLGL”

OUTPUT=”:P_ORDERBY”

MODE=”ORDER BY”

DISPLAY=”ALL”’);

Define your report queries

Define your report’s first query (Q_COMPANY) to fetch all the
different companies and flexfield structure numbers.

8 – 71Reporting on Flexfields Data

SELECT DISTINCT &P_COMPANY C_MASTER,

CHART_OF_ACCOUNTS_ID C_NUM_C

FROM CODE_COMBINATIONS_TABLE

Please note the difference in the query from the queries earlier. This
query contains one extra column C_NUM_C. You use this column to
supply the structure number in the user exit FND FLEXIDVAL.

When the report runs, the call to FND FLEXSQL fills in the lexical
parameter to look something like:

SELECT DISTINCT (SEGMENT1) C_MASTER,

CHART_OF_ACCOUNTS_ID C_NUM_C

FROM CODE_COMBINATIONS_TABLE

The second query (Q_MASTER) fetches one record of flexfield data for
each company to build the company left prompt and description. It is
also used for constructing the above prompt for displaying
concatenated flexfield value descriptions retrieved in the detail query.

SELECT &P_COMPANY C_MASTER2,

STRUCTURE_DEFINING_COLUMN C_NUM_M,

&P_FLEXDATA C_FLEXDATA_MASTER

FROM CODE_COMBINATIONS_TABLE

WHERE ROWNUM < 2

AND &P_COMPANY = :C_MASTER

AND STRUCTURE_DEFINING_COLUMN = :C_NUM_C

This query has Q_COMPANY as its parent group.

You use ”ROWNUM < 2” because you want only one record in that
region. You use the parent–child relationship ”AND &P_COMPANY =
:C_MASTER” within your query, instead of using ”link”, so that Oracle
Reports can recognize that the columns specified by your parameters
are related. You create an ”empty link” to G_COMPANY to make
G_COMPANY the parent group.

Now you define your report detail query (Q_FLEX):

SELECT &P_COMPANY C_DETAIL,

CHART_OF_ACCOUNTS_ID C_NUM_D,

&P_FLEXDATA C_FLEXDATA [, NORMALCOLUMNS...]

FROM CODE_COMBINATIONS_TABLE

WHERE &P_COMPANY = :C_MASTER

AND STRUCTURE_DEFINING_COLUMN = :C_NUM_C

ORDER BY &P_ORDERBY

Step 9

8 – 72 Oracle Applications Flexfields Guide

When the report runs, the four calls to FND FLEXSQL fill in the lexical
parameters to look something like:

SELECT (SEGMENT1) C_DETAIL,

CHART_OF_ACCOUNTS_ID C_NUM_D

(SEGMENT1||’–’||SEGMENT2||’–’||SEGMENT3||’–’||

 SEGMENT4) C_FLEXDATA [, NORMALCOLUMNS...]

FROM CODE_COMBINATIONS_TABLE

WHERE (SEGMENT1) = :C_MASTER

AND STRUCTURE_DEFINING_COLUMN = :C_NUM_C

ORDER BY SEGMENT3, SEGMENT2, SEGMENT4, SEGMENT1

This query has G_MASTER as its parent group.

Create Region 2 formula columns

Now create columns corresponding to the values displayed in Region
2. They all are in Q_MASTER group. To retrieve the flexfield segment
value, left prompt and description, you incorporate the AOL user exits
in the corresponding columns. Be sure to adjust the column width as
appropriate for the value the column holds (such as a prompt, which
might be as long as 30 characters).

First create column C_BAL_LPROMPT (for columns corresponding to
”Company” in the sample output). In this column incorporate FND
FLEXIDVAL calls in the formula field. You pass the concatenated
segments along with other information to the user exit:

SRW.REFERENCE(:C_NUM_M);

SRW.REFERENCE(:C_FLEXDATA_MASTER);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM_M”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_MASTER”

LPROMPT=”:C_BAL_LPROMPT”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_LPROMPT);

The user exit populates ”Company” in the column
’C_BAL_LPROMPT’.

Similarly create columns C_BAL_DESC (displaying Widget
Corporation) with the following calls:

Step 10

☞

Step 11

8 – 73Reporting on Flexfields Data

SRW.REFERENCE(:C_NUM_M);

SRW.REFERENCE(:C_FLEXDATA_MASTER);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM_M”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_MASTER”

DESCRIPTION=”:C_BAL_DESC”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_BAL_DESC);

Create the above prompt (”Company–Country–Currency–Status”) in
the sample output by the following call:

SRW.REFERENCE(:C_NUM_M);

SRW.REFERENCE(:C_FLEXDATA_MASTER);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM_M”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA_MASTER”

APROMPT=”:C_APROMPT”

DISPLAY=”GL_BALANCING”’);

RETURN(:C_APROMPT);

You construct columns corresponding to the region 3 of the report in
the following steps.

Create formula columns

Create formula columns C_FLEXFIELD and C_DESC_ALL to display
concatenated segment values and description respectively. These
columns have same group (G_DETAIL) as C_FLEXDATA. Be sure to
adjust the column width as appropriate for the value the column holds
(such as a prompt, which might be as long as 30 characters).

Attention: Use word–wrapping for flexfield columns if
necessary to avoid possible truncation of your values. Do this
by setting Sizing to Expand.

Populate segment values formula column

To retrieve the concatenated flexfield segment values and description,
you incorporate the AOL user exits in these columns. In the column

Step 12

Step 13

8 – 74 Oracle Applications Flexfields Guide

definition of C_FLEXFIELD incorporate AOL user exit (FND
FLEXIDVAL) call in the formula field.

SRW.REFERENCE(:C_NUM_D);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM_D”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

VALUE=”:C_FLEXFIELD”

DISPLAY=”ALL”’);

RETURN(:C_FLEXFIELD);

Populate segment descriptions

To populate segment descriptions use DESCRIPTION=”C_DESC_ALL”
instead of VALUE=”C_FLEXFIELD” as in the previous step. The user
exit call becomes:

SRW.REFERENCE(:C_NUM_D);

SRW.REFERENCE(:C_FLEXDATA);

SRW.USER_EXIT(’FND FLEXIDVAL

CODE=”GL#”

NUM=”:C_NUM_D”

APPL_SHORT_NAME=”SQLGL”

DATA=”:C_FLEXDATA”

DESCRIPTION=”:C_DESC_ALL”

DISPLAY=”ALL”’);

RETURN(:C_DESC_ALL);

You have created parameters and columns that are containers of all the
values to be displayed. Now, in the following steps, you create the
layout to display these values on the report.

Create your default report layout

Use the Report Wizard to generate the default layout. Deselect group
G_COMPANY and columns C_FLEXDATA_MASTER, C_DETAIL,
C_FLEXDATA. Delete all the labels of C_BAL_LPROMPT,
C_MASTER2, C_BAL_DESC, C_APROMPT as these labels are not
required. Specify reasonable widths for these columns.

Step 14

8 – 75Reporting on Flexfields Data

The following table lists the default column settings:

Column Label Width

C_FLEXFIELD Accounting Flexfield 30

C_DESC_ALL Flexfield Description 50

C_APROMPT 100

C_BAL_DESC 40

C_BAL_LPROMPT 20

C_MASTER2 4

Table 8 – 15 (Page 1 of 1)

Oracle Reports takes you to the layout painter. Before modifying the
default layout in the painter, you may want to generate and run the
report with the current layout to test the previous steps.

Finish your report

Now you modify the default locations of the fields and create new
fields in the layout painter. First [SELECT ALL] and move all fields to
the desired location as shown in the sample layout of Regions 2 and 3.
Remove M_MASTER_HDR. Enlarge M_MASTER_GRPFR (that is the
header and group frames for Master) by three lines so that it can
contain boiler plate text ”Accounting Flexfield” and the underline.
Resize and move the field F_APROMPT as shown in the sample layout
to display above prompt as displayed in the sample output. Add all
the boiler plate text ”Accounting Flexfield”, underline below and
underline below the above prompt.

You modify fields to display ”Company”, ”01” and ”Widget
Corporation” in the Group 1 (region 2). As shown in the Sample
Layout, modify F_BAL_LPROMPT, F_MASTER2 and F_BAL_DESC
fields so that they are side by side with the unit length. Specify
”Horizontal Sizing” as ”Variable”. This ensures that the fields always
be apart by a fixed amount and adjust due to their variable sizing.
Sources of these fields are C_BAL_LPROMPT, C_MASTER2 and
C_BAL_DESC respectively.

In this step you build the layout for Region 1. At the top of report,
’Foreign Currency General Ledger’ is boilerplate that can be added
using the layout painter. ’Currency:’ and ’Period:’ are also Boiler plates

8 – 76 Oracle Applications Flexfields Guide

and the corresponding fields (’CND’ and DEC–90) are filled by lexical
input parameters P_CURRENCY, P_PERIOD. ’Set of Books 2’ is filled
by input lexical parameter P_SET_OF_BOOKS. Similarly, the ’Date’
and ’Page’ fields are filled by system parameters ’Current Date’ and
’Logical Page Number’.

Use the Field Definition property sheet of F_FLEXFIELD to specify
”Vertical Sizing” as ”Variable”. This ensures that when the data is
larger than the field width, the value wraps and it is not truncated.
This can be seen in the description of flexfield values in line 15 of the
sample output.

The following table lists a report summary:

Lexical Parameters Columns FND User Exits

P_CONC_REQUEST_ID C_APROMPT FND FLEXIDVAL

P_FLEXDATA C_BAL_DESC FND FLEXSQL

P_CURRENCY C_BAL_LPROMPT FND SRWINIT

P_OPERAND1 C_BAL_VAL FND SRWEXIT

P_ORDERBY C_DESC_ALL

P_PERIOD C_FLEXDATA

P_SET_OF_BOOKS C_FLEXDATA_MASTER

P_COMPANY C_DETAIL

P_STRUCT_NUM C_FLEXFIELD

P_WHERE C_MASTER

C_MASTER2

C_NUM_C

C_NUM_M

C_NUM_D

Table 8 – 16 (Page 1 of 1)

C H A P T E R

9

9 – 1Key Flexfield Routines for Special Validation

Key Flexfield Routines
for Special Validation

This chapter contains information on using special validation to
provide flexfields as report parameters and includes syntax for
flexfields routines.

Syntax

9 – 2 Oracle Applications Flexfields Guide

Syntax for Key Flexfield Routines

If you want to create a special value set (for a report parameter) that
uses key flexfield routines, see the section on Special Validation Value
Sets for additional arguments and argument options you use for special
value sets (in addition to this section).

Use the argument list appropriate for the type of flexfield you want as a
value set for a report parameter (foreign key reference, or range
flexfield).

See:

Special Validation Value Sets: page 9 – 23

For further information on how an application developer creates a new
key flexfield and builds a combinations form, see the Oracle Applications
Developer’s Guide.

See:

Implementing Key Flexfields
(Oracle Applications Developer’s Guide)

Foreign Key Reference Flexfield

The POPID/LOADID/VALID calling sequence for a foreign key
reference flexfield (for most flexfield report parameters) is:

#FND {POPID|LOADID|VALID}

CODE=”flexfield code”

APPL_SHORT_NAME=”application_short_name”

VALIDATE=”{FULL|PARTIAL|NONE|QUERY}”

SEG=”block.concatenated values field name”

[BLOCK=”block_name”]

[FIELD=”field_name”]

[DERIVED=”:block.field\nSegment qualifier”]

[READ_ONLY=”{Y|N}”]

[DINSERT=”{Y|N}”]

[WINDOW=”{Y|N}”]

[ID=”block.unique ID field”]

[REQUIRED=”{Y|N}”]

[DISPLAY=”{ALL | flexfield qualifier |

segment number}”]

[UPDATE=”{ALL | flexfield qualifier |

9 – 3Key Flexfield Routines for Special Validation

segment number}”]

[INSERT=”{ALL | flexfield qualifier |

segment number}”]

[DATA_FIELD=”concatenated hidden IDs field”]

[DESC=”block.concatenated description field name”]

[TITLE=”window title”]

[VDATE=”date”]

[NAVIGATE=”{Y|N}”]

[AUTOPICK=”{Y|N}”]

[NUM=”:structure defining field”]

[COPY=”:block.field\n{ALL | flexfield qualifier}”]

[VRULE=”flexfield qualifier\n

segment qualifier\n

{I[nclude]|E[xclude]}\n APPL=shortname;

NAME=Message Dictionary message name\n

validation value1\n

validation value2...”]

[VALATT=”:block.field\n

flexfield qualifier\n

segment qualifier”]

[USEDBFLDS=”{Y|N}”]

[COLUMN=”{column1(n) | column1 alias(n)

[, column2(n), ...]}]

[WHERE=”where clause”]

[SET=”set number”]

[ALLOWNULLS=”{Y|N}”]

[QUERY_SECURITY=”{Y|N}”]

[QBE_IN=”{Y|N|B}”]

[LONGLIST=”{Y|N}”]

[NO_COMBMSG=”MESG_NAME”]

The flexfield code you specify when you set up this
flexfield using the Register Key Flexfield form.
This code must match the code you registered.

The application short name with which your
flexfield is registered.

Use a validation type of FULL to validate all
segment values and generate a new code
combination and dynamically insert it into the
combinations table when necessary. If you specify
FULL, Oracle Application Object Library checks
the values your user enters against the existing
code combinations in the code combinations. If the

CODE

APPL_SHORT_
NAME

VALIDATE

9 – 4 Oracle Applications Flexfields Guide

combination exists, Oracle Application Object
Library retrieves the code combination ID. If the
combination does not exist, Oracle Application
Object Library creates the code combination ID and
inserts the combination into the combinations
table. If you (or an installer) define the flexfield
structure with Dynamic Inserts Allowed set to No,
then Oracle Application Object Library issues an
error message when a user enters a combination
that does not already exist. In this case, Oracle
Application Object Library does not create the new
code combination. FULL is the usual argument for
a form with a foreign key reference.

Use PARTIAL to validate each individual segment
value but not create a new valid combination or
check the combinations table for an existing
combination. You would use PARTIAL when you
want to have application logic that requires
flexfield segment values but does not require an
actual code combination. For example, Oracle
Application Object Library’s Define Shorthand
Aliases form requires that a user enters valid
values for each segment, but does not require (or
check) that the actual code combination already
exists in the combinations table. The Define
Shorthand Aliases form does not create the
combination, either.

Use NONE if you wish no validation. Use QUERY
(not QUERY_BASE) for POPID in a
FND_PRE_QUERY trigger. The default value is
FULL.

Use the same value in your LOADID and VALID
as you use in your POPID in your KEY_PREFIELD
trigger. Do not use FOR_INSERT for a form with a
foreign key reference.

If you wish to implement shorthand flexfield entry
for your form with a foreign key reference, you
must use FULL for POPID in your KEY_PREFIELD
trigger (as well as LOADID and VALID).

block.concatenated values field name is a displayed,
non–database form field that contains your
concatenated segment values plus delimiters.

SEG

9 – 5Key Flexfield Routines for Special Validation

Use DERIVED to get the derived value of segment
qualifiers for a combination that someone types in.
Use block.field to specify the block and field you
want Oracle Application Object Library to load the
derived value into. Use Segment qualifier to specify
the segment qualifier name you want. Note: do
not put spaces around \n, and \n must be
lowercase.

Oracle Application Object Library uses the
following rules to get the derived qualifier value
from the individual segment qualifier values: if the
segment qualifier is unique, the derived value is
the segment qualifier value; for non–unique
segment qualifiers, if any segment’s qualifier value
= N, then the derived value is N, otherwise, the
derived value is Y. The only exception to this rule
is for the internal SUMMARY_FLAG segment
qualifier; the rule for this is if any segment value is
a parent, then the derived value of
SUMMARY_FLAG is Y. Oracle Application Object
Library loads derived values into the combinations
table qualifier column that you specify when you
define your qualifier.

You do not need the three
DERIVED=”:block.SUMMARY_FLAG\n
SUMMARY_FLAG”,
DERIVED=”:block.START_DATE_ACTIVE\n
START_DATE_ACTIVE”, and DERIVED=”:block.
END_DATE_ACTIVE\nEND_DATE_ACTIVE”
parameters for a form with a foreign key reference.

This parameter prevents any updating of your
flexfield, whether from shorthand alias, copy, or
any other method.

The DINSERT parameter turns dynamic inserts off
or on for this form. You must set this parameter to
N for flexfields within flexfields such as flexfields
in a Special validation value set.

Specify N if your flexfield contains only a single
display segment and you want your users to type
directly into the field, instead of into an invisible
pop–up window.

DERIVED

READ_ONLY

DINSERT

WINDOW

9 – 6 Oracle Applications Flexfields Guide

Specify the block.field that contains the unique ID
for this flexfield. The default value is ”block.ID
column name” where block is the current block and
ID column name is the Unique ID Column Name
specified for this flexfield using the Register Key
Flexfield form.

Specify whether your user can exit the flexfield
window without entering segment values.

You should specify the same value for REQUIRED
in your POPID, LOADID, and VALID triggers.
You do not need the REQUIRED parameter for
POPID in an FND_PRE_QUERY trigger. The
default value is Y.

If you specify Y, then Oracle Application Object
Library prevents your user from leaving any
required segment (a segment whose value set has
Value Required set to Yes) without entering a valid
value for that segment. Also, if your user tries to
save a row without ever entering the flexfield
pop–up window, VALID attempts to use default
values to fill in any required segments and issues
an error message if not all required segments can
be filled.

If you specify Y and VALIDATE=”FULL”, then
when your user queries up a row with no
associated flexfield (the foreign key flexfield ID
column contains NULL), Oracle Application Object
Library issues an error message to warn the user
that a NULL ID has been returned for a required
flexfield. The LOADID routine also returns failure.

If you specify N, Oracle Application Object Library
allows your user to save a row without ever
entering the flexfield pop–up window. If you
specify N, Oracle Application Object Library also
lets your user navigate (without stopping) through
a flexfield window without entering or changing
any values. However, if a user enters or changes
any segment value in the flexfield, Oracle
Application Object Library prevents the user from
leaving the flexfield window until all required
segments contain valid values. If you specify N
and a user does not open or enter values in the

ID

REQUIRED

9 – 7Key Flexfield Routines for Special Validation

window, VALID allows the user to save the row
whether the flexfield has required segments. In
this case, VALID does not save default values as
segment values for the required segments, and it
does not issue an error message.

If you specify N and VALIDATE=”FULL”, then
when your user queries up a row with no
associated flexfield (the foreign key flexfield ID
column contains NULL), Oracle Application Object
Library validates the individual segment values
returned by the query. Specify N if you want to
query up non–required flexfields without getting
an error message.

Note that even if REQUIRED=”N”, a user who
starts entering segment values for this flexfield
must either fill out the flexfield in full, or abandon
the flexfield.

The DISPLAY parameter allows you to display
segments that represent specified flexfield qualifiers
or specified segment numbers, where segment
numbers are the order in which the segments
appear in the flexfield window, not the segment
number specified in the Define Key Segments form.
For example, if you specify that you want to
display only segment number 1, your flexfield
displays only the first segment that would
normally appear in the pop–up window (for the
structure you specify in NUM).

If you include the DISPLAY parameter in your
POPID, you must include the DISPLAY parameter
with the exact same argument in your LOADID
and VALID calls.

The default value for DISPLAY is ALL, which
makes your flexfield display all segments.
Alternatively, you can specify a flexfield qualifier
name or a segment number.

You can use DISPLAY as a toggle switch by
specifying it more than once. For example, if you
want your flexfield to display all but the first
segment, you would specify:

DISPLAY

9 – 8 Oracle Applications Flexfields Guide

DISPLAY=”ALL”

DISPLAY=”1”

If you do not display all your segments, but you
use default values to fill in your non–displayed
segments, you must also have hidden SEGMENT1
through SEGMENTn fields in your form. You need
these hidden fields because Oracle Application
Object Library writes the values for all displayed
fields to the concatenated values field, but does not
write the values for the non–displayed defaulted
fields. Since Oracle Application Object Library
normally uses the values in the concatenated
values field to update and insert to the database,
the default values for the non–displayed fields are
not committed. However, if you have the extra
hidden fields (similar to a combinations form),
Oracle Application Object Library writes flexfield
values to those fields as well as to the concatenated
segment values field. The non–displayed values
are written only to the hidden fields, but are used
to update and insert to the database.

The UPDATE / INSERT parameters determine
whether your users can update or insert segments
that represent specified unique flexfield qualifiers or
segment numbers, where segment numbers are the
order in which the segments appear in the flexfield
window, not the segment number specified in the
Define Key Segments form.

You do not need the UPDATE and INSERT
parameters for LOADID or VALID.

The default value for each is ALL, which allows
your user to update/insert all segments.
Alternatively, you can specify a flexfield qualifier
name or a segment number. You can enter
UPDATE=”” or INSERT=”” to prevent your user
from updating or inserting values for any
segments.

You can use these parameters as toggle switches by
specifying them more than once. For example, if
you want your user to be able to update all but the
first segment, you would specify:

UPDATE
INSERT

9 – 9Key Flexfield Routines for Special Validation

UPDATE=”ALL”

UPDATE=”1”

If you use INSERT=”” to prevent your user from
inserting values for any segments, Shorthand
Flexfield Entry is disabled for that form.

The concatenated hidden IDs field is a
non–displayed form field that contains the
concatenated segment hidden IDs.

block.concatenated description field name is a
displayed, non–database, non–enterable field that
contains concatenated descriptions of your
segment values. If you do not specify the DESC
parameter, Oracle Application Object Library does
not display concatenated segment descriptions.

window title appears at the top of the pop–up
window. The default value is the Flexfield Name
you specify when you set up this flexfield using the
Define Key Segments form.

date is the validation date against which the Start
Date and End Date of individual segment values is
checked. You enter a Start Date and End Date for
each segment value you define using the Define
Key Segment Values form. See: Define Segment
Values: page 4 – 65.

For example, if you want to check values against a
date that has already passed (say, the closing date
of an accounting period), you might specify that
date as VDATE using a field reference
(VDATE=:block.field) and compare your segment
values against that date.

The default value is the current date.

Specify Y if flexfields should automatically
determine the navigation out of the flexfield
pop–up window (that is, if your user exits the
window by pressing [Next Field], then the cursor
appears in the field after flexfield. Alternatively, if
your user exits the flexfield by pressing [Previous
Field], then the cursor appears in the field before
the flexfield).

DATA_FIELD

DESC

TITLE

VDATE

NAVIGATE

9 – 10 Oracle Applications Flexfields Guide

This value should be Y for POPID in a
KEY_PREFIELD trigger, but is not needed for
LOADID or VALID. Omit this argument for a
POPID in an FND_PRE_QUERY trigger. The
default value is N for backward compatibility.

Specify N if flexfields should not pop up a list of
values window when a user enters an invalid
value.

You do not need the AUTOPICK parameter for
LOADID or VALID. The default value is Y.

The non–displayed database :block.field that holds
the identification number of your flexfield
structure. You may also specify
:$PROFILES$.your_profile_option_name to retrieve a
value you set in a user profile option. You can
”hardcode” a structure number, such as 101, into
this parameter instead of providing a field
reference, but such a number prevents you from
using multiple structures for your flexfield. You
must use this option if you are using multiple
structures.

You can use the following SQL statement to
retrieve the structure identification numbers for
your flexfield:

SELECT ID_FLEX_NUM, ID_FLEX_STRUCTURE_NAME

FROM FND_ID_FLEX_STRUCTURES

WHERE ID_FLEX_CODE = ’flexfield code’;

where flexfield code is the code you specify when
you register your flexfield.

The default value for NUM is 101.

Copies a non–null value from :block.field into the
segment representing the specified flexfield qualifier
or segment number before the flexfield window pops
up. Alternatively, if you specify ALL, COPY copies
a set of non–null, concatenated set of segment
values (and their segment separators) that you
have in :block.field into all of your segments. For
example, if you have a three–segment flexfield, and
your :block.field contains 001.ABC.05, COPY puts
001 into the first segment, ABC into the second
segment, and 05 into the third segment.

AUTOPICK

NUM

COPY

9 – 11Key Flexfield Routines for Special Validation

The value you COPY into a segment must be a
valid value for that segment. The value you COPY
overrides any default value you set for your
segment(s) using the Define Key Segments form.
However, shorthand flexfield entry values override
COPY values. COPY does not copy a NULL value
over an existing (default) value. However, if the
value you copy is not a valid value for that
segment, it gives the appearance of overriding a
default value with a NULL value: the invalid
value overrides the default value, but Oracle
Application Object Library then erases the copied
value because it is invalid. You should ensure that
the field you copy from contains valid values.

When the flexfield window closes, Oracle
Application Object Library automatically copies
the value in the segment representing the specified
flexfield qualifier or segment number into :block.field.
Alternatively, if you specify ALL, Oracle
Application Object Library automatically copies
the concatenated values of all your segments into
:block.field.

You can specify one or more COPY parameters.
Later COPY parameters override earlier COPY
parameters. For example, assume you have a field
that holds concatenated flexfield values, called
Concatenated_field, and it holds the string
01–ABC–680. You also have a field, Value_field,
that holds a single value that you want to copy into
your second segment, and it holds the value XYZ.
You specify:

COPY=”block.Concatenated_field\nALL”

COPY=”block.Value_field\n2”

When your user opens the flexfield window, Oracle
Application Object Library executes the two COPY
parameters in order, and your user sees the values
in the window as:

01

XYZ

680

After the flexfield window closes, Oracle
Application Object Library copies the values back

9 – 12 Oracle Applications Flexfields Guide

into the two fields as 01–XYZ–680 and XYZ
respectively. Note that XYZ overrides ABC in this
case.

You do not need the COPY parameter for LOADID
or VALID, or in POPID in an FND_PRE_QUERY.
The delimiter \n must be lowercase.

Use VRULE to put extra restrictions on what
values a user can enter in a flexfield segment based
on the values of segment qualifiers (which are
attached to individual segment values). You can
specify the name of a flexfield qualifier and a segment
qualifier, whether to Include or Exclude the
validation values, and the Message Dictionary message
name for the message Oracle Application Object
Library displays if the user enters an improper
value. The delimiter \n must be lowercase.

For example, suppose you build a form where you
want to prevent your users from entering segment
values for which detail posting is not allowed into
all segments of Oracle General Ledger’s
Accounting Flexfield.
DETAIL_POSTING_ALLOWED is the segment
qualifier, based on the global flexfield qualifier
GL_GLOBAL, that you want to use in your rule.
You want to exclude all values where the value of
DETAIL_POSTING_ALLOWED is N (No). Your
message name is ”GL Detail Posting Not
Allowed”, and it corresponds to a message that
says ”you cannot use values for which detail
posting is not allowed.” You would specify your
rule as:

VRULE=”GL_GLOBAL\nDETAIL_POSTING_ALLOWED\nE

\nNAME=GL Detail Posting Not Allowed\nN”

When your user enters an excluded value in one of
the segments affected by this qualifier, your user
gets the message you specify. In addition, the
excluded values do not appear in the Lists of
Values on your segments. All other values, not
being specifically excluded, are included.

You can specify one or more VRULE parameters.
Oracle Application Object Library checks multiple
VRULE parameters bottom–up relative to the order

VRULE

9 – 13Key Flexfield Routines for Special Validation

you list them. You should order your rules
carefully so that your user sees the most useful
error message first.

VALATT copies the segment qualifier value of the
segment representing the unique flexfield qualifier
into :block.field when the flexfield window closes.
The delimiter \n must be lowercase.

Include the same value for the VALATT parameter
in your POPID (KEY_PREFIELD), LOADID, and
VALID. You do not need this parameter in POPID
in FND_PRE_QUERY.

Specify this parameter if your form is based on a
table that has foreign key references to two or more
flexfields, and if you have non–database
SEGMENT1 through N fields on your form (where
N is the number of segments in your combinations
table). If such fields exist, Oracle Application
Object Library by default will load values into
them that correspond to the combination of
segment values in the current flexfield. If you set
this parameter to N, Oracle Application Object
Library will not load the segment fields for the
current flexfield. If you have more than one
flexfield on your form, use this parameter to
specify which one should use the segment fields
(specify Y for one flexfield’s routine calls, and
specify N for other flexfields’ routine calls). The
default value is Y.

Use COLUMN to display other columns from the
combinations table in addition to the current
segment columns, where n is the display width of
the column. You can place the values of the other
columns into fields on the current form. The value
is automatically copied into the field when the user
selects an existing flexfield.

For example, to display a description column
called SEG_DESC and an error message from
E_FLAG with the column headings DESCRIPTION
and ERROR FLAG, you could set
COLUMN=”SEG_DESC DESCRIPTION(15),
E_FLAG \”ERROR FLAG \”(*)”. The (*) sets a
dynamic column width, with the size determined

VALATT

USEDBFLDS

COLUMN

9 – 14 Oracle Applications Flexfields Guide

by the value selected. If you wanted to place the
description into the field block_1.field_1 and the
error message into block_1.field_2, you would set

COLUMN=”SEG_DESC DESCRIPTION(15) INTO
BLOCK_1.FIELD_1, E_FLAG \” ERROR FLAG
\”(*) into BLOCK1_FIELD_2”

You may only use 32 distinct INTO columns in
your COLUMN= clause. Your maximum width for
additional columns is 240 characters.

Specify a WHERE clause to customize which code
combinations to display in the combination–level
List of Values pop–up window. Normally, the List
of Values displays a combination–level List of
Values of all current valid combinations, instead of
a single–segment List of Values, when the
validation type of the segment’s value set is
NONE.

This argument also prevents a user from selecting a
combination that does not fit the WHERE clause.
In the case of a single–segment flexfield where the
segment uses a validated value set, this may have
the effect that a user will initially see all values in
the List of Values (the segment–level List of
Values), but then will get an error message if the
value chosen is not already an existing combination
(as well as being a valid individual segment value)
if dynamic inserts are not allowed.

You should use this token with flexfields that do
not allow dynamic inserts, either using
DINSERTS=”N” or preventing dynamic inserts at
the structure level. Do not specify the word
”WHERE” in this where clause argument.

Specify the :block.field that holds the set identifier
for your flexfield. SET specifies which set of code
combinations to use for this flexfield. For each
flexfield structure, you can divide code
combinations in your combinations table into sets
(for example, parts with high prices, medium
prices, and low prices). You can only use SET if
you implement a structure defining column (that
is, you must specify NUM). The default for SET is
your structure number (as specified in NUM). If

WHERE

SET

9 – 15Key Flexfield Routines for Special Validation

you use SET, your application must maintain a
separate table that contains the correspondences
between sets and key flexfield structures. For
example, your correspondences table could contain
values such as:

If you use SET, Oracle Application Object Library
stores the set number in the structure defining
column instead of the structure number. Note that
you cannot have duplicate set numbers in your
correspondences table, though you can have more
than one set number for a given structure number.
You must derive SET and NUM from different
:block.fields (or profile options, or ”hardcoded”
numbers) since they are distinctly different
numbers.

Structure Set Set Description
101 1 Low priced truck parts
101 2 Medium priced truck parts
101 3 High priced truck parts
102 4 Low priced car parts
102 5 High priced car parts
103 6 Low priced motorcycle parts
103 7 High priced motorcycle parts

If you have a flexfield query–by–example POPID in
a FND_PRE_QUERY trigger, you should add an
extra step to copy the set number (SET) in addition
to the step that copies the structure number
(NUM).

Specify the same value for SET in POPID,
LOADID, and VALID.

Determines whether NULLs should be allowed
into any segment. ALLOWNULLS overrides the
value set definition (Value Required is Yes) for each
segment only if you specify PARTIAL or NONE for
the VALIDATE parameter.

Determines whether flexfield value security applies
to queries as well as inserts and updates. If you
specify Y, your users cannot query up existing code
combinations that contain restricted values. If you
specify N, your users can query and look at code
combinations containing restricted values. Users

ALLOWNULLS

QUERY_
SECURITY

9 – 16 Oracle Applications Flexfields Guide

can update the restricted values to non–restricted
values, but they cannot enter restricted values or
update values to restricted values. The default
value is N. This option has no effect unless your
users have enabled and defined flexfield value
security for your flexfield’s value sets (using the
Define Value Sets form, the Define Flexfield
Security Rule form, and the Assign Flexfield
Security Rules form).

Put this option in your LOADID call only. You do
not need QUERY_SECURITY in POPID or VALID.

Controls the type of subquery Oracle Application
Object Library uses to select the desired rows in
flexfield query–by–example.

Use this option only in a POPID in an
FND_PRE_QUERY trigger. Do not use in POPID
in your KEY_PREFIELD trigger or in LOADID or
VALID. The default value is N.

If you specify N, Oracle Application Object Library
generates a correlated subquery. This query is
effectively processed once for each row returned by
the main query (generated by the rest of the form),
and it uses the code combination ID as a unique
index. Choose N if you expect your main query to
return a small number of rows and you expect
your flexfield query–by–example to return many
rows.

If you specify Y, Oracle Application Object Library
generates a non–correlated subquery using the
”IN” SQL clause. Oracle Application Object
Library processes the query only once, but returns
all the rows in your combinations table that match
your flexfield query–by–example criteria. Choose
Y when you expect your main query to return
many rows and you expect your flexfield
query–by–example to return a small number of
rows (less than about 100). Such a condition
usually corresponds to a small number of rows in
the combinations table and many rows in the
application table. For example, assume you have a
Part Flexfield, where your company handles only a
limited number of parts (say, 75), but you have

QBE_IN

Syntax

9 – 17Key Flexfield Routines for Special Validation

thousands of orders for your parts (and a
correspondingly large Orders table). For this case,
choosing Y would greatly improve your
application performance on flexfield
queries–by–example.

You can specify B if your Forms block is based on
the combinations table. No subquery is used. If
you set QBE_IN to B, you must also set
USEDBFLDS to Y.

Specify Y or N to allow using LongList with this
flexfield. LongList allows users to specify a partial
value when querying a flexfield combination.

If you wish to display your own message when a
user enters an invalid combination, specify the
message name here. Otherwise flexfields uses the
standard Application Object Library Message.

Range Key Flexfield

The POPIDR/LOADIDR/VALIDR calling sequence for a parameter
with a range key flexfield is:

#FND {POPIDR|LOADIDR|VALIDR}

CODE=”flexfield code”

APPL_SHORT_NAME=”application_short_name”

VALIDATE=”{PARTIAL|NONE}”

[REQUIRED=”{Y|N}”]

[DISPLAY=”{ALL | flexfield qualifier |

segment number}”]

[UPDATE=”{ALL | flexfield qualifier |

segment number}”]

[INSERT=”{ALL | flexfield qualifier |

segment number}”]

[SEG=”:block.concatenated values field name”]

[DESC=”:block.concatenated description field name”]

[TITLE=”window title”]

[VDATE=”date”]

[NAVIGATE=”{Y|N}”]

[AUTOPICK=”{Y|N}”]

[NUM=”structure defining field”]

[VRULE=”flexfield qualifier\n

LONGLIST

NO_COMBMSG

9 – 18 Oracle Applications Flexfields Guide

segment qualifier\n

{I[nclude]|E[xclude]} APPL=shortname;

NAME=Message Dictionary message name\n

validation value1\n

validation value2...”]

[ALLOWNULLS=”{Y|N}”]

The flexfield code you specify when you set up this
flexfield using the Register Key Flexfield form.
This code must match the code you registered.

The application short name with which your
flexfield is registered.

Use a validation type of PARTIAL to validate each
individual segment value a user enters. PARTIAL
validation does not create a new valid combination
or check the combinations table to determine if a
code combination already exists. Use NONE if you
wish no validation (this is the usual argument for a
range flexfield). Do not use FULL or FOR_INSERT
for a range flexfield.

Use the same value in your LOADIDR and
VALIDR as you use in your POPIDR.

Specify whether your user can exit the flexfield
window without entering a value.

You should specify the same value for REQUIRED
in both your POPIDR and VALIDR triggers. You
do not need the REQUIRED parameter for
LOADIDR. The default value is Y.

Note: Even if REQUIRED=”N”, a user who starts
entering segment values for this flexfield must
either: a) fill out the flexfield in full, or b) abandon
the flexfield.

The DISPLAY parameter allows you to display
segments that represent specified flexfield qualifiers
or specified segment numbers, where segment
numbers are the order in which the segments
appear in the flexfield window, not the segment
number specified in the Define Key Segments form.
For example, if you specify that you want to
display only segment number 1, your flexfield

CODE

APPL_SHORT_
NAME

VALIDATE

REQUIRED

DISPLAY

9 – 19Key Flexfield Routines for Special Validation

displays only the first segment that would
normally appear in the pop–up window (for the
structure you specify in NUM).

If you include the DISPLAY parameter in your
POPIDR, you must include the DISPLAY
parameter with the exact same argument in your
LOADIDR and VALIDR calls.

The default value for DISPLAY is ALL, which
makes your flexfield display all segments.
Alternatively, you can specify a flexfield qualifier
name or a segment number.

You can use DISPLAY as a toggle switch by
specifying it more than once. For example, if you
want your flexfield to display all but the first
segment, you would specify:

DISPLAY=”ALL”

DISPLAY=”1”

The UPDATE / INSERT parameters determine
whether your users can update or insert segments
that represent specified unique flexfield qualifiers or
segment numbers, where segment numbers are the
order in which the segments appear in the flexfield
window, not the segment number specified in the
Define Key Segments form.

You do not need the UPDATE and INSERT
parameters for LOADIDR or VALIDR.

The default value for each is ALL, which allows
your user to update/insert all segments.
Alternatively, you can specify a flexfield qualifier
name or a segment number. You can enter
UPDATE=”” or INSERT=”” to prevent your user
from updating or inserting values for any
segments.

You can use these parameters as toggle switches by
specifying them more than once. For example, if
you want your user to be able to update all but the
first segment, you would specify:

UPDATE=”ALL”

UPDATE=”1”

UPDATE
INSERT

9 – 20 Oracle Applications Flexfields Guide

:block.concatenated values field name is a displayed,
non–database form field that contains your
concatenated segment values plus delimiters. If
you do not specify the SEG parameter, Oracle
Application Object Library does not display
concatenated segment values. You do not need to
specify _LOW and _HIGH, however, since Oracle
Application Object Library adds the suffixes for
you.

:block.concatenated description field name is a
displayed, non–database, non–enterable field that
contains concatenated descriptions of your
segment values. If you do not specify the DESC
parameter, Oracle Application Object Library does
not display concatenated segment descriptions.
You do not need to specify _LOW and _HIGH,
however, since Oracle Application Object Library
adds the suffixes for you.

window title appears at the top of the pop–up
window. The default value is the Flexfield Name
you specify when you set up this flexfield using the
Define Key Segments form.

date is the date against which the Start Date and
End Date of individual segment values is checked.
You enter a Start Date and End Date for each
segment value you define using the Define Key
Segment Values form.

For example, if you want to check values against a
date that has already passed (say, the closing date
of an accounting period), you might specify that
date as VDATE using a field reference
(VDATE=:block.field) and compare your segment
values against that date.

The default value is the current date.

Specify Y if flexfields should automatically
determine the navigation out of the flexfield
pop–up window (that is, if your user exits the
window by pressing [Next Field], then the cursor
appears in the field after the flexfield.
Alternatively, if your user exits the flexfield by
pressing [Previous Field], then the cursor appears
in the field before the flexfield).

SEG

DESC

TITLE

VDATE

NAVIGATE

9 – 21Key Flexfield Routines for Special Validation

This value should be Y for POPID, but is not
needed for LOADID or VALID. The default value
is N for backward compatibility.

Specify N if flexfields should not pop up a list of
values window when a user enters an invalid
value.

You do not need the AUTOPICK parameter for
LOADIDR or VALIDR. The default value is Y.

The non–displayed database :block.field that holds
the identification number of your flexfield
structure. You may also specify
:$PROFILES$.your_profile_option_name to retrieve a
value you set in a user profile option. You can
”hardcode” a structure number, such as 101, into
this parameter instead of providing a field
reference, but such a number prevents you from
using multiple structures for your flexfield. You
must use this option if you are using multiple
structures.

You can use the following SQL statement to
retrieve the structure identification numbers for
your flexfield:

SELECT ID_FLEX_NUM, ID_FLEX_STRUCTURE_NAME

FROM FND_ID_FLEX_STRUCTURES

WHERE ID_FLEX_CODE = ’flexfield code’;

where flexfield code is the code you specify when
you register your flexfield.

The default value for NUM is 101.

Use VRULE to put extra restrictions on what
values a user can enter in a flexfield segment based
on the values of segment qualifiers (which are
attached to individual segment values). You can
specify the name of a flexfield qualifier and a segment
qualifier, whether to Include or Exclude the
validation values, and the Message Dictionary message
name for the message Oracle Application Object
Library displays if the user enters an improper
value. The delimiter \n must be lowercase.

For example, suppose you build a form where you
want to prevent your users from entering segment

AUTOPICK

NUM

VRULE

9 – 22 Oracle Applications Flexfields Guide

values for which detail posting is not allowed into
all segments of Oracle General Ledger’s
Accounting Flexfield.
DETAIL_POSTING_ALLOWED is the segment
qualifier, based on the global flexfield qualifier
GL_GLOBAL, that you want to use in your rule.
You want to exclude all values where the value of
DETAIL_POSTING_ALLOWED is N (No). Your
message name is ”GL Detail Posting Not
Allowed”, and it corresponds to a message that
says ”you cannot use values for which detail
posting is not allowed.” You would specify your
rule as:

VRULE=”GL_GLOBAL\nDETAIL_POSTING_ALLOWED\nE

\nNAME=GL Detail Posting Not Allowed\nN”

When your user enters an excluded value in one of
the segments affected by this qualifier, your user
gets the message you specify. In addition, the
excluded values do not appear in the Lists of
Values on your segments. All other values, not
being specifically excluded, are included.

You can specify one or more VRULE parameters.
Oracle Application Object Library checks multiple
VRULE parameters bottom–up relative to the order
you list them. You should order your rules
carefully so that your user sees the most useful
error message first.

Determines whether NULLs should be allowed
into any segment. ALLOWNULLS overrides the
value set definition (Value Required is Yes) for each
segment only if you specify PARTIAL or NONE for
the VALIDATE parameter.

ALLOWNULLS

9 – 23Key Flexfield Routines for Special Validation

Special Validation Value Sets

Special validation value sets allow you to call key flexfield user exits to
validate a flexfield segment or report parameter using a
flexfield–within–a–flexfield mechanism. You can call flexfield routines
and use a complete flexfield as the value passed by this value set.

See: Using Flexfield Information in Your Report Parameters: page 7 – 4

Figure 9 – 1

Run Reports

Report Parameters

Part Number Structure 1

COMCategory

876Item

Color

Computer

Monitor

Light Tan

Report Parameters

COMType

COM–876–LTNPart Number

Computer

LTN

Warning: You should never change or delete a predefined
value set that Oracle Applications supply. Such changes may
unpredictably affect the behavior of your application features
such as reporting.

You use the Special Validation Routines window of the Value Set form
to define special user exit validation for a Special value set. You also
use that region to define validation routines for a Pair value set.

9 – 24 Oracle Applications Flexfields Guide

When you define a special validation value set, you specify two things:
an event and a function. The event is the time when your function
occurs, and your function is your call to a key flexfield user exit. For
example, the Validate event occurs once a user enters a value, and your
function would validate that value.

You can use a special validation value set to let your users enter an
entire key flexfield combination within a single segment of a
descriptive flexfield or report parameter. For example, you may want
to pass concatenated key flexfield segments as a parameter to a report.
With this type of value set, a user can enter the descriptive flexfield
segment or report parameter and then see the ”normal” behavior of a
key flexfield, such as the key flexfield pop–up window and segment
Lists of Values associated with that key flexfield. You can use Oracle
Application Object Library flexfield routines to perform flexfield data
entry and validation functions on segment values or report parameters.

Warning: You should take special care to avoid a situation
where you have a value set that contains a flexfield which in
turn contains a flexfield (as a value set of one of its segments).
There are two situations where this could cause a problem.
The first situation (recursion) is where a flexfield calls itself as
one of its segments, leading to an infinite chain of pop–up
windows. Such a loop may also be indirect. The second
potential problem may lead to data truncation and data
corruption problems: since a flexfield is often passed as its
concatenated flexfield values, the length of these concatenated
flexfields can quickly exceed the maximum size of the value set
and the underlying segment column in the flexfield table. This
is less likely to cause a problem for key flexfields than for
descriptive flexfields or range flexfields, because key flexfields
are usually passed as a single code combination ID number
instead of as concatenated segment values and therefore take
less space. Though the Define Value Set form and the Define
Segments forms do not prevent you from defining flexfield
loops or multiple flexfields within flexfields, you can cause
serious truncation problems and possible data corruption
problems in your application by allowing this to occur. Plan
and define your value sets carefully to avoid these value sets
within value sets.

See:

Value Set Windows: page 4 – 50

Key Flexfield Segments: page 2 – 16

9 – 25Key Flexfield Routines for Special Validation

Descriptive Flexfield Segments: page 3 – 31

Special Validation Events

You specify the event at which your special validation routine should
fire. Valid events include:

• Edit

• Validate

• Load

The following events are present in Oracle Applications for
compatibility with future versions, and you should not use them.

• Insert/Update

• Query

• Edit/Edit

• ListVal

You may have only one of each type of event. Usually, you use special
validation to call an existing key flexfield, and you should usually
define one of each type of event. However, you should not define a
Load event if you do not use either an ID field (a field that contains the
code combination ID number) or a data field (a field that contains the
hidden ID numbers corresponding to the values of value sets that use
hidden ID columns).

Edit

Calls your special validation routine when your user’s cursor enters the
segment in a data entry mode. You usually use POPID(R) for your Edit
event.

Load

Calls your special validation routine immediately after a query to
populate your segment. You usually use LOADID(R) for your Load
event.

The user exit you define for Load obtains a value and description based
on a stored hidden ID, and fires when your user queries data into the
flexfield segment. You should define a Load event if and only if you
use a hidden ID. If you have a Load event, you must have a non–null

9 – 26 Oracle Applications Flexfields Guide

ID field (a field that contains the code combination ID number) or data
field (a field that contains the hidden ID numbers corresponding to the
values of a value set that uses a hidden ID column). If you have a Load
event, you must use :!ID (described below) with either an ID field or
data field. Your user exit passes the contents of :!ID to your report or
flexfield instead of the contents of :!VALUE (described below).

Validate

Calls your special validation routine whenever the user’s cursor leaves
the segment or closes the pop–up window, or whenever a default value
is copied into the segment or report parameter. The Validate event also
fires after a query to generate value descriptions for queried values.
You usually use VALID(R) for your Validate event.

You must have a Validate event.

Defining Your Special Validation Function

Enter your user exit syntax exactly as you would call it from a form
trigger, except that you need not include the # sign (that is, instead of
entering #FND, you may enter just FND).

Special validation provides several special arguments you can use to
pass values to and from your user exits:

• :!ID

• :!VALUE

• :!MEANING

• !DIR

:!ID

You can use :!ID to pass different information depending upon the
circumstances. For flexfield routines, :!ID can pass either a
combination ID number of an entire combination of segment values
(key flexfields only), or it can pass a concatenated string of the
individual flexfield segment values (either key or descriptive
flexfields).

When you use :!ID to pass a concatenated string of individual segment
values, :!ID should contain the hidden ID values, if any, of the values in
your value sets. If your value set does not use a hidden ID column,

9 – 27Key Flexfield Routines for Special Validation

:!ID contains the actual value from the value column of your value set.

For a foreign key flexfield where you are using the VALIDATE=FULL
argument, you should use the ID=:!ID argument, and you should not
use the DATA_FIELD=:!ID argument. If you are coding a foreign key
flexfield where you are using the VALIDATE=PARTIAL (or NONE)
argument, you should use the DATA_FIELD=:!ID argument and you
must not use the ID=:!ID argument. Note that if you use the
DATA_FIELD=:!ID argument for a key flexfield, you must ensure that
the total length of the concatenated segments and their separators is
less than 240 characters.

You cannot use ID=:!ID with the #FND POPIDR, LOADIDR, or
VALIDR routines for range flexfields, but you may use the
DATA_FIELD=:!ID argument.

If you have a Load event, you must use :!ID with either an ID field or
data field. Your user exit passes the contents of :!ID to your report or
flexfield instead of the contents of :!VALUE.

:!VALUE

You use :!VALUE to access the user’s input. :!VALUE refers to the
displayed values that appear in the flexfield window and in the
concatenated values field. :!VALUE contains the concatenated values
for the flexfield your value set uses. If you do not specify a value for
:!ID, then :!VALUE is passed to your report or stored in your segment
column.

If you have a Load event, you must use :!ID with either an ID field or
data field. Your user exit passes the contents of :!ID to your report or
flexfield instead of the contents of :!VALUE.

:!MEANING

You use :!MEANING to pass the concatenated descriptions of your
flexfield values. The value description appears as usual next to the
flexfield segment value and in the concatenated description field. If
you are writing your own function, you should code your user exit to
write the value description into :!MEANING.

!DIR

Use !DIR for the NAVIGATE argument of key and descriptive flexfields
routines. !DIR allows the flexfields routines to determine the proper
navigation direction when you use a flexfield as a segment value set.

9 – 28 Oracle Applications Flexfields Guide

Do not use a colon when you specify !DIR for POPID or other flexfield
routines.

Additional Arguments for Pair Value Sets

If you are defining validation for a Pair type value set but you are not
using the flexfield routines #FND POPIDR, LOADIDR, or VALIDR for
range flexfields, you may use special forms of these arguments:
:!ID_LOW and :!ID_HIGH, :!VALUE_LOW and :!VALUE_HIGH, and
:!MEANING_LOW and :!MEANING_HIGH. However, usually you
should use the key flexfield routines for a range flexfield (POPIDR,
LOADIDR, and VALIDR), and these routines add the _LOW and
_HIGH suffixes to :!ID, :!VALUE and :!MEANING for you
automatically.

DINSERT and Dynamic Inserts

When you use a key flexfield user exit for special validation, you must
include the token DINSERT=N in your Edit, Load, and Validate events.
You cannot perform dynamic inserts from a flexfield within a flexfield,
even if the flexfield has dynamic inserts allowed.

Using Hidden IDs

Though you must use the ID=:!ID argument when you want to pass a
key flexfield combination ID number, you could use either the
DATA_FIELD=:!ID argument or the SEG=:!VALUE argument to pass
concatenated key segment values. Even if the value sets your flexfield
uses do not use hidden ID columns and values, you may want to write
explicitly to the :!ID field (and define a Load event) so that it is clear
which values you are storing in the database or passing to your report.
If your value sets do not use hidden ID columns, :!ID contains the
actual values from the value columns of your value sets. You can have
a mixture of displayed values and hidden ID values (depending on
which value sets your flexfield segments use) concatenated in :!ID. If
you are passing information to an Oracle Reports report that uses
flexfield routines, you must have a data field and use the
DATA_FIELD=:!ID argument.

Hints for Using Special Validation

If your special (or pair) value set does not behave the way you expect,
you should check your value set definition to be sure that you typed
your function correctly. Common errors include misplaced
exclamation marks (!) and colons (:). You should check that these

9 – 29Key Flexfield Routines for Special Validation

punctuation marks are not missing or in the wrong order or present
when they should not be. Other common problems include misspelling
token names, missing or extra apostrophes (’), and missing or extra
quotation marks (”).

Example of Special Validation

Here is an example of how to use Special validation (an example for
Pair validation follows this example). Suppose you want to let your
users pass a single combination of concatenated Accounting Flexfield
segments as a parameter to a report. To let your user choose a single
combination, you must provide a key flexfield window from within the
report parameters window on the Run Reports form. To do this, you
simply define a value set with Special validation and use your familiar
flexfield user exits. Since you want to pass an existing combination
(that is, you want to pass the ID number of the combination) and this is
a foreign key flexfield, you use VALIDATE=FULL and the ID=:!ID
argument. You do not use the DATA_FIELD=:!ID argument. This
example uses structure 101 of the Accounting Flexfield (though
normally you might get your structure number from a prior segment or
a profile option, depending on how you use your value set). You
define your Events and Functions in this field as follows:

For data entry validation (Event = Edit), you would enter:

FND POPID

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

REQUIRED=Y

VALIDATE=FULL

ID=:!ID

SEG=:!VALUE

DESC=:!MEANING

NAVIGATE=!DIR

DINSERT=N

For data query (Event = Load), you would enter:

FND LOADID

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

REQUIRED=Y

9 – 30 Oracle Applications Flexfields Guide

VALIDATE=FULL

ID=:!ID

SEG=:!VALUE

DESC=:!MEANING

DINSERT=N

For data validation (Event = Validate), you would enter:

FND VALID

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

REQUIRED=Y

VALIDATE=FULL

ID=:!ID

SEG=:!VALUE

DESC=:!MEANING

DINSERT=N

Example of Special Validation for a Single Segment

Here is an example of how to use Special validation when you want to
let your users pass a single Accounting Flexfield segment value as a
parameter to a report. To let your user choose a single segment, you
must provide a key flexfield window from within the report
parameters window on the Run Reports form. Since you want to pass
an existing segment value and this is a foreign key flexfield, you use
VALIDATE=PARTIAL. You do not use the DATA_FIELD=:!ID or
ID=:!ID argument in this case because you do not use hidden ID value
sets with the Accounting Flexfield. You do not use a Load event
because you are not using :!ID. This example uses structure 101 of the
Accounting Flexfield (though normally you might get your structure
number from a prior segment or a profile option, depending on how
you use your value set), and the flexfield qualifier FA_COST_CTR
identifies which segment it passes. You define your Events and
Functions in this field as follows.

9 – 31Key Flexfield Routines for Special Validation

For data entry validation (Event = Edit), you would enter:

FND POPID

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

REQUIRED=N

VALIDATE=PARTIAL

DISPLAY=”FA_COST_CTR”

SEG=:!VALUE

DESC=:!MEANING

NAVIGATE=!DIR

DINSERT=N

For data validation (Event = Validate), you would enter:

FND VALID

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

REQUIRED=N

VALIDATE=PARTIAL

DISPLAY=”FA_COST_CTR”

SEG=:!VALUE

DESC=:!MEANING

DINSERT=N

Example of Pair Validation

Here is an example of how to use Pair validation. Suppose you want to
let your users pass a range of concatenated Accounting Flexfield
segments as parameters to a report. For example, you want to let your
users request a report on all combinations where the second segment
value is between 001 and 101, inclusive. To let your user choose such a
range, you must provide a key flexfield range window from within the
report parameters window on the Run Reports form. To do this, you
simply define a value set with Pair validation and use your familiar
range flexfield user exits to pass a range of concatenated segment
values. For a range flexfield, you use VALIDATE=PARTIAL (or
NONE). Since you use a range flexfield, you cannot use the ID=:!ID
argument. You do not use DATA_FIELD=:!ID in this example (hidden
ID value sets are not allowed with the Accounting Flexfield), so you do

9 – 32 Oracle Applications Flexfields Guide

not need a Load event. This example uses structure 101 of the
Accounting Flexfield. You define your Events and Functions in this
field as follows:

For data entry validation (Event = Edit), you would enter:

FND POPIDR

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

VALIDATE=PARTIAL

SEG=:!VALUE

DESC=:!MEANING

NAVIGATE=!DIR

For data validation (Event = Validate), you would enter:

FND VALIDR

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=101

VALIDATE=PARTIAL

SEG=:!VALUE

DESC=:!MEANING

Using Variables with Special and Pair Validation

You can use bind variables in your special validation user exit calls:

Retrieves a value (the hidden ID value, if a hidden
ID value is defined) in a prior segment.

Retrieves the current value of a profile option. You
must specify the option name of the profile option,
such as GL_SET_OF_BKS_ID (which does not
contain the Accounting Flexfield structure
number).

Note that your profile option must be set wherever
you use this value set (including the View Requests
form if this value set is used as a report parameter
and the user tries to view the status of the report
after submission), or your user will see error
messages.

:$FLEX$.
value_set_name

:$PROFILES$.
profile_option

9 – 33Key Flexfield Routines for Special Validation

Gets the current value in a field. You must ensure
that this value set is only used for forms that have
the same block.field.

For example, the following user exit on a Validate event obtains the
Structure (NUM) of the key flexfield from a profile option:

FND VALID

APPL_SHORT_NAME=SQLGL

CODE=”GL#”

NUM=:$PROFILES$.MY_STRUCTURE_ID

REQUIRED=Y

VALIDATE=FULL

ID=:!ID

SEG=:!VALUE

DESC=:!MEANING

DINSERT=N

See:

Bind Variables: page 4 – 34

:block.field

9 – 34 Oracle Applications Flexfields Guide

C H A P T E R

10

10 – 1Account Generator

Account Generator

This chapter contains information on using the Oracle Applications
Account Generator feature, including:

• An overview of the Account Generator

• Account Generator terminology

• An explanation of how Oracle Applications products use the
Account Generator

• How you can customize an Account Generator process for your
site

This chapter also contains a description of the window you use to
choose which Account Generator process to use for your flexfield.

• Account Generator Process Window

☞

10 – 2 Oracle Applications Flexfields Guide

Overview of the Account Generator

Applications need to construct Accounting Flexfield combinations
automatically for various purposes. The Account Generator feature
uses Oracle Workflow technology to provide applications with the
ability to construct key flexfield combinations automatically using
customized construction criteria. Each site can customize how they
want to build key flexfield combinations.

The Account Generator replaces the Release 10 FlexBuilder feature.
Information on upgrading from FlexBuilder is covered later in this
chapter.

For information on implementing and using Oracle Workflow, see the
Oracle Workflow Guide.

Benefits of the Account Generator using Oracle Workflow

Automatic construction of key flexfield combinations speeds users’
data entry.

Automatic construction of key flexfield combinations improves
accuracy of data entry because users do not need to determine what
key flexfield combination to enter.

Each site can customize rules for the construction of key flexfield
combinations to match the existing way of doing business.

By using Oracle Workflow features, the Account Generator provides
greater flexibility for creating customized rules to create account
combinations.

Attention: Before using or customizing the Account
Generator, you should familiarize yourself with the basic
concepts of Oracle Workflow. For more information, see the
Oracle Workflow Guide.

See:

Oracle Workflow Guide

Terms

The following are some of the Oracle Workflow terms for objects used
in the Account Generator feature, along with descriptions of how they
relate to the Account Generator. You should read about these terms in

10 – 3Account Generator

the Oracle Workflow Guide first. See: Overview of the Oracle Workflow
Builder, Oracle Workflow Guide.

Item Type

An item type represents a grouping of a particular set of processes and
components. Within an item type there can be up to six types of
components: Attributes, Processes, Notifications, Functions, Messages,
and Lookup Types. In an Account Generator, the most relevant
components are Attributes, Processes, and Functions.

If you are upgrading from Release 10 FlexBuilder, you can think of an
item type as corresponding to a FlexBuilder function.

Attribute

In general, an attribute is a feature of an item type. For an Account
Generator item type, these attributes include features of the Accounting
Flexfield structure. For example, one attribute stores the structure
number of the flexfield for which the combination is being built. Other
attributes may be input values to the Account Generator process.

If you are upgrading from FlexBuilder, raw parameters for a flexfield
would be included here, and possibly some derived parameters.

Function

A function is a PL/SQL stored procedure which accepts standard
arguments and returns a completion result. For example, a function
can retrieve a value for a particular segment for a code combination.

Process

A process is a set of activities in a specific relationship. In the Account
Generator, the process specifies the sequence of activities that are
performed to create a code combination. A process activity can be part
of a larger process, in which case it is called a sub–process. For
example, the Oracle Assets FA Account Generator item type could
contain a Generate Default Account process, which in turn contains
three sub–processes: Generate Book Level Accounts, Generate
Category Level Accounts, and Generate Asset Level Accounts.

If you are upgrading from FlexBuilder, the logic in FlexBuilder rules
corresponds to the logic in Account Generator processes.

10 – 4 Oracle Applications Flexfields Guide

Lookup Type

A lookup type is a static list of values. This list can be referenced by
activities and by item type, message or activity attributes. For
example, an activity can reference a lookup type for its possible result
values.

See:

Oracle Workflow Guide

Account Generator Process Diagram : page 10 – 5

10 – 5Account Generator

Account Generator Process Diagram

A basic Account Generator process contains the following function
activities, in the order:

• Start Generating Code Combination function

• Functions to generate the code combination, for example, Assign
Value to Segment, as well as functions to check if the code
combination is complete. Some of these functions may be
product–specific

• Validate Code Combination function

• End Generating Code Combination function

Oracle provides standard Account Generator process function activities
that are described later in this chapter, in addition to standard
Workflow activities described in the Oracle Workflow Guide. Each
product’s Account Generator process may also include additional
product–specific functions. See your Oracle [Product] User’s Guide for
details on a particular process.

A process may contain process activities (subprocesses). For example,
the following Account Generator top–level process contains three
process activities: Generate Book Level Accounts (3), Generate
Category Level Accounts (4), and Generate Asset Level Accounts (5).
These subprocesses contain the functions that create the code
combination.

Note that this process also contains:

• Start Generating Code Combination function (1)

• A product–specific function, Get Account Group (2)

• Validate Code Combination function (6)

• End Generating Code Combination function (7)

10 – 6 Oracle Applications Flexfields Guide

Each of the three subprocesses has its own diagram. For example, the
Generate Category Accounts process diagram is shown below:

This subprocess contains the activities that actually build the
combination. The activities of the subprocess are as follows:

• (1) Start: every process has to have a Start activity.

• (2) Get Category Account Name: this function gets the category
account name. This is a product–specific function.

• (3) Copy Segment Value from Code Combination: this function
copies a segment value from a given code combination to a
segment of the combination being built.

• (4) Copy Segment Value from Code Combination: this function
copies a different segment value from a given code combination
to another segment of the new combination.

• (5) Assign Value to Segment: this function assigns a specified
value to another segment of the new combination.

• (6) Copy Values from Code Combination: this function copies
values from a default code combination to any remaining

☞

10 – 7Account Generator

segments of the new combination. This function activity has the
attribute ’Replace Existing Value’ set to ”False” to prevent values
assigned elsewhere from being overwritten.

• (7) End: every process has an End activity.

Note that after the code combination is created within the subprocess,
the flow returns to the main process where the combination is
validated by the function Validate Code Combination.

Note: A top–level runnable Account Generator process is
represented by an icon called ”flexproc.ico”, which has the
image of two gears on a yellow background with a
representation of a flexfield combination at the bottom. A
subprocess is shown by the ”process.ico” icon, which has two
gears in a yellow background. You can differentiate between
the two types of processes using these icons.

Attention: These process diagrams are examples only. To
learn about your particular product’s processes, see your Oracle
[Product] User’s Guide.

See:

Standard Flexfield Workflow: page 10 – 20

10 – 8 Oracle Applications Flexfields Guide

How the Account Generator Works

• A server–side PL/SQL function calls the Account Generator
process to create an account. This function can be called from a
form or from C or PL/SQL programs. This function takes several
input arguments: the structure number of the key flexfield
structure for which the combination is to be generated, and the
values for all the item attributes that must be set before starting
the workflow process.

Suggestion: See your Oracle [Product] User’s Guide for
information on how the Account Generator is called.

• The Account Generator process creates a combination using the
values of the attributes and the function activities.

• The function returns a value of TRUE if the Account Generator
ends in success, and a value of FALSE otherwise. If the function
ends in success, the function also returns the code combination
ID, concatenated segments, concatenated IDs, and concatenated
descriptions as output parameters.

• The function returns its output to the calling program or form.
Note that the Account Generator is only called from particular
forms and programs, so if you change your accounting data via
another form or program your accounts may not be
automatically updated.

10 – 9Account Generator

Where the Account Generator Derives Segment Values

The Account Generator can derive segment values from form fields,
other Accounting Flexfield combinations, flexfield segments,
application tables, and constants.

Figure 10 – 1

Expense Account

Big Mfg. Co.

001 – 003 – 6487 – 01 – 876

001

Accounts

001

6487

876

Charge to Account

Organization

01

003

Charge Account

Customer
ID

Sales
Rep
ID

Customers Table

Customer
Name

Department
ID

Sales
Rep
ID

Sales Representatives Table

Sales Rep
Name

003

Field
Values

Constant
Values

Table Values

Flexfield
Segment
Values

6487

1Order Number

Order Number 1

Acct. 003–007–5000–01–876

Client
003

5000

876

01

007

Expense Account

10 – 10 Oracle Applications Flexfields Guide

Form Fields

These are usually predefined by the application.

Same Accounting Flexfield Structure

You can get values from individual segments of Accounting Flexfield
combinations whose structure matches the one you are building. You
can specify which segment supplies the value using either the segment
name or its flexfield qualifier, if any. You can assign such segment
values to your key flexfield structure directly.

For example, you can get a segment value from one combination of an
Accounting Flexfield structure and use it to build another combination
for the same Accounting Flexfield structure.

Other Accounting Flexfield Structures

You can get values from individual segments of Accounting Flexfield
structures other than the one you are building. You need to specify the
structure number, and you can specify which segment supplies the
value using either the segment name or its flexfield qualifier, if any.

Application Tables

You can get values from an application table.

Constants

You can specify a constant value for a segment of the key flexfield
structure you want to build.

10 – 11Account Generator

The Account Generator in Oracle Applications

Several Oracle Applications use the Account Generator to create
combinations for the Accounting Flexfield.

• Oracle Assets

• Oracle Order Management

• Oracle Purchasing

• Oracle Receivables

• Oracle Projects (with Oracle Purchasing and Oracle Payables)

Each of these applications provides a default Account Generator
process. You can view and customize the Account Generator processes
through the Oracle Workflow Builder. Some products’ default
processes may require customization before they can be used to create
flexfield combinations. Your Oracle [Product] User’s Guide contains
detailed information on implementing the Account Generator for your
particular product. The Oracle [Product] User’s Guide also contains
information on the product’s default Account Generator process as
well as information on how you may want to customize the default
process.

10 – 12 Oracle Applications Flexfields Guide

Overview of Implementing the Account Generator

Implementing an Account Generator process involves several steps:

• Oracle provides a product–specific Account Generator item type,
which may contain predefined attributes, functions, processes,
and subprocesses. Oracle also provides the Standard Flexfield
Workflow item type, which contains standard Account
Generator functions.

• On–site implementors can customize the Account Generator
process as explained later in this chapter.

• Implementors test the Account Generator process to confirm that
it generates the desired combination correctly.

See:

Customizing the Account Generator: page 10 – 13

Test Your Account Generator Setup: page 10 – 19

☞

10 – 13Account Generator

Customizing the Account Generator

If you need to customize your application’s default Account Generator,
you should complete the following steps:

Step 1. Prerequisite: Define your Accounting Flexfield structure(s)
completely.

Step 2. Determine the characteristics of the Accounting Flexfield
combination you want the Account Generator to construct
(determine how the resulting flexfield combination should be
populated).

Step 3. Work backwards from your resulting Accounting Flexfield
combination to determine what values you need and how to
obtain them.

Step 4. Specify additional attributes or functions you need, if any, and
their properties, within the Oracle Workflow Navigator
window.

Step 5. If necessary, modify the default Account Generator process(es)
in the Oracle Workflow Process window. Alternatively, you
could create a new process entirely. Which approach you take
depends on the extent of your modifications. In either case,
you should save a copy of your workflow process definition as
a flat file (a .wft file) and check that file into a source control
system.

Warning: If you have upgraded from FlexBuilder in Release
10.7, you should not modify the Generate Account using
FlexBuilder Rules process in any way, nor modify the PL/SQL
functions. Oracle does not support modifications to this
process. If you used FlexBuilder in Release 10 and now would
like to add customizations beyond what you had in
FlexBuilder, you should start from the default Account
Generator process.

Attention: If you have modified the default Account
Generator process directly, you should ensure that your
customizations are not overwritten when you upgrade to a
future release. For more information, see: Overview of Oracle
Workflow Protection, Oracle Workflow Guide; and Creating
Process Definitions in Oracle Workflow Builder, Oracle
Workflow Guide.

10 – 14 Oracle Applications Flexfields Guide

Step 6. Test your Account Generator process, as outlined in your
Oracle [Product] User’s Guide. Determine if you get the
expected resulting Accounting Flexfield combination.

Step 7. Assign the appropriate process to your Accounting Flexfield
structure in the Account Generator Process window in Oracle
Applications.

Determine Characteristics of Combination

Start by determining the characteristics of the Accounting Flexfield
combination you want to obtain as your result. Then work backwards
from your resulting Accounting Flexfield combination to determine
what values you need and how to obtain them.

What is the purpose of this combination? For example:

• Oracle Order Entry transfers this combination to Oracle
Inventory, via the Inventory Interface program, for use in cost of
goods sold (COGS) analyses.

• Oracle Assets uses this combination to create journal entries for
asset transactions.

• Oracle Purchasing uses this combination to specify accounts for
individual distributions for purchase orders and requisitions.

What are the properties of this combination? For example:

• This is an Accounting Flexfield combination with particular
characteristics, such as a particular type of value for the
balancing segment or the account segment.

• Your resulting combination is ”just like that other combination
but with a different value for the second segment”.

• Each segment has some prescribed value.

Decide From Where Each Segment Derives Its Value

Did a segment value come from a form field, another combination of
the same Accounting Flexfield structure, a segment of another key
flexfield, an application table, a constant, or somewhere else?

☞

☞

10 – 15Account Generator

Modify Your Account Generator Process

In customizing your Account Generator setup, you make modifications
to the default process or create a new process using the Oracle
Workflow Builder. For details on working within the Oracle Workflow
Builder, see the Oracle Workflow Guide.

See your Oracle [Product] User’s Guide for limitations on what you can
and cannot customize. For example, you may not be allowed to
customize a top level process, but only the subprocesses within it.
Also, see if your product’s Account Generator item type already
includes attributes or functions you can use. Using pre–defined
attributes and functions will save you time in your customization.

Save a copy of the original item type in a source control area as a flat
file (.wft file) before beginning customizations. By saving the original
as a flat file you can limit access to it, thus ensuring that you will
always have a copy of the original file.

Attention: If you have modified the default Account
Generator process directly, you should ensure that your
customizations are not overwritten when you upgrade to a
future release. For more information, see: Overview of Oracle
Workflow Protection, Oracle Workflow Guide; and Creating
Process Definitions in Oracle Workflow Builder, Oracle
Workflow Guide.

Warning: You should never create a new item type as your
Account Generator. Instead, start from the default Account
Generator item type or a copy of it.

Attention: You cannot modify the attributes or functions
given to you in your default Account Generator item type.
That is, you cannot select an attribute or function within the
Navigator window and modify it. You can, however, modify
the attributes of a function activity that is part of a process.

Warning: Do not change the threshold level of the Oracle
Workflow Engine. All of your Account Generator functions
should have low costs, so you should never need to change the
threshold level.

See Also

Overview of Oracle Workflow Builder
Oracle Workflow Guide

10 – 16 Oracle Applications Flexfields Guide

Create a New Attribute

You can create a new attribute for your Account Generator item type,
which you can then use in your custom process. Note that custom
attributes cannot be ”input” attributes, that is, their values cannot be
set by the calling form or program. After you create a new attribute,
you need to set its value by adding a function activity to your process.
For example, if the value comes from another code combination you
could use the Get Value from Code Combination function activity from
the Standard Flexfield Workflow.

Modify Attributes of a Function Activity

You can modify the values passed to a function activity.

For example, suppose your default Account Generator process uses the
standard function Copy Segment Value from Code Combination to
copy a segment value from the default code combination. This
function thus has ”Default CCID” as the value for the attribute ”Code
Combination ID”. However, suppose you want to use ”Distribution
CCID” instead of the ”Default CCID”. Assuming the Distribution
CCID is available to the workflow, you would change function
activity’s attributes to use the Distribution CCID.

Add a Function Activity to a Process

You can change the logic of the process by adding functions to the
process diagram. Predefined standard Account Generator functions
are described later in this chapter. Your product may have additional
predefined functions that you can use. For information on these, see:
Oracle [Product] User’s Guide.

For example, suppose that you are working within the Oracle Assets
Account Generator item type. In your process, you want to check to
see if any account is a Category Account. You would then add the
Check Category Account function activity in the appropriate place in
the process diagram. If a function requires values to be passed in as
arguments, you need to ensure the proper values are set for the
attributes of the function. Also, make sure that if you expect a result
from the function, the result type is set properly, and any transitions
from the function branch appropriately.

Warning: Oracle Workflow provides activities that in general,
you should not add to your Account Generator, namely,
Notification and Block activities, since these halt the process.

10 – 17Account Generator

Warning: In general, avoid using parallel branches in your
Account Generator process diagram. The Oracle Workflow
Engine processes activities sequentially. If your process
includes parallel branches that converge on a single function,
you should ensure that that function is an AND function, so
that all required activities are completed before the Engine
continues to the next activity in the process.

Create a New Function Activity

You can create a new function activity and add it to your Account
Generator item type. The Oracle Workflow Guide contains information
on how to create new function activities and any associated PL/SQL
stored procedures.

See:

To Create a Function Activity
Oracle Workflow Guide

Create a New Process

You can create an entirely new Account Generator process in the
Workflow Builder.

Select the item type that you want to create the process for. For
example, for Oracle Assets you would choose the FA Account
Generator item type. From the Edit Menu choose New Process. Within
the property sheet that appears, specify an internal name, display name
and description. The display name will appear in the Navigator
window for the process, and it would be the name used in the Account
Generator Process window. If your process itself will create a code
combination specify ”Flexfield Result”. If this is the top–level process
that you will actually run, specify ”Runnable”.

Suggestion: Examine your product’s default Account
Generator process diagram first to see how a process works.

Your start activity for the top–level process must be the Start
Generating Code Combination function activity, which you can copy
from the Standard Flexfield Workflow item type. Designate this as a
Start activity in the process Properties page, under ”Start/End.”

You can then add activities to the process. See the Oracle Workflow
Guide for details on how to add activities to a process, as well as details
on standard Workflow activities.

10 – 18 Oracle Applications Flexfields Guide

See the section on the Standard Flexfield Workflow for generic Account
Generator function activities you might want to add. For example, the
activity Is Code Combination Complete? checks to see if all segments
have values. The Validate Code Combination activity is useful for
validating your combination after it has been generated. You can add
the Abort Generation of Code Combination activity to terminate the
process in the case of a fatal error. You should pass in an error message
to this activity if you use it. This activity should be marked in the
properties page as an ”End” activity with the Result of ”Failure”.

In addition, your product’s Account Generator may also contain
function activities particular to your product that you may want to use.
See your Oracle [Product] User’s Guide for more information on these
activities.

Once the combination has been generated and validated, your process
should end with the End Generation of Code Combination standard
flexfield workflow activity. This activity should be marked in the
Properties page as an ”End” activity with the Result of ”Success”.

If your custom process has a result type of ”Flexfield Result,” make
sure your ”End” activity(ies) give a result of ”Success” or ”Failure,”
since these are the possible values for ”Flexfield Result.”

See Also

Overview of Oracle Workflow Builder
Oracle Workflow Guide

Standard Activities
Oracle Workflow Guide

Process Window
Oracle Workflow Guide

10 – 19Account Generator

Test Your Account Generator Setup

To test your setup, make sure that the correct process is assigned to
your structure in the Account Generator Process form. See: Choosing
the Process for a Flexfield Structure: page 10 – 27.

Test your Account Generator setup as described in your Oracle
[Product] User’s Guide. In some products, you can test your setup
within Oracle Applications; in others, you can test using a PL/SQL
statement. Always test your setup on a test database before using it on
a production database.

Set the profile option Account Generator:Debug Mode to ”Yes” if you
are using the Oracle Workflow Monitor to view your results during
testing. This profile option will ensure that the runtime data is saved
for debugging.

After you are finished testing, you can set Account Generator:Debug
Mode to ”No” to improve the performance of the Account Generator.

10 – 20 Oracle Applications Flexfields Guide

Standard Flexfield Workflow

The Standard Flexfield Workflow item type provides special function
activities for generating and validating key flexfield code combinations.
These functions are in addition to the predefined Workflow activities
described in the Oracle Workflow Guide. Also, your product may
provide you with product–specific Account Generator functions. See
your Oracle [Product] User’s Guide for details on these additional
functions.

The Standard Flexfield Workflow only provides you with function
activities you can use to customize your own Account Generator
workflow. The Standard Flexfield Workflow does not contain any
attributes or processes to run. The following is a description of each of
the Standard Flexfield Workflow function activities.

Start Generating Code Combination

This function is used as the start activity of the top–level process that
generates the code combination, and should be used only in the
top–level process. It should not be used as a start activity of any
subprocess the top level process may invoke. This function should be
marked as a ”Start” activity after copying it to the process window.
This function does not have any attributes.

The Workflow Engine uses this function to get values from the calling
form or program for attributes (”input attributes”) that are used to
build the combination.

Note: Do not use the Oracle Workflow Standard Start activity
as the start activity of a top–level Account Generator process.
The Account Generator may need to obtain attribute values
that cannot be obtained using the Standard Start activity.

Assign Value to Segment

This function assigns a value to a specific segment of the combination.
This function has the following attributes:

• Segment Identifier: How the segment is identified, either
”Qualifier” or ”Name”.

• Segment: The flexfield qualifier name or segment name of the
specific segment.

• Value: The value to be assigned to the segment.

10 – 21Account Generator

• Replace existing value: Has the value of ”False” if the value
should be assigned only if the segment currently has no value,
”True” if the value should be assigned even if the segment
already has one.

Copy Segment Value from Code Combination

This function copies a segment value from a given code combination to
the combination that is being generated. This function has the
following attributes:

• Code Combination ID: The code combination ID for the
combination from which the segment value will be copied.

• Segment Identifier: How the segment is identified, either
”Qualifier” or ”Name”.

• Segment: The flexfield qualifier name or segment name.

• Replace existing value: Has the value of ”False” if the value
should be copied only if the segment currently does not have a
value, ”True” if the value should be copied even if the segment
already has one.

Copy Segment Value from Other Structure Code Combination

This function copies a segment value from a given code combination of
a different accounting flexfield structure to the combination that is
being generated. This function has the following attributes:

• Structure Number: The structure number of the source
combination.

• Code Combination ID: The code combination ID for the
combination from which the segment value will be copied.

• Segment Identifier: How the segment is identified, either
”Qualifier” or ”Name”.

• Segment: The flexfield qualifier name or segment name.

• Replace existing value: Has the value of ”False” if the value
should be copied only if the segment currently does not have a
value, ”True” if the value should be copied even if the segment
already has one.

10 – 22 Oracle Applications Flexfields Guide

Copy Values from Code Combination

This function copies all the values from a given code combination to
the combination that is being generated. If you set the ”Replace
existing value” attribute to ”False”, you can use this function to copy
values from a default code combination to segments without values.
This function has the following attributes:

• Code Combination ID: The code combination ID for the
combination from which values will be copied.

• Replace existing value: Has the value of ”False” if the value
should be copied only if the segment currently does not have a
value, ”True” if the value should be copied even if the segment
already has one.

Get Value from Code Combination

This function retrieves a segment value from a given code combination
and assigns it to an attribute of the current workflow item. This
function has the following attributes:

• Code Combination ID: The code combination ID for the
combination from which values will be copied.

• Segment Identifier: How the segment is identified, either
”Qualifier” or ”Name”.

• Segment: The flexfield qualifier name or segment name.

• Attribute to assign value: The internal name of the item attribute
to which the value should be assigned.

Get Value from Other Structure Code Combination

This function retrieves a segment value from a given code combination
of another accounting flexfield structure and assigns it to an attribute of
the current workflow item. This function has the following attributes:

• Structure Number: The structure number of the source
combination.

• Code Combination ID: The code combination ID for the
combination from which values will be copied.

• Segment Identifier: How the segment is identified, either
”Qualifier” or ”Name”.

• Segment: The flexfield qualifier name or segment name.

10 – 23Account Generator

• Attribute to assign value: The internal name of the item attribute
to which the value should be assigned.

Is Code Combination Complete?

This function checks to see if values have been assigned to all segments
in the code combination. This function returns ”True” if all segments
have values and ”False” if one or more segments do not have values.
This function has the following attribute:

• Check only for required segments: If this attribute is set to
”True” then the function only checks if the required segments
have values. If this attribute is set to ”False”, then the function
checks that all segments have values.

Validate Code Combination

This function validates the code combination that has been generated.
It has the following attributes:

• New code combinations are allowed: If this attribute is set to
”True” AND the key flexfield has ’Dynamic Inserts Allowed’ set
to ”True”, then the validation will not generate an error if the
combination does not exist in the code combination table.

• Validation Type: Either use ”Generate Code Combination ID” to
do a full validation and generate a code combination ID, or use
”Validate Segments with Values only” to do value validation on
only segments with values. Full validation applies to the entire
combination to see if it is a valid combination. ”Validate
Segments with Values” only validates the values for segments
with values.

Note: If the code combination in question is new (that is, it
does not already exist in the code combinations table), this
function activity does not insert it into the database or generate
a new CCID for it. If the combination is successfully validated
and dynamic inserts are allowed, then the function will set the
CCID to –1, and this will be the value that will be returned to
the calling form or program.

Abort Generating Code Combination

This function is used to end the Account Generator process when a
fatal error occurs. An error message in the encoded format is passed to
the function and that message is displayed in the calling form or

10 – 24 Oracle Applications Flexfields Guide

program. This function should be marked as an ”End” activity and
should return a value of ”Failure”.

• Error message: The error message for the failure condition. The
message should be in the Message Dictionary encoded format.

End Generating Code Combination

This function ends the top level process of the account generation, after
the combination has been generated and validated. This function
should normally follow immediately after the Validate Code
Combination activity. This function should be marked as an ”End”
activity and should return a value of ”Success”. It does not have any
attributes.

For the functions listed above with the attributes Segment Identifier
and Segment, ”Qualifier” refers to the segment qualifier name that
appears in the Qualifier window, for example, ”GL_BALANCING”.
The segment ”Name” refers to the Name specified in the Segments
window. For information on segments, segment qualifiers, and
validation see the following sections:

Defining Segments: page 2 – 22

Qualifiers: page 2 – 5

Flexfield Qualifiers: page 2 – 32

10 – 25Account Generator

Converting from FlexBuilder

In Release 10.7, you could create Accounting Flexfield code
combinations automatically using the FlexBuilder feature. If you used
FlexBuilder in Release 10.7, you can use your FlexBuilder configuration
in the Account Generator. As part of the upgrade process, Rapid
Install automatically creates an Account Generator process from your
FlexBuilder configuration. This Account Generator process contains
any customizations you had in FlexBuilder, and is called ”Generate
Account Using FlexBuilder Rules.”

Generate Account Using FlexBuilder Rules Process

This process contains the logic from FlexBuilder. The process contains a
function that retrieves the necessary item attribute values
(corresponding to raw parameters in FlexBuilder) and calls PL/SQL
functions to create the code combination.

The logic from FlexBuilder is called from the FlexBuilder Upgrade
Function activity (1). In addition to this function, the process contains
the following functions:

• Start Generating Code Combination

• Validate Code Combination – if the FlexBuilder Upgrade
Function returns Success, the code combination is validated

• End Generating Code Combination – after the code combination
is validated

• Abort Generating Code Combination – if the FlexBuilder
Upgrade Function returns Failure, the process is aborted

☞

10 – 26 Oracle Applications Flexfields Guide

Warning: This process is provided for converting an existing
FlexBuilder configuration only. You should not modify this
process in any way, nor modify the PL/SQL functions. Oracle
does not support modifications to this process. If you used
FlexBuilder in Release 10.7 and now would like to add
customizations to your Account Generator, you should do so
by starting from the default Account Generator process.

Attention: If you used FlexBuilder in Release 10.7 but did not
customize the default configuration, you do not need to use the
Generate Account Using FlexBuilder Rules process, since the
default Account Generator process gives you the same result as
the default configuration in FlexBuilder.

To use the Generate Account Using FlexBuilder Rules process, you
need to associate that process with the appropriate Accounting
Flexfield structure in the Account Generator Processes window,
explained in the next section.

A Note on Terminology

For those converting from FlexBuilder, this section explains how the
terminology ”maps” between the two features.

Raw parameters in FlexBuilder appear as attributes in the Account
Generator. These ”input” attributes are set when the Account
Generator program is called.

Derived parameters in FlexBuilder appear either as attributes or
function activities in the Account Generator.

A sequence of assignment rules in FlexBuilder corresponds to an
Account Generator process.

The default Account Generator process for a particular Accounting
Flexfield structure corresponds to seeded assignment rules in
FlexBuilder.

Finally, a FlexBuilder function corresponds to an item type in the
Account Generator.

See:

Choosing the Process for a Flexfield Structure: page 10 – 27

10 – 27Account Generator

Choosing the Process for a Flexfield Structure

Use the Account Generator Processes window to assign Account
Generator processes to Accounting Flexfield structures.

This window is under the navigation path Application > Flexfield >
Accounts in the ”System Administrator” responsibility.

� To choose your Account Generator process:

1. Select the structure to which you want to assign a process. You can
choose the application, flexfield title, structure, and description
using View > Find...

2. Specify the Oracle Workflow Item Type containing the process.

3. Specify the process you want to use to generate the accounts.

10 – 28 Oracle Applications Flexfields Guide

The default process, as specified in your Oracle [Product] User’s Guide,
will default in. If you want to use a different process, enter the name of
the process you wish to use. For example, if you want to use the
process derived from FlexBuilder, specify ”Generate Account Using
FlexBuilder Rules” instead.

A P P E N D I X

A

A – 1Business View Generator

Business View
Generator

This appendix describes the Business View Generator used in setting
up Oracle Business Intelligence System.

A – 2 Oracle Applications Flexfields Guide

Business View Generator for Oracle Business Intelligence System

Oracle Business Intelligence System (BIS) uses business views to access
information about your business applications. Business Views are
created using the Business View Generator. Business Views are set up
after you have completed the setup for the other Oracle Applications
Products you have installed.

For additional setup information, see the Oracle Business Intelligence
System Implementation Guide.

Prerequisites

Business Views should be set up after you have completed the setup for
the other Oracle Applications products you have installed. Ensure that:

• All the key flexfields have been set up and frozen.

• The desired descriptive flexfields have been set up and frozen.

• The values for user updateable lookup codes have been set up.

Generating Business Views

You run the Business View Generator to include information specific to
your setup in the Business Views templates and to generate your
Business Views.

To run the Business View Generator, perform the following:

1. Connect to Oracle Applications and assume the Business Views
Setup responsibility.

Note: We recommend you restrict the access to this
responsibility to the system administrators performing your
installation.

2. In the Navigator, choose Reports > Run menu options to open the
Submit Requests window.

3. Run the concurrent program Generate Business Views by
Applications for each licensed application product at your site.

If all the products are licensed, alternatively, you can run the
Generate All Business Views program.

A – 3Business View Generator

Concurrent programs are also available to generate Business Views
by descriptive flexfield, key flexfield, lookup, or view name. You
should regenerate Business Views by lookup type, descriptive
flexfield, or key flexfield (as appropriate) if any new lookups or
flexfields have been defined since the views were last generated.

Note: Due to the large number of Business Views delivered
with Oracle Business Intelligence Systems, the execution of
these concurrent programs could be a lengthy process
(approximately 13 hours).

4. In the Navigator, choose Reports > View to open the View Requests
window.

5. Verify that all the submitted programs completed successfully and
that all the views were generated without errors by clicking the
View Output button for each program.

A – 4 Oracle Applications Flexfields Guide

Index – 1

Index

Symbols
:$FLEX$.Value_ Set_Name

example, 4 – 38
using syntax, 4 – 35

:$PROFILES$. profile_option_ name, using
syntax, 4 – 37

:NULL suffix, using syntax, 4 – 37

A
Account Aliases key flexfield, 6 – 5
Account Generator, 10 – 1

See also Standard Flexfield Workflow
Account Generator Processes window,

10 – 27
benefits of, 10 – 2
converting from FlexBuilder, 10 – 25
customizing, 10 – 13
Generate Account Using FlexBuilder Rules

process, 10 – 25
implementing, 10 – 12
in Oracle Applications, 10 – 11
modifying a process, 10 – 15
overview of, 10 – 2
Process Diagram, 10 – 5
terms, 10 – 2
testing, 10 – 19

Accounting Flexfield, 6 – 6
See also Key flexfields
validation rules, 5 – 24, 5 – 27

Alias, shorthand, 5 – 2
defining, 5 – 2

Asset Key Flexfield, 6 – 7
Assigning Security Rules, 5 – 21

B
Bank Details Key FlexField, 6 – 8
Bind variables, 4 – 33, 4 – 34, 7 – 4

C
Category flexfield, 6 – 9
CCID, 2 – 4
Changing key flexfield structure after defining

aliases, 5 – 4
Changing key flexfield structure after defining

rules, 5 – 26
Character Formatting Options, 4 – 12
Combination, 2 – 3
Combination of segment values, 2 – 3
Combinations form , 2 – 6
Combinations table, 2 – 4
Context field, 3 – 3, 3 – 8

using value sets with, 3 – 8
Context field value, 3 – 3
Context sensitive segment, 3 – 2, 3 – 3

Index – 2 Oracle Applications Flexfields Guide

Context value, 3 – 3
Cost Allocation Key Flexfield, 6 – 10
Cross–validation, 2 – 20, 5 – 23

See also Key flexfields; Validation rules
Cross–Validation Rule Violation Report, 5 – 34
Cross–validation rules, defining, 5 – 24
Cross–Validation Rules Listing, 5 – 34

D
default segment value, 2 – 27
Default value, 4 – 44

overriding, 4 – 44
Default values, overriding, 9 – 11
Defaulting Segment Values, 2 – 27
Defaulting Values, 4 – 44
Define Value Set form, 4 – 50
Defining Cross–validation Rule Elements,

5 – 37
Defining Security Rule Elements, 5 – 20
Defining Security Rules, 5 – 19
Dependent values, 4 – 19, 4 – 25, 4 – 56

See also Value set
Descriptive flexfield view, 8 – 5
Descriptive flexfields, 1 – 4

See also Flexfields
changing existing, 4 – 46
columns, 3 – 5
compiling, 3 – 32
context, 3 – 3, 3 – 35, 3 – 37
context field, 3 – 3
context prompt, 3 – 35
customizing, 3 – 32
defining, 3 – 32
freezing, 3 – 32, 3 – 34
options, 3 – 15
planning, 3 – 24
reference fields, 3 – 4, 3 – 36
segments, 3 – 2, 3 – 5, 3 – 32
setting up, 3 – 32
tables, 3 – 5
validation, 4 – 50
validation tables, 4 – 28, 4 – 29, 4 – 58

value sets, 4 – 28, 4 – 29, 4 – 50
Dynamic insertion, 2 – 11

Accounting Flexfields, 5 – 26
when not possible, 2 – 12

E
Enabling shorthand entry, 5 – 4

F
FlexBuilder, converting to Account Generator,

10 – 25
Flexfield qualifiers, 2 – 5

choosing values for, 2 – 32
Flexfield segment, 1 – 2
Flexfield views, 8 – 3
Flexfields

See also Descriptive flexfields; Key flexfields
benefits of, 1 – 5
changing existing, 4 – 46
default values, 2 – 29
defining, 1 – 16
implementing, 1 – 10
planning, 1 – 10
predefined value sets, 4 – 24
recompiling, 2 – 18, 3 – 32
rules, security, 5 – 11
security, 5 – 9, 5 – 10, 5 – 11
setting up, 1 – 10
shorthand entry, 5 – 2, 5 – 3
terms, 1 – 6, 2 – 2, 3 – 2
validation, 4 – 50
validation tables, 4 – 29
value security, 5 – 9, 5 – 10, 5 – 11
value sets, 4 – 28, 4 – 50
views, 8 – 3

FND FLEXIDVAL, 8 – 21, 8 – 26
FND FLEXSQL, 8 – 20, 8 – 22
FND SRWEXIT, 8 – 20
FND SRWINIT, 8 – 20
FND_DATE value sets, 4 – 24
Foreign key form, 2 – 6, 2 – 8

Index – 3

G
Global segment, 3 – 2
Grade Key Flexfield, 6 – 11

H
Hierarchical value security, 5 – 14

I
Independent values, 4 – 19, 4 – 25, 4 – 46, 4 – 56
Intelligent keys, 2 – 2

See also Key flexfields
Interaction of security rules, 5 – 12
Item Catalogs key flexfield, 6 – 12
Item Categories key flexfield, 6 – 13
Item Flexfield, 6 – 24
Item Flexfield (System Items), 6 – 24

J
Job Flexfield, 6 – 14

K
Key flexfield concatenated segment view, 8 – 3
Key flexfield structure view, 8 – 4
Key flexfields, 1 – 3

See also Flexfields
alias, shorthand, 5 – 2
CCID, 2 – 4
changing existing, 4 – 46
changing valid values, 4 – 69
child values, 4 – 74
choosing qualifiers, 2 – 32
compiling, 2 – 17, 3 – 31
cross–validation, 2 – 20, 5 – 23, 5 – 27
cross–validation rules, 5 – 24
customizing, 2 – 18, 2 – 19, 2 – 23, 3 – 32
default precedence, 4 – 44, 9 – 11
default values, 2 – 29
defining, 2 – 17, 3 – 31

defining shorthand alias, 5 – 2
dynamic inserts, 2 – 11, 2 – 21
enabling segment values, 2 – 19, 4 – 69
enabling segments, 2 – 23
foreign tables, 9 – 2
freezing, 2 – 17, 2 – 21, 3 – 31
LOADID, 9 – 2
LOADIDR, 9 – 17
planning, 2 – 13, 2 – 14
POPID, 9 – 2
POPIDR, 9 – 17
qualifiers, 2 – 6, 2 – 32
ranges of values, 2 – 9, 5 – 20, 5 – 37, 9 – 17
recompiling, 2 – 18, 3 – 32
registering tables, 4 – 29, 4 – 58
rollup groups, 2 – 21, 4 – 70
rule elements, 5 – 20, 5 – 27, 5 – 37
rules, cross–validation, 5 – 27
rules, security, 5 – 11
security by value, 5 – 9, 5 – 10, 5 – 11, 5 – 18
security rule elements, 5 – 20
security rules, 5 – 11, 5 – 18
segment qualifiers, 2 – 6
segment values, 4 – 65, 5 – 18
segments, 2 – 17, 2 – 22, 3 – 31
setting up, 2 – 17, 3 – 31
shorthand entry, 4 – 44, 5 – 2, 9 – 11
structure, 2 – 19
user exits, 9 – 2, 9 – 17
VALID, 9 – 2
valid combinations, 5 – 24, 5 – 37
validation, 4 – 29, 4 – 50, 5 – 27
validation tables, 4 – 28, 4 – 29, 4 – 58
VALIDR, 9 – 17
value security, 5 – 9, 5 – 10, 5 – 11, 5 – 18
value sets, 2 – 25, 4 – 28, 4 – 50
values, 4 – 65, 5 – 18

Key Flexfields by flexfield name, 6 – 2
Key Flexfields by owning application, 6 – 3

L
Location Flexfield, 6 – 15

Index – 4 Oracle Applications Flexfields Guide

M
Maximum size, value set, 4 – 11

N
Non–validated segments, 4 – 17
NUMBER value sets, 4 – 24
Numbers Only (0–9), 4 – 12

O
Oracle Reports

flexfields and, 8 – 18, 8 – 30
report–writing steps, 8 – 30

Oracle Service Item key flexfield, 6 – 21

P
Pair value sets, 4 – 20, 9 – 23, 9 – 29
Parameters, report, 7 – 2
People Group Key Flexfield, 6 – 16
Personal Analysis Key Flexfield, 6 – 17
Planning, 1 – 10

descriptive flexfield diagrams, 3 – 25
descriptive flexfields, 3 – 24
key flexfield diagram, 2 – 14
key flexfields, 2 – 13
value sets, 4 – 2
values, 4 – 2

Position Key Flexfield, 6 – 18
Precision, 4 – 7, 4 – 12

Q
Qualifier, flexfield, 2 – 5
Qualifiers

flexfield, 2 – 32
segment, 2 – 6

R
Range form, 2 – 9
Reference fields, 3 – 4, 3 – 13
Report parameter

See also Standard Report Submission
planning, 7 – 3, 7 – 7
using flexfields in, 7 – 4
value sets, 7 – 6

Report–Writing Steps, 8 – 30
Right–justify and Zero–fill Numbers, 4 – 13
Rules, cross–validation, 5 – 27
Rules, security

assigning, 5 – 14, 5 – 18
defining, 5 – 11, 5 – 18
enabling, 5 – 15
interaction, 5 – 12

S
Sales Orders key flexfield, 6 – 19
Sales Tax Location Flexfield, 6 – 20
Security, flexfield value

enabling, 5 – 15
hierarchical, 5 – 14
rules, assigning, 5 – 14
rules, defining, 5 – 11
rules, interaction, 5 – 12
using, 5 – 9, 5 – 10

Segment qualifiers, 2 – 6
See also Key flexfields

Segment values, defaulting, 2 – 27
Segments, 1 – 2, 1 – 6, 1 – 7

context–sensitive, 3 – 2
descriptive flexfield, 3 – 2
global, 3 – 2

Shorthand alias, 5 – 3
defining, 5 – 2

Shorthand entry, 5 – 2
See also Key flexfields
alias, 5 – 2

Index – 5

setting up, 5 – 2
Soft Coded Legislation Key Flexfield, 6 – 22
Special value sets, 4 – 20, 9 – 23, 9 – 29
Standard Flexfield Workflow, 10 – 20

Abort Generating Code Combination, 10 – 23
Assign Value to Segment, 10 – 20
Copy Segment Value from Code

Combination, 10 – 21
Copy Values from Code Combination, 10 –

22
End Generating Code Combination, 10 – 24
Get Value from Code Combination, 10 – 22
Is Code Combination Complete?, 10 – 23
Start Generating Code Combination

function, 10 – 20
Validate Code Combination, 10 – 23

Standard Report Submission
See also Standard Request Submission
interaction with flexfields, 7 – 2
parameters, 7 – 2, 7 – 3
planning, 7 – 3, 7 – 7
using flexfields in, 7 – 4
value sets, 7 – 6
worksheets, 7 – 7

Standard Request Submission, 7 – 1
Stock Locators key flexfield, 6 – 23
Structures, 1 – 6, 1 – 8

descriptive flexfield, 3 – 4
System Items (Item Flexfield), 6 – 24
System Items key flexfield, 6 – 24

T
Table columns, value set size, 4 – 11
Territory Flexfield, 6 – 25

U
Uppercase Only, 4 – 13
User exits, precoded

key flexfield, 9 – 2, 9 – 17
LOADID, 9 – 2
LOADIDR, 9 – 17
POPID, 9 – 2
POPIDR, 9 – 17

VALID, 9 – 2
VALIDR, 9 – 17

V
Validate, 1 – 6
Validation, 1 – 6, 1 – 8, 4 – 17
Validation of alias values, 5 – 3
Validation rules

changing, 5 – 33
definition, 5 – 23
designing, 5 – 23
error messages, 5 – 27
error segment, 5 – 28
suggestions for design, 5 – 32

Validation tables
changing existing, 4 – 46
columns, 4 – 31
grants and synonyms, 4 – 32
implementing, 4 – 28
registering, 4 – 29
when to use, 4 – 28
WHERE clauses, 4 – 33

Value set, 1 – 6, 1 – 8
dependent, 4 – 56
enabling security on, 5 – 15
independent, 4 – 56
report parameter, 7 – 6

Value Set Maximum Size, 4 – 11
Value sets

See also Key flexfields
changing existing, 4 – 46
context fields and, 3 – 8
date format, 4 – 24
defining, 4 – 2, 4 – 50
dependent, 4 – 19, 4 – 25, 4 – 46
format type, 4 – 6
independent, 4 – 19, 4 – 25, 4 – 46
list type, 4 – 52
LongList, enabling, 4 – 52
naming conventions, 4 – 22
none, 4 – 18
pair, 4 – 20, 9 – 23, 9 – 29
planning, 4 – 2
predefined, 4 – 24
sharing across flexfields, 4 – 50

Index – 6 Oracle Applications Flexfields Guide

size, 4 – 11
special, 4 – 20, 9 – 23, 9 – 29
table, 4 – 19, 4 – 28, 4 – 29, 4 – 46
translatable dependent, 4 – 21, 4 – 40
translatable independent, 4 – 21, 4 – 40
validation types, 4 – 46, 4 – 53

Values, 1 – 6
dependent, 4 – 19, 4 – 25
independent, 4 – 19, 4 – 25
key flexfield security, 5 – 9, 5 – 10, 5 – 11

Views
creating, 8 – 6
examples, 8 – 11, 8 – 14
flexfield, 8 – 3
reporting from, 8 – 9

W
WHERE clauses, for validation tables, 4 – 33
Worksheets, report parameters, 7 – 7

Reader’s Comment Form

Oracle Applications Flexfields Guide, Release 11i
A75393–03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information we use for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual? What did you like least about it?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065 USA
Phone: (650) 506–7000 Fax: (650) 506–7200

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Contents
	Preface
	Audience for This Guide
	How To Use This Guide
	Why Flexfields Have A Separate Manual
	Other Information Sources
	Do Not Use Database Tools to Modify Oracle Applications Data
	About Oracle
	Your Feedback

	Flexfield Concepts
	Overview of Flexfield Concepts
	Key Flexfields
	Descriptive Flexfields
	Benefits of Flexfields
	Basic Flexfields Concepts

	Overview of Setting Up Flexfields
	Planning
	Defining
	Data Entry and Ongoing Maintenance
	Reporting

	Planning and Defining Key Flexfields
	Additional Terms and Concepts for Key Flexfields
	Intelligent Key
	Combination
	Combinations Table
	Qualifiers
	Types of Key Flexfield Forms
	Dynamic Insertion
	Other Key Flexfield Features

	Planning Your Key Flexfield
	Key Flexfield Structure Planning Diagram

	Key Flexfield Segments Window
	Defining Key Flexfields
	Defining Key Flexfield Structures
	Defining Segments
	Choosing Your Value Set
	Defaulting Segment Values
	Segment Prompts and Display Lengths
	Flexfield Qualifiers
	Reporting Attributes
	Reporting Attributes Zone

	Planning and Defining Descriptive Flexfields
	Descriptive Flexfield Concepts
	How Segments Use Underlying Columns

	Context Fields and Reference Fields
	Context Fields
	Using Value Sets With Context Fields
	Reference Fields
	Other Descriptive Flexfield Features

	Different Arrangements of Segments
	Planning Your Descriptive Flexfield
	Descriptive Flexfield Structure Planning Diagrams

	Descriptive Flexfield Segments Window
	Defining Descriptive Flexfields
	Defining Descriptive Flexfield Structures
	Context Field Values

	Identifying Descriptive Flexfields in Oracle Applications
	Identifying Descriptive Flexfields

	Values and Value Sets
	Overview of Values and Value Sets
	Planning Values and Value Sets
	Choosing Value Formats
	Value Formats
	Decide What Your User Needs
	Choosing a Validation Type for Your Value Set
	Plan Values to Use Range Features
	Value Set Naming Conventions
	Predefined Value Sets
	Defining Values and Value Sets
	Relationship Between Independent and Dependent Values
	Parent and Child Values and Rollup Groups

	Overview of Implementing Table–Validated Value Sets
	Using Validation Tables
	Defining Your Validation Table
	Creating Grants and Synonyms for Your Table
	WHERE Clauses and Bind Variables for Validation Tables
	Bind Variables
	Example of $FLEX$ Syntax

	Using Translatable Independent and Translatable Dependent Value Sets
	Implementation
	Limitations on Translatable Value Sets
	Converting Independent/Dependent Value Sets to Translatable Independent/Dependent Value Sets

	Using Special and Pair Value Sets
	Defaulting Flexfield Values
	Precedence of Default Values, Shorthand Entry Values, and COPY Values in Key Flexfields

	Changing the Value Set of an Existing Flexfield Segment
	Value Set Windows
	Overview of Value Set Windows
	Defining Value Sets
	Dependent Value Set Information Window
	Validation Table Information Window
	Special Validation Routines Window

	Segment Values Window
	Segment Values Block
	Defining Segment Values
	Defining Hierarchy and Qualifiers Information
	Qualifiers
	Hierarchy Details Buttons
	Define Child Ranges
	View Hierarchies
	Move Child Ranges

	Rollup Groups Window
	Defining Rollup Groups

	Using Additional Flexfields Features
	Overview of Shorthand Flexfield Entry
	Enabling Shorthand Entry
	Defining Shorthand Aliases
	Disabling or Enabling a Shorthand Alias

	Overview of Flexfield Value Security
	Effects of Flexfield Value Security
	Understanding Flexfield Value Security
	Activating Flexfield Value Security

	Define Security Rules Window and Assign Security Rules Window
	Defining Security Rules
	Defining Security Rule Elements
	Assigning Security Rules

	Cross–Validation Rules
	How Cross–Validation Works
	Designing Your Cross–Validation Rules
	Maintaining Your Cross–Validation Rules and Valid Combinations
	Reports

	Cross–Validation Rules Window
	Defining Cross–validation Rules
	Defining Cross–validation Rule Elements

	Key Flexfields in Oracle Applications
	Key Flexfields by Flexfield Name
	Key Flexfields by Owning Application
	Tables of Individual Key Flexfields in Oracle Applications
	Account Aliases
	Accounting Flexfield
	Asset Key Flexfield
	Bank Details KeyFlexField
	Category Flexfield
	Cost Allocation Flexfield
	Grade Flexfield
	Item Catalogs
	Item Categories
	Job Flexfield
	Location Flexfield
	People Group Flexfield
	Personal Analysis Flexfield
	Position Flexfield
	Sales Orders
	Sales Tax Location Flexfield
	Oracle Service Item Flexfield
	Soft Coded KeyFlexfield
	Stock Locators
	System Items (Item Flexfield)
	Territory Flexfield

	Standard Request Submission
	Overview of Flexfields and Standard Request Submission
	Planning Your Report Parameters
	Using Flexfield Information in Your Report Parameters
	Report Parameter Window Planning Diagrams

	Reporting on Flexfields Data
	Overview of Reporting on Flexfields Data
	Overview of Flexfield Views
	Key Flexfield Concatenated Segment View
	Key Flexfield Structure View
	Descriptive Flexfield View
	Creating a Flexfield View
	Segment Naming Conventions
	Using Flexfield Views to Write a Report

	Examples of Flexfield Views
	Key Flexfield Views Examples
	Descriptive Flexfield View Example

	Oracle Reports 6.0 Flexfield Support API
	General Methodology
	Basic Implementation Steps
	FND FLEXSQL
	FND FLEXIDVAL

	Oracle Reports and Flexfields Report–Writing Steps
	Flexfield Report Examples
	Report 1: Simple Tabular Report
	Report 2: Simple Tabular Report With Multiple Structures
	Report 3: Tabular Report
	Report 4: Master–Detail Report
	Report 5: Master–detail Report on Multiple Structures

	Key Flexfield Routines for Special Validation
	Syntax for Key Flexfield Routines
	Special Validation Value Sets
	Special Validation Events
	Defining Your Special Validation Function
	Example of Special Validation
	Example of Special Validation for a Single Segment
	Example of Pair Validation
	Using Variables with Special and Pair Validation

	Account Generator
	Overview of the Account Generator
	Terms
	Account Generator Process Diagram
	How the Account Generator Works
	Where the Account Generator Derives Segment Values

	The Account Generator in Oracle Applications
	Overview of Implementing the Account Generator
	Customizing the Account Generator
	Determine Characteristics of Combination
	Decide From Where Each Segment Derives Its Value
	Modify Your Account Generator Process

	Test Your Account Generator Setup
	Standard Flexfield Workflow
	Converting from FlexBuilder
	Choosing the Process for a Flexfield Structure

	Business View Generator
	Business View Generator for Oracle Business Intelligence System
	Prerequisites
	Generating Business Views

	Index

